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Abstract. Unsupervised learning of finite Gaussian mixture model (FGMM) is
used to learn the distribution of population data. This paper proposes the use of
the wild bootstrapping to create the variability of the imputed data in single
missing data imputation. We compare the performance and accuracy of the
proposed method in single imputation and multiple imputation from the
R-package Amelia II using RMSE, R-squared, MAE and MAPE. The proposed
method shows better performance when compared with the multiple imputation
(MI) which is indeed known as the golden method of missing data imputation
techniques.
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1 Introduction

Missing data can occur in data records for various reasons, such as: data entry errors,
system failures, or respondents who avoid answering questions within a survey. Var-
ious methods have been proposed to deal with the missing data problem. The standard
technique is discarding observations or variables that contain missing values. The
deletion method is inappropriate when the missing proportions are high, resulting in
inefficient parameter estimates, and estimated results tend to be underestimated. To deal
with these issues, imputation methods can be used to substitute missing values with
plausible values. For example, the single mean imputation consists of replacing the
missing values with the mean, median or mode value. However, this simple approach
produces biased analysis results. The multiple imputation method introduced in [1] is a
complex approach where missing data are filled-in by drawing multiple sets of com-
plete data that contain different plausible values. This method is complicated and
computationally expensive [2], especially for large data sets because execution pro-
cesses are implemented through three phases in several iterations. The improved ver-
sion of the single imputation technique such as conditional mean imputation, which
incorporates the statistical and machine learning methods with multivariate Gaussian
mixture models (GMM) [3] have gained interest in many years [4].

The conditional mean imputation (also known as ordinary least square, OLS) or
regression imputation can preserve the data distribution, according to Di Zio [5].
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The conventional OLS ŷi ¼ b0 þ
PJ
j¼1

bjxj þ ei implementation requires the use of ran-

dom error ei which can be obtained in two ways [6]: (1) draw a random error with
underlying assumption that it is independent and identically distributed, that follows a
Gaussian distribution with zero mean and finite variance; (2) draw a random error with
replacement from the empirical distribution of the estimated residuals ei ¼ yi � ŷi [7].
Problems can occur in the random error and residual ei in method (1) that will create the
sparsity problem whereas the random ei generation will be either too large or too small
although the normality distribution assumption is met. The sparsity of data in method
(2) will be inconsistent if the data distribution has different clusterings and each cluster
consists of a different density. The sparsity of data creates some problems such as
increases in the variance between the imputed and original data.

The conditional mean imputation proposed in [5] does not consider adding the
residuals. Although this method may preserve the data distribution, it will underesti-
mate the variability, introduce the bias on imputed data and the result of imputed data
will be highly inaccurate. The additional steps are required to improve data sparsity in
the random error ei generated in the OLS to obtain a better predicted missing value.

The main objective of this study is to investigate the random error and employ the
wild bootstrap [8, 9] on the missing data prediction using regression imputation on the
Gaussian mixture model. The wild bootstrap is used to improve the variance in
heteroscedasticity issue when the data variance is not homoscedastic [8, 9]. Further
details about the wild bootstrap approach are discussed in the next section that intro-
duces the modelling framework.

In this paper, we employ the wild bootstrap to the single imputation technique in
missing value prediction, since the GMM framework is flexible to learn multimodal
data distribution. We combine the GMM model with the proposed missing data pre-
diction method. We also employ the wild bootstrap to investigate the effect of the
sparsity of imputed data in a different mixture data distribution case. Thus, we would
like to show that the performance of single imputation may perform well, and as good
as the implementation of MI. We assume that the data is missing data at random
(MAR).

This paper is organized as follows: in Sect. 2, we present the Gaussian mixture
model framework and the proposed regression imputation with wild bootstrap tech-
nique. In Sect. 3 we discuss the experimental evaluation and experimental results.
Section 4 concludes the paper and identifies further directions for research and study.

