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Abstract Regressive evolution is a widespread phenomenon that affects every liv-
ing organism, yet the mechanisms underlying trait loss remain largely unknown.
Cave animals enable the study of degenerative disorders, owing to the frequent loss
of eyes and pigmentation among lineages evolving in the subterranean habitat. Here,
we utilize the blind Mexican cavefish, Astyanax mexicanus, to investigate regressive
loss of pigmentation because “ancestral” surface-dwelling morphs allow direct com-
parisons with cave-dwelling forms. Two genes (Oca2-albinism and Mc1r-brown)
have been linked to specific pigmentation alterations in several cavefish populations.
Pigment cell (melanophore) number is a complex trait governed by multiple genes,
and variation in this trait may contribute to pigmentation diversity in Astyanax. To
uncover genes associated with this trait, we assembled a high-resolution linkage map
and used automated phenotypic scoring to quantify melanophore number variation
across seven body regions in a surface × Pachón cave F2 pedigree. QTL mapping
yielded several markers strongly associated with melanophore number variation in
the dorsal mid-lateral stripe area and superior head region, which anchor to regions
of the Astyanax genome and the zebrafish genome. Within these syntenic regions,
we identified two candidate genes, Tyrp1b and Pmela, with known roles in pigmen-
tation based on gene ontology annotation. Mutant forms of these candidate genes
in other organisms cause global and regional pigmentation variation, respectively.
In Astyanax, these genes harbor coding sequence mutations and demonstrate dif-
ferential expression in Pachón cavefish compared to surface morphs. In sum, this
work identifies genes involved with complex aspects of Astyanax pigmentation and
provides insight into genetic mechanisms governing regressive phenotypic change.
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1 Introduction

Pigmentation varies dramatically across the animal kingdom—from crypsis to col-
orful ornamental displays—suggesting that coloration serves dynamic and adaptive
functions. In many animals, these roles vary from mate choice selection (Protas and
Patel 2008), defense from predation (Linnen et al. 2009), UV protection, structural
support, and thermoregulation (Hubbard et al. 2010). Pigmentation traits have also
served as a powerful approach for linking specific genes to phenotypic characters
(Hoekstra 2006).

In this study, we investigated the naturally occurring pigmentation loss in the
blind cavefish Astyanax mexicanus (Jeffery 2001; Borowsky 2008). This species
harbors two distinct morphotypes: a pigmented surface-dwelling form that populates
the rivers of NEMexico, and several depigmented (or albino) cave-dwelling morphs
that reside in the subterranean environment. This species demonstrates recurrent loss
since Astyanax cave morphs have repeatedly colonized the cave, providing natural
biological “replicates” (Gross 2012a).

The gene underlying the absence of melanin (albinism) was identified and con-
firmed by CRISPR mutagenesis in surface fish, asOca2 in two independent cavefish
lineages (Protas et al. 2005; Gross and Wilkens 2013; Ma et al. 2015; Klaassen et al.
2018). A second pigmentation phenotype, brown, is associated with the gene Mc1r
in three cavefish populations (Gross et al. 2009). Although these studies have dis-
covered the genetic basis for monogenic components of pigmentation loss, the genes
contributing to complex pigmentation loss in cavefish have not been identified. A
prior mapping study in Astyanax mexicanus did confirm that melanophore (pigment
cell) numerical variation is indeed complex and linked to 18 QTL associated with
pigment cell number, yet the identity of the genes underlying this trait still remains
unknown (Protas et al. 2007).

The previous characterization of melanogenesis in other animals shows that
melanophores are derived from a set of migratory cells that give rise to numerous cell
types including cranial cartilage and bone, peripheral neurons, fat cells, and pigment-
producingmelanophores (Erickson and Perris 1993; Huang and Saint-Jeannet 2004).
Due to the diversity of neural crest cell derivatives, it would be less likely to acquire
mutations within genes of the neural crest pathway due to potentially lethal conse-
quences (Jeffery 2009). Labeling experiments revealed normal neural crest migration
during cavefish development (McCauley et al. 2004), and quantification of cell apop-
tosis after neural crest-derived precursor migration showed comparable numbers in
both cavefish and surface (Jeffery 2006). These combined results suggest that evolu-
tionary changes leading to pigment cell regression in cave morphs may be mediated
by alterations late in melanogenesis (Jeffery 2009).

