
Advances in Computer Vision and Pattern Recognition

Marcelo Bertalmío   Editor

Denoising of 
Photographic 
Images and 
Video
Fundamentals, Open Challenges and 
New Trends



Advances in Computer Vision and Pattern
Recognition

Founding editor

Sameer Singh, Rail Vision, Castle Donington, UK

Series editor

Sing Bing Kang, Microsoft Research, Redmond, WA, USA

Advisory Board

Horst Bischof, Graz University of Technology, Austria
Richard Bowden, University of Surrey, Guildford, UK
Sven Dickinson, University of Toronto, ON, Canada
Jiaya Jia, The Chinese University of Hong Kong, Hong Kong
Kyoung Mu Lee, Seoul National University, South Korea
Yoichi Sato, The University of Tokyo, Japan
Bernt Schiele, Max Planck Institute for Computer Science, Saarbrücken, Germany
Stan Sclaroff, Boston University, MA, USA



More information about this series at http://www.springer.com/series/4205

http://www.springer.com/series/4205


Marcelo Bertalmío
Editor

Denoising of Photographic
Images and Video
Fundamentals, Open Challenges and New
Trends

123



Editor
Marcelo Bertalmío
Pompeu Fabra University
Barcelona, Spain

ISSN 2191-6586 ISSN 2191-6594 (electronic)
Advances in Computer Vision and Pattern Recognition
ISBN 978-3-319-96028-9 ISBN 978-3-319-96029-6 (eBook)
https://doi.org/10.1007/978-3-319-96029-6

Library of Congress Control Number: 2018948593

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-1023-8325




A Serrana, Graciela, Lucas y Vera



Preface

Noise is always present in images, regardless of the way they have been acquired.
This is why noise removal or denoising is a key image processing problem,
especially with respect to photo and video cameras, where the push toward
ever-increasing resolution, dynamic range, and frame rate implies ever higher
demands on denoising performance.

Denoising has a long and rich history, with early works dating back to the 1960s.
Classic denoising techniques were mostly based in one of these two approaches:
modification of transform coefficients (using the Fourier transform, the DCT, some
form of wavelet, etc.) or averaging image values (in a neighborhood, along con-
tours, with similar but possibly distant pixels, etc.). Both types of approaches
yielded results that were modest, in terms of objective error metrics and also in
terms of visual quality, with frequent problems such as oversmoothing, staircase
effects, or ringing artifacts.

In 2005, the groundbreaking nonlocal means method proposed comparing image
neighborhoods (patches) in order to denoise single pixels. This approach produced
results that were shockingly superior to the state of the art at the time, so much so
that from then on virtually all image denoising algorithms have been patch-based.
Actually, the increase in quality of the denoising algorithms in the past few years
has been so dramatic that several recent works have questioned whether or not there
is still room for improvement in denoising, with some researchers considering the
problem pretty much solved and no longer relevant.

One of the goals of this book is to show that, in fact, that is not the case: in
denoising there are some fundamental challenges that remain unsolved and that
include how to properly model noise in real scenarios, how to tailor denoising
algorithms to these models, and how to evaluate the results in a way that is con-
sistent with perceived image quality.

Another goal was to have a book dealing exclusively with noise removal for
photographs and video. Despite the commercial significance of the image and video
industry and the fact that many academic works on denoising are evaluated on
regular photos and videos, this would be, surprisingly, the first book centered on
this specific topic.
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This volume provides a comprehensive look on the subject, from problem for-
mulation to the evaluation of denoising methods, from historical perspectives to
state-of-the-art algorithms, and from fast real-time techniques that can be imple-
mented in camera to powerful and computationally intensive methods for off-line
processing. All topics are explained in detail yet in a clear and concise manner. The
intended audience comprises researchers and advanced undergraduate and graduate
students in computer science, applied mathematics, and related fields, as well as
professionals from the media industries.

Finally, I would like to point out that it’s been a great pleasure to edit this
volume and have contributions from so many outstanding researchers, sharing their
insights on this fascinating problem.

And now, paraphrasing the British rock band Slade: come on feel the noise!

Barcelona, Spain Marcelo Bertalmío
May 2018
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“The relentless quest for higher image resolution, greater ISO sensitivity, faster
frame rates and smaller imaging sensors in digital imaging and videography has
demanded unprecedented innovation and improvement in noise reduction tech-
nologies. This book provides a comprehensive treatment of all aspects of image
noise including noise modelling, state of the art noise reduction technologies and
visual perception and quantitative evaluation of noise.”

—Geoff Woolfe, Former President of the Society for Imaging Science and
Technology

“This book on denoising of photographic images and video is the most
comprehensive and up-to-date account of this deep and classic problem of image
processing. The progress on its solution is being spectacular. This volume therefore
is a must read for all engineers and researchers concerned with image and video
quality.”

—Jean-Michel Morel, Professor at Ecole Normale Supérieure de Cachan,
France

xi



Contents

1 Modeling and Estimation of Signal-Dependent and Correlated
Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Lucio Azzari, Lucas Rodrigues Borges and Alessandro Foi

2 Sparsity-Based Denoising of Photographic Images:
From Model-Based to Data-Driven . . . . . . . . . . . . . . . . . . . . . . . . . 37
Xin Li, Weisheng Dong and Guangming Shi

3 Image Denoising—Old and New . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Michael Moeller and Daniel Cremers

4 Convolutional Neural Networks for Image Denoising
and Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Wangmeng Zuo, Kai Zhang and Lei Zhang

5 Gaussian Priors for Image Denoising . . . . . . . . . . . . . . . . . . . . . . . 125
Julie Delon and Antoine Houdard

6 Internal Versus External Denoising—Benefits and Bounds . . . . . . . 151
Maria Zontak and Michal Irani

7 Patch-Based Methods for Video Denoising . . . . . . . . . . . . . . . . . . . 175
A. Buades and J. L. Lisani

8 Image and Video Noise: An Industry Perspective . . . . . . . . . . . . . . 207
Stuart Perry

9 Noise Characteristics and Noise Perception . . . . . . . . . . . . . . . . . . . 235
Tamara Seybold

xiii



10 Pull-Push Non-local Means with Guided and Burst Filtering
Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
John R. Isidoro and Peyman Milanfar

11 Three Approaches to Improve Denoising Results that Do Not
Involve Developing New Denoising Methods . . . . . . . . . . . . . . . . . . 295
Gabriela Ghimpeteanu, Thomas Batard, Stacey Levine
and Marcelo Bertalmío

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

xiv Contents



Chapter 1
Modeling and Estimation
of Signal-Dependent and Correlated
Noise

Lucio Azzari, Lucas Rodrigues Borges and Alessandro Foi

Abstract The additive white Gaussian noise (AWGN) model is ubiquitous in signal
processing. This model is often justified by central-limit theorem (CLT) arguments.
However, whereas the CLT may support a Gaussian distribution for the random
errors, it does not provide any justification for the assumed additivity and whiteness.
As a matter of fact, data acquired in real applications can seldom be described with
good approximation by the AWGN model, especially because errors are typically
correlated and not additive. Failure to model accurately the noise leads to inaccurate
analysis, ineffective filtering, and distortion or even failure in the estimation. This
chapter provides an introduction to both signal-dependent and correlated noise and
to the relevant models and basic methods for the analysis and estimation of these
types of noise. Generic one-parameter families of distributions are used as the essen-
tial mathematical setting for the observed signals. The distribution families covered
as leading examples include Poisson, mixed Poisson–Gaussian, various forms of
signal-dependent Gaussian noise (including multiplicative families and approxima-
tions of the Poisson family), as well as doubly censored heteroskedastic Gaussian
distributions. We also consider various forms of noise correlation, encompassing
pixel and readout cross-talk, fixed-pattern noise, column/row noise, etc., as well as
related issues like photo-response and gain nonuniformity. The introduced models
and methods are applicable to several important imaging scenarios and technologies,
such as raw data from digital camera sensors, various types of radiation imaging rel-
evant to security and to biomedical imaging.
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2 L. Azzari et al.

1.1 Introduction: Acquisition Devices and Noise Sources

A digital image is generated by converting the light coming from a natural scene
to numerical pixel values. In particular, a typical camera performs this conversion
using a semiconducting array of sensing elements positioned after an aperture: when
the shutter opens, the light from the scene goes through the lenses and the aperture,
finally colliding with the sensor array. Each element in the array converts the energy
of the incident light beam to electric charges that are successively accumulated in
an electric potential. The electric potentials are then converted to digital values, and
finally stored collectively as a raw image, whose pixel values are ideally proportional
to the intensity of the light that shone onto the corresponding sensing elements.

The most common digital camera sensors are Charge Coupled Semiconductor
Devices (CCD) and Complementary Metal-Oxide Semiconductor (CMOS). While
CCDused to be themost common technology, nowadaysCMOSsensors dominate the
market, being the preferred capture technology for smartphones and digital cameras.
The main difference between the two is that, while in CCD arrays the charge of a
row of sensors is transported via the same circuit, sharing also the same amplifier,
CMOS arrays are based on the Active Pixel Sensor (ASP) technology, for which
every single sensor is treated independently, having a unique transport line [16].

To get a basic understanding of the nature of the noise in imaging sensors, let us
consider the acquisition of a still scene; although the average incident energy over
a relatively long period of time might be virtually constant, the amount of photons
incident on the camera sensors during the exposure fluctuates in time. Furthermore,
not all the incident photons are converted to electric charge. This whole phenomenon
is known as shot noise, and it is well modeled by the family of Poisson distributions
[23]. An important feature of this type of noise is that it is signal-dependent, in the
sense that the electric charge fluctuates in time with a variance that is proportional
to the photon flux. Thus, different parts of a captured scene are subject to different
noise strengths with the stronger noise affecting the brighter content.

Another relevant source of noise is the so-called thermal noise. Thermal noise
is generated by thermal agitation [17, 26] and is due to the fact that at any given
temperature (except absolute zero), conductors have a probability to emit charges
due to heat, even when there is no electric potential to stimulate them. This results
in a background current, present also in the absence of input signals (dark current)
[16], which alters themeasurements of the sensors. The inevitable fluctuations of this
current are thus modeled as noise. By definition, this type of noise is proportional to
the working temperature of the device, and it can therefore be reduced by decreasing
the temperature of sensor. In high-end devices for scientific applications (e.g., optical
astronomy), this is achieved bymeans of a thermoelectric cooler such as a Peltier heat
pump; however, in most consumer applications, sensor cooling is not feasible and
thermal noise, suitably modeled by a Gaussian distribution, becomes a significant
component of the measurement errors. Particularly when capturing scenes in low-
light conditions, thermal noise can dominate the overall noise.
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Furthermore, there is a possibility that the charges accumulated by neighboring
sensor elements coupled with each other introducing correlation between measured
quantities. In other words, the charge accumulated by a sensor element is influenced
not only by the number of incident photons, but also by the charges accumulated
by the surrounding sensor elements. Analogously, during the readout phase, when
the device reads and transports the charges from the sensor elements, there could be
some electrical coupling of the quantities. This introduces an error in the acquisition
process that is commonly referred to as cross-talk, and it is usually well modeled
by the adoption of correlated noise, in which the measurement error for a pixel is
influenced also by the surrounding errors.

Finally, the electric potential is often amplified (analog gain) before being con-
verted to a digital value by an analog-to-digital converter. This analog amplification
may introduce further noise and, because the digital values are discrete with a cer-
tain bit depth, we eventually encounter also quantization noise, which is sometimes
approximated by uniformly distributed errors over one quantization step, or as a
generic additive noise with comparable variance (i.e., one-twelfth of the quantiza-
tion step, as per basic properties of the uniform distribution).

1.2 Additive White Gaussian Noise

As highlighted above, a signal acquired by a digital device is affected by noise from
several sources. It is often difficult to separate and treat each noise source individually,
as this requires in-depth knowledge of the device and direct access to some of its inner
components; therefore, the various sources are conventionally grouped together and
addressed as a single noise process. This procedure is encouraged by the central-limit
theorem (CLT) [27, 31]: for a set of N independent random variables X1, . . . , XN ,
with respective means μ1, . . . , μN and standard deviations σ1, . . . , σN , as N → ∞
we have

1

s

N∑

i=1

(Xi − μi )
d−→ N (0, 1) with s =

√√√√
N∑

i=1

σ 2
i , (1.1)

where
d−→ denotes the convergence in distribution, andN (0, 1) indicates a Gaussian

(also called normal) random variable with mean and variance equal, respectively,
to the first and second arguments within parenthesis (in this case 0 and 1). In other
words, we can represent the sum of various random noise sources as a Gaussian
random variable, irrespective of the noise distribution of the individual sources. The
CLT establishes the importance of the Gaussian distribution in modeling complex
physical processes.

The Gaussian noise is further commonly assumed additive, zero-mean, indepen-
dent, and identically distributed (i.i.d.); under these extra assumptions, a captured
image z is modeled as
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z (x) = y (x) + η (x) , (1.2)

where y is the underlying deterministic noise-free image, x ∈ Ω ⊂ Z2 is the pixel
coordinate, and η (·) ∼ N

(
0, σ 2

)
is the zero-mean Gaussian random variable with

variance σ 2. Each coordinate x results in an independent (hence different) realization
of the random variable η (x), which collectively for all x ∈ Ω yields the additive
white Gaussian noise (AWGN) field corrupting y. The term white is inspired by
spectroscopy: like white light dispersed through a prism reveals components for
every frequency in the visible spectrum (from 400THz of red to 789THz of violet),
Fourier analysis of white noise reveals components for every frequency within the
Fourier spectrum. Specifically, when working on a 2D rectangular image domain
of N1 × N2 pixels, i.e., x = (x1, x2) ∈ Ω = [0, . . . , N1 − 1] × [0, . . . , N2 − 1], a
generic Fourier coefficient of η can be written as

F [η] (ξ1, ξ2) =
N2−1∑

x2=0

N1−1∑

x1=0

e
−2π i

(
ξ1

x1
N1

+ξ2
x2
N2

)

η(x1, x2) , (1.3)

whereF denotes the Fourier transform and ξ1, ξ2 are spatial frequencies. The noise
power spectrum (also called power spectral density, PSD) corresponds to the variance
of F [η], which can be computed as

var {F [η] (ξ1, ξ2)} =
N2−1∑

x2=0

N1−1∑

x1=0

var

{
e
−2π i

(
ξ1

x1
N1

+ξ2
x2
N2

)

η(x1, x2)

}
= (1.4)

=
N2−1∑

x2=0

N1−1∑

x1=0

∣∣∣∣e
−2π i

(
ξ1

x1
N1

+ξ2
x2
N2

)∣∣∣∣
2

var {η(x1, x2)} = (1.5)

=
N2−1∑

x2=0

N1−1∑

x1=0

var {η(x1, x2)} = (1.6)

=
N2−1∑

x2=0

N1−1∑

x1=0

σ 2 = N1N2 σ 2 , (1.7)

i.e., the power (variance) of the noise is constant in the Fourier domain and directly
proportional to the variance in the pixel domain.We can say that the Fourier spectrum
of white noise is flat. Equalities (1.4)–(1.7) leverage few basic properties: (1) η is
independently distributed; (2) multiplication of η by a deterministic function (i.e., the
complex exponential) does not affect the independence; hence (3) the Fourier coef-
ficientF [η] (ξ1, ξ2) (1.3) is simply a sum of independent random variables; (4) the
variance of the sum of independent random variables is the sum of their variances
(1.4); (5) multiplication of a random variable by a deterministic factor scales the
variance by the squared modulus of the factor (1.5); (6) complex exponentials are
always on the unit circle of the complex plane, i.e., they have unit modulus (1.6);
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and (7) η is identically distributed with constant variance σ 2 (1.7). We can see that
of the i.i.d. hypothesis, the independence alone is sufficient to reach (1.6) and that
having identical distributions (hence, identical variance σ 2 for every x ∈ Ω) is used
only for obtaining (1.7). Already (1.6) shows that the Fourier spectrum of the noise
is flat, since var {F [η] (ξ1, ξ2)} no longer depends on ξ1 or ξ2. Indeed, we can have
white noise with a flat Fourier power spectrum for models different from the AWGN
(1.2).

At this point, it is important to emphasize that although theoretically the CLT
justifies using a Gaussian distribution for modeling the measurement random errors,
it does not provide arguments supporting the additional assumptions of the AWGN
model, namely, that the errors are independent and identically distributed over the
image. Indeed, in (1.1),we canobserve that the termon the left-hand side is essentially
a standardization of the errors, which thus explicitly depends on the means μi and
variances σ 2

i of the individual contributors. In general, we have that each noisy pixel
z (x) results from its own sequence Xi (x), i = 1, . . . , N , where the means and the
variances of these contributors can be different at different pixels; in other words, the
errors may not be identically distributed and even when a Gaussian model (as per the
CLT) may be appropriate, then mean and (most often) the variance of such Gaussian
errors may change from pixel to pixel. Furthermore, contributors of different pixels
can be subject to a mutual interaction, possibly resulting in a statistical dependence
between the measurement errors at different pixels; in other words, the errors may
not be independently distributed over the image.

It is clear from these premises and from the summary in Sect. 1.1 that the AWGN
model is not suitable for modeling the above measurement errors, first because it
inherently uses a single distribution, and second because it assumes independent
errors.

In Sect. 1.4, we begin from generalizing the observation model to accommodate a
multiplicity of distributions. Specifically, we adopt the formalism of one-parameter
families of distributions, where the observation at each pixel follows a specific dis-
tribution that depends on a known or unknown univariate parameter. Further, in
Sect. 1.6.1, we address the issue of correlation in the errors.

1.3 Raw Image Dataset

Throughout this chapter, we use real sensor raw data to validate the presented models
andmethods. As leading example, we use a dataset consisting ofM = 30 raw images
of the same still scene acquired repeatedly in a short time interval (at a rate of about 1
frame/s) under identical capture settings. We identify the individual images in the set
as z̃(m), m = 1, . . . , 30, while z̃ denotes a generic such image; the reason for using
the tilde decoration here will become clear in the further sections. The images have
been captured by a Samsung S5K2L2 CMOS ISOCELL sensor with a 1.4 µm pixel
size at ISO 1250; this type of sensor can be found in modern mobile devices such
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Capture #5 Capture #10

Capture #15 Capture #20

Fig. 1.1 Examples from the dataset of 30 raw images captured under identical settings with a
Samsung S5K2L2 CMOS ISOCELL sensor at ISO 1250

as the Samsung Galaxy S8 smartphone. Raw images from this sensor are stored in
10-bit format, which we normalize to the range [0, 1] by dividing the raw integer
values by 210 − 1. Four images from the dataset are reported in Fig. 1.1: the scene
features a dark background with two bananas in the foreground. The presence of both
dark and bright regions makes the dataset suitable for validating the noise models
described in the following sections. Even though these sensors are typically used in
conjunction with a color filter array such as the RGGB Bayer filter mosaic, for the
sake of simplicity of presentation we consider only single-channel monochromatic
(green) acquisition.

In the top row of Fig. 1.2, we show two images of the dataset. By inspecting the
enlarged fragments, we can observe how the two images are practically equal except
for the individual noise realizations. Indeed, we can formally define the image noise
as the difference between the captured images and their mathematical expectation,
i.e., the average of infinitely many images like those captured in the dataset, where
the latter, denoted by ỹ, can be treated as the ideal noise-free image. Since the dataset
contains only finitely many images (M = 30), we can approximate the mathematical
expectation by the pixelwise sample average,

ỹ (x) = E {z̃ (x)} ≈ 1

M

M∑

m=1

z̃(m) (x) = ̂E {z̃ (x)} , (1.8)

resulting in the image in the left-hand side of Fig. 1.3. Note in the enlarged fragments
how the noise is virtually removed everywhere.
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Capture #15 Capture #30

Fig. 1.2 Two raw images of the same scene, captured under identical settings. A total of 30 images
like these were captured

Pixelwise sample mean Pixelwise sample standard deviation

Fig. 1.3 Pixelwise sample mean (left) and sample standard deviation (right) across all the captured
images of the dataset

The cross section shown in Fig. 1.4 introduces the reader to a main feature that
is shared by most of the noise types under consideration: noise affecting the bright
parts of the image is significantly stronger (i.e., larger errors) compared to the noise
affecting dark regions. This can be quantified as the standard deviation of the noise at
each pixel (again, computed over infinitely many such captured images), which we
can approximate by the pixelwise sample standard deviation over the finite dataset,

std {z̃ (x)} ≈
√√√√ 1

M − 1

M∑

m=1

(
z̃(m) (x) − 1

M

M∑

l=1

z̃(l) (x)

)2

= ̂std {z̃ (x)}, (1.9)
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0.2

0.4

0.6

0.8

1

Cross-section

Fig. 1.4 Left: detail from the dataset with highlighted cross section. Right: cross section (red line)

plotted against its expectation ̂E {z̃ (x)} (in blue). Note how the noise is signal-dependent, with
different variances at each pixel x depending on the value of the underlying expectation

which is shown in the image in the right-hand side of Fig. 1.3. To provide a visual
exploration of the relation between the expectation and the standard deviation of
the noisy raw pixels, Fig. 1.5 shows a scatterplot where each red dot represents a(

̂E {z̃ (x)}, ̂std {z̃ (x)}
)
pair for x ∈ Ω . The scatterplot can be interpreted as a cloud

of points about an unknown smooth curve that describes the noise standard deviation
as function of the signal expectation. However, this interpretation is admissible only
if the dispersion of the scatterpoints is compatible with the existence of such curve.
Indeed, leveraging the CLT and the first-order Taylor expansion of the square root

at var {z̃ (x)}, the distributions of ̂E {z̃ (x)} and ̂std {z̃ (x)} can be approximated for
large M as

̂E {z̃ (x)} ∼ N

(
E {z̃ (x)} ,

1

M
var {z̃ (x)}

)
, (1.10)

̂std {z̃ (x)} ∼ N

(
std {z̃ (x)} ,

2 + κ

4M
var {z̃ (x)}

)
, (1.11)

Fig. 1.5 Scatterplot of the

pairs
(

̂E {z̃ (x)}, ̂std {z̃ (x)}
)

drawn as red dots. The
dispersion visible in the
scatterplot is described by
the distributions
(1.10)–(1.11) of the
estimated pairs
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Fig. 1.6 Histograms of the pixels z̃ (x) from the dataset with pointwise sample mean ̂E {z̃ (x)} ≈
[0.025, 0.3, 0.7, 0.95]. Below each histogram, we report its variance σ 2 and excess kurtosis κ

where κ is the excess kurtosis of z̃ (x). Taking into account the sample histograms
plotted in Fig. 1.6, the distributions (1.10)–(1.11) fully explain the dispersion visible
in the scatterplot and suggest a functional relation between E {z̃ (x)} and std {z̃ (x)},
which may be obtained, e.g., by processing the scatterplot with a smoother. The
histograms also illustrate that z̃ is not identically distributed and that its distribution
varies from pixel to pixel according to the expectation.

Another important feature that can be ascertained from Figs. 1.2 and 1.3 is the
fact that the brightest areas of the image saturate to white. This phenomenon is
commonly referred to as clipping and results, in particular, in the drop of sample
standard deviation that can be observed in Figs. 1.3 and 1.5, and in the lack of
Gaussianity in some of the histograms in Fig. 1.6.

Overall, the above analysis indicates that the noise affecting the dataset images is
signal-dependent in the sense that its characteristics at each pixel x depend on the
value of the underlying noise-free image, i.e., on ỹ (x) = E {z̃ (x)}.

In the next section, we will derive, step-by-step, a simple yet effective mathemat-
ical model that accurately describes the behavior of the points of the scatterplot in
Fig. 1.5 that provides a direct functional relation between E {z̃ (x)} and std {z̃ (x)}
and that explains the shape and moments of the histograms as a function of E {z̃ (x)}.

1.4 One-Parameter Families of Distributions

Aone-parameter family of distributions {Dθ }θ∈Θ is a collection of distributions, each
of which is identified by the value of a univariate parameter θ ∈ Θ ⊆ R.

Let z be a random variable distributed according to a one-parameter family of
distributions {Dθ }θ∈Θ : this means that for each individual θ ∈Θ , the conditional
distribution of z given θ is Dθ , i.e., z|θ ∼ Dθ . Hence, the conditional expectation
and the conditional standard deviation of z given θ , i.e., E {z|θ} and std {z|θ}, are two
functions of θ .
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In the following sections, we cover some of the most important one-parameter
families of distributions for modeling noise of digital imaging sensors, describing
them in detail through the corresponding probability density functions (PDFs) or
probability mass functions (PMFs), and their mean and variances.

1.4.1 Poisson Noise and Poisson Family of Distributions

The simplest way tomodel an image captured by a photodetector array is to represent
it as a realization of independentPoisson randomvariables. In particular, the captured
image z is modeled as

z (x) ∼ P (y (x)) ,

pmf [z (x) = ζ | y (x)] =
{

y(x)ζ e−y(x)

ζ ! ζ ∈ N ∪ {0}
0 elsewhere,

(1.12)

where y ≥ 0 is the noise-free image, which can be thought as a proxy for the photon
flux, and the symbol P denotes the Poisson family of distributions. This is a one-
parameter family of distributions with parameter θ = y (x), which coincides with
the mean and variance of the conditional distributions:

E {z (x) | y (x)} = var {z (x) | y (x)} = y (x) . (1.13)

Figure 1.7 shows examples of distributions from the Poisson family.

Fig. 1.7 Illustration of the family of Poisson distributions (1.12). We show the distributions with
mean y (x) = θ = 1, 3, 10, 20, 50
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Poisson noise can be formally defined as z − y. It is clear from (1.13) that the
mean of Poisson noise is zero, i.e., E {z (x) − y (x) | y (x)} = 0, and its variance is
y, i.e., var {z (x) − y (x) | y (x)} = var {z (x) | y (x)} = y (x). From (1.13), we can
also observe an important property of Poisson noise: since the variance is equal to
the mean of the signal, there is a square root relation between mean and standard
deviation. This implies that the signal-to-noise ratio SNR

SNR = E {z (x) | y (x)}√
var {z (x) | y (x)} = y (x)√

y (x)
= √

y (x) (1.14)

increases when the intensity of the noise-free signal y increases and converges to zero
when y approaches zero. This means that Poisson images captured at lower inten-
sities, even though in absolute terms feature a lower variance, they are in practice
noisier relative to theirmean intensity, andwhen y < 1 they are effectively dominated
by noise. Such conditions correspond to what is commonly termed photon-limited
imaging, which is one of the most challenging imaging scenarios, requiring binning
or special denoising procedures (see, e.g.,[4]). Although infrequent in the context
of consumer imaging and photography, photon-limited imaging is an increasingly
important scenario in scientific imaging, particularly in astronomical imaging, fluo-
rescence microscopy, and low-dose radiation imaging for medicinal diagnostics.

1.4.2 Scaled Poisson Distribution Family

In many cases, it is convenient to use the so-called scaled Poisson distributions,
where a positive scaling parameter controls the noise variance relative to the signal
mean. Such scaling factor is commonly used to model the quantum efficiency of the
imaging sensor, i.e., the ratio between the (average) number of converted electrons
to the number of incident photons.

A scaled Poisson distribution with scale parameter a > 0 and mean y (x) ≥ 0 is
of the form

a−1z (x) ∼ P
(
a−1y (x)

)
, (1.15)

pmf [z (x) = ζ | y (x)] =
{

(y(x)/a)ζ/ae−y(x)/a

(ζ/a)! ζ ∈ {0, a, 2a, 3a, . . . }
0 elsewhere.

(1.16)

The resulting family of distributions can be parametrized by θ = y (x). The mean
and variance of the scaled Poisson distributions are

E {z (x) | y (x)} = y (x) ,

var {z (x) | y (x)} = ay (x) .
(1.17)
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Observe that the parameter a scales only the variance but does not affect the expec-
tation; hence, it controls the relative strength of the noise, and in particular we have

SNR = E {z (x) | y (x)}√
var {z (x) | y (x)} =

√
y (x)

a
. (1.18)

1.4.3 Poisson–Gaussian Noise

The Poisson–Gaussian noise model is given by the sum of two independent sources
of noise: Poisson or scaled Poisson, whose variance is signal-dependent (and pro-
portional to the signal mean) and Gaussian, whose variance is signal-independent.
Its formal model is

z (x) = ap (x) + n (x) , (1.19)

where

p (x) ∼ P
(
a−1y (x)

)
and n (x) ∼ N (0, b) , (1.20)

and the constants a > 0 and b ≥ 0 are, respectively, the scaling factor for the scaled
Poisson addend ap and the variance of the Gaussian addend n. We have

pdf [z (x) | y (x)] (ζ ) =
+∞∑

k=0

(y (x) /a)k e−y(x)/a

k! × 1√
2πb

e− (ζ−ka)2

2b , (1.21)

which also corresponds to a one-parameter family of distributions with parameter
θ = y (x). The conditional mean and variance of z are

E {z (x) | y (x)} = y (x)

var {z (x) | y (x)} = ay (x) + b.
(1.22)

The Poisson–Gaussian noise is formally defined as z (x) − y (x), and by (1.22) it
has zero-mean and affine variance on y.

The SNR is calculated as

SNR = E {z (x) | y (x)}√
var {z (x) | y (x)} = y (x)√

ay (x) + b
. (1.23)

1.4.4 Gaussian Approximation of the Poisson Distribution

For large mean values, the Poisson distribution is well approximated by a Gaussian
distributionwithmean andvariance equal to themeanof thePoisson randomvariable:
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P (μ) ≈ N (μ,μ) . (1.24)

Here, we derive an intuitive proof based on the CLT and on the fact that the Poisson
distributions are closed family with respect to summation of variables.

Let us consider two independent Poisson random variables X1 and X2, and their
sum Y = X1 + X2. Assuming that X1 and X2 have meansμX1 andμX2 , respectively,
the probability that the sum X1 + X2 takes a given value ζ ∈ N is the sum of the
probabilities that X1 takes value i ∈ N and 0 ≤ i ≤ ζ and X2 takes value ζ − i (thus
summing up to ζ ):

pmf [X1 + X2 = ζ ] =
ζ∑

i=0

pmf [X1 = i] pmf [X2 = ζ − i] =
ζ∑

i=0

μi
X1

e−μX1

i !
μ

ζ−i
X2

e−μX2

(ζ − i)!

= e−
(
μX2+μX2

) ζ∑

i=0

μi
X1

μ
ζ−i
X2

i ! (ζ − i)! = e−
(
μX1+μX2

) 1
ζ !

ζ∑

i=0

(
ζ

i

)
μi
X1

μ
ζ−i
X2

=
(
μX1 + μX2

)ζ e−
(
μX1+μX2

)

ζ ! ,

(1.25)
which shows that Y = X1 + X2 is a Poisson random variable withmean and variance
μX1 + μX2 , i.e., Y ∼ P

(
μX1 + μX2

)
. Hence, any Poisson random variable with

large enough mean can be expressed by a summation of many Poisson random
variables with smaller means. Therefore, according to the CLT, as the mean value
increases, the Poisson distribution converges in distribution to aGaussian distribution
with mean and variance equal to the mean of the Poisson random variable. Figure 1.8
shows in red three Poisson distributions with means μ = [0.5, 1, 5] overimposed to
three Gaussian distributions, blue lines, with means and variances equal toμ. We can
observe that already forμ = 5 theGaussian provides a relatively good approximation
of the Poisson distribution. This is further illustrated by the cumulative distribution

Fig. 1.8 Gaussian approximation of the Poisson distribution. From left to right we draw in red the
discrete Poisson distributionsP (μ), and in blue their Gaussian approximationsN (μ,μ) for three
different mean values μ = [0.5, 1, 5]. Note how the accuracy of the approximation improves as μ

increases
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Fig. 1.9 Cumulative distribution functions of the Poisson P (μ) and of the Gaussian N (μ,μ),
μ = 2, 10, 20, 40, showing convergence in distribution for large μ

functions shown in Fig. 1.9 for μ = 2, 10, 20, 40. Most imaging applications deal
with Poissonmodels well above such values and can thus leverage the approximation
(1.24).

With the above approximation in mind, in many applications, it is possible to
replace the family of Poisson distributions with a family of Gaussian distributions
with nonconstant variance that depends on the signal expectation. This approximation
in the modeling is appealing as it often results in simplification of analysis and
processing operations such as noise estimation and denoising.

1.4.5 Signal-Dependent Heteroskedastic Gaussian Models

As a consequence of (1.24), we can approximate the Poisson–Gaussian model (1.19)
by the sum of a deterministic signal y (x) and two zero-mean Gaussian random
variables, one with signal-independent variance b and one with signal-dependent
variance ay(x). Since the sum of two zero-mean Gaussian random variables is still a
zero-meanGaussian random variable with variance equal to the sum of the variances,
we have

z (x) = y (x) + σ (y (x)) ξ (x) , (1.26)

where ξ (x) ∼ N (0, 1) and

σ (y(x)) = √
ay(x) + b, (1.27)

σ : R → [0, 1) being a univariate function (so-called standard deviation function1)
that gives the signal-dependent standard deviation of the noise as a function of the
deterministic noise-free signal y (x). Hence, z(x) ∼ N

(
y(x), σ 2 (y(x))

)
, i.e.,

1Throughout the chapter, we use the expressions standard deviation function and standard deviation
curve interchangeably; similarly for the variance we consider the equivalent concepts of variance
function or variance curve.
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pdf [z (x) | y (x)] (ζ ) = 1
σ(y(x))

√
2π
e
−
(

ζ−y(x)
σ (y(x))

)2

, (1.28)

which constitutes a one-parameter family of distributions that depends only on the
location parameter θ = y (x) that consequently defines the standard deviation of the
noise. Trivially,

E {z (x | y (x))} = y (x) and std {z (x) | y (x)} = σ (y (x)) . (1.29)

It is evident that this model is extremely general and not limited to σ in the
affine-variance form (1.27), but can adopt arbitrary nonnegative standard deviation
functions. We call these noise models signal-dependent heteroskedastic Gaussian,
meaning that the variance of the Gaussian noise is not constant and depends directly
on the noise-free signal. When σ is fixed and constant, i.e., such as when a = 0 in
(1.27), (1.26) trivially reduces to the AWGN model (1.2), where the noise is signal-
independent and homoskedastic (constant variance).

Figure 1.10 illustrates three different families of distributions of the form (1.28):
homoskedastic Gaussian distribution with constant σ ≡ 5, i.e., N

(
μ, 52

)
; het-

eroskedasticGaussiandistributions approximating thePoisson family, i.e.,N (μ,μ),
where thevariance is equal to themean; and themultiplicative noisewithN

(
μ, cμ2

)
,

where the standard deviation is proportional to the mean.

Fig. 1.10 Homoskedastic Gaussian distributionsN
(
μ, 52

)
(drawn in blue); heteroskedastic Gaus-

sian distributions with affine variance (drawn in green) from the family of distributions N (μ,μ);
heteroskedastic multiplicative Gaussian distributions (drawn in red) from the family of distributions
N
(
μ, (0.5μ)2

)
. We show the distributions with means μ = [2, 10, 20, 30, 40]
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To clarify why the third case is multiplicative, we note that if σ (y(x)) = √
cy(x)

we can rewrite (1.26) as

z (x) = y (x) η (x) , η (x) ∼ N (1, c) . (1.30)

1.4.6 Doubly Censored Heteroskedastic Gaussian Noise:
A Model for Clipped Noisy Data

All acquisition devices have a finite dynamic range that may not represent the large
variation in luminosity in the scene. The device (typically at the analog-to-digital con-
version stage) replaces values of intensities that exceed the range with the boundary
values; in other words, the captured image can be modeled as

z̃ = max (0,min (1, z)) , (1.31)

where the range of the captured image z̃ is normalized to [0, 1] and where the image
before the min and max operations is denoted by z and is modeled as in (1.26).
This procedure is commonly known as clipping. In Fig. 1.11, we show an example
of clipped noisy signal: see how the values that exceed 0 and 1 are replaced by
these bounds. The assumption that the image range in normalized to [0, 1] is made,
without loss of generality, for the sake of mathematical simplicity. It is clear that the
noise statistics of a clipped image are not preserved by the clipping operator; in other
words, if for example the acquired image z is affected by Poisson–Gaussian noise, the
statistics of the noise affecting the clipped image z̃ are not the same. Thus, z̃ follows
a different one-parameter family of distribution and is subject to a different noise

0

0.5

1

Cross-section

Fig. 1.11 Example of a clipped noisy signal. Left: clipped detail from one of the images of the
sample dataset with highlighted cross section in red. Right: plot of the cross section. Note how the
signal is clipped about the boundaries [0, 1]
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model than z. In what follows, we use the tilde decoration to denote variables directly
related to clipped observations, following the main development and notation from
Foi et al. [13] and Foi [12].

The corresponding noise model for the clipped observations (1.31) is

z̃ (x) = ỹ (x) + σ̃ (ỹ (x)) ξ̃ (x) , (1.32)

where ỹ (x) = E {z̃ (x)}, σ̃ : ỹ → R+ gives the standard deviation of the clipped
noisy data as a function of their expectation, i.e., σ̃ (ỹ (x)) = std {z̃ (x)}, and
E
{
ξ̃ (x)

} = 0, std
{
ξ̃ (x)

} = 1. Because of clipping, in general, we have that

ỹ (x) = E {z̃ (x) | y (x)} �= E {z (x) | y (x)} = y (x) , (1.33)

σ̃ (ỹ (x)) = std {z̃ (x) | y (x)} �= std {z (x) | y (x)} = σ (y (x)) , (1.34)

and y �= ỹ ⊆ [0, 1]. Rewriting (1.32) as

z̃ (x) = y (x) + [
ỹ (x) − y (x) + σ̃ (ỹ (x)) ξ̃ (x)

]
,

we can see that, with respect to the underlying noise-free signal y, the clipped obser-
vations z̃ are corrupted by a random error (the term in square brackets) which has
nonzero mean. Observe also that, even though std

{
ξ̃ (x)

} = std {ξ (x)} = 1, the dis-
tributions of ξ and ξ̃ are different. In particular, assuming ξ (x)∼N (0, 1), we
have that ξ̃ (x) follows a doubly censored Gaussian distribution [9] supported on[ −ỹ

σ̃ (ỹ) ,
1−ỹ
σ̃ (ỹ)

]
.

Figure 1.13 shows an example of the curves (y, σ (y)) and (ỹ, σ̃ (ỹ)), for
σ (y) = √

0.01y + 0.042. We emphasize that each curve is drawn in the correspond-
ing expectation/standard deviation Cartesian plane (i.e., we plot the “non-clipped”
σ (y) against the y, σ axes and the “clipped” σ̃ (ỹ) against the ỹ, σ̃ axes). The figure
illustrates the correspondence between points on the two curves given byEqs. (1.31)–
(1.33). Note that the curves from Fig. 1.13 are extremely similar to the scatterplot in
Fig. 1.5, hinting that our dataset is effected by clipping.

1.4.6.1 Expectations and Standard Deviations of Clipped Variables and
Their Transformations

A crucial point when working with clipped noisy signals is to understand how the
variables and functions of the observation model (1.26) relate to those of the clipped
observations’ model (1.32). In particular, it is important to compute the functions
ỹ and σ̃ given σ and y, and vice versa. The PDF of the unobserved non-clipped

noisy data z ∼ N
(
y, σ 2 (y)

)
is simply 1

σ(y)φ
(

ζ−y
σ(y)

)
(1.28), whereas the clipped

z̃ = max {0,min {z, 1}} is distributed according to a doubly censored Gaussian dis-
tribution having a generalized PDF of the form
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Fig. 1.12 Examples of doubly censored Gaussian distributions drawn in blue, and underlying
uncensored Gaussian probability density function (PDF) drawn in red. Top row: the standard devi-
ation σ of the uncensored Gaussian PDF is fixed and equal to 0.04. Bottom row: the standard devi-
ation of the uncensored Gaussian PDF varies according to the function σ (y) = √

0.01y + 0.042,
as illustrated in Fig. 1.13. Compare with the empirical histograms in Fig. 1.6

pdf
[
z̃ = ζ | y] =Φ

( −y
σ(y)

)
δ0 (ζ ) + 1

σ(y)φ
(

ζ−y
σ(y)

)
χ[0,1]

+Φ
(

y−1
σ(y)

)
δ0 (1 − ζ ) ,

(1.35)

where χ[0,1] denotes the characteristic function of the interval [0, 1] and δ0 is the
Dirac delta impulse at 0. Here, φ and Φ are, respectively, the PDF and cumulative
distribution function (CDF) of the standard Gaussian N (0, 1). The first and last
addends in (1.35) correspond to the probabilities of clipping from below and from
above (under- or over-exposure), and are expressed as Dirac deltas with masses equal
to the areas of the underlyingGaussian distribution that fall outside the boundaries. In
Fig. 1.12, we give some examples of doubly censored Gaussian distributions (drawn
in blue) against their uncensored counterparts, i.e., Gaussian PDFs (drawn in red):
note how the impulses at the boundaries 0 and 1 have mass (shown as height) that
depend on the corresponding censored parts of the Gaussian PDF outside the allowed
intensity range. Thus, (1.35) defines a one-parameter family of distributions with
parameter y that also identifies the heteroskedastic Gaussian family of distributions
used to build the doubly censored family.

Tedious calculations provide the following exact expressions of the expectation
and variance of z̃ (see, e.g., [15], Chap. 20 or [18]):

E {z̃ | y} = ỹ =Φ
(

y
σ(y)

)
y − Φ

(
y−1
σ(y)

)
(y − 1) +

σ (y) φ
(

y
σ(y)

)
− σ (y) φ

(
y−1
σ(y)

)
,

(1.36)
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var {z̃ | y} = σ̃ 2 (ỹ) =Φ
(

y
σ(y)

) (
y2 − 2 ỹ y + σ 2 (y)

)+ ỹ2−
Φ
(

y−1
σ(y)

) (
y2 − 2 ỹ y + 2 ỹ + σ 2 (y) − 1

)+ σ (y)

φ
(

y−1
σ(y)

)
(2 ỹ − y − 1) − σ (y) φ

(
y

σ(y)

)
(2 ỹ − y) .

(1.37)

For a given function σ , these expressions explicitly define the two functions

Aσ (y) = ỹ , (1.38)

Bσ (y) = σ̃ (ỹ) . (1.39)

and a mapping
(y, σ (y)) �−→ (ỹ, σ̃ (ỹ)) (1.40)

that brings the standard deviation curve (y, σ (y)) to its clipped counterpart
(ỹ, σ̃ (ỹ)). In Fig. 1.13, we give an example of standard deviation function σ (y) =√
0.01y + 0.042 (solid line) and clipped standard deviation curve σ̃ (ỹ) (dashed line).

The gray segments are used to illustrate the mapping σ (y) �→ σ̃ (ỹ) (1.40).
The inverse of Aσ will be formally denoted as

Cσ : ỹ �−→ y = Cσ (ỹ) . (1.41)

Invertibility requires some hypotheses on the standard deviation function σ ; for
instance, it can be shown that (1.41) is well defined provided that σ (y) = √

ay + b
with a > 0 and − b

a ≤ 1
2 [12]. The functionBσ is instead not invertible for the most

common types of standard deviation functions, for which σ̃ (0) = σ̃ (1) = 0 [12].
Although the expressions (1.36) and (1.37) can be eventually useful for a numer-

ical implementation, they are cumbersome and cannot be easily manipulated for
further analysis.

Fig. 1.13 Standard deviation function σ (y) = √
0.01y + 0.042 (solid line) and the corresponding

standard deviation curve σ̃ (ỹ) (dashed line). The gray segments illustrate the mapping σ (y) �−→
σ̃ (ỹ). The small black triangles � indicate points (ỹ, σ̃ (ỹ)) which correspond to y = 0 and y = 1.
Distributions corresponding to these curves are shown in the bottom row of Fig. 1.12
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1.4.6.2 Approximation Using Singly Censored Variables

We can simplify the above analysis under the assumption that there are no values of
y for which the clipping from below (z < 0, z̃ = 0) and clipping from above (z > 1,
z̃ = 1) may both occur with significant probabilities. This assumption means that,
for a fixed y, at most one of the impulses in the PDF (1.35) has mass appreciably
larger than 0. In practice, this assumption is always verified under normal capture
settings. Exceptions are extreme situations where the noise is dramatically strong
with respect to the [0, 1] range (e.g., σ (y) � 0.2 for all y ∈ [0, 1], like in the case
illustrated in Fig. 1.12).

Let ν ∼ N (μ, 1) be a normally distributed randomvariablewithmeanE {ν} = μ

and unitary variance, and let ν̃ = max {0, ν}. Similar to (1.36) and (1.37), it can be
shown that the expectation E{ν̃} and the variance var {ν̃} of the clipped (from below)
ν̃ are

E {ν̃} = Em (μ) = Φ (μ)μ + φ (μ) , (1.42)

var {ν̃} = S 2
m (μ) = Φ (μ) + Em (μ)μ − E 2

m (μ) = (1.43)

= Φ (μ) + φ (μ) μ− φ2(μ)+
+ Φ (μ) μ (μ − Φ(μ) μ − 2φ (μ)) .

The plots of the expectation E {ν̃} = Em (μ) and of the standard deviation std {ν̃} =
Sm (μ) are shown, as functions of μ, in Fig. 1.14. Figure 1.15 combines these
two functions and visualizes the mean–standard deviation curve characteristic of
standardized clipped variables.

Exploiting these functions, the direct and inverse transformations which link σ

and y to ỹ and σ̃ can be expressed in the following compact forms [13].

Direct transformation: obtain ỹ and σ̃ from y and σ

Provided that y = E {z} and σ (y) = std {z} from the basic model (1.32) are known,
the expectation ỹ = E {z̃} and the standard deviation σ̃ (ỹ) = std {z̃} from the obser-
vation model (1.32) are obtained as

Fig. 1.14 Expectation E {ν̃} and standard deviation std {ν̃} of the clipped ν̃ = max {0, ν} as func-
tions Em and Sm of μ, where μ = E {ν} and ν ∼ N (μ, 1)
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Fig. 1.15 Standard deviation std {ν̃} of the clipped ν̃ = max {0, ν} as functionSe of the expectation
E {ν̃}. The numbers in italic indicate the corresponding value of μ, where μ = E {ν} and ν ∼
N (μ, 1)

ỹ = Aσ (y) ≈ A (y, σ (y)) =
= σ(y)Em

(
y

σ(y)

)
+ 1 − y − σ(y)Em

(
1−y
σ(y)

)
, (1.44)

σ̃ (ỹ) = Bσ (y) ≈ B (y, σ (y)) = σ(y)Sm

(
y

σ(y)

)
Sm

(
1−y
σ(y)

)
. (1.45)

Compared to the exact (1.38) and (1.39), the approximate equations (1.44) and (1.45)
provide a more intuitive description of the transformations that bring the standard
deviation curve (y, σ (y)) to its clipped counterpart (ỹ, σ̃ (ỹ)). For instance, pro-
vided y is sufficiently smaller than 1, by observing Fig. 1.14, it is easy to realize that

Em
(

1−y
σ(y)

)
andSm

(
1−y
σ(y)

)
can be substituted by 1−y

σ(y) and 1, respectively (the substi-

tution is asymptotically exact). Thus, for describing the clipping from below, (1.44)

and (1.45) can be reduced to, respectively, σ (y)Em
(

y
σ(y)

)
and σ (y)Sm

(
y

σ(y)

)
,

which allows to construct the graph of (ỹ, σ̃ (ỹ)) in the vicinity of (0, 0) by simple
manipulations of the graphs of Em and Sm .

Inverse transformation: obtain y from σ̃ and ỹ

The approximation of (1.41) for calculating the non-clipped y (1.26) from the clipped
ỹ and σ̃ (ỹ) can be given as

y = Cσ (ỹ) ≈ C (ỹ, σ̃ (ỹ)) =
= ỹEr

(
ỹ

σ̃ (ỹ)

)
− ỹ + 1 − (1 − ỹ)Er

(
1−ỹ
σ̃ (ỹ)

)
, (1.46)

where Er is defined implicitly as function of ρ = Em (μ)

Sm (μ)
= E{ν̃}

std{ν̃} by Er (ρ) = μ

Em (μ)
.
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1.5 Estimation of the Standard Deviation Curve

Themain purpose of noise estimation algorithms is to estimate the standard deviation
curve. The most common framework first builds a scatterplot with mean values of
the signal on the abscissa, and corresponding standard deviations (variances) on
the ordinate (see the scatterplot in Fig. 1.5); then, it fits a parametric curve over
these points. When only a single image is used for estimation, it is common practice
to compute each scatterpoint from homogeneous samples, i.e., each element in a
sample shares a unique common expectation value (hence, they also share a common
unique variance value). This practice is based on the fact that the sample variance
of homogeneous samples is an unbiased estimator of the noise variance for that
particular expectation value. Consequently, each point in the scatterplot has a direct
relation to a point on the curve we want to estimate.

Regardless of the estimation algorithm, it is convenient to model each mean–
standard deviation pair estimate

(
ŷi , σ̂i

)
with a bivariate PDF of the form

pdf
[(
ŷi , σ̂i

) |ỹi = ỹ
] = pdf

[
ŷi |ỹi = ỹ

]
pdf

[
σ̂i |ỹi = ỹ

]
, (1.47)

where the subscript i indicates the generic i-th estimated pair in the scatterplot.
Note that the joint probability is reduced to a product of univariate distributions
because one can assume that the estimates ŷi and σ̂i are independent [18]. Given
the distributions of all the pairs

{
ŷi , σ̂i

}N
i=1, the posterior likelihood function L can

be calculated as the product of all the densities pdf
[(
ŷi , σ̂i

) |ỹi = ỹ
]
with the prior

density pdf [y] of y:

L (θ) =
N∏

i=1

∫
pdf

[(
ŷi , σ̂i

) |ỹi = ỹ
]
pdf [y] dy, (1.48)

where θ is an m-dimensional vector composed by the model parameters to be esti-
mated. The likelihood function L expresses the joint probability function of the
whole collection

{
ŷi , σ̂i

}N
i=1. The vector θ determines univocally the standard devia-

tion curve σ (y), e.g., θ = [a, b] , m = 2 in case of the affinemean–variance relation
(1.27). The maximization of L leads to the estimation of the noise curve parame-
ters θ . Note that although clipped data is bound to the [0, 1] interval, assuming that
pdf [y] is a uniform density supported over [0, 1] is incorrect, since this prior prob-
ability refers to the signal before clipping and this signal can naturally exceed the
boundaries of the unit interval, e.g., an overexposed signal y is typically larger than
1. Therefore, one may assume either a noninformative prior for which all y ∈ R are
equiprobable or most commonly a nonnegative signal prior for which all y ≥ 0 are
equiprobable and y < 0 is impossible, which simplifies (1.48) to

L (θ) =
N∏

i=1

∫ ∞

0
pdf

[(
ŷi , σ̂i

) |ỹi = ỹ
]
dy . (1.49)
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The joint PDF can be, for example, a product of two univariate Gaussian PDFs (see,
e.g., [13]), a product of Gaussian-Cauchy mixtures [2], or other PDFs depending on
the data and on the method adopted.

Figure 1.16 shows an example of scatterplot fitting through maximization of
the likelihood function (1.49): the scatterpoints, drawn as red dots, are the pairs(

̂E {z̃ (x)}, ̂std {z̃ (x)}
)
estimated in (1.8) and (1.9) using our dataset (see the same

scatterplot in Fig. 1.5); the estimated lines are drawn in black and have been estimated
maximizing (1.49) using the PDFs introduced in (1.10)–(1.11), where the index i
takes the place of the index x . Note how the estimate of the clipped standard deviation
(dashed line) diverges from the non-clipped one (continuous line) when approaching
the boundaries [0, 1], which follows the divergence between the basic heteroskedastic
Gaussian distribution and the proper heteroskedastic singly censored Gaussian (e.g.,
as illustrated in Fig. 1.12).

Most algorithms in the literature for estimating the variance function σ 2 are
designed for an affine function of the signal mean, because it provides a reasonably
accurate description of the output (without clipping) of imaging sensors commonly
found in digital cameras. Nonetheless, some algorithms such as [2, 30], inherently
support models of arbitrary order (e.g., a variance function defined as a quadratic or
higher-order polynomial of the signal mean) and can be used in scenarios where a
higher-order of approximation of the noise variance function is needed, such as the
case considered in Sect. 1.7.

In the remainder of this section,we describe relevant approaches for the estimation
of the noise standard deviation curve (or equivalently the variance curve) under the
assumption of white noise. While the problem of estimating the correlation (power
spectral density) of colored noise is investigated in Sect. 1.6.3.2, the majority of the
methods below can be extended, with due modifications, to the more generic case
of the estimation of the standard deviation curve of signal-dependent colored noise.
Note that our overview is without any pretension of completeness, with the only
goal of briefly introducing the fundamentals behind the most popular approaches for
noise estimation.

Fig. 1.16 Scatterplot of the pairs
(

̂E {z̃ (x)}, ̂std {z̃ (x)}
)
drawn as red dots, and estimated clipped

(black dashed line) and non-clipped (black continuous line) noise standard deviation curves. The
small black triangles � indicate points (ỹ, σ̃ (ỹ)) which correspond to y = 0 and y = 1
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1.5.1 Patch-Based Methods

A prominent patch-based algorithm is introduced by Lee and Hoppel [20]. The
algorithm divides the image into small patches and computes their mean and variance
to build the scatterplot of mean–variance pairs. Since image blocks might contain
heterogeneous elements that would mislead the estimation of the local variances, the
authors estimate the noise parameters by finding the curve that intersects most of the
scatterpoints. In thisway, they reduce the effect of outliers that usually appear far from
the majority of the scatterpoints. In a similar work, Amer and Dubois [1] evaluate,
using directional derivative filters, the uniformity of each patch that generated a data
point. Comparing the uniformity against a threshold, the algorithmdecideswhether to
use the scatterpoint (if the patch elements are homogeneous) or to discard it. Finally,
since the outliers have been already excluded, a simple least square (LS) fitting is
adopted. In [30], the authors divide the image into nonoverlapping blocks; based on
the Kendall’s τ coefficients, adopted to find the correlation between elements from
the same block, the blocks are then classified as homogeneous or heterogeneous.
The heterogeneous blocks are discarded, while the homogeneous ones are used to
compute the local statistics for the fitting of the noise variance curve. An important
aspect of the algorithm is that a robust fitting is performed by minimizing the �1 error
of the residuals. Similar works can be found in [19, 24, 25]; however, we decide not
to go into further details.

An interesting variant has been proposed by Boulanger et al. [8]. They divide the
image into adaptive blocks whose size depends on the variance of their elements
(homogeneity). If the variance of a block matches the variance model (Fisher test is
used to compare the two), then the block is considered homogeneous, otherwise the
block is further split into four parts and each subblock is then analyzed as before.
Finally, the authors perform noise parameters estimation via robust linear regression
of the local estimates.

1.5.2 Segmentation-Based Methods

We now describe the most relevant segmentation-based approaches for noise estima-
tion. Gravel et al. [14] segment the observed noisy image into homogeneous samples
that are each used to compute a scatterpoint. The segmentation is performed by first
smoothing the observed image, and then by grouping pixels with similar intensity.
This leverages the fact that a smoothing operator suppresses the noise and facilitates
the segmentation process. Pixels from edges and texture are excluded from the esti-
mation, since the segmentation is inaccurate in those regions. The noise parameters
are finally estimated using a weighted regression of the scatterplot points.

Another type of segmentation is proposed in [21], where the authors do not filter
the image, but they bin the image elements using a K-means clustering method. A
robust fitting algorithm is then adopted to cope with possible inaccuracies of the
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Fig. 1.17 Noise standard deviation (black curve) σ (y) estimated from one image from the dataset.
We show also the estimate of the clipped standard deviation (dashed curve) σ̃

(
ŷ
)
and the scatterplot

used for the fitting. For the estimation, we used the algorithm [2], and the estimated parameters are
a = 4.315 × 10−3 and b = 5.814 × 10−5

K-means clustering: the noise parameters are estimated by fitting a lower envelope
of the scatterplot, computed by maximizing a likelihood function (see (1.49)) that
takes into consideration the possible overestimation of the scatterpoints variances.
Similarly, Foi et al. [13] filter the observed image, segment it, and then maximize
a likelihood function to estimate the noise parameters. A major novelty introduced
by this work is that it takes under consideration the clipping of the data. Figure 1.17
shows the estimation results of the algorithm [13] applied to an image of our dataset.
Note how, although the number of scatterpoints used for the likelihoodmaximization
is much smaller compared to the scatterpoints in Fig. 1.16, the estimated curves are
quite accurate. The algorithm deals with clipped data using the mappings (1.45),
(1.44), and (1.46), and estimates a parametric model of the noise affecting the non-
clipped signal from the clipped noisy observation, simultaneously providing the
standard deviation functions σ̃ for the clipped noise and σ for the underlying data
before clipping.

1.5.3 Alternative Approaches

In [3], it is shown that the use of homogeneous samples is not a requirement to
estimate the affine-variance model (1.27), and thus the noise parameters may be
estimated without any image segmentation and by leveraging instead robust filters.

The algorithm described in [22] estimates the noise by exploiting the variance sta-
bilization achieved by the generalized Anscombe transformation (GAT). The GAT
is a nonlinear univariate transformation that converts signal-dependent Poisson–
Gaussian noise into approximately additive and signal-independent noise with
unitary variance. The GAT is defined based on the same parameters a and b adopted
to describe the Poisson–Gaussian noise. This approach for noise estimation is based
on the observation that the variance stabilization is not accurate when the GAT
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parameters do not match the ones from the noise model. Hence, the noise parameters
are obtained by finding the GAT parameters that yield the most accurate variance
stabilization.

Finally, the algorithm in [28] estimates the noise parameters by analyzing the last
eigenvalues of the singular value decomposition (SVD) of homogeneous patches
from a noisy image. These eigenvalues capture noise and virtually no signal, and are
therefore used to estimate accurately the noise parameters.

1.6 Correlated Noise

So far we have described noise models characterized by a flat power spectral density,
i.e., various types of white noise. According to those models, the noise affecting
different pixels is uncorrelated. However, in many practical applications, there could
be correlation in the errors: this correlation might be due to the physics of the acqui-
sition system, to the sensor’s readout process, to cross-talk between neighboring
pixels, or due to processing performed on the raw image after the acquisition. These
types of acquisition errors can be modeled by the so-called colored noise models,
which assume a stationary spatial correlation among noise realizations, as illustrated
by the examples in Fig. 1.18, and that can be characterized by a nonconstant power
spectral density of the noise. In this section, we discuss models for correlated noise,
starting from the simpler case of signal-independent stationary colored noise and
then introducing two forms of signal-dependent colored noise.

White noise Red noise Blue noise Horizontal noise

Fig. 1.18 White noise versus three examples of colored noise
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1.6.1 Stationary Correlated Noise

The generic model for a noisy image z corrupted by a zero-mean stationary additive
correlated noise η is

z(x) = y(x) + η(x), η(x) = (ν � g) (x), (1.50)

where x ∈Ω ⊂Z2, y is a deterministic noise-free image, ν is zero-mean independent
noise with unit variance, and g is a convolution kernel that determines the variance
and the spatial correlation of the noise η. Specifically, the variance and the power
spectrum (PSD) (1.4) of η are

var{η(x)}=‖g‖22 , Ψ = var {F [η]} = |F [g]|2 |Ω| , (1.51)

and by Parseval’s isometry we have

var{η(x)} = |Ω|−1 ‖F [g]‖22 = |Ω|−2 ‖Ψ ‖1 . (1.52)

For the sake of simplicity, we assume a circulant convolution in order to leverage the
convolution theorem. Model (1.50) reduces to the AWGN model (1.2) when g is a
scaled Dirac impulse with mass σ and ν is Gaussian.

We say that the noise is colored when the noise power spectrum is markedly not
flat. Whenever there is a dominant spectral band characterized by a significantly
larger noise variance, the spectral position of this band determines the “color” of
the noise; thus, noise predominately affecting the low frequencies is often called
“red noise”, as opposed to a “blue noise” which is mostly localized on the high fre-
quencies. Figure 1.18 compares white noise with three examples of correlated noise.
Different types of spatial correlation can be appreciated, with the noise affecting a
pixel influenced by the surrounding noise realizations.

1.6.2 Correlated Signal-Dependent Noise model

Depending on the physics and hardware of the acquisition process, noise can feature
both correlation and signal-dependent characteristics. However, a PSD and a variance
function cannot be defined exactly within the same model, because their underlying
generative processes are incompatible with each other. The two models presented in
the next subsections show two extremes of a compromise: the first model ignores the
means of neighboring pixels and thus the variance is defined exactly at the expense
of the PSD model, which is only approximate; in the second model the PSD is
expressed exactly while the variance function is approximate. In intermediate cases,
neither the PSD nor the variance function may be defined exactly. Although formally
quite different, the model discrepancies are shown to be typically small in smooth
areas of the image, making these approximate models useful and constructive [5, 7].
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1.6.2.1 Noise Scaling Post Correlation

The first model assumes that the signal-dependent part of the noise acts as a deter-
ministic scaling term to a stationary correlated noise:

z(x) = y(x) + σ(y(x)) η(x),

η = ν � g, ν (·) ∼ N (0, 1) , σ : y → R+,
(1.53)

where σ is a generic standard deviation function. The expectation and variance of z
are, respectively,

E {z} =y, (1.54)

var {z} =var {σ(y) ν � g} = σ 2(y) var {ν � g} =
σ 2(y) ‖g‖22 = σ 2(E {z}) ‖g‖22 . (1.55)

With regard to the PSD, it can be approximated as

var {F [z]} ≈ |F [g]|2 ∥∥σ 2(y)
∥∥
1 . (1.56)

Roughly speaking, (1.53) describes a physical process where the correlating process
takes place before the signal-dependent amplification of errors.

1.6.2.2 Noise Scaling Prior to Correlation

The second model considers instead a case where the correlating process operates
on a ready signal-dependent white noise model:

z′(x) = y(x) + σ(y(x)) ν(x), (1.57)

z(x) = (
z′ � g

)
(x). (1.58)

The expected value and variance of z are, respectively,

E {z} ≈ E
{
z′} ‖g‖1 = y ‖g‖1 , (1.59)

var {z} ≈ var
{
z′} ‖g‖22 = σ 2(y(x)) ‖g‖22 , (1.60)

where the approximations become accurate in large smooth areas of the image where
the intensity changes gradually. Combining (1.59) and (1.60), we obtain

var {z} ≈ σ 2

(
E {z}
‖g‖1

)
‖g‖22 . (1.61)
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The PSD for (1.58) is

var {F [z]} = |F [g]|2 ∥∥σ 2(y)
∥∥
1 ≈ |F [g]|2

∥∥∥∥σ
2

(
E {z}
‖g‖1

)∥∥∥∥
1

. (1.62)

Thus, both Model 1 and Model 2 express the variance of z as a function of its
expectation, where the main differences consist merely in a scaling of the variables,
and this scaling is determined by the �1 and �2 norms of the convolution kernel g.
Therefore, macroscopically, the two models are comparable.

Before we proceed, let us observe that the degree of approximation in (1.59)–
(1.60) can be quantified by expanding the expression of z (x0) at the generic coordi-
nate x0:

z (x0) = [
z′ � g

]
(x0) =

∑

x∈Ω

z′ (x0 − x) g (x) . (1.63)

The expected value and variance of the generic pixel z (x0) can be thus calculated,
respectively, as

E {z}(x0) =
∑

x∈Ω

E
{
z′ (x0 − x)

}
g (x) =

∑

x∈Ω

y (x0 − x) g (x) =

∑

x∈Ω

+∞∑

k=0

∂k y (x0) xk

(−1)k k! g (x) =
+∞∑

k=0

∂k y (x0)

(−1)k k!
∑

x∈Ω

xkg (x) , (1.64)

var {z}(x0) =
∑

x∈Ω

var
{
z′ (x0 − x)

}
g (x) =

∑

x∈Ω

σ 2(x0 − x) g (x) =

∑

x∈Ω

+∞∑

k=0

∂k
(
σ 2 ◦ y

)
(x0) xk

(−1)k k! (g (x))2 =
+∞∑

k=0

∂k
(
σ 2 ◦ y

)
(x0)

(−1)k k!
∑

x∈Ω

xk (g (x))2 , (1.65)

where the final expressions of (1.64)–(1.65) come from the Maclaurin expansions
of y (x0 − x) and σ 2 (x0 − x) at the generic coordinate x0∈Ω , and ∂k

(
σ 2 ◦ y

)
(x)

is the kth derivative of the composite function σ 2(y (x)), and it can be computed, for
example, with the formula of Faà Di Bruno [11].

For approximation of order zero, i.e., when k = 0, (1.64)–(1.65) reduce to (1.59)–
(1.60). Thus, in regions where y is constant, the approximations are always valid.
If we assume g even symmetric, both

∑
x∈Ω xkg (x) and

∑
x∈Ω xk (g (x))2 vanish

when k is odd since xk is odd symmetric. Therefore, for even symmetric kernels g,
the approximations (1.59)–(1.60) differ from (1.64)–(1.65) only for approximation
terms of y (x0 − ·) and σ 2 (x0 − ·) of even order 2 or greater.
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In case of affine noise variance (1.22), i.e. σ 2(y(x)) = ay(x) + b, (1.65) becomes

var {z}(x0) = (ay(x0) + b)
∑

x∈Ω

(g (x))2 −

a (∂y)(x0)
∑

x∈Ω

xk (g (x))2 +

a
+∞∑

k=2

(
∂k y

)
(x0)

(−1)k k!
∑

x∈Ω

xk (g (x))2 . (1.66)

1.6.3 Estimation

1.6.3.1 Estimation of the Noise Standard Deviation Function

Themethods for estimating the standard deviation curvewhichwere briefly reviewed
in Sect. 1.5 are formally designed for independently distributed noise, i.e., white
noise. If these methods are applied to correlated noise, they may fail to estimate
correctly the curve. In this regard, we note that many of these methods (e.g., [3, 13,
14, 22, 28]) employ some kind of high-pass filtering to reduce the impact of the
signal y on the estimation of noise variance. Whereas white noise affects in equal
manner different frequency bands, correlated noise is distributed unevenly over the
frequency spectrum: without prior knowledge of the noise power spectrum, there is
uncertainty about the proportion of noise that is effectively maintained after high-
pass filtering, hence a potential risk of significant overestimation or underestimation
of the curve. To understand this phenomenon, let us consider the observation model
(1.53) and assume that scatterpoints are obtained from estimating the variance of
the output of filtering z by a high-pass kernel h. Restricting the estimation over a
sufficiently large region where y is homogeneous, we can treat σ(y) as a constant
and we have

var {z � h|y} = var {σ(y) η � h} = σ 2(y) var {ν � g � h} =
= σ 2(y) ‖g � h‖22 = σ 2(y) |Ω|−1 ‖F [g � h]‖22 =
= σ 2(y) |Ω|−1 ‖F [g]F [h]‖22 =
= σ 2(y) |Ω|−2

∥∥Ψ |F [h]|2∥∥1 . (1.67)

Thus, even when ‖h‖2 = 1, it may happen that var {z � h|y} �= var {z|y} =
σ 2(y) |Ω|−2 ‖Ψ ‖1, with various outcomes depending on howF [h] correlates with
the PSD Ψ . In particular,

var {z � h|y} = var {z|y} ∥∥Ψ |F [h]|2∥∥1‖Ψ ‖−1
1 . (1.68)
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This means that if all scatterpoints are estimated using a unique filter h, we can
estimate the noise variance function modulo a scaling factor that depends on the
PSD Ψ . As we show next, the fact that this scaling factor is unknown does not
prevent estimating the PSD Ψ , from which we can then resolve (1.68) and obtain an
estimate of the proper noise variance function.

1.6.3.2 PSD Estimation

The typical approach to estimating the noise PSD consists of processing the standard-
ized noise with a filter bank of band-pass filters, producing a collection of subband
images and by calculating the sample variance (or a robust estimate of the vari-
ance) of the noise in these subbands. Modulo a, possibly unknown, scaling factor λ,
standardized noise can be represented in the form

η̆ = λν � ğ , (1.69)

where ğ = g ‖g‖−1
2 , ν is zero-mean independent noise with unit variance, and hence

η̆ has zero-mean and variance λ2.
The signal-independent colored noise model (1.50) already has the form (1.69)

with η̆ = η and λ = ‖g‖2. Signal-dependent colored noise of the forms (1.53) can be
reduced to (1.69) in several ways, e.g., by standardization of the samples with respect
to the noise model fitted to the mean, or by variance stabilizing transformations [22,
29]. If the standardization is obtained via a noise variance function estimated modulo
a scaling factor as in (1.68), thenwe arrive at (1.69) with λ2 = ∥∥Ψ |F [h]|2∥∥−1

1
‖Ψ ‖1.

Let us consider a set of band-pass filters H ={h1, . . . , hJ }. The generic output
from the j th filter is

η̆ � h j = (λν � ğ) � h j , (1.70)

and its variance

var
{
η̆ � h j

} = λ2var
{
ν � ğ � h j

} = λ2var {ν} ∥∥ğ � h j

∥∥2
2 = λ2

∥∥ğ � h j

∥∥2
2 .

(1.71)
By Parseval’s isometry and (1.51), this variance takes the form

var
{
η̆ � h j

} = λ2 |Ω|−2
∥∥∥
∣∣F
[
h j
]∣∣2 Ψ̆

∥∥∥
1

, (1.72)

where |Ω| = N1N2 denotes the cardinality of Ω and Ψ̆ is a normalized PSD linked
to the normalization of the kernel ğ,

Ψ̆ = Ψ ‖g‖−1
2 = |Ω|2 Ψ ‖Ψ ‖−1

1 and
∥∥∥Ψ̆
∥∥∥
1

= |Ω|2 . (1.73)
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Hence,
∥∥∥λ2Ψ̆

∥∥∥
1

= λ2 |Ω|2, which shows that estimating λ2Ψ̆ trivially yields also

separate λ = |Ω|−1

√∥∥∥λ2Ψ̆

∥∥∥
1
and consequently Ψ̆ .

Therefore, the problem at hand amounts to estimating λ2Ψ̆ from var
{
η̆ � h j

}
,

j = 1, . . . , J . To this end, it is convenient to rewrite (1.72) in matrix notation as

V = FTP, (1.74)

where

V =
⎡

⎢⎣
var {z1}

...

var {z J }

⎤

⎥⎦ , P = λ2

⎡

⎢⎣
Ψ̆ (1)

...

Ψ̆ (|Ω|)

⎤

⎥⎦ (1.75)

F = 1

|Ω|2

⎡

⎢⎣
|F [h1] (1)|2 · · · |F [hJ ] (1)|2

...
. . .

...

|F [h1] (|Ω|)|2 · · · |F [hJ ] (|Ω|)|2

⎤

⎥⎦ . (1.76)

Typically, J < |Ω|, making the system (1.74) under-determined. The unconstrained
minimum-norm estimate of the PSD λ2Ψ̆ can be computed as

P̂ = F
(
FTF

)†
V, (1.77)

where † denotes the pseudoinverse. A typical constraint that must be enforced onto P̂
is its nonnegativity, since this is not automatically guaranteed by the pseudoinverse.
An iterative system such as the following one can be used to this end:

Rk = V − FT P̂k,

P̂k+1 =
∣∣∣∣P̂k + F

(
FTF

)†
Rk

∣∣∣∣ .
(1.78)

This system can be modified so to enforce further constraints or priors on P̂k+1,
such as its smoothness or sparsity with respect to some representation [10], or the
symmetries of the Fourier-domain PSDs.

