
Chapter 4
Convolutional Neural Networks
for Image Denoising and Restoration

Wangmeng Zuo, Kai Zhang and Lei Zhang

Abstract With the tremendous progress of convolutional neural networks (CNNs),
recent years have witnessed a dramatic upsurge of exploiting CNN toward solving
image denoising. Compared to traditional model-based methods, CNN enjoys the
principal merits of fast inference and good performance. In this chapter, brief survey
and discussions are also given to CNN-based denoising methods from the aspects
of effectiveness, interpretability, modeling ability, efficiency, flexibility, and applica-
bility. Then, we provide a gentle introduction of CNN-based denoising methods by
presenting and answering the following three questions: (i) can we learn a deep CNN
for effective image denoising, (ii) can we learn a single CNN for fast and flexible
non-blind image denoising, and (iii) can we leverage CNN denoiser prior to versa-
tile image restoration tasks. Finally, we point out that image denoising remains far
from solved. The real image noise is much more sophisticated than additive white
Gaussian noise, making the existing CNN denoisers generally perform poorly on real
noisy images. As a result, it is still very challenging and valuable to study the issues
such as noise modeling, acquisition of noisy-clean image pairs and unsupervised
CNN learning for real image denoising.
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4.1 Introduction

During past decade, driven by the easy access to large-scale dataset, efficient train-
ing implementation on modern powerful GPUs and the advances in deep learning
methods such as Rectified Linear Unit (ReLU) [22], network initialization [14],
stochastic gradient-based optimization [20], batch normalization [17] and residual
learning [15], the convolutional neural networks have shown great success in han-
dling various low-level vision tasks. Concurrently, several attempts have been made
to exploit CNN for image denoising due to the following reasons. First, the infer-
ence can be very efficient due to the parallel computation ability of GPU. Second,
deep CNN exhibits powerful modeling capacity and can be trained without knowing
the explicit degradation model when abundant noisy/clean image pairs are provided.
Thus, the denoising performance can be easily boosted. Third, CNN exploits the
external prior which is complementary to the internal prior of many existing denois-
ers such as nonlocal similarity (NSS). In other words, its combination with NSS is
expected to further improve the performance. Fourth, great progress in designing
CNN can facilitate the flexibility and practicability in real applications.

The goal of image denoising is to recover a latent clean image x from its noisy
observation y which follows the image degradation model y = x + v. One common
assumption is that v is the additive white Gaussian noise (AWGN) with known noise
level σ . Due to the ill-posed nature of denoising, regularization needs to be imposed
to constrain the solution. From a Bayesian perspective, the solution x̂ can be obtained
by solving the Maximum A Posteriori (MAP) model,

x̂ = argmax x log p(y|x) + log p(x) (4.1)

where log p(y|x) represents the log-likelihood term, and log p(x) models the prior
of x which is independent of y. More formally, Eq. (4.1) can be reformulated as

x̂ = argmin x
1

2σ 2
‖x − y‖2 + λ�(x) (4.2)

where 1
2σ 2 ‖x − y‖2 is the data fidelity term, �(x) is the regularization term (or prior

term) and λ is the trade-off parameter. It is worth noting that in practice λ governs the
compromise between noise reduction and detail preservation. When it is too small,
some noise will be retained in the denoising result; in contrast, when λ is too large,
small-scale details will also be smoothed out along with the suppression of noise.

Generally, the methods to solve Eq. (4.2) can be divided into two main categories,
model-based optimization methods and discriminative learning methods. Model-
based optimization directly solvesEq. (4.2)with someoptimization algorithmswhich
usually involve a time-consuming iterative inference. On the contrary, discriminative
learning methods try to learn a compact inference through an optimization of a loss
function on a training set containing degraded-clean image pairs [4, 8, 38, 43]. The
CNN-based denoising methods belong to this category. Specifically, CNN-based
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denoising methods can be further divided into MAP-CNN based and generic CNN-
based denoising methods.

MAP-CNN based denoising methods refer in particular to the MAP inference
based approaches which involve a series of convolution operations. Instead of first
learning the prior (e.g., high-order MRF priors) and then performing the inference,
this category of methods aims to learn the prior parameters along with a compact
unrolled inference through solving a bi-level optimization problem [4]. With a slight
abuse of notation, the objective can be given by

min
�

�(x̂(�), x) s.t. x̂(�) = argmin x
1

2σ 2
‖y − x‖2 + λ�(x) (4.3)

where� denotes the trainable parameters in the inference, �(x̂, x)measures the sim-
ilarity between estimated clean image x̂ and ground-truth clean image x. While such
kind of approaches are not directly connected with CNN, their unrolled inferences
actually can be viewed as CNN variants with stagewise architecture. Following the
pioneer work of fields of experts [34], Barbu [4] trained a discriminative Markov
random field (MRF) model together with a gradient descent inference for image
denoising. Samuel and Tappen [36] independently proposed a compact gradient
descend inference learning framework, and discussed the advantages of discrimina-
tive learning over model-based optimization. Sun and Tappen [42] proposed a novel
nonlocal range MRF (NLR-MRF) framework, and employed the gradient-based dis-
criminative learningmethod to train the model. Chen and Pock [8] further proposed a
trainable nonlinear reaction–diffusion (TNRD) model through discriminative learn-
ing of a compact gradient descent inference. Lefkimmiatis [25] adopted a proximal
gradient-based denoising inference from a variational model to incorporate the NSS
prior.

Discriminative inference learning methods enjoy some merits. First, they are effi-
cient due to much fewer inference steps. Second, they have better interpretability
because the discriminative architecture is derived from optimization algorithms such
as half quadratic splitting and gradient descent [4, 8, 36, 38, 42]. However, the
interpretability may come at the expense of performance since the learned priors and
inference procedure are limited by the form of the MAP model [50]. In addition, the
unrolled inference actually can be viewed as a network with stagewise architecture,
which restricts the dataflow in each immediate output layer [51].

Instead of modeling image priors explicitly, the generic CNN-based denoising
methods learn a predefined nonlinear function consisting of various CNN building
blocks to model image prior implicitly and can be modeled by

min
�

�(x̂, x) s.t. x̂ = F(y, σ ;�). (4.4)

The use of CNN for image denoising can be traced back to [18], where a five-
layer network with sigmoid nonlinearity was developed. During the past few years,
various genericCNN-based denoisingmethods have beenproposed and the denoising
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performance has been greatly boosted in comparison to [18]. In this chapter, we focus
on this type of denoising methods, and assume that the noise type is AWGNwith the
known noise level σ .

