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Abstract. The real-valued satin bowerbird optimization (SBO) is a novel bio-
inspired algorithm which imitates the ‘male-attracts-the-female for breeding’
principle of the specialized stick structure mechanism of satin birds. SBO has
achieved success in congestion management, accurate software development
effort estimation. In this paper, a complex-valued encoding satin bowerbird
optimization algorithm (CSBO) is proposed aiming to enhance the global
exploration ability. The idea of complex-valued coding and finds the optimal
one by updating the real and imaginary parts value. With Complex-valued
coding increase the diversity of the population, and enhance the global explo-
ration ability of the basic SBO algorithm. The proposed CSBO optimization
algorithm is compared against SBO and other state-of-art optimization algo-
rithms using 20 benchmark functions. Simulation results show that the proposed
CSBO can significantly improve the convergence accuracy and convergence
speed of the original algorithm.
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1 Introduction

Metaheuristics algorithm have become very popular over the past decade. This pop-
ularity is due to several key reasons: flexibility, lack of a gradient mechanism, simple
structure and easy-to-understand features. The most popular of which is the genetic
algorithm (GA) [1], which simulates Darwin’s evolutionary theory, the principle is that
optimization is a set of stochastic solutions for specific problems. In the case of the
evaluation objective function, it updates the variables according to their fitness values.
Similarly, there are many evolutionary algorithms, such as Differential Evolution
(DE) [2]. These are evolutionary algorithms. The second type of algorithms are the
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ecosystem simulation algorithms, including Biogeography-Based Optimization (BBO)
[3], Weed Colonization Algorithm (WCA).

While the third group are swarm intelligence algorithms, which representative are
Particle Swarm Optimization (PSO) [4] algorithm, Ant Colony Optimization
(ACO) [5]. There are some other swarm intelligent algorithms, such as, Artificial Bee
Colony (ABC) algorithm [6], Bat Algorithm (BA) [7], Cuckoo Search (CS) algorithm
[8], Satin bowerbird optimizer (SBO) [9].

The remainder of this paper is organized as follows: Sect. 2 discusses the basic
principles of the complex-valued encoding satin bower bird optimizer (CSBO) Algo-
rithm. Section 3 tests the performance of the algorithm using standard test functions and
discusses the experimental results of standard test functions. Section 4 uses the CSBO
algorithm to solve motor parameter identification problem and compare it with other
algorithms. Finally, Sect. 4 contains some conclusions and future research directions.

2 Complex-Valued Satin Bower Bird Optimizer (CSBO)

2.1 Initialize the Complex-Valued Encoding Population

Let the range of the function argument be interval ½varRmin; varRmax�. Randomly gen-
erate n complex modulus qn and the amplitude hn, the resulting modulus vector sat-
isfies the following relation.

Rn þ iLn ¼ qnðcos hn þ i sinhnÞ

qn ¼ 0;
varRmax � varRmin

2

h i
; hn ¼ varImin; varImax½ � ð1Þ

In Eq. (1), varRmax denotes the upper bound of the real part and varRmin denotes the
lower bound of the real part. varImax denotes the upper bound of the imaginary part,
which is set as 2p, varImin denotes the lower bound of the imaginary part, and is set to
�2p. The n real and imaginary parts are assigned to the real and virtual genes of the
bower according to produce a bird’s bower.

