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Abstract. Blocking lot-streaming flow shop (BLSFS) scheduling problems
have considerable applications in various industrial systems, however, they have
not yet been well studied. In this paper, an optimization model of BLSFS
scheduling problems is formulated, and an improved migrating birds opti-
mization (iMBO) algorithm is proposed to solve the above optimization problem
with the objective of minimizing makespan. The proposed algorithm utilizes
discrete job permutations to represent solutions, and applies multiple neigh-
borhoods based on insert and swap operators to improve the leading solution.
An estimation of distribution algorithm (EDA) is employed to obtain solutions
for the rest migrating birds. A local search based on the insert neighborhood is
embedded to improve the algorithm’s local exploitation ability. iMBO is com-
pared with the existing discrete invasive weed optimization, estimation of dis-
tribution algorithm and modified MBO algorithms based on the well-known lot-
streaming flow shop benchmark. The computational results and comparison
demonstrate the superiority of the proposed iMBO algorithm for the BLSFS
scheduling problems with makespan criterion.

Keywords: Blocking � Lot-streaming flow shop �Migrating birds optimization
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1 Introduction

In many manufacturing environments, the job often refers to a set of tasks to be carried
out by machines over semi-finished goods or raw materials in order to obtain a final
product. Lot-steaming is a production layout in which every job can be split into a
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number of smaller sub-lots. When a sub-lot is completed, it can be immediately
transferred to the downstream machine. By this splitting technique, the idle time on
successive machines can be reduced, and thereby reducing productive cycle, acceler-
ating the manufacturing process and enhancing the production efficiency. The goal for
this problem is to find a solution (or a sequence) that optimizes a given objective
function, i.e., maximum completion time minimization or makespan, the total flow
time, the tardiness time and the earliness time.

For the lot-streaming problem in flow shop environment, Sarin et al. [1] presented a
polynomial-time procedure to determine the number of sub-lots of a single-lot, multiple-
machines flow shop lot-streaming problem. In this work, the authors minimized the
unified cost-based objective function that comprised criteria pertaining to makespan,
mean flow time, work-in-process, sublot-attached setup and transfer times. Pan et al. [2]
presented a novel estimation of distribution algorithm (EDA) to minimize the maximum
completion time, in which an estimation of a probabilistic model is constructed to direct
the algorithm search towards good solutions by taking into account both job permutation
and similar blocks of jobs. Defersha and Chen [3] first proposed a mathematical model
for the lot-streaming problem in multi-stage flow shops where at each stage there are
unrelated parallel machines, and then proposed genetic algorithm based on parallel
computing platforms to solve the above problem. Numerical examples showed that the
parallel implementation greatly improved the computational performance of the
developed heuristic. To minimize the mean weighted absolute deviation from due dates
of the lot-streaming flow shop scheduling, Yoo and Ventura developed a heuristic based
on pairwise interchange strategy [4]. Chakaravarthy et al. [5] proposed a differential
evolution algorithm (DE) and particle swarm optimization (PSO) to evolve the best
sequence for makespan/total flow time criterion of the m-machine flow shop involved
with lot-streaming and set up time. Following that Chakaravarthy et al. [6] adopted an
improve sheep flock heredity algorithm and artificial bee colony algorithm, respectively,
to solve lot-streaming flow shop with equal size sub-lot problems. For the same prob-
lems, Sang et al. [7] designed an effective iterated local search algorithm, in which an
insertion neighborhood and a simulated annealing-typed acceptance criterion are uti-
lized to generate good solutions.

In most practical manufacturing enterprises, there is no intermediate buffer between
machines to store completed jobs. Therefore, these completed jobs have to remain in
the current machine, until its following one is available for processing, which increases
waiting time and the production period. Previous research has already been done to
tackle a blocking flow shop (BFS) scheduling problem [8], so as to improve the
production efficiency. Similarly, in a lot-streaming flow shop (LSFS) scheduling
problem, each sublot will also be blocked when there is no intermediate buffer to store
completed sublots. These practical scenarios encourage us to apply the blocking
constraint to a LSFS scheduling problem, and form a blocking LSFS (BLSFS)
scheduling problem [9].
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Very recently, a new metaheuristic intelligence approach named the Migrating
Birds Optimization (MBO) algorithm, which simulates the V flight formation of
migrating birds, as the name implies, was presented by Duman [10]. For the scheduling
problems, Tongur and Ülker [11] first applied the basic MBO algorithm to optimize the
discrete flow shop sequencing problem. Following that Pan and Dong designed an
improved MBO (IMBO) algorithm to minimize the total flowtime of the hybrid flow
shop scheduling [12]. In this work, the authors presented a diversified method to
initialize population with high quality, and constructed a mixed neighbourhood based
on insertion and pairwise exchange operators to generate promising neighbouring
solutions for the leader and the following birds. Similarly, Niroomand et al. [13] also
proposed modified MBO (MMBO) algorithm to optimize closed loop layout with exact
distances in flexible manufacturing systems, which are different from IMBO considered
by Pan and Dong. In MMBO, the authors employed crossover and mutation operators
to yield the neighbor regeneration.