4.1.1 Recent Advances

In addition to DnCNN and FFDNet described in this chapter, there have been several
other attempts to design CNN for image denoising. Some works propose to improve
convolutional filters or nonlinearities for better trade-off between effectiveness and
efficiency. Wang et al. [47] developed a dilated residual CNN for fast Gaussian
denoising. The main idea is to enlarge receptive field by dilated filter with different
dilation factors. They showed that the expansion of receptive field can boost the
denoising performance. In another denoisingwork byWang et al. [46], they proposed
a denoising network which uses exponential linear unit (ELU) as the nonlinearity.
To better accommodate ELU and batch normalization layer, they further designed
a novel structure by incorporating 1 × 1 convolutional layer. Kligvasser et al. [21]
proposed a learnable nonlinear function with spatial connections as activation unit
to replace the widespread per-pixel activation units such as ReLUs and sigmoids.
They showed that the activation unit can enable CNN to capture much more complex
features, thus leading to better denoising results.

While CNN-based denoising methods are effective, they lack the explicit abil-
ity to handle images with regular and repetitive patterns. Some researchers resort
to incorporate the nonlocal self-similarity prior into CNN. Ahn and Cho [1] pro-
posed a block matching convolutional neural network which combines nonlocal
self-similarity prior and CNN for image denoising. The main idea is to group similar
local patches into a tensor and then feed it to CNN for denoising. Bae et al. [2] pro-
posed a new denoising network motivated from a novel persistent homology analysis
on residual learning for image processing tasks. Specifically, they showed that the
residual manifold is topologically simpler than the original image manifold and the
wavelet transform can provide topologically simpler manifold structures. Yang and
Sun [48] proposed a BM3D-inspired convolutional neural network (BM3D-Net) for
image denoising. BM3D-Net directly builds the convolutional neural network by
faithfully implementing the transform domain collaborative filtering in the BM3D
framework. Lefkimmiatis [26] proposed a novel network architecture which involves
convolutional layers as a core component and nonlocal filtering layers to exploit the
inherent nonlocal self-similarity property of natural images. By training the denoiser
with a wide range of different noise levels, the networks do not need to know the
noise level of the noisy image and are very robust when the noise model does not
match the statistics of the one used during training.

To design a principled network architecture, an interesting line of denoisingmeth-
ods has focused on incorporating CNN building blocks into MAP-based unrolled
inference. Kim et al. [19] proposed a deeply aggregated alternating minimization
(DeepAM) based on two of the steps in the conventional AM algorithm: proximal



4 Convolutional Neural Networks for Image Denoising and Restoration 97

mapping and β-continuation. The DeepAM framework enables the convolutional
neural networks to operate as a regularizer in the AM algorithm for image denois-
ing. Vogel and Pock [45] proposed a primal-dual network for image denoising that
leverages the algorithmic structure provided by energy optimization techniques into
learning a generalized optimization algorithm.

There also exist some works that focus on class-aware image denoising, generic
image denoising and boosting-based image denoising. Remez et al. [31] pointed out
a denoiser is aware of the type of image content and proposed a new fully convolu-
tional deep neural network architecture for image denoising. They further showed
that the performance can be significantly improved by fine-tuning the denoiser for
images belonging to a specific semantic class. Santhanam et al. [37] developed a
recursively branched deconvolutional network (RBDN) for image denoising as well
as generic image-to-image regression. To integrate multiple weak denoisers with dif-
ferent capabilities to denoise complex scenes, Choi et al. [9] proposed a consensus
neural network (ConsensusNet) which comprises a weighting stage to weigh the rel-
evance of the individual denoisers and a boosting neural network to recover the lost
features as well as improve contrast. They studied ConsensusNet on various scenar-
ios, including the integration of denoisers with different noise levels, different image
classes, and different denoiser types. Experimental results show that ConsensusNet
can consistently improve denoising performance for both deterministic denoisers
and neural network denoisers.

Apart from single image denoising, multi-image denoising has also attracted con-
siderable interest. Godard et al. [12] proposed a recurrent fully CNN to handle an
arbitrary number of noisy input frames for burst denoising. Instead of directly pre-
dicting the final denoised pixel values [3], Mildenhall et al. [29] proposed a CNN
architecture to predict spatially varying weighting kernels of different frames. They
further proposed a synthetic data generation approach based on signal-dependent
Gaussian noise model, and an optimization guided by an annealed loss function to
avoid undesirable local minima.

The rest of this chapter is organized as follows.We first introduce a simple denois-
ing CNN which embraces the progress in learning and designing CNN in Sect. 4.2.
We show that residual learning and batch normalization are particularly beneficial
to Gaussian denoising. We also analyze the rationale of residual learning and the
modeling capacity of CNN. In Sect. 4.3, we provide a fast and flexible denoising
CNN with a tunable noise level map as input and thus can handle a wide range of
noise levels as well as spatially variant AWGNvia a singlemodel. To demonstrate the
wide applications of CNN denoisers, in Sect. 4.4, we show that the CNN denoisers
can be plugged into model-based optimization methods as a modular part to solve
other image restoration tasks such as image deblurring, singe image super-resolution
(SISR), and image inpainting. We provide a short review of recent advances, and
discuss the challenges and some possible solutions in Sect. 4.5.
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4.2 Learning Deep CNN for Image Denoising

Discriminative model learning for image denoising has been recently attracting con-
siderable attention due to its favorable denoising performance. In this section,we take
one step forward by investigating the construction of feed-forward denoising con-
volutional neural networks (DnCNN) to embrace the progress in deep architecture,
learning algorithm, and regularization method into image denoising.

4.2.1 Architecture Design: DnCNN

The architecture of DnCNN is shown in Fig. 4.1. The input of DnCNN is a noisy
observation y = x + v. Discriminative denoising models such as MLP [5] and
CSF [38] aim to directly learn the original mapping functionF(y) = x to predict the
latent clean image. For DnCNN, the residual learning formulation is instead to train
a residual mapping R(y) = v, and then x can be obtained by x = y − R(y).

Following the principle in [40], the size of convolutional filters is set to 3 × 3.
Therefore, the receptive field of DnCNN with depth of d should be (2d + 1) ×
(2d + 1). Increasing the network depth can make use of the context information in
larger image region at the cost of computational burden. For better trade-off between
performance and efficiency, one important issue in architecture design is to set a
proper depth for DnCNN. The receptive field size of DnCNN for Gaussian denoising
with a certain noise level is set to 35 × 35 with the corresponding depth of 17.

Given the DnCNNwith depth D, there are three types of layers (shown in Fig. 4.1)
with three different colors. (i) Conv + ReLU: for the first layer, 64 filters of size
3 × 3 × c are used to generate 64 feature maps, and rectified linear units (ReLU,
max(0, ·)) are then utilized for nonlinearity. Here, c represents the number of image
channels, i.e., c = 1 for grayscale image and c = 3 for color image. (ii) Conv + BN
+ ReLU: for layers 2 ∼ (D − 1), 64 filters of size 3 × 3 × 64 are used, and batch
normalization [17] is added between convolution and ReLU. (iii) Conv: for the last
layer, c filters of size 3 × 3 × 64 are used to reconstruct the denoising result.