To identify pigmentation-related genes, we employed a second-generation link-
age map (Carlson et al. 2015) inclusive of >3,000 genomic markers to perform
high-resolution mapping of melanophore number diversity in a large cave × sur-
face F2 pedigree (Fig. 1a–e). A quantitative trait locus (QTL) mapping study yielded
numerous significant associations linked with 20 different regions of our linkage
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Fig. 1 Surface × Pachón cave F2 sibling hybrids display a vast array of coloration. Hybrid
offspring froma surface×Pachón cave cross reveal a varyingdegree ofmelanic-basedpigmentation.
The “dark” versus “light” appearance is associated with the number of melanophores (pigment
cells) that an individual harbors. We observed levels of pigmentation that are darker (a) than normal
surface fish (b). Some hybrid individuals showed dramatic reductions in pigmentation (c, d), while
albino individuals (which still retain melanophores) produce no melanin, rendering melanophores
invisible (e)

map. We then leveraged available genomics resources (McGaugh et al. 2014) to
nominate candidate genes. Comparative genomics identified the critical syntenic
region for each QTL in the Astyanax cavefish draft genome alongside conserved
intervals in the distantly related zebrafish genome. We nominated candidate genes
by screening the genes within these syntenic regions for gene ontology (GO) terms
related to pigmentation. These analyses yielded two genes, Tyrp1b and Pmela, with
well-characterized roles in melanin-based pigmentation in other animals. We further
characterized the coding sequence and expression of candidate genes. Through these
studies, we propose Tyrp1b and Pmela as genes that likely contribute to complex
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pigmentation in Astyanax cavefish. Identification of additional pigmentation genes
provides a clearer picture of the mechanisms contributing to regressive evolution in
Astyanax and informs our understanding of the broader principles governing trait
loss in the natural world.

2 Materials and Methods

2.1 Melanophore Scoring

To quantify melanophore number, we analyzed numerous regions of the body where
pigment cell number varied within our F2 pedigree. These included seven regions:
near the anal fin (MelAnalfinSquare), below the mid-lateral stripe (MelUnder-
Stripe), dorsal square (MelDorsalSquare), area above the stripe (MelAboveStripe),
above the eye (MelHeadSquare), full head (MelHead), and neighboring the anal fin
(MelAnalfinTriangle). Regions were selected based on a consistent set of landmarks
for reproducibility and were similar to the areas previously assayed (Protas et al.
2007). For automated counts, we employed ImageJ (v.1.6; National Institutes of
Health, Bethesda, MD) by inverting the color in a selected area and then counting
the lighter objects (e.g., pigment cells, now white) with a preset “noise tolerance.”
The noise tolerance was set so only markings (melanophores in this case) above
the preset light pixel intensity were counted. Each image was reviewed and any
melanophores “missed” in the automatic quantification were manually added. When
appropriate, we transformed the melanophore counts to log10 values to generate a
normal distribution for association studies.

2.2 Quantitative Trait Locus (QTL) Association Mapping

AllQTL analyseswere performed using a previously published linkagemap (Carlson
et al. 2015). We employed the software program R/qtl (v.1.30; Broman et al. 2003)
for all association analyses. We analyzed each trait using four mapping methods:
marker regression (MR; Kearsey and Hyne 1994), expectation maximization (EM;
Xu andHu 2010), Haley-Knott (HK;Haley andKnott 1992), and nonparametric (NP;
Kruglyak and Lander 1995) as described in Gross et al. (2014). Significant linkages
were set at a LOD score threshold of ≥4.0—as used in other QTL studies (Protas
et al. 2007; Gross et al. 2009). To confirm associations, permutation tests involving
1000 iterations were performed to identify statistically significant QTL (P<0.05).
Effect plots for associations were generated using the closest linked genetic marker.
QTL regions were then anchored (~6–8 cM on each side of the top marker) using
the NCBI BLAST Toolkit (v.2.28+) to the Astyanax genome (Ensembl build v.75;
McGaugh et al. 2014). We also determined the syntenic interval in the zebrafish
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genome, with previously demonstrated synteny with Astyanax (Gross et al. 2008;
O’Quin et al. 2013; Carlson et al. 2015). Visual representations of synteny between
our linkage map and the genomes were created with Circos (v.0.64; Krzywinski et al.
2009; Fig. 3a, d).

2.3 Gene Ontology (GO) Term Analysis

To nominate prospective candidate genes, we interrogated all genes within the syn-
tenic interval in theAstyanax draft genome for gene ontology (GO) terms. From these
analyses, we collected the GO terms for all genes located in the Astyanax syntenic
interval using BioMart (v.0.8; Kasprzyk 2011). This approach yielded hundreds of
GO terms for each significantQTL.We then narrowed our search to termswith poten-
tial involvement in pigmentation, such as “pigment”, “pigmentation”, “melanin”,
“eumelanin”, “phaeomelanin”, “melanophore”, “melanocyte”, “melanosome”, “xan-
thophore”, “iridophore”, “chromatophore”, and “carotene”. This approach enabled
the selection of genes based on annotation information from known functions in
other organisms.

