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Improved Detection of Steganographic
Algorithms in Spatial LSB Stego Images
Using Hybrid GRASP-BGWO
Optimisation

S. T. Veena, S. Arivazhagan and W. Sylvia Lilly Jebarani

Abstract With the success of passive steganalysis, active steganalysis proceeds
with its first step to reveal the steganographic algorithms being used to create the
stego images. This process needs to be modelled as a multi-class classification
problem. Stem to stern analysis of the literature points out that the existing universal
steganalytic features are a thorn in the flesh because of their dimensionality curse
(34,671). Hence this work concentrates on detection of steganographic algorithms
by optimal novel features christened Local Residual Pattern (LRP) and Local
Distance Pattern (LDiP). LRP captures first order derivatives of the high pass
filtered output, while LDiP exploits the multi scaled radii neighbourhood to capture
deformities at a distance. Acquiring LRP and LDiP from fifteen different kernels,
this work focuses to find optimal features by the proposed hybrid technique of
Greedy Randomised Adaptive Search—Binary Grey Wolf Optimisation
(GRASP-BGWO). Deriving confidence from the bio-inspired algorithm and the
divide and conquer approach of the proposed optimisation, this work succeeds in
improving the performance of the employed ensemble logistic regression classifier
with minimal features. Experimentations conducted using five representative
algorithms of spatial Least Significant Bit (LSB) embedding category for eight
different payloads show that the developed minimal feature steganalyser outper-
forms the state-of-the-art steganalysers.
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4.1 Introduction

In the age of digitisation, it is easier to hide secret messages into any image using
steganography which can be a challenge to national or international security.
Globalisation has made a large number of steganographic tools freely and easily
available even to illegitimate users for example a single website [1] contains more
than 110 free steganographic tools. It is the job of steganalysis to surveil these
secret communications. Steganalysis starts off with simple detection of stego
images from the innocent cover images and proceeds to extract or decipher the
secret hidden within them. The former task is known as passive steganalysis and the
latter processes are collectively termed as active steganalysis. A large number of
literature exists for passive steganalysis of both targeted and universal nature [2–5].
Though the targeted steganalysers are found to be more accurate, the universal
steganalysers enjoy favouritism in the context of being able to work on a large
range of steganographic algorithms. Particularly, universal steganalysis of spatial
LSB steganography in raw image formats has attracted researchers because of their
very low embedding change rates and poses a tougher challenge than the JPEG
steganalysis. The low volume payload and the content adaptive LSB steganography
are two open challenges in spatial LSB steganalysis [6, 7]. Also, there are not many
literary works in active steganalysis as in passive steganalysis. And the first task of
active steganalysis is that of identification of tools or the algorithm involved in
creating the stego images. Identification of the tool is taken up as a branch of
forensic study and most of them are signature based steganalysis [8, 9], while
identification of algorithms is handled as a pattern recognition process. However,
not much of work in literature supports identification of the steganographic algo-
rithm involved.

The first step in this direction of detecting algorithm used in creating stego
images was that of classification of the JPEG steganographic techniques [10]. Here,
the Discrete Cosine Transform (DCT) features previously developed were used
along with a multi-class Support Vector Machine (SVM) with Gaussian kernel
trained with images from four JPEG techniques namely F5, MB1, MB2 and
Outguess. The multi-class classifier was built on one against one strategy and
named in the paper as Max-Wins. They were able to classify images with large
messages reliably and when tested with new schemes, they were assigned to
closely-related trained schemes. The authors extended their work to double com-
pressed JPEG images with six techniques using calibrated DCT features with the
same classifier [11]. They reported that as the JPEG quality factor of compression
increases, the reliability of the classifier deteriorates. The technique with low
embedding rate was the worst to be identified amongst all. They also inferred that
due to two similar embedding algorithms, there may be a merging of results making
them indistinguishable. The training sets need to be very dense in the context of
techniques and quality factors to give a more reliable result.

Later, Pevny and Fridrich used the average of the DCT features along with
Markov features instead of simple concatenation of features to develop a reduced
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set of features to classify embedding technique in JPEG images [12]. The challenge
that the ability of a classifier trained on diverse algorithms may fail to identify
unseen images from closely related methods, even as stego, was the inspiration.
They built a forerunner for estimating the quality factor and this bi layered double
compression detector was followed by the multi-class classifier. They made an
interesting note that the multi classifier will not be able to detect steganographic
methods with entirely different types of embedding changes. Dong et al. proposed
run-length feature based SVM multi classifier for classification of algorithms in
both spatial and JPEG images [13]. They also studied hierarchical and
non-hierarchical multi-class schemes. In the hierarchical scheme, a separation of the
cover and stego images was done followed by separation of the stego classes. The
results of the experimentation conducted showed that the hierarchical scheme
performed better. The misclassification mostly existed within the intra domain
techniques rather than within the inter domain. This was the first scheme that
included tested images on the spatial domain.

In [14], the multi-class classification was also carried out with Logistic
Regression (LR) classifier and five classes (cover + four spatial algorithms—
LSBR, LSBM, LSBR2, LSBRmod5) on three databases. The authors used
Subtractive Pixel Adjacency Matrix (SPAM) features and t-test to validate the
detection accuracy. They found that LIBSVM was more efficient than LR in passive
steganalysis but LR was the best for multi classification. The single bit and multi bit
embedding made no difference in the performance with SPAM features. The
authors caution that claim on improvement should be on equal footing in all aspects
of steganalysis. Zhu et al. suggested an ensemble multi-class classifier for ste-
ganalysis of JPEG images with Cartesian Calibrated JPEG domain Rich Model
(CC–JRM) features with linear SVM as the base classifier [15]. They used two
schemes for ensemble classification and claim less computation cost than other
classifiers.

