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Preface

Automorphic forms are functions defined on adele groups, derived from harmonic
analysis, whose theory forms a far-reaching generalization of that of modular forms.
Langlands’ famous functoriality conjecture predicts unexpected connections be-
tween automorphic forms associated with quite different groups. Recent advances
confirm part of these general conjectures, as well as their refinements by Arthur, for
the classical groups. The technicality of the proofs is formidable, but, in contrast,
the statements are fascinating due to their extreme beauty, their wide range of ap-
plications, and to some extent their simplicity. Our aim in this book is to reconsider
several problems of classical origin, from number theory and the theory of quadratic
forms, in light of these recent results.

A special case, in which the Langlands conjectures nevertheless conserve all their
flavor while being freed from numerous difficulties present in general, is that where
one restricts oneself to studying automorphic forms that are unramified at all primes.
These forms are also called level 1 automorphic forms. When one deals with classical
or Siegel modular forms, historic examples of automorphic forms if there ever were
any, this assumption means that one considers only forms that are modular for the
groups SL2(Z) or Sp2g(Z), and not for general congruence subgroups.

The interest of the case of level 1 automorphic forms does not lie uniquely in the
simplifications it provides; it is also very appealing for the number-theorist because
of the mix of scarcity and elegance of the examples (here too, think of modular forms
for SL2(Z)). Moreover, these forms are linked, sometimes very directly, sometimes
much less so, and sometimes only conjecturally, to objects of algebraic geometry
(varieties, stacks) that are both proper and smooth over the ring Z of integers, and
even to motives over the rational numbers with everywhere good reduction, objects
that are as fascinating as they are mysterious.

In this work, we aim to study the conjectures of Arthur and Langlands in the
context of level 1 automorphic forms, to give precise formulations of the statements
arising from the work of Arthur in this framework, and to illustrate the latter through
examples that are more specific but particularly spicy. We will also compare Arthur’s
results with those derived from more classical constructions, namely theta series,
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vi Preface

which put numerous examples within reach. Some of these constructions turn out to
be even richer, as we discovered, when they are combined with the triality principle.
Let us emphasize that we wish to work, if possible, with groups of high rank, as
they best reveal the richness of the general phenomena, and to move away from the
classical examples provided by “small” groups such as GL2, which have already
been the subject of an extensive literature.

Our illustrations will mainly concern the theory of quadratic forms over Z that
are nondegenerate and positive definite, in other words, the theory of even (integral)
Euclidean lattices whose determinant is 1 or 2. This condition on the determinant
means exactly that the associated projective quadric is smooth over Z, in which
case the associated special orthogonal group is smooth (and even reductive) over Z.
In the dimensions (less than or equal to 25) for which these objects are classified,
the concrete problem we are going to address is the determination, for each prime
number p, of the number of p-neighborhoods in Kneser’s sense, between the classes
of such objects. We will call this the p-neighbor problem.

The p-neighbor problem allows for a quite elementary approach: this is the point of
view that we chose to follow in the introduction (Chap.1), and also in the organization
of this book, where it will serve as a connecting thread. This will also make it
possible to begin by exposing the rich and fascinating history of the subject, and to
highlight some simple but striking statements that are consequences of our results (the
dimension 16 case, the determination of the p-neighborhood graphs in dimension
24, the affirmation of the Nebe–Venkov conjecture on the linear combinations of
higher-genus theta series of Niemeier lattices. . . ). However, we think it is helpful to
explain our original motivation beforehand, which was to test Arthur’s results in a
context that is both concrete and of high dimension, a motivation that we will not
emphasize in the beginning of the introduction.

In the remainder of this preface, we will explain the place of the p-neighbor pro-
blem in the general landscape of Langlands’ conjectures, or even motives, as well as
the line of thought that led us to this problem. We hope that this enlightenment (or
darkening depending on the viewpoint!) will arouse the interest of the readers who
are maybe less sensitive to the appeal of the theory of Euclidean lattices. In any case,
this passage will be inevitable in order to understand the ideas of the solution of the
p-neighbor problem we propose, which uses, in a crucial way, the aforementioned
recent developments. This apparent disproportion between the sophistication of
methods and the elementary aspect of the p-neighbor problem is one of the charms
of the latter.

The remainder of the preface will be organized as follows. First, we return, in a
more precise way, to the notion of level 1 automorphic forms (studied in Chap. 4).
After having discussed a few examples, we briefly present Langlands’ conjectures,
emphasizing a statement that we call the Arthur–Langlands conjecture (Chaps. 6
and 8). We explain how Langlands and Arthur motivate this conjecture by means
of a certain hypothetical group, the Langlands group of Z, which we denote by LZ.
When one specializes the statements to algebraic automorphic forms, the Langlands
group LZ can, to a large extent, be replaced by the absolute Galois group of Q. We
will then be in a position to provide the enlightenment we promised above and also
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a glimpse at some of the problems still to be solved once Arthur’s results have been
“put into the machine.”

Automorphic Forms of Level 1

Let us fix an algebraic group (scheme) G defined and reductive over the ring Z

of integers. This means that G is connected, smooth over Z, and that its reduction
modulo p is reductive over Z/pZ for each prime p. The most important examples
are GLn and the famous Chevalley groups, or the groups that are isogenous to them
such as PGLn, but other examples will also play an important role further on.

The adele group G(A) is a locally compact topological group in a natural way,
it is the restricted product of the real Lie group G(R) and of the p-adic Lie groups
G(Qp) over all primes p; the subgroup G(Q) is discrete in G(A). We denote by Z
the neutral component of the center of G(R) (so Z equals 1 if G is semisimple). The
homogeneous space G(Q)\G(A)/Z is endowed with a finite G(A)-invariant Borel
measure. A central question is to describe the Hilbert space L2(G(Q)\G(A)/Z) of
square integrable automorphic forms of G, viewed as a unitary representation of
G(A) for the right translations. In accordance with our objectives, we limit ourselves
to considering the subspace

A2(G) = L2(G(Q)\G(A)/Z ·G(̂Z))

of automorphic forms of level 1, which is nothing but the subspace ofG(̂Z)-invariants
ofL2(G(Q)\G(A)/Z). This is a Hilbert space equipped with a natural unitary action
of the group G(R) and, for each prime p, with an action of the convolution ring

Hp(G) = Z[G(Zp)\G(Qp)/G(Zp)] ,

whose elements are the Hecke operators at p; all these actions commute pairwise.
The aim is to describe A2(G) endowed with the commuting actions of the group
G(R) and of the commutative ring with unit H(G) := ⊗pHp(G).

Denote by Π(G) the set of isomorphism classes of objects of the form π∞ ⊗ πf ,
with π∞ an irreducible unitary representation of G(R) and πf a 1-dimensional
complex representation of the ring H(G). Such a πf may equally be viewed as a
collection of ring homomorphisms1 πp : Hp(G) → C; we also talk about systems
of eigenvalues of Hecke operators. Moreover, denote by m(π) the multiplicity of π
as a subrepresentation of A2(G); it is finite according to Harish-Chandra. A level
1 discrete automorphic representation of G (from here on, “level 1” will always be
dropped from the terminology) is an element π of Π(G) with m(π) �= 0. Finally,
denote byΠdisc(G) ⊂ Π(G) the subset of these representations. For general reasons,

1 Here, we do not follow the tradition according to which πp rather denotes the isomorphism
class of the (irreducible) C[G(Qp)]-submodule of L2(G(Q)\G(A)/Z) generated by an arbitrary
nonzero element of π. The difference is, however, artificial, as it is a well-known consequence of
the commutativity of Hp(G) that the two definitions contain exactly the same information.
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we may write

A2(G) = A2
disc(G)

⊥⊕A2
cont(G) with A2

disc(G) � ⊥⊕
π∈Πdisc(G)

m(π) π . (1)

The space A2
disc(G) contains the subspace A2

cusp(G) of cusp forms, whose defi-
nition is a natural generalization of that of a cuspidal modular form. We denote by
Πcusp(G) ⊂ Πdisc(G) the subset of elements appearing in A2

cusp(G). The descrip-
tion of the subsets Πcusp(G) ⊂ Πdisc(G) of Π(G), and of the multiplicities m(π)
above, is the heart of the problem. Indeed, we know since Langlands how to describe
the continuous part A2

cont(G) in terms of the A2
cusp(L), where L runs through the

Levi subgroups of all the proper parabolic subgroups of G defined over Z. We will
not be interested in A2

cont(G) in this book.

Two Examples

The representations π in Πdisc(G) have very different concrete manifestations
depending on the nature of their Archimedean component π∞. If U is an ar-
bitrary irreducible unitary representation of G(R), and if we set AU (G) :=
HomG(R)(U,A

2(G)), then we have

AU (G) = HomG(R)(U,A
2
disc(G)) �

⊕

{π ∈ Πdisc(G) |π∞�U}
m(π) πf .

This is an H(G)-module in an obvious way, and a finite-dimensional complex vector
space according to Harish-Chandra. It is equivalent to describe the whole ofΠdisc(G)
or the H(G)-modules AU (G) when U runs through the unitary dual of G(R).

In order to illustrate these notions, it is instructive to specify them in the special
case of the group G = PGL2.2 If U is a discrete series representation, say with
lowest weight the (even) integer k > 0, then AU (G) can be naturally identified with
the space of cusp forms of weight k for SL2(Z) endowed with the action of the
standard Hecke operators on the latter. If U := Us is a principal or complementary
series, parametrized in the usual way by an element s ∈ iR ∪ [0, 1[, then AUs(G)
can be identified with the Hecke-module of cuspidal Maass forms with eigenvalue
(1 − s2)/4 for the action of the Laplace operator on the Poincaré upper half-plane.
Contrary to the previous case, these spaces are very mysterious: Selberg has proved3
AUs(G) = 0 for s > 0, but we do not know any exact value of s such that AUs(G) is
nonzero, or whether the latter can be of dimension greater than 1. Finally, according
to Bargmann, the unique remaining unitary representation of PGL2(R) is the trivial
representation 1, and we obviously have dimA1(G) = 1 (consider the constant
functions).

2 Following our definitions, we have a canonical isomorphism A2(PGLn)
∼→ A2(GLn).

3 This is an Archimedean analog of Ramanujan’s conjecture, still open for general congruence
subgroups.
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Let us now discuss the example that will be of great importance in this book.
Let n ≥ 1 be an integer and R

n the standard Euclidean space of dimension n. It
turns out that the (compact) special orthogonal group of Rn is of the form G(R)
with G reductive over Z if and only if the integer n is congruent to −1, 0, or +1
modulo 8. Let us describe such a G under the assumption n ≡ 0 mod 8. It is well
known that in this case, Rn has even unimodular lattices. Such a lattice L is naturally
endowed with an integral quadratic form, positive definite and nondegenerate over
Z. The associated orthogonal group (scheme) OL is smooth over Z, and its neutral
component SOL is semisimple over Z, with real points SO(Rn).

We denote by Ln the set of even unimodular lattices in R
n. Any two elements

of Ln are in the same genus, that is, are isometric over Zp for every prime p (hence
over the rationals as well, according to Hasse and Minkowski). This implies, first,
that the space A2(SOL) depends in a nonessential way on the choice of the lattice L.
In order to fix ideas, in this book, we will focus on the group SOn := SOEn , where
En denotes the standard even unimodular lattice generated by 1

2 (1, . . . , 1) and the
n-tuples of integers (x1, . . . , xn) with

∑

i xi even. Another consequence is that we
have a natural identification

Ln
∼→ SOn(Q)\SOn(A)/SOn(̂Z)

that is compatible with the obvious actions of SOn(R) on both sides. If 1 denotes
the trivial representation of G(R), and if ˜Xn = SO(Rn)\Ln denotes the finite set of
proper isometry classes of elements in Ln, we therefore have natural isomorphisms

A1(SOn) � {f : ˜Xn → C} �
⊕

{π ∈ Πdisc(SOn) ;π∞�1}
m(π) πf .

The vector space C[˜Xn], dual of A1(SOn), is therefore an H(SOn)-module in a
natural way. For instance, if p is a fixed prime, it is an exercise to see that the
endomorphism of C[˜Xn] mapping the class of a lattice to the sum of the classes
of its p-neighbors is induced by an element of Hp(SOn), which we denote by
Tp. The determination of this endomorphism is exactly the problem considered at
the beginning of the introduction.4 Let us add that the spaces AU (SOn), with U
arbitrary (but necessarily finite-dimensional), have similar interpretations as spaces
of SOn(R)-equivariant functions Ln → U∗; many such spaces will play a role in
this book.

Langlands’ Functoriality Principle

Let us describe, rather briefly, Langlands’ general conjectures in the case of level
1 automorphic forms. A starting point is the notion of dual group, introduced by

4 Actually, we will mostly consider the analogous, only slightly simpler, problem in which SOn is
replaced by On := OEn , whose only flaw is that it does not quite fit the conventions adopted here
because On is not connected, but this slight difference is inessential.
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Langlands. IfG is reductive overZ, its dual in the sense of Langlands is simply “the”
complex linear algebraic reductive group, denoted by ̂G, whose based root datum is
dual (or inverse) to that of GC:

GC GLn PGLn Sp2g PGSp2g SO2n+1 SO2n PGSO2n

̂G GLn SLn SO2g+1 Spin2g+1 Sp2n SO2n Spin2n

This group first allows Langlands to parametrize the elements of Π(G). He
observes that the Satake isomorphism provides a canonical bijection, for each prime
p, between the set of ring homomorphisms Hp(G) → C and the set of semisimple
conjugacy classes in ̂G(C). In a similar way, he interprets the infinitesimal character
(in the sense of Harish-Chandra) of a unitary representation ofG(R) as a semisimple
conjugacy class in the Lie algebra of ̂G. Finally, with each element π of Π(G) is
associated a collection of conjugacy classes

c(π) = (c∞(π), c2(π), c3(π), · · · )

that uniquely determines πp for each prime p, as well as the infinitesimal character
of π∞, which only leaves finitely many possibilities for π∞. These parametrizations,
recalled in Chap. 6, have some very concrete aspects. For example, we will see that
for π in Π(SOn), we have the relation

πp(Tp) = pn/2−1 trace cp(π) . (2)

Let G and G′ be two reductive groups over Z, and consider a morphism of
algebraic groups r : ̂G → ̂G′. Langlands’ functoriality principle predicts, for each
constituent π of A2(G), the existence of a constituent π′ of A2(G′) that corresponds
to π, in the sense that we have an equality of conjugacy classes r(cv(π)) = cv(π

′) for
each v in the setV := {∞, 2, 3, 5, . . .} of all places ofQ. It is only a principle, rather
than a conjecture, as it is not quite accurate as stated, even if we give a reasonable
sense to the term “constituent.” In what follows, we propose to make the statement
of the functoriality principle precise in the important case G′ = GLn, in which r is
nothing but an n-dimensional representation of the algebraic group ̂G. We will later
refer to this statement as the Arthur–Langlands conjecture.

The Langlands Group of Z

Langlands observed that the formulation of his conjectures is enlightened if one
assumes the existence of a certain group, which we will denote here by5 LZ, whose

5 To be completely honest, Langlands considers a group that applies to all automorphic forms,
rather than to level 1 forms only, of which our LZ would merely be a quotient [139, Sect. 2].
Moreover, following Arthur in [9, Sect. 8], we adopt Kottwitz’s point of view [129, Sect. 12] on the
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̂G-valued representations parametrize the automorphic representations of G in an
appropriate sense. We may think of this group as being an extension of the absolute
Galois group ofZ (. . . trivial according to Minkowski!). For our needs in this preface,
we only assume that LZ is a compact Hausdorff topological group (hence an inverse
limit of compact Lie groups) satisfying the axioms denoted by (L1), (L2), and (L3)
that we introduce below.

For every prime p,LZ is endowed with a conjugacy classFrobp. Moreover,
the complex pro-Lie-algebra ofLZ is endowed with a semisimple conjugacy
class Frob∞.

(L1)

Let G be reductive over Z. Following Arthur and Langlands, we denote byΨ(G) the
set of ̂G(C)-conjugacy classes of continuous group homomorphisms

ψ : LZ × SL2(C) −→ ̂G(C) (3)

that are polynomial on the SL2(C)-factor. Such aψ is called discrete if the centralizer
Cψ of Im ψ in ̂G(C) is finite modulo the center Z( ̂G) of ̂G(C). For example, if G is
GLn, in which case we also have ̂G = GLn and ψ is nothing but an n-dimensional
representation of LZ × SL2(C), then ψ is discrete if and only if it is an irreducible
representation. We denote by Ψdisc(G) ⊂ Ψ(G) the subset of classes of discrete
morphisms.

In parallel with what has been done for Π(G), Arthur and Langlands associate
with each ψ in Ψ(G) a collection of conjugacy classes c(ψ) = (cv(ψ))v∈V defined
by c∞(ψ) = ψ(Frob∞, e∞) and cp(ψ) = ψ(Frobp, ep), where the ev are the
elements of sl2(C) for v =∞ and of SL2(C) for v = p, defined by

e∞ =

[−1/2 0
0 1/2

]

and ep =

[

p−1/2 0

0 p1/2

]

.

For every integer n ≥ 1, there is a unique bijection

Πdisc(GLn)
∼→ Ψdisc(GLn) , π → ψπ

such that we have c(π) = c(ψπ) for all π ∈ Πdisc(GLn). Moreover, ψπ is
trivial on SL2(C) if and only if we have π ∈ Πcusp(GLn).

(L2)

This axiom, together with the compactness of LZ, implies that for any π in
Πcusp(GLn) and for any prime p, the eigenvalues of the conjugacy class cp(π)
all have absolute value 1: this is the so-called generalized Ramanujan conjecture. It
also shows6 |Lab

Z
| = dimA(GL1) = 1.

Langlands group, which amounts to viewing it as a topological group rather than a pro-algebraic
one as Langlands does. See [11] for another reference on the Langlands group.
6 We will prove that (L2) also implies that LZ is connected; see Proposition 9.3.4.
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For every G reductive over Z, there exists a decomposition

Adisc(G) =

⊥
⊕

ψ∈Ψdisc(G)
Aψ(G) ,

stable under G(R) and H(G) and satisfying the following property: if
π ∈ Π(G) appears in Aψ(G), then we have c(π) = c(ψ).

(L3)

In particular, if a representation π ∈ Π(G) appears in a summand Aψ(G) as in (L3),
then π satisfies the Ramanujan conjecture (in the sense that for every prime p, cp(π)
is the conjugacy class of a “compact element” of ̂G(C)) if and only if ψ is trivial on
1 × SL2(C). It is Arthur’s idea that the failure of Ramanujan’s conjecture may, in
general, be entirely explained by the presence of SL2(C) in the definition of Ψ(G)
(formula (3)).

Arthur and Langlands strengthen the axiom (L3) by adding a converse statement,
called the multiplicity formula, whose formulation, however, requires the introduction
of more technical ingredients. Let us simply say that if ψ ∈ Ψdisc(G) and π ∈
Π(G) satisfy c(π) = c(ψ), this formula expresses the multiplicity of π in the
subspace Aψ(G) as the scalar product of two “explicit”7 characters of the finite
group Cψ/Z( ̂G).

The Arthur–Langlands Conjecture

Let us go back to the statement of the Arthur–Langlands conjecture alluded to
above. In order to state it, let us first assume the existence of a compact group LZ

satisfying the axioms (L1), (L2), and (L3). LetG be reductive overZ, π in Πdisc(G),
and r : ̂G → GLn a representation. Let ψ ∈ Ψdisc(G) be such that π appears
in Aψ(G); such a ψ exists by Axiom (L3). The decomposition into irreducibles
of the representation r ◦ ψ of the direct product LZ × SL2(C) can be written as
⊕i ri ⊗ Symdi−1

C
2 for some irreducible representations ri of dimension ni of LZ

and certain integers di ≥ 1. By Axiom (L2), we have ri � ψπi for a unique πi in
Πcusp(GLni). In particular, for every v ∈ V, we have the identity between conjugacy
classes

r(cv(π)) =
⊕

i

cv(πi)⊗ Symdi−1(ev) (4)

(the reader will have no trouble deciphering the meaning of the right-hand side of
this equality).

7 The definition of these characters is very delicate. One of them is a group homomorphism
Cψ/Z( ̂G) → C× defined by Arthur in [9, p. 55] with the help of the ε-factors of certain L-
functions associated with ψ. The other one depends on the definition of a certain finite subset
of irreducible unitary representations of G(R) associated with ψ, denoted by Π∞(ψ), nowadays
usually called an Arthur packet [9, Sect. 4]. This character is nonzero if and only if π∞ belongs to
Π∞(ψ). In the important special case Cψ = Z( ̂G), the multiplicity of π in Aψ(G) is thus nonzero
if and only if we have π∞ ∈ Π∞(ψ).
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As a consequence of this analysis, we have shown that the existence of a compact
group LZ satisfying the axioms (L1), (L2) and (L3) implies the following statement,
whose formulation does not involveLZ: For every reductive groupG overZ, every π
in Πdisc(G), and every representation r : ̂G→ GLn, there exists a unique collection
of triples (di, ni, πi), with di, ni ≥ 1 integers satisfying n =

∑

i dini and πi a
representation in Πcusp(GLni), such that Equality (4) holds. This is the precise
form of the Arthur–Langlands conjecture that had been promised.

In his work mentioned earlier, Arthur proved the following special cases of this
conjecture: GQ is either the symplectic group Sp2g of a symplectic space over Q of
dimension 2g, or the special orthogonal group of a quadratic space of dimension 2n
or 2n+1 overQ that has a totally isotropic subspace of dimensionn, π ∈ Πdisc(G) is
arbitrary, and r is the natural representation of ̂G, called the standard representation,
whose dimension is 2g + 1, 2n, and 2n, respectively. For such groups, Arthur also
proves a version of the multiplicity formula to which we alluded during the discussion
of Axiom (L3). We will state more precise forms of Arthur’s results in Chap. 8.
However, let us stress that we will not say anything about Arthur’s proofs; they go
far beyond the scope of this work.

Galois Representations and Motives

The group LZ is subject to several other conjectures. A most tempting one is that it
satisfies the Sato–Tate property: theFrobp are equidistributed in the set of conjugacy
classes of LZ, endowed with its invariant probability measure.8 In this section, we
will instead discuss the conjectural relation between LZ, Grothendieck motives, and
Galois representations.

These links will only concern the quotient of LZ, whose irreducible representa-
tions parametrize, in the sense of Axiom (L2), the representations π in Πcusp(GLn)
that are algebraic. Here, this adjective means that if we denote by λi the eigenvalues
of the conjugacy class c∞(π) ⊂ Mn(C), we have λi − λj ∈ Z for all i, j. We then
denote by w(π) the maximum of the differences λi − λj , and call it the motivic
weight of π.

Denote by Q ⊂ C the subfield of algebraic numbers. Fix a prime �, an algebraic
closure Q� of the field of �-adic numbers, and an embedding ι : Q → Q�. Thanks
to the works of a number of mathematicians (including Clozel, Deligne, Fontaine,
Grothendieck, Langlands, Mazur, Serre, Shimura, Taniyama, Tate, Weil . . . ), one
conjectures the existence of a natural bijection π → ρπ,ι between the set of algebraic
π in Πcusp(GLn) and the set of isomorphism classes of irreducible continuous
representations Gal(Q/Q) → GLn(Q�) that are unramified at each prime p �= �
and crystalline at � in the sense of Fontaine, with lowest Hodge–Tate weight 0. In
particular, one requires this bijection to satisfy the equality9

8 Given the connectedness of LZ, it would be easy to see, for instance, that this property implies
the usual Sato–Tate conjecture for modular forms for SL2(Z).
9 This equality makes sense because we also conjecture that we have det(t− cp(π)) ∈ Q[t] if π is
algebraic.
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det(t− ρπ,ι(Frobp)) = ι(det(t− pw(π)/2cp(π)))

for each prime p �= �, which determines it uniquely.
This conjecture may readily be seen as an “algebraic” analog of Axiom (L2).

Many difficult and important special cases of it are known. According to Fontaine
and Mazur, one expects that the Galois representations above are exactly those
appearing in the �-adic realizations of pure motives over Q with everywhere good
reduction.

Conclusion

Let G be reductive over Z and r a representation of ̂G. As we have seen, the
Arthur–Langlands conjecture predicts that for every π in Πdisc(G), the collection of
conjugacy classes r(c(π)) can be expressed in a very precise way in terms of building
blocks that are elements πi of Πcusp(GLni) and integers di with dim r =

∑

i nidi.
Here are some questions that arise naturally: Assuming that a representation π in
Πdisc(G) is given, for instance such that πf appears concretely in a specific AU (G),
can we determine the associated representations πi and integers di? Is it easier to
determine them rather than π itself?

A first obstacle we encounter when trying to illustrate these questions is to have
at our disposal examples of groups G and of irreducible unitary representations U
of G(R) for which we know how to determine whether AU (G) is nonzero, or even
better determine its dimension. When U is a discrete series representation, this is an
accessible but notoriously difficult problem: for example, when we have G = Sp2g,
it contains the question of determining10 the dimension of spaces of Siegel modular
cusp forms for Sp2g(Z). When U is not in the discrete series, it seems hopeless to
obtain a formula for dimAU (G), as is shown by the example G = PGL2.

The special case where G(R) is compact, for which all the irreducible representa-
tions are in the discrete series, has the peculiar feature that the question of determining
dimAU (G) is significantly more elementary. We will give many such examples with
G = SOn. The case G = SO24 is especially interesting from this point of view,
as it is one of the groups of highest rank for which dimAU (G) can be computed
for at least one U (and with AU (G) �= 0). Indeed, we have dimA1(G) = |˜X24|,
and this cardinality is 25 because the Leech lattice is the only one, among the 24
Niemeier lattices, not to admit any improper isometry. We are forced to ask ourselves
the following question.

Question 1. Let r be the standard representation of ŜO24 and π in Πdisc(SO24) with
π∞ = 1; can we determine the collection of representations πi and the integers di
corresponding to π and r according to the Arthur–Langlands conjecture?11

10 This determination is classical for g = 1, due to Igusa (in the scalar-valued case) and Tsushima
(in the general case) for g = 2, to Tsuyumine for g = 3 (again in the scalar-valued case), and has
been solved only very recently by Taïbi in general for g ≤ 7.
11 Observe that Arthur’s results do not immediately apply here because SOn is not (quasi-)split
over Q. Nevertheless, we will prove that the Arthur–Langlands conjecture is satisfied when π and
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This is the question at the origin of this work. Formulas (4) and (2) show that
a positive answer to this question gives decisive information about the p-neighbor
problem in dimension 24.

Before saying more about Question 1, let us add that the πi that appear in its
statement are not arbitrary: they are algebraic. More generally, if G is reductive over
Z and ifπ is inΠdisc(G)withπ∞ a discrete series representation, then the eigenvalues
of c∞(π) in the adjoint representation of Lie ̂G are in Z (Harish-Chandra); it follows
that if r is an arbitrary representation of ̂G, then the representations πi associated
with π and r by the Arthur–Langlands conjecture are necessarily algebraic. As
a consequence, those π are related to motives and Galois representations, which
makes them even more interesting. Those links are deep. We will show, for example,
that Arthur’s multiplicity formula suggests that if π in Πcusp(GL8k) is algebraic,
isomorphic to its dual, and if the eigenvalues of c(π∞) are distinct integers, then
there exists a π′ in Πdisc(SO8k) satisfying r(c(π′)) = c(π). These unexpected
relations between Galois representations and even unimodular lattices clearly show
the interest of studying Πdisc(SOn) for the number-theorist.

Let us return to Question 1. An obstacle we immediately faced, at least when
we started working on this question, is that very few results were known about
Πcusp(GLn) with n > 2, even if we restrict ourselves to algebraic representations.12
For instance, assuming that there exists a representation π in Πdisc(SO24) satisfying
π∞ = 1 and such that one of the associated πi is in Πcusp(GLni) with ni big, it
is very likely that we would never be able to say anything interesting either about
this π, or about the p-neighbor problem in dimension 24. Note that we always have
ni ≤ 24, but also w(πi) ≤ 22, as can be seen by considering c∞(π).

One of our main results will be the proof in Sect. 9.3 of a classification of
the automorphic representations π in Πcusp(GLn), with n ≥ 1 arbitrary, that are
algebraic of motivic weight w(π) ≤ 22. We will see that there are only 11 such
representations and that they all appear (as πi) in the answer to Question 1. We
furthermore have n ≤ 4 in all cases, with exactly four of the representations in
Πcusp(GL4). These four, which actually come from certain vector-valued Siegel
cusp form of genus 2, will play an important role in this book.

The scope of the classification above is broader: for arbitrary G, the Arthur–
Langlands conjecture suggests that every representation π in Πdisc(G) with π∞
in the discrete series and such that c∞(π) is “small enough,” is built from the 11
automorphic representations mentioned above. For example, we will see how to use
this approach to determine the dimension of the space of Siegel modular cusp forms
of weight at most 12 for Sp2g(Z).

It seems reasonable to end this preface here, and to leave to the reader the pleasure
of immersing themselves in the actual introduction of the book.

r are as in the statement of Question 1, by applying Arthur’s results to Sp2g and using some theta
series arguments.
12 The situation is very different by now, thanks to the works [55] and [195]. Note that although
these works were published before the present book, they were actually entirely motivated by it.
Many important questions remain; for example, we do not know the number of algebraic π in
Πcusp(GL3) with a given Archimedean component π∞.
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Chapter 1
Introduction

1.1 Even Unimodular Lattices

Let n ≥ 1 be an integer, and consider the Euclidean space R
n endowed with the

standard inner product (xi) · (yi) =
∑

i xiyi. An even unimodular lattice of rank n
is a lattice L ⊂ R

n with covolume 1 such that x · x is an even integer for all x in
L. The set Ln of these lattices is endowed with an action of the orthogonal group
O(Rn); we denote the set of isometry classes of even unimodular lattices of rank n
by

Xn := O(Rn)\Ln .

To each L in Ln, there corresponds a quadratic form

qL : L→ Z , x → x · x
2

,

whose associated bilinear form x · y has determinant 1. The map L → qL then
induces a bijection between Xn and the set of isomorphism classes of positive
definite quadratic forms over Z of rank n and determinant 1.

As is well known, the set Xn is finite. It is nonempty if and only if n ≡ 0 mod 8.
A standard example of an element of Ln is the lattice

En := Dn + Ze ,

where Dn = {(xi) ∈ Z
n ;
∑

i xi ≡ 0 mod 2}, e = 1
2 (1, 1, . . . , 1), and n ≡

0 mod 8. Let us explain this notation. With each element L of Ln is associated a
root system

R(L) := {x ∈ L ; x · x = 2}
of rank at most n. Its irreducible components are of type An, Dn, E6, E7, or E8;
we will say that it is “of type ADE.” The root system R(E8) is, for example, of type
E8 and generates the lattice E8 over Z. For n > 8, the root system R(En) is of type
Dn and generates Dn.
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The set Xn has only been determined in dimension n ≤ 24. Mordell and Witt
proved, respectively,

X8 = {E8} and X16 = {E16,E8 ⊕ E8} .

The two lattices E16 and E8 ⊕ E8 will play an important role in this book. They
are both easy and difficult to distinguish from each other: their root systems are
different, but they represent each integer exactly the same number of times. This last,
well-known, property leads, for example, to Milnor’s isospectral tori.

The elements ofX24 were classified by Niemeier [158], who proved, in particular,
|X24| = 24. Before saying more about these lattices, let us mention that for n ≥ 32,
the Minkowski–Siegel–Smith mass formula shows that the size of Xn explodes.
For example, we have |X32| > 8 · 106 [177]; in fact, X32 even has more than 109

elements, as shown by King [118].
An element of L24 is called a Niemeier lattice; the most famous one is the Leech

lattice. Up to isometry, it is the only element L of L24 with R(L) = ∅ (Conway). A
remarkable fact is that if L is a Niemeier lattice that is not isomorphic to the Leech
lattice, then R(L) has rank 24 and all its irreducible components have the same
Coxeter number. A simple proof of this was given by Venkov [201]. The miracle
is then that the map L → R(L) induces a bijection between X24 − {Leech} and
the set of isomorphism classes of root systems R of rank 24 and type ADE with
components all having the same Coxeter number h(R). The proof is a rather tedious
case-by-case verification.

Table 1.1 The 23 roots systems of type ADE and rank 24 with components all having the same
Coxeter number

R D24 D16E8 3E8 A24 2D12 A17 E7 D10 2E7 A15 D9

h(R) 46 30 30 25 22 18 18 16

R 3D8 2A12 A11 D7 E6 4E6 2A9D6 4D6 3A8 2A7 2D5

h(R) 14 13 12 12 10 10 9 8

R 4A6 4A5 D4 6D4 6A4 8A3 12A2 24A1

h(R) 7 6 6 5 4 3 2

The results mentioned in this section are discussed in Chap. 2, which is mainly
devoted to recalling classical results. We first develop prerequisites from bilinear and
quadratic algebra necessary to understand the constructions of the quadratic forms
to which we have alluded above, as well as others we will need. In particular, we
recall Venkov’s theory and explain the construction of certain Niemeier lattices. We
also take the opportunity to recall some basic facts on classical group schemes over
Z that will be used later. Appendix B contains, among other things, a variant of the
results of Chap. 2: in it, we study the even lattices in R

n of determinant 2 as well as
the corresponding theory of quadratic forms over Z (in odd dimensions).
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1.2 Kneser Neighbors

Let p be a prime. The notion of p-neighbors was introduced by M. Kneser; it can
be viewed as a tool for constructing a set of even unimodular lattices from a given
lattice and the prime p. In Chap. 3, we study several variations on this notion and
give many examples.

Kneser defines two lattices L and M in Ln to be p-neighbors if L∩M has index
p in L (and therefore in M ). It is easy to construct all p-neighbors of a given lattice
L. Indeed, with any isotropic line � in L ⊗ Fp, say generated by an element x of L
satisfying qL(x) ≡ 0 mod p2, we can associate the even unimodular lattice1

voisp(L; �) := H + Z
x

p
,

where H = {y ∈ L ; x ·y ≡ 0 mod p} (the lattice above depends only on the choice
of �). The map � → voisp(L; �) induces a bijection between CL(Fp) and the set of p-
neighbors ofL, whereCL denotes the projective (and smooth) quadric overZ defined
by qL = 0. This quadric turns out to be hyperbolic over Fp for every prime p, so the
number of p-neighbors ofL is exactly |CL(Fp)| = 1+p+p2+ · · ·+pn−2+pn/2−1,
which we will denote by cn(p).

Consider, for example, the element ρ = (0, 1, 2, . . . , 23) of E24. It generates an
isotropic line in E24 ⊗ F47 because of the congruence

∑23
i=1 i

2 ≡ 0 mod 47. It is
not very difficult to verify that vois47(E24; ρ) does not have any roots, so that we
have an isometry

vois47(E24; ρ) � Leech .

This particularly simple construction of the Leech lattice is attributed to Thompson
in [68]; we will return to it later. It illustrates the saying that many constructions of
lattices are special cases of constructions of neighbors.

Returning to the general setting, for every L in Ln, we have a partition of the
quadricCL(Fp) given by the isometry class of the associated p-neighbor. One of the
aims of this book is to study this partition in dimension n ≤ 24. For example, can we
determine the numberNp(L,M) of p-neighbors of L isometric to a given M ∈ Ln?
The first interesting case is, of course, that of dimension n = 16. To state the result,
we introduce the linear map Tp : Z[Xn] → Z[Xn] defined by Tp [L] =

∑

[M ],
where the sum is taken over the p-neighbors M of L.

Theorem A. In the basis E8 ⊕ E8, E16, the matrix of Tp is

c16(p)

[

1 0
0 1

]

+ (1 + p+ p2 + p3)
1 + p11 − τ(p)

691

[−405 286
405 −286

]

,

where τ is Ramanujan’s function defined by q
∏

m≥1

(1− qm)24 =
∑

n≥1 τ(n)q
n.

1 The notation vois comes from the French word voisin for neighbor.
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For example, this theorem asserts that for every prime p, we have Np(E8 ⊕
E8, E16) = (405/691)(1+ p11− τ(p))(p4 − 1)/(p− 1). This theorem is probably
known to specialists, but we have not been able to find it stated this way in the
literature. We will give several proofs of it further on. In view of the theory of theta
series and modular forms for SL2(Z), the presence of τ(n) in the statement seems,
at first sight, rather classical. For example, if we set rL(n) = |{x ∈ L ; x ·x = 2n}|,
then we can easily show that we have rLeech(p) = (65520/691)(1 + p11 − τ(p))
for every prime p, a formula that resembles that of the theorem. Nevertheless, the
presence of the term τ(p)(p4 − 1)(p− 1)−1 in the formula for Np(E8 ⊕ E8, E16)
given above appears to be much more subtle; it will turn out to be equivalent to a
nontrivial case of the Arthur–Langlands functoriality conjecture.2

Our main theorem is similar to Theorem A but concerns Niemeier lattices. We can
state it in the same style as Theorem A, namely as an explicit formula for the matrix
of Tp on Z[X24], but the result is very hard to digest. This explicit formula involves
rational coefficients with such large denominators that it appears quite exceptional
thatNp(L,M) is an integer! We will state a more conceptual (and equivalent) version
of our result in Sect. 1.4 (Theorem E). A remarkable feature is that the statement
involves all cuspidal modular forms of weight k ≤ 22 for the group SL2(Z), as
well as four vector-valued Siegel modular forms for Sp4(Z). Let us already discuss
a number of consequences concerning the Niemeier lattices that follow from our
formulas.

Consider the graph Kn(p) with set of vertices Xn, where the classes of two
nonisomorphic lattices L and M are joined by an edge if and only if Np(L,M) �= 0.
Kneser proved thatKn(p) is connected for alln and p, as a consequence of his famous
strong approximation theorem. This nice result shows that we can, theoretically,
reconstruct Xn from the lattice En and a prime p. Niemeier used this to compute
X24 using 2-neighborhoods.

The graph K16(p) is the connected graph with 2 vertices (Kneser). This is,
of course, compatible with the bound |τ(p)| < 2p11/2 (Deligne–Ramanujan) and
the formula for Np(E8 ⊕ E8,E16) given by Theorem A. On the other hand, the
graph K24(2), determined by Borcherds [68], is not at all trivial. It has diameter 5
and the Wikipedia page http://en.wikipedia.org/wiki/Niemeier_lattice gives a nice
representation of it, also due to Borcherds. Our results allow us, for example, to
determine K24(p) for every prime p (Sect. 10.2).3

Theorem B. (i) Let L be a Niemeier lattice with roots. Then L is a p-neighbor of
the Leech lattice if and only if p ≥ h(R(L)).

(ii) The graph K24(p) is complete if and only if p ≥ 47.

2 The comparison of Theorem A with the formula for rLeech(p) given above leads to the “purely
quadratic” relation Np(E8 ⊕ E8,E16) = (9/1456) · rLeech(p) · (p4 − 1)(p − 1)−1, which we do
not know how to prove directly.
3A list of these graphs can be found at http://gaetan.chenevier.perso.math.cnrs.fr/niemeier/niemeier.
html.

http://en.wikipedia.org/wiki/Niemeier_lattice
http://gaetan.chenevier.perso.math.cnrs.fr/niemeier/niemeier.html
http://gaetan.chenevier.perso.math.cnrs.fr/niemeier/niemeier.html
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Statement (i) of this theorem concerns the constructions of the Leech lattice as
a p-neighbor of a Niemeier lattice with roots. For example, on the Borcherds graph
K24(2), we see that the distance from the Leech lattice to E24 is 5 and that the Leech
lattice is linked only to the lattice with root system 24A1. (The latter is the Niemeier
lattice with roots that is the most delicate to construct, as it needs the Golay code;
see Sect. 2.3.) This last property is, in fact, quite easy to understand: if the Leech
lattice is a 2-neighbor of a Niemeier lattice L (with roots), then L has an index 2
subgroup without any roots. In particular, R(L) has the property that the sum of two
roots is not a root, so that its irreducible components are of rank 1, which implies
that R(L) = 24A1. Of the root systems in Table 1.1, this is also the only one with
Coxeter number 2, in accordance with statement (i).

The most elementary part of Theorem B, which is proved in Sect. 3.4 and gen-
eralizes the observation above, consists in verifying that p ≥ h(R(L)) if the Leech
lattice is a p-neighbor of L. This is a formal analog of a result of Kostant [128]
asserting that the minimal order of a regular element of finite order in a connected,
compact, adjoint Lie group coincides with the Coxeter number of its root system.
The proof of the other statements, on the other hand, requires Theorem E as well
as a number of Ramanujan-type inequalities. It will be completed only in Chap. 10
(Sects. 10.2 and 10.3).

In Chap. 3, we also study the limit cases of assertion (i) of Theorem B (with
direct arguments, that is, without using Theorem E). For this, we carry out a detailed
analysis of the elements c of CL(Fp) satisfying voisp(L; c) � Leech, where L is
a Niemeier lattice with nonempty root system R = R(L). For the relevance of the
statements, we need to study, more generally, the d-neighbors of L, where d ≥ 1 is
an integer that need not be prime (Sect. 3.1). We prove that if ρ is a Weyl vector of
R and we set h = h(R), then we have isometries (Theorem 3.4.2.10)

voish(L; ρ) � voish+1(L; ρ) � Leech . (1.2.1)

This is well defined because ρ ∈ L (Borcherds) and qL(ρ) = h(h+1) (Venkov).This
statement contains, for example, the observation by Thompson mentioned earlier.
In fact, these 23 (or 46) constructions of the Leech lattice are none other than the
famous holy constructions of Conway and Sloane [67]. We, however, give a new
proof of the isometries (1.2.1) using the theory of neighbors and show the identities

Nh(L,Leech) =
|W |
ϕ(h)g

and Nh+1(L,Leech) =
|W |

ϕ(h+ 1)
, (1.2.2)

where W denotes the Weyl group of R and g2 its index of connection in the sense of
Bourbaki. We conclude Chap. 3 with an analysis of vois2(L; ρ) inspired by results
of Borcherds (Fig. 3.1).
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1.3 Theta Series and Siegel Modular Forms

Let us return to the determination of the operator Tp on Z[Xn]. We begin with a
few simple observations. The Tp commute and are self-adjoint for a suitable inner
product on R[Xn] [156] (Sect. 3.2). We must therefore determine a basis of common
eigenvectors of theTp, as well as the corresponding sets of eigenvalues. There is only
one obvious stable line, generated by

∑

L∈Xn
[L]/|O(L)|, on which the operator Tp

has “trivial” eigenvalue cn(p).
As hinted at in the preface, we are in fact dealing with a disguised problem

belonging to the spectral theory of automorphic forms. Indeed, if G = On denotes
the orthogonal group scheme over Z defined by the quadratic form qEn and A the
adele ring of Q, then arguments from genus theory lead to an isomorphism of G(R)-
sets Ln � G(Q)\G(A)/G(̂Z) (Sects. 2.2 and 4.1). Consequently, the dual of R[Xn]
can be identified with the space of real-valued functions on G(Q)\G(A) that are
invariant under the right action of G(R) ×G(̂Z) by translation. In this description,
the operatorTp is induced by a specific element of the ringH(G) of Hecke operators
of G.

These classical observations are recalled in Chap. 4. Although we are mainly
interested in the automorphic forms for the Z-group On, our statements and proofs
will require the introduction of several variants (automorphic forms for SOn, PGOn

and PGSOn), as well as modular forms for SL2(Z), vector-valued Siegel modular
forms forSp2g(Z), and even, through Arthur’s results, automorphic forms forPGLn.
Therefore, from the beginning, we need to adopt a sufficiently general point of view
embracing all these objects (Sect. 4.3). In Sects. 4.1 and 4.2, the reader can find an
elementary exposition on Hecke operators. The emphasis is on the examples provided
by the classical groups and their variants (Hecke, Satake, Shimura); these lead to
a wider overview of p-neighbors and their generalizations. Sections 4.4 and 4.5
are devoted to recalling some properties of automorphic forms for On and Siegel
modular forms. Let us emphasize that this chapter is intended for nonspecialists and
does not pretend to any originality.

One approach to studying theH(On)-moduleZ[Xn] is to examine the Siegel theta
series ϑg(L) of each genus g ≥ 1 of the elements L of Ln. For every n ≡ 0 mod 8
and g ≥ 1, they allow us to define a linear map

ϑg : C[Xn]→ Mn/2(Sp2g(Z)) , [L] → ϑg(L) ,

where Mk(Sp2g(Z)) denotes the space of Siegel modular forms of weight k ∈ Z

for Sp2g(Z) (Sect. 5.1). The relevance of this map for our problem comes from
the generalized Eichler commutation relations; they assert that ϑg intertwines each
element of H(On) with an “explicit” element of H(Sp2g) (Eichler, Freitag, Yoshida,
Andrianov, Sect. 5.1). The map ϑg is trivially injective for g ≥ n. It seems, however,
quite difficult to determine the structure of the H(Sp2g)-module Mk(Sp2g(Z)),
especially for large g. Nevertheless, in Chap. 9, we develop a strategy that allows
us to solve new cases of this problem. Our strategy relies, among other things, on
results of Arthur [13].
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The map ϑg has been widely studied. Its kernel, which shrinks when g increases,
describes the linear relations between the theta series of genus g of the elements
of Ln, and determining its image is an example of Eichler’s famous basis problem.
More precisely, ϑg induces an injective map

Kerϑg−1/Kerϑg −→ Sn/2(Sp2g(Z)) , (1.3.1)

where Sk(Sp2g(Z)) ⊂ Mk(Sp2g(Z)) denotes the subspace of cusp forms (see
Sect. 5.1 or footnote 4 below for the convention on ϑ0), and Eichler asks whether
this map is surjective. An important result of Böcherer [27] gives a necessary and
sufficient condition for an eigenform for H(Sp2g) to be in the image of (1.3.1), in
terms of the vanishing of an associated L-function at the integer n/2− g (Sect. 7.2).

The Case n = 16

The case n = 16 is the subject of a famous story, recalled in Sect. 5.2. Indeed, a
classical result of Witt and Igusa asserts that we have

ϑg(E8 ⊕ E8) = ϑg(E16) if g ≤ 3 . (1.3.2)

These remarkable identities mean that E8 ⊕ E8 and E16 represent each positive
integral quadratic form of rank at most 3 exactly the same number of times. This is
well known in genus g = 1, as a consequence of the vanishing S8(SL2(Z)) = 0 (and
leads to the isospectral tori of Milnor mentioned earlier). This, incidentally, shows4
that “the” nontrivial eigenvector of Z[X16] is [E16] − [E8 ⊕ E8]. The difficulty in
genera 2 and 3 is that the vanishing of S8(Sp2g(Z)), though still true, is more difficult
to prove. In Appendix A, we will give another proof of the identities (1.3.2) which
does not rely on any such vanishing results (that ingenious proof is due to Kneser).

The form J = ϑ4(E8⊕E8)−ϑ4(E16), which is nothing but the famous Schottky
form, is easily shown to be nonzero. By results of Poor and Yuen [167], we even
know that it generates S8(Sp8(Z)). Theorem A then follows from the resolution
by Ikeda [108] of the Duke–Imamoğlu conjecture [40]. Indeed, when applied to
Jacobi’s modular form Δ in S12(SL2(Z)), Ikeda’s theorem shows the existence of a
nonzero Siegel modular form in S8(Sp8(Z)) that is an eigenform for H(Sp8), with
Hecke eigenvalues explicitly determined by the τ(p). Ikeda’s proof is quite difficult;
one of the main contributions of this book to Theorem A is to give another, very
different, proof of Ikeda’s result in this specific case.

Our main result is the following. For any map f : Ln → C, we define
Tp(f) : Ln → C by setting Tp(f)(L) =

∑

M f(M) for every L ∈ Ln, where
the sum is taken over the p-neighbors M of L. If 1 ≤ g ≤ n/2, we denote by
Hd,g(R

n) the space of polynomials (Rn)g → C that are harmonic for the Euclidean

4 This assertion can be proved much more directly. Indeed, if ϑ0 denotes the linear mapC[Xn] → C

that sends the class of any element of Ln to 1, then we have ϑ0 ◦ Tp = cn(p)ϑ0, so that Kerϑ0

is stable by Tp.
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Laplace operator on (Rn)g and satisfy P ◦ γ = (detγ)d P for all γ ∈ GLg(C)
(Sect. 5.4). This space is endowed with a linear action of O(Rn).

Theorem C. Let q +
∑

n≥2 anq
n be a modular form of weight k for SL2(Z) that

is an eigenform for the Hecke operators, and let d = k/2 − 2. There exists a map
f : L8 → C such that

(i) for every prime p, we have Tp(f) = p−d (p4 − 1)(p− 1)−1 ap f ;
(ii) under the action ofO(R8), the function f generates a representation isomorphic

to Hd,4(R
8).

Section 5.4 is mainly devoted to proving a specific case of this theorem when
k = 12, which leads to a complete and relatively elementary proof of Theorem A.
The general case will be addressed and made more precise in Sect. 7.2.

Let us sketch the proof. We begin by realizing the initial modular form as a theta
series

∑

x∈E8
P (x) qx·x/2, where P : R8 → C is a suitable harmonic polynomial.

In the case of Δ, we verify that any nonzero harmonic polynomial of degree 8 which
is invariant under the Weyl group W(E8) does the trick, and in general we invoke
a result of Waldspurger [205]. This construction defines a subspace of the functions
L8 → C with the following two properties: First, they are eigenvectors for the Hecke
operators in H(O8), with eigenvalues related to the ap by the Eichler commutation
relations. Second, they generate a representation isomorphic to H8,1(R

8) under the
action of O(R8). The main idea then consists in applying, at the source, an automor-
phism of L8 of order 3 arising from triality. Such an automorphism is constructed
from a structure of Coxeter octonions on the lattice E8 and from an isomorphism
L8 � G(Q)\G(A)/G(̂Z), where G = PGSO8. The resulting functions satisfy the
conditions of the theorem: we refer to Sect. 5.4 for the details.

Condition (ii) of Theorem C implies that the function f generates a Siegel theta
series of genus 4 (with “pluriharmonic”coefficients). When nonzero, this theta series
is a substitute for the Ikeda lift of genus 4 of the initial modular form. We show that
it is nonzero when k = 12; Theorem A easily follows.

Finally, let us mention that we will prove the vanishing of S8(Sp2g(Z)) for all
g �= 4 and g ≤ 8 further on (Theorem 9.5.9). For g = 5, 6, it had already been
obtained by Poor and Yuen [168] by different methods. Consequently, the map
ϑg : C[X16]→ M8(Sp2g(Z)) is surjective for every genus 1 ≤ g ≤ 8.

The Case n = 24

This case is the subject of remarkable work by Erokhin [80], Borcherds–Freitag–
Weissauer [31], and Nebe–Venkov [156] (Sect. 5.3). Erokhin showed thatKerϑ12 =
0, and the three authors of [31] proved that Ker ϑ11 has dimension 1. In [156], Nebe
and Venkov undertook a detailed study of the entire filtration of Z[X24] given by the
sequence of the Kerϑg for g ≥ 1. Their starting point is an explicit expression for
the operator T2 on Z[X24], which they deduce from results of Borcherds (Sect. 3.3).
They observe that the eigenvalues of T2 are distinct integers, which allows them to
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give an explicit basis of Q[X24] consisting of common eigenvectors for all of the
Tp. They also state a conjecture on the dimension of the image of the map (1.3.1)
for every integer 1 ≤ g ≤ 12, which they prove in many, but not all, cases. We
establish their conjecture and even show that the Eichler basis problem admits a
positive solution in dimension n = 24 for every genus 1 ≤ g ≤ 12 (Theorem 9.5.2
and Corollary 9.5.6).

Theorem D. The map ϑg : C[X24] → M12(Sp2g(Z)) is surjective and induces an
isomorphism Kerϑg−1/Kerϑg

∼→ S12(Sp2g(Z)) for every integer g ≤ 12. The
dimension of S12(Sp2g(Z)) for g ≤ 12 is given by the following table:

g 1 2 3 4 5 6 7 8 9 10 11 12

dim S12(Sp2g(Z)) 1 1 1 2 2 3 3 4 2 2 1 1

We will sketch the proof in Sect. 1.6; the most difficult part is the first assertion.
The theorem leads to a complete description of the filtration (Kerϑg)g≥1 onZ[X24].
We note that the Eichler basis problem has a negative answer in dimension n = 32
and genus g = 14, as stated in Corollary 7.3.5.

1.4 Automorphic Forms for the Classical Groups

Siegel modular forms, as well as the automorphic forms for On, can be studied from
the perspective of recent work by Arthur [13], published in 2013. However, in order
to state the results, we first need to recall some basic features of the Langlands point
of view on the theory of automorphic forms [135, 33], which we gather in Chap. 5.
The main aspects of this point of view have already been touched upon in the preface.
We briefly recall it.

Let G be a semisimple group scheme5 over Z. We denote by Πdisc(G) the set of
topologically irreducible subrepresentations of the space of square-integrable func-
tions on G(Q)\G(A)/G(̂Z) for the natural actions of G(R) and of the commutative
ring H(G) of Hecke operators of G (Sect. 4.3). The Satake isomorphism associates
with each π ∈ Πdisc(G) and each prime p a semisimple conjugacy class cp(π) in
̂G(C), where ̂G denotes the complex semisimple algebraic group that is dual toGC in
the sense of Langlands (Sects. 6.1 and 6.2). In Sect. 6.2.8, we make this enlightening
point of view on the eigenvalues of the Hecke operators due to Langlands explicit in
the case of the classical groups and Hecke operators we are interested in; we follow
Gross’ article [97]. Furthermore, we recall how the Harish-Chandra isomorphism

5 The discussion that follows does not apply verbatim to certain nonconnected group schemes that
naturally occur here, such as On or PGOn. We will, when necessary, indicate any modifications
needed to include them, but in this introduction we will ignore this detail.
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allows us to view the infinitesimal character of the Archimedean component π∞ of
π as a semisimple conjugacy class c∞(π) in the Lie algebra of ̂G (Sect. 6.3).

As explained in the preface, a central and structuring conjecture, initially due to
Langlands in the “tempered case” and extended by Arthur to the general case [9],
asserts that these collections of conjugacy classes can all be expressed in terms of
similar data relative to the elements of Πdisc(PGLm) for m ≥ 1. This conjecture
is discussed in Sect. 6.4.4. Let us state it another, particularly direct, way, using L-
functions. Fix π ∈ Πdisc(G) and an algebraic representation r : ̂G(C) → SLn(C).
According to Langlands, the Euler product

L(s, π, r) =
∏

p

det
(

1− p−s r(cp(π))
)−1

is absolutely convergent for every complex number s with sufficiently large real
part. When G is the Z-group PGLm and r is the tautological representation of
̂G = SLm, we simply write L(s, π) for L(s, π, r). The Arthur–Langlands conjecture
for the pair (π, r) predicts the existence of an integer k ≥ 1 and, for i = 1, . . . , k,
a representation6 πi ∈ Πcusp(PGLni) and an integer di ≥ 1 such that we have the
equality

L(s, π, r) =

k
∏

i=1

di−1
∏

j=0

L
(

s+ j − di − 1

2
, πi

)

. (1.4.1)

By slight abuse of language, we call the collection of conjugacy classes (r(cv(π)))
the Langlands parameter of the pair (π, r); we denote it by ψ(π, r). When the
equality (1.4.1) holds, we will symbolically7 denote it by

ψ(π, r) = ⊕k
i=1πi[di] .

If G is a classical group over Z (Sects. 6.4.7 and 8.1), its dual ̂G is a complex
classical group (that is, special orthogonal or symplectic). In particular, ̂G comes
with a “tautological” representation called the standard representation, denoted by
St. An important result proved by Arthur in [13] asserts that the Arthur–Langlands
conjecture is true for (π, St) for all π in Πdisc(G) if G is either Sp2g or a split special
orthogonal Z-group.

In Chap. 7, we illustrate this theory by giving many examples of specific cases of
the Arthur–Langlands conjecture, concerning automorphic forms for SOn or Siegel
modular forms for Sp2g(Z). They do not rely on the work of Arthur, but rather on
more classical constructions of theta series. We recall Rallis’ point of view on the
Eichler commutation relations (Sect. 7.1), as well as important results of Böcherer
[27] and Ikeda [108]. We prove Theorem C and give other applications of the triality

6 As is customary, we denote by Πcusp(G) ⊂ Πdisc(G) the subset of representations occurring in
the subspace of cusp forms [92] (Sect. 4.3).
7 Strictly speaking, our notation includes the corresponding natural identity at the Archimedean
place (Sect. 6.4.4). We also denote the summand πi[di] simply by [di] (resp. πi) when πi = 1 (resp.
di = 1). These conventions are used in Table 1.2.
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to the construction of certain elements of Πdisc(SO8) (Sect. 7.2). One ingredient for
the proofs is a slight refinement of the Rallis identities to the pair (PGOn,PGSp2g)
(Sect. 7.1.4). In the end, our analysis recovers sufficiently many constructions to
allow us, for example, to determine ψ(π, St) for 13 of the “first” 16 representations
π in Πdisc(SO8) (Sect. 7.4).

We can now state the analog of Theorem A for X24; we refer to Sect. 10.1 for a
statement of this theorem in terms of representations of Gal(Q/Q), in the spirit of
what we announced in [53]. We need to introduce some additional notation:

– The representation Δw for w ∈ {11, 15, 17, 19, 21} denotes the element of
Πcusp(PGL2) generated by the 1-dimensional vector space Sw+1(SL2(Z)) of
cusp forms of weight w + 1 for SL2(Z).

– The representation Sym2Δw is the Gelbart–Jacquet symmetric square of Δw

[90]. This is the unique element of Πcusp(PGL3) satisfying the equality
cv(Sym

2Δw) = Sym2 cv(Δw) for all places v of Q.
– If (w, v) is one of the four ordered pairs (19, 7), (21, 5), (21, 9), and (21, 13),

then the representationΔw,v is an element ofΠcusp(PGL4), defined and studied
in Sect. 9.1. Its infinitesimal character c∞(Δw,v), which, by definition, is the
conjugacy class of a semisimple element in M4(C), has eigenvalues8 ±w/2
and±v/2; further on, we will even see that this property uniquely characterizes
Δw,v.

Theorem E. The parametersψ(π, St) of the 24 elements π of Πdisc(O24) generated
by the eigenfunctions X24 → C for H(O24) are those in Table 1.2 below.

Table 1.2 The standard parameters of the π ∈ Πdisc(O24) such that π∞ = 1

[23]⊕ [1] Sym2Δ11 ⊕Δ17[4]⊕Δ11[2]⊕ [9]

Sym2Δ11 ⊕ [21] Sym2Δ11 ⊕Δ15[6]⊕ [9]

Δ21[2]⊕ [1]⊕ [19] Δ15[8]⊕ [1]⊕ [7]

Sym2Δ11 ⊕Δ19[2]⊕ [17] Δ21[2]⊕Δ17[2]⊕Δ11[4]⊕ [1]⊕ [7]

Δ21[2]⊕Δ17[2]⊕ [1]⊕ [15] Δ19[4]⊕Δ11[4]⊕ [1]⊕ [7]

Δ19[4]⊕ [1]⊕ [15] Δ21,9[2]⊕Δ15[4]⊕ [1]⊕ [7]

Sym2Δ11 ⊕Δ19[2]⊕Δ15[2]⊕ [13] Sym2Δ11 ⊕Δ19[2]⊕Δ11[6]⊕ [5]

Sym2Δ11 ⊕Δ17[4]⊕ [13] Sym2Δ11 ⊕Δ19,7[2]⊕Δ15[2]⊕Δ11[2]⊕ [5]

Δ17[6]⊕ [1]⊕ [11] Δ21[2]⊕Δ11[8]⊕ [1]⊕ [3]

Δ21[2]⊕Δ15[4]⊕ [1]⊕ [11] Δ21,5[2]⊕Δ17[2]⊕Δ11[4]⊕ [1]⊕ [3]

Δ21,13[2]⊕Δ17[2]⊕ [1]⊕ [11] Sym2Δ11 ⊕Δ11[10]⊕ [1]

Sym2Δ11 ⊕Δ19[2]⊕Δ15[2]⊕Δ11[2]⊕ [9] Δ11[12]

8 Likewise, c∞(Δw) has eigenvalues ±w/2.
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Let us emphasize that in his remarkable work [109], Ikeda was able to determine
20 of the 24 parameters given in the table, namely those that do not contain any
representation of the form Δw,v.

Given the importance of the role played by the Δw,v in this book, we should
say a bit more about their origin. Let (j, k) be one of the four ordered pairs (6, 8),
(4, 10), (8, 8), and (12, 6). A dimension formula due to R. Tsushima shows that the
space of vector-valued cuspidal Siegel modular forms for Sp4(Z) with coefficients
in Symj ⊗ detk has dimension 1 [199]. We will give an explicit generator of this
space using a construction of theta series with “pluriharmonic” coefficients based on
the lattice E8. If πj,k denotes the element of Πcusp(PGSp4) generated by this form
(which is necessarily an eigenform), then we have the relation ψ(πj,k, St) = Δw,v

with (w, v) = (2j + k − 3, j + 1). Note that PGSp4 is isomorphic to the split
classical Z-group SO3,2, whose dual is the group Sp4 overC, so that Arthur’s theory
applies to (πj,k, St).

We will prove Theorem E in Sect. 9.4.3, using a method we will describe in
Sect. 1.6. However, we will first give two other conditional proofs in Sects. 9.2.10
and 9.2.11. These proofs, obtained by applying Arthur’s multiplicity formula [13],
will ultimately be the most natural, but at present they depend on certain statements
refining Arthur’s that, though expected, are not yet available.

In Chap. 8, we therefore return to the general results of Arthur [13], which we
will specify in the case of classical groups over Z and their “everywhere unram-
ified” automorphic forms. Such an analysis has already been partially carried out
in [55, Sect. 3]; we develop and complete it. The bulk of Chap. 8 is devoted to
explaining the famous multiplicity formula mentioned above. This formula gives
a necessary and sufficient condition for a given collection of (πi, di) to “come”
from a π ∈ Πdisc(G), in the sense that ψ(π, St) = ⊕k

i=1πi[di], where π moreover
has a prescribed Archimedean component π∞ (Sect. 8.3). We limit ourselves to the
case where π∞ is a discrete series representation of G(R) and make explicit the
parametrization of the latter by Shelstad (Sect. 8.4). It is this parametrization that
plays a key role in Arthur’s formula. The version of this formula that we give has, at
present, been proved only if G is split over Z and all integers di are equal to 1. We
will, however, discuss the general case, indicating the conjectures on which specific
cases depend (Sect. 8.4.21), because it greatly clarifies the specific constructions
studied in this book. In particular, we give explicit formulas in the cases of Siegel
modular forms for Sp2g(Z) and automorphic forms for SOn (Sect. 8.5). We verify
that they are compatible with the results of Chap. 7 and the results of Böcherer on
the image of the map (1.3.1) (Sect. 8.6). As promised, we finally show, in Sect. 9.2,
that these formulas lead to a rather miraculous, but simple, conditional proof of
Theorem E.
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1.5 Algebraic Automorphic Representations of Small Weight

Let n ≥ 1 be an integer. We call a representation π ∈ Πcusp(PGLn) algebraic if the
eigenvalues λi of c∞(π) satisfy λi ∈ 1

2Z and λi − λj ∈ Z for all i, j (Sect. 8.2.6).
The greatest difference between two eigenvalues of c∞(π) is then called the motivic
weight of π; it is a nonnegative integer, denoted by w(π). As we saw in the preface,9
these algebraic cuspidal automorphic representations are interesting in their own
right, because they are exactly those that are related to the �-adic “geometric” Galois
representations through the yoga of Fontaine–Mazur and Langlands (Sect. 8.2.16).
We are interested in these representations for a slightly different reason, as explained
by the following observation.

Let G be a semisimple group scheme over Z, let π ∈ Πdisc(G) be such that π∞
has the same infinitesimal character as a finite-dimensional algebraic representation
V of G(C), and let r : ̂G(C) → SLn(C) be an algebraic representation. Suppose
ψ(π, r) = ⊕k

i=1πi[di], following Arthur and Langlands. The representations πi are
then algebraic, with motivic weight bounded in terms of the highest weights of V
and r (Sect. 8.2). For example, if G = Sp2g and π ∈ Πcusp(Sp2g) is generated by
a Siegel modular eigenform of weight k for Sp2g(Z) (with, say, k > g, but this
condition can be weakened), then we can write ψ(π, St) = ⊕k

i=1πi[di] thanks to
Arthur, where the πi are algebraic of motivic weight at most 2k − 2. An important
ingredient for our proofs is the following classification statement, which is also of
independent interest. We prove it in Sect. 9.3.

Theorem F. Let n ≥ 1, and let π ∈ Πcusp(PGLn) be algebraic of motivic weight
at most 22. Then π is one of the following 11 representations:

1 , Δ11 , Δ15 , Δ17 , Δ19 , Δ19,7 , Δ21 , Δ21,5 , Δ21,9 , Δ21,13 , Sym
2Δ11 .

In motivic weight strictly less than 11, this theorem states that we have n =
1 and that π is the trivial representation, a result already known to Mestre and
Serre (in a somewhat different language; see [144, Sect. III, Remarque 1]). In this
specific case, it gives, among other things, an “automorphic” analog of the classical
Minkowski theorem asserting that every number field other than Q contains at least
one ramified prime (the casew(π) = 0), and also of Shafarevich’s conjecture, proved
independently by Abrashkin and Fontaine, according to which there are no abelian
varieties over Z (the case w(π) = 1). As far as we know, the result of Theorem F
is already new in the specific case w(π) = 11. Let us emphasize that we make no
assumptions on the integer n and that the theorem implies that n ≤ 4.

9 The definition of algebraic given in the preface, which seems more restrictive, is in fact equivalent
to this one: see Remark 8.2.14. The motivic weight w(π) is also twice the greatest eigenvalue of
c∞(π).
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Our proof of this theorem, in the spirit of the work of Stark, Odlyzko, and Serre
on lower bounds for the discriminants of number fields, relies on an analog in the
setting of automorphic L-functions of the explicit formulas of Riemann and Weil
in prime number theory. This analog was developed by Mestre [144] and applied
by Fermigier to the standard L-functions L(s, π) for π ∈ Πcusp(PGLn) to show
the nonexistence of certain elements π [84]. We apply it, more generally, to the
“Rankin–Selberg L-function” of an arbitrary pair {π, π′} of cuspidal automorphic
representations of PGLn and PGLn′ (Jacquet, Piatetski-Shapiro, Shalika).

