
Chapter 11
Three Approaches to Improve Denoising
Results that Do Not Involve Developing
New Denoising Methods

Gabriela Ghimpeteanu, Thomas Batard, Stacey Levine
and Marcelo Bertalmío

Abstract Image denoising has been a topic extensively investigated over the last
three decades and, as repeatedly shown in this book, denoising algorithms have
become incredibly good, so much so that many researchers have started questioning
the need to further pursue this line of research. In this chapter, we argue that there
is indeed room for improvement of denoising results, and we propose three differ-
ent avenues to explore, none of which requires the development of new denoising
methods. First, we describe how it can be better to denoise a transform of the noisy
image rather than denoise the noisy image directly. We mention several possible
transforms, and an open problem is to find a transform that is optimal for denois-
ing, according to a proper image quality metric. Next, we point out the importance
of having a proper noise model for JPEG pictures, so that a variance stabilization
transform can be developed that transforms noise in JPEG images into additive white
Gaussian noise, enabling existing denoising methods to be properly applied to the
JPEG case. Finally, we highlight the fact that while virtually all denoising methods
are optimized and validated in terms of the PSNR or SSIM measures, these metrics
are not well correlated with perceived image quality, and therefore, it could be best
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to optimize the parameter values of denoising methods according to subjective test-
ing. A remaining challenge is to develop perceptually based image quality metrics
that match observer preference.

11.1 Introduction

In this chapter we propose, in order to improve denoising results, to explore three
different avenues that do not require the development of new denoising methods.

First, we review recent works that improve the performance of denoising algo-
rithms by applying them to transforms of image data instead of applying themdirectly
to the noisy image. An open challenge is then to find a transform that is optimal for
the denoising problem, according to a proper image quality metric.

Second, we show how not only the performance but also the ranking of denoising
algorithms is different in the real noise scenario than when working under the com-
mon assumption that noise is additive white Gaussian (AWG) of known variance
which is fixed and independent from the image values. A second way to improve
denoising results would then be to develop a noisemodel for JPEG pictures and a cor-
responding variance stabilization transformation, so that existing denoising methods
that assume AWG noise can be properly applied to the JPEG case.

Finally, we note that although the PSNR and SSIM error measures are not cor-
related with perceived image quality, virtually all denoising methods are optimized
and validated in terms of these metrics. This suggests a third approach to improve
denoising results, that of developing a perceptually based image quality metric that
matches observer preference, or using subjective experiments to select the optimal
parameter values for denoising methods.

11.2 Denoise a Transform of an Image Instead of the Image
Itself

There are often benefits to processing a linear or nonlinear transform of an image
rather than processing the observed image data directly. In the context of image
denoising, this has traditionally taken the form of thresholding Fourier or wavelet
coefficients, which then has a denoising effect on the underlying image data. The line
of researchwe followhere is different in thatwe specificallyapply an imagedenoising
method to a transform of an image which in turn has a denoising effect on the original
image data. The latter differs from the former in several ways. First, the choice of
processing applied to the transform is different, the latter being one that is borrowed
from algorithms for denoising the image data directly while the former, such as
thresholding, is not. Second, the latter may require a specially designed mechanism
for reconstructing the denoised image, particularly for nonlinear transforms.
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The first instance we know of applying an image denoising technique to an image
transform is the work of Lysaker et al. [30] in which the authors propose using a
constrained total variation (TV) minimization problem to denoise the unit normal
vector field of a noisy image surface. The denoised image is then reconstructed using
a variational approach whose solution has a unit normal field that matches the results
of this constrained TV problem. Similar denoising strategies are presented in [41]
and [20] where the unit tangent field to an image surface is denoised, allowing for
a mathematically sound model. The approach in [30] is also directly related to the
Bregman iterative algorithm of Osher et al. [38].

A similar approach was proposed by Bertalmío and Levine [8]. Justified by the
fact that the curvature of the level lines of a gray-level image has a higher SNR along
likely edges than the image itself (in the context of AWG noise), they demonstrate
that reconstructing an image from its denoised level line curvature is consistently
more effective than denoising the image directly. This is confirmed by experiments
with four denoisingmethods: TV denoising performed through both gradient descent
[43] and the Bregman iterative algorithm [38], orientation matching using smoothed
unit tangents [20], nonlocal means (NLM) [11] and block-matching and 3D filtering
(BM3D) [14]. A variational method was successful for the reconstruction step.

Batard and Berthier [5] introduced a moving frame approach in the process of
describing a Fourier theory for n-channel images which takes into account the local
geometry of an image. Their orthonormal moving frame in R

n+2, defined over the
image domain, consists of two vector fields that are tangent to the image graph and n
components that are normal to the surface. Their ideawas to construct the components
of an image in this moving frame, compute the standard 2D Fourier transform of each
of the n+2 components, apply a different Gaussian kernel to each one, and finally
project back. By applying Euclidean heat diffusion to each component, the output is
a filtered image that retains its local geometry after the diffusion step.

Batard andBertalmío [6, 7] used thismoving frame approach for image denoising.
Instead of directly applying a denoisingmethod to an image, they proposed to apply it
to its components in themoving framedescribed above.The authors used the vectorial
extension of the total variation-based denoising method of Rudin et al. [43] proposed
by Blomgren and Chan [9], and the vectorial total variation (VTV) denoising method
of Bresson and Chan [10]. In both cases, this strategy produced better results in terms
of PSNR than denoising the image directly with these approaches.

In this section, we revisit the work of [16] and detail how to improve the result
of a denoising method by denoising the components of an image in a moving frame,
as in [5–7], instead of denoising the original noisy image directly. We note a theo-
retical analysis of why with this approach we can expect cleaner results with better
preserved details, regardless of denoising algorithm. We validate the consistency of
this approach by showing how the moving frame strategy brings an improvement
in terms of PSNR and SSIM for three different noise removal techniques: a local
variational method (VTV, [10]), a patch-based method (NLM [11]), and a method
combining patch based processingwith filtering in the spectral domain (BM3D [14]).
The approach in [16] has the advantage of simplicity in the reconstruction step which
is expressed as amatrix transform, in comparison to the similar curvature-based strat-
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egy in [8] or the vector fields smoothing techniques of [20, 30, 38, 41] which require
solving a second- or third-order PDE evolution equation for the reconstruction step.

11.2.1 Image Decomposition in a Moving Frame

We denote a gray-level image by I : Ω ⊂ R
2 −→ R, and the standard coordinate

system of R
2 by (x, y). Ix and Iy are the derivatives of I with respect to x and y,

respectively, and ∇I is the gradient of I . We construct an image decomposition
model for I comprised of two steps. First, construct an orthonormal moving frame
(Z1,Z2,N ) of (R3, ‖ ‖2) over Ω that takes into account the local geometry of I .
Next, calculate the components (J 1, J 2, J 3) of the R

3-valued function (0, 0, I) in
that moving frame.

We useμI (a scaled version of I, withμ ∈]0, 1], and its graph, given by the surface
S in R

3 parametrized by

ψ : (x, y) �−→ (x, y, μ I(x, y)). (11.1)

We construct an orthonormal moving frame (Z1,Z2,N ) by choosing Z1 to be the
vector field tangent to the surface S that points in the direction of the steepest slope
at each point of S, and Z2 to be the vector field tangent to S that points in the
direction of the lowest slope at each point of S. To complete the orthonormal frame,
the component N is the unit normal to the surface.

This can be realized by considering the gradient of μI , z1 = (μIx, μIy)T , and the
vector indicating the direction of the level lines ofμI , z2 = (−μIy, μIx)T . On smooth
regions of I where Ix(x, y) = Iy(x, y) = 0, we fix z1 = (1, 0)T and z2 = (0, 1)T . Then
Z1 and Z2 are defined as

Zi = dψ(zi)

‖dψ(zi)‖2 , i = 1, 2, (11.2)

where ψ maps vector fields from Ω to tangent vector fields of S, and dψ denotes its
differential. The unit normal N is given by the vectorial product between Z1 and Z2.