As bank of filters, one can use the Fourier transform of a smaller size, block
transforms such as the discrete cosine transform, wavelets, etc. Figure 1.19 shows
two examples of the variances (1.71) with respect to the Fourier transform of size
35 × 35, one estimated for a Samsung S5K2L2 CMOS sensor from the dataset of
Sect. 1.3 and one for a FoveonX3 sensor at ISO 6400 of a SigmaDP1Merrill camera.
While the latter PSD shows a nonuniformity representing colored noise, the former
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Fig. 1.19 35 × 35 Fourier-domain PSD estimated for a Samsung S5K2L2 CMOS sensor from the
dataset of Sect. 1.3 (left) and for a Foveon X3 sensor (right). The former is practically flat (thus
representing white noise), whereas the latter shows a mild nonuniformity characteristic of either
row or column striping noise

Fig. 1.20 Estimates of the 255× 255 Fourier-domain PSDs computed through the iterative system
(1.78) from the 35 × 35 measurements shown in Fig. 1.19

is virtually flat (i.e., white noise), with random fluctuations merely due to finite
sample set. Larger size PSDs, estimated via the recursive method (1.78), are shown
in Fig. 1.20. Both in Fig. 1.19 and in Fig. 1.20, we indicate the power level of an ideal
flat spectrum of i.i.d. standard white noise (i.e., 352=1225 and 2552 = 65,025 for
a 35 × 35 and 255 × 255 Fourier transform, respectively, as can be computed from
(1.7) or (1.51)). The PSDs estimated from the Samsung sensor accurately match this
level, since they are approximately flat and were estimated from standardized errors
with λ = 1 (1.69); the match is very good also for the Foveon X3 PSDs, since the
nonuniformity is anyway quite mild and localized along one line.

1.7 Photo-Response Nonuniformity

When a pixel array is exposed to a uniform light source, every pixel element is
expected to yield the same underlying signal. However, physical imperfections of
the detector elements, such as slight discrepancies in the pixel size and substrate
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material, cause a deviation from the expected true signal output. This deviation is
defined as the photo-response nonuniformity (PRNU).

In some cases, the PRNU represents a relevant portion of the image degradation,
and thus the image degradation model presented in (1.26) is no longer adequate. The
variable y previously defined as the true signal becomes a random variable dependent
on the detector element. Let us define this new variable as u. Then,

z (x) = u (x) + σ (u (x)) ξ (x) ,

u (x) = N
(
y (x) , cy2 (x)

)
. (1.79)

Above we model the physical discrepancies of the detector elements as a Gaussian
distribution, with variance depending on the underlying signal y and on a scaling
factor c. Although (1.79) describes the nonuniformity as a random process, u is a
systematic error which is identically realized at every acquisition (i.e., at each frame),
as opposed to ξ which changes randomly at every pixel and at every new capture.

Note that the errors caused by the PRNU are multiplicative, following the same
model as described in (1.30). The univariate standard deviation function described
by (1.27) becomes

std {z | y} =
√
cy2 + ay + b, (1.80)

which is a consequence of treating z as a mixture variate and of σ 2 being affine. Here,
a, b, and c can be estimated using the methods detailed in Sects. 1.5.1 and 1.5.2 of
this chapter, but considering a second-order polynomial for the noise variance curve
estimation.

In general, the PRNU is more evident in images with low gain a or with large
exposure time, i.e., large y(x).

1.8 Conclusions

All acquisition systems are affected to some degree by noise. To successfully analyze
and process any acquired noisy data, it is necessary to adopt an adequate noisemodel.
This chapter presented several basic noise models that can be used within various
imaging applications. First, we introduced white noise models characterized by a flat
noise power spectrum. White noise models include the classic signal-independent
AWGN noise, as well as various signal-dependent noise models, which are formal-
ized by means of one-parameter families of distributions. Then, we introduced col-
ored noise models, in which the noise power spectral density is not flat, implying that
the noise affecting a pixel is correlated with the noise affecting neighboring pixels.
An overview of the leading approaches for estimating the noise parameters sufficient
to characterize the model was also provided. Overall, these models and methods are
suitable for processing imagery from a wide range of acquisition devices, such as
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digital consumer cameras, X-ray systems, microscopes, telescopes, etc. They espe-
cially play a fundamental role in processing pipelines for image restoration (see, e.g.,
[4–7, 12]).
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Chapter 2
Sparsity-Based Denoising
of Photographic Images: From
Model-Based to Data-Driven

Xin Li, Weisheng Dong and Guangming Shi

Abstract What makes photographic images different from random noise? It has
been hypothesized that sparsity is a key factor separating the class of photographic
images from noise observations. Accordingly, sparse representations have been
widely studied in the literature of image denoising in the past decades. In this
chapter, we present a critical review of the most important ideas/insights behind
sparsity-based image denoising algorithms. In the first-generation (model-based)
approaches, we will highlight the evolution from local wavelet-based image denois-
ing in 1990s–2000s to nonlocal and patch-based image denoising from 2006 to 2015.
In the second-generation (data-driven) approaches, we have opted to review several
latest advances in the field of image denoising since 2016 such as learning para-
metric sparse models (for heavy noise removal) and deep learning-based approaches
(including deep residue learning). The overarching theme of our review is to provide
a unified conceptual understanding of why and how sparsity-based image denoising
works—in particular, the evolving role played by models and data. Based on our
critical review, we will discuss a few open issues and promising directions for future
research.

X. Li (B)
Lane Department of Computer Science and Electrical Engineering,
West Virginia University, Morgantown, WV, USA
e-mail: xin.li@ieee.org

W. Dong · G. Shi
School of Electronic Engineering, Xidian University, Xi’an, China
e-mail: wsdong@mail.xidian.edu.cn

G. Shi
e-mail: gmshi@mail.xidian.edu.cn

© Springer International Publishing AG, part of Springer Nature 2018
M. Bertalmío (ed.), Denoising of Photographic Images and Video,
Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-319-96029-6_2

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96029-6_2&domain=pdf


38 X. Li et al.

2.1 Introduction

The collection of photographic images only occupy a small fraction characterized
by a manifold in the high-dimensional space. To see this, one can think of two
images of the same size (say H × W ) as two points in the high-dimensional space
RH×W and observe that any point lying along the line segment connecting these
two points does not belong to the collection of photographic images. Such manifold
constraint arises from the fundamental laws in quantum physics (Pauli exclusion
principle)—namely, two objects cannot occupy the same space at the same time. By
contrast, additive white Gaussian noise (AWGN) violates such manifold constraint
because it is well known that any linear combination of two Gaussian processes is
still Gaussian. When a photographic image is contaminated by AWGN, it is often
desirable to remove the unwanted noise from the degraded image, which has become
so-called image denoising problem.How to efficiently exploit themanifold constraint
of photographic images to facilitate the task of image denoising has remained an open
problem despite decades’ research.

Sparsity-based denoising—one of the earliest attacks in the literature—is still
influential as of today. The basic idea behind sparse representations is to formalize
the abovementioned manifold constraint rigorously using well-established mathe-
matical tools. Intuitively, there are two ways of formalizing this idea: deterministic
and probabilistic. In a deterministic setting, photographic images are modeled by
abstractions such as Besov-space functions whose regularity properties well match
the characteristics of photographic images (e.g., images are mostly smooth except
singularities such as edges and corners); in a probabilistic setting, photographic
images are characterized by heavy-tail distributions in a transformed space (after
sparsifying transforms) where the sparsity is specifically connected with the class
of nonzero/significant coefficients (tail). Regardless of the formulation, the task of
image denoising can be implemented by a simple thresholding operation—namely, if
one canfind an appropriate sparse representation transforming important image struc-
tures to a few exceptions(significant coefficients), thresholding becomes an effective
strategy of separating them from noise (note that AWGN is unlikely to produce
exceptions because of Gaussian distributions do not have heavy tails).

In the past two decades, various sparse representations have been developed
reflecting the evolving thoughts of modeling important structures in photographic
images. In 1990s–2000s, local sparse representations (e.g., DCT-based and wavelet-
based) are constructed aiming at characterizing transient events such as edges, lines,
and corners. It has been well documented in the literature that heavy-tailed distri-
bution such as generalized Gaussian is a good fit for the probability distribution of
local image structures in the wavelet domain, thanks to the good localization prop-
erty of wavelet bases in both space and frequency. We note that similar observation
with transient events has also led to the class of variational image models (e.g.,
total-variation-based [1] and Perona–Malik diffusion [2]), which have been shown
to be equivalent to wavelet thresholding under certain conditions [3]. The relation-
ship between soft/hard thresholding and Wiener filtering has also been studied in
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[4], which shows that soft thresholding can be interpreted as an approximation of
optimal Wiener filtering when image coefficients are modeled by Gaussian.

An important new insight—i.e., modeling nonlocal self-repeating patterns (e.g.,
textures) in photographic images—was introduced in 2006 [5]. Since then, a flurry
of nonlocal sparse representations have been developed for various image restora-
tion tasks including denoising. The unifying theme is to formulate a simultaneous
sparse coding (SSC) problem [6] with a collection of similar patches in photographic
images. Such SSC formulation can be implemented either by a 3D sparsifying trans-
form such as in [5] (2D patches form a 3D array) or a 2D singular value decom-
position transform [7] (each image patch is reshaped into a row vector of a data
matrix). Since textures represent a significant portion in photographic images, non-
local sparse representations—when applied to image denoising—have led to con-
vincingly improved subjective quality for texture-abundant images (e.g., Barbara)
over localmodels. Further optimization is possible by introducing aweighted nuclear
norm minimization [8] to achieve better tradeoff between local adaptation and non-
local invariance.

Most recently, the new wave of learning-based or data-driven approaches toward
AI has swept through many applications in computer vision and pattern recognition
[9]. With training data available, we suggest that there are two new opportunities
to explore under the context of image denoising. First, when a small collection of
correlated images are available, it is possible to learn the parametric sparse models
from the training data and noisy observation together.Our recentwork [10] has shown
that such a hybrid (sparsity + learning) approach can lead to much more accurate
estimation of image details especially in the presence of heavy noise. Second, when
a large number of training images are available, it is feasible to learn a nonlinear
mapping (implemented by deep convolutional neural networks) from the space of
noisy observations to that of clean images via deep residue learning [11]. Such deep
learning-based approach toward image denoising has rich connections with previous
works (e.g., trainable nonlinear reaction-diffusion [12]) and can be combined with
sparse representation as well (e.g., [13]).

The rest of this chapter is organized as follows. We have structured our review
into three parts roughly following the timeline of image denoising literature: local
sparsity (before 2006), nonlocal sparsity (2006–2016) and deep learning (2016–
present). In Sect. 2.2, we start from early works on wavelet-based image denoising
and focus on the paradigm shift from construction of (prefixed) basis functions to
adaptively learning them from noisy observation data. In Sect. 2.3, we highlight
the key ideas behind patch-based image denoising including finding similar patches
and exploiting nonlocal sparsity. In Sect. 2.4, we reformulate image denoising as a
discriminative learning problem, which leads to the latest advance via feedforward
convolutional neural networks [11]. Experimental results are selectively reported in
Sec. 2.4 to demonstrate the latest advances in the field. We make some concluding
remarks in Sect. 2.5.



40 X. Li et al.

2.2 Image Denoising via Local Sparsity Models: From
Sparsifying Transform to Dictionary Learning

In this section, we briefly review the class of image denoising algorithms built
upon local sparsity models. The key unifying theme will be basis functions (a.k.a.
dictionary)—early attempts directly construct data-independent basis functions such
aswavelets and their extensions;more recent approaches obtain data-dependent basis
functions via dictionary learning.

2.2.1 Transform-Based Image Denoising

The basic idea behind sparse representation is to decompose a signal �x ∈ Rn with
respect to a group of n-dimensional basis vectors/functions in the Hilbert space (also
called dictionary) � ∈ Rn×m—namely �xn×1 = �n×m �αm×1. The sparsity constraint
of �α dictates that it only contains few nonzero coefficients (and therefore sparse). It
is relatively easy to understand sparsity from a compression point of view because
fewer nonzero coefficients imply higher coding efficiency. The relevance of sparsity
to image denoising requires a bit more reasoning—e.g., since linear combination of
Gaussian noise remains Gaussian, it is unlikely that AWGN can produce nonzero
coefficients after sparse decomposition.

For photographic images, the pursuit of sparse representations has led to a rich
literature of so-called sparsifying transforms including discrete cosine transform
(DCT) [14] and their shape-adaptive extension SA-DCT [15], wavelet transforms
[16, 17] and X-lets (e.g., ridgelets [18], curvelet [19] and contourlets [20]). Retro-
spectively, geometry has been the most decisive factor pushing the field of sparse
representations forward. Early constructions such as DCT and wavelet transforms
are separable, which makes it difficult to exploit the geometric constraint of edges
[21]. Non-separable transforms such as shape-adaptive DCT (SA-DCT) [15] and
contourlet filter banks [20] directly pursue an anisotropic or directional image rep-
resentation across different scales. Such directional multi-resolution representations
of images have been proven theoretically more compact than their separable coun-
terparts and demonstrated convincing improved performance for image denoising
applications (e.g., [15, 19, 20]).

Despite those progress, the fundamental issue of an ideal sparse representation
has remained open. On one hand, when several competing constructed dictionaries
are available, one often faces the problem of selection—i.e., which subset of basis
functions could lead to an “optimal” choice (e.g., basis pursuit [22])? It turns out that
such problem is often ill-posed because of the difficulty with defining optimality. For
instance, it is well known that l0-based optimization is nonconvex and does not admit
computationally efficient solutions; consequently, its l1-based counterpart [23] is
often preferred in practice. On the other hand, one can pursue a sparser representation
by addingmore andmore atoms into the dictionary but at the risk of over-fitting (not to
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mention the price of prohibitive computational complexity). In view of the diversity
of image structures in photos, it seems unrealistic to manually construct a prefixed
dictionary with all required dictionary elements. Amore plausible solution is to learn
(instead of construct) the set of dictionary elements from training data.

2.2.2 Image Denoising via Dictionary Learning

The idea of learning a dictionary from training data dated back to the classical prin-
ciple component analysis (PCA) [24] (a.k.a. Karhunen–Loeve transform). However,
the optimality of Karhunen–Loeve transform (KLT) for stationary Gaussian pro-
cesses is not applicable to the source of photographic images. Nonstationarity of
image source calls for the segmentation or clustering technique such as K-means
method [25]. The basic idea behind K-means clustering is to overcome the chicken-
and-egg dilemma by iteratively updating the centroids (representative codewords)
and class labels (clustering outcome). An important milestone in dictionary learn-
ing is the development of K-SVD algorithm [26] which connects the concept of
K-means clustering with sparse coding. Similar to K-means, K-SVD also alternates
between sparse coding and dictionary updating; but unlike K-means, K-SVD puts
data clustering on a solid theoretic foundation of optimal data representation (note
that it works with any pursuit method).

When applied to photographic images, K-SVD has led to so-called sparseland
model [27], which we will briefly review here. Let xi denote a patch cropped from
image X at the spatial location i ; then, we have

xi = EiX, (2.1)

where Ei is an operator of sliding window. Since patch overlapping is allowed, the
above representation is redundant and the reconstruction of image from cropped
patches {xi } is overdetermined, which admits the following Least-Square solution

X = (
∑

i

ET
i Ei )

−1(
∑

i

ET
i xi ). (2.2)

For a given dictionary �, each patch can be represented by its sparse coefficients
{�αi }—namely

xi = ��αi . (2.3)

Combining Eqs. (2.3) and (2.2), we have

X = R�α .= (
∑

i

ET
i Ei )

−1(
∑

i

ET
i ��αi ), (2.4)

where R is the reconstruction operator dual to E.
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Under the context of image denoising, one can formulate the following variational
problem

�αi = argmin
�αi

1

2
||Y − D�αi ||22 + λ||�αi ||1, (2.5)

where Y = X + N is the noisy image, A is matrix containing vectors of sparse coef-
ficients, and λ is the Lagrangian multiplier. The basic idea behind K-SVD denoising
[27] is to learn the dictionary D from noisy observation image Y by solving the
following joint optimization problem

argmin
X,D,�α

∑

i

||D�αi − RiX||22 +
∑

i

γi ||�αi ||1 + λ||Y − X||, (2.6)

The solution to the aboveoptimizationproblemconsists of iterative updatingof sparse
coefficients �α and dictionary elementsD. The step of updatingD can be implemented
by singular value decomposition (SVD), which gives the name K-SVD.

2.3 Image Denoising via Nonlocal Sparsity Models: Beyond
BM3D

The year of 2006 was fruitful for the field of image denoising. In addition to K-SVD,
the conference version of block-matching 3D (BM3D) denoising [5] was also pub-
lished in 2016 [28]. At the beginning, the community was baffled by the outstanding
experimental results reported in the paper—why did it work so well? It took the
whole community several years to develop and optimize the class of nonlocal sparse
representations.

2.3.1 Image Denoising via Clustering-Based Sparse
Representation (CSR)

To see why K-SVD falls behind BM3D, we can conduct an experiment with a toy
example of regular texture. It can be observed that the sparse (nonzero) coefficients
�α are NOT randomly distributed as shown in Fig. 2.1. The striking pattern of sparse
coefficients in the spatial domain arises from the self-repeating pattern in texture
image itself. Such nonlocal similarity is beyond the reach of dictionary learning
such as K-SVD because the regularization terms in Eq. 2.6 cannot exploit the high-
order correlation among sparse coefficients �αi ’s. So instead of extending K-means,
one can combine K-means with sparse coding to obtain a nonlocal clustering-based
sparse representation (CSR) as follows.



2 Sparsity-Based Denoising of Photographic Images … 43

Fig. 2.1 Limitation of K-SVD: a an image of regular texture; b spatial distribution of sparse
coefficients corresponding to the sixth basis vector (note that their locations are NOT random)

The key new insight is to view the centroids of k-means clustering as peer hidden
variables to unknown sparse coefficients. Referring to Fig. 2.1, one can envision
re-encoding of similar sparse coefficients could render a more compact represen-
tation promoting sparsity (by exploiting self-repeating patterns). Along this line
of reasoning, we propose the following cost function as a nonlocal extension of
Eq. (2.6)

(�α, �μ) = argmin
�α, �μk

1

2
||Y − D�α||22 + λ1||�α||1

+ λ2

K∑

k=1

∑

i∈Ck

||��αi − �μk ||1, (2.7)

where �μk denotes the centroid of the k-th cluster Ck of coefficients �α. When com-
pared against Eq. (2.6), we note that the new clustering-based regularization term
is introduced to exploit nonlocal similarity in photographic images. To gain deeper
insight about the new regularization term, one can rewrite Eq. (2.7)

(�α, �β) = argmin
�α, �μk

1

2
||Y − D�α||22 + λ1||�α||1

+ λ2

K∑

k=1

∑

i∈Ck

||��αi − � �βk ||1, (2.8)

where �μk = � �βk (i.e., to represent all centroids by the same dictionary� as xi ). Since
� is unitary, we have ||��αi − � �βk ||22 = ||�αi − �βk ||22. Therefore, Eq. (2.7) boils down
to the following joint optimization problem
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(�α, �β) = argmin
�α, �μk

1

2
||Y − D�α||22 + λ1||�α||1

+ λ2

K∑

k=1

∑

i∈Ck

||�αi − �βk ||1. (2.9)

Using the technique of conjugate function, we can solve the above double-header
l1-minimization problem and obtain the following iterative thresholding solution

α
(i+1)
j =

{
Sτ1,τ2(v

(i)
j ) β j ≥ 0

−Sτ1,τ2(−v
(i)
j ) β j < 0

(2.10)

where

v(i) = 1

c
DT (x − Dα(i)) + α(i), (2.11)

and τ1 = λ1
c , τ2 = λ2

c (c is an auxiliary parameter guaranteeing the convexity of
surrogate function), superscript (i) denotes iteration number and subscript j denotes
the j-th entry in a vector. The detailed derivation of iterative thresholding solution
is referred to [29].

2.3.2 Simultaneous Sparse Coding with Low-Rank
Approximation

An alternative way of exploiting nonlocal similarity is the so-called simultaneous
sparse coding (SSC) [6]. The basic idea of SSC (a.k.a. group/structured sparsity [30])
is to reshape each patch into a row vector and group those similar patches into a 2D
matrix Y = [ y1, y2, · · · , ym] ∈ Rn×m . Then, the group sparsity can be defined by a
pseudo-matrix norm ||A||p,q :

(U,A) = argmin
A

||Y − UA||2F + τ ||A||p,q , (2.12)

where A = [α1;α2; ...;αn] is the matrix formulation of sparse coding strategy X =
UA and the pseudo-matrix norm || · ||p,q is given by [31]

||A||p,q �
n∑

i=1

||αi ||pq , (2.13)

where αi = [αi,1, ..., αi,m] denotes the i th row of matrix A in Rn×m . Note that the
above formulation does not treat the row and column spaces equally—namely, a
matrix A and its transpose AT will be characterized by varying amount of group
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sparsity (though they have the same amount of sparsity). To restore the symmetry
between row and column spaces, we have proposed to introduce a right-multiplying
matrix V in [7]. Then, the matrix A can be rewritten as

A = �VT , (2.14)

where � = diag{λ1, λ2, · · · , λK } (K = min(m, n))is a diagonal matrix in RK×K

and each column ofV in Rm×K consists of vi = 1
λi

(αi )T . It is enlightening to observe
that the new sparsifyingmatrixV plays the dual role of the dictionaryU, and therefore
Eq. (2.12) boils down to

(U,�,V) = argmin
U,�,V

||Y − U�VT ||2F + τ ||A||p,q . (2.15)

The key new insight behind our low-rank approximation approach is that when
p = 1, q = 2, the group sparsity regularizer ||A||1,2 computes the sum of standard
deviations associated with sparse coefficient vector in each row—namely

||A||1,2 =
K∑

i=1

√
α2
i,1 + α2

i,2 + · · · + α2
i,m =

K∑

i=1

√
mσi , (2.16)

where σi is the standard deviation of sparse coefficients αi in the i-th row. Therefore,
we can write αi = λiv

T
i and obtain

σ 2
i = 1

m
||αi ||22 = 1

m
||λiv

T
i ||22 = λ2

i

m
, (2.17)

where the first identity comes from Eq. (2.16) and the last one is due to the unitary
property of V. Based on Eq. (2.17), one can conclude that any operation on sparse
coefficient vector α’s can be equivalently implemented with respect toσi or λi (only
differs by a constant scalar). Substituting Eq. (2.17) into Eq. (2.15), we have the
following standard low-rank approximation problem [32]

(U,�,V) = argmin
U,�,V

||Y − U�VT ||2F + τ

K∑

i=1

λi , (2.18)

which admits the well-known singular value decomposition (SVD)-based solution
[32] {

(U,�,V) = svd(Y);
�̂ = Sτ (�); (2.19)

where Sτ is a soft thresholding operatorwith a threshold τ (regularization parameter).
The reconstructed data matrix can be conveniently obtained by X̂ = U�̂VT .
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2.3.3 Simultaneous Sparse Coding with Gaussian Scalar
Mixture (GSM)

The connection between sparse coding and Bayesian estimation has been well-
established in the literature (e.g., refer to [29]). If we rewrite Eq. (2.5) into

α = argmin
α

||x − Dα||22 + λ||α||1, (2.20)

the above l1-minimization is equivalent to the maximum a posterior (MAP) infer-
ence of α with an identically independent distributed (i.i.d) Laplacian prior P(αi ) =
1
2θi

e− |αi |
θi , wherein θi denotes the standard derivation of αi . Such a fruitful connec-

tion can be exploited to shed new insight to SSC by leveraging advanced statistical
modeling technique. For instance, in the literature of wavelet-based image denois-
ing, it has been proposed in [4] to characterize sparse coefficients α by a Gaussian
scale mixture (GSM) [33] model. The original motivation behind GSM-based image
denoising is to more accurately characterize rapidly evolving local statistics (e.g.,
variance) of wavelet coefficients. As we have shown in [34], it is possible to combine
GSM with SSC and obtain a class of more powerful nonlocal sparsity-based image
denoising algorithms.

The basic idea behind GSM is to decompose sparse coefficient vector α into the
point-wise product of a Gaussian vector β of unitary variance and a hidden scalar
multiplier θ (αi = θiβi ). It follows from the Bayesian formula that the GSM prior of
α can be expressed by

P(α) =
∏

i

P(αi ), P(αi ) =
∫ ∞

0
P(αi |θi )P(θi )dθi . (2.21)

In view of the difficulty with computing the MAP estimate of αi for most choices of
P(θi ), wavelet-based GSM denoising [4] treated θi as a hidden variable, which can
be canceled through integration; later work [35] explicitly uses the field of Gaussian
scalar multiplier (field-of-GSM) to characterize the variability and dependencies
among local variances while at the price of prohibitive computational complexity. A
computationally more tractable approach is to formulate a joint estimation of (αi , θi )

by exploiting nonlocal similarity of photographic images (same motivation as SSC)
as follows

(α, θ) = argmax log P(x|α, θ)P(α, θ)

= argmax log P(x|α) + log P(α|θ) + log P(θ).
(2.22)

To gain deeper understanding toward the above formulation, we note that the first
term P(x|α) is characterized by a Gaussian function with variance σ 2

n , the second
term P(α|θ) is given by
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P(α|θ) =
∏

i

P(αi |θi ) =
∏

i

1

θi
√
2π

exp(− (αi − μi )
2

2θ2
i

)., (2.23)

and the third term is so-called noninformative prior [36] P(θi ) ≈ 1
θi
(a.k.a. Jeffrey’s

prior [4]). Putting things together, we can rewrite Eq. (2.22) into

(α, θ) = argmin
α,θ

1

2σ 2
n

||x − Dα||22 +
∑

i

log(θi
√
2π)

+
∑

i

(αi − μi )
2

2θ2
i

+
∑

i

log θi ,

(2.24)

where we have used P(θ) = ∑
i P(θi ). To improve numerical stability, one can

replace log θi by log(θi + ε) (ε > 0) and obtain

(α, θ) = argmin
α,θ

||x − Dα||22 + 4σ 2
n log(θ + ε)

+ σ 2
n

∑

i

(αi − μi )
2

θ2
i

,
(2.25)

where log(θ + ε) = ∑
i log(θi + ε).

In the matrix form of original GSMmodel, we have α = �β and μ = �γ where
� = diag(θi ) ∈ RK×K is a diagonal matrix characterizing the variance field for the
chosen image patch. Such connections allow us to translate the optimization problem
in Eq. (2.24) from (α,μ) domain to (β, γ ) domain—i.e.,

(β, θ) = argmin
β,θ

||x − D�β||22 + 4σ 2
n log(θ + ε) + σ 2

n ||β − γ ||22. (2.26)

Since the above equations are the sparse coding formulation for a single image patch,
it is natural to formulate a simultaneous sparse coding (SSC) problemby generalizing
the optimization problem in Eq. (2.26) from vector form to matrix form

(B, θ) = argmin
B,θ

||X − D�B||2F + 4σ 2
n log(θ + ε)

+ σ 2
n ||B − �||2F ,

(2.27)

whereX = [x1, . . . , xm] is a 2D matrix formed bym similar patches andA = �B is
the matrix representation of α = �β. The first-order and second-order statistics of
A are characterized by � = [γ1, . . . , γm] ∈ RK×m and B = [β1, . . . ,βm] ∈ RK×m

respectively, wherein γ j = γ , j = 1, 2, · · · ,m. Given m similar patches, we have
adopted the following strategy for estimating μ
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μ =
m∑

j=1

w jα j , (2.28)

where w j ∼ exp(−||x − x j ||22/h)) is the weighting coefficient based on patch sim-
ilarity. It follows from μ = �γ that

γ =
m∑

j=1

w j�
−1α j =

m∑

j=1

w jβ j , (2.29)

The above new formulation inEq. (2.27) has been called Simultaneous SparseCoding
for Gaussian Scalar Mixture (SSC-GSM) and computationally efficient solution has
been derived in [34]. When applied to image denoising, SSC-GSM has achieved the
current state-of-the-art performance.

2.4 Learning-Based Image Denoising: Heavy Noise
and Deep Learning

In previous sections, we have focused on estimating a clean image from its contami-
nated versionwithout any help from training data.When training data are available, it
is possible to further optimize image denoising by learning a more powerful prior. In
this section, we present two latest advances in learning-based image denoising: one
deals with parametric sparse models and the other with deep convolutional neural
networks.

2.4.1 Learning Parametric Sparse Models for Heavy Noise
Removal

In the literature of image denoising, one of under-researched topic is the removal
of heavy noise. As the power of noise increases, it becomes more challenging to
estimate the unknown image characteristics (e.g., mean and variance) from the noisy
observation. One way of alleviating this difficulty is to assume that some training
data are available as reference images—e.g., images of the same scene but acquired
at different time or from varying viewpoints. The key new insight brought by the
availability of additional training data is that they could facilitate the estimation of
sparse model parameters (e.g., the biased mean vector in Eq. 2.29) by providing
noise-free similar patches. Figure 2.2 describes the proposed framework of learning
parametric sparse models from training data, which consists of four steps (image
retrieval, global registration, patch matching, and expectation estimation). We will
elaborate each step, respectively, next.
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Fig. 2.2 Framework of learning parametric sparse model from a set of training data

Fig. 2.3 Framework of generating global descriptor for image retrieval by the method of [40]

Fig. 2.4 An example result of image retrieval. a The query image. b The retrieved images

Image retrieval The first step is to retrieve images that contain similar content to
a query image from the training data. Image retrieval has been extensively studied in
the literature (e.g., [37–40]); here we have adopted an image retrieval method of [40].
In [40], a global descriptor is generated for both the query image and the candidates,
as shown in Fig. 2.3. To create such a global descriptor, a Convolutional Neural
Network (CNN) is first applied to the given image; then, a pretrainedRegion Proposal
Network (RPN) is activated to pool regions of interest (ROI) together; and finally,
a global descriptor is produced by integrating ROI-pooled features. With generated
global descriptors, the similarity between two images can simply be measured by the
dot product of two corresponding global descriptors. To address the issue of noise
interference, we can obtain a pre-denoised image by any conventional approach
(without the use of training data) and apply image retrieval to the pre-denoised
image while searching for correlated images. Figure 2.4 shows an example of image
retrieval results.
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Fig. 2.5 The retrieved images after global registration

Global registration The retrieved images cannot be directly used to find similar
patches because of the difference in scale, illumination, and viewpoint. The next step
is to align the retrieved image with the pre-denoised image, which has been known as
global registration. In the literature of image registration, aligning two images using
local features such as SIFT [41] and local binary pattern [42] is among the most
popular approaches. Similar to [43, 44], we have extracted the SIFT [41] descriptors
from the input image pair. Then, the eight-parameter homographymatrix is estimated
from matched SIFT descriptor pairs by the Random Sample Consensus (RANSAC)
algorithm [45]. The retrieved correlated images can finally be aligned to the query
image after the geometric transformation with the estimated homography matrix.
Figure 2.5 presents an example of global registration. We denote the transformed
images by {zr }Rr=1, which are used for patch matching next.

Patch matching Given an exemplar patch xi extracted from the noisy image x,
we search for similar patches from the aligned reference images (i.e., {zr }Rr=1). As the
size of exemplar patch xi is usually small (e.g., 7 × 7), direct patch matching with
xi is not accurate especially in the presence of heavy noise. Instead, we have used
an enlarged anchor patch containing xi at the center to facilitate patch matching to
ensure its accuracy. Denote x′

i ∈ R
r of size

√
n′ × √

n′ (n′ > n) as the query patch
extracted from x at the position i . We first search for similar patches to x′

i within a
local window centered at the position i in reference images; then group the found
similar patches into a data matrix. To achieve illumination invariance, we remove
the DC component of each patch before calculating the l2 distance among patches.

Estimation of expectationsμi Given an exemplar patch xi and its similar patches
found from reference images { z̃i,l}Ll=1, we assemble the exemplar patch and reference
patches into a data matrix, each column of which corresponds to a patch (including
the xi ). Similar to [46], we first apply a median filtering to the data matrix along each
row to remove the noise. Then, the expectation of x̂i from reference patches can be
estimated as

xre fi = median(x̂i , z̃i,1, z̃i,2, ..., z̃i,L), (2.30)

where superscript ref indicates that xre fi is learned from the reference images. Mean-
while, we note that expectations from nonlocal similar patches—i.e., Eq. 2.29 can
be rewritten into
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xinti =
m∑

k=1

wi,k x̂i,k, (2.31)

where wi,k = (1/c) exp(−||x̂i,k − x̂i ||/h), c is the normalization parameter and h is
a predefined constant. The superscript int indicates the intrinsic estimation from the
noisy image itself. With μ

re f
i = D
xre fi and μint

i = D
xinti denote the sparse codes
of xre fi and xinti with respect to the dictionary D, a more accurate estimation of the
expectation of αi can be achieved by combining μ

re f
i and μint

i as follows

μi = �μ
re f
i + (I − �)μint

i , (2.32)

where � = diag(δ j ) ∈ R
K×K is the weights between μ

re f
i and μint

i . Similar to [44],
δ j is computed according to the energy ratio of μ

re f
i ( j) and μint

i ( j)- i.e.,

δ j = r2j
r2j + 1/(r2j )

, r j = μ
re f
i ( j)/μint

i ( j), (2.33)

Experimental Results
We take 16 images from the Oxford5K1 and Paris6K2 datasets as test images (please
refer to Fig. 2.6). In the proposed method, similar images are retrieved from the
remaining images of the dataset. We have compared the proposed image denoising
method against several well-known denoisingmethods—i.e., BM3D [5], NCSR [47],
maximizing expected patch log likelihood (EPLL) [48], SSC-GSM [34] andDnCNN
[11]. Note that DnCNN [11] is state-of-the-art denoising method, and BM3D [5],
NCSR [47], SSC-GSM [34] are state-of-the-art single image denoising methods. For
DnCNN [11], we use the same training data as that in [11]. The default parameter
settings are applied in our experiments. The Gaussian noise deviation θn is set to
be 50, 70, and 90. The larger patch size—i.e., n′ for patch matching from reference
images are set as 17, 19, and 21, respectively.We retrieve four reference images from
the dataset (i.e., R = 4).

Besides, the method of DnCNN [11], which is implemented using a deep con-
volutional network, has the best performance among all benchmark methods. When
compared against DnCNN [11], PSNR improvement of the proposedmethod is more
than 1 dB on the average (up to 1.47 dB); the average SSIM improvement is around
0.0948. Parts of the reconstructed images by different denoising methods are shown
in Fig. 2.7 for noise level of 50, Fig. 2.8 for noise level of 70, Fig. 2.9 for noise level
of 90. From Figs. 2.7, 2.8 and 2.9, it can be seen that the restored image by previous
methods such as BM3D[5], NCSR [47] and SSC-GSM [34] are often over-smoothed
and the results by the proposed method contain much more faithfully restored details
than previous methods.

1http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/.
2http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/.

http://www.robots.ox.ac.uk/{~}vgg/data/oxbuildings/
http://www.robots.ox.ac.uk/{~}vgg/data/parisbuildings/
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Fig. 2.6 16 test images. From left to right and from up to bottom, the images are named as “img1”
to “img16”

(a) Original (b) Noisy (c) [5] (PSNR=29.53dB) (d) [47] (PSNR=29.53dB)

(e) [48] (PSNR=29.05dB) (f) [34] (PSNR=29.59dB) (g) [49] (PSNR=30.05dB) (h) Proposed (PSNR=31.50dB)

Fig. 2.7 Denoising results of cropped image ‘img3’ (σn = 50)

The denoising method of [46] (denoted as CID), which is based on a combination
of the BM3D method and retrieved correlated images, has outstanding performance
over BM3D and EPLL as shown in [46]. As the implementation codes for [46] is not
available, we make a comparison with the results given in [46], where the test images
are exactly the images of “img1”–“img7”. The comparison of the PSNR and results
with [46] is shown in Table 2.1, from which it can be seen that the proposed method
has comparable SSIM performance to CID and the average PSNR improvement over
CID can be up to 0.64 dB.
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(a) Original (b) Noisy (c) [5] (PSNR=25.52dB) (d) [47] (PSNR=25.25dB)

(e) [48] (PSNR=25.22dB) (f) [34] (PSNR=25.48dB) (g) [49] (PSNR=25.81dB) (h) Proposed (PSNR=27.23dB)

Fig. 2.8 Denoising results of cropped image ‘img4’ (σn = 70)

(a) Original (b) Noisy (c) [5] (PSNR=25.91dB) (d) [47] (PSNR=25.80dB)

(e) [48] (PSNR=25.52dB) (f) [34] (PSNR=26.15dB) (g) [49] (PSNR=26.40dB) (h) Proposed (PSNR=28.03dB)

Fig. 2.9 Denoising results of cropped image ‘img6’ (σn = 90)

2.4.2 Learning Denoising Prior in Deep Convolutional
Neural Network

Instead of learning a sparse model from training data, one can reformulate image
denoising as a discriminative learning problem—i.e., can we directly learn a nonlin-
ear mapping from the space of noisy images to that of clean images? Early attempts
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Table 2.1 PSNR and SSIM results compared with CID [46]

Noise img1 img2 img3 img4 img5 img6 img7 Avg.

CID [46] 50 30.05 28.56 30.64 26.80 29.50 28.50 28.90 28.99

0.882 0.861 0.855 0.766 0.909 0.799 0.837 0.844

70 29.00 27.63 29.44 26.03 28.53 27.75 27.98 28.05

0.860 0.837 0.816 0.734 0.885 0.777 0.819 0.818

90 27.70 26.83 28.63 25.25 27.15 26.91 27.02 27.07

0.845 0.822 0.809 0.706 0.873 0.753 0.803 0.802

Proposed 50 30.43 28.91 31.50 28.08 28.86 29.80 29.84 29.63

0.8734 0.8408 0.8527 0.7820 0.8488 0.8242 0.8463 0.8383

70 29.09 28.15 30.16 27.23 28.01 28.92 28.47 28.56

0.8515 0.8202 0.8203 0.7535 0.8318 0.8045 0.8177 0.8142

90 27.74 27.76 29.38 26.33 27.19 28.03 27.51 27.71

0.8343 0.8157 0.8111 0.7220 0.8137 0.7881 0.7977 0.7975

such as multilayer perceptron [49] have shown plain neural networks can deliver
comparable denoising performance to BM3D. However, as the layer of neural net-
works gets larger, the training of such a deep convolutional neural network faces the
notorious problem called vanishing moment [50]. One of the key new insights intro-
duced to the field of deep learning in recent years is the concept of residue learning
[51]—instead of learning a mapping from the space of noisy images to that of clean
images directly, it is better to learn a mapping from the space of noisy images to the
residue (the difference between the target and degraded image). Although the frame-
work of deep residue learning was originally introduced for image classification, its
potential in low-level vision tasks such as image super-resolution and denoising has
been quickly explored since 2016. In the past few years, many learning-based image
super-resolution methods [52–54] have been proposed, where mapping functions
from the low-resolution (LR) patches to high-resolution (HR) patches are learned.
Inspired by the great successes of the deep convolution neural network (DCNN) for
image classification [51, 55], DCNN models have also been successfully applied
to image restoration tasks—e.g., SRCNN [54], FSRCNN [56] and VDSR [57] for
image super-resolution, and TNRD [12] and DnCNN [11] for image denoising.

The other important novel insight brought to the field of deep learning is to allow
multiple networks to interact with each other in order to optimize the system per-
formance in an end-to-end manner. Examples of such network interaction involves
DeepMind’s AlphaGo Zero [58] in which a Monte Carlo Tree Search (MCTS) net-
work improves by playing against itself; generative adversarial network (GAN) [59]
in which a generator and a discriminator works together by playing a minimax game;
Facebook’s SharpMask algorithm [60] in which the feedforward network gets aug-
mented by for a novel top-down refinement for object segmentation purpose. Inspired
by those recent advances, we propose a novel architecture of the denoising network
as illustrated in Fig. 2.10. Similar to the U-net [61] and the SharpMask net [60],
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Fig. 2.10 The architecture of the plugged DCNN-based denoiser

the proposed network contains two parts: the feature encoding and the decoding
parts. In the feature encoding part, there are a series of convolutional layers followed
by pooling layers to reduce the spatial resolution of the feature maps. The pooling
layer helps increase the receipt field of the neurons. In the feature encoding stage,
all the convolutional layers are grouped into L feature extraction blocks (L = 4 in
our implementation), as shown by the blue blocks in Fig. 2.10b. Each block contains
four convolutional layers with ReLU nonlinearity and 3 × 3 kernels. The first three
layers generate 64-channel feature maps, while the last layer doubles the number of
channels followed by a pooling layer to reduce the spatial resolution of the feature
maps with scaling factor 0.5. In the pooling layers, the feature maps are first convo-
luted with 2 × 2 kernels, and then subsampled by a scaling factor of 2 along both
dimensions.

The feature decoding part also contains a series of convolutional layers, which
are also grouped into four blocks followed by an upsampling layer to increase the
spatial resolution of the feature maps. As the finally extracted feature maps lose a
lot of spatial information, directly reconstructing images from the finally extracted
features cannot recover fine image details. To address this issue, the feature maps of
the same spatial resolution generated in the encoding stage are fused with the upsam-
pled feature maps generated in the decoding stage, for obtaining newly upsampled
feature maps. Each reconstruction block also consists of four convolutional layers
with ReLU nonlinearity and 3 × 3 kernels. In each reconstruction block, the first
three layers produce 128-channels feature maps and the fourth layer generate 512-
channels feature maps, whose spatial resolutions are upsampled with a scaling factor
of 2 by a deconvolution layer. The upsampled feature maps are then fused with the
feature maps of the same spatial resolution from the encoding part. Specifically, the
fusion is conducted by concatenating the feature maps. The last feature decoding
block reconstructed the output image. A skip connection from the input image to
the reconstructed image is added to enforce the denoising network to predict the
residuals, which has be verified to be more robust [11].

Note that the DCNN denoisers do not have to be pretrained. Instead, the overall
deep network shown in Fig. 2.10a is trained by end-to-end training. To reduce the
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number of parameters and thus avoid over-fitting, we enforce each DCNN denoiser
to share the same parameters. Mean square error (MSE) based loss function is adopt
to train the proposed deep network, which can be expressed as

	 = argmin
	

N∑

i=1

||F( yi ;	) − xi ||22, (2.34)

where yi and xi denote the i-th pair of degraded and original image patches, respec-
tively, and F( yi ;	) denotes the reconstructed image patch by the network with
parameter set 	. It is also possible to train the network with other the perceptual
based loss functions, whichmay lead to better visual quality.We remain this as future
work. The ADAM optimizer [62] is used to train the network with setting β1 = 0.9,
β2 = 0.999 and ε = 10−8. The learning rate is initialize as 10−4 and halved at every
2 × 105 minibatch updates. The proposed network is implemented with framework
and trained using 4 Nvidia Titan X GPUs and takes about one day to converge.

Experimental Results
For image denoising, A = I and Algorithm 1 reduce to the iterative denoising pro-
cess, i.e., the weighted noise image is added back to the denoised image for the
next denoising process. Such iterative denoising has shown improvements over con-
ventional denoising methods that only denoise once [29]. Here, we also found that
implementing multiple denoising iterations in the proposed network improves the
denoising results. To train the network, we extracted image patches of size 40 × 40
from the training images and added additive Gaussian noise to the extracted patches
to generate the noisy patches. Totally, N = 450,000 patches were extracted for train-
ing. Note that none of the test images was included into the training image set. The
training patches were also augmented by flip and rotations. We compared the pro-
posed network with several leading denoising methods, including three model-based
denoising methods, i.e., BM3Dmethod [5], the EPLLmethod [48], and the low-rank
based method WNNM method [8], and two deep learning-based methods, i.e., the
TNRD method [12] and the DnCNN-S method [11].

Table 2.2 shows the PSNR results of the competingmethods on a set of commonly
used test images shown in Fig. 2.11. It can be seen that both the DnCNN-S and the
proposed network outperform other methods. For most of the test images and noise
levels, the proposed network outperforms theDnCNN-Smethod, which is the current
state-of-the-art denoising method. On average, the PSNR gain over DnCNN-S can
be up to 0.32 dB. To further verify the effectiveness of the proposed method, we also
employ the Berkeley segmentation dataset (BSD68) that contains 68 natural images

(a) 01 (b) 02 (c) 03 (d) 04 (e) 05 (f) 06 (g) 07 (h) 08 (i) 09 (j) 10 (k) 11 (l) 12

Fig. 2.11 The test images used for image denoising
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(a) Original (b) BM3D (c) WNNM

(d) TNRD (e) DnCNN-S (f) Ours

Fig. 2.12 Denoising results for House image with noise level 50. The PSNR results: b BM3D [5]
(29.69 dB); c WNNM [8] (30.33 dB); d TNRD [12] (29.48 dB); e DnCNN-S [11] (30.02 dB); f
Ours (31.04 dB)

for comparison study. Table 2.3 shows the average PSNR and SSIM results of the
test methods on BSD68. One can seen that the PSNR gains over the other test meth-
ods become even larger for higher noise levels. The proposed method outperforms
the DnCNN-S method by up to 0.78 dB on average on the BSD68, demonstrating
the effectiveness of the proposed method. Parts of the denoised images by the test
methods are shown in Figs. 2.12 and 2.13. One can see that the image edges and
textures recovered by model-based methods, i.e., BM3D, WNNM and EPLL are
over-smoothed. The deep learning-based methods, TNRD, DnCNN-S, and the pro-
posed method produce much more visually pleasant image structures. Moreover, the
proposedmethod generates even better results in recoveringmore details than TNRD
and DnCNN-S.

2.5 Conclusions

In this chapter, we have reviewed advances in the field of image denoising in the
past decades—from model-based including sparse coding and simultaneous sparse
coding to learning-based including the most recently developed deep neural net-
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Table 2.3 The PSNR (dB) results of the competing methods on BSD68 image set.

Dataset σ BM3D EPLL TNRD DnCNN-S Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BSD68 15 31.08 0.872 31.19 0.883 31.42 0.883 31.74 0.891 32.29 0.888

25 28.57 0.802 28.68 0.812 28.91 0.816 29.23 0.828 29.88 0.827

30 25.62 0.687 25.68 0.688 25.96 0.702 26.24 0.719 27.02 0.726

(a) Original (b) BM3D (c) WNNM

(d) TNRD (e) DnCNN-S (f) Ours

Fig. 2.13 Denoising results for Lena image with noise level 50. The PSNR results: b BM3D [5]
(29.05 dB); c WNNM [8] (29.25 dB); d TNRD [12] (28.93 dB); e DnCNN-S [11] (29.37 dB); f
Ours (29.85 dB)

works. During our critical review, we have paid special attention to the new insights
that have reshaped our thinking toward the image denoising problem (e.g., from
local to nonlocal sparsity, from plain neural networks to deep residue learning). In
particular, we have reported state-of-the-art experimental results for learning-based
image denoising in two scenarios: one is to learn a sparse parametric model for heavy
noise removal and the other is to learn a denoising prior in deep convolutional neural
network.

One of the latest advances in the field of deep learning is the development of gen-
erative adversarial networks (GAN) [59]. The basic idea behind GAN is to introduce
a discriminator to interact with the generator (e.g., denoising can be viewed as gen-
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erating a clean image from a noisy observation). When discriminator and generator
are jointly trained by a two-player minimax game, GAN makes a step toward unsu-
pervised learning and has demonstrated impressive performance in several applica-
tions such as photo-realistic super-resolution [63], low-dose computer-tomography
denoising [64], and image-to-image translation [65]. Exploring the potential of GAN
for perceptual optimization of image denoising algorithms seems a natural next step
along this line of research.
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Chapter 3
Image Denoising—Old and New

Michael Moeller and Daniel Cremers

Abstract Image Denoising is among the most fundamental problems in image
processing, not only for the sake of improving the image quality, but also as the
first proof-of-concept for the development of virtually any new regularization term
for inverse problems in imaging. While variational methods have represented the
state of the art for several decades, they are recently being challenged by (deep)
learning-based approaches. In this chapter, we review some of the most successful
variational approaches for image reconstruction and discuss their structural advan-
tages and disadvantages in comparison to learning-based approaches. Furthermore,
we present a framework to incorporate deep learning approaches in inverse prob-
lem formulations, so as to leverage the descriptive power of deep learning with the
flexibility of inverse problems’ solvers. Different algorithmic schemes are derived
from replacing the regularizing subproblem of common optimization algorithms by
neural networks trained on image denoising. We conclude from several experiments
that such techniques are very promising but further studies are needed to understand
to what extent and in which settings the power of the data-driven network transfers
to a better overall performance.

3.1 Introduction

Fired by the continuously growing popularity of social media and communication
applications, the number of digital photos that is taken everyday is rapidly increasing.
While the hardware andwith it the quality of the photographs is improving constantly,
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the demand for small imaging devices such as smartphones makes it challenging to
acquire high-quality images in low- light conditions. Thus, there is an urgent need to
digitally remove the noise from such images while keeping the main characteristics
of a realistic photograph.

Among the most powerful and well-studied methods for image denoising are
energy minimization methods. One defines an energy or cost function E that depends
on the noisy image f , and maps from a suitable space of candidate images to the
real numbers in such a way, that a low number corresponds to an image with desir-
able properties, i.e., to a realistic and (ideally) noise-free image. Subsequently, one
determines a denoised image û as the argument that minimizes E, i.e.,

û ∈ argmin
u

E(u). (3.1)

In Sect. 3.2, we will provide a more systematic derivation of such variational
approaches from the perspective of Bayesian inference. In Sect. 3.3, we will then
summarize some of the most influential variational denoising methods, along with
their underlying assumptions, advantages, and drawbacks.

An entirely different line of research that has become hugely popular and that
has shown impressive performance over the past 5 years are data-driven learning-
based methods: Whenever a sufficient amount of training data pairs of noisy and
noise-free images (f i, ui) are available or can be simulated faithfully, one designs
a parameterized function G(f ; θ) and learns the parameters θ that lead to the best
coincidence of G(f i; θ) with ui with respect to some predefined lossL . To prevent
overfitting, one often defines a regularizationR on theweights θ and solves the energy
minimization problem

θ̂ ≈ argmin
θ

∑

i

L (G(f i; θ), ui) + α R(θ). (3.2)

Once the above (generally nonconvex) problem has been solved approximately
(either by finding a critical point or by stopping early as an additional “regulariza-
tion”), the inference simplypasses new incomingnoisy images f through the network,
i.e., computes G(f ; θ̂ ). We summarize some influential learning-based approaches
to image denoising in Sect. 3.4.

Learning-based strategies are a strong trend in the current literature and they have
also been shown to compare favorably in several denoising works. Nevertheless, we
are convinced that learning-based strategies alone are not addressing the problem
of image denoisingImsgr denoising exhaustively: First, recent studies question the
generalizability of learning-based approaches to realistic types of noise [52]. More
importantly, networks can be difficult to train. Solving (3.2) for a highly nested
functionG (often consisting ofmore than20 layers) requires huge amounts of training
data, sophisticated engineering, and good initializations of the parameters θ as well
as a considerable amount of manual fine-tuning. Since the network architecture and
weights may remain fixed during inference, it typically only works in the specific
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setting that it has been trained for. Finally, networks do not provide much control
and guarantees about the output of the network. Although the training often leads
to good results during inference, test images with characteristics different from the
training data can easily lead to unpredictable behavior.

In Sect. 3.5, we will analyze these drawbacks in more detail. Moreover, we will
analyze whether there is some potential in fusing concepts from energyminimization
approaches with concepts from data-driven methods so as to combine the best of
both worlds. To this end, we will present a framework for combining learning-
based approaches with variational methods. Indeed, preliminary numerical results
indicate that the latter holds great promise in addressing some of the aforementioned
challenges.

3.2 Denoising as Statistical Inference and MAP Estimation

A frequent motivation for energy-based denoising methods of the form (3.1) are
maximum a-posteriori probability (MAP) estimates: One aims at maximizing the
conditional probability p(u|f ) of u being the true noise-free image, if one observed
the noisy version f . According to the Bayesian formula, the posterior probability
density can be written as

p(u|f ) = p(f |u)p(u)
p(f )

.

Instead of looking for the argument u that maximizes the above expression, by con-
vention one equivalently minimizes its negative logarithm to obtain

û ∈ argmin
u

−log(p(f |u)) − log(p(u)). (3.3)

The first term contains the probability of observing f given a true noise-free image
u, and is referred to as the data fidelity term. For example, under the assumption of
independent zero-mean Gaussian noise with standard deviation σ a spatially discrete
formulation gives rise to

p(f |u) = Πpixel i
1√
2πσ 2

exp

(
− (ui − fi)2

2σ 2

)
,

leading to the most commonly used �2-squared term for measuring data fidelity.1

Many works have investigated the data fidelity terms arising from different distribu-
tions of the noise, see [2] for an example considering Poisson noise.

The quest for the right type of data fidelity term for denoising real photographs is,
however, quite difficult and camera dependent: The raw sensor data undergoes several
processing steps, such aswhite balancing, demosaicking, color correction/color space

1For a more detailed spatially continuous formulation, we refer to [22].
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transformation, tone mapping, and possibly even compression. Depending on where
in this processing chain the denoising is applied, different noise distributions have to
be expected. In particular, color space transformations couple the noise over the color
channels and demosaicking introduces a spatial correlation [51, 60]. The raw sensor
data itself seems to follow a Poisson distribution and (for a reasonably high photon
count) is well approximated by a Gaussian distribution with intensity dependent
standard deviation—see e.g., [60].

3.3 Variational Image Denoising Methods

As suggested by the MAP estimate (3.3), typical energy minimization-based tech-
niques can be written as

E(u) = Hf (u) + R(u). (3.4)

Here, the data fidelity term Hf = −log(p(f |u)) measures how well the current esti-
mate u fits to its noisy version f , while the regularization R = −log(p(u)) imposes
consistency with the prior and typically penalizes oscillatory behavior of the noise.
While the data fidelity term Hf can be motivated from the expected distribution of
the noise in the data and can often be precalibrated by studying the sensor noise
characteristics, the quest for a reasonable prior probability distribution p of natural
images is significantly more challenging. In fact, the modeling of prior probabilities
can be expected to benefit tremendously from suitable learning-based approaches
such as deep neural networks—see Sect. 3.5.

3.3.1 Total Variation (TV)-Based Image Regularization

Even apart from the interpretation of MAP estimates, researchers have studied the
properties of penalty functionsR and their respective influence on the properties of the
solution—often in a setting of ill-posed inverse problems in function spaces. Starting
with penalties based on Tikhonov regularization, the advantageous properties of non-
quadratic regularizations and nonlinear filtering techniques in imaging have been
studied from the 1980s on, see the references in [57] for some examples. The total
variation (TV) regularization [56, 61] arguably is the most influential work in the
field. For images u : Ω ⊂ R

2 → R, it is defined as [30]

|u|TV := sup
q∈C∞

0 ,|q(x)|≤1

∫

Ω

div(q)(x) u(x) dx. (3.5)
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It has had an immense success in image denoising, because the functional is
convex (enabling the efficient computation of optimal solutions), and because it
applies to discontinuous functions u (enabling the preservation of sharp edges). For
continuously differentiable functions u, the total variation reduces to the integral over
|∇u(x)|.

In parallel to the development of TV-based regularization methods, a tremendous
amount of research has been conducted on image smoothing using (nonlinear) par-
tial differential equations (PDEs) many of which arise as gradient flows of suitable
regularization energies. For the sake of brevity, we will, however, not discuss these
methods here.

3.3.2 Generalizations: Vectorial TV, Total Generalized
Variation

A particularly interesting question for TV-based methods are suitable extensions to
color images

u : Ω ⊂ R
2 → R

d

with d color channels. Note that (assuming u to be differentiable) the Jacobian Ju is a
2 × d matrix at each point x, which raises the question inwhich norm Ju(x) should be
penalized for a suitable extension of the TV to color images. For non-differentiable
functions u the analogue question is the quest for themost natural norm used to bound
q(x) in (3.5). Studies along these directions include the seminal work of Saprio and
Ringach in [58], Blomgren andChan [7], and a systematic study of different penalties
of the Jacobian, e.g., [27]. Instead of using a penalty that strongly couples the color
channels, some other lines of research consider

∫

Ω

‖∇C(u)(x)‖ dx

for a suitable norm ‖ · ‖ and a linear operator C that changes the color space, e.g.,
[21], and possibly maps from three to more than three color-related channels, e.g.,
[3]. All studies agree that the alignment of edges of the RGB channels is of utmost
importance to avoid visually disturbing color artifacts.

The success of total variation as a convex regularizer, which can preserve the
discontinuities that induced a quest for suitable higher order variants of the TV. To
avoid the staircasing effect inherent to TV-based models, a second-order derivative
of the input image has to be considered in such a way, that the ability to reconstruct
sharp edges is not lost. Higher order TV models include the infimal-convolution
regulariation [12] as well as the total generalized variation (TGV) [8]. The latter
generalizes the total variation in (3.5) as follows:

TGVk
α(u) = sup

{∫

Ω
u divkq dx

∣∣∣v ∈ Ck
c (Ω,Symk (Rd )), ‖divlq‖∞ ≤ αl , l=0, . . . , k−1

}
,
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where Symk(Rd ) denotes the space of symmetric tensors of order k with arguments
in R

d . Clearly through integration by parts, the higher powers of the divergence
operator correspond to higher order derivatives of the function u being penalized.
Whereas the kernel of total variation merely contains the constant functions, the
kernel of total generalized variation contains more interesting functions. Second-
order TGV, for example, contains the set of affine functions. Combined with the
applicability to non-differentiable and discontinuous functions, this makes it well
suited for denoising piecewise affine signals.

Similar to the extension of the total variation to color images, extensions of the
total generalized variation to color images have been investigated, e.g., in [47]. Note
that in its discrete form, the second-order TGV of a color image u ∈ R

nx×ny×d can
be written as

TGV (u) = inf
w

‖D1(u) − w‖∗ + ‖D2(w)‖+,

where D1 and D2 are linear operators approximating suitable derivatives such that
D1(u) ∈ R

nx×ny×d×2, and D2(w) ∈ R
nx×ny×d×2×2. Thus, the TGV offers even more

freedom in choosing different types of (tensor-based) norms ‖ · ‖∗ and ‖ · ‖+ for
different extensions to color images.

3.3.3 Nonconvex Regularizers

Given the success of total variation type regularizers in preserving sharp disconti-
nuities, one may wonder if respective nonconvex generalizations may be even more
suitable in preserving or even enhancing discontinuities.

More specifically, for a one-dimensional functionwhich transitionsmonotonously
between two values a < b, its total variation is exactly b − a, independent of how
sharp this transition is. Discontinuities are hence associated with a finite penalty
corresponding to the size of the step. An often undesired side effect of this property
is the tendency of total variation to induce contrast loss.

In order to reduce this contrast loss, iterative techniques such as the Bregman
iteration [50] can be considered. Similar ideas have also been investigated in [5], in
which it was shown that an image’s curvature is easier to reconstruct than the image
itself, thus suggesting to use a two-step reconstruction procedure.

A different class of approaches, which can not only preserve but also possibly
even enhance discontinuities, penalize the gradient in a sublinear and, therefore,
nonconvex manner. In the literature, there exist numerous variants of this idea. Some
of the most popular choices can be summarized in a regularization of the form

R(u) =
∫

Ω

ψ(|∇u(x)|) dx, (3.6)



3 Image Denoising—Old and New 69

Fig. 3.1 Unified representation of various regularizers in the form (3.6) including the convex total
variation (left) and the nonconvex truncated quadratic and (as its limiting case) the Potts model. The
latter two regularizers essentially correspond to the weak membrane [6] or Mumford–Shah model
[48]

Noisy image TV denoised Mumford-Shah denoised

Fig. 3.2 While total variation regularization (center) induces a contrast loss, truncated regularizers
like the Mumford–Shah model (right) better preserve discontinuities and contrast. The right image
was computed using a convex relaxation of the vectorial Mumford–Shah model proposed in [64]

where typical choices of ψ include the linear one (absolute norm, i.e., total varia-
tion), the truncated linear, the truncated quadratic, and (as the limiting case of the
previous two) the Potts model (which penalizes any nonzero gradient with a constant
value). See Fig. 3.1 for a visualization. The truncated quadratic regularizer essen-
tially corresponds to the Mumford–Shah model [48]. Such truncated regularizers are
likely to preserve contrast because discontinuities are penalized with a constant cost
ν independent of their size. This is indeed confirmed in the example in Fig. 3.2.

The Mumford–Shah model has been studied intensively in the applied math-
ematics literature, because it is an interesting hybrid between a denoising and a
segmentation approach. It is defined as follows:

E(u) =
∫

Ω

(
f (x) − u(x)

)2
dx + λ

∫

Ω\Su
|∇u|2dx + νH 1(Su). (3.7)

The aim is to approximate the input image f : Ω ⊂ R
2 → R in terms of a piece-

wise smooth function u : Ω → R. The functional contains a data fidelity term and
two regularity terms imposing smoothness of u in areas separated by the disconti-
nuity set Su and regularity of Su in terms of its one-dimensional Hausdorff measure
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H 1(Su). Related approaches were proposed in a spatially discrete setting by Geman
andGeman [28] and byBlake and Zisserman [6]. The two regularizers in (3.7) clearly
correspond to the truncated quadratic penalty above in the sense that energetically
image locations, where λ|∇u|2 > ν will be associated with the discontinuity set Su
and hence, are assigned a cost ν.

Sublinear penalties of the gradient norm are also more consistent with the statis-
tics of natural images. Based on the observation that the regularizer is nothing but
the negative logarithm of the prior—see Sect. 3.2—one can study the statistics of
gradient filter responses on natural images [35]. These statistics show heavy-tailed
distributions, which correspond to sublinear regularizers. An alternative representa-
tion of sublinear regularizers are the so-called TV-q models defined as

TVq(u) :=
∫

Ω

|∇u(x)|q dx, (3.8)

where for q < 1 the gradient is penalized sublinearly.
A challenging problem for the actual implementation of the aforementioned non-

convex variants of the total variation regularization is their optimization, inwhich one
can only hope to determine local minimizers. While provably convergent methods
typically have to rely on smoothing the non-differentiable, nonconvex part, sev-
eral works have shown very promising behavior of splitting techniques such as the
alternating directions method of multipliers (ADMM), e.g., [16, 17, 73], or primal
versions of primal-dual algorithms, e.g., [46, 65, 66].We refer the interested reader to
[70] to a recent summary on the convergence of theADMMalgorithm in a nonconvex
setting.

3.3.4 Non-local Regularization

The most notable improvement—particularly for the problem of image denoising—
was the development of non-local smoothing methods, starting with the non-local
means (NLM) algorithm [4, 10]: Based on the idea that natural images are often self-
similar, one denoises images by first computing the similarity of pixels in a robust
way, e.g. by comparing image patches, and subsequently determines the value of
each denoised pixel by a weighted average based on pixel similarities. By con-
sidering the first step, i.e., the estimation of pixel similarities, as the formation of
an image-dependent graph, regularization methods based on (different variants of)
graph Laplacians were developed, see e.g., [39] for details. The extension of non-
local methods to TV regularization was proposed in [29].

One of the most popular and powerful denoising algorithms is the block matching
3D (BM3D) algorithm [23], which is based on very similar assumptions as the above
self-similarity methods, but sacrifices the interpretability in terms of a regularization
function for a more sophisticated filtering strategy of patches that are considered
to be similar. In particular, it estimates a first denoised version of an image to then
recompute the similarity between pixels/patches, and denoises again. An interpreta-
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tion in terms of a frame-based regularization in a variational framework was given
later in [25]. Further prominent extensions and improvements are based on learning
the likelihood of natural image patches [76], and exploiting the low-rank structure
of similar image patches using weighted nuclear norm minimization [31].

While the above methods are based on the assumption that every patch in an
image has multiple similarly looking variants, the idea of sparse representations and
dictionary learning relaxes this constraint. It merely demands that each patch can be
represented as a linear combination of a few suitable patches from an overcomplete
dictionary. The latter can not only be learned from a representative dataset, but also
even on the image to be reconstructed itself, with the K-SVD algorithm [1] being
one of the most popular and powerful numerical methods for tackling the underly-
ing nonconvex energy minimization problem. Hybrid self-similarity and dictionary
learning techniques have been developed in [43], and a focus on dictionary learning
for color image reconstruction has been set in [44].

3.3.5 A Discussion Within Classical Denoising Methods

Before we discuss the extension of the partially data-driven model of dictionary
learning to the mostly data-driven methods, let us compare the denoising methods
we have recalled so far.

TV-type regularization methods are based on rather weak regularity assumptions
and can, therefore, be applied to a wide range of different applications and types of
images. Second- order extensions such as TGV often improve upon TV, while still
depending on (weak) regularity assumptions only. The price for such improvements is
an additional hyperparameter aswell as amore complexminimization problem.Non-
local methods such as NLM and BM3D rely on the reconstructed images to be self-
similar. While they often improve the results of local methods significantly, a faithful
estimate of pixel/patch similarity is required. In settings of inverse problems where
such an estimate is difficult to obtain, or in cases of strong noise in which similarity
estimates become unreliable, such methods come at the risk of hallucinating self-
similar structures as illustrated in Fig. 3.3—also see [9, Fig. 6].

(a) True image (b) Noisy image (c) NLM denoising (d) TV denoising

Fig. 3.3 Illustrating a failure of the self-similarity-based NLM algorithm in a case, where a faithful
estimate of pixel correspondences is impossible: the NLM- denoised image (c) contains strong
artificial structures. While TV denoising is also unable to reconstruct the grass, it erases all high
frequencies instead of hallucinating structures
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Nonconvex variants of the above, e.g., TVq or TGVq models, can improve the
results of their convex relatives—particularly in the presence of strong edges—but
do come with the usual drawbacks of nonconvex optimization: No algorithm can
guarantee not to get stuck in a bad local minimum. Similiarly, dictionary learning
approaches such as the K-SVD algorithm are based on nonconvex optimization
problems and exploit a particular structure of the data, i.e., the ability to represent
each patch as a sparse linear combination of a few (learned) dictionary atoms.

In general, the regularizing quality of the above approaches greatly improves
with the strength of the assumptions that are made. This leads to self-similarity
and dictionary-based techniques clearly being the more powerful choice in usual
practical settings of small or moderate noise and natural images. Strong assumptions
can, however, influence the result in a very undesirable way if they do not hold, as
we have illustrated in Fig. 3.3. This makes the simpler (local) models possibly more
attractive in applications where a structurally systematic error in the reconstruction
can have dramatic consequences, e.g., in the field of medical imaging.

3.4 Learning-Based Denoising Methods

In recent years researchers have had great success in replacing the implicit char-
acterization of solutions as arguments that minimize a suitable energy function by
explicit functions that directly map the input data to the desired solution. In the case
of image denoising, such functions typically take the form

G : Rn×m×c × R
k → R

n×m×c

(f , θ) �→ G(f , θ) (3.9)

where f ∈ R
n×m×c is the noisy input image, G(f , θ) is the denoising result and

θ ∈ R
k are weights that parametrize the functionG. The latter are determined during

training, which is the approximate solution of problem (3.2) for a suitable loss
functionL , e.g., the �2-squared loss, when optimizing for high peak signal-to-noise
ratios (PSNRs). The pairs (f i, ui) of noisy and clean images used during training
have to be representative for the setting the network is used in during inference, i.e.,
the types of images and the type of noise used for the training should originate from
the same distribution as the test images.

The typical architecture of a network G is a nested function

G(f , θ) = gL(gL−1(. . . g2(g1(f , θ
1), θ2) . . . , θL−1), θL), (3.10)

where each function gi is referred to as a layer. The most common layers in basic
architectures are parameterized affine transfer functions followed by a nonlinearity
called activation function.

The specific architecture of G and its individual layers has evolved over the
past years. The first networks to challenge the previous dominance of BM3D and
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K-SVD-type algorithmswere fully connected using tangens hyperbolici as activation
functions [11], e.g.,

gi(x, θ
i) = tanh(θ i[x; 1]), ∀i ∈ {1, . . . ,L − 1},

gL(x, θ
L) = θL[x; 1].

Small vectorized image patches of a noisy image are fed into the network. In each
layer, a 1 is attached to the input vector to allow for an offset, typically called
bias. A crucial aspect of these powerful learning-based denoising approaches was a
comparably large number of layers, relating to the overall trend of developing deep
neural networks.

The work [72] proposed a sparse autoencoder architecture, also using fully con-
nected layers and sigmoid activation functions. While [11] and [72] performed on
par with BM3D and K-SVD on removing Gaussian noise, respectively, architectures
based on convolutions, e.g., [37], or more recently convolutions with rectified linear
units as activations, i.e.,

gi(x, θ
i) =max(θ i

k ∗ x + θ i
b, 0), ∀i ∈ {1, . . . ,L − 1},

have shown promising results, e.g., in [42, 74]. Moreover, [74] proposed the idea of
deep residual learning to the field of image denoising, i.e., the strategy of learning
to output the estimated noise instead of the noise-free image itself.

Recent learning techniques such as [20, 41, 69] furthermore exploit the idea to
filter image patches in (non-local) groups to mimic and improve upon the behavior
of their designed relatives such as BM3D.

Besides a focus onmore realistic types of noise (as pointedout in [52]), a promising
direction for future denoising networks is to move from the (PSNR-optimizing) �2-
squared loss function to perceptual [38], or GAN-based [40] loss functions that are
able to reflect the subjective quality perception of the human visual system much
more accurately.

Beyond the specific architecture and training of networks, further improvements
can bemade by tailoring denoising networks to specific classes of images determined
by a prior classification network, see [53].

A drawback of most learning-based approaches is that they are trained on a spe-
cific type of data, as well as a specific type and strength of noise. Thus, whenever one
of these quantities changes, an expensive retraining is required. Although promising
approaches for a more generic use of neural networks for varying strengths of Gaus-
sian noise exist, see, e.g., [71, 74], retaining a high-quality solution over varying
types of noise remains challenging.

In the next section, we will discuss hybrid learning and energy minimization-
based approaches which represent a promising class of methods to not only adapt
to different types of noise but also even to different types of restoration problems
easily.
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3.5 Combining Learning and Variational Methods

3.5.1 Lacking Flexibility

Deep neural networks have proven to be extraordinarily effective for a wide range of
high- and low-level computer vision problems. Their effectiveness does, however,
come at the costs of a complicated and expensive training procedure in which aspects
such as different training algorithms, hyperparameters, initializations (e.g., [32]),
dropout [63], dropconnect [68], batch-normalization [36], or the introduction of
shortcuts such as in ResNet [33], have to be considered to achieve good results.
Moreover, networks often do not generalize well beyond the specific type of data
they have been trained on. In the case of image denoising, for example, the authors
of [52] showed that the classical BM3D algorithm yields better denoising results on
real photograph than state-of-the-art deep learning techniques that were all trained
on Gaussian noise.