2.4 RNA-Seq, Qualitative, and QPCR Expression Analyses

We evaluated genes located within predicted critical genomic regions for expression
differences using RNA-seq. Total RNAwas isolated from pools of 50 surface or cave
individuals using the RNeasy Plus Mini Kit (Qiagen) at each of five developmental
stages. These included 10 hours post-fertilization (hpf), 24, 36, and 72 hpf, and from
three individuals during juvenilehood (~4 months). Library preparation (TruSeq v.2
kit) and sequencing (Illumina 2500 Hi-Seq) was performed in triplicate (10–72 hpf)
or duplicate (juvenile) at the DNA Sequencing Core (Cincinnati Children’s Hospital
and Medical Center). All samples were sequenced to a ~10 million read depth for
50-bp, single-end reads. Normalized gene expression was calculated usingArrayStar
(DNAStar). All expressions were evaluated using comparative read counts between
cave and surface fish with the RPKM normalization method (Mortazavi et al. 2008).
Raw sequencing reads are deposited at the NCBI SRA (BioProject: PRJNA258661).

We validated expression profiles at the 72 hpf stage using qualitative and quan-
titative PCR analyses, described in Stahl and Gross (2017). Template cDNA from
surface and cavefish RNA pools (n�50 embryos each; RNeasy Plus Mini kit, Qia-
gen) was synthesized for both experiments using the Transcriptor RT kit (Roche).
Quantitative PCR (qPCR) experiments were performed as described in Stahl and
Gross (2017). All samples were analyzed in sextuplet and normalized expression
values (Cq) and significant differences (two-tailed Student’s t-test) were determined
using the CFX Manager software program (v.3.1; BioRad).
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Genes residing within the syntenic region in the Astyanax genome were analyzed
for sequence alterations. Sequencing reads derived from surface fish and Pachón
cavefish (~280 million reads total) were aligned to the draft Astyanax genome
(Ensembl.v.75; McGaugh et al. 2014) using default parameters for the program Seq-
Man NGen (DNASTAR) and evaluated for diverse sequence mutations (e.g., SNP,
indels) segregating between surface and cave morphs.

2.5 Whole-Mount In Situ Hybridization

RNA probes for in situ hybridization were generated by PCR for the
genes Tyrp1b (forward primer: 5′-GAAACAGCCCTCAGTTCGAG-3′,
reverse primer: 5′-AGGTGGGCCAGATTGTGTAG-3′) and Pmela (for-
ward primer: 5′-CTACTGATGCTGCCACTGGA-3′, reverse primer: 5′-
AGAGCCGTAGCGGTAGATCA-3′). The resulting PCR products were cloned
into the TOPO TA Dual Promoter cloning vector (Life Technologies) and confirmed
by sequencing. Sense and antisense digoxygenin (DIG)-labeled RNA probes for
Astyanax Tyrp1b andPmelawere transcribedwith either SP6 or T7 RNApolymerase
(Roche). Whole-mount in situ hybridizations were performed on embryos at stages
<12 hours post-fertilization (hpf), 24, 36, and 72 hpf according to Ma et al. (2014).
Embryos were washed in NTM, PBT, and TBST and fixed in 4% PFA/PBS for
storage at 4 °C and visualized using LeicaMicroscopeM205 FA (with LAS software
v.3.8.0) montage imaging (Fig. 5a–d). The numbers of cells with positive expression
for Pmela or Tyrp1b, respectively, were counted.

2.6 Functional Validation in Zebrafish with MO Knockdowns

The translational blocking morpholino oligonucleotides were tar-
geted to the first 25 base pairs of the zebrafish ORF of
Pmela (5′-GAGGAAGATGAGAGATGTCCACAT-3′) and Tyrp1b (5′-
GCACTAAACACACACTCTTCCACAT-3′; Gene Tools, LLC.). Morpholinos
were injected into one-cell stage zebrafish embryos in a 1 nl volume at a 0.2 mM
concentration. Control individuals were administered a mock injection composed
of phenol red and Danieaux’s solution (Wingert et al. 2004), or a control oligo
(5′-CCTCTTACCTCAGTTACAATTTATA-3′; Gene Tools, LLC). Imaging was
performed using a Leica Microscope M205 FA (with LAS software v.3.8.0) stereo-
scope (Fig. 5e–g). Phenotypic analysis was performed on embryos fixed at 5dpf in
4% PFA. Counts were performed on the yolk sac of the number of light and dark
melanophores, and the number of clustered and isolated melanophores, both relative
to total melanophore number on the yolk sac (Fig. 5h, i).
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3 Results

3.1 Cavefish × Surface Fish Hybrid Individuals Demonstrate
Diversity in Melanophore Numbers in Distinct Regions
Spanning the Body

