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Analyzing the Effect of Optimization
Strategies in Deep Convolutional
Neural Network

S. Akila Agnes and J. Anitha

Abstract Deep convolutional neural network (DCNN) is a powerful model for
learning significant data at multiple levels of abstraction form an input image.
However, training DCNN is often complicated because of parameter initialization,
overfitting and convergence problems. Hence this work has been targeted to
overcome the challenges of training DCNN with an optimized model. This chapter
describes a deep learning framework for image classification with cifar-10 dataset.
The model contains a set of convolutional layers with rectified linear unit activation
function, max-pooling layers, and a fully-connected layer with softmax activation
function. This model learns the features automatically and classifies the image
without using the hand-crafted image based features. In this investigation, various
optimizers have been applied in gradient descent technique for minimizing the loss
function. Model with Adam optimizer constantly minimizes the objective function
compared with other standard optimizers such as momentum, Rmsprop, and
Adadelta. Dropout and batch normalization techniques are adapted to improve the
model performance further by avoiding overfitting. Dropout function deactivates
the insignificant node form the model after every epoch. The initialization of a large
number of parameters in DCNN is regularized by batch normalization. Results
obtained from the proposed model shows that batch normalization with dropout
significantly improves the accuracy of the model with the tradeoff of computational
complexity.
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10.1 Introduction

Object classification plays a significant role in the area of computer vision. The goal
of this process is to classify the objects into different categories, in the field of
robotics to any intelligent systems. It is applied in various application domains such
as medical imaging, vehicle tracking, industrial visual inspection, robot tracking,
biometric systems and image remote sensing. The classification system examines
the numerical properties of different image features and classifies them into different
categories. It consists of two stages including training and testing. In training stage,
the significant features of the input images are used to train the classification system
against the target class. In testing stage, the classifier predicts the class for the input
image.

The plethora of image classification methods has been proposed in the literature
[1]. Various Machine Learning (ML) approaches such as Artificial Neural Network
(ANN), Decision Tree Classifier, Support Vector Machine (SVM), and Expert
System have been employed in the field of computer vision that label the input
images to the desired category. The supervised learning algorithms enable the
computer to learn on its own from the available dataset with labels and make
predictions for the given data.

The efficiency of the machine learning system relies on the design of several
handcrafted features extracted from the images. Despite various object classification
algorithms and systems are introduced, there lacks a general and complete solution
for recent challenges. New computational models such as Deep Learning
(DL) models motivate the researchers to move towards the Artificial Intelligence.
Deep learning has been evolved in 2006 with Deep Belief Networks (DBNs) [2] as
a part of a machine learning algorithm that exploits many layers of non-linear
information processing for pattern analysis and classification [3].

Supervised deep networks employ with labeled information and classify the
input data in these labels. They exemplify the most common form of ML, deep or
not [4]. This network is more flexible to build, more appropriate for end-to-end
learning of complex systems [5] and more capable to train and test. It can be
categorized into linear supervised deep method (e.g. Deep Neural Networks with
linear activation functions) and non-linear supervised method (e.g. Deep Stacking
Networks, Recurrent Neural Networks and Convolutional Neural Networks).

Conventional Neural Network (CNN) is the kind of DL which has been used in
various applications of computer vision [6–13], especially for the classification of
large sets of images. The performance of deep CNN is highly associated with the
number of layers. It also has millions of parameters to tune with, which requires a
large number of training samples. First Convolutional Neural Network is introduced
by LeCun et al., in 1998 [8], has been the mainstream architecture in the neuronal
network family for image classification tasks. Naturally, a CNN is specialized to
learn useful local correlations and associate features in low level layers that support
higher order learning. Further using Fully Connected (FC) layers in a general
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feed-forward neural network, CNN also depends on several convolutional and
pooling layers before FC layers.

AlexNet [14] and VGG [15] networks have achieved better performance on
image classification using deeper convolutional neural networks. Recently many
researches have been moving in the field of deep networks. The advantage of deep
CNN in images classification is that the entire model is trained end-to-end, from
raw pixels to specific categories, which removes the requirement of handcrafted
feature extraction.

