
Natura Fecit Saltum: Punctuationalism
Pervades the Natural Sciences

Graham P. Wallis

Abstract Despite parallel revolutions of uniformitarianism in geology and gradual-
ism in biology c200 years ago, it is now clear that rare events of large effect prevail in
the natural world.While astronomical and geological phenomena aremore overt (e.g.
asteroid impact, supervolcanoes, earthquakes, tsunami), the general and widespread
prevalence of major genetic, ecological and climatic events, and their long-term
effects on life on Earth is becomingmorewidely appreciated. Biogeography abounds
with examples of rare dispersal events shaping the biota of volcanic islands; ecolog-
ical studies are showing us how adaptation can happen rapidly in association with
habitat change; genomic studies show that major adaptations and speciation can
happen rapidly through selection on just a few genetic variants; ecology shows us
how tipping points can lead to major and irreversible shifts in ecosystems; climate
change is exacerbating the frequency and degree of extreme weather events all over
the globe. An unfortunate corollary of climate change is that the long-term integrated
effects of global warming are experienced most strongly in connection with the most
extreme events.

1 Introduction—Huxley’s Dissent

‘And Mr. Darwin’s position might, we think, have been even stronger than it is if he had not
embarrassed himself with the aphorism, “Natura non facit saltum,” which turns up so often
in his pages.’ Westminster Review, 1860 (Huxley 1906)

Change in nature, be it physical or biotic, is typically characterized as the result of
continuous, gradual processes, immeasurable over our lifespan, accreted over eons
of time. This concept was central to the thinking of Darwin (1859), building on
the work of Hutton and Lyell (1830–1833). Their great insight was that large-scale
past change could be explained in terms of small-scale ongoing processes (Penny
and Phillips 2004), upending the orthodoxies of biblical creation in biology and
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Fig. 1 Frequency of punctuational natural events: rank order plotted against log10t. From left to
right: tides, Pacific cyclones, Atlantic hurricanes, king tides, lunar perigee, Acqua alta Venezia, El
Niño, sunspots, SanAndreas Fault, Alpine Fault, Cascadia SubductionZone, 200masteroids, super-
volcanoes, Milankovitch eccentricity cycle, 1-km asteroids, 10-km asteroids, Heavy Bombardment
Era

catastrophism in geology [e.g. Cuvier and Whewell (Penny 2017), but see Gould
(2002)]. Darwin portrayed the formation of adaptations and new species as the result
of gradual change by natural selection; Hutton and Lyell saw mountain-building,
erosion and formation of geological layers resulting from the imperceptibly slow
processes of uplift, weathering and sedimentation. Thus, adaptation and speciation
were effected by microevolution, and geological change by uniformitarianism, both
over a timescale of millions of years.

Despite his own identification as ‘Darwin’s bulldog’,whenfirst readingTheOrigin
of Species, Thomas Huxley famously remarked: ‘you have loaded yourself with an
unnecessary difficulty in adopting Natura non facit saltum so unreservedly’, and
(with reference to organic chemistry as an example): ‘… I have a sort of notion that
similar laws of definite combination rule over the modifications of organic bodies,
and that in passing from species to species “Natura fecit saltum”.’ (Provine 1971).

Themodern synthesis of evolution famouslymelded genetics (Dobzhansky 1937),
systematics (Mayr 1942) and palaeontology (Simpson 1944). The first two of these
evolutionists and their subsequent followers largely adhered to a more classical Dar-
winian gradualism, not attributing much evolutionary importance to macromuta-
tions (‘sports’), favoured by Goldschmidt (1940) as material to evolutionary change.
Simpson was more pluralist, seeing a continuum of ground between gradualism and
punctuationalism, perhaps reflecting his palaeontological background, which Gould
was later to promote. Ongoing developments in these areas, as well as in climatol-
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ogy, ecology and molecular genetics, increasingly suggest that natural processes are
indeed, as Huxley perceived, actually rather ‘lumpy’, with the majority of change
occurring during relatively brief, extreme events, punctuating periods of relative calm
or stasis. Here, I review the widespread significance of these punctuational events
across all natural sciences (Fig. 1).