All the reported works or literature for algorithm detection were for JPEG
images and the only literature that exists for spatial LSB is that of Lubenko and Ker,
which suggest the difficulty of the task in spite of its need. This stays as a moti-
vation to perform algorithm detection in spatial LSB stego images using machine
learning. The existing passive steganalytic features [2, 16, 17] are mostly extracted
from residuals such that it is rich in stego content and devoid of the cover content.
Then, co-occurrence matrices from the quantised and thresholded residual, is
formed as a pattern to distinguish stego from cover. However, while moving to the
higher order, the co-occurrence matrices become sparsely populated; truncation and
quantisation lead to the loss of the minute changes produced by steganographic
embedding. Shi et al. suggested Local Binary Pattern as more capable operator than
co-occurrence matrices [18]. Following this course, this paper presents a residual
based local descriptor for steganalysis.

Similarly, the performance of classification is improved by simple union or
concatenation of diverse individual models [16]. However, this leads to a feature
which is very huge in dimension. One of the existing state-of-art steganalytic
features—Spatial Rich Model (SRM) formed using this technique has a very huge

4 Improved Detection of Steganographic Algorithms in Spatial … 91



dimension of 34,671. This makes classification task difficult by requiring special
classifiers to handle that dimensionality. Also, it was shown by Lyu and Farid that
type and number of features being concatenated are crucial to improve the quality of
performance and a simple concatenated feature model will not yield optimal effi-
ciency [19]. Therefore it is necessary to obtain both optimally concatenated model
from individual models and also to reduce the dimensionality of the so obtained
concatenated model for algorithm steganalysis. Hence, optimisation is done in this
paper in two phases or as a hybrid. The first phase of optimisation finds out the
optimal combination of discriminant individual feature models and the second
phase of optimisation proceeds to reduce dimension within the obtained combi-
nation of features. The authors in their previous ventures proposed a similar hybrid
optimisation algorithm–Greedy Randomised Adaptive Search—Recursive Feature
Elimination (GRASP-RFE (GR)) for selection/reduction of features which are based
on the principle of divide and conquer to estimate the size of payload in spatial LSB
stego images. The proposed GRASP-RFE was found to be very efficient; however
the limitation was that the dimension is user defined [20]. Therefore a dynamic
hybrid optimisation–Greedy Randomised Adaptive Search—Binary Grey Wolf
Optimisation (GRASP-BGWO (GB)) involving a more powerful bio-inspired
algorithm is proposed in this paper. This hybrid optimisation is applied for algo-
rithm detection steganalysis of spatial LSB algorithms using the proposed local
descriptors. Thus, necessary and tough task of identification of spatial LSB algo-
rithms using minimal optimally concatenated features of novel local descriptors by
the proposed hybrid feature selection of GRASP-BGWO is presented in this paper.
The paper is organised as follows: The basics of the steganographic algorithms to
be detected is presented in Sect. 4.2. Section 4.3 explains the proposed features and
Sect. 4.4 presents the proposed hybrid optimisation technique in detail. The
experiments conducted and the results are discussed in Sect. 4.5. The paper con-
cludes in Sect. 4.6 with scope for future enhancements.

4.2 Basics of Spatial LSB Algorithms

This section introduces five spatial LSB algorithms—LSB Replacement (LSBR),
LSB Matching (LSBM), LSBM Revisited (LSBMR), Two bit LSBR (LSBR2 or
2LSB) and Modulo 5 LSBR (LSBRmod5). In LSBR, a random secret data bit
replaces the LSB of the cover image to give the corresponding stego image, while
in LSBR2, the last two least significant bits are replaced [14, 21]. Embedding in
LSB leads to inherent asymmetry with even values either unchanged or increased
by 1 and odd values either unchanged or decreased by 1. To counteract this, LSBM
(also known as ±1 embedding) embeds 1 randomly by either adding to or sub-
tracting from the cover image, if the secret data bit does not match the LSB of the
cover image [22]. In LSBMR, the embedding is performed using a pair of pixels as
a unit so that fewer pixel change rate is encountered than LSBM [23]. In
LSBRmod5 embedding, the least significant digits are adjusted such that the
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remainder of dividing stego pixel by 5 gives the embedding secret digit [14, 24].
The models are represented in Eq. (4.1).

LSBRðXÞ ¼ 2� X=2b cþM

LSBMðXÞ ¼ 2� X=2b c �M

LSBMRðXÞ ¼ LSBRðf ðp; qÞÞ
LSBR2ðXÞ ¼ 4� X=4b cþM

LSBRmod5ðXÞ ¼ argminYmod5¼M jX � Y j

ð4:1Þ

where X, Y are pixels 2 f0; 1; . . .; 255g; M is the secret message in bits and f(p,q) is
the function defined on pixel pairs (p,q). All the LSB based algorithms embed the
secret at random location based on the stego key.