More explicitly, the coordinates of the vector fields Z1,Z2,N are given by the
first, second, and third columns of the matrix field

P =

⎛
⎜⎜⎜⎝

Ix√
|∇I |2(1+ μ2|∇I |2)

−Iy
|∇I |

−μIx√
1+μ2|∇I |2

Iy√
|∇I |2(1+ μ2|∇I |2)

Ix
|∇I |

−μIy√
1+μ2|∇I |2

μ|∇I |2√
|∇I |2(1+ μ2|∇I |2) 0 1√

1+μ2|∇I |2

⎞
⎟⎟⎟⎠ (11.3)

Figure11.1 shows the moving frames (z1, z2) and (Z1,Z2,N ) associated to a simple
image. On the left, the figure illustrates the moving frame (z1, z2) at the points p and
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Fig. 11.1 Moving frame encoding the local geometry of a gray-level image. Left: original gray-
level image and a moving frame (z1, z2) indicating the direction of the gradient and the level line
of the image at two points p and q of the image domain Ω . Right: the orthonormal moving frame
(Z1,Z2,N ) of (R3, ‖ ‖2) over Ω indicating the direction of the steepest and lowest slopes of the
surface S, for some smoothing parameter μ, at the points ψ(p) and ψ(q)

q of the domain Ω , and on the right, it shows the induced moving frame (Z1,Z2,N )

constructed on the surface S at the points ψ(p) and ψ(q).
If (e1, e2, e3) represents the orthonormal frame of (R3, ‖ ‖2), where e1 = (1, 0, 0),

e2 = (0, 1, 0), and e3 = (0, 0, 1), then the matrix P in (11.3) can be seen as the frame
change field from (e1, e2, e3) to (Z1,Z2,N ). More precisely, the components of the
R

3-valued function (0, 0, I) in the new frame are given by (J 1, J 2, J 3), where

(J 1, J 2, J 3)T = P−1(0, 0, I)T . (11.4)

From (11.3) and (11.4), we see that these components can be explicitly expressed as

J 1(I) = μI |∇I |√
1 + μ2|∇I |2 , J 2(I) = 0, and J 3(I) = I√

1 + μ2|∇I |2 . (11.5)

Figure11.2 illustrates the gray-level test image “castle” and its components J 1 and J 3

computed forμ = 0.05.The component J 1 contains edge and texture informationdue
to its inclusion of the normof the image gradient. The component J 3 better reproduces
the original image, from which the norm of the gradient has been diminished.

The multichannel case involves embedding an n-channel image into R
n+2, then

using similarlymotived choices forZ1 andZ2 with extra care taken in the construction
of the remaining normal vector fields. Details can be found in [16].

An important role is given to the parameterμ. It represents a smoothing parameter
for the moving frame associated to the image I . In the next sections, we analyze just
how crucial the value of this parameter is for image denoising.
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Fig. 11.2 From left to right: gray-level image “castle”, component J 1, and component J 3

11.2.2 Application to Image Denoising

We propose denoising the components of an image in the moving frame described
above instead of denoising the image directly. The effect on image denoising using
these two approaches can be compared by performing the following experiment:

1. Denoise I with some method and denote the output image Iden.
2. Compute the components of I in the moving frame. Apply the same denoising

method to the components to obtain the processed components. Then, apply
the inverse frame change matrix field to the processed components, obtaining a
reconstructed image denoted by IdenMF . In the grayscale case, this can be explicitly
expressed as

IdenMF = P13(I)J
1(I)den + P33(I)J

3(I)den. (11.6)

3. Compare Iden and IdenMF using PSNR, SSIM or any image quality metric.

The extension from single to multichannel denoising algorithms is not always
straightforward. Depending on the denoising method, there are several ways to do
this, given by the use of different color spaces and the manner in which to apply the
algorithm (channel-wise, only to selected channels, or vectorially). Details can be
found in [16].

It is interesting to note that the denoising approach introduced above can in fact
be used with any moving frame. Several choices were previously analyzed in [7],
showing a similar output quality is attained when Z1,Z2 are any randomly chosen,
but orthonormal, vector fields in the tangent planes of the surface parametrized by
(11.1) for gray-level images. However, when Z1,Z2 are not in the tangent space, the
results are of low quality.
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Table 11.1 Average values of the PSNR for the components J 1, J 3 and the image I over the Kodak
database for different noise levels and values of the parameter μ

Noise
level

Function μ = 1 μ = 0.1 μ = 0.01 μ =
0.005

μ =
0.001

μ =
0.0001

σ = 5 Component J 1 20.51 20.09 34.37 37.84 40.17 40.31

Component J 3 18.56 26.02 34.24 34.22 34.19 34.19

Image I 34.19 34.19 34.19 34.19 34.19 34.19

σ = 10 Component J 1 19.34 15.96 28.21 31.51 33.84 33.97

Component J 3 16.94 19.84 28.27 28.24 28.21 28.21

Image I 28.21 28.21 28.21 28.21 28.21 28.21

σ = 15 Component J 1 18.32 14.16 24.44 27.79 30.09 30.22

Component J 3 16.32 16.93 24.80 24.77 24.73 24.73

Image I 24.73 24.73 24.73 24.73 24.73 24.73

σ = 20 Component J 1 17.37 13.10 21.86 25.12 27.38 27.51

Component J 3 15.98 15.22 22.38 22.33 22.28 22.27

Image I 22.27 22.27 22.27 22.27 22.27 22.27

σ = 25 Component J 1 16.47 12.36 19.89 23.03 25.25 25.38

Component J 3 15.77 14.10 20.50 20.44 20.37 20.37

Image I 20.37 20.37 20.37 20.37 20.37 20.37

11.2.3 The Noise Level Is Higher on the Intensity Values
of a Gray-Level Image Than on Its Components
in a Well-Chosen Moving Frame

In this section, we study how for carefully selected μ values, the components J 1(I)
and J 3(I) of a gray-level image I in the moving frame (11.3), given by (11.4) and
(11.5), are less degraded by AWG image noise than the image itself.

Assume I = a + n is a gray-level image obtained by adding to the image a Gaus-
sian noise n of mean zero and standard deviation σ . Before delving into a more
formal analysis, we consider an experiment in which we calculate the PSNR values
of the components J 1(I) and J 3(I) of the images from the Kodak database [2], for
noise levels σ = 5, 10, 15, 20, 25 andμ = 1.0, 0.1, 0.01, 0.005, 0.001, 0.0001. The
results of this experiment are reported in Table11.1.

Notice that the PSNR values of the components are consistently larger than the
PSNR of the image for sufficiently small μ. Specifically, the components are gener-
ally “less noisy” when μ ∈ ]0, 0.005] for all noise levels considered. For σ = 5, 10,
the upper bound of 0.005 can be increased to 0.01.

While the values in Table11.1 were computed across the entire image, we can
more formally study this behavior by considering locations of likely image contours
and homogeneous regions separately.
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11.2.3.1 Edges

As in [8], we attain the following conclusion comparing the PSNR of a grayscale
image and its moving frame components along likely image contours.

Proposition 1 Using central differences for the approximation of ∇I and μ > 0, at
locations in the image domain where |∇a| 	 |∇n|, likely edges of I ,

PSNR(J 1(I)) ≥ PSNR(I) and PSNR(J 3(I)) > PSNR(I).

