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Abstract. During the last two decades, much progress has been achieved on
the running time analysis (one essential theoretical aspect) of evolutionary
algorithms (EAs). However, most of them focused on discrete optimization, and
the theoretical understanding is largely insufficient for continuous optimization.
The few studies on evolutionary continuous optimization mainly analyzed the
running time of the (1+1)-ES with Gaussian and uniform mutation operators
solving the sphere function, the known bounds of which are, however, quite
loose compared with the empirical observations. In this paper, we significantly
improve their lower bound, i.e., from XðnÞ to XðecnÞ. Then, we study the
effectiveness of 1/5-rule, a widely used self-adaptive strategy, for continuous
EAs using uniform mutation operator for the first time. We prove that for the
(1+1)-ES with uniform mutation operator solving the sphere function, using 1/5-
rule can reduce the running time from exponential to polynomial.

Keywords: Running time analysis � Continuous optimization
Evolution strategies

1 Introduction

Evolutionary algorithms (EAs) are widely used in real-world applications and have
achieved great success in solving both continuous and discrete optimization problems.
As a class of general-purpose optimization algorithms, EAs are designed to search for
the optimum without the information of gradients or Hessian matrix. Thus, they have
been regarded as a major approach when the optimization problems are non-
differential, multi-modal, or black-box. However, a great gap lies between the
numerous practice and weak theoretical foundation. Moreover, most of the theoretical
works focus on the discrete domain, such as pseudo-Boolean functions [4, 10–12, 14,
15], while only a few works deal with continuous optimization problems [1, 7, 8].

Note that the theoretical analysis of EAs in discrete domain cannot be directly
extended to continuous domain. In the following, we briefly summarize the difference
between continuous EAs and discrete EAs.
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– Optimization problems they are designed to solve originally. Continuous EAs are
designed to solve continuous optimization problems, while discrete EAs are more
often used to solve discrete optimization problems, such as combinatorial opti-
mization problems, etc.

– Coding they use to represent the individuals. Individuals are represented by a real
vector in continuous EAs in contrast to a binary vector in discrete EAs.

– Mutation operators. In discrete EAs, an offspring solution is generated by flipping
the bits of the parent solution. In continuous EAs, we first sample a stochastic vector
from a given distribution. A new candidate solution is generated by adding the
preceding stochastic vector to the solution.

– Stopping criteria. The searching space is infinite and uncountable in continuous
domain, which means the probability of finding the exact optimum is 0. Thus, we
focus on the number of steps that are needed to halve the approximation error, i.e.,
the distance from the optimum in continuous domain. While in discrete domain, the
evolution would not stop until the exact optimum or an acceptable suboptimal
solution is found.

Most of the previous theoretical works in continuous EAs analyze the expected running
time of evolution strategies (ES) on the sphere function. Jägersküpper [7] proved that
the (1+1)-ES with Gaussian mutation operator has a polynomial lower bound XðnÞ on
certain function scenarios (including the sphere function), and derived an upper bound
OðnÞ when 1/5-rule is introduced. These two results together confirmed the effec-
tiveness of 1/5-rule. Moreover, Akimoto et al. proved that the expected running time of
the (1+1)-ES with Gaussian mutation operator adapted by 1/5-rule on the sphere
function is H log d

�

� �
n

� �
, where d denotes the distance of the initial individual to the

global optimum and � is the parameter of the stopping criteria [2]. Uniform mutation
operator was then analyzed by Agapie et al., with a lower bound XðnÞ and an upper
bound OðecnÞ [1].

In this paper, we first prove that the general lower bound on the running time of the
(1+1)-ES with uniform mutation operator inside a hypersphere is XðecnÞ which largely
improves the known bound XðnÞ which was given in [1]. Second, we derive a similar
result when the mutation operator is replaced by Gaussian mutation, i.e. XðecnÞ, in
contrast to XðnÞ given by Jägersküpper in [7]. Third, we study the effectiveness of 1/5-
rule for the (1+1)-ES using uniform mutation inside a hypersphere for the first time. We
prove that the running time of the (1+1)-ES using uniform mutation inside a hyper-
sphere has polynomial upper bound OðnÞ after the incorporation of 1/5-rule.

The rest of the paper is organized as follows. Section 2 introduces some prelimi-
naries, including the studied problem and algorithm, and also the analysis tools that
will be used. Section 3 derives the exponential lower bound of the (1+1)-ES using
uniform and Gaussian mutation operators. Section 4 analyzes the effectiveness of 1/5-
rule for the (1+1)-ES using uniform mutation operator inside a hypersphere. Section 5
concludes the paper.
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2 Preliminaries

In this section, we first introduce the problem and algorithm studied in this paper,
respectively. Then, we present the analysis tools that we use throughout the paper.

