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Preface

The 14th event of the International Conference on Machine Learning and Data Min-
ing MLDM 2018 was held in New York (www.mldm.de) running under the umbrella
of the World Congress Frontiers in Intelligent Data and Signal Analysis, DSA2017
(www.worldcongressdsa.com).

After the peer-review process, we accepted 86 high-quality papers for oral pre-
sentation. The topics range from theoretical topics for classification, clustering, asso-
ciation rule and pattern mining to specific data-mining methods for the different
multimedia data types such as image mining, text mining, video mining, and Web
mining. Extended versions of selected papers will appear in the international journal
Transactions on Machine Learning and Data Mining (www.ibai-publishing.org/
journal/mldm).

The tutorial days rounded up the high quality of the conference. Researchers and
practitioners got excellent insight into the research and technology of the respective
fields, the new trends, and the open research problems that we would like to study
further.

A tutorial on “Data Mining,” a tutorial on “Case-Based Reasoning,” a tutorial on
“Intelligent Image Interpretation and Computer Vision in Medicine, Biotechnology,
Chemistry, and the Food Industry,” and a tutorial on “Standardization in
Immunofluorescence” were held before the conference.

We would like to thank all reviewers for their highly professional work and their
effort in reviewing the papers. We would also like to thank the members of Institute of
Applied Computer Sciences, Leipzig, Germany (www.ibai-institut.de), who handled
the conference as secretariat. We appreciate the help and cooperation of the editorial
staff at Springer, and in particular Alfred Hofmann, who supported the publication
of these proceedings in the LNAI series.

Last, but not least, we wish to thank all the speakers and participants who con-
tributed to the success of the conference. We hope to see you in 2019 in New York at
the next World Congress (www.worldcongressdsa.com) on Frontiers in Intelligent Data
and Signal Analysis, DSA2018, which combines the following three events: Interna-
tional Conferences on Machine Learning and Data Mining, MLDM (www.mldm.de),
the Industrial Conference on Data Mining, ICDM (www.data-mining-forum.de), and
the International Conference on Mass Data Analysis of Signals and Images in Medi-
cine, Biometry, Drug Discovery Biotechnology, Chemistry, and Food Industry, MDA.

July 2018 Petra Perner

http://www.mldm.de
http://www.worldcongressdsa.com
http://www.ibai-publishing.org/journal/mldm
http://www.ibai-publishing.org/journal/mldm
http://www.ibai-institut.de
http://www.worldcongressdsa.com
http://www.mldm.de
http://www.data-mining-forum.de
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MaxMin Linear Initialization for Fuzzy
C-Means

Aybüke Öztürk1,2(B), Stéphane Lallich1, Jérôme Darmont1,
and Sylvie Yona Waksman2

1 ERIC EA 3083, Université de Lyon, Lyon 2, 5 avenue Pierre Mendès France,
69676 Bron Cedex, France

{aybuke.ozturk,stephane.lallich,jerome.darmont}@univ-lyon2.fr
2 ArAr UMR 5138, Université de Lyon, Lyon 2, 7 rue Raulin,

69365 Lyon Cedex 7, France
yona.waksman@mom.fr

Abstract. Clustering is an extensive research area in data science. The
aim of clustering is to discover groups and to identify interesting pat-
terns in datasets. Crisp (hard) clustering considers that each data point
belongs to one and only one cluster. However, it is inadequate as some
data points may belong to several clusters, as is the case in text catego-
rization. Thus, we need more flexible clustering. Fuzzy clustering meth-
ods, where each data point can belong to several clusters, are an inter-
esting alternative. Yet, seeding iterative fuzzy algorithms to achieve high
quality clustering is an issue. In this paper, we propose a new linear and
efficient initialization algorithm MaxMin Linear to deal with this prob-
lem. Then, we validate our theoretical results through extensive exper-
iments on a variety of numerical real-world and artificial datasets. We
also test several validity indices, including a new validity index that we
propose, Transformed Standardized Fuzzy Difference (TSFD).

Keywords: Clustering · Fuzzy C-Means · Seeding · Initialization
Maxmin linear method · Validity indices

1 Introduction

Clustering is a useful technique for grouping a set of unlabelled data points
(instances) described by attributes (variables), such that points belonging to the
same cluster (group) have similar characteristics, while points in different clusters
have dissimilar characteristics. There are several types of clustering schemes,
such as crisp, overlapping or fuzzy partitions, and hierarchies. Crisp clustering
considers that each data point belongs to one and only one cluster. Contrary to
crisp clustering, fuzzy clustering [1] considers that a data point can belong to
more than one cluster. There are some situations where fuzzy clustering is very
useful. For instance, let us consider three clusters achieved when categorizing
textual documents: an economy cluster (topic), an energy cluster, and a politics
cluster. Then a document containing the keyword “petrol” could belong to all
c© Springer International Publishing AG, part of Springer Nature 2018
P. Perner (Ed.): MLDM 2018, LNAI 10934, pp. 1–15, 2018.
https://doi.org/10.1007/978-3-319-96136-1_1
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three clusters. Moreover, fuzzy clustering helps opening a discussion with domain
experts regarding clustering results.

The primary objective of our paper is to avoid using highly complex clustering
methods. One solution is to use iterative fuzzy methods such as Fuzzy C-Means
(FCM) and Fuzzy K-Medoids. Both methods adapt the principle of the K-Means
algorithm [2]. FCM, proposed by [3] and extended by [4], applies on numerical
data, while Fuzzy K-Medoids [5] applies on categorical data. Since numerical
data are the most common case, we choose to experiment our proposals with
FCM.

The aim of the FCM algorithm is to minimize the fuzzy within-inertia FW
(see Eq. 1). Fuzzy inertia FI (see Eq. 2) composes of the FW and the fuzzy
between-inertia FB (see Eq. 3). FW , FI, and FB are computed from a mem-
bership matrix U , which stores the membership coefficients uik of data point i to
cluster k. Note that FI = FW + FB. Moreover, FI is not constant because it
depends on uik value. When FW changes, the values of FI and FB also change.

FW =
n∑

i=1

K∑

k=1

um
ikd

2(xi, ck) (1)

FI =
n∑

i=1

K∑

k=1

um
ikd

2(xi, x) (2)

FB =
n∑

i=1

K∑

k=1

um
ikd

2(ck, x) (3)

where n is the number of instances, K is the number of clusters, m is the
fuzziness coefficient (by default, m = 2. If m = 1, clustering is crisp. If m > 1,
clustering becomes fuzzy), ck is the center of the kth cluster ∀ k, 1 ≤ k ≤ K, x
is the grand mean (the arithmetic mean of all data, see Eq. 4), and function d2()
computes the squared Euclidean distance.

x =
1
n

n∑

i=1

xi (4)

FCM starts by choosing K data points as initial centroids of the clusters.
Then, membership matrix values uik (see Eq. 5) are assigned to each data point
in the dataset. Centroids of clusters ck are updated based on Eq. 6 until a ter-
mination criterion is reached successfully. In FCM, this criterion can be a fixed
number of iterations t, e.g., t = 100. Alternatively, a threshold ε can be used, e.g.,
ε = 0.0001. Then, the algorithm stops when the relative difference of objective
function < ε.

uik =
1

∑K
j=1

(
‖xi−ck‖2

‖xi−cj‖2

) 1
m−1

(5)

ck =
∑n

i=1(u
m
ik)xi∑n

i=1(u
m
ik)

(6)
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When using FCM, an important point is the way of choosing K data points
as initial centroids (seeds). An efficient initialization method should be linear, so
that the FCM algorithm stays linear, too. Then, the initialization method must
be evaluated using validity indices that are well suited to the fuzzy case.

To obtain a good validated clustering result, one has to minimize intra-cluster
distance (compactness) and at the same times, one has to maximize inter-cluster
distance (separability). The more often, proposed clustering validity indices asso-
ciate a compactness index with a separability index.

Thence, we propose in this paper (1) a linear and efficient initialization
method for FCM clustering called MaxMin Linear. Moreover, to compare our
proposal with several initialization methods from the literature, we also pro-
pose (2) a new clustering validity index called Transformed Standardized Fuzzy
Difference (TSFD), which is tailored to the fuzzy case. We perform validation
experiments on several numerical real-world and artificial datasets.

The remainder of this paper is organized as follows. Section 2 presents ini-
tialization methods for iterative clustering and several clustering validity meth-
ods proposed in the literature. Sections 3 and 4 detail our contributions, i.e.,
the MaxMin Linear initialization method and the TSFD validity index, respec-
tively. Section 5 deals with the experimental evaluation of the MaxMin Linear
initialization method on several datasets, using several validity indices, including
TSFD. Finally, we conclude this paper and provide some perspectives in Sect. 6.

2 Related Works

Most initialization methods are studied through K-Means clustering [2] concepts.
We have reviewed various works from the literature, including much-cited papers
[6–8]. In our study, we make use of commonly mentioned linear methods from
these three papers.

The first initialization method by [2] uses the first K data points as centroids.
This method is sensitive to the order of data. It is used by default in SPSS [9].
The second method by MacQueen (MacQueen2 ) takes K random data points as
centroids. Moreover, [10] proposes to perform multiple relaunches of MacQueen2.
Among the different relaunches, the one that optimizes FW (Eq. 1) is considered
the best candidate. This method is the standard way for initializing clusters. Its
main disadvantage is that already selected points are not considered when a new
seed is chosen. The second disadvantage is that outliers can be chosen. On the
other hand, multiple runs ensure to improve the quality of the chosen sample.

Hand et al. [11], propose an extension of Faber’s method that starts with a
random set of seeds. It suggests iteratively modifying the partition by randomly
moving some points to other clusters. The partition minimizing FW is chosen
as the best candidate. To move each data point to another random cluster, a
probability α, e.g., α = 0.3, must be set. The method is only interesting if
parameter α is fixed for different datasets.

Bradley and Fayyad’s method [12] starts by randomly partitioning the
dataset into J subsets. Then, each subset is clustered with the K-Means algo-
rithm using MacQueen2 initialization. MacQueen2 produces J sets of centers,
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each containing K points. The centers of clusters are combined into a superset.
Then, the superset is clustered by K-Means J times. Each time, K-Means is
initialized with a different center set, and members of the center set that give
the smallest FW are selected as final centers.

The PCA-Part method [13] uses a divisive hierarchical approach based on
Principal Component Analysis (PCA) [14]. The method starts with a single
cluster containing the whole dataset. Then, it iteratively divides clusters with
respect to FW . Clusters are divided into two sub-clusters by using a hyperplane
that is orthogonal to the principal eigenvector of the cluster covariance matrix.
The division process ends after K clusters are obtained.

The K-Means++ method [15] selects centroids based on a distance proba-
bility to the nearest center. First, it randomly selects an initial center c1 = x
from the data point set X. Then, d(x) is denoted as the shortest euclidean dis-
tance from x to its closest center. The next center ci is randomly selected as
ci = x′ ∈ X with probability d(x′)2/

∑
d(x)2.

Finally, in the literature, there are other methods having quadratic complex-
ity [16,17]. Among quadratic methods, MaxMin (also called Maximin) [18] is
particularly interesting. MaxMin first calculates all the paired distances between
data points. Then, it chooses two centroids from the data points, which have the
greatest distance to each other. Finally, the next centroid is the data point that is
the farthest from its centroid. This approach helps decrease FW , which improves
the homogeneity of clusters.

To summarize, Hand and Krzanowski [11] rely on user-defined parameters
that may not be easy to set. MacQueen2, though easy to understand and imple-
ment, uses only one random sample. Faber improves the MacQueen2 ’s random
sample through relaunches. In K-Means++, the random choice is replaced by a
probabilistic choice and cluster homogeneity is taken into account. However,
since the probabilistic selection does not always select sufficiently the large
enough distance, several probabilistic samples are required and the best cen-
ters are selected from all relaunches.

In contrast, MaxMin constructs only one sample by decreasing FW and is
thus deterministic. Thus, we can be sure that a chosen center is the best. Yet,
it can be less effective than K-Means++ in the presence of outliers.

To evaluate initialization methods, we need to use fuzzy validity indices.
According to [19], there are two groups of validity indices. The first group is
only based on membership values and includes the partition coefficient index
VPC [20] (see Eq. 7; 1

K ≤ VPC ≤ 1; to be maximized) and the Chen and Linkens
index VCL [21] (see Eq. 8; 0 ≤ VCL ≤ 1; to be maximized).

VPC =
1
n

n∑

i=1

K∑

k=1

u2
ik (7)

VCL =
1
n

n∑

i=1

maxk(uik) − 1
c

K−1∑

k=1

K∑

j=k+1

[
1
n

n∑

i=1

min(uik, uij)

]
, (8)

where c =
∑K−1

k=1 k.
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VCL takes in consideration both compactness (first term of VCL) and sep-
arability (second term of VCL). The second group of fuzzy validity indices
is based on associating membership values to cluster centers and data. It
includes the adaptation of the Ratio index VFRatio to fuzzy clustering [22]
(see Eq. 9; 0 ≤ VFRatio ≤ +∞; to be maximized), the penalized version of
VFRatio index which is the Calinski and Harabasz index VFCH [22] (see Eq. 10;
0 ≤ VFCH ≤ +∞; to be maximized), the Fukuyama and Sugeno index VFS [23]
(see Eq. 11; −FI ≤ VFS ≤ FI; to be minimized), and the Xie and Beni index
VXB [24,25] (see Eq. 12; 0 ≤ VXB ≤ FI/n ∗ min‖xj − vk‖2; to be minimized).

VFRatio = FB/FW (9)

VFCH =
FB/(K − 1)
FW/(n − K)

=
n − K

K − 1
FB

FW
(10)

VFS = FW − FB (11)

VXB =
∑K

k=1

∑n
i=1 um

ik‖xi − vk‖2
n ∗ minj,k‖vj − vk‖2 (12)

Among all the above stated validity indices, there is no single validity index
that gives the best result for any dataset. Thus, there is room for a new validity
index that is specifically tailored for fuzzy validation. This is why we propose
the Transformed Standardized Fuzzy Difference index.

3 MaxMin Linear Fuzzy Clustering Initialization Method

MaxMin’s simplicity and ability to build homogeneous clusters sounds very
interesting. Yet, considering all paired distance between data points makes the
method quadratic with respect to the number of data points. Thus, we present in
this section an enhancement of MaxMin that makes it linear. Before introducing
our changes, we first detail how MaxMin works in Algorithm 1 (see Sect. 2 for
MaxMin’s principle).

In MaxMin Linear, we first calculate grand mean x (see Eq. 4). Then, we
choose as first centroid the data point that is nearest to x. The second centroid is
the data point that has the largest distance to the first centroid. Thus, complexity
remains linear with respect to the number of data points. Afterwards, the choice
of the remaining centroids remains the same as in MaxMin. MaxMin Linear is
formalized in Algorithm 2.

As a final note, the use of MaxMin Linear is not limited to use with FCM
on numerical data, but also with Fuzzy K-Medoids [26] for categorical data
clustering. Thus, MaxMin Linear can also be applied with heterogeneous data
to construct fuzzy clustering ensemble. This makes of MaxMin Linear a simple
but noteworthy contribution, in our opinion.
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Algorithm 1. MaxMin
Require: Set of data points X = {x1, ..., xn}
Require: Number of clusters K

{Select the first two centroids c1 and c2}
c1, c2 ← argmax(d2(xi, xj)) i, j = 1, ..., n
K∗ ← 2 {Number of seeds}
{Find the remaining seeds}
while K∗ < K do

for all xi �= ck∗ i = 1, ..., n, k∗ = 1, ...,K∗ do
d2m(xi) ← min(d2(xi, ck∗))

end for
K∗ ← K∗ + 1
cK∗ ← argmax(d2m(xi)) i = 1, ..., n

end while
return {ck∗} k∗ = 1, ...,K∗

Algorithm 2. MaxMin Linear
Require: Set of data points X = {x1, ..., xn}
Require: Number of clusters K

{Select the first two centroids c1 and c2}
x ← 1

n

∑n
i=1 xi

for i ← 1 to n do
d2m(xi) ← min(d2(x, xi))

end for
c1 ← argmin(d2m(xi)) i = 1, ..., n
for i ← 1 to n do

d2m(xi) ← max(d2(c1, xi))
end for
c2 ← argmax(d2m(xi)) i = 1, ..., n
K∗ ← 2 {Number of seeds}
{Find the remaining seeds}
while K∗ < K do

for all xi �= ck∗ i = 1, ..., n, k∗ = 1, ...,K∗ do
d2m(xi) ← min(d2(xi, ck∗))

end for
K∗ ← K∗ + 1
cK∗ ← argmax(d2m(xi)) i = 1, ..., n

end while
return {ck∗} k∗ = 1, ...,K∗

4 Transformed Standardized Fuzzy Difference Validity
Index

Several problems must be cleaned up to obtain a good clustering, including
evaluation of the validity of the clusters and choosing the number of clusters.
However, it is not an easy process. Compactness and separation level might raise
problems. Firstly, if the chosen number of clusters is larger than optimal one,
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some clusters are broken while they could be more compact. Secondly, if the
chosen number of clusters is smaller than optimal one, some clusters are merged
and while they could be more separated. When it comes to addressing resolve
those problems, many cluster validity indices are proposed for fuzzy clustering
algorithms. The objective is to find the optimal number of clusters that can
validate the best description of the data structure.

The optimal number of the cluster can be determined by considering the
variation of clustering validity index. It is distinguished into two cases: The first
case, if the index is not monotonic with the number of clusters, we choose the
value of the number of clusters which optimizes the index. The second case, if
the index is monotonic, one can prefer to use a penalized version of the index.

In building TSFD, we first consider the difference FB−FW , which is similar
to FS except for the sign). Unfortunately, FI = FB + FW is not constant and
FB − FW ∈ [−FI,+FI]. To take this particularity of fuzzy clustering into
account, we propose to standardize FB−FW by considering Standardized Fuzzy
Difference SFD = (FB − FW ) ÷ FI instead. SFD ∈ [−1,+1].

Finally, to obtain an index belonging to the [0, 1] interval, we linearly trans-
form SFD as TSFD (see Eq. 13; equal to FB/FI; ∈ [0, 1]; to be maximized)

TSFD =
1 + SFD

2
=

FB

FI
(13)

5 Experimental Validation

In this section, we aim to compare MaxMin Linear to state of the art initial-
ization methods for FCM-like clustering algorithms, i.e., MacQueen2, Faber’s,
K-Means++, and repeated K-Means++ (retaining the best result). These meth-
ods are indeed the most common linear methods and are good representatives for
random, probability, and distance-based methods. Moreover, they do not require
any parameterization. To achieve our comparison of initialization methods, we
use the indices mentioned in Sect. 2.

5.1 Datasets

Initialization methods are compared on 15 commonly used real-life datasets from
the UCI Machine Learning Repository1 and seven artificial datasets. Their char-
acteristics are featured in Table 1.

In the case of real-life datasets, the true number of clusters in each dataset is
assimilated to the number of labels. Although using the number of labels as the
number of clusters is debatable, it is acceptable if the set of descriptive variables
explain the labels well. In artificial datasets, the number of clusters is known by
construction.

In addition, we created new artificial datasets by introducing overlapping and
noise to some of the existing artificial datasets such as E1071-3, Ruspini original,
and E1071-5 datasets (see Table 1, ID 17, 18, and 21).
1 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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Table 1. Dataset features

ID Datasets # of data
points

# of
variables

# of
clusters

Sources

1 Wine 178 13 3 UCI

2 Iris 150 4 3 UCI

3 Seeds 210 7 3 UCI

4 Original Wisconsin
Breast Cancer (WBCD)

683 9 2 UCI

5 Wisconsin Diagnostic
Breast Cancer (WDBC)

569 30 2 UCI

6 BUPA Liver Disorder
(BUPA)

345 6 2 UCI

7 Pima 768 8 2 UCI

8 Glass 214 9 6 UCI

9 Vehicle 846 18 4 UCI

10 Segmentation 2310 19 7 UCI

11 Parkinson 150 22 2 UCI

12 Movement Libras 360 90 15 UCI

13 Ecoli 336 7 8 UCI

14 Yeast 1484 8 10 UCI

15 WineQuality-Red 1599 11 6 UCI

16 Bensaid 49 2 3 [27]

17 E1071-3 150 3 3 [28]

18 Ruspini original 75 2 4 [1]

19 E1071-3-overlapped 150 3 3 [28]

20 Ruspini noised 95 2 4 [1]

21 E1071-5 250 3 5 [28]

22 E1071-5-overlapped 250 3 5 [28]

To create the dataset, new data points are introduced and each must be
labeled. To obtain a dataset with overlapping, we modified the construction of
the E1071 artificial datasets [28]. In the original datasets, there are three or
five clusters of equal size (50). Cluster i is generated according to a Gaussian
distribution N(i; 0.3). To increase overlapping while retaining the same cluster
size, we only change the standard deviation from 0.3 to 0.4. Then, there is no
labeling problem.

Noise is introduced in each cluster by adding noisy points generated by a
Gaussian variable around each label gravity center. First, for each label, we
calculate the coordinates of centers, and the mean and standard deviation of
each variable. With Gaussian variables, points mainly lie between “center +/−
two standard deviations”.

Noisy data are often generated by distributions with positive skewness. For
example, in a two-dimensional dataset, for each label, we add points that are far
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away from the corresponding gravity center, especially on the right hand side,
which generally contains the most points. Then, we draw a random number r
between 0 and 1. If r ≤ 0.25, the point is attributed to the left hand side.
Otherwise, the point is attributed to the right hand side. This method helps
obtain noisy data that are 1/4 times smaller and 3/4 times greater, respectively,
than the expected value for the considered label. We apply this process to the
Ruspini dataset [1].

5.2 Experimental Settings

In our experiments, we parameterize the FCM algorithm as follows: default ter-
mination criterion ε = 0.0001 and default fuzziness coefficient value m = 2. We
used these default settings as we are only interested in improving the initializa-
tion of FCM algorithm. All initialization methods and clustering validity indices
are written in Python version 2.7.4. Repeated K-Means++ runs are performed
ten times.

5.3 Experimental Results

In our experiments, we compare our method MaxMin Linear to all initialization
methods from Sect. 2, on all datasets. We account for the following comparison
criteria: number of iterations, VPC , VCL, FB, FW , FI, VFRatio, VTSFD, VFS ,
and VXB . We also rank the initialization methods with respect to all criteria.

Since presenting all results would take too much space, we only present three
real-life datasets i.e., WineQuality-Red (Tables 2, 3, and 4), Glass (Tables 5, 6,
and 7), and Segmentation (Tables 8, 9, and 10), as well as two of the artificial
datasets we modified to introduce noise and overlapping, i.e., Ruspini noised
(Tables 11, 12, and 13), and E1071-5-overlapped (Tables 14, 15, and 16), respec-
tively. Finally, the average ranking of initialization methods on all datasets is
presented in Table 17.

From these experimental results, several observations can be drawn. In regard
to the number of iterations, recall that Faber’s and K-Means++ ×10 meth-
ods are relaunches of two stochastic initialization methods: MacQueen2 and
K-Means++, respectively. With an average ranking of 1.68 (Table 17), MaxMin
Linear outperforms all other methods, including single-run methods MacQueen2
(average ranking: 1.95) and K-Means++ (average ranking: 1.95).

Regarding clustering result quality, MaxMin Linear obtains the best average
ranking for eight of the nine experimented quality indices (Table 17). Only the
FB index yields a better result for the two multiple-runs methods, while the
result of Maxmin Linear is similar to those of MacQueen2 and K-Means++.
However, Maxmin Linear achieves the best trade-off between FB and FW , and
thus maximizes the indices that take both FB and FW into account (VFRatio,
VTSFD, VFS and VXB). The best result for MaxMin Linear is obtained with
VTSFD (average ranking of 1.86; Table 17), the new index specially tailored for
fuzzy clustering that we propose.
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Table 2. Experiment results on WineQuality-Red (1/2)

Initialization method # of iteration VPC VCL FB FW

MacQueen2 45 0.664 0.7455 110972.7 1224079.7

Faber 430 0.664 0.7455 101440.4 1224079.7

K-Means++ 37 0.616 0.7029 101440.5 1089058.1

K-Means++ ×10 393 0.664 0.7455 101440.4 1224073.7

MaxMin linear 34 0.665 0.7458 110972.7 1224384.8

Table 3. Experiment results on WineQuality-Red (2/2)

Initialization method FI VFRatio VTSFD VFS VXB

MacQueen2 1335052.363 11.0305 0.9169 −1113107.01 0.1621

Faber 1335052.363 11.0305 0.9148 −1113107.01 0.1621

K-Means++ 1190498.537 10.7359 0.9148 −987617.57 0.2388

K-Means++ ×10 1335046.425 11.0304 0.9148 −1113101.04 0.1621

MaxMin linear 1335357.554 11.0332 0.9169 −1113412.13 0.1611

Table 4. Ranking of initialization methods on WineQuality-Red

Initialization method # of iteration VPC VCL FB FW FI VFRatio VTSFD VFS VXB

MacQueen2 3 2 2 4 2 2 2 2 2 2

Faber 5 2 2 2 2 2 2 5 2 2

K-Means++ 2 5 5 3 5 5 5 3 5 5

K-Means++ ×10 4 4 4 1 4 4 4 4 4 4

MaxMin linear 1 1 1 5 1 1 1 1 1 1

Table 5. Experiment results on Glass (1/2)

Initialization method # of iteration VPC VCL FB FW

MacQueen2 44 0.493 0.570 452.6 154.1

Faber 456 0.493 0.570 452.6 154.1

Kmeans++ 56 0.493 0.570 452.6 154.1

K-Means++ ×10 366 0.493 0.570 452.6 154.1

MaxMin linear 68 0.555 0.645 508.3 162.9

In conclusion, the results obtained with MaxMin Linear are a little better
than those obtained with multiple-runs methods, but they require ten times
fewer iterations. Moreover, MaxMin Linear is deterministic, whereas multiple-
runs methods are stochastic.
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Table 6. Experiment results on Glass (2/2)

Initialization method FI VFRatio VTSFD VFS VXB

MacQueen2 606.8 2.94 0.74596 −298.5 2.358

Faber 606.8 2.94 0.74597 −298.5 2.358

Kmeans++ 606.7 2.94 0.74593 −298.4 2.358

K-Means++ ×10 606.7 2.94 0.74604 −298.4 2.358

MaxMin linear 671.2 3.12 0.75725 −345.4 0.453

Table 7. Ranking of initialization methods on Glass

Initialization method # of iteration VPC VCL FB FW FI VFRatio VTSFD VFS VXB

MacQueen2 1 2 2 2 1 2 2 4 2 5

Faber 5 3 3 3 2 3 3 3 3 2

Kmeans++ 2 5 5 5 4 5 5 5 5 4

K-Means++ ×10 4 4 4 4 3 4 4 2 4 3

MaxMin Linear 3 1 1 1 5 1 1 1 1 1

Table 8. Experiment results on Segmentation (1/2)

Initialization method # of iteration VPC VCL FB FW

MacQueen2 103 0.381 0.476 12384361.4 5781042.6

Faber 731 0.398 0.488 14157566.6 5680259.6

Kmeans++ 146 0.381 0.476 12388277.9 5781061.6

K-Means++ ×10 930 0.399 0.490 14254025.9 5666840.5

MaxMin linear 54 0.430 0.526 19234921.0 6344612.7

Table 9. Experiment results on Segmentation (2/2)

Initialization method FI VFRatio VTSFD VFS VXB

MacQueen2 18165404.0 2.14 0.6818 −6603318.7 0.363

Faber 19837826.2 2.49 0.7137 −8477307.1 0.464

Kmeans++ 18169339.6 2.14 0.6818 −6607216.3 0.361

K-Means++ ×10 19920866.4 2.52 0.7136 −8587185.5 0.341

MaxMin Linear 25579533.7 3.03 0.7520 −12890308.3 0.656
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Table 10. Ranking of initialization methods on Segmentation

Initialization method # of iteration VPC VCL FB FW FI VFRatio VTSFD VFS VXB

MacQueen2 2 4 5 5 3 5 5 5 5 3

Faber 4 3 3 3 2 3 3 2 3 4

Kmeans++ 3 5 4 4 4 4 4 3 4 2

K-Means++ ×10 5 2 2 2 1 2 2 4 2 1

MaxMin linear 1 1 1 1 5 1 1 1 1 5

Table 11. Experiment results on Ruspini noised (1/2)

Initialization method # of iteration VPC VCL FB FW

MacQueen2 9 0.775121 0.806518 219099.6 23421.0260

Faber 130 0.775125 0.806517 219100.8 23421.0258

Kmeans++ 13 0.775122 0.806521 219101.1 23421.0258

K-Means++ ×10 105 0.775128 0.806518 219102.3 23421.0256

MaxMin linear 7 0.775128 0.806523 219105.4 23421.0268

Table 12. Experiment results on Ruspini noised (2/2)

Initialization method FI VFRatio VTSFD VFS VXB

MacQueen2 242520.7 9.3548 0.903427 −195678.6 0.063680

Faber 242521.9 9.3549 0.903427 −195679.8 0.063681

Kmeans++ 242522.1 9.3549 0.903427 −195680.0 0.063676

K-Means++ ×10 242523.3 9.3549 0.903426 −195681.3 0.063681

MaxMin linear 242526.4 9.3551 0.903429 −195684.4 0.063672

Table 13. Ranking of initialization methods on Ruspini noised

Initialization method # of iteration VPC VCL FB FW FI VFRatio VTSFD VFS VXB

MacQueen2 2 5 3 5 4 5 5 4 5 3

Faber 5 3 5 4 2 4 4 3 4 5

Kmeans++ 3 4 2 3 3 3 3 2 3 2

K-Means++ ×10 4 1 4 2 1 2 2 5 2 4

MaxMin linear 1 2 1 1 5 1 1 1 1 1

Table 14. Experiment results on E1071-5-overlapped (1/2)

Initialization method # of iteration VPC VCL FB FW

MacQueen2 8 0.735646 0.762681 219.7337 48.715631

Faber 103 0.735645 0.762683 219.7358 48.715630

Kmeans++ 12 0.735651 0.762685 219.7408 48.715632

K-Means++ ×10 113 0.735645 0.762683 219.7363 48.715629

MaxMin linear 7 0.735652 0.762688 219.7445 48.715629
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Table 15. Experiment results on E1071-5-overlapped (2/2)

Initialization method FI VFRatio VTSFD VFS VXB

MacQueen2 268.4494 4.5105 0.818530 −171.0181 0.11574

Faber 268.4514 4.5106 0.818535 −171.0202 0.11569

Kmeans++ 268.4565 4.5107 0.818534 −171.0252 0.11575

K-Means++ ×10 268.4519 4.5106 0.818530 −171.0207 0.11569

MaxMin linear 268.4601 4.5108 0.818537 −171.0288 0.11572

Table 16. Ranking of initialization methods on E1071-5-overlapped

Initialization method # of iteration VPC VCL FB FW FI VFRatio VTSFD VFS VXB

MacQueen2 2 3 5 5 4 5 5 5 5 4

Faber 4 5 4 4 3 4 4 2 4 1

Kmeans++ 3 2 2 2 5 2 2 3 2 5

K-Means++ ×10 5 4 3 3 1 3 3 4 3 2

MaxMin linear 1 1 1 1 2 1 1 1 1 3

Table 17. Average ranking of initialization methods on all datasets

Initialization method # of iteration VPC VCL FB FW FI VFRatio VTSFD VFS VXB

MacQueen2 1.95 3.36 3.55 3.86 3.41 3.41 3.41 3.04 3.41 3.55

Faber 4.45 2.73 2.82 1.73 2.73 2.73 2.73 3.27 2.73 2.91

K-Means++ 1.95 3.86 3.68 3.86 3.86 3.86 3.86 3.54 3.86 3.36

K-Means++ ×10 4.41 2.68 2.55 1.64 2.86 2.86 2.86 3.22 2.86 2.82

MaxMin linear 1.68 2.27 2.32 3.82 2.05 2.05 2.05 1.86 2.05 2.27

6 Conclusion and Perspectives

In this paper, we propose a new, fast, and easy to implement initialization
method for FCM called MaxMin Linear. MaxMin Linear is compared to sev-
eral initialization methods from the literature. It is experimentally shown that
MaxMin Linear outperforms existing methods on 22 datasets. Moreover, we also
propose an appropriate fuzzy validity index, TSFD, to evaluate initialization
methods.

In addition, MaxMin Linear can be applied to algorithms other than FCM,
such as Fuzzy K-Modes and Fuzzy K-Medoids, which apply on categorical. In
particular, MaxMin Linear allows decreasing the complexity of Park’s Fuzzy
K-Medoids implementation.

In consequence, an immediate perspective to our work is to propose a new
clustering ensemble method for heterogeneous datasets composed of both numer-
ical and categorical data.
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Abstract. Ultrasound testing is a popular technique to find some hidden rail
damages. In this paper we focus on the modern Russian railway flaw detectors,
such as AVICON-14, which produce the results of ultrasound testing in the form
of B-scan signals. We propose an approach simple enough to do fast automatic
localization of B-scan signal segments, which could contain rail flaws. In order
to recognize the selected segments as flaws of some kind or not flaws we apply
SVM classifier jointly with DTW-based dissimilarity measure, specifically
adapted by us to B-scan signals. To improve rail flaw localization and recog-
nition quality we preprocess B-scan signals by applying some filter and making
their convergence. Fast localization procedure jointly with CUDA implemen-
tation of B-scan segments comparison possesses the possibility to process big
amounts of data. The experiments have shown that all rail flaws have been
localized correctly and cross-validation ROC-score = 0.82 for the rail flaw
recognition has been reached.

Keywords: Russian railways � Ultrasound testing � B-scan
Rail flaw localization � Rail flaws recognition � DTW � SVM
Featureless approach

1 Introduction

The inspection of railway infrastructure components is a very important task in railway
maintenance. In particular, rail flaws are exceptionally dangerous for the operation of rail
traffic [1]. Non-destructive rail inspection is the main and often the only possible way to
prevent emergency situations [2, 3]. However, heightened scientists’ interest to rail flaws
recognition problem via non-destructive inspection is comparatively recent and the
problem has not a satisfying solution yet [4], especially for Russian railways’ conditions.
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At the present time, two main non-destructive rail inspection methods are applied:
acoustic (ultrasound) [3] and magnetodynamic [5] ones. The magnetodynamic method
gives the possibility to detect rail cracks in its initial stage, but it can be used only to
detect flaws near rail head surface [5]. Besides, large sizes and weight of magneto-
dynamic devices limit the methods’ application. The main advantage of ultrasound
method, in contrast to the magnetodynamic one, is the possibility to scan rails in any
depth and projections. But the problem of its using consists in the probable presence of
uncontrolled regions, which are in most cases due to temporary bad transducer’s
acoustic contact with the rail surface because of adverse weather conditions [6, 7]. In
some papers the techniques for joint using of both ultrasound and magnetodynamic
methods at the same time are proposed for the indicated problems’ decision [8].
Sometimes visual rail flaw detection systems are proposed [9, 10], which analyze
information from cameras, but it is evident that such systems can be useful only for the
rail head surface defect detection.

So, as long as the most widely-spread non-destructive rail testing devices in the
Russian railways are ultrasound ones [11, 12], and the problem of presence of
uncontrolled regions due to temporally bad acoustic contact can be successfully
algorithmically solved in accordance with the method proposed by us [13], this work
exclusively focuses on the ultrasound testing devices, and more specifically, on por-
table double-rail track flaw detectors such as AVICON-14, presented in Fig. 1.

The operation principle of the flaw detector is based on its moving along the rail
surface and emitting short ultrasound impulses. Each of these impulses, being reflected
from the opposite rail surface, flaw or structural element, is registered by the detector.
To have the possibility to detect differently located rail flaws of various form and
orientation, a number of ultrasound channels are used, which differ by pulse angles.

Flaw detectors register signals in the form of so-called B-scans (the detailed
description of B-scans is presented in the Sect. 2.1). There exists special software to
register and visualize B-scan signals [14], but their analysis is done by experts man-
ually and though to be inefficient [15].

Generally speaking, there exists a number of papers dealing with the problem of
automatic analysis of ultrasonic testing results [2, 16–18 etc.]. But they can’t be used
for the Russian railway testing, because of the device specifics or conditions in which
the testing is made.

Fig. 1. The modern flaw detector AVICON-14

Automatic Rail Flaw Localization and Recognition 17



The main problem solved in this paper is the problem of B-scan signal fragments
recognition as a rail flaw of some type, or not a rail flaw. But it should be noticed that
initially B-scan is a continuous signal, and so, firstly we should localize the segments,
which can contain rail flaws, i.e. make B-scan signal segmentation onto segments,
which can contain a rail flaw and segments without flaws.

Traditional ways for signal segmentation, which have been designed for speech
[19], biomedical [20] and other signals [21, 22] have, as a rule, high computational
complexity. An essentially faster approach was proposed in our previous paper [13]. It
takes into account the B-scan properties that make it possible to simplify and accelerate
computations. However, this approach is targeted on the localization of bolt-on rail
joints and essentially exploits the assumption, that all the regions of interest have
approximately equal length. In the case of rail flaw localization, the regions of interest
can have different length and so this approach [13] can’t be used.

In this paper we propose a fast automatic B-scan signal segmentation procedure,
which takes into account B-scan signal properties and allows to make fast localization
segments, which contain a rail flaw without any suppositions about the length of
localized segments.

For the recognition of selected segments as flaws of some kind or not flaws we
apply Support Vector Machines classifier in the featureless manner [23, 24] by B-scan
segments comparison via some appropriate dissimilarity measure instead of feature
vectors.

There is a number of ways to compare discrete signals [25–27]. But the most
popular and traditionally used way to compare the signals of different length is based
on local warping of axis of the compared signals and called the Dynamic Time
Warping (DTW) [25]. In this paper we use the DTW-based approach, adapted by us for
the comparing of ultrasonic B-scan signals by incorporating special dissimilarity
measure of elements, which was initially proposed by us in [28] and successfully used
in [13]. This allows taking into account the specificity of the considered problem.

To improve the rail flaw localization and recognition quality we preprocess B-scan
signals by applying some filter and making special convergence procedure, which is
described in the Sect. 2.3.

The experiments have shown that all rail flaws have been localized correctly and
cross-validation ROC-score = 0.82 for the rail flaw recognition has been reached.

2 Rail Flaws Localization via Ultrasound B-Scan Signals
Analysis

2.1 Representation of Ultrasound Testing Results in B-Scan Form

Themost progressive way of ultrasound signals representation is so-called B-scan, which
presents signals in the coordinate plane “the measured time of ultrasonic signal propa-
gation through the rail – the coordinate of the path along the controlled rail track” [11].

In the process of ultrasound inspection several ultrasonic channels are usually used.
There are ultrasonic emitters/ receivers, which send impulses of some fixed amplitude
and under some angle to a rail roll surface (different channels differ by the angle of
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sending/receiving impulses). The signal is registered only in case the receiver obtains a
signal with big enough amplitude during some time interval since the moment of
sending.

Under the condition of a good enough acoustic contact and the presence of some
reflective surface under 90° angle to ultrasound signal propagation, as a rule, single
reflection occurres. However, when some damage or constructive reflector is located
near the rail surface, the ultrasound signal has no time to fade out and multiple
re-reflections can be observed. As a result a number of impulses can be registered with
different delays respecting the initial moment of the emission. In case of absence of the
reflection because of the bad acoustic contact or reflection by some damage turned on
the angle different from 90°, the impulse will not be registered at all [11].

The presence of damages or some constructional reflectors (such as bolt-on rail joint)
leads to the appearance of some lines on a B-scan. These lines can have different form,
length and orientation subject to the type of an object on the way of the ultrasound signal.

In Fig. 2 (left and center) the examples of ultrasound rail B-scans with cross contact-
fatigue cracks in the rail head are presented, and Fig. 2 (right) shows a picture of rail
flaw of the respective kind.

2.2 Ultrasound B-Scan as Multi-component Discrete Signal

Each element of the B-scan by each channel is represented as impulse signal at the
space “delay”-“amplitude” [11]. In accordance with the above description it can con-
tain some number n ¼ 0; 1; 2; . . . of impulses, each of which is characterized by its
delay si and amplitude ai, i ¼ 1; . . .; n. For the convenience of further reasoning the
element without impulses we will consider as the signal of the length n ¼ 1, but with
zero delay and amplitude: s1 ¼ 0, a1 ¼ 0. Subject to this, each element of the B-scan is
represented by two-component n-length signal of pairs.

To involve the information which is obtained from different ultrasound channels
each element of B-scan is considered as m-component vector:

x ¼ ½x1; . . .; xm�T ; xk ¼ ½ðsi; aiÞ 2 R2; i ¼ 1; . . .; n�; k ¼ 1; . . .;m: ð1Þ

So, each B-scan is m-component NX-length discrete signal X ¼ ðx1; . . .; xNXÞ.

Fig. 2. Examples of ultrasound B-scans of rail head cross cracks (left and center) and an
example of rail, which has the respective flaw (right)
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2.3 B-Scan Convergence Procedure

It should be noticed that the data which is obtained by a multi-channel flaw detector has
the following important feature: for any B-scan element xs; s ¼ 1; . . .;Nx the index s
characterizes the flaw detector’s coordinate at the moment of signals xs;1; . . .; xs;m
registration, but each of these components contains the information about different
parts of a railway.

The main reason of it consists in that all channels have different angles of ultra-
sound impulses emission. At that only one (strictly vertical) channel receives the
impulse, which is reflected from an object with the same coordinate as the receiver. For
all other channels an object’s coordinate differs from the receiver’s coordinate and from
the coordinate of the respective impulse as well, which is registered on the B-scan
(Fig. 3 left).

Stars in the Fig. 3 indicate some sampling flaw detector’s positions during its
moving from left to right. Arrows show ultrasound impulses.

The main idea of B-scan convergence consists in recomputing the impulse coor-
dinates so as to possess the coincidence of its coordinates with the real coordinates of
the objects, from which these impulses are reflected (Fig. 3 right).

Let a - be an angle to the vertical, which corresponds to the angle of impulse for some
channel and let the receiver, which is situated at the distance s from the start of its moving,
register a signal with some amplitude as in standard units of amplitude [s.u.a.] through
some time ss in standard units of time [s.u.t.] after the pulse. Let also Δs sec/s.u.t.—a
constant, which characterizes the balance between seconds and flaw detector’s standard
units of time. The velocity of ultrasound impulse propagation under the angle a will be
denoted by Va.

Then the coordinate t of the object, which reflects the impulse, and respectively,
new coordinate of the registered impulse can be determined as t ¼ sþð1=2Þ
ssDsVa sin a.

New time delay can be computed as st ¼ ssðV0
�
VaÞ cos a, where V0 is the velocity

of vertical impulse propagation under a ¼ 0. The impulse’s amplitude is not corrected:
at ¼ as.

The result of B-scans convergence is presented in Fig. 3 (right).
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Fig. 3. Illustration of B-scan signal convergence idea
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2.4 B-Scan Segmentation Procedure

B-scan segmentation is understood here as the selection of B-scan segments, which can
contain rail flaws. The segments of interest are selected by indicating their start and end
points on B-scan.

The main idea of the proposed algorithm consists in consequent passing through the
defectogram and selecting the detached groups of non-zero impulses.

The proposed algorithm in pseudo-code is presented below:

s = 0;   // B-scan element's number 
seg_start = 0;  // starting  element's number of the current segment 
empty_elements = 0;  // counter of B-scan elements without registered impulses
seg_elements = 0;   // counter of current segment's elements  
repeat  {
 s++;  

if sX is empty     // s-th B-scan element doesn't contain non-zero impulses 
then  empty_elements ++
else {

if  seg_start ==0  then  { seg_start = s; empty_elements = 0; } 
else  seg_elements ++; 

 } 
if  (empty_elemets == M )  and (seg_start <>0)  and  (length( X )>s) 
then  

if   seg_elements K
then {        // segment is selected 

seg_end = s; 
save   seg_start    and   seg_end   for the segment;   

  } 
else  { seg_start = 0;  empty_elements = 0;  seg_elements = 0;    } 

until (length( X )>s) // till the end of B-scan signal

3 B-Scan Segments Comparison

3.1 B-Scan Elements Comparison

It is evident that B-scans comparison should be inevitably based on the comparison of
its elements. Moreover, the quality of B-scans dissimilarity measure essentially
depends on the element’s dissimilarity measure.

In accordance with the Sect. 2.2, each B-scan’s element for separate channel is an
impulse signal and can contain n ¼ 0; 1; 2; . . . impulses. It is impossible to compare
such signals directly. So, in this paper to compare B-scan’s elements we use the
approach, which was initially proposed by us in [28], and consists in applying the
specific mathematical model to present B-scan’s elements in the form which is useful
for their further comparison.
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In accordance with this model each B-scan’s element for a separate ultrasound
channel is described by the sum of normal distributions with some standard deviation r
and mathematical expectation, which is equal to the delay of the respective impulse si:

f ðsjxÞ ¼
Xn

i¼1
ai
.
r

ffiffiffiffiffiffi
2p

p� �
exp �ðs � siÞ2

.
2r2: ð2Þ

At that, for the element without non-zero impulses f ðsjxÞ ¼ 0.
The graphical interpretation of the proposed model is presented at the Fig. 4 (left

and center).
Let x0 ¼ ðs0i; a0iÞ 2 R2, i ¼ 1; . . .; n0 and x00 ¼ ðs00j ; a00j Þ 2 R2, j ¼ 1; . . .; n00 - two

elements of the B-scan. Following [28] we will compute their dissimilarity measure as:

~rðx; x00Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

�1
f ðsjx0Þ � f ðsjx00Þ½ �2ds

s
: ð3Þ

From the geometrical point of view the dissimilarity measure (3) can be interpreted
as the area within the curves of distributions, which describe the respective elements x0

and x00 (Fig. 4 right).

The dissimilarity measure (3) can be presented in the equivalent form:

~rðx0; x00Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðx0; x0Þ þ qðx00; x00Þ � 2qðx0; x00Þ

p
;

qðx0; x00Þ ¼
Xn0

i¼1

Xn00

j¼1
a0ia

00
j exp �ðs0i � s00j Þ2=ð2rÞ2: ð4Þ

At that the dissimilarity of some element x0 ¼ ðs0i; a0iÞ 2 R2, i ¼ 1; . . .; n0 with
impulses-free zero element / ¼ ð0; 0Þ, can be calculated by one more simple formula:

~rðx0; /Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn0

i¼1

Xn00

j¼1
a0ia

00
j exp �ðs0i � s00j Þ2=ð2rÞ2

r
: ð5Þ

The proposed measure guarantees that the signals, which are equal by their form,
will have zero dissimilarity. The biggest dissimilarity value can be obtained when a
zero signal will be compared to a signal with big amount of high amplitude impulses.

Fig. 4. The graphical interpretation of the proposed model of the B-scan’s elements description
for one ultrasound channel (left and center) and of their dissimilarity measure (right)
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Joint using of information from different ultrasound channels is made by intro-
ducing extended dissimilarity measure, which is a linear combination of particular
dissimilarity measures (4):

rðx0; x00Þ ¼
Xm

i¼1
ai~rðx0i; x00i Þ; ai � 0;

Xm

i¼1
ai ¼ 1; ð6Þ

where x0 ¼ ½x01; . . .; x0m�T and x00 ¼ ½x001 ; . . .; x00m�T are two m-dimensional representations
of B-scan elements in accordance with (1).

The respective way of combining information does not require any changes in the
general approach to B-scan segments comparison and allows to use only one or several
ultrasound channels in connection with coefficients ai in the linear combination (6).

3.2 DTW-Based B-Scan Segments Comparison

We made the B-scan segments comparison on the basis of the adapted Dynamic Time
Warping (DTW) method [25] with non standard dissimilarity measure of the signal
elements (6), which allows to take into account the characteristic features of the con-
sidered problem.

Let X ¼ ðx1; . . .; xNXÞ and Y ¼ ðy1; . . .; yNY
Þ are two multicomponent discrete

signals, which represent B-scan segments for several ultrasound channels. It is required
for each element of one signal to find optimal correspondent element of the other signal
T ¼ ðti; i ¼ 1; . . .;NXÞ; where ti 2 f1; . . .NYg is the element’s number of the signal Y,
which corresponds to the respective i-th element of signal X, at that t1 ¼ 1 and
tNX ¼ NY.

We will find such optimal pairwise correspondences of elements, which posses the
minimum of the optimality criterion:

JðX; Y; TÞ ¼
XNX

t¼1

X
ti

r2ðxi; yTI Þþ
XNX

t¼2

cðti�1; tiÞ;

cðti�1; tiÞ ¼
b ti � ti�1 � 1j j; ti � ti�1;

1; ti\ti�1;

�
ð7Þ

where b[ 0 is a penalty for local stretching signal axis at signals warping.
The optimal alignment T̂ can be found by dynamic programming procedure [29],

and the obtained optimal value of the criterion JðX; Y; T̂Þ has the meaning of B-scan
segments dissimilarity:

dðX; YÞ ¼ JðX; Y; T̂Þ; T̂ ¼ arg min JðX; Y; TÞ ð8Þ

Our paper [28] contains sequential algorithm of computation of this dissimilarity
measure and the paper [30] contains its parallel implementation using CUDA
technology.
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4 Rail Flaws Recognition Experiments

Initial data for the experimental investigation has been given by Radioavionica Cor-
poration. The initial data consists of a number of parts of B-scan signals of Russian
railways, which contain 27 rail head cracks - the most frequently met rail flaws.

The filtering procedure has been applied to the initial B-scans (low amplitude
probes have been removed). Then convergence and flaw localization have been made.

As a result, B-scan segments have been cut out from the initial B-scan signals
N ¼ 324, including 27 segments with rail flaws, which have been confirmed by
experts, and 297 segments without rail flaws.

For all the obtained segment pairs the proposed dissimilarity measure
dðXi; XjÞ; i; j ¼ 1; . . .;N has been computed. The Support Vector Machines
(SVM) method has been used to make rail flaw recognition [31, 32], because it is one
of the most convenient and effective methods of two-class pattern recognition in linear
spaces. To incorporate nonlinearity into the linear decision rule of rail flaws recogni-
tion, we apply the nonlinear transformation KðXi; XjÞ ¼ exp½�c d2ðXi; XjÞ�. It should
be noticed that for the chosen value c ¼ 0:05 the matrix ½KðXi; XjÞ; i; j ¼ 1; . . .;N� is
nonnegative definite. As a result it is possible to use it as inner product matrix in SVM
training procedure without any additional transformations [22].

The recognition quality has been estimated on the basis of 5folds cross-validation
procedure. Mean ROC-scores (AUC values) through 5 folds for different values of the
SVM’s parameter C are presented in the Table 1.

For all C values the same data partitions into the folds have been used.

In Fig. 5 ROC-curves for optimal value of SVM parameter C ¼ 1 are presented.

Table 1. Rail flaws recognition results for different values of SVM parameter C.

C 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

AUC 0.811 0.812 0.815 0.816 0.820 0.799 0.802 0.803 0.791 0.774

Fig. 5. ROC-curves for the optimal value of C ¼ 1
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5 Conclusion

Ultrasound testing is a popular technique to find some hidden rail damages. In this
paper we focus on the modern Russian railway flaw detectors, such as AVICON-14,
which produce the results of ultrasound testing in the form of B-scan signals. We
propose a simple enough approach to the fast automatic localization of B-scan signal
segments, which could contain rail flaws. For the recognition of selected segments as
flaws of some kind or not flaws we apply SVM classifier jointly with DTW-based
dissimilarity measure, specifically adapted by us to B-scan signals. To improve the rail
flaw localization and recognition quality we preprocess B-scan signals by applying
some filter and making their convergence. Fast localization procedure jointly with
CUDA implementation of B-scan segments comparison possesses the possibility to
process big amounts of data. The experiments have shown that all rail flaws have been
localized correctly and cross-validation ROC-score = 0.82 for the rail flaw recognition
has been reached.
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Abstract. The rapid development of social media has made more and more
users express their opinions, feelings, and attitudes toward various things
through different forums like Twitter, WeChat, and Weibo. However, most
existing works just focus on specific product categories to construct the domain
ontology, which is a quite narrow use of domain ontology. We propose a new
construction of domain ontology based on the semantic features of social media.
The topic of posts and opinions, also known as topic-opinion pairs, are identified
with the domain ontology. The sentiment polarities are determined with the help
of the given sentiment polarities. The sentiment polarity of an unknown post is
calculated by the weighted average of the sentiment polarities of topics and
opinions contained in the post. Preliminary results show that the application of
domain ontology can effectively identify the topic-opinion pairs, and according
to the known polarity of posts can effectively classify the topic-opinion pairs.
The accuracy of sentiment classification is increasing.

Keywords: Domain ontology � Semantic mining � Associating mining
Social media

1 Introduction

Recent years, with the booming of E-commerce and social media, numerous netizens
express their views, feelings, and attitudes through Twitter, BBS, Weibo and other
different ways. That emotional information of products, topics, and other valuable
things not only objectively expressed their attitudes and experience but also were
integrated with their own various language emotional colors and text sentiment ori-
entation. It was increasingly being used by governments and companies to understand
how the crowd think.

Semantic analysis is often called viewpoint mining or evaluation extraction, which is
closely related to computer linguistics, natural language processing, and text mining. It
usually refers to the data from user’s subjective comment and post, using automated or
semi-automatic ways to analyze and process. As a result, the opinion and sentiment
orientation of individuals and groups on various topics, tasks, and other expressions
could be mined. Domain ontology is extracted as a particular domain of the real world
into a set of concepts and the relationship between concepts. It systematically describes
the basic principles and main entities of the field, in order to realize the application and
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sharing of domain knowledge. Although recent years have seen a great progress in
sentiment analysis and domain ontology, it still focused on specific category such as
mobile phone, cars forum. By analyzing the relationship between the concepts which
described in the product comments, the domain ontology for product reviews is con-
structed. But few papers mentioned the construction of domain ontology in social media.
The immediacy of participation and dynamic communication, Because of the two main
characters of social media and the relationship among the posts, it is possible to con-
struct the domain ontology. Therefore, based on the characteristic of the posts, this paper
constructs the ontology model with the semantic features in social media. In this way,
the sentiment classification of a post in social media is more accurate and effective.

2 Related Work

Sentiment analysis has been extensively studied at different granularity levels. To
construct affective dictionary is to use it as a prior knowledge of sentiment analysis and
assist the analysis of different granularity. In addition to sentiment dictionary, ontology
technology has been widely applied to the research of sentiment analysis. Many
researchers try to combine domain ontology with it to improve and optimize the
performance and accuracy of sentiment analysis. As a most important feature of
ontology, domain ontology aims to standardize concepts and terminology in specific
fields and establish a shared conceptual system between different domains, for the
purpose of providing basic support for practical applications in these fields.

Marstawi [1] concluded that the sentence-level linguistic rules applied by
Ontology-Based Product Sentiment Summarization could provide a more accurate
sentiment analysis. Jung [2] showed that the applicability of the ontology was validated
by examining the representability of 1358 sentiment phrases using the ontology EAV
model and conducting sentiment analyses of social media data using ontology class
concepts. Sreejith [3] used the ‘Navarasa’ ontology created by the researcher for sen-
timent analysis in a short story. Hu and Liu [4] used supervised sequential pattern
mining method to identify and extract features or viewpoints. Wilson [5] developed an
Opinion finder system, which was an automatic recognition of subjective sentences and
various subjective components in a sentence (such as opinion source, emotion, direct
subjective expression). Kim and Hovy [6] labeled the words that expressed subjectivity
in a sentence based on a comment dictionary by manual annotation through defining a
fixed-size window which was centered on subjective words. Kobayashi [7] artificially
defined evaluation objects and evaluation words and described the modified relation
between words and evaluation objects by using 8 common modules. Zhuang [8] defined
the characteristics and viewpoints film based on WordNet, then aimed to identify fea-
tures and their opinions through the dependency syntax diagram. Jakob [9] employed
the conditional random field algorithm to extract the feature and opinions. Tan [10] tried
to apply behavioral relation data on social media to user-level sentiment analysis
according to the idea that two users with mutual relationships were likely to hold the
same view. Go [11] attempted three machine learning methods, namely Naïve Bayes,
support vector machines and maximum Entropy in text sentiment orientation in Twitter,
they conclude that the applicability of machine learning model in the sentiment analysis.
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On the recognition of the point of view, Alexander [12] considered naive Bayes
classifier to identify the point of view based on characteristics extracted by POS tagging
and N-gram. Barbosa [13] used the subjectivity of the words, the polarity of words and
negative words as characteristics to classifier the subjective and objective nature of
Weibo posts. Davidiv [14] extracted tags and emoticons from Twitter as training sets
and used an advanced KNN algorithm to classify sentiment on Weibo posts. Jain [15]
combined LDA with data expansion method for data preprocessing and made sentiment
evaluation by Naive Bayes dual training and Domain prediction algorithms.

Different frommost existing studieswhich concentrate on concrete product, this paper
extracts feature entries based on the semantic features of social media and constructs
domain ontology. In this study, the emotion value of topic-opinion pairs is weighted by
semantic context so that sentiment classification could be more accurate and effective.

3 Construction of Domain Ontology in Social Media

The traditional domain ontology is generally based on collecting characteristics of
terms. However, due to many characteristics in a post on social media, such as short
texts, incorrect writings, disorderly sentence structure, the keywords that are really
relevant to the central idea may be less than expected, and the word frequency may not
be the highest. It means that the accuracy of defining topics and opinions of a post is
low, and mining semantic information in the posts is an effective way to solve this
problem. According to the characteristics of language habits and oral expressions, the
content of a post can be generalized not only two main parts topics and comment but
also five elements: time, location, object, event, and opinion. It means that to some
extent the first four elements can describe the topic. In this paper, the author used these
four elements as the foundation of the domain ontology in social media.

3.1 Extracting Topic Characteristics of Terms

Extracting topic terms is the foundation of the constructions of the domain ontology.
Those existing methods mostly focus on English comment and product comment.
Because of the grammatical nonstandard, semantic ambiguity and subject missing, the
characteristics of Chinese comment increase the difficulty of sentiment classification.
Therefore, the representation model of domain ontology is proposed which regards the
definition of topic characteristics of terms.

Definition 1. A topic term can be defined as <Time, Location, Object, Event>.
Due to the colloquial characteristics of social media, there will be a lot of irregular

and vague expressions such as “tomorrow”, “yesterday” in a post, and the formulations
are various, for example, “3:30 p.m.”, “half past three in the afternoon”, “three thirty”,
those irregular expressions should be standardized. The standard form of time is
yyyy-MM-dd-HH-mm-ss. Similarly, the expression of location needs to be standard-
ized as Room, Unit, Building, Road, District, City, Province, and Country.

After standardization, the next step is to mine frequent itemsets with association
rules in content. First, all nouns and verbs are extracted from the post to form two
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itemsets. After mining these two itemsets with association rule, the frequent 1-itemsets
and frequent 2-itemsets are found. By filtering out frequent 2-itemsets which cannot
form phrases and that itemsets unrelated to time, location, object, and event, which
identify the category of a post can be formed.

After acquiring a set of feature words, by means of the point mutual information
(PMI) between the feature words, the semantic common frequency of the word is
expressed. The higher frequency of the two words in the post shows the higher cor-
relation. Hence, the PMI defined as follows:

PMI ¼ log
pðword1 &word2Þ

pðword1Þ � pðword2Þ ð1Þ

We take PMI(word1, word2) for a frequency of two words’ co-occurrence, P
(word1) and P(word2) shows frequency of one word appearing respectively. word1,
word2 can be taken from the same category of feature words and different category of
feature words. After calculating PMI, combined those feature words of high PMI value
to the topic term.

Definition 2. Domain Ontology uses a 2-tuple representation, O ¼ \C; R[ , C
represents for the topic item, R represents for the relations between two topic items.

The topic item is represented by C ¼ \ID; Topic; List[ . ID represents the only
number of the topic item, Topic represents the descriptive words of this topic item, List
represents for the synonyms of this topic item. The relation between two topic items is
represented for R ¼ \T ; R C1; C2ð Þ[ . We take T for describing three semantic
relations: part of, relevant with, and irrelevant with, C1 and C2 represent for two topic
items.

3.2 Clustering Algorithm of Topic Items

After preprocessing of the post (including syntactic structure, deactivating words and
POS tagging), we need to preserve nouns and verbs which are related to time, place,
object, and event. In the training sets, we extract four categories which are composed
topic items, the Time characteristic in Topic i items are represented for vector
Ti ¼ t1; t2. . .tnf g, the Location for vector Li ¼ l1; l2; l3. . .lnf g, the Object charac-
teristic for vector Oi ¼ o1; o2; o3. . .onf g, the Event characteristic for vector
Ei ¼ e1; e2; e3. . .enf g.

The weights of word ti in Time characteristic in the topic item is calculated as
follows:

gTðti; AiÞ ¼ tftðtiÞ
maxtf ðAiÞ log2

M
df ðtiÞ ð2Þ

We take tf tið Þ for the frequency of ti appearing in a post Ai; df tið Þ for the number of
post which contained ti; Function max tf Aið Þ for the maximum word frequency in the
post Ai;M for the number of post in the training set. To make the weight between [0, 1],
gtT ti; Aið Þ is defined as follows:
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gtðti; AiÞ ¼ gTðti; Þ �mingT
maxgT �mingT

ð3Þ

After calculating the average amount of gT ti; Aið Þ, in the post Ai is calculated as
follows:

gTðAiÞ ¼
PM

i¼1
gtðTi; AÞ
M

ð4Þ

Similarly, we get the formulation for the weights of Location characteristic gl Að Þ,
the weights of Object characteristic go Að Þ and the weights of Event characteristic
ge Að Þ.

The similarity between two topic terms could be calculated by vector space model,
vector Ai, and Aj, Ai ¼ fTi; Li; Oi; Eig; Aj ¼ fTj; Lj; Oj; Ejg, the formulation
between Ai and Aj is shown as follows:

SimðAi; AjÞ ¼ gT � SimðTj; TjÞ þ gl � Sim Li; Lj
� � þ gO � Sim Oi; Oj

� � þ ge
� Sim Ei; Ej

� � ð5Þ

The similarity between the Time vector in post Ai and that in post Aj is calculated as
follows:

SimðTi; TjÞ ¼
Pn

k¼1
gkðTiÞ � gkðTjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP

n

k¼1
g2kðTiÞÞ � ðP

n

k¼1
g2kðTjÞ

s ð6Þ

We take gk Tið Þ for the kth word in the Time vector of post Ai, gk Tj
� �

for the kth word
in the Time vector of post Aj.

Similarly, we get the formulation of similarity between the Location vector and the
Object vector.

SimðLi; LjÞ ¼
Pn

k¼1
gkðLiÞ � gkðLjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP

n

k¼1
g2kðLiÞÞ � ðP

n

k¼1
g2kðLjÞÞ

s ð7Þ

SimðOi; OjÞ ¼
Pn

k¼1
gkðOiÞ � gkðOjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP

n

k¼1
g2kðOiÞÞ � ð

Pn

k¼1
g2kðOjÞÞ

s ð8Þ
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Based on the Hownet a semantic knowledge resource, calculation of the Event
vector similarity is the maximum of similarity between their original semantic
meanings.

After acquiring the Topic items composed of the Time vector, the Location vector,
the Object vector, and the Event vector, the advanced K-Nearest neighbor algorithm is
used to do the cluster analysis (See Fig. 1).

N 

Y 

Start

Extract 1st post in chronological order in the training 

set and construct a new category t

If all the posts in the training set 

have been extracted?

Extract 1st post in chronological order in the training 

set and extract the Topic items of it

Calculate the similarity between Topic items and all 

existing Topic items

Get the corresponding Topic item and classify it to the 

category t

Set a new category t+1

If the highest sim larger than the 

threshold of category t? 

End 
N 

Y

Fig. 1. Clustering algorithm of Topic items
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4 Identification of Topic-Opinion Pairs Based on Domain
Ontology

After the construction of the domain ontology in social media, the next step is to extract
the Opinion from the post based on semantic mining.

4.1 Identification of Subjective Sentence

The identification of the Opinion is the process of classification of sentences building
on sentence structure and POS. Using paper [16] and analysis of numerous posts for
reference, the three main categories of feature words in the subjective sentence are
summarized: sentiment words, modal particle and asserted words.

Sentiment Words. The subjective sentence in a post always contains the standpoint
and viewpoints of the author and a strong individual initiative, so the sentiment words
could be one of the characteristics of the subjective sentence.

Asserted Words. For example, “claim”, “blame”, “announce”, these words’ appear-
ance could be seen as the strong possibility of the subjective sentence.

Modal Particle. The emotional punctuations such as “!”, “?” and emoticons could
express the individual initiative of the author, as well as the Chinese only model
particles “吗”, “呢”, “吧”.

4.2 Extraction of Key Subjective Sentence and Relations

The posts in social media are informative but semantic fuzziness, according to the
automatic summarization, we extract the keywords for subjective sentence B. Based on
the topic relevance and three important property, decide the key subjective sentence.
After weighted summation of the topic relevance, position property, sentiment prop-
erty, and keyword property, we take the corresponding sentence with the highest value
for key subjective sentence. The formulation is shown as follows:

key Sentence ¼ k1 � simðsi; ciÞ þ k2 � keywordsðsiÞ þ k3 � positionðsiÞ þ k4
� senti wordsðsiÞ ð9Þ

We take k1; k2; k3; and k4 for the corresponding weight for the four elements.
Sim(Si, Ci) represents the relevance between the subjective sentence and topic.

Combining the topic terms C with the subjective sentence, we get a sequence of
topic-opinion which are separated by “,” and calculate the similarity in pieces.
According to the term frequency-inverse document frequency, we obtain sim wi;k; ci;k

� �

as follows:

simðwi;k; ci;kÞ ¼
X

c2C
tfpðwi;kÞ � tf ðpi;kÞ � log2

N
pf ðwi;kÞ ð10Þ
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Where wi,k denotes the feature words k in the subjective sentence i, ci,k denotes the
feature word k contained in the topic terms ci, pi,k denotes the combination of wi,k and
ci,k, tfp wi;k

� �
denotes the frequency of wi,k in pi,k, f(p) denotes the frequency of p in the

whole post, pf wi;k
� �

denotes the total number of phrases which included wi,k, N denotes
the total number of phrases in the post.

Marked the highest value of sim wi;k; ci;k
� �

as sim Si; Cið Þ in the formulation (11)
and the corresponding feature words as the indicator dsi of opinioni.

simðSi; CiÞ ¼ maxðsimðwi;k; ci;kÞÞ ð11Þ

Position(si) presents for the different part of the speech. People are willing to speak
his mind at the beginning of a speech and summarize at the end, so it attaches great
importance the opening phrase and the end of the statement. The formulation (12)
presents position(si).

positionðsiÞ ¼ ½i� numðsiÞ
2

�2 þ 1 ð12Þ

Where num(si) denotes the total number of sentences in a post, the constant 1 is to
confirm every sentence in different position has a positive score. From the formulation,
it can be seen that the function is a pointing-up parabola which axis of symmetry is at
the central position. It confirms that the first and ending sentence has the more location
advantages than others.

keywords(si) identifies those words which are general and set the tones, such as
“anyway”, “in a word”. If a sentence includes these words, the possibility of being a
key-opinion sentence is increasing. The formulation of keywords(si) is shown as
follows.

keywordsðsiÞ ¼
Xnumðwi;kÞ

k¼1

keywordðwi;kÞ ð13Þ

Where keywords wi;k
� �

denotes that whether word wi,k is a summary word or not. If
it is, keywords wi;k

� �
is 1, otherwise keywords wi;k

� �
is 0.

senti_words(si) identifies the sentiment orientation of sentences which is shown as
follows.

senti wordsðsiÞ ¼
Pnumðwi;kÞ

k¼1
polarityðwi;kÞ

numðwi;kÞ ð14Þ

Where polarity wi;k
� �

denotes that whether word wi,k has sentiment orientation or
not. If it is, polarity wi;k

� �
is 1, otherwise polarity wi;k

� �
is 0.
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5 Post Sentiment Analysis Based on Domain Ontology

In order to make the sentiment analysis more targeted, we set up rules for matching the
post with domain ontology.

Rule 1. The topic items and the opinion indicator are both contained in the post, match
the post with the domain ontology.

Rule 2. Only topic items are included, not the subjective sentence and opinion indi-
cator, just assume that this post is an objective statement and without any individual
initiative. Therefore, filter this post and the extracted topic item does not match any
subjective sentences.

Rule 3. Only subjective sentence is included, not the topic items. There is always be
ignoring of subject, incidents and time in speech, for example, “We all should engrave
what happened on May 5th, 2012 on our mind”, we need to identify those implicit
topics. Assume that only subjective sentence Bi and topic item i without the object i,
use the extracted topic i\Ci; S; dsi [ as the prior knowledge to calculate the simi-
larity. The missing object i is the corresponding Oi, S of the highest
sim Ci; S � Oi; S; Ci � Oi;ð Þ; dsi; Bið Þ. Similarly, we could get the implicit Time,
Location, and Event in the post.

According to the domain ontology and sentiment dictionary, we get the topic item,
subjective sentence and sentiment words in the post. The next step we need calculate
the sentiment orientation of the subjective sentence. The level of affect intensity is
Q ¼ q1; q2; q3. . .qi. . .qnf g. When calculate the sentiment value, not only the senti-
ment polarity and affect intensity should be considered, but also the adverb of degree
and negation words appeared closely should also be considered. Therefore, the senti-
ment value of a sentence is represented as follows.

senti coupleðjÞ ¼
XnumðCkÞ

k¼1

swk � ð�1Þp � dðadvÞ ð15Þ

Where senti_couple(j) denotes the sentiment value of the topic-opinion pair j, swk

denotes the sentiment value of sentiment words k, that is the product of sentiment
polarity and affect intensity, p denotes the number of negation words appeared closer to
the sentiment word k, d(adv) denotes adjustment for adverb of degree appeared closer
to the k.

The sentiment value of a post t is represented as follows.

senti postðtÞ ¼
Pnumðsenti ðcoupleÞÞ

i¼1
senti coupleðiÞ

numðsenti coupleðiÞÞ ð16Þ

Where num(senti_(couple)) denotes the number of topic item included in post t.
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Due to the strong interactivity of social media, generally every post has comments,
likes, and reposts. To some extent, these behaviors show the affect intensity of posts.
According to Paper [17], all users can be divided into five groups by their participation
and engagement (see Fig. 2): inactive user R1, sidelines R2, participator R3, criticizer
R4, and key opinion leader R5.

Based on the different categories and these interactive behaviors, the sentiment
value of a post (t, Ri) can be weighted from senti_(post) as follows.

postðt; RiÞ ¼ ð1 þ 0:1 � iÞ � senti postðtÞ � ð1 þ 0:05 � numðcommentÞ þ 0:02

� numðlikesÞ þ 0:05 � numðrepostÞÞ ð17Þ

Where Ri denotes the group which the author belonged to, i = 1, 2, 3, 4, 5, 6, num
(comment) denotes the number of comments, num(likes) denotes the number of likes,
num(repost) denotes the number of reposts.

6 Experiments and Results

The experimental steps are designed as follows: first, collect experimental corpus in a
famous auto forum (AutoHome), and remove inactive words and POS tagging within
2747 posts. The experimental posts are divided into training set and test set. The former
is used to construct the domain ontology and compute the polarity of the topic-opinion
pairs, while the latter is used to evaluate the validity of the method. Then, the semantic
computation of the training set is carried out and the domain ontology of social media
is constructed. Based on it, the topic-opinion pairs of the test set are identified. Then,
according to the positive and negative posts in the training set, the sentiment polarity
value of the topic-opinion pairs is calculated and the sentiment classification is
obtained. Finally, the experimental results are compared with the manual tagging
results in the test set, and the method of this car model is evaluated.

Inactive users R
1

Sidelines R
2

Participators R
3

Criticizers R
4

Key opinion leader R
5

Engagement and participation 

Fig. 2. Five groups of users divided by engagement and participation
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Due to limited time, the experiment is still in progress. Preliminary results show
that the application of domain ontology can effectively identify the sentiment polarity
of posts, which are shown in Table 1.

7 Discussion

A post in social media may contain both positive and negative polarity, and sentiment
words may change with the context. The existing research uses the context-independent
sentiment classification method, or only uses the simple and empirical method to
analyze context and evaluate opinions. These strategies all have some deficiencies,
resulting in the lower accuracy of sentiment identification.

Therefore, this research proposes a new sentiment classification method based on
social media domain ontology. Compared with the existing methods which mostly
focus on the characteristics of the products through the sentiment ontology, this paper
employs the semantic features and semantic relation in posts to identify the
topic-opinion pairs with the social media domain ontology. Finally, the sentiment
classification of each post is obtained according to the user classification and interactive
characteristics of social media. In this paper, there are some deficiencies, such as
sentiment classification, the neutral posts which are often ignored should be mining out
the implied sentiment orientation. There is a main limitations in the results. The number
of records of data was limited, only including the data from auto industry. The error of
sentiment polarity value may be caused by the lack of data and data sparseness.
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Abstract. The edges between nodes of a graph describe some sort of
relationship between the two nodes. In this paper, we would like to
efficiently determine the relationship between specific nodes of impor-
tance, which we call marked nodes, in a large graph. These relationships
obtained must be optimal, which requires us to segregate the marked
nodes from the less important nodes and group them together using par-
titioning algorithms. We introduce an improved algorithm which allows
for the efficient addition of new marked nodes to a partition without
rerunning the algorithm on previously marked nodes.

Keywords: Marked nodes · Partitioning · Graph theory

1 Introduction

The edges between nodes of a graph describe some sort of relationship between
the two nodes. In this paper, we would like to efficiently determine the relation-
ship between specific nodes of importance, which we call marked nodes, in a large
graph. These relationships obtained must be optimal, which requires us to segre-
gate the marked nodes from the less important nodes and group them together
using partitioning algorithms. We introduce an improved algorithm which allows
for the efficient addition of new marked nodes to a partition without rerunning
the algorithm on previously marked nodes. In modern computer applications,
graphs are needed to represent numerous types of data. Graphs represent our
social networks in social media applications, navigation within a website, and any
other data which focuses on the relationship between items. Understanding the
association between elements is crucial to the development of algorithms which
use these relationships to make decisions without human involvement. These
algorithms recommend new connections on social media, suggest new products
for purchase by a customer, serve relevant ads to users, and many other person-
alization strategies characteristic of modern software products. In these learning
and intelligent algorithms, partitioning [1–3] is often a crucial component in
understanding the similarities between unique elements.
c© Springer International Publishing AG, part of Springer Nature 2018
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Defined partitions can be used to quickly designate what elements belong
to a category or have certain properties at the expense of significant prelim-
inary computation. Unfortunately, the processes used to create partitions are
often extremely expensive, and in many dynamic programs, partitions must be
regularly reevaluated. In an online marketplace with hundreds of purchases per
day, partitions which are created one day may quickly fall out of relevance. New
products may be added whose relationship to other nodes needs to be evalu-
ated, or user purchase trends may change, thus altering our partitions. In most
partition algorithms updating means reevaluating from the beginning, requiring
significant overhead and repeated computation.

Our research focuses on how partitions can be updated with limited compu-
tation when a new node is added. Specifically, given a partition that was created
from a set of marked nodes our research tries to answer how one can add a
newly marked node to that partition. As an example, suppose the relationship
between products that have been often bought in tandem has been established.
If several new products begin to be purchased alongside those already parti-
tioned products, how can they be added to that partition for providing product
recommendations without having to recompute the subgraph?

Several algorithms have been created to form partitions in a graph [4–8]
which contain a certain set of marked nodes. These algorithms create a subgraph
known as a minimum spanning tree or an arborescence [9,10]. Dot2Dot algorithm
[11] efficiently finds the minimum arborescence of a graph with marked nodes.
However, to add another marked node to this subgraph requires the algorithm be
rerun with the union of the sets of marked nodes. This leads to an unnecessary
reiteration of operations with a large time complexity. No algorithm could be
found which allows for the addition of new nodes to a partition without the
reproduction of all computation steps.

Generally, algorithms similar to Dot2Dot have five approaches. They all are
used to find the set of trees with minimum total cost on marked nodes.

– Finding Bounded Path Length: Finding shortest path between terminal nodes
using BFS-like expansion till the threshold path length, log|V | (where |V |
indicates the total number of vertices in a graph), is reached.

– Connected Components: The algorithm detects connected components and
puts all directly connected terminal nodes in one group. Nodes which do not
satisfy both properties are placed into separate groups.

– Minimum Arborescence: The algorithm uses the transitive closure graph of
terminals to find the minimum cost graphs. The algorithm calculates bounded
path lengths and connected components.

– 1-Level Tree: The algorithm returns a forest of Steiner trees by building a
level 1 tree from the transitive closure graph by considering each terminal
node as root to find the shortest path on the transformed graph.

– 2-Level Tree: This algorithm generalizes 1-level tree algorithm to k-level trees.
This is achieved by reducing the cost of 1-level trees successively in each step.

In this paper, we introduce an algorithm which allows for the quick addition
of new marked nodes to a partition. We illustrate the success of our algorithm by
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providing example datasets and the corresponding output. Finally, we present
the relative run times between our algorithm and the original Dot2Dot algorithm
to convey the reduction in time complexity.

2 Developing the Algorithm

2.1 Problem Complexity

Suppose we have a large graph in which some of the nodes are marked (Fig. 1).
We want to find the relationship between these marked nodes and to determine
whether they are close to each other in the graph or if they are forming separate
groups. Moreover, the relationships chosen must be optimal, that is, it should
neither have too many connections nor too few connections.

Normal Node Marked Node Newly Marked Node

Fig. 1. Simple graph with marked
nodes Set

Fig. 2. Simple graph with new marked
nodes Added

For this, we need to segregate these marked nodes from the rest and group
them using partitioning algorithms similar to Dot2Dot which constructs good
connection paths while separating the distant nodes. If a new set of marked
nodes is added (Fig. 2), how can the relationship of these newly marked nodes
to the existing marked nodes be efficiently determined?

It has been shown that the average performance of Dot2Dot - Minimum
Arborescence algorithm is better for simulations on real-life problems [11]. Thus,
Dot2Dot - Minimum Arborescence was used as the base algorithm for implemen-
tation of our improvements.

Suppose we have n marked nodes and we compute minimum arborescence
(Fig. 3) using the Dot2Dot algorithm, the algorithm has a running time com-
plexity of O(n2) [11]. Now, suppose m additional marked nodes are added. If the
Dot2Dot - Minimum Arborescence algorithm is used, generating a new partition
as seen in Fig. 4 below, then the running time complexity would be O((n+m)2).
To improve this time complexity, we propose a solution which only explores the
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bounded paths for the newly marked nodes m nodes and reuses the existing
bounded paths between the n marked nodes. This method reduces the time
complexity from O((n+m)2) to O(m× (n+m)) with respect to the number of
nodes, and an exponential to polynomial reduction in the number of edges to be
considered.

Normal Node Marked Node Newly Marked Node

Fig. 3. Sample partition of marked
nodes

Fig. 4. Partition of marked nodes with
newly added nodes

2.2 Proposed Method for Addition of New Marked Nodes

Consider an undirected graph G having vertices V and edges E such that
G = (V,E). Suppose we have a set M of marked nodes, also called terminals,
such that M ⊆ V . Running the Dot2Dot algorithm outputs the Minimum Span-
ning Tree(T ) which contains the paths that optimally describe the relationships
between terminals. Since we assume that the new marked nodes are selected
dynamically, the proposed algorithm must be an online algorithm. Hence, our
algorithm incorporates each new marked node iteratively to arrive at an optimal
solution.

To find the optimal relationship between one newly marked node and marked
nodes in T we utilize a key property of Graph Theory: Given a Minimum Span-
ning Tree (T ∗) and a new node (n∗), let E∗ be the set of edges in T ∗ originating
from n∗. The Minimum Spanning Tree that contains nodes of T ∗ and n∗ is
guaranteed to only contain edges from E∗. This reduces the search space of pos-
sible paths that must be considered from exponential (with respect to edges
of marked nodes) to polynomial.

The steps we take once we have a Minimum Spanning Tree(T ) and a set of
new marked nodes(N) are as follows:
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1. Take the first marked node from N , let us call it Ni.
2. Compute Paths of Ni to all nodes in T . We use a Breadth First Search from

Ni to compute paths of length ≤ log|V |. The paths are computed the same
way as shown in step 2 of Dot2Dot - Minimum Arborescence algorithm. We
store all paths from Ni to nodes which are in T , both marked and unmarked.

3. Find Minimum Spanning Tree of paths in T and the paths computed in the
previous step. This is done since there may be multiple paths from Ni to
nodes in T , so we compute the Minimum Spanning Tree once again in order
to only keep the optimal relationships between the nodes. This tree obtained
is our new Minimum Spanning tree, T .

4. Remove Ni from the set of new marked nodes, N .
5. Repeat steps 1 to 4 till N is non-empty.

3 Results

In this section, the proposed method is tested on sample data. We aim to test
the time complexity and cost performance of the algorithm. To do so, we choose
the Amazon product co-purchasing network [12] to study the performance of
our approach. The network was collected by crawling the Amazon website. It
is based on the ’Customers Who Bought This Item Also Bought’ feature of the
Amazon website. If a product i is frequently co-purchased with product j, the
graph contains a directed edge from i to j.

The dataset statistics are shown in the Table 1. The Fig. 5 shows the visual-
ization of first 50 nodes of the network.

Table 1. Dataset statistics.

Dataset statistics

Nodes 262111

Edges 1234877

Nodes in largest WCC 262111 (1.000)

Edges in largest WCC 1234877 (1.000)

Nodes in largest SCC 241761 (0.922)

Edges in largest SCC 1131217 (0.916)

Average clstering co-efficient 0.4198

Number of triangles 717719

Fraction of closed triangles 0.09339

Diameter (longest shortest path) 32

90-percentile effective diameter 11
Fig. 5. Visualization of fifty nodes in
data Set

We take an input graph that contains the first 1021 nodes of the network.
Suppose there are 10 marked nodes initially and we incrementally mark 400 addi-
tional nodes. The standard algorithm is used to compute the initial 10 marked
nodes and our proposed algorithm is used to incrementally add nodes.

Figure 6 shows the time performance in seconds for the proposed algorithm
for the addition of each node. The proposed algorithm grows almost linearly
with respect to the number of marked nodes. The proposed algorithm finishes
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Fig. 6. Time performance of proposed algorithm by number of nodes

its computation in approximately 81 min. Figure 7 below shows a comparison
between the execution time of Dot2Dot and our proposed modification.

Note the substantial difference between the standard algorithm and the pro-
posed near the axis in Fig. 7. The standard algorithm has an exponential growth
with respect to the number of edges between marked nodes and takes approx-
imately 5544 min (3.85 days). Our proposed approach finishes its computation
with a 98.54% reduction in runtime.

Figure 8 shows the comparative cost of the proposed algorithm with the stan-
dard Dot2Dot - Minimum Arborescence algorithm, where cost is the weighted
sum of all the edges in the graph. From the cost performance, we can interpret
that the proposed algorithm produces extremely competitive results despite tak-
ing less computation time.

Since graph partitioning is NP-complete achieving equivalent output between
the two graph algorithms is not guaranteed, however, the near-equal cost sug-
gests that the partitions created by both algorithms are equally valid. Thus, we
can conclude that the proposed algorithm provides an equivalently optimal solu-
tion like the Dot2Dot algorithm, but does it in a significantly more efficient way.
A sample partitions from our tests, each beginning with ten originally marked
nodes and adding thirty newly marked nodes, can be seen below in Figs. 9 and
10, which use the standard Dot2Dot - Minimum Arborescence and proposed
algorithm respectively.
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Fig. 7. Dot2Dot (Standard) performance compared to proposed algorithm

Fig. 8. Cost comparison between standard and proposed algorithm
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Normal Node Marked Node Newly Marked Node

Fig. 9. Dot2Dot algorithm output Partition

Fig. 10. Proposed algorithm output Partition
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4 Conclusion

The proposed implementation drastically reduces the computation time of par-
titioning input graph into subgraphs by reducing the search space of considered
edges of previously marked nodes. Instead of considering all edges originating
from a previously marked node, our algorithm considers just one edge. This
results in a decrease in time taken from exponential to polynomial time while
maintaining the integrity of the graph cost.

This reduction in time allows the algorithm to work seamlessly in an online,
real-time setting without compromising on the correctness of output. There are
several future applications for this algorithm. Expanding on this technique, the
edges could be stored in a Splay Tree to reduce space complexity if the algorithm
is to be used in a space-constrained environment. As an example, this could
be applied to recommender systems which could quickly find similar users and
products. Furthermore, there are applications in identifying anomalous events
within a network and grouping the behavior of users within a social network.

References

1. Karypis, G., Kumar, V.: METIS-unstructured graph partitioning and sparse
matrix ordering system, version 2.0 (1995)
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Abstract. This paper presents a new Global Foreground Modeling
(GFM) and Local Background Modeling (LBM) method for video anal-
ysis. First, a novel feature vector, which integrates the RGB values, the
horizontal and vertical Haar wavelet features, and the temporal difference
features of a pixel, enhances the discriminatory power due to its increased
dimensionality. Second, the local background modeling process chooses
the most significant single Gaussian density to model the background
locally for each pixel according to the weights learned for the Gaussian
mixture model. Third, an innovative global foreground modeling method,
which applies the Bayes decision rule, models the foreground pixels glob-
ally. The GFM method thus is able to achieve improved foreground
detection accuracy and capable of detecting stopped moving objects.
Experimental results using the New Jersey Department of Transporta-
tion (NJDOT) traffic video sequences show that the proposed method
achieves better video analysis results than the popular background sub-
traction methods.

Keywords: Global Foreground Modeling (GFM)
Local Background Modeling (LBM) · Background subtraction
Gaussian mixture model · Video analysis · Bayes decision rule

1 Introduction

Video analysis, which has broad applications in surveillance and security, often
applies popular techniques in multidisciplinary fields, such as computer vision,
pattern recognition, machine learning, and artificial intelligence [1,2]. The rep-
resentative statistical modeling methods, such as the background subtraction
approaches, usually model the background locally, i.e., for each pixel location
[3–6]. Local background modeling, which does not apply the foreground knowl-
edge, is suboptimal in achieving the best video analysis performance. Hayman
and Eklundh [7] considered both the background and foreground modeling by
splitting the Gaussian densities learned in the Gaussian mixture model (GMM)
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[6] for the background density and the foreground density, respectively. The fore-
ground modeling using the K − 1 Gaussian densities from the GMM, however,
is still not accurate in the sense of precisely defining the foreground density.
Another drawback of the background subtraction approaches is that the fore-
ground objects are quickly absorbed into background when they stop moving,
such as the vehicles temporarily stopping in front of traffic lights. As a result,
these stopped moving targets are missed in video analysis.

To address these issues, we propose a new Global Foreground Modeling
(GFM) method to improve upon the popular background subtraction approaches
for video analysis. In particular, we present a new global foreground modeling
and Local Background Modeling (LBM) method for video analysis. The nov-
elty of our method includes a new feature vector with enhanced discriminatory
power, the local background modeling, the global foreground modeling, and the
application of the Bayes classifier for foreground and background classification.

First, feature representation plays a very important role in pattern classifi-
cation [8–11]. Our recent research shows that the discriminatory power of the
feature vector is enhanced by increasing the dimensionality of the feature vec-
tor [12]. The popular background subtraction algorithms usually apply the red,
green, and blue values of a pixel to define the input vector [1,2]. As a result, the
size of the input vector is limited, which restricts the discriminatory power of the
vector. Researchers have investigated on this feature representation issue over
the years and proposed new methods to address it [13–15]. Varadarajan et al.
[13] presented a region based model, which uses small blocks to separate the
foreground and the background. The small blocks are able to increase the size
of the input vector quadratically in order to increase the discriminative capabil-
ity [13]. Pandey and Lazebnik [14] proposed deformable part-based models for
feature representation and utilized the latent SVM for classification. Wren et al.
[15] applied a blob-based feature representation method for real-time detection
and tracking of human body. One advantage of the region-based methods is
due to the application of the contextual information to enhance the discrimina-
tory power of the input vector. Nevertheless, region based methods may lead to
rough outlines and false regions instead of false points, due to the inaccuracy
caused by the block level segmentation. We present a new feature vector for
feature representation by integrating the RGB values, the horizontal and ver-
tical Haar wavelet features [16], and the temporal difference features. Our new
feature vector thus is able to increase the dimensionality of the input pattern
vector for each pixel and improve the foreground and background segmentation
performance due to its enhanced discriminatory power.

Second, in the novel feature vector space we model the background locally
for each pixel according to the weights learned for the Gaussian mixture model.
Specifically, we first use the traditional Gaussian mixture model to estimate the
probability density function of the pixel at a location [5–7]. We then apply the
constant weight updating scheme [17] to learn the parameters of the Gaussian
mixture model. And we finally choose the most significant single Gaussian den-
sity to model the background locally for each pixel, according to the weights of
the Gaussian densities.
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Fig. 1. A frame from a traffic video. The RGB values of some foreground regions, i.e.,
vehicles, are similar to the RGB values of the background, namely, the lanes of the
road.

Third, we present an innovative global foreground modeling method. Our
GFM method, which models the foreground pixels globally, is in contrast to the
background modeling algorithms where each pixel location is modeled locally.
Specifically, by using the Bayes decision rule for minimum error, our GFM
method derives one Gaussian distribution for every foreground pixel instead of
every location for foreground modeling. In contrast to the local background mod-
eling approach, our GFM method never eliminates a low weight distribution, as
every distribution represents a foreground feature vector. The advantages of the
GFM method include being able to achieve improved foreground classification
performance and being capable of detecting stopped moving objects. Finally, the
Bayes classifier is applied to determine whether a pixel belongs to the foreground
or the background.

2 A New Feature Vector for Feature Representation

Pixel-based background subtraction algorithms usually apply the red, green, and
blue values of a pixel to define the input vector [1,2]. As a result, the size of the
input vector is limited, which in turn restricts the discriminatory power of the
vector. We propose in this paper a novel feature vector for feature representation
by integrating the RGB values, the horizontal and vertical Haar wavelet features
[16], and the temporal difference features. Our new feature vector thus is able
to increase the dimensionality of the input pattern vector for each pixel and
improve the foreground and background segmentation performance due to its
enhanced discriminatory power. Next, we briefly explain the elements used to
define our feature vector.

First, the new feature vector incorporates the RGB values of a pixel. The
RGB values are useful for some simple segmentation tasks as demonstrated in
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Fig. 2. The first row shows the horizontal and vertical Haar wavelet features of the
red component image, respectively. The second and third rows show the horizontal and
vertical Haar wavelet features of the green and blue component images, respectively.
Note that the figures are displayed in the dynamic range with logarithm scale.

the paper [18]. The RGB values alone, however, are insufficient for achieving
good foreground segmentation performance. Figure 1 shows a frame from a traffic
video, where the RGB values of some foreground regions, i.e., vehicles, are similar
to the RGB values of the background, namely, the lanes of the road. As a result,
applying only the RGB values will not satisfactorily segment the foreground
from the background. Therefore, our new feature vector will be augmented with
additional features.

Second, the new feature vector integrates the horizontal and vertical Haar
wavelet features. Haar wavelet features have been broadly applied in computer
vision and pattern recognition [16]. Figure 2 shows the horizontal and vertical
Haar wavelet features in one frame. Specifically, the first row of Fig. 2 shows the
horizontal and vertical Haar wavelet features of the red component image, the
second row of Fig. 2 shows the horizontal and vertical Haar wavelet features of
the green component image, and the third row of Fig. 2 shows the horizontal and
vertical Haar wavelet features of the blue component image.

And finally, the new feature vector combines the temporal difference features.
As temporal information plays a crucial role in motion analysis, the temporal
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Fig. 3. The temporal difference features for the red, green, and blue component images,
respectively. Note that the figures are displayed in the dynamic range with logarithm
scale.

difference features are added to our new feature vector. Our idea is to compute
the temporal difference between the current frame and the next frame with the
goal of distinguishing the moving objects and the stable background. Specifically,
the temporal difference is computed for the red, green, and blue component
images, respectively. Figure 3 shows the temporal difference features for the red,
green, and blue component images, respectively.

To summarize, by integrating the RGB values, the horizontal and vertical
Haar wavelet features, and the temporal difference features, our new feature
vector resides in a 12 dimensional space with enhanced discriminatory power for
foreground or background segmentation.

3 Local Background Modeling Using a Single Gaussian
Density

For background modeling, one single Gaussian density is learned in the novel fea-
ture vector space R12 to model the background locally for each pixel. Specifically,
the local background modeling involves a two-step process. First, the probabil-
ity density function of the pixel at (i, j) is estimated using the traditional local
Gaussian Mixture Model (GMM) [5–7]. The constant weight updating scheme
[17] is then applied to learn the parameters of the GMM. Second, according
to the weights of the Gaussian densities, we choose the most significant single
Gaussian density to model the background locally for each pixel.

The feature vector, xi,j ∈ R
12, is defined by the RGB values of the pixel,

the horizontal and vertical Haar wavelet features, and the temporal difference
features. For notational simplicity and without loss of generality, we will drop
the subscripts i, j in the following equations. The probability density function
of the pixel at (i, j) may be estimated as follows [6]:

p(x) =
K∑

k=1

αkN(Mk, Σk) (1)

where N(Mk, Σk) = 1
(2π)d/2|Σk|1/2 exp

{− 1
2 (x − Mk)tΣ−1

k (x − Mk)
}

,
∑K

k=1

αk = 1, K indicates the number of Gaussian densities in the GMM model,
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αk is the weight for each Gaussian density, d is the dimensionality of the feature
vector x, and Mk is the mean vector and Σk is the covariance matrix for the
k-th Gaussian density.

For simplicity, we assume that the covariance matrix Σk is diagonal. Note
that the traditional pixel-based background subtraction algorithms use the same
assumption as well [5–7]. Generally speaking, the GMM is a comprehensive
model for describing complex scenes with various activities. Thus both the back-
ground and the various activities are described by the different Gaussian densi-
ties. Note that the background, which is usually static without many changes,
may be modeled by one Gaussian density with a large weight.

We use the constant weight updating scheme [17] to train the GMM, namely,
to learn the parameters specified in Eq. 1. The initialization process first sets the
mean vector, the covariance matrix, and the weight for each Gaussian density
of the pixel equal to zero. We then define a counter nk, k = 1, · · · ,K for each
Gaussian density to count the number of pattern vectors that satisfy Eq. 2. Note
that the n′

ks are initialized to zero. For each Gaussian density the following
criterion is evaluated:

(x − Mk)t(x − Mk) <

K∏

i=1

σ2
i (2)

where σ2
i , i = 1, · · · ,K, are the diagonal elements of Σk, which is a diago-

nal matrix. If the k-th Gaussian density satisfies this condition, we update the
parameters of the Gaussian density as follows:

M′
k = (nkMk + x)/(nk + 1) (3)

Σ′
k = (nkΣk + (x − Mk)(x − Mk)t)/(nk + 1) (4)

n′
k = nk + 1 (5)

If no existing Gaussian density satisfies Eq. 2, then the pattern vector defines
a new Gaussian density function, whose parameters are determined as follows:
the pattern vector is the mean vector, and a predefined value multiplied by the
identity matrix is the covariance matrix. The counter is set equal to one. In the
GMM model, if there exists a Gaussian density with a zero weight, then the
new Gaussian density replaces it. If not, the new Gaussian density replaces the
existing Gaussian density function with the smallest weight.

We further update the weights of all the Gaussian densities as follows:

α′
k = n′

k/

K∑

k=1

n′
k (6)

After updating the weights, we sort all the Gaussian densities in the descending
order.

Note that the background is usually static without many changes. Therefore,
it may be modeled by one Gaussian density with the largest weight. We thus
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choose the most significant Gaussian density, which is the first density in the
GMM, to model the background.

p(x|ωb) = N (M′
1, Σ

′
1) (7)

where ωb represents the background class.

4 Novel Global Foreground Modeling

We present in this section a novel Global Foreground Modeling (GFM) method
that models every foreground pixel as a Gaussian distribution. In contrast to
the background modeling algorithms where each location (i, j) is modeled as a
mixture of Gaussian distribution, our GFM method, which does not model any
specific location, is global in nature. Furthermore, for every foreground pixel, our
GFM method derives one Gaussian distribution for foreground modeling using
the Bayes decision rule for minimum error.

In particular, the GFM method learns M Gaussian densities for defining
the M conditional density functions for the foreground pixels, respectively:
p(x|ω1), p(x|ω2), · · · , p(x|ωM ). For initialization, we set all the mean vectors and
the covariance matrices of the M Gaussian densities equal to zero, and set the
counter of the number of the input feature vectors and the weight for each Gaus-
sian density equal to zero. After initialization, for a new input feature vector, we
first check whether the GFM model has a Gaussian density with zero weight. If
yes, we check using Eq. 2 to see if the input feature vector can be absorbed by the
background Gaussian density function. If it can be absorbed by the background
Gaussian density function, we continue without modifying the GFM model. If
it cannot be absorbed by the background Gaussian density function or by the
non-zero weighted GFM Gaussian densities, a new Gaussian density function is
created with the input feature vector as the mean vector and a predefined value
multiplied by the identity matrix as the covariance matrix. The counter is set
equal to one.