In the specific case where π′ is the dual of π, this method has already been
succesfully applied by Miller [147]; however, our study contains some new results
that deserve to be mentioned. First of all, we discovered that certain real-valued
symmetric bilinear forms on the Grothendieck ring K∞ of the Weil group of R that
occur naturally in the statements of the explicit formulas are positive definite on
sufficiently large subgroups of K∞. It is this phenomenon that is responsible for the
finiteness of the list given in Theorem F. Moreover, we establish simple, but efficient,
criteria to prevent the simultaneous existence of π and π′ (for example involving only
π∞ and π′∞). We refer to Sect. 9.3 for precise statements.

1.6 Proofs of Theorems D and E

Let us sketch the proof of Theorem E (Sect. 9.4.3). Let π ∈ Πdisc(O24) be
such that π∞ is the trivial representation. We first claim that (π, St) satisfies the
Arthur–Langlands conjecture. Indeed, in all but one case, the results of Erokhin
and Borcherds–Freitag–Weissauer recalled in Sect. 1.3 show that π admits a “ϑ-
correspondent” π′ in Πcusp(Sp2g) that is generated by a Siegel modular form of
weight 12 and genus g ≤ 11 for Sp2g(Z) (Sect. 7.1). The claim follows from Arthur’s
theorem applied to π′ and from the point of view of Rallis on the Eichler relations.
The exceptionalπ, already determined by Ikeda [108], satisfies ψ(π, St) = Δ11[12],
hence the Arthur–Langlands conjecture as well. Next, a simple combinatorial argu-
ment relying only on Theorem F shows that there are at most 24 possibilities for
ψ(π, St), namely those given in Table 1.2. On the other hand, there are at least 24
possibilities for ψ(π, St), because by Nebe and Venkov, the operator T2 has distinct
eigenvalues on C[X24]. This concludes the proof.

This method allows us to study, more generally, the elements of the group
Πcusp(Sp2g) generated by a Siegel modular form of weight k ≤ 12 for the group
Sp2g(Z) (Sect. 9.5). Theorem D is the result of this study in the specific case k = 12.
We find 23 Siegel modular forms for Sp2g(Z) that are eigenforms for H(Sp2g) and
have weight 12 and genus g ≤ 12. We give their standard parameters in Table C.1.
In the case of forms of weight k ≤ 11, we prove the following theorem, which
generalizes results of [77] and [168] (Theorem 9.5.9).
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Theorem G. Let g ≥ 1 and k be integers with g ≤ k.

(i) If k ≤ 10, then Sk(Sp2g(Z)) = 0 unless (k, g) is one of

(8, 4) , (10, 2) , (10, 4) , (10, 6) , (10, 8) ,

in which case Sk(Sp2g(Z)) has dimension 1. The standard parameters of the
five elements of Πdisc(Sp2g) generated by these spaces are, respectively,

Δ11[4]⊕[1] , Δ17[2]⊕[1] , Δ15[4]⊕[1] , Δ17[2]⊕Δ11[4]⊕[1] , and Δ11[8]⊕[1] .

(ii) If k = 11 and g �= 6, then Sk(Sp2g(Z)) = 0.

Let us point out certain difficulties in the proofs of Theorems D and G that do
not appear in that of Theorem E. Let π be an element of Πcusp(Sp2g) generated by a
Siegel modular form of weight k ≤ 12 and genus g < 12+k. Theorem F implies that
ψ(π, St) belongs to an explicit finite list of possibilities. In contrast to the situation
of Theorem E, certain elements of this list should not actually occur, as shown by
reviewing the multiplicity formula. We bypass the use of this formula by turning to
results of Böcherer [27] and Ikeda [108, 110], as well as to various constructions
of theta series. We also expect the vanishing of S11(Sp12(Z)) but cannot give an
unconditional proof. The cases where g = k are more delicate (we do not even know
how to write Arthur’s multiplicity formula explicitly in this case). We exclude them
in an ad hoc fashion by using the work of S. Mizumoto [150] on the poles of the
L-function L(s, π, St) (Sect. 8.7).

1.7 A Few Applications

By Theorem E, the original problem of determining the numbers Np(L,M) for L
andM inX24 and p prime becomes equivalent to that of determining the eigenvalues
of the Hecke operators in H(PGSp4) acting on the four genus 2 vector-valued Siegel
modular eigenforms mentioned in Sect. 1.4. In Sect. 10.3, we give a method we
discovered to compute these eigenvalues, using the analysis of the p-neighbors of
the Leech lattice carried out in Sect. 3.4.

Let (j, k) be one of the four ordered pairs considered in Sect. 1.4, namely (6, 8),
(4, 10), (8, 8), and (12, 6). Denote by (w, v) the corresponding ordered pair (2j +
k − 3, j + 1). If q is an integer of the form pm with p prime, we set

τj,k(q) = qw/2 trace cp(Δw,v)
m ;

this complex number is in fact in Z.

Theorem H. Let (j, k) be one of the four ordered pairs (6, 8), (4, 10), (8, 8), and
(12, 6). The integers τj,k(p) with p prime and at most 113, and the integers τj,k(p2)
with p prime and at most 29, are given by Tables C.3 and C.4, respectively.
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These results confirm and extend the prior computations by Faber and Van der
Geer [83], [89, Sect. 25] for p ≤ 37 by completely different methods. Our computa-
tion allows us to determine the exact value of Np(L,M) for all L and M in X24 and
all primes p ≤ 113.

Theorem F shows that the computation of τj,k(q) may be less futile than it
seems. Indeed, in view of the Langlands conjecture, this theorem suggests a parallel
classification, which still needs proving on the “�-adic side,” of the effective pure
motives over Q with everywhere good reduction and motivic weight at most 22.
For example, it imposes a remarkable conjectural constraint on the Hasse–Weil zeta
function of the Deligne–Mumford stack Mg,n classifying the stable curves of genus
g endowed with n marked points, with g ≥ 2, n ≥ 0, and 3g − 3 + n ≤ 22. We
should be able to express the zeta function uniquely in terms of the τj,k(q) and the
coefficients of the normalized cusp forms of weight at most 22 for SL2(Z). This
confirms certain results (resp. conjectures) of Bergström, Faber, and Van der Geer
[83, 82, 21] when g = 2 (resp. g = 3).

In Sect. 10.4, we use Theorem E to prove congruences satisfied by the integers
τj,k(p)with p prime. We obtain these congruences by studying the eigenvectors ofT2

in the natural basis of Z[X24] and using arguments involving Galois representations.
Among other things, we prove the congruence conjectured by Harder in [100].

Theorem I (Harder Conjecture). For every prime p, we have the congruence

τ4,10(p) ≡ τ22(p) + p13 + p8 mod 41 ,

where τ22(p) denotes the pth coefficient of the normalized cusp form of weight 22
for the group SL2(Z).

Finally, let us return to the proof of Theorem E sketched in Sect. 1.6. It relies
on the equality |X24| = 24, a consequence of Niemeier’s classification. However,
in Sect. 9.6, we explain how the combination of the ideas mentioned above and
Arthur’s multiplicity formula (including Conjectures 8.4.22 and 8.4.25 stated in
Chap. 8) allows us to bypass the use of this equality and even recover it “without any
computations involving Euclidean lattices.” Even better, we recover not only that
there are exactly 24 Niemeier lattices up to isometry, but also that only one of them
does not have an isometry of determinant−1.

Is it reasonable to hope that we can give a sharp estimate for the cardinality of X32

through such a method? The question remains open, but the example of dimension
24 shows that this approach, dear to the first author, is less absurd than it may seem.
A necessary ingredient for this project is the knowledge of (say, “self-dual, regular”)
algebraic representations in Πcusp(PGLn) of motivic weight at most 30; progress
in this direction has been achieved in [55] and [195].

*
* *
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To conclude this introduction, let us say a few words on the use of results of
Arthur in this book. These results rely on an impressive collection of difficult
works, some of which appeared only shortly before the completion of this book
(see [13, 152, 207], and the discussion in Sect. 8.1). That is why, in the main part
of this book, we felt it useful to indicate with a star∗ the statements that depend on
the results of Arthur’s book [13]. In this introduction, this concerns the proofs of
Theorems B, D, E, F,10 G, H, and I. On the other hand, let us mention that, contrary
to what we stated in [53] and [51], our proofs no longer depend on the results an-
nounced of Chap. 9 of [13] on inner forms, nor on the conjectural properties of the
Arthur packets of the type studied by Adams and Johnson.

10 For Theorem F, we in fact prove a variant that is nearly as strong without using Arthur’s theory;
see Theorem 9.3.2.



Chapter 2
Bilinear and Quadratic Algebra

2.1 Basic Concepts in the Theory of Bilinear and Quadratic
Forms

Let A be a commutative ring with unit.
A b-module over A is a projective A-module L of finite type endowed with

a symmetric bilinear form that is nondegenerate, that is, such that the induced
homomorphism L → HomA(L,A) is an isomorphism; when A is a field, we
obviously replace “b-module” by “b-vector space.” Most of the time, we denote the
symmetric bilinear form L× L→ A by (x, y) → x.y. In this book, the rings A we
encounter are principal ideal domains or fields, so that in the definition we just gave,
we could have replaced “projective A-module of finite type” by “free A-module of
finite dimension.”

Let S be a symmetric n × n matrix with coefficients in A. We use the notation
〈S〉 to denote the A-module An endowed with the bilinear form whose matrix in
the canonical basis is S; it is clear that 〈S〉 is a b-module if and only if we have
detS ∈ A×. If S is a diagonal matrix with diagonal entries a1, a2, . . . , an, then 〈S〉
is denoted by 〈a1, a2, . . . , an〉.

Let us now assume that A is a Dedekind domain; we denote its field of fractions
by K . (In fact, given the rings we have in mind, namely Z and Zp, we could replace
“Dedekind domain” by “principal ideal domain.”)

Let V be a finite-dimensional K-vector space. A lattice in V (with respect to A)
is a sub-A-module L of V that generates V as a K-vector space and is of finite type
over A; it is a projective A-module of rank dimK V .

Let V be a b-vector space over K , and let L be a lattice in V . The sub-A-module
of V consisting of the elements y such that x.y belongs to A for all x in L is a lattice
in V that we call the dual of L and denote by L�. We call the lattice L integral if x.y
belongs to A for all x and y in L, in other words, if we have L ⊂ L�.

© Springer Nature Switzerland AG 2019
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Let L be an integral lattice in V . Consider the quotientL�/L. The following hold:

– The quotient L�/L is a torsion A-module of finite type.
– The symmetric bilinear form associated with V induces a nondegenerate sym-

metric bilinear “form” on L�/L with values in K/A. Here, “nondegenerate”
means that the homomorphism L�/L → HomA(L

�/L,K/A) induced by the
form is an isomorphism.

We call this type of object an e-module over A; the letter “e” is for “enlacement”,
the French word for “linking.” An e-module over A is thus a torsion A-module of
finite type endowed with a nondegenerate bilinear form with values in K/A (called
the linking form). We call the e-module L�/L the residue of L. Of course, studying
the quotient L�/L is far from new, but our terminology is not the classical one; for
example, L�/L is called the “dual quotient group” or “glue group” in [68] and the
“cokernel of L” in [17]; we will often denote it by resL.

Whenever possible, we will extend to e-modules the notation and terminology
used for modules endowed with a symmetric bilinear form with values in A. Here
are a few examples, where C is an e-module:

– The symmetric bilinear form C × C → K/A is generally denoted by
(x, y) → x.y.

– We call a submodule I of C isotropic if we have x.y = 0 for all elements x and
y of I , that is, if we have I ⊂ I⊥, where I⊥ denotes the orthogonal complement
of I .

– We call a submodule I of C a Lagrangian if we have I = I⊥.

A˜b-module overA (which we still assume to be a Dedekind domain) is a projective
A-module L of finite type endowed with a symmetric bilinear form such that the
induced homomorphism L → HomA(L,A) is injective (or, equivalently, such that
the induced bilinear form on K ⊗A L is nondegenerate). An integral lattice in a b-
vector space overK is the prototype of such an object. Conversely, every ˜b-moduleL
overA can be viewed as an integral lattice in the b-vector spaceK⊗AL. A ˜b-module
L therefore has a residue resL that is an e-module; the A-module underlying resL
can be identified with the cokernel of the injection L ↪→ HomA(L,A).

By replacing symmetric bilinear forms by alternating bilinear forms in the pre-
vious definitions, we obtain, mutatis mutandis, the definitions of, respectively,
a-module, ae-module, ã-module, and residue of an ã-module. For example, an
ae-module over A is a torsion A-module C of finite type endowed with an al-
ternating bilinear form C × C → K/A such that the induced homomorphism
C → HomA(C,K/A) is an isomorphism. Note that an a-module over A always has
even rank and that the same holds for an ã-module if A is a Dedekind domain.

Recall that a map f : M → N between two A-modules is called quadratic if it
satisfies the following two properties:

– We have f(ax) = a2f(x) for every a in A and every x in M .
– The map M ×M → N defined by (x, y) → f(x+y)−f(x)−f(y) is bilinear.

In the case N = A, we say that f is a quadratic form on M .
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By replacing symmetric bilinear forms by quadratic forms, we obtain, mutatis mu-
tandis, the definitions of, respectively, q-module, qe-module, q̃-module, and residue
of a q̃-module. For example, a q-module over A is a projective A-module L of finite
type endowed with a quadratic form q: L → A such that the symmetric bilinear
form

L× L→ A , (x, y) → q(x+ y)− q(x)− q(y)

is nondegenerate (we call it the associated symmetric bilinear form). A qe-module
over A is a torsion A-module of finite type endowed with a nondegenerate quadratic
form with values in K/A (the quadratic linking form); the residue of a q̃-module is
now a qe-module. A submodule I of a qe-module is isotropic if we have q(I) = 0
(a condition that implies I ⊂ I⊥); it is a Lagrangian if we have q(I) = 0 in addition
to the condition I = I⊥. A lattice L in a q-vector space is integral if q(x) belongs
to A for every x in L (a condition that implies that x.y belongs to A for all x and y
in L).

If 2 is not a zero divisor, then a q-module over A is just an even b-module, that
is, a b-module L such that x.x is divisible by 2 for every x in L; in this case, the
quadratic form is determined by the equality x.x = 2q(x). If 2 is invertible in A,
the notions of q-module and b-module coincide; even in this case, remember that
quadratic forms and associated symmetric bilinear forms are linked by the equality
we just mentioned.

The following proposition is obvious. . . , which does not prevent it from being
quite useful.

Proposition 2.1.1. Let V be a b-vector space (resp. an a-vector space, resp. a q-
vector space) over K and L an integral lattice in V . Let γ : L� → resL be the
homomorphism obtained by passing to the quotient.

(a) Let I be a submodule of resL. The following conditions are equivalent:

(i) The submodule I is isotropic.
(ii) The lattice γ−1(I) is integral.

(b) The map I → γ−1(I) is an inclusion-preserving bijection from the set of
isotropic submodules of resL to the set of integral lattices of V containing L
(and therefore contained in L�).

(c) Let I be an isotropic submodule of resL. The symmetric bilinear form I⊥/I ×
I⊥/I → K/A (resp. the alternating bilinear form I⊥/I × I⊥/I → K/A,
resp. the quadratic form I⊥/I → K/A) induced by the corresponding form
associated with resL gives I⊥/I the structure of an e-module (resp. ae-module,
resp. qe-module) that can be identified with the residue of the integral lattice
γ−1(I).

Hyperbolic Functors

Let A be a commutative ring with unit, and let L be a projective A-module of finite
type. Then HomA(L,A) is also a projective A-module of finite type, which we
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denote by L∗ (and call the dual of L). The map

L⊕ L∗ → A , (x, ξ) → 〈x, ξ〉

is a nondegenerate quadratic form that gives the projective A-module of finite type
L ⊕ L∗ the structure of a q-module. This q-module is denoted by H(L) and called
the hyperbolic q-module over L.

The associated symmetric bilinear form is the map

((x, ξ), (y, η)) → 〈x, η〉+ 〈y, ξ〉 ;

L⊕L∗ endowed with this form is called the hyperbolic b-module over L and is also
denoted by H(L).

Likewise, L⊕ L∗ endowed with the alternating bilinear form

((x, ξ), (y, η)) → 〈x, η〉 − 〈y, ξ〉

is an a-module over A, called the hyperbolic a-module over L and again denoted by
H(L).

Let H be a q-module (resp. a-module) over A; recall that in this context, a
Lagrangian of H is a direct summand L with L = L⊥ and q(L) = 0 (resp.
L = L⊥).

Proposition 2.1.2. Let H be a q-module (resp. b-module, a-module) and L a La-
grangian of H . The inclusion of L in H extends to an isomorphism of q-modules
(resp. a-modules) H(L) � H .

Proof. We prove the “quadratic version” of the statement; we will shamelessly follow
the proof of [16, Proposition 2.1.5], which treats the “alternating version” implicitly.
Let i : L → H be the inclusion of L in H and p : H → L∗ the homomorphism (of
A-modules) that is the composition of the isomorphism H → H∗ induced by the
bilinear form and the homomorphism i∗. Since L is a Lagrangian, the sequence of
A-modules

0 L
i

H
p

L∗ 0

is exact. We need to show that there exists an A-linear section s : L∗ → H of p
satisfying q(s(ξ)) = 0 for every ξ in L∗. Let Σ be the set of A-linear sections of
p. The set Σ is nonempty because L∗ is projective; moreover, Σ has the canonical
structure of an affine space under HomA(L

∗, L). We identify the latter with the
A-module of bilinear forms on L∗ and denote it by BL∗ . Let QL∗ be the A-module
of quadratic forms on L∗ and γ : Σ → QL∗ the map that sends a section s to the
quadratic form ξ → q(s(ξ)). Let u be an element of HomA(L

∗, L). We have

γ (s+ u) = γ(s) + γ̃ (u) ,

where γ̃ denotes the map BL∗ → QL∗ that sends a bilinear form u to the quadratic
form ξ → u(ξ, ξ). The fact thatγ−1(0) is nonempty now follows from the surjectivity
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of γ̃. This is clear when L∗ is free; the general case follows by introducing an A-
module M such that the direct sum L∗ ⊕M is free of finite dimension. ��
Remark. By considering the b-vector space 〈 [ 0 1

1 1 ] 〉 over F2, we see that the state-
ment analogous to Proposition 2.1.2 for b-modules does not hold in general.

A q-module (resp. b-module, a-module) is called hyperbolic if it is isomorphic
to an H(L) for some projective A-module L of finite type. Proposition 2.1.2 says, in
particular, that a q-module is hyperbolic if and only if it has a Lagrangian.

Now, let A be a Dedekind domain (with field of fractions K) and I a torsion
A-module of finite type. Then HomA(I,K/A) is also a torsion A-module of finite
type; we denote it by I∨ (and call it the dual of I). The map

I ⊕ I∨ → K/A , (x, ξ) → 〈x, ξ〉

is a nondegenerate quadratic form that gives the torsion A-module of finite type
I ⊕ I∨ the structure of a qe-module. This qe-module is denoted by H(I) and called
the hyperbolic qe-module over I .

Let H be a qe-module over A. Recall that in this context, a Lagrangian of H is a
submodule I with I = I⊥ and q(I) = 0. The proof of the following proposition is
left to the reader (compare part (b) with part (b) of [16, Proposition 2.1.5]).

Proposition-Definition 2.1.3. Let H be a qe-module, and let I and J be two La-
grangians of H . We say that I and J are transverse (or that J is transverse to I) if
I ∩ J = 0.

(a) Let I and J be two transverse Lagrangians of H . Then the linking form of H
induces an isomorphism J ∼= I∨ and the composition

H(I) = I ⊕ I∨ → I ⊕ J → H

is an isomorphism of qe-modules (the first arrow is the direct sum of the identity
on I and the inverse of the automorphism J ∼= I∨).

(b) Let I be a Lagrangian of H and TI the (possibly empty) set of Lagrangians
transverse to I . Then TI admits the canonical structure of an affine space under
the A-module (Λ2(I∨))∨ (that is, the A-module consisting of the alternating
bilinear maps I∨ × I∨ → K/A).

A qe-module is called hyperbolic if it is isomorphic to an H(I) for some A-
module I of finite type. Proposition 2.1.3 (a) says, in particular, that a qe-module is
hyperbolic if and only if it has two transverse Lagrangians.

The Tensor Products of Forms

Let A be a commutative ring, and let L1 and L2 be two b-modules over A. The
homomorphism of A-modules L1 ⊗A L2 → (L1 ⊗A L2)

∗ ∼= L∗
1 ⊗A L∗

2 that is
the tensor product of the structural homomorphisms L1 → L∗

1 and L2 → L∗
2 turns
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L1 ⊗A L2 into a b-module that we call the tensor product of the b-modules L1

and L2. The symmetric bilinear form of L1 ⊗A L2 is characterized by the fact that
(x1 ⊗A x2).(y1 ⊗A y2) = (x1.y1)(x2.y2) for all x1, y1 in L1 and all x2, y2 in L2.

Mutatis mutandis, we define:

– the tensor product of a b-module and a q-module, which is a q-module;
– the tensor product of a b-module and an e-module, which is an e-module;
– the tensor product of a b-module and a qe-module, which is a qe-module;
– the tensor product of a q-module and an e-module, which is a qe-module.

For example, if L1 is a b-module and L2 is a q-module, then the quadratic form
of L1⊗AL2 is characterized by the fact that q(x1⊗A x2) = (x1.x1)q(x2) for every
x1 in L1 and every x2 in L2.

The Discriminant of a q-Module of Even Constant Rank; the
Dickson–Dieudonné Determinant

Let A be a commutative ring and L a q-module over A of even constant rank, which
we assume to be nonzero. LetΔ(L) be the center of the even part, denoted byC+(L),
of the Clifford algebra of L (see, for example, [56, Chap. III]).

– The commutative A-algebra Δ(L) is a “double cover” of A, that is, an étale
A-algebra and a projective A-module of rank 2 [71, Exp. XII, Proposition 1.5]
that we should view as the discriminant of L. In the case L = H(P ) with P a
projectiveA-module of constant rank, this cover is trivial (and even trivialized):
Δ(L) = A×A.

– An automorphism α of the q-module L induces an automorphism Δ(α) of
the A-algebra Δ(L). If we identify the automorphism group of the A-algebra
Δ(L) with Z/2(A), then Δ(α) can be identified with an element of Z/2(A)
that we call the Dickson–Dieudonné determinant of α; we denote it by ˜detα.
Let us recall the definition of the group functor A → Z/2(A) that just appeared
surreptitiously above: Z/2(A) is the set of elements x of A satisfying x2 = x,
endowed with the group law (x, y) → x+ y − 2xy.

These two statements are a predictable “globalization” of well-known results in
the case where A is a field. The subtle case is that where A is a field of characteristic
2; see [74], [38, Sect. 9, Exercice 9].

Let L be a b-module over A of constant rank n. The determinant of L is the
b-moduleΛnL (this is a projectiveA-module of rank 1 endowed with the symmetric
bilinear form induced by that on L); we denote it by detL. When L is free, the
isomorphism class of detL is identified with an element of A×/A×2. This element
is the class in A×/A×2 of the determinant of the Gram matrix [ei.ej ], for any basis
(e1, e2, . . . , en) of L; this class is often also denoted by detL.

Let L be a q-module over A of even constant rank 2n with n ≥ 1. The relation
between the discriminant of L and the determinant of the underlying b-module is
given by Proposition 2.1.4 below, whose proof Pierre Deligne kindly provided us
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with. To state this result, we must introduce some notation. We denote by D(L) the
cokernel of the unit η : A→ Δ(L). It is a projectiveA-module of rank 1 (this follows,
for example, by a faithfully flat descent argument [SGA 4 1

2 , I, Proposition 4.2]
because we haveΔ(L)⊗AΔ(L) ∼= Δ(L)×Δ(L), and it is endowed with a canonical
nondegenerate symmetric bilinear form that we denote by θ. We can define θ, for
example, as induced by the symmetric bilinear form Δ(L) ×Δ(L) → A given by
(x, y) → trΔ(L)/A((x−x̄)y) (where x̄ denotes the “conjugate” ofx). In other words,
D(L) has the natural structure of a b-module of rank 1 over A. Finally, we denote by
(−1)n detL the b-module of rank 1 over A obtained by multiplying the symmetric
bilinear form associated with detL by (−1)n. Here is the result announced above.

Proposition 2.1.4. The two b-modules D(L) and (−1)n detL of rank 1 over A are
naturally isomorphic.

Classical Groups

The main object of this last part of the section is to fix the notation and terminology
we will be using in this book with regards to the orthogonal and symplectic groups
(and their variants). Convenient references on this subject are [63, 72, 75, 114].

Let A be a commutative ring with unit.
– Let L be a projective A-module of finite type. We denote the automorphism

group of L by GL(L). The functor R → GL(R ⊗A L), defined on the category of
commutative A-algebras and with values in the category of groups, is an A-group
scheme that we denote by GLL. Note that if the rank ofL is 1, then GL(L) and GLL

can be identified, respectively, with the groupA× and the A-group schemeGm (if G
is a Z-group scheme, we also denote by G the A-group scheme obtained after base
change). If L has constant rank n, then we denote the kernel of the “determinant”
homomorphism det : GLL → GLΛnL = Gm by SLL. We denote by PGLL the
A-group scheme defined as the functor that sends a commutative A-algebra R to
the group of automorphisms of the R-algebra EndR(R ⊗A L); we can also view
PGLL as the quotient A-group scheme GLL/Gm. Of course, in the case A = Z

and L = An, we replace the notation GLZn , SLZn , and PGLZn , by GLn, SLn, and
PGLn, respectively.

– Let L be a q-module (resp. b-module) over A. We say that an endomorphism
α of the underlying A-module is orthogonal if q(α(x)) = q(x) for all x in L
(resp. α(x).α(y) = x.y for all x and y in L). The orthogonal endomorphisms
form a group for the composition (so the orthogonal endomorphisms are in fact
automorphisms) that we call the orthogonal group of L and denote by O(L). The
functor R → O(R ⊗A L), defined on the category of commutative A-algebras and
with values in the category of groups, is an A-group scheme that we denote by OL .

In fact, in this book, quadratic forms play a more important role than symmetric
bilinear forms. One reason for this distinction is the statement below (which does
not hold in all generality for b-modules).
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Proposition 2.1.5. For every q-module L over a commutative ring A, the A-group
scheme OL is smooth over A.

Proof. Since the property we want to verify is local for the Zariski topology, we may assume that
L is free, say L = An for some integer n, and will do so from now on. The quadratic form becomes

(x1, x2, . . . , xn) �→
∑

i,j

qi,j xixj ,

where [qi,j] := Q denotes an n × n matrix, defined up to the addition of an alternating matrix
(an alternating matrix is a skew-symmetric matrix A with zeros on the diagonal; we may also
define an alternating matrix as an antisymmetrization). An n × n matrix M with coefficients in
an A-algebra R belongs to OL(R) := O(R ⊗A L) if and only if the matrix tMQM − Q is
alternating. The proposition follows from the fact that the equations resulting from this description
(n(n + 1)/2 polynomials in n2 variables with coefficients in A) satisfy the Jacobian criterion for
smoothness. 
�

We now suppose that L has even constant rank 2n. The map that sends an
orthogonal automorphismα of a q-moduleL to its Dickson–Dieudonné determinant
˜detα (see earlier on) induces a homomorphism of A-group schemes, which we
denote by ˜det : OL → Z/2. Proposition 2.1.4 implies that this homomorphism lifts
the homomorphism det : OL → μ2, in other words, that the diagram

Z/2

OL
det

det

μ2

is commutative (let us recall the definition of the vertical homomorphism: let R be
a commutative A-algebra and Z/2(R) the set of elements x of R satisfying x2 = x,
endowed with the group law (x, y) → x + y − 2xy; then Z/2(R) → μ2(R) is
the homomorphism that sends x to 1 − 2x). To show this implication, consider the
following commutative diagram with exact lines:

0 A
η

Δ(L) Λ2nL 0

id Δ(α) Λ2nα

0 A
η

Δ(L) Λ2nL 0

We denote the A-group scheme that is the kernel of ˜det by SOL (of course, the
group SOL(A) is simply denoted by SO(L)).

Let L be a q-module over A; we denote by GO(L) the subgroup of the product
GL(L) × A× consisting of the pairs (α, ν) such that q(α(x)) = ν q(x) for every
x in L. The A-group scheme GOL is defined by proceeding as previously; it can
be viewed as a subgroup of GLL × Gm. We leave it to the reader to verify that the
restriction of the projection GLL × Gm → GLL to GOL is a closed embedding
and that GOL can therefore also be viewed as a closed subgroup of GLL. We
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denote by ν : GOL → Gm the homomorphism obtained by restricting the projection
GLL × Gm → Gm to GOL. The group GO(L), introduced above, is called the
orthogonal similitude group of L, while the element ν of A× is called the similitude
factor of α. We denote the quotient A-group scheme GOL/Gm by PGOL.

Once again, we assume that L has rank 2n. Let (α, ν) be an element of
GO(L); note that the element d = ν−n detα of A× satisfies d2 = 1. Let
d: GO(L) → μ2(A) be the group homomorphism defined by (α, ν) → d. We
also denote by d: GOL → μ2 the associated A-group scheme homomorphism; note
that d extends the homomorphism det : OL → μ2. Proposition 2.1.4 implies, as
before, that d lifts to a homomorphism ˜d: GOL → Z/2 that extends the homo-
morphism ˜det : OL → Z/2. Let us be a bit more precise. Recall that we identify
the automorphism group of Δ(L) with Z/2(A); through this identification, ˜d(α, ν)
corresponds to the composition

Δ(L)
Δ(α)

Δ(νL)
[ν]

Δ(L) ,

where νL denotes the q-module obtained by multiplying the quadratic form on L
by ν and [ν] denotes the isomorphism induced by the isomorphism [ν] : C+(νL)→
C+(L) introduced in [71, Exp. XII, Sect. 1.3]. The A-group scheme GSOL is
defined as the kernel of ˜d. By passing to the quotient, ˜d induces a homomorphism
PGOL → Z/2; theA-group schemePGSOL is defined as the kernel of this induced
homomorphism. We can also define PGSOL as the quotient GSOL/Gm.

– Finally, letL be an a-module overA. We denote the automorphismgroup ofL by
Sp(L). TheA-group schemes SpL, GSpL, and PGSpL and the homomorphism
ν : GSpL → Gm are defined mutatis mutandis. If L has constant rank 2n,
the theory of the Pfaffian shows that the homomorphism det : GSpL → Gm

(inducedby the homomorphismdet : GLL → Gm) coincides with νn (a relation
that implies, in particular, that SpL is a subgroup of SLL). Let n ≥ 1 be an
integer; in the case where A is Z and L is the hyperbolic a-module H(Zn), we
replace the notation SpH(Zn), GSpH(Zn), and PGSpH(Zn) by Sp2n, GSp2n, and
PGSp2n, respectively. Recall that we can identify Sp2 with SL2.

All A-group schemes introduced above are affine and of finite presentation over A;
for short, we will call such A-group schemes A-groups.

Let us conclude this section on the classical groups with one last remark. Let
PG = G/Gm be one of the “projective” A-group schemes we just defined; in
Chap. 4, we will only need to consider the groupPG(A) for ringsAwithPic(A) = 0,
so that the canonical injection G(A)/A× → PG(A) will be an isomorphism.
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2.2 On b-Modules and q-Modules over Z

In this section, we recall some very classical results from the theory of b-modules
and q-modules over Z (see, for example, [177, Chap. V], [148, Chap. II]).

To organize these results, which we number 1, 2, and 3, we need the concept of
Witt ring; see, for example, [148, Chap. I, Sect. 7]. Let us recall the definition. Let A
be a commutative ring. The set of isomorphism classes of b-modules over A, which
we denote by B(A), is a commutative monoid for the orthogonal sum. We denote by
W(A) the quotient monoid B(A)/N(A), where N(A) is the submonoid generated
by the isomorphism classes of the split b-modules (a b-module is called split if it has
a Lagrangian, that is, a direct summand that is its own orthogonal complement). The
monoid W(A) is a group, and the tensor product of b-modules gives it the structure
of a commutative ring. The abelian group WQ(A) is defined mutatis mutandis in
terms of q-modules over A; see, for example, [148, App. 1] (recall that in this case,
the split q-modules are in fact hyperbolic; see Proposition 2.1.2). The groupWQ(A)
has the natural structure of a W(A)-module.

Let us turn to the case A = Z.
(1) The first result we wish to recall is the determination of W(Z): the canonical

homomorphism W(Z) → W(R) is an isomorphism. There are two ways to state
this:

– The “signature” homomorphism, which we denote by τ : W(Z) → Z, is an
isomorphism. Let us explain what we mean by signature. Let E be a b-vector
space over R; such an E is isomorphic to a b-vector space of the form

〈+1,+1, . . . ,+1,−1,−1, . . . ,−1〉 ,

and the signature of E, which we denote by τ(E), is the difference n+ − n−
between the number of terms +1 and the number of terms −1 in this form. It is
clear that the homomorphism τ : W(R)→ Z is an isomorphism.

– The “unit” homomorphism, which we denote by η : Z → W(Z), is an isomor-
phism. For a nice proof of this result that does not use the Hasse–Minkowski
theorem, see [148, Chap. IV, Sect. 2].

Scholium 2.2.1. Let L1 and L2 be two b-modules over Z. The following conditions
are equivalent:
(i) The two b-vector spaces Q⊗Z L1 and Q⊗Z L2 over Q are isomorphic.

(ii) The two b-vector spaces R⊗Z L1 and R⊗Z L2 over R are isomorphic.
(2) The second result we wish to mention concerns the theory of “Wu vectors.”

Let L be a b-module over Z; since F2 ⊗Z L is a b-vector space over F2, there exists
an element u of L, well-defined modulo 2L, such that

x.x ≡ u.x (mod 2)

for every x in L. We call u a Wu vector (it is also called a “characteristic vector”; the
term “Wu vector” refers to classes defined by Wen-Tsün Wu in the cohomology mod-
ulo 2 of compact manifolds [214]). Note that the reduction modulo 8 of the integer
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u.u is independent of the choice of u and that the map L → u.u induces a homo-
morphism of commutative rings with units, which we denote by σ : W(Z) → Z/8.
Also note that in the above, we can replace Z by Z2 and that the homomorphism
σ factors through W(Z2). Finally, the reduction modulo 2 of σ factors through a
homomorphism W(F2) → Z/2 that coincides with the isomorphism “dimension
modulo 2.”

In view of what we stated earlier concerningW(Z), the homomorphism σ can be
identified with the reduction modulo 8 from Z to Z/8.

Scholium 2.2.2. (a) Let L be a b-module over Z, and let u be a Wu vector of L.
Then we have the congruence

τ(L) ≡ u.u (mod 8) .

(b) The signature of a q-module over Z is divisible by 8.

(3) The last result we wish to mention is more technical. Let L be an odd (that is,
not even) b-module over Z. Let M be the submodule of index 2 of L consisting of
the vectors x satisfying x.x ≡ 0 mod 2. The map M → Z defined by x → x.x/2
turns M into a q̃-module whose residue we will determine further on.

Consider the exact sequence

0→ L/M →M �/M →M �/L→ 0 .

Let u be a Wu vector of L and v an element of L with v.v ≡ 1 mod 2 (or,
equivalently, u.v ≡ 1 mod 2). The quotients L/M and M �/L are cyclic groups of
order 2, generated, respectively, by the classes of v and u/2 (the quotient L/M is
in fact a Lagrangian of the e-module underlying the qe-module resM and M �/L is
canonically isomorphic to the dual of this Lagrangian). The exact sequence above
can be split if and only if u belongs to M , that is, if we have u.u ≡ 0 mod 2 or,
equivalently, in view of result 2 mentioned above, if the dimension of L is even. We
therefore distinguish between two cases according to the parity of this dimension:

– In the case dimL ≡ 1 mod 2, the residue resM is isomorphic to Z/4 and is
generated by the class of u/2; in Q/Z, we have the equality

q
(

x
u

2

)

=
τ(L)

8
x2

for all x in Z.
– In the case dimL ≡ 0 mod 2, the residue resM is isomorphic to the sum
Z/2 ⊕ Z/2 and is generated by the classes of u/2 and v or, equivalently, the
classes of u/2 and u/2− v; in Q/Z, we have the equality

q
(

x
u

2
+ y

(u

2
− v

))

=
τ(L)

8
(x2 + y2) +

(τ(L)

4
+

1

2

)

xy

for all x and y in Z.
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We can see that the equation q(ι) = 0 with ι ∈ resM − {0} has no solution for
τ(L) �≡ 0 mod 8 and that for τ(L) ≡ 0 mod 8, it has exactly two, namely u/2 and
u/2− v. In summary, we have obtained the following result.

Scholium 2.2.3. Let L be an odd b-module over Z and M the submodule of index 2
ofL consisting of the vectorsx satisfying x.x ≡ 0 mod 2 (M is therefore a q̃-module
over Z). The following conditions are equivalent:

(i) The qe-module resM is isomorphic to H(Z/2).
(ii) The signature of L is divisible by 8.

The Partition of the Wu Vectors into Two Classes

Let L be an odd b-module over Z and M the submodule of index 2 of L consisting
of the vectors x satisfying x.x ≡ 0 mod 2.

Let Wu(L) be the set of Wu vectors of L. The action of L on Wu(L) defined by
(u, x) → u+2x (for u in Wu(L) and x in L) is free and transitive. The action of M
onWu(L) induced by restriction has exactly two orbits (those of u and u−2v, where
u denotes an arbitrary Wu vector ofL and v is an element of Lwith v.v ≡ 1 mod 2);
we say that two Wu vectors in the same orbit are equivalent. Let u1 and u2 be two
nonequivalent Wu vectors; we can paraphrase the discussion before Scholium 2.2.3
as follows:

– The classes of u1/2 and u2/2 generate the abelian group resM .
– If the dimension of L is odd, these classes are of order 4 and opposite.
– If the dimension of L is even, these classes are of order 2 and form a basis of

the Z/2-vector space resM .
– We have the following equalities in Q/Z:

q
(u1

2

)

=
τ(L)

8
, q

(u2

2

)

=
τ(L)

8
, q

(u1

2
+

u2

2

)

=
1 + dimL

2
;

note that in both cases, these equalities determine the quadratic linking form
q: resM → Q/Z.

Let us give an illustration of the above. Let n be a positive integer; we consider
the “Euclidean” symmetric bilinear form

Z
n × Z

n → Z ,
(

(x1, x2, . . . , xn), (y1, y2, . . . , yn)
) →

n
∑

i=1

xiyi .

Endowed with this form, Zn is an odd b-module over Z, which we denote by In. We
denote by Dn the submodule of In of index 2 consisting of the vectors x satisfying
x.x ≡ 0 mod 2, that is,

∑n
i=1 xi ≡ 0 mod 2 (this notation consciously evokes the

theory of root systems; we will return to this topic in Sect. 2.3). Let (ε1, ε2, . . . , εn)
be the canonical basis of In; note that the vectors u1 := ε1 + ε2 + . . . + εn and
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u2 := −ε1 + ε2 + . . .+ εn are nonequivalent Wu vectors of In. If n is divisible by
8, we can describe the qe-module resDn explicitly as follows:

– As a Z-module, the residue resDn is a Z/2-vector space of dimension 2 with
basis given by the classes of the vectors ι1 := u1/2 and ι2 := u2/2.

– The quadratic linking form of resDn is determined by q(ι1) = 0, q(ι2) = 0,
and ι1.ι2 = 1/2.

Items (b) and (c) of Proposition 2.1.1 show that the lattice in Q⊗Z In generated
by Dn and 1

2 (ε1 + ε2 + . . .+ εn) is a q-module over Z, which we denote by E8 for
n = 8 and by En or D+

n for n ≥ 16 (and n ≡ 0 mod 8).

Scholium 2.2.4. The composition

WQ(Z)
forget

W(Z)
τ

Z

induces an isomorphism (ofW(Z)-modules) fromWQ(Z) to the ideal 8Z; the group
WQ(Z) is infinite, cyclic, and generated by the class of E8.

Proof. It suffices to observe that the forgetfulmapWQ(Z)→W(Z) is injective. ��

The Genus of a q-Module over Z

This heading refers to item (b) of the following statement.

Scholium 2.2.5. Let L be a q-module over Z and p a prime.

(a) The q-vector space Fp ⊗Z L is hyperbolic.
(b) The q-module Zp ⊗Z L is hyperbolic.

Proof. The first statement implies the second; indeed, two q-modulesL1 andL2 over
Zp are isomorphic if and only if the q-vector spaces Fp ⊗Zp L1 and Fp ⊗Zp L2 are
isomorphic. To prove statement (a), it suffices to show that the natural homomorphism
WQ(Z)→WQ(Fp) is trivial. The easy case where p is odd is left to the reader. For
p = 2, we can use the following arguments:

– The Arf invariant Arf : WQ(F2)→ H1
ét(F2;Z/2) ∼= Z/2 is an isomorphism.

– The group H1
ét(Z;Z/2) is trivial.

The argument above can be replaced by the following, more prosaic, one:

– The homomorphism WQ(Z) → WQ(F2) factors through WQ(Z2) and the
determinant of a q-module L over Z2 is equal to the class of the element
(−1)(dimL)/2 (−3)Arf(F2⊗Z2

L) in Z
×
2 /Z

×2
2 (to see this, note, for example, that

such an L decomposes into an orthogonal sum of q-modules of dimension 2,
each endowed with a basis (e, f) with e.f = 1). ��
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We can also deduce the results of Scholium 2.2.5 from the following proposition,
whose proof is left to the reader.

Proposition 2.2.6. Let p be a prime, and let L1 and L2 be two q-modules over Zp.
The following conditions are equivalent:

(i) L1 and L2 are isomorphic.
(ii) The two q-vector spaces Fp ⊗Z L1 and Fp ⊗Z L2 over Fp are isomorphic.

(iii) L1 and L2 have the same dimension and determinant.
(iv) The two q-vector spaces Qp ⊗Z L1 and Qp ⊗Z L2 over Qp are isomorphic.

For the sake of future reference, we add the following statements to the ones we
have recalled so far; they refine the results of Scholium 2.2.1.

Theorem 2.2.7. Let L1 and L2 be two q-modules over Z. Assume that the q-vector
space R⊗Z L1 over R is indefinite; then the following conditions are equivalent:

(i) L1 and L2 are isomorphic.
(ii) The two q-vector spaces R⊗Z L1 and R⊗Z L2 over R are isomorphic.

Theorem 2.2.8. Let L1 and L2 be two q-modules over Z, and let p be a prime. The
following conditions are equivalent:

(i) The two q-modulesZ[1/p]⊗ZL1 andZ[1/p]⊗ZL2 overZ[1/p] are isomorphic.
(ii) The two q-vector spaces R⊗Z L1 and R⊗Z L2 over R are isomorphic.

These two theorems can be proved using the strong approximation theorem for
spin groups [162]. We can also prove Theorem 2.2.7 as follows: begin by noting
that Scholium 2.2.1 implies that an indefinite b-module over Z represents zero and
conclude as Serre does in [177, Chap. V, Sect. 3].

The Classical Terminology in the Positive Definite Case

Let V be a Euclidean space, that is, an R-vector space of finite dimension endowed
with a positive definite symmetric bilinear form (called an inner product). In this
context, a lattice in V is a cocompact discrete subgroup. Such a lattice L is called
integral if the inner product x.y is an integer for all x and y in L. Endowed with the
symmetric bilinear form induced by the inner product,L is a ˜b-module over Z that is
positive definite (in other words, the b-vector spaceR⊗ZL is positive definite). Con-
versely, a positive definite ˜b-module L over Z is an integral lattice in the Euclidean
space R⊗ZL. An integral lattice L in V is called a unimodular lattice if it has covol-
ume 1 (the word “integral” is implicit in this case), in other words, if the ˜b-module
L is in fact a b-module. An integral lattice L in V is called even if x.x is even for all
x in L, that is, if the ˜b-module L is in fact a q̃-module. A positive definite q-module
L over Z is therefore an even unimodular lattice in the Euclidean space R⊗Z L.

In this book, we will more frequently use the classical terminology of even
unimodular lattice (resp. unimodular lattice, even integral lattice, integral lattice)
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than the terminology of positive definite q-module (resp. b-module, q̃-module, ˜b-
module) over Z. (In fact, the terminology of q-module, b-module, . . . , is seldom
used by anyone else than the second author of this book!)

2.3 Root Systems and Even Unimodular Lattices

With the exception of the Leech lattice, the even unimodular lattices that occur in
dimensions 8, 16, and 24 are all constructed from certain root systems using a process
we will now describe.

In fact, the root systems in question are certain direct sums of root systems of type
Al, Dl, E6, E7, and E8; we will say that such direct sums are root systems of type
ADE (a more common terminology, justified by considering the Dynkin diagram, is
simply laced). It is clear that among the irreducible root systems, those of type ADE
are characterized by the property that all roots have the same length. The reader can
easily verify that as a definition of root systems of type ADE, we can also take the
following ad hoc one, which is a variant of [39, Chap. VI.1, Définition 1].

Definition 2.3.1. Let V be a Euclidean space and R a subset of V consisting of
vectors α satisfying α.α = 2. We say that R is a root system of type ADE in V if the
following conditions are satisfied:

(I) The subset R is finite and generates V .
(II) For all α in R, the orthogonal reflection x → x − (α.x) α in V (which we

denote by sα) leaves R unchanged.
(III) For all α and β in R, the inner product α.β is an integer.

Here, we encounter the Weyl group W(R) generated by the sα as a subgroup of
the orthogonal group of V ; the same holds for the (finite) group A(R) consisting of
the automorphisms of the R-vector space V that leave R unchanged (this follows,
for example, from [39, Chap. VI, Sect. 1, Propositions 3 and 7]).

Recall that when developing the general theory of a root system R in a R-vector
spaceV , one shows that sα(x) can be written uniquely asx−〈x, α∨〉αwithα∨ ∈ V ∗

and that the α∨ form a root system in V ∗. The latter is denoted by R∨ and called the
dual of R. In the setting of Definition 2.3.1, if we identify V and V ∗ via the inner
product, the map α → α∨ is the identity and the roots systems R and R∨ coincide.

Let R ⊂ V be a root system of type ADE; the lattice in V generated by R, which
we denote by Q(R) and call the root lattice, is an even integral lattice, and R can be
identified with the subset of Q(R) consisting of the elements α satisfying α.α = 2
(this last property is not, a priori, an immediate consequence of Definition 2.3.1; to
see that it holds, note that it does so for the root systems Al, Dl, E6, E7, and E8).
The group A(R) can be identified with the automorphism group of Q(R), where we
view the latter as a q̃-module over Z. The notation Q(R) is that of Bourbaki [39].
Conversely, let L be an integral lattice (in other words, a positive definite ˜b-module
over Z), let R(L) be the (finite) subset of L consisting of the elements α satisfying
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α.α = 2, which we call the roots of L, and let V(L) be the subspace of R ⊗Z L
generated by R(L); then R(L) is a root system of type ADE in V(L) (take Λ = {2}
at the beginning of item 4 of [39, Chap. VI, Sect. 4]). In summary, the classification
of the root systems of type ADE coincides with that of the (even) integral lattices
generated by their roots.

The process that allows us to obtain an even unimodular lattice from certain root
systems of type ADE is simply a particular case of the general process provided by
Proposition 2.1.1. Let R be a root system of type ADE. Suppose that the qe-module
resQ(R) has a Lagrangian I . Then the inverse image of I under the canonical map
Q(R)� → Q(R)�/Q(R) =: resQ(R) is a positive definite q-module (see parts (b)
and (c) of Proposition 2.1.1) over Z, in other words, an even unimodular lattice. The
lattice Q(R)� is the weight lattice of the root system R; it is denoted by P(R) in
[39].

Example. Let n ≥ 1 be an integer; we endow the R-vector space R
n with its

canonical Euclidean structure and denote its canonical basis by (ε1, ε2, . . . , εn).
Once again, consider the even integral lattice Dn ⊂ In := Z

n ⊂ R
n introduced

in Sect. 2.2. The root systemDn, forn ≥ 3, is defined by the equalityDn := R(Dn);
the set R(Dn) generates Dn for n ≥ 2.

Let us recall what we saw in Sect. 2.2:

– The qe-module resDn has a Lagrangian if and only if n is divisible by 8, which
we will assume to be true from now on.

– In this case, we have an isomorphism of qe-modules resDn
∼= H(Z/2), and the

two Lagrangiansof resDn are generated by the classes of the vectors 1
2 (ε1+ε2+

. . .+εn) and 1
2 (−ε1+ε2+. . .+εn). Note that these two vectors are interchanged

by the involutive automorphism (x1, x2, . . . xn) → (−x1, x2, . . . xn) of Dn.

We have denoted by En the lattice generated by Dn and the vector 1
2 (ε1 + ε2 +

. . . + εn); the lattice En is the simplest example of an even unimodular lattice
obtained by the process described above (for more sophisticated examples, see the
classification of even unimodular lattices of dimension 24 mentioned further on).

The root system E8 is defined by the equality E8 := R(E8); the set R(E8) gen-
erates E8; in other words, we have E8 = Q(E8). For n ≥ 16 (and n ≡ 0 mod 8),
we have R(En) = R(Dn) = Dn; the subgroup generated by R(En) has index 2 in
En. The even unimodular lattice En is also denoted by D+

n (at least for n ≥ 16); this
notation is justified by the fact that the automorphism group of Dn acts transitively
on the set consisting of the two Lagrangians of resDn.

After describing, above, the root systems Dn for n ≥ 3 and E8, as well as their
root lattices, we provide hereafter, for the sake of completeness, similar information
about the remaining irreducible root systems of type ADE. The definitions of the
even lattice An and of the root system An := R(An), for n ≥ 1, may be found
in the second example after Scholium 2.3.15; again, we have An = Q(An). We
denote by E7 (resp. E6) the orthogonal complement in E8 of the vector ε7 + ε8
(resp. the vectors ε6 − ε7 and ε7 + ε8). The root system El, for l = 7, 6, is defined
by El := R(El), and we have El = Q(El).
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The Classification of the Even Unimodular Lattices in Dimensions 8, 16,
and 24

The classification of the even unimodular lattices is due to Louis J. Mordell in dimen-
sion 8, to Ernst Witt in dimension 16, and to Hans-Volker Niemeier in dimension 24
[158]. We will now recall the ingenious strategy developed by Boris Venkov [201]
for recovering Niemeier’s classification. His strategy also works in dimensions 8
and 16. Indeed, the initial idea of Venkov is to consider theta series “with harmonic
coefficients of degree 2” and observe that these series are identically zero because
all cusp forms of weight 14 = 24/2 + 2 for SL2(Z) are zero. For the arguments he
then uses, it is no longer crucial that the dimension of the lattice be 24, and every
cusp form of weight n/2 + 2 for SL2(Z) is also zero for n = 8, 16.

By considering the “coefficient of e2ıπτ” in the theta series mentioned above,
Venkov obtains the following identity.

Proposition 2.3.2. Let L be an even unimodular lattice of dimension n = 8, 16, or
24. Then we have the identity

∑

α∈R(L)

(α.x)2 =
2 |R(L)|

n
x.x

for every x in the Euclidean space R⊗Z L (where | − | denotes the cardinality of a
finite set).

Venkov then deduces the following result.

Proposition-Definition 2.3.3. Let L be an even unimodular lattice of dimension
n = 8, 16, or 24. If the set R(L) of roots of L (recall that these are the elements α
of L satisfying α.α = 2) is nonempty, then it satisfies the following properties:

(a) The set R(L) is a root system (of type ADE) of rank n (in R ⊗Z L); in other
words, R(L) generates the R-vector space R⊗Z L.

(b) All irreducible components of the root system R(L) have the same Coxeter
number, which we call the Coxeter number of L and denote by h(L); we will
say that such a root system is equi-Coxeter.

(c) We have |R(L)| = n h(L).

Remarks.

– Venkov shows properties (b) and (c) simultaneously using Proposition 2.3.2 and
[39, Chap. VI, Sect. 1, Proposition 32]. We can also deduce property (c) from
property (b) by using the relation |R| = nh that links the number of roots, rank,
and Coxeter number for every reduced irreducible root system (see [104, 3.18],
[39, Chap. VI, Sect. 1, Exercice 20]).

– Since the Coxeter number of the direct sum of two root systems is the least
common multiple of their Coxeter numbers (recall that the Coxeter number of
a root system is defined as the order of a Coxeter element), h(L) is also the
Coxeter number of the root system R(L).
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Scholium 2.3.4. LetL be an even unimodular lattice of dimension 24withR(L) �= ∅.
Then we have the identity

∑

α∈R(L)

(α.x)2 = 2 h(L) x.x

for every x in the Euclidean space R⊗Z L.

Corollary 2.3.5. Every even unimodular lattice of dimension 8 is isomorphic to E8.

Proof. Let L be such a lattice. The theta series of L, which is modular of weight 4
for SL2(Z), is necessarily equal to the normalized Eisenstein series E4 (this unusual
notation is due to the overuse of the letter “E”). It follows that we have |R(L)| = 240
and h(L) = 30. The latter implies R(L) � E8. Since the lattice E8 = Q(E8) is
unimodular, we indeed have L � E8. ��
Corollary 2.3.6. Every even unimodular lattice of dimension 16 is isomorphic to
either D+

16 or E8 ⊕ E8 (and these two lattices are not isomorphic).

Proof. Let L be such a lattice. The theta series of L is necessarily equal to the
normalized Eisenstein series E8 = E

2
4. Consequently, we have |R(L)| = 480 and

h(L) = 30. The latter implies that we have either R(L) � D16 or R(L) � E8

∐

E8

(where
∐

denotes the direct sum of root systems).
In the case R(L) � E8

∐

E8, we conclude as before that we have L � E8 ⊕E8.
In the case R(L) � D16, the lattice D16 appears, up to an isomorphism, as a

sublattice of L. We may therefore assume that in Q ⊗Z L, we have the inclusions
D16 ⊂ L ⊂ D�

16. Then L/D16 is a Lagrangian of the qe-module resD16 and we
have L � D+

16. ��
Let us now turn to more serious matters, namely determining the isomorphism

classes of even unimodular lattices of dimension 24.
LetL be an even unimodular lattice of dimension 24withR(L) �= ∅. Properties (a)

and (b) of Proposition 2.3.3 tell us that R(L) is a root system of type ADE, of rank
24 and equi-Coxeter. Venkov begins by listing the isomorphism classes of such root
systems explicitly. This list has 23 elements R1,R2, . . . ,R23. For the complete
list, we refer to the second column of [68, Chap. 16, Table 16.1] (our Table 1.1);
the reader will notice that we use the integers 1, 2, . . . , 23 to index the elements,
rather than the Greek letters α, β, . . . , ψ used by Conway and Sloane. Here are some
examples:

R1 = D24 , R2 = D16

∐

E8 , R3 = E8

∐

E8

∐

E8 ,

R4 = A24 , R5 = D12

∐

D12 , R6 = A17

∐

E7 ,

R7 = D10

∐

E7

∐

E7 , R23 = A1

∐

A1

∐

. . .
∐

A1 ,

where the last direct sum consists of 24 irreducible components equal to A1. Be-
fore continuing our description of Venkov’s arguments, we need to make a few
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observations and recall some results. These can be found below, numbered 1, 2,
and 3.

(1) Let M be a q̃-module over Z. If M is positive definite, then, in addition to
its structure of qe-module, the quotient resM := M �/M has a structure that we
will now describe. Let ξ be an element of resM and γ : M � → resM the canonical
surjection. We define a map qm: resM → Q ∩ [0,∞[ by setting

qm(ξ) = inf
x∈γ−1(ξ)

q(x) .

This map clearly makes the following diagram commutative:

Q ∩ [0, ∞[

resM
q

qm

Q/Z

(the vertical arrow is the restriction of the reduction modulo Z). We call resM
endowed with this additional structure a Venkov qe-module.

Example. Let n > 0 be an integer divisible by 8, and let M = Dn. We saw in
Sect. 2.2 that resDn is isomorphic to Z/2⊕Z/2 endowed with the quadratic linking
form defined by q(0̄, 0̄) = 0, q(1̄, 0̄) = 0, q(0̄, 1̄) = 0, and q(1̄, 1̄) = 1/2. The
map qm, in turn, is given by qm(0̄, 0̄) = 0, qm(1̄, 0̄) = n/8, qm(0̄, 1̄) = n/8, and
qm(1̄, 1̄) = 1/2.

The following proposition is obvious.

Proposition 2.3.7. Let M be an even integral lattice. Let I be a submodule of
resM with I ⊂ I⊥, and let L be the associated integral lattice. Then the following
conditions are equivalent:

(i) R(L) = R(M).
(ii) We have qm(ξ) > 1 for every ξ in I − {0}.
Example. We return to the previous example. The proposition shows that we have
R(En) = R(Dn) for n ≥ 16 and R(E8) � R(D8).

(2) Let R ⊂ V be a root system of type ADE. Let us recall how to determine the
map qm: resQ(R) → Q ∩ [0,∞[. We may clearly assume that R is irreducible,
and will do so from now on.

We fix a chamberC ofR; we denote the correspondingbasis ofR and highest root
by (α1, α2, . . . , αl) and α̃, respectively. Recall that C is the subset of V consisting
of the elements ξ satisfying αi.ξ > 0 for i = 1, 2, . . . , l. Also recall that we have
α̃ = n1α1 + n2α2 + · · · + nlαl with ni ∈ N − {0} for i = 1, 2, . . . , l. Let J
be the subset of {1, 2, . . . , l} consisting of the indices i for which ni = 1. Let
�1, �2, . . . , �l be the fundamental weights, that is, the elements of V defined by
αi.�j = δi,j (where δi,j is the Kronecker delta). Then (�1, �2, . . . , �l) is a basis
of the Z-module Q(R)� and C is the open cone of V generated by this basis.



38 2 Bilinear and Quadratic Algebra

Proposition 2.3.8. Let R be an irreducible root system of type ADE, endowed with a
chamber C. Let γ : Q(R)� → resQ(R) be the canonical map and Π(R) the subset
{0}∐{�j ; j ∈ J} of Q(R)�.

(a) The restriction of γ to Π(R) is a bijection.
(b) For every ξ in Π(R), we have qm(γ(ξ)) = q(ξ).

Proposition 2.3.8 allows us to determine the map qm: resQ(R)→ Q ∩ [0,∞[.
A reference for statement (a) is [39, Chap. VI, Sect. 2, Corollary of Proposition 6];
statement (b) is implicit in [201]. For the sake of the reader, we include, in a smaller
font, a proof of these two statements; it is based on Proposition 2.3.9 below (for
which we refer to [39, Chap. V, Sect. 3, Théorème 2]), which is a fundamental result
on the action of the affine Weyl group on V .

Before stating the proposition, let us recall the definition of the alcove associated
with the chamber C (we denote it by Alc hereafter and in Chap. 3):

Alc := { ξ ; ξ ∈ V, αi.ξ > 0 for i = 1, 2, . . . , l and α̃.ξ < 1 } ;

the closure Alc of Alc in V is, of course, defined by the nonstrict inequalities
αi.ξ ≥ 0 and α̃.ξ ≤ 1.

Proposition 2.3.9. Every orbit of the canonical action of the semidirect product
W(R)� Q(R) (the affine Weyl group) on V meets Alc at a single point.

Proof of Proposition 2.3.8.
(a) By definition, Π(R) is contained in Alc because for every ξ in Π(R), the inner products

α̃.ξ and αi.ξ for i = 1, 2, . . . , l are 0 or 1. In fact, it is not difficult to see that we have Π(R) =

Q(R)� ∩Alc: Let ξ be an element of Q(R)� . We write it as ξ =
∑l

i=1(αi.ξ)�i; if ξ is in C, then
the integers αi.ξ are nonnegative, and if ξ is nonzero and we also have α̃.ξ ≤ 1, then ξ must be one
of the �j with j in J .

In view of what we just wrote, statement (a) is a consequence of Proposition 2.3.9:
– The “uniqueness” part of Proposition 2.3.9 shows that the restriction of γ to Π(R) is injective.
– The “existence” part shows that it is also surjective. Indeed, let ξ be an element of Q(R)�; then

there exist η in Alc, w in W(R), and x in Q(R) such that we have ξ = wη + x. Consequently, we
have η ∈ Π(R), and therefore γ(ξ) = γ(wη), and finally γ(ξ) = γ(η) because the action of W(R)

on resQ(R), induced by that of W(R) on Q(R), is trivial [39, Chap. VI, Sect. 1, Proposition 27].
(b) This statement is a consequence of the implication (v) ⇒ (i)of Proposition 2.3.10 below. 
�

Proposition 2.3.10. Let R ⊂ V be an irreducible root system of type ADE. Let ξ be an element of
V . The following conditions are equivalent:

(i) We have q(ξ) ≤ q(ξ + x) for every x in Q(R).
(ii) We have q(ξ) ≤ q(ξ + α) for every α in R.

(iii) We have α.ξ ≤ 1 for every α in R.
(iv) We have |α.ξ| ≤ 1 for every α in R.
(v) There exists an element w of W(R) such that wξ is in Alc (we assume that R is endowed with

a chamber C).

Proof of (i) ⇒ (ii) ⇒ (iii) ⇐⇒ (iv). These implications are trivial (for (ii) ⇒ (iii) ⇐⇒ (iv), note
that if α is a root, then so is −α). 
�
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Proof of (iv) ⇐⇒ (v). Let

Ψ := { ξ ; ξ ∈ V, α.ξ ≤ 1 for all α in R } ;

we must show that we have Ψ =
⋃

w∈W(R) w Alc.
Given an element ξ of V , there exists an element w of W(R) with w−1ξ ∈ C. If we, moreover,

assume ξ ∈ Ψ, then we have (wα̃).ξ = α̃.(wξ) ≤ 1 and therefore w−1ξ ∈ Alc; this proves the
inclusion Ψ ⊂ ⋃

w∈W(R) w Alc.
Let α be a positive root (for the chamber C); since α can be written as

∑l
i=1 νiαi with

0 ≤ νi ≤ ni, we have 0 ≤ α.ξ ≤ α̃.ξ for every ξ in C. The inclusion Alc ⊂ Ψ follows;
consequently, we have

⋃

w∈W(R) w Alc ⊂ Ψ because Ψ is invariant under the action of W(R). 
�

Proof of (iii) ⇒ (i). Let Γ be an arbitrary lattice in the Euclidean space V . Set

ΦΓ := { ξ ; ξ ∈ V, q(ξ) ≤ q(ξ − x) for all x in Γ } ;

that is, ΦΓ is the subset of V consisting of the points whose distance to the origin is less than or
equal to the distance to any point of Γ. The study of these subsets has, of course, a very rich history.
By definition, ΦΓ is the intersection of the semispaces consisting of the q with x.ξ ≤ q(x), where
x runs through Γ; one easily sees that ΦΓ is compact and is the intersection of a finite subfamily of
these semispaces. The subset ΦΓ has the following three properties:

(1) The set ΦΓ is the closure of its interior in V .
(2) The translates ΦΓ + x, where x runs through Γ, cover V .
(3) The translates Φ̊Γ + x for x in Γ are pairwise disjoint (where Φ̊Γ denotes the interior of ΦΓ).

Lemma 2.3.11. Let Φ (resp. Φ′) be a subset of V with properties (1), (2), and (3) (resp. (1) and
(3)). If Φ ⊂ Φ′, then Φ = Φ′.

Proof. Suppose Φ′ �⊂ Φ. In this case, we also have Φ̊′ �⊂ Φ because Φ is closed and Φ′ is the
closure of its interior. Let ξ be an element of V with ξ ∈ Φ̊′ and ξ �∈ Φ. Since Φ has property
(2), there exists an x in Γ such that ξ + x ∈ Φ and a fortiori ξ + x ∈ Φ′. We therefore have
Φ̊′ ∩ (Φ′ + x) �= ∅; by a general topological argument analogous to the one we just gave, we also
have Φ̊′ ∩ (Φ̊′ + x) �= ∅. Since Φ has property (3), we have x = 0. This gives a contradiction. 
�

Proof of Proposition 2.3.10 (iii) ⇒ (i), Continued. We can use Lemma 2.3.11 to prove the impli-
cation (iii) ⇒ (i). Set Φ := ΦQ(R); then Φ is the subset of V consisting of the ξ satisfying
condition (i). We must show that we have Φ = Ψ. It is clear that Ψ has property (1); to con-
clude, it therefore suffices to show that it also has property (3). Let x be an element of Q(R) with
Ψ̊ ∩ (Ψ̊ + x) �= ∅; let ξ be an element of this intersection. The inequalities −1 < α.ξ < 1 and
−1 < α.(ξ + x) < 1 imply −2 < α.x < 2; since α.x is an integer, we also have −1 ≤ α.x ≤ 1,
that is, x ∈ Ψ. Proposition 2.3.12 below then says that x is zero. 
�

Proposition 2.3.12. We have Ψ ∩Q(R) = {0}.

Proof. In view of the equalityΨ =
⋃

w∈W(R) w Alc, it suffices to show that we haveAlc∩Q(R) =

{0}. This equality follows from Proposition 2.3.9. 
�

Remark (On the Terminology). The elements ξ of Q(R)� satisfying q(ξ) ≤ q(ξ+x)
for everyx inQ(R) are called minuscule weights; however, this term is often reserved
for the fundamental weights�j for j ∈ J considered earlier (see, for example, [193]).
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(3) Let R be a root system of type ADE. The action of A(R) on Q(R) induces
an action of A(R) on the Venkov qe-module resQ(R). The restriction of the ac-
tion of A(R) on resQ(R) to W(R) is trivial (recall the reference: [39, Chap. VI,
Sect. 1, Proposition 27]); since W(R) is a normal subgroup of A(R) [39, Chap. I.
Sect. 1, Proposition 16], there is a canonical (in fact faithful [39, Chap. VI, Sect. 4,
Exercice 7]) action of the quotient group G(R) := A(R)/W(R) on resQ(R).

Let us now return to the classification of even unimodular lattices of dimension
24 with nonempty set of roots. To complete this classification, Venkov verifies the
following (miraculous) statement case by case.

Proposition 2.3.13. LetR be a root system of type ADE, of rank 24 and equi-Coxeter.

(a) The Venkov qe-module resQ(R) has a Lagrangian I with qm(ξ) > 1 for every ξ
in I − {0}.

(b) Such a Lagrangian is unique up to the action of G(R).

Corollary 2.3.14. The map L → R(L) induces a bijection from the set of isomor-
phism classes of even unimodular lattices of dimension 24with nonempty root system
R(L) onto the set of isomorphism classes of equi-Coxeter root systems of type ADE
and rank 24.