2.1 Problem

We consider minimizing the sphere function in this paper. Its formulation is as follows,

f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
x2i

q
ð1Þ

The sphere function has two properties:

– A minimum exists.
– f xð Þ\f yð Þ if xj j\ yj j for any two points x and y, which means that a mutant closer

to the optimum is always accepted.

2.2 (1+1)-ES and 1/5-Rule

Jägersküpper analyzed the time complexity of the (1þ k)-ES on the sphere function
and proved that the offspring population helps to reduce the running time of ES [8].
However, parent population does not help for the hypersphere function, and even
makes the expected running time larger [6]. Our theoretical analysis will focus on the
(1+1)-ES, which maintains only one parent solution and one offspring solution in each
generation. The (1+1)-ES replaces the current individual by a better candidate off-
spring, and discards a worse one in every iteration. The process of the (1+1)-ES using
uniform mutation inside a sphere is as follows,

Initialization: Create a random initial individual n0 which satisfies d n0; oð Þ ¼ R, where
R denotes a positive constant and o is the global optimum.

Mutation: Create a new search point n0 ¼ nt þrm, where r is scaling factor and m is
a n-dimensional vector that uniformly distributed in a sphere of fixed radius r (or
sampled from n-variate standard Gaussian distribution).

Evaluation: If fðn0Þ � fðntÞ, ntþ 1 ¼ n0, else ntþ 1 ¼ nt.

Stopping criteria: f ðntÞ�R=2.

Among all the self-adaptive strategies for the coefficients of mutation operators in
real-world applications and research areas, 1/5-rule is the most commonly used one [3,
13]. This heuristic strategy has shown excellent performance by controlling the
mutation strength of ES. The 1/5-rule works as follows: the optimization process is
observed for n steps without changing r; if more than one fifth of the steps in this
observed phase have been successful, r is doubled; otherwise, r is halved.
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2.3 Analysis Tools

It is not hard to notice the common property between the evolving of population in ES
and a Markov Chain fntgt� 0, since the future state/population is independent of the
past states/populations and only effected by the current state/population. However, it is
nearly impossible to construct a transition probability matrix for ES. Thus, a new
effective model, renewal process, is introduced for ES. For each t ¼ 0; 1; 2; . . ., let nt be
the individual of t-th generation in ES and dðntÞ be the distance from nt to the optimum
0. Define the stochastic process fqtgt� 0 by qt ¼ d ntð Þ � dðntþ 1Þ, then fqtgt� 0 is a
renewal process.

Since ES is a class of stochastic algorithms, the first hitting time is a random
variable, either. We take the expectation of first hitting time (FHT) as the measure of
time complexity of ES. The definition of FHT is as follows,

First Hitting Time. Assume that the initial state set is vI , and the final state set is v�,
the first hitting time T is defined as T ¼ minftjnt 2 v� ^ n0 2 vIg. In our paper,
particularly vI ¼ fn 2 R

njd nð Þ ¼ Rg and v� ¼ n 2 R
njd nð Þ\R=2f g.

Several analysis tools have been proposed with different ideas and principles in
discrete domain. All of these methods have shown great power in the running time
analysis of EAs. Drift analysis, constructs a distance function and derives the expected
running time by bounding the one-step progress [4]. Fitness level method cuts the
search space into different sets or levels based on the fitness values and derives the
expected running time by bounding the transition probability of the solutions moving
from the current level to other levels [14]. Switch analysis compares the evolutionary
process with another one which has been well analyzed and derives the expected
running time by estimating the one-step differences of the two [15]. However, these
three effective methods cannot be applied to continuous optimization directly since
they are all based on Markov Chain with finite states.

Similar to the drift analysis theorem, which was first introduced to analyze the
running time of EAs by He and Yao [4], the analysis approach for ES introduced by
Jägersküpper also focuses on the difference of the two adjacent generations, defined as
progress rate qt [7].

Progress Rate. Assume that the t-th generation is nt, the distance of nt from the
optimizer is d ntð Þ, then qt ¼ dðntÞ � dðntþ 1Þ is called the progress rate of the t-th
generation.