Direct observations reveal a wide array of pigmentation variation among F2 siblings
(Fig. 1a–e), and substantial pigment cell variation has been reported in four differ-
ent body regions (Protas et al. 2007). We quantified melanophore number in seven
areas and found variation across our F2 population (n�170). Counts ranged within
each region (reported as minimum to max number melanophore distribution for a
given region among the entire F2 pedigree): 1–99 melanophores in the square near
the anal fin (MelAnalfinSquare), 1–113 pigment cells below the mid-lateral stripe
(MelUnderStripe), 4–600 cells in the dorsal square (MelDorsalSquare), 1–2,762
melanophores in the area above the stripe (MelAboveStripe), 1–89 pigment cells
above the eye (MelHeadSquare), 11–1,395 melanophores present in the full head
region (MelHead), and 0–252 pigment cells by the anal fin (MelAnalfinTriangle).
Numerical variation in melanophore numbers did not simply increase or decrease
proportionately across all regions of the body, instead pigment cell numbers in some
cases varied independently between different assayed regions.

3.2 QTL Analysis Revealed 19 Genomic Regions Associated
with Complex Melanophore Variation

We scored melanophore variation in seven regions and detected numerous QTL
(Fig. 2a). We did not discover QTL for melanophores on the entire head (MelHead).
This was surprising since we detected QTL for pigment cell counts in the head square
above the eye (MelHeadSquare). Additionally using four differentmappingmethods,
our results yielded multiple significant (independent) associations (n�41 markers)
with the linkagemap for the following pigment cell number traits:MelAnalfinSquare
(n�1 QTL), MelUnderStripe (n�13 QTL; Fig. 2d, e), MelDorsalSquare (n�3
QTL; Fig. 2b, c), MelAboveStripe (n�1 QTL), MelHeadSquare (n�3 QTL), and
MelAnalfinTriangle (n�6 QTL). In some instances, the different mapping methods
identified significant associations with same top marker (e.g., MR, EM, HK, and
NP methods all noted the marker ASTYANAX_414 at single map location (LG 16,
22.2 cM for MelUnderStripe), and in other cases, the different approaches yielded
multiple significant markers within a small positional window—for example, three-
markers for each MR, EM, and HK respective method for MelDorsalSquare on LG
20 (53–61 cM). Not surprisingly, some of these QTL co-localized near the same
position in our linkage map. One “hotspot” in our map was on linkage group 1
from 75 to 93 cM, wherein associations with five traits (MelHeadSquare, MelUnder-
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Fig. 2 High-resolutionmapping identifiedmultipleQTLassociationswithmelanophorenum-
ber variation. Our quantitative trait locus (QTL) study detected numerous associations (n�40)
with pigment cell variation (a). Many of these co-localized to similar positions on our linkage map.
With this approach, wewere able to capture the dramatic variation of pigment cell number, including
the range of melanophores detected in the dorsal square (b) and under the mid-lateral stripe (d). The
frequency denotes the number of individuals harboring a given number of melanophores. Themark-
ers underlying these two QTL demonstrated a significant effect of phenotype, where individuals
harboring two copies of the surface allele “S/S” demonstrated increased numbers of melanophores,
and hybrids with two cavefish alleles “C/C” exhibited fewer pigment cells. This effect is evident in
both the dorsal (c) and stripe (e) regions assayed

Stripe, MelAnalfinTriangle, MelDorsalSquare, MelAnalfinSquare) yielded signifi-
cant QTL (Fig. 2a). Moreover, three different regions assayed (MelDorsalSquare,
MelAnalfinTriangle, MelAboveStripe) returned associations with linkage group
(LG) 20 (53–61 cM), and two traits (MelAnalfinTriangle,MelUnderStripe) tended to
co-localize together at several positions: LG2 (29.8–33.6 cM), LG7 (54.64–63.7 cM)
and LG 26 (8.98–18 cM). In total, we discovered 19 distinct regions (QTLs) of the
genome are associated with melanophore variation (Fig. 2a).
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3.3 Comparative Analyses Narrowed Melanophore QTL
Positions to Critical Genomic Regions in Astyanax
and Danio

To further search for candidate genes residing near our top markers, we analyzed the
positions of eachQTL in theAstyanax cavefish draft genome (~10,000 scaffolds) and
the current zebrafish genome (Ensembl.Zv9). First, we queried marker sequences to
the Astyanax genome (Ensembl.v.75) using the standard nucleotide BLAST algo-
rithm to find the position of the top genomic marker, and the locations of the markers
within the QTL interval (immediately adjacent~6–8 cM to the top marker), to iden-
tify regions of synteny. Since these scaffolds varied in length (876–9,823,298 bp),
the number of scaffolds reported back from our BLAST search ranged from 4 to 27
scaffolds for each association (data not shown).