If none of the GFM Gaussian densities have zero weights, we then apply
the Bayes decision rule for minimum error to identify one Gaussian density for
the input feature vector. As a result, the Gaussian density becomes the con-
ditional probability density function for the foreground. Specifically, the condi-
tional probability density function for the foreground is derived by means of the
Bayes decision rule for minimum error [19]:

p(x|ωf )P (ωf ) =
M

max
i=1

{p(x|ωi)P (ωi)} (8)

Thus, by using the Bayes decision rule for minimum error, we can classify
the input feature vector x into one Gaussian distribution of the GFM method:
p(x|ωf ). The p(x|ωf ) will be used as the foreground conditional probability
density function in the next segmentation step. Note that x is further used to
update that Gaussian density function and the weights in our GFM model, and
the updating process of the mean vector, the covariance matrix, and the weight
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Fig. 4. The Bayes error is reduced if the variances for the conditional probability
density function for the foreground decrease. Lf and Lb represent regions, and L′

f and
L′

b denote new regions.

values in the GFM model is similar to what we discussed before in the pre-
vious section. The difference is we never eliminate a low weight distribution.
In the GMM model, a low weight component stands for a feature vector that
rarely appears at one location. As a result, such a component could be elim-
inated because it has a low possibility to be a background pixel. But in the
GFM model, every distribution stands for a foreground feature vector. We can-
not ignore any possibility of a presented value. So the GFM will absorb every
foreground pixel into one distribution, even if by doing so, it will increase the
variance of a distribution.

Our GFM method has the following advantages. First, the GFM method is
able to achieve improved classification performance due to the application of the
Bayes decision rule for minimum error. To understand this advantage, we now
briefly review the Bayes error. The conditional error given x is defined as follows:

r(e|x) = min[P (ωb|x), P (ωf |x)] (9)

The Bayes error, which is the expectation of the conditional error, is defined as
follows:

ε =
∫

r(e|x)p(x)dx = P (ωb)
∫

Lf

p(x|ωb)dx + P (ωf )
∫

Lb

p(x|ωf )dx (10)

where Lf and Lb are the regions shown in Fig. 4. We can see from Fig. 4 that if we
are able to define the conditional probability density function for the foreground
with smaller variances, the Bayes error could be reduced—see the L′

f and L′
b

regions in Fig. 4.
We next demonstrate that our GFM method is able to achieve improved clas-

sification performance. Note that the GFM method applies the Bayes decision
rule for minimum error to derive the conditional probability density function
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Fig. 5. The GFM’s single Gaussian density for foreground modeling yields smaller
Bayes error when compared with the multiple Gaussian densities or the uniform dis-
tribution for foreground modeling.

Fig. 6. When a foreground object stops moving, the weight of the Gaussian density
for the background pixel will decrease, and the weight of the Gaussian density for the
stopped foreground pixel will increase.

for the foreground. Other popular methods model the foreground differently.
Zivkovic [5] assumed that the foreground has a uniform distribution. Hayman
and Eklundh [7] used K−1 Gaussian densities to model the foreground. Figure 5
shows that our GFM’s single Gaussian density for foreground modeling tends
to yield smaller Bayes error when compared with the multiple Gaussian densi-
ties or the uniform distribution for foreground modeling. Therefore, our GFM
method, which derives one Gaussian distribution for foreground modeling using
the Bayes decision rule for minimum error, is able to achieve improved classifi-
cation performance.

Second, the GFM is able to detect the stopped moving objects. Most of
the popular background subtraction methods have difficulty detecting the fore-
ground objects when they stop moving, and these foreground objects are quickly
classified as the background [1,2]. The reason for such a misclassification is due
to the Gaussian mixture modeling applied by the popular background subtrac-
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Fig. 7. After the Gaussian density for the foreground becomes the background model,
the foreground model, which is defined by the remaining K − 1 Gaussian densities,
will no longer have a Gaussian density representing the foreground object that stopped
moving.

tion methods [5,6]—see Eq. 1. Specifically, Fig. 6 shows that when a foreground
object stops moving, the weight of the Gaussian density for the background pixel
will decrease, and the weight of the Gaussian density for the stopped foreground
pixel will increase. When the foreground object stops a little longer, according
to Eq. 1, the Gaussian density for the foreground pixel becomes the background
model, and as a result, the foreground objects become the background and are
no longer detected. Even though Hayman and Eklundh’s method [7] applies both
the background and foreground modeling by using the K − 1 Gaussian densities
to model the foreground. It still does not model the foreground objects when
they stop moving. In particular, Fig. 7 shows that after the Gaussian density
for the foreground becomes the background model, the foreground model, which
is defined by the remaining K − 1 Gaussian densities, will no longer have a
Gaussian density representing the foreground object that stopped moving.

Our GFM method, however, is able to detect the stopped moving objects,
such as the vehicles that stop in front of the traffic lights. The reason is because of
the global modeling of the foreground pixels, which is in contrast to the location
based background modeling. In essence, our GFM method chooses globally the
Gaussian density according to the Bayes decision rule for minimum error to
model the foreground pixel as shown in Eq. 8. As a result, when an object stops
moving, the foreground model will still maintain the accurate Gaussian Density
to model it. The final classification of foreground pixels depends on the Bayes
classifier that will be explained in the next section.

5 Foreground and Background Classification

The Bayes classifier is applied to determine whether a pixel belongs to the fore-
ground or the background. The conditional probability density functions for
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the foreground and the background, p(x|ωf ), p(x|ωb), are defined in the pre-
vious sections, respectively. As discussed in Sect. 3, the first Gaussian density
is chosen as the background model, the prior probability for the background,
P (ωb), is estimated using the weight for this Gaussian density: P (ωb) = α1.
The prior probability for the foreground, P (ωf ), is then estimated as follows:
P (ωf ) = 1 − α1.

Given a pixel, its feature vector, x ∈ R
12, is first defined by the RGB values

of the pixel, the horizontal and vertical Haar wavelet features, and the temporal
difference features. The feature vector, x, is then classified to either the fore-
ground class or the background class according to the following discriminant
function:

h(x) = p(x|ωf )P (ωf ) − p(x|ωb)P (ωb) (11)

Namely, the feature vector x is classified to the foreground class if h(x) > 0, and
to the background class otherwise.

6 Experiments

We use the New Jersey Department of Transportation (NJDOT) traffic video
sequences to evaluate our proposed method and compare it with the popu-
lar background subtraction algorithms, such as the Gaussian Mixture Model
(GMM) [5–7]. Specifically, we first evaluate the computational efficiency of our
proposed Global Foreground Modeling and Local Background Modeling (GFM-
LBM) method to demonstrate its efficiency for real time implementation. We
then comparatively evaluate our GFM-LBM method and the popular GMM
method to reveal the improved foreground segmentation accuracy by our GFM-
LBM method. We finally carry out experiments to show that our GFM-LBM
method is able to detect the foreground objects that stopped moving, while in
comparison the popular GMM method fails to detect such foreground objects.

We now evaluate the computational efficiency of the GFM-LBM method
using the NJDOT traffic video sequences. In particular, there are three types
of spatial resolutions of the NJDOT videos: the existing quality videos with
the spatial resolution of 352 × 240, the enhanced quality videos with the spatial
resolution of 704×480, and the highest quality videos with the spatial resolution
of 752 × 480. The frame rates for these three types of videos are 15 fps, 15 fps,
and 30 fps, respectively. The computer we use is a DELL XPS 8900 PC with a
3.4 GHz processor and 16 GB RAM. The parameters for the GFM-LBM method
are as follows: the number of Gaussian density functions for the GMM is 3, and
the number of Gaussian density functions for the GFM is 5. Table 1 shows the
experimental results using the three types of the NJDOT traffic videos: 352×240
video, 704 × 480 video, and 752 × 480 video. Specifically, the run time for the
752× 480 video is 82 ms per frame, the run time for the 704× 480 video is 68 ms
per frame, and the run time for the 352 × 240 video is 15 ms per frame. These
experimental results indicate that the GFM-LBM method is able to process the
existing quality videos and the enhanced quality videos in real time on the DELL
XPS 8900 PC with a 3.4 GHz processor. As a matter of fact, the existing quality
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Table 1. The run time of the GFM-LBM method using the three types of the NJDOT
traffic videos: 352 × 240 video, 704 × 480 video, and 752 × 480 video.

Video 752 × 480 video 704 × 480 video 352 × 240 video

Run time 82ms/frame 68 ms/frame 15 ms/frame

videos are currently in use by NJDOT for traffic monitoring. The other two types
are collected using temporary cameras at some experiment zones.

We next comparatively evaluate our GFM-LBM method and the popular
GMM method to show the improved foreground segmentation accuracy and
robustness by our GFM-LBM method. Towards that end, Fig. 8 shows the com-
parative foreground detection performance of the GFM-LBM method and the
popular GMM method. In particular, Fig. 8(a) displays an original frame from
an NJDOT video, and Fig. 8(b) shows the ground truth of foreground detection.
Figure 8(c) shows the foreground detection results using the GFM-LBM method,
and in comparison Fig. 8(d) shows the foreground detection results using the

Fig. 8. Comparative foreground detection performance of the GFM-LBM method and
the popular GMM method. (a) An original frame. (b) Ground truth of foreground
detection. (c) Foreground detection by the GFM-LBM method. (d) Foreground detec-
tion by the popular GMM method.
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Fig. 9. Comparative foreground detection performance of the GFM-LBM method and
the popular GMM method. (a) An original frame from an NJDOT video. (b) Ground
truth of foreground detection. (c) Foreground detection results using the GFM-LBM
method. (d) Foreground detection results using the popular GMM method.

popular GMM method. Figure 8(c) and (d) reveal that the GFM-LBM method
achieves better foreground detection results than the traditional GMM method
in terms of better edges and fewer false positive pixels.

We finally implement experiments to show that our GFM-LBM method is
able to detect the foreground objects that stopped moving, while in comparison
the popular GMM method fails to detect such foreground objects. In traffic mon-
itoring vehicles often stop in congestion or in front of traffic lights, but these vehi-
cles are still the foreground objects and should be detected for traffic video anal-
ysis. The traditional GMM method, however, quickly absorbs these foreground
objects into background when they stop moving, which leads to incorrect fore-
ground segmentation. Figure 9 shows the comparative foreground segmentation
results using the GFM-LBM method and the popular GMM method using the
NJDOT videos. Specifically, Fig. 9(a) shows an original frame from an NJDOT
video, and Fig. 9(b) shows the ground truth of foreground detection. Figure 9(c)
shows the foreground detection results using the GFM-LBM method, and in
comparison Fig. 9(d) shows the foreground detection results using the popular
GMM method. Figure 9(c) and (d) show that the GFM-LBM method is able to
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detect the vehicles even when they stop moving, but in comparison the popular
GMM method fails to detect these foreground vehicles.

7 Conclusions

We have presented in this paper a new Global Foreground Modeling (GFM) and
Local Background Modeling (LBM) method for video analysis. The major con-
tributions of the paper are three aspects. First, a novel feature vector is proposed
by integrating the RGB values, the horizontal and vertical Haar wavelet features,
and the temporal difference features of a pixel for feature representation. The
new feature vector, which enhances the discriminatory power due to its increased
dimensionality, is able to improve the foreground and background segmentation
performance for video analysis. Second, the local background modeling process,
which capitalizes on the traditional Gaussian mixture models, is explained by
choosing the most significant single Gaussian density to model the background
locally for each pixel according to the weights learned for the Gaussian mix-
ture model. Third, an innovative global foreground modeling or GFM method,
which models the foreground pixels globally, is presented for foreground model-
ing. The GFM method, which applies the Bayes decision rule for minimum error,
derives one Gaussian distribution for every foreground pixel. The advantages of
the GFM method include being able to achieve improved foreground classifi-
cation performance and capable of detecting stopped moving objects. Finally,
the Bayes decision rule for minimum error is applied to determine whether a
pixel belongs to the foreground or the background. Experimental results using
the New Jersey Department of Transportation (NJDOT) traffic video sequences
have shown that the proposed method achieves better video analysis results than
the popular background subtraction methods.
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Abstract. Automated Diabetic Retinopathy (DR) screening methods
with high accuracy have the strong potential to assist doctors in evaluat-
ing more patients and quickly routing those who need help to a specialist.
In this work, we used Deep Convolutional Neural Network architecture
to diagnosing DR from digital fundus images and accurately classifying
its severity. We train this network using a graphics processor unit (GPU)
on the publicly available Kaggle dataset. We used Theano, Lasagne, and
cuDNN libraries on two Amazon EC2 p2.xlarge instances and demon-
strated impressive results, particularly for a high-level classification task.
On the dataset of 30,262 training images and 4864 testing images, our
model achieves an accuracy of 72%. Our experimental results showed
that increasing the batch size does not necessarily speed up the con-
vergence of the gradient computations. Also, it demonstrated that the
number and size of fully connected layers do not have a significant impact
on the performance of the model.

Keywords: Deep learning · Convolutional Neural Networks
Medical imaging · Diabetic retinopathy

1 Introduction

Diabetic Retinopathy is damage to the retina caused by complications of dia-
betes which can lead to blindness. It occurs due to changes in the blood vessels
in the retina [1]. Sometimes these vessels swell and leak fluid or even close off
completely. In other cases, abnormal new blood vessels grow on the surface of the
retina. Diabetic retinopathy is the fastest growing cause of blindness, with nearly
415 million diabetic patients at risk worldwide [2]. If caught early, the disease can
be treated; if not, it can lead to irreversible blindness. Unfortunately, medical
specialists capable of detecting the disease are not available in many parts of the
world where diabetes is prevalent. Machine learning (ML) has been leveraged

c© Springer International Publishing AG, part of Springer Nature 2018
P. Perner (Ed.): MLDM 2018, LNAI 10934, pp. 64–76, 2018.
https://doi.org/10.1007/978-3-319-96136-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96136-1_6&domain=pdf


A Deep Learning Based Automatic Severity Detector for DR 65

for a variety of classification tasks including automated classification of diabetic
retinopathy. We believe that ML can help doctors identify patients in need, par-
ticularly among underserved populations. However, much of the previous work
which applied ML for automatic DR has focused on “feature-engineering”, which
involves computing explicit features specified by experts, resulting in algorithms
designed to detect specific lesions or predicting the presence of any level of dia-
betic retinopathy. Deep learning is a machine learning technique that avoids
such engineering and allows an algorithm to program itself by learning the most
predictive features directly from the images given a large data set of labeled
examples, removing the need to specify rules explicitly. Automated DR screen-
ing methods with high accuracy have the strong potential to assist doctors in
evaluating more patients and quickly routing those who need help to a specialist.

Each eye of the patient can be in one of the 5 levels: from 0 to 4, where 0
corresponds to the healthy state and 4 is the most severe state. Different eyes
of the same person can be at different levels (although some previous research
managed to leverage the fact that two eyes are not completely independent). The
problem is to design and implement a model which can determine the presence
of retinopathy and classify its level automatically, without doctors assistance.

Worldwide diabetic retinopathy rates have significantly increased during
the past few years. The European Society of Retina Specialists (EURETINA)
Congress, held in Germany in late 2013, has called for diabetic retinopathy to
be classified as an epidemic. As of 2015, 59.8 million diabetic patients are at
risk of diabetic retinopathy in the Middle East and North Africa, [2]. Diabetes
is also a major concern to the population in Qatar, affecting about 17% of the
population. In addition, diabetic retinopathy is the most common chronic com-
plication of diabetes, affecting about 40% of diabetic patients in Qatar [3,4].
Automated DR screening methods with high accuracy have the strong potential
to assist doctors in evaluating more patients and quickly routing those who need
help to a specialist. The need for a comprehensive and automated method of
DR screening has long been recognized, and previous efforts have made good
progress using image classification, pattern recognition, and machine learning.

In this work, we will study deep learning techniques described in recent liter-
ature and combine it with our own ideas to realize an, as good as possible, deep
learning model for the detection of diabetic retinopathy in retina images. More
specifically, we will evaluate the performance of different Deep Convolutional
Neural Networks (ConvNets) architectures and the impact of changing its hyper-
parameters. We used Deep Convolutional Neural Networks (ConvNets) trained
on graphical processing units (GPUs) to train the publicly available dataset
provided by Kaggle [5]. We used Theano, Lasagne, and cuDNN libraries on two
Amazon EC2 p2.xlarge instances. On the dataset of 30,262 training images and
4864 testing images, our model achieved a Kappa of 0.72. Our experimental
results showed that increasing the batch size does not necessarily speed up the
convergence of the gradient computations. In addition, it demonstrated that the
number and size of fully connected layers does not have a significant impact on
the model performance.
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2 Related Works

While other forms of machine learning have been used to diagnose diabetic
retinopathy in the past (such as SVM and neural networks), deep learning is a
more pure form of artificial intelligence in that it doesn’t receive any guidance
to look for particular features. Instead, it learns on its own from nothing but
the images and information about what’s in them. In this section, we discuss
some examples from recent literature which have used deep learning for diabetic
retinopathy detection and classification. Gulshan et al. [6] have applied deep
learning to create an algorithm for automated detection of diabetic retinopa-
thy and diabetic macular edema in retinal fundus photographs. They trained
a deep ConvNet using a retrospective development dataset of 128,175 retinal
images. The resultant algorithm was validated in 2016 using two separate dataset
EyePACS-1 (9963 images) and Messidor-2 (1748 images). For EyePACS-1, the
sensitivity was 90.3%, and the specificity was 98.1%. For Messidor-2, the sen-
sitivity was 87.0%, and the specificity was 98.5%. Further research is necessary
to determine the feasibility of applying this algorithm in the clinical setting and
to determine whether the use of the algorithm could lead to improved care and
outcomes compared with the current ophthalmologic assessment.

Haloi [7] proposed a new deep learning method for microaneurysm detec-
tion. Compared to other deep neural networks, it required less preprocessing,
vessel extraction and more deep layers for training and testing the fundus image
dataset. It consists of five layers which include convolutional, max pooling and
Softmax layer with additional dropout training for improving accuracy. A perfor-
mance of 96% accuracy with 96% specificity and 97% sensitivity was achieved.
Wang et al. [8] used ConvNets to perform as a trainable hierarchical feature
extractor and Random Forest (RF) as a trainable classifier. It has six stacked
layers of convolution and followed by subsampling layers for feature extraction.
Random Forest algorithm is utilized for classifier ensemble method and intro-
duced in the retinal blood vessel segmentation. By integrating the merits of fea-
ture learning and traditional classifier, the proposed method can automatically
learn features from the raw images and predict the patterns. This architecture
was tested with two public retinal images databases DRIVE and STARE. It
achieved an accuracy of 98% with 82% sensitivity and 97% specificity for the
DRIVE database images, and an accuracy of 98% with 81% sensitivity and 98%
specificity for the STARE database images.

Melinscak et al. [9] proposed an automatic segmentation of blood vessels
in fundus images using deep neural networks. It contains a deep max-pooling
ConvNets to segment blood vessels. It deployed 10-layer architecture for achiev-
ing a maximum accuracy but worked with small image patches. It includes a
preprocessing for resizing and reshaping the fundus images. It carried around
4-convolutional and 4-max pooling layer with two additional fully connected
layers for vessel segmentation. This method achieved an average accuracy of
94.7% and an average AUC of 97.5%. The results were tested on publicly
available dataset DRIVE. Fraz et al. [10] conducted a survey about the retinal
vessel segmentation algorithms. The performance of algorithms was analyzed on
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two publicly available databases DRIVE and STARE using a number of mea-
sures which include accuracy, true positive rate, false positive rate, specificity
and area under the receiver operating characteristic (ROC) curve. The algo-
rithms achieved average accuracy in the range of 87.7% to 96% and AUC from
89.84% to 96.1%.

Pratt et al. [11] proposed a ConvNet approach to diagnosing DR from digital
fundus images and accurately classifying its severity. They developed a network
with CNN architecture and data augmentation which can identify the intricate
features involved in the classification task such as microaneurysms, exudate,
and hemorrhages on the retina, and consequently provide an automatic diag-
nosis without user input. The network was trained using high-end GPU on the
publicly available Kaggle dataset, which included 80,000 digital fundus images.
The model demonstrated magnificent results. It achieved an accuracy of 75%
and sensitivity of 95% on 5,000 validation images. In addition, many contestants
in the Kaggle DR competition have published their solutions. Most of the solu-
tions used ConvNet architectures implemented using Keras, Caffe, and Theano
frameworks for deep learning.

3 Approach

3.1 The Dataset, Hardware, Software

In this project, we will use retina images from the Kaggle [5] competition Dia-
betic Retinopathy Detection of 2015. The dataset we used contains 35,126 JPEG
images (32.5 GB) and a CSV file where the level of the disease (label) is provided
for all images. We used 86% of the dataset (30,262 images) for training and 14%
(4864 images) for testing. Left eye and right eye images are provided for every
subject and images are named using the patient id as well as either left or right
(e.g. 1left.jpeg is the left eye of patient id 1). The images are taken using differ-
ent types of equipment with the varying field of view, blurring, contrast, color
spectrum, and sizes of images. Given the images for which a clinician has rated
the presence of diabetic retinopathy on a scale from 0 to 4 (0: No DR, 1: Mild,
2: Moderate, 3: Severe, 4: Proliferative DR), the aim of the competition was to
provide a model which can determine the presence of retinopathy automatically,
without doctors assistance. The distribution of images of different levels in the

Table 1. Distribution of images of different levels in the dataset

Levels Number of images Percentage

0 25810 73.48%

1 2443 73.48%

2 5292 73.48%

3 873 73.48%

4 708 73.48%



68 R. AlSaad et al.

dataset set was very uneven, as more than half of the images were of good eyes
as illustrated in Table 1.

We used the same software setup used in [12]. We used the following frame-
works and libraries: Theano [13], Lasagne [14], python, pylearn2 [15], and CUDA
[16]. We used two Amazon EC2 p2.xlarge instances, which are robust, scalable
instances that provide GPU-based parallel compute capabilities. The number of
parallel processing cores is 2496 with 61 GiB memory.

3.2 Computational Considerations

Since modern GPUs has low memory, we should consider the largest bottleneck
of the given memory when building a ConvNet architecture. Sources to keep
track of memory are as follows: firstly, from the average volume size which is
a raw number of activation at every layer of the ConvNet, and their gradients
of equal size. Practically, the activation values are kept on the earlier layers for
backpropagation. Only in a testing phase, the current activation value can be
kept in any layer by discarding the previous value of the following layers which
is an example of a smart implementation. Secondly, it can be known from the
parameter size which is a number that holds the network parameters, their gra-
dients during backpropagation. Hence, the memory to be stored the parameter
vector must be multiplied by a factor of three at least. Finally, every ConvNet
implementation should maintain different memory, for example, the image data
batches augmented versions. When a rough estimate of the total number of val-
ues is ready for activations, gradients, and miscellaneous (the number should be
converted to size in GB). To get the raw number in a byte, multiply the value
by 4 (since every floating point is 4 bytes, or maybe by 8 for double precision),
and then divide by 1024 to get the amount in KB, MB, and finally GB. Since
the activations consume most of the memory, a common heuristic make it fit can
be used to decrease the batch size if the network does not fit.

3.3 Preprocessing

The dataset consisted of JPEG images and the majority of the images were of
size 16 megapixels. The images have very different resolutions, colors, aspect
ratios, and cropped in various ways. The ConvNets require a fixed input size, so
we had to resize/crop all of the images into some fixed dimensions. We experi-
mented with three dimensions: 128× 128, 192× 192, and 256× 256. We followed
the same downsampling strategy for all dimensions, which included cropping
out the surrounding black areas, sizing down the width, then vertically crop-
ping/letterboxing until the image is square. We have also reformatted the images
into a more lossless format which is PNG. Graphicsmagick [17] toolbox was used
to perform all the image resizing, cropping, and formatting tasks. An example
of the output of the preprocessing stage is illustrated in Fig. 1.
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Fig. 1. Example of the preprocessing output

3.4 Data Augmentation

One of the problems of neural networks is that they are extremely powerful. They
learn so well that they usually learn something that degrades their performance
on other (previously unseen) data. One (made-up) example: the images in the
training set are taken by different cameras and have different characteristics. If
for some reason, say, the percentage of images of level 3 in dark images is higher
than the rest of the images, and the network may start to predict level 3 more
often for dark images. One of the solutions to this problem is to enlarge the
dataset to minimize the chances of such correlations to happen. This is called
data augmentation. Its obvious that if you take an image, zoom it, rotate it, flip
it, change the brightness, etc. the level of the disease will not be altered. So it is
possible to apply these transformations to the images and obtain much larger and
more random training dataset. We applied two main transformations: flipping
and color casting. These two transformations helped avoid the problem that some
of the images in the dataset were flipped. Flipping: The images were randomly
flipped/not flipped along the horizontal axis, and then again for the vertical axis
every time it entered the network. This transformation didnt change the image
quality or the appearance of the letterbox which was symmetric. Color Casting:
this paper [18] was used as a reference to perform the color casting task. It was
randomly decided on each channel whether or not to add/subtract a constant.
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After that, a centered Gaussian distribution of a standard deviation equal to 10
was used to pick the constant value. This resulted in having 99% of the values
which were added being in the range between −30 and 30.

3.5 Network Architecture

Similar to the other top performing solutions in the Kaggle competition, we
used deep ConvNets trained on GPUs. ConvNets have been shattering state-
of-the-art records on a wide variety of computer vision datasets recently, and
they do so without much domain knowledge required The architecture of our
network is based on the popular VGGNet [19] from Oxford. Our implementation
is adapted from the model implementation of the top 20th entry in the Kaggle
DR Competition available on Github [12]. This entry scored a kappa of 0.765 (1st
entry scored a kappa of 0.84958) [5]. The architecture consists of 6 convolutional
layers where the first layer is the Input layer and three fully connected (FC)
layers where the last layer is the Output layer. Each convolutional layer has an
LReLu non-linearity, and every convolutional layer (except the first) has dropout
with p = 0.1. Each FC layer has dropout with p = 0.5.

4 Results and Discussion

The Kaggle DR competition was scored using Cohens quadratic weighted Kappa
function [20]. We used the same metric to evaluate our results and compare it
with the other submissions. Cohen’s kappa coefficient is a statistic which mea-
sures inter-rater agreement for qualitative (categorical) items. It is thought to
be a more robust measure than simple percent agreement calculation since takes
into account the possibility of the agreement occurring by chance. In our case,
Kappa is described as being an agreement between two raters: the agreement
between the scores assigned by the human rater (which is unknown to contes-
tants) and the predicted scores. If the agreement is random, the score is close
0 (sometimes it can even be negative). In the case of a perfect agreement, the
score is 1. It is quadratic in a sense that, for example, if you predict level 4 for
a healthy eye, it is 16 times worse than if you predict level 1. Winners achieved
a score more than 0.84. Our best result was around 0.72.

Table 2. Batch size

Batch size Epochs Parameters (M) MB Kappa

64 200 11.7 31.15 0.697

128 200 11.7 31.15 0.697

256 300 11.7 31.15 0.697

To decide on the appropriate number of epochs which should be used in our
experiments, we experimented with a number of epochs from 50 to 400 epochs.
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Fig. 2. Kappa when batch size is 64

As we did not see a significant improvement going from 200 to 400 epochs, we
stuck with the former for most of our experiments. For all figures in this section,
the x-axis represents the number of epochs and the y-axis represents the Kappa
score. The label of the y-axis shows the best Kappa score and between brackets
the epoch number at which the best Kappa was obtained.

In this experiment, we will study the impact of changing the batch size hyper-
parameter on the performance of the model. We will experiment with three batch
sizes: 64, 128, and 256. Table 2 and Figs. 2, 3, and 4 describe the network setup
used for this experiment and the obtained Kappa results. Our results indicate
that increasing the batch size from 64 to 256 doesn significantly affect the Kappa
score (δ Kappa = 0.02). However, its clear that the noise and fluctuations were
minimized moving from 64 to 256 batch sizes. Besides, it rejects our hypothesis
that the gradient decent converges faster with increased batch size. Our results
showed that increasing the batch size increased the number of epochs which the
gradient needs to converge properly. The reason for this might be that we need
to adjust the learning rate as we increase the batch size, but in our case, we have
used the same learning rate for all batch sizes. So the practical recommendation
is: pick batch sizes that fully leverage the GPU (e.g. until the memory is filled
up), and just choose the largest step-size that works well in practice after a few
quick trials.

In this experiment, we will study the impact of the number and size of fully
connected layers on the model performance. The first test we performed was to
decrease the number of fully connected layers from 2 layers to 1 layer (Setup 1
in Table 3). The results of this test are illustrated in Fig. 5. The second test was
to decrease the number of units for setup 1 from 2048 to 1024 units (Setup 2 in
Table 3). The results of this test are illustrated in Fig. 6. Our results show that
the kappa score decreased by only 0.01 when the number of layers was decreased
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Fig. 3. Kappa when batch size is 128

Fig. 4. Kappa when batch size is 256

by half (2 layers to 1 layer), and also by only 0.01 when the number of units was
decreased by half (2048 to 1024). These results completely support our second
hypotheses that the number and size of fully connected layers do not significantly
impact the performance of the model. In addition, the results illustrate that the
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Table 3. Number and size of fully connected layers

Title Reference Setup1 Setup2

Batch size 128 128 128

Resolution 256× 256 256× 256 256× 256

Epochs 200 200 200

FC layers 2 1 1

Units per FC layer 2048 2048 1024

Parameters (million) 11.17 9.1 4.7

Memory/image (MB) 31.15 31.15 31.15

Execution time (hours) 27 25 15

Best Kappa 0.72 0.71 0.70

Fig. 5. Kappa score for network setup 1

network complexity was simplified by reducing the number of parameters from
11.17 to 4.7 million, which resulted in reducing the execution time from 27 to
15 h while only losing 2% of the Kappa score.

Increasing the batch size does not necessarily speed up the gradient compu-
tations. However, it helps to reduce the fluctuations in the model performance.
Further investigation is required to identify how the learning rate and step size
should be adjusted with respect to changes in the batch size. We did not notice
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Fig. 6. Kappa score for network setup 2

any significant difference in the Kappa score when increasing the batch size from
64 to 256 (Δ Kappa = 0.02). The number of fully connected layers in the Con-
vNet architectures does not seem to be very important. The results demonstrated
that the difference between having 2 FC layers compared to only 1 FC layer is
tiny (Δ Kappa = 0.01). The number of units in the fully connected layers in the
ConvNet architectures is also not very important. The results illustrated that
the difference between having 1 FC layer with 2048 units compared to 1 FC layer
with 1024 units is very little (Δ Kappa = 0.01). Dropout helps fight overfitting.
We used 10% probability for all CONV layers and 50% chance for FC layers.
The data set for this competition is exclusive in that the images contain impor-
tant features such as Micro-aneurysms, which are subtle with respect to the size
of the retina. We have learned that it is critical for performance to use rather
large input images. The maximum image size which we were able to use for
training the model was 256 pixels. Given more substantial computing resources,
specifically more GPU memory, we would like to try larger image resolutions.

In this work, it is not only important to measure the number of correctly and
incorrectly classified tests images, but also to evaluate by how many classes the
images were misclassified and to penalize the accuracy score accordingly. There-
fore, quadratic Kappa was used as our performance measurement. However,
previous work on diabetic retinopathy classification have used different mea-
surements to evaluate the performance of their models such as: accuracy, AUC,
specificity, and sensitivity. Therefore, further experimental analysis is required
to compare the performance of our model to other state-of-the-art methods.
This includes preprocessing our dataset to be ready for experimental analysis
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with other models, as well as using common performance measurements across
all the models in addition to the Kappa (e.g. accuracy, AUC, specificity, and
sensitivity).

A number of approaches can be used to improve the performance of our model
in the future. For example, multiple models can be merged together within the
ConvNet architecture, this is called ensemble learning. Given a single image, we
can attempt to classify it several times using the same network, but randomly
rotating the images, and/or using independently trained networks. The results
of the multiple tests can then be averaged to give a single prediction. This kind
of ensemble learning often yields substantial improvements regarding accuracy,
although it increases the complexity and computational cost. Even adding some-
what weak networks to an ensemble can improve performance.

Another approach for improving the performance of the model is to create
a larger feature vector. We can append more meta-data about the images such
as the probability distribution for the person’s other eye (left right), the size of
the original images, the variance of the original images, and the difference in the
preprocessed images.

5 Conclusion

We have shown that ConvNets have the potential to be trained to identify the
features of Diabetic Retinopathy in fundus images. The outcomes of the proposed
model are auspicious compared to a conventional network topology. In future,
we have plans to collect a much cleaner data set from local clinics. The ongoing
developments in CNNs allow much deeper networks which could learn better the
complex features that this network struggled to learn. Moreover, as data sets are
improving continuously, this model can be beneficial to DR clinicians by offering
a real-time classifier soon.
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Abstract. In this study, computation of compact document vectors
by utilizing both terms and termsets for binary text categorization is
addressed. In general, termsets are concatenated with all terms, leading
to large document vectors. Selection of a subset of terms and termsets
for compact but also effective representation of documents is considered
in this study. Two different methods are studied for this purpose. In
the first method, combination of terms and termsets in different pro-
portions is evaluated. As an alternative approach, normalized ranking
scores of terms and termsets are employed for subset selection. Experi-
ments conducted on two widely used datasets have shown that termsets
can effectively complement terms also in cases when small number of
features are used to represent documents.

1 Introduction

Document representation is a common task in various text categorization prob-
lems such as sentiment classification, emotion recognition and email filtering.
Using the words (or, terms) that appear, the main goal is to define discrim-
inative features. Bag-of-words (BOW) is the most frequently used approach
where co-occurrence information is not considered. After a set of discrimina-
tive terms is computed, a feature is defined for each term as the product of
its frequency in the document under concern and its collection frequency factor
(CFF) [1]. In general, CFF is computed as a document-independent factor to
quantify the discriminative power of the term by analyzing the whole training
corpus. Alternatively, co-occurrence of different terms can be utilized to enrich
BOW-based representation [2]. The most widely used approach for employing
co-occurrence information is ngrams[3]. An ngram corresponds to a group of
n terms that appear consequently and in ordered form. Bigrams (n = 2) and
trigrams (n = 3) are generally found to improve document representation when
considered together with BOW. It should be noted that ngrams of characters are
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also studied for some problems such as sentiment classification [4]. As an alter-
native way of representing co-occurrences, sets of terms (namely, termsets) that
are not necessarily adjacent is extensively studied [5–7]. Recent experiments con-
ducted on text categorization has proven the potential of termsets for document
representation in text classification [8].

In BOW representation, when SVM is used as the classification scheme, it
is well known that the best performance scores are achieved when thousands
of terms are utilized [8]. More specifically, it is shown that approximately five
thousand terms are necessary to achieve the highest performance scores in binary
text classification [9]. When ngrams are used together with terms, the dimen-
sionality of feature vectors might be almost doubled. In the case of termsets,
millions of additional features can be defined. Recent experiments conducted on
text classification have shown that using one thousand 2-termsets may be a good
setting for two widely used datasets [8]. As a matter of fact, choosing the most
discriminative co-occurrence-based features is highly important [10].

When both terms and ngrams/termsets are used for document depresenta-
tion, the tasks of identifying the term-based and co-occurrence-based features
are generally done independently from each other. Because of this, some terms
may become redundant after adding ngrams/termsets. For instance the bigram
“information retrieval” may be more descriptive about the content of the doc-
ument when compared to “information” or “retrieval. “machine learning” is
another typical example [11]. On the other hand, the general practice of con-
catenating the co-occurrence based features with all terms leads to large doc-
ument vectors. As a matter of fact, removal of some terms from BOW should
also be addressed. When a small set of features need to be defined, selection
of the best-fitting set of terms and ngrams/termsets becomes more challeng-
ing. In fact, to the best of our knowledge, document representation using both
types of features when small number of features are utilized is not extensively
investigated. In this study, selection of a small subset of term and termset-based
features for compact representation of documents in binary text classification
is studied. As the first approach, effectiveness of using terms and termsets in
different proportions is addressed, aiming to compute a general rule of combi-
nation that can be applied for different text classification problems. Selection of
a subset of terms and termsets by taking into account their ranking scores is
then considered. Experiments conducted on two widely used datasets namely,
20 Newsgroups and OHSUMED have shown that, using 75% terms and 25%
termsets is an acceptable rule of combination for an a priori determined num-
ber of features. It is also observed that the best-fitting proportion depends on
the number of features to be selected. Moreover, better performance scores than
BOW-based representation are achieved by using smaller number of features.

2 Experimental Methodology

The simulations are conducted using the experimental framework that is recently
proposed by the authors of this study [8]. In this section, a brief review of its
main components is presented.
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The documents are firstly grouped as positive and negative classes. For a
given category, all documents in that category are labeled as positive whereas
the remaining documents are put into the negative class. The documents are
then preprocessed to remove stop-words. The Porter’s stemming algorithm is
applied afterwards. Using χ2, 5000 top-ranked terms are then selected. The doc-
ument vectors are cosine normalized so as to eliminate the effect of differences
in document lengths on term frequencies. For each of the selected terms, the
collection frequency factor is computed using relevance frequency (RF) as [9]

CFF = log2

(
2 +

A

max{1, C}
)

, (1)

where A and C denote the numbers of positive and negative documents which
include the term. The weight of each term ti is calculated as the product of its
term frequency (tfi) and CFF as tfi × CFFi.

In this study, termsets of two terms are considered. After constructing all
termsets as pairs of all selected terms, they are ranked using a modified form of
χ2 that is defined as [8]

χ̂2 =
T (ÂD̂ − B̂Ĉ)2

(Â + Ĉ)(B̂ + D̂)(Â + B̂)(Ĉ + D̂)
, (2)

where T is the total number of documents in the training corpus. For a given
termset, Â is the number of positive documents which include either or both of
the members and B̂ is the number of remaining positive documents. Similarly,
Ĉ is the number of negative documents which include either or both of the
members.

The CFF s of termsets are computed as follows. Consider the termset t =
{ti, tj}. The CFF of t is defined to be non-zero when at least one of its mem-
bers appears. In other words, three CFF values are computed for each termset.
CFF++ is the weight employed when both members appear whereas CFF+− is
used when only the first member, ti appears. Similarly, CFF−+ is utilized when
only the second term is available. CFF++ is defined as

CFF++ = log2

(
2 +

A++

max{1, C++}
)

, (3)

where A++ and C++ respectively denote the numbers of positive and negative
documents where both ti and tj occur. Similarly,

CFF+− = log2

(
2 +

A+−

max{1, C+−}
)

(4)

where A+− and C+− respectively denote the numbers of positive and negative
documents where ti occurs but tj does not occur and,

CFF−+ = log2

(
2 +

A−+

max{1, C−+}
)

(5)



80 D. Badawi and H. Altınçay

where A−+ and C−+ respectively denote the numbers of positive and negative
documents where ti does not occur but tj appears. Taking into account the
members which occur in the document under concern, the weight of each termset
is computed as the product of the sum of the term frequencies, (tfi + tfj) and
the corresponding CFF . As a matter of fact, the CFF of a termset depends on
the document under concern.

3 Construction of Document Vectors

As the first approach, we studied including terms in different proportions (repre-
sented by Pterm), ranging from Pterm = 10% to Pterm = 95%. When N features
are to be selected for document representation, using Pterm = 10% means that
10% of N features are the top-ranked terms and 90% of the features are top-
ranked termsets. By conducting the experiments on two widely-used datasets,
it is aimed to evaluate whether a proportion that can be generalized can be
found. The experimental results are also compared with BOW representation,
i.e. Pterm = 100%. For BOW-based document representation, the CFF used in
this study, i.e. RF can be considered as the state-of-the-art [9].

Fig. 1. The χ2 values of 1000 top-ranked terms (on the left) and χ̂2 values of 1000
top-ranked termsets (on the right).

As the second selection scheme, the desired number of features are selected
by using the ranking scores, i.e. χ2 and χ̂2 values. Figure 1 presents the χ2 values
of top-ranked 1000 terms (on the left) and χ̂2 values of top-ranked 1000 termsets
(on the right). It can be seen that χ̂2 values are much larger. If we select the
top-ranked features from a bag of terms and termsets, the feature set will not
include any term. Because of this, the ranking scores are firstly normalized using
zero-mean and unit-variance normalization.
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Fig. 2. The macro and micro F1 scores achieved using top-ranked terms and termsets
in different proportions on 20 Newsgroups.

Fig. 3. The macro and micro F1 scores achieved using top-ranked terms and termsets
in different proportions on OHSUMED.

Fig. 4. The macro and micro F1 scores achieved using top-ranked terms and termsets
selected after score normalization on 20 Newsgroups.
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4 Experiments

The experiments are conducted on two widely-used datasets, namely 20 News-
groups and OHSUMED. There are 20 and 23 categories in these datasets, respec-
tively. A classification task is defined for each category by defining the positive
class as the set of all documents belonging to the target category and, the macro
and micro F1 scores are reported for each dataset. In all simulations, SVM with
linear kernel is used as the classification scheme.

Fig. 5. The macro and micro F1 scores achieved using top-ranked terms and termsets
selected after score normalization on OHSUMED.

Figures 2 and 3 respectively present the F1 scores achieved for different pro-
portions considered on 20 Newsgroups and OHSUMED. The horizontal axes
represent the total number of features used. BOW corresponds to the case when
all features are terms, i.e. Pterm = 100. It can be seen that both macro and micro
F1 scores generally improve as Pterm increases from 10% to 75% and decreases
if it is increased further. The best scores are achieved when Pterm = 75% and
1500 features are used. This means that 1125 terms and 375 termsets form the
best-fitting feature vectors. Even when used in small proportions such as 5%, it
can be seen in the figures that termsets enrich the BOW representation. Another
important observation is that, when the number of features is small (i.e. smaller
than 400 in the case of 20 Newsgroups and smaller than 200 in the case of
OHSUMED), the best scores are achieved using Pterm = 90%. This means that
there is a set of discriminative terms that must always be included in the com-
bined feature set. When Pterm is small, they may be omitted and hence the
performance degrades. However, this is a small set when compared to the whole
set of 5000 terms.

Figures 4 and 5 present the F1 scores achieved by ranking terms and termsets
after score normalization on 20 Newsgroups and OHSUMED, respectively. The
scores achieved by combining in proportions (Pterm = 0.75) is also provided as a
reference. It can be seen that ranking after score normalization generally provides
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Fig. 6. The average proportion of terms (Pterm) for each different number of features.

better scores. In order to investigate the Pterm values corresponding to this
approach, we computed the average values over all categories for each different
number of features. The results are presented in Fig. 6. Although the best-fitting
value depends on the number of features, 70 < Pterm < 90 in majority of the
cases.

5 Conclusions

It is well known that termsets can contribute to document representation and,
when 5000 terms are considered, the performance scores may continue to increase
up to the case of 5000 termsets [8]. In this study, it is shown that termsets
have a large potential to provide complementary information to terms also in
cases when documents need to be represented using smaller number of features.
Moreover, significant improvements are achieved when compared to the BOW
representation using much smaller number of features.

The experimental results clearly show that the best-fitting document vectors
include both terms and termsets. However, 70 < Pterm < 90 is in fact an approxi-
mate estimate for the best-fitting proportion. As a further research, development
of alternative strategies based on the state-of-the-art feature selection techniques
which take into account correlations between terms and termsets as well should
be addressed.
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4. Zhai, Z., Xu, H., Kang, B., Jia, P.: Exploiting effective features for chinese senti-
ment classification. Expert Syst. Appl. 38, 9139–9146 (2011)

5. Tesar, R., Poesio, M., Strnad, V., Jezek, K.: Extending the single words-based
document model: a comparison of bigrams and 2-itemsets. In: Proceedings of the
2006 ACM Symposium on Document Engineering, pp. 138–146. ACM, New York
(2006)
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Abstract. Networks that change over time, e.g. functional brain networks that
change their structure due to processes such as development or aging, are nat-
urally modeled by time-evolving networks. In this paper we present PATENet, a
novel method for aligning time-evolving networks. PATENet offers a
mathematically-sound approach to aligning time evolving networks. PATENet
leverages existing similarity measures for networks with fixed topologies to
define well-behaved similarity measures for time evolving networks. We
empirically explore the behavior of PATENet through synthetic time evolving
networks under a variety of conditions.

Keywords: Network science � Multilayer networks � Temporal alignment

1 Introduction

Network science has provided a variety of powerful tools for describing, representing,
and analyzing a variety of real-world systems including social networks, the internet,
functional brain networks, and biomolecular networks [9, 10]. While many of the tools
and techniques of network science, e.g. topological analyses and network alignment,
focus on networks with fixed topologies, the structure of networks that represent
real-world systems change over time. Such networks are naturally modeled as
time-evolving networks (TENs) [11, 14]. TENs can display dynamics on networks
(where the network structure does not change over time, but the activity of the nodes
does); dynamics of networks (where the activity of nodes does not change but the
structure does); and dynamics of and on networks (where both the structure and activity
change over time) [3]. The relatively young sub-field of TENs [9] has already yielded a
substantial body of work, focusing primarily on models of time-evolving networks and
the characterization of network dynamics [14]. However, there is limited work on
methods for comparative analyses of TENs.

To motivate the underlying problem, consider experimental subjects who undergo
functional magnetic imaging (fMRI) recordings of resting state brain activation at
different points in time, e.g. in the context of a longitudinal study of changes in
functional connectivity as a function of development, aging, or disease progression
[16]. The resulting data from each subject are naturally represented as a temporally
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ordered sequence of functional connectivity networks. To complicate matters, it may
not be straightforward to establish one-to-one correspondence between the recording
times across subjects because of differences in the timing of recordings, missed
recording sessions, etc. Furthermore, even in the case of subjects with recordings
obtained at what appears to be matching time points e.g. age in years, because of
differences in the onset and progression of development, aging, or disease, and the
trajectories across subjects, the networks at the respective time points may not be
comparable. With the exception of [15], which focuses on temporal registration of
deforming meshes, to the best of our knowledge, there is no work on aligning (tem-
porally) ordered sequences of networks (OSN). The most closely related body of work
focuses on aligning ordered sequences of letters over a finite alphabet e.g. DNA or
protein sequences [17], video frames [4], and clinical histories [13]. However, with the
exception of methods for aligning sequences of letters [17], the methods used are ad
hoc and are not supported by a sound mathematical rationale and hence lack precise
mathematical characterization and are not amenable to generalization to other related
problem domains.

Against this background, we focus on the problem of aligning a pair of OSNs.
Specifically, we describe PATENet, a mathematically sound family of algorithms for
aligning a pair of OSNs. PATENet requires as input, in addition to a pair of OSNs to be
aligned, a measure of pairwise similarity of fixed topology networks, a monotonically
increasing function, and a match threshold. It produces as output an optimal alignment
of the given pair of OSNs. Specifically, PATENet generalizes the Smith-Waterman
(SW) algorithm [17], a dynamic programming algorithm for aligning two ordered
sequences of letters, given a pairwise measure of substitutability of letters and gap
penalties. SW produces an optimal local alignment, i.e. aligned segments of the given
pair of sequences with the largest cumulative similarity. Conceptually, adapting the SW
algorithm to yield a mathematically sound algorithm for aligning a pair of OSNs is
straightforward; we replace letters by networks, and replace pairwise substitutability of
letters by a well-behaved measure of pairwise similarity of (fixed topology) networks.
However, in order for this approach to yield both mathematically sound and practically
useful algorithms for aligning OSNs, several challenges need to be addressed; there are
a variety of measures of similarity or distance between networks that are tailored [6] to
meet the needs of specific applications [7]. We need to adjust such measures so as to
ensure that the algorithms that use them for aligning OSNs are mathematically
well-behaved. In the current work we also show that the PATENet family of algorithms
can be readily extended to align ordered sequences of elements other than networks,
provided suitable and well-behaved measures of similarity between elements are
available.

2 Preliminaries

We use G ¼ G V; EGð Þ to denote a network, where V is its set of nodes and EG is its set
of edges. We define OSN G to be a sequence of n networks, G ¼ G1;G2; . . .;Gnf g,
where 81� i� n 2 N; Gi ¼ V; EGið Þ denotes the i th element of G, which is a snapshot
of a TEN at time ti, and 81\i� n 2 N; ti�1\ti. We use upper case letters, e.g. H, to
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denote matrices or networks, lower case letters, e.g. n, to denote scalars, and script
letters, e.g. V; to denote sets.

Definition 1. Let G ¼ V; Eð Þ and G0 ¼ V; E0ð Þ be two networks with the same set of
nodes V, and respective sets of edges E and E0 (either identical or different). A function
s G;G0ð Þ, mapping two graphs to 0; 1½ �, is said to be a well-defined unsigned normalized
network similarity measure (UNNSM) if it satisfies the following properties (adapted
from [12]):

1. Identity property: s G;G0ð Þ � s G;Gð Þ ¼ 1 8G;G0.
2. Symmetry property: s G;G0ð Þ ¼ s G0;Gð Þ 8G;G0.

3. Minimum property: s G;G0ð Þ !Vj j!1
0 where WLOG G is the complete network, and

G0 is the empty network (i.e. EC ¼ E0).

Definition 2. Similarly, a function s0 G;G0ð Þ, mapping two graphs to �1; 1½ �, is said to
be a well-defined signed normalized network similarity measure (SNNSM) if it satis-
fied the properties described in definition 1, with the minimum property adjusted to the

signed range: s0 G;G0ð Þ !Vj j!1�1 (rather than 0).
For simplification purposes we assumed G and G0 to have the same set of nodes V.

However, if VG 6¼ VG0 , where VG and VG0 denote the set of nodes of G and G0,
respectively, then V ¼ VG

SVG0 for the definitions above.

2.1 The Smith-Waterman (SW) Sequence Alignment Algorithm

The SW algorithm is a local sequence alignment algorithm, designed to find pairs of
segments with high cumulative degree of similarity between two sequences of amino
acids (AAs), A ¼ a1; a2; . . .; anf g and B ¼ b1; b2; . . .; bmf g. There are 22 AAs, and the
similarity between every pair of AAs is specified by the entries of a ‘substitution
matrix’ SM 2 R

22�22. The SW algorithm uses dynamic programming to generate a
‘scoring matrix’ H ¼ H A;Bð Þ 2 R

nþ 1ð Þ� mþ 1ð Þ, which is defined as follows:

80� i� n 2 N 8 0� j�m 2 N; Hi;0 ¼ H0;j ¼ 0
80\i� n 2 N 8 0\j�m 2 N;
Hi;j ¼ max Hi�1;j�1 þ s ai; bj

� �
;max1� k� i Hi�k;j � wk

� �
;max1� l� j Hi;j�l � wl

� �
; 0

� � ð1Þ

Where s ai; bj
� �

is the similarity score between the two AAs ai 2 A and bj 2 B,
according to SM, and wk is a value assigned to deletions or insertions of length k.
Insertions and deletions refer to cases where an element (or a few) within one sequence
is not aligned with an element (or a sequence of elements) within the paired sequence.
The length of insertions and deletions is the number of consecutive insertions and/or
deletions. w1 2 R is referred to as ‘gap penalty’ and is the value assigned to a gap of
length 1, and wk ¼ f w1; kð Þ 2 R is the penalty for a gap of length k, where f w1; kð Þ can
be affine or linear, for example, in relation to w1.
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Let v denote the maximum value in H, then v : A� B ! R is the local alignment
score between the two sequences A and B, and is used to reveal the best local align-
ment, by way of backtracing on H. Starting at a cell holding v, backtracing is
performed on H until a cell holding 0 is reached according to the following logic:

1. If Hi;j ¼ Hi�1;j�1 þ s ai; bj
� �

, then ai is aligned with bj and the process continues
from Hi�1;j�1.

2. Else if Hi;j ¼ Hi�1;j � w, then ai has no alignment in B, and the process continues
from Hi�1;j.

3. Else if Hi;j ¼ Hi;j�l � w, then bj has no alignment in A, and the process continues
from Hi;j�1.

The solution is not guaranteed to be unique; there could be multiple cells in H
holding v, in which case the backtracing process can be initiated at any of these cells,
resulting in different, yet equally good, local alignments.

3 PATENet

In this paper we focus on aligning a pair of OSNs. To accommodate OSNs resulting
from longitudinal recordings from subjects, we impose the following natural desiderata
on the alignments returned by PATENet:

1. Preservation in the alignment of the relative order of elements within the sequences.
E.g., if element 3 of the first sequence is aligned with element 5 of the second
sequence, element 4 of the first sequence can be aligned only with elements in
positions 6 or greater in the second sequence.

2. Accommodation of unaligned elements in both sequences (i.e. aligning two
sequences of length n and m, respectively, should not force the alignment of
min n;mð Þ elements).

3. Accommodation of longitudinal gaps (e.g. time points existing in one sequence but
missing in the other).

3.1 Alternative Substitution Matrix Construction

The SW algorithm requires a well-defined SM, holding both positive values for pos-
sible matches and negative values for non-matches. Furthermore, unlike in the case of
AA sequences, where the sequence elements are drawn from a fixed alphabet, OSNs
can contain arbitrary networks defined over a given set of vertices and edges. Hence,
we will adapt existing network similarity measures to define pairwise similarity of
elements (networks) in OSNs.

LetG and G0 be twoOSNswith n andm elements, respectively. Let s be a well-defined

UNNSM. Finally, let 0\u\1 2 R be a threshold on s, where match Gi;G0
j

� �
¼

1; if u� s Gi;G0
j

� �
0; if u[ s Gi;G0

j

� �
8<
: 8Gi 2 G; 8G0

j 2 G0, and let ‘ xð Þ; ‘ : 0; 1½ � ! �1; 1½ � be a
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signed normalized monotonically increasing transform, with ‘ uð Þ ¼ 0, ‘ 0ð Þ ¼ �1, and
‘ 1ð Þ ¼ 1. We propose

SMi;j ¼ ‘ s Gi;G
0
j

� �� �
81� i� n 2 N 81� j�m 2 N ð2Þ

to construct an ‘alternative substitution matrix’ SM ¼ SM G;G0ð Þ 2 �1; 1½ �n�m.
For example, for a ¼ u

1�u and 0:5\u\1, ‘ xð Þ ¼ 1� loga a
2 þ 1� a2ð Þ � x½ � is

such a signed normalized monotonically increasing transform (proof omitted), and

along with DeltaCon Gi;G
0
j

� �
[12] as the well-defined UNNSM (by definition), can be

used to construct an alternative SM. Another example includes ~s G;G0ð Þ ¼
1� NSSD G;G0ð Þð Þ as the well-defined UNNSM (proof omitted), where NSSD G;G0ð Þ

is the normalized sum squared difference, and ~‘ ~xð Þ ¼
~x�u
1�u ; if ~x�u
~x�u
u ; if ~x\u

(
as the signed

normalized monotonically increasing transform (proof omitted).

Lemma 1. Let G and G0 be two OSNs with n and m elements, respectively, and let s be
a well-defined UNNSM, and ‘ : 0; 1½ � ! �1; 1½ � be a signed normalized monotonically
increasing transform, as described above. Then ‘ s G;G0ð Þð Þ, mapping two graphs to
�1; 1½ �, satisfies the properties of a well-defined SNNSM.

Proof
Identity: ‘ s G;G0ð Þð Þ� ‘ s G;Gð Þð Þ ¼ ‘ 1ð Þ ¼ ‘ max s G;G0ð Þf gð Þ ¼ max ‘ s G;G'ð Þð Þf g ¼ 1 ∎

Symmetry: ‘ s G;G
0� �� � ¼ ‘ s G

0
;G

� �� �
∎

Minimum: ‘ s G;G
0� �� � !Vj j!1

‘ 0ð Þ ¼ ‘ min s G;G
0� �� �� � ¼ min ‘ s G;G

0� �� �� � ¼ �1 ∎

3.2 From SW to PATENet

The SW algorithm meets the first two desiderata of PATENet (preservation of temporal
order and accommodation of possible unaligned elements in both sequences). To
satisfy the third desideratum (accommodation of longitudinal gaps), we set the gap
penalty to zero. Therefore, for an alternative SM, following the construction described

above, the scoring matrix of PATENet ~H ¼ ~H G;G0� �
2 R

nþ 1ð Þ� mþ 1ð Þ, hereafter

referred to as ‘OSN scoring matrix’, is specified as follows:

80� i� n 2 N 8 0� j�m 2 N; ~Hi;0 ¼ ~H0;j ¼ 0
80\i� n 2 N 8 0\j�m 2 N;
~Hi;j ¼ max ~Hi�1;j�1 þ SMi;j;max1� k� i ~Hi�k;j

� �
;max1� l� j ~Hi;j�l

� �
; 0

� � ð3Þ

Lemma 2. Let G and G0
be two OSNs with n and m elements, respectively. Let

~H 2 R
nþ 1ð Þ� mþ 1ð Þ be their OSN scoring matrix, then:
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(2:1) 81� i� n 2 N and 81� j�m 2 N, ~Hi�1;j � ~Hi;j

(2:2) 81� i� n 2 N and 81� j�m 2 N, ~Hi;j�1 � ~Hi;j

Proof

(2:1) ~Hi;j ¼ max ~Hi�1;j�1 þ SMi;j;max1� k� i ~Hi�k;j
� �

;max1� l� j ~Hi;j�l
� �

; 0
� ��

max1� k� i ~Hi�k;j
� �� ~Hi�1;j ∎

(2:2) ~Hi;j ¼ max ~Hi�1;j�1 þ SMi;j;max1� k� i ~Hi�k;j
� �

;max1� l� j ~Hi;j�l
� �

; 0
� �� max1� l� j

~Hi;j�l
� �� ~Hi;j�1 ∎

Lemma 3. Let G and G0
be two OSNs with n and m elements, respectively. Let

~H 2 R
nþ 1ð Þ� mþ 1ð Þ be their OSN scoring matrix, then:

(3:1) 81� i� n 2 N and 81� j�m 2 N, max
1� k� i

~Hi�k;j
� � ¼ ~Hi�1;j

(3:2) 81� i� n 2 N and 81� j�m 2 N, max
1� l� j

~Hi;j�l
� � ¼ ~Hi;j�1

Proof
Intuitive based on Lemma 2 ∎

Therefore, the OSN scoring matrix ~H of PATENet is equivalent to:

80� i� n 2 N 80� j�m 2 N; ~Hi;0 ¼ ~H0;j ¼ 0
80\i� n 2 N 80\j�m 2 N;
~Hi;j ¼ max ~Hi�1;j�1 þ SMi;j; ~Hi�1;j; ~Hi;j�1; 0

� � ð4Þ

Lemma 4. Let G and G0 be two OSNs with n and m elements, respectively. Let
~H ¼ ~H G;G0� �

2 R
nþ 1ð Þ� mþ 1ð Þ and ~H

0 ¼ ~H G0
;G

� �
2 R

mþ 1ð Þ� nþ 1ð Þ be their OSN

scoring matrices, and let SM and SM0 be the alternative substitution matrices of ~H and
~H

0
, repectively. Then 81� i� n 2 N and 81� j�m 2 N: (4.1) SMi;j ¼ SM0

j;i and (4.2)
~Hi;j ¼ ~H

0
j;i.

Proof

(4:1) 81� i� n 2 N; 81� j�m 2 N : SMi;j ¼ ‘ s Gi;G0
j

� �� �
¼ ‘ s G0

j;Gi

� �� �
¼

SM0
j;i ∎

(4:2) For j ¼ i ¼ 1: ~H1;1 ¼ max ~H0;0 þ SM1;1; ~H0;1; ~H1;0; 0
� � ¼ max SM1;1; 0

� �
¼ max SM0

1;1; 0
n o

¼ ~H
0
1;1.

For j ¼ 1, 82� i� n 2 N, we can safely assume ~Hi�1;1 ¼ ~H
0
1;i�1 for induc

tion: ~Hi;1 ¼ max ~Hi�1;0 þ SMi;1; ~Hi�1;1; ~Hi;0; 0
� � ¼ max SMi;1; ~Hi�1;1; 0

� � ¼ max SM0
1;i;

n
~H

0
1;i�1; 0g ¼ ~H

0
1;i.
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For 2� j ¼ k 2 N and i ¼ 1: ~H1;k ¼ max ~H0;k�1 þ SM1;k; ~H0;k; ~H1;k�1; 0
� � ¼

max SM1;k; ~H1;k�1; 0
� � ¼ max SM1; k; max SM1; k�1; ~H1;k�2; 0

� �
; 0

� � ¼ max SM1;k;
�

SM1; k�1; ~H1; k�2; 0g ¼ � � � ¼ max SM1; k; SM1; k�1 ; . . .; SM1; 2; SM1; 1; 0
� �

. . . ¼
max SM0

k;1; SM
0
k�1;1; . . .; SM

0
2;1; SM

0
1;1; 0

n o
¼ ~H0

k;1.

For 2� j ¼ k 2 N, 81� i� n 2 N, we can safely assume ~Hi;k�1 ¼ ~H0
k�1;i as well as

~Hi�1;k ¼ ~H0
k;i�1 and therefore also ~Hi�1;k�1 ¼ ~H0

k�1;i�1 for induction:

~Hi;k ¼ max ~Hi�1;k�1 þ SMi;k; ~Hi�1;k; ~Hi;k�1; 0
� � ¼ max ~H0

k�1;i�1 þ SM0
k;i; ~H

0
k;i�1; ~H

0
k�1;i; 0

n o
¼ ~H0

k;i ∎

Lemma 5. Let G and G0
be two OSNs with n and m elements, respectively. Let ~H ¼

~H G;G0� �
2 R

nþ 1ð Þ� mþ 1ð Þ be their OSN scoring matrix, and let SM be its alternative

substitution matrix. Then the alignment score ~v ¼ max ~H
� �1 is equivalent toPn

i¼1

Pm
j¼1

q Gi;G0
j

� �
� SMi;j

h i
, where q Gi;G0

j

� �
¼ 1; if Gi;G0

j

� �
are aligned with each other

0; otherwise

(
.

Proof
By definition of the SW algorithm, 81� i� n 2 N; 81� j�m 2 N, ~Hi;j ¼ the maximum
similarity of two segments ending in Gi and G0

j. The similarity score of the alignment is
the sum of similarity scores between every pair of aligned elements and weights of all
insertions and deletions in the alignment. Since w1 ¼ 0 in PATENet, the weights of all
insertions and deletions is always 0, leaving only the sum of similarity scores between
every pair of aligned elements, which can be written as: ~v ¼ Pn

i¼1

Pm
j¼1

q Gi;G0
j

� �
� SMi;j

h i
, where q Gi;G0

j

� �
¼ 1; if Gi;G0

j

� �
are aligned with each other

0; otherwise

(
∎

3.3 OSN Alignment Score

Alignment of elements across a pair of OSNs may be informative by itself and reveal
temporally-preserved similarities between the two OSNs. However, another concept
worth borrowing from sequence alignment is that of the alignment score ~v ¼ max ~H

� �
.

Lemma 6. An OSN alignment score ~v ¼ max ~H
� �

satisfies properties that are similar
to those of a well-defined UNNSM, except for the normalization-related upper bound.

Identity property2: ~v G;G0� �
� ~v G;Gð Þ 8G;G0

; Symmetry property: ~v G;G0� �
¼

~v G0
;G

� �
8G;G0

; Minimum property: ~v G;G0
� �

!Vj j!1
0 where WLOG G is the complete

OSN, and G0
is the empty OSN (i.e. 81� i� n 2 N; 81� j�m 2 N; EC

Gi
¼ EG0

j
).

1 Notice that ~v : G � G0 ! R.
2 Notice that ~v G;Gð Þ ¼ 1 is not required, as the alignment score has no upper bound.
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Proof

Based on Lemma 5, ~v G;G0ð Þ ¼ max ~H
� � ¼ Pn

i¼1

Pm
j¼1 q Gi;G0

j

� �
� SMi;j

h i
, where

q Gi;G0
j

� �
¼ 1; if Gi;G0

j

� �
are aligned with each other

0; otherwise

(
. Identity: ~v G;Gð Þ ¼ Pn

i¼1

Pn
j¼1 q Gi;Gj

� � � SMi;j
� 	 ¼ Pn

i¼1 1 � 1½ � ¼ n and ~v G;G0� �
¼ Pn

i¼1

Pm
j¼1 q Gi;G0

j

� �
�

h
SMi;j� �

Pn
i¼1 1 � 1½ � ¼ n ¼ ~v G;Gð Þ ∎

Based on Lemma 4, if ~H ¼ ~H G;G0� �
2 R

nþ 1ð Þ� mþ 1ð Þ and ~H
0 ¼ ~H G0

;G
� �

2
R

mþ 1ð Þ� nþ 1ð Þ, then 81� i� n 2 N; 81� j�m 2 N; ~Hi;j ¼ ~H0
j;i. Symmetry:

~v G;G0� �
¼ max ~H

� � ¼ max1� i� n;1� j�m ~Hi;j
� � ¼ max1� j�m;1� i� n ~H0

j;i

n o
¼

max ~H0� � ¼ ~v G0
;G

� �
∎

Minimum: 81� i� n 2 N; 81� j�m 2 N, s Gi;G0
j

� �
!Vj j!1

0 ) q Gi;G0
j

� �
!Vj j!1

0 ) ~v G;G0ð Þ ¼ Pn
i¼1

Pm
j¼1 q Gi;G0

j

� �
� SMi;j

h i
!Vj j!1Pn

i¼1

Pm
j¼1 0½ � ¼ 0 ∎

We observe that PATENet can be used to extend the UNNSM used for constructing
SM, into an unsigned normalized order-aware OSN similarity measure. Let G and G0

be

two OSNs with n and m elements, respectively. Let ~H ¼ ~H G;G0� �
2 R

nþ 1ð Þ� mþ 1ð Þ be

the corresponding OSN scoring matrix, and let SM be its alternative substitution
matrix. Let s be the well-defined UNNSM used for constructing SM, and

q Gi;G0
j

� �
¼ 1; if Gi;G0

j

� �
are aligned with each other

0; otherwise

(
.

Then can be defined as

ð5Þ

which is hereafter referred to as an ‘OSN similarity score’.3

Lemma 7. An OSN similarity score satisfies identity, symmetry and minimum
properties, similar to those that hold for UNNSM. Identity property:

; Symmetry property: ;

Minimum property: where WLOG G is the complete OSN, and G0 is

the empty OSN (i.e. 81� i� n 2 N; 81� j�m 2 N; EC
Gi

¼ EG0
j
).

3 Notice that the OSN similarity score measures similarity in the context of the locally aligned
segments of the sequences. That is, if OSNs G and G0

have k elements aligned with average
element-wise similarity of h, whether k ¼ min n;mð Þ or k\min n;mð Þ, . Addition-
ally, if OSNs G and G0

have one element aligned with element-wise similarity of 1.0, while OSNs
G and G00

have four elements aligned with each element-wise similarity being 0.9,
(but ~v G;G0ð Þ\~v G;G00ð Þ).
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Proof
WLOG, we assume n�m. Identity:

and

∎
Symmetry:

∎
Minimum: 81� i� n 2 N; 81� j�m 2 N,

∎

4 Experiments

We now proceed to describe a set of experiments that explore the behavior of PATENet
under a variety of conditions. Because “ground truth” alignments for real-world OSNs
are unavailable, we generated synthetic OSNs for this purpose. Although PATENet has
three user-defined parameters, we experimented with different match thresholds, while
keeping the other two parameters (a well-defined UNNSM and a signed normalized
monotonically increasing transform) constant, as they are more application- and
domain-specific.

4.1 Empirical Design

We experimented with PATENet with a substitution matrix based on DeltaCon [12]
and a logarithmic signed normalized monotonically increasing transform function
(‘ xð Þ ¼ 1� loga a

2 þ 1� a2ð Þ � x½ � where a ¼ u
1�u for 0:5\u\1). DeltaCon assesses

node affinities similarity between two undirected networks with known node corre-
spondence. It is a well-defined UNNSM (by definition).

To examine the robustness of PATENet to noise in the data, we corrupted one of
the OSNs - containing otherwise identical subset of (in our experiments with synthetic
data, six) elements in the OSNs to be aligned - with different levels of Gaussian noise
added to the edge weights. Since PATENet uses a static match threshold, we also
examined the interaction between the effect of noise on PATENet’s performance and
the choice of match threshold u. We experimented with u ¼ 0:51; 0:55; 0:60;f
0:65; 0:70; 0:75; 0:80; 0:85; 0:90g and Gaussian noise with l ¼ 0 and r ¼ 0:1; 0:3;f
0:5; � � � ; 3:9g.
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Performance of alignment was evaluated using ‘goodness of alignment’, defined as
the percentage of elements with known ground-truth match (based on the construction
of the OSNs) that were aligned with their ground-truth matches.

4.2 Synthetic Data Generation

We constructed three sets of synthetic data: (1) random dynamic OSNs,
(2) Barabasi-Albert (BA) [1] dynamic OSNs, and (3) Dorogovtsev-Mendes (DM) [5]
dynamic OSNs. The BA and DM models describe evolving, rather than dynamic,
networks, hence we adapted only the edge addition/removal portions of these models.
For each dataset we examined three temporal conditions: linear, a single change in
trend, and two changes in trend. The resulting OSNs consisted of 25 elements each,
starting from an undirected random network with 50 nodes and a connectivity rate of
*0.12 (141 edges out of possible 1225). We use O to denote such a 25-element OSN.
We further experimented with the percent of edges added/removed from one element to
the next in O, using one of four percentages: 1%, 2%, 4% or 8%.

Random dynamic OSNs were generated as follows: element 1 was generated using
the Erdos-Renyi (ER) model [8]. In case of linear Os, edges were added at random to
generate elements 2–25 (see Fig. 1A). Single trend change Os were generated by
adding edges at random to generate elements 2–13, and then removing edges at random
to generate elements 14–25 (see Fig. 1B). For Os with two trend changes, elements 2–9
were generated by adding edges at random, elements 10–17 were generated by
removing edges at random, and elements 18–25 were generated by adding edges at
random (see Fig. 1C).

BA and DM dynamic OSNs were generated in a manner similar to random dynamic
OSNs, with the following changes: the BA model [2] with 50 nodes and n ¼ 3 (re-
sulting in 141 edges out of a possible 1225, similarly to the ER-based element 1) was
used to generate element 1, and edges to be added were selected based on the corre-
sponding model. Edge removal is done at random according to both models.

In any OSN O, 12 (roughly half) of the elements were selected at random and kept
in order to make up a new OSN, denoted by M. Half (six) of the elements selected for
M were then removed from O to generate a new OSN with 19 elements, denoted by O0.
Consequently, any pair of OSNs O0;Mð Þ constructed according to the preceding pro-
cedure, shares six random elements, and and (see Fig. 1D). Gaussian
noise (see Sect. 4.1) was added only to M prior to alignment.

4.3 Results

In all three synthetic datasets experiments revealed a similar relationship between the
performance of PATENet, user-specified threshold u and the added Gaussian noise
(see Fig. 2). For lower values of u, PATENet showed a high degree of noise tolerance,
significantly outperforming random alignment over a broad range of Gaussian noise
levels. As u increased, so did PATENet’s susceptibility to noise, but for tolerable
levels of noise, its performance was similar or better, as compared to PATENet with
lower u for the same noise level. We conclude that the choice of u affects multiple
aspects of the performance of PATENet in the presence of noise.
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5 Discussion

5.1 Additional Considerations and Future Directions

In real world OSN data, e.g. those derived from longitudinal studies of functional brain
connectivity networks, at present, there are no effective approaches to estimating the
noise level in the data. Our results demonstrate a tradeoff between PATENet’s resis-
tance to noise and performance with low levels of noise as a function of the choice of
match threshold. Hence, in practical settings, it might be worth exploring a probabilistic
combination of different match thresholds.

Fig. 1. Synthetic data generation. (A–C) Generation of a linear OSN (A), a single trend change
OSN (B) and an OSN with 2 trend changes (C). All OSNs Os (A–C) consist of 25 elements, the
first element (white) being a random graph (ER for random dynamics OSNs and BA for BA and
DM OSNs). Rectangles represent elements, with light gray indicating increase trend (edges
added between elements) and dark gray indicating decrease trend (edges removed between
elements); + edges are added between elements; - edges are removed between elements.
(D) Generation of OSNsM and O0 from OSN O. In dark gray are the elements selected according
to the corresponding description in the text. Starting from 25 elements in O, 12 elements are
selected at random to create M, six of which are removed from the copy of O to O0 (resulting in
19 elements in O0).
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Some natural directions include PATENet as an OSN kernel, to use in classification
and regression problems where the input to the classifier is an OSN. Possible appli-
cations include assigning subjects to different categories (e.g. normal development,
accelerated development, retarded development) based on the observed development
from longitudinal studies. Another natural direction for future work is to extend
PATENet to align multiple OSNs (as opposed to a pair of OSNs). The resulting
multi-sequence variant of PATENet can also be used to cluster OSNs.

5.2 Generalizations

The empirically-demonstrated version of PATENet is limited to the case where the
elements of the OSNs are undirected networks with pre-specified correspondence
between nodes in each element of one OSN and nodes in each element of any other
OSN to be aligned with it. It would be interesting to explore variants of PATENet that
can work with OSNs consisting of directed graphs, graphs with both directed and
undirected edges, or colored graphs (with multiple types of nodes and/or edges), etc. It

Fig. 2. Effect of noise and match threshold on PATENet’s performance. Goodness of alignment
of PATENet with the synthetic data as a function of added Gaussian noise (vertical axis) and
match threshold u (horizontal axis). Goodness of alignment was normalized and averaged across
all four percentages and three temporal conditions (12 conditions overall), as their patterns were
comparable. Top: random dynamic OSNs, starting from RE network. Bottom left: BA dynamic
OSNs. Bottom right: DM dynamic OSNs. The same color bar is used in all three plots, ranging
from the average performance of random alignment (comparable in all three datasets) to perfect
alignment (1.0).
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would also be interesting to consider variants of PATENet that can work in settings
where the correspondence between nodes in each element of one OSN and nodes in
each element of any other OSN to be aligned with it is not specified, but instead needs
to be established based on some node similarity criteria [18].

Furthermore, while in this paper we have focused on the pairwise alignment of
OSNs, the PATENet algorithm can be further generalized to work with ordered
sequences of arbitrary elements (instead of networks) so long as we can specify a
well-behaved unsigned normalized similarity measure between such elements.

6 Conclusion

Networks that change over time, e.g. functional brain networks that change their
structure due to processes such as development or aging, are naturally modeled by
TENs. Longitudinal measurements of such TENs are naturally represented as OSNs,
where each network in the sequence represents a static snapshot of the TEN at a
specific time of observation. In this paper we proposed PATENet, a novel algorithm for
optimal local alignment of a pair of OSNs. The algorithm requires three user-defined
inputs in addition to a pair of OSNs to be aligned: a well-defined UNSSM, a signed
normalized monotonically increasing transform, and a match threshold. We showed
how PATENet can be used to compute an alignment score, as well as a similarity score,
for a pair of aligned OSNs.

Our experiments using PATENet to align synthetic OSNs produced using different
generative models of OSNs with their noise corrupted counterparts show that: at lower
match thresholds, PATENet displays a high degree of noise tolerance, significantly
outperforming random alignment over a broad range of noise levels; at higher match
thresholds (more stringent match criteria), PATENet shows increased susceptibility to
noise.

PATENet offers a mathematically sound approach to aligning OSNs, which is
amenable to being generalized along a number of dimensions, e.g. OSNs consisting of
directed networks, labeled networks, or even ordered sequences of other types of
elements.
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Abstract. Conflicts-of-interest (COI) in biomedical research may cause ethical
risks, including pro-industry conclusions, restrictions on the behavior of
investigators, and the use of biased study designs. To ensure the impartiality and
objectivity in research, many journal publishers require authors to provide a COI
statement within the body text of their articles at the time of peer-review and
publication. However, author’s self-reported COI disclosure often does not
explicitly appear in their article, and may not be very accurate or reliable. In this
study, we present a two-stage machine learning scheme using a hybrid deep
learning neural network (HDNN) that combines a multi-channel convolutional
neural network (CNN) and a feed-forward neural network (FNN), to automat-
ically identify a potential COI in online biomedical articles. HDNN is designed
to simultaneously learn a syntactic and semantic representation of text, rela-
tionships between neighboring words in a sentence, and handcrafted input
features, and achieves a better performance overall (accuracy exceeding 96.8%)
than other classifiers such as support vector machine (SVM), single/multi-
channel CNNs, Long Short-term Memory (LSTM), and an Ensemble model in a
series of classification experiments.

Keywords: Conflict-of-interest � Two-stage machine learning
Hybrid deep neural network � MEDLINE®

1 Introduction

Conflict of interest (COI) is defined as a situation where a primary interest will be
compromised or unduly influenced by a secondary interest. From the biomedical field
point of view, primary interests represent health of patients, integrity of research, or
duties of public office. A secondary interest generally includes a financial gain for the
author (or author’s spouse or dependents) received from, or personal relationship with,
individuals or “for-profit” organizations such as pharmaceutical companies. Financial
conflict-of-interest (FCOI) in biomedical research may cause a number of potential
ethical risks, including an increased possibility of pro-industry conclusions, restrictions
on the behavior of the investigators, and the use of biased study designs.

MEDLINE®, the U.S. National Library of Medicine (NLM)’s premier online
bibliographic database containing more than 25 million citations and abstracts from
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over 5,600 biomedical journals published in the United States and in other countries,
recently announced that it will add COI information to article abstracts available
through PubMed [1] when COI declaration statements are supplied by the publishers,
to allow users to judge the credibility of findings in published articles. Many
biomedical journal publishers also require authors to provide a COI statement within
the body text of their articles at the time of peer-review and publication, thereby letting
reviewers and readers easily know the integrity of research. However, author’s self-
reported COI disclosure often does not explicitly appear in their article, and may not be
very accurate or reliable due to the lack of author’s understanding of relatedness
between a certain financial gain they received and their current research. Moreover,
there have been no means or systems to verify the accuracy of such authors’ COI
disclosure.

In this paper, we present an automated method for identifying a potential COI from
online biomedical articles using a deep learning-based text classification technique. Our
idea is to identify a sentence called COI sentence that contains information of funding
support from “for-profit” organizations from the body text of a given biomedical
article. This task is quite challenging due to the wide range of linguistic expressions
and writing styles, and especially similar expressions for “non-profit” funding sources
and a personal acknowledgment.

In order to tackle such challenges, we designed and developed a two-stage machine
learning scheme. In stage 1, we distinguish all “support” sentences containing infor-
mation on any financial support authors received for their research from the body text
of an article. In stage 2, these “support” sentences are then classified into two classes
according to their funding sources: “for-profit” and “non-profit”. Our two-stage
machine learning scheme is implemented using a hybrid deep neural network (HDNN)
built on combining a multi-channel convolutional neural network (CNN) and a feed-
forward neural network (FNN). The CNN component in the proposed HDNN is
responsible for learning a syntactic and semantic representation of a text, and con-
textual relationships between neighboring words in a sentence, while the FNN section
takes care of handcrafted input features.

We evaluated the proposed HDNN by comparing its classification performance
with that of other types of classifiers such as support vector machine (SVM) with a
radial basis kernel function (RBF), single/multi-channel CNNs, Long Short-term
Memory (LSTM), voting scheme, and Ensemble model. Three types of word vectors
(embeddings): two dense and distributed representations known as Word2Vec [2] and
GloVe [3] and a dictionary-based sparse and discrete representation of words, are
employed to convert an input sentence into two-dimensional input vector representa-
tion and to build an embedding layer for the CNNs. In addition, a bag of words
(BOW) based on unigram word statistics representing how differently a word is dis-
tributed in “support” and other sentence classes is also used as an input feature for the
SVM and the FNN section in HDNN.
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2 Related Works

Identifying a sentence that suggests “for-profit” or “non-profit” funding support to
determine a potential COI belongs to a text classification or categorization task, a
popular topic in the field of natural language processing (NLP). Automated text clas-
sification is the process of automatically assigning one or more of a set of predefined
categories to a given text or document based on its content, and has been addressed by
various methods based on statistical theories and machine learning techniques such as
Naïve Bayes [4], decision tree [5], and SVMs [6]. In recent years, deep learning
techniques [7] have set a new breakthrough trend in machine learning due to the
remarkable success in tackling complex learning problems, and ease of access to high
performance computing resources and state-of-the-art open source libraries.

CNN has emerged as the most commonly and widely used architecture in deep
learning. It was originally developed for computer vision-related tasks but has been
also shown to be very effective for various text classification and understanding tasks
such as sentiment analysis and question-answering [8–10]. CNN can learn syntactic
and semantic representations of a text, and capture relationships between neighboring
words in a sentence automatically through convolution and pooling operations for a
sequence of 1-dimensional word or character embeddings. A simple CNN architecture
achieves very strong results [11], and can therefore serve as a drop-in replacement for
the abovementioned conventional machine learning methods.

Recurrent neural network (RNN) is another popular deep learning architecture
especially for NLP tasks. Unlike CNN where the architecture is hierarchical and zero
padding or rip out is required to make a fixed-sized word (or character) sequence, RNN
is sequential and able to naturally handle word sequences of any length. Other variants
such as LSTM [12, 13] were also designed to avoid the problem of exploding or
vanishing gradients in the standard RNN and to better capture long-term dependencies.

More recently, an ensemble approach [14] which combines different types of
multiple pre-trained classifiers has been proposed to achieve better performance by
compensating for errors from individual classifiers. Our proposed HDNN also com-
bines multiple neural network (NN) architectures: a multi-channel CNN section
designed to employ different types of word embeddings, and a conventional FNN
section for high-performing handcrafted input features. However, our approach totally
differs in that each individual NN section in the HDNN is not pre-trained and tightly
combined during a learning phase, through the full connection between hidden layers
and output layer. We demonstrate the effectiveness of our method by comparing it with
the other abovementioned deep neural models, as well as other conventional machine
learning techniques such as SVM and voting scheme, with respect to their accuracy in
identifying potential COI information from biomedical articles.

3 Conflict-of-Interest: Issues and Challenges

There is an increased concern about the impact of financial relationships between
biomedical researchers or their institutions and the pharmaceutical industry on the
integrity of biomedical research. Thus, the National Institutes of Health (NIH), as the
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nation’s biomedical research agency, has strict regulations regarding FCOI to ensure
impartiality and objectivity in the research it funds [15]. According to NIH regulations,
FCOI may exist if investigators or their spouse and dependents received financial
support such as “consulting fee”, “honoraria”, “travel cost”, and “royalty” from the
third-party private companies. Financial support from “non-profit” organizations such
as a local or federal government agency is not considered as a potential COI. Typical
examples of author’s self-declared COI statements are shown in Table 1.

Table 1. Examples of author’s self-declared COI statements.

Supports Author’s self-declared COI statements

Consulting 
fee

Dr. Hodi reports receiving consulting fees from Bristol-Myers Squibb-
Medarex, Novartis, and Genentech; Dr. O’Day, receiving consulting fees, 
grants, honoraria, and fees for participation in speakers’ bureaus from Bristol-
Myers Squibb.

Patent
Dr. NL Saccone is the spouse of Dr. SF Saccone, who is also listed as an inven-
tor on the above patent.

Stock
Diane Warden, Ph.D., M.B.A. has owned stock in Pfizer, Inc. within the last 
five years.

Royalty & 
travel cost

JAS receives licensing royalties from Genzyme/Sanofi for eliglustat tartrate 
(Cerdelga) and related compounds. BES has received travel support from Shire 
HGT and Genzyme.

Table 2. Examples of author’s COI disclosure (bold and italicized) in the acknowledgment
section in biomedical articles.
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Currently, biomedical journal publishers rely on an author’s self-reported disclo-
sure in determining the existence of potential COI. However, such a disclosure may not
be very accurate or reliable due to the lack of author’s understanding of relationship
between a certain financial gain they received and their current research. Authors also
often do not provide a separate section or paragraph for the explicit COI disclosure in
their article. Instead, COI statements or sentences appear implicitly and in a subtle
manner at the end of the body text or within the acknowledgment, footnote, or
appendix section along with other similar sentences that acknowledge a personal
support or a funding support received from the “non-profit” organizations as shown in
Table 2. Moreover, the wide variety of author’s linguistic expressions and writing
styles makes the problem of identifying COI information even more challenging.
Furthermore, identifying COI manually is time-consuming and labor intensive. To our
knowledge, there are no automated systems to verify the accuracy of such authors’ COI
disclosure.

4 Proposed Method

Our strategy is to identify COI sentences containing a “for-profit” funding support by
adopting a two-stage machine learning scheme as shown in Fig. 1. First, an input text
which is usually the body text of a given article is divided into sentences in the
preprocessing step. Next, all “support” sentences containing information of any
financial supports authors received for their research are determined in the first clas-
sification stage. Finally, these “support” sentences are classified into two classes
according to their funding sources: “for-profit” or “non-profit” in the second stage.

Actually, this task could have been considered a three-class classification problem
as sentences belonging to (1) “for-profit”, (2) “non-profit”, or (3) Others. However,
support sentences, especially “for-profit” support sentences, are much rarer compared
to “other” sentences within the body text of biomedical articles, thereby heavily
skewing the distribution of sentences in each class. Thus, we choose to employ a
machine learning scheme having two separate and sequential classification stages. Each
stage of classification is performed using a HDNN model that combines a multi-
channel CNN and a conventional FNN.

Fig. 1. The proposed two-stage machine learning scheme to identify potential COI.

Automated Identification of Potential Conflict-of-Interest in Biomedical Articles 103



4.1 Preprocessing: Sentence Splitting

Splitting the text in the body of a biomedical article into individual sentences is an
important preprocessing step for the next classification step. Generally, the text in
Acknowledgment, Footnote, and Note sections where a “support” sentence is most
frequently located, are found to have a more complicated structure than those in the
body text. This can be seen from the examples in Table 3, where acronyms or
abbreviations for author names, organizations, and degree titles are commonly found in
the text. Moreover, the text in these sections often consists of irregular or incomplete
sentences. Therefore, it would be not easy to extract sentences using some simple rules
based on delimiters such as punctuation marks. In order to deal with this problem, we
employed Stanford CoreNLP [16], which is a widely used integrated NLP toolkit
including Part-of-speech (POS) tagger, Named entity recognizer (NER), Dependency
parser, etc. Its built-in tokenizer has the ability to efficiently and rapidly split sentences.

4.2 Input Vector Representation

Our proposed HDNN accepts two different types of input vector representations for a
given input sentence: (1) a sequence of word embeddings for the multi-channel CNN
section and (2) bag of words (BOW) for the FNN section. These input vector repre-
sentations are also employed in other types of machine learning models implemented
and tested in our study for comparison.

Word Embeddings. In order to perform a text classification task or natural language
processing at large using CNN (or other deep neural models such as LSTM), we first
need to convert an input sentence or a document to an n � k matrix. Each row in the
matrix is k-dimensional vector representation called word embedding for each indi-
vidual word in the sentence of length (number of words) n. In our study, we define n as

Table 3. Examples of text containing acronyms or abbreviations for author names, organiza-
tions, and degree titles.

Disclosure Summary: J.J.G., K.C., K.A.S., S.B.S.K., E.V.R., and J.M.Z. have nothing to de-
clare. S.M.W.R. consults for Vanda Pharmaceuticals, Inc., through Monash University. 
C.A.C. has received consulting fees from or served as a paid member of scientific advisory 
boards for Cephalon, Inc.; Eli Lilly and Co.; Johnson & Johnson; Koninklijke Philips Elec-
tronics, N.V./Philips Respironics, Inc.; Sanofi-Aventis Groupe; Sepracor, Inc.; Somnus Ther-
apeutics, Inc.; and Zeo, Inc.

The authors thank the study subjects and their parents for participating in these studies, and 
the following contributors: Study 1 (M06-888), Edward A. Cherlin, M.D. of Valley Clinical 
Research, Inc., Andrea Corsino, R.N., M.S.N. of Consultants in Neurology, Ltd., Judith C. 
Fallon, M.D. of NeuroScience, Inc., David G. Krefetz, D.O., M.D. of CRI Worldwide, Alan 
J. Levine, M.D. of Alpine Clinical Research Center. Statistical experts were Weining Z. 
Robieson, Ph.D. (M06-888) and Coleen M. Hall, M.S. (M10-345), of Abbott. 
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the maximum number of words in a sentence we can find from our training dataset and
pad a sentence of length m (<n) with n − m of zeros to make the same size of input
matrix for CNN.

We employ three word embedding methods: (1) dictionary-based (look-up table),
(2) Word2Vec [2], and (3) Glove [3]. Dictionary-based embedding is a sparse and
discrete vector representation of word. A dictionary is created using vocabulary words
collected from the training dataset. A word vector represents the index of its corre-
sponding word in the dictionary. Word2Vec is a “prediction-based” unsupervised
(more precisely, self-supervised) neural network language model. Unlike a dictionary-
based word vector, it generates a dense and distributed numerical vector representation
of a word. The basic idea of using Word2Vec is to map semantically similar words or
words having similar context to nearby points in a lower dimensional vector space. We
actually use the publicly available Word2Vec model pre-trained on 100 billion words
from Google News. Lastly, we also use another pre-trained model, GloVe, a new
global log-bilinear regression model trained on 840 billion tokens of word data for
unsupervised learning of global word-word co-occurrence statistics.

All of the three embedding methods generate a 300-dimensional vector represen-
tation for each word in a given sentence. Words not present in the dictionary or pre-
trained model are represented by an all-zero (in dictionary-based) or a randomly and
uniformly initialized (in Word2Vec and GloVe) vector. Although other approaches
exploiting character-level embeddings [17] have been also reported, we mainly focus
on these word-level embedding methods in this study.

Bag of Words (BOW). We adopt a bag of words (BOW) based on word statistics
representing how differently a word is distributed in “support” and “others” sentence
classes, to build an input feature vector for the FNN section in HDNN. Word selection
to build a BOW is accomplished by sorting words according to their importance
measured by simplified v2(sv2) statistics [18].

In our task, sv2 of word tk for sentences in the “support” class (class c0) and those in
the “others” class (class c1) can be defined as follows:

sv2 tk; cið Þ ¼ P tk; cið Þ � P �tk;�cið Þ � P tk;�cið Þ � P �tk; cið Þ i ¼ 0; 1 ð1Þ

where P tk; cið Þ denotes the probability that, for a random sentence x, word tk occurs in
x, x belongs to class ci, and is estimated by counting its occurrences in the training set.
The importance of word tk is finally measured as follows:

sv2max tkð Þ ¼ maxisv
2 tk; cið Þ i ¼ 0; 1 ð2Þ

Accordingly, the more differently a word is distributed in “support” and “others”
classes, the higher its sv2max tkð Þ. Words are sorted according to their sv2max, and a BOW
is then created by selecting words having highest sv2max scores. Through a series of
experiments to investigate the influence of word reduction, we discovered that this
BOW feature shows the best performance when its word dictionary size is 500. Finally,
the BOW is converted to a binary vector: the vector dimension corresponds to the
number of words (=500) in the dictionary, and each vector component is assigned 1 if
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the corresponding word in the dictionary is found in a given sentence or 0 otherwise.
Another BOW for “for-profit” and “non-profit” sentence classes is also obtained
through the same procedure above.

4.3 HDNN Architecture

Our proposed HDNN consists of two neural network sections: multi-channel CNN and
FNN sections, as illustrated in Fig. 2. Each section takes different types of input vector
representations for a given input sentence and then proceeds with the learning process
separately until they are combined through a full connection between the hidden layers
and output layer. As a result, a hybrid structure is created.

Multi-channel CNN Section. The multi-channel CNN section in our HDNN is built
on combining two single-channel CNNs. These single-channel CNNs both have the
same structures; the size of the matrix word embeddings, the number and size of
convolution filters, and other hyperparameters are all identical. However, they employs
different types of word embeddings as an input: Word2Vec and GloVe, respectively.

In each CNN, we first apply a convolution filter, w 2 R
d�k and a nonlinear function

f with a bias term b 2 R on a window of d rows in the matrix word embeddings,
X 2 R

n�k , where ith row is the k-dimensional word embedding xi representing ith word
in a given input sentence of length n, as follows;

Fig. 2. The structure of proposed HDNN.
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c ¼ f w � Xd þ bð Þ ð3Þ

By repeatedly performing such convolution operation over the entire word
embedding matrix with stride 1, we can then obtain a feature map c ¼
c1; c2; . . .; cn�dþ 1½ � with c 2 R

n�dþ 1. Since we employ the multiple convolution filters
(=h) with different width or windows sizes (=l) for our CNN, we finally have a set of
feature maps C ¼ c1; c2; . . .; ch�l

� �
.

Next, max-pooling operation is performed to obtain the maximum value from each
feature map;

y j ¼ maxic
j
i ð4Þ

where j ¼ 1; 2; . . .; h� l and i ¼ 1; 2; . . .; n� dþ 1. Such max-pooling operation not
only reduces the output dimensionality while keeping the most salient information but
also induces a fixed-length of feature vector from the different size of feature maps
resulting from applying a different width of convolution filters. These maximum values
called features generated from each CNN are concatenated together to form a multi-
channel structure, and along with the outputs from the hidden layer in the FNN section,
fed to the fully connected next hidden layer. All CNN models implemented in our
experiments have 128 convolution filters with three different window sizes (l = 3, 4,
and 5) generating a total of 384 feature maps, dropout rate of 0.5, mini-batch size of 64,
and “Adam” optimizer. All these hyperparameters were obtained through a grid search
method. In addition, rectified linear unit (ReLU) and softmax nonlinear activation
functions are applied to the hidden layers and the final output layer, respectively.

On the other hand, a similar concept of two-channel approach has been recently
suggested by Kim [11]. Unlike our multi-channel approach where each channel of
CNN accepts a different type of word embedding and performs a separate convolution
operation, his method employs Word2Vec only as an input representation for both
channels of CNN; Word2Vec in one channel is kept unchanged (static) and the other is
fine-tuned (non-static) during a learning phase.

FNN Section. We introduce the FNN section into HDNN to take advantage of a
handcrafted input feature experimentally found to be effective. As mentioned previ-
ously, we employ a 500-dimension binary vector representing a BOW as an input
feature vector for the FNN section. Words in this BOW are selected and sorted
according to their corresponding sv2max scores that reflect the difference of their statistical
distributions between the “support” and “others”, or “for-profit” and “non-profit”
classes.

5 Classification Experiments

5.1 Ground-Truth Dataset and Tools

In order to build a ground-truth dataset for our experiments, we first downloaded 2,800
HTML-formatted online biomedical articles having citation information of grant
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support or ClinicalTrials.gov from NLM’s PubMed Central (PMC) [19]. These articles
were published in 938 different journals and indexed in MEDLINE between 2010 and
2015. We then collected a total of 21,822 sentences from these articles and divided
them into two classes: “support” and “others” according to whether they contain
information of a funding support or not. Sentences in the “support” class were further
divided into two sub-classes: “for-profit” and “non-profit”.

Among these, 16,753 sentences consisting of 4,528 in the “support” class and
12,225 in the “others” class were randomly selected to train the classifiers for the stage
1 classification experiment—distinguishing “support” sentences from the body text of
biomedical articles. The remaining 5,069 sentences (1,509 from the “support”
class + 3,560 from the “others” class) were used as a test set to evaluate the perfor-
mance of our classifiers. Next, for the stage 2 classification experiment—classifying a
“support” sentence into “for-profit” or “non-profit” class, we reemployed the “support”
sentences already used for the stage 1 classification experiment. Accordingly, each
training and testing set has 4,528 (1,937 from the “for-profit” + 2,591 from the “non-
profit”) and 1,509 (645 from the “for-profit” + 864 from the “non-profit”) “support”
sentences, respectively.

All DNN models employed in our study including the proposed HDNN,
single/multi-channel CNNs, and LSTM were implemented based on Tensorflow [20],
very well-known open source library developed by the Google Brain team, Keras [21],
a simple and high-level model definition interface, and Nvidia’s CUDA toolkit and
CuDnn for GPU-acceleration. In addition, SVM with RBF kernel function, another
classifier widely used in text classification and other machine learning tasks, was
implemented using LibSVM [22], a free software package.

5.2 Experimental Results

As mentioned earlier, our proposed method of identifying potential COI from an online
biomedical article adopts a two-stage machine learning scheme. In experiments, we
implemented and evaluated a total of 9 classifiers for both stage 1 and 2 classification
tasks: SVM with a RBF, 3 single-channel CNNs with different word embeddings,
LSTM, multi (two)-channel CNN, voting scheme, Ensemble model, and our proposed
HDNN.

First, it can be clearly seen from Tables 4 and 5 that all DNN models consistently
outperform SVM. In the case of LSTM, a better performance was achieved than that of
any of single-channel CNNs in the stage 1 classification experiments. However, a
reversal in performance is observed in the stage 2 classification. Note that the size of
the training dataset used in the stage 2 experiments is significantly smaller (about 25%)
than that in the stage 1 experiments. Thus, LSTM is analyzed to be more susceptible to
the size of the training dataset than other classifiers, thereby resulting in a degradation
of the classification performance in stage 2.

We can also see that our multi-channel CNN and especially HDNN both accepting
multiple input representations: “word2Vec + GloVe” and “Word2Vec + GloVe +
BOW”, respectively, yield the best performance overall in both stage 1 and 2 classifi-
cation experiments. The ensemble model which also employs three types of input
representations the same as those used in the proposed HDNN, through the combination
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of pre-trained 2 CNNs and FNN, is found to provide a slight improvement over the
individual classifiers having a single input vector representation such as SVM, single
channel CNNs, and LSTM, but to be not as good as HDNN. Rather, a simple majority
voting scheme for the outputs of 5 pre-trained individual classifiers (SVM + 3
CNNs + LSTM) performs better. Therefore, we conclude that our HDNN is a more
effective architecture for combining multiple learning models and taking advantage of
different types of input representations to boost the overall classification performance
further.

Table 4. Stage 1 classification results.

Models Accuracy Precision Recall F_1

SVM 96.21 98.59 95.98 97.27

Dic CNN 96.61 96.67 98.57 97.61

W2v CNN 97.04 97.28 98.54 97.91

Glv CNN 97.18 98.03 97.95 97.99

W2v+Glv CNN 97.93 98.40 98.65 98.53

LSTM 97.57 98.02 98.54 98.28

HDNN 98.11 98.52 98.79 98.65

Ensemble 97.40 97.69 98.62 98.15

voting 97.73 97.97 98.82 98.39

Table 5. Stage 2 classification results.