2 Extraterrestrial Events

Conceived after findings from the Apollo moonmission, and what would be the most
cataclysmic event inEarth’s history if itwere to happen again, is that of theLateHeavy
Bombardment nearly 4 billion years ago (yBP).Although the narrowness of this event
is now under question (Mann 2018), there was at least a period in early Earth history
when our planet was pounded with asteroids, perhaps delaying, if not re-setting, the
origin of life. Since then, at least some of the largest mass extinctions were probably
the result of bolide impacts (Chapman andMorrison 1994). These include the famous
Cretaceous–Paleogene (K–Pg) boundary dinosaur-extinction event 66 million years
ago (Ma), linked to the Chicxulub crater and atmospheric soot (Bardeen et al. 2017).
There is a strong inverse relationship between size of asteroid and impact rate; the
biggest the events are the rarest, with 1-km asteroids hitting at c108 year intervals.
The Earth’s eccentric orbit, and obliquity and precession of its axis led to a period
of Pleistocene glaciations, ongoing since 2.6 Ma. These have occurred on a cycle of
~105 years over the last million years, and about 2.5× that frequency before (Hodell
2016; Tzedakis et al. 2017), with both destructive and creative effects on the planet’s
flora and fauna (Hewitt 2000, 2004; Jansson and Dynesius 2002; Wallis et al. 2016;
Weir et al. 2016).

3 Geology

Geology provides many dramatic episodic events, epitomized by massive subduc-
tion zone earthquakes and ensuing tsunami of the Pacific Rim. Tsunami have been
shown to be responsible for deposition of deep sand beds in sea caves as well as
further inland, making up the large part sedimentation in these places (Rubin et al.
2017). The huge tsunami generated by the 2011 East Japan earthquake transported
a documented 289 species (16 phyla) of coastal species to the Hawaiian islands and
western coast of North America, mostly by rafting (Carlton et al. 2017). The recent
Kaikoura earthquake in New Zealand lifted the foreshore a few metres in places
(Hamling et al. 2017), temporarily eradicating local intertidal and subtidal commu-
nities of kelp, molluscs and echinoderms. Major landslips, like the Usoy rock-slide
of 1911, can create new lakes; Green Lake in Fiordland, New Zealand, was created
12,000–13,000 years ago when a 9-km block of mountains slipped down 700 m and
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along 2.5 km (Graham 2008), and more recently the Dart River was dammed by an
enormous rockfall, which locals felt as an earthquake.

Evidence strongly points towards volcanism (in Siberia in both cases) as the
cause of two mass extinctions: the biggest of all at the Permian–Triassic (252 Ma)
leading to global anoxia (Stordal et al. 2017), and the Triassic–Jurassic (201.5 Ma)
(Percival et al. 2017). Fifteen planet-altering mega-eruptions have been identified
over the globe, likely associated with extinctions of varying degrees (Witze 2017).
Supervolcanoes such as Yellowstone, Toba and Taupo have the potential to be 3–4
orders of magnitude larger than the Mount St Helens eruption in 1980, with far-
reaching effects on Earth’s climate and biota (McDowall 1996). Super-eruptions
(>1000 gigatonnes) have recently been estimated to occur as frequently as every 17
kyr on average (Rougier et al. 2018).

When the Straits of Gibraltar closed 6 Ma, the Mediterranean dried, leaving a
basin 3–5 km deep in places, probably with a few hypersaline lakes and pans, until
filling again some 700 kyr later (Hsü et al. 1977). Filling of the Black Sea through
the Bosphorus probably occurred in a monumental flood some 7–8 kyr ago, turning
a freshwater lake into marine habitat (Ryan et al. 1997). Erosion and tectonic uplift
can lead to headwater capture (river piracy), transferring biota from one system to
another, an important mode of range expansion and speciation in freshwater fishes
(Craw et al. 2016; Tagliacollo et al. 2015; Waters et al. 2001).

In Derek Ager’s words: ‘the history of any one part of the earth, like the life of a
soldier, consists of long periods of boredom and short periods of terror’ (Ager 1973).

