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Awake Craniotomy: Cortical 
and Subcortical Mapping for  
Glioma Resection
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Over 70,000 patients are diagnosed each year with a glioma, 
and the majority of these tumors are within areas of the brain 
with presumed functional significance. It has been well 
established that extent of tumor resection impacts both over-
all and progression-free survival. Direct stimulation of the 
cerebral cortex was first employed by Foerster in 1931 and 
later popularized by Penfield and Ojemann. Intraoperative 
mapping is the gold standard approach for the identification 
and preservation of functional areas of the brain. This chap-
ter outlines the evidence supporting the extent of resection 
for low- and high-grade gliomas, including procedural steps 
and technical nuances to maximize success and minimize 
perioperative morbidity.

12.1  Introduction

An estimated 700,000 people in the United States are cur-
rently living with a glioma [1]. The role of surgery in the treat-
ment of both low- and high-grade gliomas is to establish the 
correct histologic and molecular diagnosis, relieve mass effect, 
and provide maximal safe resection to improve both overall 
and progression-free survival. More than 50% of gliomas are 
within areas with presumed functional significance; therefore 
surgical decisions must balance reduction of tumor volume 
with preservation of function. Extent of tumor resection 
impacts outcome. Therefore an awake craniotomy permits 
maximal extent of resection while minimizing postoperative 
morbidity [2]. For this reason direct cortical and subcortical 
stimulation mapping via an awake craniotomy is the gold stan-
dard approach for the identification and preservation of func-
tional areas. This chapter will discuss the rationale, indications, 
and technique for cortical and subcortical mapping during 
awake craniotomies using the asleep-awake- asleep protocol 
for patients with low- and high-grade gliomas.
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12.2  Cytoreduction Improves Overall 
and Progression-Free Survival in Low- 
and High-Grade Glioma Patients

A growing body of literature has established that overall and 
progression-free survival is strongly influenced by cytoreduc-
tion surgery. Additional predictors of longer survival include 
patient age, oligodendrocyte histopathology, patient perfor-
mance status, O6-methylguanine-DNA- methyltransferase 
promoter methylation status, and the presence of the isoci-
trate dehydrogenase 1 (IDH1) mutation [1, 3–8]. Intraoperative 
direct cortical and subcortical stimulation mapping using an 
awake craniotomy facilitates a greater extent of resection 
with lower rates of perioperative complications. The goal of 
intraoperative mapping during awake craniotomy is to bal-
ance tumor removal with preservation of function. 
Intraoperative mapping permits both greater extent of resec-
tion and less functional morbidity [2]. A recently published 
meta-analysis including 8091 glioma patients demonstrated 
that intraoperative mapping reduced the number of severe 
neurologic deficits (3.4% late severe neurologic deficits after 
intraoperative mapping versus 8.2% late severe neurologic 
deficits without the use of functional mapping) and improved 
the extent of tumor resection (75% extent of glioma resection 
with intraoperative mapping versus 58% without intraopera-
tive mapping) [2].

The mean survival for patients with WHO grade II glio-
mas is 2.2–9.5 years and varies based on isocitrate dehydro-
genase, 1p19q codeletion, and ATRX gene mutation status. 

