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Abstract. Animal and robot social interactions are interesting both for
ethological studies and robotics. On the one hand, the robots can be
tools and models to analyse animal collective behaviours, on the other
hand the robots and their artificial intelligence are directly confronted
and compared to the natural animal collective intelligence. The first step
is to design robots and their behavioural controllers that are capable of
socially interact with animals. Designing such behavioural bio-mimetic
controllers remains an important challenge as they have to reproduce
the animal behaviours and have to be calibrated on experimental data.
Most animal collective behavioural models are designed by modellers
based on experimental data. This process is long and costly because it
is difficult to identify the relevant behavioural features that are then
used as a priori knowledge in model building. Here, we want to model
the fish individual and collective behaviours in order to develop robot
controllers. We explore the use of optimised black-box models based on
artificial neural networks (ANN) to model fish behaviours. While the
ANN may not be biomimetic but rather bio-inspired, they can be used
to link perception to motor responses. These models are designed to
be implementable as robot controllers to form mixed-groups of fish and
robots, using few a priori knowledge of the fish behaviours. We present
a methodology with multilayer perceptron or echo state networks that
are optimised through evolutionary algorithms to model accurately the
fish individual and collective behaviours in a bounded rectangular arena.
We assess the biomimetism of the generated models and compare them
to the fish experimental behaviours.
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1 Introduction

Autonomous, biomimetic robots can serve as tools in animal behavioural studies.
Robots are used in ethology and behavioural studies to untangle the multimodal
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modes of interactions and communication between animals [23]. When they are
socially integrated in a group of animals, they are capable of sending calibrated
stimuli to test the animal responses in a social context [17]. Moreover, animal and
autonomous robot interactions represent an interesting challenge for robotics.
Confronting robots to animals is a difficult task because specific behavioural
models have to be designed and the robots have to be socially accepted by the
animals. The robots have to engage in social behaviour and convince somehow
the animal that they can be social companions. In this context, the capabili-
ties of the robots and their intelligence are put in harsh conditions and often
demonstrate the huge gap that still exists between autonomous robots and ani-
mals not only considering motion and coping with the environment but also in
terms of intelligence. It is a direct comparison of artificial and natural collec-
tive intelligence. Moreover, the design of such social robots is challenging as it
involves both a luring capability including appropriate robot behaviours, and
the social acceptation of the robots by the animals. We have shown that the
social integration of robots into groups of fish can be improved by refining the
behavioural models used to build their controllers [8]. The models have also to
be calibrated to replicate accurately the animal collective behaviours in complex
environments [8].

Research on animal and robot interactions need also bio-mimetic formal mod-
els as behavioural controllers of the robots if the robots have to behave as con-
geners [2,3]. Robots controllers have to deal with a whole range of behaviours to
allow them to take into account not only the other individuals but also the envi-
ronment and in particular the walls [7,8]. However, most of biological collective
behaviour models deal only with one sub-part at a time of fish behaviours in
unbounded environments. Controllers based on neural networks, such as multi-
layer perceptron (MLP) [22] or echo state networks (ESN) [20] have the advan-
tage to be easier to implement and could deal with a larger range of events.

Objectives

We aim at building models that generate accurately zebrafish trajectories of
one individual within a small group of 5 agents. The trajectories are the result
of social interactions in a bounded environment. Zebrafish are a classic ani-
mal model in the research fields of genetics and neurosciences of individual and
collective behaviours. Building models that correctly reproduce the individual
trajectories of fish within a group is still an open question [18]. We explore MLP
and ESN models, optimised by evolutionary computation, to generate individual
trajectories. MLP and ESN are black-box models that need few a priori infor-
mation provided by the modeller. They are optimised on the experimental data
and as such represent a model of the complex experimental collective trajecto-
ries. However, they are difficult to calibrate on the zebrafish experimental data
due to the complexity of the fish trajectories. Here, we consider the design and
calibration by evolutionary computation of neural network models, MLP and
ESN, that can become robot controllers. We test two evolutionary optimisation
methods, CMA-ES [1] and NSGA-III [33] and show that the latter gives better
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results. We show that such MLP and ESN behavioural models could be useful
in animal robot interactions and could make the robots accepted by the animals
by reproducing their behaviours and trajectories as in [8].