For the above literature, the simulation experimental results have verified that the
MBO algorithm is appropriate and competitive for solving continuous and discrete
optimization problems. To the best of our knowledge, the MBO algorithm has not been
applied to the LSFS scheduling problem with blocking. With the above motivations,
we proposed an improved MBO (iMBO) algorithm to solve the BLSFS scheduling
problem.

The rest of this paper is organized as follows. After this brief introduction, in
Sect. 2, the description of BLSFS scheduling problem is stated. Next, Sect. 3 presents
the proposed algorithm. Section 4 provides the experimental results. Finally, the paper
ends with some conclusions in Sect. 5.

2 BLSFS Scheduling Problem

For each job, it can be processed at the ith machine after its front job completed at the
ith machine, in which all the sub-lots of the same job should be processed continu-
ously. At any time, for each machine, it can process at most a sub-lot, and a sub-lot can
be processed on at most one machine at a time.

In the sequel, we assume that there are n jobs and m machines; denote the job
sequence (solution) as p = (1, 2, …, n); and let lj be the number of sublots in job j. All
sublots of the same job have to be processed on each of m machines in the same series.
The processing time of each sublot of a job j on machine t is pj, t. We use Sj, t, e and
Cj, t, e to represent the start and the completion time of the e-th sublot in job j on
machine t, respectively, where e = 1, 2, …, lj; dj refers to the due date of job j.
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The completion time of each job on each machine can be calculated using the
following equations.

S1;1;1 ¼ 0
C1;1;1 ¼ S1;1;1 þ p1;1

�
ð1Þ

S1;t;1 ¼ C1;t�1;1

C1;t;1 ¼ S1;t;1 þ p1;t

�
t ¼ 2; 3; . . .;m ð2Þ

Sj;1;1 ¼ maxfCj�1;1;lj�1 ; Sj�1;2;lj�1g
Cj;1;1 ¼ Sj;1;1 þ pj;1

�
j ¼ 2; 3; . . .; n ð3Þ

Sj;t;1 ¼ maxfCj;t�1;1; Sj�1;tþ 1;lj�1g
Cj;t;1 ¼ Sj;t;1 þ pj;t

�
t ¼ 2; 3; . . .;m� 1
j ¼ 2; 3; . . .; n

ð4Þ

Sj;m;1 ¼ maxfCj;m�1;1;Cj�1;m;lj�1g
Cj;m;1 ¼ Sj;m;1 þ pj;m

�
j ¼ 2; 3; . . .; n ð5Þ

Sj;1;e ¼ maxfCj;1;e�1; Sj;2;e�1g
Cj;1;e ¼ Sj;1;e þ pj;1

e ¼ 2; 3; . . .; lj
j ¼ 1; 2; 3; . . .; n

�
ð6Þ

Sj;t;e ¼ maxfCj;t�1;e; Sj;tþ 1;e�1g
Cj;t;e ¼ Sj;t;e þ pj;t

� e ¼ 2; 3; . . .; lj
t ¼ 2; 3; . . .;m� 1
j ¼ 1; 2; 3; . . .; n

ð7Þ

Sj;m;e ¼ maxfCj;m�1;e;Cj;m;e�1g
Cj;m;e ¼ Sj;m;e þ pj;m

�
e ¼ 2; 3; . . .; lj
j ¼ 1; 2; 3; . . .; n

ð8Þ

Equations (1) and (2) give the completion time of the first sublot of the first job at
m machines. Equations (3–5) computes the completion time of the first sublot of job
j (j = 2, 3, …, n) at machine t (t = 1, 2, …, m), in which the values of S(j-1),2,l (j-1) and
S(j-1),t+1,l (j-1) are obtained by Eqs. (5 and 6), respectively. Equations (6–8) calculates
the completion time of the e-th (e = 2, 3, …, lj) sublot of job j (j = 1, 2, …, n) at
machine t (t = 1, 2,…, m).

The start time of the first sub-lot of the first job on the first machine is equal to zero,
that is, S1;1;1 ¼ 0. The makespan of the job permutation, p, is equal to the time when
the last job in the processing sequence is finished at machine m. Its value can be
represented according to Eq. (9).