To sum up, DnCNN has two main features: the residual learning formulation is
adopted to learnR(y), and batch normalization is incorporated to speed up training
as well as boost the denoising performance. In particular, it turns out that residual
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Fig. 4.1 The architecture of the DnCNN network
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learning and batch normalization can benefit from each other, and their integration
is effective in speeding up the training and boosting the denoising performance.

4.2.2 Residual Learning and Batch Normalization

To start with, it is useful to briefly review residual learning and batch normaliza-
tion. The main idea of residual learning [15] is that the residual mapping is much
easier to be learned than the original mapping. Typically, residual network stacks a
number of residual units to alleviate the degradation of training accuracy. Benefited
from residual network, deep CNN can be easily trained and improved accuracy has
been achieved for image classification and object detection [15]. Different from the
residual network [15] that uses many residual units (i.e., identity shortcuts), DnCNN
employs a single residual unit to predict the residual image. It should be noted that,
prior to the residual network [15], the strategy of predicting the residual image has
already been adopted in some low-level vision problems such as SISR and image
demosaicking. As for batch normalization [17], it was originally proposed to allevi-
ate the internal covariate shift by incorporating a Gaussian normalization step and a
scale and shift step. It enjoys several merits, such as fast training, better performance,
and low sensitivity to initialization. For further details on batch normalization, please
refer to [17].

The DnCNN network can be used to train either the original mapping y to predict
x or the residual mapping R(y) to predict v. According to [15], when the original
mapping is more like an identity mapping, the residual mapping will be much easier
to optimize. Since the noisy observation y is much more like the latent clean image
x than the residual image v (especially when the noise level is low), F(y) would be
more close to an identity mapping thanR(y). Thus, the residual learning formulation
is more suitable for image denoising.

For Gaussian noise removal, residual learning is also helpful to stabilize the train-
ingwith batch normalization.Under the residual learning setting, the noise output of a
specific noise level should be an ideal Gaussian distribution.Moreover, DnCNNwith
residual learning implicitly removes the latent clean image with the operations in the
hidden layers. This makes that the inputs of each layer are Gaussian-like distributed,
less correlated, and less related with image content. As a result, residual learning and
batch normalization are particularly beneficial to each other for Gaussian denoising.

Figure 4.2 shows the average PSNR values obtained using these two learning for-
mulationswith/without batch normalization under the same setting on gradient-based
optimization algorithms and network architecture. Two gradient-based optimization
algorithms are adopted: one is the stochastic gradient descent algorithmwithmomen-
tum (i.e., SGD) and the other one is the ADAM algorithm [20]. One can observe
that both the SGD and ADAM optimization algorithms can enable the network with
residual learning and batch normalization to have the best results. In other words,
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Fig. 4.2 The quantitative Gaussian denoising results of four specific models under two gradient-
based optimization algorithms, i.e., a SGD, b ADAM, with respect to epochs. The four specific
models are in different combinations of residual learning (RL) and batch normalization (BN) and
are trained with noise level 25. The results are evaluated on 68 natural images from Berkeley
segmentation dataset

it is the integration of residual learning formulation and batch normalization rather
than the optimization algorithms (SGD or ADAM) that lead to the best denoising
performance.

4.2.3 Connection with TNRD

To have a further understanding of residual learning for denoising, we analyze its
connection with TNRD [8] which is aMAP-CNNbased denoisingmethod. Themain
idea of TNRD is to train a discriminative solution for the following problem:

min
x

�(y − x) + λ

K∑

k=1

N∑

p=1

ρk((fk ∗ x)p) (4.5)

from an abundant set of degraded-clean training image pairs. Here, N denotes the
image size, λ is the regularization parameter, fk ∗ x stands for the convolution of the
image x with the k-th filter kernel fk , and ρk(·) represents the k-th penalty function
which is adjustable in the TNRD model. For Gaussian denoising, we set �(z) =
1
2‖z‖2.

The diffusion iteration of the first stage can be interpreted as performing one
gradient descent inference step at starting point y, which is given by

x1 = y − αλ

K∑

k=1

(f̄k ∗ φk(fk ∗ y)) − α
∂�(z)

∂z

∣∣∣∣
z=0

(4.6)
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where f̄k is the adjoint filter of fk (i.e., f̄k is obtained by rotating 180◦ the filter fk),
α corresponds to the stepsize and ρ ′

k(·) = φk(·). For Gaussian denoising, we have
∂�(z)

∂z

∣∣∣
z=0

= 0, and Eq. (4.6) is equivalent to the following expression,

v1 = y − x1 = αλ

K∑

k=1

(f̄k ∗ φk(fk ∗ y)) (4.7)

where v1 is the estimated residual of x with respect to y.
Since the influence function φk(·) can be regarded as pointwise nonlinearity

applied to convolution feature maps, Eq. (4.7) actually is a two-layer feed-forward
CNN. DnCNN further generalizes one-stage TNRD from three aspects: (i) replacing
the influence function with ReLU to ease CNN training; (ii) increasing the CNN
depth to improve the capacity in modeling image characteristics; (iii) incorporating
with batch normalization to boost the performance. The connection with one-stage
TNRD provides insights in explaining the use of residual learning for CNN-based
image restoration.

4.2.4 Understanding the CNN Modeling Capacity

The existing Gaussian denoising methods, such as MLP [5] and TNRD [8], all train
a specific model for a fixed noise level. It is interesting to investigate the modeling
capacity of CNN for different noise levels via a single model. According to Eq. (4.7),
one can see that most of the parameters are derived from the analysis prior term of
Eq. (4.5). In this sense, the parameters are mainly representing the image priors
which are task-independent. Therefore, CNN has the modeling capacity to deal with
multiple degradations via a singlemodel. For example, even the noise is not Gaussian
distributed, one still can utilize Eq. (4.6) to obtain v1 if

∂�(z)
∂z

∣∣∣∣
z=0

= 0. (4.8)

Note that Eq. (4.8) holds for many types of noise distributions, e.g., generalized
Gaussian distribution. It is natural to assume that it also holds for the noise caused
by image downsampling and JPEG compression. Thus, it is possible to train a sin-
gle CNN model for several general image denoising tasks, e.g., SISR and JPEG
deblocking.

To demonstrate the potential of DnCNN in general image denoising, DnCNN is
extended for learning a single model for three specific tasks, i.e., blind Gaussian
denoising for noise level range of [0, 55], SISR, and JPEG deblocking are consid-
ered. In the training stage, the images with AWGN from a wide range of noise
levels, downsampled images with multiple upscaling factors, and JPEG images with
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(a) Input Image (b) Output Residual Image (c) Restored Image

Fig. 4.3 An example to show the capacity of DnCNN for three different tasks. The input image
is composed by noisy images with noise level 15 (upper left) and 25 (lower left), bicubically
interpolated low-resolution images with upscaling factor 2 (upper middle) and 3 (lower middle),
JPEG images with quality factor 10 (upper right) and 30 (lower right). Note that the white lines in
the input image are just used for distinguishing the six regions, and the residual image is normalized
into the range of [0, 1] for visualization

different quality factors are utilized. Experimental results show that the learned sin-
gle DnCNNmodel is able to yield excellent results for any of the three general image
denoising tasks. Figure 4.3 shows an example of DnCNN for these tasks. As one can
see, even the input image is corrupted with different distortions in different regions,
the restored image looks natural and does not have obvious artifacts.