4.3 Proposed Features

The victory of textural co-occurrence features [2] in spatial LSB steganalysis led to
the search of other textural features that may help in steganalysis. Local Binary
Pattern (LBP) is one such textural feature used in various applications, but its
application in steganalysis is not fully exploited [25, 26]. Also, Shi et al. [18]
demonstrated that LBP features are better than the co-occurrence features since they
are sensitive to noise and are able to capture the deformities of the embedding
algorithm in a local neighbourhood. But LBP is a first order statistic and is
non-directional in the sense that it encodes the first order derivative difference in all
directions. The authors of the paper in their previous venture have proposed a local
descriptor called Local Filter Pattern (LFP) for passive steganalysis and found it
effective [5]. So, a local descriptor Local Residue Pattern (LRP) that captures LSB
distortion using directional and high order information is proposed for LSB ste-
ganalysis. To capture subtle distortion patterns that exist within a neighbourhood at
varying distance, Local Distance Pattern (LDiP) is proposed. The features are
explained in detail in the following subsection.

4.3.1 Local Residue Pattern (LRP)

A local descriptor which acts upon the residues of high pass filters is presented for
steganalysis of LSB based steganography. High pass filtering plays an inevitable
role in steganalysis since stego signals are additive noises and the image content is
suppressed by filtering. Thus, a residue Re is formed from the high passed filtered
output, which is independent of the image content but contains the noise or the
information embedded inside it.
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Re ¼ I � k ð4:2Þ

where I is the input image, k is the high pass filter and * is the convolution
operation. The proposed LRP is developed on this residue as magnitude LRP and
sign LFP as extended forms of local filter pattern [5] with additional kernels. The
first order derivative differences between the residue values are captured by the
magnitude LRPs (mLRPs). The sign LRPs (sLRPs) capture the first order derivative
differences of the sign (direction) change in residue.

Various linear high pass filter kernels for computing residues used in this
research are shown in Fig. 4.1.

The choice of the kernels has been found suitable for steganalysis in various
available literature [18, 27, 28]. For the computation of LRP, the first step is to find
the residues Reh of the image using filter kernels k1 to k15 in different directions h
using Eq. (4.2).

In case of kernels k1 to k10—out of the eight different directions, only four of
them—horizontal, vertical, major and minor diagonal directions are considered
(i.e.) h = {0°, 45°, 90°, 135°} because of the symmetric nature of residues. In case
of residuals from kernels k11 to k14, two possible directions are considered (i.e.)
h = {0°, 180°}. In case of kernel k15, processing in a single direction is considered
(i.e.) h = {0°}. Then, the magnitude part of LRP (mLRP) is encoded on the residue
output Reh,c of a local neighbourhood (pixels in a local window) with c as its centre
pixel as shown by Eq. (4.3).

mLRPB;R Reh; c
� � ¼

XB

i¼1

f Reh; i � Reh; c
� �

2i�1

where;

f Reh; i � Reh; c
� � ¼ 0 if Reh; i\Reh; c

1 otherwise

�
ð4:3Þ

Fig. 4.1 Various high pass filter kernels used
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and h in D and D = {0°, 45°, 90°, 135°} or D = {0°, 180°} or D = {0°} depending
on the kernel, B is the number of neighbours in the local window considered and
R is the radius of the local neighbourhood from its centre pixel for which binary
coding is done using function f. An example illustrating the LRP binary coding is
given as Fig. 4.2.

The histogram of the mLRP, Hist(mLRPB,R) is the image feature that is con-
structed by concatenating the encoded output from all applicable directions and
binning the occurrences of the concatenated output as given by Eq. (4.4).

Hist mLRPB;R; j
� � ¼ Hist mLRPB;R Reh; c

� �jh 2 D
� �

; j
� � ð4:4Þ

In this study, the value of B and R is taken as 8 and 1 respectively. As a result,
the feature vector is 256 in dimension. To further reduce the dimension, rotation
invariant form of LBP is also used, since the starting order of the binary sequence is
immaterial for steganalysis. The histogram of the rotation invariant form mLRPB,R

ri

given by Eq. (4.5) has a dimension of 36.

mLRPri
B;R Reh; c

� � ¼ min
0� i� 2B�1

ROR mLRPB;R Reh; c
� �

; i
� � ð4:5Þ

where ROR(x,i) denotes ‘i’ right bitwise rotations on number ‘x’. Thus, a total of 30
(15 rotation variant and 15 rotation invariant) mLRPs are proposed as feature sets
for mLRP feature model.

Similarly, the sign or direction based LRP (sLRP) also known as Local Filter
Pattern (LFP) [5] is defined as shown in Eq. (4.6).

sLRPB;R Reh; c
� � ¼

XB

i¼1

f 0 Reh; i;Reh; c
� �

2i�1 ð4:6Þ

Fig. 4.2 Illustration of LRP binary encoding
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where D = {0°, 45°, 90°, 135°} or D = {0°, 180°} or D = {0°} depending on the
kernel. The histogram for sLRP is encoded in the same way as mLRP using
Eq. (4.4). The rotation invariant form of sLRP, sLRPB,R

ri is given by Eq. (4.5)
replacing mLRP with sLRP. Thus, thirty (15 + 15) feature models of sLRP capture
the higher order gradient information from the residuals. Thus, a total of 60 feature
sets exist for LRP feature model.