The popular deep CNN architecture [14] composed of five convolutional layers
and three fully-connected layers with a final soft-max classifier, and contains more
than 60 million parameters. Some deeper networks, such as models with 16 and 19
hidden layers [15], 22 hidden layers [16] have attained better performance with
more number of parameters. However, training deep CNN has several difficulties
including vanishing gradients and overfitting [17]. This can be resolved by training
a deeper CNN with well-designed architecture, initialization strategies, better
optimizers and transfer learning.

As the gradient is back propagated through the network only a few blocks that
learn suitable representations and many blocks contribute very little information
towards the final goal. This problem is called as diminishing feature. This is solved
by a methodology called dropout that disables the corresponding residual blocks
during training [18]. Dropout methodology has been first introduced by Srivastava
et al. [19] and adopted in many successful architectures [14, 15]. Mostly this is
applied to top layers that had a large number of parameters to prevent feature
overfitting. Another methodology named batch normalization [20] has been intro-
duced to reduce the internal covariate shift in neural network activations by nor-
malizing them to have specific distribution. This can also works as a regularizer and
the researchers experimentally show that a network with batch normalization
achieves better accuracy than a network with dropout. Directly learning so many
parameters from only thousands of training samples will result in serious overfitting
even though the overfitting preventing technique is applied. Therefore, there is a
challenge on how to make the deep CNN that fit small dataset while keeping the
similar performance as on large-scale dataset.

As a popular benchmark in this field, the cifar-10 database [21] is frequently
used to evaluate the performance of classification algorithms. Krizhevsky [22] has
carried a classification task on the cifar-10 dataset using a multinomial regression
model. This uses all the layers and a single hidden layer that resulted in an overall
accuracy of 64.84%. Liu and Deng [23] has proposed a modified VGG-16 network
and achieved 8.45% error rate on CIFAR-10 without severe overfitting.

This chapter presents a deep CNN (DCNN) architecture to classify the images in
the cifar-10 dataset. The presented architecture overcomes the problems in gradient
descents (such as vanishing gradients and overfitting) by integrating suitable layers,
optimizers, drop out and batch normalization strategies. The architecture uses the
Adam optimizer as an efficient optimizer for cifar-10 dataset classification. The
suitable optimizer is selected based on the analysis of different optimization
strategies, which aim to minimize the objective function. Further, the effect of
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dropout and batch normalization also evaluated in the presented architecture. The
experimental results show that the presented architecture significantly decreases the
loss function with improved validation accuracy.

The rest of the chapter is organized as follows: Sect. 10.2 describes the general
CNN architecture and its specifications. Section 10.3 deals with the proposed deep
CNN architecture for cifar-10 dataset classification. Results and discussions are
reported in Sect. 10.4. Finally, Sect. 10.5 presents the conclusion.

10.2 CNN Architecture

Convolution neural network is a back propagation neural network that works on
images. CNN architecture has set of convolutional layers followed by fully con-
nected layers and a final softmax layer that makes predictions. CNN layers learn the
parameters using backpropagation algorithm. Convolutional layer acquires the
significant special representation from an image, which is essentially used for
categorizing images. Generally, the performance of any classification technique
depends on the features considered for grouping the data. Selecting interesting and
discriminative features from images is the very tedious task. However these
extracted features may not be appropriate for all classification problems.

Convolution neural network is able to learn these features automatically to make
better predictions without human intervention. Almost every convolutional layer is
followed by a non-linear activation function, which helps the network to learn
discriminative representations of the image that improve the classification accuracy.
Figure 10.1 shows the typical CNN architecture.

The layers involved in the architecture are:

Feature Extraction Classification

Output 
Layer

Fully 
Connected

SubsamplingConvolutionSubsamplingInput Layer Convolution

Fig. 10.1 The typical CNN architecture
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10.2.1 Convolution Layer

Convolution layers are described by weights. This has multiple kernels per layer
with fixed size, and each kernel is convolved over the entire image with a fixed
stride that extracts a spatial or temporal features. The low-level features such as
lines, edges, and corners are learned in the first convolution layer. More complex
representations are learned in the consequent convolutional layers. As the network
is deeper and deeper, the learned features contain higher-level information. The
mathematical representation of the convolution operation is given in Eq. 1.

g x; yð Þ ¼ h x; yð Þ � f x; yð Þ ð1Þ

where f x; yð Þ is the convolution mask, h x; yð Þ is the input image and g x; yð Þ is the
convoluted image.

