
Chapter 4
Automorphic Forms and Hecke
Operators

4.1 Lattices and Class Sets of Z-groups

Let P be the set of prime numbers. Set ̂Z =
∏

p∈P Zp, and letAf = Q⊗̂Zbe the set of
finite adeles of Q. Fix a Z-groupG, that is, an affine group scheme of finite type over
Z. The groupG(Af) can be canonically identified with the subgroup of

∏

p∈PG(Qp)
whose elements (gp) satisfy gp ∈ G(Zp) for almost all p, in other words, for all
p ∈ P except possibly a finite number. The groups G(Q) and G(̂Z) embed naturally
into G(Af ) and satisfy G(̂Z) =

∏

p∈P G(Zp) and G(Z) = G(Q) ∩ G(̂Z). The
G(Af )-set

R(G) = G(Af )/G(̂Z)

will play an important role in this chapter. We denote it by R, for the French word
for lattice, “réseau”, because it can, in general, be identified with the set of lattices
of a certain type in a Q-vector space.

A classical result of Borel [32, Sect. 5] asserts that the class set of G:

Cl(G) = G(Q)\G(Af )/G(̂Z) = G(Q)\R(G)

is finite. Its cardinality h(G) = |Cl(G)| is called the class number of G. In this
section, we describe R(G) and Cl(G) in several standard cases we are interested in
(see, for example, [32, Sect. 2]).

4.1.1 Linear Groups

Let us begin with the case of GLn. If V is a vector space of finite dimension n over
the field of fractions of a principal ideal domain A, we denote by RA(V ) the set of
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lattices in V with respect to A, that is, the set of free sub-A-modules of V of rank
n (Sect. 2.1). It is endowed with a transitive action of GL(V ); the stabilizer of L in
RA(V ) is GL(L).

Let V be a Q-vector space of dimension n. If p is prime and we set Vp = V ⊗Qp,
then there is a natural map RZ(V ) → RZp(Vp) defined by M �→ Mp := M ⊗ Zp.
We fix L ∈ RZ(V ) and set G = GLL. We easily verify, following Eichler [78,
Sect. 13], that the map

RZ(V ) →
∏

p∈P

RZp(Vp) , M �→ (Mp) , (4.1.1)

is an injection from RZ(V ) to the subset
∏′

p∈P RZp(Vp) ⊂ ∏

p∈P RZp(Vp) con-
sisting of the families (Mp) such that Mp = Lp for almost all p (this subset does
not depend on the choice of L). The natural action of G(Af ) on

∏

p∈PRZp(Vp)

preserves
∏′

p∈P RZp(Vp), and it is transitive on the latter. Therefore, if we identify
RZ(V ) with

∏′
p∈P RZp(Vp) using the map (4.1.1), which we will do systematically

from now on, then by transport of structure, we obtain a transitive action of G(Af )
on RZ(V ) that extends the obvious action of G(Q) = GL(V ). Since the stabilizer
of the lattice L is G(̂Z), this leads to an isomorphism of G(Af )-sets

R(G)
∼→ RZ(V ).

Since G(Q) also acts transitively on RZ(V ), it follows, in particular, that we have

h(GLn) = 1 .

In the case G = PGLL (resp. G = SLL), the set R(G) can also be viewed as the
quotient ofRZ(V ) byQ× for the action by homotheties (resp. as the subset ofRZ(V )
consisting of the M that have a Z-basis of determinant 1 with respect to a Z-basis
of L). We again have h(PGLn) = h(SLn) = 1.

4.1.2 Orthogonal and Symplectic Groups

We now assume that the Q-vector space V is endowed with a nondegenerate bilinear
form ϕ that is symmetric or alternating. Let L ∈ RZ(V ). Recall that the dual lattice
of L is the lattice L� ∈ RZ(V ) defined by (Sect. 2.1)

L� = {v ∈ V ; ϕ(v, x) ∈ Z ∀x ∈ L} .

We call L homodual, for “homothetic to its dual,” if there exists a λ ∈ Q
× such that

we have L� = λL; there then exists a unique strictly positive λ with this property;
we denote it by λL. The lattice L is called self-dual if we have L� = L. If L is
homodual and ϕ is symmetric (resp. alternating), then the bilinear form λLϕ gives
L the structure of a b-module (resp. a-module) over Z in the sense of Sect. 2.1. We
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then say that L is even if λLϕ(x, x) ∈ 2Z for every x ∈ L. This is automatic if ϕ is
alternating, and if ϕ is symmetric, this allows us to view L as a q-module over Z by
setting q(x) = λL ϕ(x, x)/2 for x ∈ L. We denote by

Ra
Z
(V ) ⊂ Rh

Z
(V )

the subsets of RZ(V ) consisting of the even self-dual (resp. homodual) lattices.
Set n = dimV , and fixL ∈ Ra

Z
(V ). By reduction modulo 2, the existence of such

an L induces the congruence n ≡ 0 mod 2. Consider the sub-Z-group G ⊂ GLL

defined by

G =

{

SpL if ϕ is alternating,
OL else.

We denote by ˜G the corresponding similitude Z-group, so that we have G ⊂ ˜G ⊂
GLL, and by P ˜G the projective similitude Z-group, which is the quotient of ˜G by its
central sub-Z-group isomorphic to Gm consisting of the homotheties (Sect. 2.1).

Lemma 4.1.3. The restriction of the action ofGLL(Af ) on RZ(V ) to ˜G(Af ) (resp.
G(Af )) preserves Rh

Z
(V ) (resp. Ra

Z
(V )).

Before giving the proof, let us introduce the local analogs of the previous defi-
nitions. Let p be prime. For M ∈ RZp(Vp), the dual lattice M � ∈ RZp(Vp) (with
respect to Zp; see Sect. 2.1) is well defined. We denote by Rh

Zp
(Vp) ⊂ RZp(Vp)

the subset of lattices M such that there exists λ ∈ Q
×
p with M � = λM and

λϕ(x, x) ∈ 2Zp for every x ∈ M . Furthermore, we denote by Ra
Zp
(Vp) ⊂ Rh

Zp
(Vp)

the subset of lattices M such that we have M � = M . For M ∈ Rh
Zp
(Vp), there exists

a unique λM ∈ pZ with M � = λMM . If ϕ is symmetric (resp. alternating), the
quadratic form x �→ λM ϕ(x, x)/2 (resp. the alternating form λMϕ) then gives M
the structure of a q-module (resp. a-module) over Zp.

Proof. LetM ∈ RZ(V ). We begin by noting thatM is in Rh
Z
(V ) if and only if Mp is

in Rh
Zp
(Vp) for every prime p, in which case we, moreover, have λM =

∏

p λMp (of
course,λMp is 1 for almost all p). Indeed, this follows from the identityA×

f = Q
×·̂Z×

(that is, h(Gm) = 1) and the immediate relation (N �)p = (Np)
�, which holds for

every prime p and every N ∈ RZ(V ). In particular, we have M ∈ Ra
Z
(V ) if and

only if we have Mp ∈ Ra
Zp
(Vp) for every p.

To conclude the proof, it suffices to note that if g ∈ ˜G(Qp) has similitude factor
ν(g) (Sect. 2.1) and we have M ∈ RZp(Vp), then we have the relation g(M)� =
ν(g)−1g(M �). 
�

Note that the action of the homotheties Q
× on RZ(V ) preserves Rh

Z
(V ). By

Lemma 4.1.3, the quotient set

Rh
Z
(V ) := Q

×\Rh
Z
(V )
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is therefore endowed with an action of P ˜G(Af ) that extends the obvious action of
P ˜G(Q). We denote the homothety class of M ∈ RZ(V ) by M . In summary, we
have the following commutative diagram:

The ωi, for i = 1, 2, 3, are, respectively, the “orbit” maps of L, L, andL under the
actions of G(Af ), ˜G(Af ), and P ˜G(Af ). All other arrows denote canonical maps.

Proposition 4.1.4. The maps ωi and ξj are bijective. In particular, the action of
G(Af ) on Ra

Z
(V ) is transitive; the orbit of L defines an isomorphism ofG(Af )-sets

R(G)
∼→ Ra

Z
(V ).

Proof. The injectivity of theωi is obvious. Let us begin by verifying the last assertion,
which is nothing more than the surjectivity of ω1. If ϕ is symmetric, Scholium 2.2.5
asserts that for every M ∈ Ra

Z
(V ), the q-module Mp over Zp is hyperbolic. It is, in

particular, isomorphic to Lp, which concludes the proof of the last assertion because
every isometry Lp → Mp is necessarily induced by an element of O(Vp) = G(Qp).
Let us therefore suppose that ϕ is alternating. It is well known that if A is a principal
ideal domain, there exists, up to equivalence, a unique nondegenerate alternating
bilinear form on the A-module An (n even). We conclude by considering the case
A = Zp.

The surjectivity of ω3 (resp. ω2) follows from that of ω2 (resp. from those of
ω1 and ξ1). Let us show the surjectivity of ξ1. For M ∈ Rh

Z
(V ) and g ∈ ˜G(Q)

with similitude factor ν(g), we have λg(M) = ± ν(g)−1 λM . It therefore suffices to
see that ν( ˜G(Q)) contains the set Q>0 of strictly positive rational numbers. This is
obvious in the alternating case and, more generally, when V is hyperbolic. In the
symmetric case, we must show that for λ ∈ Q>0, the vector spaces V and V ⊗ 〈λ〉
(obtained by multiplying the quadratic form on V by λ) are isomorphic as q-vector
spaces over Q. But they are so over Qp for every prime p because the V ⊗ Qp are
hyperbolic by Scholium 2.2.5, and they are so over R because we have λ > 0. We
conclude using the Hasse–Minkowski theorem.

The map ξ2 is bijective because of the equality P ˜G(Q) = ˜G(Q)/Q×. Finally,
let us verify the injectivity of ξ1. We may assume that ϕ is symmetric because
the argument given in the first paragraph shows that we have h(G) = 1 if ϕ is
alternating. Let us therefore assume that there exist M ∈ Ra

Z
(V ) and g ∈ ˜G(Q) such

that g(M) = L. We then have ν(g) = ±1. If ν(g) = 1, then we have g ∈ G(Q),
and we are done. Otherwise, M is isometric to the q-module L ⊗ 〈−1〉, which
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has underlying space L but opposite quadratic form. This implies that V ⊗ R is
hyperbolic, and thus that L and M are isomorphic by Theorem 2.2.7. 
�
Corollary 4.1.5. We have h(G) = h( ˜G) = h(P ˜G).

When ϕ is alternating, the classification given above of the nondegenerate alter-
nating forms applied to the ring Z implies1 h(G) = 1, and therefore h(Sp2g) =
h(GSp2g) = h(PGSp2g) = 1 for every g ≥ 1.