The Updating Method of CSBO

Xnew
Rn þ i Xnew

In ¼ Xold
Rn þ i Xold

In þ kn
XRj þ XRelite

2

� �
� Xold

Rn

� �

þ i kn
XIj þ XIelite

2

� �
� Xold

In

� � ð2Þ

In Eq. (2), XRn is nth real parts bower or solution vector. XRelite represents the real
parts position of the elite. The value XRj is calculated by the roulette wheel procedure.
varRmax and varRmin mean the upper and lower bounds of the real part. xIn is nth
imaginary parts bower or solution vector. xIelite Represents the imaginary parts position
of the elite. The value xIj is calculated by the roulette wheel procedure. varImax and
varImin mean the upper and lower bounds of the real part.
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Bower Mutation

Xnew
Rn þ i Xnew

In ¼ Xold
Rn þ iXold

In þðrR �Nð0; 1ÞÞþ iðrI �Nð0; 1ÞÞ ð3Þ

rR ¼ z � ðvarRmax � varRminÞ
rI ¼ z � ðvarImax � varIminÞ

ð4Þ

In Eq. (4), the real and imaginary parts of the bird’s bower position obey normal
distribution N. varImax and varImin mean the upper and lower bounds of the real
part. varImax and varImin mean the upper and lower bounds of the virtual part.

Fitness Calculation
In order to solve the fitness function, the complex-valued of bower must be converted
into a real number, the number of modulo as the size of the real number, the symbol
determined by the amplitude. The specific approach is shown in Eqs. (5) and (6)

qn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
Rn þX2

In

q
ð5Þ

Xn ¼ qnsgnðsinð
XIn

qn
ÞÞþ varRmax þ varRmin

2
ð6Þ

where qn denotes the nth multidimensional modulus, XRn and XLn denote the real and
imaginary parts of the complex modulus, respectively, and Xn is the transformed real
number independent variable.

3 Experimental Results and Discussion

3.1 Simulation Platform

All calculations run in Matlab R2016a. The CPU is Intel i5 processor. The operating
system is win10.

3.2 Compare Algorithm Parameter Settings

We have chosen five classical optimization algorithms to compare with CSBO,
including the artificial bee colony optimization algorithm [6], bat algorithm [7],
Cuckoo search optimizer (CS) [8] and the original version Satin Bowerbird Opti-
mization algorithm [9].

3.3 Benchmark Test Functions

In this section, the CSBO algorithm is based on 20 Standard test functions. These 20
reference functions are classical functions used by many researchers. In spite of the
simplicity, we chose these test functions to compare our results with the current
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heuristic results. These reference functions are listed in Table 1, where Dim represents
the dimension of the function, range is the boundary of the function search space
(Figs. 1 and 2).

Table 1. Benchmark functions

Benchmark test functions Dim Range

F1 ¼
PD�1

i¼1
½100 ðxiþ 1 � xiÞ2� þ ðxi �1Þ2 30 [−30, 30]

F2 ¼ �20 exp �0:2
ffiffi
1
n

q Pn
i¼1

x2i � exp 1
n

Pn
i¼1

cos 2p xi

� �� �
þ 20þ e

30 [−32, 32]

Fig. 1. Convergence curves of algorithms

Fig. 2. Convergence curves of algorithms
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The results of the standard test function are shown in Table 2. It can be observed
that the accuracy of the CSBO algorithm exceeds that of other algorithms. From the
convergence graph, we can see that the convergence speed of the CSBO algorithm is
faster than other algorithms. The variance map shows that the CSBO algorithm results
are stable. Summary, the experimental results in this paper demonstrates that CSBO
shows competitive results among the three benchmark functions and outperforms other
well-known algorithms and points out that CSBO has better in more other kinds of
algorithms. The next section examines the CSBO solution to engineering problems.

4 Conclusions

This paper a complex-valued encoding satin bowerbird optimization algorithm (CSBO)
is proposed. This algorithm introduces the idea of complex-valued coding and finds the
optimal one by updating the real and imaginary parts value. The proposed CSBO
optimization algorithm is compared against real-valued SBO and other bio-inspired
optimization algorithms using 3 standard test functions including unimodal and mul-
timodal functions, induction motor parameter identification and p-value test. Results
show that the proposed CSBO can significantly improve the performance metrics.
Future research focuses on the complex-valued satin bowerbird optimizer (CSBO)
algorithm is used in combinatorial optimization, engineering optimization and other
applied fields.
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