Scholium 2.3.15. Let L be an even unimodular lattice of dimension 24 with R(L) �=
∅. Then the following hold:

(a) The action of the Weyl group W(R(L)) on R(L) extends to an (orthogonal)
action on L, so that we can identifyW(R(L)) with a subgroup of the orthogonal
group O(L).

(b) The group W(R(L)) is a normal subgroup of O(L), and the quotient
O(L)/W(R(L)) is canonically isomorphic to the subgroup of G(R) that
stabilizes the Lagrangian L/Q(R(L)) of the qe-module resQ(R) (this La-
grangian is one of those considered in Proposition 2.3.13).

(Part (b) of this observation follows from the fact that the canonical action of
W(R(L)) on resQ(R) is trivial.)

Examples.
(1) R(L) ∼= D24, R(L) ∼= D16

∐

E8, and R(L) ∼= E8

∐

E8

∐

E8

It follows from previous results that in these three cases, we have, respectively,
L ∼= D+

24, L ∼= D+
16 ⊕ E8, and L ∼= E8 ⊕ E8 ⊕ E8.

(2) R(L) ∼= A24

Let n ≥ 1 be an integer; we endow the R-vector space R
n+1 with its canonical

Euclidean structure and denote its canonical basis by (ε1, ε2, . . . , εn+1). We denote
by An the submodule of In+1 := Z

n+1 ⊂ R
n+1 consisting of the (n + 1)-tuples

(x1, x2, . . . , xn+1) with x1 + x2 + . . . + xn+1 = 0; An is an even integral lattice
(in the hyperplane of R

n+1 consisting of the (n + 1)-tuples (ξ1, ξ2, . . . , ξn+1)
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with ξ1 + ξ2 + . . . + ξn+1 = 0). The root system An is defined by the equality
An := R(An) (so that we also have An = Q(An)).

The underlying abelian group of the Venkov qe-module resAn is cyclic of order
n+ 1, generated by the class of the orthogonal projection of ε1 onto the hyperplane
∑n+1

i=1 ξi = 0, which we denote by �. The quadratic linking form q: Z/(n+ 1)→
Q/Z, defined by transport of structure, is given by

q(k̄) = k2q(�) =
nk2

2(n+ 1)
.

The map qm: Z/(n+ 1)→ Q ∩ [0,∞[, in turn, is given by

qm(k̄) =
k (n+ 1− k)

2(n+ 1)
for 0 ≤ k ≤ n

(in the case of An, all fundamental weights are minuscule).
It is clear that resAn has a Lagrangian, in the bilinear sense, if and only if the

integer n + 1 is a square, that is, n + 1 = r2; the Lagrangian is the submodule
generated by r� and is then unique.

Assume n+ 1 = r2 and denote by I the submodule generated by r�; note that
I is a Lagrangian in the quadratic sense if and only if n is even, that is, r is odd, and
that in this case, I satisfies condition (ii) of Proposition 2.3.7 if and only r ≥ 5.

Let A+
24 be the lattice in Q ⊗Z A24 generated by A24 and 5�. The discussion

above shows that A+
24 is an even unimodular lattice of dimension 24 with R(A+

24)
∼=

A24 and that this property characterizes A+
24, up to isomorphism, among the even

unimodular lattices of dimension 24.

(3) R(L) ∼= D12

∐

D12

The Venkov qe-module resD12 is isomorphic to Z/2 ⊕ Z/2 endowed with the
maps q and qm defined, respectively, by

q(0̄, 0̄) = 0 , q(1̄, 0̄) = 1
2 , q(0̄, 1̄) = 1

2 , and q(1̄, 1̄) = 1
2 ;

qm(0̄, 0̄) = 0 , qm(1̄, 0̄) = 3
2 , qm(0̄, 1̄) = 3

2 , and qm(1̄, 1̄) = 1
2 .

The Venkov qe-module res(D12 ⊕ D12) is isomorphic to resD12 ⊕ resD12. The
Lagrangians of res(D12 ⊕ D12) are the graphs of the permutations φ of resD12

that preserve 0 (such a permutation is linear and preserves the quadratic linking
form). The graph of φ satisfies condition (ii) of Proposition 2.3.7 if and only if we
have φ(qm−1(1/2)) �= qm−1(1/2); there are four of these φ, and we see that the
group G(D12

∐

D12) (which is isomorphic to S2 �G(D12) = S2 �S2) indeed acts
transitively on the set consisting of the four corresponding graphs.

(4) R(L) ∼= A17

∐

E7

The Venkov qe-module res(A17 ⊕ E7) is isomorphic to resA17 ⊕ resE7. The
structure of the Venkov qe-module resAn has already been given explicitly for
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every n in the example (2) above. The qe-module resE7, in turn, is isomorphic
to Z/2 endowed with the quadratic linking form defined by q(1̄) = −1/4 (see
Proposition B.2.2 (d)); we easily verify that we have qm(1̄) = 3/4. We see that the
unique Lagrangian of the qe-module res(A17⊕E7) indeed satisfies condition (ii) of
Proposition 2.3.7.

(5) R(L) ∼= D10

∐

E7

∐

E7

The structure of the Venkov qe-module res(D10 ⊕ E7 ⊕ E7) is determined by
that of resE7, which we made explicit above, and that of resD10. The latter is as
follows: resD10 is isomorphic to Z/2⊕ Z/2 endowed with the map qm defined by
qm(0̄, 0̄) = 0, qm(1̄, 0̄) = 5/4, qm(0̄, 1̄) = 5/4, and qm(1̄, 1̄) = 1/2.

The qe-module res(D10 ⊕ E7 ⊕ E7) has two Lagrangians, which we denote by
I1 and I2; they are the graphs of the two isomorphisms of qe-modules from resD10

to 〈−1〉 ⊗ res(E7 ⊕ E7). We easily verify that I1 and I2 both satisfy condition (ii)
of Proposition 2.3.7.

The group G := G(D10

∐

E7

∐

E7) can be identified with Z/2× Z/2 because
it is isomorphic to the product of the groups G(D10) and G(E7

∐

E7), which are
both cyclic of order 2. We easily verify that G acts transitively on the set {I1, I2};
also note that the diagonal Z/2 acts trivially (we will use this observation at the end
of Sect. B.2).

(6) R(L) ∼= 24A1 (the right-hand side denotes the direct sum of 24 copies of the
root system A1)

The Venkov qe-module resA1 is isomorphic to Z/2 endowed with the map qm
defined by qm(x) = λ(x)/4, where λ : Z/2 → N is the map defined by λ(0̄) = 0
and λ(1̄) = 1. It follows that the Venkov qe-module res(A⊕24

1 ) is isomorphic to
(Z/2)24 endowed with the map qm defined by

qm(x1, x2, . . . , x24) =
1

4

24
∑

i=1

λ(xi) =:
1

4
wt(x1, x2, . . . , x24) .

The group G(24A1) is isomorphic to S24 � G(A1) = S24, and its action on
res(A⊕24

1 ) can be identified with the obvious action of S24 on (Z/2)24.
A Lagrangian of res(A⊕24

1 ) can be identified with a linear subspace I of (Z/2)24
with dim I = 12 and wt(x) ≡ 0 mod 4 for every x in I . Such an I is called an even
self-dual binary code of length 24. Up to isomorphism (that is, modulo the action of
S24), there exist nine even self-dual binary codes of length 24 [164].

The Lagrangian I moreover satisfies condition (ii) of Proposition 2.3.7 if and
only if wt(x) ≥ 8 for every x in I−{0}. Again, there exists an even self-dual binary
code of length 24 satisfying this property, and, up to isomorphism, there is only one,
namely the Golay code [163].

In 1964, John Leech described in [141] a remarkable even unimodular lattice of
dimension 24, denoted by Λ24 in [68] (Leech does not introduce a notation for the
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lattice in question!), with x.x ≥ 4 for all nonzero x in Λ24; of course, Λ24 is called
the Leech lattice. In 1969, John H. Conway proved the following result [66].

Theorem 2.3.16. Every even unimodular lattice of dimension 24 with empty set of
roots is isomorphic to the Leech lattice.

This theorem allows the completion of Corollary 2.3.14. Finally, one obtains the
following result.

Theorem 2.3.17. The map L → R(L) induces a bijection from the set of isomor-
phism classes of even unimodular lattices of dimension 24 to the set of 24 elements
consisting of the empty set and the isomorphism classes of equi-Coxeter root systems
of type ADE and rank 24.

The construction of Λ24 by Leech (elegantly presented in Appendix 5 of [148])
involves in a crucial way the Golay code mentioned above when constructing a
Niemeier lattice, say L23, with R(L23) = 24A1. In fact, the contruction by Leech is
equivalent to one of the “holy constructions” in [68]; see item (c) in Theorem 3.4.2.10,
which shows, in particular, the Leech lattice as a suitable 2-neighbor of L23. The
notion of neighbor, due to Martin Kneser, is the theme of Chap. 3.

In this book, the Leech lattice will denoted by Leech (most often) or L24; its
isomorphism class will be denoted in the same way.



Chapter 3
Kneser Neighbors

3.1 Variations on the Notion of Kneser Neighbors

The notion of 2-neighbor unimodular lattices was introduced by Martin Kneser in
[122]. In that paper, Kneser uses this notion to describe an algorithm to classify
unimodular lattices (the completeness is essentially due to Theorem 2.2.8) and
applies this algorithm to explicitly list the isomorphism classes of unimodular lattices
of dimension at most 15 (see also [159, Sect. 106F]).

We begin our variations with two very general observations (we state them for an
arbitrary Dedekind domain R, but the applications we have in mind are R = Z and
R = Zp).

Proposition 3.1.1. LetR be a Dedekind domain andK its field of fractions. Let V be
a finite-dimensional q-vector space over K . Let L1 and L2 be two self-dual integral
lattices in V (in particular, L1 and L2 are q-modules, and the lattice L1 ∩ L2 is a
q̃-module, over R).

We set I1 = L1/(L1 ∩ L2) and I2 = L2/(L1 ∩ L2).

(a) The submodules I1 and I2 are two transverse Lagrangians of the qe-module
res(L1 ∩ L2). The linking form of this qe-module induces an isomorphism ι
from I2 to I∨1 , and the composition

H(I1) = I1 I∨
1

id⊕ι−1

I1 I2 res(L1 L2)

is an isomorphism of qe-modules over R (recall that the notation H(I1) denotes
the hyperbolic qe-module over the torsion R-module of finite type I1).

(b) Let r be the minimal number of generators of the R-module I1; we have the
inequality

2 r ≤ dimK V .
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Proof. The first part of statement (a) is obvious; the second corresponds to part (a)
of Definition-Proposition 2.1.3. Let us turn to statement (b). Let I be a torsion R-
module of finite type. We denote the minimal number of generators of I by r(I);
this number can be seen, for example, as the maximal integer k such that the exterior
power ΛkI is nonzero. Since the dual I∨ is (noncanonically) isomorphic to I (to
see this, note that R is “locally principal”), we have r(I) = r(I∨). Consequently, by
part (a), we have r(res(L1 ∩L2)) = 2r(I1). Since res(L1 ∩L2) is a quotient of the
lattice (L1 ∩ L2)

�, we have r(res(L1 ∩ L2)) ≤ dimK V . ��

Let us specialize to R = Z.

Scholium-Definition 3.1.2. Let V be a q-vector space over Q; let L1 and L2 be two
self-dual integral lattices in V (in particular, the lattices L1 and L2 are q-modules,
and the lattice L1 ∩ L2 is a q̃-module, over Z).

Let A be a finite abelian group; the following conditions are equivalent:

(i) The quotient L1/(L1 ∩ L2) is isomorphic to A.
(ii) The quotient L2/(L1 ∩ L2) is isomorphic to A.

If these conditions are satisfied, we say that L1 and L2 are A-neighbors (or that
L2 is an A-neighbor of L1).

d-Neighbors, Asymmetric Point of View

What makes the notion of A-neighbors special when A is a cyclic group is the
statement below, which can be view as a corollary of Proposition-Definition2.1.3 (b).

Proposition 3.1.3. Let A be a finite cyclic group; then A∨ is the unique Lagrangian
of the qe-module H(A) transverse to the Lagrangian A (in the sense of Proposition-
Definition 2.1.3).

Fix a q-module L over Z and an integer d ≥ 2, and consider the set of Z/d-
neighbors of L in Q⊗ZL (which is a q-vector space overQ). To lighten the notation,
we shortenZ/d-neighbor to d-neighbor (and when we write p-neighbor, p is assumed
to be prime).

In this context, a d-neighbor of L is an integral lattice L′ in Q⊗ZL with L′� = L′

and L/(L ∩ L′) � Z/d. Set M = L ∩ L′. By the above, the following hold:

– The lattice dL′ is contained in M .
– The image of the composition dL′ ⊂ M ⊂ L → L/dL is an isotropic line

in L/dL, which we denote by c, endowed with its structure of q-module over
Z/d. Let us explain what we mean by an isotropic line in L/dL: the c introduced
above is a free submodule of dimension 1 of theZ/d-moduleL/dL such that the
restriction of the quadratic form q: L/dL→ Z/d to c is zero (c is necessarily a
direct summand because Z/d is an injective Z/d-module).
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– The lattice M is the inverse image of c⊥ under the homomorphismL→ L/dL;
here c⊥ denotes the submodule of the Z/d-module L/dL orthogonal to the line
c.

– The lattice L′ is the inverse image of the unique Lagrangian transverse to the
Lagrangian L/M under the homomorphism M � → resM .

The above shows that the map L′ → c is injective, while the proposition below
shows that it is also surjective.

Proposition 3.1.4. Let c be an isotropic line in L/dL, and let M be the submodule
of L defined as the inverse image of c⊥ under the homomorphism L → L/dL .
Then the qe-module resM is isomorphic to H(Z/d) and the quotient L/M is one of
its Lagrangians. Moreover, the inverse image of the unique Lagrangian transverse
to L/M under the homomorphism M � → resM is a d-neighbor L′ of L with
L ∩ L′ = M .

Before proving the proposition, let us introduce some terminology and notation
that we will use in the remainder of this chapter.

LetL be a free, finite-dimensionalZ-module; we call an elementu ofL indivisible
or primitive if it is nonzero and the quotient L/Zu has no torsion. Every nonzero
element u of L can be written uniquely as c(u)v with v primitive and c(u) in
N − {0}. Let d ≥ 2 be an integer; we say that an element u of L is d-primitive if it
is nonzero and d is relatively prime to c(u). In other words, u is d-primitive if the
submodule of L/dL generated by the class of u is a free Z/d-module of dimension
1. As we already observed, such a submodule is necessarily a direct summand, so
that a d-primitive element u of L defines an element of PL(Z/d), wherePL denotes
the scheme whose R-points, for any commutative ring R, are the direct summands
of rank 1 of the free R-module R ⊗Z L (in other words, PL is the projective space
of L). We denote this element by [u].

Proof of Proposition 3.1.4. It clearly suffices to verify that resM is isomorphic to
H(Z/d). Let u be a d-primitive element of L whose class modulo d generates the
line c; since this line is isotropic, we have q(u) ≡ 0 mod d. Let v be an element
of L with u.v ≡ 1 mod d. Note that v and u/d belong to M � and that resM is a
free Z/d-module of dimension 2 with basis consisting of these two elements. We set
w = u/d− (q(u)/d)v. We observe that, in Q/Z, we have the equalities q(v) = 0,
q(w) = 0, and v.w = 1/d. ��

All things considered, we can conclude that the lattice L′ is fully determined by
c. Let us introduce some notation that highlights this dependence.

We denote the set of isotropic lines in L/dL byCL(Z/d). We justify this notation
as follows: Let CL ⊂ PL be the (projective) quadric defined by the quadratic form
associated with L. Note, incidentally, that since the quadratic form is nondegener-
ate, CL is smooth over Z (by the projective version of the Jacobian criterion for
smoothness). It is clear that the Z/d-points of CL are the isotropic lines in L/dL.
Let c be an element of CL(Z/d). We denote the lattices M and L′ introduced in
Proposition 3.1.4 by Md(L; c) and voisd(L; c), respectively (again, when we write
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voisp(L; c), p is assumed to be prime). Finally, we denote the set of d-neighbors of
L in Q⊗Z L by Voisd(L). With this notation, we have the following statement.

Proposition 3.1.5. The map

CL(Z/d)→ Voisd(L) , c → voisd(L; c)

is a bijection.

Let u be a d-primitive element of L with q(u) ≡ 0 mod d; we will also denote
the lattices Md(L; [u]) and voisd(L; [u]) by Md(L;u) and voisd(L;u), respectively.
For further reference, let us give the algorithm u � voisd(L;u) provided by the
proof of Proposition 3.1.4 explicitly.

Let v be an element of L with u.v ≡ 1 mod d; then voisd(L;u) is the lattice in
Q⊗Z L generated by

Md(L;u) := { x ; x ∈ L , u.x ≡ 0 mod d } and
u− q(u)v

d
.

Set ũ = u − q(u)v; note that we have ũ ≡ u mod d, in other words, [ũ] = [u] in
CL(Z/d), and q(ũ) ≡ 0 mod d2. This observation leads, in an obvious way, to an
alternative presentation of the algorithm: Given u, we determine an element ũ of L
with ũ ≡ u mod d and q(ũ) ≡ 0 mod d2. The lattice voisd(L;u) of u is then the
lattice in Q⊗Z L generated by Mp(L;u) and ũ/d.

d-Neighbors, Abstract Point of View

Let L1 and L2 be two q-modules over Z of the same dimension n. Unsurprisingly,
we say that L2 is a d-neighbor of L1 if, as a q-module, L2 is isomorphic to a d-
neighbor of L1 in Q ⊗Z L1. In view of the above, if L2 is a d-neighbor of L1, then
L1 is a d-neighbor of L2; we therefore also say that L1 and L2 are d-neighbors. To
avoid confusion, we will sometimes call the notion we just introduced the “abstract”
neighborhood, while calling the notion introduced in Scholium-Definition 3.1.2 the
“concrete” neighborhood. If the q-vector space R ⊗Z L1 is indefinite, then L2 is
a d-neighbor of L1 if and only if the two q-vector spaces R ⊗Z L1 and R ⊗Z L2

are isomorphic (Theorem 2.2.7): the relation of being abstract d-neighbors is not
very interesting in this case! Therefore, from now on, we assume that L1 and L2

are positive definite (which implies that n is divisible by 8). As agreed on before,
we abandon the term “positive definite q-module over Z” and use “even unimodular
lattice” instead.

Let L1 and L2 be two even unimodular lattices. We denote by ˜Voisd(L1, L2) the
set of isomorphisms of q-vector spaces φ : Q ⊗Z L2 → Q ⊗Z L1 with L1/(L1 ∩
φ(L2)) cyclic of order d. The set ˜Voisd(L1, L2) is finite; by definition, it is nonempty
if and only ifL1 andL2 are d-neighbors. Moreover, ˜Voisd(L1, L2) is endowed with a
free left action of the orthogonal groupO(L1) and a free right action of the orthogonal
group O(L2); these actions commute. We denote by Voisd(L1, L2) the subset of
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Voisd(L1) consisting of the d-neighbors of L1 in Q ⊗Z L1 that are isomorphic, as
q-modules, to L2. The set Voisd(L1, L2) is canonically endowed with a left action
of O(L1). Again by definition, the map ˜Voisd(L1, L2) → Voisd(L1, L2) given by
φ → φ(L2) induces an O(L1)-equivariant bijection

˜Voisd(L1, L2)/O(L2) ∼= Voisd(L1, L2) .

We denote the cardinality of the set Voisd(L1, L2) by Nd(L1, L2). When we write
Np(−,−), p is assumed to be prime.

Take note: the introduction of this notation is not insignificant. The study of these
cardinalities in dimensions 16 and 24 for d prime is the main subject of this book
(see Chap. 1)!

We denote by [−] the isomorphism class of an even unimodular lattice. The
number Nd(L1, L2) clearly depends only on [L1] and [L2]; consequently, we will
also denote this integer by Nd([L1], [L2]).

Lemma 3.1.6. The map φ → φ−1 induces a bijection from ˜Voisd(L1, L2) to
˜Voisd(L2, L1).

Proof. This follows from the “symmetric point of view” on d-neighbors, that is,
from Proposition 3.1.1. ��
Scholium 3.1.7. We have the relation

1

|O(L1)| Nd(L1, L2) =
1

|O(L2)| Nd(L2, L1) ,

where | − | denotes the cardinality of a finite set.

Proof. We have |˜Voisd(L1, L2)| = Nd(L1, L2) |O(L2)|. ��
Scholium 3.1.7 can be made more precise, giving Scholium 3.1.8 below. For an

illustration of the latter, see Sects. 3.3.1 and 3.3.2.
By the above, set-theoretically, the quotient O(L1)\˜Voisd(L1, L2)/O(L2) is in

canonical bijection with the quotient O(L1)\Voisd(L1, L2) and with the quotient
O(L2)\Voisd(L2, L1), so that we have a canonical bijection between the latter two.

Scholium 3.1.8. LetΩ1 be an O(L1)-orbit in Voisd(L1, L2) andΩ2 anO(L2)-orbit
in Voisd(L2, L1) that correspond through the canonical bijection

O(L1)\Voisd(L1, L2) ∼= O(L2)\Voisd(L2, L1) ;

then we have |Ω1|
|O(L1)| =

|Ω2|
|O(L2)| .

A more direct way to obtain the equality above is by using the concrete notion of
d-neighborhood.
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Proposition 3.1.9. Let V be a positive definite q-vector space over Q. Assume that
V contains two even unimodular lattices L1 and L2 and that these lattices are d-
neighbors in V . Let Ω1 be the O(L1)-orbit of L2 and Ω2 the O(L2)-orbit of L1. We
then have the following relations:

|Ω1|
|O(L1)| =

|Ω2|
|O(L2)| =

1

|O(L1) ∩O(L2)| ,

where O(L1) and O(L2) are identified with subgroups of O(V ) and the intersection
is taken in O(V ).

Proof. The stabilizers of L2 for the action of O(L1) and of L1 for the action of
O(L2) can both be identified with O(L1) ∩O(L2). ��

2-Neighbors, the Point of View of Borcherds [68, Chap. 17]

We begin with two remarks concerning Proposition 3.1.9. We use its notation and
consider the lattice L1 ∩ L2.

– This lattice is a q̃-module whose residue is endowed with an ordered pair of
Lagrangians that are both cyclic of order d and transverse to each other, namely
ω := (L1/(L1∩L2), L2/(L1∩L2)). The groupO(L1)∩O(L2) can be identified
with the subgroup of O(L1∩L2) consisting of the elements that preserve ω; we
denote this subgroup by O(L1 ∩L2;ω). The equalities in Proposition 3.1.9 can
therefore also be written as follows:

|Ω1| =
|O(L1)|

|O(L1 ∩ L2;ω)| , |Ω2| =
|O(L2)|

|O(L1 ∩ L2;ω)| .

– When d is prime, the unordered pair of Lagrangians underlying ω is uniquely
determined in terms of L1 ∩ L2. This implies that O(L1 ∩ L2;ω) has index at
most 2 in O(L1 ∩ L2). In particular, we have O(L1 ∩ L2;ω) = O(L1 ∩ L2) if
L1 and L2 are not isomorphic.

Having made these remarks, we could continue studying d-neighbors for arbitrary
d ≥ 2, but to simplify the exposition, we will treat only p-neighbors with p prime.
In fact, the case we have in mind is p = 2.

Let n > 0 be an integer divisible by 8; recall that Xn is the finite set of isomor-
phism classes of even unimodular lattices of dimension n. For p prime, we introduce
three other finite sets:

– Yn(p) is the set of isomorphism classes of ordered pairs (L1, L2) with L1 an
even unimodular lattice of dimension n and L2 a p-neighbor of L1 in Q⊗Z L1.

– Bn(p) is the set of isomorphism classes of the q̃-modules M over Z with
dimM = n, R⊗Z M > 0, and resM � H(Z/p).
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– ˜Bn(p) is the set of isomorphism classes of pairs (M ;ω) with M as above and ω
a bijection from the set of Lagrangians of resM to the set {1, 2}. By definition,
˜Bn(p) is endowed with a left action of the symmetric group S2; the quotient
S2\˜Bn(p) can be identified with Bn(p).

We have done everything to ensure that the sets Yn(p) and ˜Bn(p) are in canonical
bijection. For (M ;ω) as above, we denote by di(M ;ω) for i = 1, 2 the inverse
image of ω−1(i) under the surjection M � → resM ; d1(M ;ω) and d2(M ;ω) are
even unimodular lattices (of dimension n) that are p-neighbors in Q ⊗Z M . By
passing to isomorphism classes, we obtain two maps from ˜Bn(p) to Xn that we also
denote by d1 and d2.

We have now introduced the notation necessary to state the following proposition.

Proposition 3.1.10. Let p be a prime, and let x1 and x2 be two elements of Xn. We
have

Np(x1, x2) =
∑

β ∈ d−1
1 (x1)∩d−1

2 (x2)

|O(x1)|
|O(β)|

(we leave it to the reader to decode the notation |O(x1)| and |O(β)|).
Proposition 3.1.10 admits a slightly more concrete avatar for p = 2 because the

choice of a q̃-module M over Z with dimM = n, R ⊗Z M > 0, and resM �
H(Z/2) is equivalent to the choice of an odd unimodular lattice L with dimL = n.
Let us explain why (following Borcherds).

– With an M as above, we associate the lattice L that is the inverse image under
the surjection M � → resM of the line in the Z/2-vector space resM that is not
isotropic in the quadratic sense; this line is isotropic in the bilinear sense, so that L
is an odd unimodular lattice.

– With an odd unimodular lattice L of dimension n, we associate the submodule
M consisting of the elements x with x.x ≡ 0 mod 2 (see Scholium 2.2.3).

Moreover, the set consisting of the two Lagrangians of resM is in natural bijection
with the set consisting of the two classes of Wu vectors of L (see the discussion
following Scholium 2.2.3).

We therefore need to introduce the following notation:
– Bn is the finite set of isomorphism classes of odd unimodular lattices L of

dimension n.
– ˜Bn is the finite set of isomorphism classes of pairs (L;ω) with L an odd

unimodular lattice of dimension n and ω a bijection from the set consisting of the
two classes of Wu vectors of L to {1, 2}. By definition, ˜Bn is endowed with a left
action of the symmetric group S2; the quotient S2\˜Bn can be identified with Bn.

– For i = 1, 2, let Li be the even unimodular lattice in Q ⊗Z L generated by the
submodule of L consisting of the elements x with x.x ≡ 0 mod 2 and the vector
ui/2, where ui denotes a representation of the class ω−1(i). We use the notation
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di again, this time for the map di : ˜Bn → Xn that sends the isomorphism class of
(L;ω) to the isomorphism class of Li.

By construction, the unimodular lattices L and Li, for i = 1, 2, are 2-neighbors
“in the bilinear sense,” that is, L∩Li has index 2 in L and Li. The reader can verify
that among the unimodular lattices in Q⊗Z L that are 2-neighbors of L, the lattices
L1 and L2 are characterized by the fact that they are even. We will say that L1 and
L2 are the even 2-neighbors of L.

We can now finally state the avatar of Proposition 3.1.10 for p = 2 mentioned
earlier. The statement seems identical; the difference is in the meaning of the notation.
The maps d1 and d2 are now the maps from ˜Bn toXn introduced above, β belongs to
˜Bn, and if β is represented by an odd unimodular lattice L endowed with a bijection
ω from the set of its two classes of Wu vectors to {1, 2}, then O(β) is the subgroup
of O(L) that preserves ω.

Proposition 3.1.11. Let x1 and x2 be two elements of Xn. We have

N2(x1, x2) =
∑

β ∈ d−1
1 (x1)∩d−1

2 (x2)

|O(x1)|
|O(β)| .

Graphs of p-Neighbors

Let n > 0 be an integer divisible by 8 and p a prime. The graph of p-neighbors
Kn(p) is defined as follows: The set of vertices is Xn, the set of classes of even
unimodular lattices of dimension n. The edges are the subsets {[L1], [L2]} of Xn

with L1 and L2 p-neighbors (recall that [L] is the isomorphism class of an even
unimodular lattice L).

Theorem 3.1.12 (M. Kneser). For every n and p, the graph Kn(p) is connected.

Proof. Let L and M be two even unimodular lattices of the same dimension; we
must show that there exists a finite sequence of even unimodular lattices

L = L0 , L1 , L2 , . . . , Lm−1 , Lm = M

with Lk and Lk+1 (abstract) p-neighbors for 0 ≤ k ≤ m− 1.
Theorem 2.2.8 shows that there exists an isomorphism of q-modules

φ : Z[1/p]⊗Z L→ Z[1/p]⊗Z M . After replacing M by φ−1(M) if necessary,
we may assume M ⊂ Z[1/p]⊗Z L ⊂ Q⊗Z L; set V = Q⊗Z L = Q⊗Z M . Recall
part (a) of Proposition 3.1.1. We view L and M as lattices in V and set N = L∩M .
We have N � = L + M and resN = L/N ⊕ M/N (as an abelian group). Set
I = L/N and J = M/N ; the pairing I × J → Q/Z induced by the linking form
of resN is nondegenerate. Consequently, J and resN are canonically isomorphic
to the Pontryagin dual I∨ and the hyperbolic qe-module H(I), respectively. Since
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we have M ⊂ Z[1/p]⊗Z L, the finite abelian group I is a p-group. Let

I = I0 ⊃ I1 ⊃ I2 ⊃ . . . ⊃ Im−1 ⊃ Im = 0

be a finite decreasing sequence of subgroups of I with Ik/Ik+1 � Z/p for 0 ≤ k ≤
m− 1. Let

0 = J0 ⊂ J1 ⊂ I2 ⊂ . . . ⊂ Jm−1 ⊂ Jm = J

be the “orthogonal” sequence of subgroups of J . We set Kk = Ik ⊕ Jk. Note that
Kk is a Lagrangian of resN . Let Lk be the inverse image of Kk under the canonical
homomorphism N � → resN . By construction,

L = L0 , L1 , L2 , . . . , Lm−1 , Lm = M

is a sequence of even unimodular lattices with Lk and Lk+1 (concrete) p-neighbors
for 0 ≤ k ≤ m− 1. ��

Miscellanies

In this section, we gather four more or less technical statements (Proposi-
tions 3.1.13, 3.1.14, and 3.1.17 and Corollary 3.1.16) concerning the notion of
d-neighborhood; we will use them further on.

The least technical of the four is Propositions 3.1.13. Its proof, which is an
illustration of Proposition 2.1.1, is left to the reader.

Proposition 3.1.13. Let L be a q-module over Z and d ≥ 2 an integer. Let u be a
d-primitive element of L with q(u) ≡ 0 mod d2. Assume d = d1d2 with d1 ≥ 2 and
d2 ≥ 2. Then u/d1 is a d2-primitive element of voisd1(L;u) and in Q⊗ZL, we have
the equality

voisd(L;u) = voisd2

(

voisd1(L;u);
u

d1

)

.

Proposition 3.1.14. Let L be a q-module over Z and d ≥ 2 an integer. Let u be
a d-primitive element of L with q(u) = d. Let su be the orthogonal reflection of
Q⊗Z L with respect to the hyperplane u⊥.

(a) In Q⊗Z L, we have the equality

voisd(L;u) = su(L) ;

in particular, voisd(L;u) is isomorphic to L.
(b) Suppose d = d1d2 with d1 ≥ 2 and d2 ≥ 2. Then u is di-primitive for i = 1, 2,

and in Q⊗Z L, we have the equality

voisd2(L;u) = su(voisd1(L;u)) ;

in particular, voisd1(L;u) and voisd2(L;u) are isomorphic.
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Proof. The map su is given by

su(x) = x− u.x

d
u

for all x in Q ⊗Z L. This expression shows that su induces an automorphism of
Md(L;u) as a q̃-module over Z and therefore an automorphism of resMd(L;u) as
a qe-module over Z. Let I and J be the two transverse Lagrangians of resMd(L;u)
that correspond to the lattices L and voisd(L;u), respectively, through the map in
Proposition 2.1.1 (b). Let v be an element ofL with u.v ≡ 1 mod d; recall that I and
J are generated by the classes of v and (u−q(u)v)/d, respectively, in resMd(L;u).
We thus have su(I) = J ; this equality implies part (a) of the proposition.

Through the bijection in Proposition 2.1.1 (b), the lattices voisd1(L;u) and
voisd2(L;u) correspond to the Lagrangians d1I ⊕ d2J and d2I ⊕ d1J , respec-
tively, of resMd(L;u). By the above, we have su(d1I ⊕ d2J) = d2I ⊕ d1J ; this
equality implies part (b) of the proposition. ��
Remark. If we agree that L is the only 1-neighbor of L in Q ⊗Z L, then part (a) of
Proposition 3.1.4 is a special case of part (b).

Proposition 3.1.15. LetL be a b-module overZ. Assume that there exists an element
e of L with e.e = 1 (and therefore that L is odd). Then the orthogonal reflection of
L with respect to the hyperplane e⊥ interchanges the two classes of Wu vectors of L.

Proof. Let se be the reflection in question, and let u be a Wu vector ofL; the equality
se(u) = u−2(e.u)e and the congruence e.u ≡ e.e mod 2 show that the Wu vectors
u and se(u) are not equivalent. ��
Corollary 3.1.16. Let L be an odd unimodular lattice of dimension divisible by
8. Assume that there exists an element e of L with e.e = 1. Then the orthogonal
reflection of Q ⊗Z L with respect to the hyperplane e⊥ interchanges the two even
unimodular lattices that are 2-neighbors of L.

The following proposition, whose proof is obvious, shows that the special case
d = 2 of part (a) of Proposition 3.1.14 and Corollary 3.1.16 are closely related.

Proposition 3.1.17. Let L be an even unimodular lattice and u an element of L with
q(u) = 2 (this equality implies that u is 2-primitive). Let B be the odd lattice in
Q⊗ZL whose even 2-neighbors are L and vois2(L;u) (see the end of the discussion
“2-neighbors, the point of view of Borcherds”). Let e be the element u/2 of Q⊗ZL.
Then:

– We have e.e = 1.
– The lattice B is generated, in Q⊗Z L, by M2(L;u) and e.
– The orthogonal reflections su and se of Q⊗Z L coincide.
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3.2 Hecke Operators Associated with the Notion of Neighborhood

Let n > 0 be an integer divisible by 8. Recall that Xn is the finite set of isomorphism
classes of unimodular lattices of dimensionn. We denote byZ[Xn] the freeZ-module
generated by the set Xn.

Let A be a finite abelian group and L an even unimodular lattice of dimension n.
We denote the finite set consisting of the A-neighbors of L in Q⊗Z L by VoisA(L)
(the notation Voisd(−) introduced in the previous section is an abbreviation of
VoisZ/d(−)).

The Hecke operator TA is the endomorphism of Z[Xn] defined by

TA [L] :=
∑

L′∈VoisA(L)

[L′]

for every even unimodular lattice L of dimension n.

Remarks.
– Let r(A) be the minimal number of generators of the abelian group A. Part (b)

of Proposition 3.1.1 shows thatTA is zero if we have 2r(A) > n. We could therefore
assume 2r(A) ≤ n in the definition above.

– Let A and B be two finite abelian groups. It is not very difficult to see that the
Hecke operators TA and TB commute if the cardinalities of A and B are relatively
prime. In fact, TA and TB commute for all A and B; we will prove this and greatly
generalize it in Chap. 4.

Let d ≥ 2 be an integer; we shorten the notation TZ/d to Td (and when we write
Tp, p is assumed to be prime). By the definition of the integers Nd(x, y), we have

Td x =
∑

y∈Xn

Nd(x, y) y

for every x in Xn. In other words, if we view Td as an Xn × Xn matrix, then its
entry with index (y, x) is Nd(x, y).

Proposition 3.1.5 shows that we also have

Td [L] =
∑

c∈CL(Z/d)

[Voisd(L; c)]

for every even unimodular lattice L.
We state Proposition 3.2.2 below for future reference. It is implied by Proposition-

Definition 3.2.1 and Proposition 3.1.5; the former is essentially a consequence of
Scholium 2.2.5.

Proposition-Definition 3.2.1. Let L be an even unimodular lattice, and let d ≥ 2 be
an integer. Then the q-module Z/d⊗Z L is hyperbolic. In particular, the cardinality
of the quadric CL(Z/d) depends only on the dimension of L, which we denote by n.
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We denote the cardinality in question by cn(d). We have

cn(p) =
n−2
∑

m=0

pm + pn/2−1

for every prime p.

Remarks (Continued). The computation of cn(d) for any d easily follows from the
computation for d prime and the fact that the quadrics CL are smooth over Z.

Proposition 3.2.2. Let d ≥ 2 be an integer. We have
∑

y∈Xn

Nd(x, y) = cn(d)

for every x in Xn.

Remarks (Continued and Concluded).

– Scholium 3.1.7 can also be stated as follows.

Proposition 3.2.3. Let d ≥ 2 be an integer. The endomorphism Td of Z[Xn] is
self-adjoint for the inner product (−|−) defined by

(x|y) = |O(x)| δx,y
for x and y in Xn, where δx,y denotes the Kronecker delta.

Again, this statement will be greatly generalized in Chap. 4.

– Let ε : Z[Xn] → Z be the homomorphism of Z-modules given by ε(x) = 1
for every x in Xn. Proposition 3.2.2 says that we have ε ◦ Td = cn(d)ε, in
other words, that ε is an eigenvector of the endomorphism T∗

d of (Z[Xn])
∗ with

eigenvalue cn(d) (where T∗
d replaces the notation Tt

d used elsewhere). This
observation and Proposition 3.2.3 lead to the following statement.

Proposition 3.2.4. Let d ≥ 2 be an integer. The element

∑

x∈Xn

1

|O(x)| x

of Q⊗Z Z[Xn] is an eigenvector of Td with eigenvalue cn(d).

– Proposition 3.2.3 implies that Td is diagonalizable, at least after extension of
scalars to R. In fact, for n = 8, 16, 24, the eigenvalues of Td are integers.
This is trivial for n = 8 because we have |X8| = 1; it is nearly as trivial
for n = 16 because we have |X16| = 2 and we already know one integral
eigenvalue, namely c16(d). The case n = 24 requires more effort. We will
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explain in Sect. 3.3.3 how Gabriele Nebe and Boris Venkov determinedT2 from
the work of Borcherds; thanks to the program PARI, we know that the roots of
the characteristic polynomial of T2 are integral and simple. Since Td commutes
with T2 for every d, the eigenvectors of T2 are also eigenvectors of Td and the
eigenvalues of Td are integers.

One motivation of this book is the study of the arithmetic properties of these
eigenvalues for d prime.

3.3 Examples

3.3.1 Determination of T2 for n = 16

It is well known that the canonical homomorphismO(E8)→ O(F2⊗Z E8) induces
an isomorphism O(E8)/{±1} ∼= O(F2 ⊗Z E8) (see, for example, [39, Chap. VI,
Sect. 4, Exercice 1]). It follows that the action of O(E8) partitions F2 ⊗Z E8 − {0}
into two orbits, namely q−1(0) and q−1(1); these orbits have, respectively, 135 and
120 elements.

Consider the latticesE8⊕E8 andE16, which we embed intoQ16 in the usual way.
We denote the canonical basis of Q16 by (ε1, ε2, . . . , ε16). The group O(E8 ⊕ E8)
is clearly canonically isomorphic to the wreath product S2 � O(E8). By the above,
the action of O(E8 ⊕ E8) partitions the quadric CE8⊕E8(F2) into three orbits:

– the orbit of the point [2ε1], with 2 · 135 = 270 elements (the vector 2ε1 belongs
to the lattice E8 ⊕ E8 and satisfies q(2ε1) = 2; we use [2ε1] to denote its class
in CE8⊕E8(F2));

– the orbit of the point [ε1 + ε2 + ε9 + ε10], with 1202 = 14400 elements (we
again have q(ε1 + ε2 + ε9 + ε10) = 2);

– the orbit of the point [2ε1 + 2ε9], with 1352 = 18225 elements (this time, we
have q(2ε1 + 2ε9) = 4).

By part (a) of Proposition 3.1.14, the lattice vois2(E8 ⊕ E8; c) is isomorphic (as a
q-module) to E8 ⊕ E8 for every c in one of the first two orbits.

Since the graph of the 2-neighbors is connected (Theorem 3.1.12), we must
have N2(E8 ⊕ E8,E16) = 18225. This equality determines the Hecke operator
T2 : Z[X16]→ Z[X16], in view of Scholium 3.1.7 and Proposition 3.2.2. Its matrix
in the basis (E16,E8 ⊕ E8), which we also denote by T2, is

T2 =

[

20025 18225
12870 14670

]

.

We can, in fact, easily verify that we have vois2(E8⊕E8; [2ε1+2ε9]) = E16 (which
implies N2(E8 ⊕E8,E16) = 18225). Indeed, the lattice M2(E8 ⊕E8; [2ε1 +2ε9])

is generated by D8 ⊕ D8 and 1
2

∑16
i=1 εi, where the first (resp. second) D8 is the
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orthogonal complement modulo 2 of the vector of 2ε1 (resp. 2ε9) in the first (resp.
second)E8. Since we have q(2ε1+2ε9) = 4, the lattice vois2(E8⊕E8, [2ε1+2ε9])
is generated by M2(E8 ⊕ E8, [2ε1 + 2ε9]) and ε1 + ε9 (recall the algorithm u �
voisd(L;u)). But the lattice generated by D8 ⊕ D8 and ε1 + ε9 is D16, so that the
lattice vois2(E8 ⊕E8, [2ε1 + 2ε9]) coincides with the lattice generated by D16 and
1
2

∑16
i=1 εi, that is, E16.

Variant. To illustrate Scholium 3.1.8 and, in doing so, reassure ourselves, we now
consider the 2-neighbors of E16.

The group O(E16) can be identified with the subgroup of O(I16) consisting of
the elements that preserve the class of the Wu vector

∑16
i=1 εi (in the sense of the

discussion following Scholium 2.2.3). We therefore have a canonical isomorphism
O(E16) ∼= S16�({±1}16)0, where ({±1}16)0 is the subgroup of {±1}16 consisting
of the 16-tuples (η1, η2, . . . , η16) with η1η2 . . . η16 = 1.

The action of O(E16) partitions the quadric CE16(F2) into four orbits:

– the orbit of the point [2ε1], with a single element (the vector 2ε1 belongs to the
lattice E16 and satisfies q(2ε1) = 2);

– the orbit of the point [
∑4

i=1 εi], with 2
(

16
4

)

= 3640 elements (note that we have
q(
∑4

i=1 εi) = 2);
– the orbit of the point [

∑8
i=1 εi], with

(

16
8

)

= 12870 elements (note that we have
q(
∑8

i=1 εi) = 4);
– the orbit of the point [ 12

∑16
i=1 εi], with 214 = 16384 elements (note that we

have q(12
∑16

i=1 εi) = 2).

Again by part (a) of Proposition 3.1.14, the lattice vois2(E16; c) is isomorphic (as
a q-module) to E16 for every c that is not in the third orbit.

We conclude as before: since the graph of the 2-neighbors is connected, we must
have N2(E16,E8 ⊕ E8) = 12870.

3.3.2 Determination of T3 for n = 16

As before, we embedE16 intoQ16 in the usual way. We see that the action ofO(E16)
partitions the quadric CE16(F3) into five orbits, namely the orbits of the classes of
the following vectors in E16 (that, in fact, belong to D16):

u1 = 2ε1 + ε2 + ε3 ,

u2 = ε1 + ε2 + . . .+ ε6 ,

u3 = 2ε1 + ε2 + ε3 + . . .+ ε9 ,

u4 = ε1 + ε2 + . . .+ ε12 ,

u5 = 2ε1 + ε2 + ε3 + . . .+ ε15 .

Note that we have (q(ui))i=1,2,...,5 = (3, 3, 6, 6, 9). By part (a) of Proposi-
tion 3.1.14, the lattice vois3(E16, [ui]) is isomorphic (as a q-module) to E16 for
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i = 1, 2. The cardinality of the orbit of [ui] is
(

16
3i

)

23i−1. This number is not di-
visible by 286 for i = 4, 5; by Scholium 3.1.8, the lattice vois3(E16; [ui]) is also
isomorphic (as a q-module) to E16 for i = 4, 5. Indeed, we have

|O(E8 ⊕ E8)|
|O(E16)| =

405

286

with 405 and 286 relatively prime; Scholium 3.1.8 shows that if the lattice
vois3(E16; [ui]) is isomorphic to E8 ⊕ E8, then the number of elements of the
orbit of [ui] is divisible by 286.

Since the graph of the 3-neighbors is connected, the lattice vois3(E16; [u3]) must
be isomorphic (as a q-module) to E8 ⊕ E8 (this is confirmed by the program PARI)
and we have N3(E16,E8 ⊕ E8) =

(

16
9

)

28 = 2928640. In view of Scholium 3.1.7
and Proposition 3.2.2, this equality determines the Hecke operator T3 : Z[X16] →
Z[X16]. Its matrix in the basis (E16,E8 ⊕ E8), which we also denote by T3, is

T3 =

[

4248000 4147200
2928640 3029440

]

.

3.3.3 Determination of T2 for n = 24 (Following Nebe–Venkov
[156])

Let n > 0 be an integer divisible by 8.
In Sect. 3.1 we explained, following Borcherds, why the setYn(2) of isomorphism

classes of ordered pairs (L1, L2) with L1 an even unimodular lattice of dimension n

and L2 a 2-neighbor of L1 in Q ⊗Z L1 is in natural bijection with the set ˜Bn of
isomorphism classes of pairs (L;ω) with L an odd unimodular lattice of dimension
n and ω a bijection from the set consisting of the two classes of the Wu vectors
of L to {1, 2}. Recall that we use Bn to denote the set of isomorphism classes of
odd unimodular lattices L of dimension n. We, moreover, denote by B1

n the subset
of Bn consisting of the classes [L] where L represents 1 (in other words, such that
there exists an e in L with e.e = 1) and by B2

n its complement Bn − B1
n. In [29],

Borcherds uses the bijection Y24(2) ∼= ˜B24 to determine B24. In [68, Chap. 17], he
lists the 156 elements b of B2

24 explicitly and for each of these b, he gives sufficient
information to determine |O(b)|. He limits himself to B2

24 because a lattice L that
represents 1 is isomorphic to an orthogonal sum I1 ⊕L′ and the unimodular lattices
that do not represent 1 and have dimension strictly less than 23 have already been
listed (see [68, Chap. 16, Table 16.7], B1

24 has 117 elements). Following Nebe and
Venkov, we note that if an odd unimodular lattice L of dimension n represents 1,
then the two even unimodular lattices that are 2-neighbors of L are isomorphic by
Corollary 3.1.16. Let B2,0

n be the subset of B2
n consisting of the isomorphism classes

of the odd unimodular lattices L of dimension n such that the two even unimodular
latticesL1 andL2 that are 2-neighborsofL are not isomorphic. Let e be the map from
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B2,0
n to the set of unordered pairs of elements of Xn that sends [L] to {[L1], [L2]}.

Proposition 3.1.11 specializes as follows.

Proposition 3.3.3.1. Let x1 and x2 be two distinct elements of Xn. We have

N2(x1, x2) =
∑

b ∈ e−1({x1,x2})

|O(x1)|
|O(b)| .

Nebe and Venkov determine T2 using the statement above and Borcherds’ table,
taking into account Proposition 3.2.2. Note that our conventions lead to the matrix
(24, 24) of [156, page 59] being the transpose of our T2.

Remarks.

– For n = 8, Proposition 3.1.11 gives the relation

|O(E8)|
|O(I8)| =

c8(2)

2
.

More generally, for every n divisible by 8, Proposition 3.1.11 leads to the following
relation between mass formulas:

∑

b∈Bn

1

|O(b)| =
cn(2)

2

∑

x∈Xn

1

|O(x)| (*)

(see [68, Chap. 16, Sect. 2]). Let us explain why. Proposition 3.1.11 says that we
have

N2(x, y)
1

|O(x)| =
∑

d1(β)=x , d2(β)=y

1

|O(β)|

for all x and y in Xn; taking the sum over y and then over x, we obtain

∑

β∈˜Bn

1

|O(β)| = cn(2)
∑

x∈Xn

1

|O(x)| . (**)

Let p: ˜Bn → Bn be the obvious map; the equality

∑

β∈p−1(b)

1

|O(β)| =
2

|O(b)|

shows that the relations (*) and (**) are equivalent.

– Our analysis, in Sect. 3.3.1, of the 2-neighborhoods between even unimodular
lattices of dimension 16 leads to the statement below, which we will use in
Appendix A. As in Sect. 3.3.1, we identify, in the usual way, the lattices E16,
E8 ⊕ E8, and D8 ⊕ D8 with lattices in Q

16; we denote the canonical basis of
Q

16 by (ε1, ε2, . . . , ε16).
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Scholium-Definition 3.3.3.2. The lattice in Q
16 generated by

D8 ⊕D8 ,
1

2

16
∑

i=1

εi , −ε1 − ε9 +
1

2

8
∑

i=1

εi

is an odd unimodular lattice, which we denote byBor16; its even 2-neighbors areE16

andE8⊕E8. Up to isomorphism, the lattice Bor16 is the only odd unimodular lattice
of dimension 16 that does not represent 1. The root system R(Bor16) is isomorphic
to D8

∐

D8.

Proof. Let B be an odd unimodular lattice of dimension 16 with isomorphic even
2-neighbors; the analysis mentioned above and Proposition 3.1.17 show that B
represents 1. Now, let B be an odd unimodular lattice of dimension 16 that does
not represent 1; by the above, one of the even 2-neighbors of B is isomorphic
to E16 and the other is isomorphic to E8 ⊕ E8. Let M be the submodule of B
consisting of the elements x with x.x even; by our analysis, M is isomorphic (as a
q̃-module) both to the submodule of E16 that is the orthogonal complement modulo
2 of

∑8
i=1 εi and to the submodule of E8 ⊕ E8 that is the orthogonal complement

modulo 2 of 2ε1 + 2ε9. Seen as lattices in Q
16, these two orthogonal complements

modulo 2 coincide with the lattice generated by D8 ⊕ D8 and 1
2

∑16
i=1 εi, which

we denote by M16. Indeed, M16 has index 2 in both E16 and E8 ⊕ E8, and we
have (

∑8
i=1 εi).x ≡ 0 mod 2 (resp. (2ε1 + 2ε9).x ≡ 0 mod 2) for every x in

M16. Incidentally, this shows that we have M16 = E16 ∩ (E8 ⊕ E8). Let ξ be the
element −ε1 − ε9 + 1

2

∑8
i=1 εi of Q16; we easily see that it belongs to M�

16 and
that we have ξ.ξ = 3. It follows that ξ generates the “nonquadratically isotropic”
line of resM16, so that Bor16 is the odd unimodular lattice corresponding to M16

by Borcherds’ theory. According to this theory,M � M16 implies B � Bor16 (note
that Bor16 does not represent 1 because its even 2-neighbors are not isomorphic).
The last assertion of the observation can be proved using Proposition 2.3.7 (we have
R(M16) = R(E16) ∩ R(E8 ⊕ E8) � D8

∐

D8 and the image of the class of ξ in
resM16 by the function qm must be 3/2 because we cannot have x.x = 1 for x in
Bor16). ��

3.4 d-Neighborhoods Between a Niemeier Lattice with Roots
and the Leech Lattice

The justification for this section is the following.
Let d ≥ 2 be an integer; by determining the integers Nd(L,Leech) for every

Niemeier lattice with rootsL, we also obtain the Hecke operatorTd (in the expression
Nd(L,Leech), “Leech” is an abbreviation for “Leech lattice” that we will often use).

Let us explain why. In Sect. 3.3, we saw that, thanks to Nebe–Venkov, we know
the Hecke operatorT2 : Z[X24]→ Z[X24] explicitly; we easily verify (thanks, PARI)
that the elements Tk

2 [Leech] for 0 ≤ k ≤ 23 are linearly independent. Since the
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Hecke operatorsTd andT2 commute, by determiningTd [Leech], we also obtainTd.
In view of Scholium 3.1.7 and Proposition 3.2.2, determining Td [Leech] is, in turn,
equivalent to determining the integers Nd(x, [Leech]) for all x in X24 − {[Leech]}.

3.4.1 Necessary Conditions for a Niemeier Lattice with Roots
to Have a d-Neighbor with No Roots

Proposition 3.4.1.1. Let L be a Niemeier lattice with roots and d ≥ 2 an integer.
Let h(L) be the Coxeter number of L (see Proposition-Definition 2.3.3). If L has a
d-neighbor with no roots, then the following inequality holds:

d ≥ h(L) .

Proof. Suppose that there exists an element c of CL(Z/d) such that we have
R(voisd(L; c)) = ∅. A fortiori, we then haveR(Md(L; c)) = ∅ (recall that Md(L; c)
is the intersection in Q ⊗Z L of the lattices L and voisd(L; c)) or, equivalently,
R(L) ∩Md(L; c) = ∅. Let u be an element of L that represents c. The condition
R(voisd(L; c)) = ∅ therefore implies

α.u �≡ 0 (mod d) for every α in R(L) .

We consequently obtain the inequality d ≥ h(L) by applying Proposition 3.4.1.2
below with R an irreducible component of R(L) and f the linear form x → x.u. ��
Proposition 3.4.1.2. Let V be a finite-dimensional R-vector space and R ⊂ V
an irreducible and reduced root system; let h be the Coxeter number of R. Let
f : V → R be a linear form whose restriction to R takes on integer values, and let
d ≥ 2 be an integer with d < h. Then there exists a root α in R such that we have

f(α) ≡ 0 (mod d) .

Proof. We fix a chamberC of the root system R; we denote the corresponding basis
of R and highest root by {α1, α2, . . . , αl} and α̃, respectively. Recall that we have
α̃ = n1α1 + n2α2 + · · ·+ nlαl with ni ∈ N− {0} for i = 1, 2, . . . , l and

n1 + n2 + · · ·+ nl = h− 1 (mh)

[39, Chap. VI, Sect. 1, Proposition 31] (here, mh stands for “maximal height”).
Finally, we denote by C∨ the chamber of the dual root system R∨ determined by C
(see [39, Chap. VI, Sect. 1, no5]) and by Alc the alcove of V ∗ with Alc ⊂ C∨ and
0 ∈ Alc [39, Chap. VI, Sect. 2, Proposition 4]. Thus, Alc (resp. Alc) is the open
(resp. closed) subset of V ∗ consisting of the elements φ satisfying the inequalities
〈αi, φ〉 > 0 (resp. 〈αi, φ〉 ≥ 0) for i = 1, 2, . . . , l and 〈α̃, φ〉 < 1 (resp. 〈α̃, φ〉 ≤ 1).

Let φ be an element of V ∗. Since Alc is a fundamental domain for the action of
the affine Weyl group on V ∗ (see, for example, [39, Chap. VI, Sect. 2, no1 et no2]),
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there exist an element w of the Weyl group of R and an element θ of the lattice
Q(R∨) of V ∗ such that we have the inequalities

〈wαi , φ− θ 〉 ≥ 0 for i = 1, 2, . . . , l and 〈wα̃ , φ− θ 〉 ≤ 1 .

We obtain a proof of the proposition by taking φ = (1/d)f : there exist w and θ as
above such that we have

f(wαi)− dθ(wαi) ≥ 0 and f(wα̃)− dθ(wα̃) ≤ d .

Note that thewαi and wα̃ are roots and that the f(wαi) and θ(wαi), and f(wα̃) and
θ(wα̃), are integers; we setxi = f(wαi)−dθ(wαi) and y = d−(f(wα̃)−dθ(wα̃)).
We then have xi ≥ 0, y ≥ 0, and

n1x1 + n2x2 + · · ·+ nlxl + y = d .

In view of the equality (mh), one of the integers x1, x2, . . . , xl, y must be zero,
which proves the proposition. ��
Remark. In fact, we use Proposition 3.4.1.2 only for irreducible root systems of type
ADE, that is, for R = An (n ≥ 1), R = Dn (n ≥ 3), R = E6, R = E7, and
R = E8. There exist elementary proofs of Proposition 3.4.1.2 in the first two cases.
We treat the second one below; the treatment of the first case is similar (and in fact
simpler).

We endow R
n with its canonical Euclidean structure; recall that we have Dn =

R(Dn), whereDn is the submodule ofZn consisting of then-tuples (x1, x2, . . . , xn)
with

∑n
i=1 xi even. Let f : Rn → R be a linear form that takes on integer values on

Dn or, equivalently, on Dn. Let ε1, ε2, . . . , εn be the canonical basis of Rn. Since
2εi belongs to Dn, f(2εi) is an integer; since εi − εj belongs to Dn, the parity of
this integer does not depend on the choice of the subscript i. We set λ = 0 if f(2εi)
is even and λ = 1 if f(2εi) is odd; we set νi = f(εi)−λ/2 (the νi are thus integers).
If we have f(α) �≡ 0 (mod d) for all α in Dn, then the map from {1, 2, . . . , n} to
Z/d that sends i to the class of νi modulo d induces an injection from {1, 2, . . . , n}
to the quotient of Z/d by the involution t → −t− λ (recall that Dn consists of the
elements ±εi ± εj for i �= j). Since the cardinality of the quotient in question is
bounded above by d/2 + 1, we have n ≤ d/2 + 1 or, equivalently, d ≥ 2n− 2.

Notation Related to Niemeier Lattices with Roots

Since all statements in the remainder of Sect. 3.4 concern Niemeier lattices with
roots, we first recall and complete the notation we use for these lattices.

Let L be a Niemeier lattice with roots:

– R = R(L) denotes the set of roots of L.
– We set V = R⊗Z L; this is a Euclidean space of dimension 24 and R ⊂ V is

an equi-Coxeter root system of type ADE of rank 24.
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– W = W(L) denotes the Weyl group of the root system R. Recall that W
can be identified with a subgroup of the orthogonal group O(L) (item (a) of
Scholium 2.3.15).

– Q = Q(R) ⊂ L is the lattice in V generated by R.
– Q� = (Q(R))� ⊃ L is the dual lattice of Q.
– f = f(L) denotes the index of Q in Q� (which Bourbaki calls the index of

connection of the root system R).
– g = g(L) denotes the index of Q in L (since L/Q is a Lagrangian of the
qe-module Q�/Q, we have f = g2).

We denote by R1, R2, . . . , Rc the irreducible components of R:

– The number of irreducible components of R is therefore c = c(L).
– All these irreducible components have the same Coxeter number, namely h =
h(L).

We choose a chamber C of R:

– B ⊂ R denotes the basis of R corresponding to this choice.
– R+ ⊂ R is the set of positive roots for the order relation on V defined by C.
– H ⊂ R+ ⊂ R denotes the set of maximal elements ofR for the order in question

(the set H has c elements; more precisely, we have H ∩Rk = {α̃k}, where α̃k

denotes the highest root of Rk).

We denote by Alc the alcove of V in C that contains 0; Alc (resp. Alc) is the open
(resp. closed) subset of V consisting of the elements x satisfying the inequalities
α.x > 0 (resp. α.x ≥ 0) for α ∈ B and α.x < 1 (resp. α.x ≤ 1) for α ∈ H .

Finally, we set Π := Q� ∩ Alc. The subset Π of Q� can be identified with the
product of sets

∏c
k=1 Π(Ri) (we introduced the notation Π(−) in Proposition 2.3.8;

the equality Π(S) = Q(S)�∩Alc for S an irreducible root system of type ADE was
established in the proof of part (a) of the same proposition).

The proof of Proposition 3.4.1.2 leads to the following observation.

Scholium 3.4.1.3. Let L be a Niemeier lattice with roots. Let ξ be an element of
Q� and d ≥ 1 an integer. Then there exist w ∈ W and x ∈ Q such that the
element η := wξ + dx of Q� belongs to d Alc, in other words, such that we have
the inequalities α.η ≥ 0 for α ∈ B and α.η ≤ d for α ∈ H . Moreover, if we have
α.ξ �≡ 0 mod d for every α in R, then the pair (w, x) is uniquely determined in
terms of ξ.

We say that an element x of V is regular if we have α.x �= 0 for every α in R (in
other words, if x is in a chamber). Let d ≥ 1 be an integer; we say that x is d-regular
if we have α.x �∈ dZ for every α in R (in other words, if (1/d)x is in an alcove).
Let d ≥ 2 be an integer; an element of PL(Z/d) is called regular if it is represented
by a d-regular element u of L, that is, by an element satisfying α.u �≡ 0 mod d
for every α in R (this condition does not depend on the choice of u). We denote
the subset of PL(Z/d) consisting of such elements by Preg

L (Z/d). Finally, we set
Creg

L (Z/d) := CL(Z/d)∩Preg
L (Z/d). The proof of Proposition 3.4.1.1 that we gave
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amounts in fact to verify the following more precise statement (where item (a) is
obvious).

Scholium 3.4.1.4. Let L be a Niemeier lattice with roots and d ≥ 2 an integer.

(a) Let c be an element of CL(Z/d); if the lattice voisd(L; c) has no roots, then c
belongs to Creg

L (Z/d).
(b) If the set Preg

L (Z/d) is nonempty, then we have the inequality d ≥ h(L).

3.4.2 On the h-Neighborhoods and (h + 1)-Neighborhoods
Between a Niemeier Lattice with Roots and Coxeter Number
h and the Leech Lattice

Let L be a Niemeier lattice with roots and Coxeter number h. In Sect. 3.4.1, we
saw that a necessary condition for L to have the Leech lattice as a d-neighbor is the
inequality d ≥ h. Below we show, in particular, that this inequality is optimal; this
is intimately linked to the holy constructions of the Leech lattice due to Conway and
Sloane [67]. We also determine the integer Nd(L,Leech) for d = h, h+ 1; we will
use this computation in Sect. 10.3.

We begin by recalling the definition of a Weyl vector of a Niemeier lattice and
gathering some of the properties of these vectors that we will need.

Weyl Vectors

Let L be a Niemeier lattice with roots and C ⊂ V a chamber of the root system R.
Let ρ be the half-sum of the positive roots (for the order relation on V defined by C):

2ρ =
∑

α∈R+

α

(this equality shows that ρ belongs to 1
2 L; Proposition 3.4.2.1 below states that ρ in

fact belongs to L). We call ρ a Weyl vector of the root system R or of the lattice L.
Let α be a root of R; then α belongs to B if and only if we have ρ.α = 1 (see [39,
Chap. VI, Sect. 1, Proposition 29]). This observation shows that the map C → ρ
is bijective. It follows that the action of W on the set of Weyl vectors is simply
transitive.

Proposition 3.4.2.1 (Borcherds). Let L be a Niemeier lattice with roots and ρ a
Weyl vector of L. Then ρ belongs to L.

Proof. Before recalling the argument given by Borcherds in [29, 30], we state several
results that will be useful further on.
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Proposition 3.4.2.2. Let L be a Niemeier lattice with roots.

(a) We have
h x.y =

∑

α∈R+

(α.x)(α.y)

for all x and y in V .
(b) Let ρ be a Weyl vector of L; we have

hq(x) − ρ.x =
∑

α∈R+

(α.x)2 − α.x

2

for every x in V .

Proof. Part (a) is equivalent to Scholium 2.3.4. Part (b) (due to Borcherds) follows
from part (a) and the definition of ρ. ��

Statement (a) of Proposition 3.4.2.2 implies the following result.

Corollary 3.4.2.3. Let L be a Niemeier lattice with roots. Then the quotient Q�/Q
is annihilated by h.

Proof. Indeed, part (a) of Proposition 3.4.2.2 shows that if ξ and η are two elements
of Q�, then hξ.η is integral and therefore hξ belongs to Q. ��

Let ρ be a Weyl vector ofL. Since the canonical action ofW onQ�/Q is trivial, the
image of ρ inQ�/Q does not depend on the choice of this Weyl vector. Here is another
explanation of this phenomenon.We use the qe-module structure ofQ�/Q =: resQ.
By Corollary 3.4.2.3, the map Q�/Q → Q/Z defined by ξ → hq(ξ) is linear (and
with values in 1

2Z/Z). Hence there exists an elementσofQ�/Q, uniquely determined
(and annihilated by 2), such that we have hq(ξ) = σ.ξ for every ξ in Q�/Q. Part (b)
of Proposition 3.4.2.2 shows that σ is the class of ρ. Indeed, that statement implies
that hq(ξ)− ρ.ξ is integral for every ξ in Q�. We have obtained the following result.

Proposition 3.4.2.4. Let L be a Niemeier lattice with roots and ρ a Weyl vector of L.
Then the image of ρ in Q�/Q, which we denote by ρ, is characterized by the property

hq(ξ) = ρ.ξ

for every ξ in Q�/Q.

Proof of Proposition 3.4.2.1, Continued. Expressed using the formalism introduced
above, Borcherds’ argument is the following: Let I be a Lagrangian of the qe-module
Q�/Q. The equality q(I) = 0 implies ρ ∈ I⊥ = I; by taking I = L/Q, we obtain
ρ ∈ L. ��
Proposition 3.4.2.5 (Venkov). Let L be a Niemeier lattice with roots and ρ a Weyl
vector of L. Then we have

q(ρ) = h(h+ 1) .



3.4 d-Neighborhoods Between a Niemeier Lattice with Roots and the Leech Lattice 67

Proof. It suffices, for example, to observe that we have ρ.ρ = (n/12)h(h + 1)
for every irreducible root system of type ADE of rank n and to invoke part (b) of
Proposition-Definition 2.3.3. ��
Proposition 3.4.2.6. Let L be a Niemeier lattice with roots. For every element x of
V , we have the inequality

inf
α∈R

(α.x)2 ≤ q(x)

h(h+ 1)
.

Moreover, equality holds if and only if there exist a Weyl vector ρ of L and a real
number λ ≥ 0 such that we have x = λρ.

Proof. Let C ⊂ V be a chamber of R such that x belongs to C. Let B be the basis
of R and ρ the Weyl vector associated with C. Let {�α}α∈B be the dual basis of B
(with respect to the inner product). Consider the equality

x.x =
∑

(α,β)∈B×B

(α.x)(β.x) �α.�β .

By using that we have α.x ≥ 0 and β.x ≥ 0 (by definition of C), �α.�β ≥ 0
(see, for example, [39, Chap. VI, Sect. 1, Théorème 2, Remarque 2]), and ρ.ρ =
∑

(α,β)�α.�β (a specialization of the equation above), we deduce the inequality

x.x ≥ ρ.ρ inf
α∈B

(α.x)2 . (*)

Set λ = infα∈B α.x; inequality (*) can be refined to

x.x ≥ ρ.ρ inf
α∈B

(α.x)2 +
∑

α∈B

((α.x)2 − λ2 ) �α.�α .