4 Biogeography

The colonization of new landmasses, particularly islands, is dominated by chance
events, often happening soon after condition become habitable. Lack’s ‘first arrival’
hypothesis is apparent from island radiations of groups that just happened to get
there first and thus be able to adapt to multiple niches in the absence of other occu-
pants (Lack 1947), and rapidly spread to nearby islands (Wilmshurst et al. 2011).
Thus, finches radiated in the Galápagos (Schluter 2000) and became the honey-
creepers of Hawaii (Freed et al. 1987), while ancestors of Californian tarweeds
became the Hawaiian silverswords (Carlquist et al. 2003). Monophyletic radiations
can dominate the fauna, such as Anolis lizards in the Caribbean, Nesotes beetles on
the Canaries and picture-winged Drosophila on Hawaii (Emerson 2002). Lemurs
and chameleons dominate the Madagascan fauna whereas New Zealand is known
for radiations of ratites, reptiles, land-snails, earthworms, cicadas, moths, ensifer-
ans, Veronica, Ranunculus and Celmisia, though depauperate in many other groups
(Gibbs 2016;Wallis and Trewick 2009). NewZealand’s freshwater fish fauna is dom-
inated by galaxiids and gobiids (McDowall 2000), andHawaii by gobiids (McDowall
2003), which happened to get there first, reflecting their diadromous life history (Bur-
ridge et al. 2012). Thus, island faunas can reflect a few unlikely chance events early
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in their colonization. Once settled, plants and animals undergo rapid adaptive radi-
ations, filling niches normally occupied by other groups on continents. Intriguingly,
recent work on city park populations shows evidence of rapid morphological and
genetical divergence in a lizard species, over the last century or more that cannot be
attributed to drift alone (Littleford-Colquhoun et al. 2017).

5 Adaptation

Ironically, Darwin’s own metaphor for natural selection-artificial selection by
humans (Darwin 1859)—is evidence that morphological change can be effected
rapidly in a wide range of species (DeLong et al. 2016; Ellner et al. 2011). Many
classic natural examples of adaptation are also rapid and represent responses to human
habitat modification (Alberti 2015; Bosse et al. 2017; Bradshaw and Holzapfel 2008;
Carroll et al. 2007; Franks and Weis 2008; Palumbi 2001a, b; Rudman et al. 2017),
including domestication (Zeng et al. 2017), physiological responses to pollution
(van’t Hof et al. 2016; Wright et al. 2013) and over-harvesting (Borrell 2013), resis-
tance to drugs (Brown andWright 2016), herbicides (Délye et al. 2013) and pesticides
(Crossley et al. 2017), and introductions to new environments (Cattau et al. 2017;
Gordon et al. 2015; Lee et al. 2011; Novy et al. 2013). These have sweeping local
effects such that original populations can be completely replaced by genetically dis-
tinct ones in a few generations, or more widespread in the case of spread of viruses
or plasmids carrying resistance factors. Recent work using Tribolium suggests that
rapid evolution can be the cause of range expansion rather thanmerely a result (Szücs
et al. 2017).

Change can be rapid when there is plentiful standing genetic variation for a quan-
titative trait, or ‘soft sweep’ (Crossley et al. 2017; Jain and Stephan 2017) and can
be effected by change in gene expression as well (Becks et al. 2012; Huang et al.
2017; Passow et al. 2017; Rollins et al. 2015; Uusi-Heikkila et al. 2017). Indeed,
altering gene expression through quantitative trait selection can be a rapid mode of
adaptive evolution, since the protein is already present (Goncalves et al. 2017; Mar-
gres et al. 2017; Mathieson et al. 2015; Nandamuri et al. 2017). Strictly speaking,
the rapid sorting of existing polymorphism may not strictly constitute ‘evolution’ in
its entirety, but it is certainly an important component and can happen on an ecolog-
ical timescale (Lallensack 2018). A recent review detailed numerous examples of
evolutionary changes associated with extreme climatic events (Grant et al. 2017).