Theorem 1 (Lower bound theorem [7]). Let q1; q2; . . . denote random variables with
bounded range and T be the random variable defined by T ¼ minftjPt

i¼0 qi � gg for a
given g[ 0. If EðTÞ exists and EðqijT � iÞ� u, then EðTÞ� g=u.

Theorem 1 reveals that if the progress rate has an upper bound, we could derive a
lower bound for the expected running time.
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3 Exponential Lower Bound of the (1+1)-ES

In this section, we prove that the expected running time of the (1+1)-ES using uniform
mutation operator inside a hypersphere and Gaussian mutation operator has exponential
lower bound when used for minimizing the sphere function, presented in Theorems 2
and 3, respectively.

3.1 Uniform Mutation Inside a Hypersphere

Lower bound of the (1+1)-ES minimizing the sphere function derived by Agapie et al.
is not tight enough, which could be testified by simulation experiments [1]. The super-
polynomial bound by Huang et al., however, is concerned with uniform mutation inside
a hypercube and based on a very strong assumption on the initialization and mutation
operator [5]. In this subsection, we give out the lower bound which is tighter than the
state-of-the-art bound. Besides, our method is more general, which has no assumption
on the coefficients of the mutation operator and initialization.

Theorem 2. For the (1+1)-ES minimizing the sphere function in n-dimensional
Euclidian space using uniform mutation in a hypersphere and elitist selection, the
expected number of generations T to half the approximation error is XðecnÞ.
Proof. Denote the global optimum as o and the current individual as c, i.e. nt. Sup-
posing that the distance between o and c is dðo; cÞ ¼ R and the radius of the mutation
operator is r. Due to symmetry, we assume that c is on axes ox1.

As shown in Fig. 1. Intersection of fitness sphere and mutation sphere, we call the
left sphere So ¼ fn 2 R

njdðn; oÞ�Rg fitness sphere, since the all points inside So are
better than the current population c. Accordingly, we call the right sphere Sc ¼ fn 2
R

njdðn; cÞ� rg mutation sphere, since all the candidate offsprings scatter in it. A is
denoted as the intersection of the two spheres.

Fig. 1. Intersection of fitness sphere and mutation sphere
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According to the definition of progress rate, we get

E qtð Þ ¼ 1
Cnrn

Z
R� d ntþ 1ð Þð Þdntþ 1 �

1
Cnrn

� R � V Að Þ ð2Þ

Where Cnrn ¼ pn=2
Cðn2þ 1Þ r

n is the volume of the n-dimensional sphere with radius r and

VðAÞ is the volume of the intersection of the two hyperspheres. We begin our deduction
in an algebraic way. By solving the equations below

Pn
i¼1 x

2
i ¼ R2

x1 � Rð Þ2 þ Pn
i¼2 x

2
i ¼ r2

�
ð3Þ

We get

x1 ¼ R� r2

2R
ð4Þ

Which is the x1-coordinate of the hyperplane P.

1. r[R. In this case, we have

VðAÞ�VðSoÞ ¼ CnR
n ¼ Cnr

n � Oðec1�nÞ ð5Þ

Where c1\0 is a negative constant.

2. r�R. In this case, the intersection A can be viewed as two spherical caps.

V Að Þ ¼ V A1ð ÞþV A2ð Þ

¼ Cnrn � 12 I 1� r2

4R2

� � nþ 1
2

;
1
2

� �
þCnRn 1

2
I r2

R2
� r4

4R4

� � nþ 1
2

;
1
2

� �

\Cnr
n �

R
r 1� r2

4R2

� 	nþ 1
2

nþ 1
2 � B nþ 1

2 ; 12
� � þCnR

n �
R2

2R2�r2
r2
R2 � r4

4R4

� 	nþ 1
2

nþ 1
2 � B nþ 1

2 ; 12
� �

¼ Cnr
n �

2R3

rð2R2�r2Þ 1� r2
4R2

� 	nþ 1
2

nþ 1
2 � B nþ 1

2 ; 12
� �

¼ Cnr
n � Oðec2�nÞ
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Where c2\0 is a negative constant. The second equation derived by applying the
formula of volume of spherical cap VðCa;bÞ ¼ Cnan � 12 I2ab�b2

a2

nþ 1
2 ; 12

� �
by Li, where a is

the radius of the hypersphere that the spherical cap is cut from and b is the height of the
spherical cap [9]. The first inequality is based on

