
Preprocessing Technique for Cluster Editing
via Integer Linear Programming

Luiz Henrique Nogueira Lorena1(&), Marcos Gonçalves Quiles1,
André Carlos Ponce de Leon Ferreira de Carvalho2,

and Luiz Antonio Nogueira Lorena3

1 Federal University of São Paulo - UNIFESP, São José dos Campos, Brazil
luiz-lorena@hotmail.com, quiles@unifesp.br

2 University of São Paulo - USP, São Carlos, Brazil
andre@icmc.usp.br

3 National Institute for Space Research - INPE, São José dos Campos, Brazil
luizlorena54@gmail.com

Abstract. This paper addresses the Cluster Editing problem. The objective of
this problem is to transform a graph into a disjoint union of cliques using a
minimum number of edge modifications. This problem has been considered in
the context of bioinformatics, document clustering, image segmentation, con-
sensus clustering, qualitative data clustering among others. Here, we focus on
the Integer Linear Programming (ILP) formulation of this problem. The ILP
creates models with a large number of constraints. This limits the size of the
problems that can be optimally solved. In order to overcome this limitation, this
paper proposes a novel preprocessing technique to construct a reduced model
that feasibly maintains the optimal solution set. In comparison to the original
model, the reduced model preserves the optimal solution and achieves consid-
erable computational time speed-up in the experiments performed on different
datasets.

Keywords: Cluster Editing � Preprocessing technique � Unsupervised learning

1 Introduction

The Cluster Editing (CE) problem [5], also referred in the literature as Correlation
Clustering [2], ask to transform an undirected graph G by minimizing the number of
editions, i.e., insertions or deletions of edges, to create a vertex-disjoint union of
cliques. Figure 1 shows a CE instance were three editions are made on the graph
resulting on two disjoint cliques represented by the vertices set {A, B, C, D} and
{E, F, G}.

This problem has been considered in the context of bioinformatics [4, 6], clustering
documents [2], image segmentation [14], consensus clustering [1, 10], and qualitative
data clustering [10, 11]. The CE problem is a NP-hard problem [2, 19], thus heuristics,
approximations and data reduction methods were proposed in the literature [3, 9, 12, 18].

© Springer International Publishing AG, part of Springer Nature 2018
D.-S. Huang et al. (Eds.): ICIC 2018, LNCS 10954, pp. 287–297, 2018.
https://doi.org/10.1007/978-3-319-95930-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95930-6_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95930-6_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95930-6_27&domain=pdf

Grotschel and Wakabayashi [11] introduced an ILP model for the CE. They derived
it from a mathematical analysis of the corresponding problem polytope, proposing
several partition inequalities for this purpose. As there are an exponential number of
these inequalities, they followed a cutting plane approach where the inequalities are
added to the Linear Program only if a current fractional solution violates them.

The ILP creates models with a large number of constraints that limits the size of the
problems that can be optimally solved. Therefore, here, we propose a preprocessing
technique to construct a reduced model. In comparison to the original model, the
reduced model preserves the optimal solution and achieves remarkable computational
time speed up in the experiments performed on different datasets.

This work is organized as follows. In Sect. 2 the problem is defined and the integer
linear programming formulation is presented. Section 3 presents the new preprocessing
technique. The computational experiments are provided in Sect. 4. Finally, conclusions
are drawn in Sect. 5.

2 Cluster Editing via ILP

The CE problem can be formulated as a maximization or minimization problem [7].
This paper considers a minimization version of graph clustering where the goal is to
minimize the number of editions (edges deleted between clusters plus the number of
edges inserted inside clusters).

The following notation is introduced to explain the proposed preprocessing tech-
nique. Given an undirected graph G ¼ V ;Eð Þ where V is the set of vertices and E is the
set of edges. The edge weight values, represented by wij, are 1 if the edge exists in the
graph and –1 for missing edges. The number of vertices in the graph is defined as
n ¼ Vj j, while m ¼ Ej j represent its number of edges.

