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Abstract. Representing query samples, many methods based on sparse repre-
sentation do not take into account the different importance of atoms. In this
paper, we propose a new extended sparse weighted representation classifier
(ESWRC). In ESWRC, we introduce a representativeness estimator, and use it
to estimate the atom representativeness. The atom representativeness is used to
construct the weights of atoms. The weighted atoms are used to represent the
query samples. In addition, we propose a distinctive feature descriptor, called
logarithmic weighted sum (LWS) feature descriptor, which combines the
advantages of discrete orthonormal S-transform feature, Gabor feature, covari-
ance and logarithmic operation. We combine ESWRC and LWS for face
recognition and call it improved extended sparse representation classifier and
feature descriptor (IESRCFD) method. Experimental results show that
IESRCFD outperforms many state-of-the-art methods.
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1 Introduction

Face recognition is a hot topic in the fields of computer vision and pattern recognition,
and many researchers have been working on it [1]. Various techniques have been used
for face recognition such as principal component analysis (PCA) [2], linear discrimi-
nant analysis (LDA) [3], local preserving projections (LPP) [4] and Eigenface [5]
during the past few years. However, these early methods can only deal with simple face
recognition problems well. Extreme learning machine (ELM) [6] is a single hidden
layer network which can solve face recognition problems very quickly. But its
recognition rate is limited. Although sparse representation classifier (SRC) [7] performs
better than methods like PCA and LDA, it has no robustness for large continuous
occlusion. Yang et al. [8] proposed a regularized robust coding (RRC) model to
improve the robustness of SRC, which could regress a given signal with regularized
regression coefficients. By assuming that the coding residual and the coding coefficient
are respectively independent and identically distributed, RRC seeks for a maximum
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posterior solution of the coding problem. However, it can only mitigate the occlusion in
face recognition to some extent.

In face recognition, the intra-class difference which is caused by variable expres-
sions, illuminations, and disguises, can be shared across different subjects [9]. Based on
this idea, Deng et al. [9] proposed the extended sparse representation-based classifier
(ESRC). ESRC uses the intra-class variant dictionary and training samples to represent
the test samples, which improves the recognition performance for occlusion or non-
occlusion face images. In ESRC, a test sample is represented by several training
samples that come from the same class. For training samples within a same class,
ESRC holds that they have equal importance when representing other samples together.
Because different samples even from the same class holds different amount of infor-
mation or content, which suggests that they should be considered distinctively.

The statistical properties of features such as covariance matrix and distribution
characteristics can also be regarded as a new feature and can be used for face recog-
nition. Because they can reflect the characteristics of the original feature. Logarithmic
image processing is a mathematical framework based on abstract linear mathematics
[10]. It replaces the linear arithmetic operations with a non-linear one which more
accurately characterizes the response of human eyes [11]. Texture feature is a kind of
global feature. Discrete orthonormal S-transform (DOST) [12] can measure it. Hence,
the coefficient of DOST can be view as a global feature. Furthermore, DOST can
preserve the phase information. Gabor feature is a local feature. It has a good spatial
locality and directional selectivity. Hence, DOST and Gabor feature can be used to
construct the discriminative features.

In this paper, we propose an improved extended sparse representation classifier and
feature descriptor (IESRCFD) method. In IESRCFD, we first define a logarithmic
weighted sum (LWS) feature descriptor which combines advantages of global feature,
local feature, statistical properties of features and logarithmic operation. Next, we
estimate the atom representativeness using the proposed representativeness estimator.
Then we propose an extended sparse weighted representation classifier (ESWRC) by
using the representativeness. In ESWRC, the representativeness is used to reflect the
importance of the atom when representing other samples. The atom representativeness
is incorporated into the sparse representation process as a weight coefficient. Finally,
IESRCFD is obtained by combining ESWRC and LWS feature descriptor.

The main contributions of this paper are as follows.

(1) Defined a logarithmic weighted sum (LWS) feature descriptor which describes
images in a more accurate way. It has combined the advantages of discrete
orthonormal S-transform feature, Gabor feature, covariance and logarithmic
operation. Gabor feature plays the most important role in our algorithm among
them.

(2) Proposed ESWRC considering the importance of each atom in representing the
query samples by assigning a weight to each atom, which improves the recognition
rate.