4.3.2 Local Distance Pattern (LDiP)

To further capture the dependencies that exist between pixels within a distance, the
following arrangement of neighbouring pixels are considered as shown in Fig. 4.3b.
The value indicates the sequence of the neighbours in forming the binary pattern.
This rectangular pattern of considering neighbours rather than the conventional
square type helps in capturing dependencies that exist over sequential neighbours at
a distance. Also, alternate left and right numbering of neighbours, help in giving
weightage to the neighbour dependencies directly proportional to their distance
from centre pixel. Thus, pixels near to the centre pixel will form Most Significant
Bits in the binary pattern, thereby contributing more to capturing distortions by
embedding changes. The vertical, horizontal and two diagonal directions of the
operator are indicated by 0LDiP, 90LDiP, 45LDiP and 135LDiP. The sign and
magnitude form of LDiP are constructed in the same way as LRP as in Eqs. (4.3
and 4.6). An example illustrating the LDiP binary encoding is given in Fig. 4.3.

The histograms of LDiP are constructed using Eq. (4.7).

HistðhLDiPB; jÞ ¼ HistðLDiPBðReh; cÞ; jÞ ð4:7Þ

The rotation invariant form of LDiP is also constructed. Here again, the value of
B is taken to be 8. Total of 16 feature sets (8 rotation variant + 8 rotation invariant)
are formed as LDiP feature sets.

The LRP and LDiP represent the histogram features of the LRP and LDiP (both
sign and magnitude) respectively, while LRPri and LDiPri represent the rotation
invariant LRP and LDiP histogram features. The sign or magnitude representation
is done by ‘s’ or ‘m’ preceding them. In case of LRP, the kernel from which the
feature has been arrived is represented at the posterior. While in LDiP, the direction
is represented preceding the sign or magnitude representation. The naming con-
vention and the 76 proposed feature sets formed using LRP and LDiP feature
models are summarised in Table 4.1 with their dimensions along with other LBPs
found in literature.

Fig. 4.3 Illustration of LDiP binary encoding
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4.4 Proposed Feature Selection Technique

Universal steganalysis is generally done by combining features from different
models to form a mega model. This is because a single model generally leads to
under populated bins, which hampers the task of universally detecting a wide
spectrum of embedding algorithms. However, forming a mega model introduces
curse of dimensionality. Optimisation techniques help to reduce dimensionality and
thereby save CPU time [31, 32]. Global optimisation techniques like evolutionary
algorithms are powerful and robust [33], but consume high CPU time and are poor in
terms of convergence. On the other hand, local search algorithms converge faster,
but get caught in local minima/maxima. A hybrid or bi-level technique proves to be
strong in terms of converging time, thus reducing computation time, at the same time
increasing solution quality [34, 35]. A Bi-level optimisation approach (Greedy
Random Adaptive Search Procedure–Recursive Feature Elimination
(GRASP-RFE)) was proposed by the authors for quantitative steganalysis and was
found to be effective. However, the RFE method suffers from two main limitations.
The first one is that the dimensionality of the selected features is user defined and
second it is time consuming. So, a hybrid algorithm using GRASP and a bio inspired
evolutionary algorithm—Binary Grey Wolf Optimisation (BGWO) is proposed.
The GRASP algorithm is used for obtaining the optimal concatenated model and is
explained in detail in [20]. The second level of the proposed optimisation, the Binary
grey wolf optimisation is explained in the following subsection.

4.4.1 Binary Grey Wolf Optimisation (BGWO)

Nature inspired Meta heuristic algorithms are best suited for feature selection which
leads to dimensionality reduction. Grey Wolf optimisation technique is a recent
swarm-based technique which imitates the leadership ranking and hunting strategy
of the Grey Wolf pack [36]. The detailed Binary Grey Wolf Optimisation (BGWO)
is given by Algorithm 1.

Table 4.1 Summary of the
proposed 76 feature models
with their dimensionality
along with other existing LBP
models

Feature models Dimensionality

s;mf gLRP8;1 � k 1� 15f g;
0; 45; 90; 135f g s;mf gLDiP8;1

256

s;mf gLRPri
8;1 � k 1� 15f g;

0; 45; 90; 135f g s;mf gLDiPri
8;1

36

LBP [29] 256

LBPu2 [30] 59

LBPri [30] 36

LBPriu2 [30] 10
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Algorithm 1 BGWO
INPUT: N - Number of Grey Wolf in the pack
MaxIter- Number of Iterations,
OUTPUT: BestPos - Optimal Grey Wolf binary positions

1: function BGWO (N,MaxIter)
2: Initialise a population of N Grey Wolves whose positions is Posi,j where i = {1, 2,…, N} and
j = {1, 2, …, dim}
3: Find the alpha, beta and gamma wolves based on the fitness function given in Eq. (4.11)
4: Initialise a = 2, and calculate A and C as per Eq. (4.8)
5: for iter = 1 to MaxIter do
6: for each Wolf ‘i’ in the Pack do
7: Update Posi,: according to Eq. (4.10)
8: end for
9: Update alpha, beta and gamma wolves based on previous step
10: end for
11: BestPos ← Posalpha,:
12: return BestPos
13: end function

COMMENT: rand () produces random number in the range (0,1].

Here the pack is led by social ordering of wolves–alpha, beta, delta and omega.
Alpha wolves are the dominant ones and they lead the pack. Beta and delta wolves
assist alpha in hunting decisions and omega are the followers. In other words, the best
wolf is the alpha followed by beta (second), delta (third) and lastly by omega (others).
The encircling of prey during hunting is determined by adjusting the position of the
kth wolf, Xk with respect to the prey p in i + 1th iteration given by Eq. (4.8).