This shows that if equality holds in (*), we have α.x = λ for every α in B and
therefore x = λρ. ��
Scholium 3.4.2.7. Let L be a Niemeier lattice with roots. For every element ξ of
Q(R)� that is regular, that is, satisfies α.ξ �= 0 for every α in R, we have the
inequality

q(ξ) ≥ h(h+ 1) .

Moreover, equality holds if and only if ξ is a Weyl vector of L.

Part (a) of Proposition 3.4.2.8 below implies, in particular, that part (b) of
Scholium 3.4.1.4 is “optimal.”

Proposition 3.4.2.8. Let L be a Niemeier lattice with roots and ρ a Weyl vector of L.

(a) The Weyl vector ρ is a primitive (a fortiori h-primitive) and h-regular element
of L.

(b) Let ξ be an element of Q�. The following conditions are equivalent:
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(i) The element ξ is h-regular.
(ii) There exist an element w of W and an element x of Q such that we have

ξ = wρ+ hx.

Moreover, if these conditions hold, then the pair (w, x) from condition (ii) is
uniquely determined in terms of ξ.

Proof of Part (a). The equality α.ρ = 1 for α ∈ B shows that ρ is primitive. Before
proving that ρ is h-regular, let us recall the definition and some properties of the
height function, which we denote byH: R+ → N−{0}. Let β be an element of R+.
We can write β as

∑

α∈B nαα with nα in N [39, Chap. VI, Sect. 1, Théorème 3]; we
set H(β) :=

∑

α∈B nα. The function H has the following properties (the notation
H below is one in the list preceding Scholium 3.4.1.3):

– H(β) = β.ρ;
– H(β) ≥ 1, and H(β) = 1 ⇐⇒ β ∈ B;
– H(β) ≤ h− 1, and H(β) = h− 1 ⇐⇒ β ∈ H .

The last property follows from [39, Chap. VI, Sect. 1, Proposition 31] (we have
already invoked this reference in the proof of Proposition 3.4.1.2) and the very
definition of the subsetH ⊂ R+. The equalityR = R+

∐−R+ and the inequalities
1 ≤ β.ρ ≤ h− 1 for every β in R+ show that we have α.ρ �≡ 0 mod h for every α
in R. ��
Proof of Part (b). The implication (ii)⇒ (i) follows from the fact that ρ is h-regular.
Let us prove (i)⇒ (ii). In view of Scholium 3.4.1.3, we may assume ξ ∈ hAlc, that
is,

– α.ξ ≥ 0 for every α in B;
– α̃.ξ ≤ h for every α̃ in H .

The first inequality shows that if ξ is h-regular, then we have α.ξ ≥ 1 for every α in
B (by definition, β.ξ is in Z for every β in R) or, equivalently, α.(ξ − ρ) ≥ 0 for
every α in B. Likewise, the second inequality shows that we have α̃.ξ ≤ h − 1 for
every α̃ in H or, equivalently, α̃.(ξ − ρ) ≤ 0 for every α̃ in H . But an element η of
V that satisfies α.η ≥ 0 for every α in B and α̃.η ≤ 0 for every α̃ in H is zero (for
example because it belongs to εAlc for every ε > 0). We therefore have ξ = ρ. The
last part of statement (b), on the uniqueness of the pair (w, x) given by condition
(ii), follows from the proof we just gave. ��

We now arrive at the last statement concerning Weyl vectors of Niemeier lattices
that we wish to highlight; parts (b) and (c) are again due to Borcherds.

Proposition 3.4.2.9. Let L be a Niemeier lattice with roots, ρ a Weyl vector of L,
and ξ an element of Q�.

(a) The element ρ− hξ of Q� belongs to L and is h-regular.
(b) We have the inequality

q(ρ− hξ) ≥ q(ρ) = h(h+ 1) .
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(c) The following conditions are equivalent:

(i) Equality holds in part (b).
(ii) The vector ξ belongs to Π.
(iii) The difference ρ− hξ is a Weyl vector of L.

Proof. The elementρ−hξ belongs toL by Proposition3.4.2.1 and Corollary 3.4.2.3.
It is h-regular by part (a) of Proposition 3.4.2.8. It is a fortiori regular, so that the
inequality of statement (b) can be seen as a consequence of Scholium 3.4.2.7.
However, Borcherds’ argument [29, 30], which uses part (b) of Proposition 3.4.2.2,
is more effective for treating the case of equality. Indeed, we have q(ρ−hξ)−q(ρ) =
h(hq(ξ) − ρ.ξ). Since we have t2 − t ≥ 0 for every t in Z, the right-hand side of
the equality in the statement in question, with x = ξ, is nonnegative and is zero if
and only if we have α.ξ ∈ {0, 1} for every α in R+. This last property characterizes
the elements of Π (see the proof of part (a) of Proposition 2.3.8). This proves the
equivalence (i) ⇐⇒ (ii) of part (c). The equivalence (i) ⇐⇒ (iii) follows from
Scholium 3.4.2.7 (the equality case). ��

Holy Constructions

We now arrive at the main statement of Sect. 3.4.2. This statement deserves the name
“Theorem” because of part (c), which is implicit in [67], at least as far as the lattice
voish(L; ρ) is concerned.

Theorem 3.4.2.10. Let L be a Niemeier lattice with roots and ρ a Weyl vector of L.
We denote by sρ the orthogonal reflection of Q⊗Z L with respect to the hyperplane
orthogonal to ρ.

(a) The class of ρ in the projective space PL(Z/h) (resp. PL(Z/(h+ 1))) belongs
to the quadric CL(Z/h) (resp. CL(Z/(h+ 1)).

(b) The lattices voish(L; ρ) and voish+1(L; ρ) are interchanged by the reflection sρ:

voish+1(L; ρ) = sρ(voish(L; ρ)) .

(c) The lattices voish(L; ρ) and voish+1(L; ρ) have no roots:

voish(L; ρ) � Leech , voish+1(L; ρ) � Leech .

(d) We have

Nh(L,Leech) =
|W |
ϕ(h)g

, Nh+1(L,Leech) =
|W |

ϕ(h+ 1)

(where ϕ(−) above denotes the Euler totient function of a positive integer and
| − | denotes the cardinality of a finite set; recall that g denotes the index of Q
in L or, equivalently, the square root of the index of connection f of R).
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Proof of Parts (a) and (b). Part (a) follows from Proposition 3.4.2.5, and part (b) is
a particular case of part (b) of Proposition 3.1.14. ��
Proof of Part (c). In view of part (b), it suffices to prove that voish(L; ρ) or
voish+1(L; ρ) has no roots. We propose three proofs.

(1) The first proof is very prosaic. The program PARI allows us to compute,
without difficulty, the minimum m(Λ) of an integral lattice Λ of dimension 24,
namely the integer infx∈Λ−{0} x.x. We thus verify that we havem(voish(L; ρ)) = 4
for the 23 Niemeier lattices with roots.

(2) The second proof consists in identifying the lattice voish(L; ρ) with the
construction of the Leech lattice given by Conway and Sloane in [67], where, as
mentioned before, this identification is implicit. The construction in question, which
Conway and Sloane call a holy construction, is recalled below.

Conway and Sloane first associate two finite subsets of L with (L; ρ):

– The first, which we denote by F , is the disjoint union B
∐−H ; recall that the

elements ofH are the highest roots α̃1, α̃2, . . . , α̃c of the irreducible components
R1, R2, . . . , Rc of R. To alleviate the notation, we denote the elements of B by
α1, α2, . . . , α24 and set α24+i = −α̃i; the elements of F (which are all roots
of R) correspond to the vertices of the extended Dynkin graph of R.

– The second subset, which we denote byG, consists of the minuscule weights ofR
that are inL∩C (for the definition of minuscule weights, see the remark following
Proposition 2.3.12). We therefore have G = L∩Π, and the canonical map from
G to L/Q is a bijection. We denote the elements of G by μ0, μ1, . . . , μg−1,
where μ0 = 0.

Conway and Sloane then consider the lattice HC(L; ρ) in Q⊗Z L consisting of the
elements of the form

24+c
∑

i=1

miαi +

g−1
∑

j=0

nj (
ρ

h
− μj) ,

where the mi and nj denote integers satisfying
∑

imi +
∑

j nj = 0.

The following proposition shows that the lattice HC(L; ρ) can be described in
terms of Kneser neighborhoods.

Proposition 3.4.2.11. Let L be a Niemeier lattice with roots and ρ a Weyl vector of
L. The latticeHC(L; ρ) of Conway and Sloane coincides with the lattice voish(L; ρ).

Proof. This is rather a verification than a proof, which is why we use a smaller font. We have seen
(see the discussion following Proposition 3.1.5) that the lattice voish(L; ρ) is the sub-Z-module of
Q ⊗Z L generated by M and ρ̃/h, where M denotes the kernel of the homomorphism from L to
Z/h that sends an element x of L to the class mod h of the integer ρ.x and ρ̃ denotes an element
of L with ρ̃ ≡ ρ mod h and q(ρ̃) ≡ 0 mod h2. We can take ρ̃ = ρ − hα1, because we have
q(ρ − hα1) = h(h+ 1)− h+ h2 = 2h2.

Having recalled the above, we observe that the α1 −αi belong to M ; indeed, we have ρ.αi = 1
for i ≤ 24 and ρ.αi = 1 − h for i > 24. Moreover, the μj belong to M ; indeed, part (c) of
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Proposition 3.4.2.9 shows that we have q(ρ − hμj) = q(ρ), an equality that is equivalent to
ρ.μj = hq(μj ).

Now, let x be an element of Q ⊗Z L of the form considered by Conway and Sloane. The
observations above show that x can also be written as y+(

∑

j nj)ρ̃/h with y in M ; in other words,
in Q⊗Z L, we have the inclusion HC(L; ρ) ⊂ voish(L; ρ). The opposite inclusion voish(L; ρ) ⊂
HC(L; ρ) follows from the fact that L is generated by Q(R) and the μj . Let us give a few more
details. From the fact in question, we deduce thatM is generated by theμj , theα1−αi, and hα1. We
deduce that the μj belong to HC(L; ρ) by considering the equality μj = (ρ/h−μ0)− (ρ/h−μj ).
It is clear that the same holds for the α1 − αi. Suppose α1 ∈ R1; we deduce that hα1 belongs
to HC(L; ρ) by observing that we have α̃1 =

∑

β∈B∩R1
mβ β, where the mβ are integers

with
∑

β∈B∩R1
mβ = h − 1. Finally, we can deduce that ρ̃/h belongs to HC(L; ρ) by writing

ρ̃/h = −α1 + (ρ/h− μ0). 
�

In [67], Conway and Sloane state that they have verified, case by case, that
HC(L; ρ) has no roots. . . so that the proof of part (c) of Theorem 3.4.2.10 using [67]
greatly resembles the proof we first gave. We must, however, note that shortly after
the publication of [67], Borcherds [29, 30] discovered a uniform proof in terms of
“Lorentzian” lattices.

(3) The third proof of part (c) that we propose systematically uses the the-
ory of Kneser neighbors. It is a proof by contradiction: we begin by supposing
R(voish(L; ρ)) �= ∅.

Let us begin with an ad hoc statement concerning the general theory of d-
neighbors.
Lemma 3.4.2.12. Let L be a q-module over Z. Let d ≥ 2 be an integer and u a
d-primitive element of L with q(u) ≡ 0 mod d. Let x be an element of voisd(L;u).
Then q(u)x belongs to Md(L;u) and in L, we have the following congruence:

q(u)x ≡ (u.x) u mod d

(note that u belongs to Md(L;u) ⊂ voisd(L;u), so that u.x is integral and (u.x) u
also belongs to Md(L;u)).
Proof. We set M = Md(L;u) and L′ = voisd(L;u). The element q(u)x belongs
to M because the quotient L′/M is cyclic of order d and q(u) is divisible by d.
Let v be an element of L with u.v ≡ 1 mod d; since L′ is generated by M and
(u − q(u)v)/d, it suffices to verify the congruence of the lemma for x ∈M and for
x = (u− q(u)v)/d. In the first case, the two elements are divisible by d; the second
case is obvious. ��
Scholium 3.4.2.13. Let L be a Niemeier lattice with roots and ρ a Weyl vector of
L. Let x be an element of voish(L; ρ). Then ρ.x is integral, hx and (h + 1)sρ(x)
belong to Mh(L; ρ) and Mh+1(L; ρ), respectively, and in L we have the following
congruences:

hx ≡ (ρ.x) ρ mod h , (h+ 1)sρ(x) ≡ (ρ.x) ρ mod (h+ 1) .

Proof. This follows from Lemma 3.4.2.12 and the equalities q(ρ) = h(h + 1),
voish+1(L; ρ) = sρ(voish(L; ρ)), and ρ.sρ(x) = −ρ.x. ��



72 3 Kneser Neighbors

Let us now analyze the constraints that the conditionR(voish(L; ρ)) �= ∅ imposes.

Proposition 3.4.2.14. Let L be a Niemeier lattice with roots, ρ a Weyl vector of L,
and α′ a root of the lattice voish(L; ρ).

(a.1) The integer ρ.α′ is not divisible by h.
(a.2) The integers ρ.α′ and h are not relatively prime.
(b.1) The integer ρ.α′ is not divisible by h+ 1.
(b.2) The integers ρ.α′ and h+ 1 are not relatively prime.

Proof. We set L′ = voish(L; ρ) and M = Mh(L; ρ); recall that we have M =
L ∩ L′.

(a.1). Scholium 3.4.2.13 shows that if ρ.α′ is divisible by h, then α′ belongs to
L, which is impossible because we have R(M) = ∅.

(a.2). Scholium 3.4.2.13 shows that if the integer ρ.α′ is relatively prime to h,
then hα′ is an h-primitive element of L and the class of this element in the quadric
CL(Z/h) is equal to that of ρ. This is impossible because of the equality q(hα′) = h2

and Scholium 3.4.2.7.
(b.1) and (b.2). First, note that if α′ is a root of L′, then sρ(α

′) is a root of
sρ(L

′) = voish+1(L; ρ) and that we have ρ.sρ(α
′) = −ρ.α′. We then proceed

as before. For the proof of part (b.2), we use Propositions 3.4.2.15 and 3.4.2.16
and Corollary 3.4.2.17 below. Proposition 3.4.2.15 is the counterpart of Proposi-
tion 3.4.2.8, Proposition 3.4.2.16 is similar to statement (b) of Proposition 3.4.2.9,
and Corollary 3.4.2.17 is similar to Scholium 3.4.2.7. ��
Proposition 3.4.2.15. Let L be a Niemeier lattice with roots and ρ a Weyl vector
of L.

(a) The Weyl vector ρ is (h+ 1)-regular.
(b) Let ξ be an element of Q�. The following conditions are equivalent:

(i) The element ξ is (h+ 1)-regular.
(ii) There exist an element w of W , an element � of Π, and an element x of Q

such that we have ξ = w(ρ+�) + (h+ 1)x.

Moreover, if these conditions hold, then the triple (w,�, x) from condition (ii)
is uniquely determined in terms of ξ.

(c) Let u be an element of L. The following conditions are equivalent:

(i) The element u is (h+ 1)-regular.
(ii) There exist an element w of W and an element x of L such that we have

u = wρ+ (h+ 1)x.

Moreover, if these conditions hold, then the pair (w, x) from condition (ii) is
uniquely determined in terms of u.

Proof of Parts (a) and (b). These are variants of parts (a) and (b) of Proposi-
tion 3.4.2.8. Let us prove, for example, the implication (i) ⇒ (ii) of part (b).
In view of Scholium 3.4.1.3, we may assume ξ ∈ (h + 1)Alc (again, the last
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part of statement (b), on the uniqueness of the triple (w,�, x), will be a conse-
quence of our proof). If ξ is (h + 1)-regular, then we now have the inequalities
α.(ξ − ρ) ≥ 0 for every α in B and α̃.(ξ − ρ) ≤ 1 for every α̃ in H . We therefore
have ξ − ρ ∈ Q� ∩Alc =: Π. ��
Proof of Part (c). The implication (ii)⇒ (i) follows from the fact that ρ is (h+ 1)-
regular. The implication (i)⇒ (ii) follows from the implication (i)⇒ (ii) of part (b).
Indeed, if u is (h+ 1)-regular, then it can be written uniquely as u = w0(ρ+�) +
(h+1)x0 with (w0, �, x0) ∈W ×Π×Q. Since u is in L, the same holds for�, that
is, we have� ∈ Π∩L. We write u = w0(ρ−h�)+(h+1)(w0�+x0). By part (c)
of Proposition 3.4.2.9, ρ− h� is a Weyl vector of L; hence there exists an element
w1 of W , uniquely determined in terms of �, such that we have ρ − h� = w1ρ.
By setting w = w0w1 and x = w0� + x0, we indeed have u = wρ + (h + 1)x.
The uniqueness of the pair (w, x) follows from the fact that the canonical map
Π ∩ L→ L/Q is a bijection. ��
Proposition 3.4.2.16. Let x be a nonzero element of L; then we have the inequality

q(ρ− (h+ 1)x) ≥ (h+ 1)(h+ 2) .

Proof. We adapt the argument of Borcherds used in the proof of Proposition 3.4.2.9.
Let x be an element of L; we see that we now have

q(ρ− (h+ 1)x) = (h+ 1)

(

h+ q(x) +
∑

α∈R+

(α.x)2 − α.x

2

)

.

To estimate the right-hand side of this equality, we distinguish between two cases:

(1) There exists a positive root α with α.x �∈ {0, 1}. In this case, we have
(α.x)2 − α.x ≥ 2 and therefore q(x) +

∑

α∈R+

(

(α.x)2 − α.x
)

/2 ≥ 2.

(2) We have α.x ∈ {0, 1} for every α in R+. If x is nonzero, then we have
q(x) ≥ 2. Indeed, x cannot be a root because x or−x would then be a positive root,
say β, with β.x �∈ {0, 1}. ��
Corollary 3.4.2.17. Let u be an element of L. If u is (h+ 1)-primitive and we have
q(u) = (h+ 1)

2, then u is not (h+ 1)-regular.

Proof. By part (c) of Proposition 3.4.2.15, if such a u is (h+ 1)-regular, there exist
an element w of the Weyl group of R and an element x of L such that we have
u = wρ+(h+1)x. Propositions 3.4.2.5 and 3.4.2.16 show that we then have either
q(u) = h(h+ 1) or q(u) ≥ (h+ 1)(h+ 2). ��

Proposition 3.4.2.14 shows that the lattice voish(L; ρ) has no roots if h or h+ 1
is prime. This is the case for 19 of the Niemeier lattices with no roots. The four
that resist correspond to h = 25, 14, 9, 8. To overcome this problem, we refine the
previous argument.
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Proposition 3.4.2.18. Let L be a Niemeier lattice with roots. We assume that the
lattice voish(L; ρ) also has roots, and we denote its Coxeter number by h′. There
exists an integer ν satisfying the following conditions:

(1) ν > 0;
(2) ν2 ≤ (h(h+ 1)

)(

h′(h′ + 1)
)−1;

(3) gcd(ν, h) �= 1 and gcd(ν, h+ 1) �= 1.

Proof. Set L′ = voish(L; ρ). We apply Proposition 3.4.2.6 to the lattice L′ by
taking the element ρ for x: there exists a root α′ of L′ such that we have (ρ.α′)2 ≤
(

h(h+ 1)
)(

h′(h′ + 1)
)−1. Set ν = |ρ.α′|. By the above, ν is an integer that satisfies

the three given conditions. ��
We denote by S(h, h′) the subset of Z consisting of the integers ν satisfying the

three conditions of Proposition 3.4.2.18. We clearly have S(h, h′
1) ⊂ S(h, h′

2) for
h′
1 ≥ h′

2. Note that S(h, 2) is empty for h �= 25. The lattice voish(L; ρ) therefore
has no roots for h �= 25.

We are left with the case h = 25. We have S(25, 2) = {10} and S(25, 3) = ∅.
By the second equality, we have h′ = 2, and thereforeR(L′) = 24A1. Consider the
equality (Scholium 2.3.4 and Proposition 3.4.2.5)

∑

β∈R′
+

(ρ.β)2 = 2600 ,

where R′
+ denotes the set of 24 elements consisting of the positive roots of L′ for

some choice of a chamber. This equality shows that we cannot have |ρ.β| = 10
for every β in R′

+. Proposition 3.4.2.14 shows that there exists a β1 in R′
+ with

|ρ.β1| ≥ 20. Consequently, there exists a β2 in R′
+ with |ρ.β2| ≤ 9 (note that we

have 23× 102 > 2600− 202). This contradicts Proposition 3.4.2.14.
This contradiction completes our third proof of statement (c) of Theorem 3.4.2.10.

��
Proof of Part (d) of Theorem 3.4.2.10. Proposition 3.4.2.8 shows that the class of ρ
in PL(Z/h) belongs to Preg

L (Z/h) and that the action of W on this set is transitive.
Since the class of ρ belongs to Creg

L (Z/h), we see that we have Creg
L (Z/h) =

Preg
L (Z/h). Likewise, Proposition 3.4.2.15 shows that the class of ρ inPL(Z/(h+1))

belongs to Preg
L (Z/(h+1)), that the action ofW on this set is transitive (by part (c)),

and that we have Creg
L (Z/(h+ 1)) = Preg

L (Z/(h+1)). Since a necessary condition
for voisd(L; c) to be isomorphic to the Leech lattice is that c belongs to Creg

L (Z/d)
(Scholium 3.4.1.4 (a)), the proof of part (d) of Theorem 3.4.2.10 consists in verifying
that the stabilizer of the class of ρ in PL(Z/h) (resp. PL(Z/(h+ 1))) for the action
of W has φ(h)g (resp. φ(h+ 1)) elements. This follows from Propositions 3.4.2.19
and 3.4.2.20 below. ��
Proposition 3.4.2.19. Let L be a Niemeier lattice with roots and ρ a Weyl vector of
L. Then the stabilizer of the class of ρ in PL(Z/h) for the action of W is a canonical
extension of (Z/h)× by L/Q.
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Proof. LetS ⊂W be the stabilizer in question andw an element of S. By definition,
we have wρ = λρ + hx with λ in Z relatively prime to h and x in L. We see that
the class λ of λ in (Z/h)× depends only on w and that the map w → λ is a group
homomorphism; we denote it by π : S → (Z/h)×. The implication (i) ⇒ (ii) of
Proposition 3.4.2.8 (b) shows that π is surjective because λρ is h-regular for every λ
in Z relatively prime to h. Next, we consider the subgroup kerπ. Let w be in kerπ;
we havewρ = ρ+hxwith x in L. The map that sends w to the class of x in L/Q is a
group homomorphism, which we denote by ι : kerπ → L/Q (we use that the action
of W on Q�/Q is trivial). The same argument as above shows that ι is surjective.
The uniqueness in Proposition 3.4.2.8 (b) shows that ι is injective. ��
Remarks.

– By Corollary 3.4.2.3, the Z-module L/Q is a Z/h-module, so that we have a
natural action of (Z/h)× on L/Q. This action coincides with that defined by the
extension in Proposition 3.4.2.19. If ρ belongs toQ (which is not always the case;
see Proposition 3.4.2.4), then the proof of Proposition 3.4.2.19 shows, implicitly,
that S is canonically isomorphic to the semi-direct productL/Q� (Z/h)×. We
can, in fact, verify that the extension in question is always trivial.

– By construction, the homomorphism ι that appears in the proof of Proposi-
tion 3.4.2.19 factors through a set-theoretic map from kerπ to L. This shows
that we have a set-theoretic section of the homomorphism L → L/Q (which
depends only on the choice of ρ). The image of this section is Π ∩ L, and this
second remark is intimately linked to the beginning of the proof we gave of item
(a) of Proposition 2.3.8.

Proposition 3.4.2.20. Let L be a Niemeier lattice with roots and ρ a Weyl vector
of L. Then the stabilizer of the class of ρ in PL(Z/(h + 1)) for the action of W is
canonically isomorphic to (Z/(h+ 1))×.

Proof. This proof is analogous to that of Proposition 3.4.2.19, where Proposi-
tion 3.4.2.15 replaces Proposition 3.4.2.8. It is in fact simpler. This time, the ho-
momorphism π : S → (Z/(h + 1))× is an isomorphism. The reason for this
simplification is the following: in Proposition 3.4.2.8 (b), the element x belongs to
Q, whereas in Proposition 3.4.2.15 (c), it belongs to L. ��

3.4.3 On the Stabilizers for the Action ofW on Preg
L (Z/d),

for L a Niemeier Lattice with Roots

In this subsection, we give an upper bound for the size of the stabilizers for the
action of W on Preg

L (Z/d), for L a Niemeier lattice with roots. Our motivation is
Scholium-Definition 3.4.3.3, which will prove to be useful in Sect. 10.3.1.

Let L be a Niemeier lattice with roots and d ≥ 2 an integer.
From here on, we assume that d is relatively prime to the index g of Q in L. In

this case, the canonical homomorphism Q/dQ → L/dL is an isomorphism. We
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introduce, mutatis mutandis, the notation PQ, CQ (this time, this scheme is only
smooth over Z[1/g]), PQ(Z/d), PQ(Z/d), Preg

Q (Z/d), and Creg
Q (Z/d), as well as

the corresponding terminology. It is clear that the canonical bijections PQ(Z/d) ∼=
PL(Z/d), CQ(Z/d) ∼= CL(Z/d), Preg

Q (Z/d) ∼= Preg
L (Z/d), and Creg

Q (Z/d) ∼=
Creg

L (Z/d) are W -equivariant.

Proposition 3.4.3.1. Let L be a Niemeier lattice with roots and d ≥ 2 an integer
relatively prime to the index of Q in L. Let S be the stabilizer of an element of
Preg
L (Z/d) for the action of W .

(a) The group S is canonically isomorphic to a subgroup of (Z/d)×.
(b) If d is prime, then the action of S on R (induced by that of W ) is free.

Proof of Part (a). In view of what we wrote earlier, we may replace PL(Z/d) by
PQ(Z/d). Let u be a d-primitive element of Q, let S ⊂ W be the stabilizer of
the class of u in PQ(Z/d), and let w be an element of S. We proceed as in the
proof of Proposition 3.4.2.19. By definition, we have wu = λu + dx with λ in Z

relatively prime to d and x in Q. The class λ of λ in (Z/d)× depends only on w,
and the map π : S → (Z/d)× defined by w → λ is a group homomorphism. Using
Scholium 3.4.1.3, we easily verify that π is injective if u is d-regular. ��
Proof of Part (b). The equality wu = λu + dx implies α.(wu) ≡ λ(α.u) mod d
for every α in R or, equivalently, (w−1α).u ≡ λ(α.u) mod d. If we have wα = α
(and therefore w−1α = α), then we have (λ− 1)(α.u) ≡ 0 mod d or, equivalently,
(α.u)(π(w) − 1) = 0 in Z/d. If u is d-regular and d is prime, we obtain π(w) = 1.
Since π is injective when u is d-regular, we indeed have the implication wα = α⇒
w = id. ��
Remark. Proposition 3.4.2.20 is an illustration of Proposition 3.4.3.1 (a); Proposi-
tion 3.4.2.19 shows that the hypothesis on d is necessary.

Corollary-Definition 3.4.3.2. Let L be a Niemeier lattice with roots and p a prime;
we denote by Dp(L) the gcd of the integers p− 1, 24h, and |W |. If p does not divide
the index of Q in L, then the stabilizer of an element of Preg

L (Fp) for the action of W
is canonically isomorphic to a subgroup of the group μDp(L)(Fp) (which is cyclic of
order Dp(L)).

Proof. Let S ⊂ W be one of these stabilizers. By Proposition 3.4.3.1 (a), S can be
identified with a subgroup of F×

p . By Proposition 3.4.3.1 (b), the cardinality of S
divides the cardinality of R, namely 24h. ��
Remark. We see that 24h(L) divides |W(L)| except in the case R(L) = 24A1,
where the gcd of the integers 24h(L) and |W(L)| is 16. We therefore have gcd(p−
1, 24h(L), |W(L)|) = gcd(p− 1, 24h(L)) in all other cases.
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Scholium-Definition 3.4.3.3. Let L be a Niemeier lattice with roots and p a prime.
We denote by pas(L; p) the integer defined by

pas(L; p) :=
|W(L)|

gcd(p− 1, 24h(L), |W(L)|) .

If p does not divide the index of Q in L, then Np(L,Leech) is divisible by pas(L; p).
In this case, we denote by np(L) the integer defined by the equality

Np(L,Leech) = np(L) pas(L; p) .

The notation pas comes from the French word “pas” that refers, in this context,
to the common difference in an arithmetic sequence.

Proof. The integer Np(L,Leech) is the sum of the cardinalities of the W -orbits of
the points c of CL(Fp) with voisp(L; c) � Leech; these points belong to Preg

L (Fp)
by Scholium 3.4.1.4 (a). ��
Remark. The integer pas(L; p) is the product of the integer pas1(L) (which does
not depend on p) and the integer pas2 (L; p) defined, respectively, by

pas1(L) =
|W(L)|

gcd(24h(L), |W(L)|) , pas2(L; p) =
24h(L)

gcd(p− 1, 24h(L))
.

Examples

Let us illustrate the above by considering the Niemeier lattice A+
24 associated with

the root system A24 (see the second example following Scholium 2.3.15) and the
prime numbers 29 and 31. The choice of this illustration is deliberate: we will use the
computation of the integers N29(A

+
24,Leech) and N31(A

+
24,Leech) in Sect. 10.3.1.

Recall that by construction, we have Q(A24) = A24, where A24 is the sub-
Z-module of Z

25 consisting of the 25-tuples (x1, x2, . . . , x25) with
∑

i xi = 0,
endowed with the even bilinear form induced by the Euclidean structure of R25. The
Weyl group W can be identified with the symmetric group S25; its action on A24

is the obvious one. It follows that the Fp-vector space Fp ⊗Z A24 can be identified
with the linear subspace of Fp

25 consisting of the elements (x1, x2, . . . , x25) with
∑

i xi = 0; the induced action of S25 is again the obvious one.
We denote by ˜CA24(Fp) and ˜Creg

A24
(Fp), respectively, the inverse images of

CA24(Fp) and Creg
A24

(Fp) in Fp⊗ZA24−{0}. For p �= 2, we can identify ˜CA24(Fp),
as a (S25 × F

×
p )-set, with the subset of Fp

25 − {(0, 0, . . . , 0)} consisting of the
elements (x1, x2, . . . , x25) satisfying

x1 + x2 + . . .+ x25 = 0 and x2
1 + x2

2 + . . .+ x2
25 = 0 . (*)
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By definition, the 25-tuple (x1, x2, . . . , x25) is a set-theoretic map from
{1, 2, . . . , 25} to Fp; we denote it by x. The map x belongs to ˜Creg

A24
(Fp) if

and only if it is injective. Indeed, if we view the root system A24, as usual, as a
subset of the Euclidean spaceR25 endowed with its canonical basis {ε1, ε2, . . . , ε25}
[39, Planche I], then the roots are the εi− εj with i �= j. Note, incidentally, that this
observation allows us to deduce, at little cost, that if the set Preg

A+
24

(Fp) is nonempty,
we necessarily have p ≥ 25, at least for p �= 5.

We now arrive at the two examples we had in mind.

(1) The lattices vois29(A+
24; c) for c in Creg

A+
24

(F29)

Let x : {1, 2, . . . , 25} → F29 be an injective map, and let {y1, y2, y3, y4} ∈ F29 be
the complement of the image of x. Since we have

∑

z∈F29
z = 0 and

∑

z∈F29
z2 = 0,

the map x satisfies (*) if and only the four elements in the complement satisfy

y1 + y2 + y3 + y4 = 0 and y21 + y22 + y23 + y24 = 0 .

We denote byC (resp. ˜C) the subscheme ofP3 (resp.A4−{0}), say overF29, defined
by the equations above; C is clearly isomorphic to P1. Finally, we denote by Creg

(resp. ˜Creg) the open subscheme of C (resp. ˜C) defined by yi �= yj for i �= j; since−2
is not a square in F29, we in fact have C(F29) = Creg(F29) and ˜C(F29) = ˜Creg(F29).

We have introduced the formalism above for the sake of the following statements:

– There is a canonical bijection between the set S25\˜Creg
A24

(F29), quotient of the
action of S25 on ˜Creg

A24
(F29), and the set S4\˜Creg(F29), quotient of the obvious

action of S4 on ˜Creg(F29). Moreover, these two quotients are endowed with
natural actions of F×

29, and the bijection is equivariant.
– There is a canonical bijection

Moreover, for everyS4-orbitO of Creg(F29), the stabilizers ofO and κ(O), which
can both be identified with subgroups of F×

29, are canonically isomorphic.
Finally, consider the action of S4 on the set C(F29) = Creg(F29); it may be

useful to note that the fact that −3 is not a square in F29 implies that every element
(y1, y2, y3, y4) of ˜C(F29) satisfies yi �= 0 for every i.

We observe that the action of the group S4 on the set C(F29) with 30 elements
has exactly two orbits:

– the orbit O1 of the class of the point (1, 12,−1,−12) of F4
29, whose stabilizer

is isomorphic to μ4(F29) (note that {1, 12,−1,−12} ⊂ F
×
29 is the subgroup

μ4(F29)),
– the orbit O2 of the class of the point (1, 4, 6,−11), which is free.
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It follows that the action of the group S25 on the set Creg
A24

(F29) has exactly
two orbits, namely Ω1 = κ(O1), whose stabilizer is isomorphic to μ4(F29), and
Ω2 = κ(O2), which is free. Note that this confirms Corollary-Definition 3.4.3.2
because we have D29(A

+
24) = 4.

PARI tells us that the lattices vois29(A+
24; Ω1) and vois29(A

+
24; Ω2) (the abuse of

notation is venial) are both isomorphic to the Leech lattice. We finally obtain

N29(A
+
24,Leech) =

5

4
|W(A24)| = 19389012554163732480000000

(or, equivalently, n29(A
+
24) = 5 in the notation introduced in Scholium-

Definition 3.4.3.3).
We can, in fact, avoid turning to PARI by invoking the following ad hoc proposi-

tion.

Proposition 3.4.3.4. Let L be a Niemeier lattice with roots, ρ a Weyl vector, and α
a root of L. We denote the integer 2h+ 1− ρ.α by d. Then:

(1) We have d ≥ h+ 2.
(2) We have q(ρ− hα) = hd.
(3) There exists a β inB (that is, in the basis ofR(L) determined by ρ) withα.β = 0.
(4) The element ρ− hα of L is primitive.
(5) The lattice voisd(L; ρ − hα) (which is well defined by points (2) and (4)) is

isomorphic to the lattice voish(L; ρ) (which is isomorphic to the Leech lattice
by Theorem 3.4.2.10 (c)).

Proof. Property (1) follows from the inequality |ρ.α| ≤ h − 1; property (2) is
immediate. Property (3) is obvious if the system of R is not irreducible; when R is
irreducible, that is, R = A24 or R = D24, this trivially holds as well. Property (3)
implies property (4): note that we have (ρ−hα).β = 1. Finally, property (5) follows
from Proposition 3.1.14 (b). ��

To apply this proposition to the case we are interested in, namely L = A+
24

and d = 29, we must choose ρ and α with ρ.α = 22. Following Bourbaki, we
take ρ =

∑25
i=1(13 − i)εi; there are then three possible choices for α, namely

αi = εi − εi+22 for i = 1, 2, 3. Let ci be the class of ρ− 25αi in Creg
A24

(F29) (ci is
necessarily 29-regular because we have vois29(A+

24; ρ) � Leech). We see that c2 is
in the orbit Ω1 and c1 and c3 are in the orbit Ω2 (let w0 ∈ S25 be the permutation
i → 26− i; it fixes c2 and interchanges c1 and c3).

(2) The lattices vois31(A+
24; c) for c in Creg

A+
24

(F31)

We can apply the same method as above to determine N31(A
+
24,Leech). This time,

C is the projective quadric defined by the equations

y1 + y2 + y3 + y4 + y5 + y6 = 0 and y21 + y22 + y23 + y24 + y25 + y26 = 0 .
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The cardinalities of the sets C(F31) andCreg(F31) are 30784 and 18864, respectively,
so that the volume of the computations is greater. We only give the result of these
computations, and spare the reader the details.

The nontrivial stabilizers for the action of S6 on Creg(F31) are the subgroups
μ6(F31), μ5(F31), μ3(F31), and μ2(F31) (this is consistent with the equality
D31(A

+
24) = 30).

– There exists a single orbit with stabilizerμ6(F31); the neighbor ofA+
24 associated

with it is Leech.
– There exists a single orbit with stabilizer μ5(F31); the neighbor associated with

it is again Leech.
– There exist exactly four orbits with stabilizer μ3(F31); one leads to Leech, two

to the Niemeier lattice with root system 24A1, and one to the Niemeier lattice
with root system 12A2.

– There exists a single orbit with stabilizer μ2(F31); the associated neighbor is
Leech.

– There exist exactly 24 free orbits; 8 lead to Leech, 15 to the Niemeier lattice
with root system 24A1, and a single one to the Niemeier lattice with root system
12A2.

(Incidentally, the inventory we just made shows, in particular, that Scholi-
um 3.4.1.4 (a) does not admit a converse.)

From the above, we deduce

N31(A
+
24,Leech) =

46

5
|W(A24)| = 142703132398645071052800000

(or, equivalently, n31(A+
24) = 276).

3.4.4 Complement: On the 2-Neighbors of a Niemeier Lattice
with Roots, Associated with a Weyl Vector

This section follows [29]; in particular, the comments at the end are comparable to
the arguments that Borcherds gives in this article to prove the a priori existence of
an even unimodular lattice of dimension 24 with no roots.

Let L be a Niemeier lattice with roots and ρ one of its Weyl vectors. The equality
q(ρ) = h(h + 1) (Proposition 3.4.2.5) implies the congruence q(ρ) ≡ 0 mod 2,
so that we can consider the lattice vois2(L; ρ) (ρ is primitive, hence a fortiori 2-
primitive). We study this 2-neighbor of L below.

We extend the definition of the Coxeter number of a Niemeier lattice with roots
(Proposition-Definition 2.3.3) to all Niemeier lattices, by agreeing that the Coxeter
number of the Leech lattice is 0.
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Proposition 3.4.4.1. Let L be a Niemeier lattice with roots and ρ a Weyl vector of
L. We have the inequality

h(vois2(L; ρ)) ≤ h(L) + 1

2
.

Proof. We set h = h(L) and h′ = h(vois2(L; ρ)).
We first suppose that h is even. Let ρ̃ be an element of L with ρ̃ ≡ ρ mod h

and q(ρ̃) ≡ 0 mod h2. While studying the neighbor algorithm, we saw that such an
element exists; here, we can take ρ̃ = ρ− hα, where α denotes a root of the basis of
R(L) defined by ρ. Proposition 3.1.13 says that ρ̃/2 is an h/2-primitive element of
vois2(L; ρ) and that in Q⊗Z L, we have

voish(L; ρ) = voish/2

(

vois2(L; ρ);
ρ̃

2

)

.

This equality shows that the lattice vois2(L; ρ) admits an h/2-neighbor with no
roots, because Theorem 3.4.2.10 (c) says that the lattice voish(L; ρ) has no roots.
We deduce h/2 ≥ h′ thanks to Proposition 3.4.1.1.

The case h odd is similar. We now consider the equality

voish+1(L; ρ) = vois(h+1)/2

(

vois2(L; ρ);
ρ̃

2

)

with, for example, ρ̃ = ρ+ (h+ 1)α. ��
We have just seen that the proof of Proposition 3.4.4.1 relies on Proposition 3.4.1.1

and Theorem 3.4.2.10 (c) (“holy constructions”); let us now give a proof ab initio of
the statement below that refines Proposition 3.4.4.1.

Proposition 3.4.4.2. Let L be a Niemeier lattice with roots and ρ a Weyl vector of
L. We have the equality

h(vois2(L; ρ)) =
h(L)

2
− ι(R(L))

8
+ 2 ,

where ι(R(L)) denotes the number of odd exponents of the Weyl group of R(L) [39,
Chap. V, Sect. 6, Définition 2].

Before explaining the proof of this proposition, let us give some information on
the number ι(R) of odd exponents of the Weyl group of a root system R:

(1) The invariant ι is additive in the following sense: ι(R1

∐

R2) = ι(R1)+ ι(R2).
(2) The value of ι on the irreducible root systems of type ADE is as follows:

ι(Al) = [(l + 1)/2], ι(Dl) = 2[l/2], ι(E6) = 4, ι(E7) = 7, ι(E8) = 8.
(3) LetR be a root system of rank l and Coxeter numberh. Since the set of exponents

ofR is stable under the involutionm → h−m and has cardinality l [39, Chap. V,
Sect. 6, no2], we have l = 2ι(R) if h is odd.
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Let R be a root system of type ADE of rank l and Coxeter number h. Points (1) and
(2) show that we have the inequality l ≥ 2ι(R) and that we have equality if and only
if all irreducible components of R are of type Ad with d even. This last condition is
equivalent to h being odd, which is consistent with point (3).

The above shows that Proposition 3.4.4.2 indeed implies the inequality of Propo-
sition 3.4.4.1 and that we have equality in the latter if and only if R(L) is isomorphic
to the direct sum of 24/d copies of Ad with d an even divisor of 24 (recall that
R(L) is equi-Coxeter). Incidentally, we observe that the following three conditions
are equivalent:

– The Coxeter number h(L) is odd.
– The set of roots R(L) is isomorphic to the direct sum of 24/d copies of Ad with
d an even divisor of 24.

– We have h(vois2(L; ρ)) = (h(L) + 1)/2.

The proof of Proposition 3.4.4.2 is based on Propositions 3.4.4.3 and 3.4.4.4 below.

Proposition 3.4.4.3. Let L be a Niemeier lattice with roots and ρ a Weyl vector of L.
Then the number of roots α of L with ρ.α even is the difference 12h(L)− ι(R(L)).

Proof. LetR be a root system,C a chamber ofR, andB ⊂ R the basis and R+ ⊂ R
the subset of positive roots defined by C. The proof of Proposition 3.4.4.3 follows
from the relation given by Bertram Kostant in [128] between the height function
R+ → N − 0 and the exponents of the Weyl group of R. Let us recall that theory
below.

The height function H: R+ → N − {0} sends a positive root to the sum of its
coordinates in the basis B. We denote the set of exponents of R by Exp(R).

Let A be an abelian group and f : N − {0} → A a (set-theoretic) map. Let
F : N− {0} → A be the “primitive” of f , that is, the map defined by

F (m) =

m
∑

k=1

f(k) .

Then, in A, we have the equality
∑

α∈R+

f(H(α)) =
∑

m∈Exp(R)

F (m) . (Ko)

This equality follows from Kostant’s relation mentioned above. Let us explain why.
Let i be an element of N − {0} and δ(i) : N − {0} → Z the corresponding “Dirac
function.” Equality (Ko) says that in the case f = δ(i), the cardinality of H−1(i) is
equal to the cardinality of the subset of Exp(R) consisting of the m with m ≥ i;
this is Kostant’s result. The general case follows by linearity.

Let us now return to the proof of Proposition 3.4.4.3. Let ν (resp. ν+) be the
number of roots (resp. positive roots, for the chamber associated with ρ) α of L with
ρ.α even; it is clear that we have ν = 2ν+. In the context of Proposition 3.4.4.3, we
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have H(α) = ρ.α. By taking, in equality (Ko), f equal to the function N−{0} → Z

defined by k → (−1)k, we obtain

|R+(L; ρ)| − 2 ν+ = ι(R(L)) ,

where R+(L; ρ) is the subset consisting of the positive roots for the chamber asso-
ciated with ρ. This equality is equivalent to

ν =
|R(L)|

2
− ι(R(L)) .

As we have |R(L)| = 24h(L) by Proposition-Definition 2.3.3 (c), this concludes
the proof. ��

Let Λ be an integral lattice and k ≥ 0 an integer. We denote by rk(Λ) the number
of representations of k by Λ, that is, the number of elements x of Λ with x.x = k.

Proposition 3.4.4.4 (Borcherds). Let B be an odd unimodular lattice of dimension
24, and let L1 and L2 be the two even 2-neighbors of B. Then we have

r2(L1) + r2(L2) = 3 r2(B) − 24 r1(B) + 48 .

Proof (Sketch). Let n > 0 be an integer divisible by 8 and B a unimodular lattice
of dimension n. We consider the theta series

ϑB(τ) =
∑

x∈B

eıπτx.x

(with τ in the upper half-plane). The functionϑB is a modular form of weightn/2 for
the subgroup Γ′ of Γ := SL2(Z)/{±I} generated by the transformations τ → τ +2
and τ → −1/τ . It is, moreover, modular for Γ if B is even. We denote by Mn/2(Γ)
and Mn/2(Γ

′), respectively, the C-vector spaces consisting of the modular forms of
weight n/2 for the groups Γ and Γ′. Since Γ′ has finite index (namely 3) in Γ, there
is a transfer homomorphism, which we denote by tr : Mn/2(Γ

′) → Mn/2(Γ). The
proof of the following statement is left to the reader.

Lemma 3.4.4.5. Let n > 0 be an integer divisible by 8 and B an odd unimodular
lattice of dimension n. Let L1 and L2 be the two even 2-neighbors of B. Then we
have ϑL1 + ϑL2 = tr(ϑB) .

We can verify that B := (E3
4 , E

2
4ϑI8 , E4ϑI16 , Δ) is a basis of M12(Γ

′) (recall
that E4 is the normalized Eisenstein series that is modular of weight 4 for Γ, that we
have ϑE8 = E4, that Δ is the unique normalized cusp form of weight 12 for Γ, and
that (E3

4 , Δ) is a basis of M12(Γ)).
Since E4 and Δ are modular for Γ, we have tr(E3

4) = 3E3
4 and tr(Δ) = 3Δ. On

the other hand, Lemma 3.4.4.5 implies tr(ϑI8) = 2E4 and tr(ϑI16 ) = 2E2
4. Since

the transfer is M(Γ)-linear, where M(Γ) denotes the graded C-algebra of modular
forms forΓ, we conclude that the image of the basisB by the transfer homomorphism
is (3E3

4 , 2E
3
4 , 2E

3
4 , 3Δ).
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Now, let B be an odd unimodular lattice of dimension 24. Let (c0, c1, c2, c3) be
the coordinates of ϑB in the basis B:

ϑB = c0E
3
4 + c1E

2
4ϑI8 + c2E4ϑI16 + c3Δ .

Since the constant term of the Fourier series expansion of ϑB is 1, we have c0+ c1+
c2 = 1. Since B is odd, Lemma 3.4.4.5 implies, in particular, that the constant term
of the Fourier series expansion of tr(ϑB) is 2; we therefore have3c0+2c1+2c2 = 2,
and consequently c0 = 0.

Let M0
12(Γ

′) be the linear subspace of M12(Γ
′) generated by E

2
4ϑI8 , E4ϑI16 , and

Δ. Let f be an element of M0
12(Γ

′) and

f = r0(f) + r1(f) e
ıπτ + r2(f) e

2ıπτ + . . .

the beginning of the Fourier series expansion. It is easy to check that the linear
map M0

12(Γ
′) → C

3 defined by f → (r0(f), r1(f), r2(f)) is an isomorphism. It
follows that the coefficient of e2ıπτ in the Fourier series expansion of tr(f) is a
linear combination of r0(f), r1(f), r2(f). By solving a linear system, we find that
this coefficient is 48r0(f)−24r1(f)+3r2(f). In view of Lemma 3.4.4.5, we obtain
Proposition 3.4.4.4 by taking f = ϑB . ��

Proof of Proposition 3.4.4.2 Using Propositions 3.4.4.3 and 3.4.4.4

Let B be the odd unimodular lattice of dimension 24 whose two even 2-neighbors
are L and vois2(L; ρ). As we have r2(Λ) = 24h(Λ) for every even unimodular
lattice Λ of dimension 24 (part (c) of Proposition-Definition 2.3.3 for r2(Λ) �= 0 and
convention for r2(Λ) = 0), Proposition 3.4.4.4 gives

24 h(L) + 24 h(vois2(L; ρ)) = 3 r2(B) − 24 r1(B) + 48 . (1)

By construction, the submodule ofB consisting of the elementsxwith x.x even is the
lattice M2(L; ρ); we therefore have r2(B) = r2(M2(L; ρ)). Again by construction,
r2(M2(L; ρ)) is the number of roots α of L with ρ.α even; we therefore have

r2(M2(L; ρ)) = 12 h(L)− ι(R(L)) (2)

by Proposition 3.4.4.3. The equalities (1) and (2) imply

h(vois2(L; ρ)) =
h(L)

2
− ι(R(L))

8
+ 2− r1(B) . (3)

It remains to show r1(B) = 0. We proceed by contradiction. If we have
r1(B) �= 0, then we have r1(B) ≥ 2 and the equality (3) implies the inequal-
ity h(vois2(L; ρ)) < h(L), which shows that the lattices L and vois2(L; ρ) are not
isomorphic. But Corollary 3.1.16 shows that if we have r1(B) �= 0, then the lattices
L and vois2(L; ρ) are isomorphic. ��
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Comments

LetXR24 be the subset ofX24 consisting of the isomorphismclasses of even unimod-
ular lattices of dimension 24 with roots. We denote by YR24 the set of isomorphism
classes of equi-Coxeter root systems of rank 24 and by Y24 the disjoint union of
YR24 and the singleton {∅}. By parts (a) and (b) of Proposition-Definition 2.3.3, the
map L → R(L) induces maps XR24 → YR24 and X24 → Y24, where the second
extends the first, which we again denote by R. Below, we forget that we know that
the map R: X24 → Y24 is bijective.

Let L be an even unimodular lattice of dimension 24 and ρ a Weyl vector of
L. Since the group W(R(L)) permutes the Weyl vectors of L transitively, the map
L → vois2(L; ρ) induces a map XR24 → X24; we denote the latter by ϕ.

Let R be an element of YR24; we set

h′(R) =
h(R)

2
− ι(R)

8
+ 2 ;

we easily verify that h′(R) belongs to N. Proposition 3.4.4.2 tells us that we have
the following equality:

h(R(ϕ([L])) = h′(R([L])) . (1)

This equality suffices to determineR(ϕ([L])) if h′(R(L)) is not 12, 10, or 6. Indeed,
the fibers h−1(k) of the map h: Y24 → N have 0 or 1 element unless k = 12, 10, 6,
in which cases we haveh−1(12) = {A11D7E6, 4E6}, h−1(10) = {2A9D6, 4D6},
and h−1(6) = {4A5D4, 6D4}. We easily check that h′−1(12) is empty and that
we have h′−1(10) = {2D12} and h′−1(6) = {3D8,A11D7E6, 4E6}. In the cases
R([L]) = 2D12, 3D8,A11D7E6, 4E6, we can still determine R(ϕ([L])) using
condition (2) below.

Let R be a root system of type ADE endowed with a chamber C or, equivalently,
endowed with a Weyl vector ρ. We denote byR/2 the sub-root system ofR consisting
of the roots of even height for the height function defined byC. The root system R/2
is again of type ADE; it is canonically endowed with a chamber: the positive roots
of this chamber are those that are positive for C. The isomorphism class of R/2 is
clearly independent of the choice of C. At the level of isomorphism classes, the map
R → R/2 is determined by the following properties:

– We have (R1

∐

R2)/2 = R1/2
∐

R2/2.
– For R irreducible, the root system R/2 is the following: A2m/2 =
Am

∐

Am−1, A2m+1/2 = Am

∐

Am, D2m/2 = Dm

∐

Dm, D2m+1/2 =
Dm+1

∐

Dm, E6/2 = A5

∐

A1, E7/2 = A7, E8/2 = D8 (with the natural
conventions A0 = ∅, D2 = A1

∐

A1, and D3 = A3).

By definition, we have R(L)/2 = R(M2(L; ρ)) and therefore

R([L])/2 ⊂ R(ϕ([L])) (2)
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for every [L] in XR24. This inclusion allows us to determine R(ϕ([L])) for
h′(R([L])) ∈ {10, 6}. Indeed, we have

– (2D12)/2 = 4D6 �⊂ 2A9D6;
– (3D8)/2 = 6D4 �⊂ 4A5D4;
– (A11D7E6)/2 = A1A3A4 3A5 �⊂ 6D4;
– (4E6)/2 = 4A1 4A5 �⊂ 6D4.

The previous discussion leads to the following statements.

Proposition-Definition 3.4.5. There exists a unique map

ψ : YR24 → Y24

such that we have h(ψ(R)) = h′(R) and R/2 ⊂ ψ(R).

Remark. Let R be an element of YR24. The following conditions are equivalent:

– We have ψ(R) = R/2.
– We have ι(R) = 24.
– The irreducible components of R are of type A1, Dl with l even, E7, or E8.

We extend ψ to a map ψ : Y24 → Y24 by setting ψ(∅) = ∅. Likewise, we extend
ϕ to a map ϕ : X24 → X24 by setting ϕ([L]) = [L] if L has no roots.

Proposition 3.4.5.1. Let R be an element of Y24 and k a positive integer. We have
ψk(R) = ∅ for h(R) < 2k + 1.

(Note that we have h(ψ(R))− 1 ≤ (h(R)− 1)/2.)

Proposition 3.4.5.2. The following diagram is commutative:

X24
ϕ

X24

R R

Y24
ψ

Y24.

Scholium 3.4.5.3. Let L be an even unimodular lattice of dimension 24 and k a
positive integer. Then ϕk([L]) has no roots for h(L) < 2k + 1.

The oriented graph in Fig. 3.1 gives the map ψ explicitly; its vertices are the
elements of Y24 and its edges are the ordered pairs (x, y) in Y24 ×Y24 − diagonal
with x ∈ YR24 and y = ψ(x).
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Fig. 3.1 Root system of the 2-neighbor associated with a Weyl vector of an even unimodular lattice
of dimension 24, in terms of the root system of the latter



Chapter 4
Automorphic Forms and Hecke
Operators

4.1 Lattices and Class Sets of Z-groups

Let P be the set of prime numbers. Set ̂Z =
∏

p∈P Zp, and letAf = Q⊗̂Zbe the set of
finite adeles of Q. Fix a Z-groupG, that is, an affine group scheme of finite type over
Z. The groupG(Af) can be canonically identified with the subgroup of

∏

p∈PG(Qp)
whose elements (gp) satisfy gp ∈ G(Zp) for almost all p, in other words, for all
p ∈ P except possibly a finite number. The groups G(Q) and G(̂Z) embed naturally
into G(Af ) and satisfy G(̂Z) =

∏

p∈P G(Zp) and G(Z) = G(Q) ∩ G(̂Z). The
G(Af )-set

R(G) = G(Af )/G(̂Z)

will play an important role in this chapter. We denote it by R, for the French word
for lattice, “réseau”, because it can, in general, be identified with the set of lattices
of a certain type in a Q-vector space.

A classical result of Borel [32, Sect. 5] asserts that the class set of G:

Cl(G) = G(Q)\G(Af )/G(̂Z) = G(Q)\R(G)

is finite. Its cardinality h(G) = |Cl(G)| is called the class number of G. In this
section, we describe R(G) and Cl(G) in several standard cases we are interested in
(see, for example, [32, Sect. 2]).

4.1.1 Linear Groups

Let us begin with the case of GLn. If V is a vector space of finite dimension n over
the field of fractions of a principal ideal domain A, we denote by RA(V ) the set of

© Springer Nature Switzerland AG 2019
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lattices in V with respect to A, that is, the set of free sub-A-modules of V of rank
n (Sect. 2.1). It is endowed with a transitive action of GL(V ); the stabilizer of L in
RA(V ) is GL(L).

Let V be a Q-vector space of dimension n. If p is prime and we set Vp = V ⊗Qp,
then there is a natural map RZ(V ) → RZp(Vp) defined by M → Mp := M ⊗ Zp.
We fix L ∈ RZ(V ) and set G = GLL. We easily verify, following Eichler [78,
Sect. 13], that the map

RZ(V )→
∏

p∈P

RZp(Vp) , M → (Mp) , (4.1.1)

is an injection from RZ(V ) to the subset
∏′

p∈P RZp(Vp) ⊂
∏

p∈P RZp(Vp) con-
sisting of the families (Mp) such that Mp = Lp for almost all p (this subset does
not depend on the choice of L). The natural action of G(Af ) on

∏

p∈PRZp(Vp)

preserves
∏′

p∈P RZp(Vp), and it is transitive on the latter. Therefore, if we identify
RZ(V ) with

∏′
p∈P RZp(Vp) using the map (4.1.1), which we will do systematically

from now on, then by transport of structure, we obtain a transitive action of G(Af )
on RZ(V ) that extends the obvious action of G(Q) = GL(V ). Since the stabilizer
of the lattice L is G(̂Z), this leads to an isomorphism of G(Af )-sets

R(G)
∼→ RZ(V ).

Since G(Q) also acts transitively on RZ(V ), it follows, in particular, that we have

h(GLn) = 1 .

In the case G = PGLL (resp. G = SLL), the set R(G) can also be viewed as the
quotient ofRZ(V ) byQ× for the action by homotheties (resp. as the subset ofRZ(V )
consisting of the M that have a Z-basis of determinant 1 with respect to a Z-basis
of L). We again have h(PGLn) = h(SLn) = 1.

4.1.2 Orthogonal and Symplectic Groups

We now assume that the Q-vector space V is endowed with a nondegenerate bilinear
form ϕ that is symmetric or alternating. Let L ∈ RZ(V ). Recall that the dual lattice
of L is the lattice L� ∈ RZ(V ) defined by (Sect. 2.1)

L� = {v ∈ V ; ϕ(v, x) ∈ Z ∀x ∈ L} .

We call L homodual, for “homothetic to its dual,” if there exists a λ ∈ Q
× such that

we have L� = λL; there then exists a unique strictly positive λ with this property;
we denote it by λL. The lattice L is called self-dual if we have L� = L. If L is
homodual and ϕ is symmetric (resp. alternating), then the bilinear form λLϕ gives
L the structure of a b-module (resp. a-module) over Z in the sense of Sect. 2.1. We
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then say that L is even if λLϕ(x, x) ∈ 2Z for every x ∈ L. This is automatic if ϕ is
alternating, and if ϕ is symmetric, this allows us to view L as a q-module over Z by
setting q(x) = λL ϕ(x, x)/2 for x ∈ L. We denote by

Ra
Z
(V ) ⊂ Rh

Z
(V )

the subsets of RZ(V ) consisting of the even self-dual (resp. homodual) lattices.
Set n = dimV , and fixL ∈ Ra

Z
(V ). By reduction modulo 2, the existence of such

an L induces the congruence n ≡ 0 mod 2. Consider the sub-Z-group G ⊂ GLL

defined by

G =

{

SpL if ϕ is alternating,
OL else.

We denote by ˜G the corresponding similitude Z-group, so that we have G ⊂ ˜G ⊂
GLL, and by P ˜G the projective similitude Z-group, which is the quotient of ˜G by its
central sub-Z-group isomorphic to Gm consisting of the homotheties (Sect. 2.1).

Lemma 4.1.3. The restriction of the action of GLL(Af ) on RZ(V ) to ˜G(Af ) (resp.
G(Af )) preserves Rh

Z
(V ) (resp. Ra

Z
(V )).

Before giving the proof, let us introduce the local analogs of the previous defi-
nitions. Let p be prime. For M ∈ RZp(Vp), the dual lattice M � ∈ RZp(Vp) (with
respect to Zp; see Sect. 2.1) is well defined. We denote by Rh

Zp
(Vp) ⊂ RZp(Vp)

the subset of lattices M such that there exists λ ∈ Q
×
p with M � = λM and

λϕ(x, x) ∈ 2Zp for every x ∈M . Furthermore, we denote by Ra
Zp
(Vp) ⊂ Rh

Zp
(Vp)

the subset of lattices M such that we have M � = M . For M ∈ Rh
Zp
(Vp), there exists

a unique λM ∈ pZ with M � = λMM . If ϕ is symmetric (resp. alternating), the
quadratic form x → λM ϕ(x, x)/2 (resp. the alternating form λMϕ) then gives M
the structure of a q-module (resp. a-module) over Zp.

Proof. LetM ∈ RZ(V ). We begin by noting thatM is in Rh
Z
(V ) if and only if Mp is

in Rh
Zp
(Vp) for every prime p, in which case we, moreover, have λM =

∏

p λMp (of
course,λMp is 1 for almost all p). Indeed, this follows from the identityA×

f = Q
×·̂Z×

(that is, h(Gm) = 1) and the immediate relation (N �)p = (Np)
�, which holds for

every prime p and every N ∈ RZ(V ). In particular, we have M ∈ Ra
Z
(V ) if and

only if we have Mp ∈ Ra
Zp
(Vp) for every p.

To conclude the proof, it suffices to note that if g ∈ ˜G(Qp) has similitude factor
ν(g) (Sect. 2.1) and we have M ∈ RZp(Vp), then we have the relation g(M)� =
ν(g)−1g(M �). ��

Note that the action of the homotheties Q
× on RZ(V ) preserves Rh

Z
(V ). By

Lemma 4.1.3, the quotient set

Rh
Z
(V ) := Q

×\Rh
Z
(V )
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is therefore endowed with an action of P ˜G(Af ) that extends the obvious action of
P ˜G(Q). We denote the homothety class of M ∈ RZ(V ) by M . In summary, we
have the following commutative diagram:

The ωi, for i = 1, 2, 3, are, respectively, the “orbit” maps of L, L, andL under the
actions of G(Af ), ˜G(Af ), and P ˜G(Af ). All other arrows denote canonical maps.

Proposition 4.1.4. The maps ωi and ξj are bijective. In particular, the action of
G(Af ) on Ra

Z
(V ) is transitive; the orbit of L defines an isomorphism of G(Af )-sets

R(G)
∼→ Ra

Z
(V ).

Proof. The injectivity of theωi is obvious. Let us begin by verifying the last assertion,
which is nothing more than the surjectivity of ω1. If ϕ is symmetric, Scholium 2.2.5
asserts that for every M ∈ Ra

Z
(V ), the q-module Mp over Zp is hyperbolic. It is, in

particular, isomorphic to Lp, which concludes the proof of the last assertion because
every isometry Lp →Mp is necessarily induced by an element of O(Vp) = G(Qp).
Let us therefore suppose that ϕ is alternating. It is well known that if A is a principal
ideal domain, there exists, up to equivalence, a unique nondegenerate alternating
bilinear form on the A-module An (n even). We conclude by considering the case
A = Zp.

The surjectivity of ω3 (resp. ω2) follows from that of ω2 (resp. from those of
ω1 and ξ1). Let us show the surjectivity of ξ1. For M ∈ Rh

Z
(V ) and g ∈ ˜G(Q)

with similitude factor ν(g), we have λg(M) = ± ν(g)−1 λM . It therefore suffices to
see that ν( ˜G(Q)) contains the set Q>0 of strictly positive rational numbers. This is
obvious in the alternating case and, more generally, when V is hyperbolic. In the
symmetric case, we must show that for λ ∈ Q>0, the vector spaces V and V ⊗ 〈λ〉
(obtained by multiplying the quadratic form on V by λ) are isomorphic as q-vector
spaces over Q. But they are so over Qp for every prime p because the V ⊗ Qp are
hyperbolic by Scholium 2.2.5, and they are so over R because we have λ > 0. We
conclude using the Hasse–Minkowski theorem.

The map ξ2 is bijective because of the equality P ˜G(Q) = ˜G(Q)/Q×. Finally,
let us verify the injectivity of ξ1. We may assume that ϕ is symmetric because
the argument given in the first paragraph shows that we have h(G) = 1 if ϕ is
alternating. Let us therefore assume that there exist M ∈ Ra

Z
(V ) and g ∈ ˜G(Q) such

that g(M) = L. We then have ν(g) = ±1. If ν(g) = 1, then we have g ∈ G(Q),
and we are done. Otherwise, M is isometric to the q-module L ⊗ 〈−1〉, which



4.1 Lattices and Class Sets of Z-groups 93

has underlying space L but opposite quadratic form. This implies that V ⊗ R is
hyperbolic, and thus that L and M are isomorphic by Theorem 2.2.7. ��
Corollary 4.1.5. We have h(G) = h( ˜G) = h(P ˜G).

When ϕ is alternating, the classification given above of the nondegenerate alter-
nating forms applied to the ring Z implies1 h(G) = 1, and therefore h(Sp2g) =
h(GSp2g) = h(PGSp2g) = 1 for every g ≥ 1.

Let us assume that ϕ is symmetric. If the q-vector space L ⊗ R is indefinite,
then Theorem 2.2.7 implies h(OL) = 1. The situation is quite different if L ⊗ R

is positive definite, which we will assume from now on. Recall that L can then be
viewed as an even unimodular lattice in the Euclidean space V ⊗ R of dimension
n. In particular, we have n ≡ 0 mod 8. In this case, Ra

Z
(V ) is, by definition, the set

of even unimodular lattices in V ⊗ R that are contained in L ⊗ Q. Recall that Xn

denotes the set of isometry classes of even unimodular lattices in the Euclidean space
V ⊗ R. By Scholium 2.2.1, the natural inclusion O(V )\Ra

Z
(V ) → Xn is bijective

and therefore induces an isomorphism Cl(OL)
∼→ Xn. In particular, if On denotes

the orthogonal Z-group of the lattice L = En (Sect. 1.3), we obtain the equality

h(On) = |Xn| ,

which shows that h(On) is a quite interesting number.

4.1.6 SOL Versus OL

We continue the analysis of the previous subsection by assuming thatϕ is symmetric,
so that G, ˜G, and P ˜G are, respectively, OL, GOL, and PGOL. We are interested
in their respective sub-Z-groups SOL, GSOL, and PGSOL (Sect. 2.1). The groups
SOL(Af ), GSOL(Af ), and PGSOL(Af ) act on, respectively, Ra

Z
(V ), Rh

Z
(V ), and

Rh
Z
(V ) (Proposition 4.1.3). Let us consider the following commutative diagram,

which extends that of Sect. 4.1.2:

1 The assertions h(SLn) = h(Sp2g) = 1 recalled above are also very particular cases of Kneser’s
strong approximation theorem (see [123], [162, Theorem 7.12]). It asserts that we have h(G) = 1
whenever the C-group GC is semisimple and simply connected and the topological group G(R)
does not have a nontrivial connected, compact, normal subgroup.
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The vertical maps ω̃i are again the “orbit” maps of L (resp. L, resp. L), and the
other arrows are the canonical maps.

Proposition 4.1.7. The maps ω̃i, μi, and ˜ξj are bijective. In particular, the action
of SOL(Af ) on Ra

Z
(V ) is again transitive; the orbit of L defines an isomorphism

R(SOL)
∼→ Ra

Z
(V ).