The median time to malignant progression for WHO grade II 
gliomas to either WHO III or IV tumors is 5 years [9–12]. 
The median survival for patients with WHO III gliomas is 
3.4 years, again with a strong dependency of extent of resec-
tion and molecular markers [9–12]. Many studies have 
 investigated the role of the extent of tumor resection for 
patients with low- and high-grade gliomas. A survival benefit 
of 61–90  months with maximal resection can be seen for 
WHO II and III gliomas [4–7, 11, 13–29]. Similarly, gross 
total resection of WHO IV gliomas improves overall survival 
from 11.3 to 18.5  months [1, 3, 10, 30–59]. Perhaps the 
strongest evidence in support of cytoreduction surgery for 
gliomas was provided by Jakola et al. [60] in a large popula-
tion study of Norwegian glioma patients. Neurosurgeons 
from two adjacent regions offered differing clinical practice 
patterns. Hospital A favored an initial tumor biopsy followed 
by watchful waiting, while Hospital B offered early tumor 
resection at the time of diagnosis. Overall survival was lon-
ger for individuals treated at Hospital B. The median survival 
was 5.9 years for patients receiving tumor biopsy, while the 
group receiving early resection did not reach median survival 
by the end of the study period (median follow-up of 7 years) 
[60]. Five-year survival was 60% for the biopsy group and 
74% for those receiving early surgery [60]. This evidence 
has offered insight about how to manage asymptomatic inci-
dentally found gliomas. These tumors are typically smaller 
at diagnosis and offer a greater likelihood of achieving a 
gross total resection, making early resection the favored 
approach [61, 62].
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12.3  Indications and Contraindications 
to Awake Glioma Surgery

An awake craniotomy is considered for any patient with a 
supratentorial glioma located within or adjacent to an area 
presumed to have functional significance. Because safety is 
of paramount importance during an awake craniotomy, 
patient selection is critically important. Several factors cen-
ter on the size and location of the tumor. Amount of mass 
effect, patient smoking status, patient body-mass index, sei-
zure frequency, and medical comorbidities are associated 
with increased perioperative risk during awake glioma sur-
gery (Table 12.1) [63, 64]. Absolute contraindications to an 
awake craniotomy include (1) severe psychiatric illness lim-
iting one’s ability to cooperate, (2) severe aphasia with 
greater than 50% naming errors, (3) large tumors with mass 
effect resulting in more than 2 cm of midline shift, (4) severe 
chronic cough, and (5) hemiplegia with less than antigravity 
motor function resulting in severe limitations in passive or 
active movement of the extremity to be mapped. As the 
technique has evolved, a number of strategies have allowed 
higher risk patients to undergo awake craniotomy despite 
comorbidities and relative contraindications. Intraoperative 
nausea can be treated with antiemetic medications (such as 
ondansetron hydrochloride or scopolamine) prior to induc-

tion and throughout the procedure. Severe aphasia may be 
caused by either tumor infiltration of cortical and subcorti-
cal language pathways or pathway irritation from perigli-
oma edema. Therefore patients with greater than 25% 
naming errors may be treated with high-dose corticosteroids 
(dexamethasone, 4–8  mg intravenously every 6  h) and/or 
osmotic diuretics (mannitol 20%, 30 gm every 6  h for 
48–72 h) followed by reassessment prior to surgery. Obesity 
may be problematic because most sedating and analgesic 
medications tend to relax the airway, resulting in hypercap-
nia and cerebral edema. Obese patients (body mass index 
>35) can be treated with a laryngeal mask airway (LMA) or 
nasal trumpet to prevent hypercapnia. Patients with general-
ized anxiety or a severe untreated psychiatric history should 
be treated with antidepressant and mood-stabilizing medi-
cations prior to surgery. Older age is not an absolute contra-
indication to this procedure. In a study comparing patients 
over age 65  years to younger individuals, intraoperative 
mapping proved to be feasible without any increase in peri-
operative morbidity [65]. Intraoperative seizures are the 
most common reason for intraoperative failure. Seizures are 
treated with topical iced Ringer solution applied to the cere-
bral cortex. Moreover, IV propofol, diazepam, or lorazepam 
may be used for sustained stimulation-induced intraopera-
tive seizures.