(3) Proposed to use ESWRC and LWS together as IESRCFD to achieve a very high
recognition rate.
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The rest of paper is organized as follows. Section 2 introduces logarithmic
weighted sum feature descriptor. Section 3 introduces the proposed representativeness
estimator. Section 4 is the proposed extended sparse weighted representation classifier.
Section 5 is the proposed improved extended sparse representation classifier and fea-
ture descriptor (IESRCFD) method. Section 6 gives the experimental results. Section 7
is the conclusion.

2 Logarithmic Weighted Sum Feature Descriptor

In this paper, we propose a logarithmic weighted sum (LWS) feature descriptor which
combines those advantages of discrete orthonormal S-transform (DOST) feature, Gabor
feature, covariance and logarithmic operation. Figure 1 is the construction process of
LWS feature descriptor. In Fig. 1, w1 and w2 are the weights.

2.1 Discrete Orthonormal S-Transform (DOST) Feature

Recent work shows that a discrete orthonormal S-transform (DOST) basis can be used
to accelerate the calculation of S-transform (ST) [13] and eliminate the redundancy in
the space-frequency domain [14]. Besides, DOST can preserve the phase information
and allows for an arbitrary partitioning of the frequency domain, which achieves the
zero redundancy. Those advantages make DOST has a wide range of applications, such
as texture classification [12] and signal analysis [14].

DOST is a pared-down version of the fully redundant ST [14]. The main idea of
DOST is to form N orthogonal unit-length basis vectors. Each base vector corresponds
to a specific region in the time-frequency domain. And each specific region can be
determined by the following three parameters: m, c and s. m is the center of each
frequency domain band, c is the width of that band, s is the location in time domain.
Thus the k th basis vector D½k�½m;c;s� can be defined as

D½k�½m;c;s� ¼
ie�ips e�i2aðm�c=2�1=2Þ�e�i2aðmþ c=2�1=2Þ

2
ffiffi
c

p
sin a ; a 6¼ 0

� ffiffiffi
c

p
ie�ips; a ¼ 0

(
ð1Þ

where a equals to pðk=N � s=cÞ, and it represents the center of temporal window.
k ¼ 0; 1; . . .;N � 1.

For any one dimensional signal h½k�, its length is N. Its DOST coefficients S½m;c;s� for
the region corresponding to the choice of ½m; c; s� can be obtained by formula (2).

Fig. 1. The construction process of LWS feature descriptor.
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e�i2pk
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" #
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where the content in the square brackets is H½f �.
For each input image, the DOST coefficient matrix can be obtained by using

discrete orthonormal S-transform. The DOST coefficient matrix has the same size of
the input image.

2.2 Gabor Wavelet Feature

Two dimensional Gabor wavelet transform is a kind of wavelet transform. It has a good
time-frequency localization characteristic. Besides, the function of two dimensional
Gabor wavelet is similar to enhancing bottom image features including edge and peak,
as well as local features. The extracted Gabor feature not only has a good spatial
locality and directional selectivity, but also is robust to illumination and pose varia-
tions. Hence, in this paper, we choose the two dimensional Gabor wavelet to extract the
local feature of an image.

For each pixel in an image, a vector Fx;y can be obtained by

Fx;y ¼ ½Iðx; yÞ; x; y; G0;0ðx; yÞ
�� ��; � � � ; G0;7ðx; yÞ

�� ��; G1;0ðx; yÞ
�� ��; � � � ; G4;7ðx; yÞ

�� ��� ð3Þ

where Iðx; yÞ represents the intensity value of position ðx; yÞ, Gu;rðx; yÞ is the response
of a two dimensional Gabor wavelet centered at ðx; yÞ with orientation u and scale r:

Gu;rðx; yÞ ¼ k2r
4p2

X
t;s
e�

k2r
8p2

ððx�sÞ2 þðy�tÞ2Þðeikrððx�tÞcosðhuÞþ ðy�sÞsinðhuÞÞ � e�2p2Þ ð4Þ

where kr ¼ 1ffiffiffiffiffiffiffi
2r�1

p , hu ¼ pu
8 . Let u = 8, r = 5.