4.2.5 Implementation and Experiments

Following [8], 400 images of size 180 × 180 are used for training the Gaussian
denoiser with known noise level. It has been found that using a larger training dataset
can only bring negligible improvements, especially on BSD68 test set. Three noise
levels, i.e., σ = 15, 25 and 50, are considered and thus three models are trained. The
patch size is set as 40 × 40. 128 × 1,600 patches are used to train the model and the
mini-batch size is set to 128. The mean squared error between the desired residual
images and estimated ones from noisy input

L(�) = 1

2N

N∑

i=1

‖R(yi ;�) − (yi − xi )‖2 (4.9)

is adopted as the loss function to learn the trainable parameters �. Here {(yi , xi )}Ni=1
represents N noisy-clean training image patch pairs. The learning rate was decayed
exponentially from 10−1 to 10−4 for 50 epochs. It takes about 6 hours to train a
DnCNN model.

To evaluate the model, a dataset containing 68 natural images from Berkeley
segmentation dataset (BSD68) [35] is adopted. The average PSNR results of different
methods are shown in Table 4.1. As one can see, compared to the benchmark BM3D,
the methods MLP and TNRD have a PSNR gain of about 0.35 dB. Notably, DnCNN
outperforms BM3D by 0.6 dB on all the three noise levels.



4 Convolutional Neural Networks for Image Denoising and Restoration 103

Table 4.1 The average PSNR (dB) results of different methods on the BSD68 dataset. The best
results are highlighted in bold

Noise levels BM3D [5] WNNM [13] MLP [5] TNRD [8] DnCNN

σ = 15 31.07 31.37 – 31.42 31.73

σ = 25 28.57 28.83 28.96 28.92 29.23

σ = 50 25.62 25.87 26.03 25.97 26.23

(a) Noisy (14.76dB) (b) BM3D (26.21dB) (c) WNNM (26.51dB)

(d) MLP (26.54dB) (e) TNRD (26.59dB) (f) DnCNN (26.90dB)

Fig. 4.4 Denoising results of different methods on noise level 50
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Figure 4.4 illustrates the visual results of different methods. It can be seen that
BM3D, WNNM and MLP tend to produce over-smooth edges and textures. While
preserving sharp edges and fine details, TNRD is likely to generate artifacts in the
smooth region. In contrast, DnCNN can not only recover sharp edges and fine details
but also yield visually pleasant results in the smooth region.

4.3 CNN for Fast and Flexible Image Denoising

In order to handle practical image denoising problems, a flexible image denoiser is
expected to have the following desirable properties: (i) it is able to perform denoising
using a single model; (ii) it is efficient, effective, and user-friendly; and (iii) it can
handle spatially variant noise. Such a denoiser can be directly deployed to recover
the clean image when the noise level is known or can be well estimated. When the
noise level is unknown or is difficult to estimate, the denoiser should allow the user
to adaptively control the trade-off between noise reduction and details preservation.
Furthermore, the noise can be spatially variant and the denoiser should be flexible
enough to handle spatially variant noise.

The FFDNet which is shown in Fig. 4.5 is proposed to meet with such desirable
properties. Specifically, one of the major differences of FFDNet is that it can be
formulated as x = F(y,M;�), whereM is a noise level map. Here, the noise level
map M is modeled as an input and the model parameters � are invariant to noise
level. Hence, FFDNet provides a flexible way to handle various types of noise with a
single network. By introducing a noise level map as input, network design and train-
ing methods are required to be further studied for effective and efficient denoising.
Another main difference of FFDNet is that it works on downsampled subimages,
which largely accelerates the training and testing speed, and enlarges the receptive
field as well.

4.3.1 Network Architecture: FFDNet

As shown in Fig. 4.5, the first layer of FFDNet is a reversible downsampling operator
which reshapes an H × W noisy image y into four downsampled subimages. Then,

Fig. 4.5 The architecture of the FFDNet network
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a tunable downsampled noise level map M with the downsampled subimages is
concatenated to form a tensor ỹ of size H

2 × W
2 × (4c + 1) as the inputs to CNN.

The following CNN consists of a series of 3 × 3 convolutional layers. Each layer is
composed of three types of operations: Convolution (Conv), Rectified Linear Units
(ReLU) [22], and Batch Normalization (BN) [17]. More specifically, “Conv+ReLU”
is adopted for the first convolutional layer, “Conv+BN+ReLU” for the middle layers,
and “Conv” for the last convolutional layer. Zero-padding is employed to keep the
size of feature maps unchanged after each convolution. After the last convolutional
layer, an upscaling operation is applied as the reverse operator of the downsampling
operator applied in the input stage to produce the residual noisy image ṽ of size H ×
W × c. The denoised image is then obtained by x̃ = y − ṽ. Since FFDNet operates
on downsampled subimages, it is not necessary to employ the dilated convolution [49]
to further increase the receptive field.

By considering the balance of complexity and performance, the number of con-
volutional layers are set to 15 for grayscale image and 12 for color image. As for the
number of featuremaps, they are set to 64 for grayscale image and 96 for color image.
The reason of using different settings for grayscale and color images is twofold. First,
since there are high dependencies among the R, G, B channels, using a smaller num-
ber convolutional layers is good enough to exploit the interchannel dependency for
denoising. Second, color image has more channels as input, and hence more feature
(i.e., a larger number of feature maps) is required.

4.3.2 Taking Noise Level as CNN Input

Most of the deep learning based denoising methods such as the MLP [5] and convo-
lutional neural network (CNN) based methods [18, 50] are limited in flexibility, and
the learned model is usually tailored to a specific noise level. From the perspective
of regression, some CNN-based denoisers such as DnCNN aim to learn a mapping
function x = F(y;�σ ) between the input noisy observation y and the desired output
x. The model parameters �σ are trained for noisy images corrupted by AWGN with
a fixed noise level σ , while the trained model with�σ is hard to be directly deployed
to images with other noise levels.

From the viewpoint of MAP framework, the solution of Eq. (4.2) actually defines
an implicit function x̂ = F(y, σ, λ;�) of the noisy image y, noise level σ , and
parameter λ. Since λ can be absorbed into σ , the solution x̂ = F(y, σ, λ;�) can be
rewritten as x̂ = F(y, σ ;�). In this sense, setting noise level σ also plays the role
of setting λ to control the trade-off between noise reduction and detail preservation.