Xp;kðiþ 1Þ ¼ Xp � A� jC � ðXp � XkðiÞÞj
where; A ¼ 2� a� randðÞ � a

C ¼ 2� randðÞ
ð4:8Þ

and the parameters—a is linearly decreased from 2 to 0 for each iteration, A and
C help to converge the algorithm globally and rand() is a random number (0,1]
generation function. Since alpha, beta and delta are the best wolves that give the
best position from the prey, the optimum location of prey is determined by alpha,
beta and delta wolves’ positions and the positions of all wolves are updated
according to Eq. (4.9).

Xkðiþ 1Þ ¼ Xalpha;kðiÞþXbeta;kðiÞþXdelta;kðiÞ
3

ð4:9Þ

This bio inspired technique has been remodelled for feature selection by Emary
et al. using two squashing functions [37]. The role of the squashing function is to
retain the population position values as binary. One of them is the sigmoid squash
function which helps to maintain the binary input needed, has more potential for the
feature selection process in steganalysis and given by Eq. (4.10) is used.
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BinXkðiþ 1Þ ¼ 1 if sigmoidðXkðiþ 1ÞÞ� randðÞ
0 otherwise

�

where; sigmoidðjÞ ¼ 1
1þ e�10ðj�0:5Þ

ð4:10Þ

The fitness function for BGWO is the selection of the best feature (i.e.) the one
with maximum classification accuracy and minimum number of features. So, the
fitness function f for classification, is set as in Eq. (4.11)

f ¼ a� Accuracyþ b� jT � Lj
T

ð4:11Þ

where, Accuracy is the classification accuracy using the features, T is the total
number of features and L is the length of the selected features. a and b are the two
parameters that determine the quality of the classification and length respectively,
where a = 0.99 and b = 1 – a as in base paper [37].

4.5 Experimental Results and Discussion

4.5.1 Experimental Setup

The goal is to establish a universal low complex steganalytic feature for identifying
the commonly used (Traditional LSB) spatial steganography. Bossbase v1.01 [38]
images of size 512 � 512 embedded with five LSB algorithms and eight different
payloads are used. The samples of the stego images for one such random cover
image for various algorithms and the statistical metrics—Mean Square Error
(MSE) and Entropy show the embedding distortion caused are given in Table 4.2.

It can be inferred from Table 4.2 that even with a high volume secret payload of
1.0 bpp (262,144 bits), the stego images are not visually distinguishable from the
cover image and amongst themselves. The variations in the measures are also so
small which depicts the challenge in identifying the algorithms of same nature using
their stego images. The train-test ratio for the experimentation is fixed as 50%, i.e.,
for each payload, random 500 images of each cover and stego images of each
algorithm (500 + 500 � 5 = 3000) are trained using ensemble One Against One
(OAO) Logistic Regression (LR) classifier and the remaining unseen 3000 images
are tested. The statistics for all the experiments are the median of the statistics
collected by repeating the experiment ten times with different random train/test
datasets.
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4.5.2 Algorithm Detection Using Individual LRP and LDiP
Feature Models

The 76 individual feature sets discussed in Sect. 4.2 are trained and tested indi-
vidually on stego images with a low volume payload of 0.1 bits per pixel (bpp). The
Receiver Operating Curve (ROC) plots of the individual group by micro averaging,
portray the experimental results in Fig. 4.4 along with Area Under Curve
(AUC) measures.

Figure 4.4 shows the excellency of LRP over the LDiP features and rotation
variant forms are slightly better than rotation invariant forms. Particularly, con-
sidering sign LRP and magnitude LRP, the mLRPs are more contributing than the
sLRPs. It is because the considered training set consists of images from both single
and multi-bit embedding algorithms. It can be noted that mLRP with kernel k14 is
the best among the proposed models with an accuracy of 58.23%. It is important to
note the difference between the accuracy and the AUC shown in ROC plots. This is
because in multi-class classification, the number of negative classes is greater than
the number of positive classes. The feature models that give the maximum accuracy
for other payloads are given in Table 4.3.

As payload increases, the magnitude LDiP feature captured in vertical direction
(90mLDiP) is better performing because of its spatial multi resolution property.
Figure 4.5 shows the individual class ROC plot of both the features.

It can be seen that as payload increases, the order of detection of algorithms
becomes different. In low payload (Fig. 4.5a), LSBR2 is easily detected, followed
by LSBRmod5, Cover, LSBR, LSBM and lastly by LSBMR, while in high payload
(Fig. 4.5b), the order is LSBR2, LSBR, Cover, LSBRmod5, LSBM and LSBMR.
Thus, universal active steganalysis with similar algorithms is a true challenge with
detection accuracy slightly greater than random choice. This stretches the experi-
ment to move towards the improvement in performance which is sought by optimal
concatenation of features.