Adaptation on islands can be particularly rapid due to intense selection caused
by novel food, habitat and competitors. When the large ground finch, Geospiza
magnirostris, established breeding on the small island of Daphne in the Galápagos,
the resident medium-sized G. fortis underwent a sharp reduction in bill size over the
course of two seasons, coinciding with a drought the previous year (Grant and Grant
2006). In contrast, termite-eating geckos on five islands created by flooding behind
a dam showed parallel increase in head-size within 15 years, reflecting inclusion of
larger prey items in the absence of competition following extinction of four larger
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species (de Amorim et al. 2017). Another reptile showed a rapid change in perching
behaviour when an invading congeneric competitor was introduced, resulting in a
concomitant increase in toe-pad size as a result (Stuart et al. 2014).Rapid size increase
on an even shorter timeframe has been documented in lake Daphnia in response to
invasion by predatory zooplankton (Gillis and Walsh 2017).

Application of genomics is providing examples where rapid adaptation has been
achieved through selection acting on a small number of genes (Lamichhaney et al.
2015, 2016; Rogers et al. 2017), in some cases caused by transposons (Brawand et al.
2014; van’t Hof et al. 2016), or genes within inversions (see Speciation section). An
example in steelhead trout (Oncorhynchus mykiss) shows rapid adaptation to land-
locked lake conditions through change in transcription rates of four osmoregulatory
genes within 14 generations (Aykanat et al. 2011). Such examples are particularly
compelling when they can be shown to have happened repeatedly, in cases of conver-
gent or parallel evolution (Arendt and Reznick 2008; Martin and Orgogozo 2013).
In three-spine stickleback (Gasterosteus aculeatus), for example, repeated deletions
in Pitx1 have caused reduction in pelvic girdle structure associated with adaptation
to freshwater habitat (Chan et al. 2010) by a single mutational leap. Different cave
populations of tetras (Astyanax) show different ‘regressive’ loss of function muta-
tions in the same pigmentation gene (Mc1r) in separate cave systems, one of them,
remarkably, homologous to the substitution leading to red hair in humans (Gross
et al. 2009), as well as independent deletions in another gene (Oca) causing com-
plete albinism (Protas et al. 2006). Populations of rock pocket mice (Chaetodipus
intermedius) on dark substrates show different mutations atMc1r modulating adap-
tive melanism, while some populations utilise different loci altogether (Nachman
et al. 2003). A recent case in Anolis lizards showed physiological, transcriptomic
and genomic shifts after a single extreme winter (Campbell-Staton et al. 2017), reca-
pitulating the classic work of Bumpus (1898). Repeated rapid evolution can happen
on a seasonal basis (Becks et al. 2012) and has been shown for innate immune genes
in Drosophila (Behrman et al. 2017).

As well as these examples of parallelism, a beneficial mutation in one species can
be ‘transported’ to another through hybridization, as in the case of genes modulating
bill size and shape in Darwin’s finches (Lamichhaney et al. 2015, 2016), colour
polymorphism in Heliconius butterflies (Dasmahapatra et al. 2012; Kronforst and
Papa 2015), warfarin resistance in Mus (Song et al. 2011) and enhanced vectorial
capacity in Anophelesmosquitoes (Fontaine et al. 2015). Repeated transport of low-
armour Ectodysplasin (Eda) and low pigmentation (Kitlg) alleles, present at low
frequency in the marine stock, has allowed rapid parallel evolution of the freshwater
benthic form of G. aculeatus (Colosimo et al. 2005; Schluter and Conte 2009).
There are even examples of horizontal gene transfer from bacteria and fungi into
their phytophagous insect hosts (McKenna et al. 2016). Thus, a single mutational
event can have far-reaching effects beyond the species in which it arose.

Major adaptations can often lead to incipient, or indeed, complete speciation
(Wright et al. 2013). For example, movement of vertebrates onto land was preceded
by a rapid threefold increase in eye size at 385–395 Ma, affording a million-fold
increase in the volume of space in which objects could be seen (MacIver et al. 2017),
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and launching several major new lineages. Developmental genetics has shown that
major changes in body plan often derive from tinkering with cis-regulation of a small
number of otherwise conserved gene families (Carroll 2008).

