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Abstract This research draws on theories in discrete event simulation, order statis-
tics and record-breaking statistics to develop a methodology for deciding when to
stop a combinatorial optimization search. During the first optimization period, the
objective function improves rapidly with the iterations, and the improvement slows
gradually until it almost stalls. We adopt a popular method to detect the period of
rapid improvements of the “warm-up period”, and then we propose a special con-
trol chart technique to identify with a given certainty reaching a steady state. Then,
we suggest using the theory of record-breaking to decide on a stopping criterion.
In addition, the paper develops estimates for the optimum bounds and estimates for
value and timing of the next expected improvement. The advantages of this approach
are discussed.

Keywords Stop criterion · Convergence · Evolutionary · Swarm · Solution’s
quality · Bound

1 Introduction

The convergence towards the optimum of genetic algorithms and other related search
techniques iswell established (Holland 1992; Pandey et al. 2014). The objective value
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of all search techniques shows a typical initial rapid improvement period followed by
continual decrease in improvement rate, as the search goes-on (Rawlins and Sushil
2014).

There are several popular stopping criteria such as: (1) number of generations
(Liu et al. 2014), (2) number of generations without minimal improvement (Ha
et al. 2014), (3) maximum optimization time (Glorieux 2015, p. 9), (4) optimiza-
tion threshold value (Glorieux 2015, p. 9), (5) a threshold value for the difference
between the objective best value and average value, over the generations (Toledo
et al. 2014). However, setting the stop criterion in each case is more an art than a
science. Martí et al. (2016) tried to integrate science into this decision, but ended
up with complex models based on progress indicators with a Kalman filter which is
used for data gathering. This paper suggests amore structured and reason-based strat-
egy. It first identifies an initial “warmup period” (Rossetti et al. 2005), of significant
improvement, then it tests when the objective function reaches a plateau (Robinson
2007), finally, it adopts the statistical inference of a record breaking process from a
stationary random process (Glick 1978; Krug and Jain 2005).

2 Objectives

The objective of the research is to propose an effective and efficient stopping criterion
(Hermadi et al. 2014; Kim 2013) that could be applicable to most search techniques
(for example, Genetic Algorithms (GA), Simulated Annealing (SA), Ant Colony
(AC), Particle Swarm Optimization (PSO), etc.). The suggested stopping technique
should also be based on current scientific tools and on reason. Additionally, the
proposed technique should be easy to apply and easily understood.Most importantly,
the technique should offer ways to control its reliability.

To fulfil the objectives we set three different goals to be achieved:

1. The identification of the initial period of rapid improvement in the objective
function.

2. The identification of the second period of the objective function convergence to
a plateau.

3. The identification of a sufficiently good solution by assuming a stationary
homoscedastic process.

3 Identifying the End of the Intensive Warm-up Period

The first step is to identify the end of the initial steep descent or “warmup period”
(Rossetti et al. 2005). For that purpose, we adopt the following Definitions:

Fmax Largest value of the fitness function
Fmin Smallest value of the fitness function
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Fig. 1 Example of identifying the warm-up period in evolutionary optimization

Total improvement � Fmax-Fmin

n The number of last observations of the fitness function for consideration.
δ The range of fitness function value of the last n observations.
e Threshold value for the ratio between δ and the total improvement

First we need to decide on the value of n (the number of last observations we
consider). Once n is know (say n � 6), δ could be computed continuously as follows:

δ � Max(Xt , Xt−1, . . . Xt−n) − Min(Xt , Xt−1, . . . Xt−n) (1)

Note that δ is analogous to the total improvement, but is only related to the last
n observations. Thus, the ratio between δ and the total-improvement is the ratio
between the local improvement (of last n points) and the global improvement. This
ratio is expected to decline through time and using an epsilon as a threshold is utilized
as a stopping rule as described in Fig. 1.

Reaching the threshold described in Fig. 1, is telling us that the process finished
its steep progress towards the optimum. However, it does not mean that the process
reached a stationary condition or hit a plateau. It still remains up to a second procedure
to ascertain the steady state of the process. This step is described in Sect. 4.

4 Identifying the Steady State

Once the initial period of intensive improvement is curtailed, a quest for steadiness
begins. A second procedure is applied to make sure that the process is stationary with
unchanging variance. A popular quality control based technique was adopted for this
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Fig. 2 An example for the method of batch means

purpose. The technique is widely used by the discrete event simulation community.
Themethod is named themethod of “BatchMeans” (Robinson 2007). This method is
sometimes used outside theworld of discrete event simulations: for example, Rossetti
et al. (2005).

In this scheme we define:

n the number of observations in each batch.
m the number of required batches.
Y j the mean of batch j.

Y the total mean of all observations.
S2Y the variance of the batch means.