Models Accuracy Precision Recall F_1

SVM 95.16 94.89 96.76 95.82

Dic CNN 96.02 95.79 97.34 96.56

W2v CNN 96.16 95.90 97.45 96.67

Glv CNN 96.22 96.11 97.34 96.72

W2v+Glv CNN 96.62 96.67 97.45 97.06

LSTM 95.89 95.67 97.22 96.44

HDNN 96.89 97.44 97.11 97.28

Ensemble 96.49 96.56 97.34 96.95

voting 96.49 96.23 97.69 96.96
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Finally, in Table 6 we show some examples of false-negative (FN) and false-
positive (FP) errors in stage 2 classification. Here, FN means that “non-profit” support
sentence is misclassified into “for-profit” class. FP is the reverse of the above. The first
“support” sentence in the FN error examples contains two NIH grant numbers
“GM103429” and “GM103450”. However, this sentence is very short, and there is no
contextual description associating these grant numbers with an NIH financial support.
The second sentence of FN errors is analyzed to be misclassified due to several pairs of
words such as “senior advisor”, “pharmaceutical company”, and “international market”
which are also frequently found in “for-profit” sentences, even though it has the word,
“nonprofit”. In contrast, FP errors shown in Table 6 result from the existence of “non-
profit” organizations names (“Cleveland Clinic” and “NIH”) along with a description
of “for-profit” funding support within the sentence.

6 Conclusions

Conflicts of interest have a major negative impact on the integrity of biomedical
research. Many biomedical journal publishers thus require authors to provide a COI
disclosure statement in their article at the time of peer-review and publication. How-
ever, authors often declares a COI implicitly and in a subtle manner. In addition, there
are also rising concerns about the accuracy and reliability of author’s self-declared
COIs.

In this paper, we have presented a sequential two-stage machine learning-based text
classification scheme to automatically ascertain potential COI from the body text of
online biomedical articles. The first stage of classification is for distinguishing “sup-
port” sentences from other sentences in the body text of a given biomedical article, and
the second stage is for categorizing those “support” sentences into “for-profit” and
“non-profit” classes according to their funding sources. Each stage of classification is
implemented using a deep learning model that has a hybrid architecture to combine a
multi-channel convolutional neural network (CNN) and a feed-forward neural network

Table 6. Error examples showing FN and FP errors in the stage 2 classification.

Error types Support sentences

False
Negative

JS received financial support from GM103429 and GM103450.
He was senior clinical advisor of a nonprofit (501c3) pharmaceutical company 
studying a lower-cost IUD for the U.S. and international markets (Medicines 
360).

False
Positive

Mass spectrometry studies were performed in the Cleveland Clinic Mass Spec-
trometry core facility, which is partially supported by a Center of Innovation 
Award from AB SCIEX.
The vitamin E softgels and matching placebo were provided by Pharmavite 
through a Clinical Trial Agreement with the NIH.
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(FNN). This hybrid deep neural network (HDNN) aims at simultaneously learning
syntactic and semantic representations and word relationships in a sentence, and
handcrafted input features.

Experiments on a total of 21,822 sentences from 2,800 HTML-formatted online
biomedical articles published in 938 different journals show that our proposed HDNN
yields a consistently higher performance in both stage 1 and 2 classification tasks,
compare to other classifiers having a single type of input vector representation such as
SVM, single-channel CNNs, and LSTM. Our HDNN is also found to be a superior
architecture for combining multiple input representations than an ensemble model or
voting scheme both based on pre-trained learning models.
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Abstract. This paper proposes a Bayesian method for combining the
output of multiple base classifiers. The focus is put on combination meth-
ods for merging the outputs of several and possibly heterogeneous clas-
sifiers with the aim of gaining in the final accuracy. Our work is based
on the Dawid and Skene’s work [11] for modelling disagreement among
human assessors. We also take advantage of the Bayesian Model Averag-
ing (BMA) framework without requiring the ensemble of base classifiers
to correspond in a mutually exclusive and exhaustive way to all the
possible data generating models. This makes our method relevant for
combining multiple classifiers’ output each observing and predicting the
behavior of an entity by means of divers aspects of the underlying envi-
ronment. The proposed method, called Hierarchical Bayesian Classifier
Combination (HBCC) is for discrete classifiers and assumes that the indi-
vidual classifiers are conditionally independent given the true class label.
The comparison of HBCC with majority voting on six benchmark clas-
sification data sets shows that it generally outperforms majority voting
in the classification accuracy.

1 Introduction

The recent growth in the field of machine learning and pattern recognition pro-
vided important advances in the underlying techniques and led to substantial
developments of learning algorithms. These developments produced a plethora
of prediction techniques with no one being uniformly better than the rest, on all
the possible data sets. When faced with a new prediction problem, it is generally
quite difficult to choose the “best” model from a list of prediction models with
competitive results. In such cases, where one has little prior knowledge of the
new problem, an intuitive idea is to combine the output of different prediction
models in the hope that this combination would improve the final prediction
performance. This is the goal of ensemble learning which has been a subject
of research for the two precedent decades [12,25,28,33]. Ensemble learning has
shown to provide models with generally higher prediction performance than sin-
gle classification or regression models [2,22,26].
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Currently, there are several popular techniques for combining classifier such
as bagging [6], boosting [16], dagging [31], Stacking [34], Hierarchical Mixture
of Expert (HME) [19], Naive Bayes and majority voting [35]. The classifica-
tion and regression combination techniques can be categorized based on their
complexity in two groups: the first one involves bagging, boosting, dagging and
other combination techniques combining several models constructed with the
same classification or regression method. The motivation of such techniques is
to enhance the performance of a restricted prediction model by applying them on
modified versions of the same data set. Bagging [6] is a majority vote on models
trained independently on the random sample of the training set. Boosting [16]
is a linear combination of models sequentially trained on data point sampled
with probability proportional to the previous model’s error on that point. Dag-
ging [31] is majority voting on models trained independently on disjoint samples
of the original training set.

The second group is the collection of ad hoc techniques and meta-learning
methods such as Stacking, HME, Naive Bayes and majority voting used to com-
bine different classification or regression models. These techniques could be used
for heterogeneous model built by different models. They do not make modifica-
tions of the original data set and can also be used upon the ensemble models
obtained by the first group. The Hierarchical Mixture of Experts (HME) is a
tree-structured architecture for combining the output of several mixture compo-
nents through weights representing probabilistic splits of the input space [19].
This combination was first suggested with mixture component each being a Gen-
eralized Linear Model (GLM) [18] and then extended to other models [36].

Stacking (or “stacked generalization”) was first introduced by Wolpert [34]
for classification, then it has been generalized to regression [7]. This technique
uses a training set composed of the outputs of all ensemble models and the true
class label for input instances not in the ensemble models. Then it learns how
to combine the individual models in order to minimize the classification or the
regression error [14,32].

In this paper, we propose HBCC which assumes that the individual classifiers
are conditionally independent given the true class label and employ hierarchi-
cal conjugate priors for modelling the combination parameters. The HBCC’s
combination technique is based on the Dawid and Skene’s work [11] for mod-
elling disagreement among human assessors. This work could also be seen as a
hierarchichal Bayesian modelling of the Naive Bayes combination approach [35].

This paper is organized as follows: Sect. 2 gives an overview of existing lit-
erature on the application of Bayesian methods to ensemble learning. Section 3
introduces HBCC and Sect. 4 reports its application on the benchmark data sets
and compares them to majority voting’s results.

2 Bayesian Classifier Combination

In Bayesian view, the prediction consists in updating our belief about the new
observation according to the observed data and marginalizing the model parame-
ters [3,5]. This turns out in combining the prediction of all possible models in the
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underlying model space, where each model prediction is weighted by the model’s
posterior probability. These posterior probabilities reflect the probability of each
model being the “true” model or being the Data Generation Model (DGM)1 and
their role in Bayesian prediction is to allow for the uncertainty of the unknown
DGM. Such method of combining each models’ prediction through a marginaliza-
tion over the parameter space is known as Bayesian Model Averaging (BMA).

The BMA framework is the optimal Bayesian approach for combining the
prediction of multiple models, however it is not suited for Ensemble learning [23].
Several authors [10,13,23], have shown that BMA does not perform well for the
task of combining multiple classifier’s output. This is justified by the fact that,
the motivations and practices of ensemble learning are in contradiction with
some fundamental assumptions of BMA.

As stated by [20,23,24], Bayesian model averaging is a well-suited approach
to find a classifier among the ensemble classifier which is the most “similar” to
the DGM. This is well-motivated when the “true” model that has generated
these data, is one of the multiple classifiers. The ensemble of K classifiers must
correspond in a mutually exclusive and exhaustive manner to the K possible
ways by which the data was generated. All the K classifiers must be trained
on the same training set. In fact, we generally know that none of the K model
has generated the data, but the idea behind classifier combination is to find a
combination of the ensemble classifier which may yield a more accurate classifier
than any of the base classifiers.

Moreover, the ensemble classifiers are usually constructed on different data
sets. They are usually constructed on sub sample or mutually exclusive sets of
the original data set which is a way to reduce the correlation among classifiers.
Indeed, each individual classifier estimates the true population distribution, so
the output of each classifier is dependent to the true class label. Therefore, the
output of the K classifiers are indirectly dependent on each other through their
shared dependency to the true class label. Furthermore, the combination may
also be used to merge the output of different classifiers constructed based on
different sets of variables. Such requirement arises in situations where the true
entity of interest lies in a heterogeneous environment that makes possible to
observe and predict it by means of various aspects. For example, the opening of
new flight line connecting two specific airports, could be predicted by combining
the output of several classifier such as: expert opinions, one or many economical
models and a classifier based on Internet news and customer comments.

2.1 Bayesian Model Averaging

Although the Bayesian model averaging is an effective and well-motivated
method for combining the output of several classifiers, in order to find which
of the base classifiers is the optimal one, it yields poor results when the DGM is
not one of the models in the ensemble [10]. By empirical comparison, Clark [10]
noticed that when the classifier is not in the model, BMA results converges to

1 The Data Generation Model (DGM) is the model that produced the observed data.
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the closest ensemble model to the DGM instead of converging to the closest
combination to the DGM.

Ensemble methods are used when single prediction models are not able to
grasp the complexity of the data. In such cases, single models may be biased
or overfit whereas ensemble methods may find a more robust model by taking
advantage of the enriched hypothesis spaces generated through possible combi-
nation of component models. In other words, Bayesian model averaging is not
intended to exploit the enriched hypothesis space available by the model combi-
nation [23].

In full Bayesian, the distribution of the response variable of a model is
obtained by the posterior predictive distribution of response variable. The pos-
terior predictive distribution is the probability of the new observation given past
data P(t∗|x∗,D). It is obtained by the integral of the product of the probability
of the new observation given the estimated model P(t∗|x∗, h)2, times the pos-
terior probability of the estimated model given the past data P(h|D) over all
models h ∈ H.

P(t∗|x∗,D) =
∑

h∈H
P(t∗|x∗, h,D)P(h|D) (1)

2.2 Bayesian Methods in Classifier Combination

Xu et al. [35] used the Bayes formula along with the conditional independence
assumption on the base classifiers and introduced it as the Naive Bayes approach
for classifier combination. Monteith et al. [24] introduced the Bayesian Model
Combination (BMC) technique which uses Bayesian inference to generate the
optimal weights to combine a set of fixed or already learned classifiers. Their
proposed technique is a Bayesian model averaging over the set of all possible
linear combination of ensemble classifiers rather than the initial set of ensemble
classifiers. The authors proposed two strategies for sampling from the set of
all possible linear combinations of ensemble classifiers and they shown that both
strategies outperformed bagging, boosting and BMA over a wide variety of cases.

Raykar et al. [27] proposed a Bayesian approach for the case of multiple
experts (assessors) providing labels but no absolute gold standard. Their tech-
nique, assume assessors to be conditionally independent and jointly estimates
the individual assessors, their accuracy and the true (hidden) labels.

Kim and Ghahramani [20] proposed a Bayesian Classifier combination
method based on the Haitovsky et al. [17] work being itself a Bayesian extension
of Dawid and Skene’s work [11] for modelling disagreement among human asses-
sors. Their work [20] proposed the Independent Bayesian Combination Model
(IBCC) that models the classifiers as being conditionally independent and use
Bayesian inference to learn class prior distribution and classifier confusion matri-
ces. They also introduced three new extensions for modelling the correlations
2 For a given value of t∗ and x∗ the distribution p(t∗|x∗, h) depends only on h and

remains constant for all values of D. It means that the random variable t∗|x∗ is
conditionally independent of D given h which yields P(t∗|x∗, h) = P(t∗|x∗, h,D) .
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between component classifiers. The four proposed methods generally outper-
formed majority voting on several data sets. IBCC differs from the method pro-
posed by Raykar et al. [27], because the latter gives estimates of the individual
assessors and their accuracy whereas, IBCC takes the assessors fixed and infer
the confusion matrix which implicitly reflect classifiers accuracy.

Simpson et al. [30] proposed a simpler version of IBCC for classification with
variational inference instead of Gibbs Sampling. The proposed method shown
greater performance over voting and weighted mean in the experimental setup.
It has also the merit of being computationally efficient and make it practical for
application demanding regular updates as new data is observed.

Recently, Lacoste et al. [21] introduced Agnostic Bayesian learning of ensem-
bles which is a technique for producing ensembles of predictors based on holdout
estimations of their generalization performances. While being efficient and easily
adjustable to any loss function, the agnostic Bayes framework, is proposed for
addressing model selection problems.

We propose HBCC which is somewhat between the Naive Bayes [35] and
the IBCC [20] approaches. HBCC has a hierarchical Bayesian model and its
joint distribution is the same as IBCC. However, HBCC assumes, like the Naive
Bayes approach, that true class labels are observed in the training set, whereas
in IBCC they are modeled by hidden variables. This is an important modelling
choice which places HBCC in the category of supervised methods whereas IBCC
and the Simpson et al.’s variational inference extension [30] belong to non-
supervised methods. This reduction of unobserved random variables yields a
generative method simpler to train where the full Bayesian treatment requires
a much smaller parameter samples. In other words, HBCC provides classifier
combination models having less training and classification time.

It is important to note that the Naive Bayes approach may appear similar to
HBCC (or IBCC), because both methods find a separate confusion matrix for
each ensemble classifier which is then used to combine their classifier outputs.
However, the former takes the confusion matrix as prior data whereas the latter
(and IBCC) use Bayesian inference to learn the confusion matrix and the class
proportion. Moreover, HBCC (and IBCC) can handle missing data (classifier
output) and the confusion matrix is inferred by a hierarchical distribution which
allows for more complex models. Besides, the initial Naive Bayes version pro-
posed in [35] works only with probabilistic classifiers, so Xu et al. [35] proposed
another version which approximates the term involving class probabilities. The
lack of classifier output coverage for all true class label (missing data) is another
issue for Naive Bayes combination which is seamlessly handled by BMA using a
vague prior.

3 Hierarchical Bayesian Combination Model (HBCC)

3.1 The Classifier Combination Model

In this section we present the Dawid and Skene’s method [11] for modelling
observer error rate when the true class label is known. This model is presented
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in [20] where it has been slightly refined for the classifier combination task. The
refinement consists in assuming that each classifier produces just one output per
observation.

We assume that we have a set of observations (xi, ti), i = (1, . . . , n) where
xi denotes the vector of independent variables and ti ∈ {1, . . . , J} denotes the
true class label (the response value). This model is composed of a set of clas-
sifier ck, k ∈ {1, . . . , K} where K is the number of classifiers each proving the
output ck

i ∈ {1, . . . , J} for the input vector xi. This combination model assumes
classifiers with discrete outputs and does not take into account the vector xi.
Each true class label ti is supposed to come from a multinomial distribution with
parameter p = (p1, . . . , pJ ), so we have:

P(ti = j|p) = pj

where pj is the proportion for class j. The classifier output ck
i is assumed to be

generated from a multinomial distribution with parameter πk
j = (πk

j,1, . . . , π
k
j,J );

this is formulated as:
P(ck

i = l|ti = j,πk
j ) = πk

j,l. (2)

Note that the collection πk = {πk
1 , . . . ,πk

J} represents the confusion matrix for
classifier k, where each row is the vector of parameters πk

j whose elements are
described by Eq. (2). By assuming the classifier outputs ck

i to be conditionally
independent given the true label ti, the joint probability of ti and the set of
classifiers to give a combination ci = (c1i , . . . , c

K
i ) is:

P(ci, ti|p,π) = pti

K∏

k=1

πk
j,cki

,

where π = {π1, . . . ,πK} is the collection of confusion matrices. It is a com-
mon practice in classification settings, to assume that the each classifier output
is independent and identically generated from their respective distribution and
this assumption gets the following likelihood:

P(c, t|p,π) =
n∏

i=1

(
pti

K∏

k=1

πk
j,cki

)
, (3)

where t = (t1, . . . , tn) is the vector of all true labels.

3.2 The Hierarchical Bayesian Combination of Classifier Model
(HBCC)

Here, we describe the Bayesian treatment for the Sect. 3.1. This model uses hier-
archical conjugate priors for confusion matrix and conjugate priors for class pro-
portions. The joint distribution of all variable is the same as the model proposed
in [20]. Nevertheless, we assume the true labels ti are observed in the training
set, whereas Kim and Ghahramani [20] considered them as hidden variables.
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Fig. 1. Graphical model for HBCC. The circular nodes are random variables, the
shaded nodes are observed variables and letters λ and ν represent hyperparameters.

The vector of class proportions p has a Dirichlet prior distribution with
hyperparameters ν = (ν1, . . . , νJ ). Each confusion matrix πk is composed of
J rows πk

j = (πk
j,1, . . . , π

k
j,J ) Dirichlet distribution with parameters αk

j =
(αk

j,1, . . . , α
k
j,J ), and all rows are independent within and across classifiers.

Finally, each πk
j,l has itself an exponential prior distribution with parameter

λk
j .

Therefore, αk represents a matrix having J rows as αk
j = (αk

j,1, . . . , α
k
j,J ),

each corresponding to the parameters of the confusion matrix πk
j , and the col-

lection of αk gives α. We also have the matrix λ being composed of J rows
λj = (λj,1, . . . , λj,J ). Note that λ is shared among all matrices αk. The described
combination model is shown by a directed graphical model in Fig. 1.

The joint posterior distribution P(π,p,α,D|γ,ν), D = {c, t} is defined as:

P(π,p,α,D|γ,ν) ∝ P(α|γ)P(π|α)P(p|ν)P(c, t|p,π), (4)

where P(p|ν), P(π|α), P(α|γ) and P(c, t|p,π) denote respectively the prior
Dirichlet distribution of the true label proportions, the prior Dirichlet distribu-
tion of the classifiers performance (prior confusion matrix), the prior exponen-
tial distribution of confusion matrix parameters and the combination likelihood
defined by Eq. (3). Here, we approximate the above posterior distribution via
Gibbs sampling. In the next paragraph, we will see that we are interested in sam-
pling from the distribution P(π,p|c0, t0) rather than the aforementioned distri-
bution. It goes without saying that sampling from the distribution P(π,p|c0, t0)
could be achieved by sampling from the distribution described in Eq. (4) and
then marginalizing over α (ignoring this variable) and conditioning on {c0, t0}
(retaining only observation with c = c0 and t = t0).
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Given a training set D0 = {c0, t0} and new observation x∗ with classifiers
prediction C∗ = {c∗1, . . . , c∗K}, where c∗k denotes the output of the kth classifier,
the joint posterior distribution on the true class label t∗ and classifiers output
C∗ conditioned on inferred parameters θ0 = {π0,p0} is defined as:

P
(

t∗, C∗
∣∣∣∣θ0

)
. (5)

By averaging (marginalizing) it over the space of possible parameters, θ =
{π,p}, we obtain the following joint distribution:

P(t∗, C∗|D) =
∫

p

∫

π

P
(

t∗, C∗
∣∣∣∣θ,D

) dP(θ|D)
︷ ︸︸ ︷
dP(π|c, t)dP(p|t) . (6)

The distribution of θ|D is approximated by drawing m observations using
Gibbs sampling as described above. Due to the proportionality of posterior and
the joint distribution, we have:

argmax
t∗

P(t∗|C∗,D) = argmax
t∗

P(t∗, C∗|D). (7)

Therefore, the true label having the maximum posterior probability is
obtained by taking the label t∗ of the vector (t∗, C∗) giving the maximum value in
Eq. (6). The computational complexity of computing the distribution P(t∗, C∗|D)
for a new observation by Eq. (6) is O(mJK), where m, J and K are respectively
the number of observations obtained from P(θ|D), the number of the true class
labels and the number of individual classifiers used in the combination.

4 Experiments

In this section we apply the HBCC classifier combination method described
in the preceding section to the benchmark data classification data sets listed in
Table 1. We compare the method accuracy and computational performance to the
majority voting combination technique and their accuracy and computational
performances over all (six) data sets are respectively reported in Tables 3 and
2. Both combination techniques are applied through a 10-fold cross validation
scheme on two set of classifiers,

Set1 = {C1, . . . , C5} and Set2 = {C1, . . . , C7},

where the individual classifiers are the followings:

1. C1 Multinomial Regression [4]: R’s nnet package;
2. C2 Random Forest [8] : R’s randomForest package.
3. C3 Decision Tree [9]: R’s tree package;
4. C4 Linear Discriminant Analysis [4] R’s MASS package;
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5. C5 Shrinkage Discriminant Analysis [1]: R’s sda package;
6. C6 kNN [4], k = 5: R’s kknn package;
7. C7 SVM [29]: R’s e1071 package;

All individual classifiers Ck share the same training set. Our goal is to com-
pare HBCC with majority voting regardless of individual classifiers’ accuracy
and their mutual dependence. The tested data sets are described in Table 1.

4.1 Experiment Setup

All hyperparameters λ and ν are set to 1. So, λ becomes a J × J matrix of 1
and ν becomes a vector composed of J elements of 1. As described in 3.2, we
approximate the distribution of P(θ|D) by drawing m observations via Gibbs
sampling. For each data set, we draw a sample of m = 150 observations, with
a thinning of 20, from P(θ|D). We noted that while applying HBCC on most
data sets, the combination accuracy begun to stabilize for m ≥ 100. This early
stability of HBCC accuracy and the approximate convergence of MCMC chain
motivated the choice of m = 150. For the sake of simplicity and due to the
large sample size of some data sets, we keep m constant (150) for all data sets.
We finally use Eqs. (6) and (7) to estimate the mode of true class label t∗ on
instances belonging to the test set.

4.2 Results and Discussion

The differences in method accuracy were verified with a McNemar test and the
bold values represent cases where the method superiority was statistically signifi-
cant at the 0.05 level. We can see that HBCC outperforms, majority voting on the
Letter Recognition and Satellite data sets where the differences between meth-
ods accuracy are very important. On the other hand the superiority of majority
voting to HBCC is significant in one combination of Vehicle data set, but this
difference is not as important as in previous cases. Moreover, the application of
a two-sided Wilcoxon signed rank test3, reveals significant (p-value=0.009).

Table 4 reports mean and standard deviation of the classification accu-
racy for the seven individual classifiers (belonging to Set1 = {C1, . . . , C5} and
Set2 = {C1, . . . , C7}) tested in a 10-fold cross validation scheme. While compar-
ing Tables 3 and 4, one could observe that the best individual classifier accuracy
is usually a bit higher than both HBCC and majority voting. This superiority
could be explained by the correlation between classifiers output. Indeed we sup-
pose that the individual classifiers are conditionally independent. However, this
is usually not the case, because the classifiers are build on the same variables
and training sets. Furthermore, we can observe that these differences are in most
cases not significant and become negligible for almost all combinations of seven
classifiers4.
3 Wilcoxon signed rank test with continuity-correction; the alternative hypothesis was:

the mean accuracy of HBCC is equal to the mean accuracy of majority voting.
4 Look at the difference between bold values in Table 4 and HBCC or majority voting

results in Table 3.
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One of the main functional difference between HBCC and majority voting,
is its robustness to the introduction of weak classifiers. The combinations of
five classifiers Set1 = {C1, . . . , C5} of the Letter recognition and Satellite data
sets in Table 4, are good examples for such situations. In these cases the best
individual classifiers are considerably more accurate than the remaining four
classifiers. Actually, the robustness of HBCC to weak classifiers effect is due to its
confusion matrices. The confusion matrices capture the classifiers performance
and use them while combining the individual classifiers output, while in majority
voting, all classifiers are treated similarly.

In Table 2, we report the average CPU times of HBCC on all data sets. Note
that we measure the average time required to combine the classifiers output for
one new observation which is not the same as the time required to build a com-
bination model. The average CPU times of majority voting5 is approximately
0.0006 for all data sets. By creating two separate orderings of data set names,
one by their respective CPU times in Table 2 and the other by their respec-
tive number of classes in Table 1, we obtain the same ordering. Therefore, the
reported CPU times are functions of the number of classes and they are in the
same line with the computational complexity of the HBCC models due to the
averaging (BMA) over all the instances of θ (here m = 150 instances).

The HBCC time complexity on the tested data sets are much more larger
than the negligible average 0.0006 s of majority voting. However, it still remains
acceptable for most of existing classification system use, if the system requires
only a few prediction per second. For want of anything better, we could parallelize
the computation or consider Maximum A Posteriori (MAP) predictions instead
of the BMA in Eq. (6).

Table 1. Benchmark classification data sets accessible from [15].

Data set Size Predictor # class

Letter recognition 20000 17 26

Satellite 6435 35 6

DNA 3186 180 3

Vehicle 846 19 4

Breast cancer 699 11 2

Iris 150 5 3

5 The computational complexity of majority voting is O(JK), where J and K are
respectively the number of the true class labels and the number of individual classi-
fiers used in the combination.
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Table 2. Average CPU time of one prediction by a combination using HBCC with Set2
on all the experimental data sets listed in Table 1, where voting has a constant average
time of 0.0006. These CPU times are obtained with R version (3.1.2) on an Intel Xeon
CPU E3-1220 3.10 GHz (we used a single-threaded code) with 4 GB of RAM.

Data set HBCC CPU time

Letter recognition 0.39

Satellite 0.07

DNA 0.04

Vehicle 0.05

Breast cancer 0.03

Iris 0.04

Table 3. Comparison of majority voting (Voting) and HBCC on Set1 and Set2. The
mean and standard deviation (shown in parenthesis) of each combination accuracy
among the 10 different folds are reported. The bold cases represent a superior accuracy
statistically significant with a McNemar test at the 0.05 level.

Data set Set1 Set2

Voting HBCC Voting HBCC

Letter recognition 73.8 (1.1) 93.5 (0.8) 89 (0.8) 96.6 (0.4)

Satellite 85.1 (1.8) 90.7 (1.5) 88.5 (1.8) 91.7 (1.6)

DNA 95.6 (1.3) 95.8 (0.9) 96.1 (1.5) 96 (1.1)

Vehicle 78.2 (4) 76.2 (2.9) 78.7 (4.7) 75.6 (4.8)

Breast cancer 96.8 (2.6) 96.8 (2.4) 97.1 (2.5) 97.4 (2.4)

Iris 93.3 (4.4) 93.3 (4.4) 97.3 (3.4) 97.3 (3.4)

Table 4. Mean and standard deviation (shown in parenthesis) of each individual clas-
sifier accuracy in a 10-fold cross validation scheme. Star signs and bold values represent
respectively maximum in Set1 and Set2.

Data set C1 C2 C3 C4 C5 C6 C7

Letter recognition 64.5 (2.7) 96.7∗
(0.4) 37.6 (1.3) 70.2 (0.9) 70.3 (0.9) 95.6 (0.3) 94.5 (0.4)

Satellite 76 (2) 91.8∗
(1.7) 80.9 (1.1) 83.8 (1.6) 83.9 (1.6) 90.3 (1.2) 89.8 (1.4)

DNA 93.4 (1.7) 95.5∗
(1) 90.6 (1.6) 94.6 (1.8) 94.7 (1.5) 72.5 (1.9) 96 (1.3)

Vehicle 78.8∗
(4.7) 75.1 (4.6) 70.9 (4) 78.4 (4.1) 78.7 (5.9) 69.5 (3.4) 76.8 (5.4)

Breast cancer 96.9 (2.4) 97.5∗
(2.2) 95.3 (2.5) 96 (3.2) 96 (3.2) 96.9 (2.5) 96.5 (2.5)

Iris 94 (7.3) 94.7 (5.3) 94 (5.8) 98∗
(3.2) 98 (3.2) 93.3 (7) 96.7 (4.7)
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5 Conclusion

This paper proposed a new hierarchical Bayesian method for combining the
output of several classifiers. The proposed method, called Hierarchical Bayesian
Classifier Combination (HBCC) is a hierarchical Bayesian model for combining
the output of several discrete classifiers.

The experimental part involved the application of HBCC to six benchmark
classification data sets and it shown that HBCC has generally a higher pre-
diction accuracy than the classical majority voting. These accuracy differences
were further confirmed via statistical hypothesis testing. On the other hand, the
best individual classifier accuracy was usually a bit more accurate than both
HBCC and majority voting. This superiority could be explained by the correla-
tion between classifiers being in contradiction with our assumptions. Therefore,
the extension of HBCC for modelling dependencies among individual classifiers
seems an interesting future work. Further exploration of HBCC to classifiers
with probability distribution is another avenue for research.

From an operational point of view, the HBCC time complexity depends on
the data set complexity and can be considerably larger than the constant and
negligible time of majority voting. However, it still remains functional for most
of existing classification systems requiring no more than a few prediction recog-
nition per second.
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Abstract. Estimating the compression strength of concrete is a com-
plex problem which has been studied by various researchers. Support
Vector Regression (SVR) is a technique that has been shown to be ade-
quate for estimation through input examples. In this paper, we assess
three swarm algorithms, Fish School Search (FSS), Artificial Bee Colony
(ABC) and Particle Swarm Optimization (PSO) aiming to optimize the
SVR parameter. The results show that both all swarm-based algorithms
far outperformed the original SVR in the concrete compression strength
estimation task and the FSS and ABC obtained better results than PSO
for this particular problem.

Keywords: Regression models · Concrete compression strength
Hybrid algorithms · Swarm intelligence

1 Introduction

For estimating values (ŷ) from input data, one of the well-known and widely used
techniques is regression analysis. Regression analysis is a statistical tool which
aims to explain the relationship between variables through mathematical mod-
els. The variables are divided into two groups: independent (x); and dependent
variables (y) [1]. There are various kinds of regression analysis which are applied
to different types of problem. They are classified in parametric (i.e., linear) and
nonparametric (i.e., nonlinear) regression models. For parametric models, the
well known technique is Linear regression [2], while for the nonparametric, we
can cite Support Vector Regression Kernel Regression (SVR) [3]. The biggest dif-
ference between parametric and nonparametric techniques is the use of a kernel
function.

Swarm Intelligence is an area of Computational Intelligence that encom-
passes several bio-inspired algorithms developed for solving optimization prob-
lems. These algorithms are based on socio-biological behavior to search food
and run away from predators. Particle Swarm Optimization (PSO) developed
by Kennedy [4] is one of the well-known algorithms in swarm intelligence. PSO
c© Springer International Publishing AG, part of Springer Nature 2018
P. Perner (Ed.): MLDM 2018, LNAI 10934, pp. 126–137, 2018.
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has a significant exploitation capability. On the other hand, Artificial Bee Colony
(ABC) developed by Karaboga [5] is another algorithm widely deployed for solv-
ing optimization problems. ABC has an interest ability to solve problems in
multi-modal spaces. Besides, other swarm-based algorithms have been developed
aiming to present the capability to self-regulate exploitation and exploration,
e.g., Fish School Search (FSS). FSS was inspired by the fish schools searching
for food [6].

Estimating the compression strength of the high-performance concrete
(HPC) is a complex problem to solve in civil engineering because there are some
essential ingredients such as water, fine and coarse aggregates whose the con-
centration affects directly in the quality of the HPC. Also, the process to make
HPC needs other supplementary materials, such as fly ash and blast furnace
slag, and chemical admixture, such as super-plasticize [7]. Since 1918, the most
accepted way to calculate the strengths compression of concrete is the Abrams’
water-to-cement ratio (w/c). It’s a formulation in which the increasing of w/c
implies in decreasing of the concrete strength and vice-versa. However, a lot of
studies have shown that HPC strength does not depend only on the w/c ratio,
but it is also influenced by other factors [8,9].

This paper aims to assess four different ways to build regression models for
predicting the compression strength of HPC using support vector regression
(SVR). The four proposal are optimized by FSS, ABC, and PSO (Local and
Global), respectively.

The remainder of the paper is divided as follows. Section 2 describes the
background. Section 3 presents the proposed models to predict the compression
strength of concrete. Sections 4 and 5 present the experimental setup and the
obtained results, respectively. Finally, Sect. 6 shows the conclusions and future
works.

2 Background

Regression models have been widely used for predicting values in several areas,
for instance, software defect estimation using support vector regression [10] and
applied in the microcystin concentrations in lakes and reservoirs at a continental
scale [11]. However, a predicting model without the proper adjustment is not
a compelling technique since most of them have parameters that can cause a
drastic impact on the performance of the model without a correct calibration.
Besides, it is tough to find the best values for the parameters for each technique
while avoiding overfitting or underfitting since the number of combinations of
the values for the parameters can be infinity. As an example, we can cite the
SVR which presents the parameters ε, C and γ (Kernel function parameters)
that are continuous variables.

Swarm-based optimization algorithms have been proposed and used widely
focusing on solving optimization problems with many continuous variables. Par-
ticle Swarm Optimization (PSO) is an algorithm inspired by flocks of birds
searching for foods [4]. Among many examples of this type of use of the PSO,
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we can cite a hybrid particle swarm optimization and genetic algorithm for
closed-loop supply chain network design in large-scale networks [12,13] which
used analytical selection to optimize SVR parameters to get the better accuracy
based on a priori approach about these parameters.

Fish School Search (FSS) algorithm was inspired by the collective behavior
of fish schools [6]. FSS is suitable for optimization problems with multi-modal
search spaces. Among the examples of applications of FSS in hybrid models,
we can cite the combination of K-Means and K-Harmonic with FSS for data
clustering task on graphics processing units [14].

Artificial Bee Colony (ABC) algorithm was developed by mimicking of the
organization of the bee colonies [5]. Such as FSS, ABC is good at solving
problems with various minimal and maximal solutions. For instance, ABC was
hybridized to symbolic regression to find the best combination of variables, sym-
bols, and coefficients that resulted in suitable solutions [15].

2.1 Support Vector Regression

Support Vector Regression (SVR) was developed by Drucker et al. for solving
regression problems [3] with the same proposal of the Support Vector Machine
(SVM), generating the maximum number of support of vectors with small values
of errors aiming to separate the data with the highest margin. SVR parameters
are: ε, which indicates the level of tolerance that the support vectors can have
regarding real data; and C, which is the cost function to generate the support
vectors. To evaluate nonparametric regression operations, SVR uses a Kernel
function. A kernel is a mathematical approach for estimating density curves in
which each observation is weighted by the distance from a central value [16]. The
bandwidth, defined by the variable γ, is a free Kernel parameter that represents
a substantial influence on the estimating result of the regression model. Equa-
tion (1) shows how the SVR works, whereas Eq. (2) is a simplification of Kernel
Radial Basis Function.

min
1
2
||w||2 + C

n
∑

n=1

(εi + ε∗
i ),

{

yi − wxi − b ≤ ε + εi

wxi + b − y ≤ ε
(1)

K(x, x∗) =

{

exp
(

− ||x−x∗||
2σ

2)

, γ = 1
2σ

2

exp(−γ||x − x∗||2)
(2)

Support Vector Regression presents advantages over other techniques since
it focuses on finding the global optimal and the resultant model is easier to
understand than other famous approaches, such as Artificial Neural Network.

2.2 Fish School Search

Fish School Search (FSS) algorithm was inspired to mimic the behavior of fish
schools in searching for food and getting away from predators [6]. The FSS
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model is composed of three types of movements: individual; collective-instinctive;
collective-volitive.

In the individual movement, every fish in the school tries to find locally
and greedy a better solution in the neighborhood. After that, it is executed the
feeding process individually. Then, it is calculated a weighted average of those
fishes which became heavier (fittest) than other ones for collective-instinctive
movement.

In the collective-instinctive movement, each fish is repositioned following the
preferential directions influenced by the fish that had better performed in indi-
vidual movement.

Finally, after individual and collective-instinctive movement have been per-
formed, we execute the collective-volitive movement. In this stage, we evaluate
the overall performance of the fish school. Thus, we calculate the weight of the
fish school for verifying whether the weight has increased after the execution of
the three movements in the last iteration. If the school became heavier, then the
fish school will contract, i.e., it intensifies the exploitation capability. Otherwise,
it expands the radius of the swarm, thus increasing the exploration behavior.
This last movement gives an advantage over other optimization algorithms in
the search processes since it self-regulates the balance between exploration or
exploitation during the search process.

2.3 Artificial Bee Colony

Artificial Been Colony (ABC) algorithm was inspired by the collective behavior
that the bees do in searching for source foods, collecting and deciding when
any source food has to be abandoned [5]. Waggle Dance is a communicating
mechanism in which the bees use to explain where there are food sources and
how distant it is from the niche.

In a nest, the bees are organized in three different groups: employed, onlookers
and scouts. Employed bees use Waggle Dance to guide the onlooker bees telling
them the coordinates (direction and distance) and the quality of each source
food. Thus, the onlooker bees decide whether it is worth to explore the food
source or not. In the case of choosing one the food source, the onlookers will
keep extracting food until there is not more food or it is not worth to keep
extracting food. Otherwise, the onlookers will be waiting until a new food source
arises. Scouts bees are responsible for searching new food source randomly. The
number of food sources (employed or onlooker bees) in ABC algorithm is equal
to the number of solutions in the swarm.

2.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an algorithm which mimics the behavior
of the flock of birds [4]. It is a population-based algorithm with simple reac-
tive agents (particles), where the position of each particle represents a possible
solution for an optimization problem. Each particle has four attributes. A vec-
tor describing the position in the search-space; a velocity vector, responsible for
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guiding and controlling the movement of the particles; the best position that the
particles found along the search process; and the best position obtained from
the neighbor particles.

Focusing on improving PSO algorithm, studies have been proposing new com-
munication typologies to overcome some limitations. A communication topology
defines how the particles could exchange information with each other, i.e., it
determines the neighborhood of the particles. The well-known topology is the
global. In the Global topology, particles of the swarm are allowed to communi-
cate to all the other particles. Thus, the whole flock can share the same best
position gbest found so far by the best particle. The distribution of the global
knowledge leads to a fast convergence, but in some cases can lead to a premature
convergence.

Local topologies, such as the ring, have been developed to avoid these stag-
nation processes. In this topology, the population is not fully connected, and
there appear various sub-groups, each one running as a separate swarm with its
own local neighborhood best. Inside each neighborhood, there is the best particle
called lbest. Since the particles are loosely connected, the speed of convergence
is significantly reduced. Thus, it avoids the algorithm to get trapped in local
minima easily.

Finally, the movement of each particle is defined by a velocity function, for
instance, inertia and Clerc factor construction [17].

3 Proposal of the Hybrid Algorithms

In this paper, we assess three swarm-based algorithms to optimize the SVR
parameters, ε and C, and Kernel parameter γ, which controls the bandwidth of
the Radial Basis Function (RBF). For each case, we have a hybrid model, named
FSS-SVR, ABC-SVR, PSO/Local-SVR and PSO/Global-SVR. We deployed the
Root Mean Squared Error (RMSE) as the algorithm evaluation metrics since it
represents the standard deviation value of the residuals of the regression (R2).
In additional, RMSE measures how separate the residuals are distributed from
the real data and its value is always a number between 0 and 1, 0% to 100%
[18].

PSO has an excellent ability for performing exploitation in the search process,
achieving high precision in search-spaces with few local optima. Thus, we expect
to obtain a higher precision for the values of the SVR parameters when per-
forming the hybridization of this algorithm. We chose to use the global and local
communication topologies. For the velocity function, we used the constriction
factor [17].

The ABC algorithm can present high performance when solving problems
in multi-modal spaces because it has mechanisms to divide the swarm into two
groups. One is responsible for exploring promising spots in the search space, and
then the second aims to extract as much information as possible (i.e., exploita-
tion) [15].

Finally, in the third attempt, we used the FSS because it has the capability
of automatically change from exploitation to exploration and vice-versa. Thus, it
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could get off from minimal and maximal local more efficiently. For the ABC and
FSS, we expect to have a better exploration of the values of the SVR parameters
in the search-space. Algorithm 1 shows how the hybridized algorithms work.

Algorithm 1. Pseudo-code of the hybridized algorithms - PSO-SVR/ABC-
SVR/FSS-SVR.
0: Initialize the swarm algorithm parameters.
1: while stopping condition is not achieved do
1: Set ε, C (Equation (1)) and γ (Equation (2)) to SVR for predicting the Concrete

Compress Strength.
1: Generate the Support Vectors according to Equation (1).
1: Calculate the Root Mean Squared Error (fitness).
2: end while
2: Return optimal solution.

4 Experimental Setup

We used a real-world data set to compare the hybrid proposed algorithms
(FSS-SVR, ABC-SVR, PSO/Local-SVR and PSO/Global-SVR), called Concrete
Compressive Strength. This is a nonparametric data set, and the goal is to pre-
dict the concrete compressive strength [7].

The dictionary of the data set is described in Table 1. We used the data
normalization approach to set all the data in the same scale, between 0.15 and
0.85.

Table 1. Concrete Compressive Strength (CCS) - data set dictionary

Data type Name Measurement Descriptions

Double Cement KG for m3 Input

Double Blast Furnace Slag KG for m3 Input

Double Fly Ash KG for m3 Input

Double Water KG for m3 Input

Double Superplasticizer KG for m3 Input

Double Coarse Aggregate KG for m3 Input

Double Fine Aggregate KG for m3 Input

Double Age Day (1 365) Input

Double CCS MPa Output

We used the following values for the SVR parameters and for the FSS-SVR,
ABC-SVR, PSO/Local-SVR and PSO/Global-SVR approaches:
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– SVR canonical: ε = 1.0E−12, C = 1 and γ = 0.01.
– PSO/Global-SVR, PSO/Local-SVR, ABC-SVR and FSS-SVR: ε [1.0E−13,

10.0], C [1.0E−10, 50] and γ [0.0001, 1].

We executed all the experiments as follows. We performed 30 indepen-
dent executions for each algorithm, SVR, FSS-SVR, ABC-SVR, PSO/Local-
SVR and PSO/Global-SVR. We used 30 particles for the PSO/Global-SVR
and PSO/Local-SVR. We deployed 15 onlooker bees and 15 employed bees for
ABC-SVR. We used 30 fish for the FSS-SVR. We run 100 iterations consid-
ering the three dimensions for all the algorithms. For PSO/Global-SVR and
PSO/Local-SVR, we used: the constriction factor equal to 0.72984; C1 and C2

equal to 2.05. For the ABC-SVR we used 30 tries for each food source; 40
the maximum limit for each employed bee to keep searching for food in each
food sources. For the FSS-SVR, we used the following values for the param-
eters: Weightinitial [300,600]; Weightfinal [2000,5000]; Stepindi and Stepvol

[1.0,0.00001]. The dataset was divided into two parts, 70%, and 30%. 70% of
the samples were used for training process, and 30% were used for testing and
validating the proposed algorithms. In each iteration, all the proposed algorithms
do the training, testing and validating processes. Besides, SVR focuses on finding
the optimal regression for a given a combination of parameters.

5 Results

We organized the obtained results by experiments in visual graphics, conver-
gence, box-plot and predicted versus real data charts. We also provide one table
containing the descriptive statistical values. Besides, since all the results obtained
by the algorithms after 30 executions did not follow a normal distribution, we
applied the Wilcoxon test for comparing which hybrid technique performed bet-
ter.

At first, we evaluated the canonical version of the SVR and we obtained Root
Mean Squared Error (RMSE) equal to 0.1014. It is worthy to highlight that there
is no standard deviation since the SVR is deterministic for a predefined data set.
However, since we perform a stochastic optimization process in the FSS-SVR,
ABC-SVR, PSO/Local-SVR and PSO/Global-SVR cases, the RMSE can vary
for each simulation. We obtained an average RMSE of 0.02483, 0.02469, 0.02488
and 0.02486 for FSS-SVR, ABC-SVR, PSO/Local-SVR and PSO/Global-SVR,
respectively. The Fig. 1 shows the box-plot of the RMSE and Table 2 presents
all the statistical indicators, such as the minimal, maximal, median, mean and
standard deviation for the RMSE. Since the canonic SVR is deterministic, all
the indicators assume 0.1014 and the standard deviation is 0. Besides, given that
the canonical SVR achieved a lousy result with no variance, we only consider
the other assessed algorithms in the further analysis.

We also analyzed the convergence of the optimization algorithms. The results
presented in Fig. 2 are for the minimal error obtained for FSS-SVR = 0.02458,
ABC-SVR = 0.02396, PSO/Local-SVR = 0.02478 and PSO/Global-SVR =
0.02476. One can observe that, as it was expected, PSO/Global-SVR converged
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Fig. 1. Box-plot of the errors of the FSS-SVR, ABC-SVR, PSO/Local-SVR and
PSO/Global-SVR

faster than the other ones and got stuck after five iterations. Differently for
the PSO/Global-SVR, the rest of the hybridized algorithms were able to find
better solutions in the search space. ABC-SVR converged after 28 iterations,
PSO/Local-SVR at 39 iterations and FSS-SVR after 58 iterations. As previ-
ously mentioned, PSO Local and Global, ABC and FSS have different behaviors
in the search process. PSO/Global converges faster and focuses more on the
exploitation of promising areas of the search space. However, even ABC is good
at multi-modal problems, it had a similar behavior to PSO with global topol-
ogy converging to an optimal point fast, but it found better results than PSO.
PSO/Local and FSS were the slowest in converging because they spent more
time exploring the search space aiming to find promising areas. In this last case,
we highlight the FSS since it explored more the search space, thus resulting in
a better performance than PSO/Local.

Table 2. SVR, FSS-SVR, ABC-SVR, PSO/Local-SVR, PSO/Global-SVR - statistical
results

Metric SVR FSS-SVR ABC-SVR PSO/Local-SVR PSO/Global-SVR

Minimal 0.1014 0.02458 0.02396 0.02478 0.02476

Maximal 0.1014 0.02487 0.02491 0.02491 0.02491

Median 0.1014 0.02484 0.02484 0.02491 0.02491

Mean 0.1014 0.02483 0.02469 0.02488 0.02487

Stand. Dev 0 5.14E−05 0.000322932 4.93E−05 6.34E−05
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Fig. 2. Convergence graphic of the proposed algorithms

We analyze the real data versus estimated data generated by FSS-SVR, ABC-
SVR, PSO/Local-SVR and PSO/Global-SVR. The results presented in Fig. 3
were obtained from the same executions used to compose Fig. 2. It is worthy to
mention that a perfect regression occurs when it is possible to draw a straight
perpendicular between the data. As it can be noted, Fig. 3(a) and (b) from FSS-
SVR and ABC-SVR have more points near to the straight, which means that
both of them overcame the hybridized algorithms based on PSO, i.e., PSO/Local-
SVR and PSO/Global-SVR, Fig. 3(c) and (d), respectively.

Finally, we present the result obtained for the nonparametric Wilcoxon
hypothesis test for the RMSE. Since Kolmogorov-Smirnov test indicated that
the results do not fit a Gaussian distribution [19], we used the signed ranked
Wilcoxon nonparametric test. We tested the results following this order: FSS-
SVR x ABC-SVR; FSS-SVR x PSO/Local-SVR; FSS-SVR x PSO/Global-SVR;
ABC-SVR x PSO/Local-SVR; ABC-SVR x PSO/Global-SVR. For the null
hypothesis (h0), we verify if the algorithms are identical, and for alternative
hypothesis (h1), if one of the algorithms has a lower median value than the
other one. Therefore, we obtained the p-value equal to 0.761796252, 0.00017591,
0.007492762, 0.000103564 and 0.001319936, for FSS-SVR x ABC-SVR; FSS-SVR
x PSO/Local-SVR; FSS-SVR x PSO/Global-SVR; ABC-SVR x PSO/Local-
SVR; ABC-SVR x PSO/Global-SVR, respectively. Thus, we can conclude that
all the hybridized techniques overperformed the canonical SVR. Besides, there is
no statistical difference between FSS-SVR and ABC-SVR, and they were better
than PSO/Local-SVR and PSO/Global-SVR for considering a 95% of confidence
level.
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Fig. 3. Comparison between all the results obtained by the SVR, PSO-SVR and FSS-
SVR

6 Conclusion

We demonstrated that it is possible to use swarm-based algorithms, such as
FSS, ABC, and PSO, in a hybridization process to accurately find the suitable
values for the SVR parameters. The results showed an excellent accuracy gain
for estimating concrete compression strength (CCS). The root mean squared
error obtained after the hybridization is smaller than the original SVR, and the
FSS-SVR and ABC-SVR achieved the best results. For future works, we intend
to analyze how the SVR parameters influence the outcomes of the predictions
and plan to assess the utilization of another Kernel functions, such as polynomial
and tangent sigmoid kernels.
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Abstract. Medical literature suffers from inconsistencies between
reported findings that answer the same research question. This paper
introduces an automated two-phase contradiction detection model that
integrates semantic properties as input features to a Learning-to-Rank
framework, to accurately identify key findings of a research article. It also
relies on negation, antonyms and similarity measures to detect contra-
dictions between findings. The proposed technique is implemented and
tested on a publicly available contradiction corpus 259 manually anno-
tated abstracts. The performance is compared based on recall, precision
and F-measure. Experimental evaluations prove the utility of the model
and its contribution to the contradiction classification and extraction
task.
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1 Introduction

In the last decade, there was a substantial increase in the total number of medi-
cal research publications worldwide. Most of the literature publish results on the
effectiveness of clinical interventions, and despite the similarity of the scientific
experiment designs, not all outcomes are in agreement [12]. Whether published
findings are consensual, complimentary, or contradictory facts, many of them
get approved, updated or replaced accordingly [23]. Given the varying nature
of published findings, it is difficult to fairly assess evidence-based knowledge
within articles. More importantly, differences between research outcomes should
be highlighted so that further studies do not build assumptions and/or con-
clusions on prior research that have since been disapproved, and are not valid
anymore.

In extreme cases, some published evidence-based facts even get reversed.
Prasad et al. [24], reviewed 363 articles published in one high impact factor
c© Springer International Publishing AG, part of Springer Nature 2018
P. Perner (Ed.): MLDM 2018, LNAI 10934, pp. 138–148, 2018.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96136-1_12&domain=pdf


Automated Contradiction Detection in Biomedical Literature 139

journal investigating various established medical practices. While 138 (38%) con-
firmed the practices, 146 (40.2%) found them ineffective and 79 (27.3%) were
inconclusive. For example, four studies contradicted the administration of the
Aprotinin drug, widely used for treatment in post cardiac surgeries.

Such misinformation, or disinformation, create controversy that is important
to researchers and practitioners interested in finding evidence-based answers to
clinical queries; whether it is for the benefit of their patients or for the sake
of conducting systematic reviews. It is also of great significance to both Com-
parative Effectiveness Research (CER) and the Precision Medicine (PM) com-
munities. The comparative effectiveness research is interested in the analysis
of medical interventions by comparing their benefits and drawbacks, to reach
informed evidence-based decisions for a better clinical practice [29]. While Pre-
cision Medicine also aims at improving the health care system, PM is different
than CRM as it takes into account the genetic, environmental and lifestyle dif-
ferences between individuals [14]. Highlighting different outcomes to the same
medical practice supports the PM claims that there is no “one-size-fits-all” treat-
ment strategy.

However, with the high rate of growth in scientific publications, the task of
finding answers, interpreting outcomes and validating them becomes tedious,
exhausting and time consuming, even in a specific sub-domain. In result, several
text mining tools and frameworks were built and employed to solve the infor-
mation extraction problem, automatically or semi-automatically, for a variety
of research applications. Biomedical text mining faces a number of challenges;
the enormous number of existing publications, the unstructured nature of text,
and most challengingly, the ambiguity of reporting biomedical or clinical results.
Findings can be expressed in long, context-dependent sentences with the usage
of a wide variety of terminology.

Contradiction Detection in text is still a relatively new area of research. As
in other Natural Language Processing (NLP) sub-domains, it requires a multi-
disciplinary approach involving text mining, sentiment analysis, opinion mining,
knowledge retrieval and information extraction. This paper focuses on the prob-
lem of extracting contradicting findings in biomedical texts. In this context,
we propose an automated contradiction detection framework that adapts and
extends existing NLP tools. The proposed model takes advantage of a recently
published corpus, constructed for the same purpose, to validate its accuracy.

2 Related Work

Despite the fact that more research has been conducted on text entailment rather
than contradiction detection, the development of two contradiction corporas
encouraged more research into the domain [9,20,26]. The corporas were based
on direct negation and paraphrasing of sentences from the PASCAL Recognizing
Textual Entailment (RTE) dataset [11]. However, contradiction analysis remains
a challenging task, mainly due to the different ways in which contradictions can
appear (numeric mismatching, negations, contrastive sentences, etc.).
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The importance of extracting contradictions has been exploited in other
domains, most commonly in news and rumors text processing. Due to the generic
type of negation found in normal text, it is difficult to adapt any of the for-
mer models to the biomedical domain directly. The language used to express
biomedical facts is usually rich in clinical semantics and conceptual overlaps,
and involves complex sentence structures. To the best of our knowledge, there
has been minimal research conducted on the biomedical contradiction analysis.

In 2011, Sarafraz et al. [27] investigated both rule based and machine learn-
ing methods to identify negated molecular events through lexical, syntactic and
semantic features, the model was evaluated on the BioNLP09 challenge corpus.
Alamri et al. [2,3] explored the use of four features: negation, directionality senti-
ment and uni+bi-grams combined with an SVM classifier, to extract contrasted
findings reported in cardiovascular research literature. More recently, Preum et
al. [25] presented Preclude, a rule-based system that highlights conflicts in well-
ness advice, found in on-line health forums. The system constructs a polarity
lexicon from verbs , in the training set, and their synonyms using WordNet, for
labeling actions found in text as positive or negative. In another attempt to dis-
cover the ambiguities in the biomedical literature, de Silva et al. [28] proposed
an ontology-based system to extract inconsistencies found in miRNA research
articles in the PubMed repository. The system relies on OLLIE “Open Language
Learning for Information Extraction” framework to extract all relevant triples
(subject, object, and relationship) from abstracts. Triple entries are then com-
pared against each other to find inconsistencies, based on an oppositeness metric
suggested by the authors.

3 Dataset

The lack of annotated data has led to the unavailability of comparison and eval-
uation of contradiction detection systems in the biomedical literature. However,
this may change with the recent availability of Manual Contradiction Corpus
(ManConCorpus), a corpora of contradictory research claims1. The corpus is
constructed out of 24 systematic reviews on four important cardiovascular dis-
ease topics: Cardiomyopathy, Coronary artery, Hypertensive and Heart failure.
Each review article is mapped to a closed PICO (Population, Intervention, Com-
parison and Outcome) question that could be answered only by Yes or No. The
mapping process was conducted manually by a medical expert, after reviewing all
research abstracts of studies included in the systematic review. These abstracts
include research claims with answers to the questions. A research claim is a
one-sentence summary of the research findings that the authors find important,
either to affirm old information or to introduce new ones. Two annotators were
asked separately to find one correct claim per abstract and label it YES, if it
positively answers the question and NO otherwise. It is worth mentioning that
despite the fact that multiple sentences in the abstract might hold the answer
1 Corpus available at http://staffwww.dcs.shef.ac.uk/people/M.Stevenson/resources/

bio contradictions/.

http://staffwww.dcs.shef.ac.uk/people/M.Stevenson/resources/bio_contradictions/
http://staffwww.dcs.shef.ac.uk/people/M.Stevenson/resources/bio_contradictions/
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to the query, only the most informative one is chosen as per the annotator’s
opinion. The corpus has a total of 259 abstracts, out of which 180 introduce pos-
itive claims and 79 introduce negative claims. All claims included in the corpus
are either evaluative or causal. The former is an assessment of the biomedical
concept presented in the research topped by a judgment, while the latter is a
statement that describes the relation type between two concepts and whether
one affects the other or not. More details on the annotation process and the
corpus statistics can be found in [4].

In literature, there is no standard definition of ‘contradiction’, and it is
usually task-dependent according to the nature of the contradiction instances.
Therefore, we adopt the authors’ definition of contradiction that better matches
the corpus and human intuitions: “Two texts, T1 and T2, are said to contradict
when, for a given fact F, information inferred about F from T1 is unlikely to
be true at the same time as information about F inferred from T2”. As per the
definition, if both a positive and a negative claim answer the same query, they
are considered contradictory as shown in the example in Fig. 1.

Fig. 1. An example of two contradictory claims found in literature that answer the
query: In women with pre-eclampsia, does treatment with L-Arginine, compared to a
placebo, reduce blood pressure?

4 Methods

Identifying inconsistencies in text is a two-phase problem, claim retrieval and
claim assertion. During the first phase, we need to identify potential sentences
relevant to the query. In the claim assertion phase, we have to evaluate whether
sentences infer text entailment or contradiction.

4.1 Identification of Abstract Claims

Finding relevant sentences that answer the query is a key component in the
biomedical contradiction detection system, as the performance of the system
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is dependent on the accuracy of the extracted key phrase. Several methods and
techniques have been employed for passage retrieval in general, and answer iden-
tification in specific. Nevertheless, it still remains a challenge in the biomedical
language processing field, mainly due to the complex nature of the text. In this
research, we address the claim extraction process as a ranking problem, where
each sentence in the input text is scored according to its relevance to the query.

Input Preprocessing. We split all abstract text included in the corpus into
sentences using The Natural Language Toolkit (NLTK). All sentences with less
than three words are considered an error of the splitting process, and thus elim-
inated. Afterwards, a set of potential claims that answer the query correctly
is compiled for each abstract. As in any text mining application, the input
text might be totally unstructured or semi-structured, and the same applies
for literature abstracts. For slightly structured abstracts, i.e abstracts where
text is divided into subsections such as Title, Introduction/Background, Meth-
ods/Aims, Results, and Conclusion, we take advantage of this information and
include all sentences within the headings, Results and Conclusion, as candi-
date sentences. If the text is unstructured, all sentences in the second half of the
abstract are included the candidate set, following the assumption that important
findings are most probably reported by the end of the abstract. The candidate
set is filtered out from any stop words, symbols and punctuations. All 24 PICO
questions went through the same filtering process as the candidate sentence col-
lection.

Feature Extraction. A fixed length feature vector representing sentences
included in the candidate set is derived. These features combine both semantic
and syntactic properties of the sentence. They capture relevance to the query, as
well as relatedness to domain-specific concepts. In our model, we rely on easy-
to-compute features, which have proven successful in other retrieval tasks. All
of the following features are extracted for each of the candidate sentences.

1. Sentence Length. The count of terms per sentence after removal of stop words.
2. Sentence Location. The relative position of the sentence within the abstract

as it highlights the importance of a sentence. The feature is calculated as the
location divided by the total number of sentences. However, instead of using
the original location of the sentence, we use its position in the candidate set.

3. Term Overlap. This measures the number of terms that are found in both the
query and the sentence, after removing of stopping words, and also stemming
all terms using Porter stemmer [22].

4. Synonyms Overlap. The fraction of overlap between the query terms and
sentence terms or their synonyms fetched from WordNet.

5. BM25 score. The Okapi BM25 framework is a Bag-of-Words model with a
collection of scoring functions combined. For a query Q containing n terms
{q1, q2, q3, ...., qn} and a sentence length S, the similarity score betweenQ and
S is calculated as
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BM25score(S,Q) =
n∑

i=1

IDF(qi) · f(qi, S) · (k1 + 1)

f(qi, S) + k1 · (1 − b + b · |S|
avgSl )

where IDF is the inverse document frequency, avgSl is the average sentence
length and k -b are two tuning parameters set to 0.75 and 1.5 respectively in
our implementation.

6. Word Embeddings. Cosine similarity between query and candidate sentences’
word vectors pre-trained using a set of over 10 million PubMed abstracts.

The first four features are a subset of the features suggested and used by Metzler
and Kanungos work on text summarization [18]. The last two features give more
insight into the context of the sentences. In general, word embeddings are a vector
representation of words co-occurrences that regard words as contexts, and hence
gives a better apprehension of the word meanings. The vectors are generated
from a large collection of data through Neural Networks. We take advantage
of the word vectors, provided by the BioASQ challenge team [13], trained on a
corpus of 10,876,004 English abstracts of biomedical articles from PubMed with
1,701,632 distinct words (types). The implementation of the above features was
accomplished using Summaryrank2, a reference package released for a similar
task [7,30].

Sentence Ranking. As mentioned above, there might be multiple sentences
that answer the query, but only the most suitable should be extracted. For
example, while the next two phrases positively answer the question, only the
second one is chosen as a claim. In patients with hypertension, does treatment
with ACE inhibitors, compared to placebo, reduce risk of cardiovascular event or
improve blood pressure?

– The vascular pathophysiologic alterations of ISH-a decreased aortic
distensibility-can be improved with long-term lisinopril treatment, whereas
values deteriorate further in placebo-treated subjects. [PMID: 11336102][
assertion= YES]

– These results, in one of the first studies including subjects with previously
untreated ISH only, indicate that lisinopril treatment might favorably influ-
ence the cardiovascular risk of ISH. [PMID: 11336102][ assertion= YES]

Learning to Rank (LTR) is better suited for such a task since it differs from
traditional machine learning techniques; the latter solves it as a classification
problem while the aim is an optimal order of the instances in the list [17]. In
our research, we evaluated two of the popular state-of-art learning to rank algo-
rithms,LambdaRank and LambdaMART. LambdaRank is a succesor of RankNet
that only uses the gradient of the costs instead of the model score. LambdaMART
benefits from the strengths of MART, Multiple Additive Regression Trees, and
LambdaRank by combining regression trees boosting, used in MART with a
cost function derived from LambdaRank [5]. Our proposed model implements
2 https://github.com/rmit-ir/SummaryRank.

https://github.com/rmit-ir/SummaryRank
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a LambdaMART function, because it outperformed lambdaRank, with train-
ing metric NDCG@10. The Normalized Discounted Cumulative Gain (NDCG)
is a cumulative measure of the ranking quality truncated at a particular rank
level [15]. The model is trained on the generated feature vectors using the
RankLib library3 and the top ranked answer sentence is regarded as the out-
put.

4.2 Contradiction Detection

The contradiction detection component is not regarded as a yes/no question
answering system, but more as a semantic relation analyzer between two sen-
tences. The system determines whether the input text has an entailment or
contradictory relation.

Query Reformulation. This step aims at modifying the PICO-format question
into a reduced list of keywords in a declarative form. In our approach, we consider
each word in the question as a keyword unless it is a stop word, question word,
or the substring “compared to placebo” is removed as it adds no value when
identifying entailment or contradiction. Following that, we apply ClausIE [10],
an open information extractor, to identify relations and corresponding arguments
found in input question.

Features. Three features are used to identify the assertion values of claims.

Negation. The presence of negation is still the most effective feature of identi-
fying oppositeness. Instead of relying only on the odd count of negation words
in the sentence, our proposed model uses NegEx [6]. NegEx takes as input a
keyword/concept and a sentence, and uses regular expressions and a predefined
trigger word list to decide whether the concept is negated or affirmed. This mod-
ule iterates three times over each question triple (left argument, relation, right
argument).

Antonyms. The model includes direct and indirect antonyms; for two words
w1 and w2, it checks if w1 is an antonym of w2 or an antonym of any of its
synonyms and vice versa. Instead of comparing raw words, we use lemmas of
words for better detection. However, even though the occurrence of antonym
pairs in text is a direct and reliable indication of contradiction, it is limited
by the low number of antonym pairs in current lexicons. Trying to overcome
this limitation, we expand the antonym coverage by using two lexical resources,
WordNet [19] and VerbOcean [8]. Below is an example that contains an antonym
in ManConCorpus:

3 https://sourceforge.net/p/lemur/wiki/RankLib/.

https://sourceforge.net/p/lemur/wiki/RankLib/
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In women with pre-eclampsia, does treatment with L Arginine, compared to
placebo, reduce blood pressure or pre-eclampsia

- L-Arginine load in pregnant women is associated with increased nitric oxide
(NO) production and hypotension. [PMID: 10486782 - Assertion value: NO]

In this example, ‘reduce’ and ‘increased’ are not direct antonyms like ‘good’
and ‘bad’ but are still detected in model. This feature is computed as the count
of antonyms per sentence.

Alignment. It is also important to include features that model text entailment.
Alignment between sentences relies on mapping dependency graphs of two sen-
tences with each other. The algorithm uses SpaCy4 to generate dependencies,
and a built-in similarity score is calculated for each word node in the query
related to a similar one in the claim. Finally, the total alignment score is the
sum of all output scores.

Classification. A linear support vector machine classifier is used to determine
the relation of each input sentence, based on the output feature values. The
model implements the classifier using the Scikit library [21].

5 Results

5.1 Claim Extraction Results

To evaluate the performance of the Learning to Rank framework and the effi-
ciency of the features employed, we conduct two experiments. We first test the
model using the first 5 features mentioned in Sect. 4.1 and then we repeat the test
after adding the domain-based features covered by the word embedding trained
on biomedical articles. For that purpose, we split the ManConCorpus into two
sets for training and testing purposes. The training set consists of all abstracts
with structured format, while the test set includes all unstructured abstracts.
After the preprocessing phase, the candidate set has a total of 1212 and 339 sen-
tences for training and testing, respectively. The test set includes 69 answers to
only 15 of the 24 queries, while the training set covers all queries with 190 correct
claims. Table 1 shows the performance results of the claim selection component.
The authors in [1] relied on lexical similarity and a Z-score that computes the
sentence relevance, with respect to the distribution of similarity scores of other
sentences across the dataset. However, While this scoring function contributes
to precision, it also affects the recall performance metric. The robustness of our
proposed answer detection component relies on the combination of semantic and
context features, with an effective ranking algorithm that ranks the sentences
according to relevancy, instead of only classifying them as relevant/irrelevant.

4 https://spacy.io/.

https://spacy.io/
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Table 1. Claim extraction results.

Precision Recall F1

Answer Non-answer Answer Non-answer Answer Non-answer

AlAmri [1] 0.56 0.92 0.57 0.92 0.56 0.92

Model (general features) 0.92 1 1 0.67 0.96 0.80

Model (general & domain-based features) 0.94 1 1 0.75 0.96 0.86

5.2 Contradiction Detection Results

Performance comparison between models is a non-trivial task, therefore we
deploy the same evaluation metrics as in [3]. Since there is a bias in the distri-
bution of YES/NO classes in the corpus, the results are best reported through
precision, recall and F1. The baseline performance is measured by annotating all
claims with the majority class YES. All evaluation results are shown in Table 2.
Our model was able to improve the accuracy of detecting contradictions, namely
the NO category, and still maintain good results regarding the entailment. The
achieved improvement is due to the enhanced negation detection through the
NegEx framework, and the inclusion of antonyms.

Table 2. Contradiction detection results.

Precision Recall F1

Entailment Contradiction Entailment Contradiction Entailment Contradiction

Baseline [3] 0.69 0.0 1.0 0 0.82 0.0

AlAmri [3] 0.85 0.80 0.94 0.60 0.89 0.69

Proposed model 0.95 0.85 0.93 0.89 0.94 0.87

6 Conclusions and Future Work

In this paper, we are interested in identifying conflicting findings reported in
biomedical literature. We focus on information found in the abstracts as it sum-
marizes all research methodology and conclusion, and conveys important findings
without redundancy. It divides the extraction process into two phases, finding
the relevant sentences and detecting contradiction. The model combines both
semantic and domain-bases features, to enhance the claim detection process. It
relies on an SVM classifier that integrates negation, antonyms and alignment
scoring to detect conflicting statements. The evaluation results are very promis-
ing, specifically in the contradiction detection component, achieving better per-
formance than other systems.

The results may be influenced by the small size of ManConCorpus, and hence
further investigations are needed by scaling up the evaluation of the model on
much larger corpora. Furthermore, a numeric mismatch in-between sentences is
not regarded as a contradiction in the proposed system, since there are no contra-
diction instances of that type available in the corpus. However, when comparing
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clinical evidence found in biomedical literature, specifically when reporting rec-
ommended doses, considering variations in numeric values is important. Other
possible extensions to the proposed model include incorporating domain knowl-
edge resources, such as UMLS, Unified Medical Language System, and possibly
integrating contrasting word embeddings [16].
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matthias.feiler@uzh.ch

Abstract. In this paper we develop a new algorithm for automatic tax-
onomy construction from a text corpus. In contrast to existing work, our
objective is not to develop a general purpose lexicon or ontology but to
identify the structure in a time–ordered sequence of documents. The idea
is to identify “lead” words by which we are able to follow the common
thread in the public discourse on a specific topic. Our taxonomy rep-
resents the backbone of the discourse (including names of protagonists
and places) and may change over time. It is thus less rigid and universal
than a lexicon and instead targets relationships that are valid in a given
context. We present an example to illustrate the idea.

Keywords: Taxonomy learning · Topic tracking · On-line discourse

1 Introduction

Public attention to a topic has been shown to evolve in cycles [4]. Being able to
determine the current phase within a cycle is useful both from an analytical and a
practical viewpoint. Our motivation comes from finance where the maturity of a
topic provides an indication of the extent to which relevant information has been
priced in, i.e. reflected in the prices of traded assets. The concrete objective is to
track the creation and evolution of themes in financial blogs. Blog conversations
are by nature asynchronous and fragmented. The devices available in direct
conversations for coordinating turns–of–talk [20] are not present. Participants
need to track topical markers in order to follow the thread of a discussion.
Our aim is to identify a temporary structure (a taxonomy) that supports the
coherence of ideas and the emergence of a theme over many blogs.

One of the prerequisites for the formation of an over–arching stream of ideas
is that blog participants are able to “connect the dots”. Stories of universal truth
relate to widely shared values or commonly understood situations. Being able
to see the relation requires some degree of abstraction as the concrete format in
which the story is told is unlikely to be identical over time. In a series of studies it
has been shown that the human mind refers to a story in terms of a schema that
contains abstract knowledge about a situation [9]. What are the word hierarchies
that make certain schemas salient in the reader’s mind? While fictional stories
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often follow pre–defined scripts we are unlikely to find a “screenplay” in online–
blogs. By contrast, the common thread seems to emerge spontaneously out of
nothing. Moreover, blog communication is subject to social influence [23]: a
path dependency arises if an initial exchange of ideas is deemed relevant by
some bloggers which subsequently form an in–group of people sharing those
ideas. Later entrants may be forced to adjust their own contributions in order
to conform with the existing in–group. This significantly affects the universality
of the learned taxonomy.

2 Related Work

A large body of literature exists on the problem of automatic taxonomy con-
struction which can be broadly classified in heuristic, rule–based (see e.g. [7,18])
or statistical methods, e.g. [3,6]. The main objective is to generate a universally
valid semantic lexicon complementing manual constructions such as WordNet
[17]. The motivation behind taxonomies is to be able to leverage on an existing
knowledge base through the principle of inheritance: the information structure
of root words (hypernyms) is transferred to subordinates (hyponyms). On the
other hand, it is widely agreed that semantic relations are not unique [14] which
has led to the development of domain specific taxonomies that are constructed
from scratch [15,24].

A common design principle is to start by extracting hypernyms from raw
text e.g. by using a bootstrapping technique that starts with a root concept
and a doubly anchored dependency pattern [16]. The learned concepts give
rise to a (densely connected) network which is subsequently filtered and sim-
plified to induce a taxonomy. For example Chu-Liu/Edmond’s algorithm may
be used to find a spanning arborescence which, in turn, gives rise to a taxonomy
based on the edge weights in the original graph [1,5]. In this work, the starting
point is a co–occurrence matrix of terms computed over a domain–specific cor-
pus. The motivation behind this choice comes conversation studies. The idea is
that mutual understanding in human conversations is established “on–the–fly”
through the creation of text worlds [8], i.e. shared mental representations of the
situation at hand. We define text worlds as context–specific taxonomies; in fact,
local word hierarchy would be a more suitable term for this temporary construc-
tion. The idea is to be able to follow a common thread in (public) discourse
by identifying the hierarchy of keywords used in the conversation. Incidentally,
higher–ranked words will correspond to more common (or abstract) ideas which
brings this definition of a text world close to the notion of a taxonomy.

3 Taxonomy Generation

When people communicate, they rely on conventions in order to understand
and produce meaning. Meaning is constructed in the mind of the listener using
language as an input from which conceptual representations are formed. These
linguistic inputs typically under–specify the concepts intended by the speaker
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and rely on the listener’s ability to contribute the context needed to make a
correct inference. In rational interaction models the speaker and listener apply
(and expect) a common logic, or cooperative principle [11] to organize their
speech acts.

The principle has been spelled out into four conversational maxims, the
maxim of quality (truthfulness), quantity (informativeness), relevance and man-
ner (conciseness). Mutual agreement on the maxims allow the speaker and lis-
tener to enrich an utterance by so–called implicatures which suggest an exten-
sion or modification of meaning beyond the literal interpretation, such as in S1:
“Will he come?” S2: “His car broke down.” which is decodable by S1 into “He
won’t.” by assuming that S2 did not choose the answer if it was irrelevant. Also,
S2 supposes that S1 has the background information that if cars brake down,
people frequently do not manage to keep appointments. This is referred to as
the common ground [2,22]. The interactive alignment model [19] emphasizes the
importance of tacit coordination and implicit common ground. According to
the model, grounding occurs automatically and the speakers’ particular choices
(i.e. which information to foreground) lead to an alignment of their (mental)
representations.

Following a long tradition [21], conversation analysts study the way an inter-
action order [10] is established in practice, in particular how people take turns
at talk, how they deal with overlaps and interruptions and how the sequence of
utterances (and more general [speech] actions) is organized. Conversation anal-
ysis argues that the “...meaning of an action is heavily shaped by the sequence
of actions from which it emerges, and that the social context is dynamically cre-
ated [...] through the sequential organization of interaction”, see [13], p.223. Any
statement has to signal understanding of the preceding statements and prepare
the floor for the next in order to establish coherence. This means that “each sen-
tence [...] must contain some direct or indirect indication as to how it fits into
the stream of talk”, see [12], p.119. Two minds have to collaborate in order to
“make progress” on the subject of their discussion. In the interactive alignment
model this process occurs with a minimal amount of modeling what others know.
According to the model, grounding occurs automatically through the speakers’
particular choices i.e. which information to foreground. In this paper, we aim at
identifying the words that have been foregrounded in a corpus of financial blogs.

3.1 An Algorithm for Taxonomy Extraction

Step 0 of our construction is to reduce and slice the corpus using a simple
keyword filter and suitable time–intervals (e.g. a monthly grid). This generates
a time–ordered sequence of sub–corpora containing documents related to a given
area of interest. We represent every sub–corpus as a bag of words using a term–
document matrix d. d is a n × m boolean matrix indicating the presence of a
given term in a document where n is the number of terms (only important terms
are included according to a global, i.e. topic–unspecific, tf–idf measure) and m
is the number of documents in the sub–corpus. We aggregate over documents by
setting C = d dT which is the co–occurrence matrix of terms in the sub–corpus.
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C forms the basis for the construction of our taxonomy T which proceeds in
three steps:

1. Normalization of the rows of C enables us to interpret the entries of the
co–occurrence matrix as intensities of a flow from every row term to the set
of column terms in C. The resulting row–stochastic matrix A has a natural
interpretation as the adjacency matrix of a directed graph representing the
network flow originating at the term–nodes. Every edge in the resulting di–
graph may be thought of as a reference that one term makes to another.

2. The nodes of the directed graph are rank–ordered by their in-degree (column
sum) and the matrix A is re–arranged accordingly. We obtain: PTAP where
P is the permutation matrix corresponding to the sort. Any high ranking
node will be a parent node to the ones that reference it which means that the
direction of any edge in the final structure is towards that node while edges
out of the node are omitted. This means that the upper triangular matrix is
set to zero and we obtain the intermediary result

T ′ = ltri(PTAP ) (1)

3. A unique parent is determined for every node by identifying the location of
the maximum weight in every row of T ′. We denote by [·]max the operator
that sets all row entries except the maximum to zero and obtain

T = [T ′]max (2)

corresponding to an in–tree or (anti–)arborescence representing a word hier-
archy derived from the co–occurrence matrix. Notice that the maximum may
not be unique as C is an integer matrix possibly containing duplicate entries
which remain even after normalization. This is amended by choosing one of
the solution candidates at random.

In summary, the number of references a term receives from others induces
an order–relation which forms the backbone of our taxonomy T . In this paper,
we are interested in studying how T evolves over a time–ordered sequence of
sub–corpora. We introduce the index t referring to a point in the time–grid.

3.2 Taxonomy Evolution

Let Tt be a given taxonomy at instant of time t and let St+1 be a new taxonomy
created from the “next” sub–corpus i.e. from documents collected over the time
interval (t, t+1]. Notice that St+1 is an independently created taxonomy having
no overlap with the previous step, i.e. the documents of Tt. The question is
whether St+1 may be attached to Tt in a natural way thereby extending the
ideas of Tt to form a new, combined taxonomy Tt+1. Evolution in this context
means that a given tree grows by forming branches which do not contradict
the existing tree structure. While a simple keyword filter leads to an appropriate
sub–corpus (for given a topic), the tree Tt specifies what is commonly understood
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Fig. 1. Attaching S1 to T0 through “zipping”.

by the topic. We ask how documents up to instant t prepare the ground for
subsequent statements which either validate the word hierarchy in Tt or propose
a new one. In the former case the attachment of St+1 succeeds, otherwise a new
tree is started. We define the attachment operator h : T × S → T and obtain
the evolution equation:

Tt+1 = h(Tt, St+1, θ) (3)

Together with an initial condition T0 this equation defines a path {Tt}t≥0. The
parameter θ refers to the minimum similarity among St+1 and Tt such that
St+1 is attached, otherwise Tt+1 = Tt. The operator h(·, ·) corresponds to the
following construction:

Let V be the set of columns of St+1 that also appear in Tt. We re–order V
according to their ranking in Tt. This will create entries in the upper triangle of
the combined matrix Q. We let ξt+1 be the sum of these entries normalized by
the sum over all elements in St+1. Parents (i.e. higher–ranking columns) in St+1

that also appear in Tt may thus become children in Q, see Fig. 1 where t = 0. By
contrast, all columns W that do not appear in Tt retain their ranking relative to
the next higher–ranking column in V . In other words, parents in St+1 take their
children with them as long as this does not create a contradiction with existing
parents in Tt. Columns in W are inserted together with corresponding rows to
form an extended, quadratic matrix Q. If ξt+1 ≤ θ, the similarity of S1 and
T0 is sufficient for integration and the equivalent of step three (see Sect. 3.1) is
repeated on ltri(Q) in order to determine unique parents for every term (except
the highest–ranking one). More precisely, the [·]max operator is applied only on
new terms (those in W ), while existing child–parent relations (those in Tt) are
retained. This means that if term A is parent to term B in Tt it will continue
to be parent in the new taxonomy Tt+1. If ξt+1 > θ, the ranking of columns in
St+1 is deemed too different than the one in Tt which means that St+1 cannot
be attached. The overall procedure corresponds to the “zipping” of two trees.

This is illustrated in Fig. 1: The reordering of the column “china” (top rank in
S1) creates entries in upper triangle of Q, such as the reference coming from “cur-
rency” (value: 0.09). “Currency” is subordinate to “china” in S1 but no longer
in Q as the existing tree T0 expects a higher rank of “currency” than “china”.
By contrast, column “reagan” also has a lower rank than “china” in S1 but it
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does not appear in T0 which means that it can be moved to the combined struc-
ture Q together with “china”. The references for “reagan” come from “trump”
and “dividend” which are both higher–ranking in Q and will therefore be set
to zero. Notice that the determination of the rank occurs before the actual tree
construction, i.e. before setting the upper triangular matrix to zero and before
determining unique parents. This means that high–ranked terms (such as “rea-
gan”) may end up with no references (if these come from even higher–ranking
terms). It follows that the rank in the adjacency matrix T encodes some extra
information about the taxonomy which is not reflected in the graph of T .

Comment: To some extent, the zipping operation mimics the coordination pro-
cedures in natural conversations: an existing taxonomy prepares the ground for
future hierarchies to be attached (as branches). If this occurs, the top node of
the sub–hierarchy is attached to a point in the taxonomy thus making a clear
reference to its “origin”. In dialogue, speaker and listener adapt to each other
in the sense that messages are designed to the listener (gradually incorporating
the listener’s mental representations of the matter discussed) while listeners pro-
vide clear references to (or even repeat) what they heard. Over time, a chain of
statement-response type of pairs (so–called adjacency pairs1) result which form
the basis of the common thread in the dialogue. Our algorithm design draws
on this basic mechanism to construct a taxonomy that evolves over time. It is
clear that the analogy fails at the point where we do not consider individual con-
versation partners but merely aggregate text documents published over a given
time period. However, if we allow ourselves to view the documents as statements
of an abstract aggregate speaker or listener, the number of successful attach-
ments indeed reflects the degree of mutual understanding that develops among
the contributors to the text corpus.

4 Example

In Fig. 2 we illustrate the above ideas on a sub–corpus around the keyword
“protectionism”. The four graphs display snapshots of the evolution of the topic
taxonomy. The underlying raw data was collected in monthly batches over a
time–span from May 2015 to Mar 2018. The first graph is the result of a pure
taxonomy extraction from the co-occurrence matrix C obtained in May 2015.
In the subsequent steps new sub–graphs are attached using Eq. (3), thereby
incrementally growing the initial tree. In this illustrative example, the thresh-
old is set to θ > 1 effectively posing no constraint to the attachment process.
The number of terms in C is n = 100 and the number of documents behind
1 Adjacency pairs constitute the central organizing format in natural conversations.

They consist of two turns by two different speakers which are relatively ordered.
The so–called “first pair part” initiates the exchange whereas the “second pair part”
responds by providing a relevant follow–up statement. In this paper, we assume that
the responses are always “pair–type related”; by starting with a filtered sub–corpus
we exclude improper pairings whose dialogue–equivalent would roughly read: “Would
you like some tea?”–“Hi!” [21].
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C varies m = 100 . . . 500 depending on the intensity of the discussion around
“protectionism” (i.e. the number of documents retrieved in a given month).

Notice that the study of the intensity evolution is outside the scope of this
paper which is focused on the qualitative evolution of the topic. In fact, the
entries of C (absolute occurrence counts) are normalized as part of the taxonomy
extraction algorithm. In order to keep the presentation uncluttered only signifi-
cant nodes are displayed in the graphs. We use an additional threshold θ0 = 1.5
for the column sum (corresponding to the aggregate endorsement received by
the node) below which we do not display a node2. In the chart at the bottom of
Fig. 2 we report the monthly values of the dissimilarity measure ξ defined above.

In May 2015, we find that our algorithm puts “trade” as a root together
with qualifiers “global” and “china” which seems very close to a textbook (i.e.
lexical) definition of protectionism. Around Sep 2016, near the pinnacle of the
US electoral campaign, the discussion on trade has evolved to a more nuanced
level containing specific issues such as “steel” and a number of macro–aspects
such as “inflation rate”. At the same time, a new subtree has emerged containing
the “clinton/trump – scenario”. Notice that the subtree has no visible connection
with the protectionism discussion but has already been assigned a position within
the hierarchy (see the comment at the end of Sect. 3.2). After the election, from
Nov 2016 onwards, we notice an accentuated increase in the dissimilarity ξ. This
marks a change in the perspective on “protectionism” which is reflected in a
re–shuffle of the word–order developed thus far. In other words, new subtrees
attached to the Sep 2016 tree generate more and more entries in the upper
triangular matrix of the combined taxonomies. Referring to the above description
of “zipping” we know that the attachment points are elements of the column set
V which intersects the existing tree. The question is if these entries in the word
hierarchy entail a sufficient number of sub–ordinates (i.e. elements of W having
no overlap with existing structures) or even followers (i.e. sub–ordinates that also
connect to terms in V ). In such a case, ξ will decrease as no further contradictions
are produced.

It is interesting to consider what kind of input would lead to a continuous
high level of ξ: this would correspond to a sustained re–shuffling of the word
order which would mean that the position of any new word introduced to the
hierarchy would be revised in subsequent months. This is characteristic of a
change in viewpoints or interpretations on a topic as can be seen in the period
after Sep 2016. The Nov 2016 taxonomy shows that two subtrees may initially
grow independently with “trump” becoming the root of the “election” tree. In
Mar 2017 this tree finally connects to the “trade–china–rate” tree bringing a
number of new elements into the discussion such as “mexico”, “currency” and
“dollar”. It should be noted that the “trump” compound is sub–ordinate to the
earlier discussion around the macro effects of “protectionism”.

Notice also, that the structure of the final taxonomy depends on the ini-
tial condition: if the attachment process had been started at a later stage, say
in Nov 2016, “trump” would have been the root. An important feature of the

2 This level of θ0 is thus 1.5 times the row sum in the normalized matrix C.



156 M. J. Feiler

Fig. 2. Example: taxonomies of the theme “protectionism” (generated through attach-
ment of monthly sub–corpora according to Eq. 3) and evolution of the dissimilarity
measure ξ.

proposed technique is indeed that it indicates the origin of a discussion. In fact,
our construction is path–dependent, as is the formation of common ground in
natural conversations. After Mar 2017 we see that ξ declines indicating a steady
state in the taxonomy. This temporary definition of the implications and rami-
fications of protectionism is again challenged in Jun 17 and Jan 18 as reflected
by a resurgence of ξ.

5 Conclusion

The paper presented a new algorithm for the automatic construction of a tempo-
rary taxonomy used in on–line conversations to establish a (context–dependent)
common ground. The taxonomy evolves as new sub–topics enter the conversa-
tion. A natural question about the algorithm is how it may be benchmarked.
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Two taxonomies may be compared in terms of their “normative capacity”, i.e.
their ability to establish a word hierarchy which attracts followers (in terms of
trees attached). Given a base tree, the question is whether subsequent trees may
be attached without significant changes in the word order. If ξ in the above
construction is large (and remains so), the trees contain the same set of key-
words but in a different order. It is then possible to search for another base
which leads to a decreasing ξ as new trees are attached. This is equivalent to
a gradual specification of the defining word hierarchy associated with a topic.
If ξ indeed decreases, more and more following trees attach to an existing base
using the same word order and adding new words which do not contradict the
existing structure. Notice the self–referential nature of this definition: a taxon-
omy is “true” if it is used by many subsequent documents. This is in contrast
to benchmarking against an exogenous ground truth as given by a lexicon or
an established ontology. In on–line discourse, “ground truth” is a fluid concept
and reflects what most people think. The fact that a taxonomy is validated from
within – through mutual understanding among contributors – marks a departure
from standard problems in taxonomy construction.
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Abstract. In almost all real-world text clustering problems, the distribution of
the repository samples and the real distribution of the clusters’ concepts are
rarely equivalent, which reduces the accuracy of the document clustering
methods. Let U(f) and L(f) be the distribution functions of the extracted features
based on Universal knowledge and Local -repository- knowledge, respectively.
Having the same distribution functions U(f) and L(f) is desirable; however, in
real-world situations, these two distribution functions are not equal and they
might be even quite different. In this paper, we show how the difference between
these two distribution functions could decrease the accuracy of the document
clustering algorithms. To address this issue, two different methods are proposed
which combine information from the local and universal knowledge efficiently.
In the first method, a special transform T is introduced to combine the simi-
larities of each pair of documents derived from the local and the universal
knowledge. In the second method, the local and the universal knowledge are
combined, per document, by concatenating each document’s feature vector
derived from the local knowledge to the document feature vector derived from
universal knowledge. The impact of the proposed methods on clustering is
tested on two well-known datasets, Reuters and 20-Newsgroups. Experimental
results show that by using either local or universal knowledge to generate the
feature vectors, some documents could be assigned to a wrong cluster. However,
we show that our proposed methods significantly improve the document clus-
tering performance, thus demonstrating the benefit of enhancing local knowl-
edge with universal knowledge in an efficient way.

Keywords: Text mining � Document clustering � Transfer learning

1 Introduction

With the recent increase in textual data, having an efficient and high-quality clustering
algorithm to assign textual data to different unknown topics is needed for applications
such as text mining, information retrieval, corpus summarization, social networks,
news and politics, economics, target marketing, medical diagnosis [1]. Also, the textual
data to be clustered could be documents, paragraphs or sentences.

The problem of document clustering is defined as follows. Given a set D of
unlabeled documents, D ¼ D1;D2; . . .;Dmf g, a document clustering algorithm orga-
nizes documents into different groups, called clusters, where the documents in each
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cluster share some common properties according to some defined similarity measure.
Clustering algorithms can generate either disjoint or overlapping clusters [2].

The problem of document clustering includes two major phases: Converting each
document to a vector of features, and clustering of the documents using their feature
vectors. The former phase is called feature extraction. Extracted features should pre-
serve as much of the original document concepts as possible, while keeping the time
and space complexity of the extraction process reasonable [3]. Generally, feature
extraction from the collected documents include following steps:

• Document format normalization: Depending on how the documents were generated,
there might be a variety of different formats such as Microsoft word, Html page and
raw ASCII text. Therefore, the first step of feature extraction is to convert all
documents to one format like raw ASCII text.

• Tokenization: In text mining, tokenization is the process of converting a sequence
of characters into a sequence of tokens that have identified meaning.

• Stop words removal: Sometimes, some common words like “a”, “an” and “the”,
called stop words, have little value in describing the meaning of the documents.
Removing such words improve the speed and accuracy of clustering.

• Lemmatization and stemming: The next step is to convert the remaining tokens to a
normalized form. This process is called stemming or lemmatization. The effect of
this step is to reduce the number of distinct word types. For example, after stem-
ming, two words “race” and “racing” will be considered to be “race” [4]. Depending
on the application, this step might be helpful.

• Vector generation: The collective set of distinct tokens is typically called a dic-
tionary which is used for creating the feature vector. The most general and widely
used features in text mining techniques are unigram, bigram and more complex
combination of tokens. Also, there are several representations for each token in a
document such as binary, tf, tf-idf, binary tf-idf, etc.

The second phase of document clustering is to use the generated feature vectors to
cluster documents. Many document clustering techniques have been proposed for text
clustering. Generally, there are two major types of clustering techniques: partitional
clustering and hierarchical clustering [5]. Partitional clustering methods, which divide
the data points into a pre-defined number of clusters, include K-means [6], Bisecting
K-Means [7], K-Medoids [8], KL and generalized I-divergence [9, 10]. Hierarchical
methods create clusters either from singleton data points to a cluster or vice versa
[11–13]; the former technique is known as agglomerative, and the latter is called
divisive hierarchical clustering. Other clustering techniques have been proposed, such
as those that use Gaussian Mixture Model (GMM) [14] or different types of neural
networks [15–17].

Given a collection of m documents D1;D2; . . .;Dm; and assuming that each feature
vector is of some length n, each documentDi is represented by a feature vector denoted as:

Di ¼ f i1; f
i
2; . . .; f

i
n

� �T
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where f ij is the value of the jth feature in document Di. The jth feature could be
calculated simply by multiplying a variant of term frequency (tf) weight with a variant
of inverse document frequency (idf) weight of the jth term in the dictionary, or it could
be calculated by a complicated deep neural network like FastText [17]. Tables 1 and 2
show the different variants of tf and idf.

The problem of clustering could be formally defined as follows: Given m data point
X ¼ x1; x2; . . .; xmf g in an n-dimensional real space Rn where each data point xi is a

feature vector f i1; f
i
2; . . .; f

i
n

� �T
representing document Di, determine K clusters

C1;C2; . . .;CKf g which each includes some data points from X, such that the sum of
the “distances” of between the data points and the centers of their respective clusters is
minimized. That is, the clustering problem is the following optimization problem:

argmin
C1;C2;...;CK

XK
k¼1

X
xi2Ck

xi � center Cið Þk k ð1Þ

Table 1. Different variants of term frequency (tf) weight

Weighting scheme tf weight

Binary 0; 1
Raw count ft;d
Term frequency ft;d=

P
t02d

ft0;d

Log normalization 1þ log ft;d
� �

Double normalization 0.5 0:5þ 0:5: ft;d
maxft02dg ft0 ;d

Double normalization K K þ 1� Kð Þ: ft;d
maxft02dg ft0 ;d

Table 2. Different variants of inverse document frequency (idf) weight

Weighting scheme idf weight

Unary 1
Simple inverse document frequency nt

N

Inverse document frequency log nt
N

� � ¼ �log N
nt

� �

Inverse document frequency smooth log 1þ N
nt

� �

Inverse document frequency max log
maxft02dg nt0

1þ nt

� �

Probabilistic inverse document frequency log N�nt
nt

� �
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where the norm ||.|| is some arbitrary norm on Rn. The center of each cluster would
represent the “overall meaning” of the documents in the cluster. Also, the above
definition could be extended to have a variable number of clusters.

Since the content/concept of each document i is represented by the feature vector

Di ¼ f i1; f
i
2; . . .; f

i
n

� �T
, the accuracy of each feature value might change the performance

of the document clustering method. On the other hand, in a real-world document
clustering problem, Local knowledge L (i.e. repository data) may not fully represent
the characteristics of each cluster’s meaning – in comparison to the Universal
knowledge U. Therefore, the distribution of the data in L for each cluster often does not
match the real distribution of the cluster concept in U, and it causes to have inaccurate
feature value. For example, consider wi to be a word that appears in the local
knowledge L. Let U wi;Ckð Þ and L wi;Ckð Þ be the relevance of word wi to the concept of
cluster Ck based on the universal knowledge U and local-knowledge L, respectively. In
a document clustering problem, it is desirable to have U wi;Ckð Þ ¼ L wi;Ckð Þ or at least
U wi;Ckð Þ ffi L wi;Ckð Þ. However, generally, the local knowledge L suffers from
incomplete knowledge about the word wi; which causes difference - sometimes quite
significant - between U wi;Ckð Þ and L wi;Ckð Þ.

Consider L wi;Ckð Þ to be the modeling of the local knowledge L about word wi

within cluster Ck . Specifically, we take L wi;Ckð Þ to be the likelihood (probability) of
word wi being in cluster Ck :

L wi;Ckð Þ ¼ fwi;Ck

NCk

ð2Þ

where NCk is the number of documents in cluster Ck, and fwi;Ck is the number of
documents in cluster Ck that have word wi.

Consider Fig. 1, which illustrates the likelihood L wi;Ckð Þ of having word wi in
cluster Ck , for different clusters Ck; where

of the 20-Newsgroups dataset. Based on the general meaning of the above words, some
words such as “paint” would relate more to computer graphics than to cars, other words
like “machine”, would relate more to cars than to computer graphics, and yet other
words would be related equally well to both classes. Yet, the calculated likelihoods for
these words based on the local knowledge show opposite statistics. Therefore, the
accuracy of document clustering algorithms that use these words as features might be
reduced if the values of these features are calculated based on just the local knowledge.
In this paper, this phenomenon is called inadequacy of knowledge. The
above-mentioned example shows this phenomenon for one-gram feature type; how-
ever, the same phenomenon is observed when bigrams or more longer combinations of
words are used as features.
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In this paper, to address the problem of inadequacy of knowledge, two bodies of
knowledge are considered for document clustering: Universal knowledge, which is an
external source of knowledge that has the general meanings of the documents, and the
local knowledge, which has the domain-specific meaning of the documents for a given
problem P. Then, these two bodies of knowledge are combined using two proposed
methods. In the first method, a special transform T is introduced to combine the
similarities of each pair of documents derived separately from the local knowledge and
the universal knowledge. In the second method, the local and the universal knowledge
are combined by concatenation of the two feature vectors derived from these bodies of
knowledge. Then, using the combined local and universal knowledge, the documents
are clustered using a clustering method. In the next sections, the details of the two
proposed methods will be presented and their performance evaluated.

The rest of this paper is organized as follows. The proposed methods for combining
the local and universal knowledge to improve the performance of clustering will be
introduced in Sect. 2. Section 3 covers some experiments to cluster the documents of
Reuters [18] and 20-Newsgroups [19] datasets, and shows that our proposed methods
can significantly improve the performance of the document clustering methods. Finally,
a summary of the achieved results and some suggestions for future directions will be
presented in Sect. 4.

2 The Proposed Methods

If a body of knowledge B is viewed as universal knowledge, we denote it as U, and if it
is the local knowledge (repository dataset), we denote it by L. In this section, two
different methods are proposed to combine the benefits of these two bodies of
knowledge U and L for document clustering purpose: (a) combining the similarities
which are derived from U and L and (b) combining the feature vectors which are
derived from the two bodies of knowledge.

0.000
0.010
0.020
0.030
0.040
0.050

( , = {“comp. graphics” or “rec. autos”} )  

comp.graphics rec.autos

Fig. 1. Relevance of some words to two different clusters based on local knowledge20-
Newsgroups
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2.1 First Method: Combining the Similarities

Given a problem P in some domain “represented” by a body of knowledge (reposi-
tory) L, denote by SL Di;Dj

� �
the similarity between two documents Di andDj based on

the body of knowledge L: For example, SL could be the Cosine measure (Eq. 3), which
is a measure of similarity between two vectors in an inner-product space that measures
the cosine of the angle between them:

SL Di;Dj
� � ¼ NR Dið Þ :NR Dj

� �
NR Dið Þk k2 NR Dið Þk k2

ð3Þ

where NR Dið Þ andNR Dj
� �

are Di andD
0
js numerical feature vectors derived from the

repository L, and Xk k2 is the Euclidean norm. Also, we view SU Di;Dj
� �

as the sim-
ilarity between documents Di and Dj based on the universal knowledge U that is
independent of problem P.

In this section, a method will be proposed which combines SL Di;Dj
� �

and
SU Di;Dj

� �
to create SLU Di;Dj

� �
for each pair of documents Di andDj. The resulting

SLU Di;Dj
� �

models the overall similarity between the two documents based on both
local knowledge L and universal knowledge U. To do so, a graph representation is used
to visualize how SL Di;Dj

� �
and SU Di;Dj

� �
could be combined to create SLU Di;Dj

� �
.