Proof. We have already seen that the natural action ofOL(Af ) onRa
Z
(V ) is transitive

(Proposition 4.1.4). The same holds for the restriction of this action to its subgroup
SOL(Af ) because the orthogonal group of a nontrivial hyperbolic q-module over
Zp always has an element of determinant−1. The same reasoning shows that the μi

are bijective because OL(Zp)/SOL(Zp) → GOL(Qp)/GSOL(Qp) is bijective for
every prime p (Sect. 2.1). Since the ωi are bijective, the bijectivity of the ω̃i follows.

The bijectivity of ˜ξ2 is obvious. The surjectivity of ˜ξ1 follows from that of
ξ1 and from the fact that we have −1 ∈ det(O(V )). Finally, the injectivity of
˜ξ1 can be shown similarly to that of ξ1 (Proposition 4.1.4), using that we have
−1 ∈ det(O(H(Zn/2))). ��
Corollary 4.1.8. If L is a q-module over Z, we have h(SOL) = h(GSOL) =
h(PGSOL). If, moreover, L⊗ R is indefinite, then these integers are equal to 1.

Proof. The first assertion follows from the bijectivity of the maps ξi (Proposi-
tion 4.1.7). When L⊗R is indefinite, we already explained the equality h(OL) = 1
in Sect. 4.1.2. It remains to show that there exists an s ∈ O(L) with det s = −1.
The assumption on L and Theorem 2.2.7 show that there exists a q-module L′ over
Z such that L � L′ ⊕ H(Z) (orthogonal sum). This concludes the proof because
H(Z) contains an automorphism of determinant−1. ��

Finally, let us assume that L is positive definite. As before, we then have a
canonical bijection Cl(SOL)

∼→ ˜Xn, where ˜Xn denotes the set of direct isometry
classes of even unimodular lattices in V ⊗ R (in other words, the set of orbits of
the action of SO(V ⊗ R) on the latter). The isometry class of an even unimodular
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lattice M ⊂ V ⊗ R admits exactly one or two inverse images under the canonical
projection

˜Xn → Xn ,

depending on whether O(M) has an element of determinant −1 or not. It has one
if, for example, M has at least one root, that is, an α ∈ M such that α · α = 2,
because the associated orthogonal reflection is in O(M) (Sect. 2.3). On the other
hand, if M is the Leech lattice, then we have O(M) = SO(M) by Conway [65].
The results recalled in Sect. 2.3 imply the following corollary. For n ≡ 0 mod 8, we
set SOn = SOEn .

Corollary 4.1.9. We have h(SO8) = 1, h(SO16) = 2, and h(SO24) = 25.

4.1.10 Orthogonal Groups in Odd Dimensions

We return to the setting of Sect. 4.1.2, where we assume that ϕ is symmetric. We
now consider the set

Rb
Z
(V ) ⊂ RZ(V )

consisting of theL ∈ RZ(V )with ϕ(x, x) ∈ 2Z for every x ∈ L andL�/L � Z/2Z.
This last condition is equivalent to requiring that ϕ|L×L have determinant ±2. We
refer to Appendix B for an analysis of these lattices.

We fix L ∈ Rb
Z
(V ), which requires the dimension n of V to be odd. Then

SOL(Af ) acts transitively on Rb
Z
(V ) by Proposition B.2.5, and the stabilizer of L

is SOL(̂Z). If L ⊗ R is indefinite, the number of classes of SOL is 1; this is a
classical result that would not be difficult to deduce from Proposition B.2.5 (iii) and
Theorem 2.2.7. The situation is more interesting when L⊗R is definite, say positive
definite to fix the ideas; we will assume that this is the case from now on.

In this case, we have the congruence n ≡ ±1 mod 8 and Cl(SOL) can be
identified with the set of isometry classes of even lattices of determinant 2 in R

n

(Sect. B.2). Here, we do not need to distinguish between direct and indirect isometries
because x → −x is in O(M) and has determinant −1 for every M ∈ Rb

Z
(V ). If

n ≡ 1 mod 8, we set Ln = En−1 ⊕ A1. If n ≡ −1 mod 8, we denote by Ln the
orthogonal complement of an arbitrary root of En+1; since these roots are permuted
transitively by the orthogonal group ofEn+1, the isometry class of such a lattice does
not depend on any choice we make. If n ≡ ±1 mod 8, the lattice Ln is therefore
even of determinant 2 (Sect. B.2), and we set SOn = SOLn (Sect. B.1).

The known values of h(SOn) with n odd are gathered in the following corollary
(see also [68]). The cases n ≤ 23 are treated, for example, in AppendixB, Sect. B.2;
the case n = 25 is due to Borcherds [29, Table -2].

Corollary 4.1.11. We have h(SO1) = h(SO7) = h(SO9) = 1, h(SO15) = 2,
h(SO17) = 4, h(SO23) = 32, and h(SO25) = 121.
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4.2 Hecke Correspondences

4.2.1 General Formalism

Let Γ be an (abstract) group, and let X be a transitive Γ-set. The ring of Hecke
correspondences (or operators) of X is the ring

H(X) = EndZ[Γ](Z[X ]) .

With each T ∈ EndZ(Z[X ]) is associated a matrix (Tx,y)(x,y)∈X×X that determines
it uniquely; the matrix is defined by the formula

∀y ∈ X , T (y) =
∑

x∈X

Tx,y x .

By definition, such an element T is in the ring H(X) if and only if the function
X ×X → Z given by (x, y) → Tx,y is constant on the orbits of the group Γ acting
diagonally on X × X . The resulting function Γ\(X × X) → Z then has finite
support, by the finiteness of {x ∈ X ; Tx,y �= 0} for y ∈ X and by the transitivity
of X . We therefore have an injective map

H(X)→ Homfs(Γ\(X ×X),Z) , T → ((x, y) → Tx,y) , (4.2.1)

where Homfs(Y,Z) denotes the abelian group of functions with finite support on the
set Y and values in Z.

For x ∈ X , we denote the stabilizer ofx byΓx ⊂ Γ. We assume that the following
properties hold:

(i) For every orbitΩ ofΓ inX×X and everyx ∈ X , the intersectionΩ∩(X×{x})
is finite.

(ii) For every x ∈ X , the orbits of Γx on X are finite. In other words, for every
x, y ∈ X , the intersection Γx ∩ Γy has finite index in Γx.

These conditions ensure that the map (4.2.1) is bijective. In particular, H(X) is a
free Z-module with natural basis the characteristic functions of the orbits of Γ on
X ×X .

Fix x ∈ X . The transitivity of X ensures that the map Γ → X × X given by
γ → (γ(x), x) induces bijections

Γx\Γ/Γx
∼−→ Γx\(X × {x}) ∼−→ Γ\(X ×X) . (4.2.2)

In particular, this identifies H(X) with Homfs(Γx\Γ/Γx,Z). By transport of struc-
ture, the latter inherits a ring structure from H(X): we recover the more standard
presentations of the Hecke rings, such as those in [174], [188, Sect. 3], [48], [88,
Kap. IV], or [97]. Note that depending on the reference, the ring structure considered
onHomfs(Γx\Γ/Γx,Z) (defined, in general, by an explicit convolutionproduct)may
differ slightly from ours; this is, in particular, the case in the articles of Cartier and
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Gross, to which we refer in Sect. 6.2, in which the ring H(X) is exactly the opposite
of ours.

Since the second formulation of condition (ii) is symmetric in x, y, condition (i)
is also equivalent to requiring that for every orbitΩ of Γ in X×X and every x ∈ X ,
the intersection Ω∩ ({x} ×X) be finite. Thus, if we have T ∈ H(X), there exists a
unique T t ∈ H(X) such that T t

x,y = Ty,x for every x, y ∈ X . The endomorphism

T → T t

of H(X) is an anti-involution, that is, satisfies (ST )t = T tSt and (T t)t = T for
every S, T ∈ H(X); this endomorphism simply corresponds to taking the transpose
of the associated matrices. This anti-involution is the identity if and only if the
Γ-orbits of X × X are invariant under (x, y) → (y, x), in which case H(X) is
commutative; this is a special case of Gelfand’s criterion.

4.2.2 A Functor from Γ-Modules to H(X)opp-Modules

Let X be a transitive Γ-set that satisfies conditions (i) and (ii) of Sect. 4.2.1. The ring
H(X) appears as follows in the representation theory of Γ. If M is a Z[Γ]-module,
then the abelian group

MX = HomZ[Γ](Z[X ],M)

inherits a right action of H(X) by composition at the source. It is obvious that
M →MX is a functor from Γ-modules (on the left) to H(X)-modules on the right.

For aZ[Γ]-moduleM and x ∈ X , the mapϕ → ϕ(x) identifiesMX with the sub-
group of invariants MΓx ⊂M , which also endows this subgroup with the structure
of anH(X)-module. Suppose that the matrix ofT ∈ H(X) is the characteristic func-
tion of the double coset ΓxγΓx through the identification Γx\Γ/Γx

∼→ Γ\(X ×X)
chosen in Sect. 4.2.1. We have the classical formula

T (m) =
∑

i

γi(m) ∀m ∈MΓx (4.2.3)

for every decomposition ΓxγΓx =
∐

i γiΓx (this is a finite union).
In this context, the anti-involution T → T t defined in Sect. 4.2.1 takes on the

following meaning. Let M and M ′ be two Z[Γ]-modules, N an abelian group, and
(−|−) : M ×M ′ → N a bilinear map with (γm|γm′) = (m|m′) for every γ ∈ Γ
and every (m,m′) ∈ M ×M ′. For (ϕ, ϕ′) ∈ MX ×M ′

X , (ϕ(x)|ϕ′(x)) does not
depend on the choice of x ∈ X hence

(ϕ|ϕ′) := (ϕ(x)|ϕ′(x))

defines a bilinear form fromMX×M ′
X toN . If we identifyMX withMΓx as before,

this bilinear map is nothing more than the restriction of (−|−) to MΓx ×M ′Γx .
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We will say that X is symmetric if, in addition to verifying conditions (i) and (ii)
of Sect. 4.2.1, it has the following equivalent properties2:

(iii) For every orbit Ω of Γ in X × X and every x ∈ X , we have the equality
|Ω ∩ (X × {x})| = |Ω ∩ ({x} ×X)|.

(iv) For every x, y ∈ X , the intersection Γx ∩ Γy has the same index in Γx and Γy.

Lemma 4.2.3. Suppose that X is symmetric. For T ∈ H(X) and (ϕ, ϕ′) ∈ MX ×
M ′

X , we have (T (ϕ)|ϕ′) = (ϕ|T t(ϕ′)).

Proof. Let ψ : X ×X → N be a map that is constant on every Γ-orbit in X ×X
and zero outside a finite number of them. The symmetry of X implies, for every
x ∈ X , the relation

∑

y∈X ψ(y, x) =
∑

y∈X ψ(x, y). We apply this to the function
(x, y) → Tx,y · (ϕ(x)|ϕ′(y)). ��
Remark 4.2.4. Suppose that V is a right H(X)-module. The map H(X)× V → V
given by (T, v) → T t v defines the structure of a (left) H(X)-module on V , which
we denote by V t.

4.2.5 The Hecke Ring of a Z-group

Let G be a Z-group. We will apply the definitions given above to Γ = G(Af ) and
X = R(G). The Hecke ring of G is the ring

H(G) := H(R(G)) .

Recall that for every prime p, the group G(Qp) inherits from Qp the structure of
a locally compact topological group (that is, moreover, separated and the union of
a countable number of compact groups). The subgroup G(Zp) is both compact and
open. The group G(Af ) is also a locally compact topological group for the topology
whose base of open neighborhoods of the identity consists of the open sets of the
form

∏

p∈P Up, where Up for p prime is an open neighborhood of the identity in
G(Qp) and we have Up = G(Zp) for almost all p. In particular, G(̂Z) is a compact
open subgroup of G(Af ). Consequently, R(G) has property (ii) of Sect. 4.2.1, as do
the G(Qp)-sets

Rp(G) := G(Qp)/G(Zp) .

The G(Af )-set R(G) and the Rp(G) are symmetric in the sense of Sect. 4.2.2 if
G(Af ) is unimodular, which is, in particular, the case if the neutral component of
G(C) is reductive [32, Sect. 5.5].

2 This property is not automatic if X is infinite. Consider, for example, the group Γ = Q�Q× of
affine transformations of Q and the Γ-set X consisting of the subsets of Q of the form aZ+ b with
a ∈ Q× and b ∈ Q.
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For p prime, we also define Hp(G) as the Hecke ring of the G(Qp)-set Rp(G).
The G(Af )-set R(G) can be canonically identified with the subset of

∏

p∈P Rp(G)
consisting of the (xp) with xp = G(Zp) for almost all p. We have already seen a
manifestation of this fact in the Eichler embedding (4.1.1). In particular, for every
prime p, we have a canonical injective ring homomorphism

Hp(G)→ H(G)

that takes T ∈ Hp(G) to the endomorphism of Z[R(G)] that sends y = (y�)�∈P to
∑

x Txp,yp x, where the sum is taken over the elements x of R(G) with x� = y� in
R�(G) for every � �= p. We will simply write

Hp(G) ⊂ H(G) .

If p �= q, then for S ∈ Hp(G) and T ∈ Hq(G), we have TS = ST .
If for every prime p, we take a G(Qp)-orbit Ωp ⊂ Rp(G) × Rp(G) and if,

moreover, Ωp is the orbit of G(Zp) × G(Zp) for almost all p, then the subset of
elements (ωp) of

∏

p Ωp with ωp = G(Zp)×G(Zp) for almost all p can be naturally
identified with a G(Af )-orbit in R(G) × R(G). Conversely, every G(Af )-orbit
Ω ⊂ R(G)×R(G) is of this form for a unique family (Ωp), where the G(Qp)-orbit
Ωp is the image of Ω by the canonical projection R(G)×R(G)→ Rp(G)×Rp(G).
From these observations and the surjectivity of the map (4.2.1) it follows that H(G)
is isomorphic to the tensor product of its subrings Hp(G):

⊗

p∈P

Hp(G)
∼→ H(G) .

Understanding H(G) therefore completely reduces to understanding the Hp(G).
The ring Hp(G) depends only on the Zp-group GZp = G ×Z Zp. When GZp is

reductive, general results of Satake and Bruhat–Tits imply that Hp(G) is commuta-
tive; we will come back to this in Sect. 6.2. As a consequence, the same holds for
H(G) if G is reductive over Z. However, this property is elementary in the most
classical cases, which we recall below.

4.2.6 Some Classical Hecke Rings

First, suppose G = PGLn. We have seen that R(G) can be identified with

R
Z
(V ) := Q

×\RZ(V ) ,

where V = Q
n. Recall that M ∈ R

Z
(V ) denotes the homothety class of a lattice

M ∈ RZ(V ).
For M,N ∈ RZ(V ), there exists a least integer d ≥ 1 with dN ⊂ M . The

isomorphism class of the abelian group M/dN depends only on the G(Af )-orbit of
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(N,M) in R
Z
(V )× R

Z
(V ). The theory of elementary divisors then shows that the

resulting map
G(Af )\(RZ

(V )× R
Z
(V ))→ AF ,

where AF is the set of isomorphism classes of finite abelian groups, is an injection
whose image consists of the groups generated by n − 1 elements. If A is such a
group, the associated Hecke operator TA ∈ H(G) satisfies, by definition,

TA(M) =
∑

N

N ,

where the sum is taken over the subgroups N of M with M/N � A. When A runs
through the finite abelian groups generated by n − 1 elements, these operators TA

therefore form a Z-basis of H(G). It is clear that we haveTA×B = TATB if |A| and
|B| are relatively prime and that we have TA ∈ Hp(G) if and only if A is a p-group.

If n = 2, we easily verify that Tt
A = TA for every A; in particular, H(G) is

commutative (the notation Tt is defined in Sect. 4.2.1). The first statement no longer
holds forn > 2, butH(G) remains commutative. We can see this simply by endowing
V with a nondegenerate symmetric bilinear form. The mapM →M � is an involution
of R

Z
(V ). It induces a linear involution of Z[R

Z
(V ) ] and then, by conjugation, an

involution ι of H(G), which is nothing more than (TN,M ) → (TN�,M�) on the
associated matrices. But for N ⊂M , the quotient N �/M � is in perfect duality with
M/N and therefore ι coincides with the canonical anti-involution of H(G) : ι(T ) =
T t for every T ∈ H(G) (see also [188, Sect. 3]).

Let us now discuss the case of orthogonal and symplectic Z-groups, which is
particularly important for this book [174, 88, 5]. We use the notation of Sect. 4.1.2;
in particular, V = L ⊗ Q has even dimension n, ϕ is a bilinear form on V that is
symmetric (resp. alternating), for which L is self-dual and even, and G ⊂ GLL is
the group OL (resp. SpL).

In this case, we have seen that R(G) can be identified with the G(Af )-
set Ra

Z
(V ) of self-dual lattices in V (Proposition 4.1.4). For (N,M) in

the product Ra
Z
(V ) × Ra

Z
(V ), the isomorphism class of the abelian group

M/(N ∩M) depends only on the G(Af )-orbit of (N,M). We have thus defined a
natural map

G(Af )\(Ra
Z
(V )× Ra

Z
(V ))→ AF , (N,M) →M/(N ∩M) . (4.2.4)

Proposition 4.2.7. The map (4.2.4) is an injection whose image consists of the groups
generated by n/2 elements.

This proposition is well known; we will recall a proof at the end of this subsection
for the sake of the reader. Let A be a finite abelian group generated by at most n/2
elements. To this group corresponds a Hecke operator

TA ∈ H(G)
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defined by TA(M) =
∑

N N , where the sum is taken over the N such that M/(N ∩
M) � A or, equivalently, over the A-neighbors of M in the sense of Scholium-
Definition 3.1.2 in the quadratic case. These operators TA therefore form a Z-basis
of H(G). We, of course, still have TA×B = TATB if |A| and |B| are relatively
prime, and TA ∈ Hp(G) if and only if A is a p-group. From the point of view of
Chap. 3, an operator that is particularly important for us is TZ/dZ for d ≥ 1, which
we also denote simply by Td.

Proposition 4.2.8. Let A be a finite abelian group generated by n/2 elements. Then
we have Tt

A = TA∨ = TA. In particular, the ring H(G) is commutative.

Proof. The first assertion follows from Scholium-Definition 3.1.2 when ϕ is sym-
metric, and from a similar argument in the alternating case. The second assertion
follows from the first by the end of Sect.4.2.1. See also [174, Chap. III], [88, Kap. IV],
and Sect. 6.2.8. ��

Finally, let us discuss the group of projective similitudes P ˜G. Let p be a prime
and Rh

Zp
(Vp) the set of even homodual lattices in Vp, introduced after Lemma 4.1.3.

Recall that ifϕ is symmetric (resp. alternating), a latticeM ∈ RZp(Vp) is homodual if
and only if there exists a λM ∈ pZ, necessarily unique, such that x → λM ϕ(x, x)/2
(resp. λMϕ) endows M with the structure of a q-module (resp. a-module) over Zp.
Since the q-vector space Vp is hyperbolic by Scholium 2.2.5, the same holds for
M ∈ Rh

Zp
(Vp) as a q-module over Zp, by Proposition 2.1.2. This shows that the

map g → g(L) induces isomorphisms Rp( ˜G)
∼→ Rh

Zp
(Vp) and Rp(G)

∼→ Ra
Zp
(Vp).

In particular, the set Rh
Zp
(Vp) := Q

×
p \Rh

Zp
(Vp) can be naturally identified with

Rp(P ˜G).
Consider M ∈ Rh

Zp
(Vp). We denote by vM ∈ Z the unique integer such that

λM = p−vM . For g ∈ ˜G(Qp), we have vg(M) = vM + v, where v is the p-adic
valuation of ν(g). Let (N,M) be an ordered pair of elements of Rh

Zp
(Vp). After

changing the representativeN if necessary, we may assume vM − vN ∈ {0, 1}. The
pair (M/N ∩M, vM − vN) then depends only on the P ˜G(Qp)-orbit of (N,M),
which defines a map

P ˜G(Qp)\(Rh
Zp
(Vp)× Rh

Zp
(Vp))→ AF× {0, 1} . (4.2.5)

Proposition 4.2.9. The map (4.2.5) is an injection whose image is the set of pairs
(A,−) with A an abelian p-group generated by n/2 elements.

We push back the proof of this proposition to Sect. 6.2.8. Consider (A, i) ∈
AF× {0, 1}, where A is a p-group generated by at most n/2 elements. We say that
N ∈ Rh

Zp
(Vp) is an A-neighbor of type i of M ∈ Rh

Zp
(Vp) if the image of (N,M)

by the map (4.2.5) is (A, i). The corresponding Hecke operator is denoted by

T(A,i) ∈ Hp(P ˜G) ;
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these operators form a Z-basis of Hp(P ˜G). If we have M � = M , then N is an
A-neighbor of type 0 of M if and only if N has a self-dual representative, which
is then unique, and if the latter is an A-neighbor of M in the previous sense. The
notion of an A-neighbor of type 1 of M is, on the other hand, “new.” The following
example will be particularly important in this book.

Consider M,N ∈ Rh
Z
(V ). Following Koch and Venkov in the quadratic case

[127], we say that N is a perestroika of M with respect to p if we have

pM � N � M .

We easily verify that N is a perestroika of M with respect to p if and only if we have
vM − vp−1N = 1 and N is a 0-neighbor of M of type 1. Moreover, the following
proposition is immediate.

Proposition 4.2.10. Consider M ∈ Rh
Z
(V ), and let p be a prime number. The map

N → N/pM defines a bijection from the set of perestroikas of M with respect to p
onto the set of Lagrangians of M ⊗ Fp.

The perestroika operator with respect to p is the operator

Kp := T(0,1) ∈ Hp(P ˜G) .

For (N,M) ∈ Rh
Z
(V ), N is a perestroika of M with respect to p if and only if pM

is a perestroika of N with respect to p. In particular, we have Kt
p = Kp. In fact, we

have T t = T for every T ∈ H(P ˜G), as we will see in Sect. 6.2.8.
Let us conclude this subsection, as announced, with a proof of Proposition 4.2.7.

Proof of Proposition 4.2.7. We place ourselves in the quadratic setting, that is, ϕ
symmetric and q(x) = ϕ(x, x)/2, in which case L is a q-module over Z. The proof
in the alternating setting is similar (and even simpler).

We must show that if U is a hyperbolic q-vector space over Qp and (L1, L2) and
(L′

1, L
′
2) are two ordered pairs of self-dual lattices in U such that L1/(L1 ∩ L2) �

L′
1/(L

′
1 ∩L′

2), then there exists an α ∈ O(U) with α(Li) = L′
i for i = 1, 2. We use

induction on dim(U).
The cases U = 0 and L1 = L2 are trivial. We assume L1 �= L2; the annihilator

of the quotient L1/(L1 ∩ L2) is therefore of the form pνZp with ν ≥ 1. Moreover,
there exist an element e1 of L1 and an element e2 of L2 such that we have

q(e1) = 0 , q(e2) = 0 , e1.e2 = p−ν .

Indeed, it is first of all easy to see that there exist an element ε1 of L1 and an element
ε2 of L2 with ε1.ε2 = p−ν . Hensel’s lemma then shows that there exists a matrix

P =

[

a1,1 a1,2
a2,1 a2,2

]
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with coefficients in Zp, with P ≡ I mod pν , such that we have

tP

[

2q(ε1) p−ν

p−ν 2q(ε2)

]

P =

[

0 p−ν

p−ν 0

]

.

We take e1 = a1,1ε1 + a2,1ε2 and e2 = a1,2ε1 + a2,2ε2 ∈ L2 (the congruence
P ≡ I mod pν implies e1 ∈ L1 and e2 ∈ L2). This concludes the proof of the
statement.

Let us now finish the induction. We denote by H , H1, and H2, respectively, the
linear subspace of U generated by e1 and e2, the submodule of L1 generated by
e1 and pνe2, and the submodule of L2 generated by pνe1 and e2. We endow H ,
H1, and H2 with the quadratic forms induced by those on U . By construction, we
have H ≈ H(Qp) and Hi ≈ H(Zp) for i = 1, 2. We denote by W , M1, and M2,
respectively, the orthogonal complement of H in U , the orthogonal complement of
H1 in L1, and the orthogonal complement of H2 in L2. We have decompositions
into orthogonal sums

U = H ⊕W , L1 = H1 ⊕M1 , L2 = H2 ⊕M2

and isomorphisms

L1/(L1∩L2) ∼= H1/(H1∩H2)⊕M1/(M1∩M2) , H1/(H1∩H2) ∼= Zp/p
ν
Zp .

We replace the ordered pair (L1, L2) by the ordered pair (L′
1, L

′
2) and introduce the

q-vector spaces H ′ and W ′ and the q-modules H ′
1, H ′

2, M ′
1, and M ′

2 analogously.
We obtain the desired automorphism α : U → U as the orthogonal sum of suitable
isomorphisms of q-vector spaces H → H ′ and W → W ′; the existence of the
second is ensured by the induction hypothesis. ��

4.2.11 H(SOL) VersusH(OL)

Let L be a q-module over Z. Let us briefly discuss the link between H(SOL) and
H(OL). The cases PGSOL and PGOL can be treated similarly.

By Proposition 4.1.7, the inclusion SOL → OL induces an SOL(Af )-equivariant
bijection R(SOL)

∼→ R(OL). It follows that H(OL) can be canonically identified
with a subring of H(SOL): these are the subrings of EndZ(Z[Ra

Z
(V )]) consisting

of theOL(Af )-equivariant and SOL(Af )-equivariant endomorphisms, respectively.
The quotient group

OL(Af )/SOL(Af ) � (Z/2Z)P

acts naturally by conjugation onH(SOL), with ring of invariantsH(OL). This action
respects the decomposition of H(G) as a tensor product of the Hp(G) over the p ∈ P
and also identifies Hp(OL) with Hp(SOL)

Z/2Z.
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Let us give an example of an element ofHp(SOL) that is not inHp(OL). Consider
A = (Z/pZ)n/2, where n is the rank of L. Let Ω be the set of pairs (N,M) of
elements of Ra

Z
(V ) such that N is an A-neighbor of M . Proposition 4.2.7 asserts

that Ω is an OL(Qp)-orbit. However, it is the disjoint union of two orbits under the
action of SOL(Qp). To see this, we begin by verifying, using arguments similar to
those in Sect. 3.1, that the map

N → (M ∩N)/pM

induces a surjection (that is not bijective in general) between the A-neighbors of M
and the Lagrangians of the hyperbolic q-vector space M ⊗ Fp. But it is well known
that for every field k and every hyperbolic q-vector space V over k, there are exactly
two orbits of Lagrangians of V under the action of SO(V ) (and only one under
O(V ), by Witt’s theorem). By the smoothness of SOM over Zp, each of these two
orbits therefore defines an SO(M)-orbit of A-neighbors of M and, consequently,
two distinct Hecke operators T±

A ∈ H(SOL) with sum TA, which are interchanged
under the action of OL(Qp)/SOL(Qp) = Z/2Z.

4.2.12 Isogenies

We will now discuss the isogenies between transitive Γ-sets, by presenting a variant
of the considerations in [174, Chap. II, Sect. 7].

Let X be a Γ-set and X ′ a Γ′-set. Recall that a morphism X → X ′ is a pair
(f, g), where g : X → X ′ is a map and f : Γ → Γ′ is a group morphism such that
we have g(γx) = f(γ)g(x) for every x ∈ X and every γ ∈ Γ. In what follows, we
conveniently assume that a transitive set is nonempty.

Lemma 4.2.13. Let X be a transitive Γ-set, X ′ a Γ′-set, and (f, g) a morphism
X → X ′ such that f(Γ) is normal in Γ′. Let S be the stabilizer of g(X) in Γ′, that
is, S = {γ ∈ Γ′ ; γg(X) ⊂ g(X)}.
(i) For every x ∈ g(X), we have S = f(Γ)Γ′

x.
(ii) We have S = {γ ∈ Γ′ ; γg(X) ∩ g(X) �= ∅}.
Proof. Take x ∈ g(X). Since the subgroup f(Γ) is normal in Γ′, the subset Ex :=
f(Γ)Γ′

x ⊂ Γ′ is a subgroup. The transitivity of X then shows that

– Ex does not depend on the choice of x ∈ g(X);
– Ex is the set of γ ∈ Γ′ with γ(x) ∈ g(X).

We consequently have the identities S =
⋂

x∈g(X) Ex =
⋃

x∈g(X) Ex =

{γ ∈ Γ′ ; γg(X) ∩ g(X) �= ∅}. ��
Let X be a transitive Γ-set, X ′ a Γ′-set, and (f, g) a morphism X → X ′. We

assume, as in the lemma above, that f(Γ) is normal in Γ′ and, moreover that the map
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g is injective.3 Let S be the stabilizer of g(X) in Γ′. The map (s, x) → g−1(s(g(x)),
which is well defined by the injectivity of g, defines an action of S on X whose
restriction to f : Γ → S is the Γ-set X . It therefore induces an action of S/f(Γ)
on H(X) by ring automorphisms; we denote by H(X)inv ⊂ H(X) the subring of
invariants, which is also EndZ[S](Z[X ]).

Proposition-Definition 4.2.14. Let u = (f, g) : X → X ′ be a morphism between
the transitive Γ-set X and the transitive Γ′-set X ′. We assume that f(Γ) is normal
in Γ′ and that g is injective.

(i) For T ∈ H(X)inv, there exists a unique T ′ ∈ H(X ′) that vanishes on (X ′ −
g(X))× g(X) and satisfies T ′

g(x),g(y) = Tx,y for every x, y ∈ X .
(ii) The resulting map H(u) : H(X)inv → H(X ′) defined by T → T ′ is an injective

ring homomorphism.

Proof. The uniqueness assertion in part (i) follows from the injectivity of g and the
transitivity of X ′. Assertion (ii) immediately follows from part (i). We are therefore
left with justifying the existence of T ′ in part (i). But part (ii) of Lemma 4.2.13 shows
that the injection g : X → X ′ induces a bijection IndΓ

′
S X

∼→ X ′ and therefore an
isomorphism Z[Γ′] ⊗Z[S] Z[X ]

∼→ Z[X ′]. Thus, when composed with g : Z[X ] →
Z[X ′], every S-equivariant linear map T : Z[X ] → Z[X ] extends uniquely to a
Γ′-equivariant map T ′ : Z[X ′]→ Z[X ′]; this has the desired properties. ��

In all the examples we consider, it turns out that the group S preserves every
Γ-orbit of X × X , so that we have H(X)inv = H(X). A particularly simple case
is that where we have Γ′ = Γ and X ′ = X and f and g are bijective. In this case,
we have S = f(Γ) and H(u) is, by definition, the automorphism of H(X) whose
matrix is given by (Tx,y) → (Tg−1x,g−1y).

Let us assume that the hypotheses of Proposition-Definition 4.2.14 hold. For
a Γ′-module M , we denote by M|Γ the Γ-module obtained by restricting M via
f : Γ→ Γ′. We then have a canonical injective map

MX′ → (M|Γ)X , ϕ → ϕ|X := ϕ ◦ g .

The following lemma is immediate.

Lemma 4.2.15. Under the assumptions of Proposition-Definition 4.2.14, let M be
a Γ′-module, and take T ∈ H(X)inv and ϕ ∈ MX′ . Then we have T (ϕ|X) =
H(u)(T )(ϕ).

Example 4.2.16. By way of example, we return to the context of the similitude groups
(Sect. 4.1.2) and consider the natural Z-morphism μ : G→ P ˜G. The results of this

3 We refer to the article of Satake for a variant without the injectivity assumption on g. The reader
will not miss much in the current discussion by assuming Γ ⊂ Γ′ and X ⊂ X′, with f and g the
corresponding inclusions.
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section apply and define a ring morphism

H(μ) : H(G)→ H(P ˜G)

with H(μ)(TA) = T(A,0) for every finite abelian group A generated by at most n/2
elements.

Indeed, consider Γ = G(Af ), X = R(G), Γ′ = P ˜G(Af ), and X ′ = R(P ˜G),
and for f and g, take the natural maps deduced from μ. The group Γ is a normal
subgroup of ˜G(Af ); likewise, f(Γ) is a normal subgroup of Γ′. Moreover, g can
be identified with the natural injection Ra

Z
(V ) → Rh

Z
(V ) defined by M → M , by

Proposition 4.1.4. The groupS is the subgroup of elements g ∈ ˜G(Af ) such that ν(g)
is of the form a2b with a ∈ A

×
f and b ∈ ̂Z×. It acts trivially onΓ\(Ra

Z
(V )×Ra

Z
(V )).

Indeed, given N,M ∈ Ra
Z
(V ), g ∈ ˜G(Af ), and a prime p, the map g induces an

isomorphism Mp/(Np ∩ Mp) � g(M)p/(g(N)p ∩ g(M)p), which allows us to
conclude using Proposition 4.2.7. The assertion on TA follows from the discussion
following Proposition 4.2.9.

4.3 Automorpic Forms of a Z-group

The ring of adeles of Q is the ring A = R × Af . Let G be a Z-group. The group
G(R) is naturally a Lie group, and the group

G(A) = G(R)×G(Af )

is locally compact and separated for the product topology; we already recalled the
topology on G(Af ) in Sect. 4.2.5. There is a natural diagonal embedding of the
group G(Q) in G(A); the image is a discrete closed subgroup (see [92, Chap. II,
Sect. 3] for the basics on these constructions).

4.3.1 Square-Integrable Automorphic Forms

Let us recall some classical results due to Borel and Harish-Chandra, for which we
refer to [32, Sect. 5]. We assume that the neutral component of G(C) is semisim-
ple [103, 34]. The locally compact group G(A) is then unimodular. By Weil, the
homogeneous space

G(Q)\G(A)

inherits a positive (nonzero) Radon measure μ invariant under the action of G(A)
by right translations [211, Chap. II], [172, Chap. 2]. It has finite measure.

The space of square-integrable automorphic forms for G is the subspace

A2(G) ⊂ L2(G(Q)\G(A), μ)
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of elements that are invariant under G(̂Z) for right translations [92, Chap. 3], [36,
Sect. 4]. It is a Hilbert space for the Hermitian inner product

〈 f, f ′ 〉Pe :=
∫

ff ′ dμ ,

also called the Petersson inner product. Alternatively, A2(G) can be viewed as
the space of square-integrable functions on G(Q)\G(A)/G(̂Z) endowed with the
Radon measure that is the image of μ by the canonical (proper) map G(Q)\G(A)→
G(Q)\G(A)/G(̂Z). The space A2(G) is endowed with two important additional
structures that we will now describe.

On the one hand, since the space A2(G) is the space of G(̂Z)-invariants of the
G(Af )-module L2(G(Q)\G(A), μ) for the right translations, it is endowed with a
right action of the Hecke ring H(G) (Sects. 4.2.2, 4.2.5). This action is a �-action
for the Petersson inner product. By this, we mean that the adjoint of T ∈ H(G) is
the operator T t defined in Sect. 4.2.1: for f, f ′ ∈ A2(G) and T ∈ H(G), we have

〈T (f), f ′ 〉Pe = 〈 f, T t(f ′) 〉Pe . (4.3.1)

Indeed, this is a consequence of Lemma 4.2.3 and the unimodularity of G(Af ).
On the other hand,A2(G) is stable under the action of G(R) by right translations,

and this action commutes with that of H(G). It turns A2(G) into a unitary repre-
sentation of the Lie group G(R) (we refer to [119] as a general reference on unitary
representations). A more classical description of this representation is obtained by
writing

G(Af ) =

h(G)
∐

i=1

G(Q)giG(̂Z) (4.3.2)

for certain elements gi ∈ G(Af ), by the finiteness of the class set of G. For every
i, the double coset G(Q)giG(̂Z) is an open subset of G(Af ) and the congruence
subgroup

Γi = G(Q) ∩ giG(̂Z)g−1
i

is a discrete subgroup of G(R) that is commensurable with G(Z). The map f →
(f|G(R)×gi)i induces a G(R)-equivariant isomorphism

A2(G)
∼→

h(G)
∏

i=1

L2(Γi\G(R)) , (4.3.3)

where each Γi\G(R) naturally inherits a strictly positive Radon measure that is
right invariant for G(R), has finite mass, and is uniquely determined by μ. This
representation of G(R) in general has a “discrete” part that is notoriously difficult to
describe, as well as a “continuous” part whose study was reduced by Langlands to
that of discrete subsets for auxiliary groups G′ [138].
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4.3.2 The Set Πdisc(G)

Here, we are interested only in the discrete part of A2(G), that is, in the subspace

Adisc(G) ⊂ A2(G)

defined as the closure of the sum of the closed and topologically irreducible sub-
G(R)-representations of A2(G). It is a representation of G(R) that is, by construc-
tion, an orthogonal sum of irreducible representations,4 where each component has
a finite multiplicity by a fundamental result due to Harish-Chandra (see the introduc-
tion of [101], as well as Theorem 1 of Chap. 1 of the same reference; see also [36]).
In other words, if U is a unitary irreducible representation of G(R), then the space

AU (G) := HomG(R)(U,Adisc(G)) = HomG(R)(U,A
2(G))

has finite dimension over C. We have, of course, a canonical isomorphism

̂
⊕

U∈Irr(G(R))

U ⊗AU (G)
∼−→ Adisc(G) , (4.3.4)

where Irr(H) is the set of isomorphism classes of topologically irreducible unitary
representations of the locally compact group H .

The right H(G)-module structure on A2(G) naturally induces the structure of a
right H(G)-module on AU (G). The latter also inherits a Hermitian inner product
for which the action of H(G) is again a �-action. For example, for a fixed nonzero
e ∈ U and ϕ, ϕ′ ∈ AU (G), we can set 〈ϕ, ϕ′〉 = 〈ϕ(e), ϕ′(e)〉Pe. But it is well
known that a sub-C-algebra of Mn(C) that is stable under M → tM is semisimple:
if X is in its Jacobson radical, then the Hermitian matrix X tX is nilpotent, hence
zero, which implies that X is zero. In particular,AU (G) is semisimple when viewed
as a representation of the C-algebra H(G)opp ⊗ C.

We define a representation of (G(R),H(G)) to be a Hilbert space endowed with a
unitary representation of G(R), together with the structure of a right H(G)-module,
such that the action of any element of G(R) commutes with that of any element
of H(G). These representations naturally form a C-linear category: a morphism
E → F is a continuous C-linear map E → F that commutes with the actions of
G(R) andH(G). For a unitary representationU ofG(R) and aH(G)opp⊗C-module
V of finite dimension as a C-vector space, U ⊗ V is naturally a representation of
(G(R),H(G)) (where the tensor product is taken over C). We denote by Π(G)
the set of isomorphism classes of representations of (G(R),H(G)) of this form

4 At this point, it is useful to recall the following version of Schur’s lemma. Let U and V be Hilbert
spaces endowed with unitary representations of a group Γ. We assume that U is topologically
irreducible and that u : U → V is a nonzero, Γ-equivariant, continuous linear map. Then the
adjoint u∗ : V → U (which is Γ-equivariant) satisfies u∗ ◦ u = λIdU for some λ ∈ R×. Indeed,
u∗ ◦ u ∈ End(U) is Hermitian and nonzero and commutes with Γ; by the spectral theorem, its
spectrum is therefore reduced to a point {λ}. It follows that V is the orthogonal sum of Im(u)
(which is closed) and Ker(u∗).
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such that, moreover, U is topologically irreducible and V is simple. The restriction
to G(R) of such a unitary representation π is isomorphic to UdimV , so that the
isomorphism class π∞ of the unitary representation U is fully determined by the
unitary representation of G(R) underlying π. Likewise, the H(G)opp ⊗ C-module
underlying π is semisimple and V -isotypical, so that the isomorphism class πf of
the H(G)opp ⊗ C-module V is uniquely determined by that of π. In particular, we
have π � π∞ ⊗ πf for every π ∈ Π(G). Finally, Schur’s lemma implies that every
π ∈ Π(G) is topologically irreducible as a representation of (G(R),H(G)).

By the discussion above, for U ∈ Irr(G(R)), the space U ⊗AU (G) is naturally
a representation of (G(R),H(G)), as is Adisc(G), where the isomorphism (4.3.4)
trivially commutes with the actions of G(R) and H(G). It follows that we have a
decomposition into a Hilbert sum of elements of Π(G) that refines the decomposi-
tion (4.3.4):

Adisc(G) � ̂

⊕

π∈Π(G)

m(π)π , (4.3.5)

where m(π) ≥ 0 is an integer that is called the multiplicity of π. By definition, if
π ∈ Π(G) and U � π∞, then m(π) is the multiplicity of πf in the H(G)opp ⊗ C-
module AU (G), which is semisimple and of finite dimension. We denote by

Πdisc(G) ⊂ Π(G)

the subsets consisting of the π with m(π) �= 0.
The elements of Πdisc(G) are called the discrete automorphic representations5 of

G. The only truly obvious example of such a representation is the trivial representa-
tion, denoted 1G, realized as the subspace (of dimension 1) of constant functions in
A2(G) (note thatμ has finite mass). The action ofG(R) in 1G is, of course, the trivial
action, while that of H(G) is the multiplication by the “degree” (see Example 6.2.3).
In general, the set Πdisc(G) is countably infinite, which is not the case for Π(G). We
will give a few concrete examples in the following chapters.

An element F ∈ AU (G) is called an eigenform if it is nonzero and generates an
irreducible H(G)opp ⊗ C-module. When H(G) is commutative, this is equivalent
to requiring that F �= 0 be an eigenvector of all Hecke operators in H(G). If F is
an eigenform and V ⊂ AU (G) denotes the H(G)opp ⊗ C-module generated by F ,
the image of U ⊗ V in Adisc(G) by the canonical map (4.3.4) is a topologically
irreducible subrepresentation of (G(R),H(G)), which we denote by πF ; it is the
(automorphic, discrete) representation generated by F . We often also denote its
isomorphism class by πF ; this is an element of Πdisc(G).

5 The reader should be aware that the definition we use here depends not only on GQ but also on G
as a Z-group. In the literature, our discrete automorphic representations are more commonly called
“discrete automorphic representations of G(A) that are spherical (or unramified) with respect to
G(̂Z).” The apparent loss of generality in our presentation is, however, at this point illusory, because
every open compact subgroup of G(Af ) is of the form G′(̂Z) for a well-chosen Z-group G′ with
G′

Q
� GQ.
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Finally, following Gelfand, Graev, and Piatetski-Shapiro in [92, Chap. 3, Sect. 7],
we consider the subspace Acusp(G) ⊂ A2(G) consisting of the cusp forms (the
definition of a cusp form is recalled below). This is a closed subspace that is stable
under the actions of G(R) and H(G). Gelfand, Graev, and Piatetski-Shapiro show
the inclusion

Acusp(G) ⊂ Adisc(G) (4.3.6)

(see also [35, Theorem 16.2]). We denote by

Πcusp(G) ⊂ Πdisc(G)

the set of π ∈ Π(G) that occur in the subspace Acusp(G); these representations are
called the cuspidal automorphic representations of G.

When GQ does not admit a strict parabolic sub-Q-group, which is equivalent
to saying that G(Q) does not have any nontrivial unipotent elements, we have the
obvious equality Acusp(G) = A2(G). In this case,6 the inclusion (4.3.6) implies
Adisc(G) = A2(G).

Let us recall the definition of a cusp form. LetP ⊂ GQ be a strict parabolic sub-Q-
group, that is, such that P (C) is connected, contains a Borel subgroup of the neutral
component of G(C), and is not equal to that component [103, 34]. If N denotes
the unipotent radical of P , then the locally compact group N(A) is unimodular
and its subgroup N(Q) is discrete and cocompact. We denote by dn a strictly
positiveN(A)-invariant Radion measure onN(Q)\N(A). Let f : G(Q)\G(A)→ C

be a Borel function that is square-integrable and take g ∈ G(A). The function
n → f(ng), N(Q)\N(A) → C, is then a square-integrable Borel function for
almost all g ∈ G(A). We say that f is a cusp form if for every strict parabolic sub-Q-
group P of GQ, we have

∫

N(Q)\N(A)
f(ng) dn = 0 for almost all g ∈ N(A)\G(A).

We can show that the subset of L2(G(Q)\G(A), μ) consisting of the classes of
cusp forms is a closed linear subspace (see, for example, [35, Proposition 8.2]). It is
trivially stable under right translations by the elements of G(A).

4.4 Automorphic Forms forOn

4.4.1 Automorphic Forms for the Z-groupsG with G(R) Compact

We return to the setting of Sect. 4.3.1. Suppose that the Z-group G has the property
that G(R) is compact. Then, the groupsΓi = G(Q)∩giG(̂Z)g−1

i of formula (4.3.2)
are finite subgroupsofG(R) because they are discrete subgroupsof a compact group.
Moreover, the quotient G(Q)\G(A) is compact because it is homeomorphic to the
disjoint union of the Γi\G(R). Formula (4.3.3) then implies Adisc(G) = A2(G),

6 In fact, a famous result of Godement shows that under this same hypothesis on G, the group
G(Q) is cocompact in G(A), which implies the equality Adisc(G) = A2(G) more directly in this
specific case (see, for example, [35, Lemma 16.1]).
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by the Peter–Weyl theorem. We will give another description of the H(G)-modules
AU (G).

For a Z[G(Q)]-module U , we denote by MU (G) the space of functions

F : R(G) −→ U

such that we have F (γx) = γ · F (x) for all γ ∈ G(Q) and x ∈ R(G). It can
be canonically identified with HomZ[G(Q)](Z[R(G)], U), which endows it with a
right action of the ring H(G). Even better, U → MU (G) defines a functor from
the G(Q)-modules to the H(G)opp-modules. Its additive structure is very simple
because F → (F (gi)) induces an isomorphism

MU (G) −→
h(G)
∏

i=1

UΓi . (4.4.1)

In particular, we have MU⊕V (G) � MU (G) ⊕MV (G). Observe, incidentally, that
the construction so far makes sense for an arbitrary Z-group G.

Next, assume that U is a finite-dimensional, continuous, complex representation
of G(R), and denote its dual by U∗. For F ∈ MU (G) and u ∈ U∗, we denote
by ϕF (u) the function G(R) × R(G) → C defined by (h, x) → 〈u, h−1F (x)〉.
This function is invariant under the diagonal action of G(Q). This is a continuous
function of its first variable; it is therefore in A2(G) becauseG(Q)\(G(R)×R(G))
is compact by (4.3.3). The obvious relation ϕF (gu) = g · (ϕF (u)), which holds for
u ∈ U∗ and g ∈ G(R), shows that the function ϕF defined by u → ϕF (u) is an
element of AU∗(G). The proof of the following lemma is immediate and is left to
the reader.

Lemma 4.4.2. Let U be an irreducible representation of G(R). Then F → ϕF is an
H(G)-equivariant isomorphism MU (G)

∼→ AU∗(G).

Since the article of Gross [98], the elements of MU (G) are sometimes called
algebraic modular forms of weight U for the Z-group G; we will not use this
terminology, which conflicts with the notion of algebraicity introduced in Sect. 8.2.6.
For example, ifU = C is the trivial representation, then theH(G)opp-moduleMC(G)
can be canonically identified with the space of functionsCl(G)→ C or, equivalently,
with the dual of the H(G)-module C[Cl(G)].

Let us conclude these basic results with an assertion of compatibility with certain
morphisms of Z-groups. Let μ : G → G′ be a morphism of Z-groups. It induces,
in an obvious way, a morphism (fμ, gμ) from the G(Af )-set R(G) to the G′(Af )-
set R(G′), in the sense of Sect. 4.2.12. We assume that fμ(G(Af )) is a normal
subgroup of G′(Af ), that gμ is injective, and, moreover, that the action of the group
S defined loc. cit. on R(G) is trivial. This is, for example, trivially the case if μ is an
isomorphism. We then have an injective ring homomorphismH(μ) : H(G)→ H(G′)
defined loc. cit. Let U ′ be a G′(Q)-module, and let U be its restriction to G(Q). The
following lemma paraphrases Lemma 4.2.15.
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Lemma 4.4.3. The morphism μ∗ : MU ′(G′) −→ MU (G) defined by ϕ → (x →
ϕ(gμ(x))) satisfies T ◦ μ∗ = μ∗ ◦H(μ)(T ) for every T ∈ H(G).

4.4.4 The Case of the GroupsOn and SOn

Let us now specify this construction for the orthogonal Z-group On of the even
unimodular lattice En ⊂ R

n, for n ≡ 0 mod 8 (Sect. 2.3, choosing another lattice
would lead to a theory equivalent to the one we now present).

In this case, we saw in Sect. 4.1.2 that the On(Af )-set R(On) can be canonically
identified with the set of even unimodular lattices in R

n contained in En ⊗ Q and
that we have Cl(On)

∼→ Xn. In particular, we have

MC(On) = C[Xn]
∗ .

The right action ofH(On) onMC(On) defines by transposition a left action ofH(On)
on C[Xn]. In particular, the operator TZ/dZ ∈ H(On) defined in Sect. 4.2.6, viewed
as an endomorphism of C[Xn], is the operator Td of Sect. 3.2. The description of
the structure of the H(On)

opp-module MC(On) when n ≤ 24 is therefore the main
theme of this book.

The ring H(On) is commutative by Proposition 4.2.8. Let us fix a (finite-
dimensional, continuous, complex) representation U of On(R). By Lemma 4.4.2
and the general results recalled in Sect. 4.3.1, the action of H(On) is therefore codi-
agonalizable on eachMU (On). The eigenvalues of these operators have an important
arithmetic meaning. In Corollary 8.2.20, we will see that they are linked, in an a
priori rather surprising manner, to the representations of the absolute Galois group
of Q. The line of constant functions in MC(On) is, for example, trivially stable
under TA for every A, where the eigenvalue of Tp on this line is, of course, cn(p)
(Proposition-Definition 3.2.1). We will give markedly more interesting examples in
the next chapters.

Remark 4.4.5. Let Ln be the set of all even unimodular lattices in R
n, which we

already considered in the introduction (Chap. 1). It contains R(On) and the natural
action of On(R) on Ln extends the natural action of On(Q) on R(On). The map
On(R) × On(Af ) → Ln defined by (g∞, gf) → g−1∞ (gf (En)) therefore factors
through a map

On(Q)\On(A)/On(̂Z)→ Ln .

This is a bijection: the surjectivity follows from Scholium 2.2.1 and the injectivity
is immediate.

Let us turn to the case of SOn. By Proposition 4.1.7 and Sect. 4.2.11, the inclusion
SOn → On induces a bijectionR(SOn)

∼→ R(On) andH(On) is naturally a subring
of H(SOn). Let U be an SOn(Q)-module, and consider

U ′ = Ind
On(Q)
SOn(Q)U .
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The universal property of induced modules provides a canonical isomorphism
ind : HomZ[SOn(Q)](Z[R(On)]|SOn(Q), U)

∼→ HomZ[On(Q)](Z[R(On)], U
′), which

can also be written as

ind: MU (SOn)
∼→ MU ′(On) .

This isomorphism is trivially H(On)-equivariant, so that studying the H(On)-
modules MU (SOn) reduces to studying MW (On), where W is an On(Q)-module.
Let us add that if U is the restriction to SOn(Q) of an SOn(R)-module V and V ′

denotes the On(R)-module induced by V , then we have V ′
|On(Q) = Ind

On(Q)
SOn(Q)U .

Finally, let W be an On(Q)-module, and let W ′ denote its restriction to
SOn(Q). The group On(Q) has a natural action on MW ′(SOn), by (γ, f) →
(x → γ(f(γ−1(x)))), where the subgroup SOn(Q) acts trivially. Let s ∈
End(MW ′ (SOn)) be the operator induced by the nontrivial element of the quo-
tient On(Q)/SOn(Q) � Z/2Z. The restriction of the functions via the bijective
map R(SOn)→ R(On) then defines an H(On)-equivariant injection

res : MW (On)→ MW ′(SOn)

whose image is MW ′(SOn)
s=id.

Example 4.4.6. The isomorphism ind induces a canonical decomposition

MC(SOn) � MC(On)⊕Mdet(On) ,

where det is the representation of dimension 1 given by the determinant. If we,
moreover, viewC as the restriction to SOn(R) of the trivial representation ofOn(R),
this endows MC(SOn) with a symmetry s that preserves the decomposition given
above, with fixed points MC(On).

We refer to [55, Sect. 2] for a discussion of the spacesMU (SO8), and in particular
their dimension, in terms of the representation U ; see also Sect. 7.4 for examples.

4.4.7 An Invariant Hermitian Inner Product

Let us consider the case of a generalZ-groupGwithG(R) compact. LetU be a finite-
dimensional, continuous, complex representation ofG(R). By transport of structure,
the isomorphismMU(G)

∼→ AU∗(G) endowsMU (G)with a natural Hermitian inner
product, for which the action of H(G) is a �-action, by Sect. 4.3.1, which we now
only need to make explicit. For this, fix a G(R)-invariant Hermitian inner product
〈−,−〉U on U . Also choose elements gi ∈ G(Af ) satisfying equality (4.3.2); recall
that Γi = G(Q) ∩ giG(̂Z)g−1

i is a finite group.
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Proposition 4.4.8. For F, F ′ ∈MU (G), the formula

(F |F ′) =
h(G)
∑

i=1

1

|Γi| 〈F (gi), F
′(gi)〉U

defines a Hermitian inner product on MU (G) that does not depend on the choice of
the gi and for which the action of H(G) is a �-action.

We include a proof because we could not find any adequate reference for this
result.

Proof. Fix a nonzero e ∈ U∗. By the isomorphism (4.4.2) and Sect. 4.3,

(F |F ′) :=
∫

G(Q)\G(A)

ϕF (e)ϕF ′(e) dm

is a Hermitian inner product on MU (G) for which the action of H(G) is a �-action.
We will verify that it is proportional to the inner product of Proposition 4.4.8.

Let Ωi ⊂ G(A) be the compact open set gi(G(R) × G(̂Z)), let π : G(A) →
G(Q)\G(A) be the canonical projection, and set Ωi = π(Ωi). By definition,
G(Q)\G(A) is the (finite) disjoint union of the Ωi. Let us first verify that there
exists a Haar measure m on G(A) such that for every continuous function ψ on (the
compact set) G(Q)\G(A), we have

∫

G(Q)\G(A)

ψ dμ =

h(G)
∑

i=1

1

|Γi|
∫

Ωi

ψ ◦ π dm . (4.4.2)

Indeed, recall that if f is continuous with compact support on G(A), then f̃(g) :=
∑

γ∈G(Q) f(γg) is continuous with compact support on G(Q)\G(A). Moreover,
by the characteristic property of the quotient measure μ, there exists a unique Haar
measurem onG(A) such that for every continuous function f onG(A)with compact
support, we have

∫

G(A)
f dm =

∫

G(Q)\G(A)
f̃ dμ (see [211, Chap. II]).

For g ∈ G(A), set ni(g) = |G(Q)g ∩ Ωi|. We clearly have ni(γgk) = ni(g)

for every γ ∈ G(Q) and every k ∈ 1 × G(̂Z). By definition, we also have
ni(gj) = |Γi|δi,j , where δi,j is the Kronecker delta. Let ψ be a continuous function
on G(Q)\G(A). The function G(A) → C defined by fi = 1Ωi × ψ ◦ π is contin-
uous with support in Ωi and satisfies f̃i(g) = ψ(π(g))ni(g) for every g ∈ G(A)
(we denote the characteristic function of the set A by 1A). In other words, we have
ψ × 1Ωi

= (1/|Γi|)f̃i. This proves formula (4.4.2).
Let us apply this formula to the function ψ = ϕF (e)ϕF ′(e). Note that if U = C,

so that ψ is constant, equal to |e(1)|2F (gi)F
′(gi) on Ωi, the proposition follows

from the fact that m(Ωi) = m(G(R) × G(Z)) is independent of i. In general, we
introduce the Haar measure dg on G(R) of total mass 1 and the Haar measure mf

on G(Af ) such that dm = dg × dmf . The right invariance of ψ under 1 × G(̂Z)
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and Fubini’s theorem imply
∫

Ωi

ψ ◦ π dm = mf (G(̂Z))

∫

G(R)

〈e, g−1F (gi)〉〈e, g−1F ′(gi)〉dg .

LetE ∈ U be such that we have 〈E, x〉U = 〈e, x〉 for every x ∈ U . The orthogonality
relations of the matrix entries for the irreducible representations of the compact
groups imply that we have
∫

G(R)

〈e, g−1F (gi)〉 〈e, g−1F ′(gi)〉dm∞ =
1

dimU
〈E,E〉U 〈F (gi), F

′(gi)〉U ,

which concludes the proof of the proposition. ��
Assume, for example, that we have G = On and U = C. If Li ∈ Ra

Z
(En ⊗ Q)

denotes the lattice gi(L), we have Γi = O(Li) ⊂ On(Q). The relation TA = Tt
A

of Proposition 4.2.8 and Proposition 4.4.8 can then be written as

NA(L,M)|O(M)| = NA(M,L)|O(L)| ,

where NA(L,M) denotes the number of A-neighbors of L isometric to M (with
L,M ∈ R(On)). This is the generalization of Proposition 3.2.3 we announced
earlier.

Corollary 4.4.9. The bilinear form on MU∗(G)×MU (G) defined by

(F |F ′) =
∑

i

1

|Γi| 〈F (gi), F
′(gi)〉

is independent of the choice of the gi and is nondegenerate. It satisfies the identity
(T (F )|F ′) = (F |T t(F ′)) for all T ∈ H(G), F ∈ MU∗(G), and F ′ ∈ MU (G). In
particular, it defines a canonical isomorphism between the H(G)-module MU∗(G)∗

and the H(G)-module MU (G)t (see Remark 4.2.4).

Proof. For a C-vector space V , we denote by V the conjugate C-vector space
(that is, the abelian group V endowed with the action C × V → V of C defined
by (λ, v) → λv). For U as in the corollary, U is naturally a representation of
G(R) and the map v → (u → 〈v, u〉U ) induces an isomorphism of representations
U

∼→ U∗. We therefore have a natural isomorphismMU∗(G)
∼→ MU (G) = MU (G).

Via this isomorphism, the bilinear form of the corollary coincides with the form
MU (G)×MU (G)→ C defined by (F, F ′) →∑

i(1/|Γi|)〈F (gi), F
′(gi)〉U , which

is none other than the Hermitian form on MU (G) given by Proposition 4.4.8. The
first two assertions follow; the last is obvious. ��

Let us conclude with one last observation. For L ∈ R(G) and u ∈ U , the map
F → 〈F (L), u〉 is a linear form on MU∗(G), which we denote by evL,u. We have a
unique linear map

Z[R(G)] ⊗ U → MU∗(G)∗
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that sends [L] ⊗ u to evL,u for every L ∈ R(G) and every u ∈ U . The C-vector
space Z[R(G)]⊗U is endowed with a diagonal action of G(Q), and the map above
is constant on the orbits of this action. It therefore factors through a linear map

(Z[R(G)] ⊗ U)G(Q) → MU∗(G)∗ , (4.4.3)

where VΓ denotes the coinvariants of the Γ-module V . This is an isomorphism: this
follows simply from the finiteness of G(Q)\R(G) and of the natural isomorphism
(U∗)Γ ∼→ (UΓ)

∗, which holds for every finite subgroup Γ of G(R). The isomor-
phism (4.4.3) trivially commutes with the natural (left) actions of H(G). If we
compose it with the isomorphism MU∗(G)∗ −→ MU (G)t given by Corollary 4.4.9,
we obtain a canonical isomorphism of H(G)-modules

(Z[R(G)] ⊗ U)G(Q)
∼→ MU (G)t . (4.4.4)

It sends (the class of) the element [L] ⊗ u to an element of MU (G) that we denote
by [L, u]. Concretely, [L, u] is the unique function F ∈ MU (G) that is zero outside
of G(Q) · L that satisfies F (L) =

∑

γ∈Γ γ(u), where Γ = G(Q)L is the stabilizer
of L in G(Q). The isomorphism (4.4.4) will play a (small) role in our discussion of
the theta series in Sect. 5.4.1 and Chap. 7.

4.5 Siegel Modular Forms

Let us begin by recalling some results on Siegel modular forms (see [5, 45, 46, 88]).
We will closely follow the exposition of Van der Geer [89], to which we refer, in
particular, for a history of the subject.

4.5.1 The Classical Point of View

Let g ≥ 1 be an integer. For a ring R, we denote by Matg(R) the set of g × g
matrices with coefficients inR and bySymg(R) ⊂ Matg(R) the subset of symmetric
matrices. We denote by 1g the identity matrix in Matg(R) and by J2g ∈Mat2g(R)
the element

J2g =

(

0 1g
−1g 0

)

.

The Siegel half-space of genus g is the open subset

Hg ⊂ Symg(C)

of matrices with positive definite imaginary part. We view the Z-group GSp2g as
the sub-group scheme of GL2g consisting of the γ with γ J2g

tγ = ν(γ)J2g , where
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the morphism ν : GSp2g → Gm is the similitude factor. Its elements are of the form

γ =

(

aγ bγ
cγ dγ

)

with aγ , bγ , cγ , dγ ∈ Matg satisfying the relationsaγ tbγ = bγ
taγ , cγ tdγ = dγ

tcγ ,
and aγ

tdγ − bγ
tcγ = ν(γ)1g .

Let GSp2g(R)
+ be the subgroup of GSp2g(R) consisting of the elements with

strictly positive similitude factor. For γ ∈ GSp2g(R)
+ and τ ∈ Hg, we can show

that the element j(γ, τ) := cγτ + dγ is in GLg(C) and that

(γ, τ) → γτ = (aγτ + bγ)(cγτ + dγ)
−1

defines a transitive action of GSp2g(R)
+ on Hg by biholomorphic transformations.

Moreover, we easily verify the 1-cocyle relation j(γγ′, τ) = j(γ, γ′τ)j(γ′, τ) for all
γ, γ′ ∈ GSp2g(R)

+ and every τ ∈ Hg .
Let W be a finite-dimensional C-vector space endowed with a C-representation

ρ : GLg → GLW . A Siegel modular form of weight W and genus g ≥ 1 is a
holomorphic function f : Hg →W with

f(γτ) = ρ( j(γ, τ) ) · f(τ) ∀τ ∈ Hg , ∀γ ∈ Sp2g(Z) .

For g = 1, we add the assumption that f is bounded on {τ ∈ H1 ; �(τ) > 1}. These
functions form a C-vector space that we denote by

MW (Sp2g(Z)) ,

whose dimension is finite, as shown by Siegel.
When we have (ρ,W ) = (detk,C) for k ∈ Z, we speak of classical, or scalar-

valued Siegel forms of weight k; we speak of vector-valued forms otherwise. In
the former case, we also denote the space MW (Sp2g(Z)) by Mk(Sp2g(Z)). When
g = 1, we recover, as a special case, the usual modular forms for the group SL2(Z),
which are, for example, treated in detail in Serre’s book [177]. Finally, note that the
presence of the element −12g ∈ Sp2g(Z) and the relation j(−12g, τ) = −1g imply
MW (Sp2g(Z)) = 0 if ρ(−1g) = −idW .

Let us conclude this subsection with a reformulation of the notion of a Siegel
modular form. Assume that the representation (ρ,W ) is irreducible or, more
generally, that there exists an element mW ∈ Z, necessarily unique, such that
ρ(z1g) = zmW idW for every z ∈ C

×. For a map f : Hg →W , we set

f|W γ : Hg →W , τ → ν(γ)mW /2 ρ(j(γ, τ))−1 f(γτ) .

The map (γ, f) → f|W γ defines a right action of the group GSp2g(R)
+ on the

space of holomorphic functions Hg → W ; by construction, this action is trivial on
the subgroup of homotheties with strictly positive factor in GSp2g(R)

+. A Siegel
modular form of weight W and genus g ≥ 2 is, by definition, an Sp2g(Z)-invariant
element for this action.
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4.5.2 Fourier Series Expansions and Cusp Forms

For n ∈ Symg(C), we set

qn = e2iπ tr(n τ) =
∏

1≤i,j≤g

e2iπ ni,jτi,j ;

this is a holomorphic function on Hg. If n is semi-integral, that is, if n ∈ 1
2Symg(Z),

and if ni,i ∈ Z for every i = 1, . . . , g, then qn is invariant under translations by
Symg(Z). It can be shown that every f ∈ MW (Sp2g(Z)) admits a Fourier series
expansion, which normally converges on every compact subset of Hg, of the form

f =
∑

n≥0

anq
n ,

where the sum is taken over the positive semi-integral elements n ∈ 1
2Symg(Z) (in

the sense of real symmetric matrices) and where the an are in W [89, Sect. 4]. For
g ≥ 2, the Siegel operator is the map

Φg : MW (Sp2g(Z)) −→ MW ′(Sp2g−2(Z))

defined by Φg(
∑

n anq
n) =

∑

n′ an′qn
′
, where we view Symg−1(−) as a subset

of Symg(−) with last line and column consisting of zeros, and we have W ′ =
W|GLg−1×1 [89, Sect. 5]. The subspace of cusp forms is

SW (Sp2g(Z)) := Ker(Φg) ⊂ MW (Sp2g(Z)) .

A Siegel form is therefore cuspidal if its Fourier series expansion
∑

n anq
n satisfies

an = 0 for every n with det(n) = 0. When we have (W,ρ) = (C, detk) for k ∈ Z,
we write Sk(Sp2g(Z)) for SW (Sp2g(Z)).

4.5.3 The Relation Between SW (Sp2g(Z)) and A2(PGSp2g)

We will now recall the classical link between SW (Sp2g(Z)) and the space
Acusp(PGSp2g). A nice recent reference on this subject is the article [14], to which
we will refer as soon as we can formulate the statement (see also [195, Sect. 5]).

Set G = PGSp2g . The similitude factor ν : GSp2g → Gm induces a homomor-
phism ν∞ : G(R) → R

×/R×
>0 whose kernel we denote by G(R)+. The canonical

morphism Sp2g(R)→ G(R) induces an isomorphism

Sp2g(R)/{±1} ∼→ G(R)+ .

We also set G(A)+ = G(A) ∩G(R)+ when A is a subring of R.
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By Sect. 4.1.2, we have h(G) = 1. Since we have ν∞(G(Z)) = {±1}, we obtain
the equality

G(A) = G(Q)(G(R)+ ×G(̂Z)) (4.5.1)

and, from (4.3.3), it follows that the restriction f → f|G+(R)×1 induces a G(R)+-
equivariant isomorphism

A2(PGSp2g)
∼→ L2(G(Z)+\G(R)+) . (4.5.2)

The action of GSp2g(R)
+ on Hg recalled in Sect. 4.5.1 factors through an action

of G(R)+. The latter is faithful and transitive, and its stabilizers are the maximal
compact subgroups of G(R)+. If K denotes the stabilizer in Sp2g(R) of the ele-
ment i1g ∈ Hg and K+ denotes its image in G(R)+, we therefore have a natural
identification

G(R)+/K+ ∼→ Hg .