In convolution operation, a filter slides over the input image to produce a feature
map as shown in Fig. 10.2. Convolution operation captures different feature maps
for the same input image with different filters. More features can be extracted by
using more number of filters. In training, a CNN learns the values of these filters.
The size of the feature map is determined by stride, padding and depth. Stride is the
number of pixels that the filter jumps to slide over the input matrix. Larger stride
will produce smaller feature maps. Affixing zeroes around the input matrix is called
zero-padding or wide convolution. Padding allows the network to apply the filter to
border elements of the input image matrix. Depth is the number of filters used in
convolution operation.

10.2.2 Activation Layer

Activation layer uses activation functions that ignite a signal when a specific
stimulus is presented. As compared to common activation functions such as tanh

Fig. 10.2 Convolution of 5 � 5 image with 3 � 3 filter
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and sigmoid, Rectified Linear Units (ReLU) is easy to compute and more robust to
overfitting because of its sparse activation.

ReLU is the most common activation function used in convolution layer.
Generally, activation function brings the non-linearity into DCNN. ReLU accel-
erates the convergence of the training procedure and leads to improved solutions.
ReLU operation replaces all negative pixel values in the feature map by zero that is
represented in Eq. 2.

relu xð Þ ¼ max 0; xð Þ ð2Þ

where ‘x’ represents the input and relu xð Þ represents the output function.

10.2.3 Pooling Layer

Pooling layer achieves a linear or non-linear downsampling. This layer reduces the
computation complexity in terms of parameters reduction and alleviates overfitting.
Pooling reduces the dimensionality of feature map but preserves the most important
information. Various pooling methods are available for subsampling the feature
map such as max, average, and sum. Max pooling operation takes the largest
element from the rectified feature map within the window as shown in Fig. 10.3. As
an alternative to taking the largest element, average or sum of all elements in that
window can be taken.

10.2.4 Fully Connected Layer

All outputs of the preceding layer are attached to all inputs of the FC layer that
predicts the image label. This layer uses activation functions such as softmax,
sigmoid etc. for predicting the target class. Softmax function is used in the output
layer for multi classification model, which return the probabilities of each class in
that the target class has a higher probability. Softmax function provides a way of

Fig. 10.3 Max pool with subsample 2 � 2
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predicting discrete probability distribution over multiple classes and the sum of all
the probabilities will be equal to one. Sigmoid function provides output in the range
0–1, which is mostly used for binary classification model.

10.3 Proposed DCNN Architecture

The DCNN architecture for classification of images in the cifar-10 dataset imple-
mented in this work is shown in Fig. 10.4.

The DCNN model explored in this work consists of 6 consecutive convolutional
layers and 3 fully connected layers. Each convolutional layer is followed by a
subsampling layer. The input of the CNN model is a 32 � 32 � 3 image (i.e., the
input has three channels of 32 � 32 pixels). The first convolutional stage consists
of 48 kernels of size 3 � 3 with no subsampling. The second convolutional stage
consists of 48 kernels of size 3 � 3 and a max pooling layer that subsamples the
image by half. The third convolutional stage consists of 96 kernels of size 3 � 3
with no subsampling. The fourth convolutional stage consists of 96 kernels of size
3 � 3 and a max pooling layer that subsamples the image by half. The fifth con-
volutional stage consists of 192 kernels of size 3 � 3 with no subsampling. The
sixth convolutional stage consists of 192 kernels of size 3 � 3 and a max pooling
layer that subsamples the image by half.

Each kernel produces a 2-D image output (e.g., 48 of 32 � 32 images after the
first convolutional layer), which is denoted as 48 @ 32 � 32 in Fig. 10.4. Kernels
may contain different matrix values that are initialized randomly and updated during