2 Modelling Framework

GMM is a powerful probabilistic model used in predicting specifically in data clus-
tering [5]. This model is flexible to learn from different data distributions by fitting the
probability density function (PDF) to represent different clusters [3]. The well-known
strategy for finding the Maximum Likelihood (ML) parameter estimation uses the
Expectation-Maximization (EM) algorithm [10]. GMM applications to missing data
problems have been studied extensively for example in [4, 5, 11].
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2.1 Definitions

Suppose the data set X having N units of independent and identically distributed (i.i.d)
data points with p-column vectors can be written as follows:

Figure 1 illustrates a data set that contains missing values (highlighted with NA in
the relevant cells). Let X ¼ X1;X2; . . .;Xp

� �
be the random variable of the N � p data

matrix. In the imputation process, Rao and Shao [12] suggested to create a set of
respondents XO and a set of non-respondents XM separately. The variable XO denotes
the n1 � p matrix where n1 is the size of observed data while XM denote the n0 � p
matrix where n0 ¼ N � n1 is the number of missing values that occur in xl. Let xl of
size n1 � 1 vector contain observed data and n0 be the size of missing values in xl.

2.2 Multivariate Gaussian Mixture Model

The Maximum Likelihood (ML) is an approach to estimate the parameters of the
distribution from multivariate GMM using the Expectation-Maximization EM algo-
rithm [10]. The data in GMM are distributed by different k Gaussian components and
estimated as follows:

f x;Uð Þ ¼
XK
k¼1

pkf ðx j hkÞ ð1Þ

where f ðx j hkÞ is the density of p-variate Gaussian distribution with the k component.
The vector U contains the full set of parameters in the mixture model
U ¼ ðp1; . . .; pK ; h1; . . .; hKÞ, where hk is the vector of unknown parameters of mean
vector lk and covariance matrix Rk .

The mixing coefficients (or weights) pk for the kth component must satisfy the
conditions 0\pk\1; and

PK
k¼1 pk ¼ 1. The GMM is a dynamic model where it is not

required to specify any column vector to be an input or output particularly.
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Fig. 1. A sample data set with missing values
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2.3 The General EM Algorithm

The EM algorithm is a statistical tool to find the maximum likelihood estimates of the
set parameters such as mean, variances, covariances and regression coefficients of a
model. The optimisation algorithm introduced by Dempster et al. [10] starts with an
initial estimate of U and iteratively executes the process until it satisfies the conver-
gence criteria. The iterative process has two steps known as the E-step and the M-step.
The E-step computes the probability membership sik for all data points xi of mixture
component k. The M-step will update the value of the parameter U with respect to the k
Gaussian component. Let denote q as an iteration counter, the expected values of the
posterior distribution are computed by:

ŝðqÞik ¼ p̂kf ðxoi j l̂k; R̂kÞPK
j¼1

p̂jf ðxoi j l̂j; R̂jÞ
ð2Þ

In the M-step, we use the expected values in the posterior distribution (2) to
re-estimate the means, covariances and mixing coefficients. The new set of parameters
Uðqþ 1Þ are updated as follows:

p̂ðqþ 1Þ
k ¼ Nk

N
for k ¼ 1; . . .;K; ð3Þ

l̂ qþ 1ð Þ
k ¼ 1

Nk

XN
i¼1

sikx̂ik ð4Þ

R̂
ðqþ 1Þ
k ¼ 1

Nk

XN
i¼1

sik½ðx̂ik � lkÞðx̂ik � lkÞT þ R̂
MM
ik � ð5Þ

The algorithm then iterates the E-step and M-step until convergence is achieved.

2.4 The Least Square Method

The conditional mean imputation is also known as regression imputation [13]. The
imputed values are regressed from independent variables Xp. Let consider the fol-
lowing linear regression model:

xil ¼ b0 þ b1xi þ ei; i ¼ 1; 2; . . .; n ð6Þ

where the response variable xil is predicted from regression coefficients b0 and b1 with
random error ei �N 0;r2ð Þ i.i.d. and uncorrelated. The matrix development of Eq. (6)
is presented as follows:
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In general, xl is an N � 1 vector of the dependent variable contains missing values,
X is a N � p matrix of observed variables, b is a p� 1 vector of the regression
coefficients and e is a N � 1 vector of random errors. The general least square estimator
of b based on observed values is:

b̂
O ¼ XTX

� ��1
XTXl ð7Þ

In the presence of missing data, the imputed values are obtained by the conditional
mean imputation technique which corresponds to imputed values generated from a set
of regression equation calculated in (7) as discussed in [13, 14]. There are two ways to
generate the random error component ei. The random error component ei can be
generated either with ei �N 0;r2ð Þ or residual.

