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Abstract. Comparison strategies of benchmarking optimization algorithms are
considered. Two strategies, namely “C2” and “C2+”, are defined. Existing
benchmarking methods can be regarded as different applications of them.
Mathematical models are developed for both “C2” and “C2+”. Based on these
models, two possible paradoxes, namely the cycle ranking and the survival of
the non-fittest, are deduced for three optimization algorithms’ comparison. The
probabilities of these two paradoxes are calculated. It is shown that the value and
the parity of the number of test problems affect the probabilities significantly.
When there are only dozens of test problems, there is about 75% probability to
obtain a normal ranking result for three optimization algorithms’ numerical
comparison, about 9% for cycle ranking, and 16% for survival of the non-fittest.
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1 Introduction

Numerous optimization algorithms have been developed to solve the following mini-
mization problem

Min f xð Þ s:t:x 2 X ð1Þ

where f xð Þ is the objective function and X is the feasible region. If X is countable, then
(1) is called as a discrete optimization problem, otherwise, a continuous optimization
problem. If X comes from some constrain conditions, then problem (1) is constrained,
otherwise unconstrained. Any maximization problem can be easily modeled as the
above minimization problem through replacing f xð Þ with �f xð Þ.

When the objective function f xð Þ is nonconvex, problem (1) is often hard to solve.
Therefore, in the mathematical programming community, local optimum x̂ satisfied

f x̂ð Þ� f xð Þ; 8x 2 Bd x̂ð Þ ð2Þ

is often seeked, where Bd x̂ð Þ is a neighborhood of x̂. The gradient information of f xð Þ is
helpful in algorithm design and mathematical analysis. However, in the evolutionary
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computation community and the global optimization community, global optimum x�

satisfied

f x�ð Þ� f xð Þ; 8x 2 X ð3Þ

is investigated. Global optimization is often harder than local optimization, one reason
is that there is no information which guides to x� mathematically.

Therefore, it is necessary to compare optimization algorithms’ performance
numerically. Firstly, there are many optimization algorithms, and which one is the
“best” on some specified functions is often unclear. Numerical comparison can bring
helpful insight. Secondly, there is no suitable mathematical convergence for global
optimization algorithms, and numerical comparison is the only way to show their
efficiency.

Extensive studies have been done on how to compare optimization algorithms
numerically, especially on the design of test problems and the development of data
analysis methods. Numerous test problems including many sets of benchmark func-
tions [1–4] and hundreds of practical test problems [5–7] have been designed or
modeled for numerical comparison of optimization algorithms.

Furthermore, many methods for analyzing experimental data are developed. For
instance, the popular performance profiles [8, 9] and data profiles [10, 11] for com-
paring deterministic optimization algorithms. More methods are developed for com-
paring stochastic optimization algorithms, e.g., calculating means and standard
deviations [12, 13], displaying the history of the found best function values [14, 15],
applying statistical inferences [16, 17], employing empirical distribution functions [18–
20], and visualizing confidence intervals [18, 19].

However, there are few literatures discuss the selection of comparison strategy,
which relates to but is different from the analysis method. When analyze empirical data,
if there are only two optimization algorithms, then comparison strategy is unnecessary.
However, when algorithms exceed two, there are two basic comparison strategies,
namely “C2” strategy and “C2+” strategy. In this paper, “C2” strategy means to
compare two algorithms at every match and repeats several matches to obtain an
aggregated ranking [12–17]. On the contrary, “C2+” strategy means to rank all algo-
rithms through one or few grand matches [2, 8–11, 18, 19]. In other words, the main
difference between “C2” and “C2+” is how many algorithms are compared in each
match: two for “C2” while more than two for “C2+”.

In this paper, we dedicate to answer the following questions: What is the difference
between the ranking results when employing the “C2” or “C2+” strategy? are the
ranking results compatible? These questions are well known in the community of
political elections and some other social science [21–23]. However, they are unfamiliar
in the numerical optimization community, especially the evolutionary computation
community.