The following ILP formulation can be used for cluster editing [6, 11]:

CEILPð Þ : Minimize
X

e2E w eð Þ�
X

i\j
wijxij

subject to xijþ xjk � xik � 1 i\j\k ð1Þ

xij � xjk þ xik � 1 i\j\k ð2Þ

Fig. 1. Cluster Editing instance. Solid lines represent edges that are maintained, dashed lines are
removed edges and dotted lines are edges that were inserted.

288 L. H. N. Lorena et al.

�xijþ xjk þ xik � 1 i\j\k ð3Þ

xij 2 0; 1f g i; j 2 1::n½ �

where xij ¼ 1 if i and j are part of the solution and 0 otherwise.
The edge editions are considered on (CEILP) model solution in the following way:

an edge is inserted if xij ¼ 1 for wij ¼ �1 and is removed if xij ¼ 0 for wij ¼ 1.
Therefore, the objective function returns the minimum number of editions.

Constraints (1–3) are called “transitivity constraints”. Constraint 1, for instance,
enforces that: if vertex i is in the same cluster as vertex j, and j is in the same cluster as
k then i is in the same cluster as k.

3 Preprocessing Technique

The (CEILP) model has O n2ð Þ variables and O n3ð Þ constraints, which creates models
with a large number of redundancies. Though not critical to solving the problem, these
constraints affect the solver efficiency and might prohibit its usage.

Grotschel and Wakabayashi [11], in 1989, were the first to propose a strategy to
deal with such redundancy. A cutting plane algorithm was created to identify violated
constraints during the execution of a relaxed version of this problem. It was confirmed
experimentally that, for many instances, the cutting plane ends with a small fraction of
the transitivity constraints. This fact evidences a great redundancy of transitivity
constraints in the original model (CEILP).

Other techniques, introduced in the context of clique partitioning problem [16] and
modularity optimization in complex networks [8], try to identify redundancies in the
ILP model by analyzing the graph representation of the clustering instance. Recently,
Nguyen et al. [17] generalized the approach of Dinh et al. [8] to some constrained
clustering problems. All those techniques were capable of reducing the size complexity
of the transitivity constraints from O n3ð Þ to O nmð Þ.

In the context of Cluster Editing, Bocker et al. [5, 6] introduced techniques that
focus on reducing the problem size instead of improve the ILP model. They identify
patterns that can be removed from the problem instance without changing the groups
obtained in the optimal solution. The reduced problem is solved exactly by using the
cutting plane proposed by Grotschel and Wakabayashi [11] and a fixed parameter
branching algorithm. The experimental results shows that those techniques were cap-
able of solving large graphs with 1000 vertices and several thousand edge
modifications.

Here a new approach is introduced, focusing on the identification of the ILP model
redundancy. It tries to identify redundancies by analyzing the graph representation of
the clustering instance [8, 16]. Our approach is based on the identification of triangles
formed by edges (graph edges and missing edges) that correspond to the transitivity
constraints of a model (CEILP).

Figure 2 presents the edge weight distribution within triangles considered by the
transitive constraints of the (CEILP) model. The analysis of such triangles helps to

Preprocessing Technique for Cluster Editing 289

identify constraints that do not need to be considered in the model as they do not result
in editions.

Transitivity constraints corresponding to triangles T1, T3 and T4 do not need to be
considered because of the following reasons:

• T1: the optimization objective of (CEILP) tries to set all variables xij ¼ xjk ¼ xik ¼ 1
for wij ¼ wjk ¼ wik ¼ 1 since all transitivity constraints are satisfied.

• T2: the optimization objective of (CEILP) tries to set all variables xij ¼ xjk ¼ xik ¼ 0
for wij ¼ wjk ¼ wik ¼ 0 since all transitivity constraints are satisfied.

• T3: the optimization objective of (CEILP) tries to set the value 1 to the variable
relative to the positive edge weight and 0 to the remaining variables. This satisfies
all the transitivity constraints.

Constraints that deals with triangles of type T2 must be considered as the transi-
tivity constraints are not satisfied when variables corresponding to positive edges are
set to 1. To satisfy those constraints variables corresponding to the negative edge
weights must be set to 1 which leads to one edge editing.