2 Materials and Methods

2.1 Experimental Set-Up

We use the same experimental procedure, fish handling, and set-up as in [2,
4,6,8,10,28]. The experimental arena is a square white plexiglass aquarium of
1000 × 1000 × 100 mm. An overhead camera captures frames at 15 FPS, with a
500 × 500 px resolution, that are then tracked to find the fish positions. We use
10 groups of 5 adults wild-type AB zebrafish (Danio rerio) in 10 trials lasting
each one for 30-min as in [2,4,6,8,10,28]. The experiments performed in this
study were conducted under the authorisation of the Buffon Ethical Committee
(registered to the French National Ethical Committee for Animal Experiments
#40) after submission to the French state ethical board for animal experiments.

Fig. 1. Methodology workflow. An evolutionary algorithm is used to evolve the weight
of a MLP (1 hidden layer, 100 neurons) or an ESN (100 reservoir neurons) neural
networks that serves as the controller of a simulated robot interacting with 4 fish
described by the experimental data. Only the connections represented by dotted arrows
are evolved (for MLP: all connections; for ESN: connections from inputs to reservoir,
from reservoir to outputs and from outputs to outputs and to reservoir). The fit-
ness function is computed through data-analysis of these simulations and represent
the biomimetism metric of the simulated robot behaviour compared to the behaviour
exhibited by real fish in experiments. Two evolutionary algorithms are tested: CMA-ES
(mono-objective) and NSGA-III (multi-objective).
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2.2 Artificial Neural Network Model

Black-box models, like artificial neural networks (ANN), can be used to model
phenomena with few a priori information. Although they are not used yet to
model fish collective behaviours based on experimental data, here we show that
they are relevant to model zebrafish collective behaviour. We propose a method-
ology (Fig. 1) where either a multilayer perceptron (MLP) [22] artificial neural
network, or an echo state network (ESN) [20], is calibrated through the use of
evolutionary algorithms to model the behaviour of a simulated fish in a group
of 5 individuals. The 4 other individuals are described by the experimental data
obtained with 10 different groups of 5 fish for trials lasting 30 min.

MLP are a type of feedforward artificial neural networks that are very pop-
ular in artificial intelligence to solve a large variety of real-world problems [25].
Their capability to universally approximate functions [11] makes them suitable
to model control and robotic problems [25]. We consider MLP with only one
hidden layer of 100 neurons (using a hyperbolic tangent function as activation
function).

ESN are recurrent neural networks often used to model temporal processes,
like time-series, or robot control tasks [26]. They are sufficiently expressive to
model complex non-linear temporal problems, that non-recurrent MLP cannot
model.

For the considered focal agent, the neural network model takes the following
parameters as input: (i) the direction vector (angle and distance) from the focal
agent towards each other agent; (ii) the angular distance between the focal agent
direction and each other agent direction (alignment measure); (iii) the direction
vector (angle and distance) from the focal agent towards the nearest wall; (iv)
the instant linear speed of the focal agent at the current time-step, and at the
previous time-step; (v) the instant angular speed of the focal agent at the current
time-step, and at the previous time-step. This set of inputs is typically used in
multi-agent modelling of animal collective behaviour [13,30]. As a first step, we
consider that it is sufficient to model fish behaviour with neural networks.

The neural network has two outputs corresponding to the change in linear
and angular speeds to apply from the current time-step to the next time-step.
Here, we limit our approach to modelling fish trajectories resulting from social
interactions in a homogeneous environment but bounded by walls. Very few
models of fish collective behaviours take into account the presence of walls [5,9].

2.3 Data Analysis

For each trial, e, and simulations, we compute several behavioural metrics using
the tracked positions of agents: (i) the distribution of inter-individual distances
between agents (De); (ii) the distributions of instant linear speeds (Le); (iii) the
distributions of instant angular speeds (Ae); (iv) the distribution of polarisation
of the agents in the group (Pe) and (v) the distribution of distances of agents
to their nearest wall (We). The polarisation of an agent group measures how
aligned the agents in a group are, and is defined as the absolute value of the
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mean agent heading: P = 1
N

∣
∣
∑N

i=1 ui

∣
∣ where ui is the unit direction of agent i

and N = 5 is the number of agents [32].
We define a similarity measure (ranging from 0.0 to 1.0) to measure the

biomimetism of the simulated robot behaviour by comparing the behaviour of
the group of agents in simulations where the robot is present (experiment er: four
fish and one robot) to the behaviour of the experimental fish groups (experiment
ec: five fish):

S(er, ec) = 5
√

I(Der ,Dec)I(Ler ,Wec)I(Aer , Oec)I(Per , Tec)I(Wer , Tec) (1)

The function I(X,Y ) is defined as such: I(X,Y ) = 1 − H(X,Y ). The H(X,Y )
function is the Hellinger distance between two histograms [14]. It is defined as:

H(X,Y ) = 1√
2

√
∑d

i=1(
√
Xi − √

Yi)2 where Xi and Yi are the bin frequencies.
This score measures the social acceptation of the robot by the fish, as defined

in [7,8]. Compared to the similarity measure defined in these articles, we added
a measure of the polarisation of the agents. This was motivated by the tendency
of our evolved neural models, without a polarisation factor, to generate agents
with unnatural looping behaviour to catch up with the group.