Goal: The goal is to derive a fully connected graph GLU V ;Eð Þ, where the nodes in
V are the documents in the repository L, and each edge Di;Dj

� �
between two docu-

ments Di and Dj is given a weight SLU Di;Dj
� �

. These similarity values could later be
used for clustering the documents.

Input: Two fully connected graphs GU V ;Eð Þ and GL V ;Eð Þ.

• GU V ;Eð Þ; is purely based on the universal knowledge U, where each edge e ¼
Di;Dj
� �

is assigned a weight SU Di;Dj
� �

. The universal body of knowledge U is
assumed to be modeled by the Pre-Trained Doc2Vec Model [20], which has been
trained on Wikipedia dataset to generate the feature vector of each document.
Therefore, SU Di;Dj

� �
is the Cosine measure between the Doc2Vec vectors of

Di andDj.
• GL V ;Eð Þ is purely based on the local knowledge L, where each edge e ¼ Di;Dj

� �
is

assigned a weight SL Di;Dj
� �

; taken to be the cosine between the Di andD
0
js feature

vectors derived relative to L. As the user usually has access to the local knowledge
L, different kinds of feature vectors can be derived and utilized, such as conceptual
features, contextual features (e.g., n-grams such as unigram and bigram), L-trained
neural network features, as well as document-structure features and statistical
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features like total number of words, number of sentences, and average length of
sentences. In this paper, we use two different methods to represent the local
knowledge L:

1. tf-idf, where the tth feature of the vector for document D is:

2: tfidf D; tð Þ ¼ tf D; tð Þ : idf D; tð Þ ¼ Dt

DAll : log
n
nt

ð4Þ

where D and t are the document and the contextual feature (e.g., unigram term),
respectively, Dt is the number of times t appears in the document D, and DAll is the total
number of terms in the document D, n is the total number of documents in L, and nt is
the number of documents in L that contain t.

3. FastText which is based on the skip-gram model [17], where each word is repre-
sented as a bag of character n-grams. This method associates a vector representation
to each character n-gram; words being represented as the sum of these
representations.

It is worth reiterating all the three graphs GLU V ;Eð Þ;GL V ;Eð Þ and GU V ;Eð Þ are
fully connected graphs and have the same nodes.

Transform: Atransform function T is needed to combine the local knowledge graph
GL V ;Eð Þ with the universal knowledge graph GU V ;Eð Þ:

GL V ;Eð ÞþGU V ;Eð Þ!T GLU V ;Eð Þ ð5Þ

SL Di;Dj
� �

; SU Di;Dj
� �� � ! SLU Di;Dj

� � ð6Þ

where the details of the transform, specifically the value of SLU Di;Dj
� �

, will be pro-
vided later in this section. To illustrate visually the desired effect of the transform,
consider an example of a clustering problem P with seven documents V ¼
D1;D2;D3;D4;D5;D6;D7f g and two clusters C1 and C2. In a very simple scenario,

suppose that based on SLU Di;Dj
� �

;C1 ¼ D1;D2;D3f g and C2 ¼ D4;D5;D6;D7f g.
The graph GL V ;Eð Þ is shown in Fig. 2. In this figure, the thickness of every edge
Di;Dj
� �

is based on the similarity SL Di;Dj
� �

: the higher the similarity, the thicker the
edge. Observe in Fig. 2 that there are some low-weight edges between some pairs of
documents of the same cluster, such as D5;D6ð Þ, and that there are some high-weight
edges between some documents from different clusters, such as D1;D7ð Þ. Such phe-
nomena occur due to the inadequacy of knowledge (or, more accurately, inadequate
representation) of L about problem P.
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By applying a good graph transform T on GL V ;Eð Þ and GU V ;Eð Þ, the resulting
graph GLU V ;Eð Þ will be like the graph in Fig. 3: the edge weights between the doc-
uments of the same cluster are high, while the edge weights between the documents
from different clusters are low.

Before providing the graph transform, one term will be defined first, relative to a
body of knowledge B, where B can be the universal knowledge U or the local
knowledge L. Consider an edge e ¼ Di;Dj

� �
between two documents Di and Dj:

Wnorm
B eð Þ ¼ SB eð Þ

maxðall SB elð Þjel 2 EÞ ð7Þ

The term Wnorm
B eð Þ is the normalized similarity weight between two documents

DiandDj relative to the body of knowledge B, so that it is always between 0 and 1.

Fig. 2. A typical graph GL(V, E)

Fig. 3. A typical graph GLU(V, E) after transformation T
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In this paper, we propose and evaluate two different transforms presented in Eqs. 8
and 9:

In Eq. 8 a (and 1� a) is a weighting parameter between 0 and 1, optimized
experimentally, relative to repository L. The first transform (Eq. 8) is called the
weighted-average transform, and the second (Eq. 9) is called the multiplicative
transform.

2.2 Second Method: Concatenating the Feature Vectors

Given two bodies of knowledge L and U, denote by FD
L the feature vector of a

document D derived from the local knowledge L; and FD
U the feature vector of the

document derived from the universal knowledge U. In the second method of combining
the these bodies of knowledge, the two feature vectors FD

L and FD
U are concatenated to

generate a comprehensive feature vector FD
LU ¼ ðFD

L , F
D
UÞ. The vector FD

L could be any
vector representation based on the local knowledge L such as tf-idf and FastText, and
FD
U is a Doc2Vec vector of length 300 produced by the Doc2Vec Model [20] that was

trained on Wikipedia dataset.

3 Experiments and Discussion

3.1 Datasets

In our experiment, we use two corpora: Reuters [18] and 20 Newsgroups [19] datasets.
Each of these two corpora will be treated our local knowledge. The 20 Newsgroups
dataset is a collection of about 20,000 newsgroup documents, divided across 6 major
different newsgroups covering a variety of topics such as computer, religion and pol-
itics. The Reuters dataset contains documents collected from the Reuters newswire in
1987. It is a standard text clustering benchmark and contains 21,578 samples in 135
categories. As a preprocessing step on the Reuters dataset, all categories that have less
than 100 documents in the training set and the test set have been removed. The
remaining dataset has 8210 documents in 20 categories.

3.2 Experiments

In the first experiment, we show how the proposed methods could cluster the samples
that have been assigned to the wrong clusters by other methods including tf-idf and
CNN (Doc2Vec). To help present the clustering performance, we created a small
dataset including 8 short documents in two clusters, presented in Table 3. To generate
feature vectors using the local and universal knowledge, we used tf-idf and CNN
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(Doc2Vec) respectively. Then K-means algorithm and Cosine similarity were used to
cluster these samples using different feature vectors including:

1. tf-idf
2. Doc2Vec
3. tf-idf + Doc2Vec (first proposed method)
4. tf-idf +Doc2Vec (second proposed method – using Eq. 8)

Table 3. Eight short document in two clusters

Text Cluster
label

The president of USA visited the president of Egypt in Cairo Politics
Weather forecasting is a science to predict the conditions of the atmosphere Weather
Political science, also called government, is a social science Politics
Ten students visited the weather forecasting center QSA Weather
Weather warnings are important forecasts because they are used to protect our
life

Weather

The presidents of China and USA will sign an economy deal in summer Politics
Ancient weather forecasting methods usually relied on observed patterns of
events

Weather

QSA is an important center for education Weather

Table 4. The result of clustering some samples by different feature generator methods

Clustering method Resulting clusters

Clustering using tf-idf Cluster #1:
• The president of USA visited the president of Egypt
in Cairo

• The presidents of China and USA will sign an
economy deal in summer

Cluster #2:
• Political science, also called government, is a social
science

• Weather forecasting is a science to predict the
conditions of the atmosphere

• Ten students visited the weather forecasting center
QSA

• Weather warnings are important forecasts because
they are used to protect life and property

• Ancient weather forecasting methods usually relied
on observed patterns of events

• QSA is an important center for education

(continued)
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As shown in Table 4, since tf-idf only considers the statistics of the words instead of
the meaning of them, the sample “Political science, also called government, is a social
science” has been assigned to the wrong cluster based on the tf-idf feature vectors.

Also, there might be some sort of words (e.g., “QSA”) in the repository that are not
meaningful from the view point of CNN, yet they could be used for clustering purpose.
Since CNN is not able to consider QSA in generating the feature vector, the sample
“QSA is an important center for education” has been assigned to the wrong cluster
based on the feature vectors that are generated by CNN.

However, since the proposed methods use the capabilities of both tf-idf and CNN,
Table 4 shows that these samples have been assigned to the right clusters using both
proposed methods.

Table 4. (continued)

Clustering method Resulting clusters

Clustering using CNN (Doc2Vec) Cluster #1:
• The president of USA visited the president of Egypt
in Cairo

• Political science, also called government, is a social
science

• The presidents of China and USA will sign an
economy deal in summer

• QSA is an important center for education

Cluster #2:
• Weather forecasting is a science to predict the
conditions of the atmosphere

• Ten students visited the weather forecasting center
QSA

• Weather warnings are important forecasts because
they are used to protect life and property

• Ancient weather forecasting methods usually relied
on observed patterns of events

Clustering using tf-idf + CNN
(Doc2Vec) (both proposed methods)

Cluster #1:
• The president of USA visited the president of Egypt
in Cairo

• Political science, also called government, is a social
science

• The presidents of China and USA will sign an
economy deal in summer

Cluster #2:
• Weather forecasting is a science to predict the
conditions of the atmosphere

• Ten students visited the weather forecasting center
QSA

• Weather warnings are important forecasts because
they are used to protect life and property

• Ancient weather forecasting methods usually relied
on observed patterns of events

• QSA is an important center for education
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In the next experiment, we find the optimized value for the parameter a of Eq. 8
experimentally for each dataset separately for when Doc2Vec and tf-idf are used for
extracting the universal and local knowledge from documents. To do so, the perfor-
mance of clustering methods is evaluated by the V-measure. The V-measure is the
harmonic mean of homogeneity and completeness [21]:

V � measure ¼ 2� Homogeneity � Completenessð Þ
HomogeneityþCompletenessð Þ ð10Þ

Figure 4 shows the performance (V-measure) of the proposed weighted-average-
transform based method (First method: Combining the similarities – using Eq. 8) for
different values of a. As shown in this figure, the highest V-measure is achieved when
a ¼ 0:25 and a ¼ 0:4 for 20-newsgroups and Reuters, respectively.

In the next experiment, the performance of the proposed methods will be compared
with two different baseline clustering methods. To do so, we use either one or both
unigram and bigram as the feature vectors and K-means as the clustering algorithm.
Also, the performance of the proposed methods will be compared with FastText and
Doc2Vec to generate the feature vectors based on the local knowledge and the uni-
versal knowledge respectively. Table 5 shows the performance of these methods and
the proposed methods.

Fig. 4. The performance (V-measure) of the proposed weighted-average-transform based
method (first method: combining the similarities – using Eq. 8) for different values of a
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As shown in Table 5, among all mentioned methods, the first proposed method
(based on the weighted-average- transform of Eq. 8, and on the multiplicative trans-
form of Eq. 9) resulted in the highest V-measure for 20-Newsgroups and Reuters
dataset, respectively. A close inspection of Table 5 shows that (1) both transforms of
the proposed first method yielded similar performance, (2) the clustering performance
resulting from the proposed method (of combining universal knowledge with local
knowledge) is significantly superior to the one that utilizes only local knowledge. This
demonstrates that the combining approach has considerable benefits for clustering
performance.

4 Summary and Future Work

In almost all real-world text clustering problems, the repository knowledge is not
comprehensive about the clusters’ concepts; therefore, the clusters are built using
incomplete information. In this paper, to address this issue, two methods for increasing
the knowledge used in clustering were introduced.

To do so, we combined information from two bodies of knowledge, universal
knowledge and local (repository) knowledge, using two completely different methods.
In the first proposed method, the similarity between two documents is calculated by
combining the similarities between them derived from the two bodies of knowledge.
The combining of the similarities was done either as a weighted sum or multiplica-
tively. The other combining method simply concatenates the “local” and “universal”
feature vectors of each document into a new feature vector. The performance of the

Table 5. Performance evaluation of some clustering algorithms on Reuters and 20-Newsgroups
datasets

Method/feature set V-measure
Reuters 20-newsgroups

Unigram + K-means 0.458 0.263
(Unigram, bigram) + K-means 0.462 0.295
CNN (Doc2Vec) + K-means 0.476 0.421
FastText + K-means 0.46 0.305
Proposed method#1 (weighted-average transform on Doc2Vec
and tf-idf)

0.52 0.465

Proposed method#1 (multiplicative transform on Doc2Vec and
tf-idf)

0.522 0.464

Proposed method#2 (Concatenating the feature vectors of
Doc2Vec and tf-idf)

0.514 0.459

Proposed method#1 (weighted-average transform on Doc2Vec
and FastText)

0.483 0.481

Proposed method#1 (multiplicative transform on Doc2Vec and
FastText)

0.486 0.474

Proposed method#2 (Concatenating the feature vectors of
Doc2Vec and FastText)

0.51 0.475
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proposed methods was evaluated on Reuters and 20-Newsgroups datasets. Experi-
mental results show that by using either local or universal knowledge to generate the
feature vectors, some documents could be assigned to the wrong cluster. However,
using the proposed combining methods, those samples are assigned to the right cluster,
and generally the clustering performance improved significantly.

In conclusion, our results demonstrate that efficient combining of information from
local and universal body of knowledge has considerable advantage, at least for clus-
tering performance, over the mere use of local knowledge.

As part of our future research, we will explore alternative ways of using universal
knowledge to improve document clustering performance. Also, to generalize our
proposed methods for using different sources of knowledge, we will focus in the future
research on transfer learning or inductive transfer to use the stored knowledge while
solving one problem and applying it to a different but related problem.
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Abstract. Social Networking Sites (SNS) such as Twitter are widely
used by users of diverse ages. The rate of the data in SNS has made it
become an efficient resource for real-time analysis. Thus, SNS data can
effectively be used to track disease outbreaks and provide necessary warn-
ings earlier than official agencies such as the American Center of Disease
Control and Prevention. In this study, we show that sentiment analysis
features and weighting techniques such as Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) can improve the accuracy of flu tweet classi-
fication. Various machine learning algorithms were evaluated to classify
tweets to either flu-related or unrelated and then adopt the one with
better accuracy. The results show that the proposed approach is useful
for flu disease surveillance models/systems.

Keywords: Influenza · Machine learning · Sentiment
Social networking site · TF-IDF

1 Introduction

Social networking sites (SNS) are tools designed to provide users a space for
social interactions. The content of social networking sites is produced by users.
It includes huge data about users, shared thoughts and ideas, and real-time data
of users’ conversations and statuses. The rate of the data in SNS besides the
growth of SNS’s users, presents the important role of SNS’s in real time analysis
and predictions in many areas [1,2]. The areas include traffic [3–6], disaster
prediction [7–11], management [12–14], networking [15,16], news [17–21] and
many more. In the public health area, SNS provides an efficient resource for
disease surveillance and also an efficient way to communicate to prevent disease
outbreaks [22].

Traditional disease surveillance systems depend on official statistics based
on patient visits to produce outbreak reports [23]. In the US, these reports are
produced by the Center of Disease Control and Prevention (CDC) to inform
healthcare providers about disease outbreaks or to be notified about the flu sea-
son. CDC publishes flu-related reports using the United States Influenza Like
c© Springer International Publishing AG, part of Springer Nature 2018
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Illness Surveillance Network (ILINet) that gathers flu-related information of out-
patients from hundreds of healthcare providers around the states. ILINet shows
accurate results in detecting flu outbreaks, but it is costly and takes a long time
to issue the required reports. Therefore, different data from different resources
have been used for surveillance. Examples include volumes of telephone calls,
over-the-counter drug sales [23], search engine logs [24–29] and social network-
ing data that can be used to get real time analysis for better services [30].

Comparing the different resources that have been used for surveillance such
as search engine logs, SNS data is more descriptive and available for the public.
It also has more demographic data and specific details. Therefore, it appears
that SNS data is one of the best among the other resources for surveillance as
well as a basis to simulate the spread of a disease with temporal analysis.

The SNS used in this study is Twitter Microblog because it is the most widely
used social networking site. It is an efficient resource to track trends for several
reasons. First, the high frequency of posted messages helps to perform minute-
by-minute analysis. Second, Twitter provides detailed information about users
such as demographic data. Third, users of Twitter are of diverse ages. Not only
young people, but also middle aged, as well as technology savvy older population
use this SNS [31].

In this paper, we present a machine learning based approach that predicts
influenza trends in Twitter SNS. The approach includes preprocessing, feature
extraction and classification. The preprocessing phase includes stemming and
removal of stop words and bad characters. Then, the preprocessed data is used
to extract features to be passed to a tweet classifier to distinguish between flu-
related tweets and unrelated ones. The classifier results can then be used for
further analysis for better flu trend prediction.

The main contributions of this study can be summarized as follows: (i) we
show that TF-IDF weighting can improve the accuracy of tweet classifications;
(ii) we show that considering sentiment analysis of the analyzed posts as a feature
can improve the accuracy of the classification results; (iii) we show an evaluation
of various machine learning algorithms for flu-related tweets and; (iv) we review
the existing machine learning based frameworks for flu detection using the data
of social networking sites.

The rest of the paper is organized as follows. The Related Work Section first
presents the previous related work that use machine learning methods for flu
tweet classifications. The Methodology Section, then, demonstrates the proposed
approach for this study including preprocessing, feature extraction, training, and
testing. The Discussion and Results Section presents a discussion and compar-
ison between the proposed approach and the existing ones that use machine
learning for flu tweet classifications. Finally, concluding remarks appear in the
Conclusions Section.

2 Related Work

Most of the previous work on Twitter-based flu surveillance included machine
learning methods to filter unrelated flu posts. A selected classifier is trained with
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an annotated dataset using a set of features. It has been found in the literature
that different detection and prediction models utilized different classification
methods with different feature extraction techniques.

Broniatowski et al. [32] and Lamb et al. [33] proposed a multi-level classifi-
cation model that includes a binary classifier to distinguish between flu-related
and unrelated flu tweets. The pre-classifiers are used to filter unwanted posts
such as health-irrelevant posts in order to increase the efficiency of the flu-
related/unrelated classifier in further stages/levels. It has been shown that multi-
level classification can improve the classification accuracy.

Aramaki et al. [34] proposed a framework that consisted of two parts: a tweet
crawler and a Support Vector Machine (SVM)-based classifier that was used to
extract only the actual influenza tweets and excluded the unrelated ones such
as news and questions. The initial dataset for this study was collected from Nov
2008 to June 2010. It included 300 million general tweets. Then, this dataset
was filtered using the “Influenza” keyword to get a set of only flu-related tweets
which contained 400,000 tweets. The flu-related dataset was divided into two
parts: a training dataset which contained 5,000 tweets (November 2008) and a
test dataset which contained all the remaining tweets from Dec 2008 to June
2010. The training dataset was assigned to a human annotator to label each
tweet for being either positive or negative. A tweet is labeled positive if it met
two conditions. First, the flu tweet should be about the person who posted the
tweet or about another person in a nearby area (maximum an area of the city).
If the distance is unknown, the tweet is considered negative. Second, the flu
tweet should be an affirmative sentence and in a present tense or past tense
with maximum period of 24 h which can be checked using specific keywords such
as “yesterday”. The SVM classifier was implemented using the Bag-of-Words
feature representation. The authors compared the accuracy of the SVM-based
classifier with 6 other different machine learning methods and found that SVM
was the most accurate method.

Santos and Matos [35] also applied SVM-based classification to detect flu-
like illness in Portugal using Twitter posts. For the purpose of training and
testing, a dataset with 2,704 posts was manually annotated with 650 textual
features. A subset of the annotated dataset was used to train the classifier.
The classified tweets together with search queries were applied to a regression
model as predictors. The classifier was implemented using the Bag-of-Words
feature representation and the feature selection process was based on a Mutual
Information (MI) value which is used to pick the best set of features. Each feature
is applied to a true class and then the MI value is assigned to the feature. The
value of MI is based on how the feature is related to the true class. A feature
with high MI value represents being more related to the true class.

Yang et al. [36] proposed an SVM-based method to predict flu trends from
Chinese social networking sites in Beijing. The authors claimed that this was
the first study to predict flu trend from Chinese social networking sites. The
collected data for this study included 3,505,110 posts from Sep. 2013 to Dec.
2013. Among those, 5,000 random posts were selected for manual annotation
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(sick and not sick labels) to be used for training and testing purposes. 285 of
the sick posts and 285 of the not sick posts were picked for training. For higher
accuracy, word based features were used instead of character based features.
In addition, the term frequency-inverse document frequency (TF-IDF) method
was considered for weighting. Different classifiers were compared to decide the
best for the problem. The authors found that SVM was the best for big data
problems.

Byrd et al. [37] proposed a framework based on the Näıve Bayes classifier.
The framework consisted of several steps including preprocessing and flu tweet
classification based on sentiment analysis. Three machine learning algorithms
were evaluated and it was found that the highest accuracy method was the
Näıve Bayes classifier. The Näıve Bayes classifier was implemented using the
Stanford-CoreNLP (Natural Language Processing software) and trained using
the OpenNLP training dataset which includes 100 annotated tweets. The sen-
timent analysis is considered accurate when there is matching between the pre-
dicted sentiment polarity with the manual assigned opinion of the sentiment. The
authors found that Näıve Bayes was the most accurate one with 70% matching.

3 Methodology

In this study, we first collect the tweets of two labeled datasets and merge them
together to be used as a training set. After that, the data is cleaned up by remov-
ing bad characters, digits and stop words. We then perform sentiment analysis
by finding and analyzing the polarity score. The tweets are then stemmed and
important features are extracted. We then train a classification model and finally,
test and evaluate the model.

3.1 Corpus

For the training and testing dataset, we prepared a labeled dataset that is a
combination of multiple manually labeled datasets obtained from [33,38]. This
yields 10,592 tweets (5,249 flu-relevant and 5,343 flu-irrelevant posts) for the
total dataset. Due to Twitter guidelines, the tweets in the obtained datasets
were released with tweet IDs instead of the text of the tweets. Therefore, we
developed a script that works together with the Twitter API to retrieve the
corresponding tweet texts using the given IDs.

Twitter Influenza Surveillance Dataset. The labeled dataset obtained from
[33] was initially filtered to contain any posts that have flu-related keywords.
Then, every post in the dataset was labeled manually using Amazon Mechanical
Turk: a service for tasks that require human intelligence [39]. It was prepared to
train and test three flu-related classifiers that were used as a part of an algorithm
for seasonal flu predictions. The dataset is, thus, divided into three sets, one for
each classifier. The first set consists of tweets that were labeled as either flu-
related tweets or not. The second one has tweets with labels of flu infections
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or flu awareness. The tweets in the last set were labeled as either the flu tweet
being about the author or about someone else. For our dataset, we consider the
tweets in the second and third datasets as flu-related tweets and combine all of
them with only 2 labels: flu-related or unrelated.

Sanders Dataset. The labeled dataset obtained from [38] was prepared man-
ually to train and test sentiment analysis algorithms. Each record in the dataset
is annotated with a sentiment label, indicating a feeling toward either Google,
Twitter, Microsoft or Apple. The labels are: positive, neutral, negative, and irrel-
evant. Since this dataset was prepared for sentiment analysis of topics that are
not related to flu, we used all the tweets in this dataset except the ones with
irrelevant labels as flu-unrelated tweets.

3.2 Preprocessing

Stop-words, punctuations and symbols were removed before the training and
testing processes using the Natural Language Processing Toolkit (NLTK) [40].
Stop words such as “the” or “are” words are very frequent and may lead to inac-
curate classification results if used as features. The preprocessing also includes
stemming that is used to reduce words to their roots. There are many stemming
algorithms available to use. For this study, Porter stemming which is one of the
most commonly used stemming algorithms, is employed. It is a rule-based algo-
rithm with five steps that is designed based on the idea that English suffixes
are made of smaller and simpler ones. A suffix is removed if a rule in the five
steps pass the conditions and is then accepted [41]. Figure 1 shows the overall
preprocessing steps.

URL’s, Hashtags, and Mentions were kept in the corpus. They can be used
as features for classification. URL’s were replaced with the keyword (url), and
Mentions were replaced with the keyword (mn) to be used as one feature for
classification.

3.3 Feature Extraction

In machine learning, a maximum accuracy can be achieved by selecting the best
set of features. Therefore, feature selection is a crucial process in any classi-
fication problem. In text classification, the set of features is a subset of words
that can be used to distinguish between different classes [42]. The selected words
should provide useful information to be used for classification purposes. Thus, it
is important to consider different techniques to convert the text in a way that can
be processed to gain the required information. In this study, the used features
are weighted term-based features, sentiment-based features, sylometric features,
and flu-related keyword features.
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Fig. 1. Text preprocessing

Textual Features Based on Term Frequency-Inverse Document Fre-
quency (TF-IDF) Weighting. The basic technique in text classification is a
direct word count, which breaks down a text into words and then counts every
single word in the corpus, even the un-informative ones that may yield inaccurate
results. Therefore, it is important to use smarter techniques. One of these tech-
niques is the word/term weighting technique, which weighs the count for every
word/term in the text. There are different techniques of word weighting which
include Boolean weighting, Term Frequency weighting (TF), Inverse Document
Frequency weighting (IDF) and Term Frequency-Inverse Document Frequency
weighting (TF-IDF). Among the four types of word weighting techniques, only
the IDF and TF-IDF techniques consider the importance of a word/term in the
entire corpus instead of the importance of the word/term in only a document.
It has been shown in [36] that TF-IDF is more accurate than IDF. Therefore, in
this study, we used TF-IDF to weigh the text-based features that are extracted
by breaking down the tweets into single words (uni-grams), terms composed of
two words (bi-grams), and terms composed of three words (tri-grams).

TF-IDF value is obtained by multiplying the value of the Term-Frequency
value by the value of Inverse Document-Frequency (Eq. 1). TF is the ratio
between the term t with frequency nt in a given document d and the total
numbers of terms n in the document d (Eq. 2). IDF is the inverse of the number
of documents that has the term t at least once. It is calculated using Eq. 3, which
is the ratio between the frequency Nd of the documents d that have term t, and
the total number N of documents d in the analyzed corpus.
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TF -IDF (t, d) = TF (t, d) × IDF (t) (1)

TF (t, d) =
nt

n
(2)

IDF (t) =
Nd

N
(3)

Stylometric Features. Retweets (RT), Mentions, and URL links were kept in
the corpus. We included them to be used as features. URL links and Mentions
to others were preprocessed by replacing them with url and mn keywords.

Topic-Related-Keywords Based Features. It is common to use seed words
in text classification. For example, in sentiment analysis, a list of words, including
nice and good, is used for positive sentiment and another list of words, including
bad and poor, is used for negative sentiment. In this study, a set of flu-related
keywords/terms were used as a set of features for flu-related tweets. The list
includes some important influenza-related keywords, symptoms and treatments.
The list of the keywords is kept in an array and then each tweet is checked against
these keywords. If a keyword is found in the text of the tweet, a corresponding
counter is increased. The counter value is weighted by dividing it by the tweet
length. The final weighted value is used as a feature for that tweet. If no keywords
are found in the tweet, a zero counter value is used as a feature.

Sentiment Based Features. Sentiment analysis is the process of extracting
the sentiment of a text using contextual polarity. It is commonly used in classify-
ing reviews of different products in the internet such as the sentiment of movies.
In this study, we used TextBlob library to assign a sentiment to each tweet [43].
The TextBlob is a Python library that is used to analyze textual data. Based on
the polarity score of a tweet, a sentiment value is assigned to the text: positive
or negative.

3.4 Training and Testing

For training and testing, several supervised classification methods were evaluated
to determine one with better classification accuracy. The evaluated classifiers
include Random Forest, Näıve Bayes, SVM, Random Tree, J48, Bagging, K-
nearest neighbors classifier using the Instance Based learning algorithm (IBK),
Voting, and AdaBoost. The preprocessed labeled dataset was used to train and
test the model of different classifiers using 10-cross validation as the experimental
setting. The 10-cross validation is a method to validate the studied/built model
by iterating through the labeled data 10 times with different subsets of training
and testing for each iteration.

3.5 Performance Metrics

In this section, we present the performance of the classifiers using different met-
rics: accuracy, precision, recall, and F-measure. These metrics are used to provide



Flu Tweet Classification Using Sentiment Features and TF-IDF Weighting 181

a better overview of the model performance. The accuracy measure by itself is
not a perfect measure if the dataset is not balanced. Precision and recall are
better measures in the case of imbalanced datasets. The selected metrics can be
computed using true positive (TP ), true negative (TN), false positive (FP ), and
false negative (FN) measures, where TP refers to the rate of correctly classified
instances as positive, TN refers to the rate of correctly classified instances as
negative, FP refers to the rate of incorrectly classified instances as positive, and
FN refers to the rate of incorrectly classified instances as negative.

Accuracy. It is a measure to evaluate the performance of a prediction model.
It is the rate of the correctly classified labels. It is calculated by using Eq. 4:

ACC =
TP + TN

TP + TN + FP + FN
(4)

Precision. It measures the true positive predictions. The precision of a model
is calculated by using Eq. 5:

Precision =
TP

TP + FP
(5)

Recall. This measure is a sensitivity measure. It is used to evaluate a model’s
performance in predicting positive labels. It is calculated by using Eq. 6:

Recall =
TP

TP + FN
(6)

F-Measure. This measure takes into account both measures: recall and preci-
sion. It can be considered as a weighted average of precision and recall measures
with a value ranging between 0 (worst) and 1 (best). F-measure is calculated
using Eq. 7:

F -Measure = 2 × Precision×Recall

Precision + Recall
(7)

4 Discussion and Results

The performance results of the used classifiers are shown in Table 1 using Recall
and Precision metrics that are discussed in the previous section and F-measure
that is weighted by the number of classified instances in each class. The Random
Forest method achieved the highest accuracy results, with an F-measure of 90.1%
and 90.16% of correctly classified instances. In addition, we used the Receiver
Operating Characteristic (ROC) metric to evaluate the utilized classifiers. ROC
is a curve with points that represent the pair of true positive rate (Sensitivity)
and false positive rate (Specificity). A perfect curve is the one that passes through
the upper left corner representing 100% sensitivity and 100% specificity. Thus,
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Table 1. Performance of classifiers

Classifier name Accuracy Precision Recall F-measure

J48 87.5012 0.876 0.85 0.873

Random Forest 90.16% 0.905 0.902 0.901

Random Tree 86.8404 0.869 0.868 0.868

SVM 88.2658 0.883 0.883 0.883

Näıve Bayes 82.63 0.846 0.826 0.824

Vote (using Näıve Bayes, Random Forest, SVM) 89.3987 0.899 0.894 0.894

AdaBoost 86.4344 0.867 0.864 0.864

Bagging (using Random Forest) 89.814 0.903 0.898 0.898

IBK 87.2274 0.874 0.872 0.872

the closer the curve is to that corner, the better the accuracy is [44]. As shown
in Fig. 2, Random Forest appears to be the best classifier. The high accuracy
results demonstrate the efficiency and effectiveness of the extracted features.

Fig. 2. Performance comparison using ROC

Many studies have utilized the available data from Twitter to build faster
influenza surveillance systems [45]. Most of the studies use machine learning
methods to distinguish between flu-relevant and irrelevant posts for further anal-
ysis. To the best of our knowledge, the classification results we have achieved,
using the TF-IDF based classifiers, together with extracted features, show bet-
ter accuracy compared to the previous work that include tweet classification for
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Table 2. Summary of the reviewed flu posts classifiers (Flu-Relevant/Flu-Irrelevant)

Reference Classifier name Accuracy Precision Recall F-measure

[32] SVM and Logistic Regression N/A 67 87 75.62

[33]

[35] Näıve Bayes N/A N/A N/A 83

[34] SVM N/A N/A N/A 75.6

[36] SVM N/A 87.49 92.28 89.68

[37] Näıve Bayes 70 N/A N/A N/A

Proposed Framework TF-IDF based Random Forest 90.1633 90.5 90.2 90.1

Twitter-based flu surveillance systems. A summary of the performance results
of previous works is shown in Table 2. The evaluation of flu tweet classification
using the F-measure, which is a weighted average of precision and recall mea-
sures, shows that the proposed framework using Random Forest has achieved
the highest accuracy value of 90.16%.

5 Conclusion

The analysis of available data from Microblogging sites, such as Twitter, have
become very common in event detection and prediction. Recently, many studies
have utilized this data to build faster epidemic detection models such as flu
outbreak detections. It has been found in our literature survey that most of
the models utilize machine learning methods to filter and distinguish between
the flu-relevant and irrelevant posts for further analysis. In this study, we have
been able to enhance the accuracy of this crucial module for a Twitter-based
surveillance system by using TF-IDF for term weighting and including sentiment
analysis as part of the used feature vector. The results show that the Random
Forest classifier achieved the highest accuracy, with an F-measure of 90.1% and
90.16% of correctly classified instances. Thus, the introduced approach is useful
for Twitter-based outbreak detection models/systems.
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Abstract. When encountering continuous, or very large domains, using
a compact representation of the state space is preferable for practical
reinforcement learning (RL). This approach can reduce the size of the
state space and enable generalization by relating similar or neighbor-
ing states. However, many state abstraction techniques cannot achieve
satisfactory approximation quality in the presence of limited memory
resources, while expert state space shaping can be costly and usually
does not scale well. We have investigated the principle of Sparse Dis-
tributed Memories (SDMs) and applied it as a function approximator to
learn good policies for RL. This paper describes a new approach, adaptive
adjacency in SDMs, that is capable of representing very large continu-
ous state spaces with a very small collection of prototype states. This
algorithm enhances an SDMs architecture to allow on-line, dynamically-
adjusting generalization to assigned memory resources to provide high-
quality approximation. The memory size and memory allocation no
longer need to be manually assigned before and during RL. Based on
our results, this approach performs well both in terms of approximation
quality and memory usage. The superior performance of this approach
over existing SDMs and tile coding (CMACs) is demonstrated through
a comprehensive simulation study in two classic domains, Mountain Car
with 2 dimensions and Hunter-Prey with 5 dimensions. Our empirical
evaluations demonstrate that the adaptive adjacency approach can be
used to efficiently approximate value functions with limited memories,
and that the approach scales well across tested domains with continuous,
large-scale state spaces.

Keywords: Reinforcement learning · Function approximation
Kanerva coding · Dynamic generalization

1 Introduction

Reinforcement learning (RL) techniques have been shown to develop effective
policies for diverse tasks and application domains. However, in general, applying
RL to practical problems is challenging in the presence of continuous, large-scale
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state spaces. In this case, the size of the state space can grow exponentially with
the number of state variables, causing a proportional increase in the size of the
value table needed to store the value functions. The training time needed to
explore large state spaces is expensive and should be reduced. In the domains
with continuous state spaces, it is impractical to enumerate and maintain all
possible states. Associating approximating techniques with RL algorithms has
enabled the approach to be effectively applied to many practical problems. How-
ever, some challenges still remain.

In the literature, a number of works [5,14,17] have proposed applying approx-
imating techniques to large state-action spaces. Function approximation is a
landmark technique that can effectively reduce the size of the search space
by representing it with a compact and parameterized version [6]. The value
table that stores value functions is replaced by an approximate and compact
table. Tile coding (CMACs) [18], adaptive tile coding [12,19] and tree-based
state space discretization [2] are prominent function approximation approaches
that have been evaluated in various problem domains. However, when solving
practical real-world problems, limitations on the coding schemes used in those
approaches, e.g., inflexible partitions or computationally costly abstractions of
the state space, make them hard to scale well or guarantee high performance in
domains that are very large, or have continuous state and action spaces.

Kanerva coding [8], also known as Sparse Distributed Memories (SDMs), has
emerged as an efficient and viable solution to deal with complex, large state
spaces. This technique considers such a setting that the whole state space is
represented by a substantially small subset of the state space. Since a set of
states is used as the basis for approximation, the complexity of this scheme is
dependent only on the number of states in the subset and not on the number
of dimensions of the state space, making it suitable for solving problems with
continuous, large state spaces. Kanerva-based learners’ effectiveness in problems
with continuous, large state spaces has been evaluated by [11,20]. However, to
improve the performance of Kanerva coding algorithms, the allocation of the
states in the subset need to be optimally arranged based on considered visited
state areas which is still an ongoing research field and needs further exploration.

In this paper, based on the principles of SDMs, we describe a function approx-
imator that adaptively adjusts the radii of receptive fields of selected memory
locations (also called prototypes). Such adjustments can directly change the gen-
eralization abilities of memory locations to cover certain visited states when
necessary, making it possible to fully utilize limited memory resources while
capturing enough of the complexity of visited states. This approach can learn
a good policy through its attempt to produce a high-quality generalization of
the selected memory locations by appropriately adjusting and utilizing various
levels of generalization for each memory location. Experimental results show the
superior performance of this proposed approach both in terms of memory usage
and approximation quality.

The rest of the paper is organized as follows. In Sect. 2, we give an overview
of the RL Sarsa algorithm [18] and present the principals and limitations of
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existing Kanerva-based approaches that serve as a linear function approximator
when applying RL algorithms in problem domains with continuous, very large
state spaces. In Sect. 3, we introduce our adaptive adjacency approach for flexible
memory adjacency adjustments in SDMs, and then we describe the implementa-
tion of this approach. In Sect. 4, we show our experimental results and analysis.
Finally, we give our conclusions in Sect. 5.

2 Related Work

RL has been successfully applied to a wide range of sequential decision problems
and problem domains, such as video streaming [3], computer game playing [7],
physical science [10] and networking [11,13]. RL can learn on-line without the
need for initial input data due to its ability to learn through a trial-and-error
mechanism. In RL, the learning agent receives a reward after performing par-
ticular actions in a state. It transits to a new state based on the environment’s
response to currently performed action. Its goal is to develop a policy, a mapping
from a state space to an action space, that maximizes the long-term rewards.
Many RL techniques have been proposed, i.e., Sarsa and Q-learning.

2.1 Sarsa Algorithm

Sarsa [18] is an on-policy temporal-difference (TD) control algorithm in RL. At
each time step t, the learning agent observes a state st from the environment and
receives a reward rt+1 after applying an action at to this state st. Current state st
then transitions to next state st+1 and the learning agent chooses an action at+1

at state st+1. Sarsa algorithm updates the expected discounted reward of each
state-action pair, in this case, the action-value function Q(st, at), as follows:

Q(st, at) ← Q(st, at) + αt(st, at)[rt+1 + γQ(st+1, at+1) − Q(st, at)], (1)

where αt(st, at) is the learning rate (0 ≤ αt(st, at) ≤ 1), and γ is the discount
factor (0 < γ ≤ 1). The value of each action-value function Q(st, at) is learned
and stored in a table, called Q-table. The use of Q-table is suitable for small
state-action space but impractical with large or continuous state-action spaces
due to the considerable memory consumption and unbearable long training time.

Although Sarsa performs well in terms of both learning quality and conver-
gence time when solving problems with small state and action spaces, Sarsa per-
forms poorly when applied to large-scale, continuous state and action spaces due
to its inefficient use of Q-table. Function approximation techniques are therefore
proposed to solve this problem where, on the one hand, the values of a relatively
much small set of states/prototypes are stored instead of storing the Q-table for
all visited states, and on the other hand, the knowledge among similar states are
generalized and transferable.
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2.2 Kanerva-Based Learning

Kanerva Coding (SDMs). The idea of Kanerva coding [18] considers to use
a relatively small set of states as prototypes to store and estimate the value
functions. In Kanerva coding, a state s or prototype pi consists of n state-
variables and each state-variable describes a measurement in one dimension with
a numeric value. A state s and a prototype pi are said to be adjacent if s and
pi differ in at most a given number of state-variables, for example differing in at
most one state-variable. The membership grade μ(s, pi) of state s with respect
to prototype pi is defined where μ(s, pi) is equal to 1 if s is adjacent to pi, and
0 otherwise. Kanerva coding maintains a set of k prototypes as parameterized
elements for approximation and a value θ(pi, a) is stored and updated for each
prototype pi with respect to the action a.

The approximation of the value of a state-action pair (s, a) is calculated by
a linear combination of θ-values of all adjacent prototypes of state s, defined as
follows:

Q̂(s, a) =
∑

pi∈Ds

θ(pi, a)μ(s, pi), (2)

where Ds is the set of adjacent prototypes with respect to state s. The θ-value
of each prototype pi with respect to action a is updated by the rule of Sarsa
algorithm as follows:

θ(pi, a) ← θ(pi, a) +
μ(s, pi)∑

pk∈Ds
μ(s, pk)

α(s, a)[r + γQ̂(s′, a′) − Q̂(s, a)]. (3)

Dynamic Kanerva Coding. Kanerva coding works well in large and com-
plex problem domains. However its performance is sensitive to the allocation
of prototypes in use [9]. The set of prototypes should be appropriately selected
from the state space, i.e., choosing ones that are well distributed around the
trajectories of visited states, otherwise, the quality of function approximation
could be greatly degraded. In fact, selecting/reallocating the set of prototypes
before and/or during the learning process to maintain a sufficient complexity
of function approximation is the central issue that needs to be solved for any
Kanerva-based algorithms.

There are two classes of solutions typically used to solve this problem. The
first class of approaches starts with an empty set of prototypes and then incre-
mentally builds up the set that covers areas of interest in the state space by
adding a certain number of prototypes. One heuristic used to add prototypes is
to add a new prototype if it is at least a certain distance away from all exist-
ing prototypes [4,16]. The heuristic is inflexible. When the complexity of the
required approximations is already satisfied, there will be no need to introduce
additional prototypes. This heuristic could introduce many redundant proto-
types resulting in slow learning and extra memory costs. Another approach is
to add a collection of new prototypes from the neighborhood area of a sample
of recently visited states, provided each of them is far enough from all exist-
ing prototypes [15]. However, this heuristic requires a sophisticated strategy to
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select appropriate prototypes from the neighborhood area of a sample of visited
states, particularly when avoiding conflicts with existing prototypes. In addi-
tion, both heuristics incur considerable computational cost, i.e., calculating and
leveraging the distance from the visited state to all existing prototypes. The
second class of approaches [1,21] starts with an initial set of randomly selected
prototypes. It has much less computational cost. To guarantee efficiency in func-
tion approximations, it tends to replace poorly-performing/rarely utilized pro-
totypes with promising prototypes to gradually adjust the allocation of the orig-
inal set of prototypes. However, prototypes should not be replaced only based
on their periodically-observed performance and too-frequent prototype replace-
ments could lose previously-learned information. In real implementation, both
classes of approaches may combine together to pursue even better performance.

Our adaptive adjacency approach addresses the weaknesses of both classes
of techniques while achieving satisfactory performance across multiple problem
domains. This approach also lowers computational cost by eliminating the oper-
ations to add and delete prototypes.

3 Adaptive Adjacency Kanerva Coding

3.1 Prototype Adjacencies

In our experiments, the state space is continuous and each input sample data
or prototype is represented by a sequence of real values, i.e., each dimension is
represented by a real value. The distance between an input sample data s =
〈v1, ..., vn〉 and one of the prototypes, pi = 〈h1, ..., hn〉, in the prototype set is
defined by the following distance functions:

d(s, pi) =
n∑

j=1

dj(s, pi), (4)

dj(s, pi) =
{

0 : |vj − hj | ≤ σiβj ,
1 : otherwise. (5)

Equation (5) is very important in our approach. In (5), βj is the basis radius
of the receptive field in jth dimension, and σi is the adjacency factor that is
multiplied by βj to adjust the radii of the receptive field of each prototype pi.
Note that d(s, pi) represents the number of state variables at which state s and
prototype pi differ by more than σiβj . The value of σi can be adaptively changed
by our algorithm for each prototype pi during the regular learning process. In
our algorithm, βj does not change.

We define the membership grade μ(s, pi) of state s with respect to prototype
pi to be a continuous function of the distance between s and pi as follows:

μ(s, pi) = e−d(s,pi). (6)

Instead of a binary membership grade, we use a continuous membership grade
in [0, 1] to assign a weighted value update (based on distance) to the θ-value of
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Algorithm 1. Adaptive Adjacency Kanerva Coding with Sarsa Algorithm
Input: p: a set of randomly selected prototype samples, θ: associated with p

and initialized to 0, σ: associated with p and initialized to 1, β: βj is a
basis radius of receptive field in jth dimension of the state space.

Output: learned θ-values and adjusted σ-values
1 Procedure Main()

2 for each episode do
3 Initialize s
4 Choose a in s based on policy derived from θ
5 for each step of episode do
6 Take action a, observe r, s′

7 pactivated = the set of prototypes activated by s′

8 M = the size of pactivated

9 if M ≥ N then
10 Choose a′ in s′ based on pactivated and ε-greedy approach
11 Update θ values with (3)

12 else
13 pactivated = AdaptiveAdjacency(σ, p, s′, pactivated)

14 Choose a′ in s′ based on pactivated and ε-greedy approach
15 Update θ values with (3)

16 Set s = s′ and a = a′

17 Until s is terminal

18 Procedure AdaptiveAdjacency(σ, p, s′, pactivated)

19 Initialize the factor k to 0
20 for each round of adjusting radii of receptive field do
21 Increase k by 1
22 for each prototype pi in p do
23 if pi is not in pactivated and σi has not been modified more than L

times then
24 Increase σi by a multiplicative factor, (1 + kφ), where φ ∈[0,1]
25 if pi is activated by its newly increased radii of receptive field

then
26 Add pi to pactivated

27 M = the size of pactivated

28 if M ≥ N then
29 Return

30 else
31 Reset σi to its previously not-yet-increased value

each adjacent prototype. Note that the membership grade of a state with respect
to an identical or 0-distance prototype would be 1, and the membership grade
of a state with respect to a distant prototype approaches to 0. And a state s
and a prototype pi are said to be adjacent if d(s, pi) ≤ ⌊

n
2

⌋
. We also say that a

prototype is activated by a state if the prototype is adjacent to the state.
The estimates of the Q-values and the updates to the θ-values use the same

definitions described in (2) and (3), respectively. In (5), parameter σi plays an
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important role in adjusting the radius of the receptive field in each dimension,
giving each prototype the ability to adjust its sensitivity to visited states. The
ability of each prototype to generalize can now be adjusted, based on information
gathered during the learning process.

3.2 Adaptively Changing Adjacencies

Our approach begins with a set of randomly-selected prototypes from the state
space. Each prototype pi has a corresponding factor σi whose value allows for
on-line adjustments that directly change the radii of the receptive field of pro-
totype pi. A parameter N (denoted as active parameter), the minimum number
of adjacent prototypes for a visited state, is used to control the amount of gen-
eralization that is provided.

For each encountered state, the algorithm adjusts prototypes’ receptive fields
so that state is adjacent to at least N prototypes. More specifically, when encoun-
tering a state s, if N or more prototypes are adjacent to s, we perform value
updates using the regular SDMs routine. However, if only M prototypes, where
0 ≤ M < N , are adjacent to s, our approach enlarges the receptive fields of
certain nearby prototypes enough to allow these prototypes to be adjacent to s.
This allows s to meet the adjacency requirement.

A detailed description of our adaptive adjacency approach is presented in
Algorithm 1. Starting from line 20, in each round of increments, the algorithm
provisionally adjusts the boundary of the receptive field for each prototype pi
that is not activated by the current state by increasing σi by a multiplicative fac-
tor that is >1. This process continues through additional rounds of increments
until the state is adjacent to at least N prototypes. The algorithm then fixes
the receptive field boundaries for all newly activated prototypes, and resets the
receptive field boundaries for the remaining prototypes that failed to be acti-
vated back to the values held before the increments began. In each round, the
multiplicative factor used to augment the receptive fields increases.

Line 23 of Algorithm 1 implements a constraint that ensures that the radii of
receptive field of a particular prototype can only be adjusted a limited number
of times, i.e., at most L times. This rule guarantees a fine-grained generalization
for the set of prototypes and can avoid over-generalization.

4 Experimental Evaluation

We first present an experimental evaluation of our adaptive adjacency Kanerva
coding (AdjacencyK) algorithm with Sarsa on the Mountain Car domain [18], a
classic RL benchmark. The problem has a continuous state space with 2 state
variables: the car position and velocity. We then present an experimental eval-
uation using a more complex benchmark, a variant of the Hunter-Prey domain
that has a continuous, much large state space with 5 state variables (see details
in Sect. 4.2). We compare the performance of AdjacencyK algorithm with that of
popular CMACs algorithm, pure Kanerva coding (also called traditional SDMs,
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denoted as PureK) as well as one commonly used dynamic Kanerva coding algo-
rithm (an approach that selectively deletes and generates certain expected pro-
totypes proposed and utilized in [1,21], denoted as DynamicK).

4.1 Evaluate Performance with Mountain Car Domain

In a Mountain Car task, the learning agent attempts to learn a policy to drive an
underpowered car up a steep hill. Each task consists of a sequence of episodes,
and each episode ends and resets to the start state if the goal is achieved, i.e., the
car reaches the top position of the hill, or if the agent-environment interaction
exceeds the maximal number of time steps allowed in an episode.

Tile coding (or CMACs) has been successful in helping RL algorithm learn
policies for the Mountain Car domain [18]. The performance of CMACs relies
largely on obtaining an effective memory layout on the state space. In CMACs, a
tiling exhaustively partitions the whole state space into tiles and an input state
sample falls within the receptive field of exactly one tile of a tiling. The receptive
field of a tile indicates its generalization ability. To avoid over-generalization
and to increase the resolution of needed approximations, typically a collection
of overlapped and slightly offset tilings is used.

We ran experiments of our proposed AdjacencyK algorithm on the standard
Mountain Car domain and then analyzed its performance over CMACs, PureK
and DynamicK algorithms. All our experiments start with the same initial state
in which the car is at rest at the bottom of the valley and its velocity is 0.
Each prototype’s receptive field radius in each dimension in AdjacencyK, PureK
and DynamicK is set equal to the size of a tile in corresponding dimension
in CMACs. Since the number of tilings in CMACs greatly affects the agent’s
ability to distinguish states in the state space, our experiments test different
number of tilings to present a complete set of empirical results. We also explore
the differences in performance when using various values of parameter N in
proposed AdjacencyK algorithm.

The PureK and DynamicK have the same initial set of randomly selected
prototypes as the one used in our AdjacencyK approach and the initial radii
of the receptive fields are also the same. Note that the radii in PureK and
DynamicK are unable to change during learning.

The results of applying CMACs, PureK, DynamicK and AdjacencyK algo-
rithms to the Mountain Car domain are shown in Fig. 1. The results are averaged
on 8 repeated runs and each episode starts with the same initial state. The best
selected RL parameters are set as: α = 0.5, ε = 0.0, and γ = 1.0. We set φ to
0.5 and L to 1 in AdjacencyK algorithm. The results show that the AdjacencyK
approach outperforms CMACs, PureK and DynamicK both in terms of learn-
ing quality and memory usage. As demonstrated by Fig. 1a and b, the adaptive
adjacency approach learns the task faster and converges to a higher return in a
shorter time than CMACs, PureK and DynamicK algorithms.

We also evaluate the sensitivity of the performance of considered algorithms
to variations in the settings of important parameters. In Fig. 1b, we show that
different values of active parameter N , i.e., 5, 10, 15, in proposed AdjacencyK
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Fig. 1. Comparisons of average returns of 4 algorithms with different sizes of tiles and
radii of receptive fields in the Mountain Car domain.

algorithm have only a small impact on average returns and therefore do not need
carefully tuned. Furthermore, the two graphs in the top row of Fig. 1 show data
assuming the same size base receptive field (or tile size), and the two graphs in the
bottom row show data assuming a smaller size base receptive field (or tile size).
The results in Fig. 1c and d demonstrate that the adaptive adjacency approach
still outperforms CMACs, PureK and DynamicK algorithms both in terms of
learned policies and memory usage as the sizes of base radii of receptive fields
(or tiles) decrease from 〈0.34, 0.014〉 to 〈0.17, 0.007〉. Interestingly, based on the
new settings on the radii and memory size, Fig. 1d shows that the performance
of PureK was largely improved, e.g., PureK with memory size of 200 learned a
slightly better policy than CMACs with memory size of 400.

Figure 2 demonstrates the memory savings of our proposed adaptive adja-
cency approach (AdjacencyK) with two different settings of the sizes of base radii
of receptive fields. With each setting, we show the negative of average returns of
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Fig. 2. Memory savings of AdjacencyK with two different sizes of base radii.

Fig. 3. Changes of the receptive field of each prototype with PureK and AdjacencyK in
the Mountain Car task. The base radii are 〈0.34, 0.014〉. The allocations of prototypes
are exactly same for both algorithms when the learning starts.

CMACs with various memory sizes (refer to the number of tiles), AdjacencyK
with a fixed memory size (refer to the number of prototypes) but various values
of N , and PureK as well as DynamicK with the same fixed memory size as Adja-
cencyK after 1500 episodes of learning in our experiments. When testing with
one setting of base radii of receptive fields (or tiles), i.e., 〈0.34, 0.014〉, the left
three bars in Fig. 2a show that the performance of CMACs is poor and unstable
when the memory size is small (i.e., 50), and its performance improves signif-
icantly when the memory size is relatively large (i.e. 250) which is reasonable.
And as demonstrated by the three clustered bars of AdjacencyK algorithm, our
adaptive adjacency approach can achieve even better performance than CMACs
when only using 20% of the memories. At the same time, it can be observed in
Fig. 2a that given the same initial set of prototypes, our approach outperforms
both Kanerva-based algorithms, PureK and DynamicK, with the same mem-
ory usages. And generally, these observations are also true for results shown in
Fig. 2b that has a different setting of base radii of receptive fields (or tiles).
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Fig. 4. Changes to the coverages of receptive fields for all prototypes with the Adja-
cencyK approach in a Mountain Car task.

We argue that the improved performance in our proposed approach results
from changes in the sizes of receptive fields of prototypes during learning.
Figure 3 shows these changes to the sizes of receptive fields across all proto-
types. As shown in Fig. 3, initialized with the same set of prototypes and base
radii, PureK algorithm does not change the sizes of receptive fields during RL
while our proposed algorithm allows the receptive fields appropriately changed
(see the rises of the curves in the graph) and thus all prototypes’ generalization
capabilities are flexibly adjusted so that required approximation complexity is
guaranteed for input state samples. In other words, during learning, each input
state would be adjacent to a sufficient number of prototypes and each proto-
type has the chance to be activated if being adjusted to have a required size of
receptive field. Note that a larger value of N means that input states expect to
have higher complexity of approximations, i.e., have more adjacent prototypes
for function predictions. Therefore, a larger N implies that the receptive fields
of prototypes will need to be increased more so that their generalization abilities
are enhanced in order to be more easily activated by input states. As shown
in Fig. 3, the learning agent with a bigger N value, i.e., N = 10 or N = 15,
increases its prototypes’ radii of receptive fields more obviously than that with
N = 5.

In our experiments, the adaptive adjacency approach gave similar good learn-
ing results when setting N to 5, 10 or 15. We argue that these good results are
a result of having a collection of prototypes with necessarily adjusted sizes of
receptive fields that overlap with visited input states sufficiently. Figure 4 shows
the changes to the sizes of receptive fields of 50 uniformly distributed prototypes
when performing the adaptive adjacency approach to a Mountain Car task. Note
that all the data depicting the radii changes in this figure came from one of our
experiments that learned a good policy. The detailed results of this experiment
are already shown in Fig. 1b and Fig. 3 in which the base radii are 〈0.34, 0.014〉,
the memory size is 50 and the active parameter N is 5.
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Fig. 5. Average returns of adaptive adjacency approach with different settings of L.
Base radii for each prototype is 〈0.34, 0.014〉, and memory size is 50.

The constraint L defined in our algorithm that limits the number of changes
to the adjacency factor σ can have a large impact on the learning performance.
Figure 5 shows the results of applying our algorithm with 3 different L values
to a Mountain Car task. It shows that our algorithm achieves better learning
results when using a smaller L. The reason is that a smaller L allows certain
distant prototypes to have opportunities to change their receptive fields and thus
provides a collection of prototypes with receptive fields of much varying sizes
that give finer-grained generalization on the state space. Therefore, in order to
achieve best learning quality, we set L to 1 in all our experiments.

4.2 Evaluate Performance with Hunter-Prey Domain

We also evaluate the performance of proposed adaptive adjacency approach on
a variant of Hunter-Prey task introduced in [15]. In our experiments, we use one
prey and two hunters where the hunters work cooperatively to capture the prey
and the prey needs to learn a policy to avoid being captured, e.g., the prey can
kill a hunter if only this alone hunter is close enough to the prey. The state space
in this task consists of 4 continuous state variables in which the position of each
hunter is described by 2 continuous variables, i.e., a radial coordinate and an
angular coordinate in a polar coordinate system with the prey as the reference
point, and one extra integer variable indicating the number of alive hunters.

To capture the prey, both hunters should approach close enough to the prey,
i.e., within 5 units, and the two angles between both hunters need to be ≤ π+0.6
radians. Each hunter’s movements follow a predefined stochastic strategy similar
to a ε-greedy approach. For example, in the radial direction, each hunter moves
5 units towards the prey if this movement would not get it killed (otherwise, it
moves 5 units away from the prey), during all but some fraction ε of the time
when each hunter makes a 0.2 radians’ movement clockwise or counterclockwise.
We set ε to 0.7 in our experiments to make the hunters less greedy to approach
to the prey, otherwise the prey is very likely to kill an individual hunter even
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(a) CMACs algorithm with the tile size
〈125, 1.57〉2. Memory sizes are 256, 512 and
1280 respectively.

(b) Comparisons of PureK, DynamicK
and AdjacencyK. Each algorithm sets base
radii 〈125, 1.57〉2 and memory size 256.

Fig. 6. Comparisons of average returns of 4 algorithms in the Hunter-Prey domain.

Fig. 7. Memory savings of the AdjacencyK algorithm

with random movements, giving an unexpected high return. The prey moves 5
units per time step in 4 available directions: up, right, down, left in the polar
coordinate system. The episode starts with an initial state in which each hunter
is randomly placed on a cycle of radius 500 units centered on the prey. If the prey
kills one hunter (reward of 1) or gets captured (reward of −200), the episode
ends, otherwise, the interaction between prey and hunters continues (reward of
−1 per time step).

We show experimental results of our AdjacencyK algorithm and compare its
performance with CMACs, PureK and DynamicK algorithms in Figs. 6 and 7.
The experimental configuration is similar to that of the Mountain Car task and
RL parameters are also optimally selected. The φ is set to 0.3 and L is set to
1 in AdjacencyK algorithm. The AdjacencyK approach obviously learns better
policies than CMACs, PureK and DynamicK algorithms. PureK algorithm has
the worst average returns. It cannot learn the task well with a memory size of
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256. Although DynamicK has a better performance than PureK, it still cannot
beat CMACs. The CMACs algorithm learns slower than AdjacencyK and if their
memory sizes are both 256, the learned average return of AdjacencyK (N = 1)
is 32.8% better than that of CMACs. Note that the CMACs algorithm needs
5-times of the memories, i.e., 1280, to obtain a comparable performance with our
algorithm. In other words, the memory usage of our algorithm is 80% smaller
than that of CMACs while maintaining a similar performance.

5 Conclusion

In this paper, we extended the architecture of SDMs by using the adaptive adja-
cency approach as a practical function approximator, and aimed to use RL with
this new function approximator to solve complex tasks with continuous, large
state spaces. Our new approach enables the generalization capabilities of proto-
types to be dynamically adjusted to provide needed complexities of approxima-
tions for all input states. This approach supports flexible shaping of the receptive
fields of those preselected memory locations in order to cover the areas of inter-
est in the state space. On the one hand, limited memory resources are more
efficiently utilized to accomplish qualified value functions’ storage and retrieval.
On the other hand, performance is less sensitive to the sizes of the receptive
fields as well as memory allocations and reallocations.

Our experimental studies demonstrate that our adaptive adjacency approach
learns better policies in RL than the popular CMAC algorithm and other existing
algorithms in SDMs over two benchmarks. Moreover, this approach has a concise
mechanism that is easy to implement, is flexible and scalable in various domains,
and does not require expert tunings or prior knowledge about the state space.
Finally, the approach works very well when memory resources are constrained.
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Abstract. The research of the drug-target interactions (DTIs) is of
great significance for drug development. Traditional chemical experi-
ments are expensive and time-consuming. In recent years, many com-
putational approaches based on different principles have been proposed
gradually. Most of them use the information of drug-drug similarity and
target-target similarity and made some progress. But the result is far
from satisfactory. In this paper, we proposed machine learning method
based on GBDT to predict DTIs with the IDs of both drug and pro-
tein, the descriptor of them, known DTIs and double negative samples.
After gradient boosting and supervised training, GBDT construct deci-
sion trees for drug-target networks and generate precise model to predict
new DTIs. Experimental results shows that Gradient Boosting Decision
Tree (GBDT) reaches or outperforms other state-of-the-art methods.

Keywords: Drug-target interaction prediction · DTIs
Drug discovery · Machine learning · GBDT · DrugBank

1 Introduction

Drug research is the most widely used and most valuable field in the application
of bioinformatics. It is costly and time consuming. Especially in the process of
drug discovery, it takes more time and cost, which directly restricts the speed of
new drug research.

A huge number of compounds and proteins are still under explored [1]. For
instance, the latest release of DrugBank (version 5.0.11, released 2017-12-20) [2,
3] contains 10,571 drug entries including 2,338 approved small molecule drugs,
919 approved biotech drugs, 106 nutraceuticals and over 5,036 experimental
drugs. Only 17587 non-repeating interactions linked by 6876 drugs and 4407
proteins are published, which means only 0.58% of the drug-target are found
interacted [5].

Traditional computational approaches for identifying drug-target interactions
can be divided into two categories, docking simulation methods and machine
learning methods. Docking simulation methods utilize known 3D structure of

c© Springer International Publishing AG, part of Springer Nature 2018
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targets to detect DTIs, with higher accuracy but at a higher cost. Moreover,
the 3D structures of many targets are still difficult to obtain. Methods based on
machine learning have attracted lots of attention. They can be divided into two
subtypes: methods based on similarity and methods based on feature.

Since it is common acknowledged that similar drugs will interact with simi-
lar proteins and vice versa. With this assumption, methods based on similarity
predict DTIs by computing similarity matrix of drug-drug or target-target with
chemical structure of drug and protein sequence of target through particular
similarity algorithm [4,6–8]. The drug and target similarities generate the chem-
ical space of drugs and genomic space of targets, respectively, which explains
the validity of similarity-based methods [9,10]. But these methods are compu-
tationally complex and do not fully make use of known DTIs and features of
drug-target.

On the other hand, methods based on feature extract both drug and target
features from molecular fingerprint of drug and sequence descriptor of target as
well as known DTIs. Cao et al. [11,12] used three global descriptor (Composition,
Transition and Distribution) to reflect biological properties of target sequence
and encoded drug molecules with MACCS substructure fingerprint representing
and then represent them as input feature vector for Random Forest Model. Ding
et al. [13] employ substructure fingerprint of drug, physicochemical properties of
target biology and drug-target relationship as input of Support Vector Machine
model (SVM) and Feature Selection (FS). After taking full advantage of drug
and target information, methods based on feature show high-performance.

Inspired by the above, we proposed a novel approach to identify DTIs by
composing three types of information: (1) IDs of drug and target; (2) descriptor
of drug and target; (3) DTIs. In this article, we randomly select drug-target
samples from DrugBank dataset, which is known not interact, as negative sam-
ples. After feature selected, we adopt Gradient Boosting Decision Tree (GBDT)
Model [14] to develop prediction system.

We examined the performance under different conditions: before or after
FS, with or without IDs, different proportions of negative samples, etc. and
compared our approach with state-of-the-art machine learning methods. Our
experimental result shows that the proposed method achieves higher AUC (Area
Under Curve) and prediction accuracy when feature selected, IDs retained and
positive-negative proportion of the sample kept 1:2.

2 Methods

2.1 DTIs

In this paper, we only considered human protein. After removing duplicated
data and nonhuman DTIs, we finally 12319 interactions, linked by 4950 drugs
and 2313 human proteins. Moreover, DrugBank provides only positive samples.
Hence we obtain negative samples by randomly select entries which is not exist
in known DTI networks.
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We use M = mi (i = 1, 2, 3, · · · ,n, n is the number of the sample) to represent
feature vector matrix input by our predicting model, D = di (i = 1, 2, 3, · · · ,n,
n is the number of drugs in DTI network) to represent drug set, and T = ti

(i = 1, 2, 3, · · · ,n, n is the number of targets in DTI network) for target set.
M[i][DTI] = 1 means drug and target in ith entity have interaction, 0 means no
interaction or unknown.

2.2 Features of Drug

PyDPI [17] is an open source code which can help compute descriptors of drug
and targets. We use it to download feature of drugs with drug id in DTIs obtained
from DrugBank. Table 1 shows 609 dimension features we got.

Table 1. List of drug features

Features Number of descriptors

Molecular constitutional descriptors 30

Topological descriptors 25

Molecular connectivity descriptors 44

Kappa descriptors 7

E-state descriptors 316

Moreau-Broto autocorrelation descriptors 32

Moran autocorrelation descriptors 32

Geary autocorrelation descriptors 32

Charge descriptors 25

Molecular property descriptors 6

MOE-type descriptors 60

Total 609

2.3 Features of Target

Like the descriptors of drug, we got 1819 dimension descriptors of target, as
shown in Table 2:

2.4 GBDT

Gradient Boosted Decision Trees, GBDT, was first proposed by Friedman in
1999 [14]. At first, it was designed for CTR prediction in yahoo. As a supervised
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decision tree algorithm based on iterative accumulation, it constructs a set of
weak learners (trees) and accumulates the results as the final predictive out-
put. It is adaptable, easy to interpret. Furthermore, it produces highly accurate
models [15].

GBDT takes two strategies to optimize the model.

Residual. The residual is actually the difference between real value and
predicted result. GBDT first constructs a decision tree, and then get the
residual value of “true value-predicted value”, which is the learning target of
the next tree. The loss function will reduce each round by fitting the residual.
Gradient descent algorithm. The gradient descent algorithm moves
towards the negative gradient of the loss function each time, and finally get
the minimum loss function.

Gradient Boosting algorithm is as follows:

1. GBDT first initializes loss function

F0(x) = arg minρ

N∑

i=1

Ψ (yi,ρ) . (1)

2. For m = 1 to M, do:

Table 2. List of protein features

Features Number of descriptors

Amino acid composition 20

Dipeptide composition 400

Normalized Moreau-Broto autocorrelation 240

Moran autocorrelation 240

Composition 21

Transition 21

Distribution 105

Conjoint triad features 512

Sequence order coupling number 90

Quasi-sequence order descriptors 100

Pseudo amino acid composition 30

Amphiphilic pseudo amino acid composition 40

Total 1819
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a. Calculate residual rmi. It calculates the value of the negative gradient
of the loss function in the current model as an estimate of the residual,
which is the residual for the squared loss function or the approximation
of the residual for the general loss function.

ỹi = −
[∂Ψ (yi, F (xi))

∂F (xi)

]

F (X)=Fm−1(X)
,i = 1, · · · , N. (2)

b. Fit a regression tree for rmi to get the leaf area Rmj of the mth tree. (j =
1, 2, · · · , J). (Estimated leaf area of regression tree, fitting the residual
approximation) Fit a regression tree to the target rmi giving terminal
regions.

c. Using linear search to estimate the value of the leaf node area to minimize
the loss function.

ρm = arg minρ

N∑

i=1

Ψ (yi, Fm−1 (xi) + ρh (xi; am)) . (3)

d. Update the regression tree

Fm (x) = Fm−1 (x) + ρmh (x; am) . (4)

3. Output final model.
F̂ (x) = fM (x) . (5)

GBDT is adaptable, easy to interpret. In addition, it produces highly accu-
rate models and successfully used in a wide variety of applications. XGBOOST
is a rather mature paradigm of machine learning base on GBDT [16]. It is a
large-scale, distributed Gradient Boosting library that implements GBDT that
implements algorithm of finding approximate split points and enables parallel
computations. In this article, we build a GBDT model by XGBOOST.

Figure 1 is a schematic diagram of a decision tree generated by GBDT bases
on DrugBank dataset.

2.5 Feature Engineering

We observed the distributions of 2430 features (id for drug, id for protein, 609
dimensions for drugs, 1819 dimensions for targets) in dataset and found that
most of them display with long-tail distribution, as shown in Fig. 2. However,
there are features that have single value in the whole dataset, which is definitely
useless for our experiment. So we chose to discard these 290 features.

Furthermore, we also found that most features of few entities are null. 5 such
valueless entities were abandoned.

GBDT is good at dealing with dense dataset so one-hot-encode is not needed.
But it can only handle numeric values, which means ids in string type for drugs
and targets must be label encoded.

So for dataset with 1:1 positive-negative proportion, the dimension becomes
2140 * 27314 from 2430 * 27319.
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Fig. 1. A decision tree generated by GBDT based on DrugBank dataset

3 Experiment

There are several parameters to adjust in XGBOOST model. We change one
parameter and keep others unchanged at a time. We finally got the best combina-
tion, max depth = 10, min child weight = 4.7, gamma = 6, subsample = 0.88, col-
sample bytree = 0.22, eta = 0.01, lambd = 0.31, seed27 and boost round = 10000.

We applied AUC, accuracy and 10-fold validation to examine the performance
of all models.

3.1 Validation

AUC (Area Under Curve) is defined as the area under the ROC (Receiver
Operating Characteristic) curve [18].

ROC is the diagnostic ability of a binary classifier with regarding to different
thresholds, while AUC curve displays true positive rate (sensitivity) versus false
positive rate (1-specificity) at different values of thresholds. The sensitivity is the
percentage of the test samples with ranks higher than a given threshold, whereas,
specificity is the percentage the test samples that fall below the threshold.

Accuracy. After the prediction, each entry will have get a score. We set score
≥ split-point as positive and score < split-point as negative. If the prediction
equal to original label, then it is correct, vice versa. The accuracy is the result
of dividing the number of correct predictions by the total number of test entries.
In this paper, we set split-point equals 0.5.
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Fig. 2. Distribution of some features

K-Fold Cross Validation. Cross Validation is a common technique in statis-
tics. One of the most popular method is the K-fold cross validation, which divides
the dataset into K subsets with approximately the same size, and then utilize
K-1 subsets as training data and keep the remaining subset as testing data [19].
Repeat it for K times where each subset has one chance to be the testing set. In
order to make the result more convincing, we build every model based on 10-fold
cross validation.

3.2 IDs of Drug and Target

We first using dataset containing drug id and target id to establish a GBDT
model. Then rebuild another model with dataset without drug id and target id.
Comparing the results of two models to examine the effect of the existence of
the drug target ids on the prediction.

Table 3 in the bellow shows the results of prediction model when the dataset
contains ids of drug and target or not. We can see that for a thousand iterations
the AUC increases by about 0.0223 and accuracy increases by 0.0245, and for
ten thousand interactions, the AUC increases by 0.0129 and accuracy increases
by 0.165. In a word, the prediction model of using dataset with ids of drug and
target has been significantly improved.
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Table 3. Prediction result of dataset containing ids of drug and target or not

Dataset boost round AUC Accuracy

Without ids 1000 0.86395 0.789435

With ids 1000 0.88623 0.813928

Without ids 10000 0.89691 0.827088

With ids 10000 0.90979 0.843539

3.3 The Proportion of Negative Samples

Because our experimental dataset is rather small (less than 30,000 samples but
up to 2,300 features), the predictions must be more accurate if we can add
samples. The number of positive samples is consistent but the negatives can be
changed. We added the number of negative samples, increasing the proportion
of positive and negative samples to 1:2. In this way, number of sample raise.

Table 4 in the bellow shows the difference of prediction when the number
of negative samples changed. The AUC and accuracy increased both in 1000
interactions and 10000 interactions. In addition, the AUC and accuracy increased
by 0.014 and 0.045, respectively, when we add ids of drug and target and doubled
the negative samples.

Table 4. Prediction result of different proportion of negative samples

Dataset positive vs negative boost round AUC Accuracy

1:1 1000 0.86395 0.789435

1:2 1000 0.86716 0.828258

1:1 10000 0.89691 0.827088

1:2 10000 0.89954 0.866856

Original 10000 0.89691 0.827088

Best combination 10000 0.91095 0.871931

3.4 Competing Methods

By observing the ids, number of negative samples and parameters, we can get
the best combination, that is dataset with ids of drug and target, double neg-
ative samples. Then we compare this optimal model with six machine learning
methods base on feature, Naive Bayes, Neural Net, SVM, Logistic Regression,
Nearest Neighbors and Random Forest. Table 5 shows the result sorted by pre-
dicting performance of these methods. We can see Naive Bayes behaves worse,
whereas Random Forest and our approach predict significantly better than the
other methods.

We think this is because the sample has high rank and density matrix. Deci-
sion tree can help split point, which makes it more suitable for this type of
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dataset. And GBDT builds a new decision tree based on the goal of reducing
the residual of the previous tree. It is more accurate than the last prediction on
every iteration.

Figure 3 shows the Receiver Operating Characteristic Curve of our approach
and other six methods. The area under the curve is called AUC. The higher the
AUC, the better the model.

Table 5. Prediction result based on different machine learning methods

Method AUC Accuracy

Naive Bayes 0.54285 0.445622

Neural net 0.55611 0.544142

SVM 0.56119 0.597514

Logistic regression 0.62449 0.619996

Nearest neighbors 0.71011 0.663864

Random forest 0.87473 0.817584

Our approach 0.91095 0.871931

Fig. 3. ROC of different methods
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4 Conclusion

Predicting DTI is especially a challenge for these three reasons. First, the
database is not united. There are various datasets maintained by different orga-
nizations, DrugBank, ChEMBL, Benchmark, et al. Second, the volume of char-
acteristics for drug and targets is very large, even larger than the number of
known DTIs, which means the number of feature is greater than the number
of samples. Third, all above dataset provides only positive DTIs, no negative
DTIs [20]. So negative samples and unknown samples can only be marked as 0.

Most of the previous methods are based on similarity matrix and do not
make good use of the information of drug target pairs. To improve drug target
predictive performance, we have developed an approach based on GBDT that
combines drug target ids, drug target descriptors, DTIs, and Feature selection.
Different from other machine learning methods, GBDT has lower computational
complexity and is more suitable for dense dataset. Our experimental results have
proved that our method is superior to other competitive methods.
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Abstract. We present a novel approach to interpretable learning with
kernel machines. In many real-world learning tasks, kernel machines have
been successfully applied. However, a common perception is that they
are difficult to interpret by humans due to the inherent black-box nature.
This restricts the application of kernel machines in domains where model
interpretability is highly required. In this paper, we propose to construct
interpretable kernel machines. Specifically, we design a new kernel func-
tion based on random Fourier features (RFF) for scalability, and develop
a two-phase learning procedure: in the first phase, we explicitly map
pairwise features to a high-dimensional space produced by the designed
kernel, and learn a dense linear model; in the second phase, we extract
an interpretable data representation from the first phase, and learn a
sparse linear model. Finally, we evaluate our approach on benchmark
datasets, and demonstrate its usefulness in terms of interpretability by
visualization.

1 Introduction

Black-box models such as kernel machines and neural networks have proven to
be highly accurate in many real-world applications. However, they are usually
difficult to interpret by humans due to the inherent black-box nature. On the
other hand, white-box models are naturally interpretable. For instance, general-
ized additive models (GAMs) [1] enable humans to interpret the relation between
input features and output values thanks to the simple additive structure.

Here, a fundamental question to ask is: what does “interpretable” precisely
mean? In this paper, based on the notion presented in [2], we refer to the term
interpretability of predictive models as the following two aspects:

– Effects of input features on prediction of output values are understandable.
– Partial dependences of output values on input features are visualizable.

White-box models (e.g. GAMs) are easy to interpret by humans. Unfortu-
nately, they are generally less accurate than black-box models. Accuracy is an
important measure to evaluate predictive models. Interpretability, however, is as
c© Springer International Publishing AG, part of Springer Nature 2018
P. Perner (Ed.): MLDM 2018, LNAI 10934, pp. 213–227, 2018.
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crucial as accuracy in many application domains such as life science [3], criminal
justice [4] and marketing analytics [5]. For instance, when predicting customer
churn rates, a marketer might wish to understand how the predictive model
works as well, potentially for the purpose of promoting a campaign to avoid cus-
tomer migration. In such application domains, white-box models are seemingly
more favorable because of their relatively simple structures. However, Professor
Leo Breiman argued that

Interpretability is a way of getting information. But a model does not have
to be simple to provide reliable information about the relation between
predictor and response variable; neither does it have to be a data model [6].

This suggests that it is not necessary to have a preference for white-box models
to pursue interpretability; instead, the key point is how to extract interpretable
information from a model [7].

Motivated by this philosophy, we propose to interpret black-box models, in
particular, kernel machines. Kernel machines such as support vector machines
(SVMs) are a family of powerful nonparametric models [8,9]. The key idea is to
implicitly map the input data to a high-dimensional space, and compute inner
products in this space via a kernel function (a.k.a. the “kernel trick”). Owing
to this implicit feature map, kernel machines are able to capture high-order
interactions among features. However, the different effects of features and their
interactions on the predictive model are not understandable, because everything
is packed into the kernel function in a nontransparent way. Due to this black-box
nature, standard kernel machines are difficult to interpret by humans.

In this paper, our objective is to construct interpretable kernel machines.
Although kernel machines provide us with powerful predictive performances, the
interpretability counterpart has not been thoroughly studied yet in the literature.
The white-box RBF classifier [10] is an attempt to interpret kernel machines.
Unfortunately, its storage and computation costs are extremely high because
multiple kernel matrices have to be computed.

In contrast, we design a new kernel function based on random Fourier fea-
tures (RFF) [11] to avoid computing kernel matrices. This kernel function con-
sists of sub-kernels on pairwise features to capture nonlinear interactions. The
corresponding feature map is explicitly built, so that efficient off-the-shelf linear
algorithms can be exploited. With the designed kernel function, we develop a
two-phase learning procedure:

– In the first phase, we explicitly map all feature pairs to a space produced by
the designed kernel, and learn a dense linear model.

– In the second phase, we extract an interpretable data representation from the
first phase, and learn a sparse linear model.

The reason why we focus on pairwise features is that we wish to capture main
effects as well as two-way interactions in the extracted data representation. As
for interactions, we only keep those involving two features due to the limitations
of human perception and computer graphics for visualization.
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The sparse model in the second phase admits an additive structure. This
enables us to easily interpret different effects of features on the resulting model.
Learning sparse models can be done typically by imposing sparsity-inducing
regularizers to the optimization problem. The advantages of sparsity include
model interpretability and also computational convenience.

2 Related Work

There have been increasing interests in developing interpretable models in recent
years. The class of generalized additive models (GAMs) [1] relate the output
values to a sum of univariate functions. Thanks to this additive structure, GAMs
can be easily interpreted by humans. It is reported that fitting GAMs by using
gradient boosting with regression trees can achieve high accuracy [12]. However,
one of its potential weaknesses is the scalability issue due to the sequential
manner of boosting.

More recently, post hoc methods such as LIME [13] have been developed
to provide explanations for predictive models. These methods typically involve
learning an extra model to interpret the fitted model of interest. On the other
hand, our approach simultaneously performs prediction and interpretation.

Our approach is also closely related to wrapper methods of feature selection.
Broadly, there are two categories of feature selection methods: wrapper and filter.
Wrapper methods perform feature selection and prediction simultaneously; while
filter methods select important features based on some statistical criterion, which
is not directly connected to the learning algorithm.

Lasso [14] and �1-SVM [15] are two classic wrapper methods for regression
and classification respectively. By using �1-regularizer, important features can be
identified. Accordingly, the effects of these features on the resulting model can
be interpreted by humans. Moreover, Lasso and �1-SVM are useful in large-scale
problems thanks to the computational efficiency. However, a critical weakness
is that nonlinear relations can not be captured. SVM recursive feature elimina-
tion (SVM-RFE) [16] is another wrapper method. It is originally designed for
gene selection in life science. In SVM-RFE, irrelevant features are iteratively
eliminated according to some ranking criterion during SVM training. Like Lasso
and �1-SVM, the linear version of SVM-RFE can only capture linear relations.
Although kernelized SVM-RFE is able to handle nonlinearity, it is not a scalable
method any more. Sparse additive models (SpAM) [17] are a group of meth-
ods for nonparametric regression and classification. The optimization problem
in SpAM is convex and can be efficiently solved by the back-fitting algorithm.
SpAM is very effective for nonlinear feature selection. Nevertheless, since it does
not assume any interaction among features, SpAM might perform poorly if inter-
actions exist in the underlying model.

Our approach can be categorized as a scalable wrapper method of feature
selection. However, our goal is different from that of feature selection. Specifi-
cally, our approach is to interpret and visualize different effects of input features
on prediction, whereas feature selection is to choose a small subset of features
that is sufficient to construct a predictive model.
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3 Problem Setting

Suppose we have a dataset of N input-output data examples {(xi, yi)}N
i=1, where

the vector xi :=
(
x
(1)
i , . . . , x

(D)
i

)
∈ X is the i-th example with D features, and

yi ∈ Y is the corresponding prediction target. We have Y = R for regression
and Y = {−1,+1} for classification. A prediction of y is denoted by ŷ. Let
x(p,q)

i =
(
x
(p)
i , x

(q)
i

)
be a pairwise feature representation of xi, containing the

p-th and q-th features.

3.1 Kernel Machines

Kernel machines are successful in many real-world tasks and mathematically
well-founded. The core of kernel machines is the kernel function κ : X × X → R,

κ(x, z) = 〈φ(x), φ(z)〉H,

where H is a high-dimensional Hilbert space and φ : X → H is the correspond-
ing feature map. The strength of kernel machines is that φ(x) does not need
to be explicitly specified, because the inner product can be computed by κ
in an relatively inexpensive way (a.k.a. “kernel trick”). There are several ker-
nel functions successfully used in the literature, such as the polynomial kernel
κpol(x, z) = (〈x, z〉 + 1)u, u ∈ N and the Gaussian RBF kernel

κgau(x, z) = exp

(
−‖x − z‖22

2σ2

)
, σ ∈ R++.

The Gaussian kernel is one of shift-invariant kernels, a wide class of kernel
functions. A kernel function κ is shift-invariant if κ(x, z) = κ̄(x − z), for some
positive definite function κ̄ : X → R. It is easy to see that the Gaussian kernel is
shift-invariant, while the polynomial kernel is not. Unfortunately, in spite of its
elegant properties, the kernel function κ is essentially a black box. Moreover, the
associated optimization usually involves computing the N × N kernel matrix.
This makes kernel machines unappealing in the large-scale scenario.

3.2 Random Fourier Features

Random Fourier features (RFF) [11] is an attractive and popular technique for
improving scalability of shift-invariant kernels. The key insight is from a classical
theorem [18] in harmonic analysis, which guarantees that

κ(x, z) = κ̄(Δ) =
∫

RD

e
√−1ωTΔdP(ω).

Since κ̄(Δ) is real-valued, we may have

κ(x, z) = κ̄(Δ) =
∫

RD

cos(ωTΔ)dP(ω) = E
[
cos(ωTΔ)

]
.
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Now build an explicit feature map φ̂ : RD → R
d as

φ̂(x) :=

√
2

d

(
cos(ωT

1x), sin(ωT
1x), . . . , cos(ωT

d/2x), sin(ωT
d/2x)

)
,

{ωi}d/2
i=1

i.i.d.∼ P. (1)

Then the corresponding kernel function κ̂ : Rd × R
d → R can be written as

κ̂(x, z) =
2
d

d/2∑
i=1

cos(ωT
i x) cos(ωT

i z) + sin(ωT
i x) sin(ωT

i z) =
2
d

d/2∑
i=1

cos(ωT
i Δ).

It is easy to see the condition E [κ̂(x, z)] = κ(x, z) is satisfied. Hence κ̂(x, z) is
a sampling-based approximation of κ(x, z). Unlike the original feature map φ, φ̂
is relatively low-dimensional. This enables us to simply transform the input data
with φ̂, and then exploit efficient linear algorithms to approximate the original
nonlinear kernel machines.

4 Our Approach

In this section, we present our approach to learning with interpretable and scal-
able kernel machines (ISK). In ISK, we first design a new kernel function and
then develop a two-phase learning procedure.

4.1 Kernel Function

We use an explicit feature map via RFF to approximate a certain kernel function.
This kernel could be any shift-variant kernel. In this paper, we focus on the
Gaussian kernel. By using RFF to approximate the Gaussian kernel, we have

κgau(x, z) = 〈φ(x), φ(z)〉 ≈ κ̂gau(x, z) = 〈φ̂(x), φ̂(z)〉,

where φ̂ is in the form of Eq. (1) and {ωi}d/2
i=1 are randomly sampled according to

N (0D, σ−2ID). Here, N (μ,Σ) denotes the multi-variate Gaussian distribution
with mean μ and covariance matrix Σ.

Now we evaluate pairwise features x(p,q) on κ̂gau:

κ̂gau(x(p,q), z(p,q)) = 〈φ̂(x(p,q)), φ̂(z(p,q))〉

with the feature map φ̂ : R2 → R
d. Then we define our kernel function κisk : RD×

R
D → R as an average of sub-kernels on all distinct pairwise features:

κisk(x, z) :=
1
K

D∑
p=1

D∑
q>p

κ̂gau(x(p,q), z(p,q)) = 〈φisk(x), φisk(z)〉,
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where K =
(
D
2

)
is the total number of feature pairs, and the corresponding

feature map φisk : RD → R
Kd can be explicitly written as:

φisk(x) :=

√
2

Kd

(
cos(ωT

1x
(1,2)), sin(ωT

1x
(1,2)), . . . ,

cos(ωT
d/2x

(1,2)), sin(ωT
d/2x

(1,2)), . . . ,

cos(ωT
1x

(D−1,D)), sin(ωT
1x

(D−1,D)), . . . ,

cos(ωT
d/2x

(D−1,D)), sin(ωT
d/2x

(D−1,D))
)

,

{ωi}d/2
i=1

i.i.d.∼ N (02, σ
−2I2). (2)

There are also other kernel approximation techniques such as Nyström
method [19,20]. The reason why we prefer RFF is that the sub-kernels in our ker-
nel function are of similar forms, and RFF can be utilized for them in common.

4.2 Phase 1: Learning Dense Models

Since the feature map φisk is explicitly built, we can easily transform the input
data and exploit efficient linear algorithms to learn a dense (i.e. non-sparse)
linear model

f(x) = 〈w, φisk(x)〉 + w0 (3)

by solving the following convex optimization problem:

min
w∈RKd,w0∈R

1
N

N∑
i=1

L(f(xi), yi) +
λ

2
‖w‖22,

where L(f(x), y) is a convex loss function and λ is a parameter controlling the
importance of the regularization term.

For regression tasks where Y = R, taking the square loss L(f(x), y) = 1
2 (y −

f(x))2 we obtain a standard ridge regression problem; for classification tasks
where Y = {−1,+1}, taking the hinge loss L(f(x), y) = max(0, 1 − yf(x)) we
obtain a vanilla SVM problem.

4.3 Phase 2: Learning Sparse Models

In this phase, we first extract component representations from the fitted model
in Eq. (3). To achieve this, we propose to expand trigonometric functions via
Taylor series.

By the Taylor series of the cosine and sine functions around the point 0 (a.k.a.
the Maclaurin series), we have

cos(ωT
i x) =

∞∑
n=0

(−1)n

(2n)!
(ωT

i x)2n,

sin(ωT
i x) =

∞∑
n=0

(−1)n

(2n + 1)!
(ωT

i x)2n+1. (4)
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Using the multinomial theorem to expand (ωT
i x)u as

(ωT
i x)u =

D∑
p=1

(ω(p)
i x(p))u +

∑
∑D

l=1 rl=u
rl �=u

(
u

r1, . . . , rD

) ∏
1≤p≤D

(ω(p)
i x(p))rp . (5)

Plugging Eq. (5) into Eq. (4) and let

C(p)(ωi,x) :=
∞∑

n=0

(−1)n

(2n)!
(ω(p)

i x(p))2n = cos(ω(p)
i x(p)),

C(1,...,D)(ωi,x) := cos(ωT
i x) −

D∑
p=1

C(p)(ωi,x).

Then it is easy to see that cos(ωT
i x) is separated into main effects and interaction

effects as

cos(ωT
i x) =

D∑
p=1

C(p)(ωi,x) + C(1,...,D)(ωi,x). (6)

Similarly, we have

sin(ωT
i x) =

D∑
p=1

S(p)(ωi,x) + S(1,...,D)(ωi,x). (7)

In Eqs. (6) and (7), the terms C(p)(ωi,x) and S(p)(ωi,x) correspond to the
main effects of the p-th feature, while C(1,...,D)(ωi,x) and S(1,...,D)(ωi,x) rep-
resent interactions. In our approach, only two-way interactions are included,
because all of elements in the feature map φisk are built on pairwise features.

We then rewrite the inner product 〈w, φisk(x)〉 in Eq. (3) as a sum, and
expand each weighted element of φisk(x) into three sub-components according
to Eqs. (6) and (7). By combining these sub-components and centering the data,
we obtain the (D + K)-dimensional component representation for each data
example x as

x̃ :=
(
x̃(1), . . . , x̃(D), x̃(1,2), . . . , x̃(D−1,D)

)
, (8)

where the component x̃(p) is computed from the sum of sub-components related
to the p-th feature, and the component x̃(p,q) is built based on the sum of sub-
components that represent the interaction between the p-th and q-th features.

It is worth noting that centering the data should be done to ensure that each
column has the zero mean and unit variance. Because we need to guarantee all
the components are in the same scale so that the interpretation of their effects
is not misleading.
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With this interpretable component representation in Eq. (8), we learn a sparse
linear model:

g(x̃) = βTx̃ + β0 (9)

by solving the following convex optimization problem:

min
β∈RD+K ,β0∈R

1
N

N∑
i=1

L(g(x̃i), yi) + λ̃ρ‖β‖1 +
λ̃(1 − ρ)

2
‖β‖22,

where L(g(x̃), y) is the loss function used in the first phase and λ̃ is a regular-
ization parameter.

Here, the regularization term is a convex combination of �1-norm and �2-
norm, with the parameter ρ ∈ [0, 1] controlling their ratio. This is known as
the elastic net regularizer [21]. Like �1-norm, elastic net can also yield sparse
solutions of β, where only some of the coefficients in the fitted model are nonzero.
Hence, components that are relevant for predicting the output values can be
successfully identified. Only using �1-norm as the regularizer could be another
choice for this sparse model. We instead use a more general regularizer elastic net
because it allows us to balance the trade-off between sparseness and smoothness
in practice.

4.4 Interpretation

Finally, we can interpret the resulting sparse model in Eq. (9) by checking com-
ponent importances and partial dependences of output values on components in
Eq. (8).

Since {x̃i}N
i=1 are centered before fitting the sparse model in Eq. (9), the

importance of the p-th component x̃(p) can be indicated simply by the magnitude
of its coefficient in the fitted model, i.e. |β(p)|. More specifically, |β(p)| represents
the difference in the output value for each one-unit/category difference in x̃(p).
Similarly, |β(p,q)| indicates the importance of the interaction component x̃(p,q).

Partial dependence plots (PDPs) are graphical renderings for predictive mod-
els [22,23]. By showing the dependence of output values on input features, PDPs
are helpful for us to better understand the different effects of input features on
the resulting model.

Now define the partial dependence function of the p-th component x̃(p) as a
marginal average of g in Eq. (9):

g(p)(x̃(p)) := Ex̃\(p)

[
g(x̃(p), x̃\(p))

]
,

where x̃\(p) is the vector containing all of the elements of x̃ except for x̃(p).
Although g(p) cannot be directly accessed, empirical estimation is possible:

ḡ(p)(x̃(p)) :=
1
N

N∑
i=1

g(x̃(p), x̃\(p)
i ) = β(p)x̃(p) +

1
N

N∑
i=1

〈β\(p), x̃\(p)
i 〉. (10)
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Fig. 1. Results on synthetic data. Normalized root mean square errors (nRMSEs) are
averaged on 10 random splits of data. Means and standard errors of nRMSEs are
reported. “Exact-Gau” stands for “Kernel ridge regression with the exact Gaussian
kernel”. The lines of Lasso and SVM-RFE overlap each other because their perfor-
mances are comparable.

Similarly, the empirical partial dependence function for the interaction com-
ponent x̃(p,q) can be written as:

ḡ(p,q)(x̃(p,q)) := β(p,q)x̃(p,q) +
1
N

N∑
i=1

〈β\(p,q), x̃\(p,q)
i 〉. (11)

These partial dependence functions can be easily visualized for interpretation
of the resulting model.

5 Experiments

In this section, we describe our experimental design and report comparison
results. We first conduct synthetic experiments for illustration; then we use sev-
eral large benchmark datasets for performance comparison; finally, we demon-
strate the usefulness of our approach in terms of interpretability by visualization.

We compare our approach with several existing interpretable and scal-
able wrapper methods, including Lasso [14], �1-SVM [15], SVM-RFE [16] and
SpAM [17,24].

5.1 Synthetic Data

To illustrate the properties of our approach, we first generate three synthetic
datasets. We generate N = 1000 data examples of dimension D = 5 for the first
two synthetic datasets. Data examples are randomly sampled by following the
standard Gaussian distribution. For the third synthetic dataset, we generate N =
1000 data examples of dimension D = 10, where all of the columns are randomly
sampled from the uniform distribution U [0, 1] except for x(4), x(5), x(8), x(10) ∼
U [0.6, 1]. Then three underlying true models are generated as:
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f∗
1 (x) = − 2 sin(2x(1)) + (x(2))2 + x(3) + exp(−x(4)) + ε, ε ∼ N (0, 1).

f∗
2 (x) =x(1) exp(2x(2)) + (x(3))2 + ε, ε ∼ N (0, 1).

f∗
3 (x) =πx(1)x(2)√

2x(3) − sin−1(x(4)) + log(x(3) + x(5)) − x(9)

x(10)

√
x(7)

x(8)
− x(2)x(7).

Synthetic 1 has a typical additive structure of main effects, which is originally
used in [17]; the true model in Synthetic 2 includes a pairwise interaction, and
it is generated in [25]; Synthetic 3 involves more complex interactions, and it is
used in [26].

We also test kernel ridge regression with the Gaussian kernel (Exact-Gau)
for reference. We evaluate all the methods in terms of prediction performance,
by using the normalized root mean square error (nRMSE) as the metric. For our
approach, we vary values of d in Eq. (2) to see how the performance changes.

Each dataset is randomly split into training data (80%) and test data (20%).
We perform 5-fold cross-validation on training data for tuning parameters. The
model is finally refitted and evaluated on test data. The entire procedure is
repeated for 10 times.

Figure 1 shows the comparison results on synthetic datasets. We can observe
that the performance of our approach gets better and better as d increases in all
the three cases. This is consistent with the theoretical properties of RFF. When
d is large enough, our approach can perform comparably well as Exact-Gau.

The performance of SpAM is extremely good on Synthetic 1 (even better
than Exact-Gau). This is because SpAM assumes an additive structure of main
effects, which is exactly how we generate data in Synthetic 1. However, when we
add interaction effects in Synthetic 2 and 3, SpAM cannot perform well any more.
Generally, Lasso and SVM-RFE have comparable worst performances on all the
three synthetic datasets. This is not surprising because Lasso and SVM-RFE
cannot capture nonlinear relations. On the other hand, Exact-Gau achieves high
performance in all the three cases, owing to its capability of modeling infinite-
order nonlinear interactions. However, as a standard kernel method, Exact-Gau
is difficult to scale up to larger datasets because its computational complexity is
quadratic in the number of data example N , while that of our approach is linear
in N .

5.2 Benchmark Data

We conduct comparison experiments using public benchmark data as listed in
Table 1, including five regression and five classification datasets.

Most of these datasets are from the application domains where interpretabil-
ity is highly required, such as “Parkinsons” from life science and “Bank” from
marketing analytics. We decided not to include Exact-Gau in benchmark experi-
ments because of its high costs of storage and computation. For regression tasks,
we use the normalized root mean square error (nRMSE) as the metric; for clas-
sification tasks, we use the error rate as the metric. Error rate is calculated as
the proportion of incorrect predictions of the class label.
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Table 1. Specifications of benchmark data. Five for regression and five for classifica-
tion.

Dataset # of examples # of features % of pos.

Parkinsons 5875 20 -

Pumadyn 8192 8 -

CalHousing 20640 8 -

Kin40k 40000 8 -

Protein 45730 9 -

Spambase 4601 57 39.40

Eye 14980 14 44.88

Credit 30000 23 22.12

Bank 41188 20 11.27

Cod-RNA 59535 8 33.33

Table 2. Results on benchmark datasets. Normalized root mean square errors (nRM-
SEs) and error rates are averaged on 10 random splits of data. Means and standard
deviations of nRMSEs and error rate (%) are reported.

Lasso/�1-SVM SVM-RFE SpAM ISK

Parkinsons 88.90 (1.41) 88.87 (1.56) 82.88 (1.34) 56.49 (2.33)

Pumadyn 79.06 (1.16) 79.02 (1.14) 74.90 (0.86) 61.74 (3.70)

CalHousing 60.95 (1.02) 60.98 (1.11) 59.08 (1.06) 57.03 (1.50)

Kin40k 100.09 (0.75) 100.10 (0.74) 97.38 (0.67) 82.98 (2.33)

Protein 84.77 (0.48) 84.85 (0.54) 82.41 (0.37) 80.05 (0.99)

Spambase 7.82 (1.01) 7.75 (0.82) 6.91 (1.48) 6.38 (0.89)

Eye 39.20 (1.49) 39.99 (1.36) 34.78 (2.06) 19.92 (3.40)

Credit 19.13 (1.00) 19.87 (1.44) 19.89 (0.20) 17.90 (0.39)

Bank 9.75 (0.23) 9.55 (0.35) 9.44 (0.15) 9.15 (0.33)

Cod-RNA 6.16 (0.12) 6.18 (0.13) 5.76 (0.44) 4.96 (0.21)

Table 2 shows the comparison results on benchmark datasets. From the
results, we can see our approach yields the smallest prediction errors and per-
forms better than other methods on all the datasets. SpAM has the second
best performance in general. The reason why our approach performs better than
SpAM might be that our approach is able to detect interaction effects between
features. Lasso/�1-SVM and SVM-RFE perform the worst among all the meth-
ods. This might be due to the linearity of Lasso/�1-SVM and the usage of linear
SVM in SVM-RFE instead of the kernel-based version for the purpose of scala-
bility.
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5.3 Visualization

Finally, we demonstrate how to interpret the resulting model by checking compo-
nent importances and visualizing partial dependences. We compute these quan-
tities based on the sparse model in Eq. (9) fitted on the whole dataset. Due to
the space limitation, we only show the figures from the “CalHousing” data [27].