CmaxðpÞ ¼ Cn;m;ln ð9Þ
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3 The Proposed iMBO for the BLSFS Scheduling Problem

3.1 Initialization Population

To generate an initial population with a certain level of quality and diversity, many
heuristics, i.e., NEH, MME and PFE, have been successfully adapted to initialize the
seeds of the population [8]. But, they can only generate a single solution. If some good
seeds in the initial population can be generated, the efficiency convergence of the whole
algorithm will be enhanced. Therefore, the above idea is employed in this study. That
is, a multiple-based MME initial strategy is proposed to yield b solutions with high
quality, and a random method is adopted to generate the rest solutions so as to maintain
the diversity of the population. The detailed process of generating b solutions is shown
in Algorithm 1.
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3.2 Improving the Leading Solution

Insertion, swap and inverse operators are commonly used to produce a promising
neighboring solution, which can enhance the solution’s exploitation ability by slightly
disturbing the neighboring solution. For more details about the above operators, please
refer to [8].

In this section, three strategies based on insert, swap, and inverse operators are
proposed: (1) perform insert once; (2) apply swap one time; (3) conduct inverse once.
Generally speaking, more strategies generate different solutions with a larger proba-
bility than a single strategy, and avoid the population trapping in local optima.

We randomly chose one of the above four strategies to generate solutions, in which
the best neighbor solution is selected to update the leading solution, and the remaining
solutions are put into two shared neighbor sets, respectively.

3.3 Improving the Other Solutions in the Population

The process of improving the other solutions in the population plays an important role,
whose contribution is that it can lead the offspring to the global good solution, and
improve the convergence of the algorithm. The estimation of distribution algorithm
(EDA) can utilize the valued information of solutions in the population to construct a
probabilistic model, and then estimate the probability distributions of good solution to
build new ones. In this paper, the sequence-based discrete EDA is given to generate a
number of sequences so as to improve solutions in the population.

The basic EDA mainly includes four steps [14]: First, select PS promising solutions
from the original population by computing fitness value of each individual, and then
put them into a candidate population ½gi;j�PS�n; Second, build a probability distribution
model ½ni;j�n�n based on the candidate population; Third, generate a new solution
through learning and sampling from according to the constructed probabilistic model
½ni;j�n�n. Repeat the above third step for generating some new solutions. Last, update
the population by evaluating the objective value of each solution in the population, and
delete some bad solutions.
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The detailed description of the proposed EDA is given as follows:
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3.4 Improving the Other Solutions in the Population

In this work, the purpose of the local search is to generate a better solution from the
neighborhood of a given solution. We adopt an insert-neighborhood-based local search,
which has been regarded as superior to the swap or exchange neighborhood. Fur-
thermore, we try to present a simple algorithm with few parameters, so some relative
algorithms such as taboo search and simulated annealing algorithm are not applied. In
this paper, we apply the local search to the solutions generated in Subsect. 3.2 with a
small probability of pls. That is, a uniform random number r is generated from 0 and 1,
if r < pls, the solution will employ several insertion operators. Otherwise, the solution
does not perform the local search.

4 Experiments

In this section, the proposed iMBO is compared with EDA [2], DIWO [7], and MMBO
[12] algorithms to evaluate the performance of the proposed algorithm. The test
instance set is composed of 150 different instances, which are divided into 15 subsets
and each subset consists of 10 instances with the same size. These subsets range from
10 jobs and 5 machines to 500 jobs and 20 machines [15]. Each instance is inde-
pendently executed five replications. For each instance, we independentlly run each
method 5 times, record the minimal makespan, and obtain the average relative per-
centage difference of 5 times. For all instances in a group, we obtain the above average
relative percentage differences, and denote their average as ARPD. Denote the
makespan of the jth instance provided by the ith algorithm in the tth run as Ci

j;t, C
R
j is

the best known solution provided so far by existing algorithms for the specified
problem or by our proposed algorithms. From the following Eq. (12), we can see that
the smaller the average relative percentage difference APRD is, the better result the
algorithm produces. Denote APRD obtained by the ith algorithm as ARPDi, then
ARPDi can be stated as follows.

APRDi ¼ 1
50

X10
j¼1

X5
t¼1

Ci
j;t � CR

j

CR
j

� 100 ð12Þ

All these algorithms were implemented with C++ in a PC environment with
Pentium(R) Dual 2.8 GHZ and 2 GB memory. Following Yoon, Ventura, and Tseng
and Liao [13], the related data for each LSFS scheduling problem are given according
to the discrete uniform distributions as below. The number of solutions generated by
strategies 1 and 2 are both 6, respectively, in the initialization of the population. The
values of the rest parameters are set in Table 1.
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Tables 2 and 3 report APRD over each subset for computation time T = 5, 15,
respectively.