6 Speciation

Eldredge and Gould (1972) fervently championed (Gould 1980) the theory of ‘punc-
tuated equilibrium’—the idea that phenotypic change tends to occur in bursts asso-
ciated with cladogenesis, separated by long periods of stasis (Gould and Eldredge
1977). On a geological timescale, the punctuated evolutionary pattern is frequently
upheld in morphologies preserved in fossils (Gould and Eldredge 1993; Jackson and
Cheetham 1999; Stanley 1979; Vrba 1980). While some major geological bound-
aries (i.e. mass extinctions) are attributed to extraterrestrial and terrestrial geolog-
ical causes (above), other links include marine transgression, atmospheric shifts,
selenium depletion, and biotic changes, including the current human-induced event
(Ceballos et al. 2017), subsequently promoting major new radiations (Lamsdell and
Selden 2017), probably rapid ones (Ksepka et al. 2017), with new body plans exploit-
ing new niches. The Cambrian explosion at 570 Ma led to a host of multicellular
lineages in a very short space of time on a geological scale, most of which sub-
sequently went extinct. These mass extinctions were followed by rapid phases of
lineage diversification within certain groups (Simpson 1944), before slowing as the
available niches became filled.

Punctuated equilibrium is undergoing something of a renaissance, given the recent
availability of extensive molecular phylogenies and development of new analyti-
cal approaches (Hopkins and Lidgard 2012). A recent review (Pennell et al. 2014)
distinguished two separate issues relating to evolutionary rate: (i) gradual versus
pulsed evolution, and (ii) anagenetic versus cladogenetic evolution. Several exam-
ples supporting both concepts are presented (Uyeda et al. 2011), though that second
is deemed hard to show on the basis of current data, particularly given the difficulty
of morphologically cryptic species in fossils. This ‘quantum evolution’ of George
Simpson has since been demonstrated in bird bill shape evolution (Cooney et al.
2017). Asteroid impact event at the K-Pg boundary led to sudden rapid diversifi-
cation of bill shape (Simpsonian), followed by more gradual (Darwinian) evolution
within lineages. Rapid radiations within three major superfamilies of frogs are simi-
larly aligned with this event (Feng et al. 2017), though its implication in radiation of
placental mammals is a matter of some debate (Liu et al. 2017; Penny and Phillips
2004). A recent analysis of the evolution of vertebrate body size used a maximum
likelihoodmethod to fit Lévy processes to comparative phylogenetic data and showed
a pulsed mode of evolution with intervening stasis (Landis and Schraiber 2017). The
oligochaete genusMesenchytraeus appears to have undergone an explosive Pliocene
radiation following uplift in the Pacific northwest, driven by habitat type (Lang et al.
2017). A pattern of rapid initial cladogenesis followed by slower lineage diversifica-
tion could be a general observation in evolution of new groups (Rabosky and Lovette
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2008), but may be caused by a correlation between the rate of phenotypic evolution
and the rate of speciation, giving the impression that speciation is driving pheno-
typic divergence in a punctuated manner (Rabosky 2012). For example, ecological
complexity and opportunity can drive rates of both phenotypic diversification and
speciation. If these co-vary with each other across different lineages across a tree, it
can lead to the perception that more change is associated with speciation.

Claims that Eldredge and Gould had uncovered a new evolutionary process
were quickly repudiated: population genetics can easily explain geologically ‘rapid’
change over a few thousand generations (Charlesworth et al. 1982; Winsor et al.
2017; Wright 1931). Even Mayr’s seminal book made several mentions of ‘genetic
revolutions’ (Mayr 1963). He took care, however, to clearly distinguish his view
of post-founder effect genetic change, which results from re-organisation of vari-
ation already present, from Goldschmidt’s suggestion of systemic macromutations
(Goldschmidt 1940).