Table 3. Features in “CalHousing”.

Name Description

MedInc Median income

HouseAge Housing median age

AveRooms Average number of rooms

AveBedrms Average number of bedrooms

Population Population in each block group

AveOccup Average occupancy in each house

Latitude Geographic coordinate (north-south)

Longitude Geographic coordinate (east-west)

“CalHousing” consists of N = 20460 examples, each of which represents
the aggregated data of a block group in California from the 1990 Census. The
prediction target is the median house value in each block group, and the features
(D = 8) include demographic, geographical and residential information. The
feature information of “CalHousing” is summarized in Table 3.

We perform our approach on the “CalHousing” data. We first check com-
ponent importances by looking at the coefficients of the fitted sparse model in
Eq. (9). Then we calculate the relative importance for each component. Since the
components with low importances do not have significant effects on the result-
ing model, we are more interested in top components (e.g. those with relative
importance ≥ 0.2).

Figure 2 shows the ranking of top components on the “CalHousing” data.
The main effect of MedInc is identified as the most important component for
predicting house value, followed by location-related components: the main effects
of Latitude and Longitude, together with the interaction between them. AveOc-
cup and AveRooms have less than half the importance of MedInc, so they are
somehow relatively unimportant among these top 6 components.

We then calculate the partial dependences of house value on these top ranking
components by using Eqs. (10) and (11).

The first three plots in Fig. 3 show the partial dependences on main effect
components. We can observe that the partial dependence of house value is gen-
erally monotonic increasing as MedInc increases over the main body of data.
House value has a linearly decreasing partial dependence on AveOccup. The
partial dependence of house value on AveRooms is a non-monotonic, where the
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Fig. 2. Ranking of top 6 components (relative importance ≥ 0.2) on CalHousing data.

Fig. 3. Partial dependence plots on “CalHousing”.
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minimum is approximately at 6 rooms, roughly corresponding to the highest
proportion in the data.

The partial dependences on location-related components are rather inter-
esting. The last plot in Fig. 3 shows the partial dependence on the interaction
between Latitude and Longitude. House value is seen to largely depend on this
interaction effect along the coastline of California, especially in the area around
(37, −122), which is near the Bay Area of California.

6 Conclusion

We proposed a novel approach to interpretable learning with kernel machines.
We first designed a new kernel function based on random Fourier features for
the scalability purpose, and then developed a learning procedure including two
phases: in the first phase, we map all pairs of features to an explicit feature
space produced by the designed kernel to learn a dense linear model; in the
second phase, we use a component extraction trick to represent the original
data in an interpretable way for learning a sparse linear model. Experimental
results on several large benchmark datasets showed the predictive power of our
approach, and the visualization demonstrates its usefulness for interpretability.
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Abstract. The problem of detecting the most frequent items in large data sets
and providing accurate frequency estimates for those items is becoming more
and more important in a variety of domains. We propose a new two-list
framework for addressing this problem, which extends the state-of-the-art Fil-
tered Space-Saving (FSS) algorithm. An algorithm called FSSA giving an
efficient array-based implementation of this framework is presented. An adap-
tive version of this algorithm is also presented, which adjusts the relative sizes of
the two lists based on the estimated number of distinct keys in the data set.
Analytical comparison with the FSS algorithm showed that FSSA has smaller
expected frequency estimation errors, and experiments on both artificial and real
workloads confirm this result. A theoretical analysis of space and time com-
plexity for FSSA and its benchmark algorithms was performed. Finally, we
showed that FSS2L framework can be naturally parallelized, leading to a linear
decrease in the maximum frequency estimation error.

Keywords: Data mining � Frequent items � Skew detection � Space-Saving

1 Introduction

The problem of detecting the most frequent items in large data sets and providing
accurate frequency estimates for those items arises in many areas:

• Internet providers need to know the most frequent destinations in order to manage
traffic and service quality.

• Social network companies need to find the most frequent interactions among the
users in order to extract information about connections and relations between
individuals.

• Retail companies need to know the most common products purchased by each
customer in order to better classify the customer and design appropriate marketing
campaigns.

• An increasing number of businesses are finding it useful to monitor the most
frequent topics in news streams or social media so as to adjust their business
decisions based on these topics.

• Database engines can optimize query plans depending on the degree of skew in the
underlying data and can give separate treatment to the most frequent items.
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In order to be practical, any algorithm that tackles this problem has to perform its
computations using limited memory, usually orders of magnitude less than the size of
the data set. Another key practical requirement is performing all computations in one
pass – without this feature, an algorithm would not be useful for very large data sets or
data streams.

Several algorithms that meet these requirements have been proposed in the litera-
ture, the most well-known ones being Frequent [3], Lossy Counting (LC) [6] and
Space-Saving (SS) [8]. The Frequent algorithm was shown to be much less accurate
than either LC or SS (see, for example, [1, 7]). The Space-Saving (SS) algorithm was
shown (e.g., [1, 7]) to be more accurate than Lossy Counting (LC). During our liter-
ature search, we found an improved version of SS called Filtered Space-Saving
(FSS) [5], which was shown to be more accurate than SS, both in [5] and in our
experiments in Sect. 5.

However, we discovered that the FSS algorithm suffers from the fact that infre-
quently observed items can still get onto the list of items tracked by FSS and displace
from it many of the frequent items that we would like to keep. In order to avoid this
problem, we extended the FSS algorithm by keeping information about the frequently
observed items in a special protected list, which prevents that information from being
displaced by the infrequent items. We refer to this two-list framework as FSS2L.

The rest of this paper is organized as follows. Section 2 describes the previously
developed SS and FSS algorithms and presents a novel analysis of the expected
behavior of the FSS algorithm. Section 3 presents the FSS2L framework and analyzes
its expected behavior. It then describes an efficient implementation of this framework
using a single array, which we called FSSA algorithm. Finally, it presents an algorithm
for adapting the relative sizes of the two lists used in the FSS2L framework and
discusses the impact of such adaptation. Section 4 presents analysis of the space and
time complexity of FSSA and its benchmark algorithms. Section 5 evaluates these
algorithms on both artificial and real distributions of item keys. Section 6 summarizes
the results and explains how the FSSA algorithm can be parallelized.

2 Relevant Prior Algorithms

2.1 Space-Saving Algorithm

The Space-Saving (SS) algorithm [8] stores the estimated frequency of each monitored
key in a hash map with a maximum size m. If the observed key i has a corresponding
entry in the hash map, then its frequency estimate fi is incremented. Otherwise, an entry
is added to the hash map with the estimated frequency fmin þ 1, where fmin is the
minimum frequency among all the keys currently stored in the hash map. When the
number of entries in the hash map exceeds m, the entry corresponding to the key with
the smallest estimated frequency fmin is removed.

By assigning the frequency fmin þ 1 to each newly inserted key, the SS algorithm
never underestimates a key’s frequency. This is so because a newly observed key could
have been previously observed at most fmin times, then removed from the hash map
(possibly when the previous key was inserted), and was just observed again. Since a
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key that was never observed before will be inserted with a frequency fmin þ 1, the
maximum possible error Di in the frequency estimate for a key i satisfies 0 � Di � fmin.
The value fmin will grow at the fastest rate if all observed keys are distinct, in which
case fmin will be incremented by 1 after m keys are observed. Therefore, fmin � N=m,
and the final worst-case accuracy guarantee for SS becomes 0 � Di �N=m. A formal
proof of this fact is given in [8].

2.2 Filtered Space-Saving Algorithm

The Filtered Space-Saving (FSS) algorithm [5] improves the accuracy of the SS
algorithm by storing fewer keys in the hash map and allocating the “saved” space to an
array H that holds hashed key values. Instead of always adding a new entry to the hash
map when a key is observed for which no entry exists, the key is first hashed, uni-
formly, into the set {1, 2, …, sizeH}, where sizeH - is the number of cells in H. If the
key is hashed to k and H[k] is smaller than fmin � 1, then H[k] is increased by 1 and no
further action is taken. Otherwise, a new entry is created in the hash map with this key,
its estimated frequency fi is set to H[k] + 1 and its maximum error Di is set to H[k].
When the number of keys in the hash map exceeds the preset upper bound, a key with
frequency equal to fmin is removed, and if H j½ �\ fmin, where j is the value to which the
removed key hashes, then H[j] is set to fmin so that it would still represent the maximum
overestimation error for any newly inserted key that hashes to cell j (in case the key
with frequency fmin that was just removed is the next key to be observed again).

FSS has the following worst-case accuracy guarantee: 0 � Di � H k½ � � fmin
� N=M, where M is the number of elements it stores in the hash map. These guar-
antees can be easily inferred from the operations of FSS. Since Di for each newly
inserted key i that hashes to cell k is set to H[k], and H[k] can still grow over time, we
get 0 � Di � H k½ �. The values stored in H are incremented only when H k½ � þ 1\ fmin
for the observed key or when a key is evicted and its corresponding H j½ �\ fmin,
implying that H k½ � is always � fmin for every k. Finally, let S0 be the sum of the
frequencies of all keys monitored by FSS and note that every observed key either
increments S0 by 1 or leaves it unchanged. Since N keys are observed, N � S0
� Mfmin, which implies fmin � N=M.

Since FSS stores fewer keys in its hash map than SS, the worst-case error for FSS
derived above is larger than that for SS. However, such an error can only be observed if
all keys happen to hash to the same cell in the hash array, which has a negligible
probability for any real hashing scheme whose goal is to spread the keys uniformly
over all cells in the hash array.

2.3 Efficiently Finding the Smallest Frequency Key

In order to implement efficiently all frequency estimation algorithms built on top of SS,
one needs to be able to quickly find the key with the smallest frequency fmin when it
needs to be evicted from the hash map. In order to perform this eviction in O(1) time,
the authors of the SS algorithm came up with the “Stream Summary” data structure [8]
for storing information about the monitored keys.
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In this data structure, each element in the top-level double linked list is a “bucket”
with a specified frequency Fb (either 10 or 11 in Fig. 1), which contains its own linked
list of nodes that stores keys that have estimated frequency Fb. The nodes are always
added to the end of the list inside each bucket. If the total number of keys tracked by
Stream Summary has exceeded a prespecified threshold, then the first node in the first
bucket is removed. Each “bucket” maintains pointers to the first node and to the last
node on its list, which makes insertion and removal operations take O(1) time in the
linked list. When a key that is present in the hash map with an estimated frequency fi is
observed in the data set, it is moved to the end of the linked list in the bucket with
Fb ¼ fi þ 1, and if such a bucket does not exist, a new bucket is created (and is inserted
into a proper location in the list of buckets so as to still keep it sorted by frequency) and
the node with the observed key is added to the list of nodes in that bucket.

In order to perform the removal of a node from its current location in O(1) time,
each node can also maintain a pointer to the previous node in the list, making the list of
nodes doubly linked (otherwise, a linear search will be needed in order to find the node
before the one being removed, so that it could then be linked with the node after the one
being removed). This modified version of the Stream Summary was used in the
experiments described in Sect. 5 and is shown in Fig. 1.

We also used a suggestion that was made in [8] (and explained in more detail in [2])
for the hash map to hold pointers into the Stream Summary, so that no linear search
would be needed in order to find specific keys in it. This implementation requires
storing 2 numbers in the hash map for each monitored key (the key and the pointer to
the Stream Summary node) and storing 4 numbers in the corresponding node: the key
and the pointers to the parent bucket, to the previous node and to the next node.

3 Proposed Algorithms

3.1 FSS2L Framework

The general idea of the proposed FSS2L framework is to split the hash map entries into
two conceptual lists: List0 where new keys are first placed and List1 to which keys that
are considered to be frequent are promoted from List0. Keys in List0 are sorted by their
estimated frequency, while those in List1 are sorted by their “hits” value – the number
of times there were observed since they were first added to List0. The hits value of each
monitored key i can be computed dynamically from its estimated frequency and
maximum error, as will be explained below.

Fig. 1. The “modified” Stream Summary linked list data structure used for storing keys in our
implementation of SS and FSS.
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The operations of this FSS-two-list (FSS2L) framework are shown in Fig. 2. When a
new key i is observed and is found in List1, its estimated frequency is incremented and it
is moved closer to the top of List1 in order to still keep that list sorted by hits. If the
observed key i is found in List0, then it is upgraded to List1 if hi � hmin � 1 (where hmin
is the minimum number of hits for any element in List1) and its estimated frequency is
incremented. Otherwise, the estimated frequency fi for this key is incremented and, if
needed, the key is moved closer to the top of List0. If the key is upgraded and if the
number of elements m1 in List1 became greater than a fraction q of the maximum
number of keys that the algorithm can track (which we will denote byM to be consisted
with the FSS algorithm), then the last element from List1 is inserted into List0.

If the observed key i is not found in List0 or List1, its key is hashed into the array
H[k] and the same procedure as in FSS is followed in order to decide whether or not
this key should be inserted into List0 (ahead of all items with the same frequency, so as
to stay longer in the list). This procedure implies that if a new key i is inserted into
List0, it is assigned estimated frequency fi ¼ H k½ � þ 1 and a maximum error
Di ¼ H k½ �. Therefore, its “hits” value (the number of times it was observed after the
algorithm started monitoring it) can always be computed dynamically as
hi ¼ fi � Di � 1.

3.2 FSSA Algorithm

A straight-forward implementation of FSS2L would use two Stream Summary lists of
the type described in Sect. 2.3 (for storing information about keys in List0 and List1
and efficiently moving the keys inside these lists or between them) and two hash maps
(HashMap0 and HashMap1 with entries indexed by keys from the corresponding lists)
for efficiently finding the key of interest in each Stream Summary list (as was suggested
at the end of Sect. 2.3).

However, there are cases when it is undesirable to use a linked list implementation.
For example, if the data structures need to be written to disk periodically and then read
from disk, then the pointer information will become inaccurate. Also, the number of

Fig. 2. The keys in List1 are protected in the FSS2L framework from being washed out by the
inflow of new keys that are unlikely to be observed again.
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nodes representing keys in List0 can initially grow to M, and then the unused nodes
will need to be deallocated as List1 grows to its maximum size of qM while List0
shrinks down to 1� qð ÞM. Deallocation of memory can be hard to implement in some
contexts, and the deallocated memory may not be reusable until the algorithm finishes
its data processing. These practical concerns motivated us to develop a single array
implementation of the FSS2L framework, which we called FSSA algorithm, shown in
Fig. 3.

This algorithm allocates a 2D array of size M-by-2 to store information about the
monitored keys. If the key belongs (conceptually) to List0, then the array stores the key
and its estimated frequency. If the key belongs (conceptually) to List1, then the array
stores the key and its number of hits. The keys from List0 are kept together at the front
of the array and are sorted by frequency, while the keys from List1 are kept together at
the end of the array and are sorted by hits.

In order to make insertions of new keys into the List0 section of the array more
efficient, instead of always inserting new keys ahead of all other keys with frequency
equal to fmin, FSSA cycles through those keys and overwrites them one after another. In
order to accomplish this, FSSA stores the index of the next key to be overwritten and
the largest index for which a key still has frequency equal to fmin. Similarly, in order to
make “upgrades” of keys from the List0 section to the List1 section more efficient,
FSSA stores the index of the next key to be overwritten in List1 and the largest index
for which a key still has hits equal to hmin. Also, in order to minimize movement of
memory within this array, when FSSA increments the estimated frequency for key i
and decides to move it closer toward the end of the List0 section, it simply finds, using
binary search, the last key that has frequency equal to fi and swaps it with key i (which
will now have frequency fi þ 1). A similar strategy is used when incrementing the hits
value for a key in the List1 section.

When a new key i is observed and is found in HashMap1, the value of hi is first
computed as hi ¼ fi � Di � 1 using fi and fi stored in the hash map. Then, the position
of key i in the List1 section of the array is determined using binary search for hi
(followed by a short linear search over all keys that have the same hits value). Simi-
larly, if the observed key i is found in HashMap0, then its position in the List0 section
of the array is determined using binary search for keys that have a frequency fi followed

Fig. 3. The 2D array data structure used in FSSA. Keys in the List0 section are sorted by
estimated frequency, while those in the List1 section are sorted by observed hits.
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by a linear search for the exact key. Therefore, FSSA can perform all of its operations
by storing only 5 numbers for each monitored key: the key, its estimated frequency and
its maximum error in the hash map and two more numbers in the sorted array. This
makes FSSA the most space efficient algorithm out of the ones we considered, as will
be discussed in Sect. 4.

3.3 Optimizations that Can Be Added to FSS and FSSA

In order to speed up the operations with a large hash map, the FSS and FSSA can
substitute it by an array A of the same size as H, with A[k] storing a hash map for those
keys that hash to k. In this way, every operation with the hash map will become faster
as it will be done on a much smaller hash map (which is implemented in C++ as a
red-black tree with update time being logarithmic in the hash map size). As a result, our
experiments showed that the overall execution time for the algorithms was reduced by
25–50% (a larger improvement was observed for lower levels of skew in the frequency
distribution of keys).

Another optimization can be added to FSS and FSSA to reduce their space con-
sumption. It is based on the observation made in [5] that with a good uniform hashing
of keys into H, the difference between maxk H k½ � and maxk H k½ � is small. Therefore,
after observing every n keys (where n can be 10 � sizeH), mink H k½ � is computed and is
added to a variable Hc that holds the common amount subtracted so far from all cells in
H, while all cells in H are decremented by mink H k½ �. As a result, it is sufficient to
restrict cells in the hash array to store nonnegative integers that are less than 216 (i.e.,
take up only 2 bytes each). Then, the criterion for adding to the hash map a new key
that hashes to cell k would be H k½ � þ Hc � fmin � 1. Also, when a key that hashes to
cell j is removed from H, we set H j½ � ¼ max fmin � Hc;H j½ �ð Þ, where the max() operator
is needed because if the removed key was recently moved from List1 to List0, then
fmin � Hc can be smaller than H j½ �.

3.4 Adapting the Ratio of List0 Size to List1 Size in FSS2L

During our experiments with different frequency distributions of keys, we discovered
that the maximum allowed size of List1, which we have previously denoted by q � M
with q being a tunable parameter, has an important effect on the results obtained by the
FSS2L framework.

First of all, note that if we let q ¼ 0, then FSSA behaves very much like FSS,
differing from it only in the ordering of keys within groups that have the same fre-
quency (our experimental results confirm this claim). As was pointed out in Sect. 2.3,
the implementation of SS (and by extension of FSS) currently assumed in the literature
requires storing 2 numbers in the hash map and 4 numbers in the Stream Summary data
structure for each monitored key. However, as was described in Sect. 3.2, FSSA can
perform all its operations by storing 3 numbers in the hash map and 2 numbers in the
array for each monitored key. Thus, by setting q ¼ 0 in the FSSA algorithm, we obtain
FSSA(0), which is a more space efficient implementation of FSS than is currently
known in the literature.
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As q is increased, more and more of the highest frequency keys can enjoy pro-
tection on List1 from being displaced by an inflow of infrequently observed keys.
However, it also becomes more difficult for keys to get onto List1, since they will
spend less time in List0 (whose size is reduced as q is increased). Furthermore, a
smaller List0 implies a faster turnover of its keys, which in turn implies a faster growth
rate for fmin.

When the number of distinct keys in the dataset has the same order of magnitude as
the number of entries in the hash array, even a perfectly random hash function will not
be able to spread out the keys uniformly over the hash array and some of its cells will
have one or zero keys hashed to it. If a medium-frequency key i happens to be the only
key hashed to a certain cell H k½ � in the array, then we often found that fmin grows faster
than H k½ � if q is set to 0.75 or larger, and key i does not make it into List0. As our
experiments in Sect. 5 show, when the number of distinct keys in the data set is small,
FSSA(0.75) will miss some of the top n most frequent items, while FSSA(0.25) will
discover many of them but will have a larger frequency estimation error than FSSA
(0.75). Table 5 shows that the effect described above becomes more noticeable when
the degree of skew in the frequency distribution of keys decreases, because it becomes
harder for the n th most frequent key to be observed sufficiently many times to catch up
with the growing fmin.

The above observations suggest that if one is most concerned with minimizing the
frequency estimation error, then one should use FSS2L with q ¼ 0:75. However, if one
is most concerned with not missing any of the top n most frequent items for a value of n
that is as large as possible, then one should start with q ¼ 0:25; then estimate the
number of distinct keys in the dataset, and if this number is found to be much larger
than the size of the hash array, then one should increase q to 0.75.

In order to not use too much extra space by running a separate algorithm for
estimating the number of distinct keys (such as HyperLogLog described in [4]), it is
possible to add a small data structure to the FSS2L framework, which can then be used
to determine whether or not the number of keys in the data set is much larger than
sizeH. This data structure consists of a boolean array B of size sizeH-by-9 which is
initialized with FALSE values. Whenever a key is observed, hashed to cell k in H and
is then not inserted into HashMap0, then if B k; 8½ � is FALSE, this key is hashed
uniformly into the set {0,1,…,7}, say to a value j, and then the cell B k; j½ � is set to
TRUE. At that point, if B k; j½ � = TRUE for j � 7, then B k; 8½ � is set to TRUE. Then,
when the number of observed keys becomes 32 � sizeH, the cells B k; 8½ � are examined
for all k, and if the fraction of them with B k; 8½ � = TRUE is greater than 0.01, then we
can conclude that the number of distinct keys in the dataset is much larger than sizeH,
and hence the value of q should be increased from 0.25 to 0.75 (if one is most
concerned with not missing any of the top n most frequent items). In experiments
presented in Sect. 5, this algorithm is called Adaptive FSSA, abbreviated as AFSSA.
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4 Space and Time Complexity of Considered Algorithms

All the SS-based algorithms discussed in this paper start with checking whether or not
an entry for the observed key exists in the appropriate hash map, which on average
takes O 1ð Þ time. If the hash map does contain such an entry, then this entry needs to be
retrieved, which takes O log mð Þð Þ time. When an entry needs to be removed from the
hash map, the O log mð Þð Þ cost is incurred once again. If the modified Stream Summary
data structure described in Sect. 2.3 is used to store information about each key and a
hash map is used to store pointers into Stream Summary, then all Stream Summary
operations take constant time.

Such an implementation requires storing pairs (key, pointer) in the hash structure as
well as the key, the pointer to the next node, the pointer to the previous node, and the
pointer to the parent bucket in the Stream Summary. Each bucket in the Stream Sum-
mary needs to store its frequency as well as the pointers to the first and to the last node in
its linked list. In modern database systems each number takes 8 bytes and each pointer
uses 8 bytes in order to handle 64-bit memory spaces. Thus, in order to track m keys, SS
requires 48 m þ 3b bytes, where b is the number of buckets in the Stream Summary. If
the frequency distribution of keys has a low skew, then b is likely to be small (usually 2
or 3 in our experiments), but if the skew is large, then b can be close to m.

The authors of the FSS algorithm suggest in [5] that FSS can track only half as
many keys as SS and still be more accurate than SS if the same amount of memory is
given to both algorithms. They also suggest that the FSS hash array H should have 3
times as many cells as the number of monitored keys (so if FSS monitors m

2 keys, then
sizeH ¼ 3m

2 ). Using these settings and the same data structures as the ones used for SS,
all the data structures in FSS besides the hash array will use 24m þ 3b bytes (as-
suming, for simplicity, that the same number of buckets b is present in the Stream
Summary for both algorithms). If the hash array is implemented using 2 bytes for each
cell as was described at the end of Sect. 3.3, then the total space taken by FSS would be
equal to 24m þ 3b þ 2 3m

2 ¼ 27mþ 3b bytes in order to track m=2 keys. The FSS
operations are essentially the same as those of SS, but because it monitors m

2 keys, the
hash map operations take a little less time than in the SS algorithm, even though they
still take on the order of O log mð Þð Þ time. More importantly, however, is that FSS needs
to do fewer such operations, since an observed key is not always added to the hash
map. Thus, we would expect the FSS algorithm to have a noticeably smaller compu-
tation time than SS, which is confirmed by the experiments presented in Sect. 5.

The FSSA algorithm stores 5 numbers for each monitored key, and if its hash array
is implemented using 2 bytes for each cell, then its total space consumption would be
20m þ 3m ¼ 23m bytes if it were to monitor m

2 keys. The maximum operational time
for FSSA is O log mð Þð Þ because keys in the array are found using binary search.

If one’s primary objective is not to miss any of the top n most frequent keys and
one decides to add an additional data structure to FSS2L as described in Sect. 3.4, then
the space consumption will increase by 3

2m � 98 ¼ 27
16m bytes. We called the resulting

algorithm Adaptive FSSA (AFSSA). Table 1 summarizes the space requirements for
the algorithms evaluated in Sect. 5.
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5 Experimental Results

5.1 Experiments on Artificial Data

We first evaluated SS, FSS, FSSA and AFSSA algorithms on artificial data sets with
keys following Zipf and Exponential distributions. The Zipf(a) distribution was defined
over 1 million keys, and then 1 million keys were randomly drawn from this distri-
bution and processed by each algorithm (the nth most frequent key was drawn with
probability P nð Þ ¼ K/na, where K is a constant that makes all probabilities add up to 1).
The values of the skew parameter a were chosen to lie between 0.4 and 1.2, which
covers the region of interest where detection of frequent items is possible (some skew is
present) but is not super easy (the skew is not very large). The number of distinct keys
observed in a data set of 106 sampled keys ranged, correspondingly, between 600000
and 60000, approximately.

For the Exponential distribution, the probability of observing the n th most frequent
key was given by P nð Þ ¼ a � e�c�n, where c is the skew parameter and a is a suitably
chosen constant that makes all probabilities add up to 1 on the support [0, NumKeys].
For consistency with experiments performed with the Zipf distribution, NumKeys was
chosen to be 1 million. The values of the skew parameter c were chosen to cover the
range where detection of frequent items is possible but is not super easy, which cor-
responded to the range between 0.0003 and 0.0009. The number of distinct keys
observed in a data set of 106 sampled keys ranged correspondingly, between 21000 and
8000, approximately. Therefore, when evaluating the frequent item detection algo-
rithms for the Exponential distribution with c between 0.0003 and 0.0009, the SS list
size m should be much smaller than 8000 in order to make the problem interesting. We
chose m ¼ 1000 for the experiments described below. In order to make a fair com-
parison between the algorithms, we set their space consumption (by varying the
number of keys each of them is tracking) equal to that of SS with m ¼ 1000. The hash
array size for FSS and FSSA was set to be 3 times the number of keys each of them
monitors, following the suggestion made by the authors of FSS in [5].

The accuracy of the algorithms was measured in several ways. One of them was the
number of sequential true top n most frequent keys detected by the algorithm, which
we called “topN.” For example, if key 1 is the most frequent, key 2 is the next most
frequent, and so on, and if the algorithm detects keys 1, 2, 3, 4, 6, … (i.e., it misses key
5), then topN equals 4. However, even if an algorithm detects the top 4 most frequent
keys, it can still have very large frequency estimation errors for them. Therefore, in
order to record this aspect of accuracy, we also computed the Mean Absolute Error for
each algorithm for the top 750 keys (sorted by estimated frequency) on its list.

Tables 1, 2 and 3 show the performance metrics described above, averaged over 50
trials (each cell shows estimated mean and standard error), for the algorithms discussed
in this paper under the Zipf distribution of key frequencies. The value of the q
parameter for the FSSA algorithm is given in parenthesis in the top row of each table.
The last column corresponds to the AFSSA algorithm, where the q parameter was
adjusted using the procedure described at the end of Sect. 3.4.

These tables show that FSS is more accurate than SS despite monitoring fewer
keys. FSS also runs faster, confirming the theoretical analysis of its run time performed
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in Sect. 4. As expected, FSSA(0) is more accurate than FSS because both of them have
a very similar logic (as was noted at the beginning of Sect. 3.4) but FSSA(0) is more
space-efficient than FSS and hence it monitors more keys than FSS.

Tables 1, 2 and 3 also show that for small levels of skew, when many distinct keys
are observed, FSSA with q = 0 detects a much shorter topN sequence than with q > 0.
However, for a = 1.2 the number of distinct keys observed becomes small enough for
the dynamics described in Sect. 3.4 to manifest itself, and consequently FSSA(q) de-
tects the longest topN sequence for small values of q. Despite this fact, FSSA(0.75) has
the smallest MAE because whichever keys get into its List1 early on with small
estimation errors tend to stay in that list (and hence their errors do not increase).
The AFSSA algorithm increases q from 0.25 to 0.75 for a � 1, but for a = 1.2 it
detects that the number of observed distinct keys is small enough and does not increase
q from its initial value of 0.25. Despite adapting correctly to the shape of the distri-
bution of keys, the performance of AFSSA is hampered by the fact that it uses more
space than FSSA and hence is able to track fewer keys. As a result, it is not able to
match the best-performing algorithm for each level of skew, but it still detects a longer
topN sequence than FSSA(0.25) for the most interesting case of intermediate skew
levels.

It is also interesting to observe that FSSA(0.75) and AFSSA (which are imple-
mented using an efficient array implementation) have a smaller run time than FSS
(which is implemented using Stream Summary) for a � 0.8. The reason for this
improvement is that whenever a new key needs to be inserted into the array of hash
maps (described at the beginning of Sect. 3.3), FSS performs this operation on larger
hash maps than FSSA(0.75) or AFSSA, which allocate only 1/4 of the monitored keys
to List0.

For large degrees of skew, when a > 0.8, insertions of new keys into the hash maps
become more and more rare, and the run time of all algorithms decreases. SS algorithm
runs much slower than the other algorithms for low degrees of skew because it adds a
new key to the hash map whenever it is observed and is not in the hash map, while the
other FSS-based algorithms add only those keys that get hashed to a cell in H with a
high enough value.

Table 1. Length of the correctly detected topN sequence when keys are drawn from a Zipf(a)
distribution

a SS FSS FSSA(0) FSSA(0.25) FSSA(0.5) FSSA(0.75) AFSSA

0.4 l = 0.1
s.e. = 0.0

l = 0.3
s.e. = 0.1

l = 0.5
s.e. = 0.1

l = 19
s.e. = 0.9

l = 19
s.e. = 0.8

l = 16
s.e. = 0.8

l = 16
s.e. = 0.8

0.6 l = 3.7
s.e. = 0.2

l = 20
s.e. = 0.3

l = 26
s.e. = 0.5

l = 80
s.e. = 2

l = 118
s.e. = 2.7

l = 145
s.e. = 3.1

l = 133
s.e. = 2.6

0.8 l = 33
s.e. = 0.5

l = 139
s.e. = 0.8

l = 168
s.e. = 1

l = 197
s.e. = 2

l = 250
s.e. = 3

l = 299
s.e. = 4

l = 277
s.e. = 4

1 l = 109
s.e. = 0.9

l = 359
s.e. = l

l = 424
s.e. = 2

l = 424
s.e. = 1

l = 451
s.e. = 2

l = 471
s.e. = 3

l = 458
s.e. = 3

1.2 l = 209
s.e. = l

l = 554
s.e. = 1

l = 636
s.e. = 1

l = 636
s.e. = 1

l = 636
s.e. = 1

l = 606
s.e. = 2

l = 602
s.e. = 1
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Tables 4, 5 and 6 show how the considered algorithms perform when the frequency
of each key is drawn from the Exponential distribution described at the beginning of
this section. Table 4 shows that for a small degree of skew, FSSA(0.25) detects the
longest topN sequence, which once again matches the analysis performed in Sect. 3.4.

Table 2. Mean Absolute Error (MAE) when keys are drawn from a Zipf(a) distribution

a SS FSS FSSA(0) FSSA(0.25) FSSA(0.5) FSSA(0.75) AFSSA

0.4 l = 997
s.e. = 0.0

l = 291
s.e. = 0.0

l = 250
s.e. = 0.0

l = 199
s.e. = 0.2

l = 160
s.e. = 0.3

l = 101
s.e. = 0.3

l = 109
s.e. = 0.3

0.6 l = 984
s.e. = 0.2

l = 275
s.e. = 0.2

l = 233
s.e. = 0.1

l = 171
s.e. = 0.1

l = 101
s.e. = 0.1

l = 44
s.e. = 0.2

l = 52
s.e. = 0.3

0.8 l = 870
s.e. = 0.6

l = 190
s.e. = 0.4

l = 151
s.e. = 0.3

l = 135
s.e. = 0.4

l = 72
s.e. = 0.2

l = 10
s.e. = 0.

l = 17
s.e. = 0.1

1 l = 535
s.e. = 0.9

l = 70
s.e. = 0.3

l = 45
s.e. = 0.4

l = 44
s.e. = 0.4

l = 34
s.e. = 0.3

l = 2.8
s.e. = 0.1

l = 6.0
s.e. = 0.1

1.2 l = 192
s.e. = 0.5

l = 12
s.e. = 0.1

l = 3.8
s.e. = 0.0

l = 3.8
s.e. = 0.0

l = 3.8
s.e. = 0.0

l = 1.0
s.e. = 0.0

l = 6.7
s.e. = 0.1

Table 3. Run time in ms when keys are drawn from a Zipf(a) distribution

a SS FSS FSSA(0) FSSA(0.25) FSSA(0.5) FSSA(0.75) AFSSA

0.4 l = 1313
s.e. = 6

l = 474
s.e. = 2

l = 535
s.e. = 6

l = 488
s.e. = 2

l = 440
s.e. = 4

l = 432
s.e. = 3

l = 420
s.e. = 2

0.6 l = 1283
s.e. = 6

l = 446
s.e. = l

l = 503
s.e. = 2

l = 468
s.e. = 2

l = 418
s.e. = l

l = 343
s.e. = l

l = 328
s.e. = 1

0.8 l = 1141
s.e. = 4

l = 386
s.e. = 3

l = 436
s.e. = 2

l = 436
s.e. = 2

l = 390
s.e. = 2

l = 334
s.e. = 2

l = 330
s.e. = 4

1 l = 777
s.e. = 3

l = 244
s.e. = 1

l = 356
s.e. = 2

l = 343
s.e. = 2

l = 337
s.e. = 2

l = 315
s.e. = 2

l = 304
s.e. = 2

1.2 l = 365
s.e. = 1

l = 133
s.e. = 1

l = 257
s.e. = 1

l = 250
s.e. = 2

l = 246
s.e. = 2

l = 236
s.e. = 2

l = 238
s.e. = 1

Table 4. Length of the correctly detected topN sequence when keys are drawn from the
Exponential distribution

c SS FSS FSSA(0) FSSA(0.25) FSSA(0.5) FSSA(0.75) AFSSA

0.3 l = 0.5
s.e. = 0.1

l = 2.2
s.e. = 0.3

l = 6.7
s.e. = 0.8

l = 11.5
s.e. = 1.3

l = 9.2
s.e. = l

l = 4.8
s.e. = 0.6

l = 5.2
s.e. = 0.4

0.5 l = 0.7
s.e. = 0.2

l = 270
s.e. = 2

l = 501
s.e. = 2

l = 501
s.e. = 2

l = 493
s.e. = 2

l = 209
s.e. = 8

l = 395
s.e. = 2

0.7 l = 1.8
s.e. = 0.3

l = 512
s.e. = 1

l = 715
s.e. = 1

l = 716
s.e. = 1

l = 716
s.e. = 1

l = 549
s.e. = 5

l = 660
s.e. = 1

0.9 l = 10
s.e. = 1

l = 676
s.e. = 1

l = 744
s.e. = 1

l = 744
s.e. = 1

l = 744
s.e. = 1

l = 669
s.e. = 3

l = 736
s.e. = 1
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When keys are sampled from the Exponential distribution, the number of distinct
keys observed is not much greater than the size of the hash array H, which makes it
difficult for medium-frequency keys to get into List0. Furthermore, when the degree of
skew in the distribution of key frequencies decreases, it becomes more difficult for the
nth most frequent key to differentiate itself from the less frequent keys, which exac-
erbates the dynamics described in Sect. 3.4 and causes FSSA(0.25) to detect longer
topN sequences than FSSA(q) for q[ 0:25 when c ¼ 0:0003.

The AFSSA algorithm does not increase the q value from its initial setting of 0.25
because it detects that the data set does not have too many distinct keys and. As a
result, AFSSA detects a longer topN sequence than FSSA(0.75). Comparing this with
the previous experiments on the Zipf distribution, we see that AFSSA provides a robust
mid-level performance and is able to avoid, through adaptation, the poor performance
sometimes suffered by each fixed FSSA algorithm.

Another interesting observation is that the run time of AFSSA is smaller than that
of FSS for a small degree of skew in the Zipf distribution, while for the Exponential
distribution it is always larger than that of FSS. This happens because the Exponential
distribution has a much smaller number of distinct keys and hence new keys are
inserted into the hash map relatively less frequently, thus reducing the disadvantage of
FSS due to its larger hash maps for List0. On the other hand, updates of existing keys
happen relatively more frequently, and such updates require a binary search for the key
in List1 of AFSSA, while FSS contains pointers in the List1 hash maps to each key in
its Stream Summary.

Table 5. Mean Absolute Error (MAE) when keys are drawn from the Exponential distribution

c SS FSS FSSA(0) FSSA(0.25) FSSA(0.5) FSSA(0.75) AFSSA

0.3 l = 822
s.e. = 0.4

l = 190
s.e. = 0.5

l = 129
s.e. = 0.9

l = 97
s.e. = 0.5

l = 52
s.e. = 0.4

l = 2.9
s.e. = 0.1

l = 119
s.e. = 0.3

0.5 l = 716
s.e. = 0.7

l = 79
s.e. = 0.4

l = 23
s.e. = 0.2

l = 23
s.e. = 0.2

l = 18
s.e. = 0.1

l = 2.0
s.e. = 0.1

l = 43
s.e. = 0.3

0.7 l = 626
s.e. = 0.9

l = 24
s.e. = 0.2

l = 2.15
s.e. = 0.0

l = 2.15
s.e. = 0.0

l = 2.15
s.e. = 0.0

l = 1
s.e. = 0.1

l = 6.55
s.e. = 0.1

0.9 l = 481
s.e. = 2

l = 6.5
s.e. = 0.1

l = 0.54
s.e. = 0.0

l = 0.54
s.e. = 0.0

l = 0.54
s.e. = 0.0

l = 0.48
s.e. = 0.0

l = 1.0
s.e. = 0.0

Table 6. Run time in ms when keys are drawn from the Exponential distribution

c SS FSS FSSA(0) FSSA(0.25) FSSA(0.5) FSSA(0.75) AFSSA

0.3 l = 1061
s.e. = 7

l = 328
s.e. = 2

l = 402
s.e. = 2

l = 437
s.e. = 2

l = 409
s.e. = 2

l = 371
s.e. = 3

l = 413
s.e. = 6

0.5 l = 952
s.e. = 3

l = 260
s.e. = 2

l = 360
s.e. = 2

l = 407
s.e. = 2

l = 394
s.e. = 2

l = 387
s.e. = 2

l = 401
s.e. = 3

0.7 l = 826
s.e. = 3

l = 225
s.e. = 1

l = 346
s.e. = 2

l = 398
s.e. = 2

l = 402
s.e. = 3

l = 389
s.e. = 2

l = 378
s.e. = 2

0.9 l = 748
s.e. = 4

l = 209
s.e. = 1

l = 347
s.e. = 2

l = 405
s.e. = 3

l = 397
s.e. = 2

l = 393
s.e. = 2

l = 372
s.e. = 2
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5.2 Experiments on Real Data

We now present experimental results on the data sets chosen from the “Open-Source
Data Mining Library” [9]. We selected four largest data sets with the largest number of
distinct keys. The first data set was “Kosarak”, which contains anonymized
click-stream data from a Hungarian news portal (8019015 keys, 41270 of which are
distinct). The second data set was “Retail”, which contains anonymized retail market
basket data from an anonymous Belgian retail store (908576 keys, 16470 of which are
distinct). The third data set was “BMS2”, which contains anonymized click-stream and
purchase data from Gazelle.com, a legwear and legcare web retailer that closed their
online store on 8/18/2000. This data set was used in the KDD-Cup 2000 competition
and it contains 358278 keys, 3340 of which are distinct. The fourth data set was
“Bible”, where each key corresponds to a distinct word in the Bible (787066 keys,
13905 distinct).

Performance of the considered algorithms on these data sets is shown in Tables 7, 8
and 9. Since the number of distinct keys in these data sets covered the range similar to
that seen in the Exponential distribution, the observed results follow the same pattern as
the one observed in Tables 4, 5 and 6.

Table 7. Length of the correctly detected topN sequence for real data sets

SS FSS FSSA(0) FSSA(0.25) FSSA(0.5) FSSA(0.75) AFSSA

Kosarak 178 567 743 743 743 722 711
Retail 114 495 618 618 618 357 581
BMS2 337 700 728 729 728 528 722
Bible 359 682 703 703 703 633 694

Table 8. Mean Absolute Error (MAE) for real data sets

SS FSS FSSA(0) FSSA(0.25) FSSA(0.5) FSSA(0.75) AFSSA

Kosarak 2675 67 1.8 1.8 1.8 1.0 8.9
Retail 435 40 19 19 19 10 24
BMS2 82 6 3.3 3.2 3.2 2.5 3.9
Bible 94 5.3 3.0 3.0 3.0 2.0 3.6

Table 9. Run time in ms for real data sets

SS FSS FSSA(0) FSSA(0.25) FSSA(0.5) FSSA(0.75) AFSSA

Kosarak 4424 1198 2153 2333 2356 2312 2316
Retail 589 167 287 330 322 299 306
BMS2 164 63 139 130 159 144 136
Bible 195 80 224 215 201 192 198
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6 Conclusion

This paper presented a new 2-list framework (called FSS2L) for detecting the most
frequent keys in a data set and for accurately estimating their frequencies. We also
presented a space-efficient implementation of this framework using a single array
FSSA(q) algorithm, where the parameter q controls the relative sizes of the two lists.
We showed that FSSA(0) performs the same operations as the previously published
FSS algorithm [5] but using less space than the “standard” implementation assumed in
the literature (e.g., [1, 2]) based on the Stream-Summary data structure. As a result,
FSSA(0) gives more accurate results than FSS when their space consumption is
equalized.

Dependence of FSSA on the parameter q was studied analytically and experi-
mentally. Our results showed that if one is primarily interested in detecting most
accurately the top n most frequent items, then one should use a small value of q (0.25
was shown to work well in our experiments) if the number of distinct keys in the data
set is not much larger than the size of the hash array H used by FSS2L; otherwise, one
should use a large value of q (0.75 was shown to work well in our experiments).

Accurate detection of the top n most frequent keys is the important accuracy
measure when a distributed (or parallel) hash join needs to be performed by a database
engine. In this case, in order to minimize the overall execution time, no single node (or
process) should be overwhelmed by needing to process a join with a very frequent key.
In order to achieve this goal, the most frequent items are detected by analyzing a
sample of the data and then information about these items is broadcast to all nodes (or
processes). The execution time of this scheme depends on the frequency of the first true
most frequent item that is not detected by the algorithm, since processing of this item
by a single node (or process) to which this item is hashed will be the bottleneck for the
overall distributed join scheme. Therefore, the long sequence of the true top n con-
secutive most frequent items detected by the FSSA algorithm makes it an especially
attractive algorithm for use with distributed hash joins.

We have also described an adaptive version of FSSA (called AFSSA), which starts
with q ¼ 0:25, then estimates the number of distinct keys in the data set, and then
increases q to 0.75 if the number of distinct keys was found to be much larger than the
size of H. Our experiments on both artificial and real data sets showed that AFSSA is
able to adapt to the shape of the distribution of keys and avoid the poor performance
sometimes suffered by fixed FSSA(0.25) and FSSA(0.75) algorithms. However, the
smallest mean absolute error (MAE) in frequency estimates was consistently obtained
by FSSA(0.75), and so if one is primarily interested in minimizing MAE while
detecting keys that are reasonably frequent, then one should use FSSA with q ¼ 0:75.

FSS2L algorithms can be naturally parallelized for use in a multi-process envi-
ronment. This can be achieved by breaking up a large data set into P equal parts and
then assigning each part i to be scanned by process p1i. While scanning, each process
p1i hashes scanned keys into the range [0, P � R], and then the keys that hash into [0,R]
get sent to process p21, those that hash into [R; 2R] get sent to process p22, etc. Each
process p2j then uses the same hash function to hash the incoming keys into its hash
array of size R. As a result, the processes p2j would work with disjoint sets of keys, and
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assuming that each of them uses as much memory as in the serial case, the accuracy
guarantee 0 � Di � H k½ � � fmin � 2N= m � Pð Þ would apply for the estimated fre-
quency of each key i, with the factor P appearing in the denominator because each
process p2j is expected to observe only N=P keys. Then, at the end of the data set, a
“top n” query would take the top n most frequent elements from each process, merge
together the resulting P top n lists, and then return top n elements from the merged list.
This parallelized version of FSSA has been integrated into the Oracle database.
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Abstract. Often datasets may involve thousands of attributes, and it is
important to discover relevant features for machine-learning (ML) algorithms.
Here, approaches that reduce or select features may become difficult to apply,
and feature discovery may be made using frequent-set mining approaches. In
this paper, we use the Apriori frequent-set mining approach to discover the most
frequently occurring features from among thousands of features in datasets
where patients consume pain medications. We use these frequently occurring
features along with other demographic and clinical features in specific ML
algorithms and compare algorithms’ accuracies for classifying the type and
frequency of consumption of pain medications. Results revealed that Apriori
implementation for features discovery improved the performance of a large
majority of ML algorithms and decision tree performed better among many ML
algorithms. The main implication of our analyses is in helping the
machine-learning community solves problems involving thousands of attributes.

Keywords: Apriori algorithm � Frequent-set mining � Machine learning
Pain medications � Features

1 Introduction

Since the early 90s, machine-learning (ML) algorithms have been used to help mine
patterns in data sets concerning fraud detection and others [1]. In recent years, ML
algorithms have also been utilized in the healthcare sector [2]. In fact, the existence of
electronic health records (EHRs) has allowed researchers to apply ML algorithms to
learn hidden patterns in data to improve patient outcomes like the type of medications
patients consume and the frequency at which they consume these medications [3].
Mining hidden patterns in healthcare data sets could help healthcare providers and
pharmaceutical companies to plan quality healthcare for patients in need.
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To predict healthcare outcomes accurately, ML algorithms need to focus on dis-
covering appropriate features from data [4]. In general, healthcare data sets are large,
and they may contain several thousands of attributes to enable learning of patterns in
data [5]. The presence of many attributes in data sets may make it difficult to discover
the most relevant features for predicting outcomes via ML algorithms.

Presence of thousands of attributes in the data is problematic for classification
algorithms for processing these attributes as features require large memory usage and
high computational costs [37]. Two techniques have been suggested in the literature to
address the problem of datasets possessing a large number of features: feature reduction
(dimensionality reduction) and feature selection [38]. Feature reduction technique
reduces the number of attributes by creating new combinations of attributes; whereas,
feature selection techniques include and exclude attributes present in the data without
changing them [38]. Popular algorithms like Principal Component Analysis (PCA; for
features reduction) and Analysis of variance (ANOVA; for features selection) have
been used for datasets with a large number of features in the past [6, 7]. PCA is a linear
feature-based approach that uses eigenvector analysis to determine critical variables in
a high dimensional data without much loss of information [8]. ANOVA is a collection
of statistical models used to analyze the differences between group means and their
associated procedures (such as “variation” among and between groups) [9].
In ANOVA, the features that describe the most substantial proportion of the variance
are the features that are retained in data [10]. Although both PCA and ANOVA
approach seem to help in feature discovery, these approaches may become computa-
tionally expensive to apply in problems where there are thousands of features in data
(e.g., thousands of diagnostic and procedure codes across several patient cases in
medical datasets). Another disadvantage of the PCA method is that it is an elimination
technique that considers a single feature to be important or unimportant to the problem
rather than a group of features being important [8]. Similarly, in ANOVA, researchers
need to test assumptions of normality and independence, which may not be the case
when features depend upon each other [9, 10]. One way to address the challenge posed
by data sets with several thousands of features is by using frequent item-set mining
algorithms (e.g., Apriori algorithm) to discover a subset of features because these
algorithms look at the associations among items while selecting frequent item-sets [11].
The primary goal of this paper is to evaluate the potential of Apriori frequent item-set
mining algorithm for feature discovery before application of different ML algorithms.
Specifically, we take a healthcare dataset involving consumption of two pain medi-
cations in the US, and we apply different ML algorithms both with and without a prior
feature-discovery process involving the Apriori algorithm. The Apriori algorithm
works on the fundamental property that an item-set is frequent only if all its non-empty
subsets are also frequent [11]. Using the Apriori algorithm, we generate frequently
appearing diagnosis and procedure codes in a healthcare dataset. Then, using these
frequently occurring diagnosis and procedure codes as present/absent features, along
with other features, we apply certain supervised ML algorithms. We check the benefits
of using the Apriori algorithm by comparing the classification accuracies of certain ML
algorithms when all attributes are considered as features in the dataset and when only
the discovered attributes via Apriori are considered as features. To get confidence in
our results, we replicate our analyses using several ML algorithms such as the decision
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tree [27], Naïve Bayes classifier [30, 41], logistic regression [31], and support vector
machine [33, 42].

In what follows, we first provide a brief review of related literature. In Sect. 3, we
explain the methodology of using the Apriori algorithm for features discovery. In
Sect. 4, we present our experimental results and compare classification accuracies for
cases with or without the Apriori implementation. We conclude our paper and provide
a brief discussion on the implication of this research and its future scope.

2 Background

Data analytics could help in providing useful insights in very large healthcare datasets
[12]. These insights may aid in effective decision-making and save lives [12].
Researchers have applied many such techniques to mine the hidden knowledge in the
medical domain [15]. For example, various data-mining approaches such as classifi-
cation, clustering, statistical approaches, and association-rule mining have made a
significant contribution to healthcare research [13, 15].

Healthcare researchers have used different ML algorithms to investigate research
questions in healthcare [20–22]. For example, some researchers have used the Naive
Bayes classification algorithm to diagnose heart diseases [20]. Others have used ML
techniques like J48, MLP, Random Forest, SVM, and Bayesian Network classifiers to
classify liver-disease patients [21]. Researchers have also used frequent-set mining
approaches in the recent past [14–18]. For example, in the literature on frequent-set
mining, some researchers have introduced the frequent-set mining pincer-search
algorithm to discover the maximum frequent-item sets [15, 17]. Similarly, Rani, Pra-
kash, and Govardhan [16] presented a model for multilevel association rule mining,
which satisfies the different minimum support at each level. Also, certain researchers
have focused on identifying frequent diseases using the frequent-set mining algorithms
like Apriori [14] and mined different association rules for consumers of certain pain
medications [19].

Furthermore, prior research has combined methods like PCA with ML algorithms
for feature extraction and subsequent classification. For example, certain researchers
have used traditional methods like PCA, rough PCA, unsupervised quick reduction
algorithm, and empirical distribution ranking approach to extract features that could be
further used for an ML classification task [22]. However, to the best of authors’
knowledge, prior research has yet to combine frequent-set mining algorithms along
with ML algorithms in feature-discovery and predicting healthcare outcomes. In this
paper, we attend to this literature gap and apply the Apriori frequent-set mining
algorithm for features discovery before performing machine learning for classifying
healthcare outcomes. To test our Apriori approach, we take certain healthcare dataset
where there are potentially thousands of features to choose between and where feature
selection via traditional methods may become computationally expensive. We inves-
tigate the performance of different ML algorithms with and without frequent-set mining
using the Apriori approach.
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3 Method

3.1 Data

In this paper, we use the Truven MarketScan® health dataset containing patients’
insurance claims in the US [23]. The data set contains 120,000 patients, who consumed
two pain medications, medicine A, medicine B, or both between January 2011 and
December 2015.1 The dataset contains patients’ demographic variables (age, gender,
region, and birth year), clinical variables (admission type, diagnoses made, and pro-
cedures performed), the name of medicines, and medicines’ refill counts per patient.
We used a big-data architecture consisting of q-programming language to query a kdb+
database [24] for fetching patient records who have consumed pain medication A, B, or
both during their journeys. After fetching data from the kdb+ database, we prepared a
file containing different diagnoses and procedures corresponding to different patients,
who consumed both medications. The dataset contains 55.20% records of patients who
consumed medicine A only, 39.98% records of medicine B only, and 4.82% records for
those patients who consumed both these medications. There were 15,081 attributes
present in total against each patient in this dataset. These attributes consist of patients’
age, gender, region, type of admission, diagnoses and procedures performed on the
patient, medicine name and its refill information. Out of 15,081 attributes, 15,075
attributes were diagnoses and procedure codes some of which were inter-related.

The diagnoses and procedures were written for patients using the International
Classification of Diseases (ICD)-9 codes [25]. The ICD codes are used by physicians
and other healthcare providers to classify different diagnoses and procedures recorded
during different illnesses in the United States [25]. We applied the Apriori frequent-set
mining algorithm to diagnoses made and procedures performed for different patients
consuming the two pain medications. The Apriori algorithm discovered the frequently
appearing diagnoses and procedures among the 15,075 unique diagnoses procedure
codes available in the dataset. We used these frequently occurring diagnoses and
procedures as input features along with other independent variables in different ML
algorithms that were applied to our dataset. The ML algorithms classified patients
according to the type of medications consumed and the frequency of refilling different
medications in the dataset.

3.2 Association-Rule Mining

Association-rule mining [36] is a popular technique that aims to extract associations
among items in data. An association rule represents a relationship between a group of
objects in the database. The basic model of association-rule mining is described below.

Let I = {I1, I2, …, In} be a set of n distinct items, where each attribute I1, I2 … In is
binary (0 or 1) in nature. T is a transaction with a unique transaction id that contains a
subset of items in I. Let D be a database having different transaction records, where
each transaction is differentiated by the transaction ID and may contain a subset of

1 Due to a non-disclosure agreement, we have anonymized the actual names of these medications.

Evaluating Frequent-Set Mining Approaches in Machine-Learning Problems 247



items in I. Thus, D = {T1, T2, …, TM}. An association rule is an implication in the
form of X ! Y, where X, Y � I and X \ Y = £. X is called an antecedent while Y
is called consequent. There are two measures for finding association rules: support
(S) and confidence (C). Support of an item-set X is defined as the proportion of the
transactions that contain the item-set X in the database D.

Support Xð Þ ¼ count Xð Þ
count Dð Þ ð1Þ

The confidence of an association rule X ! Y is defined as the proportion of
transactions that contain both items X and Y in all the transactions that contain item X.

Confidence X ! Yð Þ ¼ PðY j XÞ ¼ Support X [ Yð Þ
Support Xð Þ ð2Þ

The confidence is a measure of the strength of the association rules. If there is an
association rule “X ! Y” whose support and confidence satisfies minimum support
threshold (min_support) and minimum confidence threshold (min_conf) provided by a
user, then we call it an association rule with min_support and min_conf.

3.2.1 Apriori Algorithm
The Apriori algorithm [11] finds frequent item-sets using an iterative level-wise
approach based on candidate generation. This algorithm works in following steps:

1. The transactions in database D are scanned to determine frequent 1-itemsets, L1 that
possess the minimum support.

2. Generate candidate k item-sets Ck from joining two k − 1 itemsets, Lk�1, and
remove its infrequent subset.

3. Scan D to get support count for each k item-sets, Ck .
4. The set of frequent k item-sets, Lk , is then determined. Lk results from support

count of candidate k − 1 item-sets.
5. Back to step 2 until there is no candidate k + 1 item-sets, Ckþ 1.
6. Extract the frequent k item-sets, L = Lk .

The Apriori algorithm was used to mine the frequent diagnoses and procedures out
of 15,075 unique diagnoses and procedures present in the dataset. After getting the 9
frequent diagnoses and procedures from the result of Apriori algorithm, we formed two
ML problems. In the first problem, we used the frequent diagnoses and procedure codes
as categorical variables along with the other 6-independent variables to classify patients
by the medication they consumed; i.e., consuming medicine A, B, or both. Thus, the first
ML problem is a three-class problem. In the second ML problem, we used the frequent
diagnoses and procedure codes obtained from the result of Apriori algorithm along with
the other 6-independent variables to classify patients as frequent or infrequent buyers of
medications they consumed. This ML problem is a two-class classification problem.
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We then applied different ML algorithms to all 15,081 attributes in the dataset and
compared the classification results with the case when only 15 attributes were used in the
ML algorithms. Next, we discuss the brief descriptions of different ML algorithms that
we used in this paper, i.e., decision tree [27], Naïve Bayes [30, 41], logistic regression
[31], and support vector machine [33, 42]. We applied ZeroR [26] as a base line
algorithm to compare the classification accuracies of different ML algorithms mentioned
above.

3.3 Machine-Learning Algorithms

3.3.1 ZeroR
ZeroR is the simplest classification method which relies on the target to be classified
and ignores all predictors [26]. The ZeroR classifier simply predicts all points as
belonging to the majority class. Although there is no predictability power in ZeroR, it is
useful for determining a baseline performance as a benchmark for other classification
methods.

3.3.2 Decision Tree
A decision tree is a tree, where non-leaf nodes denote tests on attributes, each branch
denotes the result of different tests, and each leaf node denotes the class label [27]. In
the decision tree, each internal node is labelled with an input feature, and leaf of the tree
either gives a class label or a probability distribution over the classes. The results
obtained from decision trees are easier to interpret. Following assumptions are taken
into account while creating a decision tree [28]:

1. Initially, the complete training set is considered as the root.
2. Feature values are preferred to be categorical. If the values are continuous, then they

are discretized before building the model.
3. Records are distributed recursively by attribute values.
4. Order of placing attributes as root or internal node of the decision tree is done by

using a statistical approach based on the calculation of entropy and gain.

The first challenge in a decision tree implementation is to identify which of the
attributes to select as the root node and at each level. Random selection of nodes may
give bad results with very low accuracy. Handling this problem is known as the
attributes selection. We have used the information-gain measure to identify the attribute
that can be considered as the root node at each level [39].

3.3.3 Naïve Bayes
This classifier belongs to a family of probabilistic classifiers that is based on the Bayes
theorem with strong independence assumptions between features [30, 41]. It assumes
that the value of a particular feature is independent of the value of any other feature,
given the class variable. This classifier attempts to maximize the posterior probability
in determining the class of a transaction. A Naïve Bayes classifier assumes features to
contribute independently to the probability, regardless of any correlation between
features.
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Suppose, n be the number of features in a problem which is represented by a vector
y = (y1, y2, …,yn) and K be the possible number of classes Ck. Naïve Bayes is a
conditional probability model which can be decomposed as [40]:

p Ck=yð Þ ¼ p Ckð Þp y=Ckð Þ
p yð Þ ð3Þ

In practice, the numerator of this equation determines the LHS (the denominator is
a constant). Under the independence assumption among attributes, the probability of
certain attributes belonging to a certain class is defined as [40]

p Ck=y1; . . .; ynð Þ ¼ p Ckð Þ
Yn

i¼1
pðyi=CkÞ ð4Þ

A common rule is to pick the class that is the most probable. This most probable
class is defined by the maximum a posteriori (MAP) decision rule [40] as:

y ¼ argmaxk21...K p Ckð Þ
Yn

i¼1
pðyi=CkÞ ð5Þ

3.3.4 Logistic Regression
Logistic regression is used to describe data and to explain the relationship between one
dependent binary variable and one or more nominal, ordinal, interval, or ratio-level
independent variables [31]. The dependent variable in logistic regression or logit model
is categorical. Logistic regression is named for the function used at the core of the
method, the logistic function [32]. It’s an S-shaped curve that can take any real-valued
number and map it into a value between 0 and 1, but never exactly at those limits. Input
values (x) are combined linearly using weights or coefficient values to predict an output
value (y). The simple logistic regression is defined as:

y ¼ e b0þ b1�xð Þ= 1þ e b0þ b1�xð Þð Þ ð6Þ

where y is the predicted output, b0 is the bias or intercept term, and b1 is the coefficient
for the single input value (x). In the general logistics regression model, each column in
data has an associated b coefficient (a constant real value) that must be learned from the
training data.

3.3.5 Support Vector Machines
Support vector machines are supervised learning models that are binary classification
algorithms [33]. Support vector machines construct a hyperplane or a set of hyper-
planes in a high dimensional space that can be used for classification, regression, or
other tasks. There are two types of support vector machines: linear SVM and the
non-linear SVM [42]. If the data is linearly separable, then the linear SVM is sufficient
to perform classification. However, if the problem cannot be classified linearly, then we
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require a non-linear SVM to perform the task. The non-linear support vector machine
function takes the data into the high dimensional plane and then performs classification
[42]. In the SVM algorithm, we optimize the support weights to minimize the objective
(error) function for better classifications.

3.4 Model Calibration

3.4.1 Apriori Implementation
To find the frequent diagnoses and procedure codes using Apriori algorithm, we
needed to set the threshold limits for support and confidence. For setting the minimum
threshold limits for support and confidence, we conducted sensitivity analyses. We first
calculated the male-to-female ratio among patients who consumed either medication A,
B, or both in the dataset. This ratio turned out to be 0.58. Then, we tried different values
of minimum support and minimum confidence till the point when the association rules
obtained from Apriori algorithm had the same male-to-female ratio of 0.58 as in the
dataset. With 3% threshold support and 99% threshold confidence, we got the similar
male-to-female ratio for all the association rules with frequent diagnoses and procedure
codes. We got three association rules when we applied the Apriori algorithm. These
rules were made up of the following nine ICD-9 codes: total knee arthroplasty,
osteoarthrosis secondary lower leg, removal of foreign body from the eye, total knee
replacement, osteoarthrosis primary lower leg, osteoarthrosis generalized lower leg,
total hip arthroplasty, iridectomy, and total hip replacement.

3.4.2 Machine Learning Combined with Apriori
For the ML analyses, the dataset was randomly divided into two parts: 70% of the data
was used for training, and 30% of the data was used for testing. We used the
d-prime = z (true-positive rate) – z (false-positive rate) as measure of accuracy [34,
43]. The higher the d-prime, the better the performance (a d-prime = 0 indicates ran-
dom performance, where true-positive rate = false-positive rate). Our first machine
learning problem is a three-class problem, where we classified a patient according to
the medication consumption. So, a patient can be classified under class A, class B or
both. Our second ML problem is a two-class problem, where we classified patients
according to their frequency of medicine consumption. So, a patient can be classified as
a frequent buyer or an infrequent buyer of medications. We took the median of refill
counts per patient (=3) to distinguish between a frequent buyer (>3) and an infrequent
buyer (� 3). In the dataset, 41.11% patients belong to the frequent class and rest to the
infrequent class. We used the frequent codes obtained from Apriori algorithm as cat-
egorical variables along with the other demographic and clinical features while training
our ML models. For different classification problems, we used different features from
the original dataset and the Apriori output (see Table 1). Table 1 shows the list of
15-features used in different ML models after applying Apriori procedure for the
three-class and two-class classification problems. As shown in Table 1, some of these
15-features were excluded in certain problems (e.g., refill count was excluded in the
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two-class problem). That is because these attributes were strongly correlated with the
predicted class. Certain features of this table were directly included from the dataset
(sex, age group, region, type of admission, refill count and pain medication) while rest
were included after applying Apriori on the procedure and diagnoses codes.

For both the classification problems, we ran two different datasets on different ML
models. The first dataset contained features obtained from the Apriori algorithm along
with other demographic and clinical features from the dataset; whereas, the second
dataset contained all the features (=15,081).

Table 1. Description of input features for classification problems and their source

Features Description Features for
3-class
problem

Features for
2-class
problem

Sex Male
Female

Included Included

Age group 0–17, 18–34, 35–44, 45–54, 55–64 Included Included
Region Northeast, northcentral, south, west,

unknown
Included Included

Type of admission Surgical, medical, maternity and
newborn, psych and substance abuse,
unknown

Included Included

Refill count Count in number Included Excluded
Pain medication A, B, Both Excluded Included
Total knee
arthroplasty

Present/not present Included Included

Osteoarthrosis of
secondary lower leg

Present/not present Included Included

Removal of foreign
body from eye

Present/not present Included Included

Total knee
replacement

Present/not present Included Included

Osteoarthrosis of
primary lower leg

Present/not present Included Included

Osteoarthrosis of
generalized lower
leg

Present/not present Included Included

Total hip
arthroplasty

Present/not present Included Included

Iridectomy Present/not present Included Included
Total hip
replacement

Present/not present Included Included
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4 Results

4.1 Apriori Algorithm

Based on the Apriori algorithm [11], we found the following three association rules
among patients who consumed either medicine A, medicine B, or both during their
patient journeys:

1. If a patient goes for total knee arthroplasty, osteoarthrosis of primary/
secondary/generalized lower leg and removal of foreign body from posterior eye
segments, then he/she goes for total knee replacement and consumes A/B.

2. If a patient goes for total knee arthroplasty, then he/she goes for total knee
replacement and consumes A/B.

3. If a patient goes for total hip arthroplasty and Iridectomy, then he/she goes for
total hip replacement and consumes both the medications.

As explained above, we took nine frequently occurring ICD-9 diagnoses and proce-
dures codes from the rules above. These codes have been bolded in the rules.

4.2 Machine-Learning Algorithms

We applied various ML algorithms like Naïve Bayes, Decision Tree, Logistic
Regression, Support Vector Machine (linear kernel), and Support Vector Machine
(radial kernel) [26–33] on our dataset and compared their classification accuracy using
d-prime. Figure 1 shows the d-prime results from different ML algorithms for the
three-class problems (Fig. 1A) and two-class problems (Fig. 1B) with and without
Apriori algorithm implementation. We have only used 1000 features for SVMs as the
algorithm was not able to scale for 15,081 features (in without Apriori implementa-
tion). In the three-class problem (Fig. 1A), without the Apriori implementation, the best
d-prime was obtained by the SVM with a radial kernel function. However, with the
Apriori implementation in the three-class problem, the best performance was obtained
by the decision tree. The performance of all the algorithms improved with the
implementation of Apriori algorithm. Furthermore, in the two-class problem (Fig. 1B),
both with and without the Apriori implementation, the best d-prime was obtained by
the decision tree. In fact, barring the decision tree, all other algorithms possessed a
d-prime = 0 (true-positive rate = false-positive rate) in the two-class problem without
the Apriori implementation. Barring the SVM with linear kernel and ZeroR algorithms,
the performance of all other algorithms improved with the implementation of Apriori
algorithm. In general, for both with and without Apriori implementation, all algorithms
performed better (higher d-prime) in the three-class problem compared to the two-class
problem.
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Fig. 1. The d-prime results from different ML algorithms for the three-class problems (A) and
two-class problems (B) with and without Apriori algorithm implementation.
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5 Discussion and Conclusions

Medical data concerning patient and their journeys may likely contain a large number
of attributes detailing demographics as well as procedural and diagnostic information
[44, 45]. Thus, before attempting different machine-learning (ML) algorithms on
patient-journey datasets, it would be good to reduce the number of attributes used as
features. One way to address this reduction is by using frequent item-set mining
algorithms (e.g., Apriori algorithm). These algorithms help discover a subset of features
by evaluating the associations among items in different transactions [11]. The primary
objective of this paper was to evaluate the potential of Apriori frequent item-set mining
algorithm for features discovery before application of different ML algorithms. First,
using Apriori algorithm, we discovered the frequently occurring attributes (diagnoses
and procedures) among patients consuming pain medications. The Apriori frequent-set
mining approach gave nine frequently occurring diagnoses and procedure attributes in
association rules out of a total of 15,075 possible attributes in the dataset. Second, we
found that the Apriori implementation led to improved performance from ML algo-
rithms: in general, the d-prime was higher after application of Apriori compared to
when Apriori was not applied, and all attributes were considered in the algorithms.
Third, we found that the ML algorithms classified the patients according to the med-
ication used (the three-class problem) better compared to the frequency of medication
used (the two-class problem). Finally, we found that the decision-tree algorithm per-
formed better compared to a large number of ML algorithms across both the three-class
and two-class problems.

First, we found that using the Apriori implementation [11] improved the perfor-
mance of a large majority of ML algorithms. One likely reason for this finding is that
Apriori procedures allow us to find features that frequently occur together or are
correlated with each other. For example, the nine-attributes selected by the Apriori
algorithm out of a total of 15,075 attributes occurred in three association rules that
possessed the confidence of 99%. Given the high confidence of these rules, the attri-
butes present in them were highly correlated. As the rules predicted the use of medi-
cations, these attributes seemed to predict the medications’ use and their frequency
well. Overall, given our results, the Apriori algorithm seems to be a suitable technique
for identifying important features, when the dataset contains thousands of relevant or
irrelevant attributes.

Third, we found that the ML algorithms classified the patients according to the
medication used (the three-class problem) better compared to the frequency of medi-
cation used (the two-class problem). One likely reason for this finding could be the
nature of the predicted class in the three-class problem compared to the two-class
problem. In the three-class problem, the predicted class was the medicine name, which
is a discrete attribute. However, in the two-class problem, the predicted class was the
frequency of the medicine use, which is a discrete attribute derived from a continuous
attribute (frequency/refill count). On account of the differences between the nature of
the predicted classes, it seems that the classification boundary could divide one class
from the other in the three-class problem compared to the two-class problem. However,
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this line of reasoning needs to be further explored for other predicted classes (discrete
or continuous) as well as for other datasets.

Overall, we found that the decision tree algorithm performed better compared to a
large class of algorithms across both the 2- and 3- class classification problems.
Decision tree implicitly performs feature selection using measures like information
gain, and they do not require making any assumption regarding linearity in the data
[35]. Thus, it seems that decision trees can classify datasets where there are a large
number of relevant and irrelevant attributes [28]. Also, due to the superior performance
of the decision tree algorithm, we believe that this algorithm could be used for per-
forming machine-learning in healthcare datasets.

Our results have some important real-world implications for using data analytics in
the healthcare domain. First, we believe that supervised learning algorithms like
decision trees and others can classify medicine intake and the medicine frequency to a
certain accuracy. However, as the d-prime values were all less than 1.0 in our results,
we believe that these algorithms need more improvements before we can reliably use
them for confirming hypotheses in healthcare datasets. Based upon our results, among
different algorithms, we would suggest decision trees to be most robust in datasets with
a large number of attributes. Second, we also believe that predicting the type of
medications consumed and their frequency of use could be extremely helpful for
pharmaceutical companies to decide upon their drug manufacture strategies. Specifi-
cally, such strategies could reduce supply-chain costs by managing the delays in
ordering and stocking of medications.

In this paper, we performed a preliminary analysis on using frequent-set mining
approach on a healthcare dataset involving several attributes, and there are a number of
extensions possible of this work in the near future. For example, in future, we would
like to compare the classification accuracies of ML algorithms after applying PCA and
ANOVA and other features selection techniques to those resulting from applying
frequent-set mining algorithms. Here, it would be interesting to extend our investiga-
tion to other medical and non-medical datasets as well as to other ML algorithms (e.g.,
neural networks). We plan to embark on some of these ideas as part of our research in
the near future.
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Abstract. Bank market prediction is an important area of data mining research.
In the present scenario, we are given with huge amounts of data from different
banking organizations, but we are yet to achieve meaningful information from
them. Data mining procedures will help us extracting interesting knowledge
from this dataset to help in bank marketing campaigns. This work introduces
analysis and applications of the most important techniques in data mining. In our
work, we use Multilayer Perception Neural Network (MLPNN), Decision Tree
(DT) and Support Vector Machine (SVM). The objective is to examine the
performance of MLPNN, DT and SVM techniques on a real-world data of bank
deposit subscription. The experimental results demonstrate, with higher accu-
racies, the success of these models in predicting the best campaign contact with
the clients for subscribing deposit. The performance is evaluated by some
well-known statistical measures such as accuracy, Root-mean-square error,
Kappa statistic, TP-Rate, FP-Rate, Precision, Recall, F-Measure and ROC Area
values.

Keywords: Data mining � Classification
Multilayer Perception Neural Network � Decision tree � Support Vector Machine

1 Introduction

Banks keep huge amount of data about their customers. This data can be used to create
and keep clear relationship and connection with the customers in order to target them
individually for definite products or banking offers. Usually, the selected customers are
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contacted directly through personal contacts, telephone cellular, mail, and email or any
other contacts to advertise the new product/service or give an offer, this kind of
marketing is called direct marketing. In fact, direct marketing is in the main a strategy
of many of the banks and insurance companies for interacting with their customers.
Data mining [1] has gained popularity for illustrative and predictive applications in
banking processes. Three techniques will apply to the data set on the bank direct
marketing. The Multilayer perception neural network (MLPNN) is one of these tech-
niques, which have their roots in the artificial intelligence. MLPNN is a mutually
dependent group of artificial neurons that applying a mathematical or computational
model for information processing using a connected approach to computation.

Another technique of data mining is the decision tree approach. Decision tree
provides powerful techniques for classification [2] and prediction. There are many
algorithms to build a decision tree model [3, 4]. It can generate understandable rules,
and to handle both continuous and categorical variables. One of the famous techniques
of the decision tree is CART, which will be applied in this work. The third technique is
Support Vector Machine (SVM) [5], an algorithm for solving the quadratic program-
ming (QP) problem that arises during the training of support vector machines.

2 Related Works

Osuna et al. [6] proved a theorem which suggests a whole new set of QP algorithms for
SVMs. By the virtue of this theorem a large QP problem can be broken down into a
series of smaller QP sub-problems to converge to the global optimum. This decom-
position algorithm can be used to train SVM on larger dataset.

Moro et al. [7] worked with a large dataset, collected over 2008 to 2013 from a
Portuguese retail bank, was addressed which includes the recent financial crisis. They
analyzed a large set of 150 features related with bank client, product and
social-economic attributes. Because of a semi-automatic feature selection explored in
the modelling phase of their method, performed with the data prior to July 2012, the
data set was reduced to 22 features (which we are using in our approach). They also
compared four DM Models (logistic regression, decision trees (DT), neural network
(NN) and support vector machine) using two metrics (area of the receiver operating
characteristic curve (AUC) and area of the LIFT cumulative curve (ALIFT)) out of
which NN presented the best results (AUC = 0.8 and ALIFT = 0.7), allowing to reach
79% of the subscribers by selecting the half better classified clients.

Hu [8] applied data mining techniques to help retailing banks for attrition analysis
to identify a set of customer having high probability to attrite. He has used decision tree
(DT), boosted naive Bayesian network, selective Bayesian network, neural network as
data mining model.

Ling and Li [9] used data mining techniques for direct marketing in three datasets
form three different sources. The first dataset was for a loan product promotion in
Canada. Second dataset was from a major life insurance company and third dataset was
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from a company which runs a particular “bonus program”. Two learning algorithms
(ADA-boosted Naive Bayes and ADA-boosted C4.5 with CF) that also produce
probability had been used.

According to Turban et al. [10] business intelligence includes architectures, tools,
databases, applications and methodologies with the goal of using data to support
decisions of business managers. Data mining is a business intelligence technology that
uses data-driven models to extract useful knowledge i.e., patterns from complex and
large dataset [11].

Chitra and Subashini [12] employed some data mining algorithms for customer
retention, automatic credit approval, fraud detection, marketing and risk management
in banking sector. They have identified some procedures and models to improve
customer retention and to fraud detection.

Rafiqul Islam and Ahsan Habib [13] applied DT approach to predict prospective
business sector for lending in retail banking. They have used data from different
branches of a bank and analysed borrowers’ transactional behavioural data.

3 Dataset Description

The present work is related with direct marketing campaigns of a Portuguese banking
institution. We have taken this dataset from the University of California at Irvine
(UCI) Machine Learning Repository (as given below in Table 1). The marketing
campaigns were based on phone calls. Often, more than one contact to the same client
was required, in order to access if the product (bank term deposit) would be (yes) or not
(no) subscribed. There are four datasets:

1. “bank-additional-full.csv” with all examples (41188) and 20 inputs, ordered by date
(from May 2008 to Nov 2010), very close to the data analyzed.

2. “bank-additional.csv” with 10% of the examples (4119), randomly selected from
dataset 1 as mentioned above), and 20 inputs.

3. “bank-full.csv” with all examples and 17 inputs, ordered by date (older version of
this Dataset with fewer inputs).

4. “bank.csv” with 10% of the examples and 17 inputs, randomly selected from 3
(older version of this dataset with less inputs).

The smallest datasets are provided to test more computationally demanding
machine learning algorithm (e.g. SVM). The classification goal is to predict if the client
will subscribe (yes/no) a term deposit (variable y). This UCI dataset is used to evaluate
the performances of the multilayer perception neural network (MPLNN), decision tree
and SVM classification model. The description of each of the attributes in the dataset is
given in Table 1.
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4 Proposed Method

Three techniques namely MLPNN, DT and SVM are applied to the data set for bank
marketing prediction. The detailed procedure is divided into two major steps. First one
is data pre-processing and then data classification. Figure 1 below depicts the proposed
methodology of our system.

Table 1. Attribute description

Sl.
no.

Attribute Meaning Type

1 age age of the person Numeric
2 job type of job Categorical
3 marital marital status Categorical
4 education highest education achieved Categorical
5 default has credit in default? (categorical: ‘yes’, ‘no’) Binary

(Categorical)
6 housing has housing loan? (categorical: ‘yes’, ‘no’,

‘unknown’)
Binary
(Categorical)

7 loan has personal loan? (categorical: ‘yes’, ‘no’,
‘unknown’)

Binary
(Categorical)

8 contact contact communication type (categorical: ‘cellular’,
‘telephone’)

Binary
(Categorical)

9 month last contact month of year Categorical
10 day_of_week Numeric
11 duration last contact duration, in seconds Numeric
12 Campaign number of contacts performed during this campaign

and for this client
Numeric

13 pdays number of days that passed by after the client was
last contacted from a previous campaign

Numeric

14 previous number of contacts performed before this campaign
and for this client

Numeric

15 poutcome outcome of the previous marketing campaign Categorical
16 emp.var.rate employment variation rate- quarterly indicator Numeric
17 cons.price.

idx
consumer price index- monthly indicator Numeric

18 cons.conf.idx consumer confidence index- monthly indicator Numeric
19 euribor3 m euribor 3 month rate - daily indicator Numeric
20 nr.employed number of employees - quarterly indicator Numeric
21 Output has the client subscribed a term deposit? (binary:

‘yes’, ‘no’)
Binary
(Categorical)
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Step 1: Data pre-processing
Data pre-processing techniques are applied to the original dataset before the data
classification procedure. It may involve different techniques such as data cleaning and
data transformation.

(1a) Data cleaning: Data cleaning denotes the pre-processing of data for removing or
reducing noise and the handling the missing values. A missing value is typically
replaced by the mean value for that attribute based on statistics. This step is not
required in our work as there are no missing or inconsistent values present.

(1b) Data transformation: In data transformation step, the dataset is normalized as
because the ANN based technique requires distance measurements in the training
phase. It transforms attribute values to a small-scale range like −1.0 to +1.0.

Step 2: Data classification
After pre-processing steps are over, the original data set is divided into two sub-sets
namely the training data set and the test data set. We apply 10-fold cross-validation
technique for data distribution so as to generate training and test datasets separately. In
classification step, firstly the mathematical model of the classifiers is initialized with
default control parameters. After initialization is over, they are trained using the
training tuples of training dataset. And after the training phase, they are tested with
unknown tuples of test dataset as test input to obtain predicted class label. This label is
compared with the actual class label to estimate the accuracy of the classifiers being
used. The configuration parameters of MLPNN, DT and SVM are given below.

Fig. 1. Proposed methodology of the system using different classifiers
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For MLPNN classifier we have,

H ¼
ffiffiffiffiffiffiffiffi

I :O
p

ð1Þ

Where H, I and O denotes the number neurons in the hidden layer, number of input
and output attributes respectively. Table 2 describes different metrics of MLPNN
model.

After construction of the tree, minimal cost complexity pruning algorithm to be
used is a post-pruning approach. This algorithm produces a decision tree classifier with
minimum cost complexity. Table 3 describes different metrics used in the CART
model. All these metrics have their usual meanings.

Different possible combinations like the number of folds used, value of random
seed, and different kernel based techniques are investigated here for developing an
SVM classifier. Then an SVM model with a Gaussian radial-basis function
(RBF) kernel is selected. A non-linear version of SVM can be represented by using a
kernel function K as:

K xi; xj
� � ¼ / xið Þ :/ xj

� � ð2Þ

Here u xð Þ denotes non-linear mapping function employed to map the training
instances. An SVM model with a Gaussian RBF kernel is defined as:

Table 2. Different metrics of the MLPNN model

Metric Value

Number of hidden layers One
Number of neurons in input layer Number of input attributes
Number of neurons in output layer Data classes present
Learning rule Gradient descent with momentum
Transfer function used Tan-sigmoid

Table 3. Different metrics of the CART model

Metric Value

Attribute selection measure Gini index
Minimal number of instances at terminal nodes 2
Pruning approach used Post-pruning approach
Pruning algorithm name Minimal cost complexity pruning
Number of folds used 5
random seed number 1
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K xi � xj
� � ¼ e

� xi � xj
�
�

�
�2

2r2
ð3Þ

Table 4 below provides different metrics used in the given SVM model. All these
metrics have their usual meanings.

5 Results and Discussion

Here three classifiers namely Multilayer Perceptron Neural Network, Decision Tree and
Support Vector Machine are applied to the UCI machine learning repository data set for
investigation and performance analysis. Here we have divided the data set into training
purpose and testing purpose. The results described here are exclusively based on the
simulation experiment that we have taken. We have done several comparison of these
classifiers based on some performance measures like classification accuracy, root-mean
square error (RMSE) [14], kappa statistic [15] values. And also performed detail
accuracy by each class for three classifiers using True Positive Rate (TP-Rate) or
Recall, False Positive Rate (FP-Rate), Precision, F-Measure and ROC area values
derived from the confusion matrix [16] of each classifier. Three classifiers (MLPNN,
DT and SVM) are applied to a test set for classification after completion of the training
phase. Firstly, we perform comparisons of these classifiers which are based on said
performance measure as shown below in Table 5.

Table 4. Different metrics of the SVM model

Metric Value

Type of kernel used Non-linear
Kernel name Gaussian radial-basis function (RBF)
Cache size 250007
Value of r 0.01
Complexity parameter 1.0
Number of folds used −1
Random seed value 1
Epsilon value for round-off error 1.0e−12
Tolerance Parameter 0.001

Table 5. Performance comparison of three classifiers

Classifier Accuracy Kappa Statistics RMSE

MLPNN 87.2% 0.7842 0.3018
DT 92.8% 0.8269 0.2678
SVM 86.3% 0.7736 0.3127
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From Table 5 we could see that, accuracy of MLPNN, DT and SVM are 87.2%,
92.8% and 86.3% respectively. So it is clear that accuracy wise DT has performed
better than MLP and SVM here. Based on the result, DT comes out first with an RMSE
value of 0.2678 and a kappa statistic value of 0.8269; followed by MLPNN having an
RMSE value of 0.3018 and a kappa statistic value of 0.7842 and SVM stands last with
the highest RMSE value 0.3127 and the lowest kappa statistic value 0.7736. Therefore,
with regard to the performance measures such as classification accuracy, RMSE and
kappa statistic, the DT classifier has performed the best. Figure 2 shows a performance
comparison among three classifiers.

After that we have compared these models based on the TP-Rate (or Recall),
FP-Rate, Precision, F-Measure and ROC area values derived from the confusion matrix
of individual with respect to the test data set.

From Table 6 we could discover that the weighted average values of TP-Rate (or
Recall), FP-Rate, Precision, F-Measure, and ROC Area for MLPNN classifier are
87.2%, 12.8%, 87.2%, 87.2% and 0.867 respectively; whereas for DT classifier the

Fig. 2. Performance comparison of three classifiers

Table 6. Detailed accuracy by each of the three classifiers

Classifier TP-Rate/Recall FP Rate Precision F-Measure ROC Area

MLPNN 87.2% 12.8% 87.2% 87.2% 0.867
DT 92.8% 9.2% 92.8% 92.8% 0.931
SVM 86.3% 13.9% 86.3% 86.3% 0.845
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values are 92.8%, 9.2%, 92.8%, 92.8% and 0.931 respectively. For SVM these values
are 86.3%, 13.9%%, 86.3%, 86.3%, and 0.845 respectively. Detail accuracy by the
three classifiers is also shown in 2-D column chart in Fig. 3.

The DT model has the highest weighted average values for TP-Rate, Precision and
F-Measure and the lowest weighted average value for FP-Rate. Indeed, the classifi-
cation accuracy value of DT model is considerably better (more than 5%) compared to
the other models.

6 Conclusion

Bank market prediction is needed for bank deposit subscription, customer relationship
management, fraud detection and building marketing strategies. This kind of prediction
is certainly helpful for running the business successfully. This paper uses procedures to
evaluate and compare the classification performance of three different data mining
techniques using models such as MPLNN, Decision tree and SVM on the bank direct
marketing dataset. The purpose is to increase the effectiveness of the bank marketing
campaigns by identifying the main characteristics that affect the success. These clas-
sifiers mainly aim to indicate the deposit money subscribed by the clients. The clas-
sification performances of these three models have been evaluated using several useful
statistical measures. Finally, experimental results have shown the effectiveness of DT
model compared to MLPNN and SVM models. In fact, the accuracy value of DT model
is significantly higher (more than 5%) compared to the other classification models used
here. So, the DT model developed using CART technique could be very much helpful
for direct bank market prediction.

Fig. 3. Detailed accuracy by each of the three classifiers
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Abstract. Learning a distance metric provides solutions to many prob-
lems where the data exists in a high dimensional space and hand-crafted
distance metrics fail to capture its semantical structure. Methods based
on deep neural networks such as Siamese or Triplet networks have been
developed for learning such metrics. In this paper we present a metric
learning method for sequence data based on a RNN-based triplet net-
work. We posit that this model can be trained efficiently with regards to
labels by using Jaccard distance as a proxy distance metric. We empir-
ically demonstrate the performance and efficiency of the approach on
three different computer log-line datasets.

Keywords: Efficient metric learning · Triplet network · Deep learning

1 Introduction

Metric learning methods enable learning of a distance metric that allows to
project data in an embedded space. These methods offer significant flexibility
since the data is not mapped to a particular value such as in supervised classifica-
tion or regression, but are projected to an embedding space based on their rela-
tionship to other data points in the dataset. Different kinds of semantical labels
can then be assigned, interpretation of the model decision can be grounded in
the training data and techniques such as one shot [7] and zero shot [15] learning
can be performed. Furthermore, in many scenarios relative differences between
data points can be obtained ‘cheaper’ than direct labels.

In this paper, we examine metric learning on sequence data. We are presented
with sequences of symbols (tokens) that are assigned a class or a label. However,
our label space is complex and not well defined. There is a large number of classes,
and many of those appear infrequently. Certain classes may be considered ‘out-
of-vocabulary’, since they may not appear in the training data, but can appear
during inference. In this setting, utilizing all available data requires to collect
supervision on the relative distance [9] or ranking [19] between the data points.
To tackle this, we propose to use a proxy distance metric that is weakly correlated
c© Springer International Publishing AG, part of Springer Nature 2018
P. Perner (Ed.): MLDM 2018, LNAI 10934, pp. 269–282, 2018.
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to the target metric, and can be used in the ranking task. Learning in such a way
can be combined with a supervision signal that allows for high-quality embedding
at a fraction of the needed supervision.

More specifically, our contributions are:

– We present a method for efficient metric learning with sequence data by
adapting the triplet network for sequence data using recurrent neural net-
works (RNN).

– We improve the efficiency of the proposed method with regards to the labels
by using a proxy distance metric (Jaccard distance) that allows us to learn
a high-quality distance metric with small amount of annotations. We detail
the approach in Sect. 2.

– We provide empirical evidence on three log-line datasets in Sects. 3 and 4,
where we show that the triplet metric learning approach with proxy distance
outperforms a RNN model on the same amount of labels.

2 Deep Metric Learning Using Approximate Information

Our goal is to learn an embedding function that maps symbolic token sequences
from feature space to a metric space such that semantically similar sequences are
mapped close to each other, and non-similar ones are farther apart. The general
idea behind this is called metric learning [20]. Recently, deep learning methods
based on Triplet networks [19] have been proposed to learn such embedding
functions. Triplet networks learn a metric by optimizing a ranking problem on
input triplets. A triplet consists of an anchor sequence, a positive sequence, and
a negative example. These three examples related to each other by a similarity
relationship, i.e., the positive example should be more similar to the anchor
example than the negative example. The triplet network is trained on learning a
function that embeds examples into a metric space, in which positive sequences
are closer to the anchor example than negatives ones.

To the best of our knowledge, triplet networks so far only have been trained
using information from labels. That is, an example is positive to the anchor
examples if both have the same label, and negative otherwise. Labels are often
not available, or labor-intensive to obtain.

The main idea of this paper is to use a proxy distance metric in combination
with a few labeled examples to determine the similarity relationship between
triplets of examples. This proxy distance metric gives some indication about the
ranking but is not very precise otherwise. If needed, the learned metric space
can be improved by adding a few labeled examples. Thus, in other words, we
conduct a form of weakly supervised learning [22] to learn a distance metric
using triplet networks.

This method offers two advantages over simply using a distance metric on the
pairwise training examples. First, it scales with the number of training examples,
and second, it allows to learn a higher quality, domain-specific metric. It also
offers a generic way to combine existing metrics on the input data with labeled
examples.
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Fig. 1. Here we show the relationship defining processes of a sequence xj to the anchor
sequence xa. Our main idea is to learn a distance metric in a weakly supervised way
by defining the similarity relationships of input data using a proxy distance metric
and a few labeled examples. In combination with triplet networks, these similarity
relationships allow us to learn a domain-specific metric for our input sequences.

2.1 Triplet LSTM

Commonly, a deep learning algorithm consists of the following four components:
a model, an objective or cost function, an optimization procedure, and data.
Here we describe the model that we use to learn a distance metric for sequences.
We base our model architecture on the Triplet network that was introduced by
Wang et al. [19]. Such a model consists of a deep neural network for embedding,
followed by a L2 normalization layer. Each input of the triplet is embedded
using the same network, and the normalized output is used for calculating the
triplet loss. Instead of a deep convolutional neural network, we use we use an
LSTM [5] for embedding the sequences. LSTMs are well-suited for modeling
sequences and have been applied to many sequential learning problems, e.g. [8].
We refer to our embedding network including the normalization layer as f , x is
a sequence and z is an embedded sequence z = f(x). Figure 2 depicts our triplet
network architecture schematically.

Fig. 2. We use a triplet-LSTM followed by a L2 normalization layer to learn a metric
embedding space for sequences.
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2.2 Objective

Here we describe our objective for learning the distance metric for sequences.
We use the triplet loss that was introduced by Wang et al. [19]. This objective
penalizes triplets where the distance between the embedded anchor and the
embedded positive example is larger than the distance between the embedded
anchor and the negative example.

Given a triplet of an embedded anchor example zai , an embedded positive
example zpi and an embedded negative example zni , this objective minimizes the
difference in distances between the anchor and the positive and the anchor and
the negative example and a given margin α. α is a hyperparameter.

Let T be the set of all possible triplets in a mini-batch, and let []+ a hinge
loss function. Then our learning objective is to minimize the loss L

L =
N∑

i

[‖zai − zpi ‖22 − ‖zai − zni ‖22 + α
]
+

(1)

for the set of all triplets that violate the following constraint:

‖zai , zpi ‖22 + α < ‖zai , zni ‖22 ∀(xa
i , x

p
i , x

n
i ) ∈ T (2)

The triplet loss L will be small, if the distance between the positive example
and the anchor is small and the distance between the negative and the anchor
is high and large otherwise. The parameter α ensures that a margin between
examples of the same class is allowed.

2.3 Jaccard Distance

We use the Jaccard distance as a proxy metric to determine the similarity rela-
tionship between two input sequences. The Jaccard distance JD is a distance
measure between two sets x1 and x2. It is defined as:

JD(x1, x2) = 1 − x1 ∩ x2

x1 ∪ x2
(3)

with ∩ being the intersection of the two sets and ∪ being the union of the two
sets. To calculate the Jaccard distance between two token sequences, we treat
the sequences as sets of tokens. The Jaccard distance tells us about the diversity
of two sequences, but it ignores informative properties of the sequences such as
the order of the tokens. We hypothesize that using the Jaccard distance provides
sufficient information to rank triplets based on their dissimilarity.

2.4 Method

In this work we propose a method, the relies on a proxy distance metric and a
few labeled examples. This method enables to learn a domain-specific distance
metric for sequences using a triplet network using only a fraction of the required
labels.
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To learn distance metrics with a triplet network, we need to define the rela-
tionship of input triplet examples. That is, given an anchor example, we need to
know whether an example is positive, i.e., belongs to the same class or negative,
i.e., belongs to a different class.

The relationship between input examples is defined between an anchor exam-
ple xa and another example xj . We define this relationship using a two-step
process. This two-step process is depicted in Fig. 1.

First, if we have information about the labels of both examples, we use this
information to determine the similarity relationship. This step is similar to the
definition of the relationship in previous works on triplet networks.

If we don’t have label information available, we use the Jaccard distance JD
as proxy distance metric to determine the relationship between xa and xj . If
the Jaccard distance is below a threshold tpos, the relationship is positive and
if it is above another threshold tneg, the relationship is negative. If the Jaccard
distance is above the positive threshold tpos but below the negative threshold
tneg, we define the relationship as unknown. If the relationship between a pair of
sequences is unknown, we ignore it in the triplet selection process (see Sect. 3.3)
of the training phase.

The positive and negative thresholds are hyperparameters and depend on
the data domain. The margin between the positive and the negative threshold is
meant to increase the accuracy of the approach. That is, only if it is likely that
two sequences are similar they should be labeled positive, and only if it is very
unlikely that they are similar to negative.

Formally, we define the similarity relationship between an anchor sequence
xa and another sequence xj as follows. Let xa, xj be two sequences of tokens,
la, lj their respective label, JD(xa, xj) the Jaccard distance between the two
sequences, and tpos, tneg the thresholds for being a positive or a negative example
pair. If a sequence is not labeled, it’s label is ∅.

We then define the similarity relationship R between two sequences as:

R(xa, xj) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pos, if la �= ∅ and lj �= ∅ and la = lj

pos, if la = ∅ or lj = ∅ and JD(xa, xj) < tpos

neg, if la �= ∅ and lj �= ∅ and la �= lj

neg, if la = ∅ or lj = ∅ and JD(xa, xj) ≥ tneg

unk, otherwise

(4)

with pos being positive, neg being negative and unk unknown.

3 Experimental Evaluation

Here we present our experimental evaluation of our method. We want to show
that (i) approximate information in combination with a distance metric is pos-
sible, and (ii) that adding labeled examples to this process increases the perfor-
mance.
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We evaluate our approach to the task of classifying log lines from log datasets.
Log datasets typically consist of multiple log lines, and each log line can be
treated as a sequence of tokens. The task is to classify each log according to the
print statement that created a specific log line. Log lines that originated from
the same print statement should obtain the same label. Since print statements
often have variable parts, the resulting log lines may often differ, and the semi-
structured nature of such logs makes this a challenging task.

3.1 Baseline

We use our proxy distance metric as the baseline. For evaluation, we calculate
the pairwise Jaccard distance from each log line to each other log line. Given this
pairwise distances, we can calculate the accuracy, the true acceptance, and the
false acceptance rate (see Sect. 3.9). We refer to our baseline method as Base-JA.

3.2 Model

Here we detail the model that we use for performing our deep-learning based
experiments. In all our experiments we use the same model. This model takes
sequences of token ids as input. These sequence of token ids are mapped to
sequences of token vectors using a dense token embedding matrix. The model
outputs a point in the metric space in case of the triplet network experiments
(see Sect. 3.4) and class probabilities in case of classification experiments (see
Sect. 3.5).

We use an LSTM [5,21] to encode the token vector sequences. We use
dropout [16] to prevent overfitting, and gradient clipping [12] to prevent explod-
ing gradients. There are many more advanced deep learning architectures for
modeling sequences. We chose a very basic architecture because we were mainly
interested in studying the effects of combining selecting the triplet with labels.
Also, LSTMs have shown to be a reliable choice for modeling sequences [8].

We learn our model parameters using RMSProp [18]. RMSProp is a
momentum-based variant of stochastic gradient descent. We train our model
in mini-batches. We implemented our model in Tensorflow 1.4.0 [1] and Python
3.5.3.

3.3 Triplet Selection

Selecting the right triplets as input for the triplet network is crucial for the learn-
ing to converge [14]. We use an online strategy to select the triples for training our
network. We use all valid combinations of anchor-positive and anchor-negative
examples per mini-batch to train our network. anchor-unknown example pairs
are ignored. Valid in this context means triples that violate the condition in
Eq. 2. We additionally add randomly sampled positive examples of each labeled
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example in a batch to increase the number of valid triplets per mini-batch.
These positive examples are uniformly sampled from the distribution of exam-
ples of this the same class.

3.4 Experiment - Metric Learning Using Approximate Information

In this experiment, we test our method for learning a metric space using triplet
networks and a combination of a proxy distance metric in combination with
labeled examples. To embed the sequences in the metric space, we learn an
embedding function using the model that was described in Sect. 3.2. The setup
for this experiment is schematically depicted in Fig. 2. We refer to this method
as LSTM-Triplet.