2.5 Fundamentals of the Bootstrap Method

The bootstrap non-parametric resampling technique was proposed by Efron [15] for
estimating a standard error, confidence interval in various types of distributions. This
method was extended in [16, 17] to generate the random error ei in the regression
model. Let X ¼ x1; x2; . . .; xn1f g is a random sample from p-variate normal distribution
K where n1 refers to the size of observed data XO as shown in Fig. 1. Let XðbkÞ denote
the bootstrap resampled data generated by sampling with replacement from the original
dataset Xk where b indicates the counter b ¼ 1; . . .;B of drawing samples of bootstrap
and k refers to the current Gaussian component. In this study, the resampling and
parameter estimation are implemented on the observed data XO

k where the superscript O
refers to observed data.

2.6 The Wild Bootstrap

Wu [8] introduced the wild bootstrap to deal with the heteroscedasticity issue. Later, a
better approximation of the wild bootstrap was proposed by Liu [9]. The wild bootstrap
is based on the modification of the bootstrap residual approach of the least square
estimation. Wu [8] improved the resampling residual with replacement in bootstrap by
drawing a value of t�i that follow a standard normal distribution with zero mean and unit
variance:

xbil ¼ xTi b̂þ t�i
êiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� wi
p ð8Þ

where wi ¼ xTi ðXTXÞxi. However, the error variance t�i êi are inconsistent. Therefore,
authors in [18] proposed to compute t�i by drawing a sample ai with replacement:
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t�i ¼ ai ¼ êi � �̂eiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1
1k

Pn1k
i¼1 ðêi � �̂eÞ2

q ð9Þ

where �̂e ¼ n�1
1k

Pn1k
i¼1 êi.

The second wild bootstrap technique employed in this study is the Liu’s bootstrap
[9]. Liu [9] proposed t�i in Wu [8] by resampling a set of central residual with zero
mean and unit variance that has third central moments equal to one. Liu proposed two
procedures to draw random numbers t�i . However, we consider the second procedure as
it is appropriate for normal distribution. Liu’s bootstrap is conducted by drawing
random numbers:

ti ¼ D1D2 � EðD1ÞEðD2Þ ð10Þ

where D1 and D2 are random i.i.d that follows normal distribution with means 0:5 �
ð ffiffiffiffiffiffiffiffiffiffi

17=6
p þ ffiffiffiffiffiffiffiffi

1=6
p Þ and 0:5 � ð ffiffiffiffiffiffiffiffiffiffi

17=6
p � ffiffiffiffiffiffiffiffi

1=6
p Þ respectively, and variance 0.5.

2.7 The Non-parametric Wild Bootstrap Applied in Missing Data
Imputation

The bootstrap procedure based on the resample approach in the GMM is described in
the following steps:

1. Initiate the set of parameters U with K-means algorithm.
2. Compute the residual for each Gaussian component:

a. Fit Gaussian mixture model using the parameter values from the step 1.
b. Compute the residual: êk ¼ Xlkb̂k where k is the Gaussian component

k = 1, .., K.
3. For b = 1, .., B

a. Draw a vector êk of n1k i.i.d sample with a simple random sampling with
replacement. The vector êk is generated from step 2b with respect to the option
of the Wu’s [8] or Liu’s [9] bootstrap procedure as discussed in the Sect. 2.6.

b. Fit Gaussian mixture model using the parameter values from the step 1.
c. In the E-step,

i. Compute the posterior probabilities vector sik in Eq. (2) on the observed
data.

d. In the M-step,
i. Impute the missing values of size n0k using a linear regression model (6)

based on OLS estimator b̂
ðOkÞ in (12):

xil ¼ b̂ðOkÞ
0 þ b̂ðOkÞ

1 xi þ t�i êi=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� wi

p
where the residual t�i taken from the step 3a.

ii. Update the new parameter U for each component in GMM as shown in (3),
(4) and (5).
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3 Experiments and Discussion of Results

In this section, the numerical results are presented on real and simulated datasets.