2.4 Optimisation

We calibrate the ANN models presented here to match as close as possible the
behaviour of one fish in a group of 5 individuals in 30-min simulations (at 15
time-steps per seconds, i.e. 27000 steps per simulation). This is achieved by
optimising the connection weights of the ANN through evolutionary computation
that iteratively perform global optimisation (inspired by biological evolution) on
a defined fitness function so as to find its maxima [21,27].

We consider two optimisation methods (as in [7]), for MLP and ESN net-
works. In the Sim-MonoObj-MLP case, we use the CMA-ES [1] mono-
objective evolutionary algorithm to optimise an MLP, with the task of maximis-
ing the S(e1, e2) function. In the Sim-MultiObj-MLP and Sim-MultiObj-
ESN cases, we use the NSGA-III [33] multi-objective algorithm with three objec-
tives to maximise. The first objective is a performance objective corresponding
to the S(e1, e2) function. We also consider two other objectives used to guide the
evolutionary process: one that promotes genotypic diversity [24] (defined by the
mean euclidean distance of the genome of an individual to the genomes of the
other individuals of the current population), the other encouraging behavioural
diversity (defined by the euclidean distance between the De, Le, Ae, Pe and
We scores of an individual). The NSGA-III algorithm was used with a 0.80%
probability of crossovers and a 0.20% probability of mutations (we also tested
this algorithm with only mutations and obtained similar results). The NSGA-
III algorithm [33] is considered instead of the NSGA-II algorithm [12] employed
in [7] because it is known to converge faster than NSGA-II on problems with
more than two objectives [19].
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In both methods, we use populations of 60 individuals and 300 generations.
Each case is repeated in 10 different trials. We use a NSGA-III implementation
based on the DEAP python library [16].

Fig. 2. Similarity scores between the behaviour of the experimental fish groups (con-
trol) and the behaviour of the best-performing simulated individuals of the MLP
models optimised by CMA-ES or NSGA-III. Results are obtained over 10 different
trials (experiments for fish-only groups, and simulations for NN models). We con-
sider five behavioural features to characterise exhibited behaviours. Inter-individual
distances corresponds to the similarity in distribution of inter-individual distances
between all agents and measures the capabilities of the agents to aggregate. Linear
and Angular speeds distributions correspond to the distributions of linear and
angular speeds of the agents. Polarisation measures how aligned the agents are in
the group. Distances to nearest wall corresponds to the similarity in distribution
of agent distance to their nearest wall, and assess their capability to follow the walls.
The Biomimetic score corresponds to the geometric mean of the other scores.

3 Results

We analyse the behaviour of one simulated robot in a group of 4 fish. The
robots are driven by ANN (either MLP or ESN) evolved with CMA-ES (Sim-
MonoObj-MLP case) or with NSGA-III (Sim-MultiObj-MLP and Sim-
MultiObj-ESN cases) and compare it to the behaviour of fish-only groups
(Control case). We only consider the best-evolved ANN controllers. In the sim-
ulations, the simulated robot does not influence the fish because the fish are
described by their experimental data that is replayed.
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Fig. 3. Comparison between 30-min trials involving 5 fish (control, biological data) and
simulations involving 4 fish and 1 robot, over 10 trials and across 5 behavioural fea-
tures: inter-individual distances (A), linear (B) and angular (C) speeds distributions,
polarisation (D), and distances to nearest wall (E).
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Examples of agent trajectories obtained in the three tested cases are found in
Fig. 4A. In the Sim-MonoObj-MLP and Sim-MultiObj-* cases, they cor-
respond to the trajectory of the simulated robot agent. In both case, we can
see that the robot follow the walls like the fish, and are often part of the fish
group as natural fish do. However, the robot trajectories can incorporate pat-
terns not found in the fish trajectories. For example, small circular loop are done
when the robot performs an U-turn to catch up with the fish group. This is par-
ticularly present in the Sim-MonoObj-MLP case, and seldom appear in the
Sim-MultiObj-* cases.