Let (ρ,W ) be a C-representation of GLg as in Sect. 4.5.1, which we now assume
to be irreducible and satisfy mW ≡ 0 mod 2. Fix w ∈ W ∗ and f ∈ SW (Sp2g(Z));
we will associate a function ϕw,f ∈ A2(G) with w and f . Consider the function
ϕ : G(R)+ −→ C defined by

ϕ(γ) = 〈w, (f|W γ)(i1g) 〉 .

By construction,ϕ is continuous and left invariant underG(Z)+. By formula (4.5.1),
it is therefore the restriction to G(R)+ × 1 of a unique continuous function
ϕ′ : G(Q)\G(A)→ C that is invariant under right translations by G(̂Z). Set

ϕw,f := ϕ′ .

By Asgari and Schmidt [14, Lemma 5], we have ϕw,f ∈ Acusp(G).
Before stating the final proposition, we still need to define the notion of a holomor-

phic element ofA2(G). Let g and k be the Lie algebras ofG(R)+ andK , respectively,
and let g = k⊕ p be the associated Cartan decomposition. Let d : g → Ti1g be the
differential in the identity of the map G(R)+ → Hg defined by h → h(i1g). It
induces an R-linear isomorphism

p
∼→ Ti1g = Symg(C) .

The C-vector space structure of Symg(C) therefore endows p with the structure
of a C-vector space that decomposes p ⊗R C into p+ ⊕ p−, so that d induces a
C-linear isomorphism p+

∼→ Ti1g . An element f ∈ A2(G) is called holomorphic
if it is continuous and if for every g ∈ G(A), the function G(R) → C defined by
h → f(gh) is infinitely differentiable and annihilated by p−.

Proposition 4.5.4. The map (w, f) → ϕw,f defines a C[K]-linear injection

W ∗ ⊗ SW (Sp2g(Z)) −→ Acusp(PGSp2g)
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whose image is the set of f ∈ Acusp(PGSp2g) that are holomorphic and W ∗-
isotypical under the action of K .

Let us make this statement more precise. The map h → j(h, i1g) is a group mor-
phism K → GLg(C) that realizes GLg(C) as the complexification of the compact
unitary group K . This, in particular, allows us to view W as a representation of K
by restriction; it is irreducible because W is so as a representation of GLg. We refer
to [14, Sect. 4.5, Theorem 1] for a proof of this proposition, up to the assertion of
surjectivity, which is verified in [195, Sect. 5.2].

4.5.5 The Action of Hecke Operators

It follows from Proposition 4.5.4 that the image of the map in that statement is
stable under the action of H(PGSp2g), so that the space SW (Sp2g(Z)) inherits an
action of H(PGSp2g) from A2(PGSp2g). Up to normalization constants sometimes
introduced by different authors for integrality reasons, this action coincides with the
action traditionally defined on SW (Sp2g(Z)), and even on MW (Sp2g(Z)), which we
recall below (see also [88, Kap. IV], [89, Sect. 16], and [14, Sect. 4.3]). Without going
into details, let us mention that is it particularly natural when we view Sp2g(Z)\Hg

as the space of complex abelian varieties of dimension g endowed with a principal
polarization7 [89, Sect. 10].

Let (W,ρ) be an irreducible C-representation of GLg , p a prime, and G the
Z-group PGSp2g. The natural map

a : G(Z[
1

p
])+/G(Z)+ → G(Qp)/G(Zp)

is bijective because we have h(G) = 1 (Corollary 4.1.5) and ν∞(G(Z)) =
{±1} (Sect. 4.5.3). It therefore induces, in an obvious way, an injective homo-
morphism between the ring Hp(G) and the Hecke ring of the G(Z[1/p])+-set
G(Z[1/p])+/G(Z)+. This homomorphism is an isomorphism; this follows from
the isomorphism (4.2.1) and the fact that a also induces a bijection

G(Z)+\G(Z[1/p])+/G(Z)+ → G(Zp)\G(Qp)/G(Zp) , (4.5.3)

as shown by the theory of elementary divisors (Propositions 4.2.7 and 4.2.9, see also
Sect. 6.2.5).

Suppose that the matrix of the element T ∈ Hp(G) is the characteristic function
of the class set G(Zp)γG(Zp) with γ ∈ G(Z[1/p])+, in the sense of the identifica-

7 A principal polarization on a lattice L ⊂ Cg consists of a nondegenerate alternating bilinear form
η : L × L → Z whose extension of scalars ηR to L ⊗ R = Cg satisfies ηR(ix, iy) = ηR(x, y)
for every x, y ∈ Cg and whose associated Hermitian form (x, y) �→ ηR(ix, y) + iηR(x, y) on Cg

is positive definite. Riemann’s theory allows us to naturally identify Sp2g(Z)\Hg with the set of
GLg(C)-orbits of pairs (L, η), where L ⊂ Cg is a lattice and η is a principal polarization on L.
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tion (4.2.2). If we write

G(Z)+ γ G(Z)+ =
∐

i

γi G(Z)+ ,

we immediately see, using formula (4.2.3), that the following diagram is commuta-
tive:

(4.5.4)

where the vertical maps are those defined by Proposition 4.5.4 (see [14, Lemma 9]
for the details of the argument). Given the equality T = T t for every T ∈ H(G), we
will not need to remember the inversion of the γi in (4.5.4).

Formula (4.5.4) allows us to determine the link between the Hecke operators
considered here and different definitions given in the literature. We will just give the
translation of the definitions of Serre [177, Chap. VII, Sects. 2, 5] in the case g = 1.
We will consider specific cases in genus g = 2 in Chap. 9.

Let k ≥ 0 be an even integer. In [177, Chap. VII, Sect. 5.3], Serre defines,
for every integer n ≥ 1, an endomorphism of Mk(SL2(Z)) that he denotes by
T(n) and whose effect on the q-expansions he determines. We also have another
endomorphism, given by the action defined above of the operator TA ∈ H(PGL2)
introduced in Sect. 4.2.6, whereA is a cyclic group. The translation is then as follows:

n−(k−1)/2T(n) = n−1/2
∑

d2|n
TZ/(n/d2)Z . (4.5.5)

This comes, in particular, from the fact that in Serre’s book, the correspondence
T(n) sends a lattice to the set of its subgroups of index n rather than the set of those
with quotient Z/nZ.

4.5.6 Adisc(Sp2g)May Be Deduced fromAdisc(PGSp2g)

By restriction of the functions, the morphism Sp2g(A) → PGSp2g(A) induces an
isomorphism

Res: A2(PGSp2g)
∼→ A2(Sp2g) .

This follows from formula (4.3.3), taking into account that we have

h(Sp2g) = h(PGSp2g) = 1
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and that the natural homomorphism Sp2g(R)→ PGSp2g(R) induces a homeomor-
phism Sp2g(Z)\Sp2g(R)

∼→ PGSp2g(Z)\PGSp2g(R).
Recall that in Sect. 4.2.6, we defined an injective ring homomorphismH(Sp2g)→

H(PGSp2g), which we will from now on view as an inclusion, by a slight abuse of
language. The source and target of the morphism Res are therefore both H(Sp2g)-
modules.

Proposition 4.5.7. The map Res commutes with the action of Sp2g(R) and that of
H(Sp2g). It sends A2

disc(PGSp2g) onto A2
disc(Sp2g).

Proof. The first assertion is obvious; the second follows from Lemma 4.2.15. The
last is a consequence of the first and the fact that the image of Sp2g(R) inPGSp2g(R)
has finite index (equal to 2). ��



Chapter 5
Theta Series and Even Unimodular
Lattices

5.1 Siegel Theta Series

Let L ⊂ R
n be an even unimodular lattice and g ≥ 1 an integer. For a g-tuple v

of elements of L, that is, v = (vi) ∈ Lg , we denote the associated Gram matrix by
v.v := (vi · vj)i,j ∈ Symg(Z); it is positive and v.v/2 is semi-integral in the sense
of Sect. 4.5.2. The Siegel theta series of genus g of L is the holomorphic function on
Hg defined by

ϑg(L) =
∑

v∈Lg

qv.v/2 .

It depends only on the isometry class of L. Its Fourier series expansion can be
written as

∑

n≥0 anq
n, where an is the number of g-tuples of elements of L with

Gram matrix n. When g = 1, we, of course, recover the classical theta series, treated
in [177], where an is simply the number of x ∈ L such that x ·x = 2n. Siegel proved

ϑg(L) ∈Mn/2(Sp2g(Z))

[88, Kap. I, Sect. 0]. LetXn be the set of isometry classes of even unimodular lattices
in R

n already introduced in Chap. 1. It is worthwhile to linearize the construction
above by considering the linear map

ϑg : C[Xn] −→ Mn/2(Sp2g(Z)) , [L] → ϑg(L) .

Furthermore, we denote by ϑ0 : C[Xn] → C the linear map that sends [L] to 1 for
every L. Recall that the space C[Xn] can be canonically identified with the dual of
the space of algebraic modular forms MC(On) (Sect. 4.4.4). It is therefore endowed
with a (left) action of the ring H(On), by transposition.

An important fact for understanding the H(On)
opp-module MC(On) is that

the map ϑg intertwines the action of H(On) on C[Xn] and that of H(Sp2g) ⊂
H(PGSp2g) (Sect. 4.5.3), and this according to very precise recipes. These relations
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were discovered by Eichler in certain cases where g = 1 [78, Satz 21.3], [169]
and have since become known as the Eichler commutation relations. They imply, in
particular, that the kernel of ϑg is stable under the action of H(On). Since Eichler,
the case of arbitrary genus g has been studied, in various aspects, by many authors,
including Rallis [170], Freitag [88, Chap. IV, Sect. 5], Yoshida [215], and Andri-
anov [5, Chap. V]. For now, we will restrict ourselves to stating the following special
case, made explicit by Walling in [210]. We refer the reader to Sect. 5.5 for a proof
in the case of genus g = 1, which is a quite simple exercise.

Recall that the Hecke operatorTp ∈ H(On) is the operatorTZ/pZ associated with
the ordered pairs of p-neighbor lattices (Sects. 4.2.6 and 4.4.4). We define a Hecke
operator

Sp ∈ H(Sp2g)

by considering the ordered pairs (M,N) ∈ Ra
Z
(Q2g) such that either M ∩ N has

index p in M and N , or M = N (Sect. 4.2.6). In other words, this is the operator
TZ/pZ + 1 in the notation loc. cit.

Proposition 5.1.1. Let 1 ≤ g ≤ n/2. For every prime p, the diagram

is commutative. In particular, Kerϑg is stable under Tp.

Proof. This is a particular case of [210, Theorem 2.1] once we observe that our
operator Sp coincides with the operator denoted by T1(p

2) + 1 by Walling. ��
If we replace Tp by a more general Hecke operator TA ∈ H(On), the analogous

relations given, for example, by Andrianov and Freitag, take on a rather abstruse
form. On the other hand, they are particularly transparent (especially those above)
in the presentation of Rallis, which, however, requires the points of view of Satake
and Langlands on Hecke operators. We will come back to this in Sect. 7.1.1.

Note that if Φg is the Siegel operator recalled in Sect. 4.5.2, we have the obvious
relation Φg(ϑg(L)) = ϑg−1(L) for g ≥ 2. This relation extends to g = 1 if we set
Φ1(

∑

n≥0 anq
n) = a0. It follows that the sequence of subspaces

Kerϑg ⊂ C[Xn] ,

for g ≥ 0, is decreasing. Moreover, if g ≥ 1, then ϑg induces a C-linear injection

Kerϑg−1/Kerϑg −→ Sn/2(Sp2g(Z)) .

It is clear that we have Kerϑn = {0} and that Kerϑ0 has codimension 1
in C[Xn]. Moreover, the vector

∑

L∈Xn
(1/|O(L)|) [L] is an eigenvector for the

action of H(On), with explicit eigenvalues (Proposition 3.2.4 and Sect. 4.4.7); the
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line it generates is a complement of Kerϑ0. On the other hand, the matter of
determining the entire filtration Kerϑg , as well as the structure of the H(On)-
modules Kerϑg−1/Kerϑg when g ≥ 1, is completely nontrivial whenever n > 8.
This is obviously a more delicate problem than that of understanding the H(On)-
module MC(On), the aim of this book. . . For n = 16 and n = 24, this filtration has
been studied in detail by several authors, whose contributions we recall below. This
will lead to a direct proof of Theorem A (the case n = 16), as well as a starting point
for our proof of Theorem E (the case n = 24).

5.2 Theta Series of E8 ⊕ E8 and E16

Recall that we have X16 = {E8⊕E8,E16} (Witt). Since the space M8(SL2(Z)) has
dimension 1, we have the well-known identity

ϑ1(E8 ⊕ E8) = ϑ1(E16) . (5.2.1)

In particular, the element [E8 ⊕ E8] − [E16] generates Kerϑ1 = Kerϑ0 and is an
eigenvector of the Tp. An absolutely remarkable fact, conjectured by Witt in [213],
is that the identity (5.2.1) persists up to genus 3:

ϑg(E8 ⊕ E8) = ϑg(E16) if g = 1, 2, 3 . (5.2.2)

This was proved by Witt op. cit. for g = 2, and much later by Igusa and Kneser,
independently, for g = 3 [106, 124]. Igusa proves S8(Sp2g(Z)) = 0 for g ≤ 3. We
refer to Appendix A for an exposition of Kneser’s remarkable proof, which is very
different. In summary, we have Kerϑ3 = Kerϑ0, and if

F := ϑ4(E8 ⊕ E8)− ϑ4(E16) ,

then we have F ∈ S8(Sp8(Z)). It is well known that we have F �= 0; let us be more
precise about this nonvanishing.

Proposition 5.2.1. Let cQ be the Fourier coefficient of F corresponding to a Gram
matrix of a Z-basis of an even lattice Q of rank 4 (it does not depend on the choice
of such a basis). We have

cD4

|O(D4)| = 4480 and
cA4

|O(A4)| = −21504 .

In particular, we have cD4 = −cA4 .
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Proof. Indeed, an examination of the root systems Dn and Am shows that the
number of sublattices of Dn that are isometric to D4 (resp. Am) is

(

n
4

)

(resp.
2m
(

n
m+1

)

). On the other hand, if R = D4 or A4, then under the action of O(E8),
there exists exactly one orbit of sublattices ofE8 isometric to Q(R), with cardinality
|O(E8)|/

(|W(R)| · |A(R)|). Let us briefly indicate how to justify this last statement,
from which the proposition follows through a simple calculation. We treat the two
cases R = D4 or A4 simultaneously. We set Q = Q(R), E = resQ, and Γ =
A(R)/W(R) (the notation res was defined in Sect. 2.1).

We begin by observing that an even Euclidean latticeL ⊂ R
4 such that resL � E

is necessarily isomorphic to Q. We leave it to the reader to verify that this can be
deduced from the following well-known fact: every integral and unimodular lattice
in R

d for d ∈ {4, 5} is isometric to the square lattice Id (Sect. 2.2). Proposition B.2.2
shows that if L ⊂ E8 is isometric to Q, its orthogonal complement L⊥, which is
even of rank 4, admits a residue isomorphic to −E. But in both cases, E � −E,
so L⊥ is isometric to Q. Finally, we consider the Lagrangians of the residue E ⊕E
of Q ⊕ Q; by Proposition 2.1.1, they all give rise to a q-module over Z of rank
8 containing Q ⊕ Q and necessarily isomorphic to E8. Since the qe-module E is
anisotropic, the Lagrangians of E ⊕ −E are the graphs of the automorphisms of
E, and in both cases we see that they are simply permuted transitively by 1 × Γ,
because the natural homomorphism Γ→ Aut(E) is bijective. It follows from these
observations that the sublattices of E8 isometric to Q form a single orbit under the
action of O(E8), whose stabilizer is isomorphic to A(R)×W(R). ��

Thus, we have Kerϑ4 = 0. This concludes the description of the filtration of
C[X16], and we are reduced to understanding the action of H(Sp8) on the eigenform
F ∈ S8(Sp8(Z)). This form is particularly interesting. Indeed, Igusa proved in [107]
that it is proportional to the famous Schottky form. In [167], Poor and Yen obtained
another proof of this result, by verifying that we have

dim S8(Sp8(Z)) = 1 . (5.2.3)

We refer to [77] for a second proof of this equality, as well as to Theorem 9.5.9 for
a third!

Let τ(n) be the Ramanujan function, defined by

Δ = q
∏

n≥1

(1− qn)24 =
∑

n≥1

τ(n)qn .

An elementary computation shows that Theorem A of the introduction is an imme-
diate consequence of part (i) of the following theorem, where the terms 286 and 405
come from the relation |O(E16)|/|O(E8 ⊕ E8)| = 286/405. Recall that the Hecke
operator Sp ∈ Hp(Sp2g) was introduced in Sect. 5.1.
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Theorem 5.2.2. Let p be a prime.

(i) The eigenvalue of Tp on [E8 ⊕ E8]− [E16] is

p4
p7 − 1

p− 1
+ p7 + τ(p)

p4 − 1

p− 1
.

(ii) The eigenvalue of Sp on the line S8(Sp8(Z)) is

p4 + τ(p) p−3 p4 − 1

p− 1
.

Proof. Above, we saw that ϑ4 induces an isomorphism Kerϑ0
∼→ S8(Sp8(Z)). As-

sertions (i) and (ii) are then equivalent by Proposition 5.1.1 (the Eichler commutation
relations). Assertion (ii) is an immediate consequence of the work of Ikeda [108]
(proof of the Duke–Imamoğlu conjecture [40]). Indeed, if k and g are even integers
such that k ≡ g mod 4, Ikeda constructs op. cit. an injective linear map

Ig : Sk(SL2(Z))→ S(k+g)/2(Sp2g(Z))

with the following compatibility property with the Hecke operators. If f = q +
∑

n≥2 anq
n ∈ Sk(SL2(Z)) is an eigenfunction for H(PGL2), then for every prime

p, the form Ig(f) is an eigenform for Sp, with eigenvalue

pg
(

1 + ap p(−(k+g)/2)+1 pg − 1

p− 1

)

. (5.2.4)

We refer neophytes to Sect. 7.2 for an explanation of the passage from Ikeda’s
statement to the above. In the literature, the form Ig(f) is often called the Ikeda lift
of f in genus g. If k = 12 and g = 4, and if f is the modular formΔ ∈ S12(SL2(Z)),
we note that its Ikeda lift I4(Δ) is a (nonzero) element ofS8(Sp8(Z)), with eigenvalue
that of assertion (ii), which completes the proof. ��

Let us mention that Breulmann and Kuss had already observed [40, Sect. 3] that
when p = 2, the eigenvalue of the Hecke operator Sp on the Schottky form is indeed
given by the formula of Theorem 5.2.2 (ii), as predicted by the Duke–Imamoğlu
conjecture. Their method consists in realizing F as a theta series with harmonic
coefficients, constructed from E8 (which we will, in fact, also do further on!). A
similar verification, which seems more economical, is given by the computation of
T2 carried out in Sect. 3.3.1.

The occurrence of the form Δ in the argument above is very indirect, a con-
sequence of the deep result of Ikeda. In Sect. 5.4, we will give another proof of
Theorem 5.2.2 (ii), which we discovered and which is independent of the work of
Ikeda. It is based, in particular, on the triality for the group PGSOE8 over Z. Fur-
ther on, we will also obtain a third proof of the same statement, which relies on
Arthur’s theory: it is the (particularly simple) particular case where k = 8 in the
statement of Theorem 9.5.9; this proof is significantly more sophisticated than the
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first two. Finally, we will explain how assertion (i) of Theorem 5.2.2 trivially follows
from a very general conjecture concerning Arthur’s theory, which we will present in
Chap. 8; see the examples in Sect. 8.5.7.

5.3 Theta Series of the Niemeier Lattices

Let us now consider the case n = 24. By Erokhin [80], the theta series of genus 12
of the 24 Niemeier lattices are linearly independent, that is, Kerϑ12 = 0. This does
not hold in genus 11. Indeed, as observed by Borcherds, Freitag, and Weissauer [31]
using an ingenious construction, Kerϑ11 has dimension 1. This is a spectacular
analog in dimension 24 of the discovery of Witt studied in Sect. 5.2.

A more detailed study of the filteredH(O24)-moduleC[X24]was initiated by Nebe
and Venkov in their delightful article [156]. Their starting point is the computation
of T2 recalled in Sect. 3.3.3, which they deduce from Borcherds’ Ph.D. thesis [29].
They note thatT2 has 24 distinct integral eigenvalues and have an explicit eigenvector
for each of them, which is necessarily an eigenvector for the action of all of H(On).
For the sake of convenience, like these authors, we number these eigenvectors vi for
i = 1, . . . , 24 in such a way that the associated eigenvaluesλi ofT2 are in decreasing
order (see Table 5.1). Determining the filtration of C[X24] is then equivalent to
determining the degree of each vi, that is, the least integer gi ≥ 0 with ϑgi(vi) �= 0.
Nebe and Venkov succeed for 22 of the 24 eigenvalues and propose a conjecture for
the degree of the remaining ones, namely those with eigenvalues 17280 and−7920,
which have been made bold in Tables 5.1 and 5.2 below.

Table 5.1 The filtration of C[X24] according to Nebe and Venkov

λ 8390655 4192830 2098332 1049832 533160 519120 268560 244800

degree 0 1 2 3 4 4 5 5

λ 145152 126000 99792 91152 89640 69552 51552 45792

degree 6 6 6 7 8 7 8 7

λ 35640 21600 17280 5040 −7920 −16128 −48528 −98280

degree 8 8 9 9 10 10 11 12

Let us say a few words about this table. The trivial eigenvalue

(212 − 1)(211 + 1) = 8390655 = λ1

is, of course, associated with the unique eigenvector of degree 0. Moreover, it is easy
to verify that ϑ1 induces a surjection Kerϑ0 → S12(SL2(Z)), so that one, and only
one, of the eigenvectors of T2 has degree 1. By Theorem 5.5.1, it is the one with
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eigenvalue
τ(2)2 − 211 + 2 (221 − 1) = 4192830 = λ2 .

The other eigenvalues are significantly more subtle to understand. For example, at
the end of their paper, Nebe and Venkov mention that for i = 3, 5, 11, 13, and 24 (in
which case gi is 2, 4, 6, 8, and 12, respectively), ϑgi(vi) is proportional to the Ikeda
lift

Igi(Δ23−gi) ,

whereΔw denotes a generator of Sw+1(SL2(Z)) whenw ∈ {11, 15, 17, 19, 21} (see
Corollary 7.3.4 for a justification). The action of H(O24) on these vi is thus known
explicitly (modulo the Eichler relations) in terms of the Fourier coefficients of the
five modular forms Δw mentioned above. For i = 24, this had already been noted
by Borcherds, Freitag, and Weissauer immediately after the announcement of [108]
(see also [40]). For example, we have

τ(2)(212 − 1) = −98280 = λ24 ;

more generally, the eigenvalue of Tp on v24 is τ(p)(p12 − 1)(p− 1)−1.
A spectacular additional step was then again obtained by Ikeda, in his paper [109],

as a consequence of the results of Nebe–Venkov mentioned above and his partial
resolution of a conjecture of Miyawaki. Ikeda succeeds in expressing the action of
H(O24), again in terms of the Δw above, on all but four of the vi; the exceptions are
listed here:

Table 5.2 The four mysterious eigenvectors

λ 126000 51552 17280 −7920

degree 6 8 9 10

We will return to the exact statement proved by Ikeda in Sect. 9.2, where we also
explain the missing eigenvalues mentioned above.

Let us conclude this section with a discussion of Mdet(O24). We already noted,
in Sect. 4.1.6, that the natural map ˜Xn → Xn is bijective for n < 24, but that for
n = 24, the inverse image of the class of the Leech lattice (and only of that class) has
two elements, which we denote by Leech±. It follows thatMdet(O24) has dimension
1; it consists of functions that are zero on the 23 Niemeier lattices with roots and
take on opposite values on Leech+ and Leech−.

Proposition 5.3.1. The eigenvalue of Tp on the line Mdet(O24) is

τ(p)
p12 − 1

p− 1
.
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We will prove this result in Sect. 7.5; more precisely, we will prove that the ring
H(O24) acts similarly on the lines Cv24 ⊂ MC(O24) and Mdet(O24). In particular,
this will answer a question posed by Schulze-Pillot [175, Remark, Sect. 1].

This proposition admits a striking translation in terms of lattices. A p-neighborM
of an even unimodular lattice L in R

n is called proper if there exists a g ∈ SO(Rn)
such that g(M) = L. We denote by N+

p (L,M) the number of proper p-neighbors
of L isometric to M , and we set N−

p (L,M) = Np(L,M) − N+
p (L,M). If L has

an isometry of determinant −1, all its p-neighbors are proper. This is, of course,
the case for all Niemeier lattices with roots. The case of the Leech lattice is, on
the other hand, more interesting, as shown by the following immediate corollary of
Proposition 5.3.1.
Corollary 5.3.2. For every prime p, we have the relation

N+
p (Leech,Leech)−N−

p (Leech,Leech) = τ(p)
p12 − 1

p− 1
.

An amusing consequence of this corollary is that the famous Lehmer conjecture
is equivalent to “N+

p (Leech,Leech) �= N−
p (Leech,Leech) for every prime p” !

5.4 An Alternative Construction of I4(Δ) by Triality

As promised in Sect. 5.2, we will now give a second proof of Theorem 5.2.2 (and
therefore of Theorem A from Chap. 1), which does not depend on Ikeda’s theo-
rem [108]. This will allow us, in passing, to give nontrivial examples of automorphic
forms for O8 and illustrate the techniques of Chap. 4.

5.4.1 Harmonic Theta Series

We place ourselves in the Euclidean space V = R
n. Let 1 ≤ g ≤ n/2 be an integer.

The vector space V g = V ⊗R
g is endowed with a natural R-linear representation of

O(V )×GLg(R). For every integer d≥ 0, consider the spaceHd,g(V ) of polynomials
P : V g → C such that
(i) P is harmonic with respect to the Euclidean Laplacian of V g;

(ii) P ◦ h = det(h)dP for every h ∈ GLg(R).
This space is stable under the action of O(V ). We construct elements of Hd,g(V ) as
follows. Let I ⊂ V ⊗C be an isotropic subspace of dimension g, and let e1, . . . , eg
be a C-basis of I . One easily verifies that

(v1, . . . , vg) → det[ei · vj ]d1≤i,j≤g (5.4.1)

is an element of Hd,g(V ). It generates a line that depends only on I . These lines
are permuted transitively by O(V ) and generate Hd,g(V ), which is an irreducible
representation of O(V ) by Kashiwara and Vergne [116, (0.9) and (5.7)].
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For an even unimodular lattice L ⊂ V and P ∈ Hd,g(V ), we set

ϑg(L, P ) =
∑

v∈Lg

P (v)qv.v/2 .

The functional equation of the Jacobi ϑ-function allows us to prove ϑg(L, P ) ∈
M(n/2)+d(Sp2g(Z)) [88, Kap. III, Sect. 3]. Note that

ϑg(L, P ) = ϑg(γ(L), γ(P )) ∀γ ∈ O(V ) . (5.4.2)

In particular, ϑg(L, P ) = 0 for every P if Hd,g(V )O(L) = 0. Let us begin by giving
an example, undoubtedly well-known, where this space of invariants is nonzero for
n = 8.

Lemma 5.4.2. Let R ⊂ V be a root system, W ⊂ O(V ) its Weyl group, and
W+ = W ∩ SO(V ). Then

HW (t) :=
∑

d≥0

(

dimHd,1(V )W
)

td =
(

1− t2
)
∏

i

(

1− tmi+1
)−1

,

where the mi are the exponents of W , and
∑

d≥0

(

dimHd,1(V )W
+)

td =
(

1 + t|R|/2))HW (t) .

Proof. Let A and B be the respective generating series of the sequences
dimPold(V )W and dim(Pold(V ) ⊗ det)W (the “anti-invariants”) for d ≥ 0. By
Bourbaki [39, Chap. V, Sect. 6], we have B = t|R|/2A and A =

∏

i(1− tmi+1)−1.
Let Pold(V ) be the space of homogeneous polynomials V → C of degree d. We
denote by Δ =

∑n
i=1 ∂

2/∂x2
i the standard Laplacian of Rn. For every d ∈ Z, we

have an O(V )-equivariant exact sequence

0 −→ Hd,1(V ) −→ Pold(V )
Δ−→ Pold−2(V ) −→ 0 ,

where the surjectivity of Δ is a classical result (see, for example, [95, Sect. 5.2.3]).
From this, we deduce statement (i) and then statement (ii). ��

Consider, for example, the lattice E8 ⊂ R
8, whose root system R(E8) is exactly

of type E8. Its exponents are the eight integers 1 ≤ m ≤ 30 relatively prime to 30.
Since we have W(E8) = O(E8), we find

∑

d≥0

(

dimHd,1(V )O(E8)
)

td =

1 + t8 + t12 + t14 + t16 + t18 + 2 t20 + · · · . (5.4.3)

The smallest invariant is therefore the one for d = 8.
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Proposition 5.4.3. The polynomial A(x) = −30 (x · x)4 +∑

α∈R(E8)
(α · x)8 is in

H8,1(V )O(E8). It satisfies A(α) = 144 for every root α ∈ R(E8). In particular, we
have the equality ϑ1(E8, A) = 240 · 144 Δ.

Proof. The invariance ofA underO(E8) is obvious. Let us verify thatA is harmonic.
In the notation of the proof of Lemma 5.4.2, the polynomial ΔA ∈ Pol6(V ) is
invariant. For every d ≥ 2, we have the decomposition

Pold(V ) = (x · x) Pold−2(V )⊕Hd,1(V ) .

The Poincaré series (5.4.3) therefore shows that ΔA is proportional to (x · x)3. It
remains to see that ΔA vanishes on the roots of E8. This is an easy verification, left
to the readers. It uses, on the one hand, the formulas

Δ(α·x)k = k(k−1)(α·α)(α·x)k−2 , Δ(x·x)k = 2k(dim(V )+2k−2)(x·x)k−1 ,

and, on the other hand, the following property of the root system E8 proved in [39,
Chap. VI, Sect. 1.11, Proposition 32]: given a root α0, there are exactly 114 roots in
E8 that are nonorthogonal to α0, and for 112 of those 114 roots, their inner product
with α0 is ±1. This same property also implies A(α) = 144 for every α ∈ R(E8),
and then the last assertion. ��

It will be useful to express the identity above in terms of automorphic forms
for O8 = OE8 (Sect. 4.4.4). For this, we will linearize the definition of harmonic
theta series in the manner of Sect. 5.1. Recall that for every integer n ≡ 0 mod 8,
the On(Af )-set R(On) can be naturally identified with that of the even unimodular
lattices in R

n contained in En ⊗Q (Sect. 4.1.2).
If L ∈ R(On), the map P → ϑg(L, P ) given by Hd,g(V ) → M(n/2)+d(On)

is C-linear. Moreover, we have ϑg(γL, γP ) = ϑg(L, P ) for every γ ∈ On(Q)
(formula (5.4.2)). We therefore have a unique linear map

(Z[R(On)]⊗ Hd,g(V ))On(Q) → M(n/2)+d(Sp2g(Z))

that sends the class of [L] ⊗ P to ϑg(L, P ) for every L ∈ R(On) and every
P ∈ Hd,g(V ). Through the isomorphism (4.4.3), the H(On)-module on the left
can be canonically identified with MHd,g(V )∗(On)

∗. Since this double duality is not
so fortunate, we prefer to remove it by using the canonical isomorphism between
theH(On)-modulesMHd,g(V )∗(On)

∗ andMHd,g
(V )(On)

t (Corollary 4.4.9). Recall
that the t in the exponent of the latter means that the action of H(On) is twisted by
T → T t, in the sense of Remark 4.2.4. Since we have T t = T for every T ∈ H(On)
(Proposition 4.2.8), this torsion has no effect here, and will cheerfully be ignored.

Finally, recall that we denote by [L, P ] ∈ MHd,g(V )(On) the image of [L] ⊗ P

by the canonical isomorphism (Z[R(On)]⊗Hd,g(V ))On(Q)
∼→ MHd,g(V )(On) (see

the end of Sect. 4.4.7).
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Proposition-Definition 5.4.4. There exists a unique linear map

ϑd,g : MHd,g(V )(On)→ M(n/2)+d(Sp2g(Z))

that sends [L, P ] to ϑg(L, P ) for every L ∈ R(On) and every P ∈ Hd,g(V ). If
d > 0, then Im(ϑd,g) ⊂ S(n/2)+d(Sp2g(Z)).

Proof. The existence and uniqueness of such a map follow from the discussion
above. Concretely, for F ∈MHd,g(V )(On), we have

ϑd,g(F ) =
∑

i

1

|O(Li)| ϑg(Li, Pi) ,

where the Li form a system of representatives of the On(Q)-orbits of R(On) and
we have set Pi = F (Li). ��

For d = 0, we have an isomorphism Hd,g(V ) � C (trivial representation) and
the map ϑd,g is just the composition of the isomorphism MC(On)

∼→ C[Xn] given
by Corollary 4.4.9 and the map ϑg of Sect. 5.1.

Corollary 5.4.5. The map ϑ8,1 : MH8,1(R8)(O8)→ S12(SL2(Z)) is an isomorphism
between 1-dimensional spaces.

Proof. It is well known that we have dimS12(SL2(Z)) = 1. Recall that, by
Mordell, we have X8 = {E8}, so that for every integer d ≥ 0, we have
dimMHd,1(R8)(O8) = dimHd,1(R

8)O(E8). An examination of the series (5.4.3)
shows that we have dimMH8,1(R8)(O8) = 1. It therefore suffices to see that ϑ8,1 is
nonzero, but this follows from Proposition 5.4.3. ��

We also have the Eichler commutation relations for the map ϑd,g from
MHd,g(V )(On) to M(n/2)+d(Sp2g(Z)) (see Sect. 7.1.1 for a justification). In partic-
ular, for every prime p, we have

ϑd,g ◦ Tp =
(

p(n/2)−1−g Sp + pg
pn−2g−1 − 1

p− 1

)

◦ ϑd,g . (5.4.4)

We refer to Sect. 5.5 for a proof of this formula for g = 1. Combining this with
Corollary 5.4.5 leads to the following result.

Corollary 5.4.6. The eigenvalue of Tp on the line MH8,1(R8)(O8) is

p−8
(

τ(p)2 − p11
)

+ p
p5 − 1

p− 1
.
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5.4.7 Hecke Operators Corresponding to Perestroikas

Recall that in Example 4.2.16, we defined a natural injection

H(μ) : H(On)→ H(PGOn)

associated with the canonical Z-morphism μ : On → PGOn. From now on, we will
denote H(μ) as an inclusion H(On) ⊂ H(PGOn) to avoid overloading the notation.
Let W be a representation of PGOn(R), and let W ′ be its restriction to On(R). By
Proposition 4.4.3, the restriction of the functions via R(On) → R(PGOn) defines
an H(On)-equivariant map

μ∗ : MW (PGOn)→ MW ′(On) .

Lemma 5.4.8. The map μ∗ is an isomorphism.

Proof. The map On(Q)\R(On) → PGOn(Q)\R(PGOn) is bijective by Propo-
sition 4.1.4 (it is ξ2 ◦ ξ1). We can now conclude because if M ⊂ R

n is a Eu-
clidean lattice or, more generally, a positive definite ˜b-module over Z, then we have
O(M) = GO(M). ��

One way to view this lemma is to say that the action of H(On) on MW ′(On)
extends to an action of the larger ringH(PGOn). We will apply this to theHd,1(R

n).
These spaces are endowed with a natural representation of GO(Rn), on which the
homothety of ratio λ acts by the scalar λ−d. In particular, if d is even,

Hd,1(R
n)⊗ νd/2

factors through a representation of PGOn(R) whose restriction to On(R) is simply
Hd,1(R

n). Recall that the perestroika operator Kp ∈ Hp(PGOn) with respect to p
was defined in Sect. 4.2.6 (and Kp = Kt

p).

Lemma 5.4.9. Consider d ≡ 0 mod 2, W = Hd,1(R
n) ⊗ νd/2, a prime p, and

�2r(p) =
∏r−1

i=0 (1+pi) (that is, the number of Lagrangians ofH(Fr
p)). The following

diagram is commutative:

Proof. This is a harmonic variant of Eichler’s result [78, Satz 21.3] (see also [169]).
Let us recall the argument.

We fix a unimodular lattice M in En⊗Q (or, more generally, a homodual lattice
in En ⊗Q), as well as a polynomial P in the space Hd,1(R

n)⊗ νd/2. Let Perp(M)
be the set of perestroikas of M with respect to p.
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For N ∈ Perp(M), we have μ∗([N,P ]) = [γ(N), p−d/2 γ(P )], where γ ∈
GO(Q) is an arbitrary element with similitude factor p−1. Since the lattice
p−1/2N ⊂ R

n is isometric to γ(N), the relation (5.4.2) implies

ϑd,1 ◦ μ∗([N,P ]) = ϑd,1

(

N√
p
, P

)

.

For m ≥ 0, the mth Fourier coefficient of ϑd,1 ◦ μ∗ ◦Kp([M,P ]) is therefore

∑

(N,v)

P

(

v√
p

)

, (5.4.5)

where the sum is taken over all pairs (N, v) with N ∈ Perp(M) and v ∈ N such
that v · v = 2mp.

Suppose that m is relatively prime to p. Note that an element v ∈ M such that
v · v = 2mp is nonzero modulo pM and isotropic. It therefore belongs to exactly
�n−2(p) perestroikas of M (that is, the number of Lagrangians ofM⊗Fp containing
a given isotropic line). The sum (5.4.5) is therefore simply

p−d/2�n−2(p)amp ,

where ar is the rth Fourier coefficient of ϑd,1(M,P ). To conclude, we can treat the
case where m is a multiple of p similarly or simply invoke Lemma 5.5.2. ��
Corollary 5.4.10. For every prime p, the eigenvalue of Kp on the line
MH8,1(R8)⊗ν4(PGO8) is 2 p−4 (p4 − 1)(p− 1)−1τ(p).

Proof. This is a consequence of the identity �6(p) = 2(1 + p)(1 + p2) =
2(p4 − 1)(p− 1)−1, Lemmas 5.4.8 and 5.4.9, and Corollary 5.4.5. ��

5.4.11 Passage from PGOn to PGSOn

Since the map μ3 from Proposition 4.1.7 is bijective and PGSOn(Af )-equivariant,
the arguments given in Sects. 4.2.11 and 4.4.4 concerning the comparison between
SOn andOn extend mutatis mutandis to the case ofPGSOn andPGOn. In particular,
we have an action of the group

PGOn(Af )/PGSOn(Af ) � (Z/2Z)P

on H(PGSOn) that preserves every Hp(PGSOn) and whose invariants are exactly
H(PGOn). Consequently, we have H(PGOn) ⊂ H(PGSOn). If U is a representa-
tion of PGSOn(R) and IndU is the induced representation of PGOn(R), we have



136 5 Theta Series and Even Unimodular Lattices

a canonical H(PGOn)-equivariant isomorphism

ind : MU (PGSOn)→ MIndU (PGOn) .

Finally, if W is a representation of PGOn(R) and W ′ denotes its restriction to
PGSOn(R), then the action ofPGOn(Q)/PGSOn(Q) � Z/2Z onMW ′(PGSOn)
by conjugation endows the latter with a natural symmetry that we denote by s. The
restriction of the functions via the bijection R(PGSOn) → R(PGOn) defines an
H(PGOn)-equivariant injection

res: MW (PGOn)→ MW ′(PGSOn)

with image MW ′(PGSOn)
s=id.

Let W be the representationHd,1(R
n)⊗νd/2 of PGOn(R) defined in Sect. 5.4.7

(for d ≡ 0 mod 2). If n > 2, its restriction W ′ to PGSOn(R) is irreducible [95,
Sect. 5.2]. Finally, for general reasons, we have IndW ′ � W ⊕W ⊗ ε, where ε is
the character of order 2 of PGOn(R) with kernel PGSOn(R).

Lemma 5.4.12. Let W = H8,1(R
8) ⊗ ν4 and W ′ = W|PGSO8(R). The restriction

map res : MW (PGO8)→ MW ′(PGSO8) is bijective.

Proof. We must show that the space MW ′(PGSO8)
s=−id, which is naturally iso-

morphic to MW⊗ε(PGO8), is zero. By Lemma 5.4.8, this is equivalent to show-
ing MH8,1(R8)⊗ε(O8) = 0. This follows from the equalities X8 = {E8} and
O(E8) = W(E8) and Lemma 5.4.2, which asserts that the W(E8)

+-invariants
of H8,1(R

8) are in fact W(E8)-invariants (and of dimension 1). ��
In Sect. 4.2.11, we saw that the element T(Z/pZ)n/2 of Hp(On) decomposes nat-

urally into the sum of two elements T±
(Z/pZ)n/2 of Hp(SOn). A similar phenomenon

occurs with the perestroika operator Kp ∈ Hp(PGOn), which may be refined when
we view it in Hp(PGSOn).

Indeed, note that given M ∈ Ra
Z
(En ⊗ Q), the set Ω of N ∈ Rh

Z
(En ⊗ Q)

such that N is a perestroika of M with respect to p consists of exactly two orbits
under the action of GSO(M) and a single one under GO(M). This follows from the
smoothness ofGOM and GSOM over Z and the fact that the action of GO(M ⊗Fp)

(resp. GSO(M ⊗Fp)) on the set of Lagrangians of M ⊗Fp � H(F
n/2
p ) is transitive

by Witt’s theorem (resp. admits two orbits). These two orbits therefore lead to two
Hecke operators K±

p ∈ Hp(PGSOn) with

Kp = K+
p +K−

p

that are interchanged under the action of PGOn(Qp)/PGSOn(Qp) � Z/2Z.

Corollary 5.4.13. Let W = (H8,1(R
8) ⊗ ν4)|PGSO8(R). For every prime p, the

eigenvalue of K±
p on the line MW (PGSO8) is p−4(p4 − 1)(p− 1)−1 τ(p).
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Proof. Let s0 ∈ PGO(E8) be the image of a reflection with respect to a root. The
conjugation by this element defines a Z-automorphism of PGSO8 and, in particular,
induces an isomorphism H(s0) of H(PGSO8). On the other hand, the proof of
Lemma 5.4.12 shows that the symmetry s of MW (PGSO8), also induced by s0, is
the identity. But Lemma 4.4.3 asserts that we have

T ◦ s0 = s0 ◦H(s0)(T ) ∀ T ∈ H(PGSO8) .

But we have H(s0)(K
+
p ) = K−

p because the image of s0 in the quotient
PGO8(Qp)/PGSO8(Zp) is nontrivial for every prime p. It follows that K+

p

and K−
p have the same eigenvalue on the line MW (PGSO8), namely half of that of

Kp. We conclude using Corollary 5.4.10 and Lemma 5.4.12. ��

5.4.14 Triality for PGSO8

The next step relies on the triality for the Z-group PGSO8. The existence of the
triality in this context is briefly discussed by Gross in [96, Sect. 4]. More precisely,
he considers the case of the cover Spin8 of PGSO8 (we can then descend back to
the group PGSO8 by taking a quotient). Given its importance here, it does not seem
excessive to give some more details on this construction.

We will follow the approach of [23] in the case of fields; this extends to any
ring through the results of [126]. Recall that for a commutative ring A, an octonion
A-algebra1 C consists of a q-module over A of rank 8 endowed with the structure
of an A-algebra with unit (x, y) → x � y such that q(x � y) = q(x)q(y) for every
x, y ∈ C. The starting point is to add the structure of an octonion Z-algebra to the
q-module E8, on which the construction of a triality on PGSO8 will depend. As
observed by Van der Blij and Springer [22, (4.5)], there exists such a structure on
E8, and even exactly one modulo O(E8), namely the ring of Coxeter octonions [69].

LetC be an octonionA-algebra. Let us consider the following property concerning
C and γ ∈ GSO(C), which we denote by P(C, γ) (Cartan’s triality principle):

∃ γ′, γ′′ ∈ GSO(C) s.t. γ′(x � y) = γ(x) � γ′′(y) ∀x, y ∈ C . (5.4.6)

Proposition 4.5 of [126] asserts the following:

(i) If P(C, γ) holds, then the ordered pair (γ′, γ′′) is unique modulo the diagonal
action of A×.

(ii) If we have Pic(A) = 0, then P(C, γ) holds for every γ ∈ GSO(C) (when A is
a field, this is [23, Theorem 1]).

(iii) For γ ∈ GSO(C), there exists a partition of unity 1 =
∑

i fi in A such that for
every i, the property P(γ ⊗Afi , C ⊗Afi) holds.

1 In [126], the authors also call this a Cayley algebra or a composition algebra of rank 8; cf. pp. 51
and 56 op. cit. Let us point out that we do not require the associativity of �, which in fact never
holds.
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Recall that, by definition, PGSOC is the quotient of GSOC by its central sub-A-
group Gm consisting of the homotheties (Sect. 2.1). Properties (i) and (iii) therefore
immediately justify the following definition.

Proposition-Definition 5.4.15 (Triality). Let C be an octonion A-algebra, and let
π : GSOC → PGSOC be the natural morphism. There exists a unique automor-
phism τ of the A-group PGSOC with the following property: for every commutative
A-algebra B and every γ ∈ GSOC(B) such that P(C ⊗B, γ) holds, we have
τ(π(γ)) = π(γ′′).

By Knus et al. [126, Proposition 4.6] and van der Blij and Springer [23, Sect. 1,
Corollary 2], this automorphism τ satisfies τ3 = 1. We call it the triality of the
A-group PGSOC (which depends only on the q-module over A underlying C)
associated with the octonion structure C. There exist many points of view on triality
in the literature. A fascinating geometric property, discovered by E. Study and
developed by E. Cartan, is the following.

Lemma 5.4.16. Let C be an octonion algebra over the field k whose underlying q-
module is hyperbolic. Let Q1, Q2, and Q3 be the conjugacy classes of the subgroups
of PGSO(C) that stabilize, respectively, an isotropic line of C and one of the two
types of Lagrangians of C. The triality of PGSOC permutes the three classes Qi in
PGSO(C) transitively.

Proof. This is [23, Theorem 8]. Specifically, if a → a := −a+ (a · 1) denotes the
canonical involution of C, then τ sends the stabilizer of the isotropic line ka ⊂ C to
the stabilizer of the Lagrangiana�C, and the latter to the stabilizer of the Lagrangian
C � a (which has opposite type). ��

Let τ ∈ Aut(PGSO8) be the triality associated with a fixed octonion structure
on E8. As an automorphism of theZ-groupPGSO8, it acts naturally onR(PGSO8),
on the Rp(PGSO8), and on the ring H(PGSO8), preserving the Hp(PGSO8)
(Lemma 4.4.3). The natural inclusions H(O8) ⊂ H(PGO8) ⊂ H(PGSO8) allow
us to view the Hecke operator Tp as an element of H(PGSO8).

Corollary 5.4.17. For every prime p, the map T → H(τ)(T ) induces a 3-cycle on
the subset {Tp,K

+
p ,K

−
p } ⊂ Hp(PGSO8).

Proof. LetG = PGSO8, M = E8, and V0 = E8⊗Q. The elementM ∈ Rh
Z
(V0) =

R(G) of course has stabilizer G(̂Z) under the action of G(Af ); it is therefore
preserved by τ . Let Ω1, Ω2, and Ω3 be the G(̂Z)-orbits in Rh

Z
(V0) consisting of,

respectively, the isometry classes of the p-neighbors of M and the two types of
perestroikas of M with respect to p. These orbits clearly factor through G(Fp)-
orbits, and the corresponding conjugacy classes of the stabilizers of G(Fp) are
exactly the classes of Qi of Lemma 5.4.16 applied to C = E8⊗Fp, which concludes
the proof. ��
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If d ≥ 0, we have already noted that the representation Hd,r(R
2r) is irreducible

as a representation of GO(R2r). However, it follows from [116, Theorem 6.13] that
its restriction to GSO(R2r) decomposes into a direct sum of two nonisomorphic
irreducible representations that we will not try to distinguish:

Hd,r(R
2r) = Hd,r(R

2r)+ ⊕Hd,r(R
2r)− .

Concretely, if e1, . . . , er is a basis of a Lagrangian I ⊂ C
2r, then the function

(v1, . . . , vr) → det[ei · vj ]d is in Hd,r(R
2r)±, where the sign ± is uniquely deter-

mined by the type of the Lagrangian I . Note that if d = 0, in which case we have
Hd,r(R

2r) � Λr(R2r)∗, this phenomenon is well known!
Let Γ be a group, U a Γ-module, and let σ ∈ Aut(Γ). We denote by Uσ the

Γ-module obtained by restricting U via σ : Γ→ Γ.

Corollary 5.4.18. Let d ≡ 0 mod 2. The map U → U τ induces a 3-cycle on the set
consisting of the isomorphism classes of the three representations of PGSO8(R)

Hd,1(R
8)⊗ νd/2 and Hd/2,4(R

8)± ⊗ νd .

Proof. Note that the spaces Hd,g(R
8) are endowed with natural actions of GO8(C)

extending the actions of GO8(R) considered before. In particular, the three repre-
sentations of Corollary 5.4.18 factor through representations of PGSO8(C) that are,
of course, irreducible. Recall that we have V = R

8.
Let D ⊂ V ⊗ C be an isotropic line. The stabilizer SD ⊂ PGSO8(C) of D is a

parabolic subgroup isomorphic to GSO(C6)�C
6. Its natural action on V ⊗2⊗ ν−1

preserves the lineD⊗2 on which it therefore acts by multiplication by a character that
we denote by ηD. Let �(D) ⊂ Hd,1(R

8)⊗ νd/2 be the line of harmonic polynomials
associated with D (formula (5.4.1)). We see that, under the action of SD, �(D) is an
eigenspace with character ηd/2D .

Likewise, let I ⊂ V ⊗ C be a Lagrangian. The stabilizer SI ⊂ PGSO8(C) of
I is a parabolic subgroup isomorphic to (GL(C4)/{±1})� Sym2(C4). Its natural
action onΛ4V ⊗ν−2 preserves the lineΛ4I , on which it therefore acts via a character
that we denote by ηI . The line �(I) ⊂ H±

d/2,4(R
8) ⊗ νd of harmonic polynomials

associated with I , where the sign ± depends on the type of the Lagrangian I , is
clearly an eigenspace under the action of SI , with character ηd/2I .

Recall that by the Cartan–Weyl theory of the highest weight, given a parabolic
subgroup S of the semisimple group G = PGSO8(C) and a polynomial character
η : S → C

×, there exists, up to isomorphism, at most one irreducible polynomial
representation of G whose restriction to S contains the character η. Moreover, if
such a representation exists for the pair (S, η) with η �= 1, it does not exist for the
pair (S, η−1) (dominance property).

The observations above therefore uniquely characterize the three representations
of the corollary. To conclude, we note that by Lemma 5.4.16, τ permutes the three
types of parabolic subgroups considered above, each with their own character S →
C

×, denoted η∗ above. This last property is automatic because ifS is such a parabolic
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subgroup, then we see that the group of polynomial charactersS→ C
× is isomorphic

to Z, where the character η is the unique dominant generator by the case d = 2. ��
Let d be an even integer. After interchanging the signs ± if necessary, we

may assume (Hd,1(R
8) ⊗ νd/2)τ � Hd/2,4(R

8)+ ⊗ νd by Corollary 5.4.18. By
Lemma 4.4.3, the automorphism τ induces an isomorphism

τ∗ : MHd/2,4(R8)+⊗νd(PGSO8)
∼→ MHd,1(R8)⊗νd/2(PGSO8)

such that T ◦ τ∗ = τ∗ ◦H(τ)(T ) for every T ∈ H(PGSO8).

Corollary 5.4.19. Let d be an even integer. We have a sequence of isomorphisms

Proof. We have already described all of these isomorphisms, except for the one on
the bottom line, denoted by μ∗. This is the morphism defined by the restriction of
the functions via the bijection R(SOn) → R(PGSOn), which is an isomorphism
for reasons identical to those invoked in the proof of Lemma 5.4.8. ��
Corollary 5.4.20. The eigenvalue of Tp on the line MH4,4(R8)(O8) is

p−4 p4 − 1

p− 1
τ(p) .

Proof. We apply Corollary 5.4.19 to d = 8. Corollary 5.4.13 and Lemma 5.4.17
show that the eigenvalue of the Hecke operatorTponMH4,4(R8)+⊗ν8(PGSO8) is that
of the statement. This suffices to conclude becauseμ∗ and ind areH(O8)-equivariant
(Lemma 5.4.8, Sect. 5.4.11). ��

5.4.21 One Last Theta Series and the End of the Proof

To conclude, consider the map

ϑ4,4 : MH4,4(R8)(O8) −→ S8(Sp8(Z)) .

Proposition 5.4.22. The map ϑ4,4 is an isomorphism.

Proof. Since the two spaces have dimension 1 (formula (5.2.3)and Corollary 5.4.20),
it suffices to see that this map is nonzero, which has already been verified by
Breulmann and Kuss in [40]. Let us briefly explain how to proceed.
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Let e = (e1, . . . , e4) be a quadruple of elements of E8 ⊗ C generating a La-
grangian, and set Pe(v1, . . . , v4) = det[ei · vj ]1≤i,j≤4; for every integer d ≥ 0,
we have P d

e ∈ Hd,4(R
8). Let Q ⊂ E8 be a sublattice of rank 4 and v1, . . . , v4 a

Z-basis of Q. The relation Pe(γ(v1), . . . , γ(v4))) = det(γ)Pe(v1, . . . , v4) for every
γ ∈ GL(Q) shows that Pe(v1, . . . , v4)

d does not depend on the choice of the vi
when d is even; hence, it makes sense to denote it by Pe(Q)d. In particular, if d is
even, the Fourier coefficient of the theta series ϑd,4(E8, P

d
e ) corresponding to the

Gram matrix of a Z-basis of Q is

cQ(P
d
e ) = |O(Q)|

∑

M

Pe(M)d ,

where the sum is taken over the sublattices M ⊂ E8 isometric to Q. We give several
numerical values in Table 5.3.

In this table, we have Q � Q(R), where R is a root system (of type ADE) of
rank 4 (Sect. 1.3) and (εj)1≤j≤8 denotes the canonical basis of R8. It is not difficult
to enumerate the sublattices of E8 isometric to Q using a computer. For example,
if Φ denotes a positive system of R(E8) and < denotes a fixed arbitrary total order
on Φ, the sublattices of E8 isometric to D4 are in bijection with the quadruples
(r1, r2, r3, r4) of elements of Φ such that we have r1 < r2 < r3 and that the
elements r1, r2 and r3 are pairwise orthogonal and have inner product −1 with r4.
We refer to the source code [54] for an implementation of this algorithm in PARI
[160] and for a justification of Table 5.3.

Table 5.3 Values of cQ(P d
e )/|O(Q)|, where e = (ε2j−1 + iε2j)1≤j≤4

Q\d 0 2 4 6 8 10

D4 3150 0 4800 −4800 43200 −81600

A4 24192 0 −23040 −46080 −69120 −92160

A1 ⊕A3 151200 0 115200 1267200 6566400 7718400

A2
2 67200 0 115200 −1382400 4492800 −43084800

A1
2 ⊕ A2 302400 0 −691200 2073600 85017600 214963200

A1
4 122850 0 576000 −6796800 191808000 −343641600

dimMHd,4(R8)(O8) 1 0 1 1 1 2

The proposition follows from the fact that we have cD4(P
4
e ) �= 0. Let us also note,

to reassure ourselves, that we indeed find the equality cD4(P
4
e ) = −cA4(P

4
e ), which

is consistent with Proposition 5.2.1. ��
Remark 5.4.23. The last line of Table 5.3 follows from the isomorphism
MHd,4(R8)(O8) � MH2d,1(R8)(SO8) ( � H2d,1(R

8)W(E8)
+

) given by Corol-
lary 5.4.20, together with Lemma 5.4.2. The vanishing of these spaces for d = 2
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explains why the column d = 2 has entries 0. The table therefore shows that ϑd,4 is
injective when d is even and at most 8. By varying the Lagrangian basis e, we easily
verify that ϑ10,4 is also injective.

This concludes the proof of part (ii) of Theorem 5.2.2, by virtue of Corol-
lary 5.4.20 and the Eichler commutation relations (5.4.4). The following sequence
of isomorphisms summarizes our proof quite well. We set W = H8,1(R

8),
U = H4,4(R

8), and U+ = H4,4(R
8)+.

5.5 Appendix: A Simple Example of the Eichler Relations

We will now prove formula (5.4.4) for g = 1. Let L be an even unimodular lattice
of rank r and P : L ⊗ R → C a homogeneous harmonic polynomial of degree d.
Recall that the associated theta series ϑ(L, P ) =

∑

v∈L P (v)qv·v/2 is an element of
Md+r/2(SL2(Z)).

Theorem 5.5.1. Let L be an even unimodular lattice of rank r, P : L ⊗ R → C a
homogeneous harmonic polynomial of degree d, and p a prime. We have the relation

∑

L′
ϑ(L′, P ) =

(

p
pr−3 − 1

p− 1
+ p−dT

(

p2
)

)

ϑ(L, P ) ,

where the sum is taken over the p-neighbors L′ ⊂ 1
pL of L.

Proof. We denote by an(g) the nth Fourier coefficient of the modular form g ∈
Mk(SL2(Z)). Recall the relation [177, p. 164]

an(T(p
2)(g)) =

∑

d|(p2,n)

dk−1anp2/d2(g) .

We set f =
∑

L′ ϑ(L′, P ), where the sum is taken over the p-neighborsL′ ⊂ 1
pL of

L.
We fix an integer n ≥ 1 that, for now, we take relatively prime to p, and set

q(x) = x · x/2 for every x ∈ L ⊗ R. Consider the set X of pairs (L′, w) where
L′ is a p-neighbor of L and w is an element of L′ such that q(w) = n. Let
Y = {v ∈ L ; q(v) = np2}. We have an obvious map

π : X → Y , (L′, w) → pw .
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We will see that π is surjective and examine its fibers. Given v ∈ Y , there are two
cases:

(1) v is in pL. In this case, w = v/p is in L and there are as many p-neighbors L′

of L containing w as there are sublattices of L of index p that contain w and are
the orthogonal complement of an isotropic line modulo p (the “M” of Sect. 3.1).
Since we have (q(w), p) = 1, the element w is nonisotropic modulo pL: we find
|π−1({v})| = (pr−2 − 1)(p− 1)−1.

(2) v is not in pL. In this case, v generates an isotropic line in L/pL. If M is its
orthogonal complement modulo p, that is, the set of x ∈ L such that x.v ∈ pZ,
then L′ = M + Z(v/p) is a p-neighbor of L because p2 divides q(v). Even
better, it is the unique p-neighbor of L that contains w = v/p. Indeed, if K is
such a p-neighbor and N = L∩K , then v is in N and for every x in K , we have
x.v/p ∈ Z. In particular, we have N ⊂M , and therefore N = M and K = L′.
Consequently, we have |π−1({v})| = 1.

Let us first suppose P = 1 (and therefore d = 0). Our analysis shows

an(f) = |X | = pr−2 − 1

p− 1
an(ϑ(L, 1)) +

(

anp2(ϑ(L, 1))− an(ϑ(L, 1))
)

,

which is the desired formula, at least for the coefficients with index relatively prime
to p. For P arbitrary, an(f) is the sum of the p−dP (v) for (L′, v/p) running through
X , and we therefore have

an(f) =
pr−2 − 1

p− 1
an(ϑ(L, P )) +

(

p−danp2(ϑ(L, P ))− an(ϑ(L, P ))
)

.

We conclude using the following lemma.

Lemma 5.5.2. Let g ∈ Mk(SL2(Z)) with k > 0, and let p be prime. We suppose
an(g) = 0 for every n relatively prime to p. Then we have g = 0.

Proof. In this case, the holomorphic function g(τ) is invariant under the map τ →
τ+1/p, which suffices because the subgroup of SL2(R) generated by this translation
and SL2(Z) is not discrete. ��

We can also verify the formula for all coefficients, by again introducing π : X →
Y as before. We see that the count is not changed in case (2), but is in case (1).

First subcase: n/p ∈ Z − pZ. Let v be an element of Y of the form pw with
w ∈ L. Note that we have w /∈ pL because p2 does not divide q(w) = n; on the
other hand, w is isotropic in L/pL. But if x ∈ L/pL is an isotropic vector, there
exist

1 + p cr−2(p) =
pr−2 − 1

p− 1
+ pr/2−1

isotropic lines in L/pL orthogonal to x; hence this also equals |π−1({v})|. Here,
ci(p) = (pi−1 − 1)(p− 1)−1 + pi/2−1 is the cardinality of the hyperbolic quadric
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of rank i over Z/pZ. It follows that we have

an(f) =

(

pr−2 − 1

p− 1
+pr/2−1

)

an(ϑ(L, P ))+
(

p−danp2(ϑ(L, P ))−an(ϑ(L, P ))
)

,

which concludes the proof.

Second subcase: p2 divides n. Let v be an element of Y of the form pw
with w in L. Then w is isotropic in L/pL. If it is zero, it is in all p-neighbors
of L; we then have |π−1({v})| = cr(p). Else, we have, as above, |π−1({v})| =
(pr−2 − 1)(p− 1)−1 + pr/2−1. But we have

cr(p)− pr−2 − 1

p− 1
− pr/2−1 = pr−2 ;

from this, we deduce the identity

an(f) = pd+r−2an/p2(ϑ(L, P )) +

(

pr−2 − 1

p− 1
+ pr/2−1

)

an(ϑ(L, P ))

+
(

p−danp2(ϑ(L, P ))− an(ϑ(L, P ))
)

.

This concludes the proof. ��



Chapter 6
Langlands Parametrization

6.1 Basic Facts on Reductive k-Groups

Let k be an algebraically closed field. We refer to the treatises of Springer [191]
and Borel [34] for the theory of reductive k-groups. Our convention is that such a
k-group is connected. Recall that if k has characteristic zero, a connected k-group
G is called reductive if the category of its finite-dimensional k-representations is
semisimple.

For an arbitrary commutative ring A, an A-group1 G is called reductive if it is
smooth over A and if for every homomorphism from A to an algebraically closed
field k, the group G ×A k is reductive; see [73] and [63]. The classical A-groups
studied in Sect. 2.1 are therefore reductive [34, Sect. 23], [63, App. C], except for
the orthogonal group in even dimension, which is not connected, as well as the
associated similitude and projective similitude groups, for the same reason. An A-
group is called semisimple if it is reductive and its center is finite over A. We denote
the (scheme-theoretic) center of a reductive A-group G by Z(G). A central isogeny
G → G′ between two reductive A-groups is a finite, flat morphism of A-groups
that is surjective and whose (scheme-theoretic) kernel is contained in Z(G). More
generally, a morphism of A-groups G → G′ is said to be central if the induced
morphism G × Z(G′) → G′ is flat and surjective and has kernel contained in
Z(G)× Z(G′).

6.1.1 The Based Root Datum of a Reductive k-Group

Let k be an algebraically closed field. The theory of root systems of reductive k-
groups, when suitably formulated, produces a canonical equivalence of categories

Ψ: Ck
∼→ D

1 Recall that an A-group is a group scheme over A which is affine and of finite type.
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between the category Ck of reductive k-groups “up to inner automorphisms” and
the category D of based root data. This classification is due to Chevalley in the case
of semisimple groups and to the Demazure–Grothendieck seminar [73, Exp. XXI]
in general, where it is even studied over an arbitrary ring k. We restrict ourselves to
stating the result below and refer to [191] for a detailed treatment, also summarized
in [192] and [114, II, Chap 1], as well as to Kottwitz [129, Sect. 1] for the intrinsic
formulation adopted here.

For a reductive k-group G, we denote by Inn(G) the group of inner automor-
phisms of G, that is, of the form inng : x → gxg−1 for g ∈ G(k). For two reductive
k-groups G and G′, we denote the set of central morphisms from G to G′ by
Homc(G,G′). It is endowed with an obvious action of Inn(G′). Note that the cate-
gory Ck whose objects are the reductive k-groups and whose morphisms G → G′

are given by the quotient set Homc(G,G′)/Inn(G′), where the composition of mor-
phisms follows from that of central morphisms by passing to the quotient, is well
defined.

A based root datum consists of

– two free abelian groups of finite rank X and X∨ endowed with a perfect pairing
〈−,−〉 : X ×X∨ → Z,

– finite subsets Φ ⊂ X and Φ∨ ⊂ X∨ endowed with a bijection Φ→ Φ∨ denoted
by α → α∨,

– subsets Δ ⊂ Φ and Δ∨ ⊂ Φ∨ such that we have Δ∨ = {α∨, α ∈ Δ}
that satisfy the following conditions:

– for every α ∈ Φ, we have 〈α, α∨〉 = 2;
– if sα ∈ End(X) denotes the reflectionx → x−〈x, α∨〉α and if sα∨ ∈ End(X∨)

is defined analogously after interchanging α and α∨, then for every α ∈ Φ, we
have sα(Φ) = Φ and sα∨(Φ∨) = Φ∨.

It follows from these axioms that the abelian group Q(Φ) ⊂ X generated by the
elements of Φ is a root system in Q(Φ)⊗Q in the sense of Bourbaki [39, Chap VI].
Finally, we assume that

– Φ is reduced2 and Δ is a basis of Φ.

A morphism ψ1 → ψ2 between two based root data ψi = (Xi,Φi,Δi, X
∨
i ,Φ

∨
i ,

Δ∨
i ) consists of a linear map X2 → X1 that induces a bijection Φ2 → Φ1 and that

sends Δ2 to Δ1, whose transpose X∨
1 → X∨

2 also induces a bijection Φ∨
1 → Φ∨

2 ,
which sends Δ∨

1 to Δ∨
2 . This defines the category D. An isogeny ψ1 → ψ2 is a

morphism as above that induces an isomorphism X2 ⊗Q→ X1 ⊗Q. It remains to
recall the definition of the functor Ψ.