Table 12.1 Contraindications and solutions to awake xraniotomy

Relative contraindications Solutions
Intraoperative seizures Iced ringer solution, intravenous lorazepam, or propofol
Mass effect (>2 cm midline shift) Staged procedure with internal debulking of presumed nonfunctional areas asleep (± functional 

imaging) followed by reoperation with awake mapping for presumed functional areas
Chronic cough Light sedation and cough suppressants
Obese patient (BMI >35) Laryngeal mask airway before and after mapping, intubation after mapping
Severely impaired preoperative function 3–5 days of preoperative high-dose steroids ± mannitol
Emotional instability/ psychiatric history Presurgical treatment with antidepressants and antipsychotic medications
Chronic or intraoperative nausea Preoperative medication with antiemetic drugs and dexamethasone
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12.4  Imaging and Neuro-Navigation 
Adjuvants

Initial imaging for a patient with suspected glioma who is 
being considered for an awake craniotomy begins with a 
brain magnetic resonance image (MRI) or computed tomog-
raphy (CT) scan with and without contrast enhancement, 
including T1, T2, fluid-attenuated inversion recovery 
(FLAIR) and diffusion-weighted MRI (DWI) sequences. 
MRI spectroscopy or MRI perfusion may offer additional 
insight into the metabolism and vascularity of the mass to 
assist in prediction of tumor biology. MRI spectroscopy for 
gliomas demonstrates raised choline peaks with depressed 
N-acetyl aspartate peak (increased choline, decreased NAA) 
[66]. MRI perfusion studies rely on the passage of paramag-
netic agents through tumor vasculature to estimate blood 
volume [67]. A critical aspect of glioma surgery is the iden-
tification of functional and nonfunctional areas within and 
around the tumor. Structural and functional imaging such as 
functional MRI (fMRI) and diffusion tensor imaging (DTI) 
MRI tractography illustrates this relationship and is useful 
for preoperative planning (Fig.  12.1). Changes in regional 
blood flow and deoxyhemoglobin associated with neuronal 
activity are known as blood oxygenation level–dependent 

(BOLD) signal and serve as the hallmark of fMRI. During 
the MRI, each patient is asked to perform a language or 
motor task during which a dependent BOLD signal identifies 
regions of the brain in which there is neuron activation [68, 
69]. Another approach involves identifying subcortical tracts 
of interest using DTI tractography. DTI tractography differ-
entiates the corticospinal tract and dorsal or ventral language 
in the region of the tumor, which aids preoperative under-
standing of pathway displacement by the mass [70–72]. 
Neither fMRI nor DTI tractography are 100% sensitive for 
the identification of cortical and subcortical functional areas. 
These studies are challenged by imprecision caused by dis-
tortion from mass effect, individual patient anatomic vari-
ability, and functional reorganization caused by cortical and 
subcortical plasticity [73–75]. Furthermore, imaging highly 
vascular high-grade gliomas can be challenging because of 
uncoupling of the BOLD signal, making interpretation of 
fMRI results difficult. Resting state coherence measured 
with magnetoencephalography (MEG) is a noninvasive mea-
sure of functional connectivity of the brain. Malignant brain 
tumors with decreased resting state connectivity have a lower 
risk of causing postoperative neurologic deficits, while those 
with increased resting state connectivity are associated with 
a higher risk of postoperative neurologic deficits [76].

a b

c d

Fig. 12.1 Axial (a) and sagittal (b) fluid-
attenuated inversion recovery (FLAIR) func-
tional magnetic resonance imaging (fMRI) 
for motor tasks reveals frontal activation 
above the left temporal nonenhancing gli-
oma (yellow and red). Axial (c) and sagittal 
(d) FLAIR fMRI for language tasks reveals 
receptive language superior and posterior to 
the tumor (green)
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12.5  Planning the Procedure 
and Preoperative Preparation

Prior to surgery each patient should have a detailed history, 
physical examination, and review of medications. 
Preoperatively, each patient should be evaluated by his or her 
neurosurgeon, anesthesiologist, speech pathologist, neuro-
psychologist, or intraoperative monitoring specialist. A 
detailed motor examination, neuropsychological examina-
tion, and Boston Naming Test (BNT) are performed at base-
line. Patients are counseled about what to expect during the 
procedure in addition to perioperative risks. Management of 
seizures is particularly important before intraoperative map-
ping of craniotomies because stimulation-induced seizures 
are the most common reason for an aborted mapping proce-
dure. Corticosteroids such as dexamethasone should be 
administered to control periglioma edema, with doses rang-
ing between 2 and 24  mg daily. Antiepileptic medications 
such as levetiracetam or Dilantin should be considered pre-
operatively for patients who will undergo an awake mapping 
craniotomy [64, 77].