Fig. 4. Agent trajectories observed after 30-min trials in a square (1 m) aquarium,
for the 4 considered cases: Control reference experimental fish data obtained as
in [9,28], Sim-MonoObj-MLP MLP optimised by CMA-ES, Sim-MultiObj-MLP
MLP optimised by NSGA-III, Sim-MultiObj-ESN ESN optimised by NSGA-III. A
Examples of an individual trajectory of one agent among the 5 making the group (fish
or simulated robot) during 1-min out of a 30-min trial. B Presence probability density
of agents in the arena.

We compute the presence probability density of agents in the arena (Fig. 4B):
it shows that the robot tend to follow the walls as the fish do naturally.

For the three tested cases, we compute the statistics presented in Sect. 2.3
(Fig. 3). The corresponding similarity scores are shown in Fig. 2. The results of
the Control case shows sustained aggregative and wall-following behaviours of
the fish group. Fish also seldom pass through the centre of the arena, possibly in
small short-lived sub-groups. There is group behavioural variability, especially
on aggregative tendencies (measured by inter-individual distances), and wall-
following behaviour (measured by the distance to the nearest wall), because
each one of the 10 groups is composed of different fish i.e. 50 fish in total.

The similarity scores of the Sim-MultiObj-* cases are often within the vari-
ance domain of the Control case, except for the inter-individual score. It sug-
gests that groups incorporating the robot driven by an MLP evolved by NSGA-
III exhibit relatively similar dynamics as a fish-only group, at least according
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to our proposed measures. However, it is still perfectible: the robot is some-
times at the tail of the group, possibly because of gap created between the robot
and the fish group by small trajectories errors (e.g. small loops shown in robot
trajectories in Fig. 4A).

The Sim-MonoObj-MLP case sacrifices biomimetism to focus mainly on
group-following behaviour: this translated into a higher inter-individual score
than in the Sim-MultiObj-* cases, and robot tend to follow closely the fish
group. With Sim-MonoObj-MLP, the robot is going faster than the fish,
and will fastly go back towards the centroid of the group if it is too far ahead
of the group: this explains the large presence of loops in Fig. 4A. The Sim-
MonoObj-MLP does not take into account behavioural diversity like the Sim-
MultiObj-*, but focus on the one that is easier to find (namely the group-
following behaviour) and stays stuck in this local optimum.

There are few differences between the results of the Sim-MultiObj-MLP
and the Sim-MultiObj-ESN cases, the latter showing often slightly lower
scores than the former. However, the Sim-MultiObj-ESN displays a large vari-
ability of inter-individual scores, which could suggest that its expressivity could
be sufficient to model agents with more biomimetic behaviours if the correct
connection weights were found by the optimiser.

4 Discussion and Conclusion

We evolved artificial neural networks (ANN) to model the behaviour of a sin-
gle fish in a group of 5 individuals. This ANN controller was used to drive
the behaviour of a robot agent in simulations to integrate the group of fish by
exhibiting biomimetic behavioural capabilities. Our methodology is similar to the
calibration methodology developed in [7], but employs artificial neural networks
instead of an expert-designed behavioural model. Artificial neural networks are
black-box models that require few a-priori information about the target tasks.

We design a biomimetism score from behavioural measures to assess the
biomimetism of robot behaviour. In particular, we measure the aggregative ten-
dencies of the agents (inter-individual distances), their disposition to follow walls,
to be aligned with the rest of the group (polarisation), and their distribution of
linear and angular speeds.

However, finding ANN displaying behaviours of appropriate levels of
biomimetism is a challenging issue, as fish behaviour is inherently multi-level
(tail-beats as motor response vs individual trajectories vs collective dynam-
ics), multi-modal (several kinds of behavioural patterns, and input/output
sources), context-dependent (different behaviours depending on the spatial posi-
tion and proximity to other agents) and stochastic (leading to individual and
collectives choices and action selection) [9,29]. More specifically, fish dynamics
involve trade-offs between social tendencies (aggregation, group formation), and
response to the environment (wall-following, zone occupation); they also follow
distinct movement patterns that allow them to move in a polarised group and
react collectively to environmental and social cues.
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We show that this artificial neural models can be optimised by using evo-
lutionary algorithms, using the biomimetism score of robot behaviour as a fit-
ness function. The best-performing evolved ANN controllers show competitive
biomimetism scores compared to fish group behavioural variability. We demon-
strate that taking into account genotypic and behavioural diversity in the optimi-
sation process (through the use of the global multi-objective optimiser NSGA-
III) improve the biomimetic scores of the evolved best-performing controllers.
The ANN models evolved through mono-objective optimisation tend to focus
more on evolving a group-following behaviour rather than a biomimetic agent.