Through considering the properties and conditions of numerical comparison of
optimization algorithms, we will show that the results of “C2” and “C2+” strategy may
be different and even incompatible. Specifically, two paradoxes are shown to be pos-
sible and their probabilities are calculated to determine the extent of incompatibility.
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The rest of this paper is organized as follows. In next Section, the “C2” strategy and
the “C2+” strategy are modeled mathematically for convenient analysis. Based on the
model, possible paradoxes are deduced in Sect. 3, and probabilities of paradoxes are
calculated in Sect. 4. Finally, some conclusions are summarized in Sect. 5.

2 Model the Comparison Strategies

In this section, we describe and model mathematically both the “C2” and the “C2+”
strategies.

2.1 The “C2” Strategy

Under this strategy, the whole comparison is divided into several matches (sub-
comparisons), and only two algorithms are considered in each match. There are two
popular applications of the “C2” strategy, namely the one-play-all comparison and the
all-play-all comparison.

One-Play-All Comparison. One-play-all comparison means to compare one special
algorithm with all other algorithms, one by one. It is often applied when a new
algorithm (including the improvement of an existing algorithm) is proposed. In this
case, whether the proposed algorithm performs better than existing similar algorithms
is often concerned, and therefore, popular choice is to compare the proposed algorithm
with some popular existing algorithms [12, 15, 17, 18, 24, 25]. Different data analysis
methods are allowable for applying the one-play-all comparison. For example, the
statistical test methods [12, 15, 17, 24, 25], the cumulative distribution function
methods [2, 18, 26], and the visualizing confidence intervals method [19].

All-Play-All Comparison. All-play-all comparison means to compare each algorithm
with all other algorithms, one by one, and is often called as the Round-robin com-
parison. It is often applied in algorithms competition [3]. All-play-all comparison can
be regarded as a repeated version of one-play-all comparison.

Suppose there are k algorithms, then k � 1 matches are needed to finish a one-play-

all comparison, while k k�1ð Þ
2 matches are needed to finish an all-play-all comparison. In

other words, k one-play-all comparisons are executed. To aggregate several one-play-
all comparisons’ ranking results, it is popular to sum up each algorithm’s ranking
number.

Mathematical Model of “C2” Strategy. Although different data analysis methods are
allowable for applying the “C2” strategy, only two ranking results are possible in
any match of two algorithms A1;A2: A1 performs better than A2, or A1 does not
perform better than A2. In numerical optimization, there are several different standards
to judge which algorithm performs better, e.g., convergence, robustness or efficiency.
Any single standard is allowable in this paper. For convenience of later discussion, we
select one of the most popular standards in global optimization. Specifically, given
computational budget, the found best objective function values are employed to
determine which algorithm performs better.
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Definition 1. Given a fixed computational cost, suppose that f imin is the found minimal
objective function value by the algorithm Ai; i ¼ 1; 2. Then A1 % A2 if and only if
f 1min � f 2min. Moreover, A1 [A2 if and only if f 1min\f 2min, and A1 ¼ A2 if and only if
f 1min ¼ f 2min.

Based on Definition 1, there are two possible ranking results of the match of
algorithms A1 and A2 on each test problem: A1 % A2 or A2 % A1. Therefore, if m test
problems are tested, then there are 2m possible ranking combinations. This can be
regarded as a random sampling with size m from the population with a binomial
distribution, which is described in Table 1.

In Table 1, p measures the occurrence probability of the event “A1 % A2”, and it is
problem dependant. If the test problem biases A1, then p is close to 1. On the contrary,
p is close to 0 if the test problem biases A2. More details about the parameter p will be
discussed in Sect. 4.

Given some test problems, the sampling can be described as a matrix, e.g.,

A1

A2

A2

A1

A1

A2

. . .

. . .
A2

A1

� �
2�m

ð4Þ

one column for each problem. In this matrix, the first column ½A1;A2�T means A1

performs better than A2, and the rest is similar.