The proof, detailed in [16], uses the fact that the explicit representations for
the moving frame components J 1(I) and J 3(I) given in (11.5) make it possible to
approximate their noise as additive along likely contours, leading to the estimates

PSNR(J 1(I))=20 log10

(
255

127.5
√
2μ√

1 + 2μ2(127.5)2
×

√
1 + μ2|∇I |2
μ|∇I |σ

)
(11.7)

≥ 20 log10

(
255

σ

)
= PSNR(I) (11.8)

and

PSNR(J 3(I)) = 20 log10

(
255

√
1 + μ2|∇I |2

σ

)
(11.9)

> 20 log10

(
255

σ

)
= PSNR(I). (11.10)

To better understand the role of μ along likely contours of I , (11.9) indicates that
PSNR(J 3(I)) is a strictly increasing function of μ, tending to +∞ as μ −→ +∞,
and to PSNR(I) as μ −→ 0. On the other hand, (11.7) indicates that PSNR(J 1(I))
is a decreasing function of μ, tending to PSNR(I) as μ −→ +∞, and tending to

20log10
(
255×127.5

√
2

|∇I |σ
)
when μ → 0. Thus, we infer that along image contours, the

larger the value of μ, the better the estimation of the clean component J 3(a), while
the smaller the value of μ, the better the estimation of the clean component J 1(a).

Furthermore, since |∇I | ≈ |∇a| at contours, we obtain (see (11.3))

P31(I) ≈ P31(a) and P33(I) ≈ P33(a). (11.11)

Thus (11.6) and (11.11) imply that, along likely contours,

IdenMF = P13(I)J 1(I)den + P33(I)J 3(I)den
≈ P13(a)J 1(I)den + P33(a)J 3(I)den. (11.12)
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From Proposition 1, we deduce that J 1(I)den and J 3(I)den are better estimates of
J 1(a) and J 3(a) than Iden is of a at these locations. Therefore, from (11.12) and the
fact that

a = P13(a)J
1(a) + P33(a)J

3(a)

we conclude that at likely image contours, IdenMF is a better approximation of a than
Iden. Thus, the value for the parameter μ that gives a better reconstruction of image
contours in the clean image is strictly positive, since for μ = 0 we get IdenMF = Iden.

11.2.3.2 Homogeneous Regions

In this section, we consider the case of homogeneous or slowly varying regions,
where |∇a|  |∇n|. At these locations, we obtain

J 1(I) ≈ μI |∇n|√
1 + μ2|∇n|2 and J 3(I) ≈ I√

1 + μ2|∇n|2 . (11.13)

Note that for μ > 0, the range, and therefore the variations, of J 1(I) and J 3(I) is
diminished compared to those of I .

Moreover, if |∇a|  |∇n| then

IdenMF = P13(I)J
1(I)den + P33(I)J

3(I)den

≈ μ|∇n|√
1 + μ2|∇n|2J

1(I)den + 1√
1 + μ2|∇n|2 J

3(I)den.

Therefore, as |∇n| increases, J 1(I)den has a larger weight in the reconstruction. This
is advantageous, as the results fromTable11.1 suggest that for small values ofμ > 0,
across the entire image I , including edges, textures, and homogeneous regions, we
see a clear trend that

PSNR(J 1(I)) > PNSR(I) and PNSR(J 3(I)) ≈ PNSR(I). (11.14)

While a formal proof is not trivial, it is reasonable to infer that the proposed moving
frame approach should be successful for a carefully chosen μ value in homogeneous
areas aswell. Combining this argumentwith Proposition 1, one can expect that across
the entire image, IdenMF should be at least as good as, if not better than, Iden.

11.2.4 Experiments

We report results comparing μ = 0 and μ > 0 for three denoising methods, VTV,
NLM and BM3D. Although automating μ could be a challenge, we found that for
the nonlocal algorithms NLM and BM3D a fairly consistent value of μ = 0.001 gave
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Table 11.2 The gray-level case: variational approach

Approach\noise variance 5 10 15 20 25

PSNR of
Iden = ROF(I)

35.39 31.51 29.48 28.15 27.17

PSNR of
IdenMF = P13(I)ROF(J 1(I)) +
P33(I)ROF(J 3(I))

36.36 32.23 30.04 28.60 27.49

SSIM index of Iden = ROF(I) 93.76 87.07 81.91 77.63 74.12

SSIM index of
IdenMF = P13(I)ROF(J 1(I)) +
P33(I)ROF(J 3(I))

94.61 88.37 83.22 78.71 74.78

μ value used to compute IdenMF 0.008 0.005 0.005 0.004 0.004

the best results, independent of image content, noise level, and the measure chosen
for the denoising evaluation. This is not the case for the local method VTV, for which
the optimal μ value was highly related to the noise level. The results for VTV were
obtained with noise-dependent, optimal values of μ (found experimentally), while
those for NLM, BM3D all used μ = 0.001.

Tables11.2 and 11.3 summarize the average PSNR and SSIMvalues of comparing
the final image denoising results when the same denoising algorithm is applied to
an image directly to obtain Iden, Eq. (11.6) with μ = 0, as opposed to its moving
frame components to obtain IdenMF , Eq. (11.6) with μ > 0. The results are averaged
across the grayscale versions of all images in the Kodak database; analogous PSNR
and SSIM results for the Kodak database color images are reported in [16] with
similarly chosen values of μ. It is important to note that while the differences in
these image quality metrics diminish as the more powerful denoising techniques
are applied, e.g., BM3D, there is still a consistent increase across all noise levels,
and this level of increase reflects previously reported mean squared error optimality
bounds [28, 29]. Furthermore, while the differences in the image quality metrics may
be leveling off, the difference in the resulting image details when comparing these
approaches is notable, with more accurate details preserved in the result of denoising
the geometrically motivated moving frame components. Visual examples comparing
all three denoising algorithms, VTV, NLM and BM3D, can be found in Fig. 11.3.

11.2.5 Research Avenue to Explore

We have just seen that it often makes sense to denoise the transform of an image such
as itsmoving frame components, level line curvature, or unit normal vector field. Still,
it would be interesting to find a transform that is optimal for image denoising. The
optimality should be evaluated according to some criterion (not necessarily higher
PSNR), and the noise model should carefully reflect the image acquisition model
as well; the analysis in this section has assumed AWG noise for simplicity, but the
importance of using the correct noise model cannot be overstated, as we detail in the
following section.
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Table 11.3 The gray-level case: patch-based approaches (μ = 0.001)

Approach\noise variance 5 10 15 20 25

PSNR of
Iden = NLM (I)

37.41 33.38 31.05 30.04 28.91

PSNR of
IdenMF = P13(I)NLM (J 1(I)) +
P33(I)NLM (J 3(I))

37.52 33.59 31.57 30.12 29.00

SSIM index of Iden = NLM (I) 94.96 88.71 82.17 80.34 75.94

SSIM index of
IdenMF = P13(I)NLM (J 1(I)) +
P33(I)NLM (J 3(I))

95.11 89.54 85.37 81.03 76.95

PSNR of Iden = BM 3D(I) 38.23 34.34 32.26 30.89 29.88

PSNR of
IdenMF = P13(I)BM 3D(J 1(I)) +
P33(I)BM 3D(J 3(I))

38.25 34.38 32.31 30.93 29.92

SSIM index of
Iden = BM 3D(I)

95.71 91.38 87.52 84.19 81.32

SSIM index of
IdenMF = P13(I)BM 3D(J 1(I)) +
P33(I)BM 3D(J 3(I))

95.74 91.49 87.71 84.38 81.44

11.3 Have a Proper Noise Model

A key aspect that is overlooked when suggesting that denoising is an almost solved
problem is the following: most denoising methods in the literature are based on
modeling noise as being additive and independent from the image data. In fact,
validations and comparisons are normally performed by taking clean photographs as
ground truth, creating noisy versions with AWG noise of known variance (fixed and
independent from the image values), applying denoising algorithms to them, and
comparing each denoised result with the corresponding clean ground truth image
using an objective metric such as PSNR. Everything is dependent on this AWG
assumption: the design of the denoising algorithms, their ranking according to the
quality of the outputs, even the computation of the optimality bounds that suggest
that state-of-the-art algorithms are close to optimal.

