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Abstract. The interactions between proteins and RNA (RPIs) play a crucial
role in most cellular processes such as RNA stability and translation. Although
there have been many high-throughput experiments recently to detect RPIs,
these experiments are largely time-consuming and labor-intensive. Therefore, it
is imminent to propose an efficient computational method to predict RPIs. In this
study, we put forward a novel approach for predicting protein and ncRNA
interactions based on sequences information only. By employing the bi-gram
probability feature extraction method and k-mer algorithm, the represent fea-
tures from protein and ncRNA were extracted. To evaluate the performance of
the proposed model, two widely used datasets named RPI1807 and RPI2241
were trained with the adoption of random forest classifier by using five-fold
cross-validation. The experimental results with the AUC of 0.992 and 0.947 on
dataset RPI1807 and RPI2241 respectively indicated the effectiveness of our
experimental approach for predicting RPIs, which provided the guidance for
reference for future research in the biological field.
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1 Introduction

In recent studies in the field of biological knowledge, more and more experiments have
shown that ncRNA plays a vital role in the complex cell processes such as cellular
proliferation and differentiation [1], chromatin modification [2], cellular apoptosis and
so on [3]. At the meantime, a large number of ncRNA have been discovered with the
development of modern advanced science and technology while their functions are not
yet exactly known [4]. Therefore, it is imminent to make clear the functions of these
ncRNAs. To learn about functions of these ncRNAs, researchers are required to
identify whether these ncRNAs were able to interact with other proteins in some
process of biological reactions [5–11]. However, there still are some shortcomings and
improved space in the current prediction methods. Therefore, extracting feature
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information from sequences is a necessary method which can well identify the inter-
actions proved by large number of research between ncRNA and protein [12–18].

In this study, we put forward a sequence-based method using deep learning model
Stacked-autoencoder network combined with Random Forests (RF) classifier. We used
K-mers sparse matrices to represent RNA sequences, and then extracted feature vector
from matrix by Singular Value Decomposition (SVD). Position Specific Scoring
Matrix (PSSM) was used to obtain evolutionary information from each sequence while
Bi-gram was further used to get feature vector from PSSM. Then data and label was fed
into RF classifier to classify whether a pair of protein and ncRNA interact or not.
Furthermore, to evaluate the performance of our approach, five-fold cross validated and
two widely used dataset RPI1807 and RPI2241 was used. The experimental results
show that our method achieved high accuracy and robustness of the protein-ncRNA
interaction prediction tasks.

2 Materials and Methods

2.1 Datasets

We executed experiments on two widely used public datasets including RPI1807 and
RPI2241. The dataset RPI1807 consists of 1807 positive ncRNA-protein interaction
pairs and 1436 negative ncRNA-protein pairs, including 1078 RNA chains, 1807
protein chains, 493 RNA chains and 1436 protein chains, respectively [19]. It is
established by parsing the Nucleic Acid Database (NAD) which provides the RNA-
protein complex data and protein-RNA interface database. The RPI2241 dataset is
constructed in a similar way, and contains 2241 interacting RNA-protein pairs.

2.2 Features Extraction

To extracted features from ncRNA sequences, k-mer sparse matrix approach was used.
A two-dimensional matrix deformation memory to store the features of ncRNA which
can express much more useful and significant information such as frequency and
location information [20]. An input ncRNA sequence is converted into a 4k �
L� kþ 1ð Þ matrix M can be defined as follow.

M ¼ aij
� �

4k� L� kþ 1ð Þ ð1Þ

aij ¼ 1; if mjmjþ 1mjþ 2mjþ 3 ¼ k � mer ið Þ
0; else

�
ð2Þ

After obtaining the corresponding two-dimensional matrix from the original
sequence of ncRNA, we transform this matrix with large amounts of data by way of
singular value decomposition (SVD) [21].

And as well, we extracted protein features from the PSSM matrix calculated from
the original protein sequence instead using it directly, since the combinations of amino
acid cannot all be found in the original protein sequence [22]. To extract the features
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recognized from the protein fold, we proposed a bi-gram feature extraction technique
computed through the representing information mainly contained from PSSM [23].