2 Let us emphasize that this assumption is not part of the axioms in the references listed above; it
will help us avoid certain difficulties.
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For a reductive k-group G, the associated based root datum Ψ(G) is obtained as
follows. We choose a maximal torus T of G and a Borel subgroup containing T . We
denote by

X∗(T ) = Hom(T,Gm) and X∗(T ) = Hom(Gm, T )

the free abelian groups of finite rank consisting of the characters and cocharacters
of the torus T , respectively. They are endowed with an obvious perfect pairing
〈−,−〉 : X∗(T )×X∗(T ) −→ Hom(Gm,Gm) = Z. We then set

Ψ(G, T,B) = (X∗(T ),Φ(G, T ),Δ(G, T,B), X∗(T ),Φ∨(G, T ),Δ∨(G, T,B)) ,

where Φ(G, T ) (resp.Φ∨(G, T )) is the set of roots (resp. coroots3) of Gwith respect
to T and Δ(G, T,B) is the basis of Φ(G, T ) associated with the positive system of
Φ(G, T ) appearing in Lie(B). This is a based root datum.

If we change the pair (T,B) to (T ′, B′), there exists an element g ∈ G(k), unique
modulo T (k), such that gTg−1 = T ′ and gBg−1 = B′. The inner automorphism
inng induces an isomorphismΨ(G, T,B)

∼→ Ψ(G, T ′, B′) in D that is independent
of the choice of g.

Following Kottwitz [129, Sect. 1], we define Ψ(G) as the direct (or inverse!)
limit of the Ψ(G, T,B), indexed by the pairs (T,B), with transition morphisms
the isomorphisms induced by elements of Inn(G). The construction G → Ψ(G) is
functorial in the central morphisms and sends a central isogeny to an isogeny of root
data. In particular the group Aut(G) of automorphisms of the k-group G acts on
AutD(Ψ(G)), with the subgroup Inn(G) acting trivially.

Up to now, k was an algebraically closed field. However, the definition of the
functor Ψ extends verbatim to the case of an arbitrary ring k if we restrict ourselves
to the subcategory of Ck consisting of the split reductive k-groups [73, Chap. XXII,
Proposition 1.14], [114, II, Chap. 1]. If k is an integral domain with Pic(k) = 0 (for
example a field or a principal ideal domain), these are the reductive k-groups that
have a split maximal torus, that is, one isomorphic to a power ofGm. In particular, the
based root datum Ψ(G) of such a k-group is well defined. In D, it can be canonically
identified with that of G×k K for every homomorphism from k to an algebraically
closed field K .

Vocabulary

When a reductive k-group G has a well-defined based root datum, we will speak
freely of the root system of G, of simple or positive roots of G, of the Weyl group
of G, etc. . . to indicate the analogous objects deduced from Ψ(G). For example, the

3 For α ∈ Φ(G, T ), let Tα ⊂ T be the neutral component of the kernel of α : T → Gm, and let
Zα be the derived subgroup of the centralizer of Tα in G. It is a k-group isomorphic to SL2 or
PGL2. Recall that the coroot α∨ ∈ X∗(T ) is the unique cocharacter with image in Zα such that
〈α, α∨〉 = 2.
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Weyl group of G is the subgroup W ⊂ Aut(X) generated by the set of sα with
α ∈ Δ, where Ψ(G) = (X,Φ,Δ, X∨,Φ∨,Δ∨). An element of X is called a weight
of G, and the abelian group X the weight lattice of G; likewise, X∨ is the coweight
lattice of G.

6.1.2 Langlands Dual

If ψ = (X,Φ,Δ, X∨,Φ∨,Δ∨) is a based root datum, then

ψ∨ = (X∨,Φ∨,Δ∨, X,Φ,Δ)

is also one, in an obvious way; it is called the dual datum of ψ. The correspon-
dence ψ → ψ∨ defines an involutive contravariant endofunctor of D. When k is
algebraically closed, it induces an involution of Ck via the equivalence of categories
Ψ; this is the starting point of the notion of Langlands dual, up to the fact that we
involve the field of complex numbers.

Specifically, ifG is a split reductivek-group, then a dual group ofG in the sense of
Langlands consists of a reductive C-group ̂G and an isomorphism Ψ( ̂G)

∼→ Ψ(G)∨

in D. The C-group ̂G is then uniquely determined by G, up to inner isomorphisms.
By abuse of language, we call it the Langlands dual of G.

6.1.3 Examples

We leave it to the reader to verify ̂GLn(C) � GLn(C) and P̂GLn(C) � SLn(C).
On the other hand, the details in the (very classical!) cases of the orthogonal and
symplectic groups will be useful to us further on, so we give them below.

We will use the following construction several times. Consider a based root datum
ψ = (X,Φ,Δ, X∨,Φ∨,Δ∨), and let Y ⊂ X ⊗Q be a subgroup of finite type that
contains Φ. We suppose

Φ∨ ⊂ Y � := {x ∈ X∨ ⊗Q ; 〈y, x〉 ⊂ Z ∀y ∈ Y } .

The orthogonal complement Y ⊥ of Y in X∨ ⊗ Q then has intersection zero with
Q(Φ∨), and if π : Q(Φ∨)→ Y �/Y ⊥ is the canonical map, then

ψ′ = (Y,Φ,Δ, Y �/Y ⊥, π(Φ∨), π(Δ∨))

is a based root datum, in an obvious way. An inclusion Y ⊂ X (resp. X ⊂ Y )
induces a morphism ψ → ψ′ (resp. an isogeny ψ′ → ψ). Moreover, when applied
to ψ∨, this construction provides a similar construction in which the characters and
cocharacters are interchanged.
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From now on, k is an arbitrary ring.

The Even Special Orthogonal Group and Its Variants

Let r ≥ 2 be an integer,U = kr, andV = H(U) = U⊕U∗ the hyperbolicq-module
over U (Sect. 2.1). The k-group ˜G = GSOV is reductive and split.

If (ei)ri=1 is a k-basis of U and e∗i ∈ U∗ is the dual basis, then the sub-k-group ˜T
of ˜G that preserves each of the lines kei and ke∗j is a split maximal torus of ˜G. The
k-subgroup of ˜G that preserves the full flag of U associated with {e1}, {e1, e2}, . . .
is a Borel subgroup that contains ˜T .

Let εi ∈ X∗(˜T ) be the character of ˜T acting on kei, let ν : ˜G → Gm be the
similitude factor, and let ε0 be the restriction of ν to ˜T . Then we see that ˜T acts
on ke∗j by multiplication by the character −εj + ε0. The εi for i = 0, . . . , r form a
Z-basis of X∗(˜T ).

The setΦ( ˜G, ˜T ) consists of the±(εi−εj) and±(εi+εj−ε0) for 1 ≤ i < j ≤ r.
Moreover, Δ( ˜G, ˜T , ˜B) is the union of the εi − εi+1 for i = 1, . . . , r − 1 and
εr−1+εr−ε0. Let ε∗i ∈ X∗(˜T ) be the dualZ-basis of the basis of X∗(˜T ) consisting
of the εi for i = 0, . . . , r. For 1 ≤ i < j, we have (εi − εj)

∨ = ε∗i − ε∗j and
(εi + εj − ε0)

∨ = ε∗i + ε∗j .
Let s ∈ OV (k) be the element that fixes ei and e∗i for i < r and interchanges er

and e∗r . The conjugation by s induces an automorphism of ˜G that preserves ˜T and ˜B.
Let Ψ(s) be the induced automorphism of Ψ( ˜G): it fixes εi for i = 0, · · · , r− 1 and
sends εr to ε0 − εr. If r �= 4, it is the unique nontrivial involution of the “Dynkin
diagram” of Δ( ˜G, ˜T , ˜B).

Let us now consider the k-group G = SOV . Its based root datum associated
with T := ˜T ∩ G and B = ˜B ∩ G can be deduced from that of ˜G through the
method recalled above, by considering the subgroup of cocharactersX∗(T ) = ε⊥0 =

⊕r
i=1Zε

∗
i ⊂ X∗(˜T ) and the group of characters X∗(T ) = X∗(˜T )/Zε0. In other

words, “we impose ε0 = 0 in Ψ( ˜G, ˜T , ˜B).”
Let εi be the image of εi in X∗(T ), so that we haveX∗(T ) = ⊕r

i=1Zεi. The linear
map X∗(T ) → X∗(T ) that sends ε∗i to εi induces an isomorphism Ψ(SOV )

∼→
Ψ(SOV )

∨; in particular, we have

̂SOV (C) � SO2r(C) ,

where SO2r is the special orthogonal C-group of the standard q-vector space C2r.
Likewise, the root datum ofP ˜G = PGSOV associated with the respective images

P ˜T and P ˜B of ˜T and ˜B in P ˜G is obtained by considering the subgroup of characters
X∗(P ˜T ) = ζ⊥ ⊂ X∗(˜T ), where ζ denotes the central cocharacter ε∗0 +

∑r
i=1 ε

∗
i ,

and the group of cocharacters X∗(P˜T ) = X∗(˜T )/Zζ. In other words, we impose
−2ε∗0 =

∑r
i=1 ε

∗
i in the datum of ˜G. The group ̂PGSOV (C) is isomorphic to the

spin group Spin2r(C) of the standard q-vector space C2r.
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The Odd Special Orthogonal Group

Let r ≥ 1 be an integer,U = kr, and let V be the k-moduleH(U)⊕k endowed with
the quadratic form that is the orthogonal sum of the q-module H(U) and x → x2.
The k-group G = SOV is then semisimple and split (Sect. B.1).

We define a split maximal torus T from a k-basis (ei) of U , a Borel subgroup
B containing T , and a Z-basis εi of X∗(T ) as before. This time, Φ(G, T ) is the
union of the ±εi ± εj for 1 ≤ i < j ≤ r and the ±εi for i = 1, . . . , r. Moreover,
Δ(G, T,B) is the union of the εi − εi+1 for i < r and εr.

The similitude and projective similitude groups associated with V differ little
from G in this setting; we will not consider them. On the other hand, the spin group
of V will play a role. Following Chevalley, we define it using the Clifford algebra of
V . Over an algebraically closed field, it suffices to describe its based root datum: it is
the datum associated with the subgroupY = X∗(T ) + Z

1
2 (
∑r

i=1 εi) ⊂ X∗(T )⊗Q.

The Symplectic Group and Its Variants

Finally, the k-groups of the symplectic series are also split and reductive. Let us
first consider the k-group ˜G = GSp2g of symplectic similitudes of the hyperbolic
alternating form on U = kg.

We define ˜T , ˜B, and the εi and ε∗i for i = 0, · · · , g as in the even orthogonal
case. This time, the set Φ( ˜G, ˜T ) consists of the ±(εi − εj) for 1 ≤ i < j ≤ g and
the ±(εi + εj − ε0) for 1 ≤ i ≤ j ≤ g. Moreover, Δ( ˜G, ˜T , ˜B) is the union of the
εi − εi+1 for 1 ≤ i < g and 2εg − ε0. Finally, we have (εi − εj)

∨ = ε∗i − ε∗j and
(εi + εj − ε0)

∨ = ε∗i + ε∗j for i < j and (2εi − ε0)
∨ = ε∗i .

The root data of the k-groups G = Sp2g and P ˜G = PGSp2g can be deduced
verbatim from those of ˜G as in the even orthogonal case. Finally, we note that
̂Sp2g(C) � SO2g+1(C) and P̂GSp2g(C) � Spin2g+1(C).

6.1.4 Representations of Split Reductive Groups in Characteristic
Zero

Let k be an algebraically closed field of characteristic zero, let G be a reductive
k-group, and let Ψ(G) = (X,Φ,Δ, X∨,Φ∨,Δ∨) be its based root datum. Let

X+ = {λ ∈ X ; 〈λ, α∨〉 ≥ 0 ∀α ∈ Δ}

be the additive submonoid of X consisting of the dominant weights of G. It is a
fundamental domain for the action of the Weyl group W of G on the set X .
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We endow X with a partial order for the so-called dominance relation: λ ≤ μ⇔
μ− λ is a finite sum of elements of Δ [193]. A remarkable property of this relation
is that if λ, μ ∈ X+ satisfy λ < μ, there exists a root α ∈ Φ which is positive
with respect to Δ, such that μ− α ∈ X+ and λ ≤ μ− α [193, Corollary 2.7]. For
example, an element λ ∈ X+ is minimal if and only if we have λ − α /∈ X+ for
every positive root α ∈ Φ.

A k-representation of G consists of a finite-dimensional k-vector space V and a
morphism of k-groups G → GLV . These form an abelian category in an obvious
way; the category is semisimple because G is reductive. The tensor product of repre-
sentations defines the structure of a commutative ring Rep(G) on the Grothendieck
group of this category. The map G → Rep(G) defines, in a natural way, a functor
from the category Ck to the commutative rings (Sect. 6.1.1).

For λ ∈ X+, the Cartan–Weyl theory of the highest weight shows that there exists
an irreducible k-representation Vλ of G, unique up to isomorphism, with highest
weight λ. Moreover, every irreducible k-representation can be obtained this way.
Let us briefly recall what is the highest weight of an irreducible k-representation.
Let T be a maximal torus of G, and let B be a Borel subgroup containing T , so
that Ψ(G) can be canonically identified with Ψ(G, T,B). The action of T on any
k-representation V of G is diagonalizable, and we denote by Weights(V ) ⊂ X the
set of characters of T in V . It is stable under the action of W . If V is irreducible, one
can prove that the space of invariants V B(k) is of dimension 1 and that the action
T in this space is by an element of X+: it is the highest weight of V . The highest
weight λ of V then has the following property: for every μ ∈Weights(V ), we have
μ ≤ λ. Moreover, we have

Weights(V ) ∩X+ = {μ ∈ X+ ; μ ≤ λ}

(see, for example, [102, Sects. 13.2 and 21.3]).

6.2 Satake Parametrization

6.2.1 The Satake Isomorphism

Let G be a Zp-group. As in Sect. 4.2.5, we denote by Rp(G) the G(Qp)-set
G(Qp)/G(Zp) and by Hp(G) the Hecke ring of Rp(G) (Sect. 4.2).

We assume that G is split reductive (Sect. 6.1.1). As observed by Gross [96,
Proposition 1.1], this last assumption is satisfied if G arises from a reductive Z-
group by extension of scalars to Zp; this will always be the case in our applications.
Let ̂G be the Langlands dual of G, that is, a reductive C-group ̂G endowed with
an isomorphism Ψ( ̂G)

∼→ Ψ(G)∨ (Sect. 6.1.2). Its Grothendieck ring Rep( ̂G) is
then canonically defined (Sect. 6.1.4). The Satake isomorphism [174], revisited by
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Langlands [136, Sect. 2], is a canonical ring isomorphism4

Sat: Hp(G) ⊗ Z[ p−1/2 ]
∼→ Rep( ̂G)⊗ Z[ p−1/2 ] .

We refer to the article of Satake [174], as well as the survey articles of Cartier [48,
Sect. IV] and Gross [97], for the details of the definition and general properties of
this isomorphism, which we only discuss briefly below. The original construction of
Satake assumes certain axiomatic properties of the pair of groups (G(Zp), G(Qp)),
which he verifies for the classical groups, and which were proved by Tits in gen-
eral [198]. The point of view used here, in which the focus is on the “integral
structure” Rep( ̂G) rather than on the central functions on ̂G, has been borrowed
from the article of Gross mentioned above. As observed by Gross, we may replace
Z[ p−1/2 ] by Z[ p−1 ] in the Satake isomorphism when the half-sum of the positive
roots of G is a weight of G.

Definition of the Satake Homomorphism. Let T be a split maximal Zp-torus of
G, B a Borel sub-Zp-group of G containing T , and N the unipotent radical of
B. If V is a G(Qp)-module, then the abelian group VN(Qp) of the coinvariants of
V under the action of N(Qp) is endowed with the structure of a T (Qp)-module
because T (Qp) normalizes N(Qp); this defines a functor from the G(Qp)-modules
to the T (Qp)-modules, called the Jacquet functor. The set-theoretic decompositions
G(Qp) = B(Qp)G(Zp) and B(Qp) = T (Qp) × N(Qp) ensure that the obvious
inclusion Rp(T )→ Rp(G) induces a bijection (a “horocyclic projection”)

Rp(T )
∼→ N(Qp)\Rp(G) .

It follows that if we take V = Z[Rp(G)], then VN(Qp) can be canonically identified
with Z[Rp(T )], which leads to a ring homomorphism

s1 : Hp(G)→ Hp(T ) .

Let X∗(T ) = Hom(Gm, T ) be the group of cocharacters of T . The natural map
X∗(T ) → T (Qp) defined by λ → λ(p) induces a bijection X∗(T )

∼→ Rp(T ), and
consequently a ring isomorphism η : Z[X∗(T )]

∼→ Hp(T ) by the commutativity of
T . We then consider the homomorphism

s2 : Hp(G)→ Z[X∗(T )][ p−1/2 ]

defined as the composition of (η−1 ◦ s1) ⊗ Z[ p−1/2] and the automorphism of
Z[X∗(T )][ p−1/2 ] that sends a cocharacter λ to p−〈λ,ρ〉 λ, where ρ is the half-
sum of the positive roots of G with respect to (T,B). Satake shows that s2 is an
isomorphism on the ring of invariants Z[X∗(T )]W [ p−1/2], where W is the Weyl
group of G. However, by the definition of the dual group ̂G, the ring Z[X∗(T )]W

4 Strictly speaking, we should replace Hp(G) by the opposite ring Hp(G)opp in this isomorphism.
Since the existence of the latter implies the commutativity of Hp(G), we will leave out this
decoration.



6.2 Satake Parametrization 153

can be canonically identified with Z[X∗( ̂T )]W , or with Rep( ̂G) by Chevalley; this
defines the isomorphism Sat.

Let us denote by ̂G(C)ss the (well-defined!) set of conjugacy classes of semisimple
elements of ̂G(C). Let c ∈ ̂G(C)ss. The map V → trace(c |V ) that sends a finite-
dimensional C-representation V of ̂G to the trace of c in V extends to a ring
homomorphism tr(c) : Rep( ̂G) → C. By a classical result due to Chevalley, the
resulting map

tr : ̂G(C)ss → Homring(Rep( ̂G),C)

is a bijection. The following scholium, one of the starting points of the work of
Langlands, immediately follows.

Scholium 6.2.2. The map c → tr(c) ◦ Sat defines a bijection

̂G(C)ss
∼→ Homring(Hp(G),C) .

Finally, let us mention that by the Satake homomorphism, the involution T → T t

of Hp(G) corresponds to the involution of Rep( ̂G) induced by the duality on the
representations, and also to the inversion on ̂G(C)ss.

Example 6.2.3. Let us first return to the general setting of Sects. 4.2.1 and 4.2.2,
where X denotes an arbitrary transitive Γ-set. We view Z as a Γ-module for the
trivial action. The H(X)opp-module ZX is free of rank 1 over Z and therefore
defines a ring morphism

deg : H(X)→ Z ,

called the degree, which is none other than deg(h) =
∑

x∈X hx,y, where y ∈ X is an
arbitrary element. For X = Rp(G), we can ask ourselves which element s ∈ ̂G(C)ss
corresponds to the homomorphismdeg by Scholium 6.2.2. Since the Jacquet functor
of the trivial G(Qp)-module Z is the trivial T (Qp)-module Z, it follows5 from the
definition of the Satake homomorphism recalled above that s is the conjugacy class
of ρ(p) = (2ρ)(p 1/2), where 2ρ is viewed as a cocharacter of ̂G.

Isogenies

Let G and G′ be two split reductive Zp-groups, and let f : G → G′ be a cen-
tral morphism. On the one hand, this morphism induces a ring homomorphism
Rep(f) : Rep( ̂G) → Rep(̂G′) via the equivalence Ψ and the duality on the root
data. On the other hand, in [174, Sect. 7], Satake defines a canonical ring homomor-
phism H(f) : Hp(G) −→ Hp(G

′).

5 Let V be a G(Qp)-module and π : V G(Zp) → VN(Qp) the canonical projection. The ring H(G)

acts on V G(Zp) (Sect. 4.2.2). By the construction of s2, we have π ◦ T = s2(T ) ◦ π for every
T ∈ Hp(G). The assertion follows by considering V = Z and recalling the shift by ρ in the
definition of the Satake homomorphism.
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When f is a central isogeny, H(f) coincides with the homomorphism Hp(G)→
Hp(G

′) that Proposition-Definition 4.2.14 associates with the obvious morphism
Rp(G) → Rp(G

′) defined by f . Indeed, let us verify that the latter satisfies the
assumptions of Sect. 4.2.12. On the one hand, a direct Galois-theoretic argument
ensures that f(G(Qp)) contains the derived subgroup of G′(Qp). Moreover, the
Cartan–Tits decomposition (Sect. 6.2.5) shows that G(Zp) is a maximal compact
subgroup of G, equal to f−1(G′(Zp)), giving the injectivity of Rp(G) → Rp(G

′).
Even better, this decomposition implies the injectivity of G(Zp)\G(Qp)/G(Zp)→
G′(Zp)\G′(Qp)/G

′(Zp), and therefore that the action of G′(Zp), and consequently
of the group S defined loc. cit., on Hp(G), is trivial.

The second theorem of Satake [174, Sect. 7, Theorem 4] states the commutativity
of the diagram

(6.2.1)

to which we will refer as the “compatibility of the Satake isomorphism with isoge-
nies.”

Example: The Even Special Orthogonal Group

Let us give an example of an application of the previous discussion in the case of an
automorphism of G. Let r ≥ 1 be an integer, let V be the hyperbolic q-module over
Z
r
p, and let G = SOV , so that ̂G is the C-group SO2r (Sect. 6.1.3). The group O(V )

acts by Zp-automorphisms on G (by conjugation), and therefore likewise on Ψ(G).
The induced homomorphism O(V )/SO(V ) → AutD(Ψ(G)) is bijective, and the
nontrivial element is induced by the element Ψ(s) defined loc. cit. This group also
acts on Rep( ̂G) by functoriality, and this action coincides with the natural action
of O2r(C)/SO2r(C), for the same reason. Denote by Hp(OV ) and Hp(SOV ) the
Hecke rings of the Zp-groupsOV and SOV , respectively. In Sect. 4.2.11, we defined
a canonical homomorphism Hp(OV )→ Hp(SOV ) that identifies Hp(OV ) with the
ring of invariants Hp(SOV )

O(V ). By composition with the Satake isomorphism of
SOV , we deduce a canonical isomorphism

Hp(OV )⊗ Z[ p−1/2 ]
∼→ (Rep(SO2r(C))⊗ Z[ p−1/2 ])O2r(C) . (6.2.2)

Scholium 6.2.4. The Satake isomorphism of SOV induces a bijection between
Homring(Hp(OV ),C) and the set of O2r(C)-conjugacy classes of semisimple ele-
ments of SO2r(C).



6.2 Satake Parametrization 155

6.2.5 The Two Natural Bases of the Hecke Ring ofG

Let G be a split reductive Zp-group, with Langlands dual ̂G. Write Ψ( ̂G) =
(X,Φ,Δ, X∨,Φ∨,Δ∨), and denote by X+ ⊂ X the ordered set of dominant
weights of ̂G, as in Sect. 6.1.4. Following Gross [97], we recall the two natural
Z-bases of Hp(G) and Rep( ̂G) indexed by X+ and indicate several links between
these bases, which we will need further on.

A consequence of the reductivity of G over Zp is the existence of a Cartan
decomposition, due to Tits in this generality but classical in our examples (the theory
of “elementary divisors”). Let T be a split maximal torus of G and B a Borel
subgroup of G containing T , which canonically identifies Ψ( ̂G) with Ψ(G, T,B)∨

and, in particular, X with the group of cocharacters X∗(T ) = Hom(Gm, T ). The
decomposition in question can be written6

G(Qp) =
∐

λ∈X+

G(Zp)λ(p)G(Zp) .

For λ ∈ X , we denote by cλ ∈ Hp(G) the characteristic function of the double coset
G(Zp)λ(p)G(Zp) or, depending on the point of view, of the ordered pairs (x, y)
in G(Qp)/G(Zp) such that we have y−1x ∈ G(Zp)λ(p)G(Zp) (Sect. 4.2.1). The
element cλ ∈ Hp(G) does not depend on the choice of (T,B). It is clear that we
have ctλ = c−λ (Sect. 4.2.1) and cw(λ) = cλ for every λ ∈ X and w ∈ W , where
W is the Weyl group of G. By the Cartan–Tits decomposition, the cλ with λ ∈ X+

form a Z-basis of Hp(G). For λ, μ ∈ X+, we have

cλ · cμ = cλ+μ +
∑

ν<λ+μ

nλ,μ,νcν (6.2.3)

for certain integers nλ,μ,ν [97, (2.9)]. The ring Hp(G) therefore admits an obvious
filtration indexed by the ordered monoid X+, with associated graded ring Z[X+].
In particular, if we denote by Ω ⊂ X+ a generating family of X+, then the ring
homomorphism Z[{xω}ω∈Ω] → Hp(G) that sends xω to cω is surjective. If X∨ =
Q(Φ∨), in which caseX+ � N

r, and ifΩ is the basis ofX+ (fundamental coweights),
this homomorphism is an isomorphism.

Likewise, the classes [Vλ] ∈ Rep( ̂G) of the irreducible representations Vλ for
λ ∈ X+ provide a Z-basis ofRep( ̂G), by the theory of the highest weight recalled in
Sect. 6.1.4. Although they are both indexed by X+, the link between the Sat(cλ) and
the [Vλ] is nontrivial. We refer to the article [97] of Gross for a detailed discussion
of this matter, in which the work of Lusztig [142] plays an essential role.

Let ̂T ⊂ ̂G be a maximal torus and ̂B ⊂ ̂G a Borel subgroup containing ̂T , so
that Ψ( ̂G) can be identified with Ψ( ̂G, ̂T , ̂B). For a C-representation V of ̂G and
μ ∈ X , we denote by V (μ) ⊂ V the eigenspace for the character μ under the action
of ̂T . As explained by Gross [97, Sect. 3], for every λ ∈ X+, we have an identity of

6 We use λ(p) to denote the image of p by the morphism Q
×
p → T (Qp) induced by λ.
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the form
p〈λ,ρ〉[Vλ] = Sat(cλ) +

∑

{μ∈X+ ;μ<λ}
dλ(μ) Sat(cμ) (6.2.4)

for certain integers dλ(μ) depending on p.

Proposition 6.2.6 (Gross). Let G be a split semisimple Zp-group and X+ the
ordered set of dominant weights of ̂G. Let λ ∈ X+.

(i) If λ is a minimal element, then we have p〈λ,ρ〉[Vλ] = Sat(cλ), where 2ρ is the
sum of the positive roots of G.

(ii) For μ ∈ X+ with dim(Vλ(μ)) = 1, we have dλ(μ) = 1.
(iii) (Lusztig) If Vλ = Lie(G) is the adjoint representation, then we have dλ(0) =

∑

i p
mi−1, where the mi are the exponents of the Weyl group of G.

Proof. Part (i) follows immediately from formula (6.2.4). Following Lusztig and
S. Kato, Gross also gives an explicit (though difficult to use in practice) formula for
dλ(μ) under the assumption that G is adjoint, that is, has trivial center. From this, he
deduces parts (ii) and (iii) in the adjoint case [97, Sect. 4, Formulas (4.5) and (4.6)].
To conclude the proof of the proposition, it remains to explain how to reduce to this
case for a general semisimple G. The following lemma is an immediate consequence
of the definitions (see [174, (7.4)]).

Lemma 6.2.7. Let f : G→ G′ be a central homomorphism between split reductive
Zp-groups, and let X and X ′ be the weight lattices of ̂G and ̂G′, respectively. For
every dominant weight μ ∈ X , we haveH(f)(cμ) = cμ′ and Rep(f)([Vμ]) = [Vμ′ ],
where μ′ is the image of μ by the map Ψ(f)∨ : X → X ′.

In the notation of this lemma and if f is, moreover, a central isogeny, so that the
mapH(f) is injective, the linear independence of the cμ′ inHp(G

′) therefore implies
dλ(μ) = dλ′(μ′) for every λ, μ ∈ X+. We conclude the proof of the proposition by
considering the canonical isogenyG→ G/Z(G). This argument also shows that the
formula of Kato and Lusztig mentioned above holds for every semisimple Zp-group
G, by reduction to the adjoint case. ��

6.2.8 The Classical Groups: A Collection of Formulas

The Even Orthogonal Group and Its Variants

Let r ≥ 2 be an integer and L the hyperbolic q-module over Zr
p. We have a commu-

tative square of natural injections (Sect. 4.2.11, Example 4.2.16, and Sect. 6.2.1)
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The top injection commutes with the natural actions of the group with two elements
OL(Zp)/SOL(Zp), the bottom one is then the injection deduced from it on the
invariants. To alleviate the notation, we will view these injections as inclusions. We
begin by describing Hp(PGSOL), which will be useful further on.

We take the notation of Sect. 6.1.3 with respect to the Zp-groups GSOL, SOL,
and PGSOL. Let λ ∈ X∗(P ˜T ). It admits a unique inverse image under the canonical
map X∗(˜T )→ X∗(P˜T ), which we denote by

˜λ =

r
∑

i=0

miε
∗
i ,

such that we have m0 = 〈ε0, ˜λ〉 ∈ {0, 1}. The pmiei and pm0−mie∗i for 1 ≤ i ≤ r

form a Zp-basis of the homodual lattice M = ˜λ(p)L. The latter therefore satisfies

M/M ∩ L �
r
∏

i=1

(Z/pdiZ) ,

where we have di = max(mi−m0,−mi) = |mi−m0/2|−m0/2 for i ∈ {1, · · · , r}
and M � = p−m0M . We denote the isomorphism class of the abelian group above
by Aλ and set vλ = 〈ε0, ˜λ〉 = m0. The map

η : λ → (Aλ, vλ)

obviously induces a surjection from X∗(P˜T ) to the set of pairs (A, v) with A
the isomorphism class of a finite abelian p-group generated by r elements and
v ∈ {0, 1}. It is not difficult to verify that η is constant on the orbits of the subgroup
of Aut(X∗(P˜T )) generated by W and the automorphism τ := Ψ(s) introduced in
Sect. 6.1.3. Moreover, the coweightλ is dominant if and only if we havem1 ≥ m2 ≥
· · · ≥ mr−1 ≥ dr. Two dominant coweights λ, λ′ therefore have the same image by
η if and only if we have λ′ ∈ {λ, τ(λ)}. If we compare this discussion with that of
Sect. 4.2.6, we deduce the following.

Scholium 6.2.9. If λ is a coweight of PGSOL, then we have the equalityT(Aλ,vλ) =
∑

μ∈{λ,τ(λ)} cμ. Moreover, we have T t = T for every T ∈ Hp(PGOL).

The natural injection X∗(T ) → X∗(P ˜T ) identifies the coweights of SOL with
those of PGSOL that satisfy vλ = 0. If λ is a coweight of SOL, we deduce from
this the equality TAλ

=
∑

μ∈{λ,τ(λ)} cμ in Hp(OL).
Given thatHp(PGOL) can be identified with the invariants ofHp(PGSOL) under

the action of OL(Qp)/SOL(Qp) by conjugation, Proposition 4.2.9 follows from the
fact that the cλ with λ dominant form a Z-basis of Hp(PGSOL). For 1 ≤ i ≤ r,
we denote by λi ∈ X∗(P ˜T ) the image of ε∗1 + · · · + ε∗i ∈ X∗( ˜T ), and we denote
by λr+1 ∈ X∗(P˜T ) the image of −ε∗0. In particular, we have 2λr+1 = λr. By
Scholium 6.2.9, we have the relations cλi = T(Z/pZ)i in Hp(OL) for i < r and the
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relations cλr + cτ(λr) = T(Z/pZ)r and cλr+1 + cτ(λr+1) = Kp in Hp(PGOL). The
following statement is well known [174], [169, Sect. 4].

Corollary 6.2.10. (i) The homomorphism Z[X1, · · · , Xr] → Hp(PGOL) that
sends Xi to T(Z/pZ)i for 1 ≤ i ≤ r − 1 and Xr to Kp is a ring isomorphism.

(ii) The homomorphism Z[Y1, · · · , Yr] → Hp(OL) that sends Yi to T(Z/pZ)i for
1 ≤ i ≤ r is a ring isomorphism.

Proof. Since the group PGSOL is adjoint, the discussion in Sect. 6.2.5 implies that
Hp(PGSOL) is the polynomial ring in the cω, whereω runs through the fundamental
coweights of PGSOL. These are the elements λr+1 and τ(λr+1) and the λi for
i = 1, · · · , r− 2, by Bourbaki [39, Planche IV]. The last r− 2 are invariant under τ ,
and the first two are interchanged. Recall that if A is a commutative ring, the subring
ofA[U, V ] consisting of theP (U, V ) such thatP (U, V ) = P (V, U) isA[UV,U+V ].
Thus, Hp(PGOL) is the polynomial ring in the cλi for 1 ≤ i < r − 1, Kp, and
cλr+1cτ(λr+1). But the only dominant coweights of PGSOL that are strictly less than
λr+1 + τ(λr+1) = λr−1 are the λi with 0 ≤ i < r − 1 and i ≡ r − 1 mod 2, with
the convention λ0 = 0. Hence, there exist integers aj ∈ Z such that we have an
identity of the form

cλr+1cτ(λr+1) = cλr−1 +
∑

0≤j<r−1

ajcλj .

This proves part (i). Part (ii) is proved using similar arguments. The monoid of
dominant coweights of SOL is generated by the λi for i ≤ r − 1, λr, and τ(λr).
The subring Hp(SOL) ⊂ Hp(PGSOL) is therefore generated by the cλ, where λ
runs through this list. But if S = {λr+1, τ(λr+1)} and s, t ∈ S, then, as above,
csct−cs+t is an integral linear combination of the cλi for 0 ≤ i ≤ r−2. This implies
that Hp(SOL) is also generated by the ringZ[cλ1 , · · · , cλr−2 ] and the three elements
csct, where s, t ∈ S. We conclude by noting that if A is a commutative ring, the
subring of A[U2, V 2, UV ] ⊂ A[U, V ] consisting of the symmetric polynomials in
U and V is A[UV, (U + V )2]. ��

By Scholium 6.2.9, for m ≥ 0, the operator Tpm ∈ Hp(OL) of pm-neighbors
coincides with cmλ1 . The operator T(Z/pZ)2 appears several times in what follows;
we also denote it by Tp,p.

Example 6.2.11. In Hp(OL), we have the relation

(Tp)
2 = Tp2 + (p+ 1) Tp,p +

(pr − 1)(pr−1 + 1)

p− 1
.

Proof. The dominant coweights of SOL strictly less than 2λ1 are λ2 and 0, which
implies the existence of a, b ∈ Z such that (T2

p) = Tp2+aTp,p+b (formula (6.2.3)).
Since L is a p-neighbor of each of its p-neighbors, the integer b is simply the number
b = c2r(p) of p-neighbors of a self-dual lattice (Scholium-Definition 3.1.2). Let
us compute a using the degree homomorphism deg : H(SOL) → Z introduced in
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Example 6.2.3. The degree of TA is the number of A-neighbors of L; in particular,
we have deg(Tp) = c2r(p) and deg(Tp2) = p2r−2c2r(p) by Proposition 3.1.4. In
the same spirit as in Sect. 3.1, we easily verify that for 1 ≤ i ≤ r, the number
of (Z/pZ)i-neighbors of L is the product of the number of isotropic subspaces
of rank i of L ⊗ Fp and the number of Lagrangians of the hyperbolic q-vector
space over (Z/pZ)i that are transverse to (Z/pZ)i (that is, pi(i−1)/2 by Proposition-
Definition 2.1.3 (b)). For i = 2, we therefore obtain c2r(p)c2r−2(p)(p+ 1)

−1 · p. A
short calculation leads to a = p+ 1. ��
Remark 6.2.12. It would be interesting to know whether the Tpi for i = 1, · · · , r
generate the Q-algebra Hp(OL)⊗Q.

Let us conclude this collection of formulas for the even orthogonal groups with
certain properties of the Satake isomorphism. The half-sum of the positive roots of
GSOL is ρ = (r−1)ε1+(r−2)ε2+ · · ·+εr−1− r(r + 1)/4ε0. The only minimal
dominant coweight of SOL is λ1, and PGSOL admits two other ones, namely λr+1

and τ(λr+1). The first is the dominant weight of the standard representation VSt (of
dimension 2r) of ̂SOL(C) = SO2r(C), and the other two are the dominant weights of
the two spin representationsV ±

Spin of P̂GSOL(C) = Spin2r(C). Proposition 6.2.6 (i)
and Scholium 6.2.9 imply the identities

pr−1[VSt] = Sat(Tp) and pr(r−1)/4([V +
Spin] + [V −

Spin]) = Sat(Kp) . (6.2.5)

Let us now consider the representation Λ2VSt, which is nothing more than the
adjoint representation of SO2r(C). Its highest weight is λ2; the unique dominant
weight strictly less than λ2 is the weight 0. Points (i) and (iii) of Proposition 6.2.6
therefore imply

p2r−3[Λ2VSt] = Sat(Tp,p) + pr−2 +
r−2
∑

i=0

p2i . (6.2.6)

(We could also invoke Example 6.2.3 instead of part (iii) of Proposition 6.2.6.)

The Symplectic Group and Its Variants

Let g ≥ 1 be an integer and L the hyperbolic a-module over Zg
p. We use the notation

of Sect. 6.1.3 with respect to the Zp-groupsGSp2g , Sp2g , and PGSp2g . As above, if
A is a finite abelian p-group generated by g elements, say A � ∏g

i=1 Z/p
miZ with

m1 ≥ · · · ≥ mg ≥ 0, then we have

TA = c∑g
i=1 miε∗i and T(A,1) = cε∗0+

∑g
i=1(mi+1)ε∗i . (6.2.7)

By Shimura [187], the ring Hp(PGSp2g) is the polynomial ring in Kp and the
T(Z/pZ)i for i < g; the subring Hp(Sp2g) is generated by the T(Z/pZ)i for i ≤ g (the
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situation is in fact simpler than that of Corollary 6.2.10, as the monoids of dominants
weights of Sp2g and PGSp2g are free).

The half-sum of the positive roots ρ of GSp2g is −(g(g + 1)/4) ε∗0 + g ε∗1 +
(g − 1) ε∗2 + · · ·+ ε∗g . Let VSt be the standard representation (of dimension 2g + 1)
of ̂Sp2g(C) = SO2g+1(C), and let VSpin be the spin representation of Spin2g+1(C).
The highest weight of VSt is ε∗1, whose only strictly smaller dominant weight is 0.
The highest weight of VSpin is −ε∗0, which is minimal. Proposition 6.2.6 therefore
implies

pg[VSt] = Sat(Tp) + 1 and pg(g+1)/4[VSpin] = Sat(Kp) . (6.2.8)

The Odd Special Orthogonal Group

We will only study the differences with the other cases, which are minor. Let r ≥ 1
be an integer, let L be the Zp-module Zr

p ⊕ (Zr
p)

∗ ⊕Zp endowed with the quadratic
form obtained by taking the orthogonal sum of the hyperbolic q-module over Zr

p and
x → x2, let V = L ⊗ Qp, and let G be the Zp-group SOL (Sect. B.1). We leave it
as an exercise to verify that the map g → g(L) identifies G(Qp)/G(Zp) with the
subset Rb

Zp
(V ) ⊂ RZp(V ) of lattices M ⊂ V such that M � = M if p > 2, or such

that M is a sublattice of index 2 of M � if p = 2 (Sect. 4.2.6).
Let VSt be the standard representation of ̂SOL(C) = Sp2r(C) (of dimension 2r);

its highest weight is ε∗1, which is minimal (we use the notation of Sect. 6.1.3 with
respect to the Zp-group G). The Hecke operator cε∗1 is associated with the ordered
pairs (N,M) ∈ Rb

Zp
(V )2 such that M ∩ N has index p in M : this is the operator

Tp of p-neighbors in the sense of Sect. B.3. Since the half-sum of the positive roots
of SOL is 1

2 (2r − 1) ε1 +
1
2 (2r − 3) ε2 + · · ·+ 1

2 εr, we therefore have

p(2r−1)/2[VSt] = Tp .

6.3 The Harish-Chandra Isomorphism

6.3.1 The Center of the Universal Enveloping Algebra
of a Reductive C-group

LetG be a reductiveC-group,g the LieC-algebra ofG,U(g) its universal enveloping
algebra, and Z(U(g)) the center of U(g) [76, Chap. 2]. Let V be a U(g)-module. We
say that V admits a central character if there exists a homomorphism of C-algebras

cV : Z(U(g))→ C
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such that we have z · v = cV (z)v for every v ∈ V and every z ∈ Z(U(g)); we
then call cV the central character of V . By Dixmier [76, Proposition 2.6.8], every
simpleU(g)-module admits a central character. In this subsection, following Harish-
Chandra and Langlands, we recall how to view these central characters as semisimple
conjugacy classes in the Lie C-algebra ĝ of the dual reductive C-group ̂G of G.

Let Pol(ĝ) = Sym( ĝ
∗
) be the C-algebra of the polynomial functions over ĝ. It is

endowed with a natural action of ̂G(C) arising from the adjoint action on ĝ, whose
algebra of invariants we denote by Pol(ĝ)

̂G. The Harish-Chandra isomorphism is a
canonical isomorphism

HC: Z(U(g))
∼−→ Pol(ĝ)

̂G

[76, Theorems 7.4.5 and 7.3.5], [136, Sect. 2]. Let ĝss be the set of conjugacy classes
of semisimple elements of ĝ. Each such class X ∈ ĝss defines, by evaluation, a
homomorphism of C-algebras Pol(ĝ)

̂G → C, P → P (X). A classical result of
Chevalley asserts that the resulting map ĝss → HomC−alg(Pol(ĝ)

̂G,C) is bijective.

Scholium 6.3.2. The Harish-Chandra isomorphism induces a canonical bijection
HomC−alg(Z(U(g)),C)

∼→ ĝss.

If X is the weight lattice of G, then the elements of X ⊗ C can be viewed as
elements of ĝss. Indeed, let ̂T be a maximal torus of ̂G and ̂B ⊂ ̂G a Borel subgroup
containing ̂T . The datum Ψ(G)∨ can be identified with Ψ( ̂G, ̂T , ̂B); in particular,X
can be identified with X∗( ̂T ). The exponential map defines a natural map between
X⊗C and the complex Lie algebrât of ̂T . If W is the Weyl group of G, we deduce
from this a canonical bijection

(X ⊗ C)/W
∼−→ ĝss . (6.3.1)

Example 6.3.3. Let λ ∈ X+ be a dominant weight of G and Vλ the irreducibleC-re-
presentation of G with highest weight λ (Sect. 6.1.4). This representation endows Vλ

with the structure of a U(g)-module. This module is simple, and its central character
corresponds to the conjugacy class of λ+ ρ, where ρ is the half-sum of the positive
roots of G.

More generally, fix a pair T ⊂ B in G that identifies Ψ(G) with Ψ(G, T,B).
Let t ⊂ b be their respective Lie C-algebras and V a U(g)-module generated by
an element e ∈ V such that b e ⊂ Ce (module of highest weight). Let λ ∈ t∗

be the linear form defined by he = λ(h)e for every h ∈ t (we can also view it,
dually, as an element of ̂t ). Then, V admits a central character by Dixmier [76,
Proposition 7.1.8], and it follows rather directly from the definition of the Harish-
Chandra homomorphism that the corresponding conjugacy class is that of λ+ρ [76,
Sect. 7.4.6].
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6.3.4 The Infinitesimal Character of a Unitary Representation

Let G be a reductive R-group. We apply the considerations and notation of the
previous subsection to the C-group GC := G×R C. We refer to [119] and [209] for
a general expository treatment of the theory of unitary representations of reductive
Lie groups.

Let V be a Hilbert space endowed with a unitary representation of the Lie group
of G(R). Let V ∞ ⊂ V be the subspace of C∞-vectors, that is, of the v ∈ V such that
the map g → gv,G(R) → V is of class C∞; it is dense in V (Gårding) and stable
under G(R). If the unitary representation V is irreducible, then the U(g)-module
V ∞ admits a central character [209, Sect. 1.6.5], called the infinitesimal character
of V ; we denote it by infV . As proved by Harish-Chandra, this is a rather fine
invariant of the representation V : up to isomorphism, there are only a finite number
(possibly zero) of irreducible unitary representations of G with a given infinitesimal
character (this is a difficult result; see [119, Corollary 10.37]). The Harish-Chandra
isomorphism allows us to view infV as a semisimple conjugacy class in ĝ. We will
give two examples.

Let us first suppose that G(R) is a compact group, in which case it is necessarily
connected by Chevalley [34, Chap. V, Sect. 24.6 (c) (ii)]. Every C-representation
V of GC defines, by restriction, a representation V|G(R) of G(R). The functor
V → V|G(R) is an equivalence of categories between C-representations of GC

and finite-dimensional, continuous, complex representations of G(R). In particular,
every irreducible representation of G(R) is isomorphic to (Vλ)|G(R) for a unique
dominant weightλ ofGC; we will, in general, denote it byVλ to alleviate the notation.
By Example 6.3.3, its infinitesimal character is the conjugacy class of λ+ ρ in ĝ. In
particular, this character determines Vλ uniquely.

Let us now suppose thatG is theR-groupSp2g . We use the notation of Sect. 4.5.3,
except that g now denotes the complexified Lie algebra of G(R). For the maximal
compact subgroup, we choose the stabilizer K ⊂ G(R) of i1g in Hg, which has Lie
algebra k. This is a unitary group with g variables: the homomorphismK → GLg(C)
given by k → j(k, i1g) identifies GLg(C) with the complexification of K , and
then (by differentiation) kC with the Lie algebra glg(C). The complexified Cartan
decomposition can be written as

g = kC ⊕ p+ ⊕ p− ,

where p± are abelian Lie subalgebras stable under ad(K). The key point is that
the adjoint action on p of the element (1/

√
2)
(

1 1−1 1

)

of the center of K (which
is isomorphic to U(1)) induces the natural complex structure of the R-vector space
p � Symg(C).

Let T be a maximal torus of GLg and B a Borel subgroup containing T , with
respective complex Lie algebras t ⊂ b ⊂ glg(C) = kC. The properties of p−

mentioned above ensure that t is a Cartan subalgebra of g and that b⊕ p− is a Borel
subalgebra of g.



6.3 The Harish-Chandra Isomorphism 163

Proposition 6.3.5 (Harish-Chandra). Let V be a unitary representation of
Sp2g(R), e an element of V ∞, and U an irreducible C-representation of GLg such
that

(i) p−e = 0;
(ii) the representation of K generated by e is isomorphic to U|K .

Then:

(a) The U(g)-module U(g)e ⊂ V ∞ admits a central character. Its associated
semisimple conjugacy class is λ + ρ, where λ ∈ t∗ is the highest weight of U
with respect to B and ρ is the half-sum of the roots of t in b⊕ p−.

(b) The closed subrepresentation V ′ ⊂ V generated by e under the action of
Sp2g(R) is irreducible. Moreover, if f ∈ (V ′)∞ has properties (i) and (ii), then
we have f ∈ C[K].e.

Up to isomorphism, there exists at most one irreducible unitary representation of the
group Sp2g(R) admitting a vector e that is in C∞ and has properties (i) and (ii).

This result is well known to specialists in the theory of unitary representations of
Lie groups; we provide a proof for the sake of the reader.

Proof. By property (ii), the space E = C[K].e ⊂ V∞ is a representation of K
isomorphic to U|K . It is stable under kC and annihilated by p− because of the
inclusion ad(K)p− ⊂ p−. It is therefore also stable under the parabolic subalgebra
q = kC ⊕ p− of g. Let Y be the induced U(g)-module U(g)⊗U(q) E. The inclusion
of E in V∞ therefore induces a U(g)-equivariant morphism

u : Y −→ V ∞ ,

whose image we denote by X = u(Y ). Since K is connected, E is irreducible
as an U(kC)-module. After replacing e with a suitable element of E, if necessary,
we may assume be ⊂ Ce and he = λ(h)e for every h ∈ t (Cartan–Weyl theory
of the highest weight). The element 1 ⊗ e therefore generates Y and satisfies (b ⊕
p−)(1⊗e) ⊂ C(1⊗e) by condition (i). It follows that Y , and thereforeX = U(g)e,
admits an infinitesimal character satisfying assertion (a), by the second paragraph of
Example 6.3.3.

Also note that X is stable under K . Moreover, the adjoint action of K on U(g),
as well as its natural action on E, defines the structure of a K-module on Y such
that u is K-equivariant. These structures turn Y and X into (g,K)-modules, which
we denote by Y ′ and X ′, and turn u into a morphism of (g,K)-modules (we refer
to [209, Sect. 3.3] for these notions). We have already seen that Y is a U(g)-
module of highest weight. By Dixmier [76, Proposition 7.1.8], this implies, on the
one hand, that Y ′ admits a unique simple quotient and, on the other hand, that Y ′

is admissible (this means that every irreducible representation of K occurs with
finite multiplicity; this property follows from the fact that every weight of Y has
finite multiplicity; see loc. cit.). But X ′ admits an invariant Hermitian product (it is
unitary in the sense of [209, Sect. 9.3.3]) because the representation V is unitary by
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assumption. SinceX ′ is admissible as a quotient of Y ′, it is irreducible and therefore
the unique irreducible quotient of Y ′. Since X ′ admits a central character, a result
of Harish-Chandra ensures that all its vectors are in fact analytic [209, Sects. 1.6
and 3.4.9], [119, Chap. VIII, Sect. 8.7] and therefore that the closure X of X in
V is stable under G(R) [209, Sect. 1.6.6]. It admits X ′ as a (g,K)-module: it is
therefore the unique unitary irreducible representation of G(R) with (g,K)-module
X ′ [209, Sect. 3.4.11]. This proves the first part of statement (b). The two remaining
assertions follow from the already proved fact that X ′ is the unique irreducible
quotient of Y ′. ��

Let (X,Φ,Δ, X∨,Φ∨,Δ∨) be the based root datum associated with the triple
(GLg, T, B). As usual, we writeX = ⊕g

i=1Zεi, Φ = {±(εi−εj) ; 1 ≤ i < j ≤ g},
Δ = {εi − εi+1 ; 1 ≤ i < g}, X∨ = ⊕g

i=1Zε
∗
i , and (εi − εj)

∨ = ε∗i − ε∗j for
i < j. The dominant weights of GLg are therefore the λ ∈ X such that we have
λ =

∑g
i=1 miεi with m1 ≥ m2 ≥ · · · ≥ mg .

Corollary 6.3.6. LetW be the irreducibleC-representation ofGLg of highest weight
∑g

i=1 miεi. Suppose that there exists an irreducible unitary representation π′
W of

Sp2g(R) satisfying the conditions of Proposition 6.3.5 forU = W ∗. The eigenvalues
of the semisimple conjugacy class of so2g+1(C) that corresponds to infπ′

W
are the

2g + 1 integers
±(mi − i) for i = 1, · · · , g and 0 .

Proof. A simple computation shows that the adjoint representation of K on p−

is isomorphic to the restriction, via the homomorphism j, of the representation
(g,X) → g X tg of GLg(C) on Symg(C) (this is the symmetric square of the
standard representation). Its set of weights is therefore

{εi + εj ; 1 ≤ i ≤ j ≤ g} .

This description shows that the basis of the root system of GC associated with
T corresponding to b ⊕ p− is none other than the standard basis introduced in
Sect. 6.1.3. In particular, the element ρ of Proposition 6.3.5 (a) is none other than
gε1 + (g − 1)ε2 + · · · + εg. The dominant weight λ of W ∗ with respect to B is
∑g

i=1−mg+1−iεi, and we therefore have

λ+ ρ =

g
∑

i=1

(i−mi)εg+1−i .

Since by Sect. 6.1.3, the weights of ̂Sp2g(C) = SO2g+1(C) in its standard represen-
tation on C

2g+1 are 0 and the ±ε∗i , we are done. ��
Let W be an irreducibleC-representation of GLg in which−1g acts trivially. Let

f ∈ SW (Sp2g(Z)) be a nonzero Siegel cusp form of weight W . We apply Proposi-
tion 6.3.5 below to U = Acusp(PGSp2g), every element e in the image of W ∗ ⊗ f
(Proposition 4.5.4), and U = W ∗. It shows that if w ∈ W ∗ is nonzero, then under
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the action of Sp2g(R), the function ϕw,f ∈ Acusp(PGSp2g) defined in Sect. 4.5.3
generates, topologically, an irreducible subrepresentation of Acusp(PGSp2g) that is
necessarily isomorphic to the representation π′

W of Corollary 6.3.6. This proves the
existence of π′

W when SW (Sp2g(Z)) �= 0. In fact, Harish-Chandra has proved the
existence of π′

W for every W whose highest weight satisfies mg > g (this is the
holomorphic discrete series; see [119, Chap. VI, Sect. 4, Theorem 6.6]). If this as-
sumption on W is satisfied, we say that W is positive; it is the only case that interests
us in this book. Note that if W is positive, the 2g+ 1 integers of Corollary 6.3.6 are
distinct.

Assume that W is positive and that −1g acts trivially in W (that is, we have
∑

i mi ≡ 0 mod 2), so that π′
W factors through Sp2g(R)/{±12g}. It is not diffi-

cult to verify that π′
W is not isomorphic to its outer conjugate7 by an element of

PGSp2g(R)\Sp2g(R). In other words, the unitary representation of PSGp2g(R)

πW = Ind
PGSp2g(R)

Sp2g(R)
π′
W

induced by a subgroup of index 2 is irreducible. Of course, πW and π′
W have the

same infinitesimal character because Sp2g(R) and PGSp2g(R) have the same Lie
algebra.

We fix a nonzero C∞-vector vW ∈ πW that is annihilated by p−, generates W ∗

under the action of K , and is an eigenvector for the action of b. Such a vector is
unique up to multiplication by an element of C∗, by Proposition 6.3.5. Likewise, we
fix a nonzero eW ∈W ∗ of highest weight with respect to B.

Corollary 6.3.7. Assume that W is positive. For F ∈ SW (Sp2g(Z)), there exists
a unique uF ∈ AπW (PGSp2g) such that uF (vW ) = ϕeW ,F . The map F → uF

defines an H(PGSp2g)
opp-equivariant isomorphism

SW (Sp2g(Z))
∼→ AπW (PGSp2g) .

Proof. Propositions 4.5.4 and 6.3.5 show that the map of the corollary induces an
Hopp(PGSp2g)-equivariant isomorphism between SW (Sp2g(Z)) and the subspace
HomG(R)(πW ,Acusp(PGSp2g)) ⊂ AπW (PGSp2g). We conclude using the follow-
ing general fact: if G is a Z-group such that GQ is semisimple and if U is a discrete
series in G(R), then the inclusion HomG(R)(U,Acusp(G)) ⊂ AU (G) is an equality
[208, Theorem 4.3]. ��

Thus, if F ∈ SW (Sp2g(Z)) is nonzero and an eigenvector of all Hecke operators
in H(PGSp2g), the representation πF ∈ Πdisc(PGSp2g) generated by F following
the general definition of Sect. 4.3.2 is well defined. It satisfies (πF )∞ = πW .

7 This is because this outer conjugate admits a vector C∞ that is annihilated by p+ and generates
W under the action of K (lowest weight). Its (g,K)-module can be studied in a manner completely
analogous to that of π′

W : it can be isomorphic to that of π′
W only if it is finite-dimensional, that

is, if π′
W (and therefore W ) is trivial. This does not occur because the trivial representation of

Sp2g(R) does not occur in Acusp(PGSp2g).
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The discourse above can also be held for Sp2g instead of PGSp2g and shows
the existence of an Hopp(Sp2g)-equivariant isomorphism between the spaces
SW (Sp2g(Z)) and Aπ′

W
(Sp2g); its contents are only somewhat coarser, by Proposi-

tion 4.5.7.

Exceptional Isomorphisms in Genus 1 and 2

In the following, we assume that W is positive, of highest weight
∑

imiεi, and that
−1g acts trivially in W .

Suppose g = 1. In this case, W is the representation detk with k = m1 > 1
and k ≡ 0 mod 2. The isomorphism sl2(C) � so3(C) (symmetric square) allows
us to view the infinitesimal character of πW as the semisimple conjugacy class in
sl2(C) with eigenvalues ±(k − 1)/2. In fact, the well-known classification of the
unitary dual of SL2(R) (Bargmann [18]) shows that, up to isomorphism, the unique
irreducible unitary representation of PGL2(R) that has an infinitesimal character
with eigenvalues±(k − 1)/2 with k > 3 an even integer, is the representation πdetk .
When k = 2, we must add the two representations of dimension 1.

Suppose g = 2. In this case, in the notation of [89], W is the representation
Symj(C2) ⊗ detk with j = m1 −m2 and k = m2; moreover, we have k > 2 and
j ≡ 0 mod 2. The exceptional isomorphism sp4(C) � so5(C) allows us to view the
infinitesimal character of πW as the semisimple conjugacy class in sp4(C) with the
following eigenvalues for its action on C

4:

±w1

2
, ±w2

2
,

where w1 = m1 +m2 − 3 = 2k + j − 3 and w2 = m1 −m2 + 1 = j + 1.

6.4 The Arthur–Langlands Conjecture

6.4.1 Langlands Parametrization ofΠ(G) for G Semisimple
over Z

Let H be a C-group, with neutral component H0 and complex Lie algebra h. We
denote by H(C)ss (resp. hss) the set of H(C)-conjugacy classes of semisimple
elements of H0(C) (resp. h) and consider the set

X(H)

of families (cv)v∈P∪{∞}, where c∞ ∈ hss and cp ∈ H(C)ss for every p ∈ P. In
the discussion that follows, H will be connected (and even semisimple), but we will
later encounter nonconnected examples associated with the even orthogonal groups.



6.4 The Arthur–Langlands Conjecture 167

Every morphism of C-groups r : H → H ′ defines a map that we also denote by
r : X(H)→ X(H ′), which sends (cv) to (r(cv)).

Let G be a semisimple Z-group. As we have already mentioned, for every prime
p, the Zp-group GZp is split and reductive [96, Proposition 1.1]; it therefore admits
a based root datum Ψ(GZp). Moreover, if Q (resp. Qp) is an algebraic closure of Q
(resp. Qp), and if Q → Qp and Q → C are two embeddings, then the associated
isomorphisms of based root data

Ψ(GZp)
∼→ Ψ(G

Qp
)

∼← Ψ(G
Q
)

∼→ Ψ(GC)

do not depend on any of the choices of embeddings.8 The Langlands dual of G
Q

is therefore canonically the Langlands dual of the GZp for every p and of GC; we
denote it by ̂G.

Following Langlands [136], we have a canonical map

c : Π(G)→ X( ̂G) , π → (cv(π)) ,

defined as follows. Set π = π∞⊗πf ∈ Π(G). Let c∞(π) be the infinitesimal charac-
ter of π∞ (Sect. 6.3.4). The Satake isomorphism implies that H(G) =

⊗

p Hp(G) is
commutative, so that πf has dimension 1 and can be viewed as a ring homomorphism
from H(G)opp = H(G) to C or, equivalently, as a collection of ring morphisms

πp : Hp(G)→ C ,

where πp is the restriction of πf to Hp(G) in the sense of Sect. 4.2.5. Consequently,
by Scholium 6.2.2, to each πp, there corresponds a unique element cp(π) ∈ ̂G(C)ss.
By definition, c(π) determines πf and the infinitesimal character of π∞; the map c
therefore has finite fibers (Harish-Chandra, Sect. 6.3.4).

Example 6.4.2 (Trivial Representation). Let π = 1G ∈ Πdisc(G) be the trivial
representation of G (Sect. 4.3.2). By Example 6.3.3, 2c∞(π) is the conjugacy class
of the coweight 2ρ of ̂G. Likewise, by Example 6.2.3, the conjugacy class cp(π) is
that of ρ(p) = (2ρ)(p1/2).

6.4.3 A Few Formulas

We first consider the Z-group PGL2, with dual group SL2. Let k > 0 be an
even integer and F =

∑

n≥1 anq
n ∈ Sk(SL2(Z)) a modular eigenform for all

8 Gross’ argument is the following. It is a general fact that the natural action of Gal(Q/Q) on
Ψ(G

Q
) factors into a faithful action of the Galois group of a number field K that is Galois over Q.

The reductivity of G over Zp implies that K is unramified at p, and therefore K = Q by a famous
result of Minkowski. This, in turn, implies that G is split over Zp and the rest of the assertions
above.



168 6 Langlands Parametrization

the Hecke operators of H(PGL2) with a1 = 1 (these form a basis of Sk(SL2(Z))
[177, Chap. VII, Sect. 5.4]). Let π ∈ Πcusp(PGL2) be the representation generated
by F (see Sects. 4.3.2 and 6.3.4). We already determined c∞(π), that is, infπW ,
in terms of k loc. cit. A Z-isomorphism PGL2 � PGSp2 induces an isomorphism
Hp(PGSp2)

∼→ Hp(PGL2) that sendsKp toTZ/pZ. The relations (6.2.8)and (4.5.5),
as well as [177, Chap. VII, Theorem 7], therefore show that for every prime p,

p(k−1)/2 Trace(cp(π)) = ap .

Let us now consider theZ-groupPGSp4, with dual group theC-groupSp4 (which
is also Spin5). LetW be the representationSymj(C2)⊗detk ofGL2(C)with k ≥ 3,
let F ∈ SW (Sp4(Z)) be a (nonzero) eigenform, and let π ∈ Πcusp(PGSp4) be the
representation generated by F . We already determined c∞(π) (that is, infπW ) in
terms of j and k in Sect. 6.3.4. For a prime p, the element cp(π) ∈ Sp4(C)ss is
uniquely characterized by its trace and that of the second exterior power of the
tautological representation VSpin � C

4 of Sp4(C). If Kp(F ) = apF and Tp(F ) =
bpF , the relations (6.2.8) show

p3/2 Trace(cp(π) |VSpin) = ap and p2 Trace(cp(π) |Λ2VSpin) = bp + p2 + 1 .

For a general g ≥ 1, we consider an eigenform F ∈ SW (Sp2g(Z)) such that
Tp(F ) = bpF . If π ∈ Πcusp(Sp2g) denotes the representation generated by F , then
c∞(π) ⊂ so2g+1(C)ss is given in terms of W by Proposition 6.3.6. If VSt � C

2g+1

denotes the tautological representation of SO2g+1(C), then for every prime p,

pg Trace(cp(π) |Vst) = bp + 1 .

Now, take n ≡ 0 mod 8 and G = SOn, the special orthogonal group of En

(Sect. 4.4.4), so that we have ̂G(C) = SOn(C). Let W be the irreducible repre-
sentation of highest weight

∑n/2
i=1 miεi, with m1 ≥ · · ·mn/2−1 ≥ |mn/2| in the

notation of Sect. 6.1.3. Let F ∈ MW (SOn) be an eigenform and π ∈ Πdisc(SOn)
the representation it generates. By definition, we have π∞ � W ∗, but W ∗ � W
holds because n ≡ 0 mod 4, so that the n eigenvalues of c∞(π) ∈ son(C)ss are

±
(

mi +
n

2
− i

)

for i = 1, · · · , n
2

by Sect. 6.3.4. Let p be a prime. Suppose Tp(F ) = λpF , Tp2(F ) = λp2F , and
Tp,p(F ) = λp,pF (Sect. 6.2.8). The relations (6.2.5) and (6.2.6), and that of Exam-
ple 6.2.11, can then be written as follows:

pn/2−1 Trace(cp(π) |VSt) = λp ,

pn−3 Trace(cp(π) |Λ2VSt) = λp,p + p(n/2)−2 +
pn−2 − 1

p2 − 1
,

(p+ 1)λp,p = λ2
p − λp2 − (pn/2 − 1)(p(n/2)−1 + 1)

p− 1
.
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6.4.4 The Arthur–Langlands Conjecture

Let G be a semisimpleZ-group and r : ̂G→ SLn a C-representation. This represen-
tation induces a map X( ̂G) → X(SLn) defined by (cv) → (r(cv)), which we also
denote by r. With any π ∈ Π(G), we associate the element

ψ(π, r) := r(c(π)) ∈ X(SLn) .

This element is called the Langlands parameter of the pair (π, r). For π ∈ Πdisc(G),
the conjectures of Langlands [135], made more precise by Arthur [9], state that
ψ(π, r) can be expressed in terms of the Πcusp(PGLm) for m ≥ 1. Before recalling
how, we need to introduce some notation.

– We denote by Stm the tautological C-representation of SLm over C
m. For

integers a and b, the direct sum and the tensor product of the representations Sta
and Stb define C-representations of SLa × SLb of respective dimensions a+ b
and ab, hence also natural maps

X(SLa)× X(SLb)→ X(SLa+b) and X(SLa)× X(SLb)→ X(SLab) .

We denote these maps by (c, c′) → c ⊕ c′ and (c, c′) → c ⊗ c′, respectively.
These operations are commutative, associative, and distributive in the obvious
sense.

– Following Arthur [9], we consider the element e ∈ X(SL2) defined by

ep =

[

p−1/2 0
0 p1/2

]

∀p ∈ P and e∞ =

[−1/2 0
0 1/2

]

.

For every integer d ≥ 1, the element e gives rise to the element Symd−1(e) ∈
X(SLd), where Symd−1 denotes the representation Symd−1St2 of SL2. We
denote this new element by [d]; for example, we have [2] = e. These elements
will later play a particularly important role. Let us already note that we have
[d] = c(1PGLd

), by Example 6.4.2. More generally, for integers m, d ≥ 1 and
c ∈ X(SLm), we set

c[d] := c⊗ [d] .

– For π ∈ Πcusp(PGLm), the element c(π) ∈ X(SLm) will simply be denoted by
π. This abuse of notation will, in general, be innocent because c(π) determines
π by the strong multiplicity 1 theorem of Piatetski-Shapiro, Jacquet, and Shalika
[112]. (Note that the injectivity of the parametrization map c is very specific to
the Z-groups PGLm.)

Thus, if n1, . . . , nk and d1, . . . , dk are integers that are at least 1, if we have
πi ∈ Πcusp(PGLni) for every i = 1, . . . , k, and if we set n =

∑k
i=1 nidi, then we

have a well-defined element

π1[d1]⊕ π2[d2]⊕ · · · ⊕ πk[dk] ∈ X(SLn) .
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It depends only on the multi-set {(πi, di) ; i = 1, . . . , k}. We denote by

XAL(SLn)

the subset of X(SLn) consisting of the elements of this form, for an arbitrary quadru-
ple (k, (ni), (di), (πi)) with n =

∑k
i=1 nidi. We have the following remarkable

uniqueness result, due to Jacquet and Shalika [113] (see also [139]).