It is well known that noise in regular output images, in JPEG format, is not AWG,
but despite this fact, the vast majority of the denoising literature implicitly assumes
that this difference should not have an impact on how we address the denoising
problem, nor on how results are validated or methods compared. A few exceptions
in the literature are, for instance:

• Nam et al. [37] propose a quite complex cross-channel noise model for JPEG
images, and a neural network to estimate the noise model parameters per camera
model and per ISO sensitivity value; this model can then be used to improve
denoising results.
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Fig. 11.3 Row 1: VTV result for image 13 [2] with σ = 15. Left: noisy image, I . Mid-
dle: results of denoising I directly, Iden = VTV (I), PSNR=27.00. Right: moving frame result
(11.6), IdenMF with J i(I)den = VTV (J i(I)), PSNR=27.56. Row 2: NLM results for image 15
[2] with σ = 20. Left: I . Middle: Iden = NLM (I), PSNR=29.29. Right: IdenMF with J i(I)den =
NLM (J i(I)), PSNR=29.70. Row 3: BM 3D result for image 24 [2] with σ = 20. Left: I . Middle:
Iden = BM 3D(I), PSNR=31.26. Right: IdenMF with J i(I)den = BM 3D(J i(I)), PSNR=31.40. The
PSNR is computed across the entire image, but the images included here are zoomed-in to better
visualize details. Full resolution results can be found in [16]

• The Noise Clinic of Lebrun et al. [25] adapts the nonlocal Bayes approach [26]
(that assumesAWGnoise) to signal-, scale-, and frequency-dependent noise,which
requires an estimate of the covariance matrix of the noise; the authors state that
inaccuracies in the estimate of this covariance matrix can introduce artifacts.

• Seybold et al. [44] show how the performance of denoising methods decays dras-
tically when using realistic noise models instead of AWG noise.

• Plötz and Roth [40] compared the BM3D denoisingmethod to several state-of-the-
art algorithms for AWG noise images. They concluded that when applied to real
noise (for both RAW images and camera outputs), BM3D outperforms (visually
and in terms of PSNR) several methods that under the AWG assumption were
supposed to perform better.

In this section, we will stress the importance of having a proper noise model
for the images one intends to denoise, extending the work presented in [17].
First, we introduce an image database consisting of clean and noisy photo pairs,
in formats corresponding to the sensor image (12-bit RAW) and the nonlinear and
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uncompressed camera output (8-bit PNG). Next, we use the database to show how
both the performance and the ranking of denoising methods are considerably differ-
ent in the realistic noise scenario as compared with the AWG noise case. Finally,
we show how a simple local denoising method, applied to the RAW input, can out-
perform nonlocal methods applied to the camera output. The local method can also
perform as well as low-complexity versions of the nonlocal algorithms applied to
the RAW image, but with a much lower computational cost, suggesting the possibil-
ity for local denoising to replace more elaborate denoising methods for in-camera
implementations.

11.3.1 An Image Database with Clean and Noisy Versions
of Photos in RAW and Nonlinear Camera Output
Versions

In order to evaluate and compare denoising methods, we created a test image set
containing clean and noisy image pairs with both RAWand nonlinear output versions
of each image. Using a Nikon D3100 camera, optimizing exposure, and setting ISO
to 100 so as tominimize noise, we capture the twenty “clean” reference RAW images
shown in Fig. 11.4. We add noise to each image and then both the clean original and
the noisy version are passed through the basic image processing pipeline of a digital
camera producing the nonlinear camera outputs. In this way, we have a noisy picture
and the corresponding clean reference, which allows us to evaluate denoising results
using objective image quality metrics like PSNR.

Recently, Plötz and Roth [40] also proposed a database of real noise photographs
and their corresponding ground truth. Each pair in their database has a reference
image and a ground truth which are generated from a series of images of the same
scene, with different ISO values and exposure times. The reference is chosen to be
the photograph taken with low ISO that shows almost no noise, and the ground truth

Fig. 11.4 Our image test set
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is generated by a post-processing step that corrects for differences in illumination
and minor displacements (of objects in the scene or camera shake) between several
exposures. Our database has a different approach than the one proposed in [40], in
that it includes an estimated RAW noise model so that new noisy images can be
generated, with arbitrary noise levels. It also allows the user to introduce new clean
images from which additional clean/noisy pairs (in both RAW and nonlinear output
versions) can be added to the database. This database is publicly available [1] so that
researchers can develop and test denoising algorithms for real-world scenarios.

The creation of our database involves the following components:

• Simulating the camera processing pipeline. This pipeline is necessary for process-
ing the image from its RAW format to the camera output (as camera makers do
not make public the specific steps each model performs).

• Creating a signal-dependent noise model estimated at the RAW level.
• Validating the results. A noisy RAW image should have the same appearance as
a clean RAW image to which noise has been added according to our estimated
model.

We detail each of these stages in the following subsections.

11.3.1.1 Simulate the Camera Processing Pipeline

The following is a concise enumeration of the basic steps of the image processing
pipeline, common to digital cameras.

1. Capture. A photo is saved in the RAW format as a 12-bit depth image, obtaining
the CFA (color filter array) RAW data with a Bayern mosaic pattern. An image
example is illustrated in Fig. 11.5a.

2. White balance. This process guarantees that the image has no color cast. For
neutral colors to keep the correct appearance, a scaling of all intensity values
from the RAW file is performed. Figure11.5b depicts the white balanced image
example.

3. Demosaicking. The camera sensors produce an image in which for each pixel we
only get one of the image channel intensity values (either red or green or blue);
demosaicking is an interpolation process that estimates the other two missing
values, as exemplified in Fig. 11.5c. For our image processing pipeline, we chose
the local demosaicking algorithm proposed by Malvar et al. [34], which is based
on bilinear interpolation and further refined by using the correlation among the
RGB channels, with Laplacian cross-channel corrections.

4. Color correction. This processmakes the conversion from the camera color space
to sRGB (standard RGB) color space, as illustrated in Fig. 11.5d.

5. Gamma correction. In this step, the (normalized) image values are raised to the
standard power of 1/2.2. An image example is shown in Fig. 11.5e. This step
assures an optimized encoding that models the nonlinear human perception of
luminance: more sensitive to details in darker areas.
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Fig. 11.5 Image example to illustrate the camera processing pipeline. From left to right: RAW
original image (a), result after applying white balance (b), demosaicking (c), color correction (d),
gamma correction (e), and quantizing (f)

6. Quantization. This final step (for our purposes) of the pipeline quantizes the
image from 12-bit depth to 8-bit depth, outputting an RGB image ready for
display, as in Fig. 11.5f.

11.3.1.2 The Noise Model

For constructing a realistic signal-dependent noise model, estimated on the RAW
image, we follow the line of experiments of [19, 44, 46]. We analyze a RAW Col-
orchecker photograph by segmenting and extracting all of its 24 homogeneous color
patches, and computing the noise variance in each color square and for each RAW
color channel. Tests on several RAW images of the Colorchecker, taken with differ-
ent camera settings, allow us to conclude, as in [44] and [46], that the variance as a
function of the mean can be fitted by an increasing linear function, indicating that
the noise is signal-dependent.

Our noise estimation setup, exemplified by the left side of Fig. 11.6, also includes
two objects associated to two extreme cases that the Colorchecker does not take into
account: a cardboard box with the interior in shadow and painted with black matte
paint, and an aluminum foil that receives direct light and creates specular highlights.
The noise variance is then computed from crops from the black box as well as the
area with specular highlights. All of the patches fromwhich we compute the variance
are marked in red in the left image in Fig. 11.6. Finally, we estimate a noise model
from the 26 mean and variance pairs. An example of the channel-wise variance plot
as a function of mean pixel value is shown in right side of Fig. 11.6.