Since the inputs y and σ have different dimensions, it is not easy to directly
feed them into CNN. To resolve this, a simple dimension stretching strategy can be
employed to stretch the noise level σ into a noise level mapM. InM, all the elements
are σ . Then, the formulation is changed into x̂ = F(y,M;�). For color image, M
can have multiple channels to represent the noise level map of R, G, B channels
and can also be extended to degradation map which parameterizes the degradation
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process [52]. As such, a trained CNN model is expected to inherit the flexibility of
handling images with different noise levels, even spatially variant noises via a single
model.

4.3.3 Single Non-blind Model Versus Single Blind Model

So far, we have know that it is possible to learn a single model for blind and non-blind
Gaussian denoising, respectively, it is necessary to point out their differences. First,
the generalization ability is different. Although the blind model performs favorably
for synthetic AWGN removal without knowing the noise level, it does not generalize
well to real noisy images. In contrast, the non-blind model with noise level map has
the ability to control the trade-off between noise removal and detail preservation,
thus it can deal with real noise to some extent. In addition, the non-blind model can
handle the out-of-range noise levels, whereas the blind one lacks such an ability.
Second, the performance for AWGN removal is different. The non-blind model with
noise level map has better performance for AWGN removal than the blind one.
This phenomenon has also been recognized in the task of SISR [32]. Third, the
application range is different. The non-blind model can be plugged into model-
based optimization methods to solve various image restoration tasks, such as image
deblurring, SISR and image inpainting. However, the blind model does not have this
merit.

4.3.4 Denoising on Subimages

Efficiency is another crucial issue for practical CNN-based denoising. One straight-
forward idea is to reduce the depth and number of filters. However, such a strategy
will sacrifice much the modeling capacity and receptive field of CNN [50]. Shi
et al. [39] proposed to extract deep features directly from the low-resolution image
for super-resolution, and introduced a sub-pixel convolution layer to improve com-
putational efficiency. In the application of image denoising, we introduce a reversible
downsampling layer to reshape the input image into a set of small subimages. Here,
the downsampling factor is set to 2 since it can largely improve the speed by slightly
reducing modeling capacity. The CNN is deployed on the subimages, and finally a
sub-pixel convolution layer is adopted to reverse the downsampling process.

Denoising on downsampled subimages can also effectively expand the receptive
field which in turn leads to a moderate network depth. For example, the proposed
network with a depth of 15 and 3 × 3 convolution will have a large receptive field of
62 × 62. In contrast, a plain 15-layer CNN only has a receptive field size of 31 × 31.
We note that the receptive field of most state-of-the-art denoising methods ranges
from 35 × 35 to 61 × 61 [50]. Further increase of receptive field actually benefits
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little in improving denoising performance [27]. What is more, the introduction of
subsampling and sub-pixel convolution is also effective in reducing the memory
burden.

4.3.5 Dataset Generation and Network Training

To train the FFDNetmodel, we need to prepare a training dataset of patches (y,M; x).
Here, y is obtained by adding AWGN to latent image x, andM is the corresponding
noise level map. The reasons of using AWGN to generate the training dataset are
as follows. First, AWGN is a natural choice when there is no specific prior infor-
mation on noise source. Second, real-world noise can be locally approximated as
AWGN [24]. It is worth noting that FFDNet model is trained on the noisy images
y = x + vwithout quantization to 8-bit integer values. Though the real noisy images
are generally 8-bit quantized, we empirically found that the learnedmodel still works
effectively on real noisy images. For the noise level of each noisy, it is uniformly
sampled from the range of [0, 75].

The ADAM algorithm [20] is adopted to optimize FFDNet by minimizing the
mean squared error loss. The learning rate starts from 10−3 and reduces to 10−4

when the training error stops decreasing. When the training error keeps unchanged
in five sequential epochs, we merge the parameters of each batch normalization into
the adjacent convolution filters. Then, a smaller learning rate of 10−6 is adopted
for additional 20 epochs to fine-tune the FFDNet model. As for the other hyper-
parameters of ADAM,we use their default settings. The mini-batch size is set as 128,
and the rotation and flip based data augmentation is also adopted during training.
The FFDNet models are trained in Matlab (R2015b) environment with MatConvNet
package [44] and an Nvidia Titan X Pascal GPU. The training of a single model can
be done in about one day.

4.3.6 Experiments on Synthetic and Real Images

4.3.6.1 Experiments on AWGN Removal

The PSNR results of different methods on BSD68 dataset are reported in Table 4.2,
fromwhich we have the following observations. First, FFDNet surpasses BM3D by a
large margin and outperforms WNNM, MLP, and TNRD by about 0.2 dB for a wide
range of noise levels. Second, FFDNet is slightly inferior to DnCNN when the noise
level is low (e.g., σ ≤ 25), but gradually outperforms DnCNN with the increase of
noise level (e.g., σ > 25). This phenomenon may result from the trade-off between
receptive field size and modeling capacity. FFDNet has a larger receptive field than
DnCNN, thus favoring for removing strong noise, while DnCNNhas better modeling
capacity which is beneficial for denoising images with lower noise level.
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Table 4.2 The average PSNR (dB) results of different methods on BSD68 with noise levels 15, 25
35, 50, and 75. The best results are highlighted in bold

Methods BM3D [11] WNNM [13] MLP [5] TNRD [8] DnCNN [50] FFDNet

σ = 15 31.07 31.37 – 31.42 31.72 31.62

σ = 25 28.57 28.83 28.96 28.92 29.23 29.19

σ = 35 27.08 27.30 27.50 – 27.69 27.73

σ = 50 25.62 25.87 26.03 25.97 26.23 26.30

σ = 75 24.21 24.40 24.59 – 24.64 24.78

Table 4.3 The average PSNR (dB) results of CBM3D and FFDNet on CBSD68 dataset with noise
levels 15, 25 35, 50, and 75

Methods σ = 15 σ = 25 σ = 35 σ = 50 σ = 75

CBM3D 33.52 30.71 28.89 27.38 25.74

FFDNet 33.80 31.18 29.57 27.96 26.24

(a) Noisy (σ = 35) (b) CBM3D (29.90dB) (c) FFDNet (30.51dB)

Fig. 4.6 Color image denoising results by CBM3D and FFDNet

Table 4.3 reports the performance of CBM3D and FFDNet on color version of
BSD68 datasets, and Fig. 4.6 presents the visual comparisons. It can be seen that
FFDNet consistently outperforms CBM3D on different noise levels in terms of both
quantitative and qualitative evaluation.
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Fig. 4.7 Examples ofFFDNet on removing spatially variantAWGN.Left: noise levelmaps.Middle:
noisy images with PSNR 20.55 dB. Right: denoised images (PSNR: 29.97 dB) by FFDNet

4.3.6.2 Experiments on Spatially Variant AWGN Removal

We then test the flexibility of FFDNet to deal with spatially variant AWGN. To
synthesize spatially variant AWGN, we first generate an AWGN image v with the
standard deviation 1 and a noise level map M of the same size. Then, elementwise
multiplication is applied on v and M to produce the spatially variant AWGN, i.e.,
v � M. In the denoising stage, we take the bilinearly downsampled noise levelmap as
the input to FFDNet. Figure 4.7 shows the denoising result of FFDNet for a spatially
variant AWGN.One can see that FFDNet is flexible and powerful to remove spatially
variant AWGN.