We also capitalized on the well-annotated genome of teleost fish Danio rerio.
Three comparative studies previously identified large syntenic regions shared
between Astyanax and Danio, which diverged ~120 MYa (Gross et al. 2008; Gross
2012b; O’Quin et al. 2013; Carlson et al. 2015). Our genomic comparisons revealed
several syntenic blocks based on the positions of BLAST hits in Danio, yielding
regions of synteny on different zebrafish chromosomes. We sought to further sup-
port the syntenic block fromour direct comparisons ofmarker sequences to zebrafish,
since usually <20 markers yielded direct BLAST hits for each QTL. Accordingly,
we collected every predicted gene (often 100+ genes) from the respective Astyanax
scaffolds associated with each QTL and queried the full-length gene sequences to
the zebrafish genome.

3.4 Tyrp1b and Pmela Are Two Candidate Genes Associated
with Numerical Melanophore Diversity

Nearly all of the assayed pigmentation traits yielded multiple QTL associated with
multiple distinct regions of the linkage map (Fig. 2a). We characterized the wide
range of melanophore number variation in our pedigree, including the dorsal square
(Fig. 2b) and inferior to the mid-lateral stripe (Fig. 2d). Our association studies
revealed multiple loci for these traits, including the markers ASTYANAX_28 on
LG 20 (LODMR �6.01, p�0.015) and TP33309 on LG 26 (LODMR �5.08, p�
0.041), respectively (see red circles in Fig. 2a). Corresponding effect plots demon-
strated a significant effect of genotype for each marker: homozygous surface alleles
“S/S” harbor more melanophores and homozygous cave alleles “C/C” have fewer
melanophores (Fig. 2c, e). The heterozygous genotype for ASTYANAX_28 pre-
sented an intermediate number of melanophores at this locus, whereas the heterozy-
gous genotype at TP33309 hasmelanophore numbers similar to the homozygous cave
genotype, perhaps indicating the dominance of the cave allele in hybrid individuals.
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To pursue candidate genes, we collected the ontology for genes within the syn-
tenic blocks. For the QTL association on LG 20 (marker: ASTYANAX_28), we
identified 951 terms affiliated with 157 genes on 10 Astyanax scaffolds, and 868
terms associated with 193 genes from the syntenic interval anchoring to chromo-
some 1 in zebrafish. Within this dataset, we identified two GO terms related to
pigmentation: “melanosome membrane” (GO:0033162) and “melanin biosynthetic
process” (GO:0042438) of which both terms are associated with two genes Tyrp1b
and Tyrp1a in Astyanax, and “pigmentation” (GO:0043473) with the gene Tyrp1b
in the zebrafish syntenic block. We note that the Tyrp1a paralog resides on a dif-
ferent chromosome (Chr7) in Danio rerio, whereas Tyrp1b resides on chromosome
1 in zebrafish, (described above). Additionally, we discovered 1,136 GO terms for
409 genes associated with 12 scaffolds for “MelUnderStripe” on LG 26 (marker:
TP33309), and 3,017 terms for the 654 geneswithin the critical block on chromosome
11 in Danio rerio. This analysis revealed three pigmentation GO terms in Astyanax
including “melanosome transport” (GO:0032402) linked to Ippk and “developmen-
tal pigmentation” (GO:0048066) and “eye pigmentation” (GO:0048069) assigned to
Pmela. In Danio, we identified “developmental pigmentation” (GO:0048066) and
“eye pigmentation” (GO:0048069) associated with Pmela. By co-analyzing gene
ontology and positional information from both organisms, we nominated candidate
genes for each QTL: Tyrp1b (LG20) and Pmela (LG26). These two genes reside in
close proximity to the top two QTL markers, ~7 MB and ~0.05 MB, respectively
(Fig. 3a, d).

Next, we interrogated the coding sequences by aligning surface- and cave-tagged
RNA sequencing reads to the Astyanax draft genome. Tyrp1b, near a marker where
multiple melanophore traits were mapped, harbored three mutations, including a G-
to-A substitution in exon 2 at position 630 (Fig. 3b). This is predicted to be a synony-
mous change (F210F); however, it falls within a tyrosinase copper-binding domain
(205–222 bp; Ensembl.v.75) which could affect interactions with tyrosinase—an
enzyme catalyzing melanin biosynthesis (Oetting 2000). Synonymous mutations
such as these can affect splicing, stability, structure, and protein folding (Hunt et al.
2009). For the gene Pmela, sequence analyses revealed numerous alterations, such
as a G-to-A change at position 1738 in exon 7 (Fig. 3e). This non-synonymous muta-
tion impacts the amino acid sequence, causing a change from a hydrophobic alanine
residue to a hydrophilic threonine in cavefish (A580T). In addition, Pmela demon-
strates several more mutations including two other non-synonymous changes, two
silent SNPs, and three potential splice variants.