While one might argue that the dominance of learning-based approaches can be
reestablished by training on more realistic datasets, several drawbacks remain:

1. Neural networks often do not generalize well beyond the specific setting they
have been trained on. While approaches for training on a variety of different
noise levels exist (e.g., in [71, 74]), networks typically cannot address arbitrary
image restoration problem of reconstructing an image u from noisy data f ≈ Ku
for a linear operator K , if the operator K was not already known during training
time. Typically, every time the type of noise, the strength of noise, or the linear
operator K changes, neural networks require additional training.

2. The separability of the data formation process from the regularization, and hence
the negative log- likelihood of the distribution of “natural images”, is lost in usual
deep learning strategies despite the fact that learning-from-data seems to be the
only way to realistically give a meaning to the term “natural images” in the first
place.

3. Even though a network might be trained on returning ui for a given measurement
f i = Kui + ni for noise ni drawn from a suitable distribution, there is no guarantee
for the networks outputG(f , θ̂ ) to follow the data formationKG(f , θ̂ ) ≈ f during
inference, i.e., there is no guarantee for the output to be a reasonable explanation
of the data.

On the other hand, one can constitute that

1. Variational methods have a plug-and-play nature in which one merely needs to
adapt the data fidelity termHf as the strength or type of noise or the linear operator
K changes.

2. They clearly separate the data fidelity term from the regularization with each of
the two being exchangeable.

3. The proximity to a given forward model can easily be guaranteed in variational
methods by using suitable indicator functions for Hf .
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4. Despite the above advantages, the expressive power of regularizations terms to
measure how“natural” or “realistic” a given image is, is very limited. In particular,
local (e.g., total variation based) or non-local smoothness properties donot capture
the full complexity of textures and structures present in natural images. In fact,
exploiting large databases seems to be the most promising way for even defining
what “natural images” are.

The complementary advantages of both methods indicate that strategies for com-
bining variational- and learning-based techniques constitute an attractive field of
research. But how can we systematically derive methods which combine the best of
both worlds?

Considering the derivation of energy minimization methods fromMAP estimates
in Sect. 3.2, it seems natural to estimate p(u) in (3.3) from training images. This,
however, means estimating a probability distribution of natural images in a number-
of-pixel dimensional space, which seems to be extremely ambitious even for mod-
erately sized images. In fact, the knowledge of such a distribution would allow to
sample natural images—a task researchers currently try to tackle with generative
adversarial networks (GANs), but still face many difficulties, e.g., for generating
high-resolution images. We refer the reader to [26, 49] for recent approaches that
tackle inverse problems by estimating the distribution of natural images.

3.5.2 Learning the Regularizer

Researchers have already considered the general idea to learn the probabilty dis-
tribution of natural images more than a decade ago by settling for the probability
distribution of separate patches, assuming a particular form of the underlying prob-
ability distribution, see the field of experts model by Roth and Black [55] for an
example. While the latter actually tries to approximate the probability distribution
of training data by combining a gradient ascent on the log-likelihood with a Monte
Carlo simulation, the work [18] by Chen et al. proposes a different strategy: They
show that an analysis-based sparsity regularization of the form

R(u,A) =
∑

patches up

∑

filters Ai

Φ(Ai ∗ up) (3.11)

is equivalent to the negative log-likelihood in the field of experts model. In the
above, Φ denotes a robust penalty function such as log(1 + z2) and Ai ∗ up are the
convolution of a filter Ai with the image patch up. For finding suitable filters A the
authors, however, propose a bilevel optimization framework, which—in the case of
image denoising—takes the form
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min
A

⎛

⎝
∑

training examples (ûj,f j)

‖uj(A) − ûj‖22
⎞

⎠ , (3.12)

subject to uj(A) ∈ argmin
u

λ ‖u − f j‖22 + R(u,A),

for pairs (ûj, f j) of noise-free and noisy training images ûj and f j, respectively.
Although the problem (3.12) is difficult to solve, the results in [18] are promising,

the approach retains the interpretation of an energy minimization method, and the
regularization can potentially generalize to arbitrary image restoration problems. Its
limitation is, however, given by the manual choice and specific parametrization of R
in (3.11).

3.5.3 Developing Network Architectures from Optimization
Methods

For the sake of more freedom, the authors of [19] considered the minimization of
energies like (3.4) for a parameterized regularization R with learnable weights. By
using a gradient descent iteration, a discretization of a reaction–diffusion type of
equation is obtained in which the authors, however, allow the parameterized regu-
larization to change at each iteration of their scheme. Note that although this does
not allow the interpretation as an energy minimization method anymore, it led to
improved denoising performances.

Similarly, in [59] Schmidt and Roth construct a method based on minimizing

1

2
‖Ku − f ‖22 +

∑

filters Ai

∑

patches up

ρi(Ai ∗ up),

where ρi are suitable penalty functions to be learned. By considering a half-quadratic
splitting that minimizes

E(u, z) = 1

2
‖Ku − f ‖22 +

∑

filters Ai

∑

patches up

ρi(zi,p) + β

2
(zi,p − Ai ∗ up)

2, (3.13)

for u and z in an alternating fashion, the update for u becomes a simple linear equation.
The update for z reduces towhat the authors call shrinkage function in [59], andwhich
is called proximal operators in the optimization community. The proximal operator
of a (typically proper, closed, convex) function R : Rn → R ∪ {∞} is defined as

proxR(h) = argmin
v

1

2
‖v − h‖2 + R(v). (3.14)
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In the case of minimizing for z in (3.13), all ρi are functions from R to R, and so are
proxρi

. At this point, the idea of Schmidt and Roth is twofold:

1. They propose to parameterize and learn the proximal operators proxρi
instead

of the functions ρi, and even intentionally drop the constraint that the learned
operators ri must correspond to proximal operators. In fact, it is shown in [59]
that the final ri provably cannot be proximal operators anymore.

2. They allow the learned operators ri to change in each iteration of the half-
quadratic minimization.

By changing the operator in each step, the resulting algorithmic scheme does not
resemble the structure of a minimization algorithm anymore. By omitting the mono-
tonicity contraint which is necessary to even be able to identify an operator as the
proximal operator of a function, not even a single iteration of the respective scheme
can be interpreted as an energy minimization step. Nevertheless, as the training
basically ‘roles out’ the algorithm for a fixed number of iterations, the paper nat-
urally resembles a (deep) neural network, whose architecture is motivated by the
half-quadratic minimization method.

The methods from [19, 59] yield a nice motivation for the (otherwise somewhat
handcrafted) architecture of a neural network, and both allow the extension from
image denoising to more general linear inverse problems. Because both works, [59]
and [19], do, however, have changing operators in each iterations and ‘roll out’ the
iterations during training, they cannot be interpreted as an iteration yielding a (hope-
fully convergent) sequence of iterates as usual minimization algorithms. Moreover,
the end-to-end training of the resulting algorithmic schemes still tailors the parame-
ters to the specific setting (i.e., the specific operator K , type, and strength of noise)
they have been trained on.

3.5.4 Algorithmic Schemes Based on Learned Proximal
Operators

To avoid the aforementioned drawbacks recent research [15, 45, 54, 75] has con-
sidered fully decoupling the data formation process from learning a function that
introduces the required regularity. All these approaches develop algorithmic schemes
based on classical optimization methods and replace the proximal operator of the
regularization by a neural network. The general idea originates from previous pub-
lications [24, 34, 67, 76] in which general algorithmic schemes were developed by
replacing the proximal operator of the regularization by denoising algorithms such as
BM3D or NLM. The premise that learning-based approaches have the power to learn
even more complex smoothness properties than the non-local similarities captured
by NLM and BM3D subsequently motivated the introduction of neural networks.
Let us review some of these ideas in more detail.
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3.5.4.1 Deriving Different Schemes
As a motivation consider the problem of minimizing (3.4), i.e.,

min
u

Hf (u) + R(u), (3.15)

where the data term shall remain flexible as in usual variational methods, but the
regularization shall be replaced by a data-driven approach in order to benefit from
the power of learning-based strategies.

Following the idea of half-quadratic splitting, we have already seen in (3.13), we
could replace (3.15) by

min
u,z

Hf (u) + R(z) + β

2
‖z − u‖2, (3.16)

which—under mild conditions—yields a minimizer of (3.15) for β → ∞.
By applying alternating minimization to (3.16), one has to solve

uk+1 = prox 1
β
Hf

(zk), (3.17)

zk+1 = prox 1
β
R(u

k+1).

As such an algorithm decouples the regularization from the data fidelity term, it
is natural to replace the proximal operator of the regularization by a neural network.
Based on the fact that the proximal operator of a regularization represents a denoising
proceedure, or—in the extreme case—the projection onto a natural feasible set of
natural images, researchers have trained respective networks to perform exactly these
tasks, see [15, 45, 75]. In the above example of half-quadratic splitting, the resulting
algorithmic scheme becomes

uk+1 = prox 1
β
Hf

(zk), (3.18)

zk+1 = G(uk+1; θ̂ ),

for a network G that has been trained on denoising or, more generally, on “making
the image more realistic”.

To illustrate the flexibility and possible advantages of such a scheme, consider Fig.
3.4. Shown in (a) is an image contaminated with salt-and-pepper noise. If one applies
a network that has been trained on removing Gaussian noise, one obtains the middle
image (b) in Fig. 3.4. While some of the texture of the fur of the giraffe is smoothed
out, almost no noise is removed. While the typical learning-based approach is to
retrain the network on example imageswith simulated salt-and-pepper noise, it iswell
known that energy minimization methods can handle such a type of noise efficiently
by using a robust data fidelity term such as the �1 norm. Figure 3.4c shows that
applying iteration (3.18) with the very same network as in (b) andHf (u) = ‖u − f ‖1
is able to remove the noise almost perfectly while preserving the underlying texture.
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(a) Noisy image with salt-and-
pepper noise

(b) Applying a denoising net-
work trained on Gaussian
noise

(c) Iteration (18) with Hf(u) =
‖u − f‖1 and the same net-
work as in b)

Fig. 3.4 A network that has been trained on removing Gaussian noise, often does not generalize
well to other types of noise. Feeding the image (a) with salt-and-pepper noise into such a network
results in image (b). Instead of retraining the network on salt-and-pepper noise, one can exploit the
idea of (3.18) with a robust data fidelity term to obtain significantly better results using the very
same network as in (b)—see (c)

The above idea and derivation of the algorithmic scheme is of course not limited to
themethodof half-quadratic splitting, but actually applies to almost anyminimization
method for (3.16). Due to its flexibility in handling multiple terms, the alternating
direction method of multipliers (ADMM) and preconditioned variants thereof have
mostly been used in this context, see [15, 24, 34, 45, 54, 67, 75, 76]. Since ADMM
is known to not necessarily converge on nonconvex problems, this choice does not
seem to be natural considering that approaches that replace a proximal operator by
an arbitrary function are even beyond the setting of nonconvex minimization.

In Table 3.1 we provide an overview of a wide variety of different optimization
methods and their corresponding algorithmic schemes that could be used in the very
same fashion. Note that we not only considered replacing the proximal operator of the
regularization with a neural network, but also its explicit counterpart—the explicit
gradient descent step on R,

u − τ∇R(u) → G(u, θ̂ ).

This, for instance, leads to the algorithmic schemes of proximal gradient 2 and
HQ splitting to coincide despite originating from different optimization algorithms,
which do not even converge to the same minimizer in a suitable convex setting.
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Table 3.1 Different algorithms for minimizing Hf (u) + R(u) and the corresponding algorithmic
schemes that replace explicit or implicit (proximal) gradient steps on the regularization by a neural
network G. For the Primal-dual 2 algorithm we assumed that Hf = Tf ◦ K for a linear operator K .
Note that—even in a convex setting with some additional assumptions—theHQ splitting algorithm
does not converge to a minimizer of Hf (u) + R(u) but rather replaces R or Hf by the (smoother)
Moreau envelope. The choice β → ∞ can usually reestablish the convergence

Method Iteration Algorithmic scheme

Gradient descent

z1 = uk − 2τ∇Hf (u
k ),

z2 = uk − 2τ∇R(uk ),

uk+1 = 1

2
(z1 + z2)

z1 = uk − 2τ∇Hf (u
k ),

z2 = G(uk ; θ̂ ),

uk+1 = 1

2
(z1 + z2)

Proximal gradient 1
zk = uk − τ∇Hf (u

k ),

uk+1 = proxτR(zk )

zk = uk − τ∇Hf (u
k ),

uk+1 = G(zk ; θ̂ )

Proximal gradient 2
zk = uk − τ∇R(uk ),

uk+1 = proxτHf
(zk ) zk = G(uk ; θ̂ ),

uk+1 = proxτHf
(uk )

HQ splitting

uk+1 = prox 1
β
Hf

(zk ),

zk+1 = prox 1
β
R(uk+1)

ADMM

uk+1 = prox 1
β
Hf

(zk − pk ),

zk+1 = prox 1
β
R(uk+1 + pk ),

pk+1 = pk + uk+1 − zk+1

uk+1 = prox 1
β
Hf

(zk − pk ),

zk+1 = G(uk+1 + pk ; θ̂ ),

pk+1 = pk + uk+1 − zk+1

Primal-dual 1

pk+1 = pk + βūk

−βprox 1
β
R

(
pk

β
+ ūk

)
,

uk+1 = proxτHf
(uk − τpk+1),

ūk+1 = uk+1 + (uk+1 − uk )

pk+1 = pk + βūk

−βG(
pk

β
+ ūk ; θ̂ ),

uk+1 = proxτHf
(uk − τpk+1),

ūk+1 = uk+1 + (uk+1 − uk )

Primal-dual 2

zk+1 = zk + βKūk

−βprox 1
β
Tf

(
zk

β
+ Kūk

)
,

pk+1 = pk + βūk ,

−βprox 1
β
R

(
pk

β
+ ūk

)
,

uk+1 = uk − τKT zk+1 − τpk+1,

ūk+1 = uk+1 + (uk+1 − uk )

zk+1 = zk + βKūk

−βprox 1
β
Tf

(
zk

β
+ Kūk

)
,

pk+1 = pk + βūk ,

− βG(
pk

β
+ ūk ; θ̂ ),

uk+1 = uk − τK∗zk+1 − τpk+1,

ūk+1 = uk+1 + (uk+1 − uk )

While the HQ splitting algorithm is unconditionally stable it converges to a mini-
mizer of a smoothed version of the original energy (replacing R, respectively,Hf , by
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its Moreau envelope). The proximal gradient 2 algorithm on the other hand requires
a step size 0 < τ < 2

L with L being the Lipschitz constant of ∇R to converge to a
minimizer of Hf + R. This along with the long list of possible algorithmic schemes
in Table 3.1, which could further be extended by the corresponding methods with
inertia/momentum, raises the question which method should be used in practice. An
exhaustive answer to this question (if it can be provided at all) requires a tremen-
dous number of experiments involving different problems, different networks, data
terms, parameters, and initializations, and goes beyond the scope of this paper. We
do, however, provide some first experiments involving all algorithms in Sect. 3.6.

3.5.4.2 Hyperparameters of the Algorithmic Schemes
When comparing algorithmic schemes like Proximal gradient 1with their optimiza-
tion algorithm counterpart, one observes that replacing the proximity operator with
a neural network eliminates the step size parameter τ . The missing dependence of
the “regularization-step” on τ in the Proximal gradient 1 scheme means that the step
size τ merely rescales the data fidelity term: The resulting algorithmic scheme may
always pick τ = 1, i.e., eliminate the step size completely, and interpret any τ �= 1 as
a part of Hf , see [45] for details. Interestingly, even simple choices like the function
G being the identity may lead to divergent algorithmic schemes for large data fidelity
parameters. This may motivate training a network function G on a rather small noise
level such that even moderate data fidelity parameters can lead to a large emphasis
on data fidelity over the course of the iteration. Note that—at least in the context of
optimization—the aforementioned difficulties can be avoided by an implicit treat-
ment of the data fidelity term as arising in the Proximal Gradient 2 or HQ splitting
algorithms.

The elimination of hyperparameters in the algorithmic schemes becomes even
more interesting for the more sophisticated primal-dual and ADMM-based schemes.
Note that the parameter 1/β in the ADMM scheme also merely rescales the data
fidelity term. As shown in [45], in the primal-dual 1 scheme, we can define p̃ = p/β
to arive at the update equations

p̃k+1 = p̃k + ūk − G(p̃k + ūk; θ̂ ), (3.19)

uk+1 = proxτHf
(uk − τβp̃k+1), (3.20)

ūk+1 = uk+1 + (uk+1 − uk). (3.21)

In this case, the parameter τ scales the data fidelity term, but the product of τ and β

remains a factor for p̃k+1 in the update of uk+1. In the world of convex optimization,
the product τβ has to remain smaller than the operator norm of the linear operator
used in the primal-dual splitting, which—in our specific case of primal-dual 1—is
the identity. Due to the equivalence of ADMM and the primal-dual algorithm in a
convex setting, the largest value of the product βτ for which convergence can still be
guaranteed is 1, which is also the choice we make in all our numerical experiments
below. This allows to again eliminate τ completely as it merely rescales the data
fidelity term Hf .
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A similar computation allows to reduce the primal-dual 2 scheme to a rescaling
of Tf by 1/β and the product of τβ. Since this splitting involves the linear operator
of two stacked identities, the step size restriction in the convex setting would be
τβ < 1/

√
2. We chose τβ = 0.5 in all our experiments.

3.5.4.3 Algorithm Equivalence
Aparticularly interesting aspect in the above discussion is the equivalence of ADMM
and primal-dual in the convex setting. Considering the ADMM scheme from Table
3.1, we notice that

zk = uk − pk + pk−1

such that the update in uk+1 can equivalently be written as

uk+1 = prox 1
β
Hf

(uk − (2pk − pk−1)).

By entirely eliminating the variable z from the update equations, we arrive at the
equivalent form

uk+1 = prox 1
β
Hf

(uk − (2pk − pk−1)), (3.22)

pk+1 = pk + uk+1 − G(pk + uk+1; θ̂ ). (3.23)

In the convex setting, i.e., ifG is the proximity operator of a proper, closed, convex
function, Moreau’s identity yields the commonly used form of the primal-dual algo-
rithm as presented in [13]. Note that the Eqs. (3.19)–(3.21) match
those of (3.22) and (3.23) up to the extrapolation: While 2uk+1 − uk appears in
(3.19)–(3.21), the scheme (3.22)–(3.23) uses 2pk+1 − pk . In this sense, the primal-
dual schemes of Table 3.1 represent algorithms arising from applying the convex
ADMM optimization method to the dual optimization problem

min
p

(Hf )
∗(p) + R∗(−p),

writing the algorithm in a primal-dual form, using Moreau’s identity to obtain pri-
mal proximity operators only, and finally replacing one of the proximity operators
by a neural network. While an algorithmic scheme motivated from a purely dual
(and therefore inherently convex) point of view does not seem to have a clear intu-
ition, our numerical experiments indicate that the two variants (3.19)–(3.21) and
(3.22)–(3.23) perform quite similarly.
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3.6 Numerical Experiments: Denoising by Denoising?

3.6.1 Different Noise Types and Algorithmic Schemes

So far, the literature on replacing proximal operators by neural networks
[15, 45, 54, 75], has focused on the linear inverse problems with a quadratic �2

norm as a data fidelity term, i.e.,

Hf (u) = α

2
‖Ku − f ‖2,

and ADMM or primal-dual type of algorithmic schemes. Interestingly, the behavior
of such methods for image denoising with different types of noise, i.e., K being the
identity and Hf being a penalty function different from the squared �2 norm, has
received little attention despite the fact that adapting the type of penalty is known to
be extremely important, particularly in the presence of outliers.

To investigate the behavior of the different algorithmic schemes presented in Table
3.1, we consider images with Gaussian and Salt-and-Pepper noise and use a Huber
Loss

H ν
f (u) =

∑

i,j

hν(uij − fij), hν(x) =
{

1
2ν x

2 if |x| ≤ ν,

|x| otherwise,

as a data fideltiy term. The Huber loss has the advantage that it is differentiable with
a L-Lipschitz continuous derivative for L = 1

ν
, and, at the same time, also allows an

efficient computation of its proximal operator, which is given by

proxτh(y) =
{
y/(1 + τ

ν
) if |y| ≤ ν + τ

sign(y)(|y| − τ) otherwise.

In our experiments, we evaluate the gradient descent (GD), proximal gradient 1
called forward–backward (FB) here, the half-quadratic splitting (HQ), the ADMM,
the primal-dual 1 (PD1), and primal-dual 2 (PD2) (withK being the identity) schemes
from Table 3.1 for denoising grayscale images using MATLAB’s built-in implemen-
tation of the DnCNN denoising network [74] as a proximal operator. For the sake of
comparability, we also include the plain application of this denoising network (Net),
and a total variation-based denoising (TV) in our comparison. To each clean image,
we add white Gaussian noise of standard deviation σ = 0.05 (for images with values
in [0, 1]), and additionally destroy 1% of the pixels using Salt-and-Pepper noise.
While we are aware of the fact that this does not necessarily reflect a realistic data
formation process for camera images, our goal here is to study to what extent each
of the algorithmic schemes from Table 3.1 is able to adapt to different settings by
changing the data fidelity term.
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We fixed the smoothing parameter ν = 0.025 for the Huber loss and then tuned
the hyperparameters of TV and the algorithmic schemes on a validation image, where
we found a data fidelity weight of 0.02 to be a good choice for all network-based
algorithmic schemes. Note that this means that the factor in front of the Huber loss
is smaller than 2/L, where L is the Lipschitz constant of ∇H ν

f . Clearly, the latter is
important as the schemes that descent on H ν

f in an explicit fashion typically require
this condition even in a convex setting. Furthermore, we also met the requirements
for “convex convergence” in the primal-dual schemes by choosing βτ = 1 in the
“primal-dual 1” scheme, and βτ = 0.5 for “primal-dual 2”.

We keep all parameters fixed over a run on 7 different test images and show the
resulting PSNR values for all algorithmic schemes in Table 3.2.

Table 3.2 PSNR values for denoising images with Gaussian and Salt-and-Pepper noise obtained
by applying a neural network trained on Gaussian noise (Net), total variation denoising (TV),
and different algorithmic schemes with a neural network replacing the proximal operator of the
regularization, and a Huber loss being used as a measure for data fidelity

Cats Xmax Food Ball Car Monkey Pretzel Avg.

TV 27.53 24.12 29.46 24.89 27.27 28.00 30.57 27.41

Net 26.76 24.87 27.78 25.25 26.90 26.39 28.41 26.62

HQ 28.97 26.94 29.97 26.97 28.90 29.42 30.32 28.79

FB 28.86 26.73 29.84 26.81 28.97 29.29 30.79 28.76

GD 28.33 26.96 28.89 26.76 28.05 28.72 28.76 28.07

ADMM 28.86 26.73 29.84 26.81 28.97 29.29 30.79 28.76

PD1 28.86 26.73 29.84 26.81 28.97 29.29 30.79 28.76

PD2 28.85 26.76 29.83 26.81 28.99 29.30 30.79 28.76

Bold indicates largest number(s)

As we can see, algorithmic schemes are able to improve the results of plainly
applying the network by more than 2db on average. Interestingly, the results among
different algorithmic schemes vary very little with the gradient descent-based algo-
rithmic schemebeing the only one that yields somedeviation in termsofPSNR.While
similar behavior of different algorithms is to be expected for convex optimization
methods, it is quite remarkable that the algorithmic schemes behave similarly.

To investigate the robustness of the algorithmic schemes, we investigate their
sensitivity with respect to the starting point. While we used a constant image whose
mean coincides with the mean of the noisy image as a starting point for the results
in Table 3.2, Table 3.3 shows the average PSNR values over the same test images
when initializing with different images. As we can see, the results remain remarkably
stable with respect to different initializations.

In the above test, we ran all algorithmic schemes for a fixed number of 100 itera-
tions. An interesting question is, whether the algorithmic schemes actually converge
or if they just behave somewhat nicely for a while, but do not yield any fixed points.
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Table 3.3 Average PSNR values each method achieved on the test set of 7 images used in Table 3.2
when initializing each method with a constant image (constant), with random numbers uniformly
sampled in [0, 1] (random), with the noisy input image (noisy), or with MATLAB’s cameraman
image, i.e., a different image (different). The final results of the algorithmic schemes remain remark-
ably stable and do not vary significantly more than the TV result (whose variations are merely due
to different realizations of the noise)

TV Net HQ FB GD ADMM PD1 PD2

Constant 27.41 26.62 28.79 28.76 28.07 28.76 28.76 28.76

Random 27.40 26.65 28.81 28.77 28.10 28.77 28.77 28.80

Noisy 27.41 26.64 28.79 28.76 28.06 28.76 28.76 28.77

Different 27.40 26.68 28.79 28.75 27.98 28.76 28.76 28.70

3.6.1.1 Numerical Convergence of Algorithmic Schemes
Several works in the literature investigate the question whether algorithmic schemes
arising from the ADMM algorithm converge:

• The work [62] gives sufficient conditions under which a general denoiser, e.g.,
a neural network G, represents the proximal operator of some implicitly defined
function. As G is assumed to be continuously differentiable and ∇G(u) has to be
doubly stochastic for any u, the assumptions are, however, quite restrictive.

• The authors of [14] state a converge result of anADMM-based algorithmic scheme
with adaptive penalty parameter under the assumption of a bounded denoiser. The
adaptive scheme, however, possibly allows an exponential growth of the penalty
parameter. While the latter safeguards the convergence the point it converges to
might not be a fixed-point of the algorithmic scheme anymore.

• The work by Romano et al. in [54] proposes a flexible way to incorporate denoiser
G (such as neural networks) into different algorithmic frameworks by providing
quite general conditions under which the function

R(u) = 1

2
〈u, u − G(u)〉

has a gradient ∇R(u) = u − G(u), such that it can easily be incorporated into
existing optimization algorithms. While the assumption G(αu) = αG(u) for all
α ≥ 0 made in their work does hold for several denoisers, neural networks often
have a bias in each layer which prevents the above homogeneity. We, therefore,
investigate the question if the algorithmic schemes converge numerically for a
state-of-the art denoising network which did not adapt its design to any particular
convergence criteria.

Figure 3.5a shows the decay of the root mean square error (RMSE) of successive
iterates

RMSE(uk , uk+1) =
√√√√ 1

number of pixels

∑

i,j

(ukij − uk+1
ij )2
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(a) Convergence with data fidelity 0.02 (b) Convergence with data fidelity 0.2

Fig. 3.5 Numerical convergence test of different algorithmic schemes. The schemes seem to behave
similar to convex minimization techniques in the sense that they converge numerically if the convex
stability criteria are satisfied

for each of the algorithmic schemes from Table 3.2. As we can see, all algorithmic
schemes converge to a reasonably small level (considering that all computations are
done on a GPU in single precision).

We rerun the same test as above after multiplying the data fidelity term by a factor
of 10 and illustrate the results in Fig. 3.5b. As we discussed in Sect. 3.5.4.2, the data
fidelity weight is directly connected to a step size of the algorithmic schemes. As
expected based on the respective behavior in a convex optimization setting, methods
that take explicit steps on the data fidelity term do not exhibit convergence anymore.
Interestingly, the methods that evaluate the proximity operator of the data fidelity
term still converge and seem to be quite independent of the magnitude of the data
fidelity parameter.

While the numerical convergence behavior in our denoising test is closely related
to the convergence behavior of the respective methods in the case of convex opti-
mization, an analysis with sufficient conditions on the network to yield a provably
convergent algorithm remains an interesting question of future research.

3.6.2 Handling Constraints

Besides the lack of versatility of learning-based approaches, a significant drawback
is the lacking control over their output: For instance, once a network has been trained
there is no parameter that allows to tune the amount of denoising.Moreover, although
many types of constraints can be encouraged during training, there is no guarantee
for the networks output to meet such constraints during testing. This is of utmost
importance in any application, where critical decisions depend on the networks out-
put.

Interestingly, the framework of algorithmic schemes based on optimization algo-
rithms allows to guarantee certain constraints by choosing the data fidelity term Hf

to be the indicator function of the desired (convex) constrained set. As an example,
consider the case where want to denoise an image under the constraint that each pixel
may at most be altered by δ, i.e., we want our reconstruction u to meet ‖u − f ‖∞ ≤ δ
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Table 3.4 Average PSNR values each method achieved on the test set of 7 images with uniform
noise and a suitable bound on ‖u − f ‖∞

TV Net HQ ADMM PD1 PD2

PSNR 32.77 32.66 31.99 32.54 32.67 32.80

for f being the noisy input image. Note that such constraints can easily be extended
to a setting of inverse problem, e.g., requiring ‖Ku − f ‖2 ≤ δ. The fact that indicator
functions are not differentiable excludes the gradient descent, as well as the proximal
gradient 1 algorithms. Moreover, the primal-dual 2 scheme does not guarantee the
output ukmax to meet the constraint exactly unless it converged. We, therefore, return

proxHf

(
zkmax + ukmax

)
,

which satisfies the constrain and is supposed to coincidewith ukmax upon convergence.
We simulate imageswith uniformnoise and set our data fidelity term to be the indi-

cator function of ‖u − f ‖∞ ≤ δ, which has an easy-to-evaluate proximity operator.
We run the algorithmic schemes HQ splitting, ADMM, primal-dual 1, and primal-
dual 2, as well as TV denoising (as a baseline), and compare to the plain application
of the denoising network.

The average PSNR values are shown in Table 3.4. Interestingly, the PSNR values
do not differ significantly, and the algorithmic schemes may perform worse (HQ), or
slightly better (PD2) than the plain application of the network. While these results
would not justify the additional computational effort of the algorithmic schemes,
note that the Net result violated the ‖u − f ‖∞ ≤ δ bound at about 25% of the pix-
els on average. Although the simple projection of the network’s result would yield
satisfactory results in this simple application, the constraint violation illustrates the
lacking control of neural networks.

Finally, comparing the results of the network and the algorithmic schemes to plain
TVdenoising,we can see that TVdenoising is (at least) on parwith the othermethods.
This yields the interesting conclusions that the advantages certain methods have as
a denoiser do not necessarily carry over to other applications via the algorithmic
schemes we presented in Table 3.1. In particular, an important question for future
research is how networks (or general denoisers) can be designed in such a way that
they work well in various different setting, in particular in such a way that they
perform well with additional constraints on the output.

3.7 Conclusions

We have summarized some classical denoising methods including self-similarity-
based filtering and variational methods, and discussed various learning-based meth-
ods that profit from a dataset of natural images. The framework of replacing proxi-
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mal operators within optimization algorithms for energy minimization methods with
denoising networks holds great promise in tackling various imaging tasks, using dif-
ferent data fidelities, and being able to adjust the amount of regularity without having
to retrain the underlying neural network. Interestingly, the particular choice of algo-
rithmic scheme had little influence on the final result in our numerical experiments
and the convergence behavior of all algorithmswas similar. Changing the algorithmic
scheme from a penalty formulation to a constrained formulation changed the results
quite significantly in the sense that the advantages of the neural network over TV
regularization for image denoising did not transfer to the corresponding algorithmic
scheme. Hence, an understanding of desirable properties of denoising algorithms for
optimal results in the setting of algorithmic schemes remains an important question
for future research.

References

1. Aharon M, Elad M, Bruckstein A (2006) rmk-svd: an algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

2. Asaki TJ, Le T, Chartrand R (2007) A variational approach to reconstructing images corrupted
by Poisson noise. J Math Imaging Vis (JMIV) 27:257–263

3. Aström F, Schnörr C (2017) A geometric approach for color image regularization. Comput Vis
Image Underst 165:43–59

4. Awate SP, Whitaker RT (2005) Higher-order image statistics for unsupervised, information-
theoretic, adaptive, image filtering. In: IEEE conference on computer vision and pattern recog-
nition (CVPR), vol 2, pp 44–51

5. Bertalmo M, Levine S (2014) Denoising an image by denoising its curvature image. SIAM J
Imaging Sci 7(1):187–211

6. Blake A, Zisserman A (1987) Visual reconstruction. MIT Press
7. Blomgren P, Chan TF (1998) Color tv: total variation methods for restoration of vector-valued

images. IEEE Trans Image Process 7(3):304–309
8. Bredies K, Kunisch K, Pock T (2010) Total generalized variation. SIAM J Imaging Sci

3(3):492–526
9. Brox T, Cremers D (2007) Iterated nonlocal means for texture restoration. In: Sgallari F, Murli

A, ParagiosN (eds) International conference on scale space andvariationalmethods in computer
vision (SSVM). LNCS, vol 4485. Springer, pp 13–24

10. Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. In: IEEE
conference on computer vision and pattern recognition (CVPR), vol 2, pp 60–65

11. Burger HC, Schuler CJ, Harmeling S (2012) Image denoising: can plain neural networks
compete with BM3D? In: 2012 IEEE conference on computer vision and pattern recognition,
pp 2392–2399

12. Chambolle A, Lions P-L (1997) Image recovery via total variation minimization and related
problems. Numerische Mathematik 76(2):167–188

13. Chambolle A, Pock T (2011) A first-order primal-dual algorithm for convex problems with
applications to imaging. J Math Imaging Vis (JMIV)

14. Chan SH,Wang X, Elgendy OA (2017) Plug-and-play admm for image restoration: fixed-point
convergence and applications. IEEE Trans Comput Imaging 3(1):84–98

15. Chang J-H, Li C-L, Poczos B, Vijaya Kumar BVK, Sankaranarayanan AC (2017) One network
to solve them all—solving linear inverse problems using deep projection models. In: IEEE
international conference on computer vision (ICCV)



3 Image Denoising—Old and New 89

16. Chartrand R (2012) Nonconvex splitting for regularized low-rank + sparse decomposition.
IEEE Trans Signal Process 60(11):5810–5819

17. ChartrandR,WohlbergB (2013)A nonconvexADMMalgorithm for group sparsitywith sparse
groups. In: 2013 IEEE international conference on acoustics, speech and signal processing, pp
6009–6013

18. Chen Y, Ranftl R, Pock T (2014) Insights into analysis operator learning: from patch-based
sparse models to higher order MRFs. IEEE Trans Image Process 23(3):1060–1072

19. Chen Y, Yu W, Pock T (2015) On learning optimized reaction diffusion processes for effective
image restoration. In: IEEE conference on computer vision and pattern recognition (CVPR),
June 2015

20. Cho NI, Ahn B (2017) Block-matching convolutional neural network for image denoising.
https://arxiv.org/abs/1704.00524

21. Condat L, Mosaddegh S (2012) Joint demosaicking and denoising by total variation minimiza-
tion. In: IEEE international conference on image processing (ICIP), pp 2781–2784

22. Cremers D, Rousson M, Deriche R (2007) A review of statistical approaches to level set
segmentation: integrating color, texture, motion and shape. Int J Comput Vis (IJCV) 72(2):195–
215

23. Dabov K, Foi A, Egiazarian K (2007) Video denoising by sparse 3d transform-domain collab-
orative filtering. In: European signal processing conference (EUSIPCO)

24. Danielyan A, Katkovnik V, Egiazarian K (2010) Image deblurring by augmented lagrangian
with BM3D frame prior

25. Danielyan A, Katkovnik V, Egiazarian K (2012) BM3D frames and variational image deblur-
ring. IEEE Trans Image Process 21(4):1715–1728

26. DaveA, Vadathya AK,Mitra K (2017) From learningmodels of natural image patches to whole
image restoration. In: IEEE international conference on image processing (ICIP)

27. Duran J, Moeller M, Sbert C, Cremers D (2016) Collaborative total variation: a general frame-
work for vectorial tv models. SIAM J Imaging Sci 9(1):116–151

28. Geman S,GemanD (1984) Stochastic relaxation, Gibbs distributions, and theBayesian restora-
tion of images. IEEE Trans Pattern Anal Mach Intell (PAMI) 6(6):721–741

29. GilboaG,Osher S (2009) Nonlocal operators with applications to image processing.Multiscale
Model Simul 7(3):1005–1028

30. Giusti E (1984) Minimal surfaces and functions of bounded variation. Birkhäuser
31. Gu S, Zhang L, Zuo W, Feng X (2014) Weighted nuclear norm minimization with application

to image denoising. In: IEEE conference on computer vision and pattern recognition (CVPR),
pp 2862–2869

32. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level
performance on imagenet classification. In: IEEE international conference on computer vision
(ICCV), pp 1026–1034

33. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE
conference on computer vision and pattern recognition (CVPR), pp 770–778

34. Heide F, Steinberger M, Tsai YT, Rouf M, Pajk D, Reddy D, Gallo O, Liu J, Heidrich W,
Egiazarian K, Kautz J, Pulli K (2014) Flexisp: a flexible camera image processing framework.
In: ACM special interest group on computer graphics (SIGGRAPH)

35. Huang J,MumfordD (1999) Statistics of natural images andmodels. In: IEEE computer society
conference on computer vision and pattern recognition, 1999, vol 1. IEEE, pp 541–547

36. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing
internal covariate shift. In: International conference on machine learning (ICML)

37. Jain V, Seung S (2009) Natural image denoising with convolutional networks. In: Koller D,
Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems,
vol 21. Curran Associates, Inc., pp 769–776

38. Johnson J, Alahi A, Li F-F (2016) Perceptual losses for real-time style transfer and super-
resolution. In: European conference on computer vision (ECCV)

39. KheradmandA,Milanfar P (2014)Ageneral framework for regularized, similarity-based image
restoration. IEEE Trans Image Process 23(12):5136–5151

https://arxiv.org/abs/1704.00524


90 M. Moeller and D. Cremers

40. Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz
J, Wang Z, Shi W (2016) Photo-realistic single image super-resolution using a generative
adversarial network. https://arxiv.org/abs/1609.04802

41. Lefkimmiatis S (2017) Non-local color image denoising with convolutional neural networks.
https://arxiv.org/abs/1611.06757

42. Liu P, FangR (2017) Learning pixel-distribution priorwithwider convolution for image denois-
ing. https://arxiv.org/abs/1707.09135

43. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2009) Non-local sparse models for image
restoration. In: IEEE international conference on computer vision (ICCV), pp 2272–2279

44. Mairal J, Elad M, Sapiro G (2008) Sparse representation for color image restoration. IEEE
Trans Image Process 17(1):53–69

45. Meinhardt T, Moeller M, Hazirbas C, Cremers D (2017) Learning proximal operators: Using
denoising networks for regularizing inverse imaging problems. In: IEEE international confer-
ence on computer vision (ICCV)

46. Möllenhoff T, Strekalovskiy E, Moeller M, Cremers D (2014) The primal-dual hybrid gradient
method for semiconvex splittings. 8:07

47. Möllenhoff T, Strekalovskiy E, Moeller M, Cremers D (2015) Low rank priors for color image
regularization. In: Energy minimization methods in computer vision and pattern recognition
(EMMCVPR)

48. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and asso-
ciated variational problems. Commun Pure Appl Math 42:577–685

49. Nguyen A, Clune J, Bengio Y, Dosovitskiy A, Yosinski J (2017) Plug & play generative
networks: conditional iterative generation of images in latent space. In: IEEE conference on
computer vision and pattern recognition (CVPR)

50. Osher S, Burger M, Goldfarb D, Xu J, Yin W (2005) An iterative regularization method for
total variation-based image restoration. Multiscale Model Simul 4(2):460–489

51. Park SH, Kim HS, Lansel S, Parmar M,Wandell BA (2009) A case for denoising before demo-
saicking color filter array data. In: Asilomar conference on signals, systems and computers, pp
860–864

52. Plötz T, Roth S (2017) Benchmarking denoising algorithms with real photographs. In: IEEE
conference on computer vision and pattern recognition (CVPR)

53. Remez T, Litany O, Giryes R, Bronstein AM (2017) Deep class-aware image denoising. In:
2017 international conference on sampling theory and applications (SampTA), pp 138–142

54. Romano Y, Elad M, Milanfar P (2017) The little engine that could: regularization by denoising
(red). SIAM J Imaging Sci 10(4):1804–1844

55. Roth S, Black MJ (2005) Fields of experts: a framework for learning image priors. In: IEEE
conference on computer vision and pattern recognition (CVPR), vol 2, pp 860–867

56. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms.
Phys D

57. Saint-Marc P, Chen JS, Medioni G (1989) Adaptive smoothing: a general tool for early vision.
In: IEEE conference on computer vision and pattern recognition (CVPR), pp 618–624

58. SapiroG,RingachDL (1996)Anisotropic diffusion ofmultivalued images. In: Images,wavelets
and PDEs, pp 134–140

59. Schmidt U, Roth S (2014) Shrinkage fields for effective image restoration. In: IEEE conference
on computer vision and pattern recognition (CVPR), pp 2774–2781

60. Seybold T, Keimel C, Knopp M, Stechele W (2013) Towards an evaluation of denoising algo-
rithms with respect to realistic camera noise. In: IEEE international symposium onmultimedia,
pp 203–210

61. Shulman D, Herve J-Y (1989) Regularization of discontinuous flow fields. In: Workshop on
visual motion, 1989, proceedings. IEEE, pp 81–86

62. Sreehari S, Venkatakrishnan SV, Wohlberg B, Drummy LF, Simmons JP, Bouman CA (2016)
Plug-and-play priors for bright field electron tomography and sparse interpolation. IEEE Trans
Comput Imaging 2:408–423

https://arxiv.org/abs/1609.04802
https://arxiv.org/abs/1611.06757
https://arxiv.org/abs/1707.09135


3 Image Denoising—Old and New 91

63. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple
way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958

64. Strekalovskiy E, Chambolle A, Cremers D (2012) A convex representation for the vectorial
Mumford-Shah functional. In: IEEE conference on computer vision and pattern recognition
(CVPR), Providence, Rhode Island, June 2012

65. Strekalovskiy E, CremersD (2014) Real-timeminimization of the piecewise smoothMumford-
Shah functional. In: European conference on computer vision (ECCV)

66. Valkonen T (2014) A primal dual hybrid gradient method for nonlinear operators with appli-
cations to MRI. Inverse Probl 30(5)

67. Venkatakrishnan S, Bouman CA, Wohlberg B (2013) Plug-and-play priors for model based
reconstruction. In: Global conference on signal and information processing (GlobalSIP)

68. Wan L, Zeiler M, Zhang S, Le Cun Y, Fergus R (2013) Regularization of neural networks
using dropconnect. In: Sanjoy D, David M (eds) International conference on machine learning
(ICML), Proceedings of machine learning research, PMLR, Atlanta, Georgia, USA, vol 28, pp
1058–1066

69. Wang R, Tao D (2016) Non-local auto-encoder with collaborative stabilization for image
restoration. IEEE Trans Image Process 25(5):2117–2129

70. Wang Y, Yin W, Zeng J (2017) Global convergence of ADMM in nonconvex nonsmooth
optimization. https://arxiv.org/abs/1511.06324

71. Wang YQ, Morel JM (2014) Can a single image denoising neural network handle all levels of
Gaussian noise? IEEE Signal Process Lett 21(9):1150–1153

72. Xie J, Xu L, Chen E (2012) Image denoising and inpainting with deep neural networks. In:
Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information pro-
cessing systems, vol 25. Curran Associates, Inc., pp 341–349

73. ZhangX, Esser E (2014)Nonlocal path-based image inpainting throughminimization of a spar-
sity promoting nonconvex functional. https://www.eoas.ubc.ca/~eesser/papers/nliPDHGM.
pdf

74. Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a Gaussian denoiser: Residual
learning of deep CNN for image denoising. IEEE Trans Image Process 26(7):3142–3155

75. Zhang K, Zuo W, Gu S, Zhang L (2017) Learning deep CNN denoiser prior for image restora-
tion. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2808–2817

76. Zoran D, Weiss Y (2011) From learning models of natural image patches to whole image
restoration. In: IEEE international conference on computer vision (ICCV), pp 479–486

https://arxiv.org/abs/1511.06324
https://www.eoas.ubc.ca/~eesser/papers/nliPDHGM.pdf
https://www.eoas.ubc.ca/~eesser/papers/nliPDHGM.pdf


Chapter 4
Convolutional Neural Networks
for Image Denoising and Restoration

Wangmeng Zuo, Kai Zhang and Lei Zhang

Abstract With the tremendous progress of convolutional neural networks (CNNs),
recent years have witnessed a dramatic upsurge of exploiting CNN toward solving
image denoising. Compared to traditional model-based methods, CNN enjoys the
principal merits of fast inference and good performance. In this chapter, brief survey
and discussions are also given to CNN-based denoising methods from the aspects
of effectiveness, interpretability, modeling ability, efficiency, flexibility, and applica-
bility. Then, we provide a gentle introduction of CNN-based denoising methods by
presenting and answering the following three questions: (i) can we learn a deep CNN
for effective image denoising, (ii) can we learn a single CNN for fast and flexible
non-blind image denoising, and (iii) can we leverage CNN denoiser prior to versa-
tile image restoration tasks. Finally, we point out that image denoising remains far
from solved. The real image noise is much more sophisticated than additive white
Gaussian noise, making the existing CNN denoisers generally perform poorly on real
noisy images. As a result, it is still very challenging and valuable to study the issues
such as noise modeling, acquisition of noisy-clean image pairs and unsupervised
CNN learning for real image denoising.
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4.1 Introduction

During past decade, driven by the easy access to large-scale dataset, efficient train-
ing implementation on modern powerful GPUs and the advances in deep learning
methods such as Rectified Linear Unit (ReLU) [22], network initialization [14],
stochastic gradient-based optimization [20], batch normalization [17] and residual
learning [15], the convolutional neural networks have shown great success in han-
dling various low-level vision tasks. Concurrently, several attempts have been made
to exploit CNN for image denoising due to the following reasons. First, the infer-
ence can be very efficient due to the parallel computation ability of GPU. Second,
deep CNN exhibits powerful modeling capacity and can be trained without knowing
the explicit degradation model when abundant noisy/clean image pairs are provided.
Thus, the denoising performance can be easily boosted. Third, CNN exploits the
external prior which is complementary to the internal prior of many existing denois-
ers such as nonlocal similarity (NSS). In other words, its combination with NSS is
expected to further improve the performance. Fourth, great progress in designing
CNN can facilitate the flexibility and practicability in real applications.

The goal of image denoising is to recover a latent clean image x from its noisy
observation y which follows the image degradation model y = x + v. One common
assumption is that v is the additive white Gaussian noise (AWGN) with known noise
level σ . Due to the ill-posed nature of denoising, regularization needs to be imposed
to constrain the solution. From a Bayesian perspective, the solution x̂ can be obtained
by solving the Maximum A Posteriori (MAP) model,

x̂ = argmax x log p(y|x) + log p(x) (4.1)

where log p(y|x) represents the log-likelihood term, and log p(x) models the prior
of x which is independent of y. More formally, Eq. (4.1) can be reformulated as

x̂ = argmin x
1

2σ 2
‖x − y‖2 + λ�(x) (4.2)

where 1
2σ 2 ‖x − y‖2 is the data fidelity term, �(x) is the regularization term (or prior

term) and λ is the trade-off parameter. It is worth noting that in practice λ governs the
compromise between noise reduction and detail preservation. When it is too small,
some noise will be retained in the denoising result; in contrast, when λ is too large,
small-scale details will also be smoothed out along with the suppression of noise.

Generally, the methods to solve Eq. (4.2) can be divided into two main categories,
model-based optimization methods and discriminative learning methods. Model-
based optimization directly solvesEq. (4.2)with someoptimization algorithmswhich
usually involve a time-consuming iterative inference. On the contrary, discriminative
learning methods try to learn a compact inference through an optimization of a loss
function on a training set containing degraded-clean image pairs [4, 8, 38, 43]. The
CNN-based denoising methods belong to this category. Specifically, CNN-based
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denoising methods can be further divided into MAP-CNN based and generic CNN-
based denoising methods.

MAP-CNN based denoising methods refer in particular to the MAP inference
based approaches which involve a series of convolution operations. Instead of first
learning the prior (e.g., high-order MRF priors) and then performing the inference,
this category of methods aims to learn the prior parameters along with a compact
unrolled inference through solving a bi-level optimization problem [4]. With a slight
abuse of notation, the objective can be given by

min
�

�(x̂(�), x) s.t. x̂(�) = argmin x
1

2σ 2
‖y − x‖2 + λ�(x) (4.3)

where� denotes the trainable parameters in the inference, �(x̂, x)measures the sim-
ilarity between estimated clean image x̂ and ground-truth clean image x. While such
kind of approaches are not directly connected with CNN, their unrolled inferences
actually can be viewed as CNN variants with stagewise architecture. Following the
pioneer work of fields of experts [34], Barbu [4] trained a discriminative Markov
random field (MRF) model together with a gradient descent inference for image
denoising. Samuel and Tappen [36] independently proposed a compact gradient
descend inference learning framework, and discussed the advantages of discrimina-
tive learning over model-based optimization. Sun and Tappen [42] proposed a novel
nonlocal range MRF (NLR-MRF) framework, and employed the gradient-based dis-
criminative learningmethod to train the model. Chen and Pock [8] further proposed a
trainable nonlinear reaction–diffusion (TNRD) model through discriminative learn-
ing of a compact gradient descent inference. Lefkimmiatis [25] adopted a proximal
gradient-based denoising inference from a variational model to incorporate the NSS
prior.

Discriminative inference learning methods enjoy some merits. First, they are effi-
cient due to much fewer inference steps. Second, they have better interpretability
because the discriminative architecture is derived from optimization algorithms such
as half quadratic splitting and gradient descent [4, 8, 36, 38, 42]. However, the
interpretability may come at the expense of performance since the learned priors and
inference procedure are limited by the form of the MAP model [50]. In addition, the
unrolled inference actually can be viewed as a network with stagewise architecture,
which restricts the dataflow in each immediate output layer [51].

Instead of modeling image priors explicitly, the generic CNN-based denoising
methods learn a predefined nonlinear function consisting of various CNN building
blocks to model image prior implicitly and can be modeled by

min
�

�(x̂, x) s.t. x̂ = F(y, σ ;�). (4.4)

The use of CNN for image denoising can be traced back to [18], where a five-
layer network with sigmoid nonlinearity was developed. During the past few years,
various genericCNN-based denoisingmethods have beenproposed and the denoising
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performance has been greatly boosted in comparison to [18]. In this chapter, we focus
on this type of denoising methods, and assume that the noise type is AWGNwith the
known noise level σ .

4.1.1 Recent Advances

In addition to DnCNN and FFDNet described in this chapter, there have been several
other attempts to design CNN for image denoising. Some works propose to improve
convolutional filters or nonlinearities for better trade-off between effectiveness and
efficiency. Wang et al. [47] developed a dilated residual CNN for fast Gaussian
denoising. The main idea is to enlarge receptive field by dilated filter with different
dilation factors. They showed that the expansion of receptive field can boost the
denoising performance. In another denoisingwork byWang et al. [46], they proposed
a denoising network which uses exponential linear unit (ELU) as the nonlinearity.
To better accommodate ELU and batch normalization layer, they further designed
a novel structure by incorporating 1 × 1 convolutional layer. Kligvasser et al. [21]
proposed a learnable nonlinear function with spatial connections as activation unit
to replace the widespread per-pixel activation units such as ReLUs and sigmoids.
They showed that the activation unit can enable CNN to capture much more complex
features, thus leading to better denoising results.

While CNN-based denoising methods are effective, they lack the explicit abil-
ity to handle images with regular and repetitive patterns. Some researchers resort
to incorporate the nonlocal self-similarity prior into CNN. Ahn and Cho [1] pro-
posed a block matching convolutional neural network which combines nonlocal
self-similarity prior and CNN for image denoising. The main idea is to group similar
local patches into a tensor and then feed it to CNN for denoising. Bae et al. [2] pro-
posed a new denoising network motivated from a novel persistent homology analysis
on residual learning for image processing tasks. Specifically, they showed that the
residual manifold is topologically simpler than the original image manifold and the
wavelet transform can provide topologically simpler manifold structures. Yang and
Sun [48] proposed a BM3D-inspired convolutional neural network (BM3D-Net) for
image denoising. BM3D-Net directly builds the convolutional neural network by
faithfully implementing the transform domain collaborative filtering in the BM3D
framework. Lefkimmiatis [26] proposed a novel network architecture which involves
convolutional layers as a core component and nonlocal filtering layers to exploit the
inherent nonlocal self-similarity property of natural images. By training the denoiser
with a wide range of different noise levels, the networks do not need to know the
noise level of the noisy image and are very robust when the noise model does not
match the statistics of the one used during training.

To design a principled network architecture, an interesting line of denoisingmeth-
ods has focused on incorporating CNN building blocks into MAP-based unrolled
inference. Kim et al. [19] proposed a deeply aggregated alternating minimization
(DeepAM) based on two of the steps in the conventional AM algorithm: proximal
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mapping and β-continuation. The DeepAM framework enables the convolutional
neural networks to operate as a regularizer in the AM algorithm for image denois-
ing. Vogel and Pock [45] proposed a primal-dual network for image denoising that
leverages the algorithmic structure provided by energy optimization techniques into
learning a generalized optimization algorithm.

There also exist some works that focus on class-aware image denoising, generic
image denoising and boosting-based image denoising. Remez et al. [31] pointed out
a denoiser is aware of the type of image content and proposed a new fully convolu-
tional deep neural network architecture for image denoising. They further showed
that the performance can be significantly improved by fine-tuning the denoiser for
images belonging to a specific semantic class. Santhanam et al. [37] developed a
recursively branched deconvolutional network (RBDN) for image denoising as well
as generic image-to-image regression. To integrate multiple weak denoisers with dif-
ferent capabilities to denoise complex scenes, Choi et al. [9] proposed a consensus
neural network (ConsensusNet) which comprises a weighting stage to weigh the rel-
evance of the individual denoisers and a boosting neural network to recover the lost
features as well as improve contrast. They studied ConsensusNet on various scenar-
ios, including the integration of denoisers with different noise levels, different image
classes, and different denoiser types. Experimental results show that ConsensusNet
can consistently improve denoising performance for both deterministic denoisers
and neural network denoisers.

Apart from single image denoising, multi-image denoising has also attracted con-
siderable interest. Godard et al. [12] proposed a recurrent fully CNN to handle an
arbitrary number of noisy input frames for burst denoising. Instead of directly pre-
dicting the final denoised pixel values [3], Mildenhall et al. [29] proposed a CNN
architecture to predict spatially varying weighting kernels of different frames. They
further proposed a synthetic data generation approach based on signal-dependent
Gaussian noise model, and an optimization guided by an annealed loss function to
avoid undesirable local minima.

The rest of this chapter is organized as follows.We first introduce a simple denois-
ing CNN which embraces the progress in learning and designing CNN in Sect. 4.2.
We show that residual learning and batch normalization are particularly beneficial
to Gaussian denoising. We also analyze the rationale of residual learning and the
modeling capacity of CNN. In Sect. 4.3, we provide a fast and flexible denoising
CNN with a tunable noise level map as input and thus can handle a wide range of
noise levels as well as spatially variant AWGNvia a singlemodel. To demonstrate the
wide applications of CNN denoisers, in Sect. 4.4, we show that the CNN denoisers
can be plugged into model-based optimization methods as a modular part to solve
other image restoration tasks such as image deblurring, singe image super-resolution
(SISR), and image inpainting. We provide a short review of recent advances, and
discuss the challenges and some possible solutions in Sect. 4.5.
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4.2 Learning Deep CNN for Image Denoising

Discriminative model learning for image denoising has been recently attracting con-
siderable attention due to its favorable denoising performance. In this section,we take
one step forward by investigating the construction of feed-forward denoising con-
volutional neural networks (DnCNN) to embrace the progress in deep architecture,
learning algorithm, and regularization method into image denoising.

4.2.1 Architecture Design: DnCNN

The architecture of DnCNN is shown in Fig. 4.1. The input of DnCNN is a noisy
observation y = x + v. Discriminative denoising models such as MLP [5] and
CSF [38] aim to directly learn the original mapping functionF(y) = x to predict the
latent clean image. For DnCNN, the residual learning formulation is instead to train
a residual mapping R(y) = v, and then x can be obtained by x = y − R(y).

Following the principle in [40], the size of convolutional filters is set to 3 × 3.
Therefore, the receptive field of DnCNN with depth of d should be (2d + 1) ×
(2d + 1). Increasing the network depth can make use of the context information in
larger image region at the cost of computational burden. For better trade-off between
performance and efficiency, one important issue in architecture design is to set a
proper depth for DnCNN. The receptive field size of DnCNN for Gaussian denoising
with a certain noise level is set to 35 × 35 with the corresponding depth of 17.

Given the DnCNNwith depth D, there are three types of layers (shown in Fig. 4.1)
with three different colors. (i) Conv + ReLU: for the first layer, 64 filters of size
3 × 3 × c are used to generate 64 feature maps, and rectified linear units (ReLU,
max(0, ·)) are then utilized for nonlinearity. Here, c represents the number of image
channels, i.e., c = 1 for grayscale image and c = 3 for color image. (ii) Conv + BN
+ ReLU: for layers 2 ∼ (D − 1), 64 filters of size 3 × 3 × 64 are used, and batch
normalization [17] is added between convolution and ReLU. (iii) Conv: for the last
layer, c filters of size 3 × 3 × 64 are used to reconstruct the denoising result.

To sum up, DnCNN has two main features: the residual learning formulation is
adopted to learnR(y), and batch normalization is incorporated to speed up training
as well as boost the denoising performance. In particular, it turns out that residual

Noisy Image Residual Image

Co
nv

 +
 B

N
 +

 R
eL

U

Co
nv

 +
 B

N
 +

 R
eL

U

Co
nv

 +
 B

N
 +

 R
eL

U

Co
nv

Co
nv

 +
 R

eL
U

Fig. 4.1 The architecture of the DnCNN network
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learning and batch normalization can benefit from each other, and their integration
is effective in speeding up the training and boosting the denoising performance.

4.2.2 Residual Learning and Batch Normalization

To start with, it is useful to briefly review residual learning and batch normaliza-
tion. The main idea of residual learning [15] is that the residual mapping is much
easier to be learned than the original mapping. Typically, residual network stacks a
number of residual units to alleviate the degradation of training accuracy. Benefited
from residual network, deep CNN can be easily trained and improved accuracy has
been achieved for image classification and object detection [15]. Different from the
residual network [15] that uses many residual units (i.e., identity shortcuts), DnCNN
employs a single residual unit to predict the residual image. It should be noted that,
prior to the residual network [15], the strategy of predicting the residual image has
already been adopted in some low-level vision problems such as SISR and image
demosaicking. As for batch normalization [17], it was originally proposed to allevi-
ate the internal covariate shift by incorporating a Gaussian normalization step and a
scale and shift step. It enjoys several merits, such as fast training, better performance,
and low sensitivity to initialization. For further details on batch normalization, please
refer to [17].

The DnCNN network can be used to train either the original mapping y to predict
x or the residual mapping R(y) to predict v. According to [15], when the original
mapping is more like an identity mapping, the residual mapping will be much easier
to optimize. Since the noisy observation y is much more like the latent clean image
x than the residual image v (especially when the noise level is low), F(y) would be
more close to an identity mapping thanR(y). Thus, the residual learning formulation
is more suitable for image denoising.

For Gaussian noise removal, residual learning is also helpful to stabilize the train-
ingwith batch normalization.Under the residual learning setting, the noise output of a
specific noise level should be an ideal Gaussian distribution.Moreover, DnCNNwith
residual learning implicitly removes the latent clean image with the operations in the
hidden layers. This makes that the inputs of each layer are Gaussian-like distributed,
less correlated, and less related with image content. As a result, residual learning and
batch normalization are particularly beneficial to each other for Gaussian denoising.

Figure 4.2 shows the average PSNR values obtained using these two learning for-
mulationswith/without batch normalization under the same setting on gradient-based
optimization algorithms and network architecture. Two gradient-based optimization
algorithms are adopted: one is the stochastic gradient descent algorithmwithmomen-
tum (i.e., SGD) and the other one is the ADAM algorithm [20]. One can observe
that both the SGD and ADAM optimization algorithms can enable the network with
residual learning and batch normalization to have the best results. In other words,
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Fig. 4.2 The quantitative Gaussian denoising results of four specific models under two gradient-
based optimization algorithms, i.e., a SGD, b ADAM, with respect to epochs. The four specific
models are in different combinations of residual learning (RL) and batch normalization (BN) and
are trained with noise level 25. The results are evaluated on 68 natural images from Berkeley
segmentation dataset

it is the integration of residual learning formulation and batch normalization rather
than the optimization algorithms (SGD or ADAM) that lead to the best denoising
performance.

4.2.3 Connection with TNRD

To have a further understanding of residual learning for denoising, we analyze its
connection with TNRD [8] which is aMAP-CNNbased denoisingmethod. Themain
idea of TNRD is to train a discriminative solution for the following problem:

min
x

�(y − x) + λ

K∑

k=1

N∑

p=1

ρk((fk ∗ x)p) (4.5)

from an abundant set of degraded-clean training image pairs. Here, N denotes the
image size, λ is the regularization parameter, fk ∗ x stands for the convolution of the
image x with the k-th filter kernel fk , and ρk(·) represents the k-th penalty function
which is adjustable in the TNRD model. For Gaussian denoising, we set �(z) =
1
2‖z‖2.

The diffusion iteration of the first stage can be interpreted as performing one
gradient descent inference step at starting point y, which is given by

x1 = y − αλ

K∑

k=1

(f̄k ∗ φk(fk ∗ y)) − α
∂�(z)

∂z

∣∣∣∣
z=0

(4.6)
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where f̄k is the adjoint filter of fk (i.e., f̄k is obtained by rotating 180◦ the filter fk),
α corresponds to the stepsize and ρ ′

k(·) = φk(·). For Gaussian denoising, we have
∂�(z)

∂z

∣∣∣
z=0

= 0, and Eq. (4.6) is equivalent to the following expression,

v1 = y − x1 = αλ

K∑

k=1

(f̄k ∗ φk(fk ∗ y)) (4.7)

where v1 is the estimated residual of x with respect to y.
Since the influence function φk(·) can be regarded as pointwise nonlinearity

applied to convolution feature maps, Eq. (4.7) actually is a two-layer feed-forward
CNN. DnCNN further generalizes one-stage TNRD from three aspects: (i) replacing
the influence function with ReLU to ease CNN training; (ii) increasing the CNN
depth to improve the capacity in modeling image characteristics; (iii) incorporating
with batch normalization to boost the performance. The connection with one-stage
TNRD provides insights in explaining the use of residual learning for CNN-based
image restoration.

4.2.4 Understanding the CNN Modeling Capacity

The existing Gaussian denoising methods, such as MLP [5] and TNRD [8], all train
a specific model for a fixed noise level. It is interesting to investigate the modeling
capacity of CNN for different noise levels via a single model. According to Eq. (4.7),
one can see that most of the parameters are derived from the analysis prior term of
Eq. (4.5). In this sense, the parameters are mainly representing the image priors
which are task-independent. Therefore, CNN has the modeling capacity to deal with
multiple degradations via a singlemodel. For example, even the noise is not Gaussian
distributed, one still can utilize Eq. (4.6) to obtain v1 if

∂�(z)
∂z

∣∣∣∣
z=0

= 0. (4.8)

Note that Eq. (4.8) holds for many types of noise distributions, e.g., generalized
Gaussian distribution. It is natural to assume that it also holds for the noise caused
by image downsampling and JPEG compression. Thus, it is possible to train a sin-
gle CNN model for several general image denoising tasks, e.g., SISR and JPEG
deblocking.

To demonstrate the potential of DnCNN in general image denoising, DnCNN is
extended for learning a single model for three specific tasks, i.e., blind Gaussian
denoising for noise level range of [0, 55], SISR, and JPEG deblocking are consid-
ered. In the training stage, the images with AWGN from a wide range of noise
levels, downsampled images with multiple upscaling factors, and JPEG images with
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(a) Input Image (b) Output Residual Image (c) Restored Image

Fig. 4.3 An example to show the capacity of DnCNN for three different tasks. The input image
is composed by noisy images with noise level 15 (upper left) and 25 (lower left), bicubically
interpolated low-resolution images with upscaling factor 2 (upper middle) and 3 (lower middle),
JPEG images with quality factor 10 (upper right) and 30 (lower right). Note that the white lines in
the input image are just used for distinguishing the six regions, and the residual image is normalized
into the range of [0, 1] for visualization

different quality factors are utilized. Experimental results show that the learned sin-
gle DnCNNmodel is able to yield excellent results for any of the three general image
denoising tasks. Figure 4.3 shows an example of DnCNN for these tasks. As one can
see, even the input image is corrupted with different distortions in different regions,
the restored image looks natural and does not have obvious artifacts.

4.2.5 Implementation and Experiments

Following [8], 400 images of size 180 × 180 are used for training the Gaussian
denoiser with known noise level. It has been found that using a larger training dataset
can only bring negligible improvements, especially on BSD68 test set. Three noise
levels, i.e., σ = 15, 25 and 50, are considered and thus three models are trained. The
patch size is set as 40 × 40. 128 × 1,600 patches are used to train the model and the
mini-batch size is set to 128. The mean squared error between the desired residual
images and estimated ones from noisy input

L(�) = 1

2N

N∑

i=1

‖R(yi ;�) − (yi − xi )‖2 (4.9)

is adopted as the loss function to learn the trainable parameters �. Here {(yi , xi )}Ni=1
represents N noisy-clean training image patch pairs. The learning rate was decayed
exponentially from 10−1 to 10−4 for 50 epochs. It takes about 6 hours to train a
DnCNN model.

To evaluate the model, a dataset containing 68 natural images from Berkeley
segmentation dataset (BSD68) [35] is adopted. The average PSNR results of different
methods are shown in Table 4.1. As one can see, compared to the benchmark BM3D,
the methods MLP and TNRD have a PSNR gain of about 0.35 dB. Notably, DnCNN
outperforms BM3D by 0.6 dB on all the three noise levels.
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Table 4.1 The average PSNR (dB) results of different methods on the BSD68 dataset. The best
results are highlighted in bold

Noise levels BM3D [5] WNNM [13] MLP [5] TNRD [8] DnCNN

σ = 15 31.07 31.37 – 31.42 31.73

σ = 25 28.57 28.83 28.96 28.92 29.23

σ = 50 25.62 25.87 26.03 25.97 26.23

(a) Noisy (14.76dB) (b) BM3D (26.21dB) (c) WNNM (26.51dB)

(d) MLP (26.54dB) (e) TNRD (26.59dB) (f) DnCNN (26.90dB)

Fig. 4.4 Denoising results of different methods on noise level 50
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Figure 4.4 illustrates the visual results of different methods. It can be seen that
BM3D, WNNM and MLP tend to produce over-smooth edges and textures. While
preserving sharp edges and fine details, TNRD is likely to generate artifacts in the
smooth region. In contrast, DnCNN can not only recover sharp edges and fine details
but also yield visually pleasant results in the smooth region.

4.3 CNN for Fast and Flexible Image Denoising

In order to handle practical image denoising problems, a flexible image denoiser is
expected to have the following desirable properties: (i) it is able to perform denoising
using a single model; (ii) it is efficient, effective, and user-friendly; and (iii) it can
handle spatially variant noise. Such a denoiser can be directly deployed to recover
the clean image when the noise level is known or can be well estimated. When the
noise level is unknown or is difficult to estimate, the denoiser should allow the user
to adaptively control the trade-off between noise reduction and details preservation.
Furthermore, the noise can be spatially variant and the denoiser should be flexible
enough to handle spatially variant noise.

The FFDNet which is shown in Fig. 4.5 is proposed to meet with such desirable
properties. Specifically, one of the major differences of FFDNet is that it can be
formulated as x = F(y,M;�), whereM is a noise level map. Here, the noise level
map M is modeled as an input and the model parameters � are invariant to noise
level. Hence, FFDNet provides a flexible way to handle various types of noise with a
single network. By introducing a noise level map as input, network design and train-
ing methods are required to be further studied for effective and efficient denoising.
Another main difference of FFDNet is that it works on downsampled subimages,
which largely accelerates the training and testing speed, and enlarges the receptive
field as well.

4.3.1 Network Architecture: FFDNet

As shown in Fig. 4.5, the first layer of FFDNet is a reversible downsampling operator
which reshapes an H × W noisy image y into four downsampled subimages. Then,

Fig. 4.5 The architecture of the FFDNet network
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a tunable downsampled noise level map M with the downsampled subimages is
concatenated to form a tensor ỹ of size H

2 × W
2 × (4c + 1) as the inputs to CNN.

The following CNN consists of a series of 3 × 3 convolutional layers. Each layer is
composed of three types of operations: Convolution (Conv), Rectified Linear Units
(ReLU) [22], and Batch Normalization (BN) [17]. More specifically, “Conv+ReLU”
is adopted for the first convolutional layer, “Conv+BN+ReLU” for the middle layers,
and “Conv” for the last convolutional layer. Zero-padding is employed to keep the
size of feature maps unchanged after each convolution. After the last convolutional
layer, an upscaling operation is applied as the reverse operator of the downsampling
operator applied in the input stage to produce the residual noisy image ṽ of size H ×
W × c. The denoised image is then obtained by x̃ = y − ṽ. Since FFDNet operates
on downsampled subimages, it is not necessary to employ the dilated convolution [49]
to further increase the receptive field.

By considering the balance of complexity and performance, the number of con-
volutional layers are set to 15 for grayscale image and 12 for color image. As for the
number of featuremaps, they are set to 64 for grayscale image and 96 for color image.
The reason of using different settings for grayscale and color images is twofold. First,
since there are high dependencies among the R, G, B channels, using a smaller num-
ber convolutional layers is good enough to exploit the interchannel dependency for
denoising. Second, color image has more channels as input, and hence more feature
(i.e., a larger number of feature maps) is required.

4.3.2 Taking Noise Level as CNN Input

Most of the deep learning based denoising methods such as the MLP [5] and convo-
lutional neural network (CNN) based methods [18, 50] are limited in flexibility, and
the learned model is usually tailored to a specific noise level. From the perspective
of regression, some CNN-based denoisers such as DnCNN aim to learn a mapping
function x = F(y;�σ ) between the input noisy observation y and the desired output
x. The model parameters �σ are trained for noisy images corrupted by AWGN with
a fixed noise level σ , while the trained model with�σ is hard to be directly deployed
to images with other noise levels.

From the viewpoint of MAP framework, the solution of Eq. (4.2) actually defines
an implicit function x̂ = F(y, σ, λ;�) of the noisy image y, noise level σ , and
parameter λ. Since λ can be absorbed into σ , the solution x̂ = F(y, σ, λ;�) can be
rewritten as x̂ = F(y, σ ;�). In this sense, setting noise level σ also plays the role
of setting λ to control the trade-off between noise reduction and detail preservation.

Since the inputs y and σ have different dimensions, it is not easy to directly
feed them into CNN. To resolve this, a simple dimension stretching strategy can be
employed to stretch the noise level σ into a noise level mapM. InM, all the elements
are σ . Then, the formulation is changed into x̂ = F(y,M;�). For color image, M
can have multiple channels to represent the noise level map of R, G, B channels
and can also be extended to degradation map which parameterizes the degradation
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process [52]. As such, a trained CNN model is expected to inherit the flexibility of
handling images with different noise levels, even spatially variant noises via a single
model.