To add noise to a clean RAW image, we add to each pixel in the clean RAW image
white Gaussian noise with the local variance given by the variance plot value corre-
sponding to the pixel’s intensity. Afterward, we apply the rest of the camera pipeline:
white balance, demosaicking, color correction, gamma correction and quantization
to 8-bit depth.
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Fig. 11.6 The Colorchecker setup: an image of our noise estimation setup captured with ISO 800,
with marked regions used for estimating the noise model (left). Plot (example for one set of fixed
camera parameters) of variance as function of the mean, for a RAW image scaled between 0 and
1 (right). Values extracted from a RAW Colorchecker image taken with ISO 3200. Dots show the
real values obtained for each color square and each channel, while the continuous lines show the
fitted linear functions

11.3.1.3 Validation of the Noise Model

The ISO speed (or ISO sensitivity) estimates the camera sensitivity to light: the
higher the value, the higher the sensitivity. The camera transforms the light captured
by the sensors into an electrical signal, and increasing the ISO means amplifying the
electrical signal before the signal conversion from analog to digital. For example,
when increasing the ISO value from 100 to 200, the original electrical signal is
doubled. Amplifying the electrical signal better preserves image details. However,
this comes with the cost of amplified noise: the higher the ISO speed, the higher
the noise level. This justifies our choice of noise levels: we associate one to each
possible ISO value. Table 11.4 shows the average standard deviation computed over
our test set on the output images for the ISO levels given by our camera. Notice that
the highest noise level associated to ISO 3200 produces a relatively small standard
deviation.

Figure11.7 illustrates a crop from an image example from our database, for which
the original image and noisy images were created with the realistic noise model in
Sect. 11.3.1.2 and then followed the camera processing pipeline in Sect. 11.3.1.1.

Figure11.8 contains a validation of our noise model, comparing several image
examples taken with ISO 3200, which produces the highest noise level.

Table 11.4 Average noise levels given by different ISO noise curves on our test set

ISO sensitivity 100 400 800 1600 3200

σ 2.57 3.4 4.24 5.82 8.39
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Fig. 11.7 Crops from a noisy image example from our test set. From left to right: a original image,
b–f synthesized noisy images obtained with the noise curve associated to: b ISO 100 (σ =2.42), c
ISO 400 (σ =3.17), d ISO 800 (σ =3.95), e ISO 1600 (σ =5.43), and f ISO 3200 (σ =7.98)

11.3.2 Ranking Denoising Algorithms: AWG Noise Versus
Realistic Noise Model

In this section, we present an experiment that shows how essential the noise model
is for evaluating denoising methods. For this, we compare three denoising methods
applied to camera output images created with two different noise models. We use the
patch-based NLM and BM3D denoising methods, implemented with their publicly
available IPOL code [12] and [27], and the local VTV-based denoising method.

This lattermethod, proposed byBlomgren andChan [9], is a vectorial extension of
the channel-wise TV-based denoising and consists of replacing the gradient operator
acting on each channel by the Jacobian operator acting on the whole image:

It+dt = It − dtJ ∗
(

J (I)√‖J (I)‖2 + ε

)
, I|t=0 = I0, (11.15)

whereJ andJ ∗ are, respectively, the Jacobian operator and its adjoint, and ε is a
small positive constant used to avoid division by 0. We stop the iterative procedure
after a fixed number of iterations.

The parameters of these algorithms are the standard deviation of the noise, in the
case of NLM and BM3D, and the number of iterations for the VTV-based denoising.
We experimentally optimize these parameters for each image and noise level of the
database, choosing the ones that maximize the PSNR values of the denoised results.
We compute the denoising results under the following two noise models:

1. Starting with a clean RAW image IcleanRAW , add Gaussian noise, with variance
given by the associated noise variance plot as detailed in Sect. 11.3.1.2, to obtain
a noisy image InoisyRAW . For IcleanRAW and InoisyRAW , apply white balance, demo-
saicking, color correction, gamma correction, and quantize to 8 bit to obtain the
camera outputs Iclean and Inoisy. Apply NLM, BM3D and VTV-based denoising
on Inoisy to obtain the denoised images INLM , IBM 3D and IVTV .
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Fig. 11.8 Comparing a real noise photograph (a) and synthesized noisy images obtained by adding:
b Gaussian noise with variance given by our realistic noise model to the RAW image, c Gaussian
noise of constant variance to the RAW image, and d Gaussian noise of constant variance to the
camera output

2. Starting with the clean camera output image Iclean, add white Gaussian noise
(AWG), with fixed variance described in the next paragraph, to obtain a noisy
image Iawgnoisy. Apply NLM, BM3D and VTV-based denoising methods on
Iawgnoisy to obtain the denoised images IawgNLM , IawgBM 3D, and IawgVTV .
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Fig. 11.9 Comparison of BM3D, NLM, and VTV applied to the camera output, under two noise
models. Average PSNR value plots of denoising applied to noisy images created with additive white
Gaussian noise (left) and our realistic noise model (right)

The reference clean image Iclean serves as a ground truth for both experiments. We
tested the denoising methods on our test set, and the PSNR results are shown in
Fig. 11.9. The left shows a plot of PSNR as a function of the average noise stan-
dard deviation computed in the 8-bit depth noisy images with AWG noise over the
database. The right shows PSNR as a function of ISO sensitivity for images degraded
using our realistic noise model. Comparable noise levels are used for both experi-
ments, as seen from the average standard deviation values shown in Table11.4.

Notice how the ranking of the denoising methods is different with realistic noise
than with AWG noise. This justifies the use of a realistic noise model for image
denoising. There is also a large drop in the PSNR value for each denoising method
from denoising the AWG noise images to realistic noise images, consistent with
what was reported by Seybold et al. [44]. The local denoising method applied to the
camera output gives worse results in terms of PSNR than the nonlocal patch-based
methods, for both noise models. Figure11.10 illustrates this behavior. Denoising an
AWG noise image with BM3D gives an excellent output, while for the same original
image but with realistic noise, BM3D produces blocking artifacts on the leaf in the
shadow.

11.3.3 Comparing Local Denoising on DRAW Versus
Nonlocal Denoising on Camera Output

In this section, we illustrate the power of processing the RAW data as opposed
to the camera output by showing how a local denoising method, applied to the
demosaicked RAW (DRAW) image, can outperform nonlocal methods applied to
the camera output.
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(a) AWG Noise (b) VTV

D3MB)d(MLN)c(
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Fig. 11.10 Comparison of VTV, NLM, and BM3D denoising methods under AWG on camera
output and a realistic noise model. Rows 1–2. a Crop from AWG noise image “image9” with
σ = 4.96. b VTV, PSNR=37.66. c NLM, PSNR=38.37. d BM3D, PSNR=38.92. Rows 3–4. a
Crop from realistic noise image “image9” with σ = 5.67 and ISO 800. b VTV, PSNR=35.39. c
NLM, PSNR=35.89. d BM3D, PSNR=35.72

11.3.3.1 Adapting a TV-based Denoising Method to the
Signal-Dependent Noise Model

TV-based denoising methods were proposed in the context of images corrupted
by signal-independent AWG noise. However, our database images suggest realis-
tic signal-dependent noise is a more accurate model.
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Two reasonable approaches are discussed in [33] for removing signal-dependent
noise. The first approach is to adapt an existing denoising method to treat specific
noise model properties. For example, Luisier et al. propose a methodology to adapt
transform-domain thresholding algorithms for the mixed Poisson–Gaussian noise
model [31]. The second approach is to create a variance stabilizing transformation
(VST) for the particular noise model. Applying the VST to an image removes signal-
dependency and the noise variance becomes constant over the entire image. Then
one can use a denoising algorithm created to eliminate Gaussian noise with constant
variance. After denoising, one needs to apply the inverse VST. The advantage of the
second technique is that denoising images corrupted by AWG noise is an extremely
popular topic that has produced many algorithms over the last decades.