4.3.6.3 Experiments on Noise Level Sensitivity

In practical applications, the noise levelmapmaynot be accurately estimated from the
noisy observation, andmismatch between the input and real noise levels is inevitable.
If the input noise level is lower than the real noise level, the noise cannot be completely
removed. Therefore, users often prefer to set a higher noise level to guarantee the
removal of noise. However, this may also remove too much image details together
with noise. In this subsection, we evaluate FFDNet in comparison with benchmark
BM3D by varying different input noise levels for a given ground-truth noise level.

Figure 4.8 shows the visual comparisons between BM3D/CBM3D and FFDNet
by setting different input noise levels to denoise a noisy image. Four typical image
structures, including flat region, sharp edge, line with high contrast, and line with low
contrast, are selected for visual comparison to investigate the noise level sensitivity
of BM3D and FFDNet. The following observations can be obtained. The best visual
quality is obtained when the input noise level matches the ground-truth one. BM3D
and FFDNet produce similar visual results with lower input noise levels, while they
exhibit certain difference with higher input noise levels. Both of them will smooth
out noise in flat regions, and gradually smooth out image structures with the increase
in input noise levels. Particularly, FFDNet may wipe out some low contrast line
structure, whereas BM3D can still preserve the mean patch regardless of the input
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Fig. 4.8 Visual comparisons between FFDNet and BM3D/CBM3D by setting different input noise
levels to denoise a noisy image. a From top to bottom: ground-truth image, four clean zoom-in
regions, and the corresponding noisy regions (AWGN, noise level 15). b From top to bottom:
denoising results by BM3D with input noise levels 5, 10, 15, 20, 50, and 75, respectively. c Results
by FFDNet with the same settings as in (b). d From top to bottom: ground-truth image, four
clean zoom-in regions, and the corresponding noisy regions (AWGN, noise level 25). e From top to
bottom: denoising results by CBM3Dwith input noise levels 10, 20, 25, 30, 45, and 60, respectively.
f Results by FFDNet with the same settings as in (e)

noise levels due to its use of nonlocal information. Using a higher input noise level
can generally produce better visual results than using a lower one. In addition, there
is no much visual difference when the input noise level is a little higher than the
ground-truth one.
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4.3.6.4 Experiments on Real Noisy Images

In this subsection, real noisy images are used to further assess the practicability of
FFDNet. However, such an evaluation is difficult to conduct due to the following
reasons. (i) Both the ground-truth clean image and noise level are unknown for real
noisy image. (ii) The real noise comes from various sources such as camera imaging
pipeline (e.g., shot noise, amplifier noise and quantization noise), scanning, lossy
compression and image resizing [10, 28], and it is generally non-Gaussian, spatially
variant, and signal-dependent. As a result, the AWGN assumption in many denoising
algorithms does not hold, and the associated noise level estimation methods may not
work well for real noisy images.

Instead of adopting any noise level estimation methods, we adopt an interac-
tive strategy to handle real noisy images. First of all, we empirically found that the
assumption of spatially invariant noise usuallyworkswell formost real noisy images.
We then employ a set of typical input noise levels to produce multiple outputs, and
select the one which has best trade-off between noise reduction and details preser-
vation. Second, for spatially variant noise, we sample several typical image patches
which represent the distinct regions of different noise levels and apply different input
noise levels to them. By observing the denoising results, we then choose the proper
noise level for each typical patch. The noise levels at other locations are interpo-
lated from the noise levels of the typical patches. An approximation of nonuniform
noise level map can then be obtained. In our following experiments, unless otherwise
specified, we assume spatially invariant noise for the real noisy images.

Since there is no ground-truth image for a real noisy image, visual comparison is
employed to evaluate the performance of FFDNet.We choose BM3D for comparison
because it is widely accepted as a benchmark for denoising applications. Given a
noisy image, the same input noise level is used for BM3D and FFDNet.

Figure 4.9 compares the grayscale image denoising results on four noisy images.
As one can see, BM3D and FFDNet exhibit similar behaviors to those on denoising
grayscale images. In particular, for image “Building”which contains some structured
noises, BM3D fails to yield visually pleasant results because the structured noises fit
the nonlocal self-similarity prior. In contrast, FFDNet removes such noise without
losing underlying image textures. Figure 4.10 shows the denoising results of CBM3D
and FFDNet on four color noisy images. It can be seen that FFDNet can handle
various kinds of noises, including Gaussian-like noise (see image “Pattern”), JPEG
lossy compression noise (see image “Audrey Hepburn”), and low-frequency noise
(see image “Boy”). Similarly, from the denoising results of “Boy”, one can see that
CBM3D remains the structured low-frequency noise unremoved whereas FFDNet
removes successfully such kind of noise. As a result, we can conclude that while the
nonlocal self-similarity prior helps to remove random noise, it hinders the removal
of structured noise. In comparison, the prior implicitly learned by CNN is able to
remove both random noise and structured noise.

Figure 4.11 shows a more challenging example to demonstrate the advantage of
FFDNet for denoising noisy images with spatially variant noise. As one can see,
while FFDNet with a small input noise level can recover the details of regions with
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(a) David Hilbert (b) Chupa Chups (c) Vinegar (d) Building

Fig. 4.9 Grayscale image denoising results by different methods on real noisy images. From top
to bottom: noisy images, denoised images by BM3D, denoised images by FFDNet. a σ = 15; b σ

= 10; c σ = 20; d σ = 20

low noise level, it fails to remove strong noise. On the other hand, FFDNet with a
large input noise level can remove strong noise but it will also smooth out the details
in the region with low noise level. In comparison, the denoising result with a proper
nonuniform noise level map not only preserves image details but also removes the
strong noise.