4.5.3 Algorithm Detection Using Optimally Concatenated
LRP + LDiP Features

The concatenation of LRP and LDiP feature models by GRASP is done to improve
the detection accuracy of the individual feature models. The optimal solution
obtained from experimentation on a low volume payload of 0.1 bpp is the con-
catenation of features–LRPri-k3, k4, k15, mLRPri-k1, k3, k7, k8, k9, k11, k12, k13,
sLRPri-k2, 90mLRPri with a dimensionality of 576. An increase of 12.5% detection
accuracy is achieved for 0.1 bpp payload and the ROC of the proposed concate-
nated model (LRP + LDiP) for various payloads is given in Fig. 4.6.
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Performance analysis of the proposed LRP + LDiP feature in varying
groups: To illustrate the difficulty of the algorithm detection task and its depen-
dence on choice of algorithms chosen for training, three groups of LSB algorithms
have been designed–First group G1 consists of images from all the above said
algorithms, the second group G2 consists of the cover and LSBR, LSBM, LSBR2
and LSBmod5 stego images (most difficult algorithm removed) and the last group
G3 consists of the cover, stego images from LSBR, LSBM and LSBMR algorithms

(a) LDiP & LDiPri (b) mLRPs 

(c) mLRPris (d) sLRPs

(e) sLRPris

Fig. 4.4 ROC plots for algorithm steganalysis of traditional LSB using LRP and LDiP features
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(only single bit embedding). The ROC plots for these groups embedded with a low
volume payload of 0.1 bpp are given in Fig. 4.7.

It can be seen from Fig. 4.7 that the most difficult is the group consisting of single
bit schemes (G3 accuracy 61.35%, Cover–429, LSBR&LSBMR-281, LSBM-236),
followed by the scheme where all algorithms are considered (G1 accuracy 70.73%,
Cover-410, LSBR-286, LSBM-226, LSBMR-273, LSBR2-483, LSBRmod5-444).
The easiest is the scheme where LSBMR is exempted (G2 accuracy 77.68%,
Cover-420, LSBR-294, LSBM-302, LSBR2-482, LSBRmod5-444).

The confusion matrix of the LRP + LDiP feature in algorithm classification for a
low volume payload of 0.1 bpp using different groups is given as Table 4.4.

Thus, the choice of the training stego algorithms mainly affects the algorithm
detection process and the intermediate group G1 is considered for further
experimentation.

Performance analysis of Classifier: To compare the effectiveness of classifier
against other classifiers in LSB steganographic algorithm detection, experimenta-
tions are carried out with various classifiers on the obtained optimal concatenated
feature model of dimensionality 576. Two groups of classifiers are considered. The
first group is the simple classifier models. The classifiers considered are Logistic
Regression (LR), Naive Bayes, K-Nearest Neighbour (KNN), Linear Support
Vector Machine (LinearSVM) and Decision Tree. The second group consists of
ensemble classifiers like Random Forest, Extremely Randomised Tree (Extra Tree),
Adaboost, Gradient boosting and Bagging with the default base learner and One
Against All (OAA) with LR as base learner.

The results tabulated in Table 4.5 show that among simple classifiers, LR pro-
vides twice more accurate results than other simple classifiers. However, the
ensemble form of LR (OAO) produces 5% more accuracy in low volume of 0.1 bpp
than simple LR. Again, among various ensemble classifiers like Trees, Boosting
and Bagging, OAO (LR) is better and gives nearly twice more accuracy than the
tree based algorithms and about 7% more accuracy than Gradient Boosting, the best
among Boosting and Bagging classifiers. Though OAA (LR) is a simpler model
compared to OAO, it performs at par only for 1.0 bpp payload. Thus, OAO (LR) is
better suited for LSB algorithm classification.

Table 4.3 Traditional LSB
Algorithm detection for
various payloads using
proposed individual features

Payload (bpp) Overall accuracy in (%) Max. feature

0.1 58.23 mLRP-k14

0.2 66.8 mLRP-k1

0.25 70.33 90mLDiP

0.3 73.37 90mLDiP

0.4 79.03 90mLDiP

0.5 82.63 90mLDiP

0.75 88.4 90mLDiP

1.0 90.2 90mLDiP

4 Improved Detection of Steganographic Algorithms in Spatial … 103



4.5.4 Algorithm Detection Using Optimised LRP + LDiP
Feature Using GB

Though performance of the model has been increased from 58.23 to 70.73% for
0.1 bpp payload, this has indirectly led to the increase of dimensionality from 256

(a) mLRP-k14 for 0.1 bpp  

(b) 90mLDiP for 1.0 bpp 

Fig. 4.5 ROC plots of the feature for each class of algorithm detection
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to 576. So, the dimensionality of the features obtained are reduced by use of two
feature selection algorithms–GRASP-RFE (GR) and GRASP-BGWO (GB) using
OAO (LR) classifier. The RFE feature selection method in scikit-learn 0.18.1
package [39] is applied as a dimensionality reducer. The default dimensionality
reduction is half of the given features (288). The desired dimensions can be set by
the user and are set from 100 to 500 in steps of 100 and the dimension where the
best accuracy is obtained is reported. The improved results are tabulated in
Table 4.6.

The results show that the GB selection process gives better results than the basic
GRASP model. It is able to decrease the dimension by nearly 120 features yet
increasing the accuracy to nearly 2% for all payloads. Comparing with GR, GB
produces a minimum of 1% increase in accuracy for all payloads and additionally
enjoys dynamic feature selection. And most of the results saturate after 20th

Fig. 4.6 ROC plots of
optimised LRP + LDiP
features for various payloads
of algorithm detection

Fig. 4.7 ROC plots of
LRP + LDiP for various
groups of algorithm detection
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iteration of BGWO, thus making employment of bio-inspired algorithm better than
any other Meta heuristic method in terms of both time and complexity. The
obtained results reinstate the toughness of identification of algorithms in stego
images and effectiveness of employment of a bio-inspired algorithm in selecting
features for universal algorithm steganalysis.