3.1 The Non-parametric Wild Bootstrap Applied in Missing Data
Imputation

Dataset: We applied various evaluation criteria on one real dataset and one artificial
dataset with two variables and two Gaussian classes. The first case study is the Old
Faithful Geyser dataset [19]. This dataset contains 272 records on the waiting time
between geyser eruptions (waiting) and the duration of eruptions (eruptions) in Yel-
lowstone National Park, USA.

For the artificial case study, the values are randomly sampled with 1000 obser-
vations of two Gaussian classes with different position mean values and
positive-negative correlation. Data are drawn with normal distribution using the fol-
lowing parameters:

p1 ¼ 0:5; p2 ¼ 0:5

l1 ¼ ð4; 2Þ0; l2 ¼ ð�2; 6Þ0

R1 ¼ 1 �0:7
�0:7 1

� �
; R1 ¼ 3 0:9

0:9 3

� �

Software: the proposed method in these experiments were conducted using Matlab
version 2017a. The proposed method is compared with multiple imputation available in
the R-package Amelia II. The comparisons are conducted based on the artificial
missing data generated with different missing data percentages (MDP): 5%, 10%, 15%
and 20%.

Imputation implementation: the missing data are imputed based on the regression
imputation. Prior to the imputation process, the K-means algorithm is used to determine
initial parameter values of mixing proportion pk, mean lk and covariance matrix Rk in
GMM. The stopping criteria is based on a selected threshold where the different iter-
ations were less than 10�6.

Evaluation criteria: these experiments are designed to measure the performance
and prediction accuracy between predicted and actual values. RMSE computes the
deviation between predicted and actual values that employed by most missing data
imputation studies. The greater the deviation means the greater variance between them.
Therefore, the lower value shows better performance:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðŷi � yiÞ2
N

s
ð11Þ

MAPE was used to measure the average relative error of the imputation accuracy:
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MAPE ¼ 100
N

�
XN

i¼1

yi � ŷi
yi

				
				 ð12Þ

MAE was used to measure the average error of each different in imputation:

MAE ¼ 1
N
�
XN

i¼1
yi � ŷij j ð13Þ

R-squared values were used to describe the variance in goodness-of-fit for the
regression models between observed data and the expected values of the dependent
variable. The range of R-squared is between 0 and 1:

R2 ¼
Pn

i¼1 ðyi � ŷiÞ2Pn
i¼1 ðyi � �yÞ2 ð14Þ

3.2 Experimental Results

In this study, we compare the imputation accuracy using MAPE and MAE whilst
measuring the performance using RMSE and R-Squared of three methods: single
regression imputation combined with Wu’s and Liu’s wild bootstrap and MI. The better
results are highlighted in bold font.

Table 1 summarizes the performance and prediction accuracy of the three methods
on the Old Faithful Geyser dataset while Table 2 shows the result estimation on the
random data generation. The result of the proposed methods in RMSE shows better
performance and significantly different between the MI with the proposed Wu’s and
Liu’s method in all MDP proportions. This is shown in the 5% MDP, Wu and Liu
method yielded 7.8225 and 7.8879 respectively while MI gained 9.8719. It is also found
in 10%, 15% and 20% MDP where the Wu’s and Liu’s method have outperformed the
MI where the result of Wu’s shows 7.0955, 6.6819 and 6.7349 while Liu shows 7.8746,
7.0150 and 7.2354 in RMSE. In contrast, the MI obtained 8.4187, 8.7004 and 8.9103
higher than Wu’s and Liu’s method in 10%, 15% and 20% MDP respectively.

The R-squared values are used to quantify the overall model performance of
variance in response variable explained by the independent variables. The larger the
R-squared means the more variability is explained by the linear regression model. The
result of R-squared presented in Table 1 showed that the proposed method gives the
best performance with 0.6338% for 5% of MDP proportion followed by 0.6836, 0.7683
and 0.7127 for Wu, while Liu’s obtained 0.6894, 0.6869 and 0.7050 for the 10%, 15%
and 20% of MDP respectively on the Faithful data set. The R-squared obtained by the
proposed method in the random generation data in the Table 2 showed less than 0.6%
for all MDP percentages. In contrast, the MI in Amelia gives a lower variance than the
proposed method in all MDP proportions with R-squared ranging from 0.03 to 0.2.