4.3.7 Running Time

Table 4.4 lists the running time results of BM3D, DnCNN and FFDNet for denoising
grayscale level and color images with size 256× 256, 512× 512, and 1,024× 1,024.
The evaluation was performed in Matlab (R2015b) environment on a computer with
a six-core Intel(R) Core(TM) i7-5820K CPU @ 3.3 GHz, 32 GB of RAM and a



4 Convolutional Neural Networks for Image Denoising and Restoration 113

(a) Dog (b) Pattern (c) Audrey Hepburn (d) Boy

Fig. 4.10 Color image denoising results by different methods on real noisy images. From top to
bottom: noisy images, denoised images by CBM3D, denoised images by FFDNet. a σ = 28; b σ =
12; c σ = 10; d σ = 45

Fig. 4.11 An example of FFDNet on image “Glass” with spatially variant noise. a Noisy image;
b denoised image by FFDNet with σ = 10; c denoised image by FFDNet with σ = 35; d denoised
image by FFDNet with nonuniform noise level map
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Table 4.4 Running time (in seconds) of different methods for denoising images with size 256 ×
256, 512 × 512, and 1,024 × 1,024

Methods Device 256 × 256 512 × 512 1024 × 1024

Gray Color Gray Color Gray Color

BM3D CPU(ST) 0.59 0.98 2.52 3.57 10.77 20.15

DnCNN CPU(ST) 2.14 2.44 8.63 9.85 32.82 38.11

CPU(MT) 0.74 0.98 3.41 4.10 12.10 15.48

GPU 0.011 0.014 0.033 0.040 0.124 0.167

FFDNet CPU(ST) 0.44 0.52 1.81 2.14 7.24 8.51

CPU(MT) 0.18 0.19 0.73 0.79 2.96 3.15

GPU 0.006 0.007 0.012 0.016 0.038 0.054

Nvidia Titan X Pascal GPU. For BM3D, we evaluate its running time by denoising
images with noise level 25. For DnCNN, the grayscale and color image denoising
models have 17 and 20 convolutional layers, respectively. The Nvidia cuDNN-v5.1
deep learning library is used to accelerate the computation of DnCNN and FFDNet.
Thememory transfer time between CPU andGPU is also counted. Note that DnCNN
and FFDNet can be implemented with both single-threaded (ST) and multi-threaded
(MT) CPU computations.

From Table 4.4, we have the following observations. First, BM3D spends much
more time on denoising color images than grayscale images. The reason is that, com-
pared to gray-BM3D, CBM3D needs extra time to denoise the chrominance com-
ponents after luminance-chrominance color transformation. Second, while DnCNN
can benefit from GPU computation for fast implementation, it has comparable CPU
time to BM3D. Third, FFDNet spends almost the same time for processing grayscale
and color images. More specifically, FFDNet with multi-threaded implementation
is about three times faster than DnCNN and BM3D on CPU, and much faster than
DnCNN on GPU. Even with single-threaded implementation, FFDNet is also faster
than BM3D. Taking denoising performance and flexibility into consideration, FFD-
Net is very competitive for practical applications.

4.4 CNN Denoiser Prior Based Image Restoration

Motivated by the impressive achievement on image denoising, it is natural to ask
whether CNNs can be applied to more general image restoration tasks. Although
CNNs can be directly adopted with promising performance and fast testing speed,
their application range is greatly restricted by the specialized task. In contrast, model-
based optimization methods are flexible for handling different inverse problems but
are usually time-consuming with sophisticated priors for the purpose of good per-
formance. Fortunately, it has been revealed that, with the aid of variable splitting
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techniques such as alternating direction method of multipliers (ADMM) algorithm,
half quadratic splitting (HQS) algorithm, and the primal-dual algorithm [6], denoiser
prior can be plugged in as a modular part of model-based optimization methods to
solve other image restoration problems, and particularly, the regularization term only
corresponds to a denoising subproblem [7, 16, 33, 41, 53]. Consequently, such an
integration induces considerable advantage when the denoiser is based on CNN.

Very recently, various methods have been proposed to incorporate the CNN
denoiser prior into model-based optimization methods. In those methods, the CNN
denoiser can be either pretrained or jointly trained with data fidelity term for a
specific task. In other words, there exist two general CNN denoiser prior based
frameworks, i.e., model-based optimization and discriminative learning, for differ-
ent image restoration tasks. In this section, we focus on the former since once the
CNN denoiser is trained, no additional training is needed for other tasks. As for the
variable splitting algorithm, we choose half quadratic splitting (HQS) algorithm due
to its simplicity.

In the following, we first give a brief review of HQS algorithm and then show
how to plug CNN denoiser into the optimization procedure to solve other image
restoration problems, including image deblurring, single image super-resolution,
and image inpainting.

4.4.1 Half Quadratic Splitting Algorithm

In general, the purpose of image restoration is to recover the latent clean image
x from its degraded observation y = Hx + v, where H is a degradation matrix, v
is additive white Gaussian noise of standard deviation σ . By specifying different
degradation matrices, one can correspondingly get different image restoration tasks.
Three classical IR tasks would be image denoising when H is an identity matrix,
image deblurring when H is a blurring operator, and image super-resolution when
H is a composite operator of blurring and downsampling.

Due to the ill-posed nature of general image restoration problems, regularization
needs to be imposed to constrain the solution. Mathematically, the latent clean image
of a degraded image y can be estimated by solving the following MAP problem:

x̂ = argmin x
1

2σ 2
‖y − Hx‖2 + λ�(x) (4.10)

where the solution minimizes an energy function composed of a data fidelity term
1

2σ 2 ‖y − Hx‖2, a regularization term �(x) and a trade-off parameter λ.
In HQS, by introducing an auxiliary variable z, Eq. (4.10) can be reformulated as

a constrained optimization problem which is given by

x̂ = argmin x
1

2σ 2
‖y − Hx‖2 + λ�(z) s.t. z = x (4.11)
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Then, HQS tries to minimize the following cost function:

Lμ(x, z) = 1

2σ 2
‖y − Hx‖2 + λ�(z) + μ

2
‖z − x‖2 (4.12)

where μ is a penalty parameter which varies iteratively in a non-descending order.
Equation (4.12) can be solved via the following iterative scheme:

⎧
⎨

⎩
xk+1 = argmin x‖y − Hx‖2 + μσ 2‖x − zk‖2 (4.13a)

zk+1 = argmin z
μ

2
‖z − xk+1‖2 + λ�(z). (4.13b)

As one can see, the data fidelity term and regularization term are decoupled into
two individual subproblems. Specifically, the data fidelity term is associated with
a quadratic regularized least-squares problem (Eq. (4.13a)) which has various fast
solutions for different degradation matrices. A direct solution is given by

xk+1 = (HTH + μσ 2I)−1(HT y + μσ 2zk) (4.14)

The regularization term is involved in Eq. (4.13b) which can be rewritten as

zk+1 = argmin z
1

2(
√
1/μ)2

‖xk+1 − z‖2 + λ�(z) (4.15)

Equation (4.15) corresponds to denoising the image xk+1 by a CNN-based Gaus-
sian denoiser with noise level

√
1/μ. As a consequence, any CNN-based Gaussian

denoisers can be acted as amodular part to solveEq. (4.10). To address this, Eq. (4.15)
can be rewritten as

zk+1 = F(xk+1,
√
1/μ) (4.16)

We point out that the CNN denoiser from Eq. (4.15) should be designed for AWGN
removal and the noisy image in the training should not be quantized to 8-bit integer
values.