Input
32x32x3

C1 feature maps
48@32x32 

C2 feature maps
48@30x30

C3 feature maps
96@15x15

C4 feature maps
96@13x13

C5 feature maps
192@6x6 

C6 feature maps
192@4x4 

Convolution 
3x3

Fully connected
512

Activation 
ReLU

Activation 
ReLU

Activation 
Softmax

Fully connected
256

Outputs
10

Convolution 
3x3

Convolution 
3x3

Convolution - 3x3
&

Max Pooling - 2x2

Convolution 
3x3

Convolution - 3x3
&

Max Pooling - 2x2

Fig. 10.4 Proposed DCNN architecture for cifar-10 dataset classification
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training to optimize the classification accuracy. First, fully connected layer has 512
nodes and the second fully connected layer has 256 nodes, and the final stage has a
softmax layer containing ten nodes. All convolutional and fully connected layers
are equipped with the ReLU activation function. The last fully connected layer
contains ten neurons which compute the classification probability for each class
using softmax regression. To reduce overfitting, “dropout” and “batch normaliza-
tion” is used after convolution layers. The effect of various optimizers in acceler-
ating gradient descendent is analyzed in this work.

10.3.1 Dropout Layer

Dropout layer drops less contributed nodes in the forward pass by setting them to
zero during training. Even some of the nodes are dropped out still the network can
able to provide the correct classification for a given example, that makes sure that
the network is not becoming too fitted to the training data and thus aids mitigate the
overfitting problem. It is an optional layer in the architecture. The nodes to be
dropped are randomly selected with a probability in each weight update cycle.

10.3.2 Batch Normalization

Normalization is simply a linear transformation applied to each activation. Batch
normalization technique normalizes each input channel across a mini-batch as given
in Eq. 3, which normalizes the activations of each channel with the mini-batch
mean and mini-batch standard deviation i.e. applies a transformation that maintains
the mean activation close to 0 and the activation standard deviation close to 1.

x̂ ¼ x� E x½ �ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var x½ �p ð3Þ

where E x½ � is mini-batch mean and Var x½ � is mini-batch standard deviation.
Activations yi are computed with the following transformation function for all input
neurons, xi.

yi ¼ wx̂i þ b ð4Þ

where ‘w’ is weight and ‘b’ is bias.
Figure 10.5 illustrates the transformation of inputs xið Þ into activations yið Þ with

batch normalization technique. Batch normalization acts like a regulator between
input layer and transformation function, which normalize the inputs intended for
distributing activation values uniformly all through the training process. A batch
normalization layer is used between the convolutional layer and activation layer that
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reduces the sensitivity to network initialization. Batch normalization significantly
accelerates training speed by reducing vanishing gradient problems [24]. The
presence of batch normalization has a benefit of optimizing the network training.
Also, this has other benefits such as easy weight initialization, improvement in
training speed, higher learning rate and regularization of values for the activation
function.

10.3.3 Optimizing Gradient Descendant with Various
Optimizer

The trainable parameters of CNN play a major role in efficiently and effectively
training a model and produce accurate results. Optimization strategies have great
influence on model’s learning process and the prediction process. Optimization
helps to minimize the error at training process and tune the model’s internal
learnable parameters such as weights (W) and the bias (b) values.

Gradient Descent is the most important technique used for training and opti-
mizing Intelligent systems. Gradient descent works by iteratively performing
updates based on the first derivative of a problem. For speedups, a technique called
“momentum” is often used, which averages search steps over iterations. Gradient
descent can be very effective, if the learning rate and momentum are well tuned. In
order to achieve the objective, model learns appropriate model parameters in every
iteration. Convergence of network depends on the internal structure of the model
and optimizer [25]. The formula for updating the parameter in the model is given in
Eq. 5.

h ¼ h� d � rJ hð Þ ð5Þ

where ‘d’ represents the learning rate, ‘r J hð Þ’ represents the Gradient of Loss
function J hð Þ with respect to ‘h’.

Input Layer Normalized Input Output Layer

Fig. 10.5 Normalization of inputs with batch normalization
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Crossentropy loss function is the widely used cost function, which is used as an
objective function to optimize the classification task. Crossentropy describes the
loss between the predicted probability distributions and target probability distri-
butions. Crossentropy is measured by Eq. 6.

H p; qð Þ ¼ �
X

pi log qi ð6Þ

where pi is the target probability distribution and qi is the predicted probability
distribution of the current model.