4.3.3 Single Non-blind Model Versus Single Blind Model

So far, we have know that it is possible to learn a single model for blind and non-blind
Gaussian denoising, respectively, it is necessary to point out their differences. First,
the generalization ability is different. Although the blind model performs favorably
for synthetic AWGN removal without knowing the noise level, it does not generalize
well to real noisy images. In contrast, the non-blind model with noise level map has
the ability to control the trade-off between noise removal and detail preservation,
thus it can deal with real noise to some extent. In addition, the non-blind model can
handle the out-of-range noise levels, whereas the blind one lacks such an ability.
Second, the performance for AWGN removal is different. The non-blind model with
noise level map has better performance for AWGN removal than the blind one.
This phenomenon has also been recognized in the task of SISR [32]. Third, the
application range is different. The non-blind model can be plugged into model-
based optimization methods to solve various image restoration tasks, such as image
deblurring, SISR and image inpainting. However, the blind model does not have this
merit.

4.3.4 Denoising on Subimages

Efficiency is another crucial issue for practical CNN-based denoising. One straight-
forward idea is to reduce the depth and number of filters. However, such a strategy
will sacrifice much the modeling capacity and receptive field of CNN [50]. Shi
et al. [39] proposed to extract deep features directly from the low-resolution image
for super-resolution, and introduced a sub-pixel convolution layer to improve com-
putational efficiency. In the application of image denoising, we introduce a reversible
downsampling layer to reshape the input image into a set of small subimages. Here,
the downsampling factor is set to 2 since it can largely improve the speed by slightly
reducing modeling capacity. The CNN is deployed on the subimages, and finally a
sub-pixel convolution layer is adopted to reverse the downsampling process.

Denoising on downsampled subimages can also effectively expand the receptive
field which in turn leads to a moderate network depth. For example, the proposed
network with a depth of 15 and 3 × 3 convolution will have a large receptive field of
62 × 62. In contrast, a plain 15-layer CNN only has a receptive field size of 31 × 31.
We note that the receptive field of most state-of-the-art denoising methods ranges
from 35 × 35 to 61 × 61 [50]. Further increase of receptive field actually benefits
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little in improving denoising performance [27]. What is more, the introduction of
subsampling and sub-pixel convolution is also effective in reducing the memory
burden.

4.3.5 Dataset Generation and Network Training

To train the FFDNetmodel, we need to prepare a training dataset of patches (y,M; x).
Here, y is obtained by adding AWGN to latent image x, andM is the corresponding
noise level map. The reasons of using AWGN to generate the training dataset are
as follows. First, AWGN is a natural choice when there is no specific prior infor-
mation on noise source. Second, real-world noise can be locally approximated as
AWGN [24]. It is worth noting that FFDNet model is trained on the noisy images
y = x + vwithout quantization to 8-bit integer values. Though the real noisy images
are generally 8-bit quantized, we empirically found that the learnedmodel still works
effectively on real noisy images. For the noise level of each noisy, it is uniformly
sampled from the range of [0, 75].

The ADAM algorithm [20] is adopted to optimize FFDNet by minimizing the
mean squared error loss. The learning rate starts from 10−3 and reduces to 10−4

when the training error stops decreasing. When the training error keeps unchanged
in five sequential epochs, we merge the parameters of each batch normalization into
the adjacent convolution filters. Then, a smaller learning rate of 10−6 is adopted
for additional 20 epochs to fine-tune the FFDNet model. As for the other hyper-
parameters of ADAM,we use their default settings. The mini-batch size is set as 128,
and the rotation and flip based data augmentation is also adopted during training.
The FFDNet models are trained in Matlab (R2015b) environment with MatConvNet
package [44] and an Nvidia Titan X Pascal GPU. The training of a single model can
be done in about one day.

4.3.6 Experiments on Synthetic and Real Images

4.3.6.1 Experiments on AWGN Removal

The PSNR results of different methods on BSD68 dataset are reported in Table 4.2,
fromwhich we have the following observations. First, FFDNet surpasses BM3D by a
large margin and outperforms WNNM, MLP, and TNRD by about 0.2 dB for a wide
range of noise levels. Second, FFDNet is slightly inferior to DnCNN when the noise
level is low (e.g., σ ≤ 25), but gradually outperforms DnCNN with the increase of
noise level (e.g., σ > 25). This phenomenon may result from the trade-off between
receptive field size and modeling capacity. FFDNet has a larger receptive field than
DnCNN, thus favoring for removing strong noise, while DnCNNhas better modeling
capacity which is beneficial for denoising images with lower noise level.
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Table 4.2 The average PSNR (dB) results of different methods on BSD68 with noise levels 15, 25
35, 50, and 75. The best results are highlighted in bold

Methods BM3D [11] WNNM [13] MLP [5] TNRD [8] DnCNN [50] FFDNet

σ = 15 31.07 31.37 – 31.42 31.72 31.62

σ = 25 28.57 28.83 28.96 28.92 29.23 29.19

σ = 35 27.08 27.30 27.50 – 27.69 27.73

σ = 50 25.62 25.87 26.03 25.97 26.23 26.30

σ = 75 24.21 24.40 24.59 – 24.64 24.78

Table 4.3 The average PSNR (dB) results of CBM3D and FFDNet on CBSD68 dataset with noise
levels 15, 25 35, 50, and 75

Methods σ = 15 σ = 25 σ = 35 σ = 50 σ = 75

CBM3D 33.52 30.71 28.89 27.38 25.74

FFDNet 33.80 31.18 29.57 27.96 26.24

(a) Noisy (σ = 35) (b) CBM3D (29.90dB) (c) FFDNet (30.51dB)

Fig. 4.6 Color image denoising results by CBM3D and FFDNet

Table 4.3 reports the performance of CBM3D and FFDNet on color version of
BSD68 datasets, and Fig. 4.6 presents the visual comparisons. It can be seen that
FFDNet consistently outperforms CBM3D on different noise levels in terms of both
quantitative and qualitative evaluation.
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Fig. 4.7 Examples ofFFDNet on removing spatially variantAWGN.Left: noise levelmaps.Middle:
noisy images with PSNR 20.55 dB. Right: denoised images (PSNR: 29.97 dB) by FFDNet

4.3.6.2 Experiments on Spatially Variant AWGN Removal

We then test the flexibility of FFDNet to deal with spatially variant AWGN. To
synthesize spatially variant AWGN, we first generate an AWGN image v with the
standard deviation 1 and a noise level map M of the same size. Then, elementwise
multiplication is applied on v and M to produce the spatially variant AWGN, i.e.,
v � M. In the denoising stage, we take the bilinearly downsampled noise levelmap as
the input to FFDNet. Figure 4.7 shows the denoising result of FFDNet for a spatially
variant AWGN.One can see that FFDNet is flexible and powerful to remove spatially
variant AWGN.

4.3.6.3 Experiments on Noise Level Sensitivity

In practical applications, the noise levelmapmaynot be accurately estimated from the
noisy observation, andmismatch between the input and real noise levels is inevitable.
If the input noise level is lower than the real noise level, the noise cannot be completely
removed. Therefore, users often prefer to set a higher noise level to guarantee the
removal of noise. However, this may also remove too much image details together
with noise. In this subsection, we evaluate FFDNet in comparison with benchmark
BM3D by varying different input noise levels for a given ground-truth noise level.

Figure 4.8 shows the visual comparisons between BM3D/CBM3D and FFDNet
by setting different input noise levels to denoise a noisy image. Four typical image
structures, including flat region, sharp edge, line with high contrast, and line with low
contrast, are selected for visual comparison to investigate the noise level sensitivity
of BM3D and FFDNet. The following observations can be obtained. The best visual
quality is obtained when the input noise level matches the ground-truth one. BM3D
and FFDNet produce similar visual results with lower input noise levels, while they
exhibit certain difference with higher input noise levels. Both of them will smooth
out noise in flat regions, and gradually smooth out image structures with the increase
in input noise levels. Particularly, FFDNet may wipe out some low contrast line
structure, whereas BM3D can still preserve the mean patch regardless of the input



110 W. Zuo et al.

Fig. 4.8 Visual comparisons between FFDNet and BM3D/CBM3D by setting different input noise
levels to denoise a noisy image. a From top to bottom: ground-truth image, four clean zoom-in
regions, and the corresponding noisy regions (AWGN, noise level 15). b From top to bottom:
denoising results by BM3D with input noise levels 5, 10, 15, 20, 50, and 75, respectively. c Results
by FFDNet with the same settings as in (b). d From top to bottom: ground-truth image, four
clean zoom-in regions, and the corresponding noisy regions (AWGN, noise level 25). e From top to
bottom: denoising results by CBM3Dwith input noise levels 10, 20, 25, 30, 45, and 60, respectively.
f Results by FFDNet with the same settings as in (e)

noise levels due to its use of nonlocal information. Using a higher input noise level
can generally produce better visual results than using a lower one. In addition, there
is no much visual difference when the input noise level is a little higher than the
ground-truth one.
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4.3.6.4 Experiments on Real Noisy Images

In this subsection, real noisy images are used to further assess the practicability of
FFDNet. However, such an evaluation is difficult to conduct due to the following
reasons. (i) Both the ground-truth clean image and noise level are unknown for real
noisy image. (ii) The real noise comes from various sources such as camera imaging
pipeline (e.g., shot noise, amplifier noise and quantization noise), scanning, lossy
compression and image resizing [10, 28], and it is generally non-Gaussian, spatially
variant, and signal-dependent. As a result, the AWGN assumption in many denoising
algorithms does not hold, and the associated noise level estimation methods may not
work well for real noisy images.

Instead of adopting any noise level estimation methods, we adopt an interac-
tive strategy to handle real noisy images. First of all, we empirically found that the
assumption of spatially invariant noise usuallyworkswell formost real noisy images.
We then employ a set of typical input noise levels to produce multiple outputs, and
select the one which has best trade-off between noise reduction and details preser-
vation. Second, for spatially variant noise, we sample several typical image patches
which represent the distinct regions of different noise levels and apply different input
noise levels to them. By observing the denoising results, we then choose the proper
noise level for each typical patch. The noise levels at other locations are interpo-
lated from the noise levels of the typical patches. An approximation of nonuniform
noise level map can then be obtained. In our following experiments, unless otherwise
specified, we assume spatially invariant noise for the real noisy images.

Since there is no ground-truth image for a real noisy image, visual comparison is
employed to evaluate the performance of FFDNet.We choose BM3D for comparison
because it is widely accepted as a benchmark for denoising applications. Given a
noisy image, the same input noise level is used for BM3D and FFDNet.

Figure 4.9 compares the grayscale image denoising results on four noisy images.
As one can see, BM3D and FFDNet exhibit similar behaviors to those on denoising
grayscale images. In particular, for image “Building”which contains some structured
noises, BM3D fails to yield visually pleasant results because the structured noises fit
the nonlocal self-similarity prior. In contrast, FFDNet removes such noise without
losing underlying image textures. Figure 4.10 shows the denoising results of CBM3D
and FFDNet on four color noisy images. It can be seen that FFDNet can handle
various kinds of noises, including Gaussian-like noise (see image “Pattern”), JPEG
lossy compression noise (see image “Audrey Hepburn”), and low-frequency noise
(see image “Boy”). Similarly, from the denoising results of “Boy”, one can see that
CBM3D remains the structured low-frequency noise unremoved whereas FFDNet
removes successfully such kind of noise. As a result, we can conclude that while the
nonlocal self-similarity prior helps to remove random noise, it hinders the removal
of structured noise. In comparison, the prior implicitly learned by CNN is able to
remove both random noise and structured noise.

Figure 4.11 shows a more challenging example to demonstrate the advantage of
FFDNet for denoising noisy images with spatially variant noise. As one can see,
while FFDNet with a small input noise level can recover the details of regions with
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(a) David Hilbert (b) Chupa Chups (c) Vinegar (d) Building

Fig. 4.9 Grayscale image denoising results by different methods on real noisy images. From top
to bottom: noisy images, denoised images by BM3D, denoised images by FFDNet. a σ = 15; b σ

= 10; c σ = 20; d σ = 20

low noise level, it fails to remove strong noise. On the other hand, FFDNet with a
large input noise level can remove strong noise but it will also smooth out the details
in the region with low noise level. In comparison, the denoising result with a proper
nonuniform noise level map not only preserves image details but also removes the
strong noise.

4.3.7 Running Time

Table 4.4 lists the running time results of BM3D, DnCNN and FFDNet for denoising
grayscale level and color images with size 256× 256, 512× 512, and 1,024× 1,024.
The evaluation was performed in Matlab (R2015b) environment on a computer with
a six-core Intel(R) Core(TM) i7-5820K CPU @ 3.3 GHz, 32 GB of RAM and a
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(a) Dog (b) Pattern (c) Audrey Hepburn (d) Boy

Fig. 4.10 Color image denoising results by different methods on real noisy images. From top to
bottom: noisy images, denoised images by CBM3D, denoised images by FFDNet. a σ = 28; b σ =
12; c σ = 10; d σ = 45

Fig. 4.11 An example of FFDNet on image “Glass” with spatially variant noise. a Noisy image;
b denoised image by FFDNet with σ = 10; c denoised image by FFDNet with σ = 35; d denoised
image by FFDNet with nonuniform noise level map
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Table 4.4 Running time (in seconds) of different methods for denoising images with size 256 ×
256, 512 × 512, and 1,024 × 1,024

Methods Device 256 × 256 512 × 512 1024 × 1024

Gray Color Gray Color Gray Color

BM3D CPU(ST) 0.59 0.98 2.52 3.57 10.77 20.15

DnCNN CPU(ST) 2.14 2.44 8.63 9.85 32.82 38.11

CPU(MT) 0.74 0.98 3.41 4.10 12.10 15.48

GPU 0.011 0.014 0.033 0.040 0.124 0.167

FFDNet CPU(ST) 0.44 0.52 1.81 2.14 7.24 8.51

CPU(MT) 0.18 0.19 0.73 0.79 2.96 3.15

GPU 0.006 0.007 0.012 0.016 0.038 0.054

Nvidia Titan X Pascal GPU. For BM3D, we evaluate its running time by denoising
images with noise level 25. For DnCNN, the grayscale and color image denoising
models have 17 and 20 convolutional layers, respectively. The Nvidia cuDNN-v5.1
deep learning library is used to accelerate the computation of DnCNN and FFDNet.
Thememory transfer time between CPU andGPU is also counted. Note that DnCNN
and FFDNet can be implemented with both single-threaded (ST) and multi-threaded
(MT) CPU computations.

From Table 4.4, we have the following observations. First, BM3D spends much
more time on denoising color images than grayscale images. The reason is that, com-
pared to gray-BM3D, CBM3D needs extra time to denoise the chrominance com-
ponents after luminance-chrominance color transformation. Second, while DnCNN
can benefit from GPU computation for fast implementation, it has comparable CPU
time to BM3D. Third, FFDNet spends almost the same time for processing grayscale
and color images. More specifically, FFDNet with multi-threaded implementation
is about three times faster than DnCNN and BM3D on CPU, and much faster than
DnCNN on GPU. Even with single-threaded implementation, FFDNet is also faster
than BM3D. Taking denoising performance and flexibility into consideration, FFD-
Net is very competitive for practical applications.

4.4 CNN Denoiser Prior Based Image Restoration

Motivated by the impressive achievement on image denoising, it is natural to ask
whether CNNs can be applied to more general image restoration tasks. Although
CNNs can be directly adopted with promising performance and fast testing speed,
their application range is greatly restricted by the specialized task. In contrast, model-
based optimization methods are flexible for handling different inverse problems but
are usually time-consuming with sophisticated priors for the purpose of good per-
formance. Fortunately, it has been revealed that, with the aid of variable splitting
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techniques such as alternating direction method of multipliers (ADMM) algorithm,
half quadratic splitting (HQS) algorithm, and the primal-dual algorithm [6], denoiser
prior can be plugged in as a modular part of model-based optimization methods to
solve other image restoration problems, and particularly, the regularization term only
corresponds to a denoising subproblem [7, 16, 33, 41, 53]. Consequently, such an
integration induces considerable advantage when the denoiser is based on CNN.

Very recently, various methods have been proposed to incorporate the CNN
denoiser prior into model-based optimization methods. In those methods, the CNN
denoiser can be either pretrained or jointly trained with data fidelity term for a
specific task. In other words, there exist two general CNN denoiser prior based
frameworks, i.e., model-based optimization and discriminative learning, for differ-
ent image restoration tasks. In this section, we focus on the former since once the
CNN denoiser is trained, no additional training is needed for other tasks. As for the
variable splitting algorithm, we choose half quadratic splitting (HQS) algorithm due
to its simplicity.

In the following, we first give a brief review of HQS algorithm and then show
how to plug CNN denoiser into the optimization procedure to solve other image
restoration problems, including image deblurring, single image super-resolution,
and image inpainting.

4.4.1 Half Quadratic Splitting Algorithm

In general, the purpose of image restoration is to recover the latent clean image
x from its degraded observation y = Hx + v, where H is a degradation matrix, v
is additive white Gaussian noise of standard deviation σ . By specifying different
degradation matrices, one can correspondingly get different image restoration tasks.
Three classical IR tasks would be image denoising when H is an identity matrix,
image deblurring when H is a blurring operator, and image super-resolution when
H is a composite operator of blurring and downsampling.

Due to the ill-posed nature of general image restoration problems, regularization
needs to be imposed to constrain the solution. Mathematically, the latent clean image
of a degraded image y can be estimated by solving the following MAP problem:

x̂ = argmin x
1

2σ 2
‖y − Hx‖2 + λ�(x) (4.10)

where the solution minimizes an energy function composed of a data fidelity term
1

2σ 2 ‖y − Hx‖2, a regularization term �(x) and a trade-off parameter λ.
In HQS, by introducing an auxiliary variable z, Eq. (4.10) can be reformulated as

a constrained optimization problem which is given by

x̂ = argmin x
1

2σ 2
‖y − Hx‖2 + λ�(z) s.t. z = x (4.11)
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Then, HQS tries to minimize the following cost function:

Lμ(x, z) = 1

2σ 2
‖y − Hx‖2 + λ�(z) + μ

2
‖z − x‖2 (4.12)

where μ is a penalty parameter which varies iteratively in a non-descending order.
Equation (4.12) can be solved via the following iterative scheme:

⎧
⎨

⎩
xk+1 = argmin x‖y − Hx‖2 + μσ 2‖x − zk‖2 (4.13a)

zk+1 = argmin z
μ

2
‖z − xk+1‖2 + λ�(z). (4.13b)

As one can see, the data fidelity term and regularization term are decoupled into
two individual subproblems. Specifically, the data fidelity term is associated with
a quadratic regularized least-squares problem (Eq. (4.13a)) which has various fast
solutions for different degradation matrices. A direct solution is given by

xk+1 = (HTH + μσ 2I)−1(HT y + μσ 2zk) (4.14)

The regularization term is involved in Eq. (4.13b) which can be rewritten as

zk+1 = argmin z
1

2(
√
1/μ)2

‖xk+1 − z‖2 + λ�(z) (4.15)

Equation (4.15) corresponds to denoising the image xk+1 by a CNN-based Gaus-
sian denoiser with noise level

√
1/μ. As a consequence, any CNN-based Gaussian

denoisers can be acted as amodular part to solveEq. (4.10). To address this, Eq. (4.15)
can be rewritten as

zk+1 = F(xk+1,
√
1/μ) (4.16)

We point out that the CNN denoiser from Eq. (4.15) should be designed for AWGN
removal and the noisy image in the training should not be quantized to 8-bit integer
values.

So far, we have obtained that the image prior �(·) can be implicitly replaced
by a denoiser prior. Such a promising property actually offers several advantages.
First, it enables to use fast and effective CNN-based denoisers to solve a variety of
inverse problems. Second, the explicit image prior �(·) can be unknown in solving
Eq. (4.10). Third, several complementary denoisers which exploit different image
priors can be jointly utilized to solve one specific problem.
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4.4.2 CNN Denoisers and Parameter Setting

For the architecture of the CNN denoiser, it consists of seven layers with three
different blocks, i.e., “Dilated Convolution+ReLU” block in the first layer, five
“Dilated Convolution+Batch Normalization+ReLU” blocks in the middle layers,
and “Dilated Convolution” block in the last layer. The dilation factors of (3 × 3)
dilated convolutions from first layer to the last layer are set to 1, 2, 3, 4, 3, 2, and
1, respectively. The number of feature maps in each middle layer is set to 64. We
trained a set of denoisers on noise level range [0, 50] and divided it by a step size
of 2 for each model, resulting in a set of 25 denoisers for each grayscale and color
image prior modeling.

Once the denoisers are provided, the subsequent crucial issue would be parameter
setting. There involve two parameters, λ and μ, to tune. For the setting of λ, since
it is implicitly optimized in the CNN denoiser and can be absorbed into σ , one
can instead tune σ to obtain the best results. In practice, this can be achieved by
multiplying σ by a scalar around 1. For the setting of μ, it is better to set the noise
level of denoiser in each iteration to implicitly determine μ. Note that the noise level
of denoiser

√
1/μ should be set from large to small. In the following experiments, it

is decayed exponentially from 49 to a value in [1, 15] for 30 iterations. Note that all
the experimental results are reproducible, and the source code can be downloaded
from https://github.com/cszn/IRCNN.

4.4.3 Image Deblurring

For image deblurring, by assuming the convolution is carried outwith circular bound-
ary conditions, the fast implementation of Eq. (4.13a) is given by

xk+1 = F−1

(
F(k)F(y) + μσ 2F(zk)

F(k)F(k) + μσ 2

)
(4.17)

where the F(·) and F−1(·) denote the fast Fourier transform (FFT) and inverse FFT,
F(·) denotes complex conjugate of F(·) and k is a blurring kernel corresponding to
the degradation matrix H.

Figure 4.12 gives an example of IRCNN for image deblurring. It can be seen that
IRCNN can yield visually pleasant result with sharp edges and fine details.

4.4.4 Single Image Super-Resolution

There exist several degradation settings for single image super-resolution (SISR),
among which bicubic degradation (default setting of Matlab function imresize) and

https://github.com/cszn/IRCNN
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Fig. 4.12 An example of IRCNN for image deblurring. a Blurred image with estimated kernel by
Pan et al. [30]; b Deblurring result

Fig. 4.13 An example of IRCNN for single image super-resolution (the blur kernel is a motion
blur, the scale factor is 2). a LR image with motion blur kernel; b SISR result

Gaussian blurring followed by anti-aliasing downsampling are the two most widely
used ones. For these two degradations, we use the following back-projection iteration
to solve Eq. (4.13a),

xk+1 = zk − α(y − zk ↓sf) ↑sf
bicubic (4.18)

where ↓sf denotes the degradation operator with downscaling factor sf, ↑sf
bicubic rep-

resents bicubic interpolation operator with upscaling factor sf, and α is the step size
which is fixed to 1.75.

It is worth noting that when the downsampler is the standardK-fold downsampler
(Matlab function downsample), Eq. (4.13a) has a fast closed-form solution by bene-
fiting FFT [7]. Furthermore, the blur kernel can go beyondGaussian blur. Figure 4.13
shows an example of IRCNN for super-resolving LR image degraded bymotion blur-
ring and standard K-fold downsampler. It can be seen that the super-resolved image
is much more visually pleasing than the LR image.
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Fig. 4.14 An example of IRCNN for image inpainting. a Original image with overlaid text; b
inpainting result

4.4.5 Image Inpainting

For image inpainting,Hx can be rewritten asM � x, whereM is matrix with binary
elements indicating the missing pixels of y, and � denotes elementwise multiplica-
tion. A closed-form solution of Eq. (4.13a) is given by

xk+1 = (M � y + μσ 2zk) � (M + μσ 2) (4.19)

where � denotes elementwise division.
Figure 4.14 shows an example of IRCNN for image inpainting. As one can see,

there is no visible artifacts in the inpainted image.

4.5 Challenges and Possible Solutions

While the image denoising for AWGN removal has been well-studied, little work
has been done on real image denoising. The main difficulty arises from the fact
that real noises are much more sophisticated than AWGN and it is not an easy
task to thoroughly evaluate the performance of a denoiser. Figure 4.15 shows four
typical noise types in real world. It can be seen that the characteristics of those
noises are very different and a single noise level may be not enough to parameterize
those noise types. In most cases, a denoiser can only work well under a certain
noise model. For example, a denoising model trained for AWGN removal is not
effective formixedGaussian andPoissonnoise removal. This is intuitively reasonable
because the CNN-based methods can be treated as general cases of Eq. (4.3) and
the important data fidelity term corresponds to the degradation process. In spite of
this, the image denoising for AWGN removal is still valuable due to the following
reasons. First, it is an ideal test bed to evaluate the effectiveness of different CNN-
based denoising models and learning algorithms. Second, in the unrolled inference
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Fig. 4.15 Different noise types. a Additive white Gaussian noise; b interchannel correlated Gaus-
sian noise; c JPEG compression noise; d low-frequency noise

via variable splitting techniques, many image restoration problems can be addressed
by sequentially solving a series of Gaussian denoising subproblems, which further
broadens the application fields.

To improve the practicability of a CNNdenoiser, perhaps themost straightforward
way is to capture adequate amounts of real noisy-clean training pairs for training so
that the real degradation space can be covered. This solution has advantage that there
is no need to know the complex degradation process. However, deriving the corre-
sponding clean image of a noisy one is not a trivial task due to the need of careful
postprocessing steps, such as spatial alignment and illumination correction. Alter-
natively, one can simulate the real degradation process to synthesize noisy images
for a clean one. However, it is not easy to accurately model the complex degrada-
tion process. In particular, the noise model can be different across different cameras.
Nevertheless, it is practically preferable to roughly model a certain noise type for
training and then use the learned CNN model for type-specific denoising.

Besides the training data, the robust architecture and robust training also play vital
roles for the success of a CNN denoiser. For the robust architecture, designing a deep
multiscale CNN which involves a coarse-to-fine procedure is a promising direction.
Such a network is expected to inherit the merits of multiscale [23]: (i) the noise level
decreases at larger scales; (ii) the ubiquitous low-frequency noise can be alleviated
by multiscale procedure; and (iii) downsampling the image before denoising can
effectively enlarge the receptive field. For the robust training, the effectiveness of
the denoiser trained with generative adversarial networks (GAN) for real image
denoising still remains uninvestigated. The main idea of GAN-based denoising is to
introduce an adversarial loss to improve the perceptual quality of denoised image.
A distinctive advantage of GAN is that it can do unsupervised learning, and thus
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is expected to be helpful in training denoising CNNs without ground-truth clean
images.
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Chapter 5
Gaussian Priors for Image Denoising

Julie Delon and Antoine Houdard

Abstract This chapter is dedicated to the study of Gaussian priors for patch-based
image denoising. In the last 12 years, patch priors have been widely used for image
restoration. In a Bayesian framework, such priors on patches can be used for instance
to estimate a clean patch from its noisy version, via classical estimators such as the
conditional expectation or the maximum a posteriori. As we will recall, in the case of
Gaussian white noise, simply assumingGaussian (orMixture of Gaussians) priors on
patches leads to very simple closed-form expressions for some of these estimators.
Nevertheless, the convenience of suchmodels should not prevail over their relevance.
For this reason, we also discuss how these models represent patches and what kind
of information they encode. The end of the chapter focuses on the different ways in
which these models can be learned on real data. This stage is particularly challeng-
ing because of the curse of dimensionality. Through these different questions, we
compare and connect several denoising methods using this framework.

5.1 Introduction

This chapter focuses on patch priors for image denoising. In the last decade, patch-
based models (also known as nonlocal models) have created a new paradigm in
image processing, leading to very significant improvements both for classical image
restoration problems (denoising, inpainting, interpolation) or for image synthesis and
editing. These models represent images by a set of local neighborhoods or patches,
and make them collaborate regardless of their spatial position in the image, relying
on the observation that most natural images present a remarkable redundancy at a
semi-local scale. A patch yi (v) is a piece (most of the time a square) of an image v
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centered at the pixel i . As pointed out by Mumford and Desolneux [1], patches are
“the analogs of the phonemes of speech”.

Patch-based models have been the subject of numerous works, especially in the
context of image denoising. Assuming that the noise is additive, image denoising
amounts to estimate an image u from its noisy version v ∈ R

m (m is the image size)
such that

v = u + ε, (5.1)

with ε a noisewith known statistics (not necessarilyGaussian). In digital cameras, the
two major sources of noise during the acquisition process are the thermal agitation,
which produces an almost white and Gaussian noise, and the discrete nature of
light, which is behind the photon shot noise, modeled as a Poisson variable (for a
complete description of the sources of noise in a digital camera, see [2]). Stabilizing
the noise variance by a generalized Anscombe transform [3] results in a noise model
well approximated by a white Gaussian noise ε ∼ N (0, σ 2Im). The vast majority of
works on image denoising focus on this simplifiedmodel and it is also our assumption
in this chapter.

In this framework, patch-based methods usually attempt at rewriting (5.1) into
a degradation model that can be expressed for each patch separately. All patches
{yi , i = 1, . . . , m} of size p = s × s are first extracted from the image v and seen
as noisy vectors in a high dimensional space, as illustrated in Fig. 5.1 (in the whole
chapter, when writing patches as vectors, we assume that the patches are read colum-
nwise). Then the noisy patches are restored sequentially, before reconstructing the
whole image. The degradation model on the patches becomes

yi = xi + εi , i ∈ {1, . . . , m} (5.2)

Fig. 5.1 Image patches can be seen as vectors in a high-dimensional space.Most of the patch-based
methods use the patch space of an image which is the set of all the sliding patches of size p = s × s
extracted from the image
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where xi is the patch centered at pixel i in u, yi the same patch in v, and εi the
additive noise. In practice, it is almost always assumed that the {εi , i = 1, . . . , m}
are independent samples from the Gaussian distribution N (0, σ 2Ip), although this
hypothesis is obviously wrong since patches are overlapping. We will briefly discuss
this issue in Sect. 5.4, alongwith the aggregation of the restored patches to reconstruct
the whole image.

The first denoising methods relying on patches appear in 2004 [4–7]. Among
these methods, one of the most popular remains the Non-Local Means [7], which
sees similar patches as independent realizations of the same distribution and averages
these repeated structures to reduce noise variance. If numerous approaches have built
on the same core ideas since 2004, the recent and most convincing approaches in
patch-based denoising rely on a Bayesian reformulation of the denoising problem,
using local or global statistical priors for the distribution of each patch [8–13]. Under
the white Gaussian noise model (5.2), the conditional distribution of a noisy patch y
knowing its original version x (we omit the index i in the following) can be written

p(y|x) ∝ e− ‖x−y‖2
2σ2 . (5.3)

The Bayesian model assumes that the original patch x is a realization of a random
vector X with a probability distribution p(x) called the prior distribution. Therefore,
the noisy patch y is a realization of the random vector

Y = X + N , (5.4)

with N ∼ N (0, σ 2 Ip). Under these hypotheses, and assuming that N and X are
independent, we can compute the posterior distribution

p(x |y) ∝ p(y|x)p(x) ∝ e− ‖x−y‖2
2σ2 p(x). (5.5)

Ideally, in order to reconstruct the (unknown) original patch x from the degraded
version y, we would like to compute the conditional expectation E[X |Y ] (i.e., the
mean of the posterior distribution), whichminimizes the quadratic risk under the pre-
vious model. This estimator is also called the minimum mean square error (MMSE)
estimator. In practice, computing this conditional expectation is often complex, and
it is classical to compute instead the affine function (called linear MMSE) of Y min-
imizing the quadratic risk, i.e., the affine estimator DY + α (with D a p × p real
matrix and α a vector in Rp) minimizing the risk

E[‖DY + α − X‖2].
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This affine estimator is called theWiener estimator andwill be denotedEWiener [X |Y ]
in the following. It can be easily shown by deriving the previous risk that (assuming
that the following quantities exist),

EWiener [X |Y ] = E[X ] + ΣX,Y Σ−1
Y (Y − E[Y ]), (5.6)

whereΣX,Y := E
[
(X − E[X ])(Y − E[Y ])t ] andΣY := E

[
(Y − E[Y ])(Y − E[Y ])t ]. This

affine estimator only relies on second-order moments of the signal and noise. Under
model (5.4) and assuming that N and X are independent, the Wiener estimator
becomes

EWiener [X |Y ] = E[X ] + ΣX (ΣX + σ 2 Ip)
−1(Y − E[Y ]), (5.7)

with ΣX the covariance matrix of the random vector X .
Another classical solution to reconstruct x is to compute the maximum (MAP) of

the a posteriori distribution p(y|x), which yields

x̂(y) = argmax
x∈Rp

p(x |y) = argmax
x∈Rp

p(y|x) p(x)

= arg min
x∈Rp

− log p(y|x) − log p(x)

= arg min
x∈Rp

‖x − y‖2
2σ 2

− log p(x).

From this point of view, restoring each patch is equivalent to solve a variational
problem, with a quadratic fidelity term and a smoothness term derived from the
prior.

The most convenient prior for computing the previous estimators is the Gaussian
distribution. Indeed, on the one hand, Gaussian priors are well suited to encode patch
structures with some kind of contrast invariance, as we will see in Sect. 5.2. On the
other hand, under aGaussian prior, the conditional expectation,Wiener estimator, and
MAP coincide, as we will see in Sect. 5.3. For these reasons, these priors are favored
in most recent works on patch-based image denoising [8, 12, 14]. A slightly more
involved prior used in the literature is the Gaussian Mixture Model (GMM) [9–11,
13, 15]. In this case, computing the conditional expectation remains simply tractable.
All these works differ among other things in the way they infer the parameters of
the Gaussian or GMM distributions. These distributions live in R

p and estimation
in such high-dimensional spaces is complex. We will see in Sect. 5.5 the different
possibilities to infer these parameters and how some of theseworks tackle the curse of
dimensionality. Figure5.2 illustrates the main steps common to all these patch-based
denoising methods, and each of these steps is described in the following sections.
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Fig. 5.2 The whole process of patch-based image denoising with Gaussian prior models. First,
patches are extracted from the noisy image. Next, these noisy patches are grouped and modeled
with local Gaussian models or Gaussian mixture models, whose parameters are inferred by maxi-
mum likelihood (Sect. 5.5). Each patch is then denoised with an estimator derived from the model
(Sect. 5.3). Finally, the clean patches are aggregated to recover the denoised image (Sect. 5.4)
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5.2 What Is Encoded in Gaussian and GMM Priors?

Before going into the details of estimation under Gaussian priors, we provide in
this section a few insights on the actual structures they encode. Assume a Gaussian
model N (μ,Σ) for p = s × s patches (μ ∈ R

p and Σ ∈ Mp(R)). The diagonal
coefficients of the covariance matrix Σ represent the variance of each pixel in the
patch, while the non-diagonal coefficients represent the covariances between pixels.
A positive covariance coefficient means that the two pixels tend to be either both
greater or smaller than their means, while a negative coefficient implies that they
tend to be on opposite sides of their means. Since we are dealing with Gaussian
vectors, a null covariance coefficient means that the two pixels are independent.
Clearly, if Σ is purely diagonal, patches drawn from the modelN (μ,Σ) will only
be noisy versions of the mean patch μ. In this case, the only structure information is
contained in μ. More interesting models contain geometric information directly in
the covariance matrix Σ .

To illustrate this point, we propose to create models encoding different patch
structures. For instance, in order to model a vertical edge, we define a Gaussian
distribution with constant mean μ = (0.5, . . . , 0.5) and a covariance matrix with
coefficient 1 in the second and third quarter of Σ , and coefficient 0 in the first and
fourth quarters of Σ (see Fig. 5.3). In this simplistic example, the matrix Σ has rank
two, with (non trivial) eigenvectors (1, . . . , 1, 0, . . . , 0) and (0, . . . , 0, 1, . . . , 1), so
all the patches drawn from this distribution can bewritten 0.5 + (α, . . . , α, β, . . . , β)

with α ∼ N (0, 1) and β ∼ N (0, 1). These patches all contain a vertical edge in
their middle, with gray levels α and β on both sides of the edge. In this example,
we see that the model encodes a structure and authorizes different contrasts on both
sides of the structure. With the same mechanic, we can create a covariance matrix
encoding any desired shape, see for instance Fig. 5.4. Again, the samples from the

Fig. 5.3 Left: a covariance matrix Σ with 1 (white) on the second and third quarters, and 0 (black)
on the first and fourth quarters. Right: patches drawn from the Gaussian distributionN (μ,Σ)with
μ a constant patch equal to 0.5
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Fig. 5.4 Left: a covariance matrix Σ composed of 1 (white) and 0 (black). Right: patches drawn
from the Gaussian distribution N (μ,Σ) with μ a constant patch equal to 0.5

Fig. 5.5 Left: a covariance matrix Σ learned as the sample covariance matrix of a set of vertical
edges at different spatial positions, and with also different choices of gray levels on both sides of
the edge. Right: patches drawn from the corresponding Gaussian distribution N (μ,Σ) with μ a
constant patch equal to 0.5

corresponding distribution exhibit all possible gray levels in the different regions
defined by the covariance matrix, even if all these gray levels are not all equally
likely.

Now, although thesemodels authorize contrast changes or contrast inversions, they
are not well suited to encode geometric invariances on patches. For instance, if we
try to learn a model encoding different vertical edges with invariance to translation,
we end up with an average model encoding a vertical gradient image (see Fig. 5.5).
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5.3 How to Derive Estimators Under Gaussian and GMM
Priors

Now that we have seen more precisely what could be contained in Gaussian priors,
we will now see more precisely how they can be used to derive estimators under the
Bayesian model described in the introduction.

In the whole section, we assume that we work with the model (5.4)

Y = X + N ,

with N ∼ N (0, σ 2 Ip) independent from X . We wish to estimate X knowing Y .
We first recall some classical results on the conditioning of Gaussian vectors, and

on the links between the conditional expectation, Wiener estimator and MAP for
Gaussian and GMM priors. These different estimators will serve in the rest of the
chapter as denoising strategies for image patches.

5.3.1 Estimation with Gaussian Priors

We first assume that X follows a Gaussian distribution N (μX ,ΣX ) and that the
noise N is independent from X . The classical properties of Gaussian vectors make
it possible to show that in this case the estimator E[X |Y ] is an affine function of Y
(thus equivalent in this case to the Wiener estimator). Indeed, recall that if (T, V )

is a Gaussian vector, then the conditional expectation E[T |V ] is the affine function
of V

E[T |V ] = E[T ] + ΣT,V Σ−1
V (V − E[V ]), (5.8)

whereΣV is the covariance matrix of V andΣT,V = E[(T − E[T ])(V − E[V ])t ] (if
ΣV is not full rank, the result is still true by taking theMoore–Penrose pseudo-inverse
of ΣV ).

Now, if X and N are independent Gaussian random vectors, the concatenated
vector (X, Y ) = (X, X + N ) is also Gaussian. We directly deduce the following
result.

Proposition 1 Assume that X and Y follow the model (5.4), with X ∼ N (μX ,ΣX )

and N ∼ N (0, σ 2 Ip) independent, then the conditional expectation and Wiener
estimator of X knowing Y coincide and can be written

E[X |Y ] = EWiener [X |Y ] = μX + ΣX (ΣX + σ 2 Ip)
−1(Y − μX ).

Proof On the one hand, since (X, Y ) is aGaussian vector, the conditional expectation
E[X |Y ] can be written
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E[X |Y ] = E[X ] + ΣX,Y Σ−1
Y (Y − E[Y ])

= E[X ] + E[(X − E[X ])(X + N − E[X + N ])t ](ΣX + σ 2 Ip)−1(Y − E[Y ]).
= E[X ] + ΣX (ΣX + σ 2 Ip)−1(Y − E[Y ])
= μX + ΣX (ΣX + σ 2 Ip)−1(Y − μX ).

Under the same hypothesis, if we try to maximize the a posteriori probability on
the patch X , we obtain

argmax
X

logP[X |Y ] = argmax
X

(logP[Y |X ] + logP[X ])

= argmin
X

(
(X − Y )t (X − Y )/σ 2 + (X − E[X ])t Σ−1

X (X − E[X ])
)

.

We check easily that the solution of this minimization problem is also given by

ψ(Y ) = μX + ΣX (ΣX + σ 2 Ip)
−1(Y − μX ).

Said otherwise, for a Gaussian prior, the MMSE, linear MMSE and MAP all
coincide and all these estimators only require linear operations. This property makes
Gaussian priors particularly convenient in practice and explains their success in the
restoration literature.

We can illustrate the interest of this estimator on the GaussianmodelN (μX ,ΣX )

presented in Fig. 5.3 and representing a vertical edge. If X is an (unknown) realization
of this model and Y = X + N with N ∼ N (0, σ 2 Ip) independent from X , then
E[X |Y ]will also be a patch (α, . . . , α, β, . . . , β)with α = 0.5 + 1

p/2+σ 2

∑p/2
k=1(Yk −

0.5) and β = 0.5 + 1
p/2+σ 2

∑p
k=p/2+1(Yk − 0.5)(assuming p is even for the sake of

simplicity). Said otherwise, the denoised patch E[X |Y ] represents the same vertical
edge as X and its values α and β on both sides of the edge are (if σ 2 � p/2) the
averages of Y on these two half patches.

Figure5.6 represents three denoising experiments with the previous estimator. On
the first line, a vertical edge is denoised with the Gaussian model of Fig. 5.3. On the
second line, a “duck” patch is denoised with the Gaussian model of Fig. 5.4. In both
cases, using the conditional expectation works extremely well because the Gaussian
model used in the estimator fits perfectly the image to be denoised. On the third
line, the noisy edge is denoised with the Gaussian model of Fig. 5.5. In this case, the
denoised patch is constant on each column (since the model is learned from a set of
translated vertical edges). Although the model imposes a strong correlation between
columns of the first half of the patch on the one hand, and between columns of the
second half of the patch on the other hand, this is not enough to restore the patch
perfectly.
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Fig. 5.6 For each line, from left to right, clean patch, noisy patch (σ = 10%), denoised patch with
the Wiener estimator. First line, the edge Gaussian model of Fig. 5.3 is used to denoise (PSNR =
37.17). Second line, the duck Gaussian model of Fig. 5.4 is used to denoise (PSNR = 34.29). Third
line, the gradient model of Fig. 5.5 is used to denoise (PSNR = 29.68). In this last case, the image
to be denoised is not well represented by the model and the result is less convincing

5.3.2 Estimation with Gaussian Mixture Models

The case of Gaussian Mixture Models is a bit more involved but remains globally
simple. Assume that X follows a Gaussian Mixture Model

X ∼
K∑

k=1

πkN (μk,Σk), (5.9)

with
∑K

k=1 πk = 1. There exists a latent random variable Z on {1, . . . , K } such
that P[Z = k] = πk and such that X |Z = k ∼ N (μk,Σk). In the following, we note
ψk(y) the Wiener estimator for the kth Gaussian, i.e.,

ψk(y) = μk + Σk(Σk + σ 2 Ip)
−1(y − μk).

Under this model, we have the following proposition.



5 Gaussian Priors for Image Denoising 135

Proposition 2 Assume that X and Y follow the model (5.4), with
X ∼ ∑K

k=1 πkN (μk,Σk) and N ∼ N (0, σ 2 Ip) independent, then the conditional
expectation of X knowing Y can be written as

E[X |Y ] =
K∑

k=1

ψk(Y )P[Z = k|Y ]. (5.10)

Proof To compute the conditional expectation, we can start by noting that if Z = k,
(X, Y ) is a Gaussian vector and the results of the previous section apply. We can now
compute the conditional expectation

E[X | Y, Z ] = ψZ (Y ) =
K∑

k=1

ψk(Y )1Z=k .

It follows that

E[X |Y ] = E[E[X | Y, Z ] | Y ] because σ(Y ) ⊂ σ(Y, Z)

= E[ψZ (Y ) | Y ] =
K∑

k=1

E[ψk(Y )1Z=k | Y ]

=
K∑

k=1

ψk(Y )E[1Z=k | Y ] because ψk(Y ) is σ(Y )-measurable.

We deduce that

E[X |Y ] =
K∑

k=1

ψk(Y )E[1Z=k | Y ] =
K∑

k=1

ψk(Y )P[Z = k | Y ].

The conditional expectation E[X |Y ] can be seen as a linear combination of affine
functions of Y , with weight P[Z = k|Y ] representing the probability that the patch
belongs to the class k. However, the weights P[Z = k | Y ] are not linear functions
of Y .

The expression of the Wiener estimator EWiener [X |Y ] can be deduced directly
fromEq. (5.7), by replacingE[X ] by∑K

k=1 πkμk andΣX by the complete covariance
of the GMM.

Finally, computing the MAP argmaxX logP[X |Y ] under a GMM prior on X
is much less convenient and does not lead to a closed-form solution. Indeed, it
boils down to compute the maximum of the posterior distribution, which is another
Gaussian Mixture distribution.
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In other words, the linear MMSE,MMSE, andMAP do not coincide for Gaussian
Mixture priors. In practice, the conditional expectation is favored since it is much
simpler to compute than the MAP.

5.3.3 Other Estimation Strategies

Estimation under Gaussian or GMM models has several links with other estimation
strategies found in the literature. For a noisy patch y, and aGaussianmodelN (μ,Σ),
we have seen that the conditional expectation strategy consists in computing the
denoised patch

x̂(y) = μ + Σ(Σ + σ 2 Ip)
−1(y − μ).

Now, if we consider the eigendecomposition Σ = QΔQt with Δ = diag(λ1, . . . ,

λp), this can be rewritten

x̂(y) = μ + Qdiag

(
λ1

λ1 + σ 2
, . . . ,

λp

λp + σ 2

)
Qt (y − μ). (5.11)

More generally, denoting Q1, . . . , Q p the columns of Q representing the eigenvec-
tors, we can write

x̂(y) = μ +
p∑

k=1

ηk
(
Qt

k(y − μ)
)

Qk, (5.12)

with ηk(z) = λk
λk+σ 2 z. Although the previous Wiener estimator is used in numerous

recent patch-based denoising methods [8, 11, 15], other choices are obviously pos-
sible for ηk , such as hard or soft thresholding [16], or all estimators classically used
in diagonal estimation.

Writing x̃ = Qt (x − μ), we can see that the conditional expectation x̂(y) is also
solution of the optimization problem

argmin
x̃

‖Qx̃ − (y − μ)‖2 + σ 2 x̃ tΔ−1 x̃ = argmin
x̃

‖Qx̃ − (y − μ)‖2 + σ 2
p∑

k=1

x̃2
j

λk
.

This permits to see the link between the previous approach and the dictionary-based
approaches, the dictionary here being given by Q and the second term corresponding
to a regularization of the solution x̃ . Figure5.7 represents the denoising of a noisy
patch with the same Gaussian model and two different denoising strategies: the
conditional expectation (Wiener) and hard thresholding at 2.7σ (as recommended
in [16]).
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Fig. 5.7 Clean patch, noisy patch (10% noise), denoised patch with gradient model (from Fig. 5.5)
andWiener estimator (PSNR = 29.68dB), and denoised patch with gradient model and hard thresh-
olding (PSNR = 31.12dB, th = 2.7σ )

5.4 From Patches to Images: Aggregation Procedures

In the previous sections, we have seen how to derive Bayesian estimators to perform
denoising on each patch separately. In this framework, each observed patch yi from a
noisy image v is denoised into x̂i , which is an estimate of the unknown patch xi . Each
pixel of the image v is contained in p patches, which provide p denoised versions for
this pixel. Most aggregation procedures consist in defining a reprojection function
ψ : Rm×p → R

m which reconstructs an image from the set of its denoised patches.
Observe that since denoised patches usually do not coincide on their overlap, this
operation is not invertible. Moreover, since the noise on overlapping patches is not
independent, the p denoised versions of the pixel carry this dependence under the
form of low-frequency noise. In the literature, we find three main strategies for this
reprojection step:

• Central pixel reprojection. The idea is to keep only the central pixel of each
denoised patch.

• Uniform reprojection. All the estimators coming from the different patches con-
taining the pixel are averaged with uniform weights. This strategy is the most
commonly used in practice, and this is the one we use in this chapter for the sake
of simplicity.

• Weighted reprojection. All the estimators coming from the different patches
containing the pixel are averaged with weights representing the precision of the
corresponding estimator. For some details, see [14, 17, 18].

A more involved strategy is explored in [9]. The authors propose to reconstruct
the denoised image u as the solution of

argmin
u

λ

2
‖u − v‖22 −

∑

j

log p(x j ),

where the {x j } are the patches extracted from the unknown image u and p is a
GMM prior on the image patches. This formulation includes both the denoising and
aggregation step into a single variational problem.
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5.5 Inference of Gaussian and GMM Priors

Gaussian models and GMMs appear to be well suited for patch-based denoising.
However, the quality of the restoration strongly depends on the relevance of the
model. Unfortunately, in real denoising problems, the perfect model is never known
and the most challenging step is to find a good prior for each patch. In the literature,
we find essentially two strategies to learn these models. The first one consists in
learning the model on some external set of patches that represent the diversity of
natural images [9]. The second one consists in learning the model directly on the
noisy patches [8, 13, 15]. In this section, we discuss different approaches adopting
the second strategy. Before going further, we recall some basics about statistical
inference.

Given a set of patches {y1, . . . , yn} ∈ R
p extracted from an image, we consider

them as independent realizations of a random variable Y with density φ depending
on some parameters θ . The parameters θ of the model are inferred by maximizing
the likelihood of the data w.r.t. θ , where the likelihood is defined as

�(y; θ) =
n∏

i=1

φ(yi ; θ). (5.13)

Maximizing the likelihood is equivalent to minimize the negative log-likelihood

L (y; θ) = − log (�(y; θ)) = −
n∑

i=1

log (φ(yi ; θ)) , (5.14)

which is usually more convenient for computation.
In the context of denoising,we put a priormodel on the randomvector X represent-

ing the clean patches. When X follows a Gaussian model of parameters (μX ,ΣX ),
resp. a Gaussian mixture model of parameters {πk, μk,Σk}k=1...K , then Y = X + N
also follows a Gaussian model of parameters {μX ,ΣX + σ 2 I }k , resp. a GMM of
parameters (πk, μk,Σk + σ 2 I ). Since ΣX (resp. Σk) is positive semi-definite and
σ > 0, ΣX + σ 2 I (resp. Σk + σ 2 I ) is always positive definite. Thus, the random
vector Y always has a probability density function φ and the likelihood is always
defined.

5.5.1 Gaussian Models

In the case of a Gaussian prior X ∼ N (μX ,ΣX ) on the clean patches, the set of
parameters on the noisy patches is given by θ = {μY ,ΣY } where ΣY = ΣX + σ 2 I
and μX = μY . The negative log-likelihood for a set of noisy data {y1, . . . , yn}
becomes
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L (y; θ) = 1

2

n∑

i=1

(y − μY )T ΣY
−1(y − μY ). (5.15)

The computation of the maximum likelihood estimators (MLE) of the parameters,
i.e. argminθ L (x; θ), for μY and ΣY yields the sample mean

μ̂Y (n) = 1

n

n∑

i=1

yi , (5.16)

and the sample covariance matrix

Σ̂Y (n) = 1

n

n∑

i=1

(yi − μ̂Y )T (yi − μ̂Y ). (5.17)

Theses estimators depend on the number n of samples and from the strong law of
large numbers

μ̂Y (n)
a.s.−→

n→∞ μY and ΣY (n)
a.s.−→

n→∞ ΣY . (5.18)

This gives us an estimator Σ̂X := Σ̂Y − σ 2 I for ΣX satisfying

Σ̂X (n)
a.s.−→

n→∞ ΣX . (5.19)

In summary, for a given set of noisy patches {y1, . . . , yn}, we can easily compute
theMLE of the parameters (μX ,ΣX ) for the Gaussianmodel on the underlying clean
patches. Now, since we showed in Sect. 5.2 that Gaussian models are representing
really precise structures, the most challenging part is to choose the set of noisy
patches from which the model can be derived.

5.5.2 How to Group Patches to Infer Gaussian Priors?

In this section, we discuss how patches can be grouped in order to learn the previous
Gaussian models directly from a noisy image.

5.5.2.1 Global Gaussian Prior

The first really basic idea is to model the set of all image patches with a unique
Gaussian prior. In this case, we are modeling the whole “patch space” by a unique
Gaussian model of mean μ̂X and covariance Σ̂X . This model poorly represents the
complexity of the patch space but still encodes some proper image information.
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Fig. 5.8 Visualization of the first 16 eigenvectors of the sample covariance matrix of the whole
patch space for two different images. Left: original images. Middle: the 16 first eigenvectors. Right:
patches generated with the low rank covariance matrix created from these eigenvectors

This modeling is adopted in [16] to perform a basic denoising by performing the
eigendecomposition ΣX = QΔQt and denoising the patches with an estimator of
the form (5.12). Figure5.8 illustrates the fact that the eigenvectors of the covariance
matrix learned on the whole patch space encode some proper information about the
image.

In this case, since the Gaussian model is very broad, we do not expect the Wiener
estimator to yield good results. But since the eigenbasis seems to encode some
proper information about the image patches, the hard-thresholding strategy manages
surprisingly good denoising. The second line of Fig. 5.9 shows the denoising result
for this global grouping with the two denoising strategies and shows that in this case,
the hard-thresholding strategy is better than the Wiener one.

5.5.2.2 Spatially Local Gaussian Priors

To derive more precise prior models, it is necessary to group “similar” patches and
to restrict the inference to each of these groups. A first possibility is to group patches
based on their spatial proximity in the image. This makes sense in homogeneous
regions, but the risk is high to group patches representing really different structures.
The third line of Fig. 5.9 shows that the result of this strategy is not really better,
PSNR-wise, than the result of the global strategy. However, the Wiener strategy for
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Fig. 5.9 First line: two images and their noisy versions (σ = 30). Columns correspond to denoising
strategies (Wiener or Hard thresholding). Lines correspond to grouping strategies: 1. one Gaussian
model for all patches (PSNR, from left to right: 29.18, 31.22, 25.94, 26.85dB), 2. K = 256 local
Gaussian models in the image space, see Fig. 5.10 (PSNR, from left to right: 29.14, 30.72, 26.28,
26.88dB), 3. K = 256 local Gaussian models from a k-means clustering, see Fig. 5.10 (PSNR:
31.30, 31.09, 26.92, 27.08dB), 4. local Gaussian models for group of ε-close patches (PSNR:
30.45, 29.65, 26.72, 25.95dB)
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Fig. 5.10 Left: the local grouping used in the local strategy. Middle and right: the grouping used
in the K-means strategy for the two images Simpson and Alley

this local approach seems nicer than in the global approach, while the result of the
hard-thresholding strategy does not really change.

5.5.2.3 Local Gaussian Priors in the Space of Patches

In order to learn more precise models, patches can be clustered directly in the patch
space and a Gaussian model can be inferred for each cluster. All patches from the
cluster can then be denoised using this model. This clustering implies to use an
appropriate similarity measure between patches. The fourth line of Fig. 5.9 shows
such a denoising experiment with a K-means clustering relying on the Euclidean
distance, with K = 256 clusters (Fig. 5.10 shows the corresponding clustering). This
usually yields a better denoising than the global and the local grouping strategies.

This way of grouping patches in the patch space together with a Wiener filtering
is also one of the main ideas behind the two steps of the NL-Bayes algorithm [8]. In
this algorithm, each patch yi is associated with the group of all its ε-close patches
for the Euclidean norm. A Gaussian model is inferred from this group and the whole
group is denoised using this model. The final estimator for each patch is the average
of all its denoised versions. The NL-Bayes algorithm uses this strategy twice: in the
first step, distances are computed directly between noisy patches inRp; in the second
step, distances between patches are computed between the versions which have been
denoised during the first step. Grouping ε-close patches presents the advantage of
putting together patches representing the same structures. However, a straightforward
one-step implementation (fifth row of Fig. 5.9) of this idea shows that it does not work
as well as expected in practice. Two major issues arise in this context:

• The high dimensionality of the patch space makes the estimation of the covariance
matrices difficult;

• The use of the Euclidean distance for grouping does not allow similar patches with
different contrast to be in the same group.

The first issue, discussed in Sect. 5.5.4, is crucial and related to the curse of
dimensionality. Unfortunately, it is hardly taken into account in the image denoising
literature.
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To tackle the second issue, other norms were investigated in the literature [19].
Another idea is to use the Gaussian models previously learned for recalculating new
clusters. Indeed, each covariance matrix of the different Gaussian models provides
a semi-norm that can be used to recompute the ε-nearest patches of each group.

5.5.3 Inference for Gaussian Mixture Models

The inference in the case of a mixture model is slightly more challenging since a
direct maximization of the likelihood is not possible. The negative log-likelihood of
the noisy data {y1, . . . , yn} is given by

L (y; θ) =
n∑

i=1

log

(
K∑

k=1

πkφ(yi ; θk)

)

(5.20)

and the minimization of this function w.r.t θ is a complex problem. However, if we
know to which group each sample xi belongs, the log-likelihood becomes

L (y, z; θ) =
n∑

i=1

K∑

k=1

zik log (πkφ(yi ; θk)) (5.21)

with zik = 1 if yi belongs to the group k and 0 otherwise. L (y, z; θ) is the log-
likelihood of the data completed with the latent random variable Z that determines
the group fromwhich the observations come from, that is Yi |(Zi = k) ∼ N (μk,Σk)

and p(Zi = k) = πk .
The EM algorithm consists in iterating two steps : the expectation (E) step that

calculates the expected value of (5.21) with respect to the conditional distribution
of Z given Y for the current value of the parameters θ , and the maximization (M)
step that updates the parameters by minimizing the expectation of the complete
log-likelihood from the E-step:

E (L (y, z; θ)) =
n∑

i=1

K∑

k=1

E(zik |xi , θ) log (πkφ(yi ; θk)) (5.22)

which leads to tractable expressions for the MLE of the parameters. It can be shown
(see for example [20]) that this algorithm converges to a local minimum of the log-
likelihood (5.20).

In the precise case of a Gaussian mixture model, the two steps of the algorithm
become
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• E-step, computation of tik := E(zik |yi , θ)

tik = πkφ(yi ; θk)
∑K

l=1 πlφ(yi ; θl)
(5.23)

• M-step, update of the parameters

π̂k = 1

n

n∑

i=1

tik, (5.24)

μ̂k =
∑n

i=1 tik yi∑n
i=1 tik

, (5.25)

Σ̂k =
∑n

i=1 tik(yi − μk)(yi − μk)
T

∑n
i=1 tik

. (5.26)

Observe that if we impose the tik to be 1 when the patch i belongs to the group
k and 0 otherwise, the M-step consists in inferring the parameters of the Gaussian
models for the groups, while the E-step uses the knowledge of the inferred model to
update the groups themselves. This model provides a better clustering of the patches
than a K-means clustering with the Euclidean norm (which only produces isotropic
clusters) and consequently should yield better denoising results. This idea is used in
[11, 13, 21] and the GMM model on patches is also used in [10]. A straightforward
implementation of the denoising with a GMM model on the patches gives the result
in the first line of Fig. 5.11. However, this inference of a GMM also strongly suffers
from the curse of the dimensionality and algorithms such S-PLE [11] or HDMI [13,
22] propose to use GaussianMixture models with intrinsic lower dimensions in order
to reduce the number of parameters to estimate, as detailed in the following section.

5.5.4 Inference in High Dimension

The dimensions of the patch spaces are usually high, from p = 9 (for 3 × 3 patches)
to p = 100 for 10 × 10 patches, or even higher. Estimating the parameters of Gaus-
sian models (or GMM) in such high-dimensional spaces is complex. When p is
large, patches seen as points in R

p are essentially isolated, the Euclidean distance
and the notion of nearest neighbor becomemuch less reliable than in low-dimensional
spaces [23]. These phenomena, known as the curse of dimensionality, cause diffi-
culties to decide which patches should be grouped together in a common Gaus-
sian model. Besides, parametric models such as Gaussian Mixture Models in high
dimension are usually over-parametrized: the covariance matrix of a Gaussian model
in dimension p = 100 contains 5050 different coefficients. They necessitate huge
quantities of data to be estimated correctly. Indeed, the convergence of the sample
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Fig. 5.11 First line: denoisingwith a full GMMmodel (50 groups) on all the patches. The clustering
(left) is quite noisy and the denoising result (right) is not very good (PSNR: 28.50dB). Second line:
denoising with a GMM model (50 groups) with intrinsic dimension regularization as in [13]. The
clustering (left) is smoother and the denoising yields quite good results (PSNR: 31.23dB)

covariance matrices to the true covariance matrix depends on the ratio between the
number n of samples and the dimension p. More precisely, if n and p both tend
toward infinity while n

p tends toward a constant c > 0, the eigenvalues of the sample

covariance matrix Σ̂(n) do not necessarily converge towards the eigenvalues of the
model covariance matrix (Marc̆enko-Pastur Theorem [24] describes the limit law of
the empirical distribution of these eigenvalues).

A consequence of the curse of dimensionality is that clustering methods such as
K-means orGMMare often disappointing in high dimension, or do not converge at all
if p is too large. Solutions to circumvent these problems usually rely on dimension
reduction, or regularization of the model parameters. For instance, if the sample
covariancematrixΣ is singular or ill-conditioned, or is not definite positive, it is usual
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to add a small ε Ip to it. This is the strategy followed by [8, 10]. In the case ofGaussian
Mixture Models, another approach consists in assuming that the intrinsic dimension
of the Gaussian is lower than p. This is the idea adopted in [11], where the groups’
intrinsic dimensions are heuristically fixed to 1 (flat regions), p

2 or p − 1. A more
involved method consists in inferring for each group its own intrinsic dimension [13]
(see Fig. 5.11). The corresponding parsimonious model assumes that each Gaussian
of the mixture lives in its own specific subspace.

Table 5.1 This table summarizes the main features of the different methods mentioned in this
chapter. Each line refers to a patch-based denoising method and the reference paper where it has
been introduced. The columns correspond to the different steps we discussed in this chapter

Method Grouping Modeling Dimension
reduction

Remarks Denoising Aggregation

Global [16] All patches Gaussian
models

No – Wiener/HT Uniform

Local [16] Local
grouping in
the image
space

Gaussian
models

No – Wiener/HT Uniform

K-means k-means in
the patch
space

Gaussian
models

No – Wiener/HT Uniform

NL-Bayes
[8]

Nearest
neighbors in
the patch
space

Gaussian
models

No Flat areas
are treated
separately

Wiener Uniform

PLE [10] GMM No MAP-EM
algorithm

Wiener at
each step of
the
MAP-EM
algorithm

Uniform

S-PLE [11] GMM Yes Fixed
intrinsic
dimensions

MMLE Uniform

HDMI [13] GMM Yes Estimation
of the
intrinsic
dimensions

MMLE Uniform

EPLL [9] – GMM No GMM
parameters
inferred on
an external
base

Variational formulation
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5.6 Discussion and Conclusion

In this chapter, we have focused on patch priors for image denoising. As we have
seen, assuming Gaussian and GMM priors on image patches is now quite common
in the restoration literature. These approaches yield simple image models, usually
quite easy to interpret. We have tried to provide a unified point of view for all of these
methods, in order to underline their similarities anddifferences. Table5.1 summarizes
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Fig. 5.12 Some denoising results for the RGB images Alley, Traffic and Flowers at σ = 50 with
different methods of the literature. The NL-Bayes method is used with default settings and the
HDMI method uses K = 50 groups. FFDNet is used with a noise map at σ = 50. Images should
be seen at full resolution on the electronic version of the chapter
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the main features of the methods mentioned in this chapter. We have also described
some of their limitations, such as the inference difficulties in high dimension or the
absence of invariance properties to geometric transformations.

While these patch-based methods have now reached a good level of maturity and
are used in both academic and industrial settings (the NL-Bayes [8] algorithm for
instance is behind the PRIME denoising technology in DxO PhotoLab software),
we cannot finish this chapter without mentioning the recent success of deep learning
methods in the restoration literature. These methods, which had already shown their
efficiency in computer vision, also started to show impressive results in the field of
image restoration and editing. Despite this success, their results are strongly depen-
dent on the learning databases and they often create new type of image artifacts. We
provide in Fig. 5.12 color denoising results for several images and three denoising
methods: two patch-based methods relying either on local Gaussian models (NL-
Bayes [8]) or on Gaussian Mixture Models with specific low-dimensional subspaces
(HDMI [13]) and a state-of-the-art approach using convolutional neural networks
(FFDNet [25]). These three methods clearly show complementary strengths and
weaknesses. While FFDNet yields excellent results in smooth or constant areas, it
tends to oversmooth fine textures (window shutters in Alley, trees in Traffic). This
might come from the fact that these specific textures are not well represented in the
learning database. On the contrary, the GMM-based approach gives good results on
these repetitive structures but misclassifications tend to yield artifacts, for instance
under the form of low-frequency noise in flat areas. To conclude, we think that these
two paradigms should be seen as complementary rather than competitors.
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Chapter 6
Internal Versus External
Denoising—Benefits and Bounds

Maria Zontak and Michal Irani

Abstract Image denoising has been a popularly studied problem for several decades
in image processing and low-level computer vision communities. Many effective
denoising approaches, such as BM3D, utilize spatial redundancy of patches (rela-
tively small, cropped windows) either within a single natural image, or within a large
collection of natural images. In this chapter, we summarize our previous finding
that “Internal-Denoising” (based on internal noisy patches) can outperform “Exter-
nal Denoising” (based on external clean patches), especially in the presence of high
noise levels. We explain this phenomenon in terms of “Patch Signal-to-Noise Ratio”
(PatchSN R), an inherent characteristic of a noisy patch that determines its prefer-
ence of either internal or external denoising. We further experiment with the recent
state-of-the-art convolutional residual neural network for Gaussian denoising. We
show that it closes the gap on the previously reported external denoising bounds.
We further compare its performance to internal local multi-scale Oracle (that has the
same receptive field as the network). We show that for patches with low PatchSN R,
the network does not manage to reconstruct the best “clean” patch that resides in
the network’s receptive field. This suggests that the future challenge of denoising
community is to train an image-specific CNN that will exploit local recurrence of
patches, without relying on external examples, as was recently successfully done
for super-resolution task. Combining such a model with external-based models may
push PSNR bounds further up and improve denoising by ∼1–2 dB, especially for
higher noise levels.
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6.1 Introduction

Image denoising has been a popularly studied problem for several decades in image
processing and low-level computer vision. In this problem, we are given a corrupted
noisy image, IN = I + N , and want to recover the original clean image I . This
problem is very under-constrained and ill-posed. Given a noisy image IN , there
are many possible solutions of I , since the noise N is unknown. However, natural
images occupy only a tiny portion of the space of all possible solutions I , a fact that
encouraged researchers to continue seeking for new ways to perform better natural
image denoising. Most of the proposed approaches assumed Gaussian additive noise
of zeromean andknownvarianceσ 2.Wewill follow this assumption in our discussion
below.

Until 2012, the most effective denoising approaches [1, 6, 7, 11, 21, 22] utilized
spatial redundancy of patches (relatively small, cropped windows) within a single
natural image, as well as within a large collection of natural images. The fact that
small image patches tend to recur within natural images has been successfully used
in many denoising algorithms, such that similar patches were combined to reduce
the effects of noise. The seminal patch-based methods were the Non-Local Means
(NLM) denoising of Baudes et al. [6, 7] and the K-SVD denoising of Aharonov and
Elad [1]. These methods were further improved by BM3D denoising [11] and LSSC
denoising of Mairal et al. [21, 22].

The Non-Local Means denoising [6, 7] solely relies on patch recurrence within a
single noisy image, and eliminates noise by averaging similar patches.While demon-
strating state-of-the-art performance upon publication, the NLM algorithm was lim-
ited by the ability of finding “true” similar patches in a noisy regime. This prob-
lem was addressed by the BM3D [11] algorithm, that suggested two-stage denois-
ing, where the image was first roughly denoised and afterwards the denoising was
refined by searching for similar patches in previously denoised image. This and
other improvements, such as a different strategy for combination of similar noisy
patches, made BM3D a very effective algorithm. Despite the “non-local” intention,
both Baudes et al. [6, 7] andDavob et al. [11] restrained the search for similar patches
to the relatively close vicinity of the patch. Usually, this was motivated by compu-
tational efficiency, however in [32], we explained that local neighborhood might be
more beneficial for performance as well. We elaborate on this in Sect. 6.2.1.

The K-SVD denoising [1, 2, 12, 13], proposed to reconstruct an underlying clean
patch by sparsely representing a noisy patch with an over-complete learned dictio-
nary. Initially, such dictionary was learned from a big collection of clean natural
images [2], however later [13], the dictionary was directly learned from the patches
of a noisy image. Interestingly, the authors did not find any advantage of a particular
method. This might seem surprising, since “External” dictionary is learned from
patches of a large collection of clean images, while “Internal” dictionary is learned
from the patches of a noisy images.We analyzed and explained this surprising behav-
ior in [23]. We showed that some patches in the image benefit more from internal
denoising, while others benefit more from external denoising. As such, on average
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both algorithms can perform equally well. We elaborate on Internal versus Exter-
nal preference in Sect. 6.2.2 and discuss the inherent patch characteristics, “Patch
Signal-to-Noise Ratio”, which determines this preference, in Sect. 6.2.3. We further
suggested how the power of Internal and External denoising can be combined in
Sect. 6.3.

Image denoising took a new, promising route with the revival of deep neural
networks. The general idea is simple, during the training stage, the network learns
how to map the provided noisy input into a clean output based on noisy-clean image
pairs from the external database of training examples. While the training stage is
time consuming, the test stage, especially if implemented on GPU, is fast, which
makes such networks very compelling. Several different architectures have been
proposed, including fully connected denoising autoencoders [29], multilayer per-
ceptron (MLP) [14] and convolution networks (CNNs) [4, 31]. While the denoising
autoencoders proposed in [29] did not manage to surpass the state-of-the-art, the
MLP [14] did. MLP network performed well when tailored to a specific noise level,
but lacked the ability to generalize to a blind denoising task, where the same net-
work should be able to perform well on several noise level. The residual denoising
convolutional neural network, which was introduced in [31], demonstrated that a
single neural network can address a wide range of noise levels, while still improving
the state-of-the-art PSNR. Inspired by ResNet [15], the authors proposed to learn
to reconstruct the noise, instead of the clean signal, and demonstrated substantial
improvement in PSNR values for both single noise-level denoising tasks and blind
denoising (as well as other image processing applications). This network was further
improved by [4], which suggested wavelet domain deep residual learning network
for Gaussian denoising task. The main idea of this paper is that image transform
into wavelet domain reduces the topological complexity of data and label manifold
and hence improves the network predictive power. In Sect. 6.4, we discuss how such
CNN-based methods perform with respect to the internal and external denoising
bounds, and we conclude that there is still room for improvement.