4.5.5 Comparison with Existing Works

There is a scarcity of literature on identification of algorithms in steganalysis.
Further difficulty, is finding literature that works with same stego images of same
domain and algorithm (most of the literature on algorithm identification is on JPEG
images). So, two types of comparisons are done. First, is the comparison with only
existing literature [14] for multi-class classification of spatial LSB algorithms as

Table 4.4 Confusion matrix for algorithm detection of various groups using optimally
concatenated LRP + LDiP features in 0.1 bpp payload

Group Class wise accuracy (%) Overall
accuracy
(%)

Cover LSBR LSBM LSBMR LSBR2 LSBRmod5

G1 82 57.2 45.2 54.6 96.6 88.8 70.73

G2 84 58.8 60.4 – 96.4 88.8 77.68

G3 85.8 56.2 47.2 56.2 – – 61.35

Table 4.5 Algorithm detection using LRP + LDiP with various classifiers and payloads

Classifier Detection accuracy in percentage for given payload in (bpp)

0.1 0.2 0.25 0.3 0.4 0.5 0.75 1.0

Naive Bayes 24.23 34.97 37.6 40.03 42.43 43.83 47.4 50.53

KNN 24.13 39.77 41.63 44.07 47.9 51.1 56.97 61.67

Linear SVM 32.03 65.53 75.7 65.53 70.43 79.57 86.13 92.5

Decision tree 37.0 49.73 52.9 55.43 62.4 65.77 71.5 74.13

Logistic
Regression

65.1 80.13 83.83 87.03 89.97 91.47 94.4 96.07

Random forest 36.9 52.17 58.27 60.63 64.0 67.73 74.5 77.2

Extra trees 37.33 52.63 54.5 59.0 63.17 66.0 72.5 76.9

AdaBoost 38.77 49.5 54.0 53.97 58.27 60.8 60.4 67.73

Bagging 40.7 56.47 59.7 62.93 67.0 70.9 77.1 81.1

Gradient
boosting

48.17 62.97 66.6 71.27 75.23 78.33 85.0 88.1

OAA (LR) 62.07 76.63 82.67 85.2 87.23 90.1 93.5 95.23

OAO (LR) 70.73 82.93 86.3 88.37 90.57 91.87 94.5 95.67

106 S. T. Veena et al.



such, which employs Subtractive Pixel Adjacency Matrix (SPAM) feature set with
their LR classifier. Here, the multi-class classification is done only for a group of
LSB variant algorithms—LSBR, LSBM, LSBR2 and LSBRmod5 for a payload of
0.5 bpp to yield an accuracy of 82.3%. Clearly, even a single proposed individual
feature 90mLDiP achieves an accuracy (89.68%) greater than the literature with
lesser dimension of 256 compared to 686 of SPAM.

Since the latter comparison method is not complete, a second comparison is
done by employing the universal state-of-the-art passive steganalysers for algo-
rithms detection. To achieve this, SPAM [2], Spatial Rich Model (SRM) [16] and
Projected SRM (PSRM) [17] features are extracted from our database are used for
classification by the same OAO classifier. SPAM features were proposed for
Markov chain based steganalysis of spatial domain algorithms, particularly for
LSBM. Here the spatial pixel differences between adjacent neighbours of first and
second order Markov chains were found and the probability transition matrix of the
differences formed the 686 features of SPAM.

The SRM features were formed with the strategy of assembling various diverse
noise sub models from various linear and non-linear filters. These noise sub models
were formed from the joint PDF of neighbours in quantised noise residuals. This led
to a huge dimensional feature (34,671) which could steganalyse both non adaptive
scheme and content adaptive steganographic schemes. Later Holub and Fridrich
[17] proposed another strategy of statistical representation of diverse noise models
other than the joint PDF of neighbours. They suggested the projection of the
residuals into a set of random vectors and called it the PSRM feature. These
representations were advantageous than the co-occurrence matrix because they
were able to capture dependencies over a large number of neighbourhood pixels,
flexibly adjust the trade-off between accuracy and dimensionality and select random
neighbourhood sizes to provide better, diverged and discriminant features.
Though PSRM is a more agile model than SRM, the feature extraction time

Table 4.6 Optimisation of features for LSB Algorithm steganalysis for various payloads using
GR and GB

Payload
in bpp

Optimisation of features by

GRASP GR GB

Dim Overall
accuracy (%)

Dim Overall
accuracy (%)

Dim Overall
accuracy (%)

0.10 576 70.73 500 70.53 452 71.6
0.20 576 82.93 400 83.23 474 83.9
0.25 576 86.3 400 85.23 460 87.23
0.30 576 88.37 300 88.43 443 89.3
0.40 576 90.57 400 90.87 439 92.0
0.50 576 91.87 500 91.0 443 93.2
0.75 576 94.5 400 94.2 464 95.2
1.00 576 95.67 300 95.33 321 96.43
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complexity of the PSRM model (approximately 672 s for a single image, SRM–5,
SPAM–1 and LRP–0.3 s) makes steganalysis using PSRM highly difficult.

Table 4.7 shows the results of this comparison. The proposed method is better
than all the existing methods for low volume payloads. In a low volume payload of
0.1 bpp, 71.6% accuracy is reached with a feature dimension of just 452. The
proposed features excel SPAM, the designated steganalyser for traditional LSB
steganalysis in all payloads. It also surpasses the PSRM and SRM features with at
least 2% more accuracy with a diminutive feature nearly 34,000 less features in
payloads less than 0.5 bpp. However, for high volume payloads, SRM and PSRM
are able to achieve less than 1% increase at the cost of very huge dimensionality.
Thus, the proposed features along with the efficient proposed optimisation tech-
nique proves to a boon to the steganalysis of algorithm in spatial LSB stego images.