With respect to expression, Tyrp1b showed reduced expression in cave relative to
surface beginning at 24 hpf (Fig. 3c). We observed expression differences of 7-fold
down (36 hpf) and 5.5-fold down (72 hpf; Fig. 3c). Expression profiles of cave versus
surface forms demonstrated significant differences at 10 hpf (p�0.0472), 36 hpf (p�
0.0312), and 72 hpf (p�0.00167). Pmela similarly revealed reduced expression at
24 hpf (Fig. 3f). Pmela demonstrated a 12-fold reduction in expression at 72 hpf.
Levels of gene expression were significantly different between morphs at four stages
assayed: 10 hpf (p�0.00607), 24 hpf (p�0.00117), 36 hpf (p�0.0311), and 72 hpf
(p�0.000239). Using qualitative and quantitative PCR, we observed weaker bands
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Fig. 3 Integrative analyses reveal two candidate genes for melanophore variation. The evalu-
ation of melanophore variation using QTL analyses identified two top candidate genes that may be
associated with pigmentation loss in Astyanax mexicanus cavefish. Pigment cell variation under the
mid-dorsal stripe region showed a significant association with marker ASTYANAX_28 on LG 20
(LODMR �6.01, p�0.015), which anchors to genomic regions in Astyanax and Danio inclusive
of Tyrosinase-related protein 1b (Tyrp1b; a). Distances between the top marker and candidate gene
are in boldface. A second melanophore trait in the superior dorsal region demonstrates a significant
association with marker TP33309 on linkage group 26 (LODMR �5.08, p�0.041; d). Regions
of synteny were identified between Astyanax and Danio rerio. The syntenic region was mined for
any genes with potential roles in the pigmentation pathway using gene ontology (GO) terms. This
led to the discovery of the gene Premelanosome protein a (Pmela). These two candidates, and any
other pigment-related genes that exist within the syntenic region, were evaluated for prospective
codingmutations and expression alterations using RNA-seq technologies (b–c, e–f). This combined
approach has led to discovery of candidate genes that may contribute to loss of pigmentation in
cave-dwelling fish

in Pachón cavefish compared to the surface fish for Tyrp1b and Pmela (gel images
not shown), and significantly reduced expression in Pachón cavefish for Tyrp1b (p�
0.005967; Fig. 4a, c) and Pmela (p<0.000001; Fig. 4b, d).
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Fig. 4 Quantitative (qPCR) confirms reduced expression of Tyrp1b and Pmela in Pachón
cavefish. To further validate reduced expression patterns from our RNA-seq expression profiling
(a, b), we performed quantitative PCR on surface and Pachón cavefish at 72 hpf. These analyses
confirmed dramatic reduction of expression in cave-dwelling morphotypes for both Tyrp1b (p�
0.005967) and Pmela (p<0.000001)

3.5 Tyrp1b and Pmela Demonstrate Distinct
Melanophore-Specific Expression Patterns Between Cave
and Surface Morphotypes

Both Pmela and Tyrp1b appear to influence both melanophore position and melanin
density in A. mexicanus and D. rerio (Fig. 5). Analysis of the location of Pmela
(Fig. 5a, b) and Tyrp1b (Fig. 5c, d) gene expression following in situ hybridization
indicates a heterochronic delay in cavefish compared to surface fish. Early in devel-
opment (<12 hpf), Pmela and Tyrp1b gene expressions are apparent in more cells
in surface fish than in cavefish. Later in development, surface fish exhibits higher
numbers of cells with positive Pmela expression posteriorly than cavefish.
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Fig. 5 Expression and functional analysis of Pmela and Tyrp1b candidate genes. In
situ hybridization of Pmela (a, b) and Tyrp1b (c, d) of cave (b, d) and surface fish (a, c) embryos.
At this stage, surface fish embryos have begun to develop melanin pigmentation across the yolk
sac and putative eye regions, which appears to coincide with Tyrp1b and Pmela gene expression. In
individuals stained for Pmela,we see a difference in spatial distribution of gene expression between
cave and surface embryos. Morpholino knockdown of 5dpf D. rerio embryos (e–g). The control-
injected (e) embryos display a “normative” melanophore distribution and density in comparison
to Pmela (f) and Tyrp1b (g) knockdowns. f Filled arrowheads show clustering of melanophores
in Pmelamorphants. (g) Open arrowheads show a higher dispersal of melanophores in Tyrp1bmor-
phants. A total number of melanophores on the yolk sac were counted to determine the ratio of pale
(h) or clustered (i) melanophores. Pmela knockdowns exhibit a clustering of melanophores across
the yolk sac (p<0.05) and a lesser ratio of “pale” melanophores (p<0.05) than control-injected
embryos. (i) Tyrp1b knockdowns have a higher distribution of melanophores across the yolk sac
(p<0.05) and a higher number of “pale” melanophores (n.s.) than control. Scale bars at 500 μm,
unless otherwise noted
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3.6 Functional Analyses of Tyrp1b and Pmela Reveal
Altered Melanophore Dispersion and Structure
in Morphants