6.2 On the Preference of Local Denoising

The denoising problem has a rich history. Early work includes anisotropic denois-
ing [3, 25], various wavelet based techniques (e.g., [26]), and more. The underlying
principle in these techniques relies on the variance law in probability theory, which
ensures that if d independent noise samples are averaged, the noise standard devia-
tion diminishes by a factor of 1/

√
d . Thus, to denoise a noisy pixel, d − 1 similar

pixels should be averaged. Typically, the similar pixels were assumed to be found in
the immediate vicinity of the pixel to be denoised. The major leap in performances
happened in 2005, when Buades et al. [6] observed that the most similar pixels need
not necessarily be near. For example, periodic patterns, or elongated edges, which
appear in most images, have many similar pixels that do not lie in the close vicinity
of each other. Thus, in the Non-Local Means (NLM) algorithm, the noisy pixel is
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replaced by the mean value obtained from other image pixels, weighted by their
degree of similarity of their surrounding image patch to that of the denoised pixel:

û(p) = 1

Σq∈N p
r
w(p, q)

Σq∈N p
r
u(q)w(p, q) , (6.1)

where u is the noisy image, p is the denoised pixel and the similarity weight w(p, q)

is typically based on the similarity of small images patches centered around the pixels
p and q (a similar formula can be applied to denoise a patch p).

The name “Non-Local” is somewhat misleading, as can be seen in the above
formula, only the pixels that are found in N p

r , a neighborhood centered around p
of size 2r + 1 × 2r + 1, are averaged. In typical NLM implementation (as well as
in the state-of-the-art BM3D [11]), the radius r is relatively small, typically around
20 pixels. Usually, this choice is justified by computational efficiency considera-
tion. In [32], we showed that such a constrained search has performance advantages
beyond the computational ones. We elaborate on that next.

6.2.1 Internal Local Versus Global Denoising

When defining a neighborhood, the primary goal is to discover as many patches as
possible with similar underlying clean signal. In [32], we observed that an image
patch is much more likely to recur near itself than far away. By quantifying the patch
recurrence within an image, we showed that a patch density is high within its closest
vicinity, and that this density drops rapidly as the distance from the patch grows.

Our experimentswere conducted on the 300 images from [5]. For each imagepatch
p, we estimated its empirical density within an image neighborhood Ndist of radius
“dist” around the patch, using Parzen window estimation [24]: density(p; dist) =∑

q∈N dist
Kh(‖p − q‖22)/area(Ndist), where q are all the image patches within a

spatial neighborhood Ndist , and Kh(·) is a Gaussian kernel. Averaging these indi-
vidually computed patch densities over the set of all patches with the same gradient
magnitude |grad|, we obtain the following average density:

Density(dist, |grad|) = Meanpof |grad|density(p, dist). (6.2)

The average number of “good Nearest Neighbors” NN within a distance dist from
the patch is defined as:

NN(dist, |grad|) = Density(dist, |grad|) · area(Ndist) . (6.3)

Note that the Parzen estimation does not distinguish between 10 perfectly similar
patches, and 100 partially similar patches. We loosely refer to these as 10 good NNs.
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(a) Patch Density (b) NN(dist, |grad|)

Fig. 6.1 Internal statistics of a single natural image. (a–b The empirical density (dist, |grad|) of
patches and the number of “similar” patches, NN (dist, |grad|), as a function of the mean gradient
magnitude |grad| in the patch, and the spatial distance dist from the patch location (Red signifies
high values and blue signifies low values)

Figure6.1a displays the empirical density Density(dist, |grad|) and Fig. 6.1b dis-
plays the number of “similar” patches NN(dist, |grad|), both as a function of the
mean gradient magnitude |grad| of the patch, and the spatial distance dist from the
patch location. In both maps, red signifies high values and blue signifies low val-
ues. Observing these maps, we note that a patch tends to recur densely in its closest
vicinity (small dist), and its frequency of recurrence decays rapidly as the distance
from the patch increases (see the zoomed-in part in Fig. 6.1a).

Namely, patches in a natural image are likely to reside in spatial clusters of similar
patches. Therefore, since a patch has enough similar patches in its close vicinity, it
is not surprising that NLM works well, despite its relatively local search.

However, what is surprising is that the local search is sometimes preferable over
a ‘global’ search in the entire image. Figure6.2 visualizes this surprising finding.
We ran the NLM algorithm on the noisy image of Fig. 6.2a, with three different
search regions: (i) 21 × 21, (ii) 200 × 200, (iii) the entire image. For each pixel in
the image, we marked which of the three search regions gave it the smallest error
relative to the ground-truth clean image (Fig. 6.2b). We further note that relatively
smooth region (face, hair and background), which are characterized by low variance,
benefit more from locally constrained neighborhood, while more detailed patches
prefer bigger search regions.

This seems counterintuitive, because previously we explained that the noise stan-
dard deviation decreases by factor of

√
d , where d is the number of averaged samples.

It is obvious from Fig. 6.1b that bigger neighborhoods contain more similar patches,
and therefore should be better for denoising. However, evidently this is not the case
for some patches. We will further analyze this phenomenon in Sect. 6.2.3.
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Search Regions:

21×21

200×200

Entire Image

(a) Noisy Image (b) Preferred Search Regions

Fig. 6.2 Preferred search regions per patch in NLM: Smooth patches obtain better denoising
results in local search regions; detailed patches benefit from large search regions

6.2.2 Internal Local Versus External Denoising

We further show that for some patches internal local search among the noisy sur-
rounding patches is preferable, even when compared to the external search in a
collection of clean images. Note that when searching for similar patches for a noisy
patch pn = p + n, we aim to find patches that fit the underlying signal p. Hence,
successful denoising will rely on existence of sufficiently similar patches to p among
the available patches. Next, we check how well a clean patch p is represented inter-
nally versus externally, in other words, we analyze internal versus external signal
fitting quality.

Figure6.3 shows the root mean squared error (RMSE) between a clean patch p,
and the average of its most similar patches, i.e., its k-Nearest Neighbors (k-NNs),
computed for 7 × 7 patches. We examined three cases: (i) The k-NNs are selected
from an internal 21 × 21 neighborhood surrounding p (dotted curve); (ii) The k-
NNs are selected internally from the entire image (solid curve); (iii) The k-NNs are
selected from an external database of 200 images (dashed curve). The red color refers
to the 25% smoothest patches in the image (lowest var(p)), and the blue curve—to
the 25% most detailed patches in the image (highest var(p)). These results were
averaged over patches taken from 100 images.

Smooth patches (red curves) have many good NNs both internally and externally.
Averaging up to 100 NNs yields approximately similar representation error for both
local internal and external searches. On the other hand, the detailed patches p (blue
curves) have much better representatives externally than internally. Averaging 100
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Fig. 6.3 Signal fitting: RMSE between a clean patch p and the average of its k-NNs (computed
for 7 × 7 patches). Dotted curve (Internal-Local): k-NNs selected from an internal 21 × 21
neighborhood around p; Solid curve (Internal-Global): k-NNs selected internally from the entire
image; Dashed curve (External): k-NNs selected from an external database. Red curves: the 25%
smoothest patches in the image;Blue curves: the 25%most detailed patches in the image (Statistics
over 100 images.)

internal NNs leads to a very high error. In fact, this error is much higher than aver-
aging any number k of external NNs in the graph. Thus, while smooth patches have
sufficient representation internally, detailed patches do not.

Moreover, once noise is added, the internal k-NNs (local or global) will be noisy,
whereas the external ones will not, giving additional advantage to external denoising.
Nextwe show that despite the apparent advantages of external denoising: better signal
fit and clean patches, it often performs worse than internal denoising for many image
patches.

Figures6.4c, d show the denoising results of the Internal local NLM and External
NLM (using 7 × 7 patches) on the noisy image of Fig. 6.4b (Gaussian noise with
σ = 35). Internally, each noisy 7 × 7 patch was denoised by taking a weighted
average of its neighboring noisy image patches (weighted by their degree of similarity
to the patch) within a local, 21 × 21 neighborhood. Externally, each noisy 7 × 7
patch was denoised by taking a weighted average of clean patches from an external
database of 200 clean natural images (taken from the train set of the BSDS300 [5]).
Note that while some parts of the image are indeed better recovered by the External
NLM (in particular, the textured regions, e.g., the woman’s hair), other parts (the
smooth regions, e.g., the woman’s face, the background) are poorly denoised using
external NLM and are better recovered by the Internal NLM.

Surprisingly, this phenomenon for Internal denoising versus External denoising
only grows as the noise level grows. This is illustrated in Fig. 6.5, which displays the
Internal versus External patch preference for three different noise levels (added to the
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(tupniysioN)b(lanigirO)a( σ = 35)

(c) Internal NLM (24.11dB) (d) External NLM (24.64dB)

Fig. 6.4 Internal versus external denoising (NLM with 7 × 7 patches, σ = 35). Internal NLM
is better for smooth patches; External NLM is better for detailed patches
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(a) =15 (b) = 35 (c) = 55σ σ σ

Fig. 6.5 Internal versus external patch preference. Patch preference between Internal and Exter-
nal NLM for different noise levels: Red marks external preference; Blue marks internal preference.
Note that the higher the noise in the image, the stronger the preference for internal denoising

Fig. 6.6 Denoising error as a function of patch variance and patchSNR. Statistics performed
on 100 natural images (noise levels σ = 15, 35, 55). Note that the threshold between Internal and
External preference depends only on the PatchSNR, and is independent of the global noise level σ

image of Fig. 6.4a). For each noisy patch, we measured which of the two algorithms
denoised it better (i.e., obtained a smaller RMSE) with respect to the ground-truth
image of Fig. 6.4a. Blue marks internal preference, red marks external preference.
Indeed, Fig. 6.5 shows that as the noise level grows (from left to right), more patches
prefer the Internal denoising. This observation is surprising and counterintuitive,
because onemight expect thatwhen the image patches are noisier, using clean patches
(from an external database) would be preferable. Surprisingly, this is not the case.

To empirically validate that our observations hold in general for natural images,
we repeated this experiment on 100 different natural images (taken from the test set
of BSDS300) for three different noise levels (σ = 15, 35, 55).

Figure6.6a shows the average denoising error (RMSE) as a function of the patch
variance (of the ground-truth clean patch). It further confirms that the preference
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(a) Patch dominated by noise (b) Patch dominated by signal
(has low PatchSNR) (has high PatchSNR)

Fig. 6.7 Signal versus noise dominance within a patch. The noisy patches a and b are the red and
blue patches marked in Fig. 6.4b. Patch a prefers Internal NLM, whereas Patch b prefers External
NLM

for Internal NLM gets stronger as the noise level grows (the threshold between the
Internal/External preference increases with the noise level σ ). Indeed, patches with
low variance (smooth or low-content patches) prefer Internal NLM, whereas patches
with high variance (patches with details) prefer External NLM.

6.2.3 Patch Signal-to-Noise Ratio (PatchSNR) and Its
Implication on Internal Versus External Preference

To understand the growing preference presented in Figs. 6.5 and 6.6a, consider the
smooth (blue) patch and the detailed (red) patch fromFig. 6.4b. In Fig. 6.7,we decom-
pose these noisy patches, pn , into their underlying signal, p, and added noise, n. The
smooth patch is dominated by noise n (Fig. 6.7a), while the detailed patch is dom-
inated by signal p (see Fig. 6.7b). In [23], we proposed to measure this dominance
using “Signal-to-Noise Ratio” of a noisy patch, defining it as

PatchSN R(pn)
def==

√
var(p)

var(n)

In the next section, we analytically show that patches with low PatchSN R(pn) are
prone to noise fitting instead of signal fitting. Moreover, the chance of such patches
to overfit the noise grows as their search space grows (e.g., to the entire image or to
a collection of external clean images). We further show that such noise-overfitting
is avoided by a local internal denoising. As the global noise level σ increases, the
PatchSNR of each patch decreases. Therefore, more patches have lower PatchSNR
and hence more patches prefer Internal local denoising over External denoising.

To validate this claim empirically, Fig. 6.6b shows the RMSE per patch, but this
time plotted as a function of the PatchSNR. As can be seen, there is a clear threshold
between the Internal/External preference, which does not depend on the global noise
level σ . This shows that the Internal/External denoising preference is tightly related
to the PatchSNR.
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6.3 Noise Overfitting

In this section, we quantify the noise overfitting phenomenon and its relation to the
PatchSNR. As previously assumed, the noise is an additive random noise, sampled
fromGaussian distributionwith varianceσ 2 and zeromean. In [6], the authors explain
that under this assumption, applying Euclidean distance between noisy patches (L2

norm of their differences) will yield:

E(‖pn − qn‖2) = E(‖p − q + np − nq‖2) =
‖p − q‖2 + E(‖np − nq‖2) = ‖p − q‖2 + 2σ 2 , (6.4)

where np and nq are the noise realizations added to patches p and q respectively.
By assumption, these noise realizations are independent from each other, as well
as from the signals p and q. The authors therefore conclude that in expectation the
Euclidean distance between noisy patches preserves the original similarity of clean
patches. However is this indeed the case for each patch pn?

In [23], we observed that although the mean of the noise in the entire image is
zero, in practice, the sample (empirical) mean of the noise within an individual
relatively small patch is not zero (as illustrated for 7 × 7 in Fig. 6.8b). Similarly, the
sample (empirical) variance within an individual relatively small patch is usually
not σ 2 (see Fig. 6.8a).

Generally, given a sample of size d × d, consider d2 independent random vari-
ables n1, n2, . . . , nd2 , each corresponding to one randomly selected observation.
Each of these variables has the assumed Gaussian (0, σ 2) distribution. The sample
mean is defined as

n̄ = 1

d2
Σd2

1 ni , (6.5)

therefore, by the properties of means and variances of random variables, the mean
and variance of the sample mean are the following:

μn̄ = μ & σn̄ = σ/d , (6.6)

For example, given a 7 × 7 (d = 7) patch n of random noise sampled fromGaussian
distribution with (μ = 0, σ = 55), its sample mean n̄ will be distributed around 0
with standard deviation approximately equal to 7.85, in agreement with the empirical
distribution shown in Fig. 6.8b (typically the spread of values for normal distribution
is μ ± 3σ ∼= ±23.55).

Similarly, we can talk about sample variance:

1

d2
Σd2

1 (xi − x̄)2 ∼

σ 2

d2
χd2−1 , (6.7)
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Fig. 6.8 Deviations of empirical mean and variance (shown for σ = 55): a Distribution of the
empirical variance of 7 × 7 random noise patches. b Distribution of the empirical mean of 7 × 7
random noise patches. c Red curve—deviations of the mean of 7 × 7 clean natural patches w.r.t.
the central patch mean within a restricted 21 × 21 area. For comparison, the expected deviations
of random noise mean are overlayed on top (marked in blue)

where χ2
d2−1 is a chi-squared distribution with d

2 − 1 degrees of freedom. For exam-

ple, for σ = 55, the distribution will have mean of d2−1
d2 σ 2 � 552 and variance of

2 d2−1
d2 σ 2 which fits Fig. 6.8a.
In [23], we analyzed the influence of the difference between the expected and

sample values of mean and variance within a small patch on the denoising perfor-
mance. In particular, we observed that most of the inherent denoising error reported
in [17] for the case of optimal unconstrained external denoising, is due to overfit-
ting the nonzero (sample) mean of the noise within the patch (and is invariant of
the deviations of the noise variance within the patch). Next, we summarize these
findings.

(a) Overfitting the Noise Mean:

Given a noisy patch pn = p + n, let us denote the sample mean of n as n̄, which,
as we saw, is rarely zero. First, we need to adjust Eq.6.4 to the case of External
denoising, where q is a clean patch (i.e., nq = 0):

E(‖pn − q‖2) = E(‖p − q + n‖2) = ‖p − q‖2 + E(‖n‖2) = ‖p − q‖2 + σ 2 ,

(6.8)
The equation above assumes noise with zero mean. As explained above, for small
patches the sample mean will not be zero, thus to keep the equality valid we can
rewrite Eq.6.8 as: E(‖pn − q‖2) = ‖p − q + n̄‖2 + σ 2. Assuming that we search
externally for a clean patch p, which is most similar to pn , then:

p̂ = argmin
q

E(‖pn − q‖2) = p + n̄ , (6.9)

which does not match the desired signal p.
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Fig. 6.9 Fitting of the noise mean: RMSE of the optimal external denoising of patches versus
sample (empirical) mean and variance of the noise within the patch (computed on the data of [17]
for 7 × 7 patches, σ = 55). The denoising error grows linearly with the deviation from zero of
the empirical noise mean within the patch. In contrast, the denoising error is independent of the
empirical noise variance within the patch. (Average RMSE values are plotted)

In other words, an ideal denoising algorithm (i.e., which has access to an external
database containing all possible clean patches) will inherently have a residual error of
p̂ − p = n̄. Therefore, following Eq.6.6, the expected error of an “ideal” denoising
algorithm, due to the sample mean statistics within a d × d patch, is

RMSEideal =
√

E(n̄2) = σ/d , (6.10)

For example, for σ = 55 using 7 × 7 patches, the minimal expected denoising error
is RMSEideal = 7.85. Once the patch size becomes larger, the error due to the over-
fitting of the sample mean becomes smaller. The “mean-noise” fitting error provides
a lower bound on the expected error in the case of ideal (external) denoising (which
can be translated to an upper bound on the expected PSNR performance).

In [17], upper bounds for denoising algorithms are computed by denoising patches
via exhaustive weighted average over a huge number of natural image patches
(extracted from 20,000 clean natural images). This framework is close to an ideal
denoising, because the chances to fit a signal p perfectly are very high. In [23],
we empirically verified that most of the error in ideal external denoising, reported
in [17], is indeed due to overfitting the sample mean of the noise within a patch. This
empirical evaluation was performed using the data from [17] (kindly provided to us
by the authors) and is shown in Fig. 6.9.

Figure6.9a shows that the denoising error in the optimally denoised data of [17]
grows linearly with the deviation from zero of the noise mean within the patch
(shown for 7 × 7 patches, σ = 55). In contrast, the denoising error is independent
of the sample variance of the noise within the patch (see Fig. 6.9b). This confirms our
observation that overfitting the sample mean of the noise is inherent to unconstrained
external denoising. This is the major component of the residual denoising error in the
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optimally denoised data of [17], and is the main source for their derived denoising
bounds. For example, the error of relatively smooth patches (

√
var(p) < 4) from the

data of [17] is RMSE = 8.13, which is only slightly larger than the above estimated
RMSEideal = 7.85 only due to fitting the sample mean of the noise within a patch.

Overfitting the “mean-noise” has less risk of occurring internally,when the denois-
ing is restricted to a local, 21 × 21 neighborhood surrounding a patch. This is
because there exists a strong nonuniform prior on the mean of the clean patch p
in the local neighborhood. Patches in clean natural images tend to recur very densely
in their immediate surrounding (see Fig. 6.1a), hence their mean values tend to be
very similar. This is especially true for uniform or low-content patches, which form
a significant part of the image.

The red curve inFig. 6.8c displays the smalldeviationsof patchmeanvalueswithin
21 × 21 neighborhood in clean natural images (deviations aremeasuredwith respect
to the mean value of the central patch). This distribution was empirically calculated
for all relatively smooth 7 × 7 patches from 100 natural images of the BSD300
(with

√
var(p) < 4, which is roughly 1/3 of the patches). This distribution is highly

localized around zero.
Therefore, when restricting the denoising to averaging patches in a local neigh-

borhood, the expected residual error due to fitting the sample mean of noise is much
lower than in the unrestricted external search, especially for low-content patches.
That explains how even NLM denoising (which is far from being state-of-the-art),
achieves RMSE of 5.11 for relatively smooth patches. This is in contrast to 8.13
obtained for these patches by the optimal external denoising of [17].

(b) Overfitting the Noise Details:

We next analyze effects of overfitting the “details” of the noise. The result of Eq. 6.8
is valid under the assumption that signal q is not correlated with the noise n within
a patch pn . However, is this really the case? Next, we try to answer this question.

To isolate the effects of detail fitting, we first remove the mean of all the patches.
For simplicity of notations, in the analysis belown, p, pn , etc.will denote patcheswith
zero mean. Let cn denote the value of the Normalized Correlation between a random
noise patch n and its “most similar” natural patch NN(n) in a external database of
clean images. One would expect cn to be low (closer to 0 than to 1). However, as
shown in Fig. 6.10 (red and green curves), the value cn is surprisingly high (around
0.5). Moreover, high normalized correlation values are obtained not only for the first
nearest neighbor of n, but also for its other nearest neighbors (up to 1000 approximate
nearest neighbors—ANN). For all our experiments, we used an external database of
clean natural image patches from 200 images (from BSD300 [5]).

We experimented with several noise levels σ , and this correlation remains high
(almost identical), regardless of σ . Finally, this correlation is even higher for smaller
5 × 5 patches (typically in the range of [0.5 0.8], with an average value of 0.65).

For every random noise patch, we further calculated its “denoised” version, by
averaging its k-ANN in the external database, using k = 400 and k = 1000. One
would hope that such denoised patches would have very low variance, due to averag-
ing out the noise details (reducing the original σ 2 by the factor of k). But this is not
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Fig. 6.10 Random noise patches have high normalized correlation with natural image patches.
Red andGreen curves are distributions, showing high normalized correlation values of randomnoise
patches n with their 400 NNs among an external database of natural image patches (red curve), and
1000 NNs (green curve). In contrast, random noise patches n have very low normalized correlation
with other random noise patches (Blue curve). Shown for 7 × 7 random noise patches n, for σ = 55

the case. Since all nearest neighbors are correlated to n, their average is also strongly
correlated to n, leaving a non-negligible noise residues: ‖Avg(400NNs))‖ = 16.46;
‖Avg(1000NNs)‖ = 15.49 (where, ‖n‖ = σ = 55).

When considering relatively smooth patches, after removing their mean, they
behave as random noise. Therefore based on the above, such patches will not be
denoised well externally. In contrast, internally, within a local neighborhood of
20 × 20 (where the mean of the patches is similar Fig. 6.8c), denoising of smooth
patches is equivalent to averaging 400 random noise patches. The internal local
denoising seeks other similar patches with independent random noise. The blue
curve in Fig. 6.10 shows the distribution of normalized correlation values of 7 × 7
random noise patches (σ = 55), with other random noise patches. As expected, the
average normalized correlation values are almost zero. The average of such 400
random noise patches yields a patch with zero variance.

The above empirical evaluations hold for smooth patches. Next, we consider a
general noisy patch pn = p + n and its nearest neighbor q = NN (pn), in an external
database of clean patches Q. In general, the search for q will be guided both by the
signal component p and by the noise component n and will minimize

NN (pn) = argmin
q∈Q ‖q − pn‖2 , (6.11)

Further developing the above expression yields:

‖q − pn‖2 = ‖q‖2 + ‖pn‖2 − 2〈pn, q〉 = ‖q‖2 + ‖pn‖2 − 2c‖q‖‖pn‖ , (6.12)

where c denotes the normalized correlation between q and pn .
Differentiating Eq.6.17 w.r.t. ‖q‖ and equating to 0 leads to:

‖NN (pn)‖ = ‖qmin‖ = c‖pn‖ . (6.13)
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Substituting Eq.6.13 in Eq.6.17 yields

distNN (pn) = ‖pn‖2 − c2‖pn‖2 = (1 − c2)(‖p‖2 + ‖n‖2) . (6.14)

Notice that c = 〈pn ,NN (pn)〉
‖pn‖‖NN (pn)‖ = 〈p,NN (pn)〉+〈n,NN (pn)〉√

‖p‖2+‖n‖2‖NN (pn)‖
. Hence

c = cp‖p‖ + cn‖n‖
√‖p‖2 + ‖n‖2 , (6.15)

where cn and cp are normalized correlation values between NN (pn) and the noise
n and signal p, respectively. Ideally, if cn = 0 then cp = 1 (from substitution of c in
Eq.6.14). In such case, NN (pn) = p.

Let distp denote the distance between the noisy patch pn and its clean version p:

distp = ‖pn − p‖2 = ‖n‖2 (6.16)

Now, consider relatively smooth patches, for which the ‖p‖ is small. In that case,
according to Eq.6.17, the search for nearest neighbor fits the noise, n, yielding

c ∼= cn‖n‖
√‖p‖2 + ‖n‖2 .

Plugging this into Eq.6.14 yields

distNN (pn)
∼= distn = ‖p‖2 + (1 − c2n)‖n‖2 (6.17)

Therefore, noise overfitting will tend to occur if

distp > distn ⇐⇒ PatchSN R(pn) < cn. (6.18)

In other words, when PatchSN R(pn) < cn , an unconstrained external search for
similar patches q = NN (pn)will tendmore toward the noise n and lead to overfitting
the noise details. However, for detailed patches with PatchSN R(pn) 
 cn , the
search for q will tend to fit the signal p. And since their “signal fitting” is much
better externally than internally (Sect. 6.2.3), External Denoising is preferable for
detailed patches.

Combining the Power of Internal and External Denoising:

In this section, we discussed PatchSN R, an inherent characteristic of a noisy patch
that determines the success of its Internal/External denoising. We concluded that
smooth patches, dominated by the noise, should prefer internal denoising. Such
patches have low PatchSN R(pn) and are prone to overfit the noise details or noise
mean. Internally this risk is lower,while signal fit is sufficiently goodwhen performed
locally for smooth patches. In contrast, detailed patches, dominated by the signal,
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should prefer external denoising. Externally, such patches have much better signal
fit, yet, they do not risk overfitting the noise details, since their PatchSN R(pn) is
high.

External denoising will inevitably suffer from fitting the noise mean, regardless
of the PatchSNR. However, for detailed patches, this error is substantially smaller
than the signal error introduced by their bad signal fit in internal denoising (compare
the average signal error in Fig. 6.3 (dotted blue line) to the mean-error in Fig. 6.9).
Thus, External versus internal denoising preference of a patch should be determined
by the signal versus noise dominance within the patch, captured by its PatchSN R.
Moreover, better denoising may be achieved by combining information from both
internal and external patches. This approachmay yield higher denoising performance
compared to the bounds reported in [18]. Indeed, there has been a substantial amount
of research that successfully combined both sources of information [8, 10, 19, 30].
Those works demonstrated considerable improvement of PSNR values, especially
when image-specific external datasets were used [19, 30].

6.4 The Impact of Deep Learning on Denoising and Their
Bounds

Amajor leap in performance happened when neural networks based denoising algo-
rithms emerged [4, 8, 31], which allowed to achieve nonlinear mappings between
the input noisy image and the output clean image. While being trained on big collec-
tions of noisy-clean pairs of images, these networks typically rely on larger recep-
tive fields, thus utilizing more global internal information, when appropriate. In this
section, we aim to examine how these networks approach previously investigated
denoising bounds, and if such networks eliminate the need in combining internal
and external denoising.

Over past years several attempts have been made to investigate possible denoising
bounds. In [9], Chatterjee andMilanfar formulated a method of calculating the lower
bounds on the Mean Squared Error (MSE) that accounts for the strength of the
corrupting noise, the number of observations that are typically available to estimate
a denoised patch, as well as the variability of the geometric structures in the image.
Later Levin and Nadler [17, 18] analyzed denoising limits with respect to ideal
external denoising, which is essentially equivalent to averaging a very large number
of clean external patches, including adaptive approach that allowed to adapt patch
size for better denoising. Finally, in [33] we introduced denoising bound for internal
local multi-scale denoising. We empirically showed that for almost any noisy image
patch (more than 99% of the patches), there exists a “good” clean version of itself at
the same relative image coordinates in some coarser scale of the image (as illustrated
in Fig. 6.12).We could therefore calculate theMSEwith respect to this “good” patch.
ThisMSE provides empirical lower bound for local multi-scale denoising error. Next
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we analyze how neural network based denoising (e.g., [4, 31]) perform with respect
to those denoising bounds.

Recent residual learning, CNN-based denoising architectures of [31] and [4]
demonstrated state-of-the-art denoising results. DnCNN [31] is based on a relatively
simple deep architecture, which relies on stacked convolutional layers, each followed
by a ReLU nonlinearity layer and batch normalization.Wavelet domain deep residual
learning network (WDnCNN) [4] further improves DnCNN [31] by ∼0.1–0.2 dB in
Gaussian denoising task. The main idea of [4] is that image transform into wavelet
domain reduces the topological complexity of data and label manifold and hence
improves the network predictive power. (For further details on both architectures,
please refer to the original papers [4, 31].)

Both networks considerably outperform previous state-of-the-art algorithms [11,
14, 34]. However, we note that neither DnCNN [31], nor WDnCNN [4], managed
to reach the improvement bounds suggested in [9]. Those bounds predict possible
improvement (over BM3D [11]) of up to 3dB for images like Lena and House in the
case of a Gaussian noise with σ = 25. However, DnCNN [31] reports only 0.4dB
and 0.2dB improvement for these images respectively. WDnCNN [4] achieves more
considerable improvement of 0.8dB for both images for σ = 30.

On the other hand, DnCNN considerably improves over BM3D performance,
when compared over BSD [5]. For example, for σ = 50, the predicted maximal
possible improvement for external denoising based on [18] is bounded by 0.7dB.
DnCNN [31] exceeds BM3D performance by 0.61dB, which is very close to the
optimally possible improvement for external denoising (can also be seen from the
closeness of the RMSE of DnCNN depicted in Fig. 6.13b versus RMSE of external
ideal denoising depicted inFig. 6.9b).As such,we conclude thatDnCNN[31] reaches
the bound of optimal external denoising. Note that WDnCNN [4] closes the gap by
introducing a marginal increase of 0.1dB in PSNR over [31] (for BSD and σ = 50).
However, due to the simplicity of [31] and the availability of DnCNNmodels trained
for wider range of noise levels, we further elaborate only on this approach.

At the first glance, denoising based on neural networks may be perceived solely as
external denoising, because it relies on training dataset of noisy and clean images for
learning the set of its features (neurons). Nevertheless, such denoising also strongly
depends on the internal information captured by the receptive field of the network,
which is influenced by its depth. The receptive field of the network is equivalent to
the effective size of the neighborhood within the image required for denoising of a
single pixel. DnCNN [31] adopts a receptive field of 35 × 35 pixels.

Next we compare DnCNN with the local internal denoising Oracle that we sug-
gested in [33]. The comparison is valid, because both DnCNN and the Oracle explore
the same multi-scale information of a given region in the noisy image. In fact, the
“good” clean patch retrieved by the Oracle, resides in the receptive field of the
DnCNN. The DnCNN learns how to combine nonlinear responses to learned kernels
at different scales (e.g., 17 scales for denoising with known variance), and as a uni-
versal approximator [16], should be able to reconstruct this patch (or “better” patch
in a sense of L2 norm with respect to the original clean patch).
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Fig. 6.11 Pyramids. The 3 pyramids used for Oracle calculation: isotropic pyramid and two
directional pyramids in x and y directions

Ourmulti-scale representation is based on 3 pyramids—traditional isotropic pyra-
mid and two directional pyramids in x and y directions. We generate a directional
pyramid by blurring and subsampling the image only in one direction. This is differ-
ent from the commonly used isotropic image pyramid, which preserves the aspect
ratio, as well as from the Steerable Pyramid [28], which applies 1D directional filter-
ing, but subsamples the image in both directions. Figure6.11 graphically illustrates
the idea. The “hidden” clean patches, which are obscured by noise at the original
input image, emerge in the coarser pyramid scales (see [33] for more details).

TheOracle experiment described belowwas performedonBSD100 [5] test dataset
of natural images (size 320 × 480). Gaussian noise with zero mean and variance σ 2

was added to each clean image I (converted to grayscale), resulting in a noisy image
IN . Three types of pyramids are then generated from I N : (i) Isotropic pyramid (blur
and subsample1 both in x and in y), (ii) X-pyramid (blur and subsample only in the
x direction), and (iii) Y-pyramid (blur and subsample only in the y direction)—see
Fig. 6.11. Each pyramid is a cascade of images {I Nsc } of gradually decreasing scales,
generated by scaling down the noisy image I N using scale factors of sc = 0.9s

(s = 0, 1, . . . , 17). The smallest scale was sc = 0.917 ≈ 0.16 of the original image
I N .

1Using Matlab “imresize” with a bicubic kernel.
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Fig. 6.12 The multi-scale “needle” of patches. Each noisy patch pN has a needle. a All the
patches along the needle of the noisy patch are at the same relative image coordinates. Initially, the
patches get better (cleaner), but eventually new structures enter the patch. The “best” representative
patch on the needle is marked in orange. b Zooming in on the descendant patches {pNsc} along the
needle (sc = 1, . . . , 0.1) (Note For simplicity, the illustration here is made for one pyramid only,
in practice patches along three needles, corresponding to pyramids from Fig. 6.11, are compared.)

Each clean 5 × 5 patch p from the clean image I was compared using L2 norm
(mean squared error) against the noisy 5 × 5 patches pN

sc in each of the three noisy
pyramids, but only along its “needle of descendants”—at the same relative image
coordinates in the coarser scales (see Fig. 6.12). Namely, if (x, y) are the coordinate
of the clean 5 × 5 patch p (and the noisy patch pN ), then for each scale sc = 0.9s

we compare p only against the 5 × 5 patch pN
sc whose coordinates are

• (0.9s x, 0.9s y) in the Isotropic pyramid
• (0.9s x, y) in the X-pyramid
• (x, 0.9s y) in the Y-pyramid

Among these descendant patches the Oracle chooses p̂ = pN
sc = argminsc ||p −

pN
sc||22 as the “best” representative of the clean patch p along the needle.
Finally, to obtain a fully denoised image we average the “best” representative

overlapping patches (using spatial weighted kernel of 5 × 5). The above choice
of parameters yields approximately 35 × 35 receptive field (effective image region
size) used for the Oracle (the coarsest 5 × 5 patch spans 31 × 31 and is further
average with 5 × 5 kernel at the original scale), which compares to the receptive
field employed by the DnCNN (whose denoising results are obtained using code
provided by authors [31]).

Figure6.13 analyzes the noise-overfitting of DnCNN. Red curve represents
DnCNN error, while blue represents Oracle error (RMSE is calculated on 7 × 7
patches extracted from the Oracle/DnCNN denoised images). Dashed and solid
curves represent error of only smooth and all patches, respectively. First, Fig. 6.13 a
shows that the error due to the noise mean overfitting has been substantially reduced,
compared to Fig. 6.9a. This is not surprising, since a 35 × 35 effective image
region is used, which should reduce the minimum error, formulated in Eq. 6.6, to
55/35 � 1.4. Surprisingly however, the average RMSE obtained for smooth patches
is considerably higher (around ∼3.9 � 55/14) than the possible minimum, for both
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Fig. 6.13 Fitting of the noise mean: RMSE of denoising (in case of σ = 55) versus sample
mean and variance of the noise within the patch. The denoising RMSE is computed for multi-scale
local Oracle (blue) and DnCNN [31]. Dashed line represents error for smooth patches, solid for all
patches. The denoising error grows considerably with the deviation from zero of the sample noise
mean within the patch. In contrast, the denoising error is almost independent of the sample noise
variance within the patch (Average RMSE values are plotted.)

DnCNN and the Oracle. This is also true for other noise levels as can be seen in
Fig. 6.14 (see the value of RMSE for PatchSN R = 0). This can be explained using
the observation of [20] that the effective receptive field of stacked deep CNNs is
distributed as a Gaussian. In other words, the effective area in the receptive field
only occupies a fraction of the theoretical receptive field, since Gaussian distribution
generally decays quickly from the center. Similarly, internal multi-scale Oracle uses
bicubic kernel to downsample images and hence not all pixels contribute equally to
the patch at the coarsest scale.

Similarly to the ideal denoising Fig. 6.9b, the denoising error of DnCNN in
Fig. 6.13b does not depend on sample noise variance within the patch. Since the
Oracle maximizes the fit to the original clean signal, it is not affected by the sample
noise mean or variance deviations from the expected values. In the case of smooth
patches, the RMSE values of DnCNN and the Oracle are almost identical. Therefore,
DnCNN performance is not influenced by deviations of the sample variance from
the expected variance.

However, the RMSE of all the patches is considerably higher for DnCNN than
for the Oracle (∼2 dB). Figure6.14 further illustrates the differences in RMSE of
the DnCNN and the Oracle as a function of PatchSN R(pn) (for 7 × 7 patches
extracted from the denoised images) for various noise levels (σ = 15, 20, 25 from
bottom to top). As can be seen for PatchSN R ≤ 1.8 internal Oracle error is lower,
while for PatchSN R > 1.8 DnCNN error is lower. The differences are statistically
significant (verified byWilcoxon rank sum test using Matlab’s “ranksum”). Notably,
this threshold does not fit the expected threshold fromFig. 6.6b. This happens because
in Sect. 6.2.2 we discussed a linearmapping from noisy to clean patch, while DnCNN
minimizes a nonlinear mapping f (IN ) between the noisy image (or patch) and its
clean counterpart. Hence, the threshold might differ.
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Fig. 6.14 Denoising error
of DnCNN (red) versus
multi-scale internal oracle
(blue): RMSE of the
denoising is plotted versus
PacthSN R for different
noise levels, from σ = 15 at
the bottom, to σ = 25 at the
top; The green line and
crosses show the threshold of
PatchSN R, below which
DnCNN does not manage to
outperform the Oracle.
(Statistics over 100 images)

While theOracle denoising is not an algorithm, and is linear, it is a good indication
of existing information within a certain receptive field. Based on this, we conclude
that for patches with relatively low PatchSN R, the learned mapping f (I N ) of
DnCNN [31] does not manage to predict their corresponding best “clean” patch
representative that resides in the receptive field of the network. This behavior is
consistent for a wide range of noise levels (σ ∈ [15, 50]). However, for higher noise
levels, there are not enough patches above the threshold to form substantial statistics,
hence those plots are not presented in Fig. 6.14.

Note that while DnCNN performs better than the Oracle on patches with high
PatchSN R, those constitute a smaller portion of the image, especially for higher
noise level. As such, the average PSNR denoising score still exhibits a large gap in
performance between DnCNN and the Oracle as shown in Table6.1.

To summarize, the Gaussian denoising performance has been considerably
improved by models obtained from convolutional neural networks, such as [4, 31].
In fact, those closed the gap on the denoising bounds of external denoising [18].
However, there is still room for improvement in the case of low PatchSN R patches.
Such patches, which benefit more from strictly internal denoising (and which form
a major portion of the image), have not reached their full potential yet, even with
deep learning. Perhaps the next challenge is to train an image-specific CNN [27]

Table 6.1 Comparison of
PSNR (dB) on BSD100 [5]

σ DnCNN [31] Oracle [33]

15 31.52 32.15

20 30.06 31.13

25 29.02 30.37

35 27.49 29.26

50 26.05 28.05
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that will exploit local recurrence of patches, without relying on external examples, as
was successfully done for the task of super-resolution [27]. Combining such model
with existing external-based models may push PSNR bounds further up and improve
denoising by ∼ 1–2 dB, especially for higher noise levels (as can be seen from
Table6.1).
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Chapter 7
Patch-Based Methods for Video
Denoising

A. Buades and J. L. Lisani

Abstract Video denoising is an important and open problem, which is less treated
than the single-image case. Most image sequence denoising techniques rely on still
image denoising algorithms; however, it is possible to take advantage of the redun-
dant information contained in the sequence to improve the denoising results. Most
recent algorithms are patch based. These methods have two clearly differentiated
steps: select similar patches to a reference one and estimate a noise-free version
from this group. We review selection and estimation strategies. In particular, we
show that the performance is improved by introducing motion compensation. We
use as example a recent video denoising technique inspired by fusion algorithms
that use motion compensation by regularized optical flow methods, which permits
robust patch comparison in a spatiotemporal volume. The use of principal component
analysis ensures the correct preservation of fine texture and details, provided that the
noise is Gaussian and white, with known variance. Video acquired by any video
camera or mobile phone undergoes several processings from the sensor to the final
output. This processing, including at least demosaicking, white balance, gamma cor-
rection, filtering, and compression, makes a white noise model unrealistic. Indeed,
real video captured in dark environments has a very poor quality, with severe spa-
tially and temporally correlated noise. We discuss a denoising framework including
realistic noise estimation, multiscale processing, variance stabilization, and white
noise removal algorithms. We illustrate the performance of such a chain with real
dark and compressed movie sequences.
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7.1 Introduction

This chapter deals with the denoising of real image sequences and videos. By real
video, we mean any image sequence captured with a video camera or mobile phone.
Image sequences obtained as a consecutive acquisition of photographs with a camera
might be also processed by the introduced algorithms in this chapter. We use the term
“real”, to differentiate from the removal of uniformwhite noise which is the objective
of most literature dealing with image or video denoising.

The uniform white noise model is not an adequate model for the denoising of
photography and video, for which themost simplistic model should take into account
at least that the noise is signal dependent. This might be a valid model for RAW data,
the one acquired at the sensor. A signal-dependent model assumes that the noise
value at a certain pixel depends on its true noise-free intensity. This is related to the
Poisson process which models the photon counting at the sensor.

The denoising algorithms might be always applied as soon as possible in any
image or video chain, before any processing on color, contrast, or compression.
When noise is signal dependent but still uncorrelated at different pixel locations, a
variance stabilization transform permits the use of any white uniform noise removal
algorithm. This justifies the fact that most literature concentrates on this simplistic
model. Most algorithms dealing with real noise actually rely on a white uniform
noise removal method. This is then a good starting point and will be the object of
the first part of current chapter. Let us denote the image sequence by I (x, y, t), with
(x, y) the spatial coordinates and t the temporal component, then this model assumes
that

I (x, y, t) = I0(x, y, t) + n(x, y, t), (7.1)

where I0 is the true image sequence and n(x, y, t) is the noise i.i.d. realizations of a
Gaussian variable of zero mean and standard deviation σ .

Wewill review and analyze the main video denoising algorithms. Recent methods
are patch based,meaning that theminimal unitywhichwill be denoised is a patch. The
same procedure is shared by most state-of-the-art algorithms: for a reference patch,
similar ones are selected across the sequence and a noise-free patch is estimated from
these groups.

We will discuss the selection and estimation strategies used by state of the art. We
will show that even if nowadays most literature concentrates on the estimation part,
a drastic improvement might be obtained by accurately selecting similar patches.
These algorithms are more robust to object motion than classical filters relying only
on single-pixel comparisons. Patch-based algorithms do not need to compensate the
research area with a motion estimation, since patch comparison implicitly adapts to
it. However, we will show that the motion compensation might be effective when
used for defining spatiotemporal patch distances.

We will pay special attention to state-of-the-art algorithm [16]. It is based on
more general type of algorithms, whose aim is not only to remove noise but also
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to improve image resolution as well as sharpness. This type of methods, known as
image fusion, aims at improving the general image quality of an image by fusing it
with other images of the scene.

In the second part of this chapter, we will deal with the denoising of any video
acquired by a video camera or mobile phone. This part is inspired by the noise clinic
[40], which is able to denoise any single image. The use of an image sequence per-
mits the estimation of a more accurate noise amplitude, as well as, a more performant
denoising. Such method will include the use of Laplacian pyramids, the estimation
of signal-dependent noise amplitude per scale, the use of variance stabilization trans-
forms, and state-of-the-art video white noise removal [16].

This chapter is organized as follows: In Sect. 7.2, we briefly review image denois-
ing literature. In Sect. 7.3, we introduce white noise video removal algorithms and
discuss in detail their design and performance. In Sect. 7.4, this white noise removal
method is embedded in a framework aimed at denoising real video sequences. The
last section of this chapter summarizes the conclusions of our experiments.

7.2 Image Denoising

Since most of the image sequence noise removal techniques rely on image denoising
ones, we briefly review the literature for this case.

7.2.1 White Noise Removal

Techniques for noise removal in digital images comprise transform thresholding,
local averaging, patch-based methods, and variational techniques. The sliding win-
dowDCT [60] and wavelet thresholding [25] are the main examples of the threshold-
ing methods. These methods decompose the original data in a predefined basis and
attenuate or cancel coefficients under a certain threshold related to noise statistics.
Anisotropic filtering [2] and bilateral filtering [53, 55] or neighborhood filtering [61]
aim at averaging close pixels belonging to the same object, thus reducing the noise
amplitude and preserving the main object boundaries. Variational techniques share
the same objective but use a variational framework, the total variation minimization
being the main example [51].

NL-means [11] introduced patch-based methods into image denoising. The algo-
rithm groups similar patches all over the image and averages them in order to reduce
noise. The method is able to preserve texture and fine details additionally to the
main boundaries of the image. The performance of patch-based methods has been
drastically improved by the combination with transform thresholding as originally
proposed in BM3D [22]. BM3D combined patch-based grouping with a threshold
in a 3D DCT transform. Several methods appeared combining the grouping of sim-
ilar patches and the learning of an adapted basis via PCA or SVD decomposition
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[47, 64]. State-of-the-art results are obtained using Gaussian models for the group
of similar patches (NL-Bayes [38]) or adapting the shape of patch before learning a
PCA model [22].

Gaussian mixture [56] and Sparse representation [28] achieve a similar grouping
plus adapted transform via the learning of a collection of orthogonal basis.When this
set of basis is learnt from the image itself, an implicit clustering of image patches
permits to learn adapted models for different geometrical configurations.

State-of-the-art denoisingmethods use additional techniqueswhich increase noise
reduction and detail preservation (see [39] for a review). These techniques, which
were used by sliding DCT classical algorithms [60], were introduced into nonlocal
patch-based ones in [22]. First, the whole patch is denoised and not only the central
pixel, which permits an increase in the noise reduction by taking the average of
all estimates per pixel (aggregation). Second, the denoised image is used as guide
(“Oracle”) for a second iteration. The similarity between two patches is computed
in the first denoised image, and the transformed coefficients are used to drive the
thresholding in the second iteration.

For color images, most state-of-the-art methods [22, 38] prefer to use a chromatic
decorrelating transform. The YUV or YCrCb color spaces compute a gray compo-
nent Y as the average of RGB values, while the chromatic components encode the
difference of the red and blue channels with Y. The image Y containing the geometry
of the image is actually less noisy than each of the RGB channels, since it is computed
as the average of them. Patch grouping is carried out by computing the distance in
the Y channel, while each component is denoised independently. The smoothness of
U and V permits a larger noise reduction than the one achieved in the RGB space.
However, the use of chromatic separation tends to excessively attenuate the image
colors, resulting in grayish images. For that reason, many methods prefer to use the
original RGB through a vectorial form of the algorithm, as for example in [11].

Finally, let us mention that the patch-based algorithms have also been adapted
to other kinds of noise than additive uniform white noise. For example, in [24], the
authors adapted the patch distance to deal with different kinds of noise, including
the Poisson model. Instead of modifying the algorithm formulation, a stabilization
transform can be applied, permitting the use of the original denoising algorithms [46].
Thesemodels still suppose the noise values at different pixels to be independent. This
assumption is valid for RAW images, the data acquired at the sensor but not for the
final color images delivered by the camera.

There is a scarce literature dealing with the denoising of real images, having
signal-dependent and spatially correlated noise. In order to design such methods,
noise estimation plays an important role since a signal and even frequency-dependent
model has to be estimated.

In [42], the authors proposed a denoising framework for JPEG images, automat-
ically estimating a signal-dependent noise amplitude. Such a procedure needs to
make assumptions on the imaging chain applied by the camera in order to correctly
estimate the noise. In [40], the authors proposed a full denoising chain applying
multiscale techniques and NL-Bayes [38]. This chain uses the noise estimation algo-
rithms developed in [19, 20]. These methods are able to estimate a noise model
dependent not only on color but also on frequency.
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7.3 White Noise Removal in Video Sequences

In this section, we introduce the techniques used by state-of-the-art video denois-
ing algorithms, we analyze in detail how and why they work, and we discuss their
performance. A brief review of the literature is presented in Sect. 7.3.1. The main
stages of a patch-based method are: (i) the selection of similar patches and (ii) the
estimation of a noise-free patch from them.We will analyze different patch selection
strategies in Sect. 7.3.2, paying attention to motion estimation, which plays a key
role in this process. Estimation methods will be discussed in Sect. 7.3.3. Finally, a
brief comparison among state-of-the-art algorithms will be presented in Sect. 7.3.4.

7.3.1 Introduction

Local average methods, as the bilateral filter [55], or patch-based methods as
NL-means [11], or BM3D [22], and NL-Bayes [38] can be easily adapted to video
just by extending the neighboring area to the adjacent frames. Simply, similar pixels
or patches are searched for in previous and posterior frames. The same estimation
techniques used for single image denoising might be used in this case, for example,
VBM3D [21] extended collaborative filtering to denoising. The increase of similar
patches due to the use of more frames improves the noise reduction capabilities of
the methods. However, it might also increase the probability of selecting incorrect
ones.

When sample selection is not robust enough, for example, in classical neighbor-
hood filters or bilateral filters, their performance is improved by introducing motion
compensation [37, 48]. These modified filters estimate explicitly the motion of the
sequence and compensate the neighborhoods where similar pixels are searched for.
It was shown in [12] that a compensation of the search areas is not necessary if
a patch-based algorithm is used for denoising. The selection of the most similar
patches across adjacent frames actually adapts to motion and selects similar patches
wherever in the sequence. This is equivalent to the estimation of motion through
a block matching algorithm. However, motion estimation by block matching loses
accuracy as noise standard deviation increases.

Several other strategies have been proposed to incorporate motion into image
sequence denoising rather than simply compensating the search areas. In [8], the
NL-means was extended to video by growing adaptively the spatiotemporal neigh-
borhood. In [59], the temporal filtering was separated from the spatial one using
NL-means, and then both were combined using a motion indicator. In [62], the
authors made use of an external database for still image denoising. The most similar
images were retrieved from an external database and used for patch-based denoising,
which was then combined with an internal denoising stage inspired by BM3D. In
[45], a multiscale sparse representation was learnt for video restoration.

Possibly, the most successful algorithms for video denoising are the VBM4D [44]
and state-of-the-art algorithm [16]. VBM4D exploits the mutual similarity between
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3D spatiotemporal volumes constructed by tracking blocks along trajectories defined
by the motion vectors. Mutually similar volumes are grouped together by stacking
them along an additional fourth dimension, thus producing a 4D structure. Col-
laborative filtering is achieved by transforming each group through a decorrelating
4D separable transform, and then by shrinkage and inverse transformation. Motion
vectors are computed by block matching.

State-of-the-art algorithm [16] is inspired by image fusion algorithms. These algo-
rithms aim at the restoration of a single image via its combination with other images
of the same scene [31, 34]. Image fusion is not directly interested in the removal
of noise but in a more general restoration of the image, that is, deblurring, increase
of detail, or even of resolution. The key of these approaches is the use of a global
registration, more robust to noise, blur, and color or compression artifacts and, addi-
tionally, providing subpixel accuracy. These global registration techniques usually
rely on feature matching, for example, SIFT [43], and on a parametric registration,
either using an affinity or a homography. The viewfinder alignment [1] performs
such a registration by an affine function, with the important characteristic of being
extremely fast. The general approach is the use of a homography [17, 29, 31, 34, 54].
It must be noted that a homography is valid only for planar scenes or if the optical
center is not modified; in other cases, optical flow techniques might be preferred.

The algorithm in [16] computes the optical flow between each frame and adjacent
ones in a temporal neighborhood. If registrationwas accurate and the sequence free of
occlusions, a temporal average in this aligned data would be optimal, even if the noise
reduction would slowly decrease as 1/M , where M is the number of adjacent frames
involved in the process. Generally, this will not be the case; inaccuracies and errors
in the computed flow and the presence of occlusions make this temporal average
likely to blur the sequence and introduce artifacts near occlusions. These difficulties
are compensated by a 3D spatiotemporal patch selection after warping and adapted
model learning. Even if a 3D structure is used for the selection procedure, still 2D
patches are used for the estimation of noise-free values. In [4], the authors proposed
the estimation of noise-free 3D patches, containing pixels from contiguous frames.
The use of 3D patches makes the estimation of an adapted model more complex and
is more affected by object occlusions.

7.3.2 Patch Selection Criteria

While most interest in image or video denoising is dedicated to the estimation of the
denoised patch from a set of similar ones, we show in this section that themost drastic
improvement is achieved by accurately choosing the group of similar patches. The
adaptation of the search area or the decoupling of spatial and temporal estimation
has shown to be effective to discard very different patches in moving regions but has
no impact in the accurate selection of candidate patches (Figs. 7.1 and 7.2).

Accurate selection of similar patches is achieved via spatiotemporal distanceswith
motion compensation. When processing single image, we are forced to increase the
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Fig. 7.1 Central frame of the original sequences used in our tests. From left to right and from top
to bottom: girls, army, truck, statB, taxi, iseq, bicycle, bus, tennis, sales. The last four sequences
are composed of 30 frames, while the rest are composed of eight frames

Fig. 7.2 Central frame of the original color sequences used in our tests. From left to right and from
top to bottom: army, cooper, dog, truck. All the sequences are composed of eight frames

size of the patch when dealing with severe noise, which at the same time limits the
number of similar patches found. The use of spatiotemporal (3D) patches allows
comparison with many more pixels, thus being more robust without the need of
increasing the 2D support.

A block matching method might be a valid motion estimation algorithm if images
need not to be resampled. Block matching methods for motion estimation provide an
integer precision displacement unless the image is previously zoomed in, which is
time-consuming. Optical flow methods will be preferred if frames are motion com-
pensated via the application of the flow. Another advantage of variational techniques
is the presence of a regularization term.When the noise standard deviation increases,
the precision of block matching algorithms quickly deteriorates. The regularization
term of optical flow techniques permits a more accurate estimate in smooth parts of
the flow.

In order to describe spatiotemporal patches, we need to define for each n × n
patch P of a reference frame Ik , the patchP referring to its extension to the temporal
dimension, havingM timesmore pixels than the original one (assumingM patches in
the temporal neighborhood, M = 2t + 1),P = (Pk−t , . . . , Pk+t ). If the sequence is
not resampled, the spatiotemporal patch distance is computed compensating the 2D
patches taking into account the flow. In this case, the motion field (ui , vi ) indicates
which are the coordinates of the patch in the corresponding frame (integer precision),
Pi = Ii (P(x+ui ,y+vi )). This is the case of VBM4D which uses block matching to
select trajectories. If the set of adjacent frames to Ik has been previously warped
(i.e., resampled) with the computed optical flow, denoted by {I Wk−t , . . . , I

W
k+t }, the
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spatiotemporal patch is composed of a temporal tube, where each 2D patch is located
at the same pixel coordinates, Pi = I Wi (P(x,y)). This is the case of the state of the art
[16], which computes the flow using the method in [63].

Then, a spatiotemporal patch selection looks for the K extended patches closest
toP . These extended patches are centered at frame Ik and the distance is written as

d(P,Q) =
∑

i∈{k−t,...,k+t}
||Pi − Qi ||2.

As each extended patch contains M 2D image patches, the group contains K · M
selected 2D patches of size n × n.

The algorithm in [16] actually uses an additional mask Mj , the occlusion mask
between frames Ik and I j , j ∈ {k − t, . . . , k + t} to select the candidate patches.
The adopted optical flow does not involve occlusion detection in the functional.
Occlusions are detected a posteriori following the same approach in [52].

Figure 7.3 compares the criteria for selecting the similar patches. The options are
(i) simple extension of the search area to neighboring frames, (ii) spatiotemporal
distance with block compensation by block matching without resampling (integer

Fig. 7.3 Discussion on motion estimation and resampling with noise standard deviation 20. From
left to right and from top to bottom: noisy image and denoising results (see text for details) using dif-
ferent selection criteria: (i) simple extension of the search area to neighboring frames, (ii) spatiotem-
poral distance with block compensation by blockmatching without resampling, (iii) spatiotemporal
distance with block compensation by optical flow without resampling, and (iv) spatiotemporal dis-
tance after warping (i.e., resampling) of neighboring frames with computed optical flow. In all the
cases, the denoising of the selected patches is achieved by thresholding in an adapted basis. The
RMSE values are, respectively, 6.80, 4.92, 5.05, and 4.46
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precision), (iii) spatiotemporal distance with block compensation by optical flow
without resampling (integer precision), and (iv) spatiotemporal distance afterwarping
(i.e., resampling) of neighboring frames with computed optical flow. The figure
illustrates the different degrees of texture preservation by all selection methods. The
use of optical flow or block matching gives a similar result on the denoised image,
provided that the block used for block matching estimation is large enough. The use
of thewarped neighboring frames in defining the distance seems to be crucial in order
to get the best results. The errors on the denoised central frame of the sequence shown
in Fig. 7.3 are 6.80, 4.92, 5.05, and 4.46, for (i), (ii), (iii), and (iv), respectively. In
all the cases, the denoising of the selected patches is achieved by thresholding in an
adapted basis. In order to warp the images, an accurate estimation of the optical flow
is needed. A short review of optical flow methods is provided in the next section.

7.3.2.1 Optical Flow Estimation and Occlusion Detection

Optical flow constraint (OFC)-based methods suppose that each pixel has the same
color during the whole trajectory, or at least in adjacent frames. That is, they suppose
that

I (x, y, t) = I (x + u(x, y, t), y + v(x, y, t), t + Δt),

where u and v are the displacement vectors at time t and pixel (x, y). This equation
alone is unable to determine the flow. The uncertainty is solved by adding a spatial
or spatiotemporal regularization term.

The optical flow constraint can be linearized into the well-known equation, Ixu +
Iyv + It = 0, and methods differ on how this constraint and the regularization term
are imposed. It is usually written,

∫

Ω

ψ(Ixu + Iyv + It ) + λ

∫

Ω

φ(∇u,∇v),

where the definition ofψ andφ might vary. The classical Horn–Schunck [32]method
used ψ(s) = s2 and φ(∇u,∇v) = |∇u|2 + |∇v|2. It is well known than the square
function excessively regularizes the discontinuities of the flow and is not robust to
outliers and occlusions. Robust functions and anisotropic regularization replaced this
classical approach, see for instance Weickert and Alvarez [3].

Brox et al. [9] introduced a different linearization of the OFC and a warping
strategy in order to minimize the functional

∫

Ω

ψ(I0(x, y) − I1(x + u(x, y), y + v(x, y))) + λ

∫

Ω

φ(∇u,∇v)

with ψ and φ functions robust to occlusions and outliers. This approach permits
the introduction of additional constraints [10] on the displacement of several points.
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These displacements might be obtained by key point matching. The inclusion of
these constraints improves the ability for capturing long-range motions.

Pock et al. [63] introduced total variation minimization into the flow computation.
The flow between two images I0 and I1 is obtained by minimizing

∫

Ω

|I0(x, y) − I1(x + u(x, y), y + v(x, y))| + λ

∫

Ω

|∇u| + |∇v|, (7.2)

where u and v being the desired flow. The total variation term is minimized via the
Chambolle dual algorithm [18].

One of the major drawbacks of these approaches is the failure of the color con-
stancy hypothesis, for which a constancy of the gradient [9] or the Laplacian [49]
might be additionally imposed. Recently, Wedel et al. [57] proposed a method to
decompose the sequence into a cartoon and a texture part and use only the texture
part for estimating the flow.

Occlusion detection can be directly taken into account by modifying the func-
tional. The modified functional might cancel the OFC for occluded pixels and add
a term penalizing the number of occluded pixels, see for example [5]. This addi-
tional term needs the setting of a new parameter equivalent to fixing the percentage
of the image being occluded, which is unknown a priori. Since the occluded points
mostly coincide with points of negative divergence, Caselles et al. [6] introduced an
additional term with the divergence of the flow as an occlusion indicator.

Occlusion identification in [16] depends on the divergence of the computed flow,
the color difference check after flow compensation, and a forward–backward flow
test. Negative divergence, a large color difference or forward–backward flow dis-
agreement, indicates occlusions or at least failure of the color constancy assumption.
All criteria are combined, for a pixel x = (x, y) and the computed flow u = (u, v)
between I0 and I1, into the weighting function

w(x, y) = e
−|I0(x)−I1(x+u(x))|2

σ2i · e
−min(divu,0)2

σ2d , (7.3)

where σd is fixed while σi depends on the noise standard deviation. This weight
function is binarized, providing a mask of occluded points. If forward and backward
flows disagree, this weight is directly set to zero.

7.3.3 Patch Denoising

7.3.3.1 Denoised Estimate Computation

Once similar patches have been selected, denoising strategies are analogous to the
still image case. If the patches have been carefully selected, an average weighted
by the 2D-patch distance might give already reasonable results comparable to much
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more complex algorithms.Once the K · M patches have been selected, suchmodified
NL-means based algorithm (NL-means 3D) would compute

P̃ =
∑

i∈{1,...,KM}
wi Qi , (7.4)

where wi = 1
CP

e− ‖P−Qi ‖2
h2 and CP = ∑

i e
− ‖P−Qi ‖2

h2 . A modified version of this spa-
tiotemporal NL-means has been recently proposed for video super-resolution show-
ing state-of-the-art results [13].

For single image, weighted average is improved by collaborative filtering [21] or
local Bayes modeling [38]. The same techniques are adapted for video denoising.
The VBM4D applies collaborative filtering via DCT [44], and SPTWO [16] learns
a local Gaussian model via PCA. We describe this latter as local modeling.

The PCA analysis of the set of M · K patches looks for the basis of Rn2 better
explaining its structure in the sense thatmost of the information describing all patches
is concentrated in a few vectors of the basis. The amount of information that each
vector of the basis conveys is coded in its n2 principal values. The computation of
the PCA of a set of patches is equivalent to the singular value decomposition (SVD)
of the matrix X having M · K rows and n2 columns with each selected patch in a
different row,

X = UΣV T ,

where UΣ are the coefficients in the new basis, Σ is a diagonal matrix containing
the square root of the principal values, and each column of V contains a principal
vector that is an element of the new basis. That is, by keeping only the coefficients
associated with the most important vectors (the ones with highest corresponding
principal value), we keep the maximum of information. By discarding coefficients
related to less important vectors, we remove noise as proposed in [64]. The decision
of canceling a coefficient of a certain patch is not taken depending on its magnitude
but on the magnitude of the associated principal value. A more robust thresholding
is obtained by comparing the principal values to the noise standard deviation and
canceling or maintaining the coefficients of all the patches associated with a certain
principal direction. The denoised set of patches can be computed as

X̃ = FUΣV T ,

where F is a n2 × n2 diagonal matrix such that Fii = 1 if Σi i > τσ and zero other-
wise. The whole patch is restored in order to obtain the final estimate by aggregation.

7.3.3.2 Second “Oracle” Iteration

A second iteration of the algorithm is performed using the “Oracle” strategy. Once
the whole sequence has been restored, the algorithm is reapplied on the initial noisy
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sequence, but the motion estimation and patch selection are performed on the result
of the first iteration. We detail the procedure for [16].

Let {I Wk−t , . . . , I
W
k+t }, and {I 0Wk−t , . . . , I

0W
k+t } be the warped noisy and initially

restored images in a temporal neighborhood of Ik , where the optical flow has been
computed using initially restored images I 0k and I 0j . For each patch P of the reference
frame Ik , we consider the extended patches P and P0 referring to the extension
to the temporal dimension of the patch and its counterpart in the already denoised
sequence. The K extended patches that will be selected as similar are the ones min-
imizing the distance

d(P0,Q0) =
∑

i∈{k−t,··· ,k+t}
||P0

i − Q0
i ||2.

Nowwe have two different sets containing each one K · M 2D patches of size n × n.
One set is formed by the patches of the noisy sequence, and the other one by the
corresponding patches of the already denoised sequence.

The PCA is computed in the set of already denoised patches. Let X denote the
matrix containing the selected patches of the noisy sequence as rows and X0 the
corresponding matrix with the same patches of the already filtered sequence. We
compute the basis associated with X0 making use of the SVD,

X0 = U 0Σ0V 0T .

This basis is adapted to the already denoised patches which are noise free. The
coefficients of the noisy patches are computed in this new basis and modified by a
Wiener filter before reconstruction. This is written as

X̃ = F(XV 0)V 0T ,

where XV 0 are the coefficients of the noisy patches in the computed PCA basis
and F is now a diagonal matrix implementing an optimal Wiener filter, that is,

Fii = Σ0
i i
2

Σ0
i i
2+τ 2σ 2

.

In Fig. 7.4, the different estimation methods are compared using the same patch
selection criteria. For a reference frame to be denoised, the neighboring frames are
warped using the estimated motion and spatiotemporal blocks are used for selecting
similar patches. We compare the use of weighted averaging, the local modeling via
PCAwith a single iteration, andwith theOracle iteration. Clearly, the texture is better
preserved by using the Oracle scheme. However, the result by weighted averaging
gives a high-quality denoised sequence, corroborating the importance of careful
preselection. The error for the NL-means for the weighted average (NL-means 3D)
is 4.87, for the local estimate via PCA is 4.46, and the two iteration with Oracle is
4.13.
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Fig. 7.4 Discussion on the denoising procedure for the selected patches. From left to right: noisy
image (σ = 20), denoising result using NL-means applied on spatiotemporal blocks (NL-means
3D), denoising with single iteration and two iteration denoising with Oracle. In both cases, similar
spatiotemporal blocks were obtained after motion estimation with optical flow and resampling. The
RMSE values for each denoised result were 4.87, 4.46, and 4.13, respectively

7.3.3.3 Color Processing

As for the single-image case, two different options are possible: First, the extension
of the gray algorithm to RGB via a vectorial form of the method, or second, the
use of a decorrelating transform. The application of the algorithm to each channel
is usually discarded since it does not take advantage of the interchannel correlation
and might yield to color artifacts.

The use of a decorrelating transform has the advantage of computing patch dis-
tances in the gray component of the image which is less noisy. However, the inde-
pendent denoising of the chromatic components has the risk of obtaining excessively
muted colors. For a weighted average, both the uses of a decorrelating transform or
the vectorial form permit to take into account interchannel correlation. For collabo-
rative filtering, a decorrelating transform might be used.

When selecting a local model, the use of a vector form permits to adapt to the
local geometry of the patches and also to compute a color transform for each group
of similar patches, thus increasing the effectiveness of the model. Each color patch is
considered as a vector with three times more components than in the single-channel
case. This is the option chosen in [16].

7.3.4 Brief Comparison

In this section, we illustrate the performance of the different methods obtained
combining the selection and estimation strategies above described. Several of these
options are actually proposed video denoising methods.

We take into account simple extension of the search area to neighboring frames,
the classical NL-means [12] applying a weighted average, and the VBM3D [21]
using collaborative filtering. We use the VBM4D [44] as representative of methods
using spatiotemporal distance with block compensation by block matching with-
out resampling (integer precision). We also compare spatiotemporal distance with
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block compensation by optical flow without resampling (integer precision), denoted
as SPTWO without warping. Finally, we use the SPTWO [16] and the NL-means
3D (Eq. 7.4) as representatives of spatiotemporal distance after warping (i.e., resam-
pling) of neighboring frames with computed optical flow. This permits to assess the
improvement due to the gradation from classical NL-means to SPTWO. The Matlab
implementations of VBM3D and VBM4D were obtained from the author’s website,
and the default parameters were used in the tests. We used our own implementation
for the rest of methods, applying the same parameters for all sequences.

A Gaussian noise with increasing levels of standard deviation (σ ∈ {10, 20, 30,
40, 50}) was added to the sequences in Figs. 7.1 and 7.2, which were denoised using
the compared methods. The root mean squared error (RMSE) with respect to the
original (noise free) sequences is displayed in Table 7.1 for the gray dataset and
in Table 7.2 for the colored one. The values in the table correspond to the RMSE
computed for the central frame of each sequence. Moreover, the average RMSE for
each method and each noise level is also displayed in the last column.

As expected, we observe in these RMSE values the same gradation of algorithms
above stated. The largest RMSE values are obtained by those algorithms using a
simple weighted average or not applying any type of motion compensation. It is
interesting to note how the RMSE of NL-means is improved significantly by the use
of motion estimation and warping. Similarly, the VBM3D applying collaborative
filtering outperforms simple averaging. Unexpectedly, for gray sequences, the per-
formance of VBM3D is slightly better than VBM4D for low levels of noise (below
σ = 40) and for color sequences, the performance of VBM3D is better than that of
VBM4D, even for high levels of noise. Finally, the tables also show that the use of
warped patches greatly improves the performance of SPTWO algorithm, for which
the smaller RMSE values are obtained.

Figures 7.5, 7.6, and 7.7 display the denoising results of the compared algorithms.
The figures also display the difference of the denoised image with the noisy one and
the difference of the denoised image with the original one. The difference with the
noisy image displays the noise removed by each algorithm. The absence of noticeable
details in the removednoise should indicate the preservation of all texture and features
of the original image. However, as illustrated by the denoised images, this absence
of details in the removed noise does not guarantee that all meaningful information
of the original image has been kept. Indeed, the removed structure might be hidden
by the noise. For this reason, we also display the image error, actually containing
removed information from the original image.

A first visual inspection illustrates that VBM3D and VBM4D perform similarly
and that their main weakness is the excessive blurring of image details. Not only
texture but also geometrymay be removed by these approaches. This can be observed
in the letters of the book in Fig. 7.6. The SPWO algorithm recovers better all the
image details in all three cases, even in the presence of strong noise.
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Table 7.2 RMSE results for color sequences. The values correspond to the RMSE (averaged over
the three channels) computed for the central frame of each sequence. The average RMSE for each
method and each noise level is displayed in the last column

army cooper dog truck average

σ = 10 NL-means 3.52 4.55 5.05 4.20 4.33

NL-means 3D 3.47 5.15 5.38 4.46 4.61

VBM3D 2.96 4.31 4.48 3.76 3.88

VBM4D 3.26 4.48 4.47 4.04 4.06

SPTWO no warp 2.94 4.08 4.02 3.61 3.66

SPTWO 2.72 4.00 4.09 3.56 3.59

σ = 20 NL-means 5.35 7.71 7.27 6.87 6.80

NL-means 3D 4.48 8.38 7.12 6.81 6.69

VBM3D 4.42 6.84 6.37 5.70 5.83

VBM4D 5.02 7.15 6.46 6.32 6.24

SPTWO no warp 4.16 6.21 5.62 5.33 5.33

SPTWO 3.83 6.16 5.75 5.30 5.26

σ = 30 NL-means 7.07 10.44 9.02 9.09 8.90

NL-means 3D 5.30 10.54 8.21 8.59 8.16

VBM3D 5.54 8.87 7.75 7.30 7.37

VBM4D 6.40 9.25 8.00 8.12 7.94

SPTWO no warp 5.05 7.87 6.79 6.69 6.60

SPTWO 4.71 7.84 6.95 6.70 6.55

σ = 40 NL-means 8.79 12.66 10.72 11.19 10.84

NL-means 3D 6.04 11.92 9.18 10.09 9.30

VBM3D 6.40 10.49 8.76 8.63 8.57

VBM4D 7.62 10.99 9.25 9.67 9.38

SPTWO no warp 5.86 9.23 7.75 7.88 7.68

SPTWO 5.55 9.21 7.93 7.89 7.64

σ = 50 NL-means 10.56 14.58 12.47 13.08 12.67

NL-means 3D 6.82 12.98 10.08 11.24 10.28

VBM3D 7.34 12.01 9.90 9.92 9.79

VBM4D 8.71 12.49 10.55 11.01 10.69

SPTWO no warp 6.54 10.35 8.68 8.83 8.60

SPTWO 6.41 10.41 8.95 8.91 8.67

7.4 Real Noise Removal

In real video sequences (such as the ones displayed in Fig. 7.8), the results of a white
noise removal algorithm are far from optimal. One reason is that in real scenes the
uniform white noise model does not hold.