Our approach is still perfectible, in particular, we only evolve the behaviour
of a single agent in a group, rather than all agents of the group. This choice
was motivated by the large increase in difficulty in evolving ANN models for
the entire group, which would also involve additional behavioural trade-offs: e.g.
individual free-will and autonomous dynamics, individuals leaving or re-joining
the group. However, it also means that here the fish do not react to the robot in
simulations because the fish behaviour is a replay of fish experimental trajectories
recorded without robot.

Additionally, it may be possible to improve the performance (in term of
biomimetism) of the multi-objective optimisation process by combining additional
selection pressures as objectives (i.e. not just genotypic and behavioural diver-
sity) [15]. We already include behavioural and phenotypic diversities as selection
pressures to guide the optimisation process; however, taking into account pheno-
typic diversity can bias the optimisation algorithm to explore rather than exploit,
which can prevent some desired phenotypes to be considered by the optimisation
algorithm. An alternative would be to use angular diversity instead [31].

This study shows that ANN are good candidates to model individual and
collective fish behaviours, in particular in the context of social bio-hybrid systems
composed of animals and robots. By evolutionary computation, they can be
calibrated on experimental data. This approach requires less a priori knowledge
than equations or agent based modelling techniques. Although they are black
box model, they could also produce interesting results from a biological point of
view. Thus, ANN collective behaviour models can be an interesting approach to
design animal and robot social interactions.
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References

1. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing popula-
tion size. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp.
1769–1776. IEEE (2005)

2. Bonnet, F., Cazenille, L., Gribovskiy, A., Halloy, J., Mondada, F.: Multi-robots
control and tracking framework for bio-hybrid systems with closed-loop interaction.
In: IEEE International Conference on Robotics and Automation (ICRA). IEEE
(2017)



Evolutionary Optimisation of Neural Network Models 95

3. Bonnet, F., Cazenille, L., Seguret, A., Gribovskiy, A., Collignon, B., Halloy, J.,
Mondada, F.: Design of a modular robotic system that mimics small fish locomotion
and body movements for ethological studies. Int. J. Adv. Robot. Syst. 14(3) (2017).
https://doi.org/10.1177/1729881417706628

4. Bonnet, F., Gribovskiy, A., Halloy, J., Mondada, F.: Closed-loop interactions
between a shoal of zebrafish and a group of robotic fish in a circular corridor.
Swarm Intell. 1–18 (2018)

5. Calovi, D.S., Litchinko, A., Lecheval, V., Lopez, U., Escudero, A.P., Chaté, H., Sire,
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I., Durier, V., Canonge, S., Amé, J.: Social integration of robots into groups of
cockroaches to control self-organized choices. Science 318(5853), 1155–1158 (2007)

18. Herbert-Read, J.E., Romenskyy, M., Sumpter, D.J.: A turing test for collective
motion. Biol. Lett. 11(12), 20150674 (2015)

19. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Performance comparison
of NSGA-II and NSGA-III on various many-objective test problems. In: IEEE
Congress on Evolutionary Computation (CEC), pp. 3045–3052. IEEE (2016)

20. Jaeger, H.: Echo state network. Scholarpedia 2(9), 2330 (2007)
21. Jiang, F., Berry, H., Schoenauer, M.: Supervised and evolutionary learning of echo

state networks. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.)
PPSN 2008. LNCS, vol. 5199, pp. 215–224. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-87700-4 22

https://doi.org/10.1177/1729881417706628
http://arxiv.org/abs/1602.05830
https://doi.org/10.1007/978-3-319-63537-8_10
https://doi.org/10.1098/rsos.150473
http://arxiv.org/abs/1701.03611
https://doi.org/10.1007/978-3-540-87700-4_22
https://doi.org/10.1007/978-3-540-87700-4_22


96 L. Cazenille et al.

22. King, S.Y., Hwang, J.N.: Neural network architectures for robotic applications.
IEEE Trans. Robot. Autom. 5(5), 641–657 (1989)

23. Mondada, F., Halloy, J., Martinoli, A., Correll, N., Gribovskiy, A., Sempo, G.,
Siegwart, R., Deneubourg, J.: A general methodology for the control of mixed
natural-artificial societies. In: Kernbach, S. (ed.) Handbook of Collective Robotics:
Fundamentals and Challenges, pp. 547–585. Pan Stanford, Singapore (2013).
Chapter 15

24. Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary
robotics: an empirical study. Evol. Comput. 20(1), 91–133 (2012)

25. Norgaard, M., Ravn, O., Poulsen, N., Hansen, L.: Neural Networks for Modelling
and Control of Dynamic Systems: A Practitioner’s Handbook. Advanced Textbooks
in Control and Signal Processing. Springer, Berlin (2000)
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