Ix
nþ 1
2

;
1
2

� �
� B x; nþ 1

2 ; 12
� �
B nþ 1

2 ; 12
� � ¼

Rx
0 t

n�1
2 ð1� tÞ�1

2dt
B nþ 1

2 ; 12
� �

\
ð1� xÞ�1

2 Rx
0 t

n�1
2 dt

B nþ 1
2 ; 12

� � ¼ ð1� xÞ�1
2x

nþ 1
2

nþ 1
2 � B nþ 1

2 ; 12
� �

ð6Þ

The last equation is based on

B
nþ 1
2

;
1
2

� �
¼ C nþ 1

2

� �
C 1

2

� �
C n

2 þ 1
� � ¼ H

n
2
þ 1

� 	�1
2

� �
¼ H n�

1
2

� 	
ð7Þ

Summing up the two cases, we get

E qtð Þ ¼ 1
Cnrn

Z
R� dðntþ 1Þð Þdntþ 1 �

1
Cnrn

� R � VðAÞ ¼ Oðec3�nÞ ð8Þ

Where c3 ¼ max c1; c2f g\0 is a negative constant. By lower bound theorem, we have

EðTÞ� R� R=2
Oðec3�nÞ ¼ XðecnÞ ð9Þ

Where c ¼ �c3 [ 0 is a positive constant.

3.2 Gaussian Mutation

The analysis by Huang et al. for Gaussian mutation is based on a very strong
assumption on the initialization [5]. In this section, we give out a lower bound which is
much tighter than the bound XðnÞ given by Jägersküpper [7]. Moreover, our analysis is
more general than [5] since we have no assumption on the initialization.

Theorem 3. For the (1+1)-ES minimizing the sphere function in n-dimensional
Euclidian space using Gaussian mutation and elitist selection, the expected number of
generations T to half the approximation error is XðecnÞ.
Proof. Denote the global optimum as o and the current individual as c, i.e. nt. Sup-
posing that the distance between o and c is dðo; cÞ ¼ R. Due to symmetry, we assume
that c is on axes ox1. Similarly, we call the left sphere So ¼ fn 2 R

njdðn; oÞ�Rg
fitness sphere, since the all points inside So are better than the current population c.
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According to the definition of progress rate, we get

E qtð Þ ¼ Z
uðntþ 1Þ R� dðntþ 1Þð Þdntþ 1 �

Z
uðntþ 1ÞRdntþ 1 ð10Þ

Where uð�Þ is the probability density function of the n-variate standard Gaussian

distribution. Since the u ntþ 1ð Þ�max uðmÞjm 2 R
nf g ¼ ð2pÞ�n=2, we have

E qtð Þ� Z
2pð Þ�n

2Rdntþ 1 ¼ 2pð Þ�n
2�R � V Soð Þ ¼ 2pð Þ�n

2� pn=2Rnþ 1

Cðn=2þ 1Þ ð11Þ

Where VðSoÞ is the volume of the fitness sphere So. Since R=2� dðniÞ�R for
8i 2 ½0; T�, we have E qtð Þ� Rnþ 1

Cðn=2þ 1Þ�2n=2. By lower bound theorem, we have

E Tð Þ� R� R
2

Rnþ 1

C n
2þ 1ð Þ�2n2

¼ 2
n
2�1

Rn � C n
2
þ 1

� 	
¼ XðecnÞ ð12Þ

Where c[ 0 is a positive constant, since R[ 0 is a positive constant.

4 On the Effectiveness of 1/5-Rule

Jägersküpper proved that the upper bound of the (1+1)-ES minimize the sphere
function using Gaussian mutations adapted by 1/5-rule is OðnÞ [7]. In this section, we
study the effectiveness of 1/5-rule for the (1+1)-ES using uniform mutation operator.

Lemma 1 [7]. For a n-dimensional vector m with each component independently
standard normal distributed, the expectation lE ¼ E jmjð Þ exists, and P mj j � lEj j �f
d � lEg� d�2

2n�1.
Similar result holds for uniform mutation inside a hypersphere. Lemma 2 reveals

that the length of the n-dimensional vector uniformly sampled from the unit hyper-
sphere is Hð1Þ w.o.p., with overwhelming probability.

Lemma 2. For a n-dimensional vector m uniformly distributed in a unit hypersphere,

the expectation lE ¼ E jmjð Þ exists, and P mj j � lEj j � d � lEf g� d�2

n2 þ 2n.