12.6  Awake Craniotomy Procedural Steps 
and Technical Considerations

12.6.1  Patient Positioning

Clear communication is thought to be the most important 
aspect of performing a safe awake craniotomy [78]. This 
early stage requires a great deal of flexibility, as the initial 
sedation plan can change depending on patient tolerance. In 
the preoperative area invasive and noninvasive monitors are 
placed. This includes intravenous and arterial lines, cardiac 
rhythm monitors, and Foley catheter placement. Many 
patients benefit from receiving short-acting antianxiolytic 
medications such as midazolam, or dexmedetomidine [64]. 
All patients are given supplemental oxygen via nasal cannula 
or face mask. Positioning the patient must balance patient 
and surgeon comfort with safety. If possible, even when 
using an asleep-awake-asleep technique, the patient is briefly 
awakened to allow active participation in relieving any pain-
ful or pressure points. The lateral decubitus or semilateral 
positions are used with the aid of pillows and a foam mat-
tress placed behind the ipsilateral back and shoulder. Giving 
the patient a small amount of neck extension ensures easy 
access to the airway, should placement of an LMA be needed. 
A nasal trumpet may be placed for the patient who is exhibit-
ing partial airway obstruction.

12.6.2  Initial Sedation

The most common anesthetic technique used during an 
awake craniotomy for glioma resection is the asleep-awake- 
asleep approach. Sedation for an awake craniotomy is unique 
in that it requires the anesthesiologist to alter states of both 
painlessness and sedation during the procedure. Early in the 
procedure sedation is often heavier while drilling the calvar-
ium; however, during dural opening sedation can be lighter, 
although there is a continued need for analgesia. A topical 
scalp block using a combination of 1% lidocaine with 
1:100,000 epinephrine and 0.5% bupivacaine is applied. To 
avoid burning during delivery, sodium bicarbonate can be 
added to the local analgesic mixture. When using the asleep- 
awake- asleep technique, sedation is achieved with intrave-
nous propofol (up to 100 μg/kg/min) or dexmedetomidine 
(up to 1  μg/kg/min) and remifentanil (0.07–2.0  μg/kg/hr) 
[79–81]. It is often beneficial to begin sedation prior to place-
ment of the Foley catheter and of the Mayfield headholder 
pin. Following skin incision and removal of the bone flap, all 
sedating medications are held or reduced before dural open-
ing. Either 500 mg or 1 gm of intravenous oral acetamino-
phen is an excellent addition, particularly for patients having 
continued pain despite intravenous medications.
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12.6.3  Craniotomy and Exposure

The goal of exposure is to expose the tumor and surrounding 
cortical areas with presumed functional significance. This is 
typically done via a focused exposure encompassing the 
lesion plus a 2-cm margin. Early intraoperative mapping 
techniques involved large craniotomies with the goal of find-
ing cortical language and motor sites as positive controls. 
Over the past decade, however, there has been greater reli-
ance on negative mapping through smaller focused cranioto-
mies, which offer the same degree of perioperative safety. 
Additionally, a focused craniotomy avoids unneeded expo-
sure of cortical surfaces, thereby preventing injury. Following 
removal of the bone flap, sedation is held prior to dural 
opening.