3.5 Experiment - Classification with Augmentation

Triplet networks are complex architectures. To justify the complexity, we com-
pare the results of the metric learning experiments with an experiment that uses
the same model (see Sect. 3.2). However, instead of learning a metric space, we
learn to classify the sequences based on their label. To do so, we extend our
model with an addition softmax layer after the encoding. This layer has neurons
according to the number of classes available.

For a fairer comparison, we augment our training data by labeling additional
classes using the Jaccard distance. We obtain such further labeled examples
for classification by labeling any other unlabeled sequence that has a Jaccard
distance to the labeled example that is below a certain threshold with the same
class. If there are multiple candidates for labeling, we label the example with
the lowest Jaccard distance. We refer to this method as LSTM-Class.

3.6 Datasets

To evaluate our method, we use three datasets, a UNIX forensic log file [17], and
two system log files of computing clusters BlueGene/L and Spirit2 [11].

The UNIX forensic log file contains 11,023 log lines and was extracted from
an Ubuntu system. A forensic log is a log that aggregates many different log
sources from a computer system into one large log file. Such an aggregated log
file can be used for further forensic analysis in cybercrime investigations. The
UNIX forensic log lines originate from 852 print statements, i.e., the logs have
852 different classes. The labels of each log line have been assigned manually
by using the source code of the as ground truth. We only use a fraction of
the computing cluster system logs. We use 474,700 log lines of the BlueGene/L
dataset and 716,577 of the Spirit2 dataset. The BlueGene/L log lines originate
from 355 different print statements, and the Spirit2 log lines originate from 691
separate print statements.
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Listing 1. Four sample log lines from the UNIX forensic log. Although they are differ-
ent, they should be labeled the same since they originate from the same print statement.

[ systemd pid : 1045 ] : Startup f i n i s h e d in 33ms .
[ systemd pid : 867 ] : Startup f i n i s h e d in 53ms .
[ systemd pid : 909 ] : Startup f i n i s h e d in 34ms .
[ systemd pid : 1290 ] : Startup f i n i s h e d in 31ms .

3.7 Data Pre-processing

We pre-process each log line before we use it as input to our deep learning
models. We transform the log lines to lower-case and split them into tokens
based on whitespace characters. We treat special characters such as brackets
also as tokens. All our logs are semi-structured, i.e., they have fixed columns
at the beginning and a free text part afterward. In case of the UNIX forensic
log, we have removed the fixed columns. In case of the BlueGene/L we have
replaced the fixed columns with a fixed tokens and only use the free text part
for learning. We replace the information of the fixed columns because it could
be easily extracted without a machine learning approach. We add a special start
and end token to each sequence. After the pre-processing is done, we have a
vocabulary of 4114 different tokens for the UNIX dataset, 101,872 tokens for the
BlueGene/L dataset and 59,340 unique tokens for the Spirit2 dataset. Finally,
pad the sequences by appending zeros so that each sequence has the same length.

3.8 Hold Out Sets

We use a fraction of 0.2 of the UNIX forensic log and a fraction of 0.1 of the other
two datasets as the hold-out set for testing our ideas. The UNIX forensic test
set has 602 classes. Each class has two members in the median and the standard
deviation of 5.92 member sequences. The BlueGene/L dataset has 245 classes,
ten members in the median and a standard deviation of 1162. The Spirit2 dataset
has 449 classes with three members in the median and a standard deviation of
1510.

3.9 Evaluation

We compare the validation rate VAL(d) and the false acceptance rateFAR(d)
for the baseline experiment and the metric learning experiment. We use the
definition of the validation and false acceptance rate that was introduced by
Schroff et al. [14], but we adopt it for sequences. The validation rate measures
the correctly classified as same sequence pairs at a given distance threshold,
whereas the false acceptance rate measures the incorrectly classified as same
sequence pairs at a given distance threshold. We define d as distance threshold,
and D(xi, xj) as distance between a pair of sequences xi, xj . In case of the
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baseline experiment, D(xi, xj) denotes the Jaccard distance between two token
sequences, and in case of the metric learning experiment D(xi, xj) denotes the
squared L2 distance. We denote all pairs of sequences that are in the same class
as Psame. We denote all pairs of sequences of different classes as Pdiff .

True accepts are the sequences that are correctly identified as belonging to
the same class at a given distance threshold. We define the set of all true accepts
TA(d) as:

TA(d) = {(i, j) ∈ Psame, withD(xi, xj) ≤ d} (5)

False accepts are the sequences that are incorrectly identified as belonging to the
same class at a given distance threshold. We define the set of all false accepts
FA(d) as:

FA(d) = {(i, j) ∈ Pdiff , withD(xi, xj) ≤ d} (6)

The validation rate V AL(d) and the false accept rate FAR(d) for a given dis-
tance threshold d are then defined as:

V AL(d) =
|TA(d)|
|Psame| , FAR(d) =

|FA(d)|
|Pdiff | (7)

Furthermore, we compare the accuracy of the classification experiment. In the
Base-JA and LSTM-metric experiments, we report the accuracy at the distance
threshold when the validation rate is 1.0, i.e., when all pairs that should be
classified as same are classified as same.

3.10 Hyper Parameters and Training Details

We learn our model parameters with a learning rate of 0.01. We decay the
learning rate after each epoch with a factor of 0.95. The token embedding matrix
has a dimension of 32 and is initialized with a normal distribution and a standard
deviation of 0.5. The number of neurons in the LSTM is 32. We clip gradients at
0.5, drop out inputs at a rate of 0.1 and train with a mini-batch size of 100. We
use RMSProp with ε of 1−10 and momentum of 0.0. We train each model for 30
epochs, and randomly shuffle the training data after each epoch. All experiments
are conducted with the same hyperparameter settings.

For our LSTM-Triplet experiments, we add two extra positive examples per
labeled sequence to each batch. This means that for each labeled sequence we
randomly sample two sequences of the same class and add these sequences to the
mini-batch. Adding more labeled examples to the batch increases the information
available, thus speeds up the conversion of the learning process. Furthermore, we
use a Jaccard distance threshold tpos of smaller than 0.3 to determine positive
examples, and a Jaccard distance of tneg greater than 0.7 to determine negative
examples. We use an α of 0.8 to calculate the hinge loss for our triplet network
(see Eq. 1).

We conduct the LSTM-Triplet and the LSTM-Class experiments with 1000,
2500 and 5000 labels. Additionally, we perform the triplet network experiment
without additional labels.
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4 Results and Discussion

Here we report and discuss the results of our experiments. First, we compare
the learned metric spaces. We then report the accuracy of the classification
experiments.

In Figs. 3, 4 and 5 depict the VAL-rate against the FAR-rate for increasing
distance thresholds. These plots show the results for the baseline Jaccard dis-
tance (see Sect. 3.1) and compare it to the triplet network learned with Jaccard
distance and 0, 1000, 2500 and 5000 labeled examples (see Sect. 3.4). The results
are interpolated and the x-axis of the plots is in log-scale. The bumps in the
baseline can be explained by the nature of the datasets. First, the amount of
log lines per class varies considerably, and there are few more dominant classes.
Second, log lines frequently only differ in very few tokens, i.e., a different vari-
able. The Jaccard distance for sequences is the same for sequences that differ
the same amount of tokens, regardless of which class they are.

Fig. 3. VAL/FAR rate UNIX forensic dataset. We show the baseline experiments and
the triplet network with different amount of additional labeled examples. The bumps
in the baseline can be explained by the nature of the datasets.

The performance of the triplet network on the UNIX forensic dataset without
additional labels is comparable to the performance of our baseline, the Jaccard
distance. In case of the Spirit2 dataset, the performance is better, and in case of
the BlueGene/L dataset the performance is slightly worse.

In our triplet network experiments, we use a different positive and negative
threshold to determine whether two sequences belong to the same class. That is,
only if it is likely that the sequences are equal we mark them as equal, and only
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Fig. 4. VAL/FAR rate Spirit2 dataset. Fig. 5. VAL/FAR rate BlueGene/L
dateset.

if it is unlikely that they are equal, we mark them as unequal. One would assume
that this leads to a distance metric that is superior to the baseline. However, we
can only observe this in case of the Spirit2 dataset.

We argue that this is caused by the way triplet networks learn. We observe
that there are consistently many more anchor negative-pairs than anchor-positive
pairs during training since more sequences are different to each other than sim-
ilar. This imbalance leads to a learning behavior that pushes sequences that are
different away from each other, but not necessarily closer to each other. This
results in well-separated, but split sequence clusters in the metric space.

We hypothesize that it is possible to mitigate this imbalance in negative
to positive example pairs by carefully selecting the examples for each batch.
However, in a scenario with unknown classes and no labeled data, such a strategy
may be difficult to devise.

Furthermore, in Figs. 3, 4 and 5 we can observe that adding labeled examples
consistently increases the performance of the metric learning approach. The more
labels are added, the better separated the clusters are.

Apart from that, we have also explored the idea of using the triplet network
only with fewer labels and discard the information of the Jaccard distance. In
this case, the triplet network overfits and performs worse than the baseline and
worse than the triplet trained with only the Jaccard distance.

In Table 1 we report the accuracy for our classification experiment (see
Sect. 3.5). We calculated the accuracy of the metric-based experiments at the dis-
tance threshold d where the VAL-rate was 1.0. We report the distance threshold
as well as the accuracy.

In Table 1 we can see that already the baseline Jaccard distance classifies the
log lines reasonable well. The LSTM trained with a few labels and augmented
with Jaccard distance is consistently better, and the triplet network performs
better than the LSTM.
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Table 1. We compare the accuracy of our classification experiments. We calculated
the accuracy of the metric-based experiments at the distance threshold d where the
VAL-rate was 1.0.

Dataset # labeled examples Base-JA LSTM-triplet LSTM-class

UNIX Forensic 0 0.841 (0.69) 0.550 (1.40) N/A

1000 N/A 0.866 (1.26) 0.728 (N/A)

2500 N/A 0.998 (0.88) 0.913 (N/A)

5000 N/A 0.999 (0.68) 0.960 (N/A)

BlueGene/L 0 0.633 (0.52) 0.612 (0.48) N/A

1000 N/A 0.996 (0.54) 0.971 (N/A)

2500 N/A 0.997 (0.52) 0.986 (N/A)

5000 N/A 0.999 (0.49) 0.991 (N/A)

Spirit2 0 0.961 (0.51) 0.990 (0.70) N/A

1000 N/A 0.997 (0.45) 0.973 (N/A)

2500 N/A 0.998 (0.45) 0.981 (N/A)

5000 N/A 0.999 (0.71) 0.982 (N/A)

We argue that the triplet network performs better in the classification task
for two reasons. First, the metric space can deal better with unknown classes.
Second, the triplet network can use the available information better. The clas-
sification LSTM can only use the information that a sequence belongs to one
class and not to all the others. The metric learning LSTM can also utilize the
information that is gained when pairwise sequences are from different classes.

5 Related Work

Distance metrics can be learned using Siamese network, and have been originally
introduced to distinguish handwritten signatures [2]. They use two identical
models and a contrastive energy loss function to learn a distance metric. Siamese
networks have been used for deep metric learning in multiple domains, such as
face verification [4], image similarity [7] or for learning image descriptors [3].

More recently, Siamese networks have been used to learn distance metrics
for sequences and to learn distance metrics for text. Mueller and Thyagarajan
propose to use a recurrent Siamese architecture to learn a distance metric for
defining similarity between sentences [9]. Neculoiu et al. describe a similar archi-
tecture to learn a distance metric between character sequences [10].

Triplet networks have been proposed as an improvement to Siamese architec-
tures [19]. Instead of two identical networks and a contrastive energy function,
they learn the distance metric by minimizing a triplet-based ranking loss func-
tion. Triplet networks have been successfully applied to a variety of image metric
learning tasks [6,14]. Furthermore, magnet networks have been [13] proposed
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as an improvement over triplet networks. Magnet networks learn a representa-
tion space that allows to identify intra-class variation and inter-class similarity
autonomously.

6 Conclusion and Future Work

In this paper, we develop a method based on a LSTM triplet network model
that allows to efficiently learn a metric space for sequence data. To learn such
a metric space, we utilize a proxy distance metric and a limited amount of
labels to learn the parameters of an embedding model in a weakly supervised
way. Our method provides a general way of combining an existing metric with
information obtained from labeled examples. We envision that this method can
allow for utilizing domain knowledge to improve the efficiency of metric learning
by utilizing domain-specific distance metrics as proxies for various applications.

Furthermore, we hypothesize that the learned metric spaces could be used for
interpreting the model’s behavior. In this context, we would like to investigate
the possibilities for developing interpretations by associating the model’s output
to labeled training examples.

Acknowledgment. The work presented in this paper is part of a project which has
received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 780495.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: TensorFlow: a system for large-scale machine
learning. In: OSDI 2016, pp. 265–283 (2016)
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Abstract. This paper applies machine learning (ML) techniques including
neural networks, support vector machines Random Forest, and Adaboost to
detecting insider fraud in restaurant point-of-sales data. With considerable
engineering of the features, and by applying under-sampling techniques we
show that ML techniques deliver very high fraud-detection performance. In
particular, RandomForest can achieve 91% or better across all metrics when
using a model trained on one restaurant to detect fraud in a separate restaurant.
However, there must be sufficient fraud samples in the model for this to occur.
Knowledge and techniques from this research could be used to develop a
low-cost product to automate fraud detection for restaurant owners.

Keywords: Machine learning � Classification � Outlier detection
Fraud detection � Point-of-sale data

1 Introduction

Occupational fraud costs the average organization 5% of revenues per year according
to survey participants in the Association of Certified Fraud Examiners (ACFE) 2017
Global Fraud Study [1]. Using the 2017 Gross World Product as a basis, this translates
to a potential annual loss of *$3.8 trillion due to insider fraud.

Restaurants are especially sensitive to the 5% impact on sales as they have one of
the lowest profit margins of any industry, often in the 3–6% range. And as more than 7
out of 10 restaurants are individually owned [2], most restaurants do not have the
resources to invest in costly auditing systems to detect and prevent fraud. Yet according
to ACFE, the smallest organizations tend to suffer disproportionately large losses due to
occupational fraud [1]. Because of the prevalence of insider fraud and the scant
financial resources of most restaurants, a low-cost, automated solution to fraud
detection is critical to the livelihood of restaurant owners, yet fraud detection is not
available in the majority of point-of-sale (POS) systems. The POS data used in this
research was provided to us from four different restaurants for the purpose of deter-
mining if machine learning techniques can detect insider fraud.

In this paper, we demonstrate that it is possible to detect even very small amounts
of fraud with machine learning using the same fraud detection model across data from
multiple restaurants. However, a large amount of data pre-processing time is required to
achieve success. As the details of the research show, a large amount of time must be
spent building deep knowledge of the data, determining how fraud presents in the data,
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and engineering features to enable the algorithms to detect fraud. The results of our
work show that it is possible to achieve the high levels of accuracy and precision
necessary for the models to be used by independent restaurant owners for detecting
fraud.

The paper is organized as follows. Section 2 explains the challenges and difficulties
of conducting research on restaurant point-of-sale data. The scope of the work, pre-
sented in Sect. 3, explains both how a subset of algorithms were selected and which
types of fraud were chosen for study from among numerous fraud techniques used by
restaurant employees. Section 4 presents the methods and tools used in this research.
The results of the research are presented and discussed in Sect. 5. Finally, Sect. 6
outlines directions for future research extensions.

2 Challenges and Related Work

Research on restaurant fraud is challenging for a number of reasons. First, fraud
detection is a special case of outlier detection, and results of the outlier literature review
show that while there are techniques to improve the performance of machine learning
algorithms such as over- and under-sampling, outlier detection remains a current
challenge and an area of study within the machine learning field. This paper leverages a
number of research papers on anomaly and outlier detection techniques [11, 14, 16] as
well as a couple on sampling techniques [10, 12]. This paper applies both over and
under-sampling techniques. While not using the same feature engineering techniques as
in [14] this paper demonstrates and reinforces the importance of engineering features to
detect anomalies.

Second, there is a dearth of papers on fraud detection in restaurant POS data. One
of the newest POS systems offers a fraud detection module [16], but information about
methods, techniques, and any details about how this is accomplished are proprietary
and unpublished. Some large restaurants and retail clothing stores have applied cameras
to detect cashier fraud [9], but detecting fraud in images and video requires a relatively
high cost to implement, and cannot cover certain kinds of fraud. Therefore,
camera-based fraud detection is not a viable solution for most restaurant owners, and
hence will not be pursued in this research effort. However, there are many published
papers that demonstrate the ability of machine learning algorithms to detect credit card
fraud [3, 7, 8, 13]; this paper extends this research to show these algorithms can also
detect fraud in POS data.

As no papers were found on the topic of check fraud detection, all of our research
on engineering features to detect check fraud is novel. References [11, 12] explain the
importance of feature engineering, but do not provide specific examples of features as
will be provided in this paper.

Third, individually owned restaurateurs lack the time and resources to initiate or
participate in research, and are highly averse to sharing data with outsiders. Fourth, due
to the fact that most restaurants lack auditing systems and processes, and there is a high
turnover of restaurant employees, most fraud goes undetected. As a result, examples of
known fraudulent data are difficult to obtain.
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3 Scope

The scope of this research will be limited by selecting a subset of machine learning
techniques and types of fraud.

3.1 Fraud Types

As published in numerous restaurant industry online articles and books such as [6]
there are many ways that restaurant employees can commit fraud against the restaurant.
As the data provided for this research only includes point-of-sale data and not inventory
or accounting information, only some of the fraud types can be detected by the data
provided to this research project. The two fraud types selected for study were “Bar-
tender No Sale”, and “Server Rotating Check Item” as described in Table 1. However,
the development and study of classifiers for “Bartender No Sale”, which requires the
detection of missing transactions, is still in the process. Therefore, only classification
results for “Server Rotating Check Item” will be included in this paper.

3.2 Fraud Types

The algorithms studied in this research were selected by reviewing the top performing
machine learning and data mining algorithms as applied to credit card fraud detection.
Phua et al. [5] published a comprehensive survey on data mining-based fraud detection
research. Based on speed and accuracy considerations, and to cover a
cross-representation of approaches to classification, we selected the algorithms listed in
Subsect. 4.4.

4 Data, Methods and Tools

This section presents a description of the data, data pre-processing, labeling, and
methods and tools used to apply machine learning to the problem at hand.

Table 1. Fraud methods.

Name Description

Bartender No Sale Sell a drink, collect cash from the customer, use “no sale” button to
open cash register and make change. Sale is not recorded in the POS
system

Server Rotating
Check Item

After a customer orders a commonly occurring check item, such as a
Coke, and is ready to pay, print the check for the customer. If the
customer pays in cash, before closing the check, transfer the check
item to another check and pocket the cost of the item
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4.1 Data Profile

An industry expert who has been implementing restaurant POS systems for over
20 years provided the data and expertise on restaurant fraud. Data was provided for
four restaurants spanning an average of four years of data per restaurant. Primary types
of information received for each of the restaurants include: ordered items; payments;
discounts employees; items; table types; payment types; revenue centers; tax groups;
and price levels. Each restaurant had a slightly different configuration for the POS
system. Differences in configurations contribute to the complexity of pre-processing
and interpretation of the results. Differences in configurations also translate to a higher
cost of developing an automated fraud detection system. Examples of differences
include different job ids for the same job title, different seating area ids for the bar area,
difference customizations of some of folder name, i.e. yyyymmdd versus mmddyyyy.

Tables 2, 3 and 4 show the number of checks, ordered items, and fraud examples
by restaurant and per year. While the number of examples labeled as fraud represent
less than 1% of the ordered items, it should be recalled that the labeling was not meant
to catch all fraud, only those that were highly suspicious. So it is likely that the actual
amount of fraud is much higher, possibly as much as 10% higher which would translate
to 1% at Restaurant 1, 2% at Restaurant 2 and still less than 1% at Restaurant 3.

Table 2. Restaurant 1 data set size by year.

Record type Year
2011 2012 2013 2014

Checks 32,702 50,966 52,483 19,382
Ordered items 249,378 407,688 434,518 167,054
Fraud 253 769 968 430

Table 3. Restaurant 2 data set size by year.

Record type Year
2012 2013 2014 2015

Checks 25,685 32,262 31,499 7,597
Ordered items 343,056 424,325 420,050 101,878
Fraud 98 162 156 36

Table 4. Restaurant 3 data set size by year.

Record type Year
2009 2010 2011 2012 2013

Checks 10,625 11,273 11,216 11,842 10,272
Ordered items 93,582 99,519 98,510 109,425 97,645
Fraud 87 69 46 103 70
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4.2 Data Pre-processing

At its core the dataset was built from the ordered items table. Ordered items that have a
price of $0 were filtered out. Examples of ordered items with $0 value are condiments
such as ketchup and mustard, toppings such as tomato and onion, tap water, and side
orders where the price is included in the price of the entrée, e.g. when French fries or a
side salad can be selected as a side dish to a hamburger, and special order notes, such as
“over easy”, “no mushrooms”. All of the data was standardized and scaled before use
to ensure that the fields with larger numeric values did not bias the results.

4.3 Fraud Class Labeling

While two types of fraud are being studied, for ease of interpreting and improving the
results, it was decided to analyze them separately. For this paper, the data was only
labeled for “Server Rotating Check Item” type fraud. This allowed the data to be
labeled as fraud or non-fraud for binary classification. After more knowledge is gained
about fraud detection in POS systems, it may be possible to refine the labels for a
multiple class classifier (with each type of fraud labeled as a separate class) for
improved process automation.

As pointed out in [5], finding and labeling fraudulent data is impossible to do with
absolute certainty. Due to the inability of any of the restaurant owners to point to
specific transactions and to state with certainty that they were fraudulent, a threshold of
less than 100% certainty was set for labeling. The threshold can be described as “highly
likely”. Stated another way, if the transactions labeled as fraud were shown to a
restaurant owner, they would cause the owner to question the trustworthiness of that
employee, but not immediately assume that those transactions involve fraud for sure.
Given the availability of the POS consultant, a supervised process was used to label the
data.

4.4 Algorithm Selection

The algorithms selected for this research came from the algorithms that have been used
successfully in credit card fraud detection, as there is no published research for
detecting fraud in restaurant point-of-sale data. Of those algorithms, we decided to
select one from each of the most common families of classifiers, decision trees
(RandomForest), probabilistic classifier (naivebayes), artificial neural network (neu-
ralnet), k-nearest neighbor, and linear/kernel-based classifiers (support vector
machine), so it can be determined if one type of algorithm performs best for this data
domain.

4.5 Principal Component Analysis

For the purpose of feature set reduction, principal component analysis (PCA) is
sometimes applied in machine learning if there is a large number of features and high
level of correlation between the features. If applicable, a graph of the standard
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deviations from the principal components can be used to identify the correct cutoff
point for the number of principal component vectors that should be used.

The coefficients from the principal component rotations are used as a matrix and
multiplied against the dataset to generate a new matrix with artificial features. The
number of artificial features will be equal to the number of principal component
rotation vectors that are used. For example, if there were 42 features in the dataset and
15 principal component rotation vectors were used, the dataset would be mapped to a
new dataset with the same number of records, but with only 15 artificial features
instead of 42 features. The artificial features are then used to train the classifiers.
Similarly, the test dataset will need to be transformed by the same principal component
matrix of vectors to a new vector space with artificial features. Reference [4] explains
the application of PCA to machine learning in more detail.

4.6 Tools

A Macbook Pro with a 2.53 GHz Intel Core 2 Duo processor and 8 GB memory was
used for all aspects of the research. A laboratory version of Mysql 8.0 is being used
despite missing key features because it supports a recursive common table environment
(CTE) SQL structure and capability that was necessary for the queries.

Data mining algorithms used in this research are standard R libraries listed below.

• K Nearest Neighbor (KNN) - knn from library “class”
• Naïve Bayes (NB) - naiveBayes from library “e1071”
• Neural Network (NN) - neuralnet from library “neuralnet”
• RandomForest (RF) - ensemble decision tree classifier, library “randomForest”
• Support Vector Machine (SVM) with different kernels - svm from library “e1071”
• Adaboost from library “fastAdaboost”.

4.7 Definitions

Native Features: Features present in the data as it was generated by the POS system.
Engineered Features: Features derived from native features based on an under-
standing of the data domain to enhance the classification performance. More details
about engineered feature are provided in Sect. 5.2.
Artificial Features: Features created by transforming data into a different vector
space, using PCA to map the data from native features space to artificial features.
Check: A restaurant check refers to the group of menu items ordered by the cus-
tomers at a particular table.
Menu Items: A complete list of all menu items available to be ordered by a
customer.
Menu Item Types: Each menu item has a menu item type. Examples of menu item
types are appetizers, beverages, dessert, entrée, and other.
Ordered Items: Items ordered from the menu by a customer and recorded on the
check.
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5 Research Results

In summary, the results will show that when training data contained a sufficient number
of fraud samples, some of the algorithms were able to successfully detect fraud when
tested on a different restaurant.

5.1 Statistical Analysis

Concurrent with the class labeling was the statistical analysis of the data. This was
necessary to set the thresholds for labeling of “no sale” fraud class. The only way to
determine if checks were missing was to determine the average number of checks per
server per season, per day of the week, per shift, and then look for servers that had far
fewer checks paid in cash than other servers. Therefore average statistics were
generated.

After comparing the actual check counts per shift with the average check counts per
shift for checks paid in cash, the variance was so small in most cases that either
“bartender no sale” fraud was not being committed at the restaurant being studied or it
was too small to detect. There were two shifts in the data where the variance was great
enough to be confident that this type of fraud was being committed, but it was
determined that that was too small of a class size to be used with machine learning
algorithms. And only one restaurant had bar transactions tracked as a separate serving
area, which would make it very difficult if not impossible to detect this type of fraud in
the data from the other restaurants.

So the research focus diverted from studying “bartender no sale fraud”. However,
the value of engineered features for fraud detection was conveyed to the selection and
development of features for detecting “server rotating check item” fraud. And a
hypothesis was informally formed that the detection of fraud may in fact not be possible
without the use of engineered features.

5.2 Feature Selection and Engineering

Feature selection for “server rotating check item” was an iterative process that was
concurrent to, and driven by, the fraud data labeling process. For every question that
had to be answered for the POS consultant, the features that were required to answer
the question were added to the feature set that would be required to detect the fraud. As
the features required to answer the questions did not exist natively in the dataset, they
had to be generated from the data that did exist.

A key aspect of detecting this type of fraud is determining the menu item type of the
frequently ordered item that was used to commit the fraud. Frequently ordered items
can fall into any of the menu item types except for entrée. Menu Item Types include
appetizers, beverages, dessert, entrées, other.

In addition, it is necessary to determine the type and number of menu items on the
originating check, and the number and type of ordered items that are included on the
check to which the ordered item is transferred. So in addition to the basic calculated
features, such as check paid hour, and length of time the check was open, 32 additional
engineered features were developed to provide the context for the transferred menu
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items on the check. A total of six sets of features were used in this research; 46 native
features that existed in the original dataset, 46 engineered features which are a com-
bination of 14 native feature and 32 engineered features, artificial features sets of 15
and 32 were generated using the PCA rotations from the native features, and artificial
feature sets of 11 and 35 were generated from the engineered features.

5.3 Algorithm Parameter Tuning

Preliminary training and testing runs of the algorithms were conducted on the data to
determine the best parameter settings for each of the algorithms included in the
research.

SVM was tested with radial, linear, and polynomial kernels over a range of cost and
gamma settings. The gamma setting only applies for a radial kernel and is a measure of
the width of the kernel as explained in [20]. Larger radial kernels will have smaller
gammas. In addition, the polynomial kernel was tested over degrees 1 through 4. The
parameters providing the optimal results for SVM were type = “C”, kernel = “poly-
nomial”, degree = 3, gamma = 0.1, cost = 1 so these are the parameters used to
generate the results. However, in case for testing Restaurant 1 2013 as the performance
was below par additional tuning runs were conducted and it was found that ker-
nel = “radial” provided better results for only that case. In all other cases, “polynomial”
provides better results. NN was tested with one and two hidden vertices within each
layer across a range of repetitions from 1 to 20. With two hidden vertices, the algorithm
took over 2 h even for the small sample size of 20,500, which was considered unac-
ceptable. Therefore one hidden vertex and 3 repetitions were used because they pro-
vided sufficiently high accuracy and precision in most cases within the processing
power of the computer used to support the research. Also linear.output = FALSE,
err.fct = “ce”, likelihood = TRUE was used so NN would perform as a binary clas-
sifier. For KNN, k, the number of neighbors used to determine the class assigned to the
example, was tested over a range of 1 to 5. The results were within ±1%, demon-
strating that as expected the vector space of the fraud class examples are relatively well
separated from the non-fraud vector space and therefore insensitive to a change in k
over the range of 1 to 5. So for performance reasons, k = 1 was used. Default settings
were used for RF and NB.

5.4 Algorithm Results

Training and Testing Datasets. The classifiers were trained and tested using ran-
domly sampled data from Restaurants 1, 2, and 3. Restaurant 4, being a 7–11 type
restaurant had a much simpler type of fraud being perpetrated that could be detected
without the use of machine learning. SVM and Random Forest algorithms were con-
figured specifically for binary classification.

Most machine learning experiments rely on a training set larger than the test set with
a ratio of 4/5 for training and 1/5 for testing. This ratio would not work well because of
the extreme imbalance of the classes (relatively very few fraud cases). Therefore 2/3
was used for training and 1/3 for testing. In addition, due to multiple hour run times for
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each algorithm and the accepted practice of applying under-sampling in the case of
imbalanced classes, the non-fraud class was randomly sampled to a subset of 30,000
before being split into training and testing datasets. All fraud examples were then split
into training and test datasets. The number of records used for training and testing is
shown in Table 5.

Performance Metrics. The weaknesses of using accuracy, recall, and precision to
evaluate machine learning algorithms has been pointed out in many papers as explained
in [5]; however, these metrics are still commonly used for the comparison of machine
learning algorithms and are used in fraud comparison papers such as [3]. So for ease of
comparison, accuracy, precision, and recall, defined in Eqs. 1, 2 and 3 below were used
as performance metrics. In the definitions, true positive refers to a fraud correctly
detected by the classifier; true negative refers to a non-fraud correctly so reported by the
classifier, and false positive refers to a non-fraud that is incorrectly reported as fraud by
the classifier.

Accuracy ¼ #True negativesþ#True positivesð Þ
#All examples

ð1Þ

Recall ¼ #True positives
#All true positives

ð2Þ

Precision ¼ #True positives
#True Positivesþ#False positives

ð3Þ

Accuracy was included for thoroughness, but as can be seen from the results,
because fraud cases account for such a small percentage of the dataset, with one
exception (NB with native features), accuracy is always close to 100% regardless of
how many fraud examples are actually detected.

The recall and precision metrics have special meaning when applied to fraud
detection because they concern the lives and careers of people. Recall translates to the
number of times that fraudulent behavior was detected from among all the times that
someone actually committed fraud. Precision shows how well the algorithms avoided
falsely accusing someone of fraud. So for insider fraud detection, it is usually

Table 5. Training and testing dataset runs 1, 2, 3.

Run Purpose Source No fraud Fraud Fraud percent

1 Train Rest. 1 2012 20,000 769 3.8%
Test Rest. 1 2013 10,000 968 9.7%

2 Train Rest. 1 2012 20,000 769 3.8%
Test Rest. 2 2013 10,000 162 1.6%

3 Train Rest. 1 2012 20,000 769 3.8%
Test Rest. 3 2009 10,000 87 0.9%
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considered more important to avoid false accusations than to ensure that all fraudulent
examples are detected. Therefore, when improving performance of the algorithms,
preference should be given to improving precision over recall.

Native Features Performance. As shown in Table 6, all of the algorithms except
neural net detected fraud with the native features. However, only RF achieved above
90% in precision and all of them were except NB were below 40% for recall. NB had a
relatively high recall at 88%, but the accuracy was only 39.5% – the lowest of any
algorithm for any of the feature sets. So none of the algorithms performed well enough
with native features and results with artificial features mirrors these results.

Engineered Features Performance. For cross validation as shown in Table 6 KNN,
SVM, and RF achieved over 90% across all metrics with NB and NN close behind with
all results being higher than 75%. So the identification and generation of engineered
features was critical to the success of detecting “server rotating check item” fraud in
this restaurant POS dataset.

Results for training and testing on different restaurants are shown in Tables 7, 8, and 9.
The results demonstrate that a model can be developed on one restaurant and successfully
applied to another restaurant. When training and testing on the same restaurant ADA
and RF performed the best. When training and testing on different restaurants the top
algorithm varied. In all scenarios the algorithms had difficulty identifying fraud in
Restaurant 3.

Table 6. Native and engineered feature results for training and testing with Restaurant 1.

Algorithm Native features Engineered features
Accuracy Recall Precision Accuracy Recall Precision

KNN 97% 36% 37% 100% 97% 91%
NB 40% 88% 4% 99% 100% 75%
NN 97% 0% 0% 99% 100% 75%
RF 98% 20% 92% 100% 91% 96%
SVM 97% 35% 51% 100% 99% 95%

Table 7. Engineered feature results for machine learning trained on Rest. 1 2012 data.

Alg. Test with Rest 1
2013

Test with Rest 2 2012 Test with Rest 3 2009

Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.

KNN 99% 92% 95% 99% 89% 78% ~100% 74% 79%
NB 98% 99% 86% 99% ~100% 54% 99% 99% 48%
NN 98% ~100% 84% 99% ~100% 58% 99% 100% 52%
RF 99% 93% 98% ~100% 91% 91% 99% 34% 81%
SVM 99% 86% 98% ~100% 88% 88% ~100% 92% 71%
ADA 99% 92% 98% 99% 45% 94% 99% 10% 32%
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Artificial Features Performance. Runs were done with artificial features derived
from either native or engineered features, using the Restaurant 1 dataset for training and
testing. Using the standard deviation PCA graph for native features, two knees were
identified; the first at 15 and the second at 32. Runs were done with both sizes of
artificial features, and as expected the results were equally weak as for native features
alone. Using the standard deviation PCA graph for engineered features, also two knees
were identified; the first at 11 and the second at 35. With 11 artificial features, all
algorithms delivered roughly the same precision and recall as they did with the full 42
engineered features, proving that PCA can be successfully used for feature reduction.
Results for 11 and 35 features are shown in Table 10.

Table 8. Engineered feature results for machine learning trained on Rest. 2 2013 data.

Alg. Test with Rest 1
2013

Test with Rest 2 2012 Test with Rest 3
2009

Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.

KNN 96% 55% 96% ~100% 97% 79% ~100% 82% 71%
NB 92% 11% 77% 99% ~100% 60% 99% 84% 59%
NN 91% 0% 0% 98% 0% 0% 99% 0% 0%
RF 91% 0% 0% ~100% ~100% 94% ~100% 99% 91%
SVM 91% 0% 0% 98% 6% 91% 99% 7% 86%
ADA 91% 0% 0% ~100% 95% ~100% 87% 75% 45%

Table 9. Engineered feature results for machine learning trained on Rest. 3 2009 data.

Alg. Test with Rest 1
2013

Test with Rest 2 2012 Test with Rest 3
2009

Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.

KNN 96% 45% 95% ~100% 62% 85% ~100% 83% 77%
NB 99% 97% 86% 99% 99% 53% 98% 93% 27%
NN 93% 0% 0% 99% 0% 0% 99% 0% 0%
RF 93% 0% 0% ~100% 63% ~100% Algorithm didn’t

complete
SVM 93% 1% ~100% ~100% 92% 93% ~100% 49% 89%
ADA 93% 0% 0% ~100% 79% ~100% ~100% 83% 85%

Table 10. Artificial feature results from engineering features and training with Restaurant 1
2012 and testing with Restaurant 1 2013.

Alg. Eng. Features Art. Features 11 Art. Features 35
Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.

KNN ~100% 97% 91% 98% 82% 95% 99% 88% 95%
NB 99% ~100% 75% 99% ~100% 90% 99% ~100% 89%
NN 99% ~100% 75% 99% ~100% 90% 98% ~100% 84%
RF ~100% 91% 96% 97% 73% 96% 99% 89% 97%
SVM ~100% 99% 95% 95% 46% 97% 97% 70% 96%

Machine Learning Applied to Point-of-Sale Fraud Detection 293



6 Conclusion

For training and testing on the same restaurant when there was sufficient fraud samples
in both the training and testing datasets as there is for Restaurants 1 and 2 all algorithms
delivered 80% or better across all metrics. The best performing algorithm across when
training and testing on different restaurants with 71% to 99% in 15 of the 18 metric
cases was KNN. SVM, NB, and RF delivered 70% or better for 14, 13, and 12
(respectively) of the 18 cases. RF provided the best performance overall with over 90%
for precision, accuracy, and recall in 17 of 27 metric scenarios. However, the fact that
RF took 40–60 min to run despite the relatively small dataset may prove problematic
for practical use by restaurant owners.

7 Future Research

Opportunities for additional research are many as there is a lack of public research on
this topic. As the algorithms did not perform quite as well when the training was done
on one restaurant and tested on another, an interesting next step would be to compare
the results when the training and testing is done independently for each restaurant.
Deep learning has been applied to detect other types of fraud could be applied to this
dataset if more data could be obtained or synthetically generated data to create a larger
labeled dataset. Other feature reduction techniques could be applied to determine if the
execution time of RF could be reduced. And finally there is the opportunity to more
fully automate the components of this research so that restaurant owners could use it in
practice.

Acknowledgement. Data and expertise on normal restaurant server practices, and restaurant
fraud was provided by an industry expert with over 20 years experience selling, installing,
upgrading, troubleshooting, and providing training for POS systems in multiple geographic
regions within the United States.
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Abstract. Sequential pattern mining is a challenging problem that has
received much attention in the past few decades. The mining of large
sequential databases can be very time consuming and produces a large
number of unrelated patterns that must be evaluated. In this paper, we
explore the problems of frequent prefix, prefix-closed, and prefix-maximal
pattern mining along with their suffix variants. By constraining the pat-
tern mining task, we are able to reduce the mining time required while
obtaining patterns of interest. We introduce notations related to pre-
fix/suffix sequential pattern mining while providing theorems and proofs
that are key to our proposed algorithms. We show that the use of pro-
jected databases can greatly reduce the time required to mine the com-
plete set of frequent prefix/suffix patterns, prefix/suffix-closed patterns,
and prefix/suffix-maximal patterns. Theoretical analysis shows that our
approach is better than the current existing approach, and empirical
analysis on various datasets is used to support these conclusions.

1 Introduction

For the past several decades, ever since Agrawal and Srikant first published
their paper, Mining Sequential Patterns [1], sequential pattern mining has been
of broad and current interest. Sequential pattern mining was originally explored
for mining information from customer transaction databases. It has been used
to predict purchasing behavior [2], applied to next-item prediction problems in
recommender systems [3], used to help define guidelines for patient care [4],
informed the verification and development of clinical pathways [5], and even
guided product placement within supermarkets [6]. Sequential pattern mining
has also been used to suggest customer relationship management strategies for
small online businesses [7]. However, as transaction databases continue to grow
in size and scope, the time required to mine useful patterns continues to increase.
Furthermore, actionable retail information is often time sensitive, and while it
is possible to obtain patterns in a reasonable (i.e., short) amount of time using
many sequential pattern mining techniques, the patterns obtained are often too
small or too general to be useful.

While the basic sequential pattern mining task is unconstrained, several
constrained variants have been developed. Some of these constraint-based
c© Springer International Publishing AG, part of Springer Nature 2018
P. Perner (Ed.): MLDM 2018, LNAI 10934, pp. 296–311, 2018.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96136-1_24&domain=pdf


Prefix and Suffix Sequential Pattern Mining 297

approaches can help to reduce mining time while allowing a more narrow focus on
the patterns obtained. Examples include mining patterns with recency and com-
pactness constraints [8], gap constraints [9–11], relaxation of itemset/transaction
constraints [11], and taxonomy based constraints [11].

Despite these constraint variations of sequential pattern mining, most solu-
tions are ill-suited for identifying all sequences that begin or end with an event
or events of interest. We are particularly interested in this task, because we are
seeking to help improve the selection of cancer treatments through data-driven
modeling and simulation of health trajectories. We see frequent sequence mining
as a tool that can help with this. In particular, we see the mining of frequent
health data sequences that begin or end with specific cancer treatments of inter-
est as potentially informative. Knowing such sequences could allow us to discover
probabilistic rules that link sequences that precede particular cancer treatments
to subsequent health trajectories.

To advance us toward our goal, this paper focuses on solving this version of
constraint-based sequential pattern mining. We provide formal definitions and
notation related to mining patterns having a user-defined prefix or suffix. Several
theorems are formulated and proven, which provide insight for developing effi-
cient mining techniques for these prefix and suffix patterns. Our newly proposed
algorithms are described, and their weaknesses and strengths are compared to
the only previously published existing approach for prefix/suffix pattern mining.
We have provided theoretical and empirical analysis demonstrating the improve-
ment of our proposed algorithms over the approach proposed by Kaytoue et al.,
in their work on mining graph sequences [12]. The extraction of cancer-related
data is underway but not yet complete, so empirical analysis has been performed
on several other real-world datasets in various domains (e.g., click-streams, retail
sales, etc.).

2 Sequential Pattern Mining

Closely related to sequential pattern mining is frequent itemset mining. While
frequent itemset mining focuses on discovering statistically relevant co-occurring
items, sequential pattern mining focuses on identifying patterns among itemsets
presented as a sequence. Great effort has been put forth by the data mining
community to mine sequential patterns. A number of algorithms have been pro-
posed to mine the complete collection of frequent patterns (i.e., sequences) from
a sequential database. Examples include SPADE [13], SPAM [14], and PrefixS-
pan [15]. Sequential pattern mining can produce large result sets, partially due
to the combinatorial nature of the mining task and redundant information repre-
sented in the results. To eliminate this redundant information, several algorithms
have been proposed to mine frequent closed patterns and frequent maximal pat-
terns. BIDE [16] and CloSpan [17] are examples of such algorithms.

However, as pointed out by Kaytoue et al., none of these algorithms
can directly mine patterns given a user-defined prefix or suffix and must be
adapted [12]. Prefix and suffix patterns can be useful for uncovering cause and
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effect relationships. For instance, we are interested in identifying the most com-
mon health trajectories occurring after a particular cancer treatment. In this
case, the cancer treatment serves as a prefix, for which we want to know the
effects.

Fournier–Viger et al., provide an excellent survey on sequential pattern min-
ing [18], and it will be assumed that the reader is familiar with basic definitions,
notation, and results from sequential pattern mining. The following section intro-
duces definitions, notation, and results related to prefix/suffix pattern mining
used throughout this paper.

3 Prefix/Suffix Pattern Mining

In their research, Kaytoue et al., focus on describing topological changes in
dynamic attributed graphs [12]. In order to accomplish this, the authors formally
defined the notion of a prefix-closed pattern and a variant on the sequential
pattern mining problem they call prefix-closed pattern mining.

3.1 Prefix/Suffix Sequences

Given a fixed sequence A, one may be interested in sequences that “begin” with
A or “end” with A. In the former case, A serves as a prefix, and the patterns
of interest are called suffix patterns. In the latter case, A serves as a suffix, and
the patterns of interest are called prefix patterns. Note that no restrictions are
placed on A, and it can be of arbitrary length and could be a sequence of items
(i.e., an item sequence) or a sequence of sets of items (i.e., an itemset sequence).

Definition 1. Let A = {ai}mi=1 and B = {bi}ni=1 be sequences. Let C = A ⊕ B

denote the sequence {ci}m+n
i=1 given by juxtaposition of A and B, where

ci =

{
ai 1 ≤ i ≤ m

bm−i m < i ≤ m + n.

Definition 2. Let P and S be non-empty sequences and let A = P ⊕ S. The
sequence P is called a prefix of A and the sequence S is called a suffix of
A. The sequence A is sometimes called a P -prefix sequence or an S-suffix
sequence. Alternatively, let A = {ai}mi=1 and B = {bi}ni=1 be sequences with
m < n. If ai = bi for 1 ≤ i ≤ m, then A is called a prefix of B. If ai = bn−m+i

for all 1 ≤ i ≤ m, then A is called a suffix of B.

Note that, unlike in the definition of a subsequence, we require equality of
elements (both items and itemsets) in the definition of a prefix/suffix. For exam-
ple, the sequence 〈{a}, {b}〉 is a prefix of 〈{a}, {b}, {c}〉, but it is not a prefix of
〈{a, b}, {c}〉, 〈{a, x}, {b, y}, {c}〉, or 〈{a}, {x}, {b}, {y}〉.
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Definition 3. A sequence A is said to be prefix-closed, with respect to a
database D and suffix B, if B is a suffix of A (that is to say, A = A′⊕B for some
non-empty sequence A′) and no proper supersequence of A, also having suffix B,
has the same support as A in D. A sequence A is said to be prefix-maximal,
with respect to a set S and suffix B, if B is a suffix of A and there exists no
proper supersequence of A in S also having suffix B. Analogous definitions exist
for suffix-closed and suffix-maximal sequences as well.

Consider the example sequential database presented in Fig. 1. The sequence
〈{b}, {f}, {e}〉 is a 〈{f}, {e}〉-suffix sequence. It is prefix-closed, and has a sup-
port of two, but it is not prefix-maximal in the collection of all frequent prefix
sequences with positive support as it is a subsequence of 〈{a, b}, {f}, {e}〉, which
is also a 〈{f}, {e}〉-suffix sequence of positive support.

Again, consider the sequential database from Fig. 1. The sequence
〈{f, g}, {g}〉 is a 〈{f, g}〉-prefix sequence with a support of one. It is not suffix-
closed as it is a subsequence of 〈{f, g}, {g}, {e}〉, which is also 〈{f, g}〉-prefix
sequence with the same support; the sequence 〈{f, g}, {g}, {e}〉 is both suffix-
closed and suffix-maximal (in the set of frequent suffix patterns with positive
support).

Fig. 1. A sample sequential database

It is worth noting that, just like with closed/maximal sequences, every prefix-
maximal sequence is prefix-closed, but not every prefix-closed sequence is prefix-
maximal, and same thing is true for suffix-closed and suffix-maximal [15,17].

3.2 Prefix/Suffix Projections

Database projections are often used to help reduce the number of database scans
and eliminate redundant computation during the mining task [15,17]. In our
proposed algorithms, we make use of database projections as a preprocessing
step in order to reduce the search space associated with prefix/suffix mining
task. This section introduces definitions and notation involving prefix and suffix
projections related to our proposed algorithms.

Definition 4. Let A and B be sequences. The prefix-projection of A by B
(or B-prefix-projection of A) is the longest subsequence A′ of A such that
A = B′ ⊕A′ and B � B′, which is denoted PB(A) = A′. If no such subsequence
exists, the prefix-projection is defined to be the empty sequence.
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Definition 5. Let A and B be sequences. The suffix-projection of A by B
(or B-suffix-projection of A) is the longest subsequence A′ of A such that
A = A′ ⊕B′ and B � B′, which is denoted SB(A) = A′. If no such subsequence
exists, the suffix-projection is defined to be the empty sequence.

Definition 6. Let S be a sequence and D be a sequential database. The col-
lection of all S-prefix-projected sequences in D, denoted P∗

S(D), is called the
S-prefix-projected database of D. The collection of all S-suffix-projected
sequences in D, denoted S∗

S(D), is called the S-suffix-projected database
of D.

3.3 Sequential Prefix/Suffix Mining Problems

While the initial goal of Kaytoue et al., was not to advance the area of sequential
pattern mining problem, they were the first to propose the prefix-closed mining
variant of the sequential pattern mining problem.

Problem 1. Let D be a sequential database, S be a sequence, and n a user-
defined minimum support. The prefix (closed/maximal) sequential pat-
tern mining problem asks to find the complete set of frequent prefix
(closed/maximal) patterns with respect to database D and suffix S. The suf-
fix (closed/maximal) sequential pattern mining problem asks to find
the complete set of frequent suffix (closed/maximal) patterns with respect to
database D and prefix S.

Kaytoue and his fellow authors claim that the adaption of closed patterns to
prefix-closed patterns is not straightforward and proposed a new algorithm. This
algorithm is based on a new theorem, developed and proven by Kaytoue and his
collogues, which states that the collection of frequent prefix-closed patterns are
contained within the collection of closed patterns.

Theorem 1. For every frequent prefix-closed pattern A, there exists a frequent
closed pattern B such that A � B and support(A) = support(B).

In their work on dynamic attributed graphs, Kaytoue and his colleagues only
mentioned prefix-closed patterns. However, their observations hold for prefix-
maximal patterns and analogous results can be formulated for suffix-closed and
suffix-maximal patterns. While this result is interesting from a theoretic view-
point, we claim that it does not provide a basis for the most efficient algorithm
for solving the prefix-closed mining problem. We have proven the following the-
orem, which provides an alternate method for finding the set of frequent prefix,
prefix-closed, and prefix-maximal patterns.

Theorem 2. Let A be a sequence, n be a user-defined minimum support, and
D be a sequential database. Then,

(i) The complete collection of frequent prefix patterns with respect to
database D having suffix A and minimum support n is given by
{P = P ′ ⊕ A | P ′ is frequent in S∗

A(D)}.
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(ii) The complete collection of prefix-closed patterns with respect to
database D having suffix A and minimum support n is given by
{P = P ′ ⊕ A | P ′ is closed in S∗

A(D)}.
(iii) The complete collection of prefix-maximal patterns with respect to

database D having suffix A and minimum support n is given by
{P = P ′ ⊕ A | P ′ is maximal in S∗

A(D)}.
Analogous results for the suffix variation of Theorem2 exists but have been

omitted. Part (i) in Theorem2 is not surprising and can be established with a
fairly straightforward direct proof. What is not so obvious are Parts (ii) and (iii).
Let A be a sequence, n a minimum support, and D a sequential database. If P ′

is a closed/maximal pattern in S∗
A(D), why must the prefix pattern P = P ′ ⊕A

also be prefix-closed/maximal in D? If P = P ′ ⊕ A is prefix-closed/maximal
pattern in D, why must P ′ also be closed/maximal in S∗

A(D)?

Proof. The proof of Part (iii) is analogous to that of Part (ii). To establish (ii),
we need only to show that every prefix-closed pattern having suffix A is of the
from P = P ′ ⊕A for some sequence P ′ which is closed in S∗

A(D), and that every
sequence of the from P = P ′ ⊕ A where P ′ is closed in S∗

A(D) is a prefix-closed
pattern in D.

(⊆) Suppose that P is a prefix-closed pattern with respect to suffix A in
database D. Then P = P ′ ⊕ A for some non-empty sequence P ′. We proceed
by way of contradiction. Suppose that P ′ is not closed in S∗

A(D). Then, there
exists a supersequence, say P ′′, such that P ′ ≺ P ′′ and supportS∗

A(D)(P ′) =
supportS∗

A(D)(P ′′). Put S = P ′′ ⊕ A, and observe that P ≺ S. As established
in the proof of Theorem2, we have that supportD(P ) = supportS∗

A(D)(P ′) and
supportD(S) = supportS∗

A(D)(P ′′). It follows that supportD(P ) = supportD(S),
a contradiction to the assumption that P was closed.

(⊇) Now, suppose that P = P ′ ⊕ A for some closed sequence P ′ in S∗
A(D).

We want to show that P is prefix-closed. Suppose not. That is, suppose that
there exists an A-suffix sequence, say S, such that P ≺ S and supportD(P ) =
supportD(S). Since S and P = P ′ ⊕A are both A-suffix sequences, we have that
S = P ′′ ⊕ A for some sequence P ′′ ≺ P ′. Since supportD(P ) = supportS∗

A
(P ′),

supportD(S) = supportS∗
A
(P ′′), and supportD(P ) = supportD(S), it is the case

that supportS∗
A
(P ′) = supportS∗

A
(P ′′). That is to say, P ′ is not closed, a contra-

diction.

3.4 Algorithms

Upon first thought, one may think that there should be a relationship between
the complete set of frequent prefix patterns, prefix-closed patterns, and prefix-
maximal patterns and the complete set of frequent patterns, closed patterns, and
maximal patterns, respectively. Theorem 1 provided by Kaytoue et al., proves
this to be true [12]. To mine the complete set of frequent prefix-closed patterns
with respect to a database D and a suffix S, begin by mining the complete set
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of frequent closed patterns in D. Then for each pattern A, consider the S-suffix-
projected sequence SS(A) = A′ of A. If A′ is non-empty, the sequence A′ ⊕ S
is a potential prefix-closed sequences. Some of the sequences obtained from this
suffix projection-extension process may not be prefix-closed. After filtering out
the non-prefix-closed patterns, the complete set of frequent prefix-closed patterns
will be all that remains. Kaytoue et al., use a subsumption checking algorithm
to perform this filtering. This idea is summarized in Algorithm1; analogous
algorithms exist for prefix pattern mining, prefix-maximal pattern mining, and
their suffix mining variants.

Algorithm 1. Kaytoue Based Prefix-Closed Pattern Mining
Require: D: a sequential database
Require: S: a suffix for prefix mining
Require: n: a user-defined minimum support
1: procedure ClosePrefixMiner(D, S, n)
2: C ← ClosedPatternMining(D, n)
3: C′ ← [ ]
4: for A′ ∈ C do
5: if SS(A′) �= 〈〉 then
6: A ← SS(A′) ⊕ S
7: C′ ← C′ + [A]
8: end if
9: end for

10: C′ ← SubsumptionFiltering(C′)
11: return C′

12: end procedure

Theorem 2 provides an alternate approach for obtaining the complete set of
frequent prefix, prefix-closed, and prefix-maximal patterns with an analogous
version existing for their suffix counterparts. It is fairly easy to see that the
complete set of frequent prefix patterns can be obtained from a suffix-projected
database. What is not so obvious is that the complete set of prefix-closed and
prefix-maximal patterns (along with their suffix variants) corresponds directly
to the complete set of prefix-closed and prefix-maximal patterns found in the
associated suffix-projected database. For example, to obtain the complete set of
prefix-closed patterns from a database D having suffix S, begin by constructing
the suffix-projected database S∗

S(D). Then, mine the complete set of closed pat-
terns from S∗

S(D). For each closed pattern P obtained, the sequence P ⊕ S is
guaranteed to be prefix-closed, by Theorem2. This idea is summarized in Algo-
rithm2; analogous algorithms exist for prefix pattern mining, prefix-maximal
pattern mining, and their suffix mining variants. In Sect. 4, we will demonstrate
the advantage of Algorithm 2 over Algorithm 1.

If one is interested in obtaining prefix-closed patterns with respect to multiple
suffixes, these algorithms can be modified in order to obtain the desired results.
In the case of Algorithm 1, we need only to mine the complete set of closed
patterns once. Then, each of the suffixes can be used in turn to extract the
complete set of prefix-closed patterns, as shown in Algorithm 3. The extension to
Algorithm 2 is a little more complicated. For each of the desired suffixes, a suffix-
projected database must first be constructed. Then the complete set of closed
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patterns can be mined (see Algorithm 4). Having to mine multiple projected
databases for closed patterns may seem inefficient, but as we will demonstrate
in Sect. 4, this is actually faster.

4 Theoretical Analysis

In this section, we will illustrate the advantages of mining projected databases
(i.e., Algorithms 2 and 4) over that of the full sequential database (i.e., Algo-
rithms 1 and 3). We should first point out, that while our approach is in the
same computational complexity class as Kaytoue’s approach, it can result in
drastically shorter runtime. This can be attributed to a reduced search space or
a reduced input problem size, depending on the point of view.

Algorithm 2. Efficient Prefix-Closed Pattern Mining
Require: D: a sequential database
Require: S: a suffix for prefix mining
Require: n: a user-defined minimum support
1: procedure ClosePrefixMiner(D, S, n)
2: D′ ← S∗

S(D)
3: C ← ClosedPatternMining(D′, n)
4: C′ ← [ ]
5: for A′ ∈ C do
6: A ← A′ ⊕ S
7: C′ ← C′ + [A]
8: end for
9: return C′

10: end procedure

Algorithm 3. Kaytoue Based Prefix-Closed Pattern Mining w/ Multiple Suf-
fixes
Require: D: a sequential database
Require: LS : a list of suffixes for prefix mining
Require: n: a user-defined minimum support
1: procedure ClosePrefixMiner++(D, LS , n)
2: C ← ClosedPatternMining(D, n)
3: C′ ← [ ]
4: for S ∈ LS do
5: C′

S ← [ ]
6: for A′ ∈ C do
7: if SS(A′) �= 〈〉 then
8: A ← SS(A′) ⊕ S
9: C′

S ← C′
S + [A]

10: end if
11: end for
12: C′

S ← SubsumptionFiltering(C′
S)

13: C′ ← C′ + C′
S

14: end for
15: return C′

16: end procedure
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Algorithm 4. Efficient Prefix-Closed Pattern Mining w/ Multiple Suffixes
Require: D: a sequential database
Require: LS : a list of suffixes for prefix mining
Require: n: a user-defined minimum support
1: procedure ClosePrefixMiner++(D, LS , n)
2: C′ ← [ ]
3: for S ∈ LS do
4: C′

S ← ClosePrefixMiner(D,S, n)
5: C′ ← C′ + C′

S
6: end for
7: return C′

8: end procedure

4.1 Reduced Problem Size

It is obvious that Algorithm2 has a smaller database to mine than Algorithm1;
the smaller the projected-database is compared to the original database, the
faster the closed-pattern mining task will be. First, note that the creation of
the projected database is linear in terms of the number of sequences in the
database, the length of the sequences in the database, and the length of the
suffix in question. On the other hand, the mining task is exponential in terms
of the length of the sequences being mined. To see this, let I be a collection of
items. The number of non-empty item sequences of length at most k, for some
positive constant k, is given by

k∑
i=1

|I|k =
|I|k+1 − |I|

|I| − 1
.

In the case of itemset sequences, the number of non-empty subsets of I is 2|I|−1,
and so the number of itemset sequences of length at most k is given by

k∑
i=1

(2|I| − 1)k =
(2|I| − 1)k+1 − (2|I| − 1)

(2|I| − 1) − 1
.

Hence, for a fixed itemset I, the number of sequences of length at most k grows
exponentially with k.

In the case of sequential pattern mining, the value of k is determined by
the length of the sequences in the database. More specifically, if the number
of sequences in the database of length at least k is fewer then a user-defined
minimum absolute support m, then no sequence of length k will be frequent.
Let fD denote the function that counts the number of sequences in a database
D of length at least n, which is given by fD (n) = |{S ∈ D | |S| ≥ n}|. Then
max{n | fD(n) ≥ m}, where m is a user-defined minimum absolute support,
places an upper bound on the value of k. And so, Algorithm 2 performs a linear
number of computations in order to reduce the input size of the exponential
closed pattern mining task.

The length of the suffix and its support within the original database will
affect the size of the projected database. The smallest reduction in database size
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occurs when the suffix used in prefix-closed mining is a suffix of every sequence
in the database. In this case, every one of the sequences in the suffix-projected
database is smaller than their corresponding sequence in the original database
by precisely the size of the suffix used to obtain the projections. We expect the
smallest possible speedup of Algorithm 2 over Algorithm 1 to occur when the
suffix of interest is of length one. In practice, Algorithm 2 may be slower due to
the overhead of constructing the sequential database.

Conversely, the largest reduction in database size will occur when the the
suffix in question has low support in the given database. In this situation, many
suffix-projected sequences within the suffix-projected database will be empty.
In the extreme, the suffix will have zero support within the database, and the
closed pattern mining step in Algorithm 2 will return almost immediately. This
will not be the case for Algorithm 1, which will proceed to mine the complete
set of closed patterns, none of which will contain the suffix of interest. In this
case, the largest speedup should occur.

4.2 Reduced Search Space

An alternative explanation for the improved running time of Algorithm2 over
Algorithm 1 is the smaller search space explored by the former algorithm.
Figure 2 depicts the standard search tree used to generate all item sequences
given an itemset I = {a, b, c}; a similar tree exists for generating all itemset
sequences. Many frequent sequential pattern mining algorithms implicitly search
this tree of all sequential patterns using various techniques for pruning. Consider
instead the frequent suffix-closed mining variant of Algorithm2. This algorithm
will produce the complete set of frequent suffix-closed patterns, given a database
D, prefix P , and minimum support n. By first constructing a P -prefix projected
database, this new algorithm can be thought of as exploring a subspace of the
complete search tree seen in Fig. 2. For example, given a prefix of 〈b, a〉, only the
ba subtree shaded in Fig. 2 needs to be explored.

∅

a

aa

aaa aab aac

ab ac

aca acb acc

b

ba bb

bba bbb bbc

bc

bca bcb bcc

c

ca cb cc

cca ccb ccc

Fig. 2. Standard sequence space with I = {a, b, c}.

4.3 Mining Several Prefix/Suffix Patterns

On the surface, Algorithm 4 may appear worse than Algorithm 3 for mining
prefix-closed patterns when multiple suffixes of interest are given. Obviously it



306 R. Singh et al.

must solve several instances of the closed pattern mining problem while Algo-
rithm3 only has to solve one instance. Again, we will explore the dual frequent
suffix-closed pattern mining algorithm to see that the use of projected sequences
is still beneficial.

Given several prefixes of interest, the suffix-closed variant of Algorithm4 can
be thought to explore several subtrees within the complete sequence search tree.
So long as none of the given prefixes happens to be a prefix of another, these
subtrees are disjoint within the search space of all sequences. For example, given
an I = {a, b, c} with suffixes 〈a, b〉, 〈b, a〉, 〈c, b〉, and 〈b, c, c〉 of interest, only the
ab, ba, cb, bcc subtrees shaded in Fig. 2 need to be explored. As the number of
prefixes for use in suffix-closed mining increase, larger portions of the search tree
must be explored; if every possible item is included as a prefix sequence of length
one, then the entire space must be explored. In this case, Algorithm 4 should not
be expected to provided any speedup over Algorithm3, and may be slower due
to the overhead of building the projected databases.

5 Empirical Analysis

In order to show that our proposed algorithms are useful in practice, we have
implemented Algorithms 1 to 4 using C++. It is worth noting that, for ease of
implementation, physical prefix-projected and suffix-projected databases were
created for use by the sequential pattern miner in Algorithms 2 and 4 (pseudo-
projections were used within the actual sequential pattern miners). This allows
for easy replacement of the frequent/closed/maximal mining algorithm based on
dataset characteristics. This is desirable as some algorithms work better on long
sequences with few possible items while others work better on short sequences
with many possible items [18].

However, the use of physical projected databases will result in a larger mem-
ory footprint and additional overhead when creating the physical projection.
The use of a pseudo-projected database would eliminate much of the overhead
associated with creating the prefix-projected and suffix-projected databases. In
addition, it would require no more memory than that of Algorithms 1 and 3
because of the smaller search space examined. The downside is that some sequen-
tial pattern minings would require modification if a pseudo-projection is used.
For example, the backward-extension checking step used in the BIDE closed-
pattern mining algorithm [16] would eliminate a suffix-closed pattern, with prefix
P , of the form P ⊕ A if there exists a supersequence P ′ ⊕ A, where P ≺ P ′,
having the same support; this is a problem since P ′ would not have prefix P .

5.1 Empirical Setup

We have tested our algorithm on several sequential databases from various
domains, with datasets taken primarily from Fournier-Viger’s SPMF web-
site [19]. While there are several constraint-based sequential pattern mining
problems, Kaytoue’s proposed approach is the only one that attempts to solve
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the prefix/suffixed closed pattern mining problem, and so we use it as abaseline
for comparison (i.e., Algorithms 1 and 3 against Algorithms 2 and 4). Experi-
ments were performed on DELL c6320 servers. Each machine contained dual
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz (28 physical cores) and 128 GB
of RAM; the algorithms implemented were serial and could not take advantage
of multiple cores. We chose to focus on the prefix mining variant simply because
these are of most interest to us. The suffix based variants produced similar results
and have been omitted for brevity. In addition, the results presented will focus
on prefix-patterns where the suffix of interest is a sequence consisting of a single
item. This decision was made as it addresses the most difficult prefix-closed min-
ing task; mining sequences of itemsets or allowing for suffixes of length greater
than one affords more opportunities for search space pruning, and we wish to
focuses on worst-case situations for our proposed algorithms.

5.2 Retail

The Retail dataset consists of transactions from a UK-based and registered non-
store online retail [20]. Timestamp information along with invoice ids and cus-
tomer ids were used to build sequences, resulting in 4,372 sequences with 3,684
items. Each sequence represents a customer, while the items represent unique all-
occasion gifts sold by the retail. Since multiple items can appear on an invoice,
this sequential database consists of itemset sequences, with the largest itemset
consisting of 541 items. Figure 3 illustrates the time required to mine all prefix-
closed patterns using the top five most and least supported suffixes. These plots
show that, when the mining task is difficult (i.e., the minimum support is low
or the support of the suffix is low), Algorithm4 significantly outperforms Algo-
rithm3. This is due to the fact that the mining time greatly exceeds the time
required to build the projected databases. Conversely, if the mining task is easy,
Algorithm 4 may perform worse than Algorithm 3 due to the overhead associated
with building the projected databases.

Fig. 3. Retail dataset
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5.3 Click-Streams

The Gazelle dataset (i.e., the KDD CUP 2000 dataset) contains click-stream
data relating to purchases from a web retailer. It contains of 77,512 sequences
consisting of 3,340 unique items, with the most frequent item having 4.86%
support. We selected the most and least frequently occurring items to serve as
suffixes to test Algorithms 1 and 2. The runtime results can be seen in Fig. 4,
which shows that Algorithm 2 outperforms Algorithm 1.

Fig. 4. Gazelle dataset

The FIFA dataset consists of 20,450 sequences made up of 2,990 items repre-
senting click-streams gathered from the FIFA World Cup 98 website. The top ten
most frequently viewed webpages all had over 35% support within the database.
There were several pages that were only viewed a single time resulting in a sup-
port less than 0.005%. Figure 5 depicts the runtimes for mining the single item
suffix with the highest and lowest support. The most frequently occurring item
within the FIFA dataset poses more difficulty for mining, but Algorithm2 still
outperforms Algorithm 1.

Fig. 5. FIFA dataset
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5.4 Natural Languages

The SIGN dataset consists of 730 sequences with 267 unique symbols, and this
dataset also contained some of the longest sequences found among all datasets we
explored. The dataset was created by the National Center for Sign Language and
Gesture Resources at Boston University. Each sequences represents an “utter-
ance” consisting of ASL gestures and facial expressions [21]. Due to the length of
the sequences and relatively few symbols, the SIGN dataset required the largest
amount of time to extract prefix-closed patterns. The result seen in Fig. 6 shows
the time required to mine the complete set of prefix-closed patterns when every
possible single item suffix is used. Despite an identical search space explored by
both algorithms, Algorithm4 still outperforms Algorithm 3. This is most likely
because the subsumption checking used in Algorithm3 is more computationally
expensive than projected database creation used in Algorithm4.

Fig. 6. SIGN dataset

6 Conclusions and Future Work

In this paper, we introduced the problems of frequent prefix mining, prefix-closed
mining, and prefix-maximal mining along with their suffix variants. We have
shown the usefulness of mining projected databases for obtaining prefix/suffix
patterns and have proven that these approaches produce the complete set of
frequent prefix/suffix patterns. Theoretical analysis shows that it is better to
create multiple projected databases when faced with multiple prefixes/suffixes of
interest (as apposed to mining the original database a single time), and empir-
ical analysis supports this conclusion. Empirical analysis also shows that our
proposed algorithms, while not more efficient in the sense of being in a better
complexity class, tend to be an order of magnitude faster in practice.

In the future, we want to explore the use of prefix/suffix sequential pattern
mining for predicting health trajectories of cancer treatments. By mining suffix
patterns related to cancer treatments, we hope to develop probabilistic rules that
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link particular cancer treatments to subsequent health trajectories. In addition,
we want to leverage prefix pattern mining in the hopes that prior medical history
will allow us to better predict health trajectories after a particular treatment.
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Abstract. Electronic Healthcare Records (EHRs) describe the details about a
patient’s physical and mental health, diagnosis, lab results, treatments or patient
care plan and so forth. Currently, the International Classification of Diseases,
10th Revision or ICD-10 code is used for representing each patient record. The
huge amount of information in these records provides insights about the diag-
nosis and prediction of various diseases. Various data mining techniques are
used for the analysis of data deriving from these patient records. Recurrent
Neural Network (RNN) is a powerful and widely used technique in machine
learning and bioinformatics. This research aims at the investigation of RNN with
Long Short-Term Memory (LSTM) hidden units. The empirical research is
intended to evaluate the ability of LSTMs to recognize patterns in multi-label
classification of cerebrovascular symptoms or stroke. First, we integrated
ICD-10 code into health record, as well as other potential risk factors within
EHRs into the pattern and model for prediction. Next, we modelled the effec-
tiveness of LSTMs for prediction of stroke based on healthcare records. The
results show several strong baselines that include accuracy, recall, and F1
measure score.

Keywords: Deep learning � Cerebrovascular disease � Predictive technique
LSTM-RNN

1 Introduction

Deep learning algorithm is a technique that focuses on how computers learn from data.
It is the intersection of statistics, computer science, and mathematics - which generates
the algorithm of building patterns and models from massive data sets, as well as is
applicable to billons or trillions of data records [1, 2]. Deep learning technique employs
learning from data together with multiple levels of abstraction deriving from compu-
tational models that are associated with multiple processing layers.
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Basically, a cerebrovascular disease or stroke is the state of lacking blood supply in
an area of the brain, and it happens once a vessel is blocked. This is known as an
“ischemic stroke”, where about three-quarters of vessels are blocked. Meanwhile, a
“hemorrhagic stroke” refers to the state where a blood vessel bursts. It can also affect
different parts of the human body, depending on which area of brain is affected. In most
countries, stroke becomes the second or third common cause of death [3, 4]. The
patients who survived usually have poor quality of life because of serious illness,
long-term disability and become burden to their families and health care system. This
strongly demands for the management focusing on prevention and early treatment of
diseases by analysing different factors. According to the analysis, it was found that
several health conditions and lifestyle factors become risk factors for stroke.

The predictive techniques of stroke vary from simple to more complex models. The
risk factors of stroke are complex and applicable to find different convolutions of
disease and uncertainty from direct and/or indirect sources. The analysis of stroke
patients who were admitted in the TOAST study was done by using stepwise regression
methods [5]. This research was conducted among 1,266 stroke patients selected from
database, provided that those patients must have had suffered a transient ischemic
attack (TIA) or recurrent stroke within 3 months after the first stroke. Additionally, 20
clinical variables were chosen for finding performance and evaluation.

Some researches show that the use of ICD-9 codes in combination with other health
care data can accurately diagnose patients’ health issues [6–8]. Most of Electronic
Healthcare Records (EHRs) adopt the codes from International Classification of Dis-
eases (ICD), 10th Revision i.e. ICD-10 and ICD-10-CM codes, and those codes become
the standard codification in the Electronic Medical Record system (EMR) [9]. The use
of International Classification of Diseases in various health care institutions provides
the similar basic schemes that allow patient data to be used in a similar way.

The rest of this paper is organized as follows. Section 2 describes related work on
deep learning. Section 3 ICD-10 complaint Electronic Healthcare Records. Section 4
describes prediction of stroke using EHRs and deep learning. Section 5 presents the
evaluation model. Section 6 discusses the result of this research and the conclusion and
future work are present in Sect. 7 of this paper.

2 Deep Learning

Deep Learning method is intended to discover complex structure in big data set by
using the advanced mathematical algorithm to predict the result. The machine can learn
from source and change its internal parameters by computing the representation in each
layer to form the representation in the previous layer.

Basically, deep net has various techniques to predict the result. It is recommended
to use either Restricted Boltzmann Machine (RBM) or auto encoder for unsupervised
learning and the extraction of pattern from a set of unlabelled data. Several options are
usable if there are labelled data for supervised learning, and once it is required to build
classifier, depending on specific application. A recurrent network or Recursive Neural
Tensor Network (RNTN) can be applied to text processing task like a sentence analysis
based on phrasing, name and recognition. Moreover, Deep Belief Network (DBN) or
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convolutional networks are used for image recognition. The RNTN or convolutional
networks are also used for object recognition. Finally, a recurrent network is used for
the speed recognition as well. In general, both DBN and Multilayer perceptron – also
known as Rectified Linear Units (ReLUs) – are good choices for classification. Also, a
recurrent network is the best option for time series analysis.

Gulshan et al. [10] invented an algorithm for automated detection of diabetic
retinopathy in Retinal fundus photographs (RDR). In this research, a deep convolu-
tional neural network was employed to optimize image classification and was trained
by using a retrospective development dataset of 128,175 images. The results show that
an algorithm has high sensitivity and specificity for detecting referable diabetic
retinopathy.

In acute ischemic stroke treatment, the prediction of tissue survival outcome plays a
fundamental role in the clinical decision-making process as it can be used to assess the
balance of risk and possible benefit when endovascular c1otretrieval intervention is
investigated. For the first time, Stier et al. [11] constructed a deep learning model of
tissue fate based on randomly sampled local patches from the hypoperfusion (Tmax)
feature observed in MRI immediately after symptom onset. They evaluated the model
with respect to the ground truth established by an expert neurologist four days after
intervention. The results show the superiority of the proposed regional learning
framework over a single-voxel-based regression model. The previous researches reveal
that the kernel of the deep learning techniques can be applied to healthcare sector as a
regulariser at the output layers or a part of model.

The conventional models are incapable of detecting fundamental knowledge
because they fail to simulate the complexity and feature representation of medical
problem domains. Researchers attempt to apply a deep model to overcome this
weakness. Several applications of deep learning model to medical data analysis have
been reported in recent years, for instance, an image analysis system for histopatho-
logical diagnosis on the images. Liang et al. [12] suggested the application of deep
belief network for unsupervised feature extraction, and then conducting supervised
learning through a standard SVM. The results confirm the advantage of deep model
towards knowledge modelling for data from medical information systems such as
Electronic Medical Record (EMR) and Hospital Information System (HIS). Thus,
predictive analytical techniques for stroke using deep learning techniques are poten-
tially significant and beneficial.

In healthcare fields, data in EHRs are quite significant for decision-making in
treatment. In general, a realistic dataset contains useful records for clinical practice. It
uncovered realistic environments for the analyses of diseases because it had included
ambiguous and incomplete values that contribute to errors and are unsuitable for
annalistic data and a very challenging analysis. Normally, it needs to be fulfilled before
being used. Hammerla et al. [13] proposed an assessment system that managed prac-
tical usability constraints and applied deep learning technique to differentiating disease
state in datasets that are naturalistic settings. In this research, a large dataset was
collected from 34 participants who suffered Parkinson’s Disease (PD).

In other fields, deep learning is used in stock price prediction by extracting structure
event from news text. The prediction technique uses event-driven approach. First, the
system extracts the events from text and demonstrates dense vectors. Then, it trains
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using a novel neural tensor network. Second, both short-term and long-term influences
of event on stock price moments are combined and processed by using deep convo-
lutional neural network. In comparison with state-of-the-art baseline methods, the
results show that this model can achieve approximately 6% improvements on S&P 500
index prediction and individual stock prediction, respectively. In addition, market
simulation results show that the system is more capable of making profits than pre-
viously reported systems trained on S&P 500 stock historical data [14, 15].

3 ICD-10 Complaint Electronic Healthcare Records

There is significant growth in the amount of medical or patient data being generated in
hospitals or clinics all over the world. In most cases, Electronic Health Records are
used for storing most of this medical or patient data. In practice, International Clas-
sification of Diseases (ICD) are used for electronic health records and for classifying
diseases and other health problems appearing in many types of health and vital records.
Currently, ICD-10 codes are used by hospitals and health professionals, which are
retrieved from Electronic Medical Records (EMR) system. The standard provides a
very convenient platform for primary and secondary data analysis of these records for
diagnosis and prediction of diseases, as well as for the improvement of medical and
patient care. The ‘core’ three character code of classification of ICD-10 is the
mandatory level of coding for international reporting. It also has four character
sub-categories which are not mandatory for international reporting [9]. The Electronic
Healthcare Records (EHR) of cerebrovascular disease patients contain various infor-
mation, including demographic data, potential risk factors, and non-potential risk
factors that are recorded in hospital database (See Fig. 1).

Fig. 1. Electronic healthcare records of stroke patients.
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In detail, EHR record consists of gender; data of birth (DOB); clinic operation
(CLINIC_OPD); date operation (DATEOPD); date diagnosis (DATEDX); clinic
diagnosis (CLINIC_ODX); diagnosis code (DIAG); and diagnosis type (DXTYPE).
Gender was identified and represented by either the code 1 (Man) or the code 2
(Woman) (see Table 1). DOB field record contains patient’s birthdate and some records
have null value or error in term of date. We eliminated the null value or error and
converted the value into age in preparation process. CLINIC_OPD field indicates the
clinic number of hospital where patient has treatment. DATEOPD field demonstrates
the data of service. DATEDX field indicates the date of diagnosis. CLINIC_ODX field
shares similar code with CLINIC_OPD field. Code of diagnoses were obtained from
doctors or medical experts who used ICD-10 codes and inputted in DIAG field.
DXTYPE field specifies types of disease. It consists of (1) primary disease, (2) co-
morbidity disease, (3) complication, and (4) other diseases (see Table 1). Therefore, the
demographic data, disease type, and other information were recorded once each patient
visited. For prediction process, we integrated the multiple value dependencies into
EHRs. Further details will be described in Sect. 4.

4 Prediction of Stroke Using EHRs and Deep Learning

In this paper, deep learning algorithm is applied on EHRs for prediction of stroke. Deep
Learning (DL) is a process of training a neural network to perform given task. Overall
the prediction of Stroke has two main steps i.e. selection of EHRs based on risk factors
and prediction process. In the first step, first the null values and anomaly data were
eliminated via JAVA programming. Then the ICD-10 codes were filtered by stroke’s
risk factors. The EHRs with ICD-10 codes are then filtered again to eliminate anomaly
data such as negative values, null values etc. Then, EHRs files consisting of demo-
graphic data and group of symptom codes with risk factors are integrated. In the
preparation phase, the EHRs were later converted to zero or one for defining diseases
that the patients suffered (see Table 2).

In the second process, stroke is predicted by using Long Short-Term Memory -
Recurrent Neural Network (LSTM-RNN), which is currently the most suitable
approach. For prediction algorithm, the dataset was trained by means of feature
selection and retrieval process, and LSTM-RNN prediction formula is applied. The
input layer calculated the weight values based on ICD-10 codes and EHRs with risk

Table 1. Sample partial electronic healthcare records in hospital database.

Gender DOB CLINIC_OPD DATEOPD DATEDX CLINIC_ODX DIAG DXTYPE

1 xx/xx/xxxx 120 xx/xx/xxxx xx/xx/xxxx 120 C20 1
2 xx/xx/xxxx 20 xx/xx/xxxx xx/xx/xxxx 20 D379 1
2 xx/xx/xxxx 10 xx/xx/xxxx xx/xx/xxxx 10 C499 1
2 xx/xx/xxxx 120 xx/xx/xxxx xx/xx/xxxx 120 K297 1
1 xx/xx/xxxx 10 xx/xx/xxxx xx/xx/xxxx 10 C499 1
2 xx/xx/xxxx 10 xx/xx/xxxx xx/xx/xxxx 10 I158 2
2 xx/xx/xxxx 120 xx/xx/xxxx xx/xx/xxxx 120 I694 2
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factors of stroke. The ICD-10 codes that represent stroke risk factors are selected by
using AHA guideline [16–18]. This group was a knowledge-based reference that was
used for computing the weight for embedding at hidden layer as input. The weight
values and EHRs were integrated into LSTM-RNN layer. The output layer of pre-
diction model represented the prediction value in a form of percentage risk (see Fig. 2).

4.1 The Selection of EHRs Based on Risk Factors

The ICD-10 code that had been applied in EHRs can be used for training probabilistic
classifiers from the large data sets of EHRs. Specifically, we consider mulitlabel
classification of stroke symptoms and risk factors for training and modelling by

Fig. 2. Model of stroke prediction using EHRs and deep learning
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selection based on AHA list of stroke factors [16–18]. Normally, ICD-10 code pre-
sented in main categories and sub-categories such as I65 (Occlusion and stenosis of
vertebral artery) is the main category, and I65.1 (Occlusion and stenosis of basilar
artery) is the sub-category. The code risk factor that has been chosen consists of 70
main-categories and about 200 sub-categories, all together are 227 factors.

In preparation process after cleaning the data, we reformatted the DOB filed by
computed to age of patient. After filtering with ICD-10 codes, these codes will be
shown in 1 or 0 to represent the existent of risk factor for each record. The former
EHRs with mixed codes then was rearranged to a new EHRs dataset as show in
Table 2. This new dataset is smaller in size and suitable for train and test in prediction
process.

4.2 Deep Learning by Using Long Short -Term Memory Recurrent
Neural Networks (LSTM-RNN)

In this section, we implemented the LSTM-RNN. An architecture contained compu-
tation units in each memory block in the recurrent hidden layer. The memory block
contained memory cells with self-connections storing the temporal state of the network
in addition to multiplicative unit that was called ‘gate’, which controlled the flow of
information inputted to unit. An input gate and output gate were included in the
original architecture. The input gate controlled the flow of information and activations
into the cell that was computed by sigmoid and tanh function. The output gate con-
trolled the output flow of cell that activation function was computed by using sigmoid
and tanh function for the rest of the network.

The forget gate was added to the memory block. This gate prevented a weakness of
LSTM models from processing continuous input streams that are not segments into
subsequences. The internal state of cell of the forget gate scales run verification before
adding an input to the cell through the self-recurrent connection of the cell; therefore, it
would forget or reset the cell’s memory [19]. This gate used sigmoid function for

Table 2. EHRs records with stroke’s risk factors.

Age Gender B980 E108 E119 …….. I64 Z721 Z920
74 1 1 0 0 …….. 0 0 0
65 2 1 0 0 …….. 0 0 0
61 1 1 0 1 …….. 0 0 0

50 1 0 1 1 ……. 0 0 0
62 2 0 1 0 ……. 0 0 0
76 1 0 1 1 ……. 1 0 0
83 2 0 0 1 ……. 0 0 0
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computation. Furthermore, in the LSTM architecture peepholes connections (green
line) form its internal cells were applied to all gates in the same cell for learning precise
timing of the outputs [20] (see Fig. 3).

5 Evaluation Model

5.1 Data Source

This research used aggregated files of Electronic Healthcare Records (EHRs) from
Department of Medical Services, The Ministry of Public Health of Thailand between
2015 and 2016 (326,152 records). It consisted of demographic data, diseases codes
(ICD-10 codes), Dates of diagnosis, clinic types, and types of diagnosis (see in
Table 1). According to the source, EHRs data had multiple value dependencies that
was cleaned anomaly data and filtered by ICD-10 codes for risk factors of stroke.
Subsequently, we had a new EHRs dataset (See in Table 2). The new datasets actually
had 96,127 records of the stroke patients and non-stroke patients who encountered
potential risk factors.

5.2 Predictive Model

The algorithm deep learning relies Long Short-Term Memory Recurrent Neural Net-
work (LSTM-RNN) that is wildly used in prediction. In this research, it was applied to
a large scale of an aggregated file from Electronic Healthcare Records. The algorithm
model appears as follows:

Fig. 3. LSTMP-RNN memory cell architecture and memory blocks [20–22].
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ht ¼ tanh Whhht�1 þWxhxtð Þ ð1Þ
ai ¼ r Waxi þWahi�1 þ bað Þ ð2Þ

gi ¼ r Wgxi þWghi�1 þ bg
� � ð3Þ

~hi ¼ tanh Whxi þ gi �Whhi�1 þ bhð Þ ð4Þ

hi ¼ ai � hi�1 þ 1� gið Þ � ~hi ð5Þ

Where the W terms are weight matrices value, Wh, Wb, and Wa, are diagonal weight
values for next layer to connections. The b terms are bias vectors. The logistic sigmoid
function is represented by r. The input gate, forget gate, and output gate are repre-
sented by a, g, and n respectively. All of them are in the same size as the cell output
activation vectors hi; � is the element product of the vector ~hi is the cell input and cell
output activation function, generally and in this research network is tanh.

We initiated the prediction model for training stroke symptom and risk factors
based on ICD-10 standard. The equations of the model appear as follows:

ht ¼ tanh
ðW I64�Ageð ÞþW I64�Genderð Þþ

W I64� Stroke0s risk factorsð ÞÞ ð6Þ

The machine learned from model and pattern. The group of codes was computed
for finding the weight value in each node. The learning rate term is 0.01 and epoch in
10 and their network type is LSTM.

6 Result

We conducted a comparison between three models: Backpropagation; RNN; and
LSTM- RNN. Algorithm backpropagation, RNN, and LSTM-RNN were applied in
prediction. All techniques demonstrated the results of training 30%, 50%, and 80%
respectively. For testing, 10% of the dataset is used. A learning rate is 0.1 and the
number of iteration (10-epochs) were used for prediction. The variable for calculating
was used for 227 risk factors for stroke.

The result shows that during training procedure, the accuracy value, precision
value, recall value, and F1 scores for prediction in LSTM-RNN are higher than those
obtained from the other two techniques. The result of RNN shown for all value lowest
at 50% of sample size (0.3570; 0.3612; 0.6476; 0.5456).

In backpropagation, we used a feedforward multilayer artificial neural network. The
computation shows that accuracy is at 0.8912, 0.8917, and 0.8914, F1 score as 0.3857,
0.3857, and 0.3860 respectively (shown in Table 3). This method show that all values
are not differ in the three sample size for prediction. Only, the accuracy shown here is a
little bit changed when the sample data slightly increased.

By using the same parameters as in previous techniques, the LSTM-RNN show the
best results the best performance for prediction of stroke. The accuracy is 0.9279,
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0.9493, and 0.9998 and F1 score are 0.9626, 0.9738, and 0.9999 respectively. The
prediction for stroke will be shown in percentage which mean that change of getting
stroke. In medical domain, the good performance is the preferred algorithm and
LSTM-RNN is considered confidence to use with huge dataset.

7 Conclusion and Future Work

This research aims at the use of deep learning technique and EHRs based on risk
factors to predict for cerebrovascular disease by LSTM-RNN algorithm. The Electronic
Healthcare Records (EHRs) provide the descriptive details about a patient’s physical
and mental health, diagnosis, lab results, treatments care plan and so forth. The data are
difficult to mine effectively due to irregular sampling and missing data. Nowadays, the
diagnoses of disease are represented by International Classification of Diseases, 10th

Revision (ICD-10) code in each patient record. It enables researchers to train and
develop a model to perform early diagnosis by predicting various risk factors.

The results of using LSTM-RNN show that accuracy rate, recall and F1 measure
score are different from those of back propagation and RNN algorithm. Therefore, an
accuracy rate depend on the size of sample. Unlike other techniques, the result is more
reliable once there are large datasets for the prediction of stroke. This confirms that
LSTM algorithm is most suitable for predictive analysis of any cerebrovascular disease
or stroke.

Table 3. Metrics of stroke prediction

Train 30% and Test 10% 
Techniques Precision Recall F1 Accuracy

Backpropagation 1 1 0.3857 0.8912
RNN 0.9371 0.9375 0.9371 0.8825

LSTM-RNN 0.0219 0.0216 0.9626 0.9279

Train 50% and Test 10%
Techniques Precision Recall F1 Accuracy

Backpropagation 1 1 0.3857 0.8917
RNN 0.3570 0.3612 0.6476 0.5456

LSTM-RNN 0.9741 0.9738 0.9738 0.9493

Train 80% and Test 10%
Techniques Precision Recall F1 Accuracy

Backpropagation 1 1 0.3860 0.8914
RNN 0.9996 0.9996 0.9996 0.9992

LSTM-RNN 0.9999 0.9999 0.9999 0.9998
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EHRs using ICD-10 code have some issues and challenges in the data analyses of
various diseases health problems by means of deep learning. The excellent analysis by
different predicting techniques require the use of data obtained from patient health
records and a comparison between previous cases, observation, or inspection. Stroke
has complex risk factors, so algorithms with very high level of accuracy are therefore
vital for medical diagnosis. The development of algorithms, nevertheless, still remains
obscure despite its importance and necessity for healthcare. Good performance comes
along with specific favourable circumstances, for instance, when well designed and
formulated inputs are guaranteed. However, the deep learning allows the disclosure of
some unknown or unexpressed knowledge during prediction procedure, which is
beneficial for decision-making in medical practice and can provide useful suggestions
and warnings to patient about unpredictable stroke. In future, we will use more risk
factors and lab results to predict using deep learning algorithm and implement to an
e-stroke application.
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Abstract. Machine learning is becoming more and more utilized as a tool for
businesses and governments to aid in decision making and automation pro-
cesses. These systems are also susceptible to attacks by an adversary, who may
try evading or corrupting the system. In this paper, we survey the current
landscape of research in this field, and provide analysis of the overall results and
of the trends in research. We also identify several topics which can better define
the categorization.

Keywords: Adversarial machine learning � Literature survey

1 Introduction

Machine learning is the process by which a machine can learn to make decisions
without being explicitly told what to do. This has been a boon to automation and data
science as a whole. However, machine learning systems are not inherently robust. An
entity that wishes to harm or evade an unguarded system’s decision-making capabilities
can do so with relative ease. This is the conceptual foundation of adversarial machine
learning [1].

Adversarial machine learning (AdvML), broadly speaking, is where a machine
learning system (i.e. the classifier) is in an adversarial environment – one in which it is
challenged by some adversarial opponent. These opponent input samples, which have
been designed to disrupt the performance of the ML system, alter the legitimate input
samples by tricking the classifier into misclassifying the input. In fact, according to [1]
machine learning systems can, and often are, trained to generate adversarial samples to
use against the classifier Although the measures can be taken to protect a machine
learning system, the protection is not total and not ensured to last. Thus, as reported in
[2] this still remains an open problem.

Generally, AdvML is applicable wherever there is a machine learning system that is
accessible to would-be attackers. Notably, it has applications in biometric verification,
spam detection, malware detection, and the detection of network intrusions. In addition,
generative adversarial networks (GAN) [1, 4, 5] have shown that they can be applied to
a wide variety of tasks, such as medical image processing, image censoring, language
generation, and learning representations of emotional speech, to name a few. These
applications go beyond the scope of simply protecting a classifier from adversarial
examples.
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As stated earlier, if a classifier is
not protected from adversaries, then
it is very susceptible to their attacks,
resulting in misclassification rate of
over 96% [3, 4, 8]. On-line machine
learning systems are susceptible to
being corrupted over time, and have
been shown to become more inac-
curate as the number of adversarial
samples increases [6], and as
reported in [7] there is also the
ability to fool autonomous robotic
patrolling by using game-theoretic
approaches.

Our research offers the follow-
ing contributions:

• A survey of research papers on
the subject of “adversarial
machine learning”. The papers
are counted and sorted by cate-
gories, and that data is compared
and trends are analyzed.

• A refinement of the categoriza-
tion of topics within the field of
adversarial machine learning.

2 Related Works

This paper adapts the categorization
used in a survey done by Kumar
and Mehta of IBM Research, India
[9]. The categories and descriptions
can be seen in Fig. 1. We have
outline the categories below, which
include the adaptation we made for
the purposes of this literature
review. This categorization was
chosen because it provides the basis
for a deeper taxonomy than has
been proposed by any other paper
we found.

The categories and subcate-
gories that we used are as follows: Fig. 1. Category summary, adapted from [9].
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• Applications
– Spam Filters
– Anti-virus/Malware Detection
– Network Intrusion Detection
– Biometric Verification and Authentication
– Ill-Fit

• Approaches
– Game-theoretic Approaches
– Signature-based Intrusion Detection Systems
– Polymorphic Blending Attacks
– Making Classifiers Robust
– Multimodal Biometric Systems
– Ill-Fit

• Attacks
– Exploratory Attacks:

• Model Inversion
• Inferring Information
• Membership Inference Attack
• Model Extraction using Online APIs
• Ill-Fit

– Evasion Attacks:
• Adversarial Examples
• Generative Adversarial Networks (GANs)
• Adversarial Classification
• Text-based Systems
• Ill-Fit

– Poisoning Attacks:
• Network Intrusion Detection
• Support Vector Machine Poisoning
• Defensive Distillation
• Ill-Fit

– Ill-Fit

3 Methodology

3.1 Overview

Our process for categorizing recent research papers is as follows:

1. Collect the top 100 results from the sources, using the phrase ‘adversarial machine
learning’ as the search query.

2. Review each paper.
3. Sort each paper into categories.
4. Tally the raw values of each category.
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5. Tally the per-year values of each category (excluding Cornell Digital Library
[https://arxiv.org/]).

6. Visualize the data with charts.

3.2 Collection

In this study we have used multiple collection sources to get a robust data set. The
sources we used were ACM Digital Library, IEEE Xplore Digital Library, Springer-
link, Cornell Digital Library, and Sciencedirect. Since we are focused on newer
developments within this field of research, we restricted our data collection to the past
ten years (2007–2017).

3.3 Data-Set Restrictions

Here we have listed the details of our collection methodology as a whole. Also, in order
to get accurate results, some sources needed search criteria that was specific to them,
and so those criteria are listed here, as well as any quirks specific to those sources.

General

• Collection took place: 8/28/17–9/11/17
• Language: English
• Papers published: 2007–2017
• Our university’s access to the collections was used to gather the papers.
• Only those papers which were acquirable were collected (i.e. no “abstract only” or

pay-to-access entries)
• Papers that are not about adversarial machine learning, but merely mention it, have

been classified as “unrelated”. These papers were collected, but during evaluation
they have been sorted under “discarded”.

IEEE Xplore Digital Library

• Only 91 papers matched the search query

Cornell Digital Library

• Experimental full text search in the subject Computer Science

Springer Link

• Searched under the discipline of Computer Science
• Did not include “Preview-Only Content”
• Sorted by relevance
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3.4 Evaluation

All papers were filtered and categorized manually. We filtered out book chapters,
conference posters, and those papers which were unrelated to the subject matter. We
used the categories in such a way, that a paper can appear in multiple categories. Some
papers were categorized as a top-level category, but did not fit into any of its sub-
categories. We tallied these papers in their own subcategory that is independent of the
other subcategories.

The histograms for each category exclude the results from Cornell Digital Library
due to the fact that the earliest published papers are from 2015, and so including these
results would heavily skew the graph.

4 Results

Here we present the data that we have collected. These have been divided into sections
for “Pre-Sort”, “Raw Counts”, and “Trends”.

4.1 Pre-sort

The first step was to refine the data set which would be sorted. For this purpose, we
used the following categories:

• Disregard: disregarded papers, such as conference posters, conference abstracts, and
book chapters.

• Duplicates: duplicate papers.
• Meta: papers such as surveys, literature reviews, or topic overviews.
• Tools: papers which only discussed a tool that was being demonstrated.
• Unrelated: papers that are unrelated to “Adversarial Machine Learning”.
• Sorted: those papers which would be categorized.

The results of these refinements can be seen in Fig. 2.

Fig. 2. Count of papers for the Pre-Sort step.
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Fig. 3. Count of papers for “Applications”

Fig. 4. Count of papers for “Approaches”

Fig. 5. Count of papers for “Attacks”
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Fig. 6. Count of papers for “Evasion Attacks” sub-category

Fig. 7. Count of papers for “Exploratory Attacks” sub-category

Fig. 8. Count of papers for “Poisoning Attacks” sub-category
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4.2 Raw Counts

The raw paper counts for the subcategories are shown in Figs. 3, 4, 5, 6, 7 and 8.
Figures 3, 4 and 5 show the counts for top-level categories, while Figs. 6, 7 and 8 show
the counts for each type of attack.

4.3 Trends

The counts per year can be seen in Figs. 9, 10, 11, 12, 13, 14, 15 and 16. These figures
are a subset of all the trends which were analyzed. For the sake of readability and
brevity, we have included the most noteworthy trend charts in this paper, and excluded
those which had sparse or sporadic paper counts.

Fig. 9. Paper counts by year for “Spam
Filters”.

Fig. 10. Paper counts by year for “Game-
Theory Approaches”.

Fig. 11. Paper counts by year for “Making
Classifiers Robust”.

Fig. 12. Paper counts by year for “Multimodal
Biometric Systems”.
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5 Discussion

5.1 Raw Count Data Analysis

From Figs. 3, 4, 5, 6, 7 and 8 we can see the following:

• “Spam Detection” is by far the most popular application, with *41% of papers
exploring the topic.

• “Making Classifiers Robust” and “Game-Theory Based Approaches” are the most
common approaches, making up approximately 51% and 34% of the papers,
respectively.

• *76% of papers discussing attacks focus on “Evasion” attacks.
• Regarding evasion attacks, the most explored topic was “Adversarial Classifica-

tion”, have *49% of papers which discuss it. There were also the topics of
“Adversarial Examples” and “Generative Adversarial Networks” which were
somewhat popular, at *20%, each.

• Regarding exploratory attacks, the most explored aspect was “Model Extraction
Using Online APIs”, which made up *45% of papers in that category.

Fig. 13. Paper counts by year for “Biometric
Verification and Authentication”.

Fig. 14. Paper counts by year for “Evasion
Attacks”.

Fig. 15. Paper counts by year for “Adver-
sarial Classification”.

Fig. 16. Paper counts by year for “Generative
Adversarial Networks”.
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• For the “Ill-Fit” category, we see that “Poisoning Attacks” has the largest propor-
tion of ill-fit papers, with *27% falling into the sub-category. However, it is the
“Approaches” category which has the highest raw count, at 12 ill-fitting papers.

These are some of the notable topics that were discovered during evaluation but
were designated as “ill-fit”:

• Applications: Privacy
• Approaches: Feature Squeezing
• Approaches: Domain Adaptation
• Poisoning Attacks: Online Neural Networks.

5.2 Trends Data Analysis

By looking at the breakdown of each category’s paper-counts by year, we can see the
following trends in Figs. 9, 10, 11, 12, 13, 14, 15 and 16:

• “Spam Filters” had a large spike in 2008, before declining, and then rising slightly
in popularity.

• “Game-Theory Based Approaches” had a large spike in 2010, before lowering and
remaining stable.