So far, we have obtained that the image prior �(·) can be implicitly replaced
by a denoiser prior. Such a promising property actually offers several advantages.
First, it enables to use fast and effective CNN-based denoisers to solve a variety of
inverse problems. Second, the explicit image prior �(·) can be unknown in solving
Eq. (4.10). Third, several complementary denoisers which exploit different image
priors can be jointly utilized to solve one specific problem.
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4.4.2 CNN Denoisers and Parameter Setting

For the architecture of the CNN denoiser, it consists of seven layers with three
different blocks, i.e., “Dilated Convolution+ReLU” block in the first layer, five
“Dilated Convolution+Batch Normalization+ReLU” blocks in the middle layers,
and “Dilated Convolution” block in the last layer. The dilation factors of (3 × 3)
dilated convolutions from first layer to the last layer are set to 1, 2, 3, 4, 3, 2, and
1, respectively. The number of feature maps in each middle layer is set to 64. We
trained a set of denoisers on noise level range [0, 50] and divided it by a step size
of 2 for each model, resulting in a set of 25 denoisers for each grayscale and color
image prior modeling.

Once the denoisers are provided, the subsequent crucial issue would be parameter
setting. There involve two parameters, λ and μ, to tune. For the setting of λ, since
it is implicitly optimized in the CNN denoiser and can be absorbed into σ , one
can instead tune σ to obtain the best results. In practice, this can be achieved by
multiplying σ by a scalar around 1. For the setting of μ, it is better to set the noise
level of denoiser in each iteration to implicitly determine μ. Note that the noise level
of denoiser

√
1/μ should be set from large to small. In the following experiments, it

is decayed exponentially from 49 to a value in [1, 15] for 30 iterations. Note that all
the experimental results are reproducible, and the source code can be downloaded
from https://github.com/cszn/IRCNN.

4.4.3 Image Deblurring

For image deblurring, by assuming the convolution is carried outwith circular bound-
ary conditions, the fast implementation of Eq. (4.13a) is given by

xk+1 = F−1

(
F(k)F(y) + μσ 2F(zk)

F(k)F(k) + μσ 2

)
(4.17)

where the F(·) and F−1(·) denote the fast Fourier transform (FFT) and inverse FFT,
F(·) denotes complex conjugate of F(·) and k is a blurring kernel corresponding to
the degradation matrix H.

Figure 4.12 gives an example of IRCNN for image deblurring. It can be seen that
IRCNN can yield visually pleasant result with sharp edges and fine details.

4.4.4 Single Image Super-Resolution

There exist several degradation settings for single image super-resolution (SISR),
among which bicubic degradation (default setting of Matlab function imresize) and

https://github.com/cszn/IRCNN
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Fig. 4.12 An example of IRCNN for image deblurring. a Blurred image with estimated kernel by
Pan et al. [30]; b Deblurring result

Fig. 4.13 An example of IRCNN for single image super-resolution (the blur kernel is a motion
blur, the scale factor is 2). a LR image with motion blur kernel; b SISR result

Gaussian blurring followed by anti-aliasing downsampling are the two most widely
used ones. For these two degradations, we use the following back-projection iteration
to solve Eq. (4.13a),

xk+1 = zk − α(y − zk ↓sf) ↑sf
bicubic (4.18)

where ↓sf denotes the degradation operator with downscaling factor sf, ↑sf
bicubic rep-

resents bicubic interpolation operator with upscaling factor sf, and α is the step size
which is fixed to 1.75.

It is worth noting that when the downsampler is the standardK-fold downsampler
(Matlab function downsample), Eq. (4.13a) has a fast closed-form solution by bene-
fiting FFT [7]. Furthermore, the blur kernel can go beyondGaussian blur. Figure 4.13
shows an example of IRCNN for super-resolving LR image degraded bymotion blur-
ring and standard K-fold downsampler. It can be seen that the super-resolved image
is much more visually pleasing than the LR image.
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Fig. 4.14 An example of IRCNN for image inpainting. a Original image with overlaid text; b
inpainting result

4.4.5 Image Inpainting

For image inpainting,Hx can be rewritten asM � x, whereM is matrix with binary
elements indicating the missing pixels of y, and � denotes elementwise multiplica-
tion. A closed-form solution of Eq. (4.13a) is given by

xk+1 = (M � y + μσ 2zk) � (M + μσ 2) (4.19)

where � denotes elementwise division.
Figure 4.14 shows an example of IRCNN for image inpainting. As one can see,

there is no visible artifacts in the inpainted image.

4.5 Challenges and Possible Solutions

While the image denoising for AWGN removal has been well-studied, little work
has been done on real image denoising. The main difficulty arises from the fact
that real noises are much more sophisticated than AWGN and it is not an easy
task to thoroughly evaluate the performance of a denoiser. Figure 4.15 shows four
typical noise types in real world. It can be seen that the characteristics of those
noises are very different and a single noise level may be not enough to parameterize
those noise types. In most cases, a denoiser can only work well under a certain
noise model. For example, a denoising model trained for AWGN removal is not
effective formixedGaussian andPoissonnoise removal. This is intuitively reasonable
because the CNN-based methods can be treated as general cases of Eq. (4.3) and
the important data fidelity term corresponds to the degradation process. In spite of
this, the image denoising for AWGN removal is still valuable due to the following
reasons. First, it is an ideal test bed to evaluate the effectiveness of different CNN-
based denoising models and learning algorithms. Second, in the unrolled inference
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Fig. 4.15 Different noise types. a Additive white Gaussian noise; b interchannel correlated Gaus-
sian noise; c JPEG compression noise; d low-frequency noise

via variable splitting techniques, many image restoration problems can be addressed
by sequentially solving a series of Gaussian denoising subproblems, which further
broadens the application fields.

To improve the practicability of a CNNdenoiser, perhaps themost straightforward
way is to capture adequate amounts of real noisy-clean training pairs for training so
that the real degradation space can be covered. This solution has advantage that there
is no need to know the complex degradation process. However, deriving the corre-
sponding clean image of a noisy one is not a trivial task due to the need of careful
postprocessing steps, such as spatial alignment and illumination correction. Alter-
natively, one can simulate the real degradation process to synthesize noisy images
for a clean one. However, it is not easy to accurately model the complex degrada-
tion process. In particular, the noise model can be different across different cameras.
Nevertheless, it is practically preferable to roughly model a certain noise type for
training and then use the learned CNN model for type-specific denoising.

Besides the training data, the robust architecture and robust training also play vital
roles for the success of a CNN denoiser. For the robust architecture, designing a deep
multiscale CNN which involves a coarse-to-fine procedure is a promising direction.
Such a network is expected to inherit the merits of multiscale [23]: (i) the noise level
decreases at larger scales; (ii) the ubiquitous low-frequency noise can be alleviated
by multiscale procedure; and (iii) downsampling the image before denoising can
effectively enlarge the receptive field. For the robust training, the effectiveness of
the denoiser trained with generative adversarial networks (GAN) for real image
denoising still remains uninvestigated. The main idea of GAN-based denoising is to
introduce an adversarial loss to improve the perceptual quality of denoised image.
A distinctive advantage of GAN is that it can do unsupervised learning, and thus
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is expected to be helpful in training denoising CNNs without ground-truth clean
images.
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