We utilized the closely related (120 MYa diverged), and laboratory-established fish
speciesDanio rerio, to carry out morpholino experiments (Fig. 5e–g). Pmela knock-
down via MO injection resulted in clustering of melanophores across the yolk sac
(Fig. 5f, i), coincident with a lesser number of pale melanophores (Fig. 5h). In con-
trast to Pmela morphants, Tyrp1b morphants have a higher number of pale cells
compared to control individuals (Fig. 5h). This corresponds to the wider dispersal
of melanophores (Fig. 5g) and a higher number of “pale” melanophores on the yolk
sac of Tyrp1b morphants. Both Pmela and Tyrp1b appear to influence melanophore
darkness and position, based upon phenotypes of D. rerio morphants.

4 Discussion

4.1 Tyrp1b and Pmela Contribute to Melanophore Number
Variation in Cavefish

Cave-dwelling Astyanax has evolved diverse phenotypes upon colonization of the
cave, including a reduction in pigmentation and eyes, and character expansion of
taste and touch sensation (Montgomery et al. 2001; Gross 2012a; Kowalko et al.
2013). Here, we utilized an integrative approach to identify two genes—Tyrp1b and
Pmela—that play a role in complex melanophore number diversity in Astyanax. In
Astyanax, deeply conserved sets of pigmentation-related processes may be governed
by Tyrp1b and Pmela. Tyrp1 serves as a stabilizing protein for tyrosinase which
functions in melanin production, and when the Tyrp1b protein is absent, tyrosinase
rapidly degrades (Müller et al. 1988; Kobayashi and Hearing 2007). In mice, two
distinctTyrp1 alleles in transgenicmice yield degenerative pigmentation: one causing
brown coat coloration or nearly white fur relative to the normally black mice (b
allele), and another form that could induce albinism (c allele; Kwon et al. 1989).
Similarly, variants of Tyrp1 are the cause of “chocolate” and “cinnamon” coat colors
in the domestic cat (Lyons et al. 2005; Schmidt-Küntzel et al. 2005). Numerous Tyrp
alleles have also been identified in humans as a cause of oculocutaneous albinism type
III, which are often caused by small deletions or single base pair changes impacting
the amino acid sequence (Forshew et al. 2005; Rooryck et al. 2006; Chiang et al.
2008; Kenny et al. 2012).

While most mutations in Tyrp1 are the result of non-synonymous changes, we dis-
covered a synonymous alteration in the coding sequence (F210F; Fig. 3b). Some stud-
ies of Tyrp1b also include synonymous mutations (e.g., six silent SNPs in the domes-
tic cat) for which the precise impact has not yet been explained (Lyons et al. 2005).
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Our RNA-seq and qPCR studies indicated significantly reduced Tyrp1b expression
in Pachón cavefish compared to the surface-dwelling form. The reduced expression
in cavefishmay contribute to instability of tyrosinase andmay be responsible, in part,
for the reduced numbers of melanophores observed in Pachón cave morphotypes.

The gene Pmela which is also known as “Silv” or “Pmel17” is a similarly well-
described gene associatedwith pigmentation (Theos et al. 2005). This gene is respon-
sible for recessive dilution of coat color that deteriorates with age in inbred mouse
strains (Dunn and Thigpen 1930). Variants of Pmela cause dilution or hypotrichosis
of coat color in the domestic yak (Zhang et al. 2014), cattle (Jolly et al. 2011; Schmutz
and Dreger 2013), and the “silver” phenotypes in horse (Brunberg et al. 2006) and
zebrafish (Schonthaler et al. 2005).

We discovered three non-synonymous changes to the Pmela coding sequence,
includingG580A in cavefish, which causes an alanine-to-threonine substitution. This
is intriguing since Pmela undergoes posttranslational modification and processing
imperative for proper functioning (Theos et al. 2013). The change fromahydrophobic
alanine (nonpolar side chains) to a hydrophilic threonine (polar side chains)may alter
the Pmela protein. Ala-to-Thr residue changes in diverse proteins have been shown
to induce self-aggregation into amyloids (i.e., an insoluble β-pleated sheet formed by
the alteration in secondary structure). Although some amyloids are native to Pmel,
additional changes in this structure-sensitive protein may impact normal functioning
(Fowler et al. 2005).