Donoho [15] was the first to propose applying the Anscombe transform [4] as a
VST. As described above, a denoising algorithm created to eliminate AWG noise
with constant variance can then be applied, followed by the inverse VST. Mäkitalo
and Foi [32] also used the Anscombe transform to remove the signal-dependency, but
emphasized the importance of applying a suitable inverse. Following this approach,
we apply the Anscombe transform fAnscombe to the demosaicked noisy RAW image
InoisyDRAW :

fAnscombe(InoisyDRAW ) = 2

√
InoisyDRAW + 3

8
(11.16)

and denoise the image fAnscombe(InoisyDRAW )withVTV, instead of denoising InoisyDRAW ;
this intermediate result is denotedD. Then, we apply the closed-form approximation
of the exact unbiased inverse Anscombe transform proposed by Mäkitalo and Foi
[32] to D:

˜f −1
Anscombe (D) = 1

4
D2 + 1

4

√
3

2
D−1 − 11

8
D−2 + 5

8

√
3

2
D−3 − 1

8
.

We denote the resulting image by IdenDRAW and refer to this method combining VTV
with the Anscombe transform as AVTV. Figure11.11 illustrates an improvement
in the average PSNR value of image results obtained by applying the Anscombe
transform before denoising with the VTV-based procedure described by (11.15).

11.3.3.2 Refine the Denoising Output by Recovering Lost Details

Even the best denoising algorithms can benefit from the so-called “boosting” tech-
niques [42]. One boosting mechanism involves adding content from the residual
(difference between the noisy and denoised image) back to the denoised image. This
is justified by the fact that denoising is an imperfect process that eliminates not only
noise but small details as well. But while signal leftovers can be retained in the resid-
ual, the opposite is also true: noise is retained in the denoised image. An alternate



316 G. Ghimpeteanu et al.

Fig. 11.11 Evolution of our
TV-based local denoising
experiments, under the
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boosting mechanism aims to eliminate the noise retained in the denoised image, but
this produces oversmoothed images as a result.

The biggest challenge for any denoising method, especially for a local one, is to
make the distinction between noise and details. As a boosting technique, we propose
adding back selected useful information to the denoised image, determined by

IAVTVE = (1 − a)InoisyDRAW + aIdenDRAW , (11.17)

where the weight function a should ideally include information related to the local
image content. The essential part here is the criteria for differentiating between noise
and details we want to recover from the residual.

The functionaweconsider is an indicator of the local information in the luminance
channel of the denoised image. In smooth areas we want to keep the pixel intensity
values of the denoised image intact, so the value of a should be large; on the other
hand, along image contours we want to partially recover some of the details of
the original noisy image, so the value of a should be small (positive and close to 0).
Therefore, we propose estimating a using a local edge indicator, like the Charbonnier
diffusivity function [13]

fCharbonnier = 1√
1 + ‖∇L( ̂IdenDRAW )‖2

λ

, (11.18)

where L denotes the luminance component, and λ > 0 is a contrast parameter related
to edge localization. The image ̂IdenDRAW is obtained by finding the number of iter-
ations in the iterative scheme introduced in (11.15) that maximizes the PSNR index
computed after color correction, gamma correction, and the quantization step. We
give a higher weight to the denoised image than to the noisy one, by choosing:
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Fig. 11.12 Comparison of our local TV-based denoisingmethods applied to the demosaickedRAW,
under the proposed realistic noise model. a Crop from noisy image “image20” with σ = 4.84
and ISO 800. b TV, PSNR=37.14. c VTV, PSNR=37.38. d AVTV, PSNR=37.45. e AVTVE,
PSNR=37.73

a = 1 + fCharbonnier
2

. (11.19)

Experiments show that both the step of applying the Anscombe transform before
denoising and its inverse after, and the step of refinement described by (11.17), bring
an improvement (both in terms of PSNR and visually) compared to only denoising
with the iterative scheme introduced in (11.15), as seen in Figs. 11.11 and 11.12.
These experiments also illustrate that the vectorial VTV-based denoising approach
improves the channel-wise TV-based denoising strategy that was used in [17].

11.3.3.3 The Comparison

The experiment in this section is intended to mimic a realistic scenario. Nonlo-
cal patch-based denoising methods are too complex to be implemented in-camera
without essential simplifications.Therefore,we compareour local denoising approach
AVTVE applied to the demosaicked RAW noisy image, with two nonlocal patch-
based methods (NLM and BM3D) applied at the end of the noisy image processing
chain, following these steps:

1. We take a clean RAW image IcleanRAW and add Gaussian noise, with variance
given by the associated noise variance plot as detailed in Sect. 11.3.1.2, to obtain
a noisy image InoisyRAW .

2. For IcleanRAW and InoisyRAW , apply white balance, demosaicking, color correction,
gamma correction, and quantize to 8 bit to obtain the camera outputs Iclean and
Inoisy.
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3. Apply nonlocal patch-based denoising methods (NLM and BM3D) to Inoisy to
obtain the denoised image (INLM and IBM 3D), optimizing the denoising parameters
so as to maximize the PSNR. The reference clean image Iclean serves as a ground
truth.

4. Apply white balance and demosaicking to InoisyRAW to obtain InoisyDRAW . Then
denoise with our local method AVTVE, followed by color correction, gamma
correction, and quantization to 8 bit, to output our denoised image IAVTVE . The
denoising parameters, described in the following, are optimized so as tomaximize
the PSNR of IAVTVE .

5. Evaluate the images IBM 3D, INLM , and IAVTVE , visually and with respect to PSNR.

The plot of Fig. 11.13 shows the average PSNR values over our proposed image
dataset, for each noise level given by the considered ISO sensitivity and each denois-
ing strategy aforementioned.We can see that our denoisingmethodAVTVEproduces
better results in terms of PSNR than the BM3D and NLM denoising methods, for
almost all ISO levels. However, for the highest noise level associated to ISO 3200,
NLM is the best in terms of PSNR, while our method is second.

A visual comparison is illustrated in Fig. 11.14, where the images are denoised
with the optimal parameters described above. For a better comparison, the difference
between the clean and denoised images for each method is included in Rows 2, 4,
and 6. Ideally, the difference image should be completely black, as the difference is
given by lost details or artifacts introduced by the denoising method. The close-up
images in the first two rows demonstrate that for small noise levels, the denoising
methodsBM3D,NLMandAVTVEproduce comparable results. All three algorithms
preserve the apple in the example in the third and fourth rows, although the AVTVE
result has a cleaner appearance while the NLM and BM3D denoised images exhibit
small blocking artifacts. An image with the highest noise level was investigated in
the bottom two rows, where the BM3D output reveals strong blocking artifacts in the
homogeneous area, while the AVTVE and NLM results have a cleaner appearance.

Fig. 11.13 Comparison
between the local denoising
method AVTVE applied to
the demosaicked RAW to the
NLM and BM3D denoising
algorithms applied to the
camera output, under the
proposed realistic noise
model. Average PSNR
values computed over our
image test set
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(a) Noisy (b) BM3D (c) NLM (d) Our: AVTVE

Fig. 11.14 Comparison of the local denoisingmethod AVTVE applied to the demosaicked RAW to
the BM3D and NLM denoising methods applied to the camera output, under the proposed realistic
noise model. Row 1: crop from noisy image “image13” with σ = 4.11 and ISO 800, BM3D result
with PSNR=36.79, NLM result with PSNR=36.97, AVTVE result with PSNR=37.11. Row 2:
difference images for crops of Row 1, scaled for visualization with the scaling factor 7. Row 3: crop
from noisy image “image1” with σ = 4.55 and ISO 100, BM3D result with PSNR=36.35, NLM
result with PSNR=35.94, AVTVE result with PSNR=37.95. Row 4: difference images for crops of
Row 3, scaled for visualization with the scaling factor 7. Row 5: crop from noisy image “image7”
with σ = 9.14 and ISO 3200, BM3D result with PSNR=38.93, NLM result with PSNR=40.11,
AVTVE result with PSNR=39.70. Row 6: difference images for crops of Row 5, scaled for visu-
alization with the scaling factor 7

Table11.5 shows the average running time for the AVTVE, NLM , and BM 3D
methods for a 1000× 2000 color image from our test set, on a i7-4770 CPU with
3.4GHz and 8 cores. At a fraction of the running time of NLM and BM 3D, the
AVTVE method, although not optimized for speed, produces results that are com-
parable or better both visually and in terms of PSNR.
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Table 11.5 Average running time (s) for one 1000× 2000 color test image of AVTVE, BM 3D,
and NLM , for different noise levels given by different ISO settings

ISO sensitivity 100 400 800 1600 3200

AVTVE 1.5 2.0 2.5 3.5 5.0

BM3D 31 31 31 31 31

NLM 19 19 19 19 19

11.3.3.4 Compare Local with Low-Complexity Nonlocal Denoising
Applied at the Same Stage of the Image Processing Chain

As nonlocal methods have a high complexity and cannot be implemented in-camera
unless some simplifications are done, we consider a reduced-complexity version
of the BM3D method, obtained by tuning several parameters such that the method
reaches the lowest complexity while producing a reliable image output. We fix the
patch size to 8× 8 and search for similar patches in a small window of size 10× 10.
As we did for the local method, we optimize the default parameter for each image
and noise level of the test set, choosing the one that maximizes the PSNR value of
the denoised result.