The camera sensors capture at each pixel only the red, the green, or the blue value,
while the other two have to be interpolated. This process, called demosaicking, is
usually performed by copying and averaging close values from the same channel or
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NL-means 3D VBM4D SPTWO no warp SPTWO

Fig. 7.5 Denoising results for the gbus sequence with σ = 20. First row, from left to right: noisy
frame, NL-means 3D (RMSE= 7.34), VBM4D (RMSE= 8.87), SPTWOwithout warping (RMSE=
7.10), and SPTWO (RMSE = 6.23). Second row: detail of the above images. Third row: differences
with respect to the noisy frame. Fourth row: differences with respect to the original (noise free)
frame

the other two. As a result, the noise, being almost white at the sensor, gets correlated.
The rest of the imaging chain, consisting mainly of color and gamma correction,
enhances the noise in dark parts of the image leading to colored spots of several pixels.
The size of these spots depends on the applied demosaicking method. Additionally,
standard video compression algorithms, consisting of both transferring information
from neighboring frames and DCT coding of frame differences, make the noise
frequency and temporal dependent. Thus, noise estimation plays a key role in real
video denoising, as described in Sect. 7.4.2.

We discuss in detail in Sect. 7.4.3 how a video denoising chain should be designed
to deal with any type of noise. A signal-dependent model is estimated at each level
of amultiscale pyramid and for each color. In order to apply standard video denoising
algorithms, a variance stabilization transform is applied at each scale using the esti-
mated noise amplitude values. We compare the use of such a chain with the SPTWO
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NL-means 3D VBM3D SPTWO no warp SPTWO

Fig. 7.6 Denoising results for the iseq sequence with σ = 50. First row, from left to right: noisy
frame, NL-means 3D (RMSE = 12.00), VBM3D (RMSE = 7.63), SPTWOwithout warping (RMSE
=8.21), and SPTWO(RMSE=5.68). Second row: detail of the above images. Third row: differences
with respect to the noisy frame. Fourth row: differences with respect to the original (noise free)
frame

white noise removal algorithm, and other denoising algorithms designed to deal with
real noise, Sect. 7.4.4.

7.4.1 Introduction

The bibliography on noise removal from real video is scarce. As in the case of
single image denoising, most papers concentrate on uniform white noise removal. In
addition, the literature is very heterogeneous, what makes rather difficult to establish
a classification of the published methods.

Most of the recent publications describe patch-based approaches. In [41], amotion
compensated strategy using NL-means algorithm was proposed. In [59], the authors
apply the NL-means denoising algorithm to each image and then combine this esti-
mate with a purely temporal application of the same algorithm. Both estimates are
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NL-means 3D VBM3D VBM4D SPTWO

Fig. 7.7 Denoising results for the army color sequence with σ = 30. First row, from left to right:
noisy frame, NL-means 3D (RMSE = 5.30), VBM3D (RMSE = 5.54), VBM4D (RMSE = 6.40),
and SPTWO (RMSE = 4.71). Second row: detail of the above images. Third row: differences with
respect to the noisy frame. Fourth row: differences with respect to the original (noise free) frame

Fig. 7.8 Some frames of real (non-simulated) noisy image sequences
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combined in static parts of the image, while the spatial estimate is preferred in mov-
ing regions. In [41], motion vectors are used and patches are grouped across adjacent
frames but in a different manner. Instead of comparing patches to the reference patch,
these are compared in each frame with the compensated patch of the reference one.
NL-means is applied to this group of collected patches. In [30], the authors perform a
bilateral filter in both luminance and chrominance (YCbCr) for each frame, for which
the bilateral weight distribution is computed only on the luminance. A multiscale
wavelet transform permits to deal with non-white noise.

Manymethods combine noise removalwith color enhancement. For example, [59]
applies a second iteration of the denoising algorithm after a contrast enhancement
stage. A similar approach is used in [36] but a purely temporal denoising algorithm
is applied first, and a second purely spatial after the enhancement stage. In [7],
spatiotemporal bilateral filtering is applied and combined with the enhancement
technique in [27]. Filtering parameters at each pixel are fixed depending on the
amount of enhancement to be applied.

More general methods perform, additionally to noise removal, color correction
and sharpness improvement. In [35], the authors simultaneously perform multiview
image sequence denoising, color correction, and sharpness improvement in slightly
defocused regions for sequences of images coming from different cameras and thus
with different degrees of blur and noise. In [23], a sequence of images acquired with
a hand-held mobile phone are combined. The camera shake blurs each image with a
different kernel, thus attenuating for each one a different part of the Fourier spectrum.
The authors proposed to combine the different Fourier spectrums, choosing for each
frequency the images with larger magnitude.

7.4.2 Temporal Estimation for Signal-Dependent Noise

ForRAWimages,which display the data acquired at the sensor, a realistic assumption
for the noise model is to be signal dependent [19]. The noise characteristics are
modified by the camera imaging chain and the compression. In [42], the authors
studied the noise amplitude of JPEG images, and they estimated a model depending
on the demosaicking algorithm and the applied color corrections. In [20], the authors
also studied the noise amplitude in JPEG images but proposed a model dependent
not only on color but also on frequency. However, these models do not take into
account that for video a multitemporal estimation is possible.

Patch-based methods are the most used for estimating white noise amplitude in
digital images. They compute the standard deviation or DCT coefficients of all the
patches in the image [50]. However, these methods are not adequate for estimating
non-white noise amplitude. Indeed, neighboring pixels have correlated noise values,
which makes any statistical measure to systematically underestimate the true ampli-
tude. While single- image algorithms are forced to use these measures, when dealing
with image sequences, we may use values from different frames. Pixels belonging to
different frames of the sequence have independent noise values, which are more ade-
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quate for estimating the noise amplitude in the non-white case. It must be noted that
this is less true for highly compressed videos, since standard compression algorithms
actually combine values of consecutive frames.

The method proposed in [14] adapts the method in [50] by selecting patches of
neighboring frames. This solution is suboptimal since even if it combines information
from different frames, it does not take into account that the noise spatial correlation
can be mitigated by temporal averaging, which is the essence of fusion algorithms.
The method proposed in [15] first estimates the optical flow and warps all images
into a common reference frame. Using the motion compensated data, the temporal
average and standard deviation are computed for all the pixels. The only assumption
needed for the application of such estimator is that the noise has zero mean and that
the noise values from different frames are independent.

The averages obtained for all the pixels might be classified into a disjoint union
of variable intervals or bins, in such a way that each interval contains a large enough
number of elements. That is, the color level range is not divided into uniform length
intervals, but these intervals are adapted to the image sequence itself. This way,
if the image is dark, most of the intervals will be of short length and belonging
to dark values while none or very few bins will be in the lighter part of the color
range. These measurements allow for the construction of a list of standard deviations
whose corresponding averages belong to the given bin. The median of the standard
deviations in each bin gives an estimation of the noise amplitude per bin.

This noise estimation algorithm might be applied at each level of a multiscale
pyramid. Figure 7.9 displays the noise curves estimated for some real video sequences
and three scales, the original fine scale and two more. In order to compute these

Fig. 7.9 Display of noise curves for different real image sequences and three scales (from coarser
(left) to finer (right)). The algorithm is applied at each scale obtained from the previous one by
subsampling of factor two, obtained by agglomeration of four pixels. The noise pairs (ui , σ (ui ))
obtained by the algorithm proposed in Sect. 7.4.2 are displayed for each channel and linearly
interpolated
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curves, we have used a pyramid with a subsampling factor of two at each scale,
obtained by simple averaging of four pixels.

7.4.3 Real Video Denoising Chain

We detail the video processing chain proposed in [14]. This is an adaptation of the
single-image chain in [40] to video. The method decomposes the image sequence
in a multiscale pyramid and, at each level, the noise is estimated, the variance sta-
bilized, and the noise removed by the white noise removal algorithm [16]. Once the
lowest scale is denoised, the result is upsampled and the details are added back. The
procedure is repeated until the finest scale is attained.

7.4.3.1 Multiscale Strategy

The multiscale denoising strategy consists of downsampling the image frames at
several scales and then denoising the coarsest scales (the ones satisfyingmore closely
the white noise assumption). Then, image details at finer scales are added to each
upsampleddenoised frameand the process is iterated.As a result of this process, noisy
spots are removed from the sequence. Downsampling at each scale is performed by
averaging groups of four pixels (factor 2 downsampling) while upsampling is done
using cubic splines interpolation.

Figure 7.10 compares the application of the method with a single scale or with
three scales. The denoised images are afterward enhanced (with the tone mapping
algorithm described in [26]) in order to better illustrate the differences between
the two methods. The single-scale algorithm actually removes noise but only noisy
regions of slightly more than one pixel, not large spots. Large colored spots are

Fig. 7.10 Comparison of the application of the method proposed in [14] with a single scale or
with three scales. From left to right: original noisy image, single-scale denoising, and three-scale
denoising. The displayed denoised images have been enhanced [26] in order to better illustrate the
differences between the two methods. The single- scale algorithm actually removes noise but only
noisy regions of slightly more than one pixel, not large spots. Large colored spots are removed only
by the multiscale algorithm, which removes them at the scale for which they become almost white
noise
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removed only by the multiscale algorithm, which removes them at the scale for
which they become almost white noise.

7.4.3.2 Noise Standard Deviation Stabilization

Uniform white noise removal algorithms fail to denoise a real video sequence due to
the fact that, in general, the noise level depends on the intensity level of the images.
Using the estimated noise curve, the original video sequence can be manipulated in
order to achieve a uniform noise distribution with arbitrary noise level. This manip-
ulation is known as the Anscombe transform (described in the next paragraph) and
it is an invertible transform. It is therefore possible to apply any white noise removal
algorithm to denoise the transformed sequence and to obtain the final denoised video
using the inverse Anscombe transform.

We usually refer to the Anscombe transform as to the transformation f (u) =
2
√
u + 3

8 , which is known to stabilize the variance of a Poisson noise model. How-
ever, any signal-dependent additive noise can be stabilized by a simple transform.
Let v = u + g(u)n be the noisy signal, we search a function f such that f (v) has
uniform standard deviation. When the noise is small compared to the signal, we can
apply the decomposition f (v) = f (u) + f ′(u)g(u)n. Forcing the noise term to be
constant, f ′(u)g(u) = c, and integrating, we obtain

f (u) =
∫ u

0

c dt

g(t)
.

When a linear variance noise model is taken, this transformation gives back the
known Anscombe transform. When the noise dominates the signal, as in very dark
scenes, the linear approximation is less valid, and more complex techniques have to
be used [46].

7.4.4 Experimentation and Comparison

In this section, we illustrate the performance of the proposed chain, comparing its
results to those of the following state-of-the-art algorithms: Xu et al. [59], Liu [41],
Ji et al. [33], Gao et al. [30], and VIDOLSAT [58].1

1We used theMatlab implementations of Ji et al. (by Sibin, Yuhong, and Yu, 2013), and VIDOLSAT
(from http://www.ifp.illinois.edu/~yoram). The rest of algorithms were implemented following the
descriptions in the published papers. Remark that Gao et al. method is an extension to video
sequences of the method described in [65].

http://www.ifp.illinois.edu/~yoram
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Noisy VIDOLSAT [58] Gao et al. [30]

Xu et al. [59] Liu et al. [41] Proposed

Fig. 7.11 Detail of the denoising results for video sequence pool. From top to bottom and left to
right, we display the central frame of the sequences: noisy, results of VIDOLSAT [58], Gao et al.
[30], Xu et al. [59], Liu et al. [41], and the proposed method. Remark that our method keeps more
details of the pool’s water while removing low-frequency color noise

All experiments use exactly the same parameters which are mainly the number
of scales, the window size, and the filtering parameter. We used three scales, a 5 × 5
window and the same filtering parameters in all cases. The denoising stage is applied
after the variance stabilization transform, for which the standard deviation curve is
estimated automatically. Remark that all the compared denoising algorithms, except
the current chain and the one in [30], require as input the standard deviation σ of the
image noise (which is assumedGaussian inmost cases). Since this value is unknown,
we tested with several values of σ (ranging from 10 to 40) and we display the best
result.

Figures 7.11, 7.12, and 7.13 compare the different methods when applied to the
real data. We used several types of image sequences for completeness of the compar-
ison. In Fig. 7.11, we display an example extracted from [15], where the noisy video
has been simulated from original RAW data. In Fig. 7.12, we apply all methods to
a sequence of images taken independently with a photographic camera. Each image
is compressed by the camera independently of the rest, using the JPEG standard.
Contrast enhancement [26] is applied after denoising for a better visualization of
the differences, but it is not part of the proposed method. That is, the initial noisy
sequence is denoised and afterward the result is contrast-enhanced for visualization.
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Noisy Contrast Enhanced VIDOLSAT [58]

Xu et al. [59] Liu et al. [41] Proposed

Fig. 7.12 Detail of the denoised central frame for a sequence of single image taken with a camera.
Images were compressed independently since data is not a video. Top, left, and center: excerpt from
the central frame of the original sequence, same detail after contrast enhancement applying method
[26]. Top (third and second images) and bottom: excerpt from the central frame of the denoised
sequences by VIDOLSAT [58], Xu et al. [59], Liu et al. [41], and the proposed method. Contrast
enhancement [26] is applied after denoising for a better visualization of the differences, but it is not
part of the proposed method. That is, the initial noisy sequence is denoised and afterward the result
is contrast-enhanced

As it can be noticed from the enhanced noisy image, noise is quite severe for this
case. The rest of methods blur the image in order to remove the grain noise of sev-
eral pixels. These grains are smoothed creating an unnatural aspect of the image.
Our multiscale algorithm removes completely the noise by keeping the sharpness of
details of the scene and yielding a natural image.

In Fig. 7.13, we apply the method to a video sequence acquired with a mobile
iPhone 4S. Again, contrast enhancement [26] is applied after denoising for a better
visualization of the differences, but it is not part of the proposed method. Low-
frequency and colored noise is completely removed by the proposed method, while
for the rest, residual noise can be noticed in the denoised frames.
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Noisy Contrast Enhanced Gao et al. [30]

Xu et al. [59] Liu et al. [41] Proposed

Fig. 7.13 Detail of the denoised central frame from a video acquired with a mobile iPhone 4S.
Top, left, and center: excerpt from the central frame of the original sequence, same detail after
contrast enhancement applying method [26]. Top (rightmost image) and bottom: excerpt from the
central frame of the denoised sequences by Gao et al. [30], Xu et al. [59], Liu et al. [41], and the
proposed method. Contrast enhancement [26] is applied after denoising for a better visualization
of the differences, but it is not part of the proposed method. This figure illustrates how details, as
the text in this case, are better preserved by our method

7.5 Conclusion

We presented in this chapter state-of-the-art techniques for noise removal in video.
Most recent techniques are patch based. We showed that a drastic improvement
can be obtained by carefully selecting the set of similar patches. Such strategies
involve the use of optical flow and motion compensation via the resampling of video
frames. Standard techniques are used for these stages, not taking into account that
videos might be noisy, and dealing with occlusions a posteriori. A refinement of
used optical flow and resampling techniques paying, attention to occlusions, would
improve described state-of-the-art algorithms.

We analyzed estimation techniques, from classical averaging to more complex
Bayesian modeling. We did not take into account Gaussian mixtures, but without
any doubt, the large amount of samples available in an image sequence makes this
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type of data more suitable for the use of Gaussian mixture techniques than single
image.

Thevideoprocessing chain described in the secondpart of the chapter has shown to
be able to correctly denoise the real video fromboth video andmobile phone cameras.
However, the noise estimation procedure as well as the denoising chain neglects
compression information. Video standard techniques already estimate motion and
transfer image patches from one frame to the neighboring ones. Such information
could be useful for the denoising process. Frame differences after compensation are
compressed by standardDCT techniques, forwhich quantization intervals are known.
A more complex formulation could include such information as already proposed
for image denoising.

Image and video denoising techniques should be applied at the first stages of
the imaging chain, directly to the sensor data if possible. While for still images,
reflex cameras permit to have access to the RAW data, this is not available to the
general public by video cameras or mobile phones. The amount of storage needed for
keeping all sensor data of a whole video justifies this absence of RAWdata for video.
Unfortunately, techniques presented in this chapter are not real time, and therefore
cannot be used in an onboard video imaging chain of a camera or mobile phone. The
acceleration and design of real-time techniques yielding similar performance to the
ones illustrated in this chapter is a huge challenge.

Finally, in order to numerically assess the performance of real video denoising
methods, a database of realistic videos with ground truth is necessary. The first
attempt for a particular imaging chain was carried out in [15]. A more systematic
database should contain videos with different imaging chains and different compres-
sion algorithms and ratios.
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Chapter 8
Image and Video Noise: An Industry
Perspective

Stuart Perry

Abstract Images and video are increasingly becoming a part of our everyday lives
and with this growth, we find an increasing number of industrial and commercial
applications of imagery. In this chapter, we will examine the problem of image noise
from an industrial and commercial viewpoint. We will consider how noise enters the
imaging chain in these settings and how noise is measured and quantified for later
removal. We will also discuss standards and standardisation activities that relate to
noise measurement in a commercial or industrial setting.

8.1 Overview

Images and video are a multibillion-dollar industry in the twenty-first century. The
number of images taken per year continues to grow at an exponential rate spurred on
by the ubiquitous presence of cameras in mobile phones and other small, inexpen-
sive devices [1]. Cameras are vital pieces of equipment in a variety of commercial
applications, with entire conferences, books and journals devoted to imagery in spe-
cific commercial application domains such as autonomous vehicles [2]. Given the
large sums of money involved, it is not surprising that commercial and government
entities have devoted substantial resources to understanding how noise enters image
and video processing pipelines, how noise levels in images can be quantified and
removed. Other chapters in this book provide excellent algorithms for the removal
and filtering of noise in images and videos, but in this chapter, we will consider
first how noise enters the imaging pipeline for commercial or industrial systems and
how noise is typically measured by the commercial and industrial manufacturers of
imaging systems and technologies that make use of visual imagery.
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Fig. 8.1 A typical imaging chain

8.2 Noise in the Image Processing Pipeline

Digital imaging systems are rapidly improving in quality and functionality, but
noise will always remain an issue for industrial and commercial applications. As
we improve imaging technology, we continue to push it into more challenging envi-
ronments and there will always be a need to remove noise from imagery in industrial
applications.

There is a variety of types of noise commonly encountered in images and they
occur at various points in the imaging chain. Understanding these types of noise will
help us understand the way they affect the measurement of noise in imagery [3].
Often, we refer to ‘noise models’ to describe statistical models of noise in imagery.

Figure 8.1 shows an overview of a typical imaging chain from capture to rendering
or display. A typical imaging chain can be divided into several stages:

First, light from the scene must be captured by an imaging sensor. This often
involves the light passing through a lens system to be focused on the sensor. The
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light may then pass through various filters to either remove unwanted wavelengths of
light or isolate particular wavelengths. In the case of consumer digital cameras, one
set of filters are used to isolate the red, green and bluewavelengths to represent colour
in the final image. Another set of filters are used to remove the infrared wavelengths
of light that human vision is not sensitive to, but silicon photosensitive elements
are capable of recording. The light is then captured by the sensor. If the sensor is
a film substrate, this occurs because of a reaction with photosensitive chemicals. If
the sensor is digital, then light is often captured by the excitation of charge carriers
in a semiconductor and stored as charge in each sensor site. In this chapter will
concentrate on digital image capture.

Second, the captured chargemust be read out of the sensor sites and quantised into
a digital signal. If the sensor is a colour image sensor, then disparate information
on colour captured at different locations on the sensor must often be merged to
estimate the exact colour at each pixel location. This is called ‘demosaicing’ due
to the mosaic arrangement of colour filters on modern digital image sensors. This
is often followed by conversion of the image data into a device-independent colour
space and remapping of the luminance levels to allow for perceptually pleasing
display to a human observer.

Third, the image is generally sent to a rendering system where it can be displayed
to a human observer. This often involves compression of the image or video data to
conserve bandwidth and transmission over a communications channel. The rendering
systemmight convert the image back into transmitted light such as a monitor display
or render the image using light absorbing pigments on a medium such as a printer.

Not all imaging chains have all the above processes, but noise can enter the
imaging chain at any of the above points.

8.2.1 From Scene to Sensor

The process of getting light from the scene to the sensor can add various distortions
to captured imagery. There are a large variety of noise sources that affect images and
video caused by the sensor and lens system of image capture equipment [4]. Some
of the most important noise sources are mentioned below.

8.2.1.1 Gaussian Noise

The most common noise model is Gaussian noise. Gaussian noise can arise from
various processes in the camera and lens system. Gaussian noise is often a good
approximation of other types of noise under a variety of conditions and, because of
the central limit theorem [5], Gaussian noise can describe the output noise statistics
when many other types of noise are passed through a complex system. Gaussian
noise is distributed independently for each pixel in each colour channel according to
the Gaussian distribution [5, 6]. Gaussian noise does not depend on the intensity of
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pixels in the image and is mathematically convenient to deal with. This type of noise
is a good description of noise associated with light capture during image acquisition
or some forms of thermal noise in image capture sensors [7, 8]. Gaussian noise is
often a good approximation for the noise associated with the capture of light by
imaging sensors when image light levels are high [9].

8.2.1.2 Shot Noise and Poisson Noise

Shot noise is noise inherent in the capture of photons by a sensor [3, 4]. It arises due to
the particle nature of light. The value of a pixel is dependent on the count of photons
collected by the pixel during an exposure. For bright light situations, each pixel may
be exposed to billions of photons and any noise from capture to capturemight be only
a tiny percentage of the pixel’s value. However, when light levels are low, and only
a few dozen photons are collected in an exposure, the variation in pixel values from
capture to capture can be considerable. Hence, shot noise is dependent on the pixel
intensity and is often modelled as a Poisson distribution [5]. Poisson distributions
describe processes that count randomly occurring events (such as photons striking a
pixel sensor site) and have the property that the noise variance is proportional to the
value of the quantity being measured. As the quantity being measured (such as light
level) increases, the Poisson distribution approaches a Gaussian distribution [9]. In
practice, this means that shot noise deviates most strongly from Gaussian noise at
low light levels. Shot noise can be the primary source of noise in imagery at high
light levels [4].

8.2.1.3 Lens Flare

Modern camera equipment can have complicated lens structures to enable the change
of focus, optical zoom, or the correction of various distortions [10]. Although these
systems are often very efficient, light reflected from the interfaces between the lenses
can appear as noise in captured imagery. This is often referred to as ‘lens flare’ and
can manifest in a variety of ways. When the lens flare is distributed evenly within
the captured image it can be modelled as an additional photon noise factor with a
shot noise distribution [4]. Unlike photon noise associated with the image content,
the statistical properties of this form of lens flare are often not strongly correlated
with image content, but rather with the structure of lens system. Lens flare can also
manifest in captured imagery as polygonal shapes in the image related to the structure
of the camera lens or bright streaks [11]. This type of noise is so common that the
structured form of lens flare is sometimes added to imagery for visual effect or in
CGI imagery to simulate capture by a physical camera [12].
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8.2.1.4 Thermal Noise

Thermal noise in image sensors occurs when random thermal excitation of electrons
in the silicon substrate causes additional false charge in the pixel sensor site. At high
light levels, this noise source is often small compared to other noise sources such as
photon noise; however, thermal noise can dominate at low light levels [9]. Thermal
noise on image capture sensors can be well modelled by a Poisson or Gaussian
distribution [9]. Thermal noise can be mitigated by cooling the imaging sensor and
this technique is often used for extremely sensitive imaging applications.

8.2.1.5 Flicker Noise

Flicker noise occurs in most electronic devices and is often due to impurities in the
silicon or noise in the generation or recombination of charge carriers in the device.
This noise causes variations in the performance of electronic components. In the
case of imaging technology, flicker noise causes variations in the charge collected by
semiconductor sensors. Flicker noise is also called ‘pink noise’ and is characterised
by having a power density spectrum with a 1/ f shape where f is the temporal
frequency of the noise [9].

8.2.1.6 Aliasing

Most digital imaging sensors rely on an array of photosensitive elements to collect
light. These elements are usually arranged on a grid, although they can be augmented
by filters or micro-lens arrays to achieve various purposes such as the capture of
colour or light field data [4, 13].

However, all imaging systems based on sensor arrays can only sample the real
world at a set of points and as such are subject to the problem of aliasing [4]. Aliasing
occurswhen the number and spacing of samples of a signal are insufficient to describe
spatial or temporal variation in the signal. When the sampling is insufficient, energy
from high-frequency components of the signal is mapped back (or ‘aliased’) into
the lower frequency components, producing distortions and artefacts in the sampled
signal [6]. Digital imaging systems are subject to these problems as much as other
signal sampling systems. In digital images, aliasing can produce jaggy edges on
lines and curves, and Moiré Effect patterns in the output images [6]. Modern digital
imaging systems generally have low-pass components in the optical path or have
pixels small enough that aliasing is not noticeable unless the image is enlarged to the
pixel level [14].
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8.2.2 From Sensor to Rendered Image

Once light has been gathered by a sensor, it needs to be read off the sensor and
then rendered in a way useful to further machine processing or viewing by human
observers. There can be many stages in this process and noise can enter the system
at most of these stages.

8.2.2.1 Noise When Reading Out the Sensor Value

The process of converting the pixel from stored charge at a sensor site to an electrical
signal can introduce a variety of artefacts and noise.

Quantization noise is caused by the quantization of pixel values as a result of the
conversion from analogue to digital sampling. It is usually modelled by a uniform
distribution [4]; however, a uniform distribution model can break down when the
number of quantization levels is small [3]. As modern digital cameras increase in the
available bit depth to represent pixel values, this problem becomes less of a concern.

Salt and Pepper Noise (also called ImpulseNoise) refers to the random occurrence
of pixels saturated to some set of values [3]. This type of noise often occurs because
of faulty pixels on either capture or display systems or errors during pixel read-out
on sensors. Salt and Pepper Noise is usually modelled by assuming that a particular
percentage of pixels randomly selected in the image are subject to noise which
manifests as 50% of affected pixels being set to white and 50% of affected pixels
being set to black. Pixels not randomly selected as noise pixels in the image are
unaffected.

8.2.3 Fixed-Pattern Noise

Due to irregularities in the manufacture of imaging sensors, individual sensor sites
can have differing efficiencies in the capture of light. These differences result in pixels
being slightly brighter or darker than their neighbours due to differences in gain [4].
This is termed ‘fixed-pattern noise’ as the pattern of differing gains on each pixel
does not vary with the image content. Fixed-pattern noise is generally removed by
careful calibration of the imaging sensor prior to capture so that differences in pixel
gain can be compensated for following sensor read-out. In two-dimensional sensors,
fixed-pattern noise often manifests as a pattern of points across the image; however,
in line-based imaging systems such as document scanners, fixed-pattern noise can
manifest as an aperiodic banding pattern [15]. Imaging sensor site efficiency can
change over time, so some digital cameras allow for periodic recalibration to remove
fixed-pattern noise. Commercial line scanners often have a calibration strip that is
imaged prior to each scan and used to correct for fixed-pattern noise.
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8.2.3.1 Noise from Demosaicing

The majority of silicon imaging sensor sites use colour filters to perceive light at
different wavelets. For devices capturing images in the visible spectrum, red, green
and blue filters are arranged in a pattern on the sensor hence devoting every pixel
to the capture of red, green and blue light only. The most common pattern is known
as a ‘Bayer Filter’ and assigns twice as many pixels to capture green light as those
capturing red or blue light [4]. The higher sampling of the green part of the spectrum
is motivated by the greater sensitivity of human vision to these wavelengths of light
[16].

A result of this approach is that colour information recorded by imaging sys-
tems is often not perfectly aligned. Each pixel contains information on either the
red, green or blue parts of the spectrum and to obtain a full-colour image with red,
green and blue information at each pixel, interpolation is used to compute the miss-
ing colour information at every pixel in the image. This operation is often termed
‘Image Demosaicing’ [17]. Image Demosaicing attempts to recreate missing infor-
mation in an image and can introduce various sources of image noise and artefacts.
Demosaicing artefacts include the ‘zippering effect’ or the presence of false colours
near edges. The zippering effect produces an unnatural pattern in the image around
strong edges and is caused by the demosaicing algorithm’s interpolation not being
aligned correctly relative to the edges in the image. To avoid this, many demosaicing
algorithms are edge adaptive [17, 18].

8.2.3.2 Problems with Colour Space Conversion and Tone Mapping

Following demosaicing, images are often converted to a device-independent colour
space such as sRGB and luminance levels are remapped for display to human
observers. Both processes can introduce noise or artefacts in images.

Errors in gamut mapping between different colour spaces can produce satura-
tion of portions of the image, colour shifts for bright or very chromatic areas, and
false contours. False contours can be created when out-of-gamut pixels are changed,
leaving adjacent in-gamut pixels unchanged [19].

False contours can also be created during when luminance levels are mapped for
displayon a specificdevice ormoregenerally tomake the imageperceptually pleasing
for a human observer. This operation is called ‘tone mapping’ and false contours can
occur when the tonemapping operation increases a normally unnoticeable luminance
difference between pixels in an area of gradually changing luminance to the extent
that the luminance difference is now apparent to human observers. This produces
unnatural lines and contours in areas such as sky where human observers would not
expect structure to occur [6].

Tone mapping operations can also complicate the noise models used in imagery.
The Gaussian distribution is a good approximation for many noise sources; however,
the Gaussian distribution is only a good description in those cases when noise is
measured on an image prior to non-linear tone mappings [20]. Tone mappings can
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transform Gaussian noise into noise that is now dependent on the intensity of the
pixels in the image. Other common image acquisition processing such as auto white
balance or image sharpening can also produce non-Gaussian noise in the resultant
images.

8.2.4 Transmission and Rendering

Once images have been captured by an imaging system and rendered for display, the
images may then be transmitted to another location and displayed on a variety of
systems. Noise can be added to the image during transmission and rendering. This
can occur when the image is compressed to save bandwidth during transmission,
during the transmission process itself, or when the image is displayed on a monitor
or printed.

8.2.4.1 Artefacts of Compression

Modern images and videos are often extremely large and require image and video
compression techniques to reduce the size of these images. Modern image and video
compression algorithms can produce impressive bandwidth savings with little per-
ceptual quality decrease; however when compression algorithms are pushed to com-
press the image or video to extreme levels, a variety of artefacts and forms of noise
can occur. These include [21]:

• Blocking: Major image and video compression algorithms divide the image or
video into small spatial blocks that are converted into a frequency-based rep-
resentation and compressed by not encoding high-frequency information that is
invisible to a human observer. However, when the compression levels are high, the
boundaries between the blocks can be observed as a structured noise in the image.

• Basis Image Error Noise: Conversion of spatial blocks in images and video to a
frequency representation for compression often involves the use of the Discrete
Cosine Transform (DCT) [21]. Leakage of the basis images of the DCT into the
final image results in Basis Image Error Noise. This is caused by course quan-
tization of the higher frequency DCT coefficients resulting in only a few lower
frequency coefficients remaining. During decoding, the basis images of the DCT
transform corresponding to the remaining low-frequency coefficients are visible
in the final image.

• Staircase Effect: This distortion causes diagonal edges in the image to look jagged
with a ‘staircase’ pattern. This is caused by the nature of the discrete cosine trans-
form. Whereas the DCT basis images are tuned to horizontal and vertical edges,
they are not well tuned to diagonal image structure.

• Ringing: Ringing manifests as false edges in the decompressed image around
strong edges in the original image. This occurs because of the quantisation of
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the higher frequency DCT coefficients. Strong edges need higher frequency DCT
basis images to adequately represent them, and when these are removed by the
compression process, ringing results.

• False Contouring: As described above in relation to tone mapping, false con-
touring occurs when smoothly varying regions become quantised because of the
compression process.

• Temporal Effects: Compression of video can produce a variety of temporal distor-
tions and noise. One of the key processes in video compression is the matching of
spatial blocks across video frames. Bymatching a spatial image block in one frame
with that in a different frame, compression can be achieved by only encoding the
position change of the block in the second frame rather than the image data. How-
ever, mismatched blocks across frames can produce disturbing temporal artefacts.
Another source of temporal noise is the ‘mosquito effect’ due to varied coding of
the same area across frames causing temporal changes such as luminance changes
in smoothly varying areas of the video.

8.2.4.2 Noise of Digital Transmission

Periodic banding noise can occur when electrical interference occurs during either
capture or transmission of imagery [22]. This can manifest in several ways, but one
of the most disturbing is banding caused by electrical interference. This may appear
as lines that are slanted relative to the image raster and is often the result of the
frequency of the interfering noise being not a harmonic of the carrier frequency used
during the transmission of the image.

8.2.4.3 Noise of Display on Monitors

Modern display systems when correctly calibrated are often not a major source of
image noise. However, displays can have ‘dead’ pixels that manifest as salt and
pepper noise, and spatial or temporal variations in the luminance of the pixels on the
screen. These noise sources are often not noticed by consumers but are of concern to
professionals such as radiographers thatmake use ofmonitors to detect faint structure
in images for medical diagnostic purposes [23].

8.2.4.4 Noise During Printing

Printing of imagery is a complicated process. Problems with the absorption or deliv-
ery of ink on paper can cause irregularities of the printed image while mechanical
slippage of the feed mechanism can result in line artefacts known as ‘banding’.
Banding is a common source of noise in printed images.

Banding noise refers to any noise source that causes line artefacts to appear across
an image. Banding noise may result in periodic or aperiodic lines occurring across
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the image. Aperiodic banding can occurwhen the paper rollers slip during printing on
an ink-jet printer. The slippage causes the alignment of the halftone printing pattern
to be locally disrupted, often resulting in a band across the page either darker or
lighter than the surrounding print. The band often runs across the width of the page
perpendicular to the media feed direction during printing. However, there are many
other causes of both periodic and aperiodic banding noise in printers [24] including
blocked ink-jet nozzles which can result in banding that runs parallel to the media
feed direction.

There are international standards [25] that define a number of noise sources for
printers. These include a wide class of irregularities with ink deposition on paper
such as background haze, graininess, mottle, extraneous marks, banding and voids.
The difference between these noise sources is often simply the size and shape of the
artefacts or whether the noise manifests as unwanted ink on unprinted sections of the
paper or unwanted gaps in ink on printed sections of the image. Noise along printed
edges in documents was also addressed in the standard and termed ‘raggedness’.

8.3 Measuring Noise in Images

There is a multitude of algorithms for the removal of noise from imagery [6, 22],
but at the heart of these algorithms is the need to measure and quantify the level
of noise in an arbitrary image. This is a difficult problem as imagery can contain a
variety of content from low to high frequency that can resemble, enhance or mask
the appearance of noise [26]. Often only phase coherency of image content as it is
arranged into edges and shapes, rather than magnitude, differentiates true content
from noise [27].

Often the problem of measuring noise is closely coupled to the problem of quan-
tifying the difference between two arbitrary images. There are techniques and stan-
dards for measuring noise of imaging equipment through the use of test charts and
specialised equipment [28]. However, often engineers need to measure noise as it
appears in arbitrary image content. The visibility, effect on quality and nature of
noise on an arbitrary image processed in an imaging chain in applications in the real
world can be quite different to the results obtained in a controlled laboratory setting.

We might imagine that when a perfect copy of a noisy image exists, measuring
and quantifying the noise is simply a matter of subtracting the perfect copy from the
noisy image and applying simple summary statistics on the resulting ‘noise image’
such as measuring the power or energy of the noise image. In practice, this often
fails for two important reasons.

First, in many applications, an original image may not be available. For example,
when engineers need tomeasure the level of degradations caused during transmission
of imagery through channels with time-varying noise levels [29].

Second, often the factor of interest to engineers is not the noise level in the sense
of the power of the noise signal, but rather the visibility of the noise to a human
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observer or the degree that the noise added to the signal degrades the quality of the
signal as judged by a human observer.

There are many image difference operators that attempt to either measure the
visibility of noise in an image or quantify the quality loss that occurs when noise is
added [29, 30]. These image difference operators can be considered measures of the
noise in imagery.

8.3.1 Classifying Image Noise/Difference/Quality Metrics

As mentioned above, noise in imagery is usually quantified by image difference or
qualitymeasures. Thesemeasures can be divided into a number of different categories
depending on various properties. One of the most common divisions is that of the
amount of information about the original perfect image that needs to be transmitted
together with the noisy image to allow the level of noise to be quantified. Generally,
this division classifies metrics into Full Reference (FR), Reduced Reference (RR) or
No Reference (NR) [29, 30].

Full-Reference (FR) metrics require the perfect original image to be present to
enable the level of noise present in the noisy image to be quantified. This is appro-
priate for controlled testing of a system or scientific studies into noise suppression
algorithms. Full-referencemetrics are generally not appropriate for adaptively chang-
ing the parameters of a system according to arbitrary transmitted content in real time
as the original image is generally unavailable in practical applications. Examples of
FR metrics include MSE, PSNR [6] and SSIM [31].

Reduced-Reference (RR)metrics do not require the original image to be available,
but instead create a set of summary statistics of the original image that are transmitted
to the receiver and compared to the same summary statistics collected from the
received noisy image [29]. This approach can allow transmission channels to adapt to
changing environmental conditions by continuouslymeasuring the quality of imagery
transmitted through the channel. Reduced-reference metrics are not applicable to
measuring the quality of data directly from image capture devices and are generally
not as accurate as full-reference metrics. The more data transmitted by the RRmetric
to summarise the image, the greater the accuracy, but the more bandwidth used.
Examples of RR metrics can be found in the survey by Engelke and Zepernick [29].

No-Reference (NR) metrics require no information about the original image.
Instead, they make certain assumptions about the original content such as the sta-
tistical distribution of natural images or the types of distortions present in the noisy
image. In general, NR metrics do not perform as well as FR or RR metrics; however,
they continue to be an active area of research as the applications of NR metrics are
very broad compared to FR or RR metrics. A survey of RR and NR measures can be
found in Engelke and Zepernick [29].

Full-reference, reduced-reference and no-reference metrics all need to make
assumptions about what noise is and the effect it has on a human viewing the content
and based on these assumptions we can further categorise the metrics. In particular,
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we can arrange the metrics into distortion-specific metrics, Human Visual System-
based metrics and natural image statistic-based metrics.

8.3.1.1 Distortion-Specific Metrics

Distortion-specificmetrics attempt tomeasure noise by having very particularmodels
of noise artefacts, such as banding, blur or blockiness and searching for those specific
distortions in the image data. The goal is to find and quantify the distortions without
regard to the image content and without considering the wider variety of image
distortions and noise that may impact image quality. The vast majority of distortion-
specificmetrics are no-referencemetrics since they generally make use of algorithms
to detect the noise type being measured without reference to an original image.
However, this category can be considered to include full-reference metrics such as
MSE and PSNR since these measures subtract out the image content, and do not
consider the human visual system when measuring image difference. Both measures
will be described in more detail in a later section.

A difficultywith distortion-specificmeasures is that there is awide variety of types
of noise that can affect images and video, and discriminating all these different types
of noise from the large variety of different types of image content is an impossible
task. Solve this problem; distortion-specificmeasures often target only one particular
type of distortion or a limited variety.

An important source of noise or distortions in images and video in real life appli-
cations are compression algorithms. Fortunately, compression algorithms produce
well-known distortion types, such as blocking, blur or quantisation noise. Blocking
artefacts result from the division of images and videos into regular sub-blocks prior
to compression and are both readily noticeable to humans and degrade subjective
quality quickly. A number of noise measures have been developed directly targeting
blocking artefacts, for JPEG compressed imagery [32], for compressed video [33]
or for both [34]. Some blocking measures are deliberately designed to ignore or to
produce results that are intolerant of other types of image noise [34].

Blur is also a distortion caused by compression of both images and video, as
well as being a problem inherent to capture systems as well. Measuring the degree
of blur in an image is difficult even when the original image is known [35], but
becomes even more difficult in the case of no-reference metrics [36]. Some blur
metrics attempt to measure blur on the compressed image and video formats [37].
This has the advantage of enabling blur to bemeasured on a communications channel
without explicitly de-compressing the content for this purpose. This can result in a
substantial saving in computational resources.

In video sequences, distortions in motion, such as frozen frames or errors in the
predicting the motion of objects in the scene can have a dramatic effect on image
quality. It is not surprising that distortion-specific metrics have been designed to
address noise associated with motion in video [38, 39].

Finally, there are distortion-specific metrics that merge individual specific dis-
tortion measurements together to create a final measure of image quality. A good
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example of such a metric is the metric for JPEG images developed by Wang et al.
[40]. This metric extracts measures of blocking, blur and noisiness and weights them
according to their importance to human perception to create a single quality metric.
The video metric developed by Cavallaro and Winkler [41] extracts blocking, blur
and jerkiness measures and combines this with semantic segmentation of the video
frames to incorporate human visual attention characteristics [29].

8.3.1.2 Human Visual System Based Metrics

HVS-based Metrics attempt to model the human visual system to determine how
noise affects the perception of image quality. Often noise and image content is
not directly modelled, but rather the affect that these have on a human observer.
HVS-based metrics are almost always full-reference metrics due to the difficulty of
completely modelling the human response to imagery. The presence of the original
image simplifies the problem down to one of modelling the human response to the
difference between two images. There are toomanymetrics that attempt to model the
human visual system to describe them comprehensively in this section. The reader
is referred to various survey papers and summaries for this purpose [29, 30, 42].
However, most metrics contain at least some of the following steps:

1. The images to be compared are converted into some colour space where dif-
ferences between colours are perceptually uniform such as CIELAB [16, 43].
Many older metrics were designed to work on grayscale images [44, 45]. These
metrics are still useful in the world of colour images due to the greater impor-
tance to human observers of the differences in luminance information between
images compared to chrominance information [46]. However, there is a recog-
nised need for colourmetrics [46] to accurately characterise distortions that occur
with colour imagery.

2. The images to be compared are filtered based on human sensitivities to contrast at
different spatial frequencies, often considering, or making assumptions regard-
ing, viewing conditions [47]. This is performed to remove details not visible to
human observers [43].

3. The images to be compared are decomposed into some frequency representation
designed to model the differing responses of the human visual system to content
at different spatial frequencies, scales and orientations [45, 48]. Gabor filters
[44], wavelet filters [49] or DCT [50] decomposition is commonly used at this
stage, due to their ability to preserve local variations in frequency content.

4. Contrast and noise masking effects are modelled by combining coefficients in
the frequency space representation across different spatial locations in the same
frequency band or across different frequency bands [42, 51].

5. A summation step combines differences in coefficients across different frequency
bands weighted according to the affect that each band has on human perception
to create a final measure [42, 51].
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Metrics based onmodels of the HumanVisual System still face several difficulties
that have restricted their adoption by industry:

1. HVS-based metrics are still subject to content dependence wherein the metrics
do not perform consistently for all types of content [40].

2. Many aspects of the measures, in particular, the response of human vision to
the spatial frequency of content, are modelled using functions developed from
‘threshold’ experiments. Threshold experiments determine the point at which
humans can detect a change in a stimulus. However, many HVS-based metrics
use these functions to weight the contribution of content at different spatial fre-
quencies to the overall metric even when this content is at levels well above the
threshold of visibility. When content is above the threshold of visibility, there is
substantial evidence that these functions need to be modified [49].

3. Higher level concepts such as interactions between content and the perception
of quality are often lacking [49]. It is known that the presence of edges, skin
and faces and other salient areas can affect the perception of quality. Some error
metrics have attempted to include limited higher level perceptual characteristics
such as semantic segmentation of the image content with some success [41].

8.3.1.3 Natural Image Statistics-Based Metrics

These metrics rely on statistical models of natural images. The assumption of such
methods is that the humanvisual system is evolved to extract information fromnatural
imagery. As such, human subjective notions of quality are modelled as being closely
related to the degree to which an image deviates from appearing like a natural image.
Often these measures do not model the noise process or the physiology of human
vision directly. Many of these metrics are no reference [52] or reduced reference
[53], relying on the statistical model of an ideal image to replace knowledge of the
original image.

Often natural images are modelled in some frequency space such as Fourier or
wavelet spaces. In Fourier space, the average magnitude of the Fourier coefficients
of natural images is known to fall off at a 1/f rate [52], where f is the frequency of the
coefficient. Images substantially deviating from this distribution can be considered
as appearing unnatural to a human observer. In the wavelet domain, the distribution
of coefficients is very non-Gaussian, characterised by distributions with heavy tails
and high kurtosis. In addition, it has been observed that the wavelet coefficients
display a great degree of self-similarity across scales with similar distributions across
scales and a high degree of correlation across scales [54]. This scale independence
is only true when natural images are considered as an ensemble. Individual natural
images may violate this concept [54]. Some researchers have attempted to model
the distributions of natural images by considering the random arrangement of shapes
according to a Poisson process. Shapes can be drawn from a group with random
textures, sizes and shapes with or without occlusion. This is commonly called a
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‘dead leaves’ pattern [54] and has been used for testing image capture systems in
industrial applications [55].

A representative example is the work of Simoncelli [56, 57] where the statistics of
wavelet coefficients and their relationships towavelets coefficients at other scales and
orientations were encoded by representing the coefficients at a scale, orientation and
location of interest as an estimate using coefficients in other scales and orientations at
the same location, nearby neighbours at the same orientation and scale, and a noise
term. The noise is modelled as Gaussian, but the weights used in the coefficient
estimate are modelled using an empirical distribution. This was used as a model of
natural image statistics for image compression. Shiekh et al. [52] extended this idea
and expanded it to develop a no-reference image quality metric that could be applied
in the DCT compressed domain.

This approach can also be used to develop reduced-reference metrics. In Wang
and Simoncelli [53] the statistical distribution of the coefficients of a wavelet decom-
position is approximated as a two-parameter Generalised Gaussian Density (GGD)
model. The parameters of this model are transmitted with the image. On the receiver
side, the distribution of the wavelet coefficients of the received image is computed
and the Relative Entropy (also known as the Kullback–Leibler divergence [58]) is
used to determine the difference between the distribution of wavelet coefficients
between the original and received images.

Figure 8.2 summarises, diagrammatically, the relationships between themeasures
that we have been exploring in this section.

8.3.2 Commonly Used Metrics in Industry Applications

Despite the wide range of image quality metrics described above, the problem of
measuring noise in images is far from solved and very few of the metrics described
above have found common use in industry. The most commonly cited noise metrics
for natural images used in industry are Mean Square Error (MSE), Peak Signal-to-
Noise Ratio (PSNR) and Structural SIMilarity Index (SSIM). All of these measures
are full-reference metrics due to the better performance of FR metrics in general.
We will describe these measures in this section, while the next section will describe
efforts to standardise the measurement of noise and image quality in general.

8.3.2.1 MSE and PSNR

Mean Square Error (MSE) is simply a measure of the residual energy in a test image
once a perfect copy of the original image has been removed. For an image of sizeM
by N pixels,
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Fig. 8.2 One possible classification of image quality and difference metrics based on the degree
of knowledge assumed by the metric. Along the horizontal axis, the degree of knowledge about
the original image increases. Along the vertical axis, the metrics are divided into those that assume
knowledge of the distortion, those that assume knowledge of the human visual system and those
that assume knowledge of the statistics of natural images
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where I (i, j) and Í (i, j) is the value of the pixel at the ith row and jth column of the
original image and test image, respectively. MSE is a version of the more general
Minkowskimetric [30]. Thismeasure is simple and directly proportional to the power
of the noise signal. As the level of noise increases MSE increases, however, the value
of the MSE does not give any indication of the relative visibility of the noise against
the image content.
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to the maximum pixel value in the image. For an 8-bit image, the maximum pixel
value is 255 and PSNR is given by

PSN R
(
I, Í

)
� 10 log10

⎛
⎝ 2552

MSE
(
I, Í

)
⎞
⎠ (8.2)
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PSNR has a value of zero when the value of MSE is equal to the largest possible
deviation of the noise and approaches infinity as the MSE approaches zero. Unlike
MSE, PSNR increases in value with increasing image quality.

Due to their simplicity, PSNR and MSE are still used widely to measure noise
in images, especially as baselines to compare new image quality measures [29, 30].
PSNR and MSE do not correlate particularly well with subjective evaluations of
image quality [31]. However, there is evidence that more advanced image quality
measures do not perform substantially better than PSNR for video quality applica-
tions [52]. Both PSNR and MSE suffer from a number of issues. PSNR and MSE do
not take into account aspects of the human visual system such as content masking
effects, luminance adaptation or the effect of viewing distance [42]. Image distor-
tions that appear very differently to human observers can have identical values of
PSNR and MSE [31]. MSE and PSNR do not consider the spatial arrangement of
the pixels in the measure, hence ignoring image and noise structure. Noise artefacts
such as blocking are particularly visible to human observers due to the fact that the
disrupted pixels form regular patterns in the degraded image. This aspect is not cap-
tured by PSNR or MSE. On the other hand, a simple shift by a single pixel of the test
image relative to the original will produce large values of MSE and reduce PSNR
dramatically despite being unnoticeable to a human observer.

8.3.2.2 SSIM

Structural SIMilarity Index (SSIM) was presented in the seminal paper by Wang
et al. [31]. This error metric bears many similarities with metrics based on natural
scene statistics in that it concentrates on the structure of the image being analysed
instead of directly modelling either the noise applied to the image or the physiology
of human vision. SSIM is based on the concept that human vision has evolved to
extract structural information from natural imagery [59]. Humans observe a decrease
in image quality when the structural aspects of an image are distorted or masked by
noise. For example, blocking artefacts which impose an unnatural regular grid on
an image are much more disturbing to human observers than a simple global shift
of pixels in an image or a global increase in luminance. The latter two distortions
do not affect the overall structure of the image, whereas the blocking artefacts add
artificial structure to the image.

In SSIM, image structure is measured by three quantities. The first quantity is
designed to compare the luminance difference between two images:

l
(
I, Í

)
� 2μIμ Í + C1

μ2
I + μ2

Í
+ C1

(8.3)

where μI and μ Í are the mean values of the original and test image, respectively,
and C1 is a constant to avoid a zero denominator. The second quantity is designed to
compare the contrast difference between two images:
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c
(
I, Í

)
� 2σIσ Í + C2

σ 2
I + σ 2

Í
+ C2

(8.4)

where σI and σ Í are the standard deviation of values of the original and test image,
respectively, and C2 is a constant to avoid a zero denominator. The third quantity is
designed to compare the structure difference between two images:

s
(
I, Í

)
� σI Í + C3

σIσ Í + C3
(8.5)

where σI Í is the covariance between the original and test images and C3 is a constant
to avoid a zero denominator. The final SSIM measure is given by

SSI M
(
I, Í

)
� l

(
I, Í

)α

c
(
I, Í

)β

s
(
I, Í

)γ

(8.6)

where α , β and γ are adjustable constants that may be adapted to different problems
or datasets. In the original paper, α � β � γ � 1.0 [31]. To adapt SSIM to local
distortions in images, SSIM is usually computed as a distortion map with SSIM
computed for each pixel with the above summary statistics being computed over an
11 by 11 Gaussian weighted window centred on each pixel. In an earlier version
of the metric called the Universal Quality Index (UQI) [60], the constants C1 and
C2 were set to zero, but this was found to cause instability for very dark or smooth
images.

SSIMperforms consistently better than PSNRat predicting subjective judgements
and is resilient to luminance changes and small shifts that would not be noticed by
human observers. Under certain assumptions, SSIM has been found to be able to
predict PSNR values for some types of distortions, although PSNR has been found
to be more sensitive to Gaussian noise than SSIM [61].

Extensions to Multi-scale SSIM

The original formulation of SSIM did not consider viewing distance in the formu-
lation of the SSIM metric. To provide robustness to changes in viewing distance a
multi-scale version of SSIM,MS-SSIM, was developed [62]. MS-SSIM is computed
by performing a dyadic scale wavelet decomposition of the original and test images
and computing the contrast (4) and structure (5) SSIM terms at each scale. The SSIM
luminance comparison term (3) is only computed at the coarsest scale. The terms at
the various stages are then combined multiplicatively by Eq. (8.7):

SSI M
(
I, Í

)
� lM

(
I, Í

)αM
M∏
j�1

c j
(
I, Í

)β j

s j
(
I, Í

)γ j

(8.7)
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where M is the number of scales in the wavelet decomposition. The coefficients of
the contrast and structure terms at each scale, β j and γ j , in Eq. (8.7) are allowed
to vary from scale to scale, however to simplify the problem, β j � γ j at each scale.
The coefficients at each scale were determined by a subjective experiment involving
eight participants [62]. MS-SSIM was found to outperform single-scale SSIM as
well as other image quality measures, with the optimal performance obtained when
M � 2 [62].

Extensions to Colour

SSIM in its most common formulation only applies to the luminance component of
the image. Image Quality Metrics that rely only on luminance information are still in
widespread use. This is partly due to the simplicity of these measures being attractive
and the complexity of the humanperception of colour [16] being a barrier to extending
these measures into the colour domain. In addition, the luminance component of the
imageoften has themost important impact on the perceptionof imagequality [16, 46].
There exist image qualitymeasures that are designed for colour images [43] including
metrics based on SSIM [63–66], but often the method of extending luminance only
metrics to colour has been to apply the metric on each of the colour planes and
simply sum the result [46]. Kolamin and Yadid-Pecht showed that this method of
extending luminance measures to colour images failed for certain types of colour
degradations inherent to CMOS sensors [46]. Instead of applying the SSIM metric
separately to the red, green and blue colour planes, they developed a quaternion
implementation of SSIM and termed QSSIM—Quaternion Structural SIMilarity.
Quaternions are a generalisation of vectors and provide a way of encoding the three
components of the colour of a pixel into a single representation with a set of well-
defined mathematical operations for addition and multiplication. Quaternions are
better able to represent rotations inmultidimensional spaces and Kolamin andYadid-
Pecht claimed that this property allowed QSSIM to better consider the differences
in colour compared to previous approaches. They demonstrated an improvement
over other implementations of SSIM for colour image noise and distortions for some
datasets [46].

Figure 8.3 andTable 8.1 demonstrate someof the differences in behaviour between
MSE, PSNR and SSIM. Figure 8.3 shows an 8-bit grayscale original image (a),
distorted by four different processes. Image (b) has Gaussian noise of zero mean
with variance 0.0015 added. Image (c) has multiplicative speckle noise added of the
form I (x, y)

∧

� I (x, y)+n(x, y)I (x, y),where I (x, y) is the original image, I (x, y)
∧

is the noisy image and n(x, y) is a uniformly distributed random variable with mean
zero and variance 0.012 generated independently for each pixel in I (x, y). Image (d)
is a JPEG compressed image with the quality factor set to 5, corresponding to strong
compression and image (e) is the original image shifted downwards and to the right
by one pixel.
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(a)

(b) (c)

(e)(d)

Fig. 8.3 An 8-bit grayscale image with various distortions applied. a Original image, b Gaussian
noise of variance 0.0015 applied, c speckle noise of variance 0.012 applied, d JPEG compression
with quality factor of 5 applied, and e image shifted by one pixel in the x and y directions. All
images have approximately the same values of PSNR and MSE, but different values of SSIM as
shown in Table 8.1. Image reprinted with permission of The MathWorks, Inc

Table 8.1 shows the MSE, PSNR and SSIM values of the distorted images in
Fig. 8.3. It can be seen that the MSE and PSNR values are similar for the four
different distortions despite the very different levels of subjective quality of the
distorted images to a human observer. To most human observers the translated image
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shows very little if any quality loss, whereas the JPEG compressed image would be
considered themost degraded image in Fig. 8.3. However, theMSEvalue of the JPEG
compressed image is the lowest of the four degraded images and thePSNRvalue is the
highest. This implies that of the four distorted images, the JPEG compressed image
has the best quality. This does not match human observation. The SSIM measure
however ranks the translated image as the best quality and the Gaussian image and
speckle images as having considerably lower quality. The SSIM measure ranks the
JPEG compressed image as having a lower quality than the translated image, but still
higher than the Gaussian or speckle degraded images.

8.3.3 Standards Related to Noise Measurement

Activities in industry related to noise measurement are often heavily driven by inter-
national standards. By following established standards on noise measurement and
image quality, imaging companies can ensure a consistent comparison between com-
peting products and services [67]. Standardisation bodies such as the International
Organization for Standardization (ISO) [68], Institute of Electrical and Electron-
ics Engineers Standards Association (IEEE-SA) [69], Society of Motion Picture
and Television Engineers (SMPTE) [70] and The International Telecommunication
Union (ITU) [71] often test potential noise and image quality measures in addition
to the testing performed by the original academic authors. Standardisation testing
usually directly involves industry participants and occurs across multiple laborato-
ries and hence can often be more rigorous than the testing applied by researchers
developing noise and image quality metrics and motivated directly by the concerns
of industry participants.

Some groups actively involved in standardisation efforts in the area of image noise
and quality are:

• ISO/TC 42 Photography: Standards for still picture imaging includingmethods for
measuring and testingmedia,materials and devices used in chemical and electronic
still imaging [72].

• IEEE-SA—CPIQ—Camera Phone Image Quality: Concerned with the develop-
ment of subjective and objective test methods for measuring the quality attributes
of camera phones [73].

Table 8.1 Image difference values for the images in Fig. 8.3

Image distortion MSE PSNR SSIM

Gaussian noise 97.1 28.3 0.55

Speckle noise 101.7 28.0 0.64

JPEG compression 85.8 28.8 0.80

Pixel translation 100.9 28.1 0.86
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• VideoQuality Experts Group (VQEG): Concernedwith subjective testingmethod-
ologies and objective tool development and verification for video quality assess-
ment [74]. VQEG make recommendations to The International Telecommunica-
tion Union (ITU) that may in turn result in ITU recommendations.

Standards groups actively comparing and using noise measurement and image
quality measures for natural images, but not concerned with the standardisation of
such measures, include:

• Joint Photographic Experts Group (JPEG) ISO/JTC 1/SC29/WG1: Concerned
with developing still image data compression standards [75]. Developers of the
extremely popular JPEG image-coding standard, this group is expanding its efforts
into 3Ddata structures such as point clouds and light field data, 360-degree imagery
as well as continuing to develop the JPEG standard for still images. JPEG make
extensive use of subjective and objective still image quality metrics to evaluate
compression algorithms.

• Motion Picture Experts Group (MPEG) ISO/JTC 1/SC29/WG11: Concerned with
the development of standards for the coded representation of digital audio and
video data including extending the standards into new areas such as 3D video and
360-degree video [76]. To evaluate video compression algorithms MPEG uses a
variety of video quality metrics including subjective testing.

The groups above and other standardisation groups in this field have been respon-
sible for a wide variety of standards for measuring noise and image quality.

Some of these standards involve the use of test charts to measure noise levels
on image capture or display devices. This includes the ISO 15739 [28] standard
developed by ISO TC 42 and the P1858 IEEE Standard for Camera Phone Image
Quality [77] developed by CPIQ. ISO 15739 makes use of test charts defined in an
earlier standard by the same group, ISO 14524:2009 [78].

Jin et al. tested the objective measures derived from test charts as per IEEE P1858
against paired comparison and quality ruler subjective testing [55]. A set of camera
phones was tested using the objective measures and test charts defined by IEEE
P1858 [77]. The same camera phones were then used to capture natural images and
the methods of Paired Comparison [79] and Softcopy Quality Ruler [80] were used
to subjectively measure the quality of the natural images captured by the cameras.
The objective measures defined in IEEE P1858 were found to correlate well with
perceived quality as measured by the subjective methods [55].

The Video Quality Experts Group performed a set of validation experiments with
the goal of finding image quality metrics that matched subjective evaluation of tele-
vision. The first validation experiment (FRTV Phase I) [81] tested full-reference and
no-reference objective video quality metrics as predictors of the subjective quality
of standard definition television video. The metrics were evaluated on:

• PredictionAccuracy: The degree of the objectivemeasures to predict the subjective
mean opinion scores.

• Prediction Monotonicity: The degree of the objective measures to vary monoton-
ically in relation to the subjective mean opinion scores.
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• Prediction Consistency: The degree of correspondence of the objective measures
across different video sequences. This attribute is designed to test the variability
of the objective measure to different forms of content.

Ten different image quality measures were tested on a variety of content. All
no-reference metrics were withdrawn during the experiment and as a result of the
experiment, VQEG recommended to The International Telecommunication Union
(ITU) in 2000 that the accuracy of FRmodelswas at that time not sufficiently accurate
to justify standardisation [81].

In 2003, Phase II of the validation experiment was performed with six full-
reference image quality models tested [82]. Once again, the goal was to validate
the ability of objective video quality models to predict the subjective quality of stan-
dard definition television. As in Phase I, all no-reference metrics were withdrawn
during the experiment and of the six metrics tested, four metrics were recommended
to the ITU as being sufficiently accurate to justify standardisation. It was found that
while none of themetricswas statistically equal to the theoretically perfectmodel, the
fourmetrics recommendedwere statistically equivalent to each other and statistically
better than the remaining two metrics [82]. The VQEG recommendations resulted
in ITU-T Recommendation J.144 (2004) [83] and ITU-R Rec. BT.1683 (2004) [84].

In 2008, VQEG conducted experiments to validate the ability of Reduced-
Reference (RR) andNo-Reference (NR) objective video qualitymodels to predict the
quality of standard definition television [85]. Once again, all NR models were with-
drawn during the course of the experiments. In the final report, VQEG recommended
to the ITU that the accuracy of some reduced-reference video quality metrics was
sufficient to justify standardisation. This activity resulted in ITU Recommendation
J.249 [86] and the standardisation of the implementation of the PSNR metric as a
baseline for performance measurement in ITU Recommendation J.340 [87].

There are several standards to describe how subjective testing of various imaging
systems should be performed. This includes viewing conditions, test materials, how
to present the stimuli and conduct experiments:

• ITU-T P.910 (04/08) is a recommendation on digital video quality assessment for
multimedia applications with transmission rates below 1.5Mbit/s [88].

• ITU-R BT.1129 (02/98) is an ITU recommendation that defines methods for sub-
jective assessment of standard definition video sequences [89].

• ITU-R Recommendation BT.500-13 (01/2012) is an ITU recommendation for
subjective assessment of television that continues to be one of the key references
for conducting subjective assessment of still images [90]. The reader is referred to
BT.500-13 for a comprehensive description of a wide range of subjective quality
assessment methods and analysis techniques.

In the above recommendations, subjective quality is judged by either a ‘single
stimulus’ or ‘double stimulus’ case [90]. In the single stimulus case, the subject
sees only the image to be tested and judges the quality on a linear quality scale.
In the double stimulus case, the subject is presented with both the original and test
images and judges the test image relative to the original image on a linear quality
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scale. Quality scores are collected across multiple subjects and averaged for each
test image to compute a ‘Mean Opinion Score’ (MOS). In some cases, the reference
image is present in the experiment and is also given an MOS value. In this case,
the MOS values of the original image may be subtracted from the MOS values of
the test images to compute the ‘Difference Mean Opinion Score’ that represents the
improvement of the test image over the original image [90]. MOS and DMOS scores
can be quoted as a measure of noise in an image or video as perceived by a human
observer.

8.4 Conclusion

A multibillion-dollar industry exists around the capture, processing, analysis and
display of digital imagery in the twenty-first century. It is hardly surprising that
the issue of image and video noise is of deep concern to the imaging industry.
Substantial effort is spent on minimising all the sources of noise in the imaging chain
from precise control of the impurities in the silicon used to construct image sensors
to advanced algorithms for demosaicing, compression and sharpening designed to
minimise visual noise. As image quality improves, consumers have in turn come
to expect ever-greater performance from imaging systems, and this has driven a
plethora of standardisation activities to measure, reduce and compare noise levels
in consumer imaging. Manufacturers of imaging equipment wish to advance image
quality standards in the hope that being able to quantify image noise enables them
to show consumers that a specific piece of imaging equipment is superior to the
competition. These standards need to be backed up with solid psychophysical testing
on human subjects across a variety of image content to ensure respect and validity
for the standard. With the spread of imaging and product testing review websites
and blogs on the Internet, spurious claims to quality by manufacturers are quickly
exposed.

As unique image modalities such as 3D scanning, medical imaging and Virtual
and Augmented Reality technologies gain an increasing foothold in the consumer
imaging market, image noise measures and standards must be extended to these
domains. Given that there is still a great deal that we do not understand about the
perception of image noise for 2D imagery, the task of measuring, quantifying and
reducing noise in 3D imaging technologies is a difficult task for future research. Early
efforts have already begun on this problem, including efforts to quantify notions of
quality for the purpose of standardising the compression of light field and 3D point
cloud information [75, 76]. However, there is still much more work to be done in
this field, and plenty of scope to discover more about how humans perceive and
experience the visual world.
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Chapter 9
Noise Characteristics and Noise
Perception

Tamara Seybold

Abstract Denoising is a traditional but still challenging problem in signal process-
ing. To reduce the noise in images and videos captured by a digital sensor receives
more and more attention also due to the shrinking size of today’s image sensors and
striving for even higher resolutions. A vast amount of research has been conducted to
solve the complex problem of separating noise from the true signal. The widespread
assumption of additive white Gaussian noise (AWGN) in readily processed image
data, however, has led to algorithms that fail on real camera data. This shows how
crucial the underlying assumptions and the considered quality metrics are to reach
results that are convincing on real data and for real people. In this chapter, we will
discuss the properties of real camera noise from sensor data up to human perception.
First, we will address how test data is generated and review the noise characteristics
of a real single sensor camera. Real camera noise is fundamentally different from
AWGN: it is spatially and chromatically correlated, signal dependent, and its prob-
ability distribution is not necessarily Gaussian. Second, the challenging aspects of
evaluating denoising results based on metrics will be addressed. Instead of rating an
algorithm based on ametric like PSNR,which is still themetric the latest benchmarks
are based on, a more meaningful metric is required. We show our results of different
perception tests that investigated the visibility of spatiotemporal noise as it occurs in
digital video. Including these results into a perceptual metric could enable a reliable
denoising evaluation with respect to the human perception of visual quality.

9.1 Beyond Standard Noise Models: Noise and Denoising
in a Real Camera Processing Pipeline

Digital cameras, even the highest quality products, still are limited by sensor satu-
ration in the highlights and by noise in low-light conditions. Capturing in low-light
conditions has become even more difficult with increased sensor resolution: when
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the physical size remains constant, a resolution increase leads to a pixel size decrease.
The amount of light trapped by a smaller pixel is lower and, therefore, the signal-
to-noise ratio decreases. As a high noise level decreases the visual quality of color
images and can reduce the efficiency of subsequent image processing tasks, elimi-
nating noise using algorithmic methods is necessary.

The denoising problem has been studied extensively and various methods have
been developed [4, 9, 17, 41, 45, 57]. The best available denoising methods show an
impressive increase in peak signal-to-noise ratio (PSNR) on most standard datasets
and reach almost optimality in terms of image fidelity [5–7, 38, 40, 54]. However,
this does not mean that the visual quality is optimal [22, 58]. The PSNR usually
indicates a successful reduction of noise, but it does not show how unnatural and
disturbing the denoising artifacts may appear to the viewer.

Most denoisingmethods are designed and evaluated based on a standard dataset—
e.g., the Kodak dataset—and a standard noise model—usually additive white Gaus-
sian noise (AWGN). This model does not correspond to the noise in real-world
image or video data taken with a digital camera, and therefore, denoising based on
this model leads to clearly suboptimal results on camera data.

To understand the difference, let us review the color image capture via a digital
camera, which is the usual method of image capture nowadays. One pixel captures
the irradiance; thus the sensor data corresponds linearly to the brightness at the pixel
position. To capture color data, a color filter array (CFA) is used, which covers the
pixels with a filter layer. Thus, the output of the sensor is a value that represents the
amount of light for one color band at one-pixel position (linear sensor data, IBayer ).
This linear sensor data cannot be displayed before additional steps are applied (see
Fig. 9.1). Mandatory in every camera processing pipeline, we have the white bal-
ance and the so-called debayering, which generates a full-color image (linear RGB,
I f ull−color ). To transform this linear image to monitor displayable image, additional
color transformation are needed. A minimal color transformation would be a color
space conversion to, e.g. sRGB and a gamma transformation. This, however, is not
sufficient for high image quality. We present the workflow published by Andriani
et al. [2]. For this pipeline, the color transformations include first a color space
conversion from camera to a wide gamut color space, a logarithmic transformation
called LogC, subsequently the tone mapping and the gamma correction. The color
transfomations are required to transform the linear data to displayable monitor data

Fig. 9.1 The camera processing pipeline from raw sensor data to a display domain image. The
pipeline starts with the sensor output, followed by the white balance and the demosaicking. These
two steps are mandatory in every camera processing. The color conversions transform the linear
data to monitor gamma and color space. In many cameras, nonlinear curves (here LogC and tone
mapping) additionally adapt high dynamic range data for standard monitors
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adapted to the monitor’s gamma and color space, but the exact type of transformation
may differ. All the steps described lead to a noise characteristic that is fundamentally
different from the usually assumed AWGN: the noise is signal dependent in the raw
data; through debayering, it becomes spatially and chromatically correlated; and after
the nonlinear color transformations, the noise distribution no longer corresponds to
a Gaussian distribution. The workflow discussed here is based on the processing
presented for a motion picture camera. However, as cameras for consumer market
also reach higher and higher dynamic range and resolution, we expect our findings
and methods also to be applicable to other signal-sensor camera data.

Different approaches can be used to tackle the problem of spatially correlated
camera noise: either apply the denoising to the raw sensor data, before debayering
leads to spatial correlation, or take the correlation into account. Despite the vast
number of proposed denoising methods for AWGN, only a few try to employ one of
these strategies.

Applying denoising to the raw sensor data requires a signal-dependent noise
model. Denoising methods for images containing signal-dependent noise have been
studied using two different approaches. The first is to include the signal-dependent
noise characteristic in the denoising methods. The second strategy is to apply a
transformation of the input signal to a signal with approximately constant variance
[18, 19, 23]. Including a signal-dependent noise model, however, is not enough: at
this level, the raw data is mosaicked in real single sensor camera images, so that
denoising methods must be adapted accordingly. There are different approaches of
denoisingmosaicked data using the traditional noisemodel [8, 10, 24, 61, 63], which
are mostly trained on a standard dataset. Results for demosaicking real camera data
[2] show that algorithms trained on the standard dataset need to be adapted to sig-
nal characteristics of camera data. Hence, besides the noise model and the missing
neighboring values, denoising algorithms for raw camera data have to cope with the
linear signal values.

A combined study of the noise characteristics in images taken with a single sensor
cameramust consider all three aspects: signal dependence, debayering, and the signal
domain. We will evaluate the noise characteristics with respect to the signal domain
andwork out the differences between the real camera noise in digital color images and
the traditional noise model. To evaluate the impact of these differences, we compare
the visual quality of noisy images using both noise models based on a subjective
test, which enables us to discuss the impact of the noise model on human perception.
Additionally, we show how the noise characteristic influences denoising results.