Let us assume that ϕ is symmetric. If the q-vector space L ⊗ R is indefinite,
then Theorem 2.2.7 implies h(OL) = 1. The situation is quite different if L ⊗ R

is positive definite, which we will assume from now on. Recall that L can then be
viewed as an even unimodular lattice in the Euclidean space V ⊗ R of dimension
n. In particular, we have n ≡ 0 mod 8. In this case, Ra

Z
(V ) is, by definition, the set

of even unimodular lattices in V ⊗ R that are contained in L ⊗ Q. Recall that Xn

denotes the set of isometry classes of even unimodular lattices in the Euclidean space
V ⊗ R. By Scholium 2.2.1, the natural inclusion O(V )\Ra

Z
(V ) → Xn is bijective

and therefore induces an isomorphism Cl(OL)
∼→ Xn. In particular, if On denotes

the orthogonal Z-group of the lattice L = En (Sect. 1.3), we obtain the equality

h(On) = |Xn| ,

which shows that h(On) is a quite interesting number.

4.1.6 SOL Versus OL

We continue the analysis of the previous subsection by assuming thatϕ is symmetric,
so that G, ˜G, and P ˜G are, respectively, OL, GOL, and PGOL. We are interested
in their respective sub-Z-groups SOL, GSOL, and PGSOL (Sect. 2.1). The groups
SOL(Af ), GSOL(Af ), and PGSOL(Af ) act on, respectively, Ra

Z
(V ), Rh

Z
(V ), and

Rh
Z
(V ) (Proposition 4.1.3). Let us consider the following commutative diagram,

which extends that of Sect. 4.1.2:

1 The assertions h(SLn) = h(Sp2g) = 1 recalled above are also very particular cases of Kneser’s
strong approximation theorem (see [123], [162, Theorem 7.12]). It asserts that we have h(G) = 1
whenever the C-group GC is semisimple and simply connected and the topological group G(R)
does not have a nontrivial connected, compact, normal subgroup.
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The vertical maps ω̃i are again the “orbit” maps of L (resp. L, resp. L), and the
other arrows are the canonical maps.

Proposition 4.1.7. The maps ω̃i, μi, and ˜ξj are bijective. In particular, the action
of SOL(Af ) on Ra

Z
(V ) is again transitive; the orbit of L defines an isomorphism

R(SOL)
∼→ Ra

Z
(V ).

Proof. We have already seen that the natural action ofOL(Af ) onRa
Z
(V ) is transitive

(Proposition 4.1.4). The same holds for the restriction of this action to its subgroup
SOL(Af ) because the orthogonal group of a nontrivial hyperbolic q-module over
Zp always has an element of determinant −1. The same reasoning shows that the μi

are bijective because OL(Zp)/SOL(Zp) → GOL(Qp)/GSOL(Qp) is bijective for
every prime p (Sect. 2.1). Since the ωi are bijective, the bijectivity of the ω̃i follows.

The bijectivity of ˜ξ2 is obvious. The surjectivity of ˜ξ1 follows from that of
ξ1 and from the fact that we have −1 ∈ det(O(V )). Finally, the injectivity of
˜ξ1 can be shown similarly to that of ξ1 (Proposition 4.1.4), using that we have
−1 ∈ det(O(H(Zn/2))). 
�
Corollary 4.1.8. If L is a q-module over Z, we have h(SOL) = h(GSOL) =
h(PGSOL). If, moreover, L⊗ R is indefinite, then these integers are equal to 1.

Proof. The first assertion follows from the bijectivity of the maps ξi (Proposi-
tion 4.1.7). When L⊗R is indefinite, we already explained the equality h(OL) = 1
in Sect. 4.1.2. It remains to show that there exists an s ∈ O(L) with det s = −1.
The assumption on L and Theorem 2.2.7 show that there exists a q-module L′ over
Z such that L � L′ ⊕ H(Z) (orthogonal sum). This concludes the proof because
H(Z) contains an automorphism of determinant −1. 
�

Finally, let us assume that L is positive definite. As before, we then have a
canonical bijection Cl(SOL)

∼→ ˜Xn, where ˜Xn denotes the set of direct isometry
classes of even unimodular lattices in V ⊗ R (in other words, the set of orbits of
the action of SO(V ⊗ R) on the latter). The isometry class of an even unimodular



4.1 Lattices and Class Sets of Z-groups 95

lattice M ⊂ V ⊗ R admits exactly one or two inverse images under the canonical
projection

˜Xn → Xn ,

depending on whether O(M) has an element of determinant −1 or not. It has one
if, for example, M has at least one root, that is, an α ∈ M such that α · α = 2,
because the associated orthogonal reflection is in O(M) (Sect. 2.3). On the other
hand, if M is the Leech lattice, then we have O(M) = SO(M) by Conway [65].
The results recalled in Sect. 2.3 imply the following corollary. For n ≡ 0 mod 8, we
set SOn = SOEn .

Corollary 4.1.9. We have h(SO8) = 1, h(SO16) = 2, and h(SO24) = 25.

4.1.10 Orthogonal Groups in Odd Dimensions

We return to the setting of Sect. 4.1.2, where we assume that ϕ is symmetric. We
now consider the set

Rb
Z
(V ) ⊂ RZ(V )

consisting of theL ∈ RZ(V )with ϕ(x, x) ∈ 2Z for every x ∈ L andL�/L � Z/2Z.
This last condition is equivalent to requiring that ϕ|L×L have determinant ±2. We
refer to Appendix B for an analysis of these lattices.

We fix L ∈ Rb
Z
(V ), which requires the dimension n of V to be odd. Then

SOL(Af ) acts transitively on Rb
Z
(V ) by Proposition B.2.5, and the stabilizer of L

is SOL(̂Z). If L ⊗ R is indefinite, the number of classes of SOL is 1; this is a
classical result that would not be difficult to deduce from Proposition B.2.5 (iii) and
Theorem 2.2.7. The situation is more interesting whenL⊗R is definite, say positive
definite to fix the ideas; we will assume that this is the case from now on.

In this case, we have the congruence n ≡ ±1 mod 8 and Cl(SOL) can be
identified with the set of isometry classes of even lattices of determinant 2 in R

n

(Sect. B.2). Here, we do not need to distinguish between direct and indirect isometries
because x �→ −x is in O(M) and has determinant −1 for every M ∈ Rb

Z
(V ). If

n ≡ 1 mod 8, we set Ln = En−1 ⊕ A1. If n ≡ −1 mod 8, we denote by Ln the
orthogonal complement of an arbitrary root of En+1; since these roots are permuted
transitively by the orthogonal group ofEn+1, the isometry class of such a lattice does
not depend on any choice we make. If n ≡ ±1 mod 8, the lattice Ln is therefore
even of determinant 2 (Sect. B.2), and we set SOn = SOLn (Sect. B.1).

The known values of h(SOn) with n odd are gathered in the following corollary
(see also [68]). The cases n ≤ 23 are treated, for example, in AppendixB, Sect. B.2;
the case n = 25 is due to Borcherds [29, Table -2].

Corollary 4.1.11. We have h(SO1) = h(SO7) = h(SO9) = 1, h(SO15) = 2,
h(SO17) = 4, h(SO23) = 32, and h(SO25) = 121.
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4.2 Hecke Correspondences

4.2.1 General Formalism

Let Γ be an (abstract) group, and let X be a transitive Γ-set. The ring of Hecke
correspondences (or operators) of X is the ring

H(X) = EndZ[Γ](Z[X ]) .

With each T ∈ EndZ(Z[X ]) is associated a matrix (Tx,y)(x,y)∈X×X that determines
it uniquely; the matrix is defined by the formula

∀y ∈ X , T (y) =
∑

x∈X

Tx,y x .

By definition, such an element T is in the ring H(X) if and only if the function
X ×X → Z given by (x, y) �→ Tx,y is constant on the orbits of the group Γ acting
diagonally on X × X . The resulting function Γ\(X × X) → Z then has finite
support, by the finiteness of {x ∈ X ; Tx,y �= 0} for y ∈ X and by the transitivity
of X . We therefore have an injective map

H(X) → Homfs(Γ\(X ×X),Z) , T �→ ((x, y) �→ Tx,y) , (4.2.1)

where Homfs(Y,Z) denotes the abelian group of functions with finite support on the
set Y and values in Z.

For x ∈ X , we denote the stabilizer ofx byΓx ⊂ Γ. We assume that the following
properties hold:

(i) For every orbitΩ ofΓ inX×X and everyx ∈ X , the intersectionΩ∩(X×{x})
is finite.

(ii) For every x ∈ X , the orbits of Γx on X are finite. In other words, for every
x, y ∈ X , the intersection Γx ∩ Γy has finite index in Γx.

These conditions ensure that the map (4.2.1) is bijective. In particular, H(X) is a
free Z-module with natural basis the characteristic functions of the orbits of Γ on
X ×X .

Fix x ∈ X . The transitivity of X ensures that the map Γ → X × X given by
γ �→ (γ(x), x) induces bijections

Γx\Γ/Γx
∼−→ Γx\(X × {x}) ∼−→ Γ\(X ×X) . (4.2.2)

In particular, this identifies H(X) with Homfs(Γx\Γ/Γx,Z). By transport of struc-
ture, the latter inherits a ring structure from H(X): we recover the more standard
presentations of the Hecke rings, such as those in [174], [188, Sect. 3], [48], [88,
Kap. IV], or [97]. Note that depending on the reference, the ring structure considered
onHomfs(Γx\Γ/Γx,Z) (defined, in general, by an explicit convolutionproduct)may
differ slightly from ours; this is, in particular, the case in the articles of Cartier and
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Gross, to which we refer in Sect. 6.2, in which the ring H(X) is exactly the opposite
of ours.

Since the second formulation of condition (ii) is symmetric in x, y, condition (i)
is also equivalent to requiring that for every orbitΩ of Γ in X×X and every x ∈ X ,
the intersection Ω∩ ({x} ×X) be finite. Thus, if we have T ∈ H(X), there exists a
unique T t ∈ H(X) such that T t

x,y = Ty,x for every x, y ∈ X . The endomorphism

T �→ T t

of H(X) is an anti-involution, that is, satisfies (ST )t = T tSt and (T t)t = T for
every S, T ∈ H(X); this endomorphism simply corresponds to taking the transpose
of the associated matrices. This anti-involution is the identity if and only if the
Γ-orbits of X × X are invariant under (x, y) �→ (y, x), in which case H(X) is
commutative; this is a special case of Gelfand’s criterion.

4.2.2 A Functor from Γ-Modules to H(X)opp-Modules

Let X be a transitive Γ-set that satisfies conditions (i) and (ii) of Sect. 4.2.1. The ring
H(X) appears as follows in the representation theory of Γ. If M is a Z[Γ]-module,
then the abelian group

MX = HomZ[Γ](Z[X ],M)

inherits a right action of H(X) by composition at the source. It is obvious that
M �→ MX is a functor from Γ-modules (on the left) to H(X)-modules on the right.