As the BM3Dmethod is designed to treat Gaussian noise, we apply the Anscombe
transform introduced in (11.16) before denoising and its inverse after, like we did for
our denoising method. We denote this approach by ABM3D. We also consider the
refinement step described by (11.17), producing a result denoted ABM3DE. Both the
steps of applying the Anscombe transform and the refinement step produce image
results that have a higher PSNR value compared to the BM3D output, as seen in
the plot of Fig. 11.15. Table11.6 shows the average running time for the AVTVE,
ABM3D and ABM3DE methods for one 1000× 2000 color image from our test set,
on the same machine. For computing the running time of the BM3D algorithm, we
use the fast C++ implementation available online [27], while we point out again that
our current implementation of the AVTVE algorithm is not optimized for speed.

The plot in Fig. 11.15 shows the average PSNR value over our proposed image
dataset, for each noise level given by the considered ISO sensitivity and each denois-
ing strategy aforementioned. For almost all noise levels, ourmethod produces images
that are better than BM3D and ABM3D in terms of PSNR. For a higher running
time, ABM3DE gives the best PSNR value. Notice that for the highest noise level,
all methods produce denoised images with a very similar PSNR value.

11.3.4 Research Avenue to Explore

It is clear that many powerful algorithms exist for removingAWGnoise from images,
and they can be used also to handle RAW pictures after they have been processed
with a VST like the Anscombe transform. However, denoising is still a challenging
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Fig. 11.15 Comparison
between the local denoising
method AVTVE and the
low-complexity BM3D,
ABM3D, and ABM3DE
applied on the demosaicked
RAW, under the proposed
realistic noise model.
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Table 11.6 Average running time (s) for one 1000× 2000 color test image of AVTVE, ABM 3D,
and ABM 3DE, for different noise levels given by different ISO settings

ISO sensitivity 100 400 800 1600 3200

AVTVE 1.5 2.0 2.5 3.5 5.0

ABM3D 5.2 5.2 5.2 5.2 5.2

ABM3DE 10.4 10.4 10.4 10.4 10.4

task for regular camera output images, where the noise model is extremely complex.
There is a need to develop a noise model for JPEG images from which a VST for
JPEG noise can be derived, allowing then regular denoising methods that assume
AWGnoise to be applied to the JPEG case aswell. An alternativewould be to develop
a noise model for JPEG images whose parameters can be estimated from the image
itself, and develop new denoising methods adapted to this model.

11.4 Optimize Denoising Methods According to Perceived
Quality of Results

In film photography, noise is called “film grain” as it is due to the presence of
minuscule grains of silver. When subtle, people actually prefer its presence [3] as it
improves image appearance. This is a phenomenon due to visual perception: a small
amount of noise makes the image look sharper and appear to have higher resolution.

However, too much noise, or noise that is not uniform but highly localized, will
make the image unpleasant. This is the case of digital image noise, which is not uni-
form but image-dependent, appearing more pronounced in dark areas and shadows.

The noise level introduced by common consumer cameras is surprisingly small
compared to the level of AWG noise added to clean images in academic works
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in order to create synthetic noisy images, as is traditionally used in testing image
denoising algorithms. This fact can be concluded from Table 11.4 that includes the
average standard deviation computed over realistic noise images, for the ISO levels
given by our camera, as in our experiments described in Sect. 11.3.1.2. It can be seen
that even the highest noise level corresponding to ISO 3200 gives a small standard
deviation, on average. This fact is confirmed in [40], where the authors claim that
using noise standard deviations of at least σ = 10 for synthetic AWG noisy images
is “mostly a historical artefact”.

Photographers often add a small amount of noise to studio images taken at low
ISO, due to the fact that a photo that is “too perfect” can be perceived as fake [3].
To emulate grain noise, several layers of Gaussian noise with different variance are
added. Photographers always add the noise after the sharpening step and the added
noise is achromatic. While the luminance noise in a digital sensor has some sort of
similarity to grain, the chroma noise (given by variations in colors) is not something
we like to see in a photograph.

In [23] researchersworkedwith a professional photographer to learn specificways
in which a digital image can be aesthetically improved by adding noise: masking
actual noise and banding artifacts in the original, improving the appearance of blown
highlights, increasing the perceived resolution. The photographer introduced several
different noise layers for each image example resulting in a higher noise level in
midtones and a lower one in shadows and highlights, with almost no noise toward 0
and 255. Regarding the noise distribution, while for midtones a Gaussian distribution
is a good choice, for highlights the histograms are skewed and the best candidate is
the chi-squared distribution characterized by an asymmetrical shape.

Johnson and Fairchild [21] examined some of the ingredients that influence image
sharpness perception. The highest image score was achieved by the highest resolu-
tion image to which noise with σ =10 was added, and processed with both contrast
enhancement and increased sharpness. Regarding the noise factor, the conclusionwas
that additive uniform noise applied independently in each color channel increases
the perceived sharpness only up to a point, after which it decreases. Interestingly,
adding noise can also mask a reduction in image resolution; images with 300 ppi
and 150 ppi were evaluated as having similar perceived sharpness when the lower
resolution photo had added noise and increased contrast. Kurihara et al. [24] con-
cluded that when noise is added to edges, sharpness decreases, while when added
to texture, it increases up to a point, decreasing afterward. Kayargadde and Martens
[22] investigated the connection between the noise level and blur, finding that adding
noise to a sharp image causes it to be perceived as more blurred, while adding noise
to a blurred one makes it appear a little less blurred.

None of these aspects of perceived image quality are considered when evaluating
denoising results using existing image quality metrics. The PSNRmeasure is known
to have problems in indicating the perceived image quality, and although SSIM
[47] is designed to take into account perceived errors, it is not well correlated to
human preference [39]. Even though their limitations are known, PSNR and SSIM
are still the most popular measures for image denoising. There are many more image
quality metrics, as, for example, the visual information fidelity (VIF) measure [45],
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the Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) [35], or the
naturalness image quality evaluator (NIQE) [36]. However, the vast majority of
metrics are based on measuring differences between the denoised result and the
clean ground truth, which does not necessarily correlate with the perceived image
quality of the denoised result, as we will demonstrate in the next subsections. This
section is extending the work described in [18].

11.4.1 Experiments

We compare three denoising methods: we introduce a local curvature smoothing
(CS) algorithm and compare it with the nonlocal patch-based methods NLM [11]
and BM3D [14].