There is another possibility, removing an edge of the graph. Those circumstances
are considered in Fig. 3. There are three possible variants of such triangle depending on
vertex order:

• T2A: considering the optimization objective of (CEILP), the best possibility of
editing (1 edition) that satisfy all transitivity constraints are the following:
– xij ¼ xjk ¼ xik ¼ 1 1 edge insertedð Þ
– xij ¼ 1; xjk ¼ xik ¼ 0 1 edge removedð Þ
– xjk ¼ 1; xij ¼ xik ¼ 0 1 edge removedð Þ

• T2B: considering the optimization objective of (CEILP), the best possibility of
editing (1 edition) that satisfy all transitivity constraints are the following:

Fig. 3. Possible edge label distribution for triangles of type T2.

Fig. 2. Possible edge weights distribution.

290 L. H. N. Lorena et al.

– xij ¼ xjk ¼ xik ¼ 1 ð1 edge insertedÞ
– xij ¼ 1; xjk ¼ xik ¼ 0 1 edge removedð Þ
– xik ¼ 1; xij ¼ xjk ¼ 0 1 edge removedð Þ

• T2C: considering the optimization objective of (CEILP), the best possibility of
editing (1 edition) that satisfy all transitivity constraints are the following:
– xij ¼ xjk ¼ xik ¼ 1 ð1 edge insertedÞ
– xik ¼ 1; xij ¼ xjk ¼ 0 1 edge removedð Þ
– xjk ¼ 1; xij ¼ xik ¼ 0 1 edge removedð Þ
T2 triangles are also known as conflict triples in literature and are the roots to some

data reduction methods [5, 6]. In this paper, the information of the edge weight dis-
tribution within triangles is used directly in the model (CEILP) to identify what tran-
sitivity constraints should be considered while constructing the ILP model. The data is
not reduced or modified, and only transitivity constraints corresponding to T2 triangles
need to be taken into account. Hence, the following reduced model is proposed:

CERILPð Þ : Minimize
X

e2E w eð Þ�
X

i\j
wijxij

subject to xijþ xjk � xik � 1 i; j; k 2 S1 ð4Þ

xij � xjk þ xik � 1 i; j; k 2 S2 ð5Þ

�xijþ xjk þ xik � 1 i; j; k 2 S3 ð6Þ

xij 2 0; 1f g i; j 2 1::n½ �

where

S1 ¼ fi\j\kjwij ¼ þ 1 ^ wjk ¼ þ 1 ^ wik ¼ �1g

S2 ¼ fi\j\kjwij ¼ þ 1 ^ wjk ¼ �1 ^ wik ¼ þ 1g

S3 ¼ fi\j\kjwij ¼ �1 ^ wjk ¼ þ 1 ^ wik ¼ þ 1g

The sets S1, S2, and S3 enforce that only constraints corresponding to T2 triangles
must be considered while creating the model. This can be considered as a preprocessing
technique that produces a model (CERILP) with a small number of constraints in
comparison to the original model (CEILP). For instance, considering the example
depicted in Fig. 1, the model (CEILP) has 105 constraints in contrast to the model
(CERILP), which has only 11 constraints. Both models find the best number of editions,
but the reduced model has 1.89 of speedup in computational times.

Preprocessing Technique for Cluster Editing 291

4 Experimental Results

The experiments and algorithms were coded in C++14 and executed on a computer
with the following configuration: Intel Core i7-6770HQ (3,5 GHz) with 32 GB RAM
running Windows 10 64-Bit. The commercial solver IBM ILOG CPLEX [13] 12.7.1
was used to solve the ILP models.

The following datasets were used to compare the performance and the quality of the
solution of the proposed model (CERILP) against the original model (CEILP):

• LFR benchmark networks. Networks created with the benchmark developed by
Lancichinetti-Fortunato-Radicchi (LFR) [15]. The following parameters were used:
number of vertices n ¼ 50; 100; 200f g, the average degree was set to 5 and the
maximum degree was set to 10. The default values were used for the remaining
parameters. Networks with increasing values for the mixing parameter (µ) were
used to blur the community distinction.