The imputation accuracy is measured based on the average relative error between
predicted missing data and the original data using mean absolute percentage error
(MAPE) and mean absolute error (MAE).
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The result of MAE in the Table 1 showed that the Wu’s and Liu’s methods are
consistently outperformed the MI method on the Old Faithful Geyser dataset. In
contrast, in the Table 2, the Liu’s method offered consistent and better accuracy than
MI method. Meanwhile the Wu’s method showed inconsistent improvement in the
measure of average error magnitude to MI method on the random data generation.

As can be observed from the MAPE values obtained in Table 1, the proposed
method of Wu’s and Liu’s performed better imputation on the Old Faithful Geyser data
set.

Meanwhile, by observing the MAPE values gained in the Table 2, Liu’ method
showed consistent to defeat the MI method compared to Wu’s method.

Plots of the results shown in Fig. 2 compare the outcome between multiple
imputation technique in r-package Amelia II and the proposed methods.

Table 1. The MAPE, MAE, R-square and RMSE estimates on the Old Faithful Geyser dataset

MAPE MAE R square RMSE

5% Amelia 0.6220 6.5928 0.4960 9.8719
Wu 0.2758 2.6453 0.6338 7.8225
Liu 0.1713 1.7281 0.4212 7.8879

10% Amelia 0.0827 1.5636 0.6450 8.4187
Wu 0.0379 0.6959 0.6836 7.0955
Liu 0.0190 0.3594 0.6894 7.8746

15% Amelia 0.0346 1.0379 0.5184 8.7004
Wu 0.0012 0.0342 0.7683 6.6819
Liu 0.0167 0.5018 0.6869 7.0150

20% Amelia 0.0432 1.6841 0.4959 8.9103
Wu 0.0054 0.2144 0.7127 6.7349
Liu 0.0104 0.3994 0.7050 7.2354

Table 2. The MAPE, MAE, R-square and RMSE estimates on the randomly generated data

MAPE MAE R square RMSE

5% Amelia 1.5798 0.7748 0.2439 2.0230
Wu 0.0469 0.1055 0.2593 1.8642
Liu 0.0721 0.1604 0.3754 1.8066

10% Amelia 0.1259 0.1477 0.2206 2.2926
Wu 0.1344 0.5811 0.3977 2.1557
Liu 0.0089 0.0377 0.5803 1.6889

15% Amelia 0.1674 0.3105 0.0272 2.2817
Wu 0.0272 0.1812 0.1316 2.3463
Liu 0.0203 0.1282 0.5197 1.7214

20% Amelia 0.0501 0.1159 0.1206 2.7461
Wu 0.0435 0.3528 0.1954 2.1858
Liu 0.0127 0.1070 0.4586 1.8340
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4 Conclusions

In this paper, we proposed a method for single imputation that incorporates wild
bootstrap in order to create the variability of imputed data as for example Multiple
Imputation (MI) does. The MI is indeed known to be the preferred method in handling
missing data problems over the years compared to the single imputation methods.

The imputation process in MI involves several steps while single imputation has
simpler implementation compared to MI. The missing data in MI are imputed for M
times with different plausible values and combine appropriately in the analysis stage.
The sparsity of imputed data is a matter of concern because it will reflect the variance
and measurement error between predicted and original data. Thus, the main purpose of
this comparison is to show that the performance of single imputation in the Gaussian
mixture model may perform well and as good as the implementation of MI.

The performance of this method is measured by the RMSE, R-squared, MAE, and
MAPE. Based on the results, we summarize that the single missing data imputation
combined with the wild bootstrap is preferrable over the MI technique for the data
containing several Gaussian distributions. Furthermore, the imputation process on the
Gaussian mixture model could be relevant to preserve the originality of data
distribution.

Since this study is implemented on bivariate data with two Gaussian components,
in the future work we will focus on multivariate data with multiple Gaussian
components.

The Old Faithful Geyser dataset
Amelia II Wu Bootstrap Liu Bootstrap

The randomly generated data
Amelia II Wu Bootstrap Liu Bootstrap

Fig. 2. The scatter plot of two datasets using R Amelia II and the proposed methods
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