Momentum: Momentum is a technique for quickening the Stochastic Gradient
Descent (SGD) by changing the momentum largely towards the desired direction
and minimally towards the fluctuating direction. When the objective function
reaches local minima, the momentum is high. So the model is getting into local
minima, is negligible. Moreover, this method performs larger updates frequently by
which the model may miss the actual minima.
RmsProp: RmsProp is an optimizer that utilizes the magnitude of recent gradients
to normalize the gradients. This method divides the current gradient by a moving
average over the root mean squared gradients. RmsProp would boost the parameter
multiple times and decrement it once by the current gradient. Also this has
adaptable learning rate. This is a very robust optimizer which can deal stochastic
objectives very nicely, making it applicable to mini-batch learning.
Adadelta: Adadelta is a method that uses the magnitude of recent gradients and
steps to obtain an adaptive learning rate. This method stores an exponential moving
average over the gradients and learning rate. The scale of learning rate for each
individual parameter obtained by their ration.
Adam: Adaptive Moment Estimation (Adam) is another method, which determines
the learning rates for each parameter. The scale of learning rate for each individual
parameter obtained by their importance. Choosing a proper learning rate is a
challenging task. Small learning rate leads to painfully slow convergence. Since
adaptive algorithms dynamically adapt the learning rate and momentum, it supports
network to converge quickly and discover the accurate parameter values. Whereas
standard momentum techniques are deliberate in reaching the global minima. This
method stores an exponentially moving average over the past squared gradients.

10.4 Results and Discussion

The proposed DCNN architecture has been trained and validated with images in the
cifar-10 dataset. This dataset contains 60,000 images of size 32 � 32 with the
following 10 categories such as airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. Some of the sample images from this dataset are depicted in
Fig. 10.6. In the dataset 50,000 images are used as the training set and 10,000
images are used as the validation dataset. The experimental DCNN architecture is

244 S. Akila Agnes and J. Anitha



developed in Keras, written in Python. This is an open source high level library,
used to build neural network models.

The model uses accuracy as a metrics that can be evaluated during training and
testing. The performance of the model is measured by validation score. The efficient
model which is trained with a part of the dataset could able to predict the new one,
that has never used for training. A loss function or objective function used in this
experiment is crossentropy which is commonly used for image classification tasks.
The classifier tries to minimize this crossentropy between the target and the esti-
mated class probabilities.

This section presents the experimental results obtained during training and
testing stages on the cifar-10 image dataset. In order to speed up the experiments,
the training of the network is stopped, if the validation accuracy is not improved for
5 consecutive epochs. The upper bound for the number of training epochs con-
sidered in this experiment is 25 epochs.

Figure 10.7 shows a training loss over time for DCNN with various optimizers.
İt is observed that the crossentropy loss over time is much higher throughout the
training process for Rmsprop, momentum and Adadelta optimizers. Whereas the
stepwise behavior of the entropy loss in Adam optimizer is significantly reduced
over time.

The validation accuracy for DCNN with various optimizers for first 10 epochs is
presented in Table 10.1.

airplane

bird

cat 

horse

truck

Fig. 10.6 Sample images from the cifar-10 dataset
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The back propagation network uses the batch gradient technique, which is a
first-order optimization technique with favorable convergence properties. The
performance of models with various optimizers in terms of validation accuracy is
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Fig. 10.7 Training loss over time for DCNN with various optimizers

Table 10.1 Performance
comparison of various
optimizers in DCNN in terms
of validation accuracy (%)

Optimizers in DCNN

Epochs Adadelta Momentum Rmsprop Adam

1 10 19.38 10 49.87

2 10 27.4 10 61.3

3 10 9.98 10 67.87

4 10 10 10 70.54

5 10 10 10 73.46

6 10 10 10 74.55

7 10 10 10 76.19

8 10 10 10 77.74

9 10 10 10 75.46

10 10 10 10 77.74
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reported in Table 10.1. It is observed that Rmsprop, momentum, and Adadelta
optimizers are not able to achieve validation accuracies whereas Adam optimizer
achieves higher validation accuracy. From these observations, it is concluded that
the Adam optimizer outperforms other optimizers in terms of entropy loss and
accuracy due to its adaptive learning nature on the training set. The results show
that the effect of optimizers also significantly changes the accuracy of the model, in
addition to the structure of the architecture.