• Random unweighted graphs. Proposed by [6] in the following manner: given a
number of nodes n and parameter k, uniformly selected an integer i 2 1; n½ �, which
defines a cluster with i vertices. The process continues with the remaining n
n� 1 vertices until n� 5 holds. In this case, all remaining vertices are assigned to
the last cluster. Finally, an estimated value k0 � k is used to perform uniformly
editions (add/remove edges). This dataset can be found online1. Datasets with sizes
n ¼ 100; 200; 300; 1000; 1500; 2000f g were selected for the experiments.

4.1 Experiments with LFR Networks

LFR benchmark networks [15] were created to evaluate the performance of the pro-
posed preprocessing technique. Given a number of vertices n, one network with pre-
defined clusters was created for each mixing parameter (µ). The amount of edges
between clusters increase proportionally to µ. As a consequence, the clusters become
more interconnected and the clustering problems more difficult.

Table 1 presents the results obtained for the (CEILP) and (CERILP) models on the
LFR benchmark networks. Column n represents the number of vertices of the graph; l
is the mixing parameter; columns Obj, #C and Time are defined for both models and
represent, respectively, the objective value, the number of constraints, and the com-
putational time in seconds. Finally, column%C represents the percentage of constraints
removed from the original model and S corresponds to the computational time speedup
obtained by (CERILP).

It can be observed, based on Table 1, that (CERILP) achieves a better performance
than (CEILP) while preserving the optimal number of editions for all the considered
instances. This higher performance is due to a large number of redundant transitivity
constraints disregarded by the preprocessing technique (above 99%). Consequently, the
computational times are drastically improved providing speedups from 15 to 13755.
All instances are solved by (CERILP) in less than 2 s.

1 https://bio.informatik.uni-jena.de/data/.

292 L. H. N. Lorena et al.

https://bio.informatik.uni-jena.de/data/

Problems with n[300 vertices were not tested because the (CEILP) fails to solve
them due to lack of memory. It is worth noting that the (CERILP) can solve problems
with a higher number of vertices, based on the results presented in Table 1.

4.2 Experiments with Random Unweighted Graphs

Proposed by Bocker et al. [6], these datasets were generated by disturbing an ideal
cluster graph using random edge insertions and deletions. Given a number of vertices n,
10 networks with predefined clusters were created for each corresponding k. The values
of k were selected according to the following rule k ¼ c � n with
c ¼ 0:25; 0:5; 1; 1:25; 1:5; 1:75; 2f g:

Table 1. Results obtained by (CEILP) and (CERILP) on LFR benchmark networks.

CEILP CERILP

n l Obj #C Time Obj #C Time %C S

50 0.1 50 58800 0.63 50 250 0.04 99.57 15.18
0.2 65 58800 1.01 65 375 0.07 99.36 15.27
0.3 71 58800 1.21 71 411 0.07 99.30 17.28
0.4 80 58800 1.79 80 486 0.10 99.17 18.77
0.5 78 58800 2.70 78 423 0.11 99.28 24.81
0.6 74 58800 1.68 74 381 0.07 99.35 24.96
0.7 88 58800 2.73 88 533 0.14 99.09 19.90
0.8 87 58800 5.37 87 522 0.21 99.11 25.02
0.9 89 58800 5.29 89 528 0.27 99.10 19.74

100 0.1 86 485100 6.23 86 428 0.05 99.91 118.44
0.2 108 485100 6.52 108 627 0.05 99.87 126.95
0.3 147 485100 11.73 147 893 0.15 99.82 75.86
0.4 149 485100 16.01 149 890 0.11 99.82 143.08
0.5 173 485100 46.76 173 1078 0.23 99.78 201.69
0.6 183 485100 82.62 183 1153 0.63 99.76 131.68
0.7 182 485100 74.43 182 1127 0.36 99.77 208.65
0.8 193 485100 72.91 193 1260 0.27 99.74 267.89
0.9 172 485100 49.43 172 1004 0.19 99.79 257.55