For the CS algorithm, we start with the original noisy image I0 = I0, compute
channel-wise its regularized level line curvature κε2(I0) (which is just the usual level
line curvature computed with an added value ε2 in the denominator: as this value
increases, the curvature becomes smoother), and iterate the following equation N
times:

I n+1 = I n + Δt

[
∇− ·

(
∇+I n√‖∇+I n‖2 + ε1

)
− κε2(I0)

]
, (11.20)

where ∇+ and ∇− are the forward and backward spatial difference operator. Due to
the fact that the curvature can be estimated for each pixel with a 3 × 3 stencil around
it, the proposed method is local. We fix the parameters: ε1 = 10−6 (very small for
a good approximation of κ(I)), Δt = 0.002 and N = 30. The CS method has only
one parameter, the regularizing value ε2, and how it is chosen will be described later.

We perform this comparison on two image databases: images from the Kodak
database [2] with AWG noise and photographs taken by us with the noise model
proposed in Sect. 11.3.1.2. The evaluation is done using subjective testing as well as
the objective PSNR and SSIM metrics.

11.4.1.1 AWG Noise Case

The subjective evaluation involved 17 participants (all with normal or corrected to
normal vision). Subjects sat in a well-lit office environment at approximately 64cm
from the display and were presented with four versions of an image: the original
at the top, and the three denoising results (CS, NLM, and BM3D) in some random
order at the bottom. The observers were asked to look at the original image and then
indicate which of the three provided denoised images they preferred (Figs. 11.16 and
11.17).

Wepicked randomly three images from theKodak database (“kodim1”, “kodim3”,
and “kodim13”) and created three noise levels by adding Gaussian noise with
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Fig. 11.16 Test images: crops from Kodak images
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Fig. 11.17 From left to right: average PSNR and SSIM computed for three images from the Kodak
database, and results of psychophysical experiment for comparing our proposed local denoising
method to BM3D and NLM

Table 11.7 Optimized parameter value ε2 as a function of σ

σ 3 6 9

ε2 0.00032 0.003 0.00608

σ = 3, 6, 9. As commented above, although these σ values seem low, they are com-
mon noise levels in photography. The denoising algorithms NLM [12] and BM3D
[27] take as input the value of σ . We find the value of ε2 of our method with a
subjective methodology; we ask participants to adjust ε2 via key presses for finding
their preferred image result. We average over subjects and images to get one value
of ε2, as shown in Table11.7, for each noise level.

We compute the values of PSNR and SSIM for each denoisingmethod, as we have
the clean ground truth. We also conduct a user preference test (using the procedure
described above). We crop the images to be able to simultaneously show all of them
at the native resolution and avoid resizing. The results in Fig. 11.17 indicate that the
SSIM metric gives a reasonable approximation of the subjective scores, predicting
that the differences between the algorithms are small for a low noise level and that
for high noise levels, the local CS method gives a poor performance. However, both
PSNRandSSIMare poor at predicting the preferred algorithmon an image-by-image
basis, as Fig. 11.18 shows. To evaluate the metric performance we compute an upper
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Fig. 11.18 Visual comparison for one test crop from image “kodim3” and user preferences

bound by randomly dividing the subjective data into two subject groups (A and B).
We then compute a percentage correct score, for each image. The score is 100% if
the order is entirely correct, 33% for only getting the order of one correct or 0% for
a complete failure. The result is that, on average, group A is able to predict the data
from group B 64% of the time. However, both the SSIM and PSNR achieve a score
of less than 46%, with a baseline score of 33%.

11.4.1.2 Realistic Noise Case

We conduct a user preference test on realistic noise removal, with results given by
denoising with CS, NLM and BM3D, as well as no denoising at all. The subjective
evaluation involved 19 participants (all with normal or corrected to normal vision)
that sat in a well-lit office environment at approximately 64cm from the display. We
used the 20 images and three noise levels given by ISO 100, 400 and 1600 from
our proposed test set following the realistic noise model proposed in Sect. 11.3.1.2,
cropped to allow a simultaneous display of two images at their native resolution. At
the first stage, we find the values for σ (the parameter for NLM and BM3D) and
ε2 (parameter for CS) through user tests. Subjects are presented with a sequence
of 51 versions of the same image denoised with different values of the pertinent
parameter, fromaminimum(nodenoising) to amaximum(the image is fully denoised
but blurry), and the observer chooses the one he/she prefers. At the second stage,
subjects are asked to select their preferred image between two versions of it displayed
simultaneously, which can be either the original noisy or the result of the preferred
output of the denoisingmethods NLM, BM3D and CS obtained at the previous stage.
The results of the psychophysical experiment are shown in Fig. 11.19.

On the left-hand side of the figure, we plot the user preference averaged across all
images, for each noise level considered. People preferred NLM for all noise levels.
They slightly preferred CS over BM3D, for a small noise level, while the results
were comparable for a medium noise level. As the noise increased, for ISO 1600,
people preferred NLM even more compared to the BM3D and CS algorithms.

Regarding the comparison between the original noisy and the denoised images,
observers voted for applying a denoising method over not applying any method.
However, the original noisy image was preferred surprisingly often (around 20%),
especially when compared to the BM3D output. Averaging over all subjects, there is
no image for which no denoising was preferred over all denoising methods. There-
fore, choosing the noisy image penalized the denoised image, it was not a vote of
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Fig. 11.19 A two by two comparison between the three denoising algorithms and the original noisy
image

appreciation for the noisy image. There is only one image (Image18, cartoon-like) for
which the noisy original did not get any vote from any observer, for all noise levels
considered. This might indicate that we do not like noise in cartoon-like images.

At the first stage, observers could choose between the noisy original and 50
denoised images with increasing parameter values: only one observer chose the
noisy image in several cases. At the second stage, of comparing two by two each
of the denoising methods and no denoising, all subjects gave at least one vote to
one original noisy image. Therefore, when the noisy stimulus was shown next to the
denoised one, the preference for the noisy image increased.

For each denoising method, we computed the average of PSNR and SSIM for
all images that people chose as their preferred one. We compared these objective
metrics result to the subjective one, included in Fig. 11.19. For a small noise level,
in the case of the BM3D denoising method, people preferred images denoised with
parameters giving a surprisingly low PSNR value. The PSNR value also estimated
a large difference in quality between the outputs of CS and BM3D, while people
perceived it as small. While the PSNR and SSIM index ranked the NLM and CS
methods similarly, people preferred the former one. In the case of the second noise
level considered, the objective measures were better correlated to human preference.
However, the SSIM index estimated that the image quality of the BM3D output is
much higher than that of the CS algorithm, while subjects only perceived a small
difference between the twomethods. In the case of the highest noise level considered,
the objective measures and the subjective preference ranked differently the denoising
methods. While the BM3D method gave images with the highest PSNR and SSIM
values, people chose NLM results as their favorite. Both the PSNR and SSIMmetrics
estimated a large difference in quality between the outputs of BM3D and CS, while
people perceived it as small.

11.4.2 Research Avenue to Explore

We have seen examples that once more show how the use of popular metrics like
PSNR or SSIM is problematic in the evaluation of different denoising outputs, since
they are not well correlated with personal preference. Therefore, there is a need
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to create an image metric for image denoising that is based on human perception,
according to which noise removal algorithms can be optimized. Alternatively, until
such a metric is developed, it would improve results if denoising methods are tuned
and ranked via user tests based on perceived appearance.

11.5 Conclusion

In this chapter, we have pointed out several avenues to pursue in order to improve
denoising results that do not entail developing new denoising algorithms. First, we
described how it can be better to denoise a transform of the noisy image rather than
denoise the noisy image directly. We mention several possible transforms, and an
open problem is to find one that is optimal for denoising, according to a proper image
quality metric. Next, we pointed out the importance of having a proper noise model
for JPEG pictures, so that a VST can be developed that transforms noise in JPEG
images into AWG noise, enabling existing denoising methods to be properly applied
to the JPEG case. Finally, we highlighted the fact that while virtually all denoising
methods are optimized and validated in terms of the PSNR or SSIM measures, these
metrics are not well correlated with perceived image quality and therefore it could be
better to optimize the parameter values of denoising methods according to subjective
testing. A remaining challenge is to develop perceptually based image qualitymetrics
that match observer preference.
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