2.2 The “C2+” Strategy

This strategy compares all the algorithms at a single or few matches, and it is often used
to determine the winner(s) in algorithms competitions [2, 27] or new algorithm
proposing [9, 10, 28].

Difference Between “C2+” and “C2”. An obvious difference is that “C2+” allows to
compare more than two algorithms in a single match while “C2” always compare two
algorithms in each match. This brings another difference that “C2” often needs much
more matches than “C2+” to finish the whole comparison.

The third but maybe the most important difference between “C2” and “C2+” is that
“C2+” adopts statistical aggregation method to obtain all algorithms’ ranking results
directly. On the contrary, “C2” has to obtain ranking in each match firstly and then
aggregate them to obtain a final ranking.

Table 1. Ranking distribution when comparing algorithms A1;A2

Ranking A1 % A2 A2 % A1

Probability p 1� p
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Mathematical Model of “C2+”. Suppose there are k algorithms Ai; i ¼ 1; . . .; k. After
testing these k algorithms on a test problem, k found best function values f imin are
obtained for any fixed computational budget, where f imin is the best function value
found by Ai; i ¼ 1; . . .; k. Through comparing these function values, a ranking

Ai1 % Ai2 % . . .% Aik ð5Þ

is obtained, where i1; i2; . . .; ikð Þ is a permutation of 1; 2; . . .; kð Þ, and the relationship
% is defined in Definition 1. Obviously, different test problem often brings different
ranking.

Since there are totally k! possible ranking series, we obtain a multinomial distri-
bution. When k ¼ 3; the distribution is summarized in Table 2, where the parameter
pi; i ¼ 1; . . .; 6 and satisfied

P6
i¼1 pi ¼ 1. When k[ 3; the distribution is similar as but

more complex than that in Table 2.

If m problems are tested, then it can be regarded as a random sampling with size m
from the distribution. For convenience, denote (5) as the following column vector

Ai1;Ai2; . . .;Aik½ �T :

Then a matrix

M1 ¼
Aj1

Aj2

� � �
Ajk

� � �
� � �
� � �
� � �

Ai1

Ai2

� � �
Aik

2
664

3
775 ð6Þ

can be used to represent the random sampling with size m, each column corresponds
the ranking on a test problem. Denote Xi as the number of the i-th ranking, i ¼ 1; . . .; k,
then

Pk!
i¼1 Xi ¼ m and the random vector X ¼ X1;X2; . . .;Xk½ �T follows the multino-

mial distribution with parameter m and p ¼ p1; p2; . . .; pk!½ �.
Since the sampling matrix (6) of “C2+” includes the ranking information of any pair

of algorithms, it contains the sample matrix (4) of “C2”. Therefore, it can be adopted to
analyze the relationship of ranking results from both “C2+” and “C2”. Based on the
matrix (6), two paradoxes are presented in Sect. 3, and their probabilities are calculated
in Sect. 4 by the help of the multinomial distribution in Table 2.

Table 2. Ranking distribution when comparing algorithm Ai; i ¼ 1; 2; 3:

Ranking A1 % A2 % A3 � � � � � � A3 % A2 % A1

Probability p1 � � � � � � p6
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3 Two Paradoxes

In this section, we adopt the majority rule, which is very popular in numerical com-
parisons of optimization algorithms [2, 12, 15, 17, 19], to deduce two paradoxes.

Assumption 1 (Majority rule). An algorithm performs better than other algorithms if it
can perform better on more test problems than the others do.

For simplicity, only 3 algorithms (A1;A2;A3) are considered in this and next sec-
tions, and it is enough for our purpose. In this case, there are 6 possible ranking series,
and its ranking distribution is the multinomial distribution listed in Table 2.