For aZ[Γ]-moduleM and x ∈ X , the mapϕ �→ ϕ(x) identifiesMX with the sub-
group of invariants MΓx ⊂ M , which also endows this subgroup with the structure
of anH(X)-module. Suppose that the matrix ofT ∈ H(X) is the characteristic func-
tion of the double coset ΓxγΓx through the identification Γx\Γ/Γx

∼→ Γ\(X ×X)
chosen in Sect. 4.2.1. We have the classical formula

T (m) =
∑

i

γi(m) ∀m ∈ MΓx (4.2.3)

for every decomposition ΓxγΓx =
∐

i γiΓx (this is a finite union).
In this context, the anti-involution T �→ T t defined in Sect. 4.2.1 takes on the

following meaning. Let M and M ′ be two Z[Γ]-modules, N an abelian group, and
(−|−) : M ×M ′ → N a bilinear map with (γm|γm′) = (m|m′) for every γ ∈ Γ
and every (m,m′) ∈ M ×M ′. For (ϕ, ϕ′) ∈ MX ×M ′

X , (ϕ(x)|ϕ′(x)) does not
depend on the choice of x ∈ X hence

(ϕ|ϕ′) := (ϕ(x)|ϕ′(x))

defines a bilinear form fromMX×M ′
X toN . If we identifyMX withMΓx as before,

this bilinear map is nothing more than the restriction of (−|−) to MΓx ×M ′Γx .
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We will say that X is symmetric if, in addition to verifying conditions (i) and (ii)
of Sect. 4.2.1, it has the following equivalent properties2:

(iii) For every orbit Ω of Γ in X × X and every x ∈ X , we have the equality
|Ω ∩ (X × {x})| = |Ω ∩ ({x} ×X)|.

(iv) For every x, y ∈ X , the intersection Γx ∩ Γy has the same index in Γx and Γy.

Lemma 4.2.3. Suppose that X is symmetric. For T ∈ H(X) and (ϕ, ϕ′) ∈ MX ×
M ′

X , we have (T (ϕ)|ϕ′) = (ϕ|T t(ϕ′)).

Proof. Let ψ : X ×X → N be a map that is constant on every Γ-orbit in X ×X
and zero outside a finite number of them. The symmetry of X implies, for every
x ∈ X , the relation

∑

y∈X ψ(y, x) =
∑

y∈X ψ(x, y). We apply this to the function
(x, y) �→ Tx,y · (ϕ(x)|ϕ′(y)). 
�
Remark 4.2.4. Suppose that V is a right H(X)-module. The map H(X)× V → V
given by (T, v) �→ T t v defines the structure of a (left) H(X)-module on V , which
we denote by V t.

4.2.5 The Hecke Ring of a Z-group

Let G be a Z-group. We will apply the definitions given above to Γ = G(Af ) and
X = R(G). The Hecke ring of G is the ring

H(G) := H(R(G)) .

Recall that for every prime p, the group G(Qp) inherits from Qp the structure of
a locally compact topological group (that is, moreover, separated and the union of
a countable number of compact groups). The subgroup G(Zp) is both compact and
open. The group G(Af ) is also a locally compact topological group for the topology
whose base of open neighborhoods of the identity consists of the open sets of the
form

∏

p∈P Up, where Up for p prime is an open neighborhood of the identity in
G(Qp) and we have Up = G(Zp) for almost all p. In particular, G(̂Z) is a compact
open subgroup of G(Af ). Consequently, R(G) has property (ii) of Sect. 4.2.1, as do
the G(Qp)-sets

Rp(G) := G(Qp)/G(Zp) .

The G(Af )-set R(G) and the Rp(G) are symmetric in the sense of Sect. 4.2.2 if
G(Af ) is unimodular, which is, in particular, the case if the neutral component of
G(C) is reductive [32, Sect. 5.5].

2 This property is not automatic if X is infinite. Consider, for example, the group Γ = Q�Q× of
affine transformations of Q and the Γ-set X consisting of the subsets of Q of the form aZ+ b with
a ∈ Q× and b ∈ Q.
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For p prime, we also define Hp(G) as the Hecke ring of the G(Qp)-set Rp(G).
The G(Af )-set R(G) can be canonically identified with the subset of

∏

p∈P Rp(G)
consisting of the (xp) with xp = G(Zp) for almost all p. We have already seen a
manifestation of this fact in the Eichler embedding (4.1.1). In particular, for every
prime p, we have a canonical injective ring homomorphism

Hp(G) → H(G)

that takes T ∈ Hp(G) to the endomorphism of Z[R(G)] that sends y = (y�)�∈P to
∑

x Txp,yp x, where the sum is taken over the elements x of R(G) with x� = y� in
R�(G) for every 
 �= p. We will simply write

Hp(G) ⊂ H(G) .

If p �= q, then for S ∈ Hp(G) and T ∈ Hq(G), we have TS = ST .
If for every prime p, we take a G(Qp)-orbit Ωp ⊂ Rp(G) × Rp(G) and if,

moreover, Ωp is the orbit of G(Zp) × G(Zp) for almost all p, then the subset of
elements (ωp) of

∏

p Ωp with ωp = G(Zp)×G(Zp) for almost all p can be naturally
identified with a G(Af )-orbit in R(G) × R(G). Conversely, every G(Af )-orbit
Ω ⊂ R(G)×R(G) is of this form for a unique family (Ωp), where the G(Qp)-orbit
Ωp is the image of Ω by the canonical projection R(G)×R(G) → Rp(G)×Rp(G).
From these observations and the surjectivity of the map (4.2.1) it follows that H(G)
is isomorphic to the tensor product of its subrings Hp(G):

⊗

p∈P

Hp(G)
∼→ H(G) .

Understanding H(G) therefore completely reduces to understanding the Hp(G).
The ring Hp(G) depends only on the Zp-group GZp = G ×Z Zp. When GZp is

reductive, general results of Satake and Bruhat–Tits imply that Hp(G) is commuta-
tive; we will come back to this in Sect. 6.2. As a consequence, the same holds for
H(G) if G is reductive over Z. However, this property is elementary in the most
classical cases, which we recall below.

4.2.6 Some Classical Hecke Rings

First, suppose G = PGLn. We have seen that R(G) can be identified with

R
Z
(V ) := Q

×\RZ(V ) ,

where V = Q
n. Recall that M ∈ R

Z
(V ) denotes the homothety class of a lattice

M ∈ RZ(V ).
For M,N ∈ RZ(V ), there exists a least integer d ≥ 1 with dN ⊂ M . The

isomorphism class of the abelian group M/dN depends only on the G(Af )-orbit of
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(N,M) in R
Z
(V )× R

Z
(V ). The theory of elementary divisors then shows that the

resulting map
G(Af )\(RZ

(V )× R
Z
(V )) → AF ,

where AF is the set of isomorphism classes of finite abelian groups, is an injection
whose image consists of the groups generated by n − 1 elements. If A is such a
group, the associated Hecke operator TA ∈ H(G) satisfies, by definition,

TA(M) =
∑

N

N ,

where the sum is taken over the subgroups N of M with M/N � A. When A runs
through the finite abelian groups generated by n − 1 elements, these operators TA

therefore form a Z-basis of H(G). It is clear that we haveTA×B = TATB if |A| and
|B| are relatively prime and that we have TA ∈ Hp(G) if and only if A is a p-group.

If n = 2, we easily verify that Tt
A = TA for every A; in particular, H(G) is

commutative (the notation Tt is defined in Sect. 4.2.1). The first statement no longer
holds forn > 2, butH(G) remains commutative. We can see this simply by endowing
V with a nondegenerate symmetric bilinear form. The mapM �→ M � is an involution
of R

Z
(V ). It induces a linear involution of Z[R

Z
(V ) ] and then, by conjugation, an

involution ι of H(G), which is nothing more than (TN,M ) �→ (TN�,M�) on the
associated matrices. But for N ⊂ M , the quotient N �/M � is in perfect duality with
M/N and therefore ι coincides with the canonical anti-involution of H(G) : ι(T ) =
T t for every T ∈ H(G) (see also [188, Sect. 3]).

Let us now discuss the case of orthogonal and symplectic Z-groups, which is
particularly important for this book [174, 88, 5]. We use the notation of Sect. 4.1.2;
in particular, V = L ⊗ Q has even dimension n, ϕ is a bilinear form on V that is
symmetric (resp. alternating), for which L is self-dual and even, and G ⊂ GLL is
the group OL (resp. SpL).

In this case, we have seen that R(G) can be identified with the G(Af )-
set Ra

Z
(V ) of self-dual lattices in V (Proposition 4.1.4). For (N,M) in

the product Ra
Z
(V ) × Ra

Z
(V ), the isomorphism class of the abelian group

M/(N ∩M) depends only on the G(Af )-orbit of (N,M). We have thus defined a
natural map

G(Af )\(Ra
Z
(V )× Ra

Z
(V )) → AF , (N,M) �→ M/(N ∩M) . (4.2.4)

Proposition 4.2.7. Themap (4.2.4) is an injectionwhose image consists of the groups
generated by n/2 elements.

This proposition is well known; we will recall a proof at the end of this subsection
for the sake of the reader. Let A be a finite abelian group generated by at most n/2
elements. To this group corresponds a Hecke operator

TA ∈ H(G)
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defined by TA(M) =
∑

N N , where the sum is taken over the N such that M/(N ∩
M) � A or, equivalently, over the A-neighbors of M in the sense of Scholium-
Definition 3.1.2 in the quadratic case. These operators TA therefore form a Z-basis
of H(G). We, of course, still have TA×B = TATB if |A| and |B| are relatively
prime, and TA ∈ Hp(G) if and only if A is a p-group. From the point of view of
Chap. 3, an operator that is particularly important for us is TZ/dZ for d ≥ 1, which
we also denote simply by Td.

Proposition 4.2.8. Let A be a finite abelian group generated by n/2 elements. Then
we have Tt

A = TA∨ = TA. In particular, the ring H(G) is commutative.

Proof. The first assertion follows from Scholium-Definition 3.1.2 when ϕ is sym-
metric, and from a similar argument in the alternating case. The second assertion
follows from the first by the end of Sect.4.2.1. See also [174, Chap. III], [88, Kap. IV],
and Sect. 6.2.8. 
�

Finally, let us discuss the group of projective similitudes P ˜G. Let p be a prime
and Rh

Zp
(Vp) the set of even homodual lattices in Vp, introduced after Lemma 4.1.3.

Recall that ifϕ is symmetric (resp. alternating), a latticeM ∈ RZp(Vp) is homodual if
and only if there exists a λM ∈ pZ, necessarily unique, such that x �→ λM ϕ(x, x)/2
(resp. λMϕ) endows M with the structure of a q-module (resp. a-module) over Zp.
Since the q-vector space Vp is hyperbolic by Scholium 2.2.5, the same holds for
M ∈ Rh

Zp
(Vp) as a q-module over Zp, by Proposition 2.1.2. This shows that the

map g �→ g(L) induces isomorphisms Rp( ˜G)
∼→ Rh

Zp
(Vp) and Rp(G)

∼→ Ra
Zp
(Vp).

In particular, the set Rh
Zp
(Vp) := Q

×
p \Rh

Zp
(Vp) can be naturally identified with

Rp(P ˜G).
Consider M ∈ Rh

Zp
(Vp). We denote by vM ∈ Z the unique integer such that

λM = p−vM . For g ∈ ˜G(Qp), we have vg(M) = vM + v, where v is the p-adic
valuation of ν(g). Let (N,M) be an ordered pair of elements of Rh

Zp
(Vp). After

changing the representativeN if necessary, we may assume vM − vN ∈ {0, 1}. The
pair (M/N ∩ M, vM − vN) then depends only on the P ˜G(Qp)-orbit of (N,M),
which defines a map

P ˜G(Qp)\(Rh
Zp
(Vp)× Rh

Zp
(Vp)) → AF× {0, 1} . (4.2.5)

Proposition 4.2.9. The map (4.2.5) is an injection whose image is the set of pairs
(A,−) with A an abelian p-group generated by n/2 elements.