Examples of comparatively rapid speciation in extant genera include dwarf plank-
tivorous whitefish (Coregonus) repeatedly evolved from the normal benthic form
(Dion-Côté et al. 2017), benthic and limnetic stickleback (Gasterosteus) from the
anadromous form (Peichel andMarques 2017), and various divergent sympatric pop-
ulations of trout (Salmo), charr (Salvelinus) and smelt (Osmerus), all formed in post-
glacial lakes over the last several thousand years (Schluter 2000). The large species
flocks of cichlid fishes in the African Rift Valley lakes show very little genetic diver-
gence, implying rapid formation (Brawand et al. 2014; Meyer et al. 1990), despite
an impressive array of feeding adaptations, patterns and colours. The 13 neotrop-
ical Midas cichlid species are only a few thousand years old, yet show attendant
rapid evolution of opsins (Torres-Dowdall et al. 2017). One Nicaraguan crater-lake
cichlid (Amphilophus zaliosus) probably arose from a more widespread species in
the last 10,000 years (Barluenga et al. 2006). One of the fastest cases of speciation
in vertebrates appears to have occurred in Baltic Sea flounder, where a demersal
breeding form has evolved in low salinity conditions over the last 2,400 generations
(Momigliano et al. 2017). A genetically homogeneous, selfing species of brooding
sea star is hypothesized to have arisen in ecological time as a result of disruptive
selection (Puritz et al. 2012). Phytophagous insects have the ability to switch host
plants and speciate rapidly as a result (Coyne and Orr 2004). The tephritid fruit fly
Rhagoletis switched from its native hawthorn (Crataegus) to apple (Malus) crops
in the eastern USA in the 1850s, and has now switched back to novel endemic host
hawthorn species with the introduction of infested apples into the Pacific northwest
(Mattsson et al. 2015).

These examples of rapid divergence are often driven by adaptation to different
ecological niches, but sexual selection is another likely driver, particularly in birds and
fishes (Nosil 2012; Schluter 2000). More rapid still are potential examples of genetic
isolation viaWolbachia infection inDrosophila andother insects (Charlat et al. 2003).
Application of genomics to studies of speciation is also providing many examples
of rapid speciation by ‘magic traits’, achieved either through pleiotropic effects of a
few selected loci (Ferris et al. 2017), or hitchhiking of postzygotic isolation genes
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with a strongly selected locus (Wright et al. 2013). Some studies find punctuation at
the molecular level causing departures from a molecular clock (Pagel et al. 2006),
echoing an early suggestion that the molecular clock may be episodic and driven
at least partly by selection (Gillespie 1984). Ongoing in vitro studies using E. coli
shows sustained molecular evolution, often with very rapid fixation of positively
selected mutations, even in the face of environmental constancy (Good et al. 2017).

Gould was criticized for his dalliance with the extreme saltationist ‘chromosome
repatterning’ ideas of Richard Goldschmidt (Goldschmidt 1940; Gould 2002), but
there is good evidence that rapid speciation has happened: we should maintain a
pluralist view on rates and mechanisms of speciation. Chromosomal rearrangements
appear to play a big role, since they can have the effect of reducing recombination
and maintaining linkage of desirable combinations of genes in the face of gene flow
(Ortiz-Barrientos et al. 2016). Saltational speciation through structural rearrange-
ments (Lewis 1966) and polyploidy are clear examples in plants (Soltis and Soltis
1999); as many as 80% of angiosperms may be polyploids (Soltis and Soltis 2012).
More recently, inversions have been shown to play a role in rapid ecological speci-
ation in animals too (Hoffman and Rieseberg 2008), including Gasterosteus (Jones
et al. 2012), Rhagoletis (Powell et al. 2013) and butterflies (Heliconius, Papilio)
(Joron et al. 2011). Although it has often been thought that polyploids might rep-
resent an evolutionary ‘dead end’, evidence is building that suggests that it can be
of long-term significance (Van de Peer et al. 2017). Genomics has confirmed that
tetraploidisation has happened at least four times in major chordate lineages: twice
at the beginning of vertebrate evolution, again in the teleosts, and again in salmoni-
form fishes. Each of these fundamental events spanned a single generation, becoming
fixed in the descendant lineages, giving these groups vast scope for innovation and
evolution through redundancy in gene copy number (Ohno 1970).