Given any problem and the computational budget, test these 3 algorithms on it, and
we can obtain a ranking result. According to the discussions in Sect. 2, it can be
regarded as a random sampling from Table 2. Specifically, testing on a problem is
regarded as a random sampling from the distribution in Table 2. Repeat such process
until a desired number of problems are tested, then we obtain a sampling matrix, e.g.,

M1 ¼
A2

A1

A3

A3

A1

A2

A2

A1

A3

A3

A2

A1

A1

A3

A2

2
4

3
5; M2 ¼

A2

A1

A3

A3

A1

A2

A2

A1

A3

A3

A1

A2

A1

A2

A3

2
4

3
5: ð7Þ

Both M1 and M2 have 3 rows and 5 columns, indicating that 3 algorithms have been
tested on 5 problems. The first column means A2 % A1 % A3, i.e., A2 performs better
than or similarly as A1 on this problem, and A1 performs better than or similarly as A3

on this problem. The rest is similar.

Paradox from “C2”: Cycle Ranking. Suppose that there are totally 5 test problems,
and the ranking results are given by the matrix M1 in (7). If we adopt the “C2” strategy
to compare these 3 algorithms, then A2 % A1 since 3 problems bias A2 and 2 bias A1.
Similarly, A1 % A3 since 3 problems bias A1 and 2 bias A3, A3 % A2 since 3 problems
bias A3 and 2 bias A2. As a result, we obtain a cycle ranking A2 % A1 % A3 % A2, and
we cannot tell which algorithm performs the best.

The cycle ranking paradox is also called as Condorcet paradox [29, 30], which is
very popular in voting theory and was found firstly by Marquis de Condorcet in the
18th century when he investigated a voting system. In next section, we will discuss the
occurrence probability of cycle ranking, and how the number of test problems affect the
probability.

Paradox from “C2+”: Survival of the Non-fittest. Suppose that the ranking results
are given by the matrix M2 in (7). If we adopt the “C2+” strategy to compare these 3
algorithms, then A2 or A3 is the winner since both perform the best on 2 problems while
A1 only performs the best on the fifth problem.

However, if we compare A1 and A2 alone, then A1 performs better than A2 on 3
problems (2nd, 4th and 5th) while worse only on 2 problems (1st and 3rd). Therefore,
A1 performs better than A2 on the whole test set. Similarly, A1 performs better than A3

on the whole test set, too. Therefore, A1 is the winner of the “C2” strategy.
In other words, the winner of the “C2+” strategy do not perform well in “C2”

comparisons. Such phenomenon is called as the survival of the non-fittest in this paper,
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which is also called as the Borda paradox, it was also found in the 18th century [30].
We will discuss its occurrence probabilities in next section and show how the number
of test problems affect the probability.

4 Probability Analysis

To calculate the occurrence probabilities of cycle ranking and survival of the non-
fittest, the parameters in Table 2 should be determined firstly. In this paper, we adopt
the following No Free Lunch (NFL) assumption.

Assumption 2 (The NFL assumption). For any given 3 optimization algorithms and
any given test problem, all 6 possible rankings of these algorithms on this problem are
equally likely, i.e., pi ¼ 1

6 ; i ¼ 1; . . .; 6 in Table 2.
The NFL assumption is a direct application of the No Free Lunch theorem in

optimization [31]. According to the NFL theorem, if the test problems are selected
randomly from all possible problems, then the average performance of any algorithm is
equal. In other words, any ranking in Table 2 has the same occurrence probability, and
therefore pi ¼ 1

6.
If these 3 algorithms have been tested on m problems, and the i-th ranking in

Table 2 has appeared Xi times, i ¼ 1; . . .; 6, then the random vector X ¼
X1;X2; . . .;X6½ �T satisfies the following multinomial distribution.

P X1 ¼ x1; . . .;X6 ¼ x6ð Þ ¼ m!
x1!. . .x6!

1
6m

; ð8Þ

where xi 2 0;m½ �; i ¼ 1; . . .; 6 and satisfy
P6

i¼1 xi ¼ m. In this paper, P Að Þ is denoted
as the probability of a random event A.

Then we calculate the occurrence probabilities of cycle ranking and survival of the
non-fittest based on the NFL assumption.