For an image Q, we assume that the row number of Q is Â, the column number of Q
is B̂. Then, its Gabor wavelet feature O is denoted by

O ¼ ½FT
1;1; � � � ;FT

1;Â;F
T
2;1 � � � ;FT

2;Â; � � � ;FT
B̂;1; � � � ;FT

B̂;Â�
T ð5Þ

2.3 LWS Feature Descriptor

For image Q, its Gabor wavelet feature is O. The covariance matrix of O is denoted by
CL. Meanwhile, image Q̂ with the size of 43� 43 is obtained by down-sampling the
image Q. The DOST coefficient matrix ~O of image Q̂ is obtained by formula (2). The
covariance matrix of ~O is denoted by CG. Taking image Q as an example, we define a
new logarithmic weighted sum (LWS) feature descriptor.
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FD ¼ log½~k�CG + ð1�~kÞ�CL� ð6Þ

where FD is the LWS feature descriptor of Q, log½�� represents the logarithmic oper-
ation, ~k is the weight coefficient, 0� ~k� 1. The LWS feature descriptors of other
images in data set are obtained in this way.

3 Representativeness Estimator

In methods based on sparse representation, a test sample is represented by several atoms.
For different atoms, because they contain different amounts of information, they have
different representativeness to represent other samples generally. In this paper,wepropose
a representativeness estimator, and use it to estimate the atom representativeness.

The main steps to estimate the representativeness by using representativeness
estimator are as follows.

Firstly, for any sample (e.g., image), we remove its relativity by whitening. Then its
representativeness is estimated by computing its information entropy. This process is as
follows.

Given an arbitrary sample (e.g., image) S, its size is M�N.

3.1 Remove the Relativity of Sample

(1) Remove the mean of S.

X ¼ S� �S ð7Þ

where �S is the mean of S.
(2) X is arranged into a column vector.
(3) Compute the covariance matrix P.

P ¼ E½XXT � ð8Þ

where E[ � ] represents the mathematical expectation.
(4) Singular value decomposition.

P ¼ U * K * UT ð9Þ

where K is a diagonal matrix.
(5) Compute the whitening matrix ~M.

~M = K�1=2UT ð10Þ

(6) Compute the whitened matrix Z.

Z = ~M * X ð11Þ
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3.2 Compute the Information Entropy

(1) Z is arranged into a matrix ~Z, and the size of ~Z is M�N.
(2) Compute the information entropy of ~Z.

H~Z ¼ �
X255
i¼0

pi log pi ð12Þ

where H~Z is the information entropy of ~Z, pi represents the proportion of pixel
whose grayscale is i.

In this paper, H~Z represents the representativeness of image S, and the greater the
value of H~Z , the stronger its representativeness.

4 Extended Sparse Weighted Representation Classifier

In ESRC, for atoms with the same class, because they contain different amounts of
information, they should have different representativeness to represent other samples.
That is to say, their importance is not the same when they together represent other
samples. In order to reflect their importance, we propose an extended sparse weighted
representation classifier (ESWRC).

We assume that w ¼ ½w1;w2;w3; . . .;wk� 2 <d�n are the training samples, where
wi 2 <d�ni are the training samples with class i. Each column of wi represents a
training sample with class i. That is to say, wi contains ni training samples.

Let B ¼ ½B1 � c1e1; . . .;Bl � clel� 2 <d�m represents the intra-class variant bases,
where ei ¼ ½1; . . .; 1� 2 <1�mi , ci 2 <d�1 is the class centroid of class i, Bi 2 <d�mi ,

i ¼ 1; 2; . . .; l,
Pl
i¼1

mi ¼ m. Bi are randomly selected from wi, and they are used to

obtain the intra-class variant bases. Each column of Bi represents a training sample
with class i. That is to say, Bi contain mi training samples.

The main idea of ESWRC can be illustrated by formula (13).

g ¼ ðWw � wÞxþðWB � BÞbþ z ð13Þ

where g is a test sample. Ww and WB are the weight coefficients. They correspond to w

and B respectively. x and b are the sparse vectors. z is a noise term with bounded
energy zk k2\e, and z 2 <d . ‘�’ is the Hadamard product operator. Figure 2 is the
diagram of ESWRC.