Recent work is revealing the hybrid nature of many species (Mallet 2007), includ-
ing our own, where there has been widespread introgression of genes from archaic
hominids conferring physiological adaptations (Evans et al. 2006; Huerta-Sánchez
et al. 2014). Merging of genomes can derive from a small number of matings, pro-
viding traits with far-reaching consequences, such as range expansion (Pfennig et al.
2016), or ‘transgressive segregation’ allowing exploitation of novel habitat (Riese-
berg et al. 2003), both greatly reducing risk of extinction. Hybridization followed
by recombination is an appealing and plausible way to explain the rapid emergence
of new forms (Dittrich-Reed and Fitzpatrick 2013). Stabilization of hybridity can
be rapid, leading to new species in a few tens of generations, in animals as well as
plants (Grant and Grant 2014; Lamichhaney et al. 2018; Mallet 2007; Marques et al.
2017; Meier et al. 2017; Soltis and Soltis 1999; Stemshorn et al. 2011; Ungerer et al.
1998).
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7 Ecology

Although ecological theory is largely concerned with gradual processes and theory
based on equilibria, disturbance (e.g. fire, invasions, overgrazing, disease, drought,
anthropogenic effects) (Darimont et al. 2015) has been crucial to shaping ecosys-
tems and communities. These disturbances can compound to produce cataclysmic
events, such as loss of forest to scrub or grassland, or over-running of coral reefs by
algae, sponges or grazers (Scheffer et al. 2001). Temporal environmental variability
reduces the value of predictions based on competition theory (Wiens 1977), just as
genetic drift can scatter population gene frequencies away from expected equilib-
rium conditions. Ecological systems have limited resilience; perturbations can cause
a threshold to be crossed, leading to a new ecological regime. Habitat modification
and over-harvesting can lead to nonlinear population dynamics and feedback loops
when systems are perturbed beyond a tipping point (Scheffer et al. 2012), beyond
which they may never recover, as is often the case with overfishing (Hsieh et al.
2005; Travis et al. 2014). Over the last 15 years, southwestern Australia has seen a
rapid loss of kelp forest as its coastal ecosystem has become ‘tropicalized’ by warm-
ing of the Indian Ocean (Wernberg et al. 2016). In combination, multiple stressors
can have larger and less predictable effects. Overfishing of spiny lobster (Jasus) in
Tasmania has allowed invasion of long-spined sea urchin (Centrostephanus) into the
nowwarmer waters, whose overgrazing of kelp in turn threatens a catastrophic phase
shift (Ling et al. 2009)

As in social and financial systems, ‘black swan’ events (unlikely events with
profound consequences) happen more frequently than expected in natural systems:
they are the ‘heavy tails’ of normal distributions of events (Anderson et al. 2017).
They are usually (86% of the time) destructive rather than constructive, probably
because there are fewer limits to the rate of population decline comparedwith growth.
Disease has the potential for local extirpation, and pandemic epizootics can cause
more widespread extinction. Nowhere is this more obvious than with anthropogenic
introductions of pathogens into new areas, such as the effect of chytrid fungus on
endemic amphibian populations (Stegen et al. 2017).

8 Climate

On a geological timescale, cyclical onset and ending of glaciation is very rapid, with
each current glacial cycle representing some 0.002% of the Earth’s history. Yet on
our own timeframe, such transitions would be imperceptibly slow: Homo sapiens
has only been in existence through two such epochs. Some of the effects of post-
glacial warming were, however, very immediate. Glacial lake outburst floods have
devastating downstream effects, such as occurred in the Columbia River system at
the end of the last glaciation, leaving signatures over a millennial timescale (Baynes
et al. 2015; Larsen and Lamb 2016). The Straits of Dover were likely created by
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draining of a lake from Doggerland at the end of the previous glaciation. Heinrich
events, involving rapid glacial decay (counter-intuitively during cold periods), led
to sudden discharge of huge quantities of ice from the Laurentide Ice Sheet into
the North Atlantic. Recent modelling suggests that these events were triggered by
very small climatic perturbations, with implications for our understanding of current
melting of the Greenland and Antarctic ice sheets (Bassis et al. 2017), which also
brings a threat of megadroughts to the Sahel region of Africa (Defrance et al. 2017).
Current melting is itself exacerbated by the positive feedback effects of decreasing
albedo-darkening of surface ice caused by residual particulate matter and growth
of microbes and algae (Kintisch 2017). Receding glaciers can also cause abrupt
re-routing of rivers, affecting landscape evolution (Shugar et al. 2017).