4.1 Division of the Sample Space

Firstly, we give some definitions below, which define possible random events when
benchmarking optimization algorithms.

Definition 2. When we adopt the “C2” strategy, if the ranking of these 3 algorithms
form a cycle, i.e., A1 % A2 % A3 % A1 or A3 % A2 % A1 % A3, then we say that the
random event of cycle ranking happens, or random event C happens for simplicity.

Definition 3. If the final winner of the “C2+” strategy is not the final winner of the
“C2” strategy, then we say that the random event of survival of the non-fittest happens,
or random event S happens for simplicity.

Definition 4. The final winner of the “C2+” strategy is exactly the final winner of the
“C2” strategy, then we say that the random event N happens.
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Then we have the following theorem, whose proof is not presented in this paper due
to the limitation of space.

Theorem 1. Only three random events C; S;N are possible in the numerical com-
parisons of three optimization algorithms.

Theorem 1 implies that

P Cð ÞþP Sð ÞþP Nð Þ ¼ 1: ð9Þ

Therefore, in later subsections, we will calculate the probabilities of P Cð Þ and P Sð Þ,
and then calculate the probability of P Nð Þ indirectly.

4.2 Probabilities of the Random Event C

Theorem 2. When comparing 3 optimization algorithms on m test problems, the
probability of random event C is

P Cð Þ ¼ 1
6m

2
X

xif g2C1

m!
x1!. . .x6!

�
X

xif g2C2

m!
x1!. . .x6!

� �
; ð10Þ

where C1;C2 are determined as follows.

C1 :

x1 þ . . .þ x6 ¼ m
x1 þ x2 þ x5 � m

2
x1 þ x3 þ x4 � m

2
x4 þ x5 þ x6 � m

2
xi ¼ 0; 1; . . .;m; i ¼ 1; . . .; 6;

8>>>><
>>>>:

C2 :

x1 þ . . .þ x6 ¼ m
x1 þ x2 þ x5 ¼ m

2
x1 þ x3 þ x4 ¼ m

2
x4 þ x5 þ x6 ¼ m

2
xi ¼ 0; 1; . . .;m; i ¼ 1; . . .; 6:

8>>>><
>>>>:

ð11Þ

Theorem 2’s proof is omitted in this paper partly due to the limitation of space.
It is clear from (11) that C2 is the border of C1, and it is empty when m is odd.

Furthermore, logm!1 PðC2Þ ¼ 0. Therefore, in the literatures of calculating Condorcet
paradox’s probabilities, only odd m are often considered [30].

Given the number of test problems m, we can calculate the probability P Cð Þ
through formula (10) in Theorem 2. Figure 1 shows the numerical results of P Cð Þ for
m ¼ 1; 2; . . .; 100. From Fig. 1 we found that P Cð Þ ¼ 0 when m ¼ 1 and P Cð Þ = 0.5
when m ¼ 2. As m increases, P Cð Þ changes zigzagged, and there are two opposite
trends of P Cð Þ. When m is even, P Cð Þ decreases from 0.5 to near 0.13 as m increases.
On the contrary, when m is odd, P Cð Þ increases from 0 to near 0.9 as m increases.
These results are the same as those reported in [30] when m is odd. However, we
provide the probabilities when m is even, which bring helpful insight.

Based on these calculations, we conclude that odd number of test problems is a
good choice for numerical comparisons of optimization algorithms, since it decreases
the occurrence probability of cycle ranking. Under this choice, the occurrence proba-
bility of cycle ranking is less than 9%. In other words, cycle ranking is only occa-
sionally happened.
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4.3 Probabilities of the Random Event S

Although there are several probability calculations [30] of the Condorcet paradox
(i.e.,P Cð ÞÞ, to our knowledge, there is no published results of P Sð Þ. In [32, 33], the
occurrence probabilities of the strict Borda paradox and the strong Borda paradox were
analyzed, however, which are significantly different from P Sð Þ.