The model summary with a number of parameters used in the proposed DCNN
architecture is shown in Table 10.2. It shows the number of parameters initialized at
every layer in the DCNN architecture. Trainable parameters are initialized with
minimum random numbers to avoid dead neurons, but not too small to avoid zero
gradients. Uniform distribution is generally preferred for parameter initialization.
Totally 1,172,410 parameters are tuned by DCNN training to classify the images in
the cifar-10 dataset. The parameters in the model can be further re-tuned by
introducing dropout and batch normalization.

Table 10.2 Model summary of the proposed DCNN architecture

Layer (type) Output shape Param #

conv2d_1 (Conv2D) (None, 32, 32, 48) 1344

activation_1 (Activation) (None, 32, 32, 48) 0

conv2d_2 (Conv2D) (None, 30, 30, 48) 20,784

activation_2 (Activation) (None, 30, 30, 48) 0

max_pooling2d_1 (MaxPooling2) (None, 15, 15, 48) 0

conv2d_3 (Conv2D) (None, 15, 15, 96) 41,568

activation_3 (Activation) (None, 15, 15, 96) 0

conv2d_4 (Conv2D) (None, 13, 13, 96) 83,040

activation_4 (Activation) (None, 13, 13, 96) 0

max_pooling2d_2 (MaxPooling2) (None, 6, 6, 96) 0

conv2d_5 (Conv2D) (None, 6, 6, 192) 166,080

activation_5 (Activation) (None, 6, 6, 192) 0

conv2d_6 (Conv2D) (None, 4, 4, 192) 331,968

activation_6 (Activation) (None, 4, 4, 192) 0

max_pooling2d_3 (MaxPooling2) (None, 2, 2, 192) 0

flatten_1 (Flatten) (None, 768) 0

dense_1 (Dense) (None, 512) 393,728

activation_7 (Activation) (None, 512) 0

dense_2 (Dense) (None, 256) 131,328

activation_8 (Activation) (None, 256) 0

dense_3 (Dense) (None, 10) 2570

Total params: 1,172,410

Trainable params: 1,172,410

Non-trainable params: 0
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The training and validation accuracy for the proposed model with Adam opti-
mizer is shown in Fig. 10.8. It is observed from the figure that in later epochs, there
is no significant improvement in the validation accuracy as compared to the training
accuracy. The best training accuracy and validation accuracy achieved in this model
is 97.13 and 78.47% respectively. The validation accuracy is lower than the training
accuracy due to overfitting of the model. This happens when the model learns the
training data very detail and creates a negative impact on the performance of
the model on new data. This issue can be solved by introducing dropout after the
convolution layer.

Regularization is a very important technique to prevent over fitting in machine
learning problems. In this model, the regularization technique called dropout is
applied to avoid over fitting. Dropout does not rely on modifying the loss function
but the network itself. Figure 10.9 shows the performance of the network model by
introducing the dropout of 0.5 after the dense layer. It is noticed that the validation
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accuracy suddenly start to go up and oscillate on high values until the next learning
rate drop.

The key idea of dropout is randomly droping the parts of neural network during
training and thus preventing the over learning of features. It is observed from
Fig. 10.9 that after 10 epochs, there is an improvement in the validation accuracy
with dropout compared to a network without dropout. Dropout decreases the loss
from 1.1423 to 0.6112 and improves validation accuracy from 77.4 to 81.32% on
cifar-10 dataset. Also, time taken for training the neural network is minimized.

The model summary of the proposed DCNN architecture with batch normal-
ization is shown in Table 10.3. To improve the efficiency of the DCNN model,

Table 10.3 Model summary of the proposed DCNN architecture with batch normalization