Our coastal cities and installations may not appear to be immediately threatened
by a monthly sea-level rise of about 0.3 mm, with diurnal variation on a scale of
several metres. Even monthly spring/king tides can differ by a metre from each
other, swamping tiny annual increases. But hurricanes like Katrina, Sandy, Harvey
and Irma are becoming more frequent, as are disastrous coincidences of tides, winds
and low pressure (Garner et al. 2017), such as the North Sea Flood of 1953, which
inundated low-lying parts of UK, Belgium and Netherlands. Current assessment
practices tend not to take into account the multiplicative effects of coinciding high
sea level and heavy precipitation (Moftakhari et al. 2017), the effects of which were
only too evident in Harvey’s impact on Houston.

A Sandy-like event had a return frequency of about 400 years in the year 2000,
but that will fall to ~90 yrs by 2100 (Lin et al. 2016). Keeping time constant, a
100-year event will be 0.65–1.7 m higher in 2100 than in 2000, depending on the
global climate change model used. This is already higher by about the same amount
compared to AD 850. Thus, global warming may add a metre or more in sea level
to an extreme event that cost $50 billion the last time it occurred (Reed et al. 2015).
Recent modelling shows a 1/500 yr event before 1800 to be a 1/5 yr event after 2030
(Garner et al. 2017). Ironically, the rarer and more extreme the event, the greater the
added integrated effect of increased sea level. Likewise, modelling of precipitation
accumulation (Neelin et al. 2017), convective available potential energy (Singh et al.
2018) and direct satellite observation (Taylor et al. 2017) show that extreme storm
events get more frequent, and the biggest events get even bigger. El Niño events have
caused repeated (1998, 2002, 2016) coral bleaching events on the Great Barrier Reef,
with the most recent being the most extreme. As the frequency and intensity of these
extreme events increases, the reef will likely reach a point beyond which recovery is
not possible (Hughes et al. 2017).

As with our own mortality, demise usually follows a single major event (heart
attack, stroke, disease) rather than old age alone. So it will be for coastal cities like
NewOrleans andVenice, and low-lying regions such as theNetherlands,Vietnamand
Pacific island nations. Thinking about how we might mitigate future major events
is of immediate importance to humanity. Although we must act to halt the slow,
inexorable change caused by greenhouse gases, much of it will happen anyway
because of inertia in the system.
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9 Conclusion

Nature plays out as a series of major events, be it climatic or ecological, evolu-
tionary or geological. We live in a jumpy natural world of serial catastrophism as
opposed to true gradualism. The length and frequency of the events depends upon the
process concerned; the common feature is that the duration is relatively very brief,
and effects profound, compared to the long intervals of stasis or gradual change in
between events. New adaptations can arise and become the new wild type over a few
generations, yet remain in place for hundreds of thousands more; rapid speciation
can happen on a scale of years or decades, though species typically exist for mil-
lions of years; dispersal events typically happen over periods of weeks or months,
but resulting adaptive radiations may endure for millions of years; extreme weather
events are measured by hours, but are separated by years or decades.

These extreme events are major purveyors of change through time. When we
consider change through deep time, we are often looking at the results of numerous
catastrophes or relatively sudden events telescoped together, rather than gradual
change. This pattern extends to macroeconomic cycles of booms and crashes; even
language (Atkinson et al. 2008) and cultural change (Kolodny et al. 2015) have been
characterized as following a punctuated mode. There is a parallel here with Kuhn’s
portrayal of paradigm shifts in science (Kuhn 1996) and Marxist philosophy on the
necessity for revolution to effect political transition. Although Darwin, Hutton and
Lyell debunked biblical catastrophism, evidence for neocatastrophism on a shorter
timeframe abounds. Although we live in a world of both gradual and punctuated
processes, it is arguably the latter, as Huxley implied, that is responsible for most of
the change in nature.
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