Setting values to n, and m (typically greater than 6) generates m groups of n
observations each. The central limit theorem (CLT) ensures that the batch means
are distributed approximately as Normal IIDs, and thus by the procedure tests for
outliers from the following range:

Y ± t(m−1,1−α/2)
SY√
m

(2)

If there are no outliers, we adopt the end-point of last batch (mth batch) to the
beginning of the third step of the overall procedure. Otherwise, a repeated procedure
of m-means will be applied where the first batch will start right after the last outlier
(Fig. 2).
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Table 1 Record number r and its simulated statistical parameters (Glick 1978)

r 2 3 4 5 6 7 8

E(n) 4 14 40 109 291 781 2097

Median�
Mr

4 10 26 69 183 490 1316

Mr/Mr-1 2.50 2.60 2.65 2.65 2.68 2.69

5 Identifying Sufficiently Satisfying Record

Once the second step of batchmeans is done, a steady state process could be assumed,
for the observations that follow the last batch. In that region, a third step is taken
using record-breaking theory for deciding when to stop the search. For presenting
the record-breaking theory and our proposed stopping rule, the following definition
are given.

Definitions

r Record number (r�2: second record, r�3: third record, etc.)
n Number of generations/observations
E(n) mean number of trials/observations until a certain record number.
Rn number of records in n generations/observations.
Mr Median number of trials/observations related to the rth record
Mr /Mr−1 The ratio of current median to median of last record

Table 1 shows results of an extensive simulation trial for a process of drawing
n iid variables, until the 8th record is achieved. Table 1, shows for each rth record:
the mean average observations (E(n)). However E(n) approaches infinity as n grows,
whilemedian is stable. Therefore, we prefer dealingwithmedians.Median is denoted
(Mr), and the ratio of current median to last one (Mr/Mr−1) is based on (Glick 1978).
This ratio approaches e � 2.718 as r grows.

Thus:

Median{nr+1}
Median{nr } � e � 2.718 (3)

This means that the median number of observations between the current record
to next record is 2.718 times the total number of observations so far (until cur-
rent record). Setting a threshold for number of generations without improvement is
easy. For example, limiting the search for achieving next record by maximum of
additional million generations has a median of last record: at, or after, a total of:
1,000,000/2.718 � 367,918 generations.

Additional way to set a threshold is to use the number of records directly. In that
case, the threshold could be determined using the Chebyshev’s bound for ensuring
that the solution is in a certain percentile of the total population of solutions. Table 2
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Table 2 Expectation, variance, and standard deviation for n i.i.d. observations (Glick 1978)

Number
observations n

E(Rn) V (Rn) σ(Rn) E(Rn)+3σ(Rn)

100 5.19 3.55 1.88 10.84

200 5.88 4.24 2.06 12.06

300 6.28 4.64 2.15 12.74

400 6.57 4.93 2.22 13.23

500 6.79 5.15 2.27 13.60

600 6.97 5.33 2.31 13.90

700 7.13 5.49 2.34 14.16

800 7.26 5.62 2.37 14.37

900 7.38 5.74 2.40 14.57

1000 7.49 5.8564 2.42 14.75

1,000,000 14.39 12.75 3.57 25.10

shows results for several thousand repetitions of generating n iid observations and
keeping Rn at each repetition.

For each n, the mean E(Rn) and variance V (Rn) number of records was computed.
This enables to find a number of records that ensures with high probability that the
best of n observations was found. The rightmost column of Table 2, uses 3 standard
deviations above the mean. Using Chebyshev’s one-sided bound ensures that the best
solution among n is found with a probability of 94.4%:

Pr{no better records exist for n|k � 3} � 1 − (1/(2(k2)))

� 1 − ((1/2)(1/32)) � 17/18 � 0.944 (4)

Thus, a process of waiting for the next 15 records is equivalent to waiting at the
minimum 1200 generations, and waiting for 25 records is equivalent to observing
1,000,000 generations.

6 Results

We compared the results of the proposed GA stopping technique with optimal values
of the benchmark RCPSP solutions on PSPLIB (Kolisch and Sprecher 1997; Kolisch
et al. 1999). We used 30 solutions for 4 different network sizes: 120, 90, 60 and 30
activities. The stopping parameters we used were: (1) For the intensive improvement
stage: n=8, ε�0.005; (2) for the batch means n=10, m=5 and α�0.05; (3) setting
the start point at the end of step-2 and waiting for 15 more records. The results are
summarized in Table 3.

Thus, preliminary results (summarized in Table 3) show that the suggested scheme
ensures high quality solutions, albeit in some cases adding some computational time.
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Table 3 Results of the GA stopping rules vs. benchmark optimum (Kolisch et al. 1999)

No. of activities Benchmark cases # reach optimum % reach optimum
(%)

Within 1% of the
optimal value
(%)

30 30 28 93 100

60 30 24 80 100

90 30 18 60 98

120 30 14 47 93

7 Conclusion

The paper suggests a new approach for stopping criterion for search techniques. First,
the length of the warmup period with intensive improvement is identified. Then,
batch means method is applied for reaching a flat part of the fitness function—to
be approximated as a static distribution process. This approximation enables using
record breaking statistics for stopping inference rules. Preliminary results show high
quality solutions could be obtained using this scheme. It is left for future research
to examine the impact of most model parameters, and the trade-off between solu-
tions quality and its time-performance. For that purpose far more experimentation is
needed, as well as sensitivity analysis for each parameter and their combinations.
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