Ww = ½Ww1
;Ww2

;Ww3
; . . .;Wwk

� ð14Þ

WB = ½WB1 ;WB2 ;WB3 ; . . .;WBl � ð15Þ
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where Wwi
2<1�ni corresponds to wi, i ¼ 1; 2; . . .; k. WBj2<1�mj corresponds to

Bj � cjej, j ¼ 1; 2; . . .; l.
For all samples with class i, the expression of Wwi

is as follows.

Wwi
= Ci1;Ci2;Ci3; . . .;Cini½ � ð16Þ

where Cij represents the contribution factor of jth image in class i.

Cij ¼ HijPni
j¼1

Hij

ð17Þ

where Hij represents the information entropy of jth image in class i.
Let ðWw � w) = w� ¼ ½w�

1;w
�
2;w

�
3; . . .;w

�
k � 2 <d�n, where w�

i represent those new
samples with class i. Each column of w�

i represents a new sample.
ðWB � BÞ = B� ¼ ½B�

1�c�1e1;B
�
2 � c�2e2; . . .;B

�
l � c�l el�, where ei ¼ ½1; . . .1� 2 <1�mi ,

c�i 2 <1�mi is the class centroid of class i, B�
i 2 <1�mi , i ¼ 1; 2; . . .; l,

Pl
i¼1

mi ¼ m. B�
i

are the new training samples, and they are used to obtain the intra-class variant bases.
Each column of B�

i represents a new training sample with class i. That is to say, B�
i

contain mi new training samples.
Firstly, the dimensions of w�;B� and g are reduced by PCA. Then

~w ¼ ½~w1;
~w2;

~w3; . . .;
~wk� 2 <ed�n, ~B ¼ [~B1 � ~c1e1; . . .; ~Bl � ~clel� 2 <~d�m and ~b 2 <~d�1

are obtained, where ~wi 2 <<~d�ni , ~Bi 2 <<~d�mi and ~ci 2 <<~d�1 correspond to wi, Bi and ci
respectively.

Let ~A ¼[~w; ~B], ~x ¼ x
b

� �
, Gð~xÞ ¼ ~xk k1, Hð~xÞ ¼ ~b� ~A~x.

Fig. 2. The diagram of ESWRC.
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We have the following sparse representation problem.

min
~x

~xk k1 sub:to ~b ¼ ~A~x ð18Þ

where ~b is the test sample that needs to be represented, ~A is the sparse dictionary
matrix.

We use the augmented Lagrangian method to solve (18), then obtain the solution of

(18), and denoted by ~x	 = x^

b
^

� �
. After that, the residual is computed by

Ri ¼ ð~bÞ ¼ ~b� ~A
dið~xÞ
b
^

� ����� ����
2

ð19Þ

where i ¼ 1; 2; . . .; k, diðx^Þ is a new vector whose only nonzero entries are the entries in
x^ those are associated with class i.

The category of probe sample ~b can be obtained by

Identity (~b) = argmin
i

Rið~bÞ ð20Þ

Hence, the label of g is Identity (~b).
Figure 3 is the flow chart of EWSRC.

Fig. 3. The flow chart of EWSRC.
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5 Improved Extended Sparse Representation Classifier
and Feature Descriptor Method

On the one hand, the defined LWS feature descriptor is robust to illumination variations
and pose variations. On the other hand, EWSRC has a strong robustness to occlusion
and non-occlusion. In order to combine the advantages of LWS feature descriptor and
EWSRC, we propose an improved extended sparse representation classifier and feature
descriptor (IESRCFD) method. IESRCFD is as follows. First of all, LWS feature
descriptor of each image is obtained by formula (9). Then the obtained LWS feature
descriptors are used as the input of ESWRC. Finally, the labels of testing samples are
obtained. The time complexity of IESRCFD is about Oðn2Þ. Figure 4 is the flow chart
of IESRCFD.

6 Experimental Results and Analysis

Our IESRCFD is compared with other algorithms on FEI face database and FERET
database respectively.

6.1 FEI Face Database

The FEI face database is a Brazilian face database, and it contains 200 different
persons. Each person has 14 different images. All images are colorful and taken against
a white homogenous background in an upright frontal position with profile rotation of
up to about 180°. Scale might vary about 10% and the original size of each image is
640� 480 pixels. In our experiments, the whole dataset is used for our experiments.
The training set and test set both account for half of the whole dataset. That is to say,
for each person, we randomly select seven images as the training set, and the rest seven
images are used as the test set. The size of each image is down sampled to 64� 64.
Figure 5 shows some examples of image variations from the FEI face database.