12.6.4  Intraoperative Cortical Mapping

Prior to beginning cortical mapping, it is important to con-
firm with the neuro-anesthesiologist that a dedicated intrave-
nous line with a 1-mg/kg bolus of propofol is available in the 
event it is needed for suppression of an intraoperative sei-
zure. However, the first-line agent for treatment of intraop-
erative stimulation-induced seizures is topical ice-cold 
Ringer lactate solution. Intraoperative electrocorticography 
is performed using either a 16-array cortical electrode or a 
1  ×  6 strip electrode to detect seizure activity and after- 
discharge potentials. A bipolar electrode is used for stimula-
tion via 2-mm tips with 5  mm of separation [82]. Typical 
stimulation parameters include a current of 1.5–2 mA using 
a constant current generator that delivers 1.25-ms biphasic 
square waves in 2–4-s trains at 50 or 60 Hz. Cortical stimula-

tion excites local neurons via diffusion of current using both 
orthodromic and antidromic propagation. Numerical mark-
ers are placed 1 cm apart on the surgical field. Intraoperative 
motor tests may be performed either actively (the patient is 
asked to tap a finger, wiggle toes, or move the tongue from 
side to side) or passively (no movement) during stimulation.

12.6.5  Intraoperative Subcortical Mapping

Following mapping to identify cortical language and motor 
sites, a safe corridor of entry into the tumor is identified, and 
tumor resection begins. The subpial dissection permits the 
surgeon to remain within the negatively mapped gyrus and 
identify the moment a sulcal depth is reached, under which 
subcortical u-fibers reside. The subcortical map is used to 
prevent transecting the corticospinal tract or dorsal or ventral 
language pathways. Intraoperative tasks used for subcortical 
mapping are similar to cortical tasks. However, stimulation 
thresholds for subcortical mapping vary but commonly begin 
with an increase of 1–6 mA above the stimulation threshold 
used for cortical mapping.

12.6.6  Closure

After the maximal extent of glioma resection has been 
achieved, sedation is resumed. Sedation for closure may 
include either resumed monitored anesthesia care (MAC) 
anesthesia, placement of an LMA, or an endotracheal tube. 
The patient is then awakened and taken to the postanesthesia 
care unit for recovery followed by overnight observation in 
the intensive care unit.
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12.7  Complication Avoidance 
and Perioperative Outcome

The goal of intraoperative mapping for low- and high-grade 
gliomas is to balance reduction of tumor volume with preser-
vation of language, motor, and neurocognitive functions. 
Intraoperative mapping offers a greater extent of tumor 
resection and improved functional outcomes [2]. 
Postoperative language outcomes following direct cortical 
and subcortical stimulation mapping of dominant hemi-
sphere low- and high-grade gliomas have been studied in 
numerous large series [24, 83, 84]. Immediately following 
surgery (within 2 weeks), language deteriorates in 14–50% 
of patients [24, 84, 85]. However, after 3 months 78–100% 
of patients have return of language to baseline preoperative 
function. Aphasia recovery correlates with structural integ-
rity of the arcuate fasciculus and superior longitudinal fas-
ciculus [24, 84]. After 6 months of aphasia recovery following 
an awake language mapping craniotomy, only 0–2.4% of 
patients have worsened language function [24, 84]. Long- 
term motor outcomes have likewise been examined in a ret-
rospective analysis of 294 patients with peri-rolandic region 
gliomas following intraoperative motor mapping [86]. 
Immediately following intraoperative mapping of motor cor-
tex gliomas, 20% of patients experienced a new postopera-
tive motor deficit; however, 58% recovered to their 
preoperative baseline within 1 month. Three months follow-
ing motor mapping of rolandic cortex gliomas, contralateral 
weakness was observed in 4.8% of patients, with the greatest 
incidence noted in cases in which subcortical motor activity 
was found during mapping [86].

 Conclusion
Both preservation of functional areas and maximal safe 
resection are critically important in the management of glio-
mas and impact both overall and progression-free survival. 
The awake craniotomy is the gold standard procedure for 
tumors within presumed functional areas. The pursuit of 
maximal extent of resection must be balanced with careful 
patient selection to limit perioperative morbidity.
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