It can be seen from Table 2 that the overall mean APRD value yielded by the
iMBO algorithm is equal to 0.48, which is much smaller than 0.72,0.67,0.61 generated
by the EDA, DIWO and MMBO algorithm. As the problem size increases, the supe-
riority of the iMBO algorithm over EDA, DIWO and MMBO algorithms increases. On
the other side, The results reported in Table 3 further justifies the superiority of the
iMBO algorithm over the EDA, DIWO and MMBO algorithms for computation time
T = 10. Thus, we can conclude that the presented NMBO algorithm outperforms the
EDA, DIWO and MMBO algorithms for lot-streaming flowshop problems with
makespan criterion.

Table 1. Parameter setting

Parameter Notation Value

Number of jobs n 10, 30, 50, 70, 90, 110
Number of machines m 5, 10, 20
Number of sub-lots l Uniform(1,6)
Processing time of a sublot of job j on machine t pj,t Uniform(1,31)
Population size PS 20
Number of initializing solutions b 3
Local search rate pls 0.6
Independently run times T 5
Stopping time Timemax T � n � m milliseconds

Table 2. Performance comparison of EDA, DIWO, MMBO and NMBO algorithms (T = 5)

Instances EDA DIWO MMBO NMBO CUP time

10 � 5 0.53 0.53 0.51 0.51 0.25
10 � 10 0.47 0.41 0.45 0.42 0.50
10 � 20 0.84 0.97 0.58 0.61 1.00
50 � 5 0.62 0.63 0.94 0.51 1.25
50 � 10 0.63 0.63 0.61 0.39 2.50
50 � 20 0.51 0.71 0.63 0.68 5.00
70 � 5 1.11 0.94 0.85 0.73 1.75
70 � 10 0.63 0.73 0.71 0.45 3.50
70 � 20 0.74 0.42 0.41 0.29 7.00
110 � 5 0.95 0.79 0.85 0.74 2.75
110 � 10 1.11 1.01 0.85 0.63 5.50
110 � 20 0.89 0.68 0.53 0.35 11.00
200 � 10 0.48 0.36 0.25 0.22 10.00
200 � 20 0.55 0.46 0.39 0.34 20.00
500 � 20 0.78 0.74 0.65 0.32 50.00
Average 0.72 0.67 0.61 0.48 8.14
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Table 4 reports the two-side Wilcoxon rank sum tests of iMBO, EDA, DIWO and
MMBO algorithms with significant level equal to 5%. In the Table 4, there are two
values, i.e., p value and h value. P is the probability of observing the given result by
chance if the null hypothesis is true. When h equals 1, it indicates that the results
obtained by the two compared algorithms are obviously different. When h equals 0, it
denotes that the difference between the two algorithms is not significant at 5% sig-
nificant level. From the Table 4, the h values of the compared algorithms are equal to 1,
and the p values are close to 0. Thus, it can be demonstrated that iMOB proposed in
this paper is significantly different from the other compared algorithms.

Table 3. Performance comparison of EDA, DIWO, MMBO and NMBO algorithms (T = 10)

Instances EDA DIWO MMBO NMBO CUP time

10 � 5 0.44 0.44 0.45 0.45 0.50
10 � 10 0.33 0.35 0.35 0.24 1.00
10 � 20 0.69 0.56 0.45 0.38 2.00
50 � 5 0.48 0.51 0.74 0.44 2.50
50 � 10 0.51 0.50 0.52 0.36 5.00
50 � 20 0.34 0.54 0.49 0.23 10.00
70 � 5 0.76 0.61 0.48 0.26 3.50
70 � 10 0.49 0.48 0.43 0.27 7.00
70 � 20 0.52 0.39 0.31 0.22 14.00
110 � 5 0.61 0.59 0.73 0.48 5.50
110 � 10 0.74 0.61 0.64 0.46 11.00
110 � 20 0.56 0.51 0.22 0.24 22.00
200 � 10 0.33 0.21 0.19 0.11 20.00
200 � 20 0.39 0.37 0.32 0.26 40.00
500 � 20 0.52 0.59 0.38 0.16 100.00
Average 0.51 0.48 0.45 0.30 16.27

Table 4. Wilcoxon two-sided rank sum test of the iMBO, EDA, DIWO and MMBO algorithms

(NMBO, EDA) (NMBO, DIWO) (NMBO,MMBO)

p h p h p h
7.42136e−057 1 3.95713e−061 1 6.96214e−0.32 1
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5 Conclusions

In this paper, iMBO is proposed to minimize makespan for the BLSFS scheduling
problem. In order to perform exploration for promising solutions within the entire
solution space, iMBO with an effective population initialization approach is developed.
A simple but effective local search algorithm was employed. To further enhance the
proposed algorithm, we adopt EDA to obtain solutions for the rest migrating birds.
Computational experiments are given and compared with the results yielded by the
existing EDA, DIWO, and MMBO algorithms. The future work is to apply iMBO to
other optimization problems and encourage us to extend the ideas proposed to the
different objective functions or multi-objective in scheduling problems.
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