We push back the proof of this proposition to Sect. 6.2.8. Consider (A, i) ∈
AF× {0, 1}, where A is a p-group generated by at most n/2 elements. We say that
N ∈ Rh

Zp
(Vp) is an A-neighbor of type i of M ∈ Rh

Zp
(Vp) if the image of (N,M)

by the map (4.2.5) is (A, i). The corresponding Hecke operator is denoted by

T(A,i) ∈ Hp(P ˜G) ;
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these operators form a Z-basis of Hp(P ˜G). If we have M � = M , then N is an
A-neighbor of type 0 of M if and only if N has a self-dual representative, which
is then unique, and if the latter is an A-neighbor of M in the previous sense. The
notion of an A-neighbor of type 1 of M is, on the other hand, “new.” The following
example will be particularly important in this book.

Consider M,N ∈ Rh
Z
(V ). Following Koch and Venkov in the quadratic case

[127], we say that N is a perestroika of M with respect to p if we have

pM � N � M .

We easily verify that N is a perestroika of M with respect to p if and only if we have
vM − vp−1N = 1 and N is a 0-neighbor of M of type 1. Moreover, the following
proposition is immediate.

Proposition 4.2.10. Consider M ∈ Rh
Z
(V ), and let p be a prime number. The map

N �→ N/pM defines a bijection from the set of perestroikas of M with respect to p
onto the set of Lagrangians ofM ⊗ Fp.

The perestroika operator with respect to p is the operator

Kp := T(0,1) ∈ Hp(P ˜G) .

For (N,M) ∈ Rh
Z
(V ), N is a perestroika of M with respect to p if and only if pM

is a perestroika of N with respect to p. In particular, we have Kt
p = Kp. In fact, we

have T t = T for every T ∈ H(P ˜G), as we will see in Sect. 6.2.8.
Let us conclude this subsection, as announced, with a proof of Proposition 4.2.7.

Proof of Proposition 4.2.7. We place ourselves in the quadratic setting, that is, ϕ
symmetric and q(x) = ϕ(x, x)/2, in which case L is a q-module over Z. The proof
in the alternating setting is similar (and even simpler).

We must show that if U is a hyperbolic q-vector space over Qp and (L1, L2) and
(L′

1, L
′
2) are two ordered pairs of self-dual lattices in U such that L1/(L1 ∩ L2) �

L′
1/(L

′
1 ∩L′

2), then there exists an α ∈ O(U) with α(Li) = L′
i for i = 1, 2. We use

induction on dim(U).
The cases U = 0 and L1 = L2 are trivial. We assume L1 �= L2; the annihilator

of the quotient L1/(L1 ∩ L2) is therefore of the form pνZp with ν ≥ 1. Moreover,
there exist an element e1 of L1 and an element e2 of L2 such that we have

q(e1) = 0 , q(e2) = 0 , e1.e2 = p−ν .

Indeed, it is first of all easy to see that there exist an element ε1 of L1 and an element
ε2 of L2 with ε1.ε2 = p−ν . Hensel’s lemma then shows that there exists a matrix

P =

[

a1,1 a1,2
a2,1 a2,2

]
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with coefficients in Zp, with P ≡ I mod pν , such that we have

tP

[

2q(ε1) p−ν

p−ν 2q(ε2)

]

P =

[

0 p−ν

p−ν 0

]

.

We take e1 = a1,1ε1 + a2,1ε2 and e2 = a1,2ε1 + a2,2ε2 ∈ L2 (the congruence
P ≡ I mod pν implies e1 ∈ L1 and e2 ∈ L2). This concludes the proof of the
statement.

Let us now finish the induction. We denote by H , H1, and H2, respectively, the
linear subspace of U generated by e1 and e2, the submodule of L1 generated by
e1 and pνe2, and the submodule of L2 generated by pνe1 and e2. We endow H ,
H1, and H2 with the quadratic forms induced by those on U . By construction, we
have H ≈ H(Qp) and Hi ≈ H(Zp) for i = 1, 2. We denote by W , M1, and M2,
respectively, the orthogonal complement of H in U , the orthogonal complement of
H1 in L1, and the orthogonal complement of H2 in L2. We have decompositions
into orthogonal sums

U = H ⊕W , L1 = H1 ⊕M1 , L2 = H2 ⊕M2

and isomorphisms

L1/(L1∩L2) ∼= H1/(H1∩H2)⊕M1/(M1∩M2) , H1/(H1∩H2) ∼= Zp/p
ν
Zp .

We replace the ordered pair (L1, L2) by the ordered pair (L′
1, L

′
2) and introduce the

q-vector spaces H ′ and W ′ and the q-modules H ′
1, H ′

2, M ′
1, and M ′

2 analogously.
We obtain the desired automorphism α : U → U as the orthogonal sum of suitable
isomorphisms of q-vector spaces H → H ′ and W → W ′; the existence of the
second is ensured by the induction hypothesis. 
�

4.2.11 H(SOL) VersusH(OL)

Let L be a q-module over Z. Let us briefly discuss the link between H(SOL) and
H(OL). The cases PGSOL and PGOL can be treated similarly.

By Proposition 4.1.7, the inclusion SOL → OL induces an SOL(Af )-equivariant
bijection R(SOL)

∼→ R(OL). It follows that H(OL) can be canonically identified
with a subring of H(SOL): these are the subrings of EndZ(Z[Ra

Z
(V )]) consisting

of theOL(Af )-equivariant and SOL(Af )-equivariant endomorphisms, respectively.
The quotient group

OL(Af )/SOL(Af ) � (Z/2Z)P

acts naturally by conjugation onH(SOL), with ring of invariantsH(OL). This action
respects the decomposition of H(G) as a tensor product of the Hp(G) over the p ∈ P
and also identifies Hp(OL) with Hp(SOL)

Z/2Z.
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Let us give an example of an element ofHp(SOL) that is not inHp(OL). Consider
A = (Z/pZ)n/2, where n is the rank of L. Let Ω be the set of pairs (N,M) of
elements of Ra

Z
(V ) such that N is an A-neighbor of M . Proposition 4.2.7 asserts

that Ω is an OL(Qp)-orbit. However, it is the disjoint union of two orbits under the
action of SOL(Qp). To see this, we begin by verifying, using arguments similar to
those in Sect. 3.1, that the map

N �→ (M ∩N)/pM

induces a surjection (that is not bijective in general) between the A-neighbors of M
and the Lagrangians of the hyperbolic q-vector space M ⊗ Fp. But it is well known
that for every field k and every hyperbolic q-vector space V over k, there are exactly
two orbits of Lagrangians of V under the action of SO(V ) (and only one under
O(V ), by Witt’s theorem). By the smoothness of SOM over Zp, each of these two
orbits therefore defines an SO(M)-orbit of A-neighbors of M and, consequently,
two distinct Hecke operators T±

A ∈ H(SOL) with sum TA, which are interchanged
under the action of OL(Qp)/SOL(Qp) = Z/2Z.

4.2.12 Isogenies

We will now discuss the isogenies between transitive Γ-sets, by presenting a variant
of the considerations in [174, Chap. II, Sect. 7].

Let X be a Γ-set and X ′ a Γ′-set. Recall that a morphism X → X ′ is a pair
(f, g), where g : X → X ′ is a map and f : Γ → Γ′ is a group morphism such that
we have g(γx) = f(γ)g(x) for every x ∈ X and every γ ∈ Γ. In what follows, we
conveniently assume that a transitive set is nonempty.

Lemma 4.2.13. Let X be a transitive Γ-set, X ′ a Γ′-set, and (f, g) a morphism
X → X ′ such that f(Γ) is normal in Γ′. Let S be the stabilizer of g(X) in Γ′, that
is, S = {γ ∈ Γ′ ; γg(X) ⊂ g(X)}.
(i) For every x ∈ g(X), we have S = f(Γ)Γ′

x.
(ii) We have S = {γ ∈ Γ′ ; γg(X) ∩ g(X) �= ∅}.
Proof. Take x ∈ g(X). Since the subgroup f(Γ) is normal in Γ′, the subset Ex :=
f(Γ)Γ′

x ⊂ Γ′ is a subgroup. The transitivity of X then shows that

– Ex does not depend on the choice of x ∈ g(X);
– Ex is the set of γ ∈ Γ′ with γ(x) ∈ g(X).

We consequently have the identities S =
⋂

x∈g(X) Ex =
⋃

x∈g(X) Ex =

{γ ∈ Γ′ ; γg(X) ∩ g(X) �= ∅}. 
�
Let X be a transitive Γ-set, X ′ a Γ′-set, and (f, g) a morphism X → X ′. We

assume, as in the lemma above, that f(Γ) is normal in Γ′ and, moreover that the map
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g is injective.3 Let S be the stabilizer of g(X) in Γ′. The map (s, x) �→ g−1(s(g(x)),
which is well defined by the injectivity of g, defines an action of S on X whose
restriction to f : Γ → S is the Γ-set X . It therefore induces an action of S/f(Γ)
on H(X) by ring automorphisms; we denote by H(X)inv ⊂ H(X) the subring of
invariants, which is also EndZ[S](Z[X ]).

Proposition-Definition 4.2.14. Let u = (f, g) : X → X ′ be a morphism between
the transitive Γ-set X and the transitive Γ′-set X ′. We assume that f(Γ) is normal
in Γ′ and that g is injective.

(i) For T ∈ H(X)inv, there exists a unique T ′ ∈ H(X ′) that vanishes on (X ′ −
g(X))× g(X) and satisfies T ′

g(x),g(y) = Tx,y for every x, y ∈ X .
(ii) The resulting mapH(u) : H(X)inv → H(X ′) defined by T �→ T ′ is an injective

ring homomorphism.

Proof. The uniqueness assertion in part (i) follows from the injectivity of g and the
transitivity of X ′. Assertion (ii) immediately follows from part (i). We are therefore
left with justifying the existence of T ′ in part (i). But part (ii) of Lemma 4.2.13 shows
that the injection g : X → X ′ induces a bijection IndΓ

′
S X

∼→ X ′ and therefore an
isomorphism Z[Γ′] ⊗Z[S] Z[X ]

∼→ Z[X ′]. Thus, when composed with g : Z[X ] →
Z[X ′], every S-equivariant linear map T : Z[X ] → Z[X ] extends uniquely to a
Γ′-equivariant map T ′ : Z[X ′] → Z[X ′]; this has the desired properties. 
�

In all the examples we consider, it turns out that the group S preserves every
Γ-orbit of X × X , so that we have H(X)inv = H(X). A particularly simple case
is that where we have Γ′ = Γ and X ′ = X and f and g are bijective. In this case,
we have S = f(Γ) and H(u) is, by definition, the automorphism of H(X) whose
matrix is given by (Tx,y) �→ (Tg−1x,g−1y).