The bi-gram occurrence matrix B can be calculated as follows and bm;n be the
element in the matrix B:

B ¼ bm;n; 1�m� 20; 1� n� 20
� � ð3Þ

bm;n ¼
Xr�1

i¼1
pi;mpiþ 1;n; i�m� 20; 1� n� 20 ð4Þ

where bm;n can be interpreted as the occurrence probability of the transition from mth

amino acid to nth amino acid which is able to calculated from the element pi;j in its
PSSM matrix [24]. Let F be the bi-gram feature vector of the protein fold recognition
which is as follows:

F ¼ b1;1; b1;2; � � � ; b1;20; b2;1; � � � ; b2;20; � � � ; b20;1; � � � ; b20;20
� �T ð5Þ

where the symbol T can be regarded as the transpose of the feature vector [25]. Then,
the random forest classifiers were used to predict the interaction between ncRNA and
protein.

2.3 Deep Learning Framework Based on Stacked Autoencoder

In order to improve the accuracy of the predicting performance, there had been many
recent research which concentrated their attentions on automatic encoders and deep-
learning networks [26–32]. In this study, we used the stacked auto-encoder network for
deep learning and classification of training datasets to obtain an efficient deep learning
network [33]. A complete stacked auto-encoder network consists of a sparse multilayer
neural network auto-encoder which layer inputs can be obtained from the outputs of the
previous layers [34]. With the hyper parameter optimization, we were able to get the
best parameters of the stacked auto-encoder neural network suitable for our machine
learning model [35]. The sparse auto-encoder network which was used to learn the
feature changes is a single-layer automatic encoder as follows:

p a;bð Þ xð Þ ¼ f aTx
� � ¼ f

Xn

i¼1
aixi þ bi

� �
ð6Þ

where the input x can be interpreted as the d-dimension dataset and f xð Þ is an activation
function. And the auto-encoder network maps X into the output p Xð Þ. And Sigmoid
was selected as activation function as follows:

f yð Þ ¼ 1
1þ e�y

ð7Þ
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And consequently, the loss function is as follows:

H X; að Þ ¼ ap� Xk k2 þx
X

j
p jð Þj j ð8Þ

The stacked neural network architecture is composed of multiple neural network
layers which outputs of the previous layers are the inputs of next layers [36]. At the
meantime, the keras library from Internet was used to implement stacked auto-encoder
and the parameters batch_size and nb_epoch both set to be 100 [37]. The details about
keras can be found in website http://github.com/fchollet/keras.

2.4 Stacked Ensemble

In order to find out the solution of assembling mechanism implementing to integrate
every individual output from classifiers to implement multi-classifier assembling and
obtain an approximately optimal objective function [8, 38–40], we regarded the outputs
of all level 0 classifiers as predicted probability scores while the successive level 1
classifiers as logistic regression classifiers. The experimental results shown that stacked
assembling was equal to the average individual model results strategy when score
weights of logistic regression of all individual level 0 classifiers were same.

Pw y ¼ �1 sjð Þ ¼ 1
1þ e�ywTs

ð9Þ

where s is predicted probability scores of all level 0 classifiers vector outputs and w is
the weight vector of corresponding classifiers [41].

3 Experimental Results

The five-fold cross-validation method is used to evaluate the performance of our study,
which randomly divides all the data set into five equal parts [42–45]. We followed the
widely used evaluation measures to evaluate our method, including accuracy, sensi-
tivity, specificity, precision and AUC [46–50]. The experimental results in dataset
RPI1807 and RPI2241 were shown in Table 1.

According to the Table 1, our method achieved a decent performance with an
accuracy of 0.9600, sensitivity of 0.9344, specificity of 0.9989, precision of 0.9117 and
AUC of 0.9920 in testing dataset RPI1807 and an accuracy of 0.9130, sensitivity of
0.8772, specificity of 0.9660, precision of 0.8590 and AUC of 0.9470 in testing dataset
RPI2241.

Table 1. The experimental results in RPI1807 and RPI2241.

Accuracy Sensitivity Specificity Precision AUC

RPI1807 0.9600 0.9344 0.9989 0.9117 0.9920
RPI2241 0.9130 0.8772 0.9660 0.8590 0.9470
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4 Conclusions

In this study, we proposed a sequence-based method using deep learning model
Stacked-autoencoder network combined with RF classifier. By employing the k-mers
sparse matrix and bi-gram algorithm, the represent ncRNA and protein features were
extracted from the corresponding sequence information. In the process of experiments,
our method has shown a satisfying performance for predicting RPIs on each reference
dataset which thanks to the contribution of the Stacked ensemble autoencoder frame-
work using deep learning. In general, our method tried to extract protein features and
automatic learn the advanced features with the use of random forests classifiers, but still
do not had a very good breakthrough achievement from the perspective of biology. In
future research, we expect to design a better network architecture for extracting hidden
advanced features from the perspective of biology.
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