The structure of this chapter is as follows. First, we show the camera processing
pipeline in Sect. 9.2: we start with the basic transformations that are required to
present image data captured with a digital sensor correctly on a monitor (color space
conversion and gamma transformation), and second present the nonlinear transfor-
mations that are used additionally for rendering images that contain a relatively high
dynamic range (logarithmic transformation and tine mapping). Section 9.3 discusses
the camera noise in the raw domain. In Sect. 9.4, we show the difference of the
noise in the raw domain to the display domain. We describe the processing of the
raw images and the relevance of the processing steps to the noise characteristics.
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In Sect. 9.5, we then evaluate the noise characteristics after the processing, in partic-
ular, the spatial correlation in the display domain. The visual perception of different
noise types is analyzed in Sect. 9.7 based on a set of subjective tests. In Sect. 9.6, we
apply denoising to a simulated video sequence with different noise types, thus we
can evaluate the effect of different noise characteristics on denoising results.

9.2 Camera Processing Pipeline: From Sensor Data to
Monitor-Ready Image Data

The sensor data contains only one value per pixel, which is green, red, or blue
depending on the location of the pixel. The most usual CFA is the Bayer pattern. To
obtain a full-color image with three color values per pixel, an interpolation method
is applied, called color demosaicking or debayering.

IBayer (n1, n2) =
∫∫

V

∫

λ

Lc(λ, n1, n2) r(u, v, λ) h(n1 − u, n2 − v) dλ dudv + N (n1, n2) (9.1)

the data captured by a digital sensor can be described as a function of the incident
radiance rc, which depends on the spectral response Lc, which is defined by the IR
and UV cut-off filters, the color filters for R, G, and B and the sensitivity of the
sensor’s photo site. The resulting image pixel values at the spatial sampling location
n1, n2 additionally depend on the spatial response h, which is mainly determined by
an optical low- pass filter and the sensor’s pixel pitch. We include an additive noise
term N .

The task of debayering is to reconstruct the full-color data I f ull−color from
the observed sensor data IBayer . Andriani et al. [2] presented an evaluation of a
camera-optimized method compared to methods trained on artificial test images and
introduced a new dataset of real images. This dataset includes a test image with a
real full-color reference, which is obtained by a monochromatic sensor equipped
with alternating color filters for every captured image. Thus, the above-mentioned
I f ull−color is available as a reference. The evaluation shows that the quality of the
debayering depends strongly on the data it was optimized for. We, therefore, first
have a more detailed look on camera data characteristics.

The sensor output IBayer (n1, n2) depends linearly on the incident light and cannot
be displayed directly. This is especially severe when the camera output is of high
dynamic range compared to what the display is capable of. Such a linear image
directly displayed appears mostly black, only the highlights are visible. When the
image is normalized according to the exposure, the main part of the image content
can be displayed (Fig. 9.2a). The histogram is scaled such that a certain range of
signal values fall inside the display values, however, highlights are clipped and black
tones are densely packed, visible as a peak in Fig. 9.2b.
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Fig. 9.2 Image example (a) and histogram (b) of a linear image.After normalization to the exposure
index the main part of the signal values is fitted in the signal range [0, 1], which is indicated by the
yellow lines

The normalized output data In is calculated from Iraw by adjusting the range
from x-bit-range to [0, 1] and correction depending on the exposure index EI with
a multiplying factor. This normalization scales the values such that middle gray
captured using an 18%-reflectance gray card, is mapped to the RGB values (0.18,
0.18, 0.18).

In = 18E I

400
· Iraw − 256

65,535 − 256
(9.2)

The next step is the reconstruction of the color values. To convert the color from
camera RGB (Rc, Gc, Bc) to the usual sRGB monitor color space a color matrix
conversion is applied. First, the data is converted into a wide gamut color space
(Rwg , Gwg , Bwg), whose primaries are chosen to avoid clipping in all but the most
extreme cases. Subsequently, the conversion from the wide gamut color space to
the color space defined in the ITU Recommendation 709 [25], which has the same
primaries as sRGB.

The output sRGB images are displayed in Fig. 9.3c, the histogram in Fig. 9.3a. The
last step missing for a monitor image is the compensation for the nonlinear electro-
optical conversion function (EOCF) of the display device (gamma transformation).

Figure 9.3d shows the final display domain image after these two basic steps
described: color space conversion and gamma transformation. Although this image
has been converted correctly using the basic conversion steps, in the very bright areas
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Fig. 9.3 If the color space conversion is applied directly to the linear data, linear sRGB data is
obtained (a, c). This image visualizes that the color space conversion is not enough: although the
color values are corrected, the sRGB values additionally need a compensation for the monitor
gamma. The result of this gamma compensation is shown in (b, d)

the highlights are clipped. This may also be observed in the histogram of the output
image in Fig. 9.3b.

This basic processing, therefore, is not adequate for high dynamic range data
delivered by today’s image sensors. Figure 9.4 shows the image when transformed
using the camera processing procedure published in [2], which—additionally to the
basic processing steps—includes nonlinear transformations to better convert the full
image information of the higher dynamic range linear image into the low dynamic
range display domain representation.

The first nonlinear curve is a logarithmic transformation, called LogC transforma-
tion, which is applied in the wide gamut color space. The LogC image is a format that
can be captured with most ARRI cameras. Other camera manufacturers have similar
logarithmic formats that allow preserving most image information but already pro-
vide visible image content when displayed on a monitor. The format was designed



9 Noise Characteristics and Noise Perception 241

ARRI sRGB(a)

0 2 4 6
x 10

4

0

5

10

15
x 10

4
ARRI sRGB

signal value

fr
eq

ue
nc

y

(b)

Fig. 9.4 Monitor data, image example, and histogram. With a nonlinear tone mapping function,
more pleasant shadows and more details in the highlights can be preserved

0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5

6

x 10
4

linear input signal (16 bit)

lo
gC

 s
ig

na
l (

16
 b

it)

 

 

EI 3200
EI 800

(a)

0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5

6

x 10
4

input signal (16 bit)

ou
tp

ut
 s

ig
na

l (
16

 b
it)

(b)

Fig. 9.5 a Shows the LogC curve for two different exposure indices plotted with linear x-axes. b
Shows the tone mapping curve

to match the characteristics of negative film: it is linear to the exposure over a wide
range of signal values. The LogC curve, shown in Fig. 9.5a, hence, transforms the
linear data into a representation that is linear to the exposure around the middle of
the signal range. To avoid clipping and to keep the information at the borders of the
signal range, the curve flattens depending on the chosen exposure index.

The second nonlinear curve is the tone mapping, applied on the LogC data.
Tone mapping is long known to be an important factor in reaching high photo-
graphic image quality. It compresses the highlights and shadows and provides a steep
slope in the main signal range, which leads to a high-contrast monitor image [53].
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LogC(a) Video(b)

Fig. 9.6 LogC image (a) and the final tone mapped monitor image (b)

The tonemapping curve, shown in Fig. 9.5b, has a steep slope to increase the contrast
matching the display-specific range and compresses the highlights and shadows to
avoid clipping.

An example of a LogC image is shown in Fig. 9.6 on the left, the resulting display
domain image is shown on the right.

9.3 Camera Noise Characteristics

To measure the camera noise in the raw images at different signal levels, we take a
series of exposures with the ARRI Alexa camera. To measure the camera noise, we
use the photon transfer method [1]. Two frames A and B are used to calculate the
variance as the sum of the squared differences in the active area of size N × M .

σ 2 = 1

2NM

M−1∑
i=0

N−1∑
j=0

(Ai j − Bi j )
2 (9.3)

The curve in Fig. 9.7a shows the variance plotted over the respective mean value.
The signal value is the digital 16-bit value of the sensor output, which represents the
light intensity level. The variance of the sensor noise can be approximated by a linear
curve. This resultmatches the resultswith other cameras in [55]. In Fig. 9.7b,we show
the distribution at a fixed signal level. The distribution is very similar to the Gaussian
distribution. That means we can well approximate the sensor noise using a Gaussian
distribution with signal-dependent variance. xn = x + n with n ∼ N (0, σ (x)) and
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Fig. 9.7 Variance and distribution of sensor noise
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Fig. 9.8 The noise variance over mean signal value is plotted for raw data after white balancing at
3200K (left) and for display-optimized monitor data at EI 800 (right)

σ(x) = √
mx + t wherem is the slope and t the intercept of the linear approximation

of the curve in Fig. 9.7a.
As we have Bayer data at this point, the noise level, of course, depends on the

signal value of one color. With different signal values of R, G, and B, the variance of
neighboring pixels is quite different depending on the color in the image (Fig. 9.8).

9.4 Camera Noise in the Processing Pipeline

As explained in the introduction, the raw data is in the linear domain, i.e., the signal
value is proportional to the amount of light collected by the sensor. When processing
the sensor output, multiple steps are performed to achieve a monitor color image.
The steps are

1. White Balance,
2. Debayering,
3. Color Transformations.



244 T. Seybold

Applying these steps gives a displayable image, but they also influence the sensor
noise.

White balance is a known gain factor gc different for each color. It directly influ-
ences the noise nc in different colors.

nc = gc n ∼ N (0, gcσ(x)) (9.4)

The debayering step creates three color values by interpolation using the pixel and
the neighbor values. Therefore, a spatial and chromatic correlation of the three color
channels is introduced. The spatial correlation of the noise ndeb in the debayered
image is usually disregarded in common state-of-the-art denoising methods.

The third step, the color transformations, is a nonlinear tone mapping and color
space conversion to map the linear values to displayable signals. Color transforma-
tions can strengthen the spatial and chromatic correlation.

Figure 9.10b shows the noise distribution after color transformation: We observe
a more compact distribution around the mean value and longer tails. The color trans-
formations, however, are an individual choice and this distribution can vary over the
signal range. Hence, we cannot expect a Gaussian distribution in real camera data.

9.5 Local Correlation Introduced with Debayering

When looking at the noise power spectrum (R channel) of digital camera noise, Fig.
9.10a shows that real camera noise is not white: due to the spatial correlation intro-
ducedwith debayering the noise is more prominent in lower noise frequencies than in
high frequencies. To evaluate the influence of debayering for different methods, we
first use the standard test images from Kodak. This choice is since most debayering
algorithms in the literature are optimized using that test set.

The spatial correlation of the noise is evaluated after debayering a noisy and a
noise-free image. The difference image contains the error introduced by the noise.
We use this difference image to calculate the correlation matrix C and a scatter
plot. We compare different debayering algorithms and their influence on the noise
characteristics.

To visualize the distribution, we plotted 2-dimensional histograms of the noise.
The difference of the noisy and the reference image is the error due to noise. In the 2D
histogram, the densities of two neighboring pixels are plotted. The color represents
the density; the position in the plot represents the value of the error. The resulting
scatter plots for an image with AWGN without debayering are given in Fig. 9.9a.
The distribution is symmetric as expected for uncorrelated noise. Figure 9.9b, c show
the scatter plots of the noise after debayering using bilinear interpolation and using
the debayering method proposed by Lu/Tan [39]. The scatter plots of the debayered
noise are dispersed into the diagonal direction, which indicates a correlation: it is
more likely for a pixel to have the same or a similar value as its neighbors (Fig. 9.10).



9 Noise Characteristics and Noise Perception 245

(a) No debayering

(b) Bilinear

(c) Lu/Tan debayering

Fig. 9.9 Scatter plot of the noise in a noisy Kodak image before (a) and after debayering (b, c);
the first Kodak image was used and AWGN with σ = 20 added. From left to right, the G and B
channel. The R channel is not shown, because as the debayering methods interpolate the B and R
channels the same way and the scatter plots of B and R look very similar

In Sect. 9.4, we discussed the influence of processing on the noise. An additive
model for the noisy image In is to be the sum of the image I and the noise n. For
denoising applications, it is quite usual to assume white Gaussian noise,

In = I + n ; n ∼ N (0, σ ) (9.5)

spatially independentwith a fixed variance σ . This assumption is far from real camera
noise, which is correlated spatially and signal dependent. We calculated the corre-
lation matrices C , given in Table 9.1. The matrices contain the correlation between
a pixel (i, j) and its neighbors; more precisely the entry (k, l) in the matrix corre-
sponds to the correlation of the neighbor pixel (i + k, j + l). Numbers for bilinear
interpolation, DLMMSE [62], and Lu und Tan method [39] are given. The matri-
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Fig. 9.10 The noise power spectrum (R channel) of digital camera noise (left) shows that real
camera noise is not white. On the right is displayed the noise distribution after color transformation:
we observe a more compact distribution around the mean value and longer tails

Table 9.1 Correlation matrices for different debayering methods, calculated using AWGN and the
Kodak dataset. While in the usual uncorrelated noise model the noise values do not correlate with
the neighboring values and thus lead to a matrix with only a one in the upper left matrix position,
these correlation matrices show that a strong correlation to the neighboring pixels is present after
debayering

Cbilin =⎡
⎢⎣

1 0.5693 0.1243

0.5715 0.3214 0.07181

0.1284 0.07425 0.0191

⎤
⎥⎦

Cdlmmse =⎡
⎢⎣

1 0.2239 −0.0066

0.375 0.06351 0.03626

−0.003771 0.03715 0.03545

⎤
⎥⎦

Clu =⎡
⎢⎣

1 0.3173 0.01578

0.2947 0.1007 0.04422

0.01689 0.04548 0.04233

⎤
⎥⎦

ces are 3 × 3 because numbers outside of this region are very small. The bilinear
interpolation has the strongest correlation.

We propose to approximate the noise after debayering by a multivariate Gaussian
distribution with a covariance matrix Σ .

In ≈ I + n ; n ∼ N (0, B Σd B
T ) (9.6)

with Σ = B Σd B
T

We expect the expression to be separable with a diagonal matrix Σd , whose entries
linearly depend on the corresponding pixel intensities (c.f. Fig. 9.7a) and a matrix
B depending on the spatial correlation introduced by the debayering. For linear
debayering methods, the above approximation is exact.
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9.6 Influence on Denoising

To answer the question what impact the difference between the traditional indepen-
dent noise and the camera noise has, we want to evaluate the effect on denoising in
this section. We already showed that the spatially correlated noise is more disturb-
ing, thus reduces the visual quality. We thus can expect that the visual quality is also
reduced with debayering when rating the denoising results. To evaluate if there is
also an effect on the denoising error, we use the PSNR, as it directly measures the
error of the denoised image quantitatively.

The PSNR of the denoising results is shown in Table 9.2. We compare signal-
dependent camera noise with a variance as in Fig. 9.7a, to Gaussian noise added in
display domain. The variance of the Gaussian noise was fixed with the objective of
a similar visual impression in display domain. We process the frames in two ways:
without debayering (called “RGB” in Table 9.2) and with debayering (“dem.” in
Table 9.2). All these cases then are denoised, either in linear domain or in display
domain (sRGB). Two different denoising algorithms are used: BLS-GSM [45] and
BM3D [9]. The parameters are picked to obtain the most visually pleasing results.
We calculated the PSNR of each frame and took the mean over 20 frames.

While the visual quality in the last section was shown to be lower with debayering,
the PSNR of the noisy sequence shows that the debayering has a slight denoising
effect, which leads to a higher PSNR of the debayered noise. However, the PSNR of
denoised images is up to 8 dB lower when the debayering is included and thus the
noise is correlated. Hence, denoising is significantly harder due to the spatial corre-
lation in the debayered images. BLS-GSM denoising brings lower PSNR improve-
ment for the signal-dependent noise, thus it shows similar to the noisy case a slightly
higher PSNR with the demosaicked noise. BM3D seems to be more robust to the
signal dependence, for both it leads to an improvement of above 10 dB in PSNR, but
it seems more sensitive to the spatially correlated noise as the improvement of 5.54
dB for AWGN and 2.82 dB for signal-dependent noise is much smaller.

Table 9.2 PSNR results for denoising the city sequence with BM3D [9] and BLS-GSM [45].
Two noise types are used: Gaussian noise added in display domain (AWGN) and signal-dependent
camera noise added in linear domain (SD). Denoising is either performed in linear domain (lin.) or
in display domain (sRGB)

Noisy BLS-GSM BM3D

RGB dem. RGB dem. RGB dem.

AWGN/sRGB 35.51 35.35 44.47 38.81 46.33 38.17

SD/sRGB 31.51 33.95 36.45 37.43 43.11 39.49

SD/lin 31.51 33.95 39.40 36.61 41.99 38.34
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BLS-GSM works better in linear domain, we think because the noise character-
istics differ less from the assumed model. In contrast, the similarity-based method,
BM3D, works better in display domain. Hence, denoising methods must be tested
on linear domain data explicitly and it depends on the methods if denoising in the
linear domain or in the display domain works better. In total, the results show that it
is very important to adapt the standard methods to the correct noise model.

Besides the noise model, also the signal domain of the images is important to
incorporate in the development of denoising algorithms. The very successful BLS-
GSM method shows severe artifacts when applied to linear data of a high dynamic
range scene (Fig. 9.12). This it not special for the algorithm, we obtain artifacts
around highlights with many denoising methods optimized on standard datasets,
because they were not optimized for linear high dynamic range data (Figs. 9.11, 9.13
and 9.14).

(a) city (b) landscape

Fig. 9.11 The computer-generated test sequences

Fig. 9.12 The image crops
of the arch sequence from [2]
denoised with BLS-GSM
demonstrate that denoising
optimized for standard test
data can lead to strong
artifacts when applied on
high dynamic range camera
data
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Fig. 9.13 Crop of the sequence “City”. Noisy image (left) and noisy image with debayering (right).
In the second row, the respective difference image Id scaled for display (Id,scaled = Id · 4 + 128)

Fig. 9.14 The MOS results for the test sequences “City” and “Landscape” using the traditional
AWGN model (dashed) and the realistic signal-dependent noise (solid lines). The uncorrelated
noise, processed without debayering, is shown on the left, the results with debayering on the right

9.7 Visual Perception of Spatially Correlated Noise

Building on the discussed characteristics of realistic camera noise in the last sections,
we now study the human perception of the traditional model compared to the more
realistic camera noisemodel.We use computer-generated video sequences combined
with a simulation of the camera parameters.

The “city” sequence is a pan over a city, see Fig. 9.11a. The frames are rendered in
high resolution and in linear signal domain. To incorporate the optic of a camera sys-
tem, the images of the sequence are multiplied in the Fourier domain with the optical
transfer function of the camera. This step takes into account the diffraction-limited
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Fig. 9.15 Processing of simulated sensor data for the test using signal-dependent noise (SD) and
AWGN

lens, the optical low- pass filter and the pixel aperture, as described by Schöberl et al.
[52]. The videos used in a test to compare the different noise types are simulated with
the signal-dependent camera noise added before the white balance, which is a real-
istic noise model, and compared to the traditional model, AGWN added on standard
images that are processed for display. The camera noise is added in accordance to the
measured values in Sect. 9.3 using a Gaussian distribution with a signal-dependent
variance defined by the linear approximation of the measurement data. This gives us
simulated raw images with a reference. The processing for the different noise types
is visualized in Fig. 9.15.

To compare the effect of debayering on the noise characteristic, the processing
with debayering is compared to the processing without debayering. The last one is
only possible with the simulated RGB values; in real raw data, the debayering can-
not be omitted. A crop of the city sequence with noise and with/without debayering
is shown in Fig. 9.13. The degraded video (noisy, with and without debayering) is
compared to the reference. The difference of one frame from the noisy video com-
pared to reference frame, shown in Fig. 9.13, visualizes the effect: When debayering
is included the noise is structured and of coarser grain. The difference images are
scaled the same way to be comparable. We also observe that the correlated noise
after debayering appears more colorful. This may be caused by the lower frequency
of the signal. As the maximum of the luminance contrast sensitivity is in higher
frequencies, the color might be perceived stronger for a low-frequency signal.

To obtain reliable information about the human perception of the different noise
characteristics, we perform a subjective test with 18 participants. We used the double
stimulus impairment scale (DSIS) methodology with an undistorted reference and
impaired noisy sequence according to ITU-RBT.500. The observer sees the reference



9 Noise Characteristics and Noise Perception 251

video, subsequently, the impaired video, and afterward is asked to rate the second
videoonan impairment scale.Adiscrete scale from1 to10, representing a impairment
range of “very annoying” to “imperceptible”, was used. The task for the participants
was to assess the perceived impairment of the videos. The test was performed in the
ITU-R BT.500 compliant video quality evaluation laboratory at the Institute for Data
Processing at Technische Universität München. For displaying the videos, a color
calibrated Sony BVM-L230 reference LCD display with a screen diagonal of 23 in.
was used. To get reliable results, the outliers were removed in the post processing
of the subjects’ votes. Votes were removed, if they deviated more than 2σ from the
mean for a sequence. Using this criterion, 4.6% of all votes were discarded. After
outlier removal, the mean opinion score (MOS) was determined for the different test
videos.

The MOS provides reliable values for the subjective quality of the test videos.
Four different noise models were used in our test: the usual AWGN model, AWGN
with debayering, signal-dependent noise without debayering. and finally the realistic
camera noise model—signal-dependent noise with debayering. Based on the MOS,
we evaluate the visual quality of the noisy test sequences and analyze the main differ-
ences between the realistic camera noise and AWGN: spatial correlation introduced
through debayering and signal dependence.

The spatially correlated noise is perceived as more annoying. While the MOS is
different depending on image content and noise type, Fig. 9.14 shows a lower MOS
for the all the demosaicked sequences compared to the sequences with uncorrelated
noise. This may be due to the higher visibility of spatially correlated noise, which
shows coarser grain and appears more colorful. The MOS of the city sequence with
AWGNis about 3 scores lowerwhendebayering is included.Regarding the sequences
with signal-dependent noise, the MOS is 0.5 lower for the city sequence and 2.3
lower for the landscape sequence when debayering is included. We thus showed the
significant effect of the noise characteristic on the visual perception of color video
sequences: the spatial correlation of the noise decreases the perceived image quality.

Our test results show that the noise characteristics have a significant effect on the
image quality perception. We, therefore, conclude that a more detailed study on the
perception of noise in different frequency bands could be helpful to obtain a more
detailed understanding of human perception.

9.8 Noise Perception in Videos

Based on the analysis of noise in digital videos presented in the first part of this
chapter, we know that the noise of a real camera is spatially correlated due to debay-
ering. When denoising is applied the high spatial frequencies in the image frame are
usually even more suppressed and low-frequency noise remains in each image. This
low-frequency noise is not visible in still images, due to the fall-off in the contrast
sensitivity for low spatial frequencies. If the images are part of a video sequence, this
low-frequency noise reappears as flickering in the video sequences and this effect is
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very disturbing. As the noise in the low-frequency bands is very difficult to separate
from real image content this is still a common quality issue in video denoising.

While temporal denoising methods can better reduce flickering, they can intro-
duce new artifacts, especially motion artifacts, and they come with high compu-
tational cost, especially memory requirements are extremely high for the current
high-resolution data (4k and beyond).

To the best of our knowledge, no study is available that gives details about the
visibility of noise in video sequences depending on the spectral distribution of the
digital video noise. Winkler and Süsstrunk [60] presented a subjective study examin-
ing noise visibility in still images. Besides white noise, they also used mid-frequency
noise and high-frequency noise. The results show the lower noise visibility for the
high-frequency noise compared to the mid-frequency noise, as it would be expected
from the contrast sensitivity function.We expect that the same effect could have been
shown for low-frequency noise, as the contrast sensitivity also falls off towards low
frequencies. Unfortunately, this has not been the subject of study.

To obtain more detailed information about noise visibility, we study the visibility
of noise for eight different frequency bands. We evaluate both the visibility of static
noise, as it occurs in still images, and dynamic noise, as it is present in video data.We
start with giving a short overview of the literature about spatial and temporal con-
trast sensitivity of human vision.We then describe our approach:We explain howwe
obtain the different noise patterns, which can be displayed on a standardmonitor. The
results of a test with 22 observers for a static noise pattern and a dynamic (spatiotem-
poral) noise are subsequently presented. Subsequently, we present an additional test,
allowing us to compare the noise visibility for a standard frame rate (24 fps) and a
higher frame rate (48 fps) and discuss all our results.

9.8.1 Related Work

Early technical achievements likemovies and discharge lamps provoked early experi-
ments on temporal effects of humanvision. Temporal contrast sensitivity and explain-
ing the effects using Fourier analysis was already studied almost 60 years ago, by
De Lange [11–15], Kelly [31, 33] and Roufs [47–51]. An overview of the early
experiments is given by Kelly in 1977 [35].

The first measurements for combined spatiotemporal sensitivity were presented
byRobson in 1966 [46].He determined the thresholds for four spatial frequencies and
for four temporal frequencies. The lowest frequency was 1 Hz, which is considered
to be equivalent to static results (Van Nes results [56] indicate thresholds a little bit
above 0 Hz). While the spatial CSF measured for static patterns shows a band-pass
characteristic, the sensitivity function for the same spatial frequencies, measured
with spatial patterns that are temporally varying, is a low pass. The spatiotemporal
contrast sensitivity is hence not separable, it shows a clearly more complicated shape
than could be obtained by the product of spatial and temporal CSFs and Kelly in
1966 mentioned effects not explainable by a separable model [32]. He measured the
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CSF for spatiotemporal stimuli (traveling waves) [36] and the results are similar to
Robson’s: for 2 Hz the band-pass shape holds, the frequencies 13.5, 17, and 23 Hz
suggest a low-pass structure; Chromatic CSF curves in [34, 37].

The experiments for CSF measurements are conducted with sine waves. While
this has become the standard procedure to measure CSF curves, we, in this chapter,
want to evaluate the sensitivity to noise of different spatial frequencies, as it can
occur in video sequences. Thus, our test setup is not directly comparable to former
CSF measurements.

Some studies examined the visibility of signals when noise is added [3, 20, 21].
However, for the application of video quality assessment and denoising evaluation,
it is more important to study the visibility of the noise.

Most applications that use spatiotemporal CSF models still rely on this data, e.g.,
the perceptual quality metric by Winkler [59]; other perception-based metrics are
designed for still images and, therefore, only rely on the spatial CSF, e.g., [30, 43]
and the image differencemetric by Perdersen [44]. Nadenau et. al included amasking
model for perception-based image compression, however, the algorithm is designed
for still images and not for video [42].

A masking experiment was conducted by Winkler and Süsstrunk; they measured
noise visibility on 30 test images. The visibility of noise in natural images was
evaluated for three types of noise: white noise and two band-pass noise patterns
of medium- and high-frequency bands [60]. Their work provides details for noise
visibility in still images, but this type of experiment is still missing for temporal
noise.

9.8.2 Noise Visibility Test

We investigate the visibility of noise of different spatial frequency bands in still
images and in video sequences (we use 24 fps video sequences). To that end, we
conduct a subjective test. Since the content of the background image may have a
significant impact on noise perception, we select a homogeneous gray sequence and
a rotating rose sequence. Both are displayed in Fig. 9.16. We include two types of
test patterns in the test: static (spatial) noise patterns and dynamic (spatiotemporal)
noise patterns. Eight spatial frequency bands were used for each pattern type.

Test Pattern Generation
The test patterns were obtained by first generating white noise and subsequent band-
pass filtering, which is done by cutting the desired frequency band in the Fourier
domain. To test the perception of luminance noise, we used the IPT color space and
added the noise to the luminance channel (I channel). IPT is an opponent color space
that was developed by Ebner and Fairchild [16] to create a space that is perceptually
uniform. The transformation includes the monitor model (gamma transformation).
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(a) Homogeneous grey image (b) One frame from
the rotating flower sequence

Fig. 9.16 Chosen sequences for the experiment

The workflow for the noise pattern generation is described in the following.

1. First, 2-D zero-mean white noise is generated by MATLAB’s randn function.
2. The noise is transformed to the Fourier domain and a band-pass filter is used to

cut a defined band from the spectrum.
3. Each pixel row of the image is multiplied by a factor that increases logarithmi-

cally from top to bottom, to obtain noise with increasing variance (i.e., contrast).
4. A uniform gray image, with a constant pixel value of 0.6104 (in range [0–1]) is

generated in sRGB space.
5. The gray image is transformed to the IPT space.
6. The zero-mean noise is finally added to one of the channels of the IPT image.
7. The noisy image is transformed back to sRGB.

The static noise patterns correspond to the noise in still images, while the dynamic
noise patterns correspond to the noise in video sequences. For the dynamic noise
measurements, we generated 360 static noise patterns, which are displayed as a
sequence with 24 fps in the dynamic noise experiments.

For each frequency band, one sequence is generated.We did themeasurements for
eight frequency bands between 0.13 and 13.59 cpd. Table 9.3 shows the frequency
bands of the noise test patterns.

9.8.2.1 Test Session

We conduct a subjective test to find out the noise level at which noise is visible in a
digital video. The experiment is divided in four test parts:

• Uniform gray video with static noise patterns.
• Static rose video with static noise patterns.
• Uniform gray video with dynamic noise patterns.
• Rotating rose video with dynamic noise patterns.

The noise level in each sequence is gradually increasing for each frame and each
sequence lasts 15 s. We included numbers into the frames corresponding to the
duration from 1 to 15 s (Fig. 9.17).
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Table 9.3 The frequency bands used in the test are given in pixels per period and cycles per degree
(cpd)

Nr. of pixels per sine period Spatial frequency in cpd

Range Mean Range Mean

332.6–706.9 519.75 0.08–0.17 0.13

166.3–332.6 249.45 0.17–0.34 0.26

82.0–166.3 124.15 0.34–0.69 0.52

40.7–82.0 61.35 0.69–1.39 1.05

19.4–40.7 30.05 1.39–2.91 2.15

9.7–19.4 14.55 2.91–5.82 4.37

4.9–9.7 7.3 5.82–11.64 8.74

3.6–4.9 4.25 11.64–15.53 13.59

(a) First frame from a sequence (b) Last frame from a sequence

Fig. 9.17 The visibility of noise on first and last step

Before starting the experiment, a short test for visual acuity and color blindness
was conducted, for visual acuity the “tumbling E” chart and for color blindness
the Ishihara plates were used. After this test, written and oral instructions were
provided. Additionally, one dummy sequence was presented as a demonstration and
the distance between the observers and the screen was corrected. The participants
of the test watch the sequences and observe at which second the noise first becomes
visible. The observerswere free to choosewhere to look at, because this is the realistic
use case for video viewing.

Each sequence is repeated once to let the participant get a more precise observa-
tion. Between those repetitions, there is a short break (3 s) during which noiseless
gray sequence with the text “Repeating...” is displayed. In order to avoid leaving an
afterimage the text is placed in the bottom right corner of image. In addition, there is
another break lasting 10 s before every new noise type, allowing the participants to
write down their observation and preventing the noisy afterimage from damaging the
vision of the next sequence. Furthermore, we added a progress bar and the number of
the next sequence into this break sequence to make sure the observer does not miss
the beginning of the new noise type. Thus, for each frequency band, the observer
will watch a test sequence of duration 43 s (10 s + 15 s + 3 s + 15 s). There are 8
frequency bands for static and dynamic noise types, a total of 32 test sequences.

According to the ITU-R recommendations for the subjective assessment of quality
of television pictures [27], visual experiments should not last more than 30min, since
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the experiment can be very tiring. In addition, at the beginning of each test part about
three training presentations should be introduced to stabilize the observer’s opinion.

We introduce two training sequences at the beginning of each test part and each
sequence is repeated once. Between the first play and the repetition, there is a short
break of 3 s. After the repetition, there is a break lasting 10 s before the next noise
type, allowing the participants to have enough reaction time. Considering the training
sequences one test part lasts about 7 min, therefore, the complete experiment lasts
approximately 28 min.

Furthermore, a random order was used for the presentations in order to eliminate
contextual effects.

9.8.2.2 Test Setup Settings

The experiment was conducted in the video quality evaluation laboratory of the Insti-
tute for Data Processing at the Technical University of Munich in a room compliant
with recommendation ITU-R BT.500 [27]. The tests were done with a professional
broadcast monitor (Sony BVM-L230) set to ITU-R BT.709 color space. The monitor
has a 10-bit serial digital interface (SDI). The images used for the experiment had a
resolution of 1920 × 1080 pixels.

According to the ITU-R recommendations BT.2022 [26], the distance between
the screen and the observers should be about three times the picture height for full
HD data in BT.709 [28] color space. The height of the reference display is 30 cm,
therefore, the distance used in the experiment was 90 cm.

Additionally, the contrast of the display should be adjusted using a photometer.
The display luminance value was 70 cd/m2, according to the ITU-R BT.814 rec-
ommendation [29]. The ratio of background luminance behind the monitor to peak
luminance of the picture was around 0.15, as recommended by ITU-R BT.500 [27].

9.8.3 Results

As thepeak signal-to-noise ratio (PSNR) is awidelyusedmetric in video applications,
we use threshold PSNR levels to illustrate our results.We calculate the average PSNR
value for each step (15 steps correspond to 15 s). After that, we equate each observer’s
input for each sequencewith the corresponding step’s PSNRvalue. Thismeans, when
an observer sees the noise relatively late, the threshold PSNRwill be large. Therefore,
the threshold PSNR represents how sensitive an observer is to the presented noise
video.

Based on the data of 22 observers, we calculate the average threshold PSNR and
thereby compare the visibility of static and dynamic noise on uniform and natural
(content) images.We additionally plotted error bars indicating the standard deviation
of the results.



9 Noise Characteristics and Noise Perception 257

Figure 9.18 shows the curves of the PSNR threshold for the eight spatial frequen-
cies used in the experiment. The observed sensitivity in gray images shows a peak
in the mid-frequency 1.05 cpd and in content image in the mid- frequency 2.15 cpd.
Both curves show band-pass characteristics. There is, however, a significant differ-
ence between both curves, in natural (content) images the threshold level of noise
visibility is much lower than in the homogeneous gray videos. This discrepancy
between noise visibility in natural and uniform videos can also be observed in the
results for visibility of dynamic noise.

The results for the dynamic noise, shown in Fig. 9.19, are significantly different
from the static noise. Both curves show a rather low-pass shape than a band-pass. The
peak is at lower spatial frequencies for both sensitivity curves. We see a smooth peak
at 0.52 cpd for the gray sequences and a peak at 0.26 cpd for the flower sequences.

Fig. 9.18 Result of the test
with the static noise patterns,
error bars show the standard
deviation of the results
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Fig. 9.19 Result of the test
with the dynamic noise,
which is a sequence of newly
generated static noise
patterns with 24 fps. Error
bars show the standard
deviation of the results
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9.8.4 Discussion

9.8.4.1 Comparison of Static and Dynamic Noise Visibility

First, we will discuss the test results for static and dynamic noise visibility in gray
and flower test parts.

The results for all four test parts are shown in Fig. 9.20. As already described,
the visibility curves of dynamic and static noise are significantly different, for the
gray images as well as for the rose images. The threshold level of noise visibility for
the content images is much lower compared to the plain gray images. This confirms
that the content is masking the noise, this means that noise is significantly less
perceivable depending on the background it is applied on. We conclude that noise is
more perceivable in the uniform videos than in the natural videos.

Comparing the visibility of static and dynamic noise, we observe that low-
frequencynoise ismore perceivablewhen the noise is dynamic, as in video sequences.
This difference is significant for the uniform image, but it is considerably larger in
content videos. This means our results can be expected to be very relevant for real
video processing applications.

HFR Experiment
In future, video frame rates might be higher than 24 or 30 fps. We, therefore, con-
ducted an additional experiment evaluating the difference in noise visibility of 24
and 48 fps sequences.

We used the same test setup as described above. As the video frame rate could
not be switched during the experiment, we displayed the complete test in 48 fps. The
24-fps content was simulated using a 48-fps sequence showing the exact same image
twice. A different monitor had to be used to display 48 fps sequences in full HD
resolution (EIZO CG318-4K). The monitor was calibrated before the experiment
and the luminance levels were measured to meet the requirements described above.
To reduce the length of the test, this time three spatial frequencies for the noise were
selected (low, mid, and high). Twenty observers completed the test.

Fig. 9.20 Comparison of
test results for dynamic and
static noise in gray and
content sequences
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Fig. 9.21 Comparison of
test results for dynamic noise
in gray and content
sequences displayed with 24
and 48 fps. Three frequency
bands were used: “low”
corresponds to 0.5 cpd,
“mid” corresponds to 8.35
cpd, and “high” corresponds
to 26.25 cpd
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Figure 9.21 shows the results. For all three frequencies, the noise visibility is very
similar for 48 and 24 fps sequences. The noise visibility hence does not decrease
significantly with higher frame rates than 24 fps. As stated in the introduction, higher
resolution of image sensors leads to higher noise, because less light is trapped by
the photo sites. As higher frame rates require shorter exposure time, this additionally
reduces the light trapped by one pixel, and hence increases noise. Therefore, we can
conclude that noise will continue to limit video quality in high-resolution and high
frame rate video data shot in low- light conditions.

9.8.4.2 Comparison of Test Results to the Contrast Sensitivity Function

Due to the clear fall-off of the temporal contrast sensitivity above 10Hz (Robson [46]
and Kelly [36]), a flickering grating displayed at 24 Hz should lead to lower sensitiv-
ity than a static pattern. However, our results for the dynamic noise show the higher
sensitivity, hence the contrary. In Figs. 9.22 and 9.23, we replotted our previously
shown results in linear luminance to make them better comparable to other publi-
cations. The contrast is calculated using RMS contrast, i.e., the standard deviation
divided by the mean luminance.

First, we will discuss the results of the homogeneous gray test part in Fig. 9.22.
The absolute values of the contrast sensitivity function in gray images with static
noise are comparable to the values reported by Robson [46] and Kelly [36]. In the
low-frequency range from0.13 to 0.52 cpd, the sensitivity is higher for dynamic noise
compared to static noise. This matches the severe differences we see in the visual
quality of spatial denoising algorithms when they are applied to motion picture data
compared to their application on still images. In the mid and high-frequency bands
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Fig. 9.22 The contrast
sensitivity was calculated in
XYZ color space for better
comparison with other
results. Plotted here, is the
contrast sensitivity of
luminance noise (Y-channel)
results of the static and
dynamic noise patterns in
gray images
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from 1.05 to 13.59 cpd the sensitivity to the dynamic noise is lower than to the spatial
noise, but the difference is not large.

Whereas, gray background allows the study of noise visibility without influence
of image content, the question of noise visibility in real-world video sequences is
even more relevant for practical applications.

Figure 9.23 shows the contrast sensitivity in the XYZ color space for the flower
test part. We observe that the absolute values of contrast sensitivity function in the
flower images are lower compared to the contrast sensitivity function in the gray
images.

In the low- andmid-frequency range from0.13 to 4.37 cpd, the sensitivity is clearly
higher for dynamic noise compared to static noise. As for the gray sequences, this

Fig. 9.23 Constrast
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matches the severe differences in the visual quality of spatial denoising algorithms,
when they are applied to motion picture data compared to their application on still
images. In the high-frequency bands around 8.74 and 13.59 cpd, the sensitivity to
the dynamic noise is lower than to the spatial noise, the difference gets larger for the
highest spatial frequency.

The main result, that the low-frequency band noise is clearly more visible in the
dynamic noise test, matches our visual impression, which is that the dynamic noise
intensity seems to increase toward lower spatial frequencies.

Our findings show the significant differences in noise visibility from still to video
data, which up to now are not respected in video processing algorithms as denoising,
or video quality assessment. While our findings show a tendency that might explain
quality issues and help in improving some of the image processing algorithms for
video data, a detailed model would be needed to include precise noise visibility
information for perception- based video processing algorithms. This would require
more tests and a more detailed study on spatiotemporal masking, which is beyond
the scope of this paper.

9.9 Summary and Conclusion

Camera noise in raw data can be modeled as a Gaussian distribution with signal-
dependent variance, but the camera noise characteristic in display domain images is
very different from the noise in the raw domain. The noise is color channel and signal
dependent in a nonlinear fashion. Additionally, spatial and chromatic correlation is
introduced after the debayering step. Correlation matrices were calculated for dif-
ferent debayering methods using standard test images and the effect is demonstrated
in frequency domain: real camera noise is not white.

To demonstrate how important it is to use a correct noise model, we evaluate the
impact of the noise characteristic on the denoising performance using a computer-
generated test sequence that includes the optical characteristics of the camera.Camera
noise is compared to the traditional model and the influence of debayering is studied.
We can conclude that the spatially correlated noise is perceived as more annoying:
in our subjective test with 18 participants the visual quality was rated significantly
lower for the sequences containing correlated noise compared to sequences with
AWGN and equal PSNR level. This result may be explained by a lower visibility of
high noise frequencies.

Denoising was applied to the same test data, and we showed that the PSNR of the
denoising results is up to 8 dB lower with correlated camera noise. Hence, the noise
characteristic in the image has a significant effect on both visual perception and on
denoising results. To account for the correct noise model is thus very important to
achieve high image quality in future research. Instead of applying denoising on RGB
data, one could also think of applying it directly on the sensor data. The sensor data,
however, represents digital signal values linear to the amount of light. Examples
of denoising methods that show excellent results on sRGB data show, that also the
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data characteristics have a significant influence and denoising methods need to be
optimized for both data and noise characteristics.

Driven by the visual comparison of noise with different characteristics, especially
lower frequency noise that occurs after debayering and denoising, we evaluated the
noise visibility over a range of spatial frequencies.Wemeasured the visibility of noise
for static (spatial) noise, which occurs in still images, and for dynamic (temporal)
noise, which occurs in video data. We obtain three main results.

First, the contrast sensitivity of spatially low-frequency noise is significantly
higher when the noise is temporally varying. This can explain why algorithms
designed for still images might not show high-quality results on video data, e.g.,
denoising algorithms for still images that do not eliminate low-frequency noise,
because it is not visible in still images.

Second,we showed that the noise visibility strongly depends on the image or video
content. Our results show that the noise is significantly more perceivable in uniform
images than in natural images, which can be explained by masking. In addition to
that, the above-mentioned difference between noise visibility of static and dynamic
noise is considerably larger for our natural image content than for the gray image.
That means, that the observed difference in noise visibility is important to consider
for improving video processing algorithms.

Third, an additional experiment evaluated the influence of the frame rate on noise
visibility by comparing 24 and 48 fps. The results show that the noise visibility does
not decrease significantly for 48, compared to 24 fps. As stated in the introduction,
higher resolution of image sensors lead to higher noise, because less light is trapped
by the sensor. Higher frame rates require shorter exposure time, which also reduces
the light trapped by one pixel, and hence increases noise. Therefore, we can conclude
that noise will continue to limit video quality in high resolution and high frame rate
video data shot in low-light conditions.

Further research on noise visibility and developingmetrics that include this knowl-
edge is therefore crucial to allow developing and improving denoising algorithms
for high visual quality.
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Chapter 10
Pull-Push Non-local Means with Guided
and Burst Filtering Capabilities

John R. Isidoro and Peyman Milanfar

Abstract Non-local means filtering (NLM) has cultivated a large amount of work
in the computational imaging community due to its ability to use the self-similarity
of image patches in order to more accurately filter noisy images. However, non-
local means filtering has a computational complexity that is the product of three
different factors, namely, O(NPK), where K is the number of filter kernel taps (e.g.,
search window size), P is the number of taps in the patches used for comparison,
and N is number of pixels in the image. We propose a fast approximation of non-
local means filtering using the multiscale methodology of the pull-push scattered
data interpolation method. By using NLM with a small filter kernel to selectively
propagate filtering results and noise variance estimates from fine to coarse scales
and back, the process can be used to provide comparable filtering capability to brute
force NLM but with algorithmic complexity that is decoupled from the kernel size,
K . We demonstrate that its denoising capability is comparable to NLM with much
larger filter kernels, but at a fraction of the computational cost. In addition to this,
we demonstrate extensions to the approach that allows for guided filtering using a
reference image as well as motion compensated multi-image burst denoising. The
motion compensation technique is notably efficient and effective in this context since
it reuses the multiscale patch comparison computations required by the pull-push
NLM algorithm.

10.1 Introduction

A widely practiced way to improve the efficiency of a filtering algorithm is to use
a multiscale technique. Multiscale filtering effectively computes a wide filtering
kernel by using a cascade of simple filters across all scales used. Using a coarse-
to-fine strategy allows for a small amount of processing at each successive level to
refine the result.
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Commonly used multiscale approaches begin with a fine to coarse pass followed
by a coarse-to-fine pass to generate the final result. This requires a pyramid for each
pass, resulting in 1.66 times the complexity of the direct approach in terms of the
number of pixels processed. However, since these multiscale approaches allow the
use of much simpler per-level filter kernels, the kernel size becomes much less of
a factor in the computation. This is especially true when a large and non-separable
single scale filter is being approximated.

We present three main contributions in this work. The first is selective edge adap-
tive propagation of filtering results from level to level. Even though multiscale tech-
niques have been used for decades, generally these techniques use a fixed (non-
data-dependent) kernel in order to generate successively downsampled versions of
the original image. If the filtering kernel weights are not input dependent, they may
combine pixels in a way that is incompatible with data-dependent filtering, i.e., filter-
ing across edges and propagating erroneous results through the solution. In contrast,
our approach uses a nonlinear filter (NLM) to propagate results from pyramid level
to level.

Second, the original pull-push approach [10] was used for scattered data inter-
polation. Here, we extend its methodology and present a data-dependent multiscale
algorithm for denoising images efficiently. More specifically, we expand upon the
concept of pull-push to accelerate non-local means in a way that provides compara-
ble output to large filter kernel (e.g., large search window) NLM filtering, but with
computation comparable to using a much smaller kernel.

The third contribution is efficientmotion compensated burst denoising. Our exten-
sion of the algorithm to burst processing allows the patch comparison computations
of pull-push NLM to be reused for motion estimation. These motion estimates are
naturally propagated in a coarse-to-fine manner to offset the filter kernels to follow
themotion between frames in the burst. By accounting for themotion, better matched
patches can be found and denoising can be improved.

10.2 Related Work

Non-local means [2] is a filtering technique that extends bilateral filtering [28, 35] by
using patch-based comparison instead of single pixel comparison to derive weights
for filtering. Patch-based comparison allows for better characterization of image
regions surrounding pixels to be filtered. This in turn allows for more accurately
computed filter weights and results in better quality edge-aware denoising than bilat-
eral filtering.

One class of methods for accelerating edge-aware filtering involves converting the
filtering function into a higher dimensional space in which fast non-data-dependent
separable filtering is applied to perform the bulk of the work [3, 20]. This decouples
the computational complexity from the filter kernel size (e.g., search window size)
K. As an example, the permutohedral lattice [1] is capable of NLM filtering, but the
performance scales quadratically with the number of comparison patch samples P,
i.e., O(NP2).
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Fast edge-aware filtering can also be performed by approximating the bilateral
filter as a series of 1D separable [23] or recursive IIR [9, 37, 38] passes. These
approaches have not been extended to NLM, and it is not obvious how to do so.

Multiscale techniques have been used to accelerate NLM in the original paper
[2], but were limited to optimizing the patch comparisons or weight computation.
Another approach [17] applies awavelet decomposition to improve patch comparison
quality for weight computation, but does not use multiscale for the filtering itself.

Nercessian et al. [19] used Laplacian pyramids and performed NLM filtering
in each level as part of the reconstruction of the original image from the pyramid
decomposition. The method of Zhang and Gunturk [39] is conceptually similar but
uses a wavelet decomposition. She et al. [27] proposed an alternative fixed kernel
pyramid decomposition with bilateral filtering at each level. Zontak et al. [40] also
usedmultiple image scales generatedwith non-edge-aware filtering, but usedNLM to
directly fuse these pixels back into the original level.Other edgepreservingmultiscale
decompositions exist throughout the literature, such as [7] and [8], but have not been
extended to NLM filtering.

Due to the non-edge-aware filtering during pyramid creation, many multiscale
techniques can potentially suffer from color bleed issues, but probably less so due to
the anisotropic downscaling, and always comparing patches against pixel data from
the full resolution image being filtered. The main difference between our multiscale
approach and these approaches is that by using NLM as the filter in the construction
of the up and down pyramid processing, we avoid combining pixels together that
would not be combined under the brute force NLM approach.

Kervrann and Boulanger [14] performed successive iterations of NLM filtering
and updated per-pixel variance values based on the estimated variance reduction from
the sum of squared normalizedweights.Much of the variance propagationmachinery
is similar in our approach, but their approach is not multiscale and thus processes
the full-resolution image multiple times.

Another related iterative method which can be applied to NLM filtering is the
SAIF method [34] which adaptively adjusts the number of iteration passes locally
based on an approximation of MSE. In contrast, the pull-push framework tracks
an estimate of the noise variance throughout the multiscale process to selectively
control the amount of filtering on a per-pixel basis, but adds multiscale capability to
efficiently process large filter footprints.

It is also possible to approximate global NLM filtering as an approximated low-
rank representation of the affinity matrix [18]. This representation has successfully
been used for a variety of non-local image enhancement tasks [32]. The storage and
runtime cost of an algorithm which uses this technique for purely denoising [31] is
a function of both the number of pixels and the rank of the approximation O(NR).
While being capable of approximating large filter footprints (as large as the image
itself) the rank of the approximation needed for good quality is dependent on both the
noise level and complexity of the underlying image itself whereas the performance
of pull-push NLM is independent of both. It should also be noted that pull-push
NLM denoising also could be used in place of standard NLM for other filtering tasks
where a denoiser is used as a building block [26, 33].
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An effective speedup for NLM is to reorder the loops in the algorithm and use
separable filtering for the weight computation [4, 5]. This helps mostly when the
patch sizes are large. This technique is solely part of the patch matching process, and
as such, it can also be applied to the pull-push algorithm presented in this chapter as
an additional optimization.

10.2.1 Overview of Pull-Push

The pull-push algorithm was originally developed as an efficient and GPU amenable
scattered data interpolation method [10]. The problem of scattered data interpolation
is to estimate andfill in themissing pixels in an imagewhere only a subset of the pixels
are specified. To describe the pull-push methodology, first, we establish some basic
notation. Since this chapter deals with image pyramids, we use a superscript (e.g.,
x[r]) to indicate pyramid level. A[0] superscript indicates the finest resolution (initial)
pyramid level, with subsequent indices indicating each coarser level. Consider an
initial image x[0] indexed by the pixel location, i, with per-pixel weights w[0]

i . A
weight of 1.0 is used for pixels that are present and a weight of 0.0 for pixels that are
missing.

The first step in pull-push is to build an image pyramid. Each successive level
is generated recursively by a “pull” (analogous to downsampling) filter. This filter
uses a per-pixel weighting scheme to selectively combine existing pixel data to
estimate missing regions. In addition to this, for each pixel generated, a weight is
computed which is proportional to the number of present pixels used to generate that
pixel. This weight can be thought of as a coverage fraction. d is a fixed tap spatial
filter for downsampling with taps indexed by tap offset k. Often a simple 2×2 box
filter is used in practice to leverage bilinear texture mapping hardware on a GPU.
The expressions for the weight propagation and pixel updates are (borrowing some
notation from [16])

w[r+1]
i =

∑

k

dk w
[r]
2i+k , (10.1)

x[r+1]
i =

∑

k

dk w
[r]
k x[r]

2i+k

w[r+1]
i

. (10.2)

After the pull stage is evaluated to the coarsest level, the push stage blends in
missing pixels starting from the coarsest level and generating finer levels iteratively.
Denoting χ [r−1] as the upsampled version of the next coarser pyramid level y[r] and
u as a fixed spatial filter1 for upsampling, we have

1Often in practice, this is simply a bilinear upscaling kernel which can leverage bilinear texture
filtering hardware on a GPU [16].
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Fig. 10.1 Diagram of how the pull-push algorithm propagates per-pixel weights to represent the
pixel coverage each coarser level has. These weights are used to combine samples in successively
coarser or finer levels

ω
[r−1]
i =

∑

k

uk w
[r]
(i/2)+k , (10.3)

χ
[r−1]
i =

∑

k

uk w
[r]
k y[r]

(i/2)+k

ω
[r−1]
i

, (10.4)

y[r−1]
i = x[r−1]

i w[r−1]
i + χ

[r]
i (1 − w[r−1]

i ). (10.5)

A few key observations about pull-push should be noted here. Like other multi-
scale frameworks such as Laplacian pyramids, pull-push maintains the capability to
muchmore efficiently filter over large regions than a single scalemethod. Since a tiny
fixed size kernel is used per level, the overall complexity of the pull-push approach
is not dependent on the effective filter size (Fig. 10.1).

Each pull-stage downfused pixel can be considered as a distribution of the pixel
values in the finer levels above it. The pixel value functions as a mean, and the
weight function as an encoding of the strength or reliability of the mean (e.g., how
many pixels were combined to represent it). Regions which have less reliable or no
information incorporate more data from a wider region around them in order to form
an estimate. This selective filtering and reliability (i.e., information) propagation is
what makes push-pull different from existing multiscale frameworks.
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10.2.2 Overview of NLM

Non-local means [2] is an edge-aware filtering technique that uses a patch matching
score to determine filtering weights. Given an input image x, the kernel weight wi,k

per-pixel location i and tap location k is based on a patch neighborhood with patch
taps p. Consider σs to be a smoothing parameter based on the amount of sensor noise.
The weights are designed as follows:

Δi,k =
∑

p

(
xi+p − xi+k+p

σs

)2

, (10.6)

wi,k = exp(−Δi,k). (10.7)

Normalizing by the sum of weights

ŵi,k = wi,k∑
κ wi,κ

. (10.8)

Each new filtered pixel is a weighted average of its kernel neighborhood:

x̂i =
∑

k

ŵi,k xi+k . (10.9)

Although patch matching allows for more accurate weighting of samples for
denoising, it comes at additional computational expense over bilateral filtering. The
additional work in the per-pixel inner loop over the patch taps is multiplicative and
increases the computational complexity of the algorithm from the O(NK) of a brute
force bilateral implementation to O(NPK), where K is the number of filter kernel
taps, P is the number of patch samples, and N is number of pixels. Note that in
the original NLM paper [2], K included all pixels in the image, but in practical
implementation, this is often limited to a reasonably small local window (roughly
5× 5 to21× 21pixels)with afixednumber of kernel taps due to computation cost.By
combining NLM with the pull-push methodology, we can reduce the computational
complexity toO(NP). Pull-push NLM [12] gives us both a large effective kernel size
and computational efficiency.

10.3 Pull-Push NLM

Using the standard NLM formulation with patch matching based on a per-pixel
i.i.d. Gaussian noise model, pixels are selectively averaged together based on their
patch similarities. Considering the sensor noise for a pixel as i.i.d. Gaussian with
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mean μi and standard deviation σn, the estimated distribution of the filtered sample
(a weighted average of Gaussian samples) can be computed from the sum of the
squared normalized kernel weights [18]

x̂i ∼ N
(

∑

k

ŵi,k xi+k , σ 2
n

∑

k

ŵ2
i,k

)
. (10.10)

The kernel weights are also a valuable source of information to distinguish struc-
ture from noise in the kernel neighborhood. The unnormalized wi,k kernel weights
allow for simple approximatemeasure of structure versus noise. Ifmost of theweights
for a patch are high, it is likely to be a flat region in the image with only additive
sensor noise. If only the center tap has a high weight, the center tap is likely to be
speckle noise. If a certain subset of the weights has a high value, it can often be due
to matching some type of image structure such as an edge or a corner.

Considering the variance reduction formula from Eq.10.10, the NLM kernel
weights can be used to determine the reliability of a filtered sample. By storing
the sum of squared normalized weights along with each corresponding NLM filtered
value per pixel, we are in effect providing a simple characterization of the distribu-
tion of samples used to create the output. By propagating this information through
the layers, we enable tracking a simplified model of the neighborhood statistics for
successively larger regions in a multiscale manner.

One last point is that eventually, we will need to combine estimates with different
variances during the pull stage. Inverse variance weighting is a common method to
aggregate multiple independent observations yk each with different variances σ 2

yk .
Given this input, inverse variance weighting is known to be the minimum variance
estimate using all the uncorrelated observations [11, 13],

ŷ =
∑

k
yk
σ 2
yk∑

k
1

σ 2
yk

. (10.11)

In Sect. 10.3.4, we show how inverse variance weighting is used to derive our
reliability score.

10.3.1 Pull Stage: Downfuse

In order to aggregate filtering results for a neighborhood of pixels without filtering
across edges, NLM filtering is used to generate subsequent coarser pyramid levels
during the pull stage. Because it is not performing a scaling operation but rather
computing a selective combination of pixels, we call this a downfuse pass instead of
downscaling. We perform NLM once per 2×2 block of pixels at level [r] and store
the results in the next coarsest level [r + 1]
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Δ
[r]
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(
x[r]
i+p − x[r]
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σ
[r]
s
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, (10.12)

w[r]
i,k = exp(−Δ

[r]
i,k), (10.13)

ŵ[r]
i,k = w[r]

i,k∑
k w

[r]
i,k

, (10.14)

x[r]
i =

∑

k

ŵ[r−1]
2i,k x[r−1]

2i+k . (10.15)

The output will be the result of fusing together differing numbers of samples on
a per-pixel basis. To keep track of this variance on a per-pixel basis, the pull-push
approach relies on propagating reliability information to selectively combine data
from level to level. We also compute reliability per-pixel for each downfused sample.
One statistically motivated way to do this is

ρ
[r]
i = 1

∑
k(ŵ

[r−1]
2i,k )2

. (10.16)

This reliability score is the inverse of the variance scale factor for weighted sum
of random variables described previously. This reliability is analogous to the way
blend weights are propagated in the pull-push scattered data interpolation technique.
Incorporating the reliability score into NLM can be performed as weighted NLM for
r ≥ 1

w[r]
i,k = ρ

[r−1]
i,k exp(−Δ

[r]
i,k) · S. (10.17)

10.3.2 Push Stage: Upfuse

Now that a pyramid has been constructed containing filtering results, each with
a reliability score, a push stage will be used in order to up-integrate the results.
Similarly to the pull stage, the push stage also uses NLM to selectively combine
samples, but also incorporates samples from lower pyramid levels. Analogous to the
downfusing, we call the push stage the upfuse stage because of the selective filtering
and combination of samples to generate the next finer level.

In order to determine the patch comparison weights to incorporate samples from a
coarser level, we perform patch comparisons from one level finer. During the down-
fuse stage, each NLM result sample was generated from one level finer, including the
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patch comparisons to generate that sample. Therefore, it makes sense that a center tap
patch used by the downfuse stage to generate a coarser sample serves as a signature
for the neighborhood, and can be used for patch comparison to determine weights
for the coarser sample. For NLM filtering in the upfuse stage, the tap offsets k come
from two different locations. Tap offsets from the current level are denoted as kf , and
the tap offsets for samples from the coarser level will be denoted as kc. The set of
taps containing both kf and kc is k.

The weights for sample offsets for the different levels are

w[r]
i,kf

= exp(−Δ
[r]
i,kf

), (10.18)

w[r]
i,kc

= ρ
[r+1]
g(i+kc)/2

exp(−Δ
[r]
i,g(kc)

), (10.19)

where g(j) is the tap location in the finer level that generated the downfused sample
in the coarser level for location j.

Again the weights are normalized using the sum over all weights (e.g., from both
the coarse and fine levels),

ŵ[r]
i,k = w[r]

i,k∑
k w

[r]
i,k

(10.20)

y[r]
i = (
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ŵ[r]
i,kf

x[r]
i+kf

) +
∑

kc

ŵ[r]
i,kc

y[r+1]
g(i+kc)/2

(10.21)

with the exception of the coarsest level which uses the coarsest downfused output
image directly. Figure10.2 shows an image beingfiltered and howfiltering progresses
through the downfuse and upfuse process. Coarser levels aremagnified in the diagram
for easier visualization.

10.3.3 Per-Level Patch Variance Reduction

When combining samples the modeled variance of each output pixel is computed
from the NLM weights and stored. However, patch differences are the result of
both noise and structural variation. Note that patch comparison is meant to mea-
sure how much actual structural variation there is between patches. We do not want
to downweight important structure but rather maintain its influence. Using the per-
pixel variance reduction for each pixel in the patch to patch comparison may under-
weight meaningfully different edge pixels in comparison to well filtered flat regions.
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Fig. 10.2 This series of images shows the progression of NLM pull-push filtering of an image
through the downfuse and upfuse stages. Notice how the noise is reduced throughout the stages

Therefore, we do not use the per-pixel variance reweighting inside the patch com-
parison function itself Δi,k .

However, from our experiments simply using the same patch sigma from level to
level usually results in a loss inmid-frequency detail caused by low contrast structural
edges being smoothed away. In order to account for this, the overall patch comparison
sigma is multiplied by a sigma reduction factor for each level down the pyramid. We
found that in practice setting the sigma reduction factor to 0.5 provided the best
results visually in terms of trading off detail for noise removal. Intuitively, the 0.5
factor this makes sense because in the pyramids we use, four pixels in a pyramid
level map to a single pixel in the level below, and the sigma reduction factor of 0.5
corresponds exactly to the theoretical variance reduction of averaging 4 Gaussian
i.i.d. samples.

10.3.4 Selective Up-Integration Using Reliability

During the upfuse process, it is important to prevent incorporating unreliable data
from lower pyramid levels. Due to local image structure, filtered results may not be
reliable or useful if too few samples were combined to create the result. Furthermore,
but if few samples were combined, it signifies the region may contain some form of
local structure, and directly using the coarser results may introduce blocky under-
sampling artifacts. To prevent this, we only combine samples for which the reliability
score is above a given threshold. In practice, we found a threshold corresponding to
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Fig. 10.3 The left image shows the effect of pull-push filtering without reliability downweighting.
Near the edge of the banana, the upfused samples contained a high amount of structure and resulted
in color smearing artifacts near the edges of the bananas. The right side image shows the same
region filtered using the reliability adjustment to mitigate the artifacts

at least three samples being combined ρthresh = 3 is effective to eliminate artifacts.
Figure10.3 shows how reliability downweighting alleviates artifacts. In order to pre-
vent artifacts from a hard thresholding and to provide a smooth transition based on
the reliability, we subtract and clamp in order to implement this soft threshold.

ρ̂i = min(ρi − ρthresh, 0) (10.22)

10.4 Joint Pull-Push Non-local Means

Joint (or guided) bilateral filters have been successful in a variety of applications
where one high-quality “reference” image, v, is used to guide the filtering of the
input image, x [6, 15, 22]. The reference image is often higher in resolution and/or
lower in noise than the image to be filtered. A common use case is flash photography,
where the frame taken with the flash on is used to refine the “natural light” image
taken with the flash off. Other potential use cases are refining depth maps with an
input image, or refining images from additional modalities such as infrared or other
non-visible spectra.

The joint bilateral filter (sometimes also referred to as guided or cross bilateral
filtering) [6] and [22] uses a separate reference image to derive filtering weights
for the image to be filtered. The idea can be extended to standard non-local means
filtering as well, where all pixels for patch comparison and weight computation are
taken from the reference image instead of the input image.

However, in the pull-push NLM methodology, since filtering weights are derived
from subsequent levels of the pull-push pyramid, theway to do this is not immediately
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obvious. From the reference image, a Gaussian pyramid is built with each level being
half the resolution of the previous level.

v̂[r+1] = G(v[r]) (10.23)

The function G performs standard separable Gaussian filtering on the image and
downsamples the result to one half of its resolution. The separable kernel used in x and
y for filtering is [1/6, 4/6, 1/6]. Since each pixel is the average of a small neighborhood
of pixels from the level above, the noise variance for each pixel of each level can
be computed directly from the noise variance of source pixels using Eq.10.10. This
particular kernel results in each pixel having one half the noise standard deviation
as the pixels in the level above. As is used in non-joint pull-push NLM, the per-
level sigma reduction factor from Sect. 10.3.3 is used to account for the reduction in
sigma from level to level. Again, a per-sigma reduction factor of 0.5 is theoretically
motivated and works well in practice.

The images from this pyramid will be used for patch comparisons in order to
compute the weights. The new patch comparison function for joint filtering simply
uses the reference images in the place of the input images for the given pyramid
level.

Δ
[r]
i,k =

∑

p

(
v

[r]
i+p − v

[r]
i+k+p

σ
[r]
s

)2

(10.24)

Other than this, the joint pull-push NLM algorithm is identical to the non-joint
version.

To get the best results from this algorithm, the optimal value for the smoothing
parameter σ [r]

s depends on both the noise level in the reference image as well as the
noise level of the image to be filtered. In practice, we found that the optimal for
σ [r]
s for joint pull-push NLM is roughly the average of the optimal σ [r]

s values for
denoising the reference and input images independently.

10.5 Burst Processing

Most modern cameras allow for burst capture of a sequence of images taken with
shorter exposures in order to compensate for both motion and sensor noise. While
the shorter exposure times may more accurately capture moving objects (reduction
of motion blur), it will also increase the noise in each image of the burst. Combining
multiple frames together into a single frame will be necessary to reduce this noise.

The frames to be fused together may contain some motion, and higher quality
results can be obtained by taking into account this motion. A base frame is chosen
from the sequence as the reference frame. The other burst images will be fused into
the base frame in order to enhance it. In most cases, the middle frame of the sequence
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is chosen so that motion across frames would likely have the smallest deviation from
the base frame.

This section describes two methods to handle burst fusion, a simple scheme for
dealing with small motions, and a more complex scheme which involves rough
estimation of the motion to guide the search for matching patches across frames.

10.5.1 Processing of Burst Frames Without Explicit Motion
Compensation

One way to incorporate burst processing into standard non-local means is to not
estimate the motion, and allow the non-local means algorithm to use any matching
patches within the kernel footprint in the burst frames as well [24, 30].

The extension to the pull-push NLM is very similar to the existing approach, but
with two small differences. When generating the first downfused image, the NLM
kernel footprint is extended to encompass the time dimension across all input burst
frames.

The second difference is in the final upfuse step. In this step, all the burst images
are fused along with the previous upfused result in order to generate the final image.
Again the pixel footprint is extended across the burst images, allowing for denoising
across frames. Figure10.4 shows how these two differences allow the burst frames
to be incorporated into the pull-push framework.

In this scheme, the kernel footprint is in the same location across the burst frames,
so motions that are within the kernel size can benefit from filtering across multiple
frames. For example, if an object moves one pixel from its position in the base
frame, the NLM algorithm performs patch comparisons with all pixels within the
kernel footprint, and there will be a kernel offset which corresponds to the object
that has moved. Since the kernel footprint has the same spatial location from frame
to frame, motions which extend outside the extent of the kernel will not contribute
to the denoising. For example, the object has moved far enough, there will be no
matching patches within the kernel footprint, and samples from the region of motion
will not be averaged into the final result. This limits the capability of the algorithm
to denoise across frames.

Despite the limited ability to denoise in large motion situations, the non-motion
compensated pull-push NLM works well in practice on stable scenes, but faltered
for large motions. Ideally what we want is for the kernel footprint to track the object
motion from frame to frame in the burst. The hope is that for moving objects, we
can pull patches from the same object across frames, and get better denoising. The
interesting thing about this is that with some small modifications, the multiscale
patch matching already performed by pull-push NLM can be leveraged for per-pixel
motion estimation.
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Fig. 10.4 Flow diagram showing pull-push NLM burst processing without motion compensation.
Only the first step of the downfuse and final step of the upfuse use multiple frames as inputs

10.5.2 Simultaneous NLM and Motion Compensation Using
the Pull-Push Framework

A straightforward method for motion estimation is to perform patch matching over
a neighborhood and use the offset of the best matching patch. A detailed overview
of related patch matching-based motion estimation techniques is available in [21].
Since we are already doing patch to patch comparisons when performing NLM,
most of the necessary computation has already been performed. In addition, since
the pull-push methodology performs these patch matching comparisons on multiple
scales, the resulting estimated per-pixel motion can be propagated from the coarsest
to fine levels during the upfuse stage. Since the effective image area of each pixel
doubles in size as we go down one level in the pyramid, every level of the pyramid
doubles the amount of motion capable of being estimated. A coarse-to-fine strategy
of propagating motion estimation results from level to level, a 5-level pyramid can
handle roughly 25 = 32 pixels of motion. From level to level, the estimated per-
burst-image motion field is also used as a per-pixel offset that is applied to the kernel
in the hope of finding pixels that better patch match and be able to incorporate more
pixels into the final estimate.

Since we do not know the motion to begin with, a downfuse pyramid is com-
puted independently for each burst image. Figure10.5 shows the separate downfuse
pyramids and how it differs from the strategy of the non-motion compensated case
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Fig. 10.5 Pull-Push NLM burst processing with motion compensation. Each downfuse pyramid is
computed separately, after this during each stage of the upfuse multiple frames

Fig. 10.4. Logically, for the base frame itself, the motion field image is always set to
zero because the base frame should not move with respect to itself. Also, the motion
field image used as input for the lowest pyramid level is initialized to zero,

m[R]
i,b = 0, (10.25)

where b is the index of the burst frame. The number of pyramid levels is R. If some
external source of motion estimation is available the algorithm could be initialized
with that instead.

The motion field image guides the patch matching. Since it contains an estimate
of where an object has moved to from the previous level, it can be used as a per-pixel
per-burst-image offset for the kernel itself. This way patches are more likely be taken
from the new position of objects that moved from frame to frame,

k̂ [r]
i,b = k + 2m[r+1]

i/2,b . (10.26)

The k̂ [r−1]
i,b are used in the place of kf in Eq.10.21. Motion estimation is refined

through each step of the upfuse. During the NLM patch matching, we keep track of
the kernel offset k that produced the lowest overall patch delta Δi,k on a per-pixel

basis. We define these kernel offsets as
−→
k [r]

i,b.

The motion field m[r]
i,b is refined from level to level using the estimate from the

previous level.

m[r−1]
i,b = 2m[r]

i/2,b + −→
k [r]

i,b (10.27)
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One consideration that should be mentioned is that the ultimate goal of this approach
is better denoising through motion compensation, not computing accurate motion
estimation. As long as we find better matched patches to fuse pixels from, we gain
better denoising capability. For example, in flat regions, it may not be possible to
estimate motion accurately since all kernel taps have well-matched patches. But,
since the patches all match well, they will contribute to the final fused result and
improve the denoising. So having accurate motion vectors is not a requirement, all
we are trying to do is to find the best offset to pull samples from on a per-pixel basis.

We have seen improvements in accuracy for motion estimation by combining this
approach with the joint pull-push approach from the previous section. In this case, a
Gaussian pyramid is generated for each burst frame solely to be used as the reference
images for patch comparison. This makes intuitive sense since the selective kernel
of NLM reweights taps from different offsets, which can bias the motion estimation.
TheGaussian kernel is radially symmetric and does not suffer from this shortcoming.
There is no directional bias for any given direction.

Burst photography can be combined with joint filtering as well. One way in
which to obtain the inputs for joint burst photography is to capture the burst with a
synchronized strobe light where pairs of reference and burst frames are taken in rapid
succession [29]. This falls naturally out of the motion compensated burst processed
framework, the only difference is that the Gaussian pyramids for patch comparison
are generated from the reference images.

10.6 Experimental Results

10.6.1 Pull-Push NLM Experiments

The experiments in this section compare pull-push NLM to the standard NLM algo-
rithm. These experiments were run on a 6 Core Xeon CPU using Halide [25] to
enable vectorization and parallelization across cores. The input imagery is a set of
143 different real-world color 12 MP images. In order to best compare algorithm
performance, both the pull-push NLM and standard NLM implementations use 32-
bit floating point math and the same 3×3 patch comparison size. Other than using
standard Halide vectorization and parallelization, no additional optimizations were
used for this comparison.