Proof. According to the definition of expectation in mathematics, we have

E jmjð Þ ¼ Z 1
0
rAnðrÞ � 1

Vnð1Þ dr ¼
n

nþ 1
ð13Þ
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Where Vn 1ð Þ ¼ pn=2

C n
2þ 1ð Þ is the volume of the unit hypersphere and An rð Þ ¼ 2pn=2

C n
2ð Þ � r

n�1 is

the surface area of the n-dimensional hypersphere of radius r. Similarly, we have

E jmj2
� 	

¼ Z 1
0
r2AnðrÞ � 1

Vnð1Þ dr ¼
n

nþ 2
ð14Þ

Consequently, we get

Var jmjð Þ ¼ E jmj2
� 	

� E jmjð Þ2¼ n

ðnþ 1Þ2ðnþ 2Þ ð15Þ

Thus, we get

P mj j � lEj j � d � lEf g� d�2

n2 þ 2n
ð16Þ

by applying the Chebyshev’s inequality.
Intuitively, we partition a run of the (1+1)-ES adapted by 1/5-rule into phases each

of which lasts n steps. Thus, in each phase, the radius of the mutation sphere is fixed.
Denote the radius and the scaling factor in the t-th phase as rt and dt. Jägersküpper find
the relation between the radius of the mutation sphere and the progress rate, for
Gaussian mutation though, but could be extended to uniform mutation similarly.

Lemma 3 [7]. Let the (1+1)-ES minimize the sphere function using Gaussian
mutations adapted by the 1/5-rule and elitist selection. Then

1. If rt ¼ H d nt=
ffiffiffi
n

pð Þð Þ, then w.o.p. d ntþ 1ð Þ ¼ d ntð Þ � X d ntð Þð Þ, i.e., the distance to
the optimum is reduced by a constant fraction in the t-th phase.

2. If d is doubled after the t-th phase, then rt ¼ O d nt=
ffiffiffi
n

pð Þð Þ w.o.p.;
3. If d is halved after the t-th phase, then rtþ 1 ¼ X d ntþ 1=

ffiffiffi
n

pð Þð Þ w.o.p.;
Since the proof of Lemma 3 is merely based on the isotropy of Gaussian mutation

and Lemma 1, we could derive the following result by simply applying the isotropy of
uniform mutation and Lemma 2.

Lemma 4. The (1+1)-ES minimize the sphere function using uniform mutations inside
a hypersphere adapted by the 1/5-rule and elitist selection. Then

1. If rt ¼ H d nt=
ffiffiffi
n

pð Þð Þ, then w.o.p. d ntþ 1ð Þ ¼ d ntð Þ � X d ntð Þð Þ, i.e., the distance to
the optimum is reduced by a constant fraction in the t-th phase.

2. If d is doubled after the t-th phase, then rt ¼ O d nt=
ffiffiffi
n

pð Þð Þ w.o.p.;
3. If d is halved after the t-th phase, then rtþ 1 ¼ X d ntþ 1=

ffiffiffi
n

pð Þð Þ w.o.p.;

Theorem 4 [7]. Let the (1+1)-ES minimize the sphere function in n-dimensional
Euclidian space using Gaussian mutation adapted by 1/5-rule and elitist selection.
Given that the initialization ensures dðn0Þ=d0 ¼ HðnÞ, the expected number of gen-
erations T to half the approximation error is w.o.p. OðnÞ.
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Since the proof of Theorem 4 is merely based on the isotropy of Gaussian mutation
and Lemma 3, we could derive the following result by simply applying the isotropy of
uniform mutation and Lemma 4.

Theorem 5. Let the (1+1)-ES minimize the sphere function in n-dimensional
Euclidian space using uniform mutation in a hypersphere adapted by 1/5-rule and elitist
selection. Given that the initialization ensures dðn0Þ=d0 ¼ Hð ffiffiffi

n
p Þ, the expected

number of generations T to half the approximation error is w.o.p. OðnÞ.

5 Conclusion

In this paper, we first derive a tighter lower bound, i.e., XðecnÞ, for (1+1)-ES using
uniform mutation inside a hypersphere on the sphere function in contrast to the state-of-
the-art bound XðnÞ. Second, we extend the result to the case when the mutation
operator is Gaussian mutation. Third, we study the effectiveness of 1/5-rule for (1+1)-
ES using uniform mutation inside a hypersphere for the first time, and prove that the
incorporation of 1/5-rule reduces the time complexity from exponential to polynomial.

Uniform mutation operator that distributed in a hypercube is also used by some
researchers. It does not belong to isotropic distribution like uniform distribution inside
a hypersphere do. The effectiveness of 1/5-rule on it has not been studied yet. We leave
it as our future work.
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