200 0.1 223 3940200 157.55 223 1118 0.18 99.97 865.92
0.2 223 3940200 74.58 223 1270 0.11 99.97 651.88
0.3 257 3940200 96.49 257 1563 0.11 99.96 911.65
0.4 296 3940200 221.62 296 1688 0.17 99.96 1310.29
0.5 331 3940200 558.39 331 2004 0.17 99.95 3460.32
0.6 333 3940200 956.43 333 1925 0.20 99.95 4697.06
0.7 342 3940200 5074.88 342 1908 0.37 99.95 13755.17
0.8 376 3940200 10547.42 376 2333 1.73 99.94 6084.59
0.9 481 3940200 5855.49 481 3388 2.03 99.91 2877.47

Preprocessing Technique for Cluster Editing 293

Datasets with n ¼ 100; 200; 300f g were considered initially for the experiments
because (CEILP) failed to solve instances with n[300 due to lack of memory. Table 2
presents the results obtained for the (CEILP) and (CERILP) models on such networks.
Each row represents the average result for the 10 datasets considering each pair n; kð Þ.
Column n represents the number of vertices of the graph; k is the upper limit for the
number of editions; columns Obj, #C and Time are defined for both models and
represent, respectively, the average objective value, average number of constraints, and
computational times in seconds. Finally, column %C represents the average percentage
of constraints removed from the original model and S corresponds to the average
computational time speedup obtained by (CERILP).

Next, we run a set of experiments with larger datasets n ¼ 1000; 1500; 2000f g to
test the scalability of the (CERILP). The objective value cannot be compared to (CEILP),
but the percentage of constraint elimination can be estimated.

Table 2. Results obtained by (CEILP) and (CERILP) on random unweighted graphs.

CEILP CERILP

n k Obj #C Time Obj #C Time %C S

100 25 25.0 485100 10.85 25.0 1745.8 0.03 99.64 346.66
50 49.0 485100 7.03 49.0 3001.4 0.04 99.38 164.36
75 74.2 485100 5.35 74.2 4409.1 0.07 99.09 84.59
100 97.8 485100 5.14 97.8 6547.8 0.11 98.65 49.88
125 121.4 485100 4.79 121.4 7726.2 0.09 98.41 52.59
150 145.6 485100 4.92 145.6 8369.7 0.10 98.27 52.64
175 168.2 485100 4.61 168.2 10108.1 0.10 97.92 47.19
200 192.4 485100 4.62 192.4 11542.6 0.11 97.62 43.14

200 50 50.0 3940200 242.98 50.0 5889.6 0.08 99.85 3266.11
100 99.6 3940200 141.69 99.6 13819.6 0.22 99.65 728.56
150 149.6 3940200 64.90 149.6 17697.5 0.23 99.55 299.32
200 198.0 3940200 51.93 198.0 24434.4 0.30 99.38 188.05
250 248.0 3940200 41.75 248.0 32242.4 0.36 99.18 121.56
300 295.2 3940200 41.19 295.2 36497.3 0.40 99.07 105.71
350 343.0 3940200 41.09 343.0 37213.1 0.41 99.06 103.98
400 391.4 3940200 41.41 391.4 46879.4 0.50 98.81 85.44

300 75 74.8 13365300 1621.70 74.8 12447.7 0.15 99.91 11386.81
150 149.4 13365300 875.95 149.4 29056.6 0.42 99.78 2265.54
225 224.0 13365300 430.22 224.0 45402.3 0.70 99.66 683.91
300 298.2 13365300 262.33 298.2 57886.7 0.79 99.57 340.42
375 371.5 13365300 203.77 371.5 78641.0 0.98 99.41 215.10
450 445.2 13365300 188.92 445.2 80117.3 0.98 99.40 206.10
525 518.8 13365300 186.77 518.8 103056.6 1.19 99.23 165.03
600 593.2 13365300 195.56 593.2 126468.7 1.46 99.05 140.61

294 L. H. N. Lorena et al.

Table 3 presents the results obtained for the (CERILP). Each row represents the
average result for the 10 datasets and each pair n; kð Þ. Column n represents the number
of vertices of the graph; k is the upper limit for the number of editions; for (CEILP) only
the average number of constraints is presented (#C). Columns Obj, #C and Time
represent the average objective value, average number of constraints and computational
times in seconds for the (CERILP), respectively. Finally, column %C highlights the
average percentage of constraints removed from the original model.