We present the theoretical formula of P Sð Þ as the following theorem, whose proof
is not included here due to the limitation of space.

Theorem 3. When comparing 3 optimization algorithms on m test problems, the
probability of random event S is given by

P Sð Þ ¼ 3
6m

X
xif g2S1

m!
x1!. . .x6!

�
X

xif g2S2
m!

x1!. . .x6!

� �
; ð12Þ

where the dominant S1; S2 are defined as follows.

S1 :

x1 þ . . .þ x6 ¼ m
x1 þ x2 þ x5 [ m

2
x1 þ x2 þ x3 [ m

2
maxðx3 þ x4; x5 þ x6Þ[ x1 þ x2
xi ¼ 0; 1; . . .;m; i ¼ 1; . . .; 6;

8>>>><
>>>>:

S2 :

x1 þ . . .þ x6 ¼ m
x1 þ x2 þ x5 ¼ m

2
x1 þ x2 þ x3 [ m

2
x1 þ x3 þ x4 [ m

2
x5 þ x6 [ x1 þ x2
x5 þ x6 [ x3 þ x4

xi ¼ 0; 1; . . .;m; i ¼ 1; . . .; 6:

8>>>>>>>><
>>>>>>>>:

ð13Þ

Fig. 1. Probabilities of P Cð Þ;P Sð Þ and P Nð Þ.
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Given the number of test problems m, we can calculate the probability P Sð Þ through
formula (12) in Theorem 3. Figure 1 shows the numerical results of P Sð Þ for
m ¼ 1; 2; . . .; 100.

From Fig. 1 we found that P Sð Þ ¼ 0 until m� 5, and changes zigzagged as m
increases. Roughly speaking, P Sð Þ increases from almost 0 to about 0.18 as m ¼
5; 7; 9; . . . increases, and increases from 0 to about 0.13 as m ¼ 6; 8; 10; . . . increases.

To conclude, the probability P Sð Þ is larger than P Cð Þ. What is more, P Sð Þ increases
as m increases, whatever m is odd or even. Therefore, survival of the non-fittest is not
too rare, and should be taken it seriously when adopting the “C2+” strategy.

4.4 Probabilities of the Random Event N

Given the number of test problems m, we can calculate the probability P Nð Þ according
to (9), where P Cð Þ and P Sð Þ are calculated through formulas (10) and (12), respec-
tively. Figure 1 shows the numerical results of P Nð Þ for m ¼ 1; 2; . . .; 100.

From Fig. 1 we found that P Nð Þ zigzagged violently when m is small and decreases
roughly as m increases. Finally, P Nð Þ becomes less than 0.75 when m[ 80.

5 Conclusions and Future Work

Numerical comparisons of optimization algorithms are analyzed through considering is
as a selection, where optimization algorithms are regarded as candidates while test
problems are regarded as voters. Two popular comparison strategies of benchmarking
optimization algorithms are discussed, namely the “C2” strategy and the “C2+”
strategies.

It was shown that two paradoxes, cycle ranking and survival of the non-fittest, are
possible. Their probabilities are calculated when only three optimization algorithms are
compared. It was shown that the value and the parity of the number of test problems m
affect the probabilities significantly.

To decrease the probability of paradox, we suggest adopting an odd m test prob-
lems to implement a “C2” comparison, while an even m for a “C2+” comparison.
However, our calculations show that it is impossible to eliminating both paradoxes
except m ¼ 1, which is impractical.

Roughly speaking, there is about 9% probability to find a cycle ranking when
adopting the “C2” strategy, about 16% to find a survival of the non-fittest when
adopting “C2+”, and about 75% to obtain a normal ranking result for three opti-
mization algorithms’ numerical comparison. Therefore, “C2” is more suitable than “C2
+” from the view of bringing less probability of paradox.

Although only three optimization algorithms are considered in this paper, the
paradoxes happen in more general cases, and the probability calculation are ongoing.
Several relevant issues are necessary to investigate.
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