Let us assume that the hypotheses of Proposition-Definition 4.2.14 hold. For
a Γ′-module M , we denote by M|Γ the Γ-module obtained by restricting M via
f : Γ → Γ′. We then have a canonical injective map

MX′ → (M|Γ)X , ϕ �→ ϕ|X := ϕ ◦ g .

The following lemma is immediate.

Lemma 4.2.15. Under the assumptions of Proposition-Definition 4.2.14, let M be
a Γ′-module, and take T ∈ H(X)inv and ϕ ∈ MX′ . Then we have T (ϕ|X) =
H(u)(T )(ϕ).

Example 4.2.16. By way of example, we return to the context of the similitude groups
(Sect. 4.1.2) and consider the natural Z-morphism μ : G → P ˜G. The results of this

3 We refer to the article of Satake for a variant without the injectivity assumption on g. The reader
will not miss much in the current discussion by assuming Γ ⊂ Γ′ and X ⊂ X′, with f and g the
corresponding inclusions.
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section apply and define a ring morphism

H(μ) : H(G) → H(P ˜G)

with H(μ)(TA) = T(A,0) for every finite abelian group A generated by at most n/2
elements.

Indeed, consider Γ = G(Af ), X = R(G), Γ′ = P ˜G(Af ), and X ′ = R(P ˜G),
and for f and g, take the natural maps deduced from μ. The group Γ is a normal
subgroup of ˜G(Af ); likewise, f(Γ) is a normal subgroup of Γ′. Moreover, g can
be identified with the natural injection Ra

Z
(V ) → Rh

Z
(V ) defined by M �→ M , by

Proposition 4.1.4. The groupS is the subgroup of elements g ∈ ˜G(Af ) such that ν(g)
is of the form a2b with a ∈ A

×
f and b ∈ ̂Z

×. It acts trivially onΓ\(Ra
Z
(V )×Ra

Z
(V )).

Indeed, given N,M ∈ Ra
Z
(V ), g ∈ ˜G(Af ), and a prime p, the map g induces an

isomorphism Mp/(Np ∩ Mp) � g(M)p/(g(N)p ∩ g(M)p), which allows us to
conclude using Proposition 4.2.7. The assertion on TA follows from the discussion
following Proposition 4.2.9.

4.3 Automorpic Forms of a Z-group

The ring of adeles of Q is the ring A = R × Af . Let G be a Z-group. The group
G(R) is naturally a Lie group, and the group

G(A) = G(R)×G(Af )

is locally compact and separated for the product topology; we already recalled the
topology on G(Af ) in Sect. 4.2.5. There is a natural diagonal embedding of the
group G(Q) in G(A); the image is a discrete closed subgroup (see [92, Chap. II,
Sect. 3] for the basics on these constructions).

4.3.1 Square-Integrable Automorphic Forms

Let us recall some classical results due to Borel and Harish-Chandra, for which we
refer to [32, Sect. 5]. We assume that the neutral component of G(C) is semisim-
ple [103, 34]. The locally compact group G(A) is then unimodular. By Weil, the
homogeneous space

G(Q)\G(A)

inherits a positive (nonzero) Radon measure μ invariant under the action of G(A)
by right translations [211, Chap. II], [172, Chap. 2]. It has finite measure.

The space of square-integrable automorphic forms for G is the subspace

A2(G) ⊂ L2(G(Q)\G(A), μ)
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of elements that are invariant under G(̂Z) for right translations [92, Chap. 3], [36,
Sect. 4]. It is a Hilbert space for the Hermitian inner product

〈 f, f ′ 〉Pe :=
∫

ff ′ dμ ,

also called the Petersson inner product. Alternatively, A2(G) can be viewed as
the space of square-integrable functions on G(Q)\G(A)/G(̂Z) endowed with the
Radon measure that is the image of μ by the canonical (proper) map G(Q)\G(A) →
G(Q)\G(A)/G(̂Z). The space A2(G) is endowed with two important additional
structures that we will now describe.

On the one hand, since the space A2(G) is the space of G(̂Z)-invariants of the
G(Af )-module L2(G(Q)\G(A), μ) for the right translations, it is endowed with a
right action of the Hecke ring H(G) (Sects. 4.2.2, 4.2.5). This action is a 
-action
for the Petersson inner product. By this, we mean that the adjoint of T ∈ H(G) is
the operator T t defined in Sect. 4.2.1: for f, f ′ ∈ A2(G) and T ∈ H(G), we have

〈T (f), f ′ 〉Pe = 〈 f, T t(f ′) 〉Pe . (4.3.1)

Indeed, this is a consequence of Lemma 4.2.3 and the unimodularity of G(Af ).
On the other hand,A2(G) is stable under the action of G(R) by right translations,

and this action commutes with that of H(G). It turns A2(G) into a unitary repre-
sentation of the Lie group G(R) (we refer to [119] as a general reference on unitary
representations). A more classical description of this representation is obtained by
writing

G(Af ) =

h(G)
∐

i=1

G(Q)giG(̂Z) (4.3.2)

for certain elements gi ∈ G(Af ), by the finiteness of the class set of G. For every
i, the double coset G(Q)giG(̂Z) is an open subset of G(Af ) and the congruence
subgroup

Γi = G(Q) ∩ giG(̂Z)g−1
i

is a discrete subgroup of G(R) that is commensurable with G(Z). The map f �→
(f|G(R)×gi)i induces a G(R)-equivariant isomorphism

A2(G)
∼→

h(G)
∏

i=1

L2(Γi\G(R)) , (4.3.3)

where each Γi\G(R) naturally inherits a strictly positive Radon measure that is
right invariant for G(R), has finite mass, and is uniquely determined by μ. This
representation of G(R) in general has a “discrete” part that is notoriously difficult to
describe, as well as a “continuous” part whose study was reduced by Langlands to
that of discrete subsets for auxiliary groups G′ [138].



108 4 Automorphic Forms and Hecke Operators

4.3.2 The Set Πdisc(G)

Here, we are interested only in the discrete part of A2(G), that is, in the subspace

Adisc(G) ⊂ A2(G)

defined as the closure of the sum of the closed and topologically irreducible sub-
G(R)-representations of A2(G). It is a representation of G(R) that is, by construc-
tion, an orthogonal sum of irreducible representations,4 where each component has
a finite multiplicity by a fundamental result due to Harish-Chandra (see the introduc-
tion of [101], as well as Theorem 1 of Chap. 1 of the same reference; see also [36]).
In other words, if U is a unitary irreducible representation of G(R), then the space

AU (G) := HomG(R)(U,Adisc(G)) = HomG(R)(U,A
2(G))

has finite dimension over C. We have, of course, a canonical isomorphism

̂
⊕

U∈Irr(G(R))

U ⊗AU (G)
∼−→ Adisc(G) , (4.3.4)

where Irr(H) is the set of isomorphism classes of topologically irreducible unitary
representations of the locally compact group H .

The right H(G)-module structure on A2(G) naturally induces the structure of a
right H(G)-module on AU (G). The latter also inherits a Hermitian inner product
for which the action of H(G) is again a 
-action. For example, for a fixed nonzero
e ∈ U and ϕ, ϕ′ ∈ AU (G), we can set 〈ϕ, ϕ′〉 = 〈ϕ(e), ϕ′(e)〉Pe. But it is well
known that a sub-C-algebra of Mn(C) that is stable under M �→ tM is semisimple:
if X is in its Jacobson radical, then the Hermitian matrix X tX is nilpotent, hence
zero, which implies that X is zero. In particular,AU (G) is semisimple when viewed
as a representation of the C-algebra H(G)opp ⊗ C.

We define a representation of (G(R),H(G)) to be a Hilbert space endowed with a
unitary representation of G(R), together with the structure of a right H(G)-module,
such that the action of any element of G(R) commutes with that of any element
of H(G). These representations naturally form a C-linear category: a morphism
E → F is a continuous C-linear map E → F that commutes with the actions of
G(R) andH(G). For a unitary representationU ofG(R) and aH(G)opp⊗C-module
V of finite dimension as a C-vector space, U ⊗ V is naturally a representation of
(G(R),H(G)) (where the tensor product is taken over C). We denote by Π(G)
the set of isomorphism classes of representations of (G(R),H(G)) of this form

4 At this point, it is useful to recall the following version of Schur’s lemma. Let U and V be Hilbert
spaces endowed with unitary representations of a group Γ. We assume that U is topologically
irreducible and that u : U → V is a nonzero, Γ-equivariant, continuous linear map. Then the
adjoint u∗ : V → U (which is Γ-equivariant) satisfies u∗ ◦ u = λIdU for some λ ∈ R×. Indeed,
u∗ ◦ u ∈ End(U) is Hermitian and nonzero and commutes with Γ; by the spectral theorem, its
spectrum is therefore reduced to a point {λ}. It follows that V is the orthogonal sum of Im(u)
(which is closed) and Ker(u∗).
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such that, moreover, U is topologically irreducible and V is simple. The restriction
to G(R) of such a unitary representation π is isomorphic to UdimV , so that the
isomorphism class π∞ of the unitary representation U is fully determined by the
unitary representation of G(R) underlying π. Likewise, the H(G)opp ⊗ C-module
underlying π is semisimple and V -isotypical, so that the isomorphism class πf of
the H(G)opp ⊗ C-module V is uniquely determined by that of π. In particular, we
have π � π∞ ⊗ πf for every π ∈ Π(G). Finally, Schur’s lemma implies that every
π ∈ Π(G) is topologically irreducible as a representation of (G(R),H(G)).

By the discussion above, for U ∈ Irr(G(R)), the space U ⊗AU (G) is naturally
a representation of (G(R),H(G)), as is Adisc(G), where the isomorphism (4.3.4)
trivially commutes with the actions of G(R) and H(G). It follows that we have a
decomposition into a Hilbert sum of elements of Π(G) that refines the decomposi-
tion (4.3.4):

Adisc(G) � ̂

⊕

π∈Π(G)

m(π)π , (4.3.5)

where m(π) ≥ 0 is an integer that is called the multiplicity of π. By definition, if
π ∈ Π(G) and U � π∞, then m(π) is the multiplicity of πf in the H(G)opp ⊗ C-
module AU (G), which is semisimple and of finite dimension. We denote by

Πdisc(G) ⊂ Π(G)

the subsets consisting of the π with m(π) �= 0.
The elements of Πdisc(G) are called the discrete automorphic representations5 of

G. The only truly obvious example of such a representation is the trivial representa-
tion, denoted 1G, realized as the subspace (of dimension 1) of constant functions in
A2(G) (note thatμ has finite mass). The action ofG(R) in 1G is, of course, the trivial
action, while that of H(G) is the multiplication by the “degree” (see Example 6.2.3).
In general, the set Πdisc(G) is countably infinite, which is not the case for Π(G). We
will give a few concrete examples in the following chapters.

An element F ∈ AU (G) is called an eigenform if it is nonzero and generates an
irreducible H(G)opp ⊗ C-module. When H(G) is commutative, this is equivalent
to requiring that F �= 0 be an eigenvector of all Hecke operators in H(G). If F is
an eigenform and V ⊂ AU (G) denotes the H(G)opp ⊗ C-module generated by F ,
the image of U ⊗ V in Adisc(G) by the canonical map (4.3.4) is a topologically
irreducible subrepresentation of (G(R),H(G)), which we denote by πF ; it is the
(automorphic, discrete) representation generated by F . We often also denote its
isomorphism class by πF ; this is an element of Πdisc(G).