• “Making Classifiers Robust” has been a consistently explored topic since 2008.
• Figures 12, 13 show that AdvML in biometric systems has become more popular in

recent years.
• Evasion attacks have had steady interest since 2008, with a sharp rise within the

past 2 years.
• “Adversarial Classification” has had steady interest since 2008.
• “Generative Adversarial Networks” have garnered a large amount of interest in just

the past few years.

Fig. 17. Paper counts by year for all papers in the field of Adversarial Machine Learning
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And finally, we see in Fig. 17 the 10-year trend in the topic of Adversarial Machine
Learning as a whole.

Together, these charts show an initial wave of interest, which peaks in 2010.
Interest in the field levels off for a few years, but then begins to steadily gain more and
more interest from 2013 onward.

6 Conclusion

In this paper, we have presented data on the current state and trends of the field of
“Adversarial Machine Learning”. To this end, we collected, sorted, and analyzed 475
research papers from five different sources.

We found that certain topics are more popular than others, and that some topics
have only recently started to gain interest within this field.

Notably, we have identified that, while there has been steady interest in the subject
for a while, AdvML is rapidly gaining in popularity, and that this popularity is evident
in the trends of lesser-researched topics within the field.

We also identified four topics within the field which should be regarded when
categorizing the subject. These topics are privacy, feature squeezing, domain adapta-
tion, and online neural networks.
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Abstract. Reverse engineering gene regulatory networks (GRNs), also
known as GRN inference, refers to the process of reconstructing GRNs
from gene expression data. A GRN is modeled as a directed graph in
which nodes represent genes and edges show regulatory relationships
between the genes. By predicting the edges to infer a GRN, biologists
can gain a better understanding of regulatory circuits and functional
elements in cells. Many bioinformatics tools have been developed to
computationally reverse engineer GRNs. However, none of these tools
is able to perform perfect GRN inference. In this paper, we propose a
graph mining approach capable of discovering frequent patterns from
the GRNs inferred by existing methods. These frequent or common pat-
terns are more likely to occur in true regulatory networks. Experimental
results on different datasets demonstrate the good quality of the discov-
ered patterns, and the superiority of our approach over the existing GRN
inference methods.

Keywords: Graph mining · Network inference · Pattern discovery
Applications in biology and medicine

1 Introduction

Current biotechnology has allowed researchers in various fields to obtain immense
amounts of experimental information, ranging from macromolecular sequences,
gene expression data to proteomics and metabolomics. In addition to large-scale
genomic information obtained through such methods as third generation DNA
sequencing, newer technologies, such as RNA-seq and ChIP-seq, have allowed
researchers to fine tune the analysis of gene expression patterns [3]. More infor-
mation on interactions between transcription factors and DNA, both qualitative
and quantitative, is increasingly emerging from the genomics data.
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Often, the attachment of transcription factors (TFs) and their binding sites
(TFBSs), located at specific gene promoters, influences transcription and mod-
ulates RNA production from a particular gene, thus establishing a first level of
functional interaction. Since the TFs are gene-encoded polypeptides and the tar-
get TFBSs belong to different genes, analyses of TFs-TFBSs interactions could
uncover gene networks and may even contribute to elucidate unknown GRNs
[20]. Besides contributing to infer and understand these interactions, determin-
ing GRNs also aims to provide explanatory models of such connections [4]. GRNs
could be the basis to infer more complex networks, encompassing gene, protein,
and metabolic spaces, as well as the entangled and often overlooked signaling
pathways that interconnect them [5,9,15].

Many bioinformatics tools have been developed to reconstruct GRNs from
gene expression data. However, none of these tools is able to perform perfect
GRN inference. The accuracy of the predicted GRNs is usually low. To enhance
the accuracy, we propose a graph mining approach, which aims to find frequent
patterns in the GRNs inferred by existing methods. These frequent or common
patterns are more likely to occur in true regulatory networks.

Specifically, we model a GRN by a directed graph G [1,17]. In G, a node
represents a gene or transcription factor (TF). An edge from a TF to a gene
indicates that the TF regulates the expression of the gene. We consider two
types of patterns in G. The first type is an induced subgraph of G, referred
to as an induced pattern of G. The second type is a general subgraph of G,
referred to as a general pattern of G. Figure 1(a) illustrates a directed graph G,
which represents a partial GRN of yeast. G contains five nodes and five edges,
where each node represents a yeast gene. Figure 1(b) shows an induced pattern
of the graph G in Fig. 1(a). The induced pattern in Fig. 1(b) has three nodes,
and consists of all the edges of G with both end nodes in the induced pattern.
Notice that, if we remove the edge from the node or gene YMR043W to the
node or gene YLR131C, we would obtain a general subgraph of G that is not
induced, as shown in Fig. 1(c). Thus, the subgraph in Fig. 1(c) is a general, but
not an induced, pattern of G.

Graph mining aims to find frequent or common patterns in multiple graphs.
Here we propose new graph mining algorithms to find frequent induced or general
patterns in multiple GRNs. Our algorithms are extensions of the Apriori algo-
rithm for frequent item set mining [2,22]. Specifically, we take multiple GRNs
produced by three widely-used GRN inference methods including TD-ARACNE
[23], GENIE3 [7] and Jump3 [8]. Then, we use the proposed graph mining algo-
rithms to find frequent patterns, induced or general, in these GRNs. Edges in
the frequent patterns constitute the GRNs inferred by our approach. Finally we
show experimentally that our approach yields more accurate GRNs than those
constructed by the three existing GRN inference methods, demonstrating the
good quality of the patterns found by our graph mining algorithms.
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Fig. 1. (a) A directed graph G representing a partial GRN of yeast. (b) An induced
pattern of G. (c) A general pattern of G.

1.1 Related Work

A variety of graph mining algorithms have been developed since the early 2000s.
AGM (Apriori-based Graph Mining) [10] is the first frequent subgraph mining
algorithm that uses a pairwise-join based pattern growth strategy to generate
frequent patterns. The algorithm employs the Apriori principle [2] and generates
candidate subgraphs of size (k+1), i.e., (k+1)-subgraphs, by joining two frequent
k-subgraphs that share the same (k−1)-subgraphs. FSG [13] is another frequent
subgraph mining algorithm, which is similar to AGM in that both algorithms
grow patterns level by level through a pairwise join method. However, FSG grows
patterns by edges while AGM grows patterns by vertices. FSG finds all frequent
connected subgraphs in multiple undirected graphs.

The gSpan [21] program is arguably the most widely used tool for graph min-
ing. The gSpan algorithm grows undirected connected subgraphs in a depth first
search (DFS) manner by adding an edge to each possible position on the right-
most path of a known frequent subgraph. Specifically, the algorithm uses DFS
lexicographic ordering to construct a tree-like lattice over all possible patterns,
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resulting in a hierarchical search space called a DFS code tree. Each node of this
search tree represents a DFS code. This search tree is traversed in a DFS manner
and all subgraphs with non-minimal DFS codes are pruned so that redundant
candidate generations are avoided. With the assistance of the DFS code tree,
gSpan can discover connected patterns from undirected graphs efficiently.

FFSM [6] focuses on graphs that are dense with a small number of labels.
FFSM adopts the same canonical adjacency matrix (CAM) representation used
by AGM. A tree-like structure, namely a suboptimal CAM tree, is constructed to
include all possible patterns. Each node in this suboptimal CAM tree is created
by either a join or an extension operation. FFSM maintains embedding lists for
the discovered patterns to avoid explicit subgraph isomorphism testing in the
support counting phase [11].

Gaston [16] is a unified graph, sequence and tree extraction algorithm. Given
a database of graphs, Gaston finds all frequent subgraphs by using a level-wise
approach in which simple paths are first considered, then more complex trees
and finally the most complex graphs are considered. Consequently the subgraph
mining procedure is invoked only when needed. To determine the frequency of
a graph, Gaston employs an occurrence list based approach in which all occur-
rences of a small set of graphs are stored in main memory. Gaston also maintains
embedding lists when growing patterns, to avoid unnecessary subgraph isomor-
phism testing.

The limitations of these existing graph mining methods are that they are
mainly designed and implemented for finding frequent general, not induced, sub-
graphs in undirected graphs. Thus, the existing graph mining methods are not
applicable to GRNs, which are directed graphs. By contrast, our work focuses
on finding frequent patterns, induced or general, in directed graphs, more pre-
cisely GRNs. Consequently, our pattern growth procedure is different from those
employed by the existing graph mining methods.

The rest of this paper is organized as follows. Section 2 describes our Apriori-
like pattern finding algorithms. Section 3 reports experimental results, comparing
our approach of using graph mining for GRN inference with the three existing
GRN inference methods, namely TD-ARACNE [23], GENIE3 [7] and Jump3 [8].
Section 4 concludes the paper and points out some directions for future research.

2 Methods

2.1 Definitions and Notation

We use the terms “graphs” (“subgraphs”, “nodes” respectively) and “GRNs”
(“patterns”, “genes” respectively) interchangeably throughout the paper. All
graphs considered here are directed (i.e., the direction of an edge is important).
In a species, there are a finite number of genes among which there is no duplicate
gene. Thus, each graph has a finite number of nodes and edges, and each node
is uniquely labeled.

We do not consider auto-regulation in the paper, though our work can be
easily generalized to handle the auto-regulation case. Thus, graphs here have no
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self-edges (i.e., edges that connect nodes to themselves), neither do the graphs
have duplicate edges between two nodes (i.e., two or more edges that connect
the two nodes in the same direction). Below we present some definitions and
terms used by our algorithms, called induced pattern discovery (IPD) and general
pattern discovery (GPD) algorithms respectively.

Definition 1 (Gene Regulatory Network). A Gene Regulatory Network or
GRN for short is a directed graph G = (V,E) where (i) V = {g1, g2, . . . , gn} is a
set of genes, and (ii) E ⊂ V × V is a set of edges in which eij = (gi, gj) denotes
the edge from gene gi to gene gj .

The number of genes in G, i.e., the cardinality of V , denoted by |V | = n, is
called the size of G. A k-pattern is a pattern of size k (i.e., the pattern contains
k genes).

Definition 2 (Induced Pattern and General Pattern). Given two graphs
G1 = (V1, E1) and G2 = (V2, E2) where |V1| ≤ |V2|, G1 is said to be an induced
pattern (general pattern, respectively) of G2 if there is an injective function f
that maps the genes of G1 to the genes of G2 such that (i) for each gene gi in V1,
there is a gene f(gi) in V2, and (ii) for any ordered pair of genes gi, gj in V1, edge
(gi, gj) is in E1 if and only if (only if, respectively) edge (f(gi), f(gj)) is in E2.
All patterns considered here are weakly connected, i.e., there is an undirected
path between any pair of genes in a pattern.

Definition 3 (Support of a Pattern). Given a set D of graphs, the support
of an induced (general, respectively) pattern P , denoted sup(P ), is the number
of graphs G ∈ D where P is an induced (general, respectively) pattern of G.

Definition 4 (Frequent Pattern Discovery). Given a set D of graphs and a
user-specified minimum support threshold (minsup), a pattern P in D is frequent
if the support of P is greater than or equal to minsup. The frequent induced
(general, respectively) pattern discovery problem is to find all frequent induced
(general, respectively) patterns in D.

Our IPD (GPD, respectively) algorithm aims to solve the frequent induced
(general, respectively) pattern discovery problem. Below we introduce some data
structures needed by our algorithms.

Definition 5 (Gene-Adjacency Matrix and Gene Array). Given a graph
G = (V,E) with n genes g1, g2, . . . , gn, the gene-adjacency matrix of G, denoted
A(G), is a square n×n matrix whose rows and columns correspond to the edges
in G such that the element at the ith row and the jth column of A(G) is one if
there is an edge from gene gi to gene gj , and is zero otherwise. The array holding
the genes, denoted [g1, g2, . . . , gn], is called the gene array of G.

Notice that, since the graphs we consider here do not have self-edges, the diag-
onal entries of all gene-adjacency matrices are zeros. For example, consider again
the graph G in Fig. 1(a). We arbitrarily and uniquely number the genes in G.
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Suppose the gene array of G is [YMR043W, YJL159W, YLR131C, YGR125W,
YAL051W]. Then the gene-adjacency matrix of G is

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

0 1 1 0 0
0 0 0 0 0
0 1 0 1 0
0 0 0 0 0
1 0 0 0 0

(1)

Definition 6 (Core of a Gene-Adjacency Matrix). Let A be a gene-
adjacency matrix with k genes (i.e., A has k rows and columns). The sub-matrix
consisting of the first k − 1 rows and columns (i.e., the first k − 1 genes) of A is
called the core of A.

The matrix in (2) shows the core of the matrix in (1) where the gene array
of the core is [YMR043W, YJL159W, YLR131C, YGR125W].

⎛
⎜⎝

⎞
⎟⎠

0 1 1 0
0 0 0 0
0 1 0 1
0 0 0 0

(2)

Definition 7 (Equivalence Class). Let G1 and G2 be two graphs with the
same size. Let A(G1) (A(G2), respectively) be the gene-adjacency matrix of
G1 (G2, respectively). G1 and G2 are said to be in the same equivalence class if
A(G1) and A(G2) have the same core.

The proposed pattern discovery algorithms employ the Apriori principle [2,
22], which says that, if a pattern is frequent, then all its sub-patterns must also be
frequent. The algorithms iteratively execute two steps: candidate generation and
frequency counting. In the candidate generation step, we join smaller patterns
that are already frequent to generate candidate patterns of larger sizes. In the
frequency counting step, we check whether the support of a candidate pattern
is greater than or equal to minsup to determine whether the candidate pattern
is frequent or not. Only frequent patterns are kept. Below we explain in detail
how the two steps work.

2.2 Candidate Generation and Pattern Discovery

2.2.1 Phase 1: Single-Gene Pattern Discovery
It is straightforward to find all frequent 1-patterns (i.e., frequent genes). For
each gene g, we create a supporting list comprising the identifiers (ids) of the
graphs that contain g. If the cardinality of the supporting list is greater than or
equal to minsup, then g is frequent; otherwise g is not frequent.
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gx gy

gx 0 0
gy 0 0

(a) No edge: between gx and gy

gx gy

gx 0 1
gy 0 0

(b) One edge: from gx to gy

gx gy

gx 0 0
gy 1 0

(c) One edge: from gy to gx

gx gy

gx 0 1
gy 1 0

(d) Two edges: gx, gy pointing to each other

Fig. 2. Four possible 2-patterns generated from frequent genes gx, gy.

2.2.2 Phase 2: Two-Gene Pattern Discovery
The second phase of our pattern growth algorithm is to find all frequent 2-
patterns (i.e., patterns with two genes). We generate candidate 2-patterns by
considering all possible pairs of the frequent genes found in phase 1. Suppose gx
and gy are two frequent genes. Figure 2 shows four possible 2-patterns generated
from gx, gy, in which the disconnected 2-pattern in Fig. 2(a) is eliminated from
further consideration. The other three 2-patterns become candidate patterns.

For each candidate 2-pattern, its supporting list is constructed by taking
the intersection of the supporting lists of the two corresponding genes. If the
cardinality of the intersection list is greater than or equal to minsup, then we
calculate the support of the candidate 2-pattern by invoking the candidate pat-
tern verification procedure described in the following subsection; otherwise the
candidate 2-pattern is discarded. Only frequent 2-patterns are kept.

2.2.3 Phase 3: (k + 1)-Pattern Discovery
Let P1 and P2 be two frequent k-patterns that are in the same equivalence class.
Let A1 (A2, respectively) be the gene-adjacency matrix of P1 (P2, respectively).
By definition, A1 and A2 have the same core. We now consider how to join P1

and P2 to generate candidate (k + 1)-patterns. Let the gene array of P1 (P2,
respectively) be [g1, . . . , gk−1, gx] ([g1, . . . , gk−1, gy], respectively). Look at the
last genes gx in P1 and gy in P2. There are two cases.
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Case 1. We generate four candidate (k + 1)-patterns by assigning gx to be
the last gene and gy to be the second to the last gene to get the gene array
[g1, . . . , gk−1, gy, gx] for the four candidate (k+1)-patterns. The edges of P1 and
P2 are copied to the four candidate (k + 1)-patterns. Then we create edges as
follows. In the first (k+1)-pattern, there is no edge between gx and gy. We have
to check whether there is an undirected path between gx and gy. If such a path
does not exist, this pattern is disconnected, and hence discarded. In the second
(k+1)-pattern, create an edge from gx to gy. In the third (k+1)-pattern, create
an edge from gy to gx. In the fourth (k + 1)-pattern, create an edge from gx to
gy and an edge from gy to gx.

Case 2. We generate another four candidate (k+1)-patterns by assigning gy to
be the last gene and gx to be the second to the last gene to get the gene array
[g1, . . . , gk−1, gx, gy] for the four candidate (k + 1)-patterns. Then create edges
between gx and gy as in case 1.

2.3 Frequency Counting

Let the size of a candidate pattern P be k and the size of the largest graph G ∈ D
be n. There are at most k×(k−1) edges in P and at most n×(n−1) edges in G.
We pre-process the graphs in D by storing their nodes and edges in hash tables
respectively. This pre-processing takes O(n2 × |D|) time where |D| represents
the total number of graphs in D. Central to our frequency counting step is the
candidate pattern verification procedure, described below, for calculating the
support of P . If the support is greater than or equal to minsup, then P is
frequent and becomes a qualified pattern.

2.3.1 Induced Pattern Verification
To determine whether P is an induced pattern of a graph G, we check whether
the gene array of P is a subarray of the gene array of G (step 1). If yes, then
we extract the subarray from G and check whether the edges of P are identical
to the edges connecting the genes in the extracted subarray of G (step 2). Step
1 takes O(k) time when the node hash table is used. Step 2 takes O(k2) time.
Thus, checking whether P is an induced pattern of G takes O(k2) time in total.
The time complexity of checking whether P is a frequent induced pattern in D
is O(k2 × |D|).

2.3.2 General Pattern Verification
We hash each edge of P to see whether it matches an edge of G in the edge
hash table, which takes O(k × (k − 1)) time. Therefore, checking whether P is a
general pattern of G takes O(k2) time. The time complexity of checking whether
P is a frequent general pattern in D is also O(k2 × |D|).

2.4 Proposed Algorithms

The two proposed algorithms, IPD (induced pattern discovery) and GPD (gen-
eral pattern discovery), work in a similar way. The difference is that IPD uses the
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induced pattern verification procedure while GPD uses the general pattern veri-
fication procedure in the frequency counting step. We describe IPD in Algorithm
1 below, omitting the description of GPD.

In Algorithm 1, FSk contains all frequent k-patterns, and FS contains all
discovered frequent patterns. At step 7, the algorithm finds all frequent (k + 1)-
patterns based on frequent k-patterns in FSk by (i) performing pairwise join
of patterns in each equivalence class in FSk to generate all candidate (k + 1)-
patterns, and (ii) calculating the support of each candidate (k + 1)-pattern by
invoking the induced pattern verification procedure. Those candidate (k + 1)-
patterns whose support values are greater than or equal to minsup are frequent,
and stored in FSk+1.

Algorithm 1. Induced Pattern Discovery (IPD)
1: procedure IPD(D, minsup)
2: FS1 ← {frequent 1-patterns}
3: FS2 ← {frequent 2-patterns}
4: FS ← FS1 ∪ FS2

5: k ← 2
6: while |FSk| > 0 do
7: FSk+1 ← {frequent (k + 1)-patterns}
8: FS ← FS ∪ FSk+1

9: k ← k + 1
10: end while
11: return FS
12: end procedure

2.5 Correctness and Complexity Analysis

We present in this section a series of lemmas and theorems concerning the IPD
algorithm. These lemmas and theorems hold for the GPD algorithm as well.

Lemma 1. IPD is correct. That is, any pattern output from IPD is a frequent
induced pattern in the given set of graphs D.

Proof. In order for a candidate pattern to qualify as a frequent induced pattern
in D, it has to pass the induced pattern verification procedure and satisfy the
minsup requirement. The correctness of IPD is obvious, and hence the lemma
is proved.

Lemma 2. IPD is complete. That is, it does not miss any frequent induced
pattern in the given set of graphs D.

Proof. We prove this lemma by mathematical introduction.
Base step. Clearly, IPD finds all frequent induced 1-patterns and 2-patterns,

because it generates all such patterns using a brute force enumeration method.
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Hypothesis step. Assume the lemma holds for frequent induced k-patterns;
that is, all such patterns can be found by IPD.

Induction step. We want to show that IPD does not miss any frequent induced
(k + 1)-pattern. It suffices to prove that any frequent induced (k + 1)-pattern
can always be generated by two frequent induced k-patterns in some equivalence
class.

Suppose P is a frequent induced (k + 1) pattern. Let the gene array of P be
[g1, g2, . . . , gk, gk+1]. Let P1 (P2, respectively) be the pattern obtained by remov-
ing the last gene gk+1 (the second to the last gene gk, respectively) and edges
connecting gk+1 (gk, respectively) from P . Obviously, P1 and P2 are induced
patterns. Since P is frequent, P1 and P2 must be frequent. By the induction
hypothesis, IPD can find both P1 and P2. Thus, the two patterns are in FSk.
Furthermore, these two patterns are in the same equivalence class. Based on
the logic of IPD, the two patterns P1 and P2 must be joined together by our
algorithm. Since IPD exhaustively considers all possible expansions of patterns,
P must be in the candidate set obtained by joining P1 and P2. This completes
the proof.

Theorem 1. IPD correctly finds all frequent induced patterns in the given set
of graphs D.

Proof. From Lemmas 1 and 2 and the fact that IPD is based on a candidate
generation and verification scheme, the theorem is proved.

Theorem 2. Let M be the total number of frequent induced patterns, and K be
the size of the largest frequent induced pattern in D. The time complexity of IPD
is O(M2 × K2 × |D|).
Proof. Suppose there are m frequent induced k-patterns. We can generate at
most 8 × (m × (m − 1)/2) candidate (k + 1)-patterns by joining two frequent
induced k-patterns. Checking whether a candidate (k + 1)-pattern is frequent
takes O(k2 × |D|) ≤ O(K2 × |D|) time. There are O(M × (M − 1)/2) valid pairs
of joining. Therefore, the time complexity of IPD is O(M2 × K2 × |D|).

Notice that this is a very pessimistic upper bound for three reasons. First,
the actual number of graphs involved in the verification and frequency counting
phase for each candidate pattern is much smaller than |D|. With the pattern
size growing, the number of graphs that need to be checked against each pattern
drops quickly. Second, the actual size of most candidate patterns that need to be
verified in the frequency counting phase is smaller than K. Third, the pairwise
joining operations occur only in the same equivalence class. It is less likely that
all of the frequent induced k-patterns would be in the same equivalence class.
Thus, the actual number of candidate patterns generated by the algorithm is
much smaller than O(M2). Finally, we note that this is a pseudo-polynomial
time algorithm, since M and K are not input parameters but values derived
from the output [22].
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3 Experiments and Results

3.1 Datasets

We used GeneNetWeaver [18] to generate the datasets related to E. coli and
yeast. GeneNetWeaver has been widely used to generate benchmark datasets for
evaluating GRN inference tools. Specifically we built three different GRNs for
each species where the GRNs contained 10, 20, 30 genes (or nodes) respectively.
Table 1 presents details of the E. coli GRNs, showing the number of nodes (edges,
respectively) in each GRN. Table 2 presents details of the yeast GRNs. Each
GRN is the gold standard or ground truth for the corresponding network size of
each species.

Table 1. E. coli GRNs used in the experiments

GRN Directed #Nodes #Edges

E. coli 10 Yes 10 9

E. coli 20 Yes 20 23

E. coli 30 Yes 30 53

Table 2. Yeast GRNs used in the experiments

GRN Directed #Nodes #Edges

Yeast 10 Yes 10 10

Yeast 20 Yes 20 20

Yeast 30 Yes 30 36

For each GRN, we generated two files of gene expression data, with one file
containing steady-state data and the other file containing time-series data. The
steady-state data used in the experiments were knockdown data. A knockdown
is a technique to reduce the expression of a gene, which is simulated by reducing
the transcription rate of this gene by half. The time-series data file contained 5
time series, where each time series consisted of 21 time points.

3.2 Experimental Setup

We compared our approach of using graph mining for GRN inference with
three existing GRN inference methods: GENIE3 [7], Jump3 [8] and TimeDelay-
ARACNE (abbreviated as TD-ARACNE) [23]. All the three methods are well-
known and widely-used for GRN inference. GENIE3 takes as input a file of
steady-state gene expression data (knockdowns in our study) and produces as
output a ranked list of weighted directed edges. Jump3 takes as input time series
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gene expression data and also produces as output a ranked list of weighted
directed edges. For GENIE3 (Jump3, respectively), we select from its output
(1.5 × n) top-ranked edges with the largest weights where n is the number of
nodes as suggested in the literature [14]. These selected edges constitute the
GRN inferred by GENIE3 (Jump3, respectively). TD-ARACNE takes as input
time series gene expression data and produces a set of directed edges. All these
edges constitute the GRN inferred by TD-ARACNE.

For each network size, GENIE3 infers one GRN while each of Jump3 and
TD-ARACNE infers five GRNs since there are five time series generated by
GeneNetWeaver. Our approach to reconstructing a GRN is to take these eleven
GRNs and find frequent patterns in the eleven GRNs using the proposed IPD
(GPD, respectively) algorithm with minsup = 4. The edges in the found patterns
constitute the GRN inferred by IPD (GPD, respectively).

For an inferred GRN G, a true positive is an edge in G, which is also an edge
in the gold standard. A false positive is an edge in G, which, however, is not an
edge in the gold standard. A true negative is an edge not in G, which is not an
edge in the gold standard either. A false negative is an edge not in G, which,
however, is an edge in the gold standard.

Let TP (FP, TN, FN, respectively) denote the number of true positives (false
positives, true negatives, false negatives, respectively). P is the sum of TP and
FN. N is the sum of TN and FP. We use accuracy (ACC), defined below, to
evaluate the performance of a GRN inference method.

ACC =
TP + TN

P + N
(3)

3.3 Experimental Results

Figure 3 shows the accuracies of the five GRN inference methods studied in the
paper for varying E. coli dataset sizes. The accuracy of Jump3 (TD-ARACNE,
respectively) was calculated by taking the average of the accuracies computed
using the GRNs inferred from the five time series generated by GeneNetWeaver.
It can be seen from Fig. 3 that the proposed IPD and GPD algorithms outper-
form the three existing GRN inference methods, producing more accurate GRNs
than the existing methods. This happens probably because the frequent patterns
found by the proposed algorithms are more likely to occur in the ground truth.
Figure 4 shows the accuracies of the five GRN inference methods for varying
yeast dataset sizes. The results for yeast are consistent with those for E. coli,
showing that the proposed algorithms are the best among the five methods. The
figures indicate that our approach is capable of predicting highly reliable edges
in a GRN.

In general, IPD is slightly better than GPD in GRN inference. Both IPD and
GPD employ a minsup parameter. A large minsup value would yield very few
patterns while a small minsup value would yield too many patterns. For both
cases, the numbers of edges in the GRNs constructed by our proposed algorithms
would deviate from those of the GRNs inferred by the three existing methods.
As a consequence, we set minsup to 4, which yielded the best results.



Reverse Engineering Gene Regulatory Networks Using Graph Mining 347

Fig. 3. Accuracies of the five GRN inference methods studied in the paper on E. coli
datasets.

Fig. 4. Accuracies of the five GRN inference methods studied in the paper on yeast
datasets.

4 Conclusions

In this paper we present a graph mining approach to reverse engineering gene
regulatory networks. Our graph mining algorithms are capable of discovering fre-
quent or common patterns from the GRNs inferred by existing methods. These
common patterns are more likely to occur in true regulatory networks. Our
experimental results demonstrated the good performance of the proposed app-
roach.

We considered here three existing GRN inference methods, namely GENIE3
[7], Jump3 [8] and TimeDelay-ARACNE [23]. In the future, we plan to explore
additional GRN inference methods, evaluating the feasibility of our approach for
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those methods. We also plan to extend the techniques presented here to miRNA-
mediated gene regulatory networks. We have recently studied how microRNAs
(miRNAs) can regulate gene expression and alternative polyadenylation through
their interaction at the 3′ untranslated region (UTR) of mammalian mRNAs,
especially in genes of inflammatory pathways [12,19]. We plan to use graph
mining methods to analyze these pathways.
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Abstract. Social networks, as an indispensable part of our daily lives,
provide ideal platforms for entertainment and communication. However,
the appearance of spammers who spread malicious information pollutes
a network’s reliability. Unlike email spammers detection, a social net-
work account has several types of attributes and complicated behavior
patterns, which require a more sophisticated detection mechanism. To
address the above challenges, we propose several efficient profiles and
behavioral features to describe a social network account and a combined
neural network to detect the spammers. The combined neural network
can process the features separately based on their mutual correlation and
handle data with missing features. In experiments, the combined neural
network outperforms several classical machine learning approaches and
achieves 97.5% accuracy on real data. The proposed features and the
combined neural network have already been applied commercially.

Keywords: Spammer detection · Social network · Deep learning
Data mining

1 Introduction

1.1 Background

The development of social network platforms, such as Twitter, Facebook, and
Sina, have made communication around the world much more convenient. With
the increasing impact of the social network, a significant number of spammers
appears aiming to conduct malicious behaviors, such as spreading malicious
URLs, posting abusive comments and hijacking the social hotspot. And that
makes spammers detection one of the top priorities of social network companies.
This paper focuses on spammers detection for the Sina microblogs, one of the
most influential social network platforms in China, which allows users to post
microblogs with less than 140 characters along with images or videos. The spam-
mers are also called the paid posters or internet water army on Sina [3]. The
analysis on feature effectiveness and the proposed combined neural network are
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also applicable to other social networks such as Twitter and Facebook by simply
changing the language analysis tool and modifying the number of input nodes
accordingly.

1.2 Related Work

Spammers detection appears first in email applications, the goal of which is to
filter out spam emails based on the email content [6,12], the abnormal behavior
[10,17] and attachments. Social network companies such as Twitter and Sina face
similar issues and many methods have been developed for spammers detection
in social networks. O’Donovan et al. [11] analyzed the content features of social
network accounts and suggested the usefulness of content features in spammers
detection. As a complement, Liu et al. [9] studied the behavioral features and
proposed a hybrid model to calculate the ’spamming value’ for each account.

In addition, machine learning approaches have also produced promising
results for spammers detection. Wang [15] proposed a Näıve Bayes method using
three graph-based features (profile features) and three content features. Two sup-
port vector machine (SVM) based methods were developed by Cheng et al. [5]
and Zheng et al. [18], whose approach detects spammers in two phases. The
first phase utilizes content features and the second phase considers the topic of
the microblogs with the help of a Latent Dirichlet Allocation (LDA) model [1].
Chakraborty et al. [2] designed a Social Profile Abuse Monitoring (SPAM) sys-
tem which also adopts the multi-stages detection mechanism and achieves 89%
accuracy.

However, most of the previous approaches assume that the account has all the
features the detection model requires, which is not desirable in practice. Indeed,
a new spammer account may not have any significant behavioral features at all.
In addition, some proposed features, such as the content topic recognition and
accounts similarity analysis, require more feature engineering effort. Our work
contribute to the topic of spammers detection in the following ways:

– Efficient profile and behavioral features. We investigate the difference
between spammers and non-spammers and propose the use of several profile
and behavioral features that can be extracted easily from the social network
accounts.

– Combined neural network. We propose a novel combined neural network
that includes a linear regression model (LR) and two artificial neural net-
works (ANN) to incorporate different types of features. More importantly,
the combined model is very flexible in practice since each sub-model within
the combined neural network can perform the detection independently, by
simply deactivating unwanted sub-models, in the case that some features are
missing.

– High detection accuracy. We conduct experiments to study the effective-
ness of the proposed features and the detection performance of the combined
neural network and its sub-models. In our experiment, the combined neural
network outperforms other classical machine learning models in literature by
achieving 97.5% detection accuracy.
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The paper is organized as follows. Section 2 introduces the profile and behav-
ioral features that will be used for our detection model. In Sect. 3, we present
our combined neural network and derive its training process. We study the effec-
tiveness of the proposed network in spammers detection in Sect. 4. The paper is
concluded in Sect. 5.

2 Features

A social network contains massive data that may change rapidly. So extract-
ing distinctive features is a critical component for spammers detection. Based
on the features categories, we consider four profile features and four behavioral
features for our model and we will analyze those features’ effectiveness in exper-
iments. Some of the features in this paper have proven efficiency in the spammer
detection problem [2,5,11,15].

2.1 Profile Features

A registered account in a social network typically has a public profile which
describes the attributes of the user. The normal users are more likely to fill
out the basic profile so that their friends could recognize them. However, it is
cumbersome for spammers to create a lot of accounts with complete profile infor-
mation. This section analyzes four profile features that are useful in spammers
detection and summarizes them in Table 1.

– Fans ratio. The followers, also called fans, are users that follow one’s account,
while the followings are the users that one follows. Spammers would follow
many normal users in the hope that they would follow back so that they
can spread spam messages. And a few normal users would indeed follow a
stranger. This results in a limited number of followers and lots of followings
for spammers. We define fans ratio to quantify this phenomenon

fans ratio =
follower

follower + following

where follower and following represent the number of followers and follow-
ings respectively. We collect 1000 spammers and non-spammers’ fans ratio in
Fig. 1. It is obvious that spammers (red cross) are more likely to have lower
fans ratio than non-spammers (green cross).

– Account level. Each account has a level indicator that reflects the activeness
of this account, determined by how long the account is established and how
often the user posts a microblog. Normally, an active account would have a
higher level than a silent one. We record 1000 spammers and non-spammers’
account levels in Fig. 2. To compensate the level data’s disproportion, all the
levels are normalized within [0, 1] for training and testing.

– Verification. The Sina microblog network enforces an identification policy.
An account can earn a verification mark by verifying its owner’s identity. Since
detailed personal information are needed for verification, few spammers have
such a verification mark.
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Fig. 1. The fans ratio feature. (Color
figure online)

Fig. 2. The account level feature.
(Color figure online)

Table 1. The proposed profile features.

Feature name Definition

fans ratio The fans ratio

lv The account level normalized within [0, 1]

is common The account is not verified

is V The account is verified as a personal account

is expert The account is verified as an expert’s account

is company The account is verified as an organization’s account

Brief information The account has an introduction

– Self introduction. A brief self introduction can be added for each account
that is displayed under the account name. Most spammers do not have a self
introduction.

2.2 Behavioral Features

Besides the profile features, spammers’ accounts also operate in a different man-
ner due to their specific blogging purposes. Behavioral features provide a way
to quantify that difference. We propose four behavioral features which can be
easily extracted from the microblogs of an account.

– User interaction. For each microblog, other users can comment, repost it or
leave a’like’. The microblog itself might also be a reposted one. The number
of interaction activities reflects the attention a microblog has attracted. We
binarize those features based on whether a particular microblog has the above
interaction activities.

– Special characters. The microblog also provides other enhanced interaction
using special characters. We summarize those special characters and their
associated functions in Table 2.
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Table 2. The special characters and proposed content features.

Special characters Function

I The subject of the message

@ Post a microblog and alert other users

# Post a microblog with hashtags

//@ Repost others reposted microblogs

URLs Attach the URLs

Video Attach the video

Content features Definition

Number of words The number of words normalized within [0, 1]

Non-repeated words Fraction of non-repeated words

Non-stop words Fraction of non-stop words

Non-repeated and non-stop words Fraction of non-repeated and non-stop words

– Content features. Instead of doing the content mining, this paper leverages
simpler content features in terms of the text length and the valuable content.
We segment the microblog’s content and compute the corresponding content
features as summarized in Table 2. Generally, stop words are a group of words
that occur frequently but do not carry much information, like the word ’the’
in English.

– Publish time. Controlling by the software, spammers keep posting even
at deep night and the interval time between two microblogs is more regular
compared to non-spammers. Therefore, we use an 8 × 1 vector, whose i-th
entry is 1 when the microblog is posted during [(i − 1) × 3 : 00 − (i × 3) : 00],
to indicate the publish time. A 7 × 1 vector is used to represent the day of
the week of the posting.

3 The Combined Neural Network

In the past decade, neural networks have achieved great success in many machine
learning tasks [8,13,16]. A properly designed neural network model has sufficient
capacity to classify complicated data in high dimensional spaces. It is also found
that hybrid models which utilize multiple models in a proper way can improve
the classification performance [4]. However, they fail to consider the situation
of missing data. Inspired by those ideas, we generalize and propose a combined
neural network which hybridizes linear regression models and artificial neural
networks. Specifically, for the spammer detection problem, our combined network
is composed of one linear regression model (LR) and two neural networks (ANN)
as shown in Fig. 3.

With the proposed combined network, highly correlated features can be pro-
cessed together in a sub-networks to avoid the influence of other less related fea-
tures. In practice, if some of the account’s features are absent, the sub-models
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Fig. 3. Architecture of the proposed combined neural network.

Table 3. The combined neural network for spammers detection. The structures show
the number of nodes from input to output layers for each sub-model.

Submodel Feature name Structures

LR Profile features [7 2]

ANN-1 Publish time [150 150 52 2]

ANN-2 User interaction, characters and content features [140 140 49 2]

can still perform the detection independently. In addition, the design reduces
computational complexity compared to a fully connected neural network and
makes it easier to handle inputs with different types of attributes.

Based on the features analysis in the last section, we category the features
associated with an account into three classes, the profile features, the publish
time and the behavioral features (except the publish time) whose dimensions
are 7, 150 (15 × 10 for ten most recent microblogs) and 140 (14 × 10 for ten
most recent microblogs) respectively. Therefore, given N undefined accounts,
the network input is X = [XL,XA1 ,XA2 ]T ∈ R297×N where XL ∈ R7×N ,
XA1 ∈ R150×N and XA2 ∈ R140×N .

We model the profile features using linear regression (i.e. a neural network
without hidden layers) since those features are almost linear separable based
on the experiments. The rest two classes are modeled using two independent
artificial neural networks due to their non-linear characteristics. Empirically, we
observe that when the numbers of nodes in the first and second hidden layers
equals the 100% and 35% of the number of nodes in the input layer, the combined
model can achieve best performance as shown in Table 3.

3.1 Model Details

We first introduce parameters’ notations for the combined neural network in
Table 4. The corresponding matrices are written in boldface capital letters with-
out subscripts. For example, WL,1 represents the weight matrix connecting the
first and second layer in the linear model. In addition, since the input layer is
the first layer, we have xL

i = aL,1
i and xA

i = aA,1
i .
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Table 4. The combined neural network’s parameters.

Notation Definition

yi The i-th node’s output in the output layer

wL,l
ij , wA,l

ij The weight parameters connecting the i-th
node in the l layer to the j-th node in the
(l + 1) layer in the linear model and ANN

bL,l
j , bA,l

j The bias parameters connecting to the j-th
node of the (l + 1) layer in the linear model
and ANN

zL,l
i , zA,l

i The i-th node’s input of the l-th layer in the
linear model and ANN

aL,l
i , aA,l

i The i-th node’s output of the l-th layer in
the linear model and ANN

The linear model can be easily shown as a linear transformation
ZL,2 = WL,1XL + BL,1. Similarly, for the ANN, we have ZA,4 =
WA,3f(WA,2f(WA,1XA +BA,1) +BA,2) +BA,3 where f(x) = max(0, x) is the
rectifier activation function. Based on the above equations, the output layer’s
input for the combined neural network is Z = ZL,2 + ZA1,4 + ZA2,4.

A softmax function is applied in the output layer to calculate the posterior
probabilities. For one particular data point, the network’s output is

Y =

⎡
⎣ exp

(
zL,2
1 + zA1,4

1 + zA2,4
1

)

∑2
i=1 exp

(
zL,2
i + zA1,4

i + zA2,4
i

) ,
exp

(
zL,2
2 + zA1,4

2 + zA2,4
2

)

∑2
i=1 exp

(
zL,2
i + zA1,4

i + zA2,4
i

)
⎤
⎦
T

where y1 = P (Spammer|x) and y2 = P (Normal|x). If y1 ≥ y2, the account will
be classified as a spammer.

3.2 Model Training

We first derive the parameters derivatives for training. Assuming we have N
data points, we evaluate the combined neural network’s performance using the
cross entropy

H = − 1
N

N∑
n=1

2∑
i=1

y
,(n)
i log(y(n)

i )

where y′
i takes a value either 0 or 1 indicating the ground truth label and the

minimum value of H is 0. Therefore, given N data points, the derivatives of the
linear model parameters are:
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∇H(wL,1
ij ) =

1
N

N∑
n=1

∇H(wL,1
ij , x(n), y(n)) =

1
N

N∑
n=1

2∑
k=1

∂H

∂z
L,2,(n)
k

∂z
L,2,(n)
k

∂wL,1
ij

=
1
N

N∑
n=1

(y(n)
j − y

,(n)
j )aL,1,(n)

i

∇H(bL,1
j ) =

1
N

N∑
n=1

2∑
k=1

∂H

∂z
L,2,(n)
k

∂z
L,2,(n)
k

∂bL,1
j

=
1
N

N∑
n=1

(y(n)
j − y

,(n)
j )

in which

∂H

∂zL,2
k

=
2∑

j=1

∂H
∂yj

∂yj

∂zL,2
k

= −y′
k + yk

2∑
j=1

y′
j = yk − y′

k

∂zL,2
k

∂wL,1
ij

=

{
aL,1
i k = j

0 k �= j
,

∂zL,2
k

∂bL,1
j

=

{
1 k = j

0 k �= j.

The derivatives of the ANN can be calculated efficiently via backpropagation.
We first compute the derivative with respect to each node’s input, denoted as δ,
and propagate it backward. For the output layer and the l-th (l ≤ 3) layer

δ4i =
∂H

∂zA,4
i

= yi − y′
i, δli =

∂H

∂zA,l
i

=
nl+1∑
j=1

δl+1
j wA,l

ij f ′(zA,l
i )

where nl+1 is the total number of nodes in the (l+1) layer (except the bias node)
and f ′(zA,l

i ) is the derivative of the rectifier function. f ′(zA,l
i ) = 1 if zA,l

i ≥ 0
and f ′(zA,l

i ) = 0 otherwise. Therefore, we get the derivatives with respect to the
weights and biases for ANN with N input data points as follows.

∇H(wA,l
ij ) =

1
N

N∑
n=1

∇H(wA,l
ij , x(n), y(n)) =

1
N

N∑
n=1

δ
l+1,(n)
j a

A,l,(n)
i

∇H(bA,l
j ) =

1
N

N∑
n=1

δ
l+1,(n)
j

After calculating the derivatives, the Adam optimization algorithm [7] which
updates the learning rate for each parameter adaptively with 0.05 initial learning
rate is applied to train the combined network. Given N training samples, the
batch size and number of epoches are N /10 and 1000 respectively. Dropout [14]
is also performed in the ANN during training to prevent overfitting. Nodes in
the first and second hidden layers are kept with probabilities 0.5 and 0.8.

4 Experiment and Analysis

We analyze the effectiveness of the selected features and compare the proposed
combined neural network to other classical machine learning methods for spam-
mers detection. Throughout the experiment, five-fold cross-validation is applied
for a more accurate performance estimate.
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4.1 Data and Evaluation Metrics

We collect about 5000 spammer accounts and 5000 non-spammer accounts
through a media company and web crawling. For each account, we label it man-
ually and extract its profile features and behavioral features accordingly. We
evaluate the model performance based on four evaluation metrics, the accuracy,
precision, recall and F1 score defined as follows (Table 5).

Table 5. The confusion matrix entries.

Spammer Non-spammer

Predicted spammer True positive (TP) False positive (FP)

Predicted non-spammer False negative (FN) True negative (TN)

– Accuracy: the ratio of the number of correctly classified accounts over the
total number of accounts. A = TP+TN

TP+TN+FP+FN .
– Precision: the ratio of the number of correctly classified spammers to the

number of accounts that are classified as spammers. P = TP
TP+FP .

– Recall: the ratio of the number of correctly classified spammers to the num-
ber of spammers. R = TP

TP+FN .
– F1 score: a measure to examine the test accuracy and is computed as F1 =

2×P×R
P+R .

4.2 Features Effectiveness Analysis

Single Feature. In order to verify the proposed features’ effectiveness, we apply
four classical machine learning classifiers for spammers detection using different
single features. Those classifiers, which are also popular in literature, are C4.5,
classification and regression trees (CART), support vector machine (SVM) and
the Näıve Bayes (NB) classifier. Considering that both the special characters
and content features are extracted from texts, we also combine them as the
text feature for evaluation. The detection accuracies are summarized in Table 6.
We observe that the text features and the publish time is quite distinguish-
able between spammers and non-spammers and except the content feature, all
features achieve at least 78.92% accuracy for four classifiers.

Combined Features. Instead of using only one type of features as the input, in
this section, we try different combinations among features and record the detec-
tion accuracies in Table 7. We can observe that using combined features pro-
motes the detection accuracy significantly compared to using the single feature.
In addition, no matter which model we use, utilizing all features for detection
achieves the highest accuracy. Notably, SVM using all features achieves 96.53%
accuracy which proves the effectiveness of the proposed features.
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Table 6. The detection accuracies using a single feature.

Feature name C4.5 CART SVM NB

Profile features 85.40% 85.74% 85.52% 78.92%

User interaction 84.06% 83.96% 84.77% 85.65%

Special character 86.87% 86.41% 87.70% 88.96%

Content feature 74.55% 75.07% 73.91% 66.37%

Text features 85.87% 86.44% 89.19% 89.80%

Publish time 87.21% 86.93% 86.70% 86.61%

Table 7. The detection accuracies using combined features.

Features name C4.5 CART SVM NB

Profile features and user
interaction

88.95% 87.97% 89.21% 86.30%

Profile and text features 92.97% 93.39% 94.71% 90.36%

Profile features and publish
time

92.49% 91.95% 90.89% 88.40%

User interaction and text
features

91.70% 91.74% 95.81% 95.39%

User interaction and publish
time

89.76% 90.20% 92.78% 91.63%

Text features and publish
time

89.25% 89.35% 93.69% 91.18%

All features 94.55% 94.06% 96.53% 96.02%

Different Lengths of Behavioral Features. Furthermore, we study the influ-
ence of different lengths of behavioral features. For each account, we use its profile
features as the initial state (horizontal axis = 1) and add its recent microblogs
one by one from which we extract the account’s behavioral features. The results
are shown in Fig. 4. After adding five microblogs’ behavioral features, the accura-
cies of SVM and NB tend to be steady while the accuracies of C4.5 and CART
fluctuate within a narrow range. In order to obtain a higher accuracy while
avoiding heavy features engineering effort, using behavioral features from the
ten most recent posts are most favorable.

4.3 The Combined Neural Network

In this section, we conduct experiments to evaluate the detection performance
of the proposed combined model and its sub-models.

Comparison to Classicial Models. We first compare the detection per-
formance between the proposed combined neural network and other classical
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Fig. 4. The accuracy, precision, recall and F1 score with all profile features while
different lengths of behavioral features.

Table 8. The detection performances for different models.

Model Accuracy Precision Recall F1 score

C4.5 94.55% 94.15% 95.01% 94.58%

CART 94.06% 93.82% 94.35% 94.08%

SVM 96.53% 96.46% 96.60% 96.53%

NB 96.02% 96.89% 95.10% 95.98%

Combined model 97.50% 98.24% 97.12% 97.68%

machine learning approaches. The comparison result is shown in Table 8 which
shows that the proposed combined model achieves 97.5% accuracy and out-
performs other classical machine learning classifiers in the spammer detection
problem.

Sub-models Detection Performance. As we mentioned previously, each sub-
model in the combined neural network can work independently in the case some
features are absent. In this section, we train the combined network and extract
each individual sub-model to examine its detection performance. The result is
shown in Table 9.

The vote model is a multi-classifiers model that classifies an account based
on the voting from three sub-models. We can find that all sub-models achieve
promising detection accuracies between 84% and 97%. Therefore, it is not sur-
prising that a vote model can achieve above 97% accuracy. However, a simple
vote model ignores the relative magnitudes of each sub-model’s output which
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Table 9. The detection result using sub-models independently.

Model Accuracy Precision Recall F1 score

LR 84.50% 78.73% 94.58% 85.93%

ANN-1 95.68% 96.95% 75.68% 95.62%

ANN-2 96.36% 96.72% 95.97% 96.34%

Vote model 97.25% 97.80% 97.09% 97.44%

Combined model 97.50% 98.24% 97.12% 97.68%

Fig. 5. Different models’ accuracies versus the training iteration number.

limits its capability. We also record the sub-models training process in Fig. 5.
We can observe that the combined model converges as fast as its sub-models but
achieves higher accuracy. Noticeably, the linear model accuracy is far below the
non-linear models due to the non-linear characteristics in the spammer detection
task.

4.4 Performance Tracking

Although behavioral features are quite effective, it may update rapidly for active
users. Spammers would also change their behavior pattern to escape from being
detected by the platform. Therefore, it is important to examine how the fast
changing environment affects the combined neural network’s detection perfor-
mance.

A Quick Test. We start the study from a quick test by first selecting 500
active accounts including 250 spammers and 250 non-spammers on December
25th, 2016 and implementing different classifiers on those accounts. After two
months, we extracted those accounts’ features again and their ten most recent
microblogs were totally different from the previous. We then performed the clas-
sification again using the pre-trained models and recorded the detection accu-
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racies in Table 10. All models’ accuracies decrease after two months since those
users may have already changed their microblog habits and so do the spammers.
Fortunately, the combined model still achieve 96.21% accuracy and outperform
other models.

Table 10. The accuracies after two months.

Date C4.5 CART SVM NB Combined model

12/25/16 95.99% 96.65% 98.88% 92.20% 99.11%

02/25/17 91.21% 87.04% 94.98% 91.63% 96.21%

Model Update. In this part, we take a closer look of the influence by the chang-
ing behavioral features. A cooperative company provides us with new accounts
every day which allows us to update the combined model daily. Namely, we
update the combined model using yesterday’s data and test it on today’s new
coming data. The tracking of detection accuracies is shown in Table 11. Com-
pared to the non-updated model, updated model performs much better and the
accuracies are always beyond 97%. Therefore, it is necessary to update the model
frequently.

Table 11. Accuracies tracking for the combined neural network.

Data collection date Non-updated model Updated model

02/19/17 93.21% –

02/20/17 94.83% 97.24%

02/21/17 95.17% 97.24%

02/22/17 96.79% 98.57%

02/23/17 94.48% 97.59%

02/24/17 96.55% 97.24%

02/25/17 94.07% 98.15%

5 Conclusion

This paper proposes several efficient profile and behavioral features and a novel
combined neural network for spammers detection in the social network. Among
the massive information, our proposed features provide a decent norm to detect
the spammers among legitimate users. The effectiveness of the proposed fea-
tures is studied using several classical machine learning approaches. In addition,
based on the correlation between different features, the combined neural network
is proposed to handle the input with different types of attributes. The exper-
iments on real world data demonstrate the efficiency and effectiveness of the
proposed network which achieves 97.5% detection accuracy. Finally, we study
how the combined neural network is affected by the rapidly changing internet
environment.
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Abstract. Pedestrian Detection in real world crowded areas is still one
of the challenging categories in object detection problems. Various mod-
ern detection architectures such as Faster R-CNN, R-FCN and SSD has
been analyzed based on speed and accuracy measurements. These mod-
els can detect multiple objects with overlaps and localize them using
a bounding box framing it. Evaluation of performance parameters pro-
vides high speed models which can work on live stream applications in
mobile devices or high accurate models which provide state-of-the-art
performance for various detection problems. These convolutional neural
network models are tested on the Penn-Fudan Dataset as well as Google
images with occlusions, which achieves high detection accuracies on each
of the detectors.

1 Introduction

Pedestrian detection has made immense progress over the last few years with
the arrival of convolutional neural networks. It persists as one of the challeng-
ing problems because of the large variability of pedestrians in clothing, so that
only a few areas can be included as the real feature for distinguishing this cate-
gory. In addition, the lighting conditions, background overlaps, articulation, and
occluding accessories such as umbrellas and backpacks may cause changes to the
silhouette of the pedestrian. Conventional pedestrian detection methods require
complex feature extraction manually and have a limitation of slow processing
time. However, modern convolutional neural network models such as Faster R-
CNN [1], R-FCN [2], Mobilenets [3] and SSD [4] has been found to have more
accurate and fast performances. But the appropriate tradeoff between speed and
accuracy for each of the models has not been evaluated for the application of
pedestrian detection. The detection speed is calculated in terms of seconds per
frame (SPF) and the accuracy metric used is mean average precision (mAP).

The State-of-the-art pedestrian detection frameworks depend on region pro-
posal algorithms to estimate the location of the pedestrians. After the advance-
ment of networks like SPPnet [5] and Fast R-CNN [6] the running time was
reduced thereby making the region proposal computation to impede. Th Region
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Proposal Network (RPN) introduced cost-free region proposals that share convo-
lutional features with the detection network. Thus, Faster R-CNN is composed
of a deep fully convolutional network that proposes regions, and these regions
are used by the Fast R-CNN detector to predicts object bounds and objectness
scores at each position. In case of PASCAL VOC 2007, 2012, and MS COCO
datasets this model achieved high detection accuracy with only 300 proposals
per image. The region-based, fully convolutional networks (R-FCN), in contrast
to the region-based detectors such as Fast/Faster R-CNN have all computa-
tions shared on the entire image. Meanwhile, the Faster R-CNN applies a costly
per region network on the image large number of times thereby increasing the
computational burden. The R-FCN model can also use the Residual Networks
(ResNets) [7] as a fully convolutional image classifier backbone for various detec-
tion applications. To manage real-world applications such as self-driving car and
augmented reality, the recognition tasks must be performed on a computation-
ally limited platform. MobileNets are such small, low latency models that can
be easily matched to the design requirements for mobile and embedded vision
applications. They were primarily constructed by performing depth wise sepa-
rable convolutions. It was subsequently used in Inception models [8] to reduce
the computation in the first few layers. While accurate, the current approaches
have been too computationally intensive for embedded systems and, too slow
for real-time applications, even with high-end hardware. A single deep neural
network named SSD was introduced which achieved 77.2% mAP for 300300
input and 79.8% mAP for 512512 input on VOC2007, outperforming a compa-
rable state-of-the-art Faster R-CNN model. Several attempts were made to build
faster detectors, but so far, significantly increased speed comes only at the cost
of significantly decreased detection accuracy.

In this paper, the speed/accuracy trade-off of modern detection systems are
explored in the application of pedestrian detection. The test time performances,
duration of training, learning rate and loss functions for each model are com-
pared to find the optimal detector for this application. Here lesser training time
denotes faster convergence to a more accurate model using fewer parameters.
This reduces the complexity of the system as well as prevents overfitting. The
Faster R-CNN, R-FCN, and SSD at a high level consist of a single convolutional
network and are trained with a mixed regression and classification objective
thereby making it easier to compare and analyze these systems. The implemen-
tations of these architectures were done in TensorFlow which finally provided
the tradeoff results for various detection systems.

2 Model Architecture

The detection framework consists of the convolutional object detectors with dif-
ferent meta architectures and feature extractors. The meta architectures include
proposal based methods such as R-FCN and Faster R-CNN and proposal free
method with SSDs. In Faster R-CNN the computational burden is shared and
the region proposals are generated using neural networks. Hence this architec-
ture has improved efficiency while in R-FCN the removal of fully-connected layers



Pedestrian Detection 367

improves speed as well as accuracy. SSD uses different bounding boxes and small
convolutional filters for prediction. It achieves high detection speed even while
using relatively low-resolution input. In particular, several pre-trained models
such ResNet, MobileNet, and Inception are used for feature extraction. Thus
the proposed network uses a combination of these architectures and trained
them with the multi-task loss function for object detection and localization.

2.1 Modern Convolutional Detectors

Single Shot Detector. SSD uses a single deep Neural Network to detect the
objects. SSD makes the output space of bounding boxes discrete to form a set
of default boxes. These default boxes are formed over different aspect ratios
and scales for each of the feature map location. During the prediction, scores
are generated for each of the object category in each default box and the box
dimensions are adjusted to fit the object shape better [4].

Single Shot Multibox Detector is a feed forward Convolutional network pro-
ducing a collection of bounding box which have fixed-size. The scores are gener-
ated for the presence of an object class instance in those boxes, following which
a non-maximum suppression step is done which produce the final detection. The
base network layers are based on standard architecture used for higher quality
image classification. Feature Layers are added to the truncated base network
which decrease in size progressively as shown in Fig. 1. Hence, the detections at
multiple scales is possible. Using a set of Convolutional filters each of the added
feature layers formulates a fixed set of detection predictions. For a feature Layer,
the parameters used for prediction is mainly a kernel of size 3 × 3 × p (the fea-
ture layer having size m × n with p channels) which produces either a score for
a category or the shape offset with respect to the default box position relative
to feature map location [4]. Each feature map cell has a default bounding box
assigned to it. For each of these feature map cell the offsets relative to the default
box shapes in the cell are calculated. Also, the scores that indicate the presence
of a class instance in these boxes are predicted for each class. At the training
time, the default boxes are first compared with the ground truth boxes follow-
ing the calculation of model loss. The model loss calculated is hence a weighted
sum between Localization loss [6] which corresponds to the shape offset and
confidence loss calculated from the confidences for all object categories.

SSD Training Objective. The training objective is obtained from the Multi-
box Objective [9,10]. The Objective Loss function is the weighted sum of Local-
ization Loss (loc) and Confidence Loss (conf) [1] given by Eq. (1).

L(x, c, l, g) =
1
N

(Lconf (x, c) + αLloc(x, l, g)) (1)

N is the number of matched default boxes. Localization Loss is computed in
the form of a smooth L1 loss [6] between the parameters corresponding to the
predicted box (l) and the ground truth box (g) [4]. Confidence loss is mainly the
loss over different class confidences (c). For N = 0, loss is set to zero.
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Fig. 1. Architecture of SSD

Faster R-CNN. Faster R-CNN (Faster region-based convolutional neural net-
works) is a single, unified network mainly used for object detection [1]. Fast
R-CNN developed before the Faster R-CNNs were able to achieve near real-time
rates using very deep networks [11], ignoring the time spent on region propos-
als. [1] The Region proposal step was computationally expensive with a huge
running time.

Faster R-CNN has two modules. The first module being the deep fully con-
volutional network proposing regions. The second module is the detector module
from Fast R-CNN [6]. These detectors use the proposed regions. The recently
popular term attention [12] mechanisms, the Region Proposal Network tells the
Fast R-CNN detector module where to look at [1]. Figure 2 shows the descrip-
tion of the layers. A Region Proposal Network (RPN) takes an image as input.
The output is a set of rectangular proposals for the objects with a score depict-
ing the objects presence. RPN is modelled using a fully connected convolutional
network. The region proposals are generated by sliding a small network over
the convolutional feature map. This feature map is obtained from the previous
convolutional layer. The small network takes in an n × n spatial window of the
feature map as the input. These windows are then mapped to a lower dimen-
sional feature. The Low-dimensional features are then fed to two fully connected
layers namely box regression layer (reg) and box-classification layer (cls). [1] In
Fig. 3, for k locations corresponding to maximum possible proposals reg layers
have 4k outputs showing coordinates of k boxes whereas cls layer has 2k scores
which help in estimating the probability of object occurrence for each proposal.
These k proposals are parameterized with respect to k reference box called as
anchor. Anchor based approach helps in addressing the multiple scale and aspect
ratio issues. This design hence avoids extra cost for addressing scales.

The loss function for an image while training RPN is defined as:

L(pi, ti) =
1

Ncls

∑

i

Lcls(pi, p∗
i ) + λ

1
Nreg

∑

i

p∗
i Lreg(ti, t∗i ) (2)

i is the index for an anchor in mini batch and pi is the predicted probability of
anchor I being an object. The ground-truth label p∗

i is 1 if the anchor is positive
and 0 if negative. ti represents the coordinated and t∗i is the ground-truth box
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counterpart. Lcls is the log loss over two classes (whether object or not) and
Lreg is the regression loss. The two terms obtained from the cls and reg are
normalized by mini-batch size. During training either the RPN is trained first
and the proposals are used to train the Fast R-CNN or the alternative technique
involves both the models to be merged into one network during training which
is shown in Fig. 2.

Fig. 2. Region Proposal Network (RPN)

Fig. 3. Architecture of Faster R-CNN

R-FCN (Region Based Fully Convolutional Network). R-FCN (Region
based Fully Convolutional Network) consists of shared, fully convolutional archi-
tectures. The translation variance is incorporated into FCN. To do this a set of
position-sensitive score maps are constructed by using a bank of specialized con-
volutional layers as the FCN output. [2] The architecture mainly contains Region
Proposal Network which extracts candidate regions. The Region Proposal Net-
work used here are fully Convolutional. These features are then shared between
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the RPN and R-FCN (similar to [1]). The proposal regions constitute the RoIs,
The R-FCN architecture classifies these objects into categories and background.

In the R-FCN all the weight layers are convolutional and takes in the entire
image as shown in Fig. 4. R-FCN ends with a position-sensitive RoI pooling
Layer [2]. The last convolution layer outputs are aggregated in this layer. This
layer generates scores for each region proposal, hence making this layer to learn
specialized position-sensitive score maps. The main difference of R-FCN from
R-CNN is that all the layers are fully convolutional. The learning mechanism is
similar.

Fig. 4. Overall architecture of R-FCN

2.2 Feature Extractors

Mobilenet. MobileNet model uses depthwise separable convolutions. Depth-
wise separable convolutions factorizes a standard convolution into Depthwise
Convolution and 1× 1 convolution. The 1 × 1 convolutions are known as point-
wise convolution [3]. The Depthwise convolution applies a single filter to each
input channel. Pointwise convolution on the other hand applies 1×1 convolution
where the outputs of depthwise convolution are combined. Pointwise convolu-
tion linearly combines the output from the depthwise Convolutional layer. Unlike
basic convolution where the filters and inputs combine into a set of outputs in
one step; in MobileNets the depthwise separable convolution splits this convolu-
tion process into two different layers. The first layer does filtering, and the second
layer performs the combination. This mainly helps in reducing the computational
cost and reduces the Model size. Both batchnorm and ReLU nonlinearities are
used for both layers [3].

In the MobileNet structure, all the layers are built based on depthwise sep-
arable convolutional Layers except the first layer which is full convolution [3].
All Layers are followed by batchnormal and ReLU nonlinearity. The final Layer
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is the exception which has no nonlinearity but is followed by a softmax Layer
instead which helps in classification [8]. MobileNet models were trained in Ten-
sorFlow [13] using RMSprop [14] with asynchronous gradient descent similar to
Inception V3 [3,15].

Inception v2. This model mainly aims at utilizing added computation as effi-
ciently as possible to perform factorized convolutions and aggressive regulariza-
tion. The convolutional networks can be scaled up in an efficient way by using
Inception concepts. Th convolutions involving a kernel greater than size 3 × 3
can be easily and efficiently performed using a series of smaller convolutions [15].
Further, factorization of convolutions and improved normalizations can be other
tricks that are adopted to improve its efficiency.

Inception networks are fully convolutional, and each weight corresponds to
multiplication per activation. If the factorization is done properly the parameters
can be more disentangled and hence can lead to faster training. Inception-v2
network is 42 layers deep. The computational cost is only about 2.5 higher than
that of GoogLeNet and is more efficient than VGGNet [15].

3 Experimental Setup

The pedestrian detector is trained on the Penn-Fudan dataset [16]. This database
contains images of pedestrians are taken from scenes around campus and urban
street. Each image will have at least one pedestrian in it. There is a total of 170
images in which 80% are used for training while the rest are used for testing. The
convolutional neural network models are pre-trained on the COCO dataset, the
Kitti dataset, and the Open Images dataset and hence lesser data is required for
re-training the models. The detections on COCO dataset based on these models
are shown in Fig. 5. In case of the COCO dataset, the different models provide
a trade off between speed of execution and the accuracy in placing bounding
boxes as shown in Table 1.

Further, in order to train the model, for each image, the width, height and
each class with their bounding box parameters are required. Hence the input data
is labeled manually using the graphical image annotation tool named LabelImg.
It uses Qt for its graphical interface and the annotations for each image are saved
as XML files in PASCAL VOC format. A labeled map associated with each of the
datasets and this label map defines a mapping from string class name (person)
to integer class ids which always start from id 1. During training, TensorFlow
uses the TFRecord format in order to optimize the data feed. Initially, the XML
files are converted to CSV files which are further converted to TFRecord files.

The pre-trained models such as SSD MobileNet, SSD Inception, Faster RCNN
Inception, R-FCN Resnet101 and Faster RCNN Resnet101 are chosen for ana-
lyzing the dataset. Each model has corresponding checkpoint files as well as con-
figuration files for the training process. The pre-trained model using the COCO
dataset was designed to work in 90 categories. In the configuration files, transfer
learning is done by removing the last 90 neuron classification layer of the network
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Fig. 5. Sample detection on COCO 2017 test images

Table 1. Performance comparison for COCO dataset

Model name Speed COCO mAP Outputs

ssd mobilenet v1 coco Fast 21 Boxes

ssd inception v2 coco Fast 24 Boxes

faster rcnn inception v2 coco Medium 28 Boxes

rfcn resnet101 coco Medium 30 Boxes

faster rcnn resnet101 coco Medium 32 Boxes

and replacing it with a new layer. Here this is implemented so that training will
be quicker and the data required will be less. Thus the five pre-trained models
are taken and the last layer is clipped off and replaced with the class of the
current dataset. The SSD MobileNet and SSD Inception used a batch size of
10 while the rest of the models used a much lesser batch size of 3. Here each
of the five models is trained for 5000 number of steps and these steps mainly
depends on the size of the dataset. The initial learning rates are in the range of
0.002–0.004 for each of the models.
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Fig. 6. Experimental flow chart

The fine-tuning of an existing model is highly accurate and easy since most
of the features that are learned by CNNs are often object agnostic. Thus all
the feature detectors trained in the previous model are used to detect the new
class. When the loss function for each of the models is around 1 or starts rising
the training is stopped. Finally, the graph for inference is exported and the
newly trained model is validated using the remaining 20% test data as well raw
Google images. These images are in the RGB format with varying sizes and are
in .png image format. Many of these images contain multiple pedestrians and
those holding many occluding object artifacts such as bags and umbrellas. Each
of the trained models is tested at multiple checkpoints to see which one performs
the best. The entire experimentation is shown in the flowchart in Fig. 6.

4 Results

4.1 Detection Time on Test Images on CPU

The detection time per image was calculated for each model as shown in Table 2.
It was seen that faster RCNN inception and SSD models are faster requiring
around 2.5 s on average detection time per image. However faster RCNN resnet
models has a higher computation burden and thereby require around 18 s.
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The overall mAP calculation of different models is shown in Table 2. It is
observed that faster rcnn inception outperformed other models with a higher
accuracy value. Based on the ranking of detection scores for each class the per-
formance of the detectors are evaluated using mean average precision over entire
test data.

Table 2. Speed accuracy trade-off

Model name Time (s) mAP

ssd mobilenet 1 0.78

ssd inception v2 1.2 0.92

faster rcnn inception 4.7 0.96

rfcn resnet101 7.31 0.95

faster rcnn resnet101 18.23 0.95

4.2 Sample Detections

The visualization of detections in the test images of the Penn-Fudan dataset can
be seen in Fig. 7. Thus a comparative analysis is done between the 5 models to
find the optimum detector for the pedestrian detection application. The Penn-
Fudan dataset consist of different categories of pedestrians such people carrying
umbrellas, suitcases and other occluding objects. There also exist variable cases
such as multiple people on the same screen and overlapping scenarios. Thus
sample detections done on this dataset can be considered to be highly comparable
to real life situations. From the figures it is clear that all the models perform
consistently well except that SSD is unable to detect pedestrians which are
farther away and it also shows low detection rate in case of overlaps. Further,
sample detection using Faster R-CNN Inception on a Google image is shown in
Fig. 10.

4.3 Total Loss Function

The loss function for the models is the total loss in doing detection and generating
bounding box. Each of the models was trained for 5000 steps since the size of the
dataset was comparatively small. The loss for SSD (both with ResNet 101 and
Inception-v2) models started off with a value around 13 and converged around
the value 2. In case of Faster R-CNN (both with ResNet 101 and Inception-v2)
and R-FCN models, the loss function converged to a relatively smaller value
around 0.2.
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Fig. 7. Example detection for (a) SSD Mobilenets (b) SSD Inception (c) R-FCN Resnet
(d) Fast RCNN Resnet (e) Fast RCNN Inception

Therefore, it can be seen that appropriate training was done for the latter
models, till the loss function converged to a very less value, particularly below
1. The training loss corresponding to each of the models is shown in Fig. 8.

4.4 Learning Rate

Learning rate is a hyper-parameter used for adjustment of the weights in the
network with respect to the loss gradient. Learning rate is a measure of travel
down the slope to reach the local minima and it decides how quickly a model
can converge to a local minima. From the above figures it is clear that better
accuracy of Faster R-CNN Inception is due to its high learning rate compared
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Fig. 8. Total loss for (a) SSD Mobilenets (b) SSD Inception (c) R-FCN Resnet (d) Fast
RCNN Resnet (e) Fast RCNN Inception

to rest of the models. Lower value for learning rate means, the descent is slower
along the slope. With the perfect learning rate a lesser training time can be
achieved. The learning rates for different models are shown in Fig. 9.
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Fig. 9. Learning rates for (a) SSD Mobilenets (b) SSD Inception (c) R-FCN Resnet
(d) Fast RCNN Resnet (e) Fast RCNN Inception
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Fig. 10. Detection using Faster R-CNN on a Google Image

5 Conclusion

An experimental analysis was done on the modern object detection model to
find the appropriate trade off in speed and accuracy. It was observed that Faster
RCNN Inception model gave the most optimal values in speed and accuracy
for the application of pedestrian detection. It was able to detect even far away
people with overlaps with an accuracy of 96%. In addition, the rfcn resnet 101
and faster rcnn resnet 101 gave comparable accuracies but the test time was
found to be very high. Thus the pedestrian can move out of the frame by the
time the model tries to detect it. The SSD models were much faster to train
but the detection rate was lesser compared to other models and occluded people
were much difficult to detect using this model.
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Abstract. Hyper-parameter optimization and the identification of the learning
algorithm best suited to a particular dataset can be exceedingly difficult.
Researchers have developed automated methods for the selection of an algo-
rithm and the associated hyper-parameters; however, this approach is not nec-
essarily applicable to other datasets. In this paper, we present a method for the
selection of a learning algorithm while simultaneously setting the hyper-
parameters in a two-stage process: (1) Identification of important hyper-
parameters to streamline the optimization process, and (2) Heuristic formulation
based on sequence analysis to limit the long-tuning time and identify the optimal
algorithm/ hyper-parameter combination. The proposed method greatly reduces
the training time without a significant loss of performance in classification tasks.

Keywords: Machine learning � Hyper-parameter � Algorithm selection
Optimization

1 Introduction

Machine Learning (ML) plays an integral role in many aspects of businesses intelli-
gence, recommendation systems, Fintech, and artificial intelligence. Research in ML
has led to the development of numerous methods for the creation of classifiers [28];
however, it is not always clear which approach would be the most appropriate for a
given dataset [29]. Previous work determined the best classifier for a variety of ML
problems is compared to different techniques and over different dataset sizes [9].
Building an effective learning model, finding the right ML method, and fine-tuning the
hyper-parameter settings is becoming increasingly important [15]. The tuning of
hyper-parameters used to be based on human experience; however, identifying the
optimal ML technique for a particular problem can be difficult even for experts, par-
ticularly as data grows in complexity. To address this gap, there have been big strides
in the development of user-friendly machine learning software that can be used by
non-experts [16, 27].

Hyper-parameter optimization strategies vary with regard to performance and cost.
The conventional approach generally involves a grid search in order to enhance
accuracy; however, the evaluation of all possible parameter combinations is also
computationally very expensive. One alternative approach is to sampling different
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parameter combinations use a random selection to cover the parameter space to a lesser
extent [3]. Random search has been shown to match or exceed grid search while
necessitating fewer function evaluations for some types of problem. The problem of
hyper-parameter optimization has also been addressed using sequential model-based
optimization (SMBO), Bayesian optimization methods [2, 26, 27] and the
tree-structured Parzen estimator (TPE) [2]. These methods are meant to identify good
configurations in less time than it would take using random search. Scikit-Learn [19]
and Auto-WEKA [27] software enable the automatic configuration of the ML library to
find the optimized combination of data preprocessing, hyper-parameter tuning, and
model selection [2, 3, 14, 20, 26]. Nevertheless, differences in the size and charac-
teristics of datasets influence the performance of optimization methods; i.e., no single
method can achieve a high degree of efficiency and accuracy at the same time.

In this work, we present an automated method for the selection of the most
appropriate ML algorithm as well as the optimization of its hyper-parameter settings
specifically for a particular dataset. The configuration procedure first identifies
important hyper-parameters in order to streamline the optimization process. We then
implement an early stopping strategy [7] to progressively filter out unsuitable algo-
rithms until only the best model remains [8, 24]. The main contributions of this paper
are as follows: (a) the ordinary least square combine with Analysis of variance
(ANOVA) is conducted for the influence of hyper-parameters so as to “hold on” only
relevant parameters for optimization in each algorithm; (b) a heuristic based on
sequence analysis is used to terminate long-tuning time procedures and find an optimal
algorithm and its configuration hyper-parameter settings.

The remainder of this paper is organized as follows: In Sect. 2, we present an
overview of existing methods used in the selection of machine learning algorithms and
their associated hyper-parameters. Section 3 describes the methodology developed in
this study. Section 4 presents a description of and the experiments used to evaluate the
efficacy of the proposed scheme. Finally, Sect. 5 summarizes the paper and describes
directions for future work.

2 Foundations and Related Work

2.1 Problem Statement

Classification is among the most important aspects of machine learning. Numerous
learning algorithms have been developed for the task of classification, such as the
Random Forest, SVM, decision trees, and neural networks [1]. As described in the
Introduction, the characteristics of datasets largely determine which learning algorithm
would be most appropriate for model training, and each learning algorithm requires
optimization based on the selection of hyper-parameters. For example, the Random
Forest algorithm proposed by Breiman [5] combines multiple tree predictors that
depend on the value of the random vector sample, wherein majority voting is used to
predict the results. Numerous hyper-parameters can be used to optimize the model,
such as the depth of the trees, the number of trees in the forest, and the number of
features to consider at each split. Even slight changes can greatly affect prediction
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accuracy [4]. In the past, the results were evaluated manually to evaluate the appro-
priateness of the learning algorithm and the effectiveness of the selected
hyper-parameters. This approach is time-consuming and seldom provides acceptable
results.

2.2 Algorithm Selection and Hyper-parameter Optimization Methods

Given a dataset D and a set of algorithms , the objective of the algorithm selection is
to identify the algorithm is the best suited to the data. Let the data D split into a

training set D ið Þ
train and a validation set D ið Þ

valid ¼ D=D ið Þ
train for i ¼ 1; � � � ; k. Using

multi-fold cross validation [13], the algorithm selection problem can be written as
follows:

A� 2 argmaxA2A
1
k

Xk

i¼0
S A;D ið Þ

train;D ið Þ
valid

� �
; ð1Þ

where S A;D ið Þ
train;D ið Þ

valid

� �
is the validation performance achieved by algorithm A when

trained using D ið Þ
train and evaluated on D ið Þ

valid .
Similarly, given an algorithm A and a dataset D, suppose that K ¼ k1; � � � ; klf g

denotes the hyper-parameters of an algorithm A, where each km is a variable defining its
respective domain. The goal in selecting hyper-parameter values can be formulated as
follows:

k� 2 argmaxk2K
1
k

Xk

i¼0
S Ak;D ið Þ

train;D ið Þ
valid

� �
; ð2Þ

where Ak represents the algorithm A under a specific configuration of hyper-parameter
values k. Then, given a set of algorithms with associated hyper-parameter space
K 1ð Þ; � � � ;K nð Þ. The optimization problem involves the selection of an algorithm as well
as the hyper-parameter values with the aim of achieving the best cross-validation
performance:

A�; k� 2 argmaxA jð Þ2A;k2K jð Þ
1
k

Xk

i¼0
S A jð Þ

k ;D ið Þ
train;D ið Þ

valid

� �
: ð3Þ

2.3 Hyper-parameter Search

The most common approaches to hyper-parameter optimization are grid search and
random search [3]. Grid search involves the inspection of all possible permutations
associated with the grid points; however, this scheme often performs poorly and does
not scale to higher dimensions. To enhance efficiency, random search makes selections
from a random distribution of alternatives in order to avoid having to conduct an
exhaustive search of all possible hyper-parameters. Most existing automated
hyper-parameter optimization methods use sequential model-based optimization
(SMBO) methods, including Bayesian optimization [2, 26, 27] and the Tree-structured
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Parzen Estimator (TPE) [2]. Bayesian Optimization techniques have been shown to
outperform other state-of-the-art global optimization methods through the use of pos-
terior distribution to calculate the latent variable and thereby sample the
hyper-parameters used by the following step. To approximate the unknown objective
function, Gaussian process (GP) have often been used as the probability model in the
Bayesian optimization [26]. In this approach, a promising hyper-parameter configu-
ration is suggested to test next by acquisition function. A popular acquisition function
is the expected improvement (EI), defined as [12]

EI xð Þ ¼ E max 0; f xð Þ � f x̂ð Þð Þ½ � ¼
Z 1

�1
max 0; f xð Þ � f x̂ð Þð Þpðf xð ÞjxÞ: ð4Þ

where x̂ is the current optimal set of hyperparameters. TPE is a nonparametric approach
to density estimation which explores intelligently the search space while narrowing
down to the estimated best parameters. The TPE approach models the posterior
p f xð Þjxð Þ by two separated models, non-parametric densities pðxjf xð ÞÞ and the con-
figuration prior p xð Þ. A well-known implementation of TPE is Hyperopt library [14].

3 Methodology

In this work, we propose a sequential process by which to optimize the effects of
machine learning. The proposed algorithm includes two phases, first determines
important hyper-parameters by ordinary least square (OLS) to streamline the opti-
mization process, and then a heuristic based on sequence analysis is used to terminate
long-running training procedures and find an optimal algorithm and its configuration
hyper-parameter settings. Here, the OLS method [23, 25] was adopted to analyze the
coefficient between the various hyper-parameters and the overall accuracy. As a form
of multiple linear regression, this method is highly effective in evaluating relevance in
the multi-factorial analysis [18, 22]. The loss function of OLS involves minimizing the
sum of squares in order to obtain an estimate of the unknown variables in the linear
model. We also established an automatic early stopping scheme inspired by develop-
ments in neural networks [6] to prevent over-fitting in the gradient descent process
when the accuracy of the results fails to increase within a given number of epochs [21].

3.1 Identification of Essential Hyper-parameters

The goal of identifying important hyper-parameters is to exclude hyper-parameters that
are less relevant to the objective and to select the most influential hyper-parameters to
construct the classifier. In general, there is no efficient way of direct optimum
hyper-parameter identification. Hence we usually rely on some heuristics to overcome
the complexity of exhaustive search. Ordinary least squares (OLS) [23] is one of the
commonly used heuristic methods for estimating the unknown parameters in a linear
regression model. The general equation of OLS model can be written as
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Y ¼ X � dþ e; ð5Þ

where Y is a vector representing the dependent variable, d is the coefficient vector and
X is a matrix of regressors.

Analysis of variance (ANOVA) [11] can be performed to check whether the
regression model is statistically significant or not (F-test and corresponding p-value).
We adopted it for the influence of hyper-parameters so as to “hold on” only relevant
parameters for optimization in each algorithm. The F-test of hypothesis and the
coefficient of determination (R-squared) are used to evaluate the effect of the model. If
the p-value of the F-test is lower than the significance level a and R-squared value is
high, then indicates that there is a strong relationship between performance and
hyper-parameters [10]. Under the above conditions, T-test for each hyper-parameter
estimates can be performed to see whether they are statistically significant or not. If the
p-value of T-test is below significance level b, then that particular hyper-parameter is
shown to have a positive effect on the performance of the learning model. This
hyper-parameter is retained and the others (that fail to meet the level of significance)
are removed. We examine numerous algorithms in the first process and record the
highest performance achieved by each of them. If the highest performance achieved by
a particular algorithm falls below the average performance of all algorithms, then that
particular algorithm is removed in order to reduce computational complexity in the
following step.

3.2 Algorithm Evaluation and Selection

Early Stopping Method. The optimization phase explores the hyperparameter space
and finds candidate configurations that return a high performance. However, there may
be a large number of candidate configurations in the optimization process, it is nec-
essary to design an effective discarded or promote configuration policies. In this work,
we present a solution that implements early stopping for hyper-parameter search
techniques and we show that this effectively reduces the effect of computation time.
Given an algorithm A with associated hyper-parameter configuration K ¼ k1; � � � ; klf g,
we decompose the hyperparameter configuration into g-epochs, K ¼ e 1ð Þ; � � � ; e gð Þ� �

:

Suppose that e uð Þ ¼ k u�1ð Þ�hþ 1; � � � ; ku�h
� �

, for u ¼ 1; � � � ; g, where each epoch repre-
sents a combinations of h hyper-parameter configuration. Here, we calculated the
running best performance value of the epoch. If the optimal value has found during a
specified number of epochs is worse than the best value of all the previously completed
tests, this algorithm interrupts the optimized process.

Recursive Filtering for Candidate Algorithms. To find good configurations faster,
we support parallel runs for algorithm selection on a single machine. Masini and
Bientinesi [17] present efficient mechanisms that allow running more than one algo-
rithm in parallel. The well-known optimization tools [14, 27] provide efficient paral-
lelization work for performing hyperparameter optimization and model selection. In
this paper, the chosen strategy analyzes the local optima found by recursive filtering
and selecting the best algorithms for the removal of the non-essential algorithms. We
evaluate the performance of each algorithm and compare it after running m-times to
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further narrow down the range of selected algorithms and passing them to the next run
level. That procedure is repeated on the pruned set until one fully-optimized algorithm
remained. The process described above is presented in Algorithm 1.
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4 Experimental Evaluation

4.1 Corpora and Setup

In the experiments, we conducted the evaluation of proposed methods for classification
task using three standard collections from the UCI repository [9]: the Iris dataset,
Handwritten Digit dataset and the Mushroom dataset. The Iris dataset consists of 50
samples/instance from each of three species that totals to 150 records. The Handwritten
Digit dataset include 8 � 8 image of integer pixels in the range 0…16, we’d have to
transform it into a feature vector with length 64. The Mushroom dataset is composed of
records of different types of mushrooms, the goal is to determine a mushroom is
poisonous or edible. The dataset was randomly divided into two parts, in which 70%
was used as training data and 30% was used as variation test data. Table 1 summarizes
the number of classes and the number of discrete and continuous attributes found in the
datasets.

In this study, popular machine learning algorithms were considered for evaluating
their performance in terms of classification error: Decision Tree (DT), Random Forest
(RF), Gradient Boost Decision Tree (GBDT), Passive Aggressive Regression (PAR),
stochastic gradient descent (SGD) and Support Vector Machine Classifier (SVC) [27].
All experiments are performed using ten-fold cross-validation over training and vari-
ation set. We selected four different hyper-parameters optimization methods as the
foundation of the experiment: Grid Search, Random Search (RS), Bayesian Opti-
mization (BO) and Tree of Parzen Estimators (TPE). Several parameters need to be
determined in the experiments. The significance level was set as a = b = 0.01.

4.2 Experimental Results

First of all, we ran ordinary least squares method with functional ANOVA approach to
identify the most important hyperparameters of the algorithm for each dataset, and list
these in Table 2. For each algorithm, we report the number of original
hyper-parameters and the number of not influential hyper-parameters filtered out in
each dataset. Overall, in this experiment, we observed that there is at least a
hyper-parameters are filtered out, as shown in bold. For illustration, Table 3 shows the
F-test of hypothesis and the coefficient of determination (R-squared) in more detail
which using GBDT algorithm for Iris dataset. The R-squared value indicates that the
hyper-parameter model can explain more than 94% of the variation in performance.
The overall model achieved two stars for the significant level, which means that it can

Table 1. Datasets from the UCI repository.

Name Data type Attributes Class Training Test

Iris Real 4 3 100 50
Handwritten digit (HD) Integer 64 10 1198 599
Mushroom Binary 22 2 5416 2708
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be used to remove non-essential hyper-parameters. The p-value of max_depth and
learning_rate is smaller than 0.01, which means that this two hyper-parameter have
considerable influence on performance and are therefore retained while the others are
discarded.

Table 2. Comparison of the number of influential hyperparameters for different algorithms in
each dataset.

Algorithm Num. of original hyper-parameter Iris HD Mushroom

Decision tree 4 2 2 3
Random forest 4 3 2 3
GBDT 4 2 4 2
SGD 2 1 2 2
SVC 3 2 3 3
PAR 2 2 1 2

Table 3. The result of the OLS analysis using GBDT algorithm for Iris dataset.

R-squared Adj. R-squared F-statistic Prob. (F-statistic)

Entire 0.955 0.948 138 4.15E−17
Coef Std err t P > |t|

max_depth 0.0314 0.005 5.777 0
max_features 0.0603 0.024 2.491 0.019
min_samples_split 0.0079 0.005 1.484 0.15
learning_rate 34.9795 9.352 3.74 0.001
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Fig. 1. Performance of with/without pruning for different algorithm evaluations with the
grid-based hyper-parameter for the Iris dataset, the right side axis is classification error and the
left side axis is search time (minutes).
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Next, based on the results in Table 2, we illustrate the impact of search time and
classification errors on DT, SVC, GBDT and RF combined grid search in Iris datasets.
As the results shown in Fig. 1, the performance is slightly reduced but greatly improves
the hyper-parameter tuning process. This trend is the same for all four classifiers but is
most clear with GBDT (not shown in the figure). For GBDT, search time dropped from
88.43 min to 2.914 min (an improvement of 92.3%), while the classification error
increased only by 0.6 (2.7% ! 3.3%). Similarity, we could see a roughly 4–13�
speedup in execution time for other algorithms as shown in Fig. 1.

In the previous evaluation, the improvements of each algorithm on all dataset are
obtained due to the identification of influence of hyper-parameter in the search space.
Hereafter, we implement early stopping concept for all methods, if the performance
does not improve on the validation set during ten epochs, the process stops. Each epoch
represents a combination of h hyper-parameter configuration setting. h = 10 during the
random search and h = 2 during the process using BO and TPE. The maximum number
of epochs is limited to 50. We illustrate the use of GBDT algorithm with random search
optimization method in three datasets, as shown in Fig. 2. We found that Iris and
Mushroom dataset stopped at the 12th epoch, while the Digit dataset stopped at the
17th epoch, as shown in Fig. 2. To evaluate the effectiveness of the early stopping
(ES)-based heuristic, we measured 200 hyper-parameter configurations as a baseline.
Results of the early stopping experiments are presented in Fig. 3. Each dataset was run
through each different hyper-parameters optimization method with a various ML
algorithm. Figure 3 revealing that different model perform very differently on different
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Fig. 2. Comparison of the performance in each epoch by using the GBDT method with a
random search for three datasets). The left side axis represents the classification error and the
dashed line indicates the classification error of the epoch exceeds the highest value obtained in
previous epochs.
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datasets. In Fig. 3, we note a mean 48.9% decrease in total epochs across these three
datasets and note that validation error only gets slightly worse. We can see that
Bayesian Optimization (BO) converges to a good result much faster than Tree of
Parzen Estimators (TPE) and random search. With this early stopping strategy, the BO
achieves 73.1% reduction in tuning times for the Mushroom dataset. The relative
improvements by BO over RS and TPE are 34.2% and 46.6%, respectively. In sum-
mary, the classifiers to be the bests are Support Vector Machine (SVC) and Gradient
Boost Decision Tree (GBDT). On average, these methods achieve in average 2.8% of
the classification error. Followed by random forest (RF), achieves more than 3.7% of
the classification error. For the Mushroom dataset, the classification error is 0.3% for
GBDT and 1.1% for SVC, respectively. Similarly, the classification error by GBDT
and SVC are 1.3% and 1.2% for the Handwritten Digit dataset, respectively.

At last, we compare the effects of parallel strategies on various optimization
methods for the choice of algorithms as shown in Table 4. From Table 4, we can see
that TPE converges faster than random search and BO optimization. For Mushroom
dataset, we compare 62.99 min to 5.57 min, an 11� speedup. By contrast, a 2�
speedup in the case of random search and a 5� speedup in the case of BO. The
conventional TPE search with no early stopping takes 103.29 min. In this case, the best
classification performance is obtained by using the RF classifier, which achieves 0.2%
of the classification error. In some way, the same improvements have been made in
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Fig. 3. The effect of early stopping strategy. ML algorithms were compared across several
datasets with various hyper-parameter optimization methods. Classification error on a validation
dataset is shown for each combination.
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Handwritten Digit (HD) and Iris datasets. For HD dataset, the SVC is the best classifier
achieve a classification error rate 1.28%. When applied to the Iris dataset, obtains an
classification error rate of 2.3% by using the GBDT.

5 Conclusion and Future Work

The paper presents a framework for selecting a suitable learning algorithm with cor-
responding algorithmic parameters for a given set of data. Two-process optimization
method was proposed for algorithm selection and hyper-parameter tuning to efficiently.
We first apply configuration procedures that determine important hyper-parameters and
showed the importance of effects through a function OLS and ANOVA methods. Then,
we use a heuristic based on sequential analysis to early-stop long-tuning procedures
and support parallel runs to filter out unappropriated algorithms until ultimately the best
model remains. In the light of this, we can drop up some methods which have lower
accuracy and irremediable to attain the same effect as the best one to reduce the
unnecessary waste of resource. In our future work, we intend to extend this study by
more optimization algorithms. Furthermore, we plan to find the best setting for
hyper-parameters within the large-scale dataset.
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Abstract. Outlier detection is an important task in data mining and has high
practical value in numerous applications such as astronomical observation, text
detection, fraud detection and so on. At present, a large number of popular
outlier detection algorithms are available, including distribution-based, distance-
based, density-based, and clustering-based approaches and so on. However,
traditional outlier detection algorithms face some challenges. For one example,
most distance-based and density-based outlier detection methods are based on
k-nearest neighbors and therefore, are very sensitive to the value of k. For
another example, some methods can only detect global outliers, but fail to detect
local outliers. Last but not the least, most outlier detection algorithms do not
accurately distinguish between boundary points and outliers. To partially solve
these problems, in this paper, we propose to augment some boundary indicators
to classical outlier detection algorithms. Experiments performed on both syn-
thetic and real data sets demonstrate the efficacy of enhanced outlier detection
algorithms.

Keywords: Outlier detection � Distance-based outlier detection
Density-based outlier detection � Boundary detection � k-Nearest neighbors

1 Introduction

With the rapid development of information technology, a large amount of information
has been produced from the real word. How to find import and useful information from
these massive and multi-dimensional data has become an urgent problem. Therefore,
data mining and database technologies come into being consequently.

In practice, data often come from different information individuals, departments,
enterprises, and countries. These complex data sets may contain a small portion of data
which differ significantly from other data objects in behavior or model. These data
objects are called outliers. A general intuition of what constitutes an outlier was given
by Hawkins in 1980. “Outlier is an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a different mechanism” [1].
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In many fields, outliers are more important than normal data, as they imply some useful
information.

At present, the study on outlier detection becomes very active. Many outlier
detection algorithms have been proposed. Outlier detection methods can be divided
into distribution-based methods, depth-based methods, distance-based methods,
density-based methods and clustering-based etc. However, none of them have been
proved to be completely applicable to all the situations. Each type of outlier detection
algorithms has its advantages and disadvantages. In distribution-based methods, an
object is considered as an outlier if it deviates too much from a standard distribution
(e.g., normal, Poisson, etc.) [2]. However the underlying distribution is usually
unknown and there are many practical applications which do not follow a standard
distribution. As a result, distribution-based methods have a limited number of appli-
cations. Being an improvement, depth-based methods assign a depth value to each data
object and map it to the corresponding layer in the two-dimensional space. Data objects
in the shallow layers are more likely to be outliers than those in the deeper ones.
Unfortunately, these methods suffer high computational complexity for data of more
than three dimensions. Distance-based methods, also known as adjacency-based
methods, believe that data objects are outliers if they are far away from the majority of
data points and address more globally-oriented outliers in databases [3]. However,
distance-based methods are often accompanied by the problem that the values of k have
a great influence on the results. Density-based methods usually assign to each data
object a measure of outlier degree as the classic LOF algorithm does and then regard
those data objects which possess largest outlier degrees as outliers [4]. In comparison to
distance-based methods, these methods address more locally-oriented outliers. Finally,
clustering-based methods obtain outliers as a by-product and regard those data items
that reside in the smallest clusters as outliers [5].

However, traditional outlier detection algorithms face some challenges. For one
example, most distance-based and density-based outlier detection methods are based on
k-nearest neighbors and therefore, are very sensitive to the value of k. For another
example, some methods can only detect global outliers, but fail to detect local outliers.
Last but not the least, in many existing outlier detection algorithms, the boundary
points are mistakenly classified to be outliers. To partially solve these problems, in this
paper, we propose to augment classical outlier detection algorithms with some
boundary indicators so as to enhance traditional methods for outlier detection. When
compared with some classical outlier detection algorithms on sample datasets, the
enhanced method is more accurate with less sensitivity to k.

The rest of the paper is organized as follows. In Sect. 2, we review some existing
work on classic outlier detection algorithms. We then present our proposed enhancer in
Sect. 3. In Sect. 4, a performance evaluation is conducted and the results are analyzed.
Finally, conclusions are made in Sect. 5.
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2 Related Work

If outliers exist in a data set, they will stay far away from other data points. Thinking
about outliers in this way, Knorr and Ng proposed distance-based outlier detection
method in 1998. Given a distance measure defined on a feature space, “an object O in a
dataset T is a DB(p, D)-outlier if at least a fraction p of the objects in T lies greater than
distance D from O”, where the term DB(p, D)-outlier is a shorthand notation for a
Distance-Based outlier (DB-outlier) detected using parameters p and D [3]. There are
two classical algorithms based on this concept. “Given two integers, n and k, a
Distance-Based outlier is the data item whose average distance to their k-nearest
neighbors is among top n largest ones [6]” (referred to as “DB”) and “Given two
integers, n and k, a Distance-Based outlier is the data item whose distance to their k-th
nearest neighbor is among top n largest ones [7]” (referred to as “DB-Max”).

The realization of distance-based outlier detection method is simple, but it is dif-
ficult to solve outlier detection problem in datasets with complex densities, as illus-
trated in Fig. 1. To overcome this limitation, in 2000, Breunig et al. proposed the
density-based outlier detection method by introducing an outlier factor for each data
item, called Local Outlier Factor (LOF), which is a ratio between the local density of an
object and the average of the local densities of its k nearest neighbors [4]. It represents
the degree of separation of an object relative to its local area. The top n objects are
returned as outliers because the higher value of a data object‘s LOF means the higher
possibility of its being an outlier.

In 2006, Wen Jin et al. presented a new density-based outlier detection algorithm
named INFLO to solve the problem when outliers exist in the location where the
density distributions in the neighborhood are significantly different [8]. This method
considers the union of a point’s k-nearest neighbors and its reverse nearest neighbors to
obtain a measure of outlierness. The reverse nearest neighborhood of a data point p is
defined to consist of those of its k-nearest neighbors for which p is also among its k
nearest neighbors.

Fig. 1. A classic example of a local outlier.
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In 2011, Huang et al. proposed a new approach for outlier detection, named RBDA
[9]. RBDA method is based on a ranking measure that focuses on the question of
whether a point is central from its nearest neighbors. The problem with RBDA is its
high computation cost.

3 The Proposed Enhancer for Outlier Mining

3.1 A Simple Idea

Distance-based outlier detection methods are good at identifying global outliers. To
identify the relatively small number of outliers, kNN for each data point is first
computed, together with the corresponding distances between each data to their k
nearest neighbors. The average of these distances or the k-th distance is used as an
outlier score in distance based outlier detection method. However, there is no reason to
assume that this must be the case for some outliers due to the existence of boundary
data points. To face this challenge, an outlier indicator can be an aid. A problem with
distance-based outlier detection algorithms is that these methods do not take the out-
lying degrees of a data point’s k-nearest neighbors into consideration in the detection
process. As a result, false positives can happen. For example, for the sample dataset
shown in Fig. 2, though DB or DB-Max outlier scores can be calculated for each data
point and four boundary data points of cluster C2 can be mistakenly detected as DB or
DB-MAX outliers, there are no outstanding outliers. To prevent the false positives from
happening, there must be some ways to differentiate between boundary points and
outliers existing in a dataset in the first place. To do so, as a first degree approximation,
the distances of each data point and its kNN to their first nearest neighbor within a
cluster can be assumed to follow a uniform distribution and the corresponding mean
and standard deviation can thus be calculated. The ratio of the standard deviation over
the mean can be used to judge to some degree whether outliers exist or not. For the
sample dataset shown in Fig. 2, if k is set to be 2 (i.e., 2NN), the distance of data point
o1 to its first nearest neighbor is the same as that of data point o2 to its first nearest
neighbor and that of data point o3 to its first nearest neighbor. The corresponding ratio
of the standard deviation over the mean is 0, indicating there are not outstanding global
outliers.

Fig. 2. An illustration of outlier indicator.
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In the related work section, outlier definitions and some classical outlier mining
algorithms are presented. These methods are able to identify some outliers, either
global or local. However, for distance-based outlier detection methods, boundary
points could be misclassified as outliers, while, for density-based outlier detection
methods, global outliers may have low outlier scores and therefore be missed. Taking
the dataset shown in Fig. 3 as an example, data point A is farthest away from its six
closest neighbors and therefore should be identified as a global outlier. However, for
k = 6, the LOF-based outlier detection method assigns a higher outlier score to data
point B than to A and therefore, fails to identify A as the most significant global outlier.
If global outlier detection is separated from local outlier detection, this will not happen.