Fig. 4. The flow chart of IESRCFD.
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Table 1 lists the recognition rates of different algorithms on FEI face database.

From Table 1 we can see that the recognition rate of our IESRCFD is 91.6%, which
achieves the highest recognition rate, with about 35%, 12%, 12%, 25%, 30%, 11%,
20% and 14% improvements over RRC, ESRC, SRC, KNN, ELM, ELMSRC, RSC
and KSRC respectively.

6.2 FERET Database

As in [20, 21], the “b” subset of FERET database is used to verify the recognition
performance of various algorithms. The “b” subset of FERET consists of 198 subjects,
each subject contains 7 different images. The training set images contain frontal face
images with neutral expression “ba”, smiling expression “bj”, and illumination changes
“bk”. While the test set images involve face images of varying pose angle: “bd”-þ 25
,
“be”-þ 15
, “bf”-�15
, and “bg”-�25
. As in [20], all images are down sampled to
64� 64. Some samples of face images in “b” subset of FERET database are shown in
Fig. 6.

Table 1. Recognition rates of different algorithms on FEI face database (~k ¼ 0:1)

Algorithm Recognition rate

RRC [8] 56.4%
ESRC [9] 79.1%
SRC [7] 79.1%
KNN [15] 66.1%
NN [16] 66.1%
ELM [6] 61.5%
ELMSRC [17] 80.7%
RSC [18] 71.3%
KSRC [19] 77.9%
IESRCFD 91.6%

Fig. 5. Some examples of image variations from the FEI face database.
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Table 2 lists the recognition rates of different algorithms on the “b” subset of
FERET database.

In Table 2 one see that when the test set are “bd”, “be”, “bf” and “bg” subsets, the
recognition rates of our IESRCFD are 84.5%, 99.0%, 99.5% and 90.5% respectively,
which are higher than those of other algorithms. The average recognition rate of
IESRCFD is 93.4%,which not only achieves the highest recognition rate, but also shows a
7%, 30%, 37%, 42%, 33%, 39%, 31% and 35% better performance compared with that of
GSRC, LogE-SR, TSC, ESRC, KNN, ELM, ELMSRC and KSRC respectively.

7 Conclusion

In this paper, we propose an improved extended sparse representation classifier and
feature descriptor (IESRCFD) method by using proposed LWS feature descriptor and
ESWRC simultaneously. Experimental results showed that our IESRCFD performs
better than many algorithms. The recognition rate of IESRCFD is about 20%, 14%,
12% and 11% higher than those of RSC, KSRC, ESRC and ELMSRC respectively on
FEI face database. The recognition rate of IESRCFD is about 31%, 7% and 4% higher
than those of ELMSRC, GSRC and RSR respectively on FERET face database.
Meanwhile, experimental results illustrated that IESRCFD could convergence and meet
the real time requirement.

Table 2. Recognition rates of different algorithms on “b” subset of FERET database (~k¼ 0:1)

Algorithm\Dataset bd be bf bg Average

RSR [20] 79.5% 96.5% 97.5% 86.0% 89.9%
GSRC [22] 77.0% 93.5% 97.0% 79.0% 86.6%
LogE-SR [23] 34.5% 81.0% 91.0% 46.5% 63.3%
TSC [21] 36.0% 73.0% 73.5% 44.5% 56.8%
ESRC [9] 38.5% 59.0% 68.0% 41.0% 51.6%
KNN [15] 56.5% 60.5% 74.0% 48.0% 59.8%
NN [16] 56.5% 60.5% 74.0% 48.0% 59.8%
KSRC [19] 50.5% 67.0% 60.0% 55.5% 58.3%
ELM [6] 45.5% 58.5% 61.0% 53.5% 54.6%
ELMSRC [17] 56.5% 63.0% 65.0% 65.5% 62.5%
IESRCFD 84.5% 99.0% 99.5% 90.5% 93.4%

Fig. 6. Some samples of face images in “b” subset of FERET database.
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