5 The reader should be aware that the definition we use here depends not only on GQ but also on G
as a Z-group. In the literature, our discrete automorphic representations are more commonly called
“discrete automorphic representations of G(A) that are spherical (or unramified) with respect to
G(̂Z).” The apparent loss of generality in our presentation is, however, at this point illusory, because
every open compact subgroup of G(Af ) is of the form G′(̂Z) for a well-chosen Z-group G′ with
G′

Q
� GQ.
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Finally, following Gelfand, Graev, and Piatetski-Shapiro in [92, Chap. 3, Sect. 7],
we consider the subspace Acusp(G) ⊂ A2(G) consisting of the cusp forms (the
definition of a cusp form is recalled below). This is a closed subspace that is stable
under the actions of G(R) and H(G). Gelfand, Graev, and Piatetski-Shapiro show
the inclusion

Acusp(G) ⊂ Adisc(G) (4.3.6)

(see also [35, Theorem 16.2]). We denote by

Πcusp(G) ⊂ Πdisc(G)

the set of π ∈ Π(G) that occur in the subspace Acusp(G); these representations are
called the cuspidal automorphic representations of G.

When GQ does not admit a strict parabolic sub-Q-group, which is equivalent
to saying that G(Q) does not have any nontrivial unipotent elements, we have the
obvious equality Acusp(G) = A2(G). In this case,6 the inclusion (4.3.6) implies
Adisc(G) = A2(G).

Let us recall the definition of a cusp form. LetP ⊂ GQ be a strict parabolic sub-Q-
group, that is, such that P (C) is connected, contains a Borel subgroup of the neutral
component of G(C), and is not equal to that component [103, 34]. If N denotes
the unipotent radical of P , then the locally compact group N(A) is unimodular
and its subgroup N(Q) is discrete and cocompact. We denote by dn a strictly
positiveN(A)-invariant Radion measure onN(Q)\N(A). Let f : G(Q)\G(A) → C

be a Borel function that is square-integrable and take g ∈ G(A). The function
n �→ f(ng), N(Q)\N(A) → C, is then a square-integrable Borel function for
almost all g ∈ G(A). We say that f is a cusp form if for every strict parabolic sub-Q-
group P of GQ, we have

∫

N(Q)\N(A)
f(ng) dn = 0 for almost all g ∈ N(A)\G(A).

We can show that the subset of L2(G(Q)\G(A), μ) consisting of the classes of
cusp forms is a closed linear subspace (see, for example, [35, Proposition 8.2]). It is
trivially stable under right translations by the elements of G(A).

4.4 Automorphic Forms forOn

4.4.1 Automorphic Forms for the Z-groupsG with G(R) Compact

We return to the setting of Sect. 4.3.1. Suppose that the Z-group G has the property
that G(R) is compact. Then, the groupsΓi = G(Q)∩giG(̂Z)g−1

i of formula (4.3.2)
are finite subgroupsofG(R) because they are discrete subgroupsof a compact group.
Moreover, the quotient G(Q)\G(A) is compact because it is homeomorphic to the
disjoint union of the Γi\G(R). Formula (4.3.3) then implies Adisc(G) = A2(G),

6 In fact, a famous result of Godement shows that under this same hypothesis on G, the group
G(Q) is cocompact in G(A), which implies the equality Adisc(G) = A2(G) more directly in this
specific case (see, for example, [35, Lemma 16.1]).
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by the Peter–Weyl theorem. We will give another description of the H(G)-modules
AU (G).

For a Z[G(Q)]-module U , we denote by MU (G) the space of functions

F : R(G) −→ U

such that we have F (γx) = γ · F (x) for all γ ∈ G(Q) and x ∈ R(G). It can
be canonically identified with HomZ[G(Q)](Z[R(G)], U), which endows it with a
right action of the ring H(G). Even better, U �→ MU (G) defines a functor from
the G(Q)-modules to the H(G)opp-modules. Its additive structure is very simple
because F �→ (F (gi)) induces an isomorphism

MU (G) −→
h(G)
∏

i=1

UΓi . (4.4.1)

In particular, we have MU⊕V (G) � MU (G) ⊕MV (G). Observe, incidentally, that
the construction so far makes sense for an arbitrary Z-group G.

Next, assume that U is a finite-dimensional, continuous, complex representation
of G(R), and denote its dual by U∗. For F ∈ MU (G) and u ∈ U∗, we denote
by ϕF (u) the function G(R) × R(G) → C defined by (h, x) �→ 〈u, h−1F (x)〉.
This function is invariant under the diagonal action of G(Q). This is a continuous
function of its first variable; it is therefore in A2(G) becauseG(Q)\(G(R)×R(G))
is compact by (4.3.3). The obvious relation ϕF (gu) = g · (ϕF (u)), which holds for
u ∈ U∗ and g ∈ G(R), shows that the function ϕF defined by u �→ ϕF (u) is an
element of AU∗(G). The proof of the following lemma is immediate and is left to
the reader.

Lemma 4.4.2. Let U be an irreducible representation ofG(R). Then F �→ ϕF is an
H(G)-equivariant isomorphismMU (G)

∼→ AU∗(G).

Since the article of Gross [98], the elements of MU (G) are sometimes called
algebraic modular forms of weight U for the Z-group G; we will not use this
terminology, which conflicts with the notion of algebraicity introduced in Sect. 8.2.6.
For example, ifU = C is the trivial representation, then theH(G)opp-moduleMC(G)
can be canonically identified with the space of functionsCl(G) → C or, equivalently,
with the dual of the H(G)-module C[Cl(G)].

Let us conclude these basic results with an assertion of compatibility with certain
morphisms of Z-groups. Let μ : G → G′ be a morphism of Z-groups. It induces,
in an obvious way, a morphism (fμ, gμ) from the G(Af )-set R(G) to the G′(Af )-
set R(G′), in the sense of Sect. 4.2.12. We assume that fμ(G(Af )) is a normal
subgroup of G′(Af ), that gμ is injective, and, moreover, that the action of the group
S defined loc. cit. on R(G) is trivial. This is, for example, trivially the case if μ is an
isomorphism. We then have an injective ring homomorphismH(μ) : H(G) → H(G′)
defined loc. cit. Let U ′ be a G′(Q)-module, and let U be its restriction to G(Q). The
following lemma paraphrases Lemma 4.2.15.
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Lemma 4.4.3. The morphism μ∗ : MU ′(G′) −→ MU (G) defined by ϕ �→ (x �→
ϕ(gμ(x))) satisfies T ◦ μ∗ = μ∗ ◦H(μ)(T ) for every T ∈ H(G).

4.4.4 The Case of the GroupsOn and SOn

Let us now specify this construction for the orthogonal Z-group On of the even
unimodular lattice En ⊂ R

n, for n ≡ 0 mod 8 (Sect. 2.3, choosing another lattice
would lead to a theory equivalent to the one we now present).

In this case, we saw in Sect. 4.1.2 that the On(Af )-set R(On) can be canonically
identified with the set of even unimodular lattices in R

n contained in En ⊗ Q and
that we have Cl(On)

∼→ Xn. In particular, we have

MC(On) = C[Xn]
∗ .

The right action ofH(On) onMC(On) defines by transposition a left action ofH(On)
on C[Xn]. In particular, the operator TZ/dZ ∈ H(On) defined in Sect. 4.2.6, viewed
as an endomorphism of C[Xn], is the operator Td of Sect. 3.2. The description of
the structure of the H(On)

opp-module MC(On) when n ≤ 24 is therefore the main
theme of this book.

The ring H(On) is commutative by Proposition 4.2.8. Let us fix a (finite-
dimensional, continuous, complex) representation U of On(R). By Lemma 4.4.2
and the general results recalled in Sect. 4.3.1, the action of H(On) is therefore codi-
agonalizable on eachMU (On). The eigenvalues of these operators have an important
arithmetic meaning. In Corollary 8.2.20, we will see that they are linked, in an a
priori rather surprising manner, to the representations of the absolute Galois group
of Q. The line of constant functions in MC(On) is, for example, trivially stable
under TA for every A, where the eigenvalue of Tp on this line is, of course, cn(p)
(Proposition-Definition 3.2.1). We will give markedly more interesting examples in
the next chapters.

Remark 4.4.5. Let Ln be the set of all even unimodular lattices in R
n, which we

already considered in the introduction (Chap. 1). It contains R(On) and the natural
action of On(R) on Ln extends the natural action of On(Q) on R(On). The map
On(R) × On(Af ) → Ln defined by (g∞, gf) �→ g−1∞ (gf (En)) therefore factors
through a map

On(Q)\On(A)/On(̂Z) → Ln .

This is a bijection: the surjectivity follows from Scholium 2.2.1 and the injectivity
is immediate.

Let us turn to the case of SOn. By Proposition 4.1.7 and Sect. 4.2.11, the inclusion
SOn → On induces a bijectionR(SOn)

∼→ R(On) andH(On) is naturally a subring
of H(SOn). Let U be an SOn(Q)-module, and consider

U ′ = Ind
On(Q)
SOn(Q)U .
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The universal property of induced modules provides a canonical isomorphism
ind : HomZ[SOn(Q)](Z[R(On)]|SOn(Q), U)

∼→ HomZ[On(Q)](Z[R(On)], U
′), which

can also be written as

ind: MU (SOn)
∼→ MU ′(On) .

This isomorphism is trivially H(On)-equivariant, so that studying the H(On)-
modules MU (SOn) reduces to studying MW (On), where W is an On(Q)-module.
Let us add that if U is the restriction to SOn(Q) of an SOn(R)-module V and V ′

denotes the On(R)-module induced by V , then we have V ′
|On(Q) = Ind

On(Q)
SOn(Q)U .

Finally, let W be an On(Q)-module, and let W ′ denote its restriction to
SOn(Q). The group On(Q) has a natural action on MW ′(SOn), by (γ, f) �→
(x �→ γ(f(γ−1(x)))), where the subgroup SOn(Q) acts trivially. Let s ∈
End(MW ′ (SOn)) be the operator induced by the nontrivial element of the quo-
tient On(Q)/SOn(Q) � Z/2Z. The restriction of the functions via the bijective
map R(SOn) → R(On) then defines an H(On)-equivariant injection

res : MW (On) → MW ′(SOn)

whose image is MW ′(SOn)
s=id.

Example 4.4.6. The isomorphism ind induces a canonical decomposition

MC(SOn) � MC(On)⊕Mdet(On) ,

where det is the representation of dimension 1 given by the determinant. If we,
moreover, viewC as the restriction to SOn(R) of the trivial representation ofOn(R),
this endows MC(SOn) with a symmetry s that preserves the decomposition given
above, with fixed points MC(On).

We refer to [55, Sect. 2] for a discussion of the spacesMU (SO8), and in particular
their dimension, in terms of the representation U ; see also Sect. 7.4 for examples.