Pmela has been described as amelanocyte-specific type 1 transmembrane encoded
protein enriched in melanosomes (i.e., the pigment-producing organelles within the
melanocytes/melanophores; reviewed in Theos et al. 2005). The gene Pmela plays
a critical role in the premelanosome “fibril” ultrastructure, and Pmel-targeted anti-
bodies are evident in fibrous, stage II melanosomes as Pmel is thought to polymerize
fibrillar arrays that ultimately form the backbone of eumelanosomes (Spanakis et al.
1992; Solano et al. 2000; Raposo et al. 2001; Berson et al. 2001; Raposo and Marks
2002). Moreover, high levels of Pmela expression in non-agouti (solid dark) mice
are necessary to construct the fibrils associated with the shape of eumelanosomes
(Theos et al. 2005).

We detected the substantial reduction in Pmela expression across early develop-
ment in Pachón cavefish relative to surface fish. Reduced Pmela expression could
impede fibril formation, leading to the aberrant melanophore morphology observed
in our knockdown studies. Other reports similarly describe changes in melanosome
shape but modest effects on overall body pigmentation in mice (Hellström et al.
2011). Pmela mutants often have reduced or scattered pigment granules in individ-
ual hairs (Dunn and Thigpen 1930). Furthermore, the “merle” phenotype in domes-
tic dogs (e.g., Australian shepherds) is caused by codominance of the merle (M)
and non-merle (m) Pmel alleles in heterozygous individuals that collectively yield
patches of dark and light-colored fur due to spatially random protein instability
(Clark et al. 2006; Schmutz and Berryere 2007). These degenerative pigmentation
phenotypes, combined with the structural changes and severely reduced expression
in colorless cavefish, suggest that Tyrp1b and Pmela contribute to the complex trait
of melanophore variation in Astyanax mexicanus.
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4.2 Analysis of Complex Pigmentation Informs the Genetic
Basis for Regressive Evolution in Cavefish

Three hypotheses seeking to explain regressive evolution include natural selection,
neutral mutation/genetic drift, and pleiotropy (Culver 1982). A prior QTL study
yielded 18 loci associatedwith numericalmelanophore variation. In certain cases, the
homozygous cave genotypewas associatedwith increased numbers ofmelanophores
(Protas et al. 2007). Our study revealed a similar result—genotypic effect plots varied
in their polarity for members our experimental F2 pedigree. This may provide evi-
dence for neutral mutation/genetic drift since it would be unlikely that depigmented
cavefish (if under selection) would harbor alleles that increase pigment cell number
(Protas et al. 2007). However, one potential “selective” benefit for loss of pigmen-
tation in cave-dwelling morphs may be activation of the catecholamine pathway to
encourage foragingbehavior in the nutrient-poor subterranean environment (Bilandž-
ija et al. 2013). Although the precise evolutionary pressures governing regression
remain unknown, further studies will reveal the genetic mechanisms accompanying
trait loss in the wild.

4.3 Astyanax mexicanus Enables Investigation
of Degenerative Pigmentation Disorders

Degenerative pigmentation can be found widely around the globe, including clinical
diseases impacting humans such as albinism, vitiligo, and skin melanoma (Oetting
et al. 1996; Agarwal 1998; Hocker and Tsao 2007). Often the etiologies for these
disorders remain unknown. Animals that naturally demonstrate degenerative traits,
such as the blind Mexican cavefish, can help understand pigmentation losses since
they have recurrently evolved extreme pigmentation changes as a consequence of
the extreme cave environment (Jeffery 2005; Gross 2012a). Since the functions of
many pigmentation genes are shared broadly across taxa, we can make progress
toward understanding the comprehensive role of novel genes in the regulation of
animal pigmentation, including albinism (Protas et al. 2005) and brown (Valverde
et al. 1995; Flanagan et al. 2000; Rees 2003).

Here, we suggest a role for Tyrp1b and Pmela in melanophore variation in cave-
fish, and these genes are also critical for the normal production ofmelanin in humans.
For instance, in humans, Tyrp1 is responsible for oculocutaneous albinism type III
due to coding sequence alterations. In cavefish, Tyrp1 has been repeatedly mutated,
including alleles associated with different geographic regions (Manga et al. 1997;
Forshew et al. 2005; Rooryck et al. 2006). However, more common Tyrp1 alleles
contribute to normal hair, skin, and iris variation in humans (Frudakis et al. 2003;
Sulem et al. 2008; Han et al. 2008; Liu and Fisher 2010; Eriksson et al. 2010). Our
knowledge of Pmela variants in humans is more limited, and some of the disorders
present in other animals (e.g., double merle dogs) also cause hearing and ocular defi-
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ciencies due to pigmentation losses in the ears and eyes (Clark et al. 2006). Evaluation
of pigmentation genes in cavefish will continue to identify vulnerable genes, shared
broadly across taxa that may improve our knowledge of human, pigmentation-related
diseases.
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