The comparison was performed on a collection of clean real-world images by
adding synthetic Gaussian noise across a variety of different noise levels. We use
SSIM [36] to quantify the difference between the noiseless base image and the
processed denoised image. The standard recommended values from [36] were used
for all parameters. For each algorithm, the input σs parameter resulting in the highest
SSIM score was used on a per-image basis.

We found that the pull-push NLM approach runs in a little less time than NLM
using a 7×7 filter kernel (e.g., search window) (320 vs. 350ms perMP). Comparison
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Fig. 10.6 Denoising performance of pull-push NLM versus standard NLM for a range of synthetic
noise levels

with the 7×7NLMcan be considered as a quality comparison for equivalent runtime.
In order to compare pull-push NLM versus large kernel NLM we use a 15×15 filter
kernel (1660ms per MP) for the standard NLM algorithm. Generally, the 15×15
kernel NLM has comparable quality to the pull-push NLM results. Note that all
of these timings can be improved by an order of magnitude with standard NLM
optimizations such as those described in [24].

The results are summarized in Fig. 10.6. Trials were run on a wide range of
synthetic noise levels ranging in standard deviation from mild noise (σn = 1) to
extreme noise (σn = 150). Each data point on the graph represents the mean best-case
SSIM for the given algorithm across the 143 images. For noise σn ≤ 15, the three
approaches resulted in very similar SSIM scores. However as σn increased, the pull-
push NLM approach performed better than 7×7 NLM with the difference widening
as noise increased. Even against NLM using a 15×15 kernel (and taking five times
as much time to process the same image), the pull-push approach provided better
quality results from σn ranging from 20 to 125.

From the experiments, we found the pull-push NLM algorithm performed best
when using five pyramid levels. Using additional pyramid levels has a comparatively
negligible cost, but offered negligible additional denoising. This is due to the fact
that a 5 level pyramid offers roughly up to a 31-pixel filter radius (63×63) and can
potentially combine thousands of samples, which is sufficient for our denoising task.

Figures10.7, 10.8, and 10.9 show a visual comparison of the results and the
associated SSIM scores. Figure10.10 visually shows the results on imagery with
realworld noise.
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Fig. 10.7 From left to right, image with additive Gaussian noise with σn =85 (SSIM:0.065), 7×7
NLM (SSIM:0.799), 15×15 NLM (SSIM:0.918), and pull-push NLM (SSIM:0.935)

Fig. 10.8 From left to right, image with additive Gaussian noise with σn =60 (SSIM:0.132), 7×7
NLM (SSIM:0.873), 15×15 NLM (SSIM:0.927), and pull-push NLM (SSIM:0.935)

10.6.2 Joint Pull-Push NLM Experiments

In order to show how joint pull-push NLM filtering works, we compare it to the
standard pull-push NLM algorithm and show how the addition of a reference image
can improve the results.

The reference image used for joint filtering is just the luminance channel of the
original image. The noisy image to be denoised is the color image with synthetic
Gaussian noise (σn = 30).

Figure10.11 shows the input images and results. For the standard pull-push
NLM, the σs parameter resulting in the best reconstruction (SSIM:0.765) was σs

= 27. For joint pull-push NLM, the σs parameter resulting in the best reconstruction
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Fig. 10.9 From left to right, synthetic three-color image with additive Gaussian noise with
σn =60 (SSIM:0.082), 7×7 NLM (SSIM:0.834), 15×15 NLM (SSIM:0.945), and pull-push NLM
(SSIM:0.973)

Fig. 10.10 Real-world example: The leftmost image is an input burst frame taken in low light, and
the center image shows NLM filtering using a 7×7 kernel. The rightmost frame shows the results
of the pull-push NLM approach

(SSIM:0.781) was σs = 14. The reference image has less noise than the input images
and is used to derive the weights for combining similar samples for denoising.
Because of this, the σs which gives the best result is a function of the noise standard
deviation of both the reference image and the image to filter.

10.6.3 Burst Processing Experiments

To demonstrate burst processing for pull-push NLM, we show results in a synthetic
sequence with both background and foregroundmotion. The background is moved to
the up and left direction for each frame in the burst while an overlay image (roughly
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Fig. 10.11 The upper left image shows a highly noisy image with AWGN σn =30 (SSIM:0.488).
The upper right image shows a noiseless reference frame. The lower left image shows the best result
using pull-push NLM (SSIM:0.765). The lower right image shows the result of joint pull-push NLM
(SSIM:0.784). Notice the improvement in quality around the wheels and shadow of the bicycle

1/4 the size of the image) is moved down and to the right. Figure10.12 shows the
estimated motion field from several frames of this burst. The red and green channels
display the per-pixelmotion in x and y. The center intensity value signifies nomotion.
The second image is considered the base frame that the motion of other frames are
estimated with respect to, and by definition has no motion. You can see regions
with texture are mostly well tracked. Flat regions like the sky are unable to be well
estimated. However, since the region is flat themotion offsets are not necessary, since
useful patches for denoising will still be found.

Figure10.13 shows a comparison of single frame pull-push NLM processing and
the two burst-based pull-push NLM approaches.

Single frame pull-push NLM on the base frame does a decent job of denoising,
but in highly textured regions, denoising is limited. The best quality (SSIM:0.844)
was achieved using a pull-push sigma parameter, σs = 20.
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Fig. 10.12 The upper row image shows four images out of a burst of nine images with AWGN
σn =20 (SSIM:0.574). The background is scrolling left and upward while a sprite overlay (the
large bicycle) is being moved down and to the right. The lower row shows the estimated motion
compensation field

Using the straightforward approach to burst processing provides better results
(SSIM:0.868), but in highly textured regions, it is only able to incorporate nearby
frames due to limited motion compensation capability. Since more patches are avail-
able from additional frames, the best quality was achieved using setting σs = 16.
Because of the lower sigma, more low contrast detail can be preserved as can be seen
in the windows of the building.

Using motion compensated burst processing allows for even better quality
(SSIM:0.900), since textured regions in all frames are able to contribute to denois-
ing. The best result was achieved using σs = 15. Lower σs indicates that having more
useful candidate patches allows for more selectivity in which patches to incorporate,
which results in even better detail preservation while denoising.

The next experiment uses a collection of luminance reference images in addition
to the burst images from the last experiment as input to the joint burst pull-push
NLM method. Note that we also use our motion compensation in conjunction with
the joint burst method.

Results can be seen in Figs.10.14, 10.15, 10.16 and 10.17. The joint burst method
improves theSSIMscore even furtherwith the best quality result being (SSIM:0.940).
The increased accuracy of the reference images using in the joint method versus the
noisy input images results in better quality motion estimation. Not only that but also
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Fig. 10.13 Burst pull-push NLM: The upper left image shows the noiseless base frame of the
nine frame burst from the previous figure. The upper right image shows the result of single frame
pull-push NLM on this frame (SSIM:0.844). Using the simple approach to burst processing (lower
left) provides better results (SSIM:0.868), but in highly textured regions is only able to incorporate
nearby frames due to limitedmotion compensation. Using themotion compensated burst processing
(lower right) allows for the best quality result (SSIM:0.900)
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Fig. 10.14 Real-world example of burst pull-push NLM: The top image is one of a collection
of seven input burst frames. The center image uses single frame pull-push NLM denoising with
the best result obtained using σs =11. The bottom frame uses burst pull-push NLM with motion
compensation and is able to retain more detail with the same level of denoising. The best result was
obtained with σs =7

compared to the ground truth allows for a much tighter and selective sigma. Not
only that but also the reference images allow for better quality motion estimation
which also improves the results. These two factors allowed for a more selective σs

parameter to be used. The peak quality result of joint burst pull-push NLM in terms
of SSIM (SSIM:0.940) was achieved by setting σs = 5.
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Fig. 10.15 Joint burst pull-push NLM: The following shows a proof of concept for joint burst
pull-push NLM. A noiseless luminance-only reference burst sequence is used as additional input
to the noisy burst sequence in the previous example. The top row shows two frames from the
reference burst (the base frame and the last frame used.) The lower left image shows the previous
motion compensated burst result (SSIM:0.900). The lower right image shows the result using the
reference images and the joint burst pull-push NLMmethod. The resulting image has better quality
(SSIM:0.940). Notice how more detail can be seen in low contrast areas such as the window frames
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Fig. 10.16 This figure shows the results with much higher added synthetic noise level σn =60.
The first row shows, the noisy base frame (SSIM:0.239), and non-motion compensated pull-
push burst NLM (SSIM:0.619). The second row shows motion compensated pull-push burst NLM
(SSIM:0.675) and motion compensated joint burst pull-push NLM (SSIM:0.805)
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Fig. 10.17 This figure shows the results on a real-world strobe burst. Four image pairs were
captured, each with and without flash. The first row shows one of the pairs, and the non-flash
image was taken under low light and has high noise. The next row shows the result of burst pull-
push NLM which does a good job of denoising. The final row shows the improvement gained by
using the reference frames with joint burst pull-push NLM processing. The amount of denoising is
comparable, but the final result is sharper and more accurate
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10.7 Conclusion

Wehave presented a framework to performNLMdenoising with large spatial kernels
efficiently using a pull-push NLM algorithm. We are able to achieve much better fil-
tering results than the brute force NLM algorithm for a given computational budget.
In addition, we describe novel extensions to our approach for both joint and burst
processing. The pull-push approach is especially well suited to burst processing since
themultiscale NLMpatch comparison computation is reusable for multiscale motion
compensation. This synergy improves the quality and efficiency of the implementa-
tion significantly.

One minor limitation of the proposed algorithm is that repetitive patterns within
an image may not receive as much filtering as in a brute force NLM algorithm with a
large kernel size. However, pull-push is capable of better noise reduction in smooth
regions where the sensor noise tends to be the most noticeable.
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Chapter 11
Three Approaches to Improve Denoising
Results that Do Not Involve Developing
New Denoising Methods

Gabriela Ghimpeteanu, Thomas Batard, Stacey Levine
and Marcelo Bertalmío

Abstract Image denoising has been a topic extensively investigated over the last
three decades and, as repeatedly shown in this book, denoising algorithms have
become incredibly good, so much so that many researchers have started questioning
the need to further pursue this line of research. In this chapter, we argue that there
is indeed room for improvement of denoising results, and we propose three differ-
ent avenues to explore, none of which requires the development of new denoising
methods. First, we describe how it can be better to denoise a transform of the noisy
image rather than denoise the noisy image directly. We mention several possible
transforms, and an open problem is to find a transform that is optimal for denois-
ing, according to a proper image quality metric. Next, we point out the importance
of having a proper noise model for JPEG pictures, so that a variance stabilization
transform can be developed that transforms noise in JPEG images into additive white
Gaussian noise, enabling existing denoising methods to be properly applied to the
JPEG case. Finally, we highlight the fact that while virtually all denoising methods
are optimized and validated in terms of the PSNR or SSIM measures, these metrics
are not well correlated with perceived image quality, and therefore, it could be best
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to optimize the parameter values of denoising methods according to subjective test-
ing. A remaining challenge is to develop perceptually based image quality metrics
that match observer preference.

11.1 Introduction

In this chapter we propose, in order to improve denoising results, to explore three
different avenues that do not require the development of new denoising methods.

First, we review recent works that improve the performance of denoising algo-
rithms by applying them to transforms of image data instead of applying themdirectly
to the noisy image. An open challenge is then to find a transform that is optimal for
the denoising problem, according to a proper image quality metric.

Second, we show how not only the performance but also the ranking of denoising
algorithms is different in the real noise scenario than when working under the com-
mon assumption that noise is additive white Gaussian (AWG) of known variance
which is fixed and independent from the image values. A second way to improve
denoising results would then be to develop a noisemodel for JPEG pictures and a cor-
responding variance stabilization transformation, so that existing denoising methods
that assume AWG noise can be properly applied to the JPEG case.

Finally, we note that although the PSNR and SSIM error measures are not cor-
related with perceived image quality, virtually all denoising methods are optimized
and validated in terms of these metrics. This suggests a third approach to improve
denoising results, that of developing a perceptually based image quality metric that
matches observer preference, or using subjective experiments to select the optimal
parameter values for denoising methods.

11.2 Denoise a Transform of an Image Instead of the Image
Itself

There are often benefits to processing a linear or nonlinear transform of an image
rather than processing the observed image data directly. In the context of image
denoising, this has traditionally taken the form of thresholding Fourier or wavelet
coefficients, which then has a denoising effect on the underlying image data. The line
of researchwe followhere is different in thatwe specificallyapply an imagedenoising
method to a transform of an image which in turn has a denoising effect on the original
image data. The latter differs from the former in several ways. First, the choice of
processing applied to the transform is different, the latter being one that is borrowed
from algorithms for denoising the image data directly while the former, such as
thresholding, is not. Second, the latter may require a specially designed mechanism
for reconstructing the denoised image, particularly for nonlinear transforms.
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The first instance we know of applying an image denoising technique to an image
transform is the work of Lysaker et al. [30] in which the authors propose using a
constrained total variation (TV) minimization problem to denoise the unit normal
vector field of a noisy image surface. The denoised image is then reconstructed using
a variational approach whose solution has a unit normal field that matches the results
of this constrained TV problem. Similar denoising strategies are presented in [41]
and [20] where the unit tangent field to an image surface is denoised, allowing for
a mathematically sound model. The approach in [30] is also directly related to the
Bregman iterative algorithm of Osher et al. [38].

A similar approach was proposed by Bertalmío and Levine [8]. Justified by the
fact that the curvature of the level lines of a gray-level image has a higher SNR along
likely edges than the image itself (in the context of AWG noise), they demonstrate
that reconstructing an image from its denoised level line curvature is consistently
more effective than denoising the image directly. This is confirmed by experiments
with four denoisingmethods: TV denoising performed through both gradient descent
[43] and the Bregman iterative algorithm [38], orientation matching using smoothed
unit tangents [20], nonlocal means (NLM) [11] and block-matching and 3D filtering
(BM3D) [14]. A variational method was successful for the reconstruction step.

Batard and Berthier [5] introduced a moving frame approach in the process of
describing a Fourier theory for n-channel images which takes into account the local
geometry of an image. Their orthonormal moving frame in R

n+2, defined over the
image domain, consists of two vector fields that are tangent to the image graph and n
components that are normal to the surface. Their ideawas to construct the components
of an image in this moving frame, compute the standard 2D Fourier transform of each
of the n+2 components, apply a different Gaussian kernel to each one, and finally
project back. By applying Euclidean heat diffusion to each component, the output is
a filtered image that retains its local geometry after the diffusion step.

Batard andBertalmío [6, 7] used thismoving frame approach for image denoising.
Instead of directly applying a denoisingmethod to an image, they proposed to apply it
to its components in themoving framedescribed above.The authors used the vectorial
extension of the total variation-based denoising method of Rudin et al. [43] proposed
by Blomgren and Chan [9], and the vectorial total variation (VTV) denoising method
of Bresson and Chan [10]. In both cases, this strategy produced better results in terms
of PSNR than denoising the image directly with these approaches.

In this section, we revisit the work of [16] and detail how to improve the result
of a denoising method by denoising the components of an image in a moving frame,
as in [5–7], instead of denoising the original noisy image directly. We note a theo-
retical analysis of why with this approach we can expect cleaner results with better
preserved details, regardless of denoising algorithm. We validate the consistency of
this approach by showing how the moving frame strategy brings an improvement
in terms of PSNR and SSIM for three different noise removal techniques: a local
variational method (VTV, [10]), a patch-based method (NLM [11]), and a method
combining patch based processingwith filtering in the spectral domain (BM3D [14]).
The approach in [16] has the advantage of simplicity in the reconstruction step which
is expressed as amatrix transform, in comparison to the similar curvature-based strat-
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egy in [8] or the vector fields smoothing techniques of [20, 30, 38, 41] which require
solving a second- or third-order PDE evolution equation for the reconstruction step.

11.2.1 Image Decomposition in a Moving Frame

We denote a gray-level image by I : Ω ⊂ R
2 −→ R, and the standard coordinate

system of R
2 by (x, y). Ix and Iy are the derivatives of I with respect to x and y,

respectively, and ∇I is the gradient of I . We construct an image decomposition
model for I comprised of two steps. First, construct an orthonormal moving frame
(Z1,Z2,N ) of (R3, ‖ ‖2) over Ω that takes into account the local geometry of I .
Next, calculate the components (J 1, J 2, J 3) of the R

3-valued function (0, 0, I) in
that moving frame.

We useμI (a scaled version of I, withμ ∈]0, 1], and its graph, given by the surface
S in R

3 parametrized by

ψ : (x, y) �−→ (x, y, μ I(x, y)). (11.1)

We construct an orthonormal moving frame (Z1,Z2,N ) by choosing Z1 to be the
vector field tangent to the surface S that points in the direction of the steepest slope
at each point of S, and Z2 to be the vector field tangent to S that points in the
direction of the lowest slope at each point of S. To complete the orthonormal frame,
the component N is the unit normal to the surface.

This can be realized by considering the gradient of μI , z1 = (μIx, μIy)T , and the
vector indicating the direction of the level lines ofμI , z2 = (−μIy, μIx)T . On smooth
regions of I where Ix(x, y) = Iy(x, y) = 0, we fix z1 = (1, 0)T and z2 = (0, 1)T . Then
Z1 and Z2 are defined as

Zi = dψ(zi)

‖dψ(zi)‖2 , i = 1, 2, (11.2)

where ψ maps vector fields from Ω to tangent vector fields of S, and dψ denotes its
differential. The unit normal N is given by the vectorial product between Z1 and Z2.

More explicitly, the coordinates of the vector fields Z1,Z2,N are given by the
first, second, and third columns of the matrix field

P =

⎛
⎜⎜⎜⎝

Ix√
|∇I |2(1+ μ2|∇I |2)

−Iy
|∇I |

−μIx√
1+μ2|∇I |2

Iy√
|∇I |2(1+ μ2|∇I |2)

Ix
|∇I |

−μIy√
1+μ2|∇I |2

μ|∇I |2√
|∇I |2(1+ μ2|∇I |2) 0 1√

1+μ2|∇I |2

⎞
⎟⎟⎟⎠ (11.3)

Figure11.1 shows the moving frames (z1, z2) and (Z1,Z2,N ) associated to a simple
image. On the left, the figure illustrates the moving frame (z1, z2) at the points p and
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Fig. 11.1 Moving frame encoding the local geometry of a gray-level image. Left: original gray-
level image and a moving frame (z1, z2) indicating the direction of the gradient and the level line
of the image at two points p and q of the image domain Ω . Right: the orthonormal moving frame
(Z1,Z2,N ) of (R3, ‖ ‖2) over Ω indicating the direction of the steepest and lowest slopes of the
surface S, for some smoothing parameter μ, at the points ψ(p) and ψ(q)

q of the domain Ω , and on the right, it shows the induced moving frame (Z1,Z2,N )

constructed on the surface S at the points ψ(p) and ψ(q).
If (e1, e2, e3) represents the orthonormal frame of (R3, ‖ ‖2), where e1 = (1, 0, 0),

e2 = (0, 1, 0), and e3 = (0, 0, 1), then the matrix P in (11.3) can be seen as the frame
change field from (e1, e2, e3) to (Z1,Z2,N ). More precisely, the components of the
R

3-valued function (0, 0, I) in the new frame are given by (J 1, J 2, J 3), where

(J 1, J 2, J 3)T = P−1(0, 0, I)T . (11.4)

From (11.3) and (11.4), we see that these components can be explicitly expressed as

J 1(I) = μI |∇I |√
1 + μ2|∇I |2 , J 2(I) = 0, and J 3(I) = I√

1 + μ2|∇I |2 . (11.5)

Figure11.2 illustrates the gray-level test image “castle” and its components J 1 and J 3

computed forμ = 0.05.The component J 1 contains edge and texture informationdue
to its inclusion of the normof the image gradient. The component J 3 better reproduces
the original image, from which the norm of the gradient has been diminished.

The multichannel case involves embedding an n-channel image into R
n+2, then

using similarlymotived choices forZ1 andZ2 with extra care taken in the construction
of the remaining normal vector fields. Details can be found in [16].

An important role is given to the parameterμ. It represents a smoothing parameter
for the moving frame associated to the image I . In the next sections, we analyze just
how crucial the value of this parameter is for image denoising.
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Fig. 11.2 From left to right: gray-level image “castle”, component J 1, and component J 3

11.2.2 Application to Image Denoising

We propose denoising the components of an image in the moving frame described
above instead of denoising the image directly. The effect on image denoising using
these two approaches can be compared by performing the following experiment:

1. Denoise I with some method and denote the output image Iden.
2. Compute the components of I in the moving frame. Apply the same denoising

method to the components to obtain the processed components. Then, apply
the inverse frame change matrix field to the processed components, obtaining a
reconstructed image denoted by IdenMF . In the grayscale case, this can be explicitly
expressed as

IdenMF = P13(I)J
1(I)den + P33(I)J

3(I)den. (11.6)

3. Compare Iden and IdenMF using PSNR, SSIM or any image quality metric.

The extension from single to multichannel denoising algorithms is not always
straightforward. Depending on the denoising method, there are several ways to do
this, given by the use of different color spaces and the manner in which to apply the
algorithm (channel-wise, only to selected channels, or vectorially). Details can be
found in [16].

It is interesting to note that the denoising approach introduced above can in fact
be used with any moving frame. Several choices were previously analyzed in [7],
showing a similar output quality is attained when Z1,Z2 are any randomly chosen,
but orthonormal, vector fields in the tangent planes of the surface parametrized by
(11.1) for gray-level images. However, when Z1,Z2 are not in the tangent space, the
results are of low quality.
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Table 11.1 Average values of the PSNR for the components J 1, J 3 and the image I over the Kodak
database for different noise levels and values of the parameter μ

Noise
level

Function μ = 1 μ = 0.1 μ = 0.01 μ =
0.005

μ =
0.001

μ =
0.0001

σ = 5 Component J 1 20.51 20.09 34.37 37.84 40.17 40.31

Component J 3 18.56 26.02 34.24 34.22 34.19 34.19

Image I 34.19 34.19 34.19 34.19 34.19 34.19

σ = 10 Component J 1 19.34 15.96 28.21 31.51 33.84 33.97

Component J 3 16.94 19.84 28.27 28.24 28.21 28.21

Image I 28.21 28.21 28.21 28.21 28.21 28.21

σ = 15 Component J 1 18.32 14.16 24.44 27.79 30.09 30.22

Component J 3 16.32 16.93 24.80 24.77 24.73 24.73

Image I 24.73 24.73 24.73 24.73 24.73 24.73

σ = 20 Component J 1 17.37 13.10 21.86 25.12 27.38 27.51

Component J 3 15.98 15.22 22.38 22.33 22.28 22.27

Image I 22.27 22.27 22.27 22.27 22.27 22.27

σ = 25 Component J 1 16.47 12.36 19.89 23.03 25.25 25.38

Component J 3 15.77 14.10 20.50 20.44 20.37 20.37

Image I 20.37 20.37 20.37 20.37 20.37 20.37

11.2.3 The Noise Level Is Higher on the Intensity Values
of a Gray-Level Image Than on Its Components
in a Well-Chosen Moving Frame

In this section, we study how for carefully selected μ values, the components J 1(I)
and J 3(I) of a gray-level image I in the moving frame (11.3), given by (11.4) and
(11.5), are less degraded by AWG image noise than the image itself.

Assume I = a + n is a gray-level image obtained by adding to the image a Gaus-
sian noise n of mean zero and standard deviation σ . Before delving into a more
formal analysis, we consider an experiment in which we calculate the PSNR values
of the components J 1(I) and J 3(I) of the images from the Kodak database [2], for
noise levels σ = 5, 10, 15, 20, 25 andμ = 1.0, 0.1, 0.01, 0.005, 0.001, 0.0001. The
results of this experiment are reported in Table11.1.

Notice that the PSNR values of the components are consistently larger than the
PSNR of the image for sufficiently small μ. Specifically, the components are gener-
ally “less noisy” when μ ∈ ]0, 0.005] for all noise levels considered. For σ = 5, 10,
the upper bound of 0.005 can be increased to 0.01.

While the values in Table11.1 were computed across the entire image, we can
more formally study this behavior by considering locations of likely image contours
and homogeneous regions separately.
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11.2.3.1 Edges

As in [8], we attain the following conclusion comparing the PSNR of a grayscale
image and its moving frame components along likely image contours.

Proposition 1 Using central differences for the approximation of ∇I and μ > 0, at
locations in the image domain where |∇a| 	 |∇n|, likely edges of I ,

PSNR(J 1(I)) ≥ PSNR(I) and PSNR(J 3(I)) > PSNR(I).

The proof, detailed in [16], uses the fact that the explicit representations for
the moving frame components J 1(I) and J 3(I) given in (11.5) make it possible to
approximate their noise as additive along likely contours, leading to the estimates

PSNR(J 1(I))=20 log10

(
255

127.5
√
2μ√

1 + 2μ2(127.5)2
×

√
1 + μ2|∇I |2
μ|∇I |σ

)
(11.7)

≥ 20 log10

(
255

σ

)
= PSNR(I) (11.8)

and

PSNR(J 3(I)) = 20 log10

(
255

√
1 + μ2|∇I |2

σ

)
(11.9)

> 20 log10

(
255

σ

)
= PSNR(I). (11.10)

To better understand the role of μ along likely contours of I , (11.9) indicates that
PSNR(J 3(I)) is a strictly increasing function of μ, tending to +∞ as μ −→ +∞,
and to PSNR(I) as μ −→ 0. On the other hand, (11.7) indicates that PSNR(J 1(I))
is a decreasing function of μ, tending to PSNR(I) as μ −→ +∞, and tending to

20log10
(
255×127.5

√
2

|∇I |σ
)
when μ → 0. Thus, we infer that along image contours, the

larger the value of μ, the better the estimation of the clean component J 3(a), while
the smaller the value of μ, the better the estimation of the clean component J 1(a).

Furthermore, since |∇I | ≈ |∇a| at contours, we obtain (see (11.3))

P31(I) ≈ P31(a) and P33(I) ≈ P33(a). (11.11)

Thus (11.6) and (11.11) imply that, along likely contours,

IdenMF = P13(I)J 1(I)den + P33(I)J 3(I)den
≈ P13(a)J 1(I)den + P33(a)J 3(I)den. (11.12)
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From Proposition 1, we deduce that J 1(I)den and J 3(I)den are better estimates of
J 1(a) and J 3(a) than Iden is of a at these locations. Therefore, from (11.12) and the
fact that

a = P13(a)J
1(a) + P33(a)J

3(a)

we conclude that at likely image contours, IdenMF is a better approximation of a than
Iden. Thus, the value for the parameter μ that gives a better reconstruction of image
contours in the clean image is strictly positive, since for μ = 0 we get IdenMF = Iden.

11.2.3.2 Homogeneous Regions

In this section, we consider the case of homogeneous or slowly varying regions,
where |∇a| 
 |∇n|. At these locations, we obtain

J 1(I) ≈ μI |∇n|√
1 + μ2|∇n|2 and J 3(I) ≈ I√

1 + μ2|∇n|2 . (11.13)

Note that for μ > 0, the range, and therefore the variations, of J 1(I) and J 3(I) is
diminished compared to those of I .

Moreover, if |∇a| 
 |∇n| then

IdenMF = P13(I)J
1(I)den + P33(I)J

3(I)den

≈ μ|∇n|√
1 + μ2|∇n|2J

1(I)den + 1√
1 + μ2|∇n|2 J

3(I)den.

Therefore, as |∇n| increases, J 1(I)den has a larger weight in the reconstruction. This
is advantageous, as the results fromTable11.1 suggest that for small values ofμ > 0,
across the entire image I , including edges, textures, and homogeneous regions, we
see a clear trend that

PSNR(J 1(I)) > PNSR(I) and PNSR(J 3(I)) ≈ PNSR(I). (11.14)

While a formal proof is not trivial, it is reasonable to infer that the proposed moving
frame approach should be successful for a carefully chosen μ value in homogeneous
areas aswell. Combining this argumentwith Proposition 1, one can expect that across
the entire image, IdenMF should be at least as good as, if not better than, Iden.

11.2.4 Experiments

We report results comparing μ = 0 and μ > 0 for three denoising methods, VTV,
NLM and BM3D. Although automating μ could be a challenge, we found that for
the nonlocal algorithms NLM and BM3D a fairly consistent value of μ = 0.001 gave
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Table 11.2 The gray-level case: variational approach

Approach\noise variance 5 10 15 20 25

PSNR of
Iden = ROF(I)

35.39 31.51 29.48 28.15 27.17

PSNR of
IdenMF = P13(I)ROF(J 1(I)) +
P33(I)ROF(J 3(I))

36.36 32.23 30.04 28.60 27.49

SSIM index of Iden = ROF(I) 93.76 87.07 81.91 77.63 74.12

SSIM index of
IdenMF = P13(I)ROF(J 1(I)) +
P33(I)ROF(J 3(I))

94.61 88.37 83.22 78.71 74.78

μ value used to compute IdenMF 0.008 0.005 0.005 0.004 0.004

the best results, independent of image content, noise level, and the measure chosen
for the denoising evaluation. This is not the case for the local method VTV, for which
the optimal μ value was highly related to the noise level. The results for VTV were
obtained with noise-dependent, optimal values of μ (found experimentally), while
those for NLM, BM3D all used μ = 0.001.

Tables11.2 and 11.3 summarize the average PSNR and SSIMvalues of comparing
the final image denoising results when the same denoising algorithm is applied to
an image directly to obtain Iden, Eq. (11.6) with μ = 0, as opposed to its moving
frame components to obtain IdenMF , Eq. (11.6) with μ > 0. The results are averaged
across the grayscale versions of all images in the Kodak database; analogous PSNR
and SSIM results for the Kodak database color images are reported in [16] with
similarly chosen values of μ. It is important to note that while the differences in
these image quality metrics diminish as the more powerful denoising techniques
are applied, e.g., BM3D, there is still a consistent increase across all noise levels,
and this level of increase reflects previously reported mean squared error optimality
bounds [28, 29]. Furthermore, while the differences in the image quality metrics may
be leveling off, the difference in the resulting image details when comparing these
approaches is notable, with more accurate details preserved in the result of denoising
the geometrically motivated moving frame components. Visual examples comparing
all three denoising algorithms, VTV, NLM and BM3D, can be found in Fig. 11.3.

11.2.5 Research Avenue to Explore

We have just seen that it often makes sense to denoise the transform of an image such
as itsmoving frame components, level line curvature, or unit normal vector field. Still,
it would be interesting to find a transform that is optimal for image denoising. The
optimality should be evaluated according to some criterion (not necessarily higher
PSNR), and the noise model should carefully reflect the image acquisition model
as well; the analysis in this section has assumed AWG noise for simplicity, but the
importance of using the correct noise model cannot be overstated, as we detail in the
following section.
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Table 11.3 The gray-level case: patch-based approaches (μ = 0.001)

Approach\noise variance 5 10 15 20 25

PSNR of
Iden = NLM (I)

37.41 33.38 31.05 30.04 28.91

PSNR of
IdenMF = P13(I)NLM (J 1(I)) +
P33(I)NLM (J 3(I))

37.52 33.59 31.57 30.12 29.00

SSIM index of Iden = NLM (I) 94.96 88.71 82.17 80.34 75.94

SSIM index of
IdenMF = P13(I)NLM (J 1(I)) +
P33(I)NLM (J 3(I))

95.11 89.54 85.37 81.03 76.95

PSNR of Iden = BM 3D(I) 38.23 34.34 32.26 30.89 29.88

PSNR of
IdenMF = P13(I)BM 3D(J 1(I)) +
P33(I)BM 3D(J 3(I))

38.25 34.38 32.31 30.93 29.92

SSIM index of
Iden = BM 3D(I)

95.71 91.38 87.52 84.19 81.32

SSIM index of
IdenMF = P13(I)BM 3D(J 1(I)) +
P33(I)BM 3D(J 3(I))

95.74 91.49 87.71 84.38 81.44

11.3 Have a Proper Noise Model

A key aspect that is overlooked when suggesting that denoising is an almost solved
problem is the following: most denoising methods in the literature are based on
modeling noise as being additive and independent from the image data. In fact,
validations and comparisons are normally performed by taking clean photographs as
ground truth, creating noisy versions with AWG noise of known variance (fixed and
independent from the image values), applying denoising algorithms to them, and
comparing each denoised result with the corresponding clean ground truth image
using an objective metric such as PSNR. Everything is dependent on this AWG
assumption: the design of the denoising algorithms, their ranking according to the
quality of the outputs, even the computation of the optimality bounds that suggest
that state-of-the-art algorithms are close to optimal.

It is well known that noise in regular output images, in JPEG format, is not AWG,
but despite this fact, the vast majority of the denoising literature implicitly assumes
that this difference should not have an impact on how we address the denoising
problem, nor on how results are validated or methods compared. A few exceptions
in the literature are, for instance:

• Nam et al. [37] propose a quite complex cross-channel noise model for JPEG
images, and a neural network to estimate the noise model parameters per camera
model and per ISO sensitivity value; this model can then be used to improve
denoising results.
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Fig. 11.3 Row 1: VTV result for image 13 [2] with σ = 15. Left: noisy image, I . Mid-
dle: results of denoising I directly, Iden = VTV (I), PSNR=27.00. Right: moving frame result
(11.6), IdenMF with J i(I)den = VTV (J i(I)), PSNR=27.56. Row 2: NLM results for image 15
[2] with σ = 20. Left: I . Middle: Iden = NLM (I), PSNR=29.29. Right: IdenMF with J i(I)den =
NLM (J i(I)), PSNR=29.70. Row 3: BM 3D result for image 24 [2] with σ = 20. Left: I . Middle:
Iden = BM 3D(I), PSNR=31.26. Right: IdenMF with J i(I)den = BM 3D(J i(I)), PSNR=31.40. The
PSNR is computed across the entire image, but the images included here are zoomed-in to better
visualize details. Full resolution results can be found in [16]

• The Noise Clinic of Lebrun et al. [25] adapts the nonlocal Bayes approach [26]
(that assumesAWGnoise) to signal-, scale-, and frequency-dependent noise,which
requires an estimate of the covariance matrix of the noise; the authors state that
inaccuracies in the estimate of this covariance matrix can introduce artifacts.

• Seybold et al. [44] show how the performance of denoising methods decays dras-
tically when using realistic noise models instead of AWG noise.

• Plötz and Roth [40] compared the BM3D denoisingmethod to several state-of-the-
art algorithms for AWG noise images. They concluded that when applied to real
noise (for both RAW images and camera outputs), BM3D outperforms (visually
and in terms of PSNR) several methods that under the AWG assumption were
supposed to perform better.

In this section, we will stress the importance of having a proper noise model
for the images one intends to denoise, extending the work presented in [17].
First, we introduce an image database consisting of clean and noisy photo pairs,
in formats corresponding to the sensor image (12-bit RAW) and the nonlinear and
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uncompressed camera output (8-bit PNG). Next, we use the database to show how
both the performance and the ranking of denoising methods are considerably differ-
ent in the realistic noise scenario as compared with the AWG noise case. Finally,
we show how a simple local denoising method, applied to the RAW input, can out-
perform nonlocal methods applied to the camera output. The local method can also
perform as well as low-complexity versions of the nonlocal algorithms applied to
the RAW image, but with a much lower computational cost, suggesting the possibil-
ity for local denoising to replace more elaborate denoising methods for in-camera
implementations.

11.3.1 An Image Database with Clean and Noisy Versions
of Photos in RAW and Nonlinear Camera Output
Versions

In order to evaluate and compare denoising methods, we created a test image set
containing clean and noisy image pairs with both RAWand nonlinear output versions
of each image. Using a Nikon D3100 camera, optimizing exposure, and setting ISO
to 100 so as tominimize noise, we capture the twenty “clean” reference RAW images
shown in Fig. 11.4. We add noise to each image and then both the clean original and
the noisy version are passed through the basic image processing pipeline of a digital
camera producing the nonlinear camera outputs. In this way, we have a noisy picture
and the corresponding clean reference, which allows us to evaluate denoising results
using objective image quality metrics like PSNR.

Recently, Plötz and Roth [40] also proposed a database of real noise photographs
and their corresponding ground truth. Each pair in their database has a reference
image and a ground truth which are generated from a series of images of the same
scene, with different ISO values and exposure times. The reference is chosen to be
the photograph taken with low ISO that shows almost no noise, and the ground truth

Fig. 11.4 Our image test set
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is generated by a post-processing step that corrects for differences in illumination
and minor displacements (of objects in the scene or camera shake) between several
exposures. Our database has a different approach than the one proposed in [40], in
that it includes an estimated RAW noise model so that new noisy images can be
generated, with arbitrary noise levels. It also allows the user to introduce new clean
images from which additional clean/noisy pairs (in both RAW and nonlinear output
versions) can be added to the database. This database is publicly available [1] so that
researchers can develop and test denoising algorithms for real-world scenarios.

The creation of our database involves the following components:

• Simulating the camera processing pipeline. This pipeline is necessary for process-
ing the image from its RAW format to the camera output (as camera makers do
not make public the specific steps each model performs).

• Creating a signal-dependent noise model estimated at the RAW level.
• Validating the results. A noisy RAW image should have the same appearance as
a clean RAW image to which noise has been added according to our estimated
model.

We detail each of these stages in the following subsections.

11.3.1.1 Simulate the Camera Processing Pipeline

The following is a concise enumeration of the basic steps of the image processing
pipeline, common to digital cameras.

1. Capture. A photo is saved in the RAW format as a 12-bit depth image, obtaining
the CFA (color filter array) RAW data with a Bayern mosaic pattern. An image
example is illustrated in Fig. 11.5a.

2. White balance. This process guarantees that the image has no color cast. For
neutral colors to keep the correct appearance, a scaling of all intensity values
from the RAW file is performed. Figure11.5b depicts the white balanced image
example.

3. Demosaicking. The camera sensors produce an image in which for each pixel we
only get one of the image channel intensity values (either red or green or blue);
demosaicking is an interpolation process that estimates the other two missing
values, as exemplified in Fig. 11.5c. For our image processing pipeline, we chose
the local demosaicking algorithm proposed by Malvar et al. [34], which is based
on bilinear interpolation and further refined by using the correlation among the
RGB channels, with Laplacian cross-channel corrections.

4. Color correction. This processmakes the conversion from the camera color space
to sRGB (standard RGB) color space, as illustrated in Fig. 11.5d.

5. Gamma correction. In this step, the (normalized) image values are raised to the
standard power of 1/2.2. An image example is shown in Fig. 11.5e. This step
assures an optimized encoding that models the nonlinear human perception of
luminance: more sensitive to details in darker areas.
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Fig. 11.5 Image example to illustrate the camera processing pipeline. From left to right: RAW
original image (a), result after applying white balance (b), demosaicking (c), color correction (d),
gamma correction (e), and quantizing (f)

6. Quantization. This final step (for our purposes) of the pipeline quantizes the
image from 12-bit depth to 8-bit depth, outputting an RGB image ready for
display, as in Fig. 11.5f.

11.3.1.2 The Noise Model

For constructing a realistic signal-dependent noise model, estimated on the RAW
image, we follow the line of experiments of [19, 44, 46]. We analyze a RAW Col-
orchecker photograph by segmenting and extracting all of its 24 homogeneous color
patches, and computing the noise variance in each color square and for each RAW
color channel. Tests on several RAW images of the Colorchecker, taken with differ-
ent camera settings, allow us to conclude, as in [44] and [46], that the variance as a
function of the mean can be fitted by an increasing linear function, indicating that
the noise is signal-dependent.

Our noise estimation setup, exemplified by the left side of Fig. 11.6, also includes
two objects associated to two extreme cases that the Colorchecker does not take into
account: a cardboard box with the interior in shadow and painted with black matte
paint, and an aluminum foil that receives direct light and creates specular highlights.
The noise variance is then computed from crops from the black box as well as the
area with specular highlights. All of the patches fromwhich we compute the variance
are marked in red in the left image in Fig. 11.6. Finally, we estimate a noise model
from the 26 mean and variance pairs. An example of the channel-wise variance plot
as a function of mean pixel value is shown in right side of Fig. 11.6.

To add noise to a clean RAW image, we add to each pixel in the clean RAW image
white Gaussian noise with the local variance given by the variance plot value corre-
sponding to the pixel’s intensity. Afterward, we apply the rest of the camera pipeline:
white balance, demosaicking, color correction, gamma correction and quantization
to 8-bit depth.
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Fig. 11.6 The Colorchecker setup: an image of our noise estimation setup captured with ISO 800,
with marked regions used for estimating the noise model (left). Plot (example for one set of fixed
camera parameters) of variance as function of the mean, for a RAW image scaled between 0 and
1 (right). Values extracted from a RAW Colorchecker image taken with ISO 3200. Dots show the
real values obtained for each color square and each channel, while the continuous lines show the
fitted linear functions

11.3.1.3 Validation of the Noise Model

The ISO speed (or ISO sensitivity) estimates the camera sensitivity to light: the
higher the value, the higher the sensitivity. The camera transforms the light captured
by the sensors into an electrical signal, and increasing the ISO means amplifying the
electrical signal before the signal conversion from analog to digital. For example,
when increasing the ISO value from 100 to 200, the original electrical signal is
doubled. Amplifying the electrical signal better preserves image details. However,
this comes with the cost of amplified noise: the higher the ISO speed, the higher
the noise level. This justifies our choice of noise levels: we associate one to each
possible ISO value. Table 11.4 shows the average standard deviation computed over
our test set on the output images for the ISO levels given by our camera. Notice that
the highest noise level associated to ISO 3200 produces a relatively small standard
deviation.

Figure11.7 illustrates a crop from an image example from our database, for which
the original image and noisy images were created with the realistic noise model in
Sect. 11.3.1.2 and then followed the camera processing pipeline in Sect. 11.3.1.1.

Figure11.8 contains a validation of our noise model, comparing several image
examples taken with ISO 3200, which produces the highest noise level.

Table 11.4 Average noise levels given by different ISO noise curves on our test set

ISO sensitivity 100 400 800 1600 3200

σ 2.57 3.4 4.24 5.82 8.39
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Fig. 11.7 Crops from a noisy image example from our test set. From left to right: a original image,
b–f synthesized noisy images obtained with the noise curve associated to: b ISO 100 (σ =2.42), c
ISO 400 (σ =3.17), d ISO 800 (σ =3.95), e ISO 1600 (σ =5.43), and f ISO 3200 (σ =7.98)

11.3.2 Ranking Denoising Algorithms: AWG Noise Versus
Realistic Noise Model

In this section, we present an experiment that shows how essential the noise model
is for evaluating denoising methods. For this, we compare three denoising methods
applied to camera output images created with two different noise models. We use the
patch-based NLM and BM3D denoising methods, implemented with their publicly
available IPOL code [12] and [27], and the local VTV-based denoising method.

This lattermethod, proposed byBlomgren andChan [9], is a vectorial extension of
the channel-wise TV-based denoising and consists of replacing the gradient operator
acting on each channel by the Jacobian operator acting on the whole image:

It+dt = It − dtJ ∗
(

J (I)√‖J (I)‖2 + ε

)
, I|t=0 = I0, (11.15)

whereJ andJ ∗ are, respectively, the Jacobian operator and its adjoint, and ε is a
small positive constant used to avoid division by 0. We stop the iterative procedure
after a fixed number of iterations.

The parameters of these algorithms are the standard deviation of the noise, in the
case of NLM and BM3D, and the number of iterations for the VTV-based denoising.
We experimentally optimize these parameters for each image and noise level of the
database, choosing the ones that maximize the PSNR values of the denoised results.
We compute the denoising results under the following two noise models:

1. Starting with a clean RAW image IcleanRAW , add Gaussian noise, with variance
given by the associated noise variance plot as detailed in Sect. 11.3.1.2, to obtain
a noisy image InoisyRAW . For IcleanRAW and InoisyRAW , apply white balance, demo-
saicking, color correction, gamma correction, and quantize to 8 bit to obtain the
camera outputs Iclean and Inoisy. Apply NLM, BM3D and VTV-based denoising
on Inoisy to obtain the denoised images INLM , IBM 3D and IVTV .
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Fig. 11.8 Comparing a real noise photograph (a) and synthesized noisy images obtained by adding:
b Gaussian noise with variance given by our realistic noise model to the RAW image, c Gaussian
noise of constant variance to the RAW image, and d Gaussian noise of constant variance to the
camera output

2. Starting with the clean camera output image Iclean, add white Gaussian noise
(AWG), with fixed variance described in the next paragraph, to obtain a noisy
image Iawgnoisy. Apply NLM, BM3D and VTV-based denoising methods on
Iawgnoisy to obtain the denoised images IawgNLM , IawgBM 3D, and IawgVTV .
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Fig. 11.9 Comparison of BM3D, NLM, and VTV applied to the camera output, under two noise
models. Average PSNR value plots of denoising applied to noisy images created with additive white
Gaussian noise (left) and our realistic noise model (right)

The reference clean image Iclean serves as a ground truth for both experiments. We
tested the denoising methods on our test set, and the PSNR results are shown in
Fig. 11.9. The left shows a plot of PSNR as a function of the average noise stan-
dard deviation computed in the 8-bit depth noisy images with AWG noise over the
database. The right shows PSNR as a function of ISO sensitivity for images degraded
using our realistic noise model. Comparable noise levels are used for both experi-
ments, as seen from the average standard deviation values shown in Table11.4.

Notice how the ranking of the denoising methods is different with realistic noise
than with AWG noise. This justifies the use of a realistic noise model for image
denoising. There is also a large drop in the PSNR value for each denoising method
from denoising the AWG noise images to realistic noise images, consistent with
what was reported by Seybold et al. [44]. The local denoising method applied to the
camera output gives worse results in terms of PSNR than the nonlocal patch-based
methods, for both noise models. Figure11.10 illustrates this behavior. Denoising an
AWG noise image with BM3D gives an excellent output, while for the same original
image but with realistic noise, BM3D produces blocking artifacts on the leaf in the
shadow.

11.3.3 Comparing Local Denoising on DRAW Versus
Nonlocal Denoising on Camera Output

In this section, we illustrate the power of processing the RAW data as opposed
to the camera output by showing how a local denoising method, applied to the
demosaicked RAW (DRAW) image, can outperform nonlocal methods applied to
the camera output.
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(a) AWG Noise (b) VTV

D3MB)d(MLN)c(

(a) Realistic noise (b) VTV

D3MB)d(MLN)c(

Fig. 11.10 Comparison of VTV, NLM, and BM3D denoising methods under AWG on camera
output and a realistic noise model. Rows 1–2. a Crop from AWG noise image “image9” with
σ = 4.96. b VTV, PSNR=37.66. c NLM, PSNR=38.37. d BM3D, PSNR=38.92. Rows 3–4. a
Crop from realistic noise image “image9” with σ = 5.67 and ISO 800. b VTV, PSNR=35.39. c
NLM, PSNR=35.89. d BM3D, PSNR=35.72

11.3.3.1 Adapting a TV-based Denoising Method to the
Signal-Dependent Noise Model

TV-based denoising methods were proposed in the context of images corrupted
by signal-independent AWG noise. However, our database images suggest realis-
tic signal-dependent noise is a more accurate model.
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Two reasonable approaches are discussed in [33] for removing signal-dependent
noise. The first approach is to adapt an existing denoising method to treat specific
noise model properties. For example, Luisier et al. propose a methodology to adapt
transform-domain thresholding algorithms for the mixed Poisson–Gaussian noise
model [31]. The second approach is to create a variance stabilizing transformation
(VST) for the particular noise model. Applying the VST to an image removes signal-
dependency and the noise variance becomes constant over the entire image. Then
one can use a denoising algorithm created to eliminate Gaussian noise with constant
variance. After denoising, one needs to apply the inverse VST. The advantage of the
second technique is that denoising images corrupted by AWG noise is an extremely
popular topic that has produced many algorithms over the last decades.

Donoho [15] was the first to propose applying the Anscombe transform [4] as a
VST. As described above, a denoising algorithm created to eliminate AWG noise
with constant variance can then be applied, followed by the inverse VST. Mäkitalo
and Foi [32] also used the Anscombe transform to remove the signal-dependency, but
emphasized the importance of applying a suitable inverse. Following this approach,
we apply the Anscombe transform fAnscombe to the demosaicked noisy RAW image
InoisyDRAW :

fAnscombe(InoisyDRAW ) = 2

√
InoisyDRAW + 3

8
(11.16)

and denoise the image fAnscombe(InoisyDRAW )withVTV, instead of denoising InoisyDRAW ;
this intermediate result is denotedD. Then, we apply the closed-form approximation
of the exact unbiased inverse Anscombe transform proposed by Mäkitalo and Foi
[32] to D:

˜f −1
Anscombe (D) = 1

4
D2 + 1

4

√
3

2
D−1 − 11

8
D−2 + 5

8

√
3

2
D−3 − 1

8
.

We denote the resulting image by IdenDRAW and refer to this method combining VTV
with the Anscombe transform as AVTV. Figure11.11 illustrates an improvement
in the average PSNR value of image results obtained by applying the Anscombe
transform before denoising with the VTV-based procedure described by (11.15).

11.3.3.2 Refine the Denoising Output by Recovering Lost Details

Even the best denoising algorithms can benefit from the so-called “boosting” tech-
niques [42]. One boosting mechanism involves adding content from the residual
(difference between the noisy and denoised image) back to the denoised image. This
is justified by the fact that denoising is an imperfect process that eliminates not only
noise but small details as well. But while signal leftovers can be retained in the resid-
ual, the opposite is also true: noise is retained in the denoised image. An alternate
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Fig. 11.11 Evolution of our
TV-based local denoising
experiments, under the
proposed realistic noise
model: average PSNR values
computed over our image
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boosting mechanism aims to eliminate the noise retained in the denoised image, but
this produces oversmoothed images as a result.

The biggest challenge for any denoising method, especially for a local one, is to
make the distinction between noise and details. As a boosting technique, we propose
adding back selected useful information to the denoised image, determined by

IAVTVE = (1 − a)InoisyDRAW + aIdenDRAW , (11.17)

where the weight function a should ideally include information related to the local
image content. The essential part here is the criteria for differentiating between noise
and details we want to recover from the residual.

The functionaweconsider is an indicator of the local information in the luminance
channel of the denoised image. In smooth areas we want to keep the pixel intensity
values of the denoised image intact, so the value of a should be large; on the other
hand, along image contours we want to partially recover some of the details of
the original noisy image, so the value of a should be small (positive and close to 0).
Therefore, we propose estimating a using a local edge indicator, like the Charbonnier
diffusivity function [13]

fCharbonnier = 1√
1 + ‖∇L( ̂IdenDRAW )‖2

λ

, (11.18)

where L denotes the luminance component, and λ > 0 is a contrast parameter related
to edge localization. The image ̂IdenDRAW is obtained by finding the number of iter-
ations in the iterative scheme introduced in (11.15) that maximizes the PSNR index
computed after color correction, gamma correction, and the quantization step. We
give a higher weight to the denoised image than to the noisy one, by choosing:



11 Three Approaches to Improve Denoising Results … 317

(a) Noisy (b) TV (c) VTV

EVTVA)e(VTVA)d(

Fig. 11.12 Comparison of our local TV-based denoisingmethods applied to the demosaickedRAW,
under the proposed realistic noise model. a Crop from noisy image “image20” with σ = 4.84
and ISO 800. b TV, PSNR=37.14. c VTV, PSNR=37.38. d AVTV, PSNR=37.45. e AVTVE,
PSNR=37.73

a = 1 + fCharbonnier
2

. (11.19)

Experiments show that both the step of applying the Anscombe transform before
denoising and its inverse after, and the step of refinement described by (11.17), bring
an improvement (both in terms of PSNR and visually) compared to only denoising
with the iterative scheme introduced in (11.15), as seen in Figs. 11.11 and 11.12.
These experiments also illustrate that the vectorial VTV-based denoising approach
improves the channel-wise TV-based denoising strategy that was used in [17].

11.3.3.3 The Comparison

The experiment in this section is intended to mimic a realistic scenario. Nonlo-
cal patch-based denoising methods are too complex to be implemented in-camera
without essential simplifications.Therefore,we compareour local denoising approach
AVTVE applied to the demosaicked RAW noisy image, with two nonlocal patch-
based methods (NLM and BM3D) applied at the end of the noisy image processing
chain, following these steps:

1. We take a clean RAW image IcleanRAW and add Gaussian noise, with variance
given by the associated noise variance plot as detailed in Sect. 11.3.1.2, to obtain
a noisy image InoisyRAW .

2. For IcleanRAW and InoisyRAW , apply white balance, demosaicking, color correction,
gamma correction, and quantize to 8 bit to obtain the camera outputs Iclean and
Inoisy.
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3. Apply nonlocal patch-based denoising methods (NLM and BM3D) to Inoisy to
obtain the denoised image (INLM and IBM 3D), optimizing the denoising parameters
so as to maximize the PSNR. The reference clean image Iclean serves as a ground
truth.

4. Apply white balance and demosaicking to InoisyRAW to obtain InoisyDRAW . Then
denoise with our local method AVTVE, followed by color correction, gamma
correction, and quantization to 8 bit, to output our denoised image IAVTVE . The
denoising parameters, described in the following, are optimized so as tomaximize
the PSNR of IAVTVE .

5. Evaluate the images IBM 3D, INLM , and IAVTVE , visually and with respect to PSNR.

The plot of Fig. 11.13 shows the average PSNR values over our proposed image
dataset, for each noise level given by the considered ISO sensitivity and each denois-
ing strategy aforementioned.We can see that our denoisingmethodAVTVEproduces
better results in terms of PSNR than the BM3D and NLM denoising methods, for
almost all ISO levels. However, for the highest noise level associated to ISO 3200,
NLM is the best in terms of PSNR, while our method is second.

A visual comparison is illustrated in Fig. 11.14, where the images are denoised
with the optimal parameters described above. For a better comparison, the difference
between the clean and denoised images for each method is included in Rows 2, 4,
and 6. Ideally, the difference image should be completely black, as the difference is
given by lost details or artifacts introduced by the denoising method. The close-up
images in the first two rows demonstrate that for small noise levels, the denoising
methodsBM3D,NLMandAVTVEproduce comparable results. All three algorithms
preserve the apple in the example in the third and fourth rows, although the AVTVE
result has a cleaner appearance while the NLM and BM3D denoised images exhibit
small blocking artifacts. An image with the highest noise level was investigated in
the bottom two rows, where the BM3D output reveals strong blocking artifacts in the
homogeneous area, while the AVTVE and NLM results have a cleaner appearance.

Fig. 11.13 Comparison
between the local denoising
method AVTVE applied to
the demosaicked RAW to the
NLM and BM3D denoising
algorithms applied to the
camera output, under the
proposed realistic noise
model. Average PSNR
values computed over our
image test set
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(a) Noisy (b) BM3D (c) NLM (d) Our: AVTVE

Fig. 11.14 Comparison of the local denoisingmethod AVTVE applied to the demosaicked RAW to
the BM3D and NLM denoising methods applied to the camera output, under the proposed realistic
noise model. Row 1: crop from noisy image “image13” with σ = 4.11 and ISO 800, BM3D result
with PSNR=36.79, NLM result with PSNR=36.97, AVTVE result with PSNR=37.11. Row 2:
difference images for crops of Row 1, scaled for visualization with the scaling factor 7. Row 3: crop
from noisy image “image1” with σ = 4.55 and ISO 100, BM3D result with PSNR=36.35, NLM
result with PSNR=35.94, AVTVE result with PSNR=37.95. Row 4: difference images for crops of
Row 3, scaled for visualization with the scaling factor 7. Row 5: crop from noisy image “image7”
with σ = 9.14 and ISO 3200, BM3D result with PSNR=38.93, NLM result with PSNR=40.11,
AVTVE result with PSNR=39.70. Row 6: difference images for crops of Row 5, scaled for visu-
alization with the scaling factor 7

Table11.5 shows the average running time for the AVTVE, NLM , and BM 3D
methods for a 1000× 2000 color image from our test set, on a i7-4770 CPU with
3.4GHz and 8 cores. At a fraction of the running time of NLM and BM 3D, the
AVTVE method, although not optimized for speed, produces results that are com-
parable or better both visually and in terms of PSNR.
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Table 11.5 Average running time (s) for one 1000× 2000 color test image of AVTVE, BM 3D,
and NLM , for different noise levels given by different ISO settings

ISO sensitivity 100 400 800 1600 3200

AVTVE 1.5 2.0 2.5 3.5 5.0

BM3D 31 31 31 31 31

NLM 19 19 19 19 19

11.3.3.4 Compare Local with Low-Complexity Nonlocal Denoising
Applied at the Same Stage of the Image Processing Chain

As nonlocal methods have a high complexity and cannot be implemented in-camera
unless some simplifications are done, we consider a reduced-complexity version
of the BM3D method, obtained by tuning several parameters such that the method
reaches the lowest complexity while producing a reliable image output. We fix the
patch size to 8× 8 and search for similar patches in a small window of size 10× 10.
As we did for the local method, we optimize the default parameter for each image
and noise level of the test set, choosing the one that maximizes the PSNR value of
the denoised result.

As the BM3Dmethod is designed to treat Gaussian noise, we apply the Anscombe
transform introduced in (11.16) before denoising and its inverse after, like we did for
our denoising method. We denote this approach by ABM3D. We also consider the
refinement step described by (11.17), producing a result denoted ABM3DE. Both the
steps of applying the Anscombe transform and the refinement step produce image
results that have a higher PSNR value compared to the BM3D output, as seen in
the plot of Fig. 11.15. Table11.6 shows the average running time for the AVTVE,
ABM3D and ABM3DE methods for one 1000× 2000 color image from our test set,
on the same machine. For computing the running time of the BM3D algorithm, we
use the fast C++ implementation available online [27], while we point out again that
our current implementation of the AVTVE algorithm is not optimized for speed.

The plot in Fig. 11.15 shows the average PSNR value over our proposed image
dataset, for each noise level given by the considered ISO sensitivity and each denois-
ing strategy aforementioned. For almost all noise levels, ourmethod produces images
that are better than BM3D and ABM3D in terms of PSNR. For a higher running
time, ABM3DE gives the best PSNR value. Notice that for the highest noise level,
all methods produce denoised images with a very similar PSNR value.

11.3.4 Research Avenue to Explore

It is clear that many powerful algorithms exist for removingAWGnoise from images,
and they can be used also to handle RAW pictures after they have been processed
with a VST like the Anscombe transform. However, denoising is still a challenging
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Fig. 11.15 Comparison
between the local denoising
method AVTVE and the
low-complexity BM3D,
ABM3D, and ABM3DE
applied on the demosaicked
RAW, under the proposed
realistic noise model.
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Table 11.6 Average running time (s) for one 1000× 2000 color test image of AVTVE, ABM 3D,
and ABM 3DE, for different noise levels given by different ISO settings

ISO sensitivity 100 400 800 1600 3200

AVTVE 1.5 2.0 2.5 3.5 5.0

ABM3D 5.2 5.2 5.2 5.2 5.2

ABM3DE 10.4 10.4 10.4 10.4 10.4

task for regular camera output images, where the noise model is extremely complex.
There is a need to develop a noise model for JPEG images from which a VST for
JPEG noise can be derived, allowing then regular denoising methods that assume
AWGnoise to be applied to the JPEG case aswell. An alternativewould be to develop
a noise model for JPEG images whose parameters can be estimated from the image
itself, and develop new denoising methods adapted to this model.

11.4 Optimize Denoising Methods According to Perceived
Quality of Results

In film photography, noise is called “film grain” as it is due to the presence of
minuscule grains of silver. When subtle, people actually prefer its presence [3] as it
improves image appearance. This is a phenomenon due to visual perception: a small
amount of noise makes the image look sharper and appear to have higher resolution.

However, too much noise, or noise that is not uniform but highly localized, will
make the image unpleasant. This is the case of digital image noise, which is not uni-
form but image-dependent, appearing more pronounced in dark areas and shadows.

The noise level introduced by common consumer cameras is surprisingly small
compared to the level of AWG noise added to clean images in academic works
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in order to create synthetic noisy images, as is traditionally used in testing image
denoising algorithms. This fact can be concluded from Table 11.4 that includes the
average standard deviation computed over realistic noise images, for the ISO levels
given by our camera, as in our experiments described in Sect. 11.3.1.2. It can be seen
that even the highest noise level corresponding to ISO 3200 gives a small standard
deviation, on average. This fact is confirmed in [40], where the authors claim that
using noise standard deviations of at least σ = 10 for synthetic AWG noisy images
is “mostly a historical artefact”.

Photographers often add a small amount of noise to studio images taken at low
ISO, due to the fact that a photo that is “too perfect” can be perceived as fake [3].
To emulate grain noise, several layers of Gaussian noise with different variance are
added. Photographers always add the noise after the sharpening step and the added
noise is achromatic. While the luminance noise in a digital sensor has some sort of
similarity to grain, the chroma noise (given by variations in colors) is not something
we like to see in a photograph.

In [23] researchersworkedwith a professional photographer to learn specificways
in which a digital image can be aesthetically improved by adding noise: masking
actual noise and banding artifacts in the original, improving the appearance of blown
highlights, increasing the perceived resolution. The photographer introduced several
different noise layers for each image example resulting in a higher noise level in
midtones and a lower one in shadows and highlights, with almost no noise toward 0
and 255. Regarding the noise distribution, while for midtones a Gaussian distribution
is a good choice, for highlights the histograms are skewed and the best candidate is
the chi-squared distribution characterized by an asymmetrical shape.

Johnson and Fairchild [21] examined some of the ingredients that influence image
sharpness perception. The highest image score was achieved by the highest resolu-
tion image to which noise with σ =10 was added, and processed with both contrast
enhancement and increased sharpness. Regarding the noise factor, the conclusionwas
that additive uniform noise applied independently in each color channel increases
the perceived sharpness only up to a point, after which it decreases. Interestingly,
adding noise can also mask a reduction in image resolution; images with 300 ppi
and 150 ppi were evaluated as having similar perceived sharpness when the lower
resolution photo had added noise and increased contrast. Kurihara et al. [24] con-
cluded that when noise is added to edges, sharpness decreases, while when added
to texture, it increases up to a point, decreasing afterward. Kayargadde and Martens
[22] investigated the connection between the noise level and blur, finding that adding
noise to a sharp image causes it to be perceived as more blurred, while adding noise
to a blurred one makes it appear a little less blurred.

None of these aspects of perceived image quality are considered when evaluating
denoising results using existing image quality metrics. The PSNRmeasure is known
to have problems in indicating the perceived image quality, and although SSIM
[47] is designed to take into account perceived errors, it is not well correlated to
human preference [39]. Even though their limitations are known, PSNR and SSIM
are still the most popular measures for image denoising. There are many more image
quality metrics, as, for example, the visual information fidelity (VIF) measure [45],
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the Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) [35], or the
naturalness image quality evaluator (NIQE) [36]. However, the vast majority of
metrics are based on measuring differences between the denoised result and the
clean ground truth, which does not necessarily correlate with the perceived image
quality of the denoised result, as we will demonstrate in the next subsections. This
section is extending the work described in [18].

11.4.1 Experiments

We compare three denoising methods: we introduce a local curvature smoothing
(CS) algorithm and compare it with the nonlocal patch-based methods NLM [11]
and BM3D [14].

For the CS algorithm, we start with the original noisy image I0 = I0, compute
channel-wise its regularized level line curvature κε2(I0) (which is just the usual level
line curvature computed with an added value ε2 in the denominator: as this value
increases, the curvature becomes smoother), and iterate the following equation N
times:

I n+1 = I n + Δt

[
∇− ·

(
∇+I n√‖∇+I n‖2 + ε1

)
− κε2(I0)

]
, (11.20)

where ∇+ and ∇− are the forward and backward spatial difference operator. Due to
the fact that the curvature can be estimated for each pixel with a 3 × 3 stencil around
it, the proposed method is local. We fix the parameters: ε1 = 10−6 (very small for
a good approximation of κ(I)), Δt = 0.002 and N = 30. The CS method has only
one parameter, the regularizing value ε2, and how it is chosen will be described later.

We perform this comparison on two image databases: images from the Kodak
database [2] with AWG noise and photographs taken by us with the noise model
proposed in Sect. 11.3.1.2. The evaluation is done using subjective testing as well as
the objective PSNR and SSIM metrics.

11.4.1.1 AWG Noise Case

The subjective evaluation involved 17 participants (all with normal or corrected to
normal vision). Subjects sat in a well-lit office environment at approximately 64cm
from the display and were presented with four versions of an image: the original
at the top, and the three denoising results (CS, NLM, and BM3D) in some random
order at the bottom. The observers were asked to look at the original image and then
indicate which of the three provided denoised images they preferred (Figs. 11.16 and
11.17).

Wepicked randomly three images from theKodak database (“kodim1”, “kodim3”,
and “kodim13”) and created three noise levels by adding Gaussian noise with
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Fig. 11.16 Test images: crops from Kodak images
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Fig. 11.17 From left to right: average PSNR and SSIM computed for three images from the Kodak
database, and results of psychophysical experiment for comparing our proposed local denoising
method to BM3D and NLM

Table 11.7 Optimized parameter value ε2 as a function of σ

σ 3 6 9

ε2 0.00032 0.003 0.00608

σ = 3, 6, 9. As commented above, although these σ values seem low, they are com-
mon noise levels in photography. The denoising algorithms NLM [12] and BM3D
[27] take as input the value of σ . We find the value of ε2 of our method with a
subjective methodology; we ask participants to adjust ε2 via key presses for finding
their preferred image result. We average over subjects and images to get one value
of ε2, as shown in Table11.7, for each noise level.

We compute the values of PSNR and SSIM for each denoisingmethod, as we have
the clean ground truth. We also conduct a user preference test (using the procedure
described above). We crop the images to be able to simultaneously show all of them
at the native resolution and avoid resizing. The results in Fig. 11.17 indicate that the
SSIM metric gives a reasonable approximation of the subjective scores, predicting
that the differences between the algorithms are small for a low noise level and that
for high noise levels, the local CS method gives a poor performance. However, both
PSNRandSSIMare poor at predicting the preferred algorithmon an image-by-image
basis, as Fig. 11.18 shows. To evaluate the metric performance we compute an upper
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Fig. 11.18 Visual comparison for one test crop from image “kodim3” and user preferences

bound by randomly dividing the subjective data into two subject groups (A and B).
We then compute a percentage correct score, for each image. The score is 100% if
the order is entirely correct, 33% for only getting the order of one correct or 0% for
a complete failure. The result is that, on average, group A is able to predict the data
from group B 64% of the time. However, both the SSIM and PSNR achieve a score
of less than 46%, with a baseline score of 33%.

11.4.1.2 Realistic Noise Case

We conduct a user preference test on realistic noise removal, with results given by
denoising with CS, NLM and BM3D, as well as no denoising at all. The subjective
evaluation involved 19 participants (all with normal or corrected to normal vision)
that sat in a well-lit office environment at approximately 64cm from the display. We
used the 20 images and three noise levels given by ISO 100, 400 and 1600 from
our proposed test set following the realistic noise model proposed in Sect. 11.3.1.2,
cropped to allow a simultaneous display of two images at their native resolution. At
the first stage, we find the values for σ (the parameter for NLM and BM3D) and
ε2 (parameter for CS) through user tests. Subjects are presented with a sequence
of 51 versions of the same image denoised with different values of the pertinent
parameter, fromaminimum(nodenoising) to amaximum(the image is fully denoised
but blurry), and the observer chooses the one he/she prefers. At the second stage,
subjects are asked to select their preferred image between two versions of it displayed
simultaneously, which can be either the original noisy or the result of the preferred
output of the denoisingmethods NLM, BM3D and CS obtained at the previous stage.
The results of the psychophysical experiment are shown in Fig. 11.19.

On the left-hand side of the figure, we plot the user preference averaged across all
images, for each noise level considered. People preferred NLM for all noise levels.
They slightly preferred CS over BM3D, for a small noise level, while the results
were comparable for a medium noise level. As the noise increased, for ISO 1600,
people preferred NLM even more compared to the BM3D and CS algorithms.

Regarding the comparison between the original noisy and the denoised images,
observers voted for applying a denoising method over not applying any method.
However, the original noisy image was preferred surprisingly often (around 20%),
especially when compared to the BM3D output. Averaging over all subjects, there is
no image for which no denoising was preferred over all denoising methods. There-
fore, choosing the noisy image penalized the denoised image, it was not a vote of
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Fig. 11.19 A two by two comparison between the three denoising algorithms and the original noisy
image

appreciation for the noisy image. There is only one image (Image18, cartoon-like) for
which the noisy original did not get any vote from any observer, for all noise levels
considered. This might indicate that we do not like noise in cartoon-like images.

At the first stage, observers could choose between the noisy original and 50
denoised images with increasing parameter values: only one observer chose the
noisy image in several cases. At the second stage, of comparing two by two each
of the denoising methods and no denoising, all subjects gave at least one vote to
one original noisy image. Therefore, when the noisy stimulus was shown next to the
denoised one, the preference for the noisy image increased.

For each denoising method, we computed the average of PSNR and SSIM for
all images that people chose as their preferred one. We compared these objective
metrics result to the subjective one, included in Fig. 11.19. For a small noise level,
in the case of the BM3D denoising method, people preferred images denoised with
parameters giving a surprisingly low PSNR value. The PSNR value also estimated
a large difference in quality between the outputs of CS and BM3D, while people
perceived it as small. While the PSNR and SSIM index ranked the NLM and CS
methods similarly, people preferred the former one. In the case of the second noise
level considered, the objective measures were better correlated to human preference.
However, the SSIM index estimated that the image quality of the BM3D output is
much higher than that of the CS algorithm, while subjects only perceived a small
difference between the twomethods. In the case of the highest noise level considered,
the objective measures and the subjective preference ranked differently the denoising
methods. While the BM3D method gave images with the highest PSNR and SSIM
values, people chose NLM results as their favorite. Both the PSNR and SSIMmetrics
estimated a large difference in quality between the outputs of BM3D and CS, while
people perceived it as small.

11.4.2 Research Avenue to Explore

We have seen examples that once more show how the use of popular metrics like
PSNR or SSIM is problematic in the evaluation of different denoising outputs, since
they are not well correlated with personal preference. Therefore, there is a need
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to create an image metric for image denoising that is based on human perception,
according to which noise removal algorithms can be optimized. Alternatively, until
such a metric is developed, it would improve results if denoising methods are tuned
and ranked via user tests based on perceived appearance.

11.5 Conclusion

In this chapter, we have pointed out several avenues to pursue in order to improve
denoising results that do not entail developing new denoising algorithms. First, we
described how it can be better to denoise a transform of the noisy image rather than
denoise the noisy image directly. We mention several possible transforms, and an
open problem is to find one that is optimal for denoising, according to a proper image
quality metric. Next, we pointed out the importance of having a proper noise model
for JPEG pictures, so that a VST can be developed that transforms noise in JPEG
images into AWG noise, enabling existing denoising methods to be properly applied
to the JPEG case. Finally, we highlighted the fact that while virtually all denoising
methods are optimized and validated in terms of the PSNR or SSIM measures, these
metrics are not well correlated with perceived image quality and therefore it could be
better to optimize the parameter values of denoising methods according to subjective
testing. A remaining challenge is to develop perceptually based image qualitymetrics
that match observer preference.
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