4.4.7 An Invariant Hermitian Inner Product

Let us consider the case of a generalZ-groupGwithG(R) compact. LetU be a finite-
dimensional, continuous, complex representation ofG(R). By transport of structure,
the isomorphismMU(G)

∼→ AU∗(G) endowsMU (G)with a natural Hermitian inner
product, for which the action of H(G) is a 
-action, by Sect. 4.3.1, which we now
only need to make explicit. For this, fix a G(R)-invariant Hermitian inner product
〈−,−〉U on U . Also choose elements gi ∈ G(Af ) satisfying equality (4.3.2); recall
that Γi = G(Q) ∩ giG(̂Z)g−1

i is a finite group.
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Proposition 4.4.8. For F, F ′ ∈ MU (G), the formula

(F |F ′) =
h(G)
∑

i=1

1

|Γi| 〈F (gi), F
′(gi)〉U

defines a Hermitian inner product onMU (G) that does not depend on the choice of
the gi and for which the action of H(G) is a 
-action.

We include a proof because we could not find any adequate reference for this
result.

Proof. Fix a nonzero e ∈ U∗. By the isomorphism (4.4.2) and Sect. 4.3,

(F |F ′) :=
∫

G(Q)\G(A)

ϕF (e)ϕF ′(e) dm

is a Hermitian inner product on MU (G) for which the action of H(G) is a 
-action.
We will verify that it is proportional to the inner product of Proposition 4.4.8.

Let Ωi ⊂ G(A) be the compact open set gi(G(R) × G(̂Z)), let π : G(A) →
G(Q)\G(A) be the canonical projection, and set Ωi = π(Ωi). By definition,
G(Q)\G(A) is the (finite) disjoint union of the Ωi. Let us first verify that there
exists a Haar measure m on G(A) such that for every continuous function ψ on (the
compact set) G(Q)\G(A), we have

∫

G(Q)\G(A)

ψ dμ =

h(G)
∑

i=1

1

|Γi|
∫

Ωi

ψ ◦ π dm . (4.4.2)

Indeed, recall that if f is continuous with compact support on G(A), then f̃(g) :=
∑

γ∈G(Q) f(γg) is continuous with compact support on G(Q)\G(A). Moreover,
by the characteristic property of the quotient measure μ, there exists a unique Haar
measurem onG(A) such that for every continuous function f onG(A)with compact
support, we have

∫

G(A)
f dm =

∫

G(Q)\G(A)
f̃ dμ (see [211, Chap. II]).

For g ∈ G(A), set ni(g) = |G(Q)g ∩ Ωi|. We clearly have ni(γgk) = ni(g)

for every γ ∈ G(Q) and every k ∈ 1 × G(̂Z). By definition, we also have
ni(gj) = |Γi|δi,j , where δi,j is the Kronecker delta. Let ψ be a continuous function
on G(Q)\G(A). The function G(A) → C defined by fi = 1Ωi × ψ ◦ π is contin-
uous with support in Ωi and satisfies f̃i(g) = ψ(π(g))ni(g) for every g ∈ G(A)
(we denote the characteristic function of the set A by 1A). In other words, we have
ψ × 1Ωi

= (1/|Γi|)f̃i. This proves formula (4.4.2).
Let us apply this formula to the function ψ = ϕF (e)ϕF ′(e). Note that if U = C,

so that ψ is constant, equal to |e(1)|2F (gi)F
′(gi) on Ωi, the proposition follows

from the fact that m(Ωi) = m(G(R) × G(Z)) is independent of i. In general, we
introduce the Haar measure dg on G(R) of total mass 1 and the Haar measure mf

on G(Af ) such that dm = dg × dmf . The right invariance of ψ under 1 × G(̂Z)
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and Fubini’s theorem imply
∫

Ωi

ψ ◦ π dm = mf (G(̂Z))

∫

G(R)

〈e, g−1F (gi)〉〈e, g−1F ′(gi)〉dg .

LetE ∈ U be such that we have 〈E, x〉U = 〈e, x〉 for every x ∈ U . The orthogonality
relations of the matrix entries for the irreducible representations of the compact
groups imply that we have
∫

G(R)

〈e, g−1F (gi)〉 〈e, g−1F ′(gi)〉dm∞ =
1

dimU
〈E,E〉U 〈F (gi), F

′(gi)〉U ,

which concludes the proof of the proposition. 
�
Assume, for example, that we have G = On and U = C. If Li ∈ Ra

Z
(En ⊗ Q)

denotes the lattice gi(L), we have Γi = O(Li) ⊂ On(Q). The relation TA = Tt
A

of Proposition 4.2.8 and Proposition 4.4.8 can then be written as

NA(L,M)|O(M)| = NA(M,L)|O(L)| ,

where NA(L,M) denotes the number of A-neighbors of L isometric to M (with
L,M ∈ R(On)). This is the generalization of Proposition 3.2.3 we announced
earlier.

Corollary 4.4.9. The bilinear form onMU∗(G)×MU (G) defined by

(F |F ′) =
∑

i

1

|Γi| 〈F (gi), F
′(gi)〉

is independent of the choice of the gi and is nondegenerate. It satisfies the identity
(T (F )|F ′) = (F |T t(F ′)) for all T ∈ H(G), F ∈ MU∗(G), and F ′ ∈ MU (G). In
particular, it defines a canonical isomorphism between theH(G)-moduleMU∗(G)∗

and the H(G)-moduleMU (G)t (see Remark 4.2.4).

Proof. For a C-vector space V , we denote by V the conjugate C-vector space
(that is, the abelian group V endowed with the action C × V → V of C defined
by (λ, v) �→ λv). For U as in the corollary, U is naturally a representation of
G(R) and the map v �→ (u �→ 〈v, u〉U ) induces an isomorphism of representations
U

∼→ U∗. We therefore have a natural isomorphismMU∗(G)
∼→ MU (G) = MU (G).

Via this isomorphism, the bilinear form of the corollary coincides with the form
MU (G)×MU (G) → C defined by (F, F ′) �→ ∑

i(1/|Γi|)〈F (gi), F
′(gi)〉U , which

is none other than the Hermitian form on MU (G) given by Proposition 4.4.8. The
first two assertions follow; the last is obvious. 
�

Let us conclude with one last observation. For L ∈ R(G) and u ∈ U , the map
F �→ 〈F (L), u〉 is a linear form on MU∗(G), which we denote by evL,u. We have a
unique linear map

Z[R(G)] ⊗ U → MU∗(G)∗
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that sends [L] ⊗ u to evL,u for every L ∈ R(G) and every u ∈ U . The C-vector
space Z[R(G)]⊗U is endowed with a diagonal action of G(Q), and the map above
is constant on the orbits of this action. It therefore factors through a linear map

(Z[R(G)] ⊗ U)G(Q) → MU∗(G)∗ , (4.4.3)

where VΓ denotes the coinvariants of the Γ-module V . This is an isomorphism: this
follows simply from the finiteness of G(Q)\R(G) and of the natural isomorphism
(U∗)Γ ∼→ (UΓ)

∗, which holds for every finite subgroup Γ of G(R). The isomor-
phism (4.4.3) trivially commutes with the natural (left) actions of H(G). If we
compose it with the isomorphism MU∗(G)∗ −→ MU (G)t given by Corollary 4.4.9,
we obtain a canonical isomorphism of H(G)-modules

(Z[R(G)] ⊗ U)G(Q)
∼→ MU (G)t . (4.4.4)

It sends (the class of) the element [L] ⊗ u to an element of MU (G) that we denote
by [L, u]. Concretely, [L, u] is the unique function F ∈ MU (G) that is zero outside
of G(Q) · L that satisfies F (L) =

∑

γ∈Γ γ(u), where Γ = G(Q)L is the stabilizer
of L in G(Q). The isomorphism (4.4.4) will play a (small) role in our discussion of
the theta series in Sect. 5.4.1 and Chap. 7.

4.5 Siegel Modular Forms

Let us begin by recalling some results on Siegel modular forms (see [5, 45, 46, 88]).
We will closely follow the exposition of Van der Geer [89], to which we refer, in
particular, for a history of the subject.

4.5.1 The Classical Point of View

Let g ≥ 1 be an integer. For a ring R, we denote by Matg(R) the set of g × g
matrices with coefficients inR and bySymg(R) ⊂ Matg(R) the subset of symmetric
matrices. We denote by 1g the identity matrix in Matg(R) and by J2g ∈ Mat2g(R)
the element

J2g =

(

0 1g
−1g 0

)

.

The Siegel half-space of genus g is the open subset

Hg ⊂ Symg(C)

of matrices with positive definite imaginary part. We view the Z-group GSp2g as
the sub-group scheme of GL2g consisting of the γ with γ J2g

tγ = ν(γ)J2g , where
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the morphism ν : GSp2g → Gm is the similitude factor. Its elements are of the form

γ =

(

aγ bγ
cγ dγ

)

with aγ , bγ , cγ , dγ ∈ Matg satisfying the relationsaγ tbγ = bγ
taγ , cγ tdγ = dγ

tcγ ,
and aγ

tdγ − bγ
tcγ = ν(γ)1g .

Let GSp2g(R)
+ be the subgroup of GSp2g(R) consisting of the elements with

strictly positive similitude factor. For γ ∈ GSp2g(R)
+ and τ ∈ Hg, we can show

that the element j(γ, τ) := cγτ + dγ is in GLg(C) and that

(γ, τ) �→ γτ = (aγτ + bγ)(cγτ + dγ)
−1

defines a transitive action of GSp2g(R)
+ on Hg by biholomorphic transformations.

Moreover, we easily verify the 1-cocyle relation j(γγ′, τ) = j(γ, γ′τ)j(γ′, τ) for all
γ, γ′ ∈ GSp2g(R)

+ and every τ ∈ Hg .
Let W be a finite-dimensional C-vector space endowed with a C-representation

ρ : GLg → GLW . A Siegel modular form of weight W and genus g ≥ 1 is a
holomorphic function f : Hg → W with

f(γτ) = ρ( j(γ, τ) ) · f(τ) ∀τ ∈ Hg , ∀γ ∈ Sp2g(Z) .

For g = 1, we add the assumption that f is bounded on {τ ∈ H1 ; �(τ) > 1}. These
functions form a C-vector space that we denote by

MW (Sp2g(Z)) ,

whose dimension is finite, as shown by Siegel.
When we have (ρ,W ) = (detk,C) for k ∈ Z, we speak of classical, or scalar-

valued Siegel forms of weight k; we speak of vector-valued forms otherwise. In
the former case, we also denote the space MW (Sp2g(Z)) by Mk(Sp2g(Z)). When
g = 1, we recover, as a special case, the usual modular forms for the group SL2(Z),
which are, for example, treated in detail in Serre’s book [177]. Finally, note that the
presence of the element −12g ∈ Sp2g(Z) and the relation j(−12g, τ) = −1g imply
MW (Sp2g(Z)) = 0 if ρ(−1g) = −idW .

Let us conclude this subsection with a reformulation of the notion of a Siegel
modular form. Assume that the representation (ρ,W ) is irreducible or, more
generally, that there exists an element mW ∈ Z, necessarily unique, such that
ρ(z1g) = zmW idW for every z ∈ C

×. For a map f : Hg → W , we set

f|W γ : Hg → W , τ �→ ν(γ)mW /2 ρ(j(γ, τ))−1 f(γτ) .