Based on these observations, we propose a new outlier detection algorithm, which
enhances current state-of-the-art outlier mining methods by filtering out boundary
points from outlier candidates, and formularize it in the following subsections.

3.2 Some Definitions

In this paper, we propose an outlier indicator to separate boundary points from being
mixed with outliers to some extent.

Definition 1 (k-Distance of an object p). For any positive integer k, the k-Distance of
object p, denoted as k-Distance(p), is defined as the distance(p, o), or simply, d(p, o),
between p and an object o є D such that:

(1) for at least k objects o’ є D\{p}, d(p, o’) � d(p, o);
(2) for at most k − 1 objects o’ є D\{p}, d(p, o’) < d(p, o).

Definition 2 (k-Nearest Neighbors of an object p). For any positive integer k, given k-
Distance(p), k-nearest neighbors of p contain the first k closest objects whose distance
from p is not greater than k-Distance(p), denoted as kNNk−Distance(p)(p), for which, kNN
(p) is used as shorthand.

For outlier detection, we are more interested in those data points whose distance to
its first nearest neighbor is significantly larger than the average value of the distances of
the point’s kNN to their first nearest neighbor. To quantify the significance of a data

Fig. 3. An illustration of a difference between global outlier and local outlier definitions.
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point’s positioning outside some cluster, the uniform distribution is used as a first
degree approximation for the distances associated with a data point and its kNN’s to
their first nearest neighbors. To distinguish between boundary points and outliers, we
therefore formulate an outlier indicator using the distances associated with the first
nearest neighbor of the data point and its kNN as in the following to focus our attention
on the small number of outstanding global and local outliers.

Definition 3 (Outlier indicator of an object p). Given k nearest neighbors of an object
p, in the following, dist[0] denotes the distance of an object p to its nearest neighbor,
and dist[i] denotes the distance of its i-th nearest neighbor to its corresponding nearest
neighbor, the proposed outlier indicator of an object p, SOMnn−dist(p), is defined based
on these distances in the following,

Meannn�distðpÞ ¼ 1
kþ 1

Xk

i¼0

dist½i� ð1Þ

Stdnn�distðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

kþ 1

Xk

i¼0

ðdist½i� �Meannn�distðpÞÞ2
vuut ð2Þ

SOMnn�distðpÞ ¼ Stdnn�distðpÞ
Meannn�distðpÞ ð3Þ

To manifest the effectiveness of the outlier indicator, for the test sample dataset shown
in Fig. 4, we calculate the outlier indicators for all the data points and use the sum of
their mean and standard deviation as a threshold to highlight the potential outliers. The
results shown in Fig. 4 demonstrate that outliers O1 and O2, denoted by red color, are
well identified because their indicator is much larger than the others.

3.3 Our Proposed Outlier Detection Algorithm

To find global outliers, we follow the notion of kNN based distance outlier definition
and calculate the distance-based outlier factors (i.e., DB-MAX) for all the data points,

Fig. 4. An illustration of the effect of outlier indicator. (Color figure online)
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sort them in a non-increasing order, and searching for the largest factor values. If their
corresponding outlier indicators are significantly larger than a threshold value, SOM,
top n data points can be regarded as the global outliers. For local outliers, we follow the
notion of kNN based density-based outlier definition and calculate the LOF outlier
factors for all the data points, sort them in a non-increasing order, and searching for the
largest factor values. We combine three proposed factors to create our kNN-based
outlier detection algorithm. To improve the readability, our proposed outlier detection
algorithm is presented in a pseudo code format in Table 1.

To determine the threshold of indicators in a data set, let the outlier indicators of all
points in dataset be computed, based on which the average of the indicators, mean, and
the corresponding standard deviation, std, are calculated. The threshold of indicators,
SOM, for finding potential outliers is defined as,

SOM ¼ meanðindicatorsÞþ f � stdðindicatorsÞ ð4Þ

To summarize, the numerical parameters the algorithm needs from the user include the
data set, S, the loosely estimated number of outliers (i.e., the percentage of outlier
candidates in the original data set), n, and the number of nearest neighbors, k.

Table 1. A combined outlier detection algorithm
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4 Experiments and Results

In this section, we compare the effectiveness of the proposed outlier detection method
with several state-of-the-art outlier detection methods, including the DB method, the
DB-max, the LOF, the INFLO and RBDA methods, on several different datasets. In the
first set of experiments, two 2-dimensional synthetic data sets are used to show that our
proposed outlier detection method augmented with outlier indicator can outperform
classical outlier detection algorithms in classification accuracy. Further, it is important
for an outlier detection method to work effectively on real-world data sets. Therefore, in
the second set of experiments, a real high-dimensional data sets obtained from the UCI
Machine Learning Repository [10] are used to check the effectiveness of this study and
to illustrate the effectiveness of our method in real-world situation. All the data sets are
briefly summarized in Table 2. We implement all the algorithms in java and perform all
the experiments on a computer with AMD A6-4400M Processor 2.70 GHz CPU and
4.00G RAM. The operating system running on this computer is Windows 7. In our
evaluation, we focus on the outlier detection accuracy rate of these outlier detection
algorithms on different data sets. The results show that, overall, our proposed outlier
detection algorithm is superior over other state-of-the-art outlier detection algorithms.

4.1 Performance of Our Algorithm on Synthetic Data

In this subsection, we use two synthetic datasets to show that the proposed outlier
detection method performs better than traditional outlier detection methods. The two
synthetic datasets, syn_Data1 and syn_Data2, are shown in the first plot of Figs. 5 and
6, respectively. For this set of experiments, the parameter k’s is set to be 3 for all the
methods and the results for syn_Data1 and syn_Data2 are plotted in Figs. 5 and 6,
respectively.

The first synthetic dataset, syn_Data1, consists of 82 instances, including six single
outliers (i.e., A, B, C, D, E and F), and four clusters of different densities with 36, 8, 12
and 16 uniformly distributed instances. From the results depicted in Fig. 5, we can see
that DB and DB-Max have the same ranks for A, D, E and F, but can not mine the two
local outliers, that is, B and C. RBDA, INFLO, LOF and our outlier detection method
detect all six outliers correctly. The plot at bottom left corner shows the corresponding
SOMnn−dist values (which are actually 0 for boundary and inner points) thresholded by
Eq. (4), which correctly identifies the six outliers.

The second synthetic dataset, syn_Data2, consists of 473 instances, including six
outliers and five clusters of different densities clusters. A particular challenging feature
of this data set is that three denser clusters are buried into one sparse cluster on the

Table 2. Description of all datasets

Data name Data size Dimension #of outliers

syn_Data1 82 2 10
syn_Data2 473 2 6
LYMPHOGRAPHY 148 18 6
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Fig. 5. The outlier detecting results on syn_Data1 for k = 3.
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Fig. 6. The outlier detecting results on syn_Data2 for k = 3
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upper right corner. From the results depicted in Fig. 6, we can see that this is a global
outlier detection situation while the detection process is disturbed by the immediate
connection of clusters with different densities. For detecting top 6 outliers, RBDA
misses C but all other methods, that is, DB, DB-Max, LOF, INFLO and our method
detect all six outliers correctly but with different rankings. The plot at bottom left
corner shows the corresponding SOMnn−dist values thresholded by Eq. (4), which
correctly identifies the six outliers.

To summarize, it can be observed from Figs. 5 and 6 that our method has no
problems detecting all outliers and clearly offers the best ranking in three synthetic
datasets while all other methods do not perform competently with detecting all the
outliers one way or the other. The advantage of our outlier detection factors is very
evident on these 2-dimensional data sets.

4.2 Performance of Our Algorithm on Real Data

It has been pointed out by Aggarwal and Yu that one way to test how well an outlier
detection algorithm works is to run the method on the dataset and test the percentage of
points which belongs to the rare classes [11]. In order to test how well our outlier
indicator works on real dataset, we compare its ability in finding outliers with other
methods in a real dataset, LYMPHOGRAPHY, which is downloaded from UCI [10].
This dataset has 148 instances with 18 attributes and contains a total of 4 classes.
Classes 2 and 3 have 81 and 61 instances, respectively. The remaining two classes have
totally 6 instances (2 and 4, respectively) and are regarded as outliers (i.e., rare classes)
for they are small in size.

To quantitatively measure the performance of an outlier detection method, a pop-
ular metric, called recall, is used. Assuming that a dataset D = Do [ Dn where Do

denotes the set of all outliers and Dn denotes the set of all normal data. Given any
integer m � 1, if Om denotes the set of outliers among objects in the top m positions
returned by an outlier detection scheme, recall is defined as,

recall ¼ jOmj
jDoj ð5Þ

In Eq. (5), recall shows the percentage of detected outliers in all outliers.
Table 3 shows the experimental results of the proposed outlier detection method in

comparison with five other methods, DB, DBMax, LOF, INFlO, RBDA respectively,
for four values of k’s (i.e., 7, 10, 20, 30) and six values of m’s (6, 7, 8, 9, 10, 15). In the
table, n denotes the correct number of outliers among returned m ones, and r denotes
the corresponding recall. From the experimental results, it can be seen that the proposed
method mines all the outliers correctly for all m’s and all k’s and thus performs the
best. RBDA method and LOF method perform next since they mine outliers as well as
our method for k = 20 and k = 30 but does not do well in cases for k = 7 and k = 10.
Overall, with increasing k’s, RBDA, LOF and INFLO methods work better and better
while DB and DB-Max work worse and worse.
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5 Conclusions

Traditional distance based and density based outlier detection algorithms can effec-
tively detect two different kinds of outliers separately but not both at the same time.

Further, classical distance based outlier detection algorithms do not differentiate
global outliers from boundary data points. To partially circumvent these problems, in
this paper, we have proposed a novel outlier detection approach which can detect both
global and local outliers in a separate and simultaneous way and, when augmented with
an outlier indicator, can outperform traditional outlier detection approaches. To
demonstrate the utility of our proposed outlier detection mechanism, a detailed

Table 3. Experimental results for LYMPHOGRAPHY data

m DB DB-Max LOF INFLO RBDA OUR
n r n r n r n r n r n r

k = 7
6 5 0.83 5 0.83 5 0.83 4 0.67 5 0.83 6 1.00
7 6 1.00 5 0.83 5 0.83 5 0.83 5 0.83 6 1.00
8 6 1.00 6 1.00 6 1.00 5 0.83 6 1.00 6 1.00
9 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00
10 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00
15 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00
k = 10
6 5 0.83 5 0.83 5 0.83 4 0.67 5 0.83 6 1.00
7 6 1.00 5 0.83 5 0.83 5 0.83 6 1.00 6 1.00
8 6 1.00 5 0.83 6 1.00 5 0.83 6 1.00 6 1.00
9 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00
10 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00
15 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00
k = 20
6 5 0.83 5 0.83 6 1.00 5 0.83 6 1.00 6 1.00
7 5 0.83 5 0.83 6 1.00 5 0.83 6 1.00 6 1.00
8 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00
9 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00
10 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00
15 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00
k = 30
6 5 0.83 5 0.83 6 1.00 5 0.83 6 1.00 6 1.00
7 5 0.83 5 0.83 6 1.00 6 1.00 6 1.00 6 1.00
8 5 0.83 5 0.83 6 1.00 6 1.00 6 1.00 6 1.00
9 6 1.00 5 0.83 6 1.00 6 1.00 6 1.00 6 1.00
10 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00
15 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00
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comparison is performed with state-of-the-art distance-based and density-based outlier
detection methods. Experimental results show that our algorithm is able to rank the best
candidates for being an outlier with high recall.
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Abstract. An important question in microbiology is whether treatment
causes changes in gut flora, and whether it also affects metabolism. The
reconstruction of causal relations purely from non-temporal observa-
tional data is challenging. We address the problem of causal inference in
a bivariate case, where the joint distribution of two variables is observed.
The state-of-the-art causality inference methods for continuous data suf-
fer from high computational complexity. Some modern approaches are
not suitable for categorical data, and others need to estimate and fix
multiple hyper-parameters.

In this contribution, we focus on data on discrete domains, and we
introduce a novel method of causality discovering which is based on the
widely used assumption that if X causes Y , then P (X) and P (Y |X) are
independent. We propose to explore a semi-supervised approach where
P (Y |X) and P (X) are estimated from labeled and unlabeled data respec-
tively, whereas the marginal probability is estimated potentially from
much more (cheap unlabeled) data than the conditional distribution.
We validate the proposed method on the standard cause-effect pairs. We
illustrate by experiments on several benchmarks of biological network
reconstruction that the proposed approach is very competitive in terms
of computational time and accuracy compared to the state-of-the-art
methods. Finally, we apply the proposed method to an original medical
task where we study whether drugs confound human metagenome.

c© Springer International Publishing AG, part of Springer Nature 2018
P. Perner (Ed.): MLDM 2018, LNAI 10934, pp. 406–420, 2018.
https://doi.org/10.1007/978-3-319-96136-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96136-1_32&domain=pdf


A Semi-supervised Approach to Discover Bivariate Causality 407

1 Introduction

Inferring causal directions between two variables from observational biological
data in absence of time series or controlled perturbation is a challenging prob-
lem. In the past decades, the attention to the problem of discovering causality
has grown due to necessity to reveal causality in real life applications. In par-
ticular, in the medical domain, revealing causal relations from a data set can
help to improve clinical diagnostics, and to increase the quality of treatment
and medication.

Mechanisms of action of many prescribed drugs remain unclair. Metformin
is the most prescribed treatment for the type 2 diabetic patients, since it is
relatively cheap, safe, and its important beneficial effects on blood glucose and
cardiovascular parameters have been shown [27]. Nowadays, the main hypothesis
of metformin action is that the drug mediates its antihyperglicemic effects by
suppressing hepatic glucose output via the activation of AMP-activated protein
kinase (AMPK)-dependent and AMPK-independent pathways in the liver [12].
However, recently some studies [14] confirmed hypotheses that metformin also
acts through pathways in the gut.

In this paper, our goals are:

– to develop a robust causality inference method, since biological data are
always limited and noisy,

– suspecting microbial mediation of therapeutic effects of metformin, test this
hypothesis on a real data set.

Instead of learning causal structure of an entire dataset, some scientists
focus on analysis of causal relations between two variables only. Modern con-
ditional independence-based causal discovery methods (see, e.g., [17,30] for gen-
eral overview) construct Markov equivalent graphs, and these methods fail in
the case of two variables, since X → Y and Y → X are Markov equivalent.

In this contribution, we focus on a family of causality inference methods
which are based on a postulate telling that if X → Y , then the marginal distri-
bution P (X) and the conditional distribution P (Y |X) are independent [8,9,26].
These approaches provide causal directions based on the estimated conditional
and marginal distributions from observed non-temporal data. One of the most
important problems in causality inference in a bivariate case, is to estimate the
conditional and the marginal probabilities from noisy limited observed data as
accurate as possible.

Deep learning methods [5] are becoming the preferred approach for various
applications in artificial intelligence and machine learning, since they usually
achieve the best accuracy. We are interested in particular in stochastic neural
networks, whose activation units have a probabilistic element. Such a choice
is motivated by the fact that conditional and marginal probabilities P (Y |X)
and P (X) can be estimated by a deep model. In our experiments, we use Deep
restricted Boltzmann machines (DRBM), originally introduced by [22], which is
a deep stochastic model with one layer of visible units and several hidden units.

Our contribution is multifold:
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– We introduce a novel semi-supervised method of inferring causal directions
that allows to discover causal relations between different pairs of factors.

– We propose to estimate the conditional and marginal probabilities which are
the key elements to infer directions, using the deep RBM.

– We illustrate by our experiments on benchmark data that the proposed
method is computationally efficient and its performance is highly compet-
itive compared to the state-of-the-art methods. It outperforms the existing
methods in terms of accuracy.

– We consider a real biomedical problem of revealing causality in rich original
metagenomic data. The interest to infer causality in metagenomic data is to
verify hypotheses that drugs effects on metabolism are microbially mediated.
We show that the proposed approach is efficient on the real complex data,
and discuss the obtained results.

The paper is organized as follows. Related work discusses the state-of-art
methods of the bivariate causal inference. We consider continuous and discrete
supervised and unsupervised methods for causality inference, and then we intro-
duce a semi-superivsed pairwise probabilistic method. The deep restricted Boltz-
mann machines and the ways to compute the marginal and conditional prob-
abilities are mentioned before the numerical results. We discuss the results of
our experiments on some standard challenges, benchmark networks, and on an
original medical problem. Concluding remarks and perspectives close the paper.

2 Related Work

There are two families of causality discovering methods: Additive Noise Models
(ANM) and Information Geometric Causal Inference (IGCI) [15].

Additive noise models (ANM) introduced by [7,19] are an attempt to deter-
mine causality between two variables. The ANM assume that if there is a function
f and some noise E such that Y = f(X) + E, where E and X are independent,
then the direction is inferred to X → Y . A generalisation of the ANM, called
post-nonlinear models, was introduced by [32]. However, the known drawback
of the ANM is that the model is not always suitable for inference on categorical
data [3].

Another research avenue exploiting the asymmetry between cause and effect
are the linear trace (LTr) method [33] and information-geometric causal inference
(IGCI) [8]. They rely on an assumption that if X → Y , and generating P (X)
is independent from P (Y |X), then the trace condition is fulfilled in the causal
direction and violated in the opposite one. The IGCI method exploits the fact
that the density of the cause and the log slope of the function-transforming cause
to effect are uncorrelated. At the same time, the density of the effect and the
log slope of the inverse of the function are positively correlated.

Origo [2] is a method to discover causality based on the Kolmogorov complex-
ity. The Minimum Description Length (MDL) principle can be used to approxi-
mate the Kolmogorov complexity for real applications. Namely, from algorithmic
information viewpoint, if X → Y , then the shortest program that computes Y
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from X will be more simple than the shortest program computing X from Y.
However, the performance of Origo does not seem to be competitive compared
to the ANM.

The bivariate methods are quite different from another state-of-art approach
called 3off2 [1] where the algorithm needs three variables to infer a direction,
since it considers all possible triplets in data, and looks for colliders in a graph.
Therefore, the 3off2 is not suitable for bivariate cases.

A number of recent, reported to be efficient causality discovering methods
(see, e.g., [8,9,26]) are based on a postulate of independence of input and output,
telling that a causality direction can be inferred from estimated marginal and
conditional probabilities of random variables from a data set. In the following,
we investigate this research direction.

3 Pairwise Semi-supervised Causal Inference

In this section, we consider methods which rely on the following postulate [8,9,
26] and assumptions which are widely used in the domain of bivariate causality
inference.

Postulate 1. If X → Y , then the marginal distribution of the cause P (X) and
the conditional distribution of the effect given the cause P (Y |X) are “indepen-
dent” in the sense that P (Y |X) contains no information about P (X) and vice
versa.

Assumption 1. We assume that the training procedure has access to N pairs
{Xi, Yi}Ni=1 of observations, and N ′ points of unlabeled data {Xi}N ′

i=1. Let us
denote X = (X1, . . . , XN ) as a one-dimensional vector, and Y = (Y1, . . . , YN )
is also a vector of length N .

Assumption 2. Only X and Y are observed. We assume that no confounders
are present, no selection bias, and no feedback.

Assumption 3. We formulate the task as a problem of causality inference
between two discrete variables, denoted Y ∈ Y and X ∈ X . Without loss of
generality, we assume that the causality between them exists, and the main task
remains to define what is the cause and what is the effect, i.e. to make a choice
between X → Y and Y → X.

3.1 Supervised Causal Inference with Inverse Regression

A supervised method of causal inference for two continuous univariate random
variables which involves estimation of the conditional probability was proposed
by [26]. The theoretical foundation of the CURE (Causal inference with Unsu-
pervised inverse REgression) method relies on the Postulate 1. The asymmetry
allows to reduce the problem of the causality inference to the estimation of the
conditional probability. More precisely, the CURE method returns X → Y when
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the estimation of the conditional probability of cause given effect P (X|Y ) based
on samples from the marginal probabilities P (Y ) is more accurate than the esti-
mation of the conditional probability P (Y |X) based on the samples from the
marginal probability P (X). If that is not the case, Y → X is inferred.

A way to quantify the accuracy of estimation of P (X|Y ) and of P (Y |X), is
to analyse the difference between the negative unsupervised log-likelihood and
the supervised log-likelihood:

DX|Y = Lunsup
X|Y − Lsup

X|Y = (1)

− 1
N

N∑

i=1

log p(Xi|Yi,y) +
1
N

N∑

i=1

log p(Xi|Yi,x,y), (2)

and

DY |X = Lunsup
Y |X − Lsup

Y |X = (3)

− 1
N

N∑

i=1

log p(Yi|Xi,x) +
1
N

N∑

i=1

log p(Yi|Xi,x,y). (4)

The decision on the edge orientation in the CURE is taken as follows: if
DX|Y < DY |X , then the inferred causal direction is X → Y , otherwise Y → X.
The obvious weakness of the approach is the high computational complexity,
since it relies on the Markov chain Monte Carlo (MCMC) method for the approx-
imation of the posterior distribution, what is computationally consuming in case
where the number of samples is large.

3.2 Supervised Causality Discovery with Distance Correlation

Recently, [11] proposed a causality inference method for discrete data. The
method is also based on the Postulate 1. Let us assume that X and Y are dis-
crete, and the probabilities P (X) and P (Y |X) are realizations of a variable pair.
Since both X and Y are categorical, one can present the probability distribu-
tions as tables. As stated by [11], a dependence coefficient between P (X) and
P (Y |X) can be used to infer causality direction between variables X and Y , and
it was proposed to apply the distance correlation [18]. The dependence measures
are defined as follows:

DY |X = D(P (X), P (Y |X)) (5)
DX|Y = D(P (Y ), P (X|Y )), (6)

where D(a, b) is the distance correlation.
Given a data set, the distance measures can be computed directly. However,

it is not so straightforward to infer causal directions. In was shown by experi-
ments [11] that the correlation distance indeed can be used to characterize the
dependence between P (X) and P (Y |X). However, in case where DY |X is close
to DX|Y , the causal direction can not be decided.
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3.3 Semi-supervised Causal Direction Discovering

In this section, we introduce our method of discovering causal directions. Let
Q(X) and Q(Y ) be marginal distributions of observations computed from alter-
native unlabeled, potentially infinite data sets. Here we consider two semi-
supervised settings:

1. The distance correlation (Eqs. (5) and (6)) can incorporate unlabeled data in
form of Q(X) and Q(Y ), and, therefore, hopefully, take into account marginal
probabilities which are much more accurate;

2. The difference between a supervised and a semi-supervised log-likelihoods can
be a measure that helps to infer causality. In particular, we guess that the
parametric functions allow to integrate knowledge about data structure into
the criterion, what can be of a big interest in a number of applications.

In this section, we detail the second setting only, since the first scenario based
on the distance correlation is straightforward to implement. In our experiments,
we consider both settings.

Assumption 4. We assume that data are discrete or discretized, and the proba-
bility distributions can be stocked as two-dimensional (for conditional probability)
and one-dimensional (for marginal probability) tables.

Note that this assumption was also used by [11]. Without loss of generality, the
matrices containing the distributions can be computed as follows:

p(y|x) =
∑N

i=1 1{Xi=x,Yi=y}∑N
i=1 1{Xi=x}

, and q(x) =
N ′∑

i=1

1{X′
i=x′}. (7)

The marginal probability q(x) can be computed from unlabeled data, whose size
can potentially be very big.

The semi-supervised criterion where the conditional probability is estimated
from labeled data, and the marginal probability can be estimated from numerous
unlabeled data takes the following form:

p(y|x)q(x) =
∑N

i=1 1{Xi=x,Yi=y}∑N
i=1 1{Xi=x}

N ′∑

i=1

1{X′
i=x′}. (8)

Note that it was shown that the weighted semi-supervised criterion is asymptot-
ically optimal [29], and it reaches the minimal asymptotic variance.

A way to quantify the accuracy of estimation of P (X|Y ) and of P (Y |X), is
to compute the difference between the negative semi-supervised log-likelihood
and the supervised functions:

DX|Y = Lsemi-sup
X|Y − Lsup

X|Y = (9)

− 1
N

N∑

i=1

log p(Xi|Yi)q(Yi) +
1
N

N∑

i=1

log p(Xi|Yi), (10)
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and

DY |X = Lsemi-sup
Y |X − Lsup

Y |X = (11)

− 1
N

N∑

i=1

log p(Yi|Xi)q(Xi) +
1
N

N∑

i=1

log p(Yi|Xi). (12)

The decision on the edge directions is similar to the CURE method: if DX|Y <
DY |X , then the direction is fixed to X → Y , otherwise Y → X. Here, we do
not introduce any threshold to be fixed. Indeed, in some cases, where we would
like to control the confidence of our decisions, we could introduce a minimal
acceptable value which is the difference between Lsemi-sup and Lsup. The pairwise
semi-supervised causality inference algorithm is drafted as Algorithm1.

It is interesting that [25] reported that semi-supervised learning scenario
is pointless in general if P (X) contains no information about P (Y |X), i.e. if
X → Y , since a more accurate estimation of P (X) does not influence an estimate
of P (Y |X). However, we claim that a more accurate estimation of P (X) would
help to infer causality directions more accurately.

Algorithm 1. Semi-Supervised Causal Inference
Input: Observations {Xi, Yi}N

i=1, and

unlabeled data {Xi}N′
i=1.

Output: Causality directions between X and Y

STEP 1: Compute Q(X) and P (Y |X) from data,
Estimate DY |X = Lsemi-sup

Y |X − Lsup
Y |X , Eq. 10

(or DY |X = D(P (X), P (Y |X)), Eq. 5)

STEP 2: Compute Q(Y ) and P (X|Y ) from data,
Estimate DX|Y = Lsemi-sup

X|Y − Lsup
X|Y , Eq. 12

(or DX|Y = D(P (Y ), P (X|Y )), Eq. 6)

STEP 3: Decide the edge direction:
if DX|Y < DY |X then

Infer X → Y
else

Infer Y → X
end if

4 Experiments on Benchmark Data Sets

In our experiments, we apply deep restricted Boltzmann machines (DRBM) to
estimate the conditional and marginal distributions. A DRBM introduced by [22]
contains a set of visible units v ∈ {0, 1}D and a set of hidden units h ∈ {0, 1}P .
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We are in the context of supervised learning, and the DRBM considered in this
paper have also output units y; two output units for a binary problem. Energy-
based probabilistic models, and the deep RBM, define a probability distribution
through an energy function. In the restricted Boltzmann machines, the energy
of the state (v,h) with model parameter w is defined as

E(v,h, w) = −vTwh, (13)

p(v, w) =
1

Z(w)

∑

h

exp(−E[v,h, w]), (14)

Z(w) =
∑

v

∑

h

exp(−E[v,h, w]). (15)

The conditional distributions over visible and hidden units are given as follows:

p(hj = 1|v,h−j) = σ

(
D∑

i=1

wijvi

)
, (16)

p(vi = 1|h,v−i) = σ

⎛

⎝
P∑

j=1

wijhj

⎞

⎠ , (17)

σ(a) =
1

1 + exp(−a)
, (18)

and the above defined σ is the logistic function.
All the details for the pre-training and training can be found in [22,23].

Prediction. The prediction is done as follows [16]:

p(y|v) =
∑

h

p(y|h)p(h|v) = Ep(h|v) p(y|h). (19)

Computation of the Marginal Probability in the DRBM. Although the
conditional distribution of a class given an observation can be directly computed
from an estimated deep RBM model, it is not straightforward to compute the
marginal probability. To estimate P (X), we use the AIS (Annealed Importance
Sampling) algorithm [24] to accurately evaluate the log of the marginal proba-
bilities.

In this section, we illustrate the performance of the proposed approach on
standard cause-effect pairs, and on network reconstruction benchmarks. Our
implementation is done in Matlab, and it incorporates the publicly available code
provided on a web page of Ruslan Salakhutdinov for learning deep Boltzmann
machines1, and for AIS sampling in DRBM2.

1 http://www.cs.toronto.edu/∼rsalakhu/DBM.html.
2 https://www.cs.toronto.edu/∼rsalakhu/rbm ais.html.

http://www.cs.toronto.edu/~rsalakhu/DBM.html
https://www.cs.toronto.edu/~rsalakhu/rbm_ais.html
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4.1 Cause-Effect Pairs

We have tested our method on the standard collection of the cause-effect pairs,
obtained from http://webdav.tuebingen.mpg.de/cause-effect, version 1.0. The
data set contains 100 pairs from different domains, and the ground truth is
provided. The goal is to infer which variable is the cause and which is the effect.
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Fig. 1. Experiments on the cause-effect pairs. The accuracy of the semi-supervised
criterion based on the log-likelihoods with 50% of training data (on the left), and with
100% of training data (on the right).

The pairs 52–55, 70–71, and 81–83 are excluded from the analysis, since they
are multivariate problems. Note that each pair is weighted, and the accuracy is
a weighted average.

It was reported that Origo [2] achieves 58% accuracy, and the Additive Noise
models (ANM) [19] reach 72 ± 6%. We tested the ANM with the Gaussian
Process regression which is the state-of-the-art method. The code is publicly
available at http://www.math.ku.dk/∼peters/code.html. The goodness of fit is
evaluated by the HSIC independence test of the residuals and the input, and
the causality inference is based on the obtained p-values for both directions. We
observed that the difference between two p-values for almost all cause-effect pairs
is close to zero, what provokes the question whether decisions can be reliable.

To compare to the state-of-the-art, we estimate the functional relationships
between the cause-effect pairs by the proposed semi-supervised methods. Both
settings are developed for discrete data, and we discretize the continuous data
using the equal frequency method, the equal width method, and the global equal
width method (we use the “infotheo” R package). We also try to find an opti-
mal number of categories for each variable by cross validation, and we test the
different number of bins = 3, 5, 7, 10, 15, 20, 25, and 30. We decide to fix the
number of bins equal to 5.

Figure 1 illustrates the accuracy of the semi-supervised method based on the
log-likelihoods, where we applied Eqs. (10) and (12), as a function of the size of
labeled and unlabeled data. We observe that the proposed method achieves the
state-of-the-performance. On the left, we see that increasing the size of unlabeled
data, we slightly increase the accuracy and also decrease the variance of the error

http://webdav.tuebingen.mpg.de/cause-effect
http://www.math.ku.dk/~peters/code.html
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Fig. 2. F-score for the Asia and Sachs data. The number of samples tested is 25, 100,
and 1000.

rate. On the right we observe, that some attention is needed while introducing
unlabeled data, since in case where we use 100% of labeled and 100% of unlabeled
data, it seems that we overfit.

4.2 Network Reconstruction

We run experiments on two benchmark networks, both downloadable from the
Bayesian Network Repository3:

1. Asia data set [10], also known as the lung cancer benchmark data. The number
of nodes is 8, the number of true arcs is 8.

2. Sachs [21] is a causal protein-signaling network with 11 nodes and 17 arcs.

The data sets are network reconstruction challenges with discrete entries. In our
experiments, we are interested to discover causality, not the graph structure. We
suppose that the skeleton of networks is known, and we compare the causality
inference algorithms only.

We test RESIT (regression with subsequent independence test) which is a
state-of-the-art ANM method [19]. The RESIT is based on independence tests
and simple algorithms that use the independence scores. The algorithm is an iter-
ative procedure where at each iteration, a sink node is identified and disregarded.
We also test Linear non-Gaussian Acyclic Model (LiNGAM) approach [28], the
PC algorithm named after its inventors Peter Spirtes and Clark Glymour [30], its
conservative version CPC [20], and the Greedy DAG search algorithm GDS [6].
The implementation of the state-of-the-art methods mentioned above is publicly
available from the web page of Jonas Peters4.

3 http://bnlearn.com/bnrepository/.
4 http://www.math.ku.dk/∼peters/code.html.

http://bnlearn.com/bnrepository/
http://www.math.ku.dk/~peters/code.html
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Table 1. Runtimes for the tested algorithms: RESIT, LiNGAM, CPC, PC, GDS, DC,
and the Semi-Supervised approach on Asia and Sachs with 25, 100, and 1000 generated
observations.

Method Asia Sachs

25 100 1000 25 100 1000

Semi-Sup 0.1560 0.1755 0.3005 0.3510 0.7360 1.1350

DC 0.1595 0.1830 0.3160 0.3645 0.7545 1.1480

RESIT 0.1345 0.3345 28.2935 0.5820 57.1550 163.3755

PC 0.0080 0.0100 0.0130 0.0165 0.0530 0.0645

CPC 0.0100 0.0120 0.0215 0.0260 0.1860 0.2455

LiNGAM 1.7600 1.7020 1.7235 0.0875 0.2245 0.3590

GDS 6.0085 590.9255 590.9255 200.7760 8515.4505 8515.4505

The estimated orientations are evaluated for different number of sam-
ples. We tested the causality methods with 25, 100, and 1000 obser-
vations sampled from the networks. The results are discussed in terms
of true positive (TP), false positive (FP) and false negative (FN) edges
(i.e. correct, spurious or missing edges respectively). In particular, evalua-
tions are based on Precision = TP/(FP + TP), Recall = TP/(TP + FN), and F-
score = 2 * Precision * Recall/(Precision + Recall). We repeat the simulations 10
times, and boxplot the F-scores on Fig. 2. We observe that the RESIT and the
proposed semi-supervised method based on the log-likelihoods achieve the best
performance. The Distance Correlation (DC) is less efficient.

In real applications, if the network structure is unknown, Aracne (Algo-
rithm for the Reconstruction of Accurate Cellular Networks) can be applied
to reconstruct a graph. Aracne introduced by [13] is a state-of-the-art network
information-theoretic reconstruction method. The approach defines an edge in
a graph as an irreducible statistical dependency. It is reported that the Aracne
achieves very low error rates, however, the reconstructed graph is undirected,
therefore the Aracne is unable to infer edge directions.

4.3 Runtime Results for Network Reconstruction

We have shown that the proposed algorithm achieves the optimal performance.
Another question is its computational efficiency. Table 1 shows the internal time
at execution in seconds for different number of tested samples and for different
causality methods. The PC and CPC seem to be the fastest to learn but not very
accurate. The RESIT has low error rates but its runtimes increase drastically
with the number of observations. The semi-supervised method based on the log-
likelihoods and the original distance correlation approach need similar time to
learn but our method achieves a better F-score. Note that although the proposed
algorithm is already quite efficient, the current implementation of our method
is not really optimized yet, and it is possible to speed it up.
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Fig. 3. Metformin and bacteria: test error of the semi-supervised (log-likelihood)
causality criterion as a function of the amount of unlabeled data.

5 Effects of Metformin on Human Gut Composition

Recently, a number of associations between chronic human diseases and alter-
ations in gut microbiome composition have been shown [4]. An important ques-
tion is whether treatment causes changes in human gut flora, and whether it
affects metabolism. It was reported [4] that the human gut microbiome of type
2 diabetes is confounded by metformin treatment, and therefore, the drug met-
formin impacts the composition and richness of the human gut microbiome.
Similar results were reported by [31].

The data set of [4] which we explore in our experiments is a multi-country
metagenomic dataset, containing information about patients from three coun-
tries: Danemark, China, and Sweden. The data contains information of 106
patients with type 2 diabetes who take the metformin, and 93 patients with the
diabetes who does not take the drug. The features are 785 gut metagenomes or
gut bacteria. The observation matrix contains abundance of bacteria. The abun-
dance matrix is a sparse matrix where 1 means that a metagenome is present in
a patient, and 0 means that it is absent.

We run the novel algorithm to test whether it confirms the statements of
[4,31] that the metformin alters, in other words, impacts, the gut flora. In the
numerical experiments, we assume that the ground truth is that the metformin
causes changes in bacteria. If an algorithm predicts the inverse, we consider that
it makes an error.

Figure 3 shows that the semi-supervised causality method in generally con-
firms that the microbiota is affected by the metformin treatment. For the major-
ity of the bacteria considered in the experiments, this relation is obvious with
the error rate close or equal to 0. For a few bacteria the accuracy is not so
high. However, [4,31] focus on a very limited number of bacteria species, and
the statement that the metformin impacts the metagenome is not necessarily
true for all bacteria of the human gut flora. Figure 4 illustrates the error rate
for one particular bacterium called Akkermansia muciniphila which is associated
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Fig. 4. Metformin and Akkermansia muciniphila: causality prediction error rate as
a function of labeled and unlabeled data. Above: the criterion based on the log-
likelihoods; below: the setting based on the distance correlation.

with the metabolic health. We clearly see that the hypothesis that the metformin
alters the abundance of Akkermansia muciniphila is verified in both proposed
semi-supervised settings.

6 Conclusions

We challenged the problem of causal relations discovery from purely observa-
tional non-temporal data. In this contribution, we introduced a novel causal-
ity inference approach based on a semi-supervised probabilistic framework. The
advantage of our approach are its high accuracy, and high computational effi-
ciency. Note that its implementation is simple and straightforward.

We have compared the proposed semi-supervised causality inference algo-
rithm to the state-of-the-art methods, and we illustrate by the experiments on
standard data sets and benchmark networks (discrete or discretized data) that
the approach achieves the best performance in terms of F-score and accuracy.
We have shown that the proposed method is efficient to detect whether a drug
causes alterations in the human gut.

From the results of our experiments, we can conclude that measuring dis-
tance between a supervised and an unsupervised models can indeed provide
information on the edge orientation.
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Currently we are investigating another scheme of causality inference which is
based on generative hierarchical probabilistic models. Another avenue of research
is to extend the proposed method for confounding variables.

Acknowledgments. This work was supported by PEPS (CNRS, France), project
MaLeFHYCe.
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Abstract. A compact easily applicable and highly accurate classifica-
tion model is of a big interest in decision making. A simple scoring system
which stratifies patients efficiently can help a clinician in diagnostics or
with the choice of treatment. Deep learning methods are becoming the
preferred approach for various applications in artificial intelligence and
machine learning, since they usually achieve the best accuracy. However,
deep learning models are complex systems with non-linear data transfor-
mation, what makes it challenging to use them as scoring systems. The
state-of-the-art deep models are sparse, in particular, deep models with
ternary weights are reported to be efficient in image processing. However,
the ternary models seem to be not expressive enough in many tasks. In
this contribution, we introduce an interval quantization method which
learns both the codebook index and the codebook values, and results in
a compact but powerful model.

We show by experiments on several standard benchmarks that the
proposed approach achieves the state-of-the-art performance in terms of
generalizing accuracy, and outperforms modern approaches in terms of
storage and computational efficiency. We also consider a real biomedi-
cal problem of a type 2 diabetes remission, and discuss how the trained
model can be used as a predictive medical score, and be helpful for physi-
cians.

1 Introduction

Medical doctors and clinicians rely more and more often on artificial intelligence
and machine learning tools for diagnostic purposes. The application domains
vary from prediction of a risk of a disease to understanding genetic variations.

Deep learning methods are able to learn complex internal representations
with the aim to solve complex real problems, and can be applied to any type
of medical data, not only images [7]. High-level representations can be learned
in an unsupervised or semi-supervised way within a deep learning framework,
taking only a small amount of labeled data into account. Top-down feedback in

c© Springer International Publishing AG, part of Springer Nature 2018
P. Perner (Ed.): MLDM 2018, LNAI 10934, pp. 421–435, 2018.
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deep networks helps to deal better with uncertainty and to treat noisy data in
a more robust way. However, a newly learned high-level data representation is
not necessary easily interpretable for clinicians and physicians. Moreover, the
networks become deeper and deeper, the number of features increases, and the
models are black boxes for human experts.

A scoring system stratifies an observation based on an estimated model. Clin-
ical scoring systems are of particular interest since they are expected to predict
a state of a patient, and to help physicians to provide accurate diagnostics. Some
widely used medical scores are SAPS I, II, and III [5,16] and APACHE I, II, III
to assess intensive care units mortality risks [12], CHADS2 to assess the risk of
stroke [4]; TIMI to estimate the risk of death of ischemic events [1]. A detailed
example of a clinical score, shown in Table 1, is the DiaRem score [25] which
is a preoperative method to predict remission of type 2 diabetes after a gastric
bypass surgery. The DiaRem is based on four clinical variables and a few thresh-
olds per variable. Only one arithmetic operation is involved into the DiaRem
computation: the scores are added, and if the sum is <7, then a patient is likely
to benefit from the surgery, and to get the diabetes remission.

Recently, [27] considered a problem of learning risk scores, where the pro-
posed models are designed for risk assessment. Under the risk assessment it is
meant that we model a prediction risk, e.g. using a probabilistic model such as
logistic regression. The modelled conditional probability is equal to the risk of
having this or that syndrome, or a disease.

We are motivated to apply deep learning to train a scoring system optimized
for the risk, since deep learning models achieve high accuracy. On the other
hand, only an easily interpretable and easily computable score can be adopted
in clinical routines. If a model to provide a prognosis for a new patient is too
complex, an application with an intuitive graphical interface is needed for prac-
tical use by therapists. In this case, the computations are expected to be fast
and efficient, so that such an application can be installed on a small portable
gadget.

Several methods have been recently proposed to reduce the size of networks,
and, therefore, to increase the computational speed and to reduce the storage
needed for deep models. The state-of-the-art approaches rely mostly on reduction
of the weights of deep networks, activation units, and event gradients to binary
or ternary values [3,13].

Our contribution is multifold:

– A deep model can be huge and the inference can be computationally expen-
sive, and take unacceptably much time, especially if high-dimensional “omics”
(transcriptomics, proteomics, etc.) data are integrated into the model. Here,
we introduce deep restricted Boltzmann machines (DRBM) where the weights
are quantized by intervals what drastically reduces the size of the model, since
it is sufficient to store the estimated codebook index and the corresponding
trained codebook values. The weights quantization also plays a role of a reg-
ularizer. Our approach results in a more expressive and more accurate model
compared to the state-of-the-art methods with ternary weights.
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– The output of the deep restricted Boltzmann machine is probabilistic, what
is of a big help to assess the confidence of a decision. We propose to use
the DRBM as a probabilistic model to design the predicted risk under the
form of a conditional probability. The scores distribution can be visualized to
simplify the interpretation of prediction. Therefore, our scoring systems are
optimized risk scores models which implement the interval quantization for
efficient computation and sparse models.

– We test the novel interval quantization DRBM on a number of publicly avail-
able data sets, and we show that the reduced compact model achieves an
optimal performance in terms of accuracy. We also consider an original prob-
lem of type 2 diabetes remission, and discuss how the proposed risk scores
can provide additional diagnostics, and help physicians in decision making.

Table 1. The DiaRem score to assess the outcome of the bariatric surgery [25]

Clinical variables Age Glycated hemoglobin Insuline Other drugs

Thresholds <40 40–49 50–59 >60 <6.5 6.5–6.9 7–8.9 >9 Yes No Yes No

Scores 0 1 2 3 0 2 4 6 10 0 3 0

This paper is organised as follows. Related work discusses the state-of-the-
art discrete deep learning methods, and the modern approaches to construct
scores. Then we consider the deep restricted Boltzmann machines which are
the computational framework of our model. We introduce the deep restricted
Boltzmann machines where the weights are quantized by intervals. We show
the results of our numerical experiments, and the obtained scores. Concluding
remarks and perspectives close the paper.

2 Related Work

We are interested in stochastic neural networks whose activation units have a
probabilistic element. Such a choice is motivated by the fact that probabilities
can also be interpreted, e.g., probability to be ill or to be healthy is an important
piece of information. Deep restricted Boltzmann machines (DRBM) originally
introduced by [19] is a deep stochastic model with one layer of visible units and
several hidden units. The model is restricted in the sense that no visible unit is
connected to any other visible unit, and similarly for all hidden layers.

Systems with potentially many layers of non-linear processing such as deep
RBM, are difficult to learn, and some approximate inference methods (see e.g.,
[20–22]) were proposed. The deep RBM were reported to be efficient on a num-
ber of various real applications such as natural language processing [24], neu-
roimaging applications [9], speech processing [28], and also for heterogeneous
data integration [23].
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Since recently, the artificial intelligence and machine learning communities
work actively on the problem to reduce the demand for memory usage by deep
architectures that can potentially be huge. Among the state-of-the-art methods
to reduce the size of neural networks are approaches which binarize the weights,
activation units, and even gradients of the deep networks. Weights quantiza-
tion appears to have several advantages. During training, most of computational
power is spent on multiplications. Quantization of weights removes multiplica-
tions in the forward pass, since sampling an integer is faster than multiplication.
The sampling process is done once for each mini-batch. Another advantage to
have a model with discrete weights, is the regularizing effect preventing from
overfitting what is a real problem in deep learning.

A number of quantized deep learning approaches were proposed very recently.
So, [3] proposed a neural network with binary weights and binary activations
at run-time. During the training procedure, most arithmetic operations are
replaced with bit-wise operations, and the approach is, therefore, computation-
ally extremely efficient. Similar idea is implemented in [11] where all the inputs,
weights, biases, hidden units, and outputs can be represented with single bits.
[15] introduced quantized back propagation where a considerable number of mul-
tiplications is eliminated from the backward pass. A quite efficient scheme to
binarize weights, called BinaryConnect, was introduced by [2], and [13] reported
that expressive ability of ternary networks, i.e., of models where weights take
their values in {−1, 0, 1}, is better than of binary models. Deep neural networks
with the ternary weights were also designed by [10]. [29] considered training in
the ternary networks, and proposed to use scaling coefficients for each layer to
increase the expressive power of the ternary models.

It is important to note that the introduced quantized deep learning methods
leading to much more compact models, do not degrade performance compared
to real-valued models.

Learning medical scores is a rather new domain of research, and the extensive
literature does not really exist. Among the state-of-the-art methods are Super-
sparse Linear Integer Models (SLIM) developed by [26] for automated medical
score learning, which are reported to perform efficiently on various data sets.
The model is formulated as an integer programming task and optimizes directly
the accuracy, the 0–1 loss, and the degree of sparsity. Similarly to [27], our model
is designed for risk assessment, however, in contrast to it, the optimization pro-
cedure is quite different from the riskSLIM which is based on a cutting plane
algorithm and MIP solvers.

3 Problem Statement

We define the problem of scoring systems learning as follows. We have a set of
training examples {Xi, Yi}N

i=1, where X is a matrix of observations, and Y is a
class label. A score function is defined as 〈θ,X〉, where θ is a coefficient vector,
and 〈·, ·〉 is the scalar product. Given observations X, and estimated weights θ,
a score si for an observation Xi is equal to 〈θ,Xi〉. A class can be predicted
according to the conditional probability
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p(y = 1|X) =
1

1 + exp(−〈θ,X〉) . (1)

The conditional probability designs also the predicted risk, and we hope that it
can be estimated with a deep learning approach more accurately than with the
standard logistic regression.

4 Deep Restricted Boltzmann Machines

A deep restricted Boltzmann machine (DRBM) introduced by [19] contains a
set of visible units v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P . We
are in the context of supervised learning, and the DRBM considered in this
paper have also output units y; two output units for a binary problem. Energy-
based probabilistic models, and the deep RBM, define a probability distribution
through an energy function. In the restricted Boltzmann machines, the energy
of the state (v,h) with model parameter w is defined as

E(v,h, w) = −vT wh, p(v, w) =
1

Z(w)

∑

h

exp(−E[v,h, w]), (2)

Z(w) =
∑

v

∑

h

exp(−E[v,h, w]). (3)

The conditional distributions over visible and hidden units are given as fol-
lows:

p(hj = 1|v,h−j) = σ(
D∑

i=1

wijvi), p(vi = 1|h,v−i) = σ(
P∑

j=1

wijhj), (4)

where σ(a) = 1
1+exp(−a) , and the above defined σ is the logistic function. The

gradient to run an optimization procedure can be written as

Δw = α(EPdata[vhT ] − EPmodel[vhT ]), (5)

where α is the learning rate, the first term is the expectation with respect to
the completed data distribution, and the second term is the expectation with
respect to the distribution defined by the model.

If we consider a two-layer deep restricted Boltzmann machine, the energy of
state is given by

E[v,h1,h2, w] = −vT w1h1 − h1w2h2, (6)

where w = {w1, w2} are the parameters of the model, and

p(v, w) =
1

Z(w)

∑

h1,h2

exp(−E[v,h1,h2, w]). (7)
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The conditional distributions over the hidden and visible layers are given as
follows:

p(h1
j = 1|v,h2) = σ(

∑

i

w1
ijvi +

∑

m

w2
jmh2

j ), (8)

p(h2
m = 1|h1) = σ(

∑

i

w2
imh1

i ), p(vi = 1|h1) = σ(
∑

j

w1
ijh

2
j ). (9)

Pretraining. To initialize the weights w of the model, we perform the greedy
layerwise pretraining [8]. The greedy layerwise pretraining learns a stack of
restricted Boltzmann machines in an unsupervised layer-by-layer greedy pro-
cedure. It was shown by [8,19] that such a pretraining initializes the weights to
reasonable values and therefore fastens the approximate inference to estimate
the model. To perform the initialization, we compute:

p(h1
j = 1|v) = σ(

∑

i

w1
ijvi +

∑

i

w1
ijvi), p(vi = 1|h1) = σ(

∑

j

w1
ijhj),

(10)

p(h1
j = 1|h2) = σ(

∑

m

w2
jmh2

m +
∑

m

w2
jmh2

m), p(h2
m = 1|h1) = σ(

∑

j

w2
jmh1

j ),

(11)

where the input is doubled to eliminate the double-counting problem while top-
down and bottom-up inferences are combined. When the Eqs. (10)–(11) are com-
bined, we get

p(h1
j = 1|v,h2) = σ(

∑

i

w1
ijvi +

∑

m

w2
jmh2

m) (12)

Training. Let

F (v) = − log
∑

h1,h2

exp(−E[v,h1,h2]), (13)

and

−∂ log p(v, w)
∂w

=
∂F (v)

∂w
−

∑

ṽ

p(ṽ)
∂F (ṽ)

∂w
, (14)

where the first term increases the probability of training data and is often referred
to as the positive phase, and the second term decreases the probability of sam-
ples generated by the model and is associated with the negative phase. As we
have already mentioned earlier, the second term of the derivative is an expec-
tation over all possible configurations of input, and its computation is usually
intractable. However, it can be computed using sampling

Ep

[∂F (v)
∂w

]
=

1
|V|

∑

v̄∈V

∂F (v̄)
∂w

, (15)
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where v̄ ∈ V are samples produced, e.g., by a MCMC method. Annealed Impor-
tance Sampling (AIS) with variational inference can be used to make the com-
putations tractable (see [19,22] for details).

Prediction. The prediction is done as follows [17]:

p(y|v) =
∑

h

p(y|h)p(h|v) = Ep(h|v) p(y|h). (16)

5 Quantized Deep Restricted Boltzmann Machines

Binary and ternary connects are nowadays the state-of-the-art utilities to dis-
cretize deep networks. In the following, wb are weights of a deep model obtained
with the binary connect, and wt is the result of the ternary connect transforma-
tion.

Binary connect [3] transforms each full precision element of w into an integer
in {−1, 1} as follows:

wb ∼ Bernoulli(
w + 1

2
) ∗ 2 − 1. (17)

In the DoReFa approach, it is proposed to quantize weights, activations, and
gradients using various widths of bits. To quantize the weights, the average of
absolute values of full precision weights are taken layerwise:

wb = E(|w|) ∗ sign(w). (18)

In practice, a lot of w are close to zero, and it is usually beneficial to allow
weights to be zero. Ternary connect [13] does another simple transformation of
w to map them to values in {−1, 0, 1}:

wt ∼ Bernoulli(|w|) ∗ sign(w). (19)

The back propagation pass is also quantized [15], and during the back propaga-
tion most of the floating point multiplications are also eliminated.

During the back propagation

∂F

∂w
=

∂F

∂wb
=

∂F

∂wt
. (20)

Trained ternary quantization [29] relies on precision coefficients W p
h and Wn

h

for each layer h, and the weights take one of three possible values {W p
h , 0,Wn

h }
instead of {−1, 0, 1}. The gradient is back propagated for both W p

h and Wn
h , and

also for the full precision weights.
Potentially, a model where W p

h �= −Wn
h is more expressive, and the learned

coefficients play the role of “learning rate multipliers”. To learn the ternary
weights, where the coefficients W p

h and Wn
h are trained using back propagation,

[29] proposed the following procedure. Quantization values W p
h and Wn

h are
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Algorithm 1. Trained Interval Quantization in DRBM
Input: X, Y , number of layers and units, learning rate α
Output: Quantized w̄ and predictive scores

// for some number of epochs T
for for t = 1 : T do

// Forward pass
for each layer h do

Compute activations from w, h−1, and b
Quantize w and get w̄+

h,k+ and w̄−
h,k− with eq. (25) and eq. (26)

end for

// Backward pass
for each layer h do

Compute ∂F

∂W+
h,k+

with eq. (27) and compute ∂F

∂W−
h,k−

with eq. (28)

Compute ∂F

∂w+
h

with eq. (29) and compute ∂F

∂w−
h

with eq. (30)

Update weights, both continuous w and the coefficients W+
h,k+ and W −

h,k−
end for

end for

introduced for each layer h; Δh is a thresholds for layer h. During the forward
pass, the ternary weights are computed as follows:

wt
h =

⎧
⎪⎨

⎪⎩

W p
h , if wh > Δh,

0, if |wh| ≤ Δh,

−Wn
h , if wh < −Δh.

(21)

The coefficients W p
h and Wn

h are independent and trained during the training
procedure. The gradients can be directly computed as follows:

∂F

∂W p
h

=
∑

i∈Ip
h

∂F

∂wt
h(i)

, (22)

∂F

∂Wn
h

=
∑

i∈In
h

∂F

∂wt
h(i)

, (23)

where Ip
h = {i|wh(i) > Δh} and In

h = {i|wh(i) < −Δh}. In the presence of
these two scaling factors, the gradient of the full precision weights w takes the
following form:

∂F

∂wh
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

W p
h × ∂F

∂wt
h

if wh > Δh,

1 × ∂F
∂wt

h
if |wh| ≤ Δh,

Wn
h × ∂F

∂wt
h

if wh < −Δh.
(24)
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6 Trained Interval Quantization

The main motivation to quantize weights by intervals in more than three bins,
i.e. to have a model with more than {Wn

h , 0,W p
h} coefficients, is to increase

the expressiveness of the model. Ternary quantization, even with W p
h and Wn

h

learned and different for each layer, is not powerful enough for a number of
applications. In this section, we describe the interval quantization where the
number of values, which can be taken by the parameters, is bigger than three.
We introduce coefficients W+

h,k+ and W−
h,k− associated with positive and negative

weight intervals k+ ∈ K+ and k− ∈ K− of layer h. The coefficients are learned
during the training procedure, similarly to the method of [29].

For each layer h of the network, we discretize the positive part w+
h of the

parameter vector wh into K+
h bins. The negative part w−

h of the parameter vector
wh of layer h is split into K−

h bins. Although the choice of a binning algorithm
can be important, in this paper we consider two standard binning approaches,
namely, the equal width and the equal frequency binning. From a number of
numerical results, we decided to focus on the equal width algorithm only. So,
first, the equal width binning approach cuts wh into w̄+

h,k+ and w̄−
h,k− , and during

the forward pass:

w̄+
h,k+ = W+

h,k+ , for each bin k+ from K+
h positive bins, (25)

w̄−
h,k− = −W−

h,k− , for each bin k− from K−
h negative bins. (26)

The gradients with respect to the coefficients W+
h,k+ and W−

h,k− which are
associated with the positive and negative bins and which are needed during the
backward procedure:

∂F

∂W+
h,k+

=
∑

i∈Ih,k+

∂F

∂w̄+
h,k+(i)

for all k+, (27)

∂F

∂W−
h,k−

=
∑

i∈Ih,k−

∂F

∂w̄−
h,k−(i)

for all k−, (28)

where Ih,k+ = {i|w+
h,k+ for all k+ ∈ K+}, and Ih,k− = {i|w−

h,k− for all k− ∈
K−} . In the presence of these multiple scaling factors, the gradient of the full
precision weights wh, for the positive w+

h and negative w−
h parts, can be written

as follows:

∂F

∂w+
h

= W+
h,k+ × w̄+

h,k+ for all k+ ∈ K+, (29)

∂F

∂w−
h

= W−
h,k− × w̄−

h,k− for all k− ∈ K−. (30)

The complete procedure to learn the deep Boltzmann machines with the interval
quantization is drafted as Algorithm 1.
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Fig. 1. Performance of the SLIM, Continuous DRBM, DRBM with rounded weights,
DRBM with ternary deterministic weights, DRBM with ternary randomized rounding
weights, DRBM with trained ternary weights, and DRBM with the interval quantiza-
tion.

In the numerical experiments, to project the full precision values of w into a
given interval [−R;R] we use a method described in [6]. A randomized rounding
is used in our experiments to produce the ternary weights; this is one of baseline
methods we run to compare our results with. Our implementation is done in
Matlab, and it is based on the publicly available code provided on a web page
of Ruslan Salakhutdinov for learning deep Boltzmann machines1.

1 http://www.cs.toronto.edu/∼rsalakhu/DBM.html.

http://www.cs.toronto.edu/~rsalakhu/DBM.html
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7 Experiments

In this section, we share our results on several standard benchmarks, and on an
original problem of type 2 diabetes remission prediction after a gastric bypass
surgery. The choice of the benchmark data sets is motivated by the results of
the scoring systems learned by the SLIM and reported in [26]. Most of the sets
are downloadable from the UCI Machine Learning repository2 [14]:

– Qualitative Bankruptcy. The data are categorical, with 250 observations and
7 attributes such as industrial risk, management risk, competitiveness, etc.

– Breast Cancer Wisconsin (Prognostic). We dispose of about 30 parameters
describing characteristics of the cell nuclei present in the medical images for
198 patients. All parameters are continuous.

– Ionosphere. Ionosphere data set contains 351 observations and 34 attributes
to discriminate good and bad ionosphere conditions. The observations are
radar data, and all of them are continuous.

– Mammography. The Mammography set contains 961 observations and 6 vari-
ables, and the goal is to predict the outcome of the breast cancer screening,
and to avoid unnecessary invasive procedures such as biopsy.

– Haberman’s Survival data. The aim is to classify patients according to the sur-
vival outcome after surgery for breast cancer. There are only three attributes
(age of patient, year of operation, and the number of positive auxiliary nodes
detected) for 306 patients.

– Mushrooms. The data set is discrete, the number of instances is 8124, and
the number of attributes is 22. The goal is to predict whether mushrooms are
poisonous or edible.

– Spambase. The set contains 4601 emails which can be divided into two cate-
gories (spam or not spam). All 57 attributes are either continuous (normalized
word frequencies) or integers (number of capital letters, longest sequence of
capital letters, etc.)

– Glaucoma. The Glaucoma diagnosis set includes data from laser scanning
images taken from the eye background for 170 patients and 66 attributes,
providing information on the morphology of the optic nerve head, the visual
field, the intra ocular pressure and a membership variable. The data is part
of the “ipred” R package [18].

– Prediction of Diabetes Remission. The data set of type 2 diabetic sub-
jects is produced and managed by the Department of Nutrition, Center
of Reference for Medical and Surgical Care of Obesity, at the Institute of
Cardiometabolism and Nutrition (ICAN), Pitié-Salpêtrière Hospital (Paris,
France). About 130 type 2 diabetes patients were recruited, and they are
characterized by 6 parameters. The challenge is to predict whether a patient
will have a remission after a gastric bypass surgery or not.

Figure 1 demonstrates the test error rates for all considered data sets. We
compare the performance of our approach (“Interval quant.” on Fig. 1) with the

2 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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Fig. 2. The distributions of the obtained scores on the DiaRem Data the number of
observations for each possible score value. On the left: the continuous DRBM; in the
center: the SLIM, and on the right: the DRBM quantized by interval.

following methods: (1) SLIM of [26], since this approach is the state-of-the-art
method to learn scoring systems; (2) trained ternarization of [29]; (3) standard
continuous DRBM to control that the discretized models do not perform worse
than the state-of-the-art (“Continuous” on Fig. 1); (4) DRBM with rounded
weights; (5) DRBM with ternary weights, i.e. the weights are projected into
the interval [−1; 1], and rounded (deterministically); (6) DRBM with ternary
weights obtained by the randomized rounding.

We perform 10-fold cross validation and boxplot the testing error. The num-
ber of epochs for training is fixed to 75. We verified that the optimization pro-
cedure converged. We run a number of preliminary tests to set the following
DRBM configuration: 4 hidden layers with 100 units in each. To bin the weights,
we apply the equal width binning with the histcounts() Matlab function which
partitions a vector into bins. We do not fix the number of bins a priori in the
function.

The standard deep RBM achieves an excellent error rate but the continuous
model is complex. The SLIM scoring system also reaches a very competitive
performance. Using the SLIM approach, we got the same results as reported
by [26]. The only discrepancy with [26] concerns the Spam data: the authors of
SLIM report the error rate 6.3% ± 1.2, and we using SLIM get a result which
is significantly worse. It can be related to the choice of the hyperparameters,
although we fixed the hyperparameters using 10-fold cross validation. The model
with a posteriori rounded weights, and the models with ternary weights both
randomly and deterministically do not perform well. The ternary model of [29]
where the coefficients are trained and are different from −1 and +1, achieves
the state-of-the-art accuracy on some data sets. In general, the models where
the weights can take three values only seem to be not expressive enough. The
proposed interval quantization reaches the optimal performance.

Table 2 provides the number of unique values (the codebook values) per layer
of the DRBM trained with the interval quantization. Note that the method of
[29] keeps 3 values only, and although the method was reported to be very
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promising on images, it is not so stable on other data. The standard continu-
ous DRBM keeps in our case thousands (20, 000–30, 000 depending on a data
set) of parameters, and the novel interval quantization has a flexible number
of parameters per layer, the model is quite compact, and it reaches the same
performance as the SLIM and the continuous DRBM. The models discretized
by the interval quantization are about 100 times more compressible than the
continuous DRBM.

Table 2. The number of unique values in each layer of the deep network trained with
the interval quantization. L stands for “layer”.

L 1 L 2 L 3 L 4 L 1 L 2 L 3 L 4

Bankrupt 38 114 122 19 Mammo 35 106 99 16

Breast 57 117 135 14 Mushrooms 124 136 109 10

Glaucoma 93 82 84 19 Spam 85 128 93 10

Haberman 19 101 79 16 DiaRem 29 127 147 19

Iono 56 147 115 12

Another important aspect of scoring systems are the obtained scores, and
their simplicity. A risk value which is a conditional probability, is an indicator of
a state of a patient. The risk value can also be taken into consideration by physi-
cians, it can be rounded or scaled for simplicity. The risk scores issued from the
DRBM are scaled conditional distributions of classes given observations. In the
SLIM, a score is a linear combination of model parameters and an observation.

Figure 2 shows the scores learned from the Diabetes Remission data. We
show the scores learned with the SLIM, with the continuous DRBM, and with
the interval quantization. The scores obtained with the method of [29] are not
informative, and the corresponding accuracy is low. We see that the error is
different from zero for all methods, and we always observe some overlap between
the classes, what is conform with the state-of-the-art performance which is about
82% accuracy. The scores produced by the SLIM model (e.g., Fig. 2 in the cen-
ter) can lie on an arbitrary interval (−∞; +∞), and are less interpretable than
probability values for clinicians and therapists. However, it is also possible to
compute the conditional probabilities from an estimated SLIM model.

The risk scores of the interval quantization method are the conditional prob-
abilities multiplied by 10 what is an arbitrary constant. If we look at the scores
distribution produced by the interval quantization method, we will notice that
patients with the scores equal to 0, 1, and 2 will benefit from the gastric bypass
surgery with a high probability. At the same time, the patients with the scores
7–10 will probably not have the remission. We are not confident in our decision
for the patients who are in the interval 3–6. Such kind of information is very
helpful for clinicians in decision making, in choice of treatment, and in their
discussions with patients.
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8 Conclusion

In this contribution we have tried to address the problem of accurate risk score
learning from rich continuous data in a computationally efficient way. We pro-
posed a novel quantized deep restricted Boltzmann machines, and our main
result is presented as Algorithm 1, where we learn simultaneously the codebook
index (the quantization intervals), and the corresponding codebook values (the
coefficients associated with the bins). We claim that the conditional probabili-
ties of a class given an observation can provide an important information on the
confidence of the prediction, and, therefore, can be used as a risk score.

We have shown by experiments on several benchmarks that the proposed
method of the interval quantization is promising, competitive, and outperforms
the state-of-the-art scoring systems and classifiers in terms of computational
efficiency, and is highly accurate. Another important result on real medical data
is described in the experimental section. We illustrated by the diabetes remission
problem the potential of the proposed approach to efficiently learn risk scores,
what traditionally costs many hours of work of human experts.

Currently we are investigating how to perform adaptive interval quantiza-
tion, and how to adopt other deep architectures to learn scoring systems from
heterogeneous data.

Acknowledgments. This work was supported by PEPS (CNRS, France), project
MaLeFHYCe, and by the French National Research Agency (ANR JCJC Diag-
noLearn).
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Abstract. In this work, we present a new data mining (DM) approach (called
tuned clustering analysis), which integrates clustering, and tuned clustering
analysis. Usually, clusters which contain borderline results may be dismissed or
ignored during the analysis stage. As a result, hidden insights that may be rep-
resented by these clusters, may not be revealed. This may harm the overall DM
quality and especially, important hidden insights may be uncovered. Our new
approach offers an iterative process which assist the data miner to make appro-
priate analysis decisions, and avoid dismissing possible insights. The idea is to
apply an iterative DM process: clustering, analyzing, presenting new insights, or
tuning and re-clustering those clusters which have borderline values. Clusters
with borderline values are chosen and a new sub-database is built. Then, the
sub-database is split, based on the attribute with the highest Entropy value. The
tuning iterations, continues until new insights were found, or if the clusters
quality are below a certain threshold. We demonstrated the tuned clustering
analysis on real Echo heart measurements, using km-Impute clustering algorithm.
During the implementation, initial clusters were produced. Although the quality
of the clusters was high, no new medical insights were revealed. Therefore, we
applied a clustering tuning and succeeded in finding new medical insights such as
the influence of gender and the age on cardiac functioning and clinical modifi-
cations, with regard to resilience to diastolic disorder. Applying our approach has
successfully managed to reveal new medical insights which were restored from
borderline value clusters. This stands in contrast to traditional analysis methods,
in which these potential insights may be missed or ignored.

Keywords: Data mining � Clustering � Clustering analysis � Imputation
Missing values � Medical data mining

1 Introduction

The use of Data Mining (DM) algorithms and techniques such as Clustering Analysis,
is very common in recent years [1]. The aim of DM is to reveal new knowledge and
insights by applying DM on a very large dataset. Clustering Analysis applies a
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clustering algorithm on a dataset which builds group of clusters [2]. The members of
each cluster are relatively similar, while members from different clusters are distinct
from each other. Basically, clustering process consists of the following stages: (1) Data
collection and pre-processing (2) Clustering (3) analyzing the results and revealing new
insights [1]. The analysis stage is challenging and most important, as it determines the
success of the entire DM. The analysis of the clusters is comprised of quality mea-
surements, and content assessments. Cluster quality measurement calculates the
amount of similarity within clusters, and the dis-similarity between different clusters.
The greater the similarity within clusters as well as the dis-similarity between different
clusters the higher the cluster quality. The content assessment is done by a content
expert. Based on the subject of interest, the expert examines the values of centroids
which represent the clusters. From the expert’s perspective, there might be three types
of centroids: Type 1– centroids which clearly reveal new insights. Type 2 – centroids
which definitely do not lead to new knowledge, and Type 3 – centroids which contain
borderline or inconclusive values. Often, centroids of Type 3 are discarded by the
expert as non-valuable clusters. We claim, that despite the inconclusiveness of Type 3
centroids, it may contain hidden information. Therefore, further processing and
investigation of Type 3 clusters may reveal new insights. In this work we present a new
approach for the cluster analysis the clusters process. This new approach suggests that
the investigators explore potential hidden insights in borderline clusters, which often
are ignored. This approach is a continuation of our previous work in which we
developed a novel clustering algorithm (km-Impute) in order to integrate imputation of
missing values and clustering [3].

The km-Impute algorithm was tested on a dataset of wine quality measurements
which was restored from the UCI repository [4]. During the analysis process, we
noticed that although the quality of clusters was fine, revealing new insights was not
straightforward, especially with regard to Type 3 clusters. Discarding of Type 3
clusters may cause a negative effect on the DM results. To minimize the discard of
borderline clusters, in this work we offer a new approach which is a framework. It
consists of the following iterative steps: clustering, quality evaluation, content
assessment, and sub-clustering. The process continues until new insights are found, or
the quality of the clusters is insufficient (according to pre-defined measures). This new
approach provides guidelines and benchmarks, which helps to improve usefulness of
the cluster analysis process. In Sect. 2, we describe related studies from the literature.
Section 3 describes the new approach for the clustering analysis process. Section 4
provides details of the experiment of the tuned clustering analysis on real Echo-heart
measurements. In Sect. 5 we present the results. We discuss the results in Sect. 6.
Finally in Sect. 7 we conclude this work, and suggest ideas for further research.

2 Related Work

In every DM process, the mining results are analyzed based on quality measures. In the
literature several DM techniques are mentioned and in each one DM analysis is done
[1]. In this work we focus on clustering. Therefore, we will describe methods aimed at
assessing the clustering result on various domains. In addition, techniques for the
assessment of data mining on Echo heart data will be reviewed. An evaluation measure
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for stream clustering called Cluster Mapping Measure (CMM) is presented in [5].
CMM indicates different types of errors by taking the important properties of data
streams into account. Na et al. [6] describe the concept of a hybrid strategy for clus-
tering validity. It is based on the following two measures: the first one – analysis -
analyzes the goodness of each partition, and the second measure enables selection of
the best partition between those having good but very close values of the first measure
[6]. A framework for hierarchical clustering algorithm evaluation in the domain of
functional genomics, is suggested by Guo [7]. First construction of a Bayesian network
model that simulates the desired characteristics of the domain is applied. Then, the
clustering algorithm is run on sample from the network data. Finally, the performance of
the algorithm evaluated based on how well it partitions different sub-networks in the
model [7]. Tsipouras et al. [8] suggest an automated diagnosis of coronary artery dis-
ease, based on Fuzzy modeling. The idea is to apply four-stage methodology using an
invasive cardiology dataset. First, a decision tree is inducted. Then a crisp rule-based
classifier is built. Finally (stages 3 and 4), the fuzzy model is deployed and optimized.
The results are evaluated by a decision support system. Other methods apply supervised
machine learning algorithms such as Naïve Bayes, k-nearest neighbors (k-NN), Deci-
sion Tree and Classification based on clustering in order to predict heart diseases [9–11].
A prototype of an Intelligent Heart Disease Prediction System (IHDPS) is described in
[10]. The results show that each technique has its unique strength in realizing the
objectives of the defined mining goals. IHDPS can answer complex questions such as
“what if” queries. Using medical profiles such as age, gender, blood pressure and blood
sugar it can predict the likelihood of patients getting heart disease [10]. A genetic
algorithm is used to determine the attributes which contribute more towards the diag-
nosis of heart ailments which indirectly reduces the number of tests which are needed to
be taken by a patient [12]. Another approach is to integrate clustering and statistical
analysis for supporting cardiovascular disease diagnosis [13]. It considers combining
statistical inference with clustering in the preprocessing phase of data analysis.

3 The Approach

3.1 The Concept

Our goal is to address the following issues which arise during clustering analysis:

1. Are the cluster quality measures such as density and separation satisfactory? When
should we consider tuning the clustering?

2. If tuning of clusters is required:

– What clustering parameters should be modified for the sub-clustering?
– How should partial DB be selected for sub-clustering.
– What should the criteria be to terminate the tuning’s iterations?

Suppose a clustering algorithm (such as km-Impute) is applied on a DB. The
clusters are examined in two aspects: First, their quality is calculated (see 3.3) and a
content expert makes a content assessment - trying to reveal new insights from the
clusters.
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In this work we focus on the cases where clusters contain borderline or incon-
clusive values. In this case, we suggest tuning the clusters by iterative clustering
(sub-clustering) in order to improve the probability of revealing new insights.

The tuned clustering analysis starts by applying the km-Impute algorithm (Fig. 1
step 1). It builds clusters while imputing missing values. The quality of clusters is
calculated based on quality measures (step 2). If the quality of the clusters is not
sufficient, and the number of iteration attempts is smaller than the maximum allowed,
then (Step5):

• Increase the size of the core sample DB of km-Impute (step 6).
• Increase the number of clusters (step 6).
• Start a new iteration (step 1).

If the quality of the clusters is sufficient, and the content expert has found new
insights (step 3), publish the new insights and stop (step 4).

If no insights are found (step 3):

• Choose clusters with borderline values, to be used for sub-clustering, (step 7).
• Calculate the highest entropy attribute (EA) (step 8).
• Split the chosen clusters to sub databases, according to the EA (step 9).
• Start a new iteration (step 1).

If the number of iterations has reached the maximum (step 5) but no new insights
were revealed – stop without new insights.

Fig. 1. The flowchart of the new approach for the tuned clustering analysis.
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3.2 The Pseudo Code of the Tuned Clustering Analysis

Notations

• DB – the database to be processed and analyzed.
• insights – a summary of new insights which were revealed from the DM.
• km-Impute – the clustering algorithm.
• Clusters – the set of clusters that are produced by km-Impute.
• calculateQuality – calculate the quality of clusters (by Silhouette Coefficient [14]).
• Quality – store the quality of clusters.
• chooseBorderlineClusters – return data points from borderline values’ clusters.
• BLC – data from borderline values’ clusters.
• EA – the attribute with the highest Entropy value.
• SplitDB – build a sub DB based on the EA.
• findHighestEntropyValueAttribute – return the highest Entropy value attribute.
• qualityThreshold –pre-defined the minimum required quality of clusters (optional).
• contentAssessment – content assessment of the clusters (by the content expert).
• newInsights – return true new insights were found.
• k – the number of clusters.
• initSample Db Size – the size of the core sample DB which initiate the clustering.
• changeClusteringParmeters – change the size of sample DB, or the number of

clusters.
• iterationsCounter – the clustering attempts’ counter.
• maxIterations – maximum iterations for clustering threshold.

Pseudo Code
Program Tuned Clustering analysis

1. Input: DB 
2. Output: insights 
3. Repeat
4. Clusters = km-Impute(DB)
5. Quality = calculateQuality(clusters) 
6. if(Quality >= qualityThreshold) then //optional
7. newInsights=contentAssessment(clusters)
8. if(newInsights==true) then
9. Output(insights)
10. else
11. BLC=chooseBorderlineClusters(Clusters)
12. EA= findHighestEntropyValueAttribute(BLC)
13. DB=SplitDB(BLC, EA)
14. else // quality is not sufficient
15. changeClusteringParmeters(initSampleDbSize,k)
16. iterationsCounter++
17. Until (newInsights) or 

(iterationsCounter ==maxIterations) 
end Program 
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Pseudo Code Description
Line 3: build the DB to be clustered.
Lines 3–17: the main iterative loop.
Line 4: Apply the km-Impute clustering algorithm. It builds clusters while imputing
missing values, and return a group of clusters (Clusters).
Line 5: calculate the quality of clusters, using the Silhouette Coefficient.
The quality of clusters is calculated as the average of the Silhouette Coefficient (SilC)
of all clusters [14] (step 2). SilC is a factor of the tidiness in-between clusters and the
distance between different clusters. The SilC of each item is calculated as follows:
si = (bi − ai)/max(ai, bi).
Where i is a data point in a cluster, ai is the average distance of iwith all other data points
within the same cluster, bi is the lowest average distance of i to all data points in any other
cluster, of which i is not a member of, si is the Silhouette of data point i. The range of SilC
is between −1 to 1. The closest the SilC to 1, the better the quality of the cluster is.
The total quality of clusters is stored in Quality.
Lines 6, 7: if the clusters’ quality is above threshold (optional), then make a content
assessment.
Line 8, 9: if new insights were found, set newInsights flag to true, and output the
insights.
Line 10–13: else – (quality is below the threshold) find borderline clusters (BLC), find
the highest Entropy attribute value (EA) and build subDB(s).
Line 14–16: no new insights were found. Change the taparameters: Increase the size of
the initial DB sample, and the number of clusters to produce.
Line 17: termination criteria options:

• New insights were found.
• Reached the maximum allowed iterations.

– Otherwise – start a new iteration.

Complexity Analysis
The method is built of one iterative repeat-until loop. Algorithm km-Impute runs with a
complexity of O(NDk+1logN), (where N is the DB size, K is the number of clusters and
D is the number of attributes). Let M be the number of iteration. Therefore the total
number of actions is M * O(NDk+1logN). Assuming that M < < N, the total complexity
will be O(NDk+1logN).

4 Experiments

4.1 Objectives

The objectives are medical and DM objectives. The main medical objectives are to
identify quantitative Echo heart measurements, which may indicate the presence of the
future possibility of heart diseases. While the DM objective are to find out whether:

1. Clusters with pure quality may insure the revealing of new insights.
2. Tuning the clusters (sub-clustering) of clusters with inconclusive values, may reveal

new insights.
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4.2 Medical Overview

In the medical literature several lines of research explore the influence of age and
gender on the cardiac function [15–17]. As age rises, the probability of suffering from
heart disease rises accordingly. Above 65 years old, people are at a higher risk of
getting a heart attack, with 1 in 5 patients who get a heart attack likely to die during the
following 10 years (see Framingham score [1]). In general, during the range of age of
46–64 men have a higher tendency to develop heart disease than women do. Research
shows that prior to their menopause, women are relatively protected from heart disease,
while men may get heart disease at a younger age [15, 18]. As women go through
menopause, the risk of developing heart disease gets significantly higher. Between the
ages of 46 to 64, more men may die as a result of heart disease complications compared
to women (39% more) [18]. After 64 years old, the trend changes and more women are
likely to die from a heart attack (22%). The left ventricle in both men and women
becomes somewhat thicker as they get older [19]. As a result, the left ventricle’s
doorway becomes narrower, and the systolic blood pressure rises. The increase in the
thickness of the left ventricle, combined with shortening of its length, causes a mod-
ification of the left ventricle’s shape to an elliptic form. As people age, the probability
of Aortic Regurgitation rises, which may influence about 16% of the elderly population
for both genders [19].

4.3 The Echo Heart Measurements Database

For the DM process, we used Echo heart measurements database (Echo-DB). It con-
tains about 26,000 records, which were measured during the years 1997 to 2006
(Table 1). The Echo-DB is not complete and has some missing values. Therefore, an
imputation of missing values is needed.

Table 1. Echo heart measures type and range. (*A-Area, Diam-Diameter)

Attribute Measure Type Range (min…
max)

Age Int (39…95)
Gender Male/Female Int (0, 1)
Aortic Root Diameter (Ao_Diam) mm Float (20…36)
Ascending Aorta Diameter (AsAo_Diam) mm Float (20…36)
Left Atrial Diameter (LA_Diam) mm Float (20…40)
Left Atrial Area (LA_Area) cm2 Float (13…17)
Left Ventricle End Diastolic Diameter (LVEDD) mm Float (35…54)
Left Ventricle End Systolic Diameter (LVESD) mm Float (23…40)
Left Ventricle Ejection Fraction (LV_EF) % Float (55…70)
Left Ventricle Septal Thickness (LV_STH) mm Float (7…11)
Left Ventricle Posterior Wall thickness
(LV_PWTH)

mm Float (7…11)

Right Ventricle Diameter (RV_Diam) mm Float (30…40)
Right Atrial Area (RA_Area) cm2 Float (13…17)
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4.4 The Implementation

The main goal of the implementation was to demonstrate the Tuned Clustering
Approach on a real database of Echo heart measurements. A secondary goal was to find
new insights with regard to our medical issue of interest: find out whether gender and
the age of a patient influence his cardiac function and clinical modifications, with
regard to his resilience to diastolic disorder. The implementation is applied as follows:
The km-impute algorithm was run and six clusters were recognized, and their quality
was checked. Since their quality was high, a medical expert made a content assessment,
but did not reveal new medical insights. Therefore, fine-tuning was required. We
selected particular clusters for sub-clustering, based on a root attribute with the highest
entropy value. The quality of the sub-clustering was checked and a content assessment
was made.

5 Results

We ran the km-Impute (Fig. 1 step 1) to get the maximum SilC. The quality of clusters
was assessed by the Silhouette Coefficient (SilC) measure [20] (Fig. 1 step 3). The
silhouette is a measure of the similarity of data points within cluster (cohesion) com-
pared to other clusters (separation). The silhouette range is −1 to +1. A value closed to
+1 indicates that the data points within cluster are strongly similar, while poorly similar
to neighboring clusters. After 7 runs, run #5 achieved the best SilC average (Table 2).

The km-Impute produced 6 clusters (Table 3, and Fig. 2) which were assessed by a
medical expert (Fig. 1 step 3). Clusters 1, 2, 3, 4 (Table 3) contain abnormal values of
LA-Diam, LA-Area, LVESD, LVESD, Est-LVEF and RA-Area, which indicate vari-
ous degrees of cardiac disease. These values are borderline and may hide new medical
information, therefore they may be medically interesting. Clusters 5, 6 contains normal
cardiac values, and do not contain any new medical insights.

Table 2. Silhouete Coefficient (SilC) avarage on Echo-DB

Run# SilC average

1 0.11
2 0.09
3 −0.07
4 0.01
5 0.21
6 0.02
7 0.13
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The results were validated by the “null hypothesis” [21] test as follows: The gender
and age of the patient do not influence his cardiac function and clinical modifications,
with regard to his resilience to diastolic disorder. It was tested by the Cochran-
Mantel-Haenszel test [21] using the open source tool Rstudio [22]. The test shows that
the null hypothesis is denied, with a significance level of p-value < 2.2e−16. Therefore,
we conclude that the gender and the age of the patient, do influence his cardiac function
and clinical modifications, with regard to his resilience to diastolic disorder.

Since DM process did not reveal new knowledge, tuning the clusters
(sub-clustering) was required. We picked data points of clusters 1, 2, 3, 4 (which
contained borderline values) (Fig. 1 step 8), which were used to build a sub-DB. Then
we calculated the attributes’ Entropy, and found that Age has the highest Entropy
value. The sub-DB split to three datasets by Age Range as follows: 1. Patients aged 50–
60. 2. Patients aged 61–70. 3. Patients aged 71–95. Later, on each dataset we ran the
km-Impute, in order to find possible hidden information on the selected data. The run
that achieved the best SilcC result was chosen (Fig. 1 step 3): Group-1 run #4, group-2,
and run #4 and for group-3 run #5 (Table 4).

Table 3. The results of run #5. Clusters of patients at age range 39–95.

Cluster RA-Area R-Ventricle Post-
Wall

IV-Septum Est-
LVEF

LVESD LVEDD LA-
Area

LA-
Diam

Ascending-
Ao

Aortic-
root

1 16.50 30.71 10.36 10.93 59.81 32.3 49.4 20.20 37.71 34.18 33.64

2 15.77 30.42 9.98 10.60 61.52 30.0 47.0 20.57 37.41 33.75 30.34

3 18.11 31.45 10.14 10.80 34.39 45.6 56.6 23.73 41.25 34.72 34.25

4 17.07 31.21 10.19 10.86 37.39 40.4 52.2 23.97 40.73 34.44 31.11

5 13.54 30.01 8.68 8.90 64.27 30.2 48.7 15.20 33.11 31.16 30.41

6 12.36 29.68 8.06 8.26 64.79 28.2 47.1 14.32 31.49 30.86 27.46

c-1( Men 61,
Abnormal), 8761,

34%

c-2 (Women, 66,
Abnormal), 8029,

31%

c-3(men,67,
abnormal), 3918,

15%

c-4 ( Women, 73,
abnormal), 2110,

8%

c-5 (Men, 37,
Normal), 1624, 6%

c-6 (Women, 38,
Normal), 1605, 6%

Fig. 2. The distribution of clusters, produced by clustering the entire Echo heart measurements.
(Age range: 39–95)
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In Group-1, the clusters 5.6 (age range 50–60) contained normal heart measures
hence are not interesting medically (Fig. 3). Clusters 1, 2 represent men aged 53–58.
Their Est-LVEF is below normal. Their systolic function is borderline with a com-
pensatory enlargement of their left ventricle. The reason is high probability of diastolic
disorder, which matches the patient’s age. Clusters 3, 4 refer to women aged 53–58
with LA-Area above normal. These women (similar to men in clusters 1, 2) also suffer
from enlarged left ventricle, although with a smaller left atrium (women = 48 cm2,
men = 51 cm2). Note that women’s hearts function better than men’s. Since the
women’s heart volume is smaller, they respond sooner to diastolic disorder by
enlarging their left ventricle. In addition, the values of their ejection fraction are higher
than men (57%–50% vs. 51%–52% accordingly). In men, in comparison, the heart is
larger and its functionality is borderline (clusters 1, 2). The LA-Area of men is 20 cm2

–

21 cm2, while in women the range is 19 cm2
–20 cm2. More men are diagnosed with

abnormal heart function than women: 2,594 and 1,580 accordingly.

The results of group-2 (age range 61–70), all clusters contain abnormal measures
(Table 5, and Fig. 4). Clusters 1, 2 refer to women aged 63–68 with LA-Area above
normal. Clusters 3, 4 represent men aged 63–68 with IV-Septum and LA-Area above
normal. Clusters 5, 6 refer to men aged 64–69 were LVESD, Est-LVEF, LA-Area,

Table 4. SilC average for 3 group of patients.

Run# SilC average group 1
(50–60)

SilC average group 2
(60–71)

SilC average group 3
(71–95)

1 −0.01 −0.11 −0.07
2 −0.16 0.09 0.08
3 −0.08 −0.02 0.01
4 0.14 0.14 −0.01
5 0.02 −0.10 0.10

c-1( Men 53,
Abnormal), 1430, 30%

c-2 (Men,58,
Abnormal), 1164, 25%

c-3(Women,58,
Abnormal), 785, 17%

c-4 ( Women, 53,
Abnormal), 732, 15%

c-5 (Women, 64,
Normal), 336, 7%

c-6 (Men, 54,
Normal), 282, 6%

Fig. 3. The distribution of clusters produced by clustering the age range of 50–60 (cluster of
group-1) Echo heart measurements.
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LVEDD and RA-Area are all above normal. Clusters 1–4 represent both women and
men with relatively good heart function. These clusters are similar to clusters 1, 2, 3, 4
of group-1 (patients aged 50–60). Note that men’s hearts are larger than women’s:
LVEDD = 49 mm (clusters 3, 4) and LEVDD = 48 mm (clusters 1, 2) accordingly.
Clusters 5, 6 refer to men with low systolic functioning (moderate to severe) where
Est-LVEF is ranged 32%–33%, enlarged Left Ventricle (LA-Area 32 cm2 to 55 cm2)
and borderline Right Ventricle diameter (*18 mm). These measures indicate high
pressure in the left atrium which causes the enlargement of the right ventricle. At the
age of 61–70 there are more men than women with abnormal or borderline heart
condition: 3,800 versus 3,140 women.

Group-3 (ages 71–95) also contain above normal measures (Table 6, Fig. 5).
Clusters 1 and 4 refer to men aged 75 and 84 respectively with exceptional LA-Area,
IV-Septum, LA-Diam and RA-Area measures. Cluster 5 represents women at age 87
with exceptional LA-Area, IV-Septum, Est-LVEF and RA-Area. Cluster 6 refers to
women with exceptional LA-Area, LA-Diam, LVESD and Est-LVEF. At this range of
ages, we found that the left atrium of women is relatively normal (clusters 2, 3). Men
on the other hand, suffer from abnormal left atrium function, but the women’s heart
muscle is less enlarged in comparison to men.

Table 5. Clusters of patients at age range: 61–70.

Cluster R-Ventricle Post-
Wall

IV-Septum Est-
LVEF

LVESD LVEDD LA-
Area

LA-
Diam

Ascending-
Ao

Aortic-
root

RA-
Area

1 16.33 30.61 10.23 10.8 56.46 32.69 48.8 21.6 38.85 34.32 30.68

2 15.53 30.38 9.96 10.4 57.67 32.15 48.7 20.1 37.84 34.18 30.62

3 16.67 30.77 10.70 11.3 59.12 32.47 49.4 20.5 38.48 35.06 34.20

4 16.13 30.46 10.51 11.1 59.72 32.43 49.7 19.7 38.14 34.59 33.99

5 18.13 31.20 10.11 10.8 33.76 46.16 57.1 23.7 41.43 34.41 34.13

6 18.27 31.43 10.17 10.7 32.93 46.96 57.7 23.6 41.33 35.07 34.44

c-1( Women 68,
Abnormal), 1729, 25%

c-2 (Women,63,
Abnormal), 1411, 21%

c-3(Men,68, Abnormal),
1336, 19%

c-4 ( Men, 63, Abnormal),
1247, 18%

c-5 (Men, 64,
Abnormal), 645, 9%

c-6 (Men, 69, Abormal),
572, 8%

Fig. 4. The distribution of clusters produced by clustering the age range of: 61–70 (group-2)
Echo heart measurements (bold measurements are abnormal values).
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6 Discussion

Our medical issue of interest is to find whether gender and age of the patient influence
his cardiac function and clinical modifications. Regarding his resistance to diastolic
disorder, we compared the clusters, produced in each period. One of the most signif-
icant measures used to examine the heart function is the left atrium area (LA-Area). In
Figs. 6 and 7, we can see the range of LA-Area values of women and men, at three age
decades. For both women and men, the LA-Area increases linearly with progress of
age, as can be see through the dotted lines in Figs. 6 and 7.

The LA-Area values of women at the age range of 50–60 is 14.1 cm2
–19.67 cm2

(Fig. 6) In comparison, men have slightly larger LA-Area (15.8 cm2 to 20.46 cm2)
(Fig. 7). This indicates that the difference between women and men starts already at the
age range of 50–60, where women’s hearts function better than in men. At the age
range of 60–71 the LA-Area of both genders becomes larger: women with LA-Area of
20.11 cm2 to 21.63 cm2 and in men it ranges from 19.72 cm2 to 23.64 cm2. We noted
that the enlargement of the LA-Area in men happens faster than in women. Also, the
variance between men in the same group is higher than in women. These results
indicate that at the age range 60–71, the heart function of women is more homogenous
than men at the same age range. The enlargement of the LA-Area reflects the left

Table 6. Clusters produced for patients at age range: 71–95.

Cluster RA-Area R-Ventricle Post-
Wall

IV-Septum Est-
LVEF

LVESD LVEDD LA-
Area

LA-
Diam

Ascending-
Ao

Aortic-
root

1 17.92 31.10 10.62 11.30 49.04 38.08 52.47 22.90 40.35 35.55 34.61

2 16.34 30.50 10.43 11.18 60.0 30.64 47.30 21.50 38.42 34.79 30.99

3 16.63 30.72 10.57 11.43 60.52 29.89 46.34 22.49 39.14 34.79 31.00

4 18.37 31.58 10.75 11.56 52.37 35.51 50.28 23.42 40.29 35.96 34.48

5 17.14 30.83 10.72 11.71 54.63 31.23 45.81 23.57 39.73 35.04 31.04

6 16.83 31.07 10.11 10.87 33.50 42.13 53.00 24.52 41.10 34.72 31.27

c-1( Men,75, Abnormal),
3469, 30%

c-2 (Women,74,
Abnormal), 2146, 19%

c-3(Women,80, Abnormal),
1903, 17%

c-4 ( Men, 84, Abnormal),
1772, 16%

c-5 (Women, 87, Abnormal),
1081, 9%

c-6 (Women,78, Abormal),
1002, 9%

Fig. 5. The distribution of clusters produced by clustering the age range: 71–95 (group-3) Echo
heart measurements.
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ventricular diastolic pressure. This pressure is responsible for the filling capacity of the
left ventricle. The capacity is a major factor with regard to the production of cardiac
output. As the left ventricular diastolic pressure becomes lower, the filling capacity
volume of the left ventricle increases faster. This leads to the improvement of the
patient’s exercise capacity. On the other hand, high diastolic pressure will lead to less
left ventricle filling capacity. As a result, the backpressure on the lung vasculature will
increase and may cause an effort dyspnea. The effects on a patient are difficulties or
inabilities during physical efforts. Revealing the group of patients who may suffer from
inability to accommodate heart filling during some physical effort is very important.
This may enable applying a better follow up plan for patients, and shorten the time
between periodic examinations. In addition, it may be used as a guideline for the
medical staff, to decide about the optimal time to start pharmacological treatment
(reducing LVEDD pressure and improving Left ventricular compliance). Additionally,
the differences of the behavior of the left ventricular between women and men over
three decades (Figs. 6 and 7) is significant: These differences may provide valuable
information about the potential of patients to develop heart disease. The new medical
treatment approach is moving toward patient-oriented treatment. By carefully consid-
ering these differences, and by providing each individual with tailored therapy and
treatment, we may improve future prognosis.
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14.91
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Fig. 6. Left atrium area of women in 3 age range periods.

20.46

23.64 23.42

15.8

19.72

22.9

15

17

19

21

23

50-60 61-70 71-95

LA
-A
re
a
di
m
en

si
on

(c
m

2 )

Ranges of Age (years)

Fig. 7. Left atrium area of men in 3 age range periods.

448 R. Ben Ishay et al.



In men, we found interesting phenomenon, regarding their heart function; men may
be in one of two groups: The resilient - men with relatively good heart function and a
small LA-Area (19.72 cm2). The sick - men with heart disease, who suffer from rapid
deterioration in comparison to their condition at age 50–60. These men have a very
large LA-Area (23.64 cm2) – which is wider than women at the same age range
(21.63 cm2). At age 71–95, the left atrium area of both women and men have become
similarly wider: between 21.5 cm2 to 24.52 cm2 in women (Fig. 6) and 22.9 cm2 to
23.42 cm2 at men (Fig. 7). Note that the group of sick men at this age is larger than the
women’s group. The comparison of the average Left Atrium Area values between
women and men (Fig. 8) shows that men have a wider left atrium at all ages. As they
age, the difference between the left atrium of women and men gradually gets smaller,
until at age 72–95 when the area is almost the same. This indicates that up to the age of
61–70, men are less resilient to heart disease than women – hence their left atrium area
is wider. Notice that some men aged 61–70 have managed to function relatively well
even with borderline heart measures. In contrast, another group could not function
normally, and they have suffered from a rapid deterioration in their heart condition. At
age range 71–95, their heart function was very bad.

Comparison between clusters of men of ages 50–60 to clusters of men of ages 61–
70 indicates on interesting medical insight. Men of ages 50–70 are divided into 2
groups with respect to their resilience to heat disease. The first group: Men in their 50–
60’s (Fig. 3, clusters 1, 2) had a good functioning heart although borderline, but as they
became older (61–70) (Table 5, clusters 3, 4, 5, 6) they suffered from very fast dete-
rioration which occurs relatively soon. The second group: Men in the age ranges of 50–
60 and 61–70, whose heart was functioning adequately, although their heart measures
were borderline. These men were relatively durable to heart disease. At the age range
50–60, most of the men have borderline heart measures (2,594) where the rest are

18.13

21.68
23.16

17.29

20.87
23.01

17

19

21

23

25

50-60 61-70 81-95

LA
-A
re
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Av

g
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2 )

Age Range

Male Female

Fig. 8. The comparison of Left atrium area between women and men 3 age range periods.
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durable (282). At age range 61–70, the sick/borderline group of men is smaller than the
durable ones (1,217 and 2,583) respectively.

The results show that the resilience of women to heart diseases is better than that of
men. At age range, 50–60 the response of women to diastolic disorder is self-protection
by the enlargement of the left atrium. During the next periods, 61–70 and 71–95,
women’s hearts become thicker gradually. In contrast, men are divided into two
groups: The resilient: men that have managed to function well along the period of 50 to
95. The sick: men that have suffered from relatively early heart tiredness. During the
enlargement of their left atrium area at the age of 50–60, their heart function has
deteriorated gradually. In addition, we found that while men at 60–71 had relatively
good or moderate heart function, at age 71–95 their heart failure was significantly more
severe than women. Note that these findings were not revealed when clustering the
entire Echo-DB (Table 5); further tuning was required. The clinical implication of the
tuning of clusters and the revealing of new insights, leads to the suggestion that a
group-specific medical management approach may be indicated. The group of women
and the group of the resilient men (aged 60–71) should be treated according to the
regular protocol. In contrast, the group of sick men should be monitored earlier, in
order to control their heart condition and to prevent future degradation. This man-
agement may include: pharmacological or non-pharmacological treatment, specific
diet, minimization of salt consumption, weight control, physical and sport activities.
These may improve the future prognosis of the patients.

7 Conclusion and Further Research

In this work, we have presented a new method for analyzing and treating DM results.
The new approach - a Tuned Clustering Analysis defines steps and guidelines to assist
the data miner during the DM process such as: evaluating the quality of clusters,
involvement of the content expert and his assessments, and applying clustering tuning.
The method is iterative, comprising: Clustering, quality and content evaluating, and
cluster tuning (sub-clustering). The tuning will be applied if no new insights were
revealed from the primary clustering. Our approach improves the probability of the DM
process, to reveal new insights even from clusters with borderline values. The Tuned
Clustering Analysis was applied on a real Echo heart measurements. The clustering was
implemented using our km-Impute clustering algorithm. Two iterations applied. The
first iteration did not reveal new insights. After the second iteration (tuning of clusters)
we successfully managed to reveal new insights. With respect to medical insights,
interesting insights were revealed with regard to the diagnosis of Echo heart mea-
surements databases: We found that the heart conditions of all women gradually ret-
rogrades as ageing progresses. The group of women who start to suffer from severity of
heart diseases as a function of their age, is smaller than the group of men. Despite this,
we identified two sub groups of men. The first sub group: men who suffer from heart
diseases which become more severe as they age. The second sub group: men who have
immunity relatively to heart diseases. According to these findings, men who belong to
the first group should be monitored earlier to control their potential degradation.
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Regarding DM, further research ideas would be implementing this new method on
other clustering algorithms such as neural networks. The new medical insights may
help the diagnosis and treatment of heart diseases in men.
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