From Table 3, it can be verified that a large number of redundant transitivity
constraints are disregarded by the preprocessing technique (above 99%). All instances
are solved by (CERILP) in less than 23 min. This result shows the scalability of the
proposed technique on the datasets proposed by Bocker et al. [6].

Table 3. Results obtained by (CEILP) and (CERILP) on large random unweighted graphs.

CEILP CERILP

n k #C Obj #C Time %C

1000 250 498501000 249.8 162941.7 9.29 99.97
500 498501000 499.8 338462.5 14.56 99.93
750 498501000 749.0 475923.0 17.91 99.90
1000 498501000 998.0 652948.9 21.47 99.87
1250 498501000 1247.5 900571.3 25.61 99.82
1500 498501000 1494.6 1040558.8 24.14 99.79
1750 498501000 1743.2 1235538.8 32.12 99.75
2000 498501000 1990.0 1183563.7 41.57 99.76

1500 375 1684126500 374.8 363423.8 15.95 99.98
750 1684126500 749.6 717436.6 39.40 99.96
1125 1684126500 1123.6 1167055.5 73.22 99.93
1500 1684126500 1494.6 1040558.4 24.14 99.79
1875 1684126500 1872.8 1817375.0 89.43 99.89
2250 1684126500 2245.2 2125008.0 150.52 99.87
2625 1684126500 2618.6 2276352.3 227.35 99.86
3000 1684126500 2991.2 3048967.0 386.80 99.82

2000 500 3994002000 500.0 739933.5 76.19 99.98
1000 3994002000 998.8 1149414.0 77.29 99.97
1500 3994002000 1498.4 2138914.5 220.12 99.95
2000 3994002000 1998.0 2708588.2 340.46 99.93
2500 3994002000 2497.2 3210726.6 403.91 99.92
3000 3994002000 2994.4 4150590.4 346.08 99.90
3500 3994002000 3495.8 4417540.9 742.18 99.89
4000 3994002000 3993.0 5290777.8 1389.50 99.87

Preprocessing Technique for Cluster Editing 295

5 Conclusions

A novel preprocessing technique for the Clique Edition problem was proposed in this
work. The experimental results showed that the reduced model (CERILP) provided a
considerable reduction of transitivity constraints, preserved the optimal solution set,
and improved the computational speedup compared to model (CEILP) for all considered
instances.

This technique has the advantage of working as complementary to other techniques,
like the cutting plane proposed by Grotschel and Wakabayashi [11]. The (CERILP) can
provide means to increase the size of future instances that the Integer Linear Pro-
gramming approach can execute.

Our preprocessing technique might also be combined with other approaches, such
as the method for reducing the input graph proposed in [6]. Thus, the preprocessed
reduced graph may speed up the solution of the ILP problem even further.

Finally, we expect that the results obtained in the ILP context can be used to guide
the construction of better heuristic techniques for the unweighted Cluster Editing
problem.

Acknowledgements. The authors thanks FAPESP (Grant No. 2011/18496-7), CNPq (Grant
No. 310908/2015-9 and 301836/2014-0), CAPES and IBM for support.

References

1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information. J. ACM 55, 1–
27 (2008). https://doi.org/10.1145/1411509.1411513

2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56, 89–113 (2004).
https://doi.org/10.1023/B:MACH.0000033116.57574.95

3. Bastos, L., Ochi, L.S., Protti, F., Subramanian, A., Martins, I.C., Pinheiro, R.G.S.: Efficient
algorithms for cluster editing. J. Comb. Optim. 31(1), 347–371 (2016). https://doi.org/10.
1007/s10878-014-9756-7

4. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol.
6(3–4), 281–297 (1999). https://doi.org/10.1089/106652799318274

5. Böcker, S., Baumbach, J.: Cluster editing. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE
2013. LNCS, vol. 7921, pp. 33–44. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39053-1_5

6. Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing: evaluation
and experiments. Algorithmica 60, 316–334 (2011). https://doi.org/10.1007/s00453-009-
9339-7

7. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput.
Syst. Sci. 71, 360–383 (2005). https://doi.org/10.1016/j.jcss.2004.10.012

8. Dinh, T.N., Thai, M.T.: Toward optimal community detection: from trees to general
weighted networks. Internet Math. 11, 181–200 (2014). https://doi.org/10.1080/15427951.
2014.950875

9. Fellows, M., Langston, M., Rosamond, F., Shaw, P.: Efficient parameterized preprocessing
for cluster editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639,
pp. 312–321. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74240-1_27

296 L. H. N. Lorena et al.

http://dx.doi.org/10.1145/1411509.1411513
http://dx.doi.org/10.1023/B:MACH.0000033116.57574.95
http://dx.doi.org/10.1007/s10878-014-9756-7
http://dx.doi.org/10.1007/s10878-014-9756-7
http://dx.doi.org/10.1089/106652799318274
http://dx.doi.org/10.1007/978-3-642-39053-1_5
http://dx.doi.org/10.1007/978-3-642-39053-1_5
http://dx.doi.org/10.1007/s00453-009-9339-7
http://dx.doi.org/10.1007/s00453-009-9339-7
http://dx.doi.org/10.1016/j.jcss.2004.10.012
http://dx.doi.org/10.1080/15427951.2014.950875
http://dx.doi.org/10.1080/15427951.2014.950875
http://dx.doi.org/10.1007/978-3-540-74240-1_27

10. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Discov.
Data (TKDD) 1(1), 4 (2007). https://doi.org/10.1145/1217299.1217303

11. Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Math.
Program. 45, 59–96 (1989). https://doi.org/10.1007/bf01589097

12. Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410,
718–726 (2009). https://doi.org/10.1016/j.tcs.2008.10.021

13. IBM: IBM ILOG CPLEX 12.7.1 (1987–2017)
14. Kim, S., Yoo, C.D., Nowozin, S., Kohli, P.: Image segmentation using higher-order

correlation clustering. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1761–1774 (2014).
https://doi.org/10.1109/tpami.2014.2303095

15. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community
detection algorithms. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78, 046110 (2008).
https://doi.org/10.1103/physreve.78.046110

16. Miyauchi, A., Sukegawa, N.: Redundant constraints in the standard formulation for the
clique partitioning problem. Optim. Lett. 9, 199–207 (2014). https://doi.org/10.1007/s11590-
014-0754-6

17. Nguyen, D.P., Minoux, M., Nguyen, V.H., Nguyen, T.H., Sirdey, R.: Improved compact
formulations for a wide class of graph partitioning problems in sparse graphs. Discrete
Optim. 25, 175–188 (2017). https://doi.org/10.1016/j.disopt.2016.05.003

18. Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to
parameterized cluster editing problems. Theory Comput. Syst. 44, 91–104 (2007). https://
doi.org/10.1007/s00224-007-9032-7

19. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. In: Goos, G.,
Hartmanis, J., van Leeuwen, J., Kučera, L. (eds.) WG 2002. LNCS, vol. 2573, pp. 379–390.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36379-3_33

Preprocessing Technique for Cluster Editing 297

http://dx.doi.org/10.1145/1217299.1217303
http://dx.doi.org/10.1007/bf01589097
http://dx.doi.org/10.1016/j.tcs.2008.10.021
http://dx.doi.org/10.1109/tpami.2014.2303095
http://dx.doi.org/10.1103/physreve.78.046110
http://dx.doi.org/10.1007/s11590-014-0754-6
http://dx.doi.org/10.1007/s11590-014-0754-6
http://dx.doi.org/10.1016/j.disopt.2016.05.003
http://dx.doi.org/10.1007/s00224-007-9032-7
http://dx.doi.org/10.1007/s00224-007-9032-7
http://dx.doi.org/10.1007/3-540-36379-3_33

	Preprocessing Technique for Cluster Editing via Integer Linear Programming
	Abstract
	1 Introduction
	2 Cluster Editing via ILP
	3 Preprocessing Technique
	4 Experimental Results
	4.1 Experiments with LFR Networks
	4.2 Experiments with Random Unweighted Graphs

	5 Conclusions
	Acknowledgements
	References