The map (γ, f) �→ f|W γ defines a right action of the group GSp2g(R)
+ on the

space of holomorphic functions Hg → W ; by construction, this action is trivial on
the subgroup of homotheties with strictly positive factor in GSp2g(R)

+. A Siegel
modular form of weight W and genus g ≥ 2 is, by definition, an Sp2g(Z)-invariant
element for this action.
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4.5.2 Fourier Series Expansions and Cusp Forms

For n ∈ Symg(C), we set

qn = e2iπ tr(n τ) =
∏

1≤i,j≤g

e2iπ ni,jτi,j ;

this is a holomorphic function on Hg. If n is semi-integral, that is, if n ∈ 1
2Symg(Z),

and if ni,i ∈ Z for every i = 1, . . . , g, then qn is invariant under translations by
Symg(Z). It can be shown that every f ∈ MW (Sp2g(Z)) admits a Fourier series
expansion, which normally converges on every compact subset of Hg, of the form

f =
∑

n≥0

anq
n ,

where the sum is taken over the positive semi-integral elements n ∈ 1
2Symg(Z) (in

the sense of real symmetric matrices) and where the an are in W [89, Sect. 4]. For
g ≥ 2, the Siegel operator is the map

Φg : MW (Sp2g(Z)) −→ MW ′(Sp2g−2(Z))

defined by Φg(
∑

n anq
n) =

∑

n′ an′qn
′
, where we view Symg−1(−) as a subset

of Symg(−) with last line and column consisting of zeros, and we have W ′ =
W|GLg−1×1 [89, Sect. 5]. The subspace of cusp forms is

SW (Sp2g(Z)) := Ker(Φg) ⊂ MW (Sp2g(Z)) .

A Siegel form is therefore cuspidal if its Fourier series expansion
∑

n anq
n satisfies

an = 0 for every n with det(n) = 0. When we have (W,ρ) = (C, detk) for k ∈ Z,
we write Sk(Sp2g(Z)) for SW (Sp2g(Z)).

4.5.3 The Relation Between SW (Sp2g(Z)) and A2(PGSp2g)

We will now recall the classical link between SW (Sp2g(Z)) and the space
Acusp(PGSp2g). A nice recent reference on this subject is the article [14], to which
we will refer as soon as we can formulate the statement (see also [195, Sect. 5]).

Set G = PGSp2g . The similitude factor ν : GSp2g → Gm induces a homomor-
phism ν∞ : G(R) → R

×/R×
>0 whose kernel we denote by G(R)+. The canonical

morphism Sp2g(R) → G(R) induces an isomorphism

Sp2g(R)/{±1} ∼→ G(R)+ .

We also set G(A)+ = G(A) ∩G(R)+ when A is a subring of R.
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By Sect. 4.1.2, we have h(G) = 1. Since we have ν∞(G(Z)) = {±1}, we obtain
the equality

G(A) = G(Q)(G(R)+ ×G(̂Z)) (4.5.1)

and, from (4.3.3), it follows that the restriction f �→ f|G+(R)×1 induces a G(R)+-
equivariant isomorphism

A2(PGSp2g)
∼→ L2(G(Z)+\G(R)+) . (4.5.2)

The action of GSp2g(R)
+ on Hg recalled in Sect. 4.5.1 factors through an action

of G(R)+. The latter is faithful and transitive, and its stabilizers are the maximal
compact subgroups of G(R)+. If K denotes the stabilizer in Sp2g(R) of the ele-
ment i1g ∈ Hg and K+ denotes its image in G(R)+, we therefore have a natural
identification

G(R)+/K+ ∼→ Hg .

Let (ρ,W ) be a C-representation of GLg as in Sect. 4.5.1, which we now assume
to be irreducible and satisfy mW ≡ 0 mod 2. Fix w ∈ W ∗ and f ∈ SW (Sp2g(Z));
we will associate a function ϕw,f ∈ A2(G) with w and f . Consider the function
ϕ : G(R)+ −→ C defined by

ϕ(γ) = 〈w, (f|W γ)(i1g) 〉 .

By construction,ϕ is continuous and left invariant underG(Z)+. By formula (4.5.1),
it is therefore the restriction to G(R)+ × 1 of a unique continuous function
ϕ′ : G(Q)\G(A) → C that is invariant under right translations by G(̂Z). Set

ϕw,f := ϕ′ .

By Asgari and Schmidt [14, Lemma 5], we have ϕw,f ∈ Acusp(G).
Before stating the final proposition, we still need to define the notion of a holomor-

phic element ofA2(G). Let g and k be the Lie algebras ofG(R)+ andK , respectively,
and let g = k⊕ p be the associated Cartan decomposition. Let d : g → Ti1g be the
differential in the identity of the map G(R)+ → Hg defined by h �→ h(i1g). It
induces an R-linear isomorphism

p
∼→ Ti1g = Symg(C) .

The C-vector space structure of Symg(C) therefore endows p with the structure
of a C-vector space that decomposes p ⊗R C into p+ ⊕ p−, so that d induces a
C-linear isomorphism p+

∼→ Ti1g . An element f ∈ A2(G) is called holomorphic
if it is continuous and if for every g ∈ G(A), the function G(R) → C defined by
h �→ f(gh) is infinitely differentiable and annihilated by p−.

Proposition 4.5.4. The map (w, f) �→ ϕw,f defines a C[K]-linear injection

W ∗ ⊗ SW (Sp2g(Z)) −→ Acusp(PGSp2g)
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whose image is the set of f ∈ Acusp(PGSp2g) that are holomorphic and W ∗-
isotypical under the action ofK .

Let us make this statement more precise. The map h �→ j(h, i1g) is a group mor-
phism K → GLg(C) that realizes GLg(C) as the complexification of the compact
unitary group K . This, in particular, allows us to view W as a representation of K
by restriction; it is irreducible because W is so as a representation of GLg. We refer
to [14, Sect. 4.5, Theorem 1] for a proof of this proposition, up to the assertion of
surjectivity, which is verified in [195, Sect. 5.2].

4.5.5 The Action of Hecke Operators

It follows from Proposition 4.5.4 that the image of the map in that statement is
stable under the action of H(PGSp2g), so that the space SW (Sp2g(Z)) inherits an
action of H(PGSp2g) from A2(PGSp2g). Up to normalization constants sometimes
introduced by different authors for integrality reasons, this action coincides with the
action traditionally defined on SW (Sp2g(Z)), and even on MW (Sp2g(Z)), which we
recall below (see also [88, Kap. IV], [89, Sect. 16], and [14, Sect. 4.3]). Without going
into details, let us mention that is it particularly natural when we view Sp2g(Z)\Hg

as the space of complex abelian varieties of dimension g endowed with a principal
polarization7 [89, Sect. 10].

Let (W,ρ) be an irreducible C-representation of GLg , p a prime, and G the
Z-group PGSp2g. The natural map

a : G(Z[
1

p
])+/G(Z)+ → G(Qp)/G(Zp)

is bijective because we have h(G) = 1 (Corollary 4.1.5) and ν∞(G(Z)) =
{±1} (Sect. 4.5.3). It therefore induces, in an obvious way, an injective homo-
morphism between the ring Hp(G) and the Hecke ring of the G(Z[1/p])+-set
G(Z[1/p])+/G(Z)+. This homomorphism is an isomorphism; this follows from
the isomorphism (4.2.1) and the fact that a also induces a bijection

G(Z)+\G(Z[1/p])+/G(Z)+ → G(Zp)\G(Qp)/G(Zp) , (4.5.3)

as shown by the theory of elementary divisors (Propositions 4.2.7 and 4.2.9, see also
Sect. 6.2.5).

Suppose that the matrix of the element T ∈ Hp(G) is the characteristic function
of the class set G(Zp)γG(Zp) with γ ∈ G(Z[1/p])+, in the sense of the identifica-

7 A principal polarization on a lattice L ⊂ Cg consists of a nondegenerate alternating bilinear form
η : L × L → Z whose extension of scalars ηR to L ⊗ R = Cg satisfies ηR(ix, iy) = ηR(x, y)
for every x, y ∈ Cg and whose associated Hermitian form (x, y) �→ ηR(ix, y) + iηR(x, y) on Cg

is positive definite. Riemann’s theory allows us to naturally identify Sp2g(Z)\Hg with the set of
GLg(C)-orbits of pairs (L, η), where L ⊂ Cg is a lattice and η is a principal polarization on L.
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tion (4.2.2). If we write

G(Z)+ γ G(Z)+ =
∐

i

γi G(Z)+ ,

we immediately see, using formula (4.2.3), that the following diagram is commuta-
tive:

(4.5.4)

where the vertical maps are those defined by Proposition 4.5.4 (see [14, Lemma 9]
for the details of the argument). Given the equality T = T t for every T ∈ H(G), we
will not need to remember the inversion of the γi in (4.5.4).

Formula (4.5.4) allows us to determine the link between the Hecke operators
considered here and different definitions given in the literature. We will just give the
translation of the definitions of Serre [177, Chap. VII, Sects. 2, 5] in the case g = 1.
We will consider specific cases in genus g = 2 in Chap. 9.

Let k ≥ 0 be an even integer. In [177, Chap. VII, Sect. 5.3], Serre defines,
for every integer n ≥ 1, an endomorphism of Mk(SL2(Z)) that he denotes by
T(n) and whose effect on the q-expansions he determines. We also have another
endomorphism, given by the action defined above of the operator TA ∈ H(PGL2)
introduced in Sect. 4.2.6, whereA is a cyclic group. The translation is then as follows:

n−(k−1)/2T(n) = n−1/2
∑

d2|n
TZ/(n/d2)Z . (4.5.5)

This comes, in particular, from the fact that in Serre’s book, the correspondence
T(n) sends a lattice to the set of its subgroups of index n rather than the set of those
with quotient Z/nZ.

4.5.6 Adisc(Sp2g)May Be Deduced fromAdisc(PGSp2g)

By restriction of the functions, the morphism Sp2g(A) → PGSp2g(A) induces an
isomorphism

Res: A2(PGSp2g)
∼→ A2(Sp2g) .

This follows from formula (4.3.3), taking into account that we have

h(Sp2g) = h(PGSp2g) = 1
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and that the natural homomorphism Sp2g(R) → PGSp2g(R) induces a homeomor-
phism Sp2g(Z)\Sp2g(R)

∼→ PGSp2g(Z)\PGSp2g(R).
Recall that in Sect. 4.2.6, we defined an injective ring homomorphismH(Sp2g) →

H(PGSp2g), which we will from now on view as an inclusion, by a slight abuse of
language. The source and target of the morphism Res are therefore both H(Sp2g)-
modules.

Proposition 4.5.7. The map Res commutes with the action of Sp2g(R) and that of
H(Sp2g). It sends A2

disc(PGSp2g) onto A2
disc(Sp2g).

Proof. The first assertion is obvious; the second follows from Lemma 4.2.15. The
last is a consequence of the first and the fact that the image of Sp2g(R) inPGSp2g(R)
has finite index (equal to 2). 
�
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