Layer (type) Output shape Param #

conv2d_1 (Conv2D) (None, 32, 32, 48) 1344

batch_normalization_1 (Batch) (None, 32, 32, 48) 192

activation_1 (Activation) (None, 32, 32, 48) 0

conv2d_2 (Conv2D) (None, 30, 30, 48) 20,784

batch_normalization_2 (Batch) (None, 30, 30, 48) 192

activation_2 (Activation) (None, 30, 30, 48) 0

max_pooling2d_1 (MaxPooling2) (None, 15, 15, 48) 0

conv2d_3 (Conv2D) (None, 15, 15, 96) 41,568

batch_normalization_3 (Batch) (None, 15, 15, 96) 384

activation_3 (Activation) (None, 15, 15, 96) 0

conv2d_4 (Conv2D) (None, 13, 13, 96) 83,040

batch_normalization_4 (Batch) (None, 13, 13, 96) 384

activation_4 (Activation) (None, 13, 13, 96) 0

max_pooling2d_2 (MaxPooling2) (None, 6, 6, 96) 0

conv2d_5 (Conv2D) (None, 6, 6, 192) 166,080

batch_normalization_5 (Batch) (None, 6, 6, 192) 768

activation_5 (Activation) (None, 6, 6, 192) 0

conv2d_6 (Conv2D) (None, 4, 4, 192) 331,968

batch_normalization_6 (Batch) (None, 4, 4, 192) 768

activation_6 (Activation) (None, 4, 4, 192) 0

max_pooling2d_3 (MaxPooling2) (None, 2, 2, 192) 0

flatten_1 (Flatten) (None, 768) 0

dense_1 (Dense) (None, 512) 393,728

activation_7 (Activation) (None, 512) 0

dense_2 (Dense) (None, 256) 131,328

activation_8 (Activation) (None, 256) 0

dense_3 (Dense) (None, 10) 2570

Total params: 1,175,098

Trainable params: 1,173,754

Non-trainable params: 1344
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batch normalization layer is added after every convolution layer. In this experiment,
a momentum of 0.99 is used in the batch normalization layer for moving the mean
and variance. The presence of this layer improves the overall accuracy and learning
rate. This layer performs a transformation at each batch by normalizing the previous
layer’s activations that in turn maintains activation mean towards to 0 and standard
deviation towards to 1. The model re-tuned with batch normalization yields the
number of trainable parameters as 1,175,098.

The effect of the batch normalization in the performance of the model in terms of
validation accuracy is shown in Fig. 10.10. It shows that batch normalization really
has positive effects on neural networks but it delays the convergence of network. By
observing the loss over time, the regularizing effect of batch normalization becomes
very prominent. The batch normalized network learns consistently. Overall, batch
normalized models achieve higher validation and test accuracies on all datasets.
Due to these results, the use of batch normalization is generally advised since it
prevents model divergence and may increase convergence speeds through higher
learning rates.

The performance of batch normalization with and without dropout is shown in
Fig. 10.11. The batch normalization and dropout can be used at the same time for
improving the accuracy in the validation dataset. The batch normalized model
consistently achieves higher validation accuracy. Whereas it adds computational
complexity that can be handled by keeping higher learning rate. It is recommended
to keep the batch normalization between convolution and activation layers for
getting best results. Also, the dropout layer introduced after dense layer reduces the
over fitting issues. Figure 10.10 shows the accuracy improvement from 79.99 to
83.23% in first 25 epochs with the inclusion of dropout and batch normalization in
the deep CNN for cifar-10 dataset.

Further, the performance of the classification system can be improved by
changing the structure of architecture and tuning its parameters. Besides the number
of layers and the layer density of the architecture, all tunable factors such as the
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filter size, pooling method, number of epochs and layer patterns can improve the
accuracy further. The architecture of CNN goes deeper and deeper, the network
needs to learn tens of thousands to millions of parameters. A large amount of
training data is required to train these parameters properly. Overfitting problem can
be caused by poor quality training data and it can be avoided by training the
network with noise free training data. Also overfitting due to the small dataset can
be reduced with data augmentation, which can increase the training data by per-
forming various transformations.

10.5 Conclusion

A new deep convolution neural network model is proposed in this chapter for image
classification in cifar-10 dataset. The proposed model is analyzed with various
optimization strategies, the inclusion of dropout and batch normalization. The
Adam optimizer reduces the entropy loss over time as compared to other optimizers
such as momentum, Adadelta and Rmsprop in this model. The Adam optimizer
achieves a maximum validation accuracy of 78% in the first 25 epochs to classify
the images in cifar-10 dataset. İntroducing dropout after dense layer prevents the
model from learning too detail with the training data and achieves an accuracy of
81.32%. The CNN model with dropout and batch normalization ensures an
improved performance in the validation phase with an accuracy of 83.42%.
Since CNN model with batch normalization and dropout avoids model deviation, it
is recommended to use with higher learning rates. Experimental results show that
the proposed model exhibits significant improvement in the performance on clas-
sifying the images in the cifar-10 dataset.
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