4.5.6 Algorithm Detection in Content Adaptive Algorithms

From the previous sections, it can be seen that algorithm detection is a tough task
with the low volume payload on closely related algorithms. In case of content
adaptive steganalysis, it tends to be lot tougher with more similarity among very
closely related content adaptive algorithms and very low embedding rates. As far as
the authors’ knowledge, there exists no literature for detecting algorithm among
content adaptive stego images. Stego images from three content adaptive algo-
rithms–Highly Undetectable steGanOgraphy (HUGO), Wavelet Obtained Weights
(WOW) and Spatial UNIversalWAvelet Relative Distortion (S-Uniward or SW) are
considered. All these algorithms are LSBM and content adaptive algorithms and in
addition, WOW and SW obtain the embedding distortion from the same domain
(wavelets). The stego images are created using random 1000 images of Bossbase

Table 4.7 Comparison table for algorithm steganalysis for various payloads using LRP + LDiP
GB method

Payload
in bpp

Detection accuracy in %

Proposed method
(LRP + LDiP-GB)

SPAM
(Dim 686)

PSRM
(Dim 12,870)

SRM
(Dim 34,671)

Dim Overall
accuracy (%)

Overall
accuracy (%)

Overall
accuracy (%)

Overall
accuracy (%)

0.10 452 71.6 56.2 63.37 69.0

0.20 474 83.9 72.43 80.53 82.47

0.25 460 87.23 77.53 85.17 85.33

0.30 443 89.3 81.33 87.33 88.5

0.40 439 92.0 85.43 90.53 91.4

0.50 443 93.2 88.6 93.2 94.03

0.75 464 95.2 92.3 96.2 96.1

1.00 321 96.43 94.27 97.63 97.27
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v1.01 with a payload of 0.4 bpp. It is to be noted that though the embedding
payload is of 0.4 bpp, the embedding change rates for an image are that of 0.0933,
0.0918 and 0.0703 (HUGO, WOW, SW) (very, very low) which makes steganal-
ysis of content adaptive algorithms with even 0.4 bpp tougher. It is also difficult to
identify algorithms with same change rate than with different ones (As seen from
Fig. 4.7, G3 was the most difficult). The train-test ratio is maintained at 50:50 and
the median of tenfold cross validation result with OAO (LR) classifier is reported.

The proposed features detect content adaptive algorithms with accuracies below
50%, which illustrates the difficulty of the task. The best accuracy is obtained by
sLRP-k15 which offers 35.55% accuracy which is at par with SPAM with twice
smaller number of features. However, the SRM and PSRM are better than the
individual feature. So, the LRP + LDiP model from previous experimentation is
then tested for content adaptive algorithms and the results are tabulated in Table 4.8
along with the existing state-of-the-art steganalysers–SPAM, PSRM and SRM.

Clearly from Table 4.8, it can be inferred that the proposed hybrid optimisation
and features perform excellently even in first level of optimisation (GRASP) than
the agile PSRM feature model with just 576 features against 12,870. Also, further
employment of bio-inspired BGWO helps to increase the performance by 3% with
nearly 200 less features. The confusion matrix of the classification is given in
Table 4.9. It can be observed that Cover images are better identified followed by
HUGO and SW. The most difficult WOW images are the least identified and are
mostly misclassified as Cover. A tougher problem of identification of algorithms in
content adaptive scenario is thus addressed by a universal feature common to all
type of spatial LSB steganographic algorithm and whose performance is improved
by the proposed novel hybrid optimisation technique—GRASP-BGWO.

Table 4.8 Detection of
content adaptive algorithms
for 0.4 bpp payload

Features (dimension) Accuracy in %

SPAM (686) 35.7

SRM (34,671) 46.5

PSRM (12,870) 44.1

Individual feature mLRP-k15 (256) 35.55

LRP + LDiP-GRASP (576) 45.55

LRP + LDiP-GB (402) 47.9

Table 4.9 Confusion matrix
for content adaptive algorithm
detection using optimal
LRP + LDiP–GB features

Embedding
algorithm

Classified as

Cover HUGO WOW SW

Cover 307 71 54 68

HUGO 76 279 55 90

WOW 157 86 159 98

SW 98 108 80 213

4 Improved Detection of Steganographic Algorithms in Spatial … 109



4.6 Conclusion

A low dimensional local steganalytic feature, which is sensitive to the embedding
algorithm and that change considerably with payloads, is presented for LSB variant
algorithm detection. It was observed that the algorithm detection is highly depen-
dent on the training algorithms, payloads and features. The proposed model excels
all existing state-of-the-art steganalysers even in low volume payload. The universal
nature of the feature is further established in detecting steganographic algorithms of
content adaptive nature. Additionally, the proposed hybrid method of optimisation
helps to improve performance by 12–13% with a minimum of 400 features for
maximum 6 class classification in spatial LSB images. Thereby, a new low
dimensional feature selection using hybrid GRASP-BGWO optimisation is pro-
posed using novel local descriptors for effective universal algorithm steganalysis of
spatial LSB images. The future scope is to scale the existing feature models along
with the proposed models for much larger number of steganographic algorithms.
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