Proposition 6.4.5. Let k, l ≥ 1 be integers. For 1 ≤ i ≤ k (resp. 1 ≤ j ≤ l),
consider integers ni, di ≥ 1 (resp. n′

j, d
′
j ≥ 1) and a representation πi (resp. π′

j )
in Πcusp(PGLni) (resp. Πcusp(PGLn′

j
)). Suppose that we have n :=

∑

i nidi =
∑

j n
′
jd

′
j and

⊕k
i=1πi[di] = ⊕l

j=1π
′
j [d

′
j ]

in X(SLn). Then k = l and there exists a σ ∈ Sk such that for every 1 ≤ i ≤ k, we
have (n′

i, π
′
i, d

′
i) = (nσ(i), πσ(i), dσ(i)).

The particular case of the conjectures of Arthur and Langlands that we wish to
highlight is the following.

Conjecture 6.4.6 (Langlands [135], Arthur [9]). Let G be a semisimple Z-group
and r : ̂G → SLn a C-representation. For π ∈ Πdisc(G), we have ψ(π, r) ∈
XAL(SLn).

In other words, for every π ∈ Πdisc(G), there exist an integer k ≥ 1, integers
n1, . . . , nk, d1, . . . , dk, and representations πi ∈ Πcusp(PGLni) for every 1 ≤ i ≤
k, such that we have ψ(π, r) = ⊕k

i=1πi[di] (and this decomposition is unique up to
permutation of the factors, by Proposition 6.4.5). Concretely, this says that for every
v ∈ P∪{∞}, the n eigenvalues of the semisimple conjugacy class ρ(cv(π)) are the
λ pμ for v ∈ P (resp. λ+ μ for v =∞), where

– λ runs through the eigenvalues of Stri(cv(πi)), counted with multiplicities;
– μ takes on the values (1− di)/2, (3 − di)/2, . . . , (di − 3)/2, (di − 1)/2; and
– i runs through {1, . . . , k}.
We refer to the preface for another point of view on this conjecture, where it

is motivated by the existence of a conjectural group with wondrous properties (the
Langlands group of Z). Let us add that given the group G and r, the philosophy
of Langlands and Arthur also suggests a description of the image of π → ψ(π, r),
which is much more difficult to formulate in general; one ingredient is the Arthur–
Langlands multiplicity formula already encountered in the preface. In the examples
that follow, we will discuss only much simpler cases where G is either PGLn or a
classical group, and where r is its “tautological” representation.
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6.4.7 A Few Examples

The Case of PGLn

For π ∈ Πcusp(PGLn), we tautologically have c(π) = ψ(π, Stn) = π. For a di-
visor d of n and � ∈ Πcusp(PGLn/d), using residues of Eisenstein series, Speh
constructed a π ∈ Πdisc(PGLn) such that we have ψ(π, Stn) = �[d]. The con-
jecture of Jacquet, proved by Moeglin and Waldspurger [151], asserts that every
π ∈ Πdisc(PGLn) is of this form. This proves Conjecture 6.4.6 for G = PGLn and
r = Stn.

Another famous and well-known case of Conjecture 6.4.6 concerns the sym-
metric square representation Sym2 : P̂GL2 = SL2 → SL3. More precisely, Gel-
bart and Jacquet have proved that for π ∈ Πcusp(PGL2), there exists a unique
π′ ∈ Πcusp(PGL3) such that we have ψ(π, Sym2) = π′ [90]. By abuse of no-
tation, we write π′ = Sym2 π. For example, if π is generated by an eigenform
F ∈ Sk(SL2(Z)) as in Sect. 6.4.1, then c∞(Sym2 π) has eigenvalues0 and±(k−1),
and cp(Sym

2 π) ∈ SL3(C)ss has characteristic polynomial

X3 − (p1−ka2p − 1)(X2 −X) + 1 .

Classical Groups

The Arthur classification [13], to which we will come back next chapter, proves
Conjecture 6.4.6 when G is a classical group (in the slightly restrictive sense defined
below) and r is the standard representation of ̂G; Arthur also describes the image of
π → ψ(π, r). For the moment, we restrict ourselves to explaining the terminology
written in italics.

We denote by ClassC the set consisting of the C-groups Sp2g for integers g ≥ 1
and the C-groups SOm for integers m �= 2. For example, PGSp2g is not isomorphic
to a group in ClassC if g > 2. The reader will note that the C-groups in the two
families mentioned above are pairwise nonisomorphic. Every C-group in ClassC
has a tautological distinguished C-representation, over C2g for Sp2g and over Cm

for SOm, called the standard representation and denoted by St. It is irreducible and
faithful, and of minimal dimension for these properties.

The semisimpleZ-groupsG to which the work of Arthur mentioned above applies
are those such that GC is isomorphic to an element of ClassC, in which case the
same holds for ̂G (Sect. 6.1.3). These include the Z-group Sp2g and the Z-group
SOL, where L is a q-module over Z of dimension greater than 2 (Sect. 2.1). They
also include the special orthogonalZ-groups of odd rank studied in Appendix B (see
Proposition B.1.7). We can prove that, up to isomorphism, there are no other such
groups [96].
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Definition 6.4.8. Let G be a semisimple Z-group such that GC is isomorphic to an
element of ClassC, and let St : ̂G → SLn be the standard representation of ̂G. For
any π in Π(G), the standard parameter of π is the element ψ(π, St) of X(SLn).

The Case of the Z-groups On and PGOn

Consider the orthogonal Z-group G′ = On of the q-module En (Sect. 4.4.4). Since
it is not connected, we cannot apply the arguments of Sect. 6.4.1 to it verbatim.
However, we already observed in Corollary 6.2.4 that for every prime p, the Satake
isomorphism of G = SOn induces a bijection

Homring(Hp(On),C)
∼→ On(C)ss ;

let us stress that the right-hand side denotes the set of On(C)-conjugacy classes of
semisimple elements of SOn(C) (Sect. 6.4.1). Likewise, we easily verify that if V ′ is
an irreducible representation of G′(R), its restriction V to G(R) is either irreducible
or the sum of two nonisomorphic representations that are outer conjugates under
the action of On(R). The On(C)-orbit of the element of (son)ss associated with
the infinitesimal character of each of the components of V is therefore independent
of the chosen component; by abuse of language, we will call it the infinitesimal
character of V ′. We have thus defined a parametrization map

c : Π(On) −→ X(On(C)) ,

given by π → (cv(π)). It is therefore natural to set

X(̂On) := X(On(C)) .

By Sect. 6.4.1, every C-representation r : On(C)→ GLn(C) induces a map

r : X(̂On)→ X(GLn) ,

so that the element ψ(π, r) := r(c(π)) of X(GLn) is well defined. This element is
actually in the subset X(SLn) of X(GLn). This construction applies, in particular,
to the standard (tautological) representation St : On(C) → GLn(C), and we have
the following definition, which is parallel to Definition 6.4.8.

Definition 6.4.9. For any π in Π(On), the standard parameter of π is the element
ψ(π, St) of X(SLn).

For On, we have a conjecture analogous to Conjecture 6.4.6; it actually follows
from the latter applied to the Z-group SOn; let us explain how. Consider π′ ∈
Πdisc(On), V ′ = (π′)∗∞, and V = V ′

|SOn(R)
. By Sect. 4.4.4, there is a natural

H(On)-equivariant injection

res: MV ′(On) −→ MV (SOn) .
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Let π ∈ Πdisc(SOn) be the representation generated by an arbitrary eigenform
belonging to the H(SOn)-module generated by res(F ), where F ∈ MV ′(On) is
an arbitrary eigenform generating π′ (Sect. 4.3.2). The resulting representations
π ∈ Πdisc(SOn) will be called the components of the restriction of π′ to SOn; they
form a nonempty finite set. If π is such a component, then by definition, c(π′) is the
image of c(π) by the canonical homomorphism X(̂SOn)→ X(̂On). The following
proposition is therefore obvious.

Proposition 6.4.10. Let π′ ∈ Πdisc(On), let π ∈ Πdisc(SOn) be a component of the
restriction of π′ to SOn, let r′ : On(C) → GLm(C) be a C-representation, and let
r be the restriction of r′ to SOn(C). Then ψ(π′, r′) = ψ(π, r). In particular, the
Arthur–Langlands conjecture is true for (π, r) if and only if it is for (π′, r).

This proposition is especially useful in the case of the tautological representation
St of On(C) on C

n, whose restriction to SOn(C) is the latter’s standard representa-
tion.

Finally, the discussion above admits a natural analog for the Z-group PGOn, for
which we have a parametrization map

c : Π(PGOn)→ X(P̂GOn) := X(Pinn) ,

wherePinn is theC-groupPin of the standardq-vector spaceVn of dimensionn over
C. Following [15], we recall that this is the subgroup of elements x of the Clifford
algebraC(Vn) of Vn such that xxt = 1 and α(x)Vnx

−1 ⊂ Vn, where x → α(x) and
x → xt denote the canonical involution and anti-involution of C(Vn), respectively.
Its neutral component, defined byα = id, is theC-groupSpinn; it has index 2. Every
element e ∈ Vn such that q(e) = 1 (that is, e2 = 1) belongs to Pin(Vn) = Pinn(C)
and defines a section of the canonical morphism Pinn → Z/2Z. Finally, we have
a natural surjective morphism Pinn → OVn given by x → (v → α(x)vx−1). Its
kernel is ±1, and the image of any element e ∈ Vn such that q(e) = 1 is the
orthogonal reflection with respect to e.

The Case of the Trivial Representation

Let us now suppose that G is an arbitrary semisimple Z-group and consider the
trivial representation 1 ∈ Πdisc(G). Let μ : SL2 → ̂G be a principalC-morphism in
the sense of Kostant. An equivalent formulation of the description of c(1) given in
Example 6.4.2 is

μ(e) = c(1)

(this observation is given explicitly in [97, Sect. 7], but it is undoubtedly older).
In particular, if r : ̂G → SLn is an arbitrary C-morphism and we decompose the
representation r ◦ μ of SL2 as ⊕k

i=1Sym
di−1

C
2 with d1, . . . , dk ≥ 1 integers, we

therefore have
ψ(1, r) = ⊕k

i=1[di] .
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This agrees with the Arthur–Langlands conjecture (as it happens, with the conjectures
of Arthur [9]), which is therefore true for the pair (1, r) for any representation r.

Consider, for example, G = SOn with n ≡ 0 mod 8. We then have St ◦ μ =
Symn−2

C
2 ⊕ 1, in other words, ψ(1, St) = [n− 1]⊕ [1]. This relation also holds

if G = On because the trivial representation of SOn is clearly the restriction of the
trivial representation of On to SOn; they therefore have the same standard parameter
by Proposition 6.4.10.

6.4.11 Relations with L-Functions

Let G be a semisimple Z-group, r : ̂G → GLn a C-representation, and π ∈
Πdisc(G). By Langlands [136, Sect. 3], the Euler product

L(s, π, r) =
∏

p∈P

det
(

1− p−sr(cp(π))
)−1

is absolutely convergent for "(s) sufficiently large; see also [178, Sect. 2.5].
For π ∈ Πcusp(PGLn), we set L(s, π) = L(s, π, Stn) (recall that Stn is the

tautological representation of SLn, Sect. 6.4.4). From the work of Godement and
Jacquet, we know that L(s, π) admits a holomorphic extension to all of C, unless
n = 1, in which case π = 1PGL1

and this function L(s, π) is none other than the
Riemann ζ(s)-function. By Jacquet and Shalika [112], the Euler product L(s, π) is
even absolutely convergent for "(s) > 1. If the Arthur–Langlands conjecture holds
for π and r, then we may write ψ(π, r) = ⊕k

i=1πi[di] with πi ∈ Πcusp(PGLni) for
each i, and it follows from the definitions that we have

L(s, π, r) =
k
∏

i=1

di−1
∏

j=0

L
(

s+ j +
1− di

2
, πi

)

,

and therefore L(s, π, r) also admits a meromorphic extension to all of C, whose
poles are explained by the appearance of the trivial representation in ψ(π, r).

The reader should be aware that the normalizations used here make s = 1
2 into the

natural center of the functional equations that are involved. Suppose, for example,
that π ∈ Πcusp(PGL2) denotes the representation associated with a normalized
eigenform F =

∑

n≥0 anq
n of weight k, as in Sect. 6.4.3. We then have L(s −

(k − 1)/2, π) =
∑

n≥1 an/n
s for "(s) > 1, as well as the Hecke relation

(2π)−sΓ(s)L
(

s− k − 1

2
, π
)

=

∫ ∞

0

F (it)ts
dt

t
∀s ∈ C . (6.4.1)
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6.4.12 The Generalized Ramanujan Conjecture

Let G be a semisimple Z-group, and let π ∈ Π(G). We say that π satisfies the
Ramanujan conjecture, or that it is tempered, if9 for every p ∈ P, the eigenvalues of
cp(π) in some (and therefore every) faithful C-representation of ̂G all have absolute
value 1.

The generalized Ramanujan conjecture asserts that if π ∈ Πcusp(PGLn), then
π is tempered. The typical example of a representation that is not tempered is
the trivial representation 1 ∈ Πdisc(PGL2); the eigenvalues of cp(1) = ep are
p±1/2. More generally, the trivial representation 1G of G is not tempered if G �= 1
(Example 6.4.2). Conjecture 6.4.6 therefore expresses, in particular, the defect of the
Ramanujan conjecture in general.

The generalized Ramanujan conjecture is still open, even forG = PGL2. Thanks
to the work of many authors, it is, however, known for the important class of represen-
tations π ∈ Πcusp(PGLn) called polarized regular algebraic (see Sect. 8.2.16). In
general, we do have the Jacquet–Shalika estimate [112]: for everyπ ∈ Πcusp(PGLn),
every p ∈ P, and every eigenvalue λ of cp(π), we have p−1/2 < |λ| < p1/2.

9 In general, a condition that is conjecturally automatic is added on π∞; we omit it here.



Chapter 7
A Few Cases of the Arthur–Langlands
Conjecture

7.1 The Eichler Relations Revisited

In this entire chapter, g and n are fixed integers greater than or equal to 1, with
n ≡ 0 mod 8. We consider the Z-groups Sp2g and On (recall that the latter is the
orthogonal Z-group of the lattice En).

7.1.1 The Point of View of Rallis

The Jacobi theta series allows us to construct a natural C-linear map

ϑ : MU (On) −→ MV (Sp2g)

for certain pairs (U, V ), where U is an irreducible C-representation of On(C) and
V is an irreducible C-representation of GLg(C) [116], [86]. The admissible pairs
(U, V ) are called compatible; we describe them further on. Two particular cases
of this construction have already played a role in this book: the pair (1, detn/2) in
Sect. 5.1 and the pair (Hd,g, detn/2+d) in Sect. 5.4 for 2g ≤ n. An important property
of the map ϑ, already discussed in various cases loc. cit., is that it intertwines certain
Hecke operators of On and Sp2g (“Eichler commutation relations”). The aim of this
subsection is to recall the point of view of Rallis [170] on these formulas.

Set zSp2g
= Z(U(sp2g(C))) and zOn = Z(U(son(C)))

On(C). In [170], Rallis
constructs a surjective morphism of C-algebras

Ral:

{

H(On)⊗ zOn → H(Sp2g)⊗ zSp2g
if n > 2g ,

H(Sp2g)⊗ zSp2g
→ H(On)⊗ zOn if n ≤ 2g

© Springer Nature Switzerland AG 2019
G. Chenevier, J. Lannes, Automorphic Forms and Even Unimodular Lattices,
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern
Surveys in Mathematics 69, https://doi.org/10.1007/978-3-319-95891-0_7
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that respects the subrings Hp(∗) ⊗ C (for p prime) and z∗ on either side. It has the
following properties:

(i) If (U, V ) is compatible, then InfV ◦ Ral|zOn
= InfU if n > 2g and InfU ◦

Ral|zSp2g = InfV otherwise.
(ii) (Eichler–Rallis commutation relations) We have ϑ ◦ T = Ral(T ) ◦ ϑ for every

T ∈ H(On) if n > 2g, and ϑ ◦ Ral(T ) = T ◦ ϑ for every T ∈ H(Sp2g)
otherwise.

Let us add that if we assume n > 2g, and if the necessary condition for the
admissibility of a pair (U, V ) given in part (i) holds, then exactly one of the pairs
(U, V ) and (U ⊗ det, V ) is compatible; see [116] §6 for the precise condition in
general.

Finally, Rallis gives an interpretation of the morphism Ral in terms of the Satake
and Harish-Chandra isomorphisms of On and Sp2g, which we will also recall.
For a ≥ 1, we denote by Oa (resp. SOa) the standard orthogonal (resp. special
orthogonal) C-group in a variables. This notation conflicts, a priori, with that of the
Z-groups On and SOn, defined only for n ≡ 0 mod 8, but this is irrelevant because
when the symbols coincide, they denote the same object over C. The group Oa(C)
acts by conjugation on X(SOa), and this action is nontrivial if a is even. If a < b
are integers greater than or equal to 1 with a �≡ b mod 2, there exists a C-morphism

ρa,b : Oa × SL2 −→ Ob ,

uniquely determined modulo conjugation by Ob(C) at the target, such that the repre-
sentation St ◦ ρa,b is isomorphic to the direct sum of the standard representation of
the factorOa and the representationSymb−a−1St2 of SL2. The respective Langlands
duals of SOn and Sp2g are the C-groups SOn and SO2g+1. The discussion in [170,
Sect. 6] translates into the following statement (recall that e ∈ X(SL2) denotes the
Arthur element defined in Sect. 6.4.4). Observe that for G = On or G = Sp2g , the
Satake isomorphism and the Harish-Chandra isomorphism (Sects. 6.2 and 6.3) allow
the identification of HomC−alg(H(G) ⊗ zG,C) with X( ̂G) (Sect. 6.4.7).

Proposition 7.1.2. (i) For n > 2g, the map X(̂Sp2g)→ X(̂On) induced by Ral is
given by x → ρ2g+1,n(x, e).

(ii) For n ≤ 2g, the map X(̂On) → X(̂Sp2g) induced by Ral is given by x →
ρn,2g+1(x, e).

This result, combined with the diagonalizability of H(On) over the spaces
MU (On), reduces the study of the Eichler commutation relations to that of properties
of the Satake isomorphisms of SOn and Sp2g . For example, Proposition 5.1.1 and
the relation (5.4.4) immediately follow from the formulas (6.2.5) and (6.2.8).

Likewise, the archimedean part of Proposition 7.1.2 substantially clarifies the
significance of the numbers associated with the infinitesimal characters of the com-
patible pairs (U, V ). Let us illustrate this on the pair (Hd,g, detn/2+d). For g < n/2,
the highest weight of Hd,g(R

n) is clearly d
∑g

i=1 εi, and that of Hd,n/2(R
n)±
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is d(±εn/2 +
∑n/2−1

i=1 εi) (see Sects. 5.4.14 and 6.4.3), which gives an infinites-
imal character in son(C) with eigenvalues ±(d + n/2 − i) for i = 1, . . . , g and
±(n/2− i) for i = g+1, . . . , n/2 if g < n/2. On the other hand, the representation
π′
detk

(Sect. 6.3.4) has an infinitesimal character in so2g+1(C) with eigenvalues 0
and ±(k − i) for i = 1, . . . , g, which is indeed compatible with Proposition 7.1.2.

We will say that the representations πO ∈ Πdisc(On) and πSp ∈ Πdisc(Sp2g)
are ϑ-correspondent if there exist a compatible pair (U, V ) and eigenforms F ∈
MU (On) and G ∈ SV (Sp2g) respectively generating πO and πSp, such that
ϑ(F ) = G.

Corollary 7.1.3. Suppose that πO ∈ Πdisc(On) and πSp ∈ Πdisc(Sp2g) are ϑ-
correspondent. Then we have ψ(πO, St) = ψ(πSp, St)⊕ [n− 2g− 1] if n > 2g and
ψ(πSp, St) = ψ(πO, St)⊕ [2g + 1− n] otherwise.

7.1.4 A Refinement: Passage to the Spin Groups

In this subsection, we discuss a refinement of Proposition 7.1.2, probably well
known to the specialists, for which we have not found a reference in the literature
(it is, however, implicit in [169] in the case g = 1). Assume that the pair (U, V ) is
compatible. Note that if MU (On) �= 0, then −1 ∈ On(Z) acts trivially in U , which
we assume from now on. This implies that U factors into a representation U ′ of
PGOn(C), and Lemma 5.4.8 provides a natural H(On)-equivariant isomorphism

MU ′(PGOn)
∼→ MU (On) .

In other words, MU (On) is naturally endowed with an action of the largest Hecke
ringH(PGOn). Likewise,MV (Sp2g(Z)) is endowed with an action of H(PGSp2g),
and we can ask ourselves how Rallis’ statement extends to these operators.

More precisely, letF ∈ MU (PGOn) be an eigenform forH(PGOn)withϑ(F ) �=
0. Rallis’ relations ensure that ϑ(F ) is an eigenform for H(Sp2g). By Sect. 6.2.8, for
every prime p, the ring Hp(PGSp2g) (resp. Hp(PGOn)) is generated by H(Sp2g)
(resp. H(On)) and the corresponding perestroika operator Kp. But we have an
additional Eichler relation, in fact the simplest one of all [87, Theorem 4.5], which
takes on the following form when n > 2g:

ϑ ◦Kp = p
g(n/2−g−1)

2

⎡

⎣

n/2−g+1
∏

i=0

(pi + 1)

⎤

⎦Kp ◦ ϑ . (7.1.1)

The case of this formula we will need in the application to Theorem 7.2.1 is
that of Lemma 5.4.9 (compare with formula (4.5.5)). This shows that ϑ(F ) is
an eigenform for H(PGSp2g). We will say that πPGO ∈ Πdisc(PGOn) and
πPGSp ∈ Πdisc(PGSp2g) areϑ-correspondent if there exist a compatible pair (U, V )
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and eigenforms F ∈ MU (PGOn) and G ∈ SV (Sp2g(Z)), generating πPGO and
πPGSp, respectively, such that ϑ(F ) = G.

If n > 2g, then the C-morphism ρ2g+1,n : SO2g+1 × SL2 → SOn lifts to a
C-morphism ρ̃2g+1,n : Spin2g+1 × SL2 → Spinn. Likewise, if n ≤ 2g, then the
C-morphism ρn,2g+1 lifts to a morphism ρ̃n,2g+1 : Pinn × SL2 → Pin2g+1 (in
Sect. 6.4.7, we recall some results concerning the group Pin).

Proposition 7.1.5. Let πPGO ∈ Πdisc(PGOn) and πPGSp ∈ Πdisc(PGSp2g) be
ϑ-correspondent representations.

(i) If n > 2g, then c(πPGO) is the image of ρ̃2g+1,n(c(πPGSp), e) by the natural
map X(Spinn)→ X(Pinn).

(ii) If n ≤ 2g, then c(πPGSp) = ρ̃n,2g+1(c(πPGO), e).

Proof. Suppose n > 2g. The equality we want to show holds after projection into
X(̂On) by Rallis, Proposition 7.1.2 (i). By an observation made above, it remains to
verify the equality after applying the Hecke operator Kp ∈ H(PGOn), viewed via
the Satake isomorphism as a function on Spinn(C)ss, invariant under the action of
Pinn(C). By formula (6.2.5), we have

Sat(Kp) = p
n/2(n/2−1)

4 ([V +
Spin] + [V −

Spin]) ,

where VSpin± are the two spin representations of Spinn(C) (conjugate to each
other under Pinn(C)). But it is well known that the restriction of each of these to
Spin2g+1(C)× Spinn−2g−1(C) is isomorphic to the tensor product of the spin rep-
resentations of each of the two factors. Let ra : SL2 → SL2a be theC-representation
obtained by lifting the irreducible representation of odd dimension 2a+1 toSpin2a+1

and then composing with the spin representation of the latter. We leave it as an ex-
ercise to verify

trace( ra(ep) ) =

a
∏

i=1

(p−i/2 + pi/2) .

We conclude with a calculation that is immediate from the formulas (6.2.5), (6.2.8),
and (7.1.1). The case n ≤ 2g is similar. The Eichler relation shown by Freitag [87,
Theorem 4.5] is

Kp ◦ ϑ = p−
g(n/2−g−1)

2

⎡

⎣

g−n/2
∏

i=1

(p−i + 1)

⎤

⎦ϑ ◦Kp . (7.1.2)

We conclude as before, by using that the restriction of the spin representation of
Spin2g+1(C) to Spinn(C) × Spin2g+1−n(C) is the tensor product of the represen-
tation V +

Spin ⊕ V −
Spin of Spinn(C) and the spin representation of Spin2g+1−n(C).

Remark 7.1.6. To finish this subsection, we note that if n > 2g, then an element (cv)
in the image of the composition X(Spin2g+1)× X(SL2)→ X(Spinn)→ X(Pinn)
has the property that for every v, the Pinn(C)-conjugacy class of cv is in fact a
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simple Spinn(C)-conjugacy class. One way to see this, for example for v prime,
is to note that if the image γ′ of γ ∈ Spin(Vn) in SO(Vn) admits the eigenvalue
1, then there exists an e ∈ Vn with q(e) = 1 such that we have eγ = γe (see
Sect. 6.4.7 for the notation). Indeed, it suffices to choose an arbitrary e in the space
V γ′=1
n (which is nondegenerate and nonzero) with q(e) = 1. Note that we have

α(γ)eγ−1 = γ′(e) = e and α(γ) = γ, and therefore γe = eγ.

7.2 Πdisc(O8) and Triality

The first part of the following result is due to Waldspurger [205]; Proposition 5.4.3
is an elementary verification of it in the particular case k = 12. The second part
of the theorem is a form of the main idea of Sect. 5.4 that is both more precise and
more conceptual. Recall that we introduced the irreducible representation Hd,g(R

n)
of On(R) in Sect. 5.4.1.

Theorem 7.2.1. Let π ∈ Πcusp(PGL2) be the representation generated by an eigen-
form of Sk(SL2(Z)), where k ≥ 12 is an even integer.

(i) There exists a π′ ∈ Πdisc(O8) such that π′∞ � Hk−4,1(R
8) and

ψ(π′, St) = Sym2π ⊕ [5] .

(ii) There exists a π′′ ∈ Πdisc(O8) such that π′′∞ � Hk/2−2,4(R
8) and

ψ(π′′, St) = π[4] .

Proof. Let U = Hk−4,1(R
8). By Waldspurger [205, Theorem 1], we have

ϑk−4,1(MU (O8)) = Mk(SL2(Z)) .

By the Eichler commutation relations, we can therefore find an eigenform F ∈
MU (O8) whose image G = ϑk−4,1(F ) generates π. Let π′ ∈ Πcusp(SL2) be the
representation generated by G. Consider the isogeny i : SL2(C) = P̂GL2(C) →
̂SL2(C) = SO3(C). Proposition 4.5.7 and the compatibility of the Satake isomor-
phism with isogenies ensure that we have c(π′) = i(c(π)). But St ◦ i is none other
than the representationSym2St2 of SL2(C), so that we haveSt(c(π′)) = Sym2c(π).
Part (i) then follows from Corollary 7.1.3.

Let us verify part (ii). After modifying F if necessary, we may assume that
F0 = F is an eigenform for H(PGO8), as in Sect. 7.1.4. Let π0 ∈ Πdisc(PGO8) be
the representation it generates, and letU ′ = U⊗νk/2−2. LetF1 be the image ofF0 by
the natural map res: MU ′(PGO8)→ MU ′(PGSO8) (Sect. 5.4.11). Since this map
is injective and H(PGSO8)-equivariant, by loc. cit., the form F1 is nonzero, and if
π1 ∈ Πdisc(PGSO8) denotes the representation it generates, then c(π0) ∈ X(Pin8)
is the image of c(π1) ∈ X(Spin8) by the natural homomorphism. This last property
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uniquely determines c(π1), by Remark 7.1.6, so that Proposition 7.1.5 can be written
as

c(π1) = ρ̃3,8(c(π), e) . (7.2.1)

Following Sect. 5.4.14, let us now consider the triality automorphism τ ofPGSO8

defined using a structure of Coxeter octonions on E8. In particular, (U ′)τ is iso-
morphic to the representation V = H±

k/2−2,4 ⊗ νk−4 by Corollary 5.4.18. Let
tri : MU ′(PGSO8)

∼→ MV (PGSO8) be the isomorphism denoted by (τ∗)−1 loc. cit.
Finally, we set

F2 = tri(F1) , F3 = ind (F2) ∈ MInd(V )(PGO8) , F4 = μ∗(F3) ∈ MIndV(O8)

(Sects. 4.4.4 and 5.4.11). These functions are nonzero eigenforms and therefore gen-
erate automorphic representations π2, π3, and π4 of the Z-groups PGSO8, PGO8,
and O8, respectively.

The compatibility of the Satake isomorphism with isogenies ensures that c(π2)
is the image of c(π1) by τ±1, and consequently that c(π4) is the image of c(π2) by
the natural homomorphism η : Spin8(C) → SO8(C). But it is well known that the
representation St◦η ◦τ±1 is none other than the representationVSpin± of Spin8. We
already mentioned that the restriction ofVSpin± toSpin3×Spin5 is the tensor product
of the Spin representations of Spin3 � SL2 (of dimension 2) and Spin5 � Sp4 (of
dimension 4); in particular, it does not depend on the sign±. But the representation
Sym4 St2 of SL2, viewed in SO5 and then lifted to Spin5 � Sp4 and composed
with the standard representation of Sp4, is the representation Sym3 St2. We have
thus proved the sequence of equalities

π[4] = ψ(π1, V
±
Spin) = ψ(π2, St ◦ η) = ψ(π4, St) ,

and the representationπ′′ = π4 satisfies the conditions of part (ii) of the theorem. ��
Note that the Gelbart–Jacquet theorem (see the examples concerning PGLn in

Sect. 6.4.7) implies that the pair (π′, St) satisfies the Arthur–Langlands conjecture.
It is, moreover, clear that the pair (π′′, St) also satisfies this conjecture.

Let us give a second formulation of the previous result. Recall that the ho-
momorphism SO8 → PGSO8 determines, by Langlands duality, a C-morphism
η : P̂GSO8 → ̂SO8; the three irreducible representations of dimension 8 of
P̂GSO8(C) � Spin8(C) are therefore St ◦ η, V +

Spin, and V −
Spin.

Theorem 7.2.2. Let π ∈ Πcusp(PGL2) be the representation generated by an
eigenform of Sk(SL2(Z)), where k ≥ 12 is an even integer. There exists a
π′ ∈ Πdisc(PGSO8) such that

ψ(π′, St ◦ η) = π[4] , ψ(π′, V +
Spin) = π[4] , and ψ(π′, V −

Spin) = Sym2π ⊕ [5] .
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Proof. The representation π2 from the proof of Theorem 7.2.1 satisfies ψ(π2, St ◦
η) = π[4] and

{ψ(π2, V
+
Spin), ψ(π2, V

−
Spin)} = {π[4], Sym2π ⊕ [5]} .

Let F be an eigenform for PGSO8 that generates π2; we define π′
2 as the discrete

automorphic representation of PGSO8 generated by s(F ). Then we can take one of
the two representations π2 and π′

2 for π′. ��
The principle of the proof of Theorem 7.2.1 has a greater reach and can, in partic-

ular, be applied to theta series of higher genus. It allows us to produce representations
of O8 with interesting standard Langlands parameters, which are functions of those
of the elements of Πcusp(PGSp2g) for 1 ≤ g ≤ 3.

Theorem 7.2.3. Suppose that π ∈ Πcusp(PGSp2g) admits a ϑ-correspondent in
Πdisc(PGO8).

(i) Suppose g = 2. Let V4 and V5 be the irreducible representations of Sp4(C) =
P̂GSp4(C) of respective dimensions 4 and 5; that is, V4 is the standard repre-
sentation and Λ2V4 � V5 ⊕ 1. Then there exist

– π′ ∈ Πdisc(SO8) such that ψ(π′, St) = ψ(π, V5)⊕ [3],
– π′′ ∈ Πdisc(SO8) such that ψ(π′′, St) = ψ(π, V4)[2].

(ii) Suppose g = 3. Let VSpin be the spin representation of Spin7(C) = P̂GSp6(C)
and V7 its natural representation of dimension 7. Then there exist

– π′ ∈ Πdisc(SO8) such that ψ(π′, St) = ψ(π, V7)⊕ [1],
– π′′ ∈ Πdisc(SO8) such that ψ(π′′, St) = ψ(π, VSpin).

Proof. The existence of π′ in the two cases is classical and follows from Corol-
lary 7.1.3. As far as the existence of π′′ is concerned, its proof is very similar to
that of the existence of the representation of the same name in Theorem 7.2.1; it is
therefore left as an exercise for the reader. For example, in case (i), we first show
the existence of π0 ∈ Πdisc(PGSO8) such that ψ(π0, V

±
Spin) = ψ(π, V4)[2] and

ψ(π0, St ◦ η) = ψ(π, V5)⊕ [3]; the application of the triality to π0 then leads to the
representation π′′. ��
Remark 7.2.4 (Work of Böcherer). Let us say a few words on the assumption of
the theorem and the associated question of the surjectivity of the map ϑ in general,
which is a classical problem going back to Eichler (the Eichler basis problem). We
have the following remarkable result due to Böcherer [25, 27], which generalizes the
work of Waldspurger for g = 1 mentioned above: for d > 0, the map

ϑd,g : MHd,g(Rn)(On)→ Sn/2+d(Sp2g(Z))

is surjective provided n > 4g (see also [24] for the case d = 0, as well as Re-
mark 8.6.3). More precisely, Böcherer gives a necessary and sufficient condition for
an eigenform F ∈ Sn/2+d(Sp2g(Z)) to be in the image of ϑd,g, when n ≥ 2g. It
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concerns the function L(s, π, St), where π ∈ Πcusp(Sp2g) is generated by F , of
which we know that it admits a meromorphic continuation to all of C (see Sect. 8.7).
If n > 2g (resp. n = 2g), he shows that F is in the image of ϑd,g if and only if
L(s, π, St) is nonzero at s = n/2−g (resp. if and only if L(s, π, St) admits a simple
pole at s = 1); see [27, Theorems 41 and 5]. This condition is automatically satisfied
if n > 4g. Böcherer has also studied the question of the injectivity of ϑg = ϑ0,g , for
which he obtains criteria of the same type [28].

Let us return to the statement of Theorem 7.2.2.

Corollary 7.2.5. Suppose that π ∈ Πcusp(PGL2) and π′ ∈ Πdisc(PGSO8) satisfy
the hypotheses and conclusions of Theorem 7.2.2. Suppose, moreover, thatπ′ has aϑ-
correspondent, that is, that there exists an element F ∈ MH±

k/2−2,4
(R8)(PGSO8) �

MHk/2−2,4(R8)(PGO8) that generates π′ and has the property thatϑ(F ) is a nonzero
element of Sk/2+2(Sp8(Z)). Denote by π′′ this ϑ-correspondent, generated by ϑ(F ).
Then we have

ψ(π′′, VSt) = π[4]⊕ [1] and ψ(π′′,VSpin) = π[4]⊕ Sym2π ⊕ [5] .

Proof. This immediately follows from Theorem 7.2.2 and the refined Eichler–Rallis
relations (Proposition 7.1.5 in the case g = 4 = n/2), because the restriction of the
spin representation ofSpin9(C) toSpin8 → Spin9 is the representationV+

Spin⊕V −
Spin

of Spin8(C). ��
When π is generated by Δ ∈ S12(SL2(Z)), we verified in Proposition 5.4.22 that

the assumption on π′ is satisfied (this could also have been deduced from a harmonic
variant of [28]; see [27, Sect. XI]). Recall that S8(Sp8(Z)) is of dimension 1,
generated by the Schottky formJ (Sect. 5.2). We denote the representation generated
by the modular form Δ by Δ11 ∈ Πcusp(PGL2).

Corollary 7.2.6. (i) If πJ ∈ Πcusp(PGSp8) denotes the representation generated
by the Schottky form, then ψ(πJ , VSt) = Δ11[4]⊕ [1] and

ψ(πJ , VSpin) = Δ11[4]⊕ Sym2Δ11 ⊕ [5] .

(ii) Let π ∈ Πdisc(PGSO16) be the unique nontrivial representation such that
π∞ = C. Then ψ(π, VSt) = Δ11[4]⊕ [7]⊕ [1] and

ψ(π, V ±
Spin) = ψ(πJ , VSpin) ⊕ ψ(πJ , VSpin)[7] .

Proof. Assertion (i) follows from Corollary 7.2.5 and the discussionpreceding it. The
second assertion follows from the first, given the relationJ = ϑ4(E8⊕E8)−ϑ4(E16)
(Sect. 5.2) and Proposition 7.1.5 (ii). Note that if the C-morphism g : SL2 → SO7

satisfies St ◦ g � Sym6St2 and if f : SL2 → Spin7 is a lift of g, then the restriction
of the spin representation of Spin7 to f is isomorphic to Sym6St2 ⊕ 1 (see, for
example, [99, Sect. 7]).
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Corollary 7.2.7. For every prime p, the number of perestroikas of E8 ⊕ E8 with
respect to p that are isomorphic to E16 is

405

691

(

3
∏

i=0

(pi + 1)

)

(

p11 + p7 + p6 + p5 + p4 + 1 + τ(p)
)(

p11 + 1− τ(p)
)

.

7.3 A Few Consequences of the Work of Ikeda and Böcherer

As already explained in Sect. 5.2, the first assertion of Corollary 7.2.6 is also a
consequence of the following theorem due to Ikeda [108] (proof of the Duke–
Imamoğlu conjecture). It extends a result of Andrianov, Maass, and Zagier in the
case of genus g = 2 (proof of the Saito–Kurokawa conjecture; see [132], [216],
[79]).

Theorem 7.3.1 ([108]). Let π ∈ Πcusp(PGL2) be the representation generated
by an eigenform of weight k for SL2(Z), and let g ≥ 1 be an integer such that
k ≡ g mod 4; then there exists a representation π′ ∈ Πcusp(Sp2g), generated by
a scalar-valued Siegel modular form of weight (k + g)/2 for Sp2g(Z), such that
ψ(π′, St) = π[g]⊕ [1].

Suppose π and π′ as in Theorem 7.3.1. Given that we know the function
L(s, π′, St), the results of Böcherer mentioned above (Remark 7.2.4, [27]) give
a necessary and sufficient condition for π′ to admit a ϑ-correspondent.

Theorem 7.3.2. Let k, g, and n be nonzero even integers such that k ≡ g mod 4,
n ≡ 0 mod 8, and 2g ≤ n ≤ k + g. Let π ∈ Πcusp(PGL2) be the representa-
tion generated by an eigenform of weight k for SL2(Z) and π′ ∈ Πcusp(Sp2g) a
representation satisfying the conclusions of Ikeda’s theorem with respect to π.

(i) The representation π′ admits a ϑ-correspondent π′′ ∈ Πdisc(On) such that
π′′
∞ � H(k+g−n)/2,g(R

n) if and only if n > 3g or L(1/2, π) �= 0.
(ii) Suppose n > 3g or L(1/2, π) �= 0 (in which case k ≡ g ≡ 0 mod 4). If n > 2g

(resp. n = 2g), then there exists a π′′ ∈ Πcusp(On) such that ψ(π′′, St) =
π[g]⊕ [n−2g−1]⊕ [1] (resp.ψ(π′′, St) = π[g]) and π′′

∞ � H(k+g−n)/2,g(R
n).

Proof. Let D = 1
2Z − Z (the set of half-integers). Since we have ψ(π′, St) =

π[g] ⊕ [1], the function L(s, π′, St) is the product of the Riemann ζ(s)-function
and the functions L(s + j, π), where j runs through the elements of D such
that |j| ≤ (g − 1)/2 (note that g ≡ 0 mod 2). We consider the compatible pair
(H(k+g−n)/2,g(R

n), det(k+g)/2), which is well defined because 2g ≤ n ≤ k + g.
If n > 2g (resp. n = 2g), Böcherer shows that π′ admits a ϑ-correspondent as in
the statement above if and only if L(n/2 − g, π′, St) �= 0 (resp. L(s, π′, St) admits
a simple pole at s = 1). Since ζ(s) admits a simple pole at s = 1 and is nonzero if
"(s) > 1, it is equivalent to requiring that L(s, π) �= 0 for every s ∈ D such that
|s− δ − n/2 + g| ≤ (g − 1)/2, where δ = 1 if n = 2g and δ = 0 otherwise.
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If s ∈ D and s �= 1/2, then L(s, π) �= 0. Indeed, for "(s) > 1, this follows from
the absolute convergence of the Euler product defining L(s, π) (for example, by
Deligne or Rankin–Selberg). In general, recall that by Hecke, the function ξ(s, π) =
(2π)−s−(k−1)/2Γ(s+(k − 1)/2)L(s, π) is an entire function of s that satisfies (see
Sect. 6.4.11)

ξ(1− s, π) = ikξ(s, π) . (7.3.1)

This allows us to conclude because the function Γ(s) does not have any poles at
elements of D. To conclude for assertion (i), we note that |1/2 − δ − n/2 + g| ≤
(g − 1)/2 if and only if n ≤ 3g.

Finally, let us verify assertion (ii). Under the assumptions of the statement, we
have a ϑ-correspondent π′′ ∈ Πdisc(On) of the representation π′, by part (i). Let
us apply Corollary 7.1.3. Under the assumption n > 2g, it implies ψ(π′′, St) =
ψ(π′, St) ⊕ [n − 2g − 1], which we wanted. In the case of the equality n = 2g, it
can be written as

ψ(π′′, St) ⊕ [1] = ψ(π′, St) = π[g] ⊕ [1] ,

which is clearly equivalent to ψ(π′′, St) = π[g]. Finally, we note that the assumption
L(1/2, π) �= 0 implies k ≡ 0 mod 4 by the functional equation (7.3.1). ��
Remark 7.3.3. Suppose that π ∈ Πcusp(PGL2) is generated by an eigenform F of
weight k ≡ 0 mod 4 for SL2(Z). If 12 ≤ k ≤ 20, then F = Δϑ1(E8)

(k−12)/4;
since the latter takes on only strictly positive values on the imaginary axis, we have
Γ(s + (k − 1)/2)L(s, π) > 0 for every s ∈ R (formula (6.4.1)). In particular,
L(1/2, π) �= 0. It seems that there is no known example where L(1/2, π) = 0;
see [64], in which the authors verify this for every k ≤ 500 (this is related to
Theorem 7.3.2, which they, however, do not give explicitly).

It is interesting to confront Theorem 7.3.2 with the results above. First of all, if we
apply it to n = 16, g = 4 < n/3, and k = 12 (so that d = 0), we easily deduce from
part (i) that ϑ4(E8 ⊕ E8) − ϑ4(E16) ∈ M8(Sp8(Z)) is a nonzero cusp form with
standard parameterΔ11[4]⊕ [1]. This “sledgehammer” argument therefore re-proves
both the Witt conjecture (Eq. (5.2.1)) and the assertion concerning ψ(π, VSt) in
part (ii) of Corollary 7.2.6 (and therefore Theorem 5.2.2!). Likewise, Theorem 7.3.2
can be applied for n = 24 = k + g, which produces the five ordered pairs

(k, g) ∈ {(12, 12), (16, 8), (18, 6), (20, 4), (22, 2)}

by taking for π the representation generated by the unique normalized eigenform
of weight k for SL2(Z) when k ≤ 22. We denote this representation by Δk−1 ∈
Πcusp(PGL2). The assumption of the theorem is satisfied in the last three cases
because g < 24/3 = 8, and also in the first two cases because L(1/2,Δk−1) �= 0
when k = 12 or 16.

Corollary 7.3.4. For every k ∈ {12, 16, 18, 20, 22}, there exists a representation
π ∈ Πdisc(O24) such that we have π∞ = C and ψ(π, St) = Δk−1[24− k]⊕ [2k −
25]⊕ [1] if k > 12, ψ(π, St) = Δ11[12] if k = 12.
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On the other hand, we see that the case n = 2g = 8 leads to a weakened, and
paradoxically more costly, version of Theorem 7.2.1 (ii), because it proves it only
under the additional condition L(1/2, π) �= 0 (and, in particular, k ≡ 0 mod 4).
The case k ≡ 2 mod 4 of Theorem 7.2.1 (ii) therefore seems particularly interesting
from this point of view. This slightly troubling phenomenon, as well as the somewhat
particular numbers in the statement of Theorem 7.3.2, will be greatly clarified when
we explain the results of Arthur in Chap. 8 (see, in particular, Sects. 8.5.7 and 8.6).

Let us conclude this section with a last example showing that, in general, the
inclusion ϑg(C[Xn]) ⊂Mn/2(Sp2g(Z)) is strict.

Corollary 7.3.5. The map ϑ14 : C[X32]→ M16(Sp28(Z)) is not surjective.

Proof. Consider the case n = 32, k = 18, and g = 14 (and therefore again d = 0).
Ikeda’s theorem ensures the existence of an eigenform F in S16(Sp28(Z)) that
generates a representation with standard parameter Δ17[14]⊕ [1]. We have n < 3g
and L(1/2,Δ17) = 0 because 18 ≡ 2 mod 4, so that Theorem 7.3.2 (i) ensures
F /∈ Im(ϑ14). ��

This example seems to have remained unnoticed by Nebe and Venkov
[156, Sect. 2.2], who present the question of equality between ϑg(C[Xn]) and
Mn/2(Sp2g(Z)), for every n ≡ 0 mod 8 and every g ≥ 1, as an open problem. As
we will see in Sect. 8.5.7, Arthur’s theory in fact suggests that there does not exist a
π ∈ Πdisc(O32) such that ψ(π, St) = Δ17[14]⊕ [3]⊕ [1].

7.4 A Table of the First Elements of Πdisc(SO8)

By Chenevier and Renard [55, Chap 2], we have a formula for the dimension of
MUλ

(SO8) in terms of the highest weight λ =
∑4

i=1 miεi of the representation
Uλ (Sect. 6.4.3). For small values of λ, for example as long as m1(λ) := m1 is at
most 9, we see that these dimensions are at most 1, and even almost always zero
[55, App. C, Table 2]. When this dimension is 1, there consequently exists a unique
representation π ∈ Πdisc(SO8) such that π∞ � Uλ; we denote it by π(λ).

The considerations of this chapter allow us to prove the existence of a certain
number of elements of Πdisc(O8) or Πdisc(SO8). We can ask ourselves whether
these elements suffice to explain all π(λ) above. The answer to this question is
given by Table 7.1, which gives the list of all ψ(π(λ), St) for m1(λ) ≤ 8. For
numerical reasons, it is more meaningful to include in this table the element λ+ ρ,
the infinitesimal character of Uλ (Sect. 6.4.3), which we encode by the quadruple
z(λ) = (2m1 + 6, 2m2 + 4, 2m3 + 2, 2|m4|) if λ =

∑4
i=1 miεi.

Let us say a few words about this table. The representation with parameter [7]⊕[1]
is, of course, the trivial representation. Recall that the notation Δw ∈ Πcusp(PGL2)
was introduced in Sect. 7.3. The four elements ψj,k ∈ X(SL4) will be explained in
Sect. 9.1.17.



188 7 A Few Cases of the Arthur–Langlands Conjecture

(i) The existence of the representations with parameter Δw[4] follows from The-
orem 7.2.1. In the case of the quadruple (14, 12, 10, 8), it is the representation used
in the proof of Theorem 5.2.

Table 7.1 Standard parameters of the π(λ) when m1(λ) ≤ 8

z(λ) ψ(π(λ), St) z(λ) ψ(π(λ), St)

(6, 4, 2, 0) [7]⊕ [1] (22, 16, 14, 0) Sym2Δ11 ⊕Δ15[2]⊕ [1]

(14, 12, 10, 8) Δ11[4] (22, 18, 16, 0) Sym2Δ11 ⊕Δ17[2]⊕ [1]

(18, 16, 2, 0) Δ17[2]⊕ [3]⊕ [1] (22, 20, 2, 0) Δ21[2]⊕ [3]⊕ [1]

(18, 16, 14, 12) Δ15[4] (22, 20, 6, 4) ψ4,10[2]

(20, 18, 8, 6) ψ6,8[2] (22, 20, 10, 8) ψ8,8[2]

(20, 18, 16, 14) Δ17[4] (22, 20, 14, 12) ψ12,6[2]

(22, 4, 2, 0) Sym2Δ11 ⊕ [5] (22, 20, 18, 0) Sym2Δ11 ⊕Δ19[2]⊕ [1]

(22, 12, 10, 0) Sym2Δ11 ⊕Δ11[2]⊕ [1] (22, 20, 18, 16) Δ19[4]

(ii) The existence of a representation of Πdisc(O8) with parameter Δw[2] ⊕
[3] ⊕ [1] for w ≡ 1 mod 4 follows from Theorem 7.3.2: it is the case n = 8,
k = w + 1, and g = 2, which satisfies the necessary conditions because we have
k ≡ g mod 4 andn > 3g. In these particular cases, an important role is played by the
eigenforms in S(w+3)/2(Sp4(Z))with standard parameterΔw[2]⊕[1] (the two “first”
forms of Saito–Kurokawa, the case g = 2 of Theorem 7.3.1). When w = 17, 21,
the surjectivity of ϑ(w−5)/2,2 : MH(w−5)/2,2(R8)(O8) → S(w+3)/2(Sp4(Z)) can be
verified through a simple calculation of the coefficient of the theta series, given that,
since Igusa [105], we know that S(w+3)/2(Sp4(Z)) has dimension 1. This calculation
will be justified in Proposition 9.1.2.

(iii) The case z(λ) = (22, 20, 18, 0) also has an interesting history, because it
was studied by Miyawaki in [149]. He showed that π(λ) admits a ϑ-correspondent
in S12(Sp6(Z)) that he conjectured to have standard parameter Sym2Δ11 ⊕Δ19[2],
which was later proved by Ikeda [109]. Although it looks similar, the case of the
other parameters of the form Sym2Δ11⊕Δw[2]⊕ [1]with w ∈ {11, 15, 17} is more
subtle. When w = 11, 15, we could justify it as for w = 19 if we had an analog of
Ikeda’s construction for nonscalar forms, because for the two pertinent values of λ,
we could certainly verify that π(λ) admits a ϑ-correspondent for Sp8 (see Sect. 8.6).
These parameters (bold in the table) are predicted by Arthur’s theory, as we will see
in Chap. 8.

We refer to Sect. 8.5.7 for a direct, but conditional, confirmation of all of Table 7.1
using Arthur’s theory, and to [55, Chaps. 2 and 7] for much more extensive tables.
Although it is undoubtedly possible to do so using constructions of theta series and
the methods of Sect. 9.5, we will not give an unconditional justification of the three
bold parameters in Table 7.1 (in these cases, z(λ) is (22, 12, 10, 0), (22, 16, 14, 0)
or (22, 18, 16, 0)).
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7.5 The Space Mdet(O24)

In this section, we prove Proposition 5.3.1.

Proposition 7.5.1. The standard parameter of the unique representation π in
Πdisc(O24) such that π∞ � det is Δ11[12].

Proof. By Corollary 7.3.4, there exists a π ∈ Πdisc(O24) such that π∞ = C and
ψ(π, St) = Δ11[12]. We have

τ(2)(212 − 1) = 211 trace(c2(π), VSt) ,

which is none other than the eigenvalue λ24 in the notation of Sect. 5.3. Let f24 ∈
MC(O24) be the function that is the image of the element v24 by the isomorphism
of H(O24)-modules MC(O24) � C[X24] defined in Corollary 4.4.9.

Recall that MC(SO24) is endowed with an action of H(SO24), as well as an invo-
lution s (the “change of orientation,” see the end of Sect. 4.4.4) whose decomposition
in eigenspaces can be written as

MC(SO24) = MC(O24)⊕Mdet(O24) .

The two summands of this decomposition, however, are not necessarily stable under
the action of H(SO24), but only by H(O24), since the relation we have is T ◦ s =
s ◦H(s)(T ) for every T ∈ H(SO24).

Let V ⊂ MC(SO24) be the H(SO24)[s]-module generated by f24, and let
f ′
24 ∈ V be an eigenform for H(SO24). It naturally generates a representation
π′ ∈ Πdisc(SO24) with standard parameter Δ11[12]. In particular, the conjugacy
class c2(π

′) ⊂ SO24(C) does not have eigenvalue ±1, because the eigenvalues of
c2(Δ11) are not real (they are the roots of x2 + (24/211/2)x + 1). This conjugacy
class under SO24(C) is therefore not stable under the action of O24(C) by conju-
gation. The compatibility of the Satake isomorphism with isomorphisms therefore
shows that if f ′′

24 = s(f ′
24) ∈ V and if π′′ ∈ Πdisc(SO24) is generated by f ′′

24, then
we have

c2(π
′) �= c2(π

′′) .

In particular, f ′
24 and f ′′

24 are not proportional and have the same eigenvalues as f24
under the action of H(O24). This allows us to conclude because the nonzero element
f ′
24 − f ′′

24 = (1− s)f ′
24 generates the line Mdet(O24). ��



Chapter 8
Arthur’s Classification for the Classical
Z-groups

8.1 Standard Parameters for the Classical Groups

The aim of this chapter is to explain the description of Πdisc(G) stemming from the
work of Arthur [13] when G is a classical Z-group. By this we mean, from now on,
that G is of the form Sp2g for g ≥ 1 or SOL, where L is either a q-module over Z
with dimL �= 2 or a q-i-module over Z in the sense of Appendix B (Sect. 6.4.7). For
r ≥ 1 an integer, we set

SOr,r = SOH(Zr) and SOr+1,r = SOH(Zr)⊕A1
.

The classical Z-groups that are Chevalley groups1 are therefore Sp2g for g ≥ 1,
SOr,r for r ≥ 2, and SOr+1,r for r ≥ 1. It will be convenient to view the trivial
Z-group as a classical Chevalley group, which we also denote by SO1,0. Moreover,
an important role will be played by the Z-groups SOn, defined as follows for every
integer n ≥ 1 such that n ≡ −1, 0, 1 mod 8:

SOn = SOLn ,

where Ln = En if n ≡ 0 mod 8, Ln = En−1 ⊕ A1 if n ≡ 1 mod 8, and where
Ln denotes the orthogonal complement of a root2 of En+1 if n ≡ −1 mod 8
(Sects. 4.1.2 and 4.1.10).

1 In this chapter, we use the term Chevalley group as a synonym for split semisimple Z-group.
2 The choice of this root is fixed once and for all and will not play any role in the rest of this
book. For example, since all these roots are permuted transitively by W(Dn+1) ⊂ O(En+1), the
isomorphism class of the Z-group SOn depends only on n.
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If G is a classical Z-group, then G is semisimple over Z and the C-group ̂G is a
complex classical group and has a distinguished irreducible representation that is its
standard representation (Sects. 6.4.1 and 6.4.7)

St : ̂G→ SLn(C) .

Theorem� 8.1.1 (Arthur). If G is a classical Chevalley Z-group and π is in
Πdisc(G), then ψ(π, St) is an element of XAL(SLn).

This result, which is a particular case of the general Conjecture 6.4.6, is also
a very specific case of [13, Theorem 1.5.2] (the case of representations that are
“unramified at all primes”). It relies on a rather formidable collection of difficult
results, in particular multiple variants of the Arthur–Selberg trace formula (Arthur),
the spectral decomposition of the spaces of automorphic forms (Langlands), the
theory of endoscopy (Langlands, Shelstad, Kottwitz), and the proof of the famous
fundamental lemma (Waldspurger [206], Ngô [157], Laumon and Chaudouard [49,
50]). As explained by Arthur in his book, the results of [13] depend on a variant “with
torsion” of his work on the “stabilization” of the trace formula. The required formula
was recently established by Moeglin and Waldspurger, in a long series of articles
[207, 152] (see also [134]). Arthur also mentions another hypothesis concerning an
extension of work of Shelstad on the twisted endoscopy for real Lie groups, which
has since been the object of work of Shelstad [184, 185, 186] and Mezo [145, 146].
The statements in this book that rely on these recent works, through the statements
of [13], will be indicated with a star �.

The work of Arthur [13] concerns, as mentioned, the classical Chevalley Z-
groups. However, his previous work allows the deduction from this of a classifi-
cation of Πdisc(G) when G is an arbitrary classical Z-group. This classification is
announced in Chap. 9 of [13] but has not yet been redacted completely, which is
why we announce it in the form of a conjecture.3 As we will see, these results will
not be needed to establish our main results. On the other hand, they substantially
clarify the questions that preoccupy us, so that it would be a shame not to mention
them. For example, as we will see, they lead to a direct and very precise description
of Πdisc(SOn), the main theme of this book.

Conjecture 8.1.2 ([13, Chap. 9]). The statement of Theorem 8.1.1 still holds if G
is an arbitrary classical Z-group.

Notation. As in Sect. 6.4.7, we denote by ClassC the set consisting of the C-groups
Sp2g (g ≥ 1) and SOm (m ≥ 0, m �= 2). A group H ∈ ClassC is uniquely
determined by the associated pair (nH ,wH) ∈ N× {0, 1} defined as follows:

– nH is the dimension of the standard representation of H ;
– we havewH = 0 if and only if there is an isomorphismH � SOm for an integer

m ≥ 0.

3 Let us mention that none of the difficulties stated by Arthur in his Chap. 9 seem to apply to the
situation we are interested in, which concerns only “pure inner forms” of Chevalley groups [115].
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8.2 Self-Dual Representations of PGLn

Arthur’s classification and, more generally, the Arthur–Langlands conjecture involve
representations in Πcusp(PGLm) for every m ≥ 1 that, up to now, we have encoun-
tered essentially only in the case m = 2 and rather from the point of view of the
identity GSp2 = GL2. Let us return to these.

8.2.1 Duality inΠdisc(PGLn)

Letn ≥ 1 be an integer andRn the set of discrete subgroups ofRn of rankn. This set
is endowed with a natural transitive action of GLn(R), and the orbit of the lattice Zn

can be identified with GLn(R)/GLn(Z)
∼→ Rn. The subgroup GLn(Q) preserves

the subspace RZ(Q
n) ⊂ Rn of lattices in Q

n; this action is transitive and extends
naturally to an action ofGLn(Af ) (Sect. 4.1.1). The mapGLn(R)×GLn(Af )→ Rn

given by (g∞, gf ) → g−1
∞ (gf (Z

n)) is therefore well defined; it induces a bijection
GLn(Q)\GLn(A)/GLn(̂Z)

∼→ Rn and, consequently, a natural isomorphism

A2(PGLn)
∼→ L2(Rn) ,

where Rn is the quotient of Rn by the group R
× of homotheties, endowed with a

nonzero GLn(R)-invariant measure (Sect. 4.3.1). The natural actions of PGLn(R)
and H(PGLn) on L2(Rn) deduced by transport of structure are then the obvious
actions. In particular, if f ∈ L2(Rn) is continuous, TA ∈ H(PGLn) is the operator
defined in Sect. 4.2.6, and L ∈ Rn, then we have TA(f)(L) =

∑

M f(M), where
the sum is taken over the subgroups M of L with L/M � A and N denotes the
homothety class of N ∈ Rn.

The Z-group GLn has automorphism g → tg−1, which therefore also acts on
A2(PGLn) by an involution that we denote by θ, which preserves the subspaces
Adisc(PGLn) and Acusp(PGLn). Concretely, we endow the Z-module Z

n with
the standard nondegenerate symmetric bilinear form and denote the dual lattice
of L ∈ Rn for this form by L�. The involution of L2(Rn) in question, which
we also denote by θ, is simply defined by θ(f)(L) = f(L�). It therefore satisfies
θ(T (f)) = ι(T )(θ(f)) for every T ∈ H(PGLn) and every f ∈ L2(Rn), where ι is
the involutive automorphism of H(PGLn) defined in Sect. 4.2.6.

For π = π∞ ⊗ πf in Π(PGLn), we denote by π∨ ∈ Π(PGLn) the element
defined as follows. On the one hand, (π∨)∞ is the representation with the same
space as π∞ but composed with the automorphism g → tg−1 of PGLn(R). On the
other hand, if we view (π∨)f and πf as homomorphisms H(PGLn)→ C, then we
have (π∨)f = πf ◦ ι.

If c is the conjugacy class of a semisimple element g of SLn(C), we denote the
conjugacy class of g−1 (resp. of the complex conjugate of g) by c−1 (resp. c). If c is
the conjugacy class of a semisimple element X of sln(C), we denote the conjugacy
class of −X by −c. The following proposition is well known.
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Proposition 8.2.2. Let π ∈ Π(PGLn).

(i) If π is an element of Πcusp(PGLn) (resp. Πdisc(PGLn)), then the same holds
for π∨.

(ii) For every prime p, we have the equality cp(π
∨) = cp(π)

−1. If we, moreover,
have π ∈ Πdisc(PGLn), then we also have cp(π∨) = cp(π).

(iii) The representation (π∨)∞ is the dual of the unitary representation π∞, and we
have the equality c∞(π∨) = −c∞(π).

Proof. The paragraphs before the proposition justify assertion (i). Let p be a prime.
For every element T ∈ H(PGLn), we have the relation ι(T ) = T t, by Sect. 4.2.6.
The discussion following Scholium 6.2.2 therefore shows the equality cp(π

∨) =
cp(π)

−1. On the other hand, since the action of H(PGLn) on Acusp(PGLn) is a
�-action for the Petersson product on the latter, by Sect. 4.3.1, it also follows that the
elements πp and π∨

p , viewed as ring morphisms Hp(PGLn) → C, are each other’s
complex conjugates. From the point of view of the Satake isomorphism, this can
be written as cp(π∨) = cp(π). Part (iii) follows from the Harish-Chandra theory of
characters and the fact that every element of GLn(R) is conjugate to its transpose.
Using the definition of the Harish-Chandra isomorphism, it is not difficult to verify
that we have c∞(π∨) = −c∞(π). ��
Definition 8.2.3. Let π ∈ Π(PGLn). The representation π∨ is called the dual
representation of π. We say that π is self-dual if π∨ � π. We denote by
Π⊥

cusp(PGLn) ⊂ Πcusp(PGLn) the subset of self-dual representations.

Note that by the multiplicity 1 theorem of Jacquet–Shalika, forπ ∈ Πcusp(PGLn)
to be self-dual, it suffices to have cp(π) = cp(π)

−1 for every prime p (or even for
every prime p except finitely many).

The trivial representation of PGL1 is, of course, self-dual. Moreover, since
g → tg−1 is an inner automorphism when n = 2, the inclusion Π⊥

cusp(PGL2) ⊂
Πcusp(PGL2) is an equality. This is no longer true for n > 2. The main interest of
self-dual representations for our concerns comes from the following theorem, which
refines the statement of Theorem 8.1.1.

Theorem� 8.2.4 ([13, Theorem 1.5.2]).LetG be a classical ChevalleyZ-group and
π ∈ Πdisc(G). Then ψ(π, St) is of the form⊕k

i=1πi[di]with πi ∈ Π⊥
cusp(PGLni) for

every i = 1, . . . , k and
∑k

i=1 nidi = n
̂G. Moreover, this decomposition is unique

and the pairs (πi, di) for i = 1, . . . , k are pairwise distinct.

A similar refinement of Conjecture 8.1.2 is also expected. Note that all Langlands
parameters encountered in Chaps. 6 and 7 satisfy the conclusions of Theorem 8.2.4.
In particular, the Gelbart–Jacquet representation Sym2π ∈ Πcusp(PGL3), where
π ∈ Πcusp(PGL2), is self-dual. A partial justification of these self-duality properties
is given by the following elementary proposition.

Proposition 8.2.5. LetG be a classicalZ-group and π ∈ Π(G). Supposeψ(π, St) =
⊕k

i=1πi[di], where πi ∈ Πcusp(PGLni) for every i = 1, . . . , k. Then for every i,
there exists a j such that πj = π∨

i and dj = di.
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Proof. Since the representation St of ̂G is self-dual, we have the equality
St(cp(π)) = St(cp(π))

−1 for every prime p and St(c∞(π)) = −St(c∞(π)),
and therefore also ψ(π, St) = ⊕k

i=1π
∨
i [di]. We conclude using Proposition 6.4.5

(the Jacquet–Shalika theorem). ��

8.2.6 Regular Algebraic Representations

Let π ∈ Πcusp(PGLn). The weights of π are the eigenvalues of the semisimple
conjugacy class c∞(π)⊂Mn(C). We denote this set of weights byWeights(π)⊂C.

Definition 8.2.7. Let π ∈ Πcusp(PGLn). We say that π is algebraic4 if
Weights(π) ⊂ 1

2Z and if for all w,w′ ∈Weights(π), we have w − w′ ∈ Z.
Ifπ ∈ Πcusp(PGLn) is algebraic, its motivic weight is the greatestw ∈ Z such that

−w/2 ∈ Weights(π); we denote it by w(π). In particular, we have Weights(π) ⊂
w(π)/2 + Z.

Although the algebraic representations form a tiny part of Πcusp(PGLn), they
will be the only ones to play a role in this work. An indication of this is given by the
following proposition.

Proposition 8.2.8. Let G be a semisimple Z-group, π ∈ Π(G), and let r : ̂G→ SLn

be a C-representation. We suppose that

(i) π∞ has the same infinitesimal character as a finite-dimensional irreducible
C-representation of GC;

(ii) we have ψ(π, r) = ⊕k
i=1πi[di] with πi ∈ Πcusp(PGLni) for i = 1, . . . , k

(Sect. 6.4.4).

Then πi is algebraic for every i. Moreover, the class of w(πi) + di − 1 in Z/2Z
depends only on r (and not on the integer i or even on π).

Proof. Let μ be the highest weight of r (a coweight of GC). The infinitesimal
character of π∞ is of the form λ + ρ, where λ is a dominant weight of GC and ρ is
the half-sum of the positive roots (Sect. 6.3.4). The eigenvalues of r(c∞(π)) are, by
definition, of the form 〈λ + ρ, μ′〉, where μ′ is a weight of r. But 2ρ is a weight of
GC and 〈μ − μ′, ρ〉 ∈ Z if μ′ ≤ μ; these eigenvalues are therefore all in 1

2Z, and
pairwise they differ by an element of Z. This property is inherited by the weights of
the πi. ��

This proposition applies, in particular, for every π ∈ Π(G) if G(R) is compact
(Sect. 6.3.4). It also applies if G = Sp2g and π is generated by an eigenform in

4 The reader should be aware that there are several notions of algebraic automorphic representations
in the literature. Definition 8.2.7, which is essentially the one considered, for example, in [33,
Sect. 18.2], but which is not the one used by Clozel in [59], is reminiscent of the notion of Hecke
character of type A0 in the sense of Weil (see [43] for a clarification of the various notions).
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SW (Sp2g(Z)) with W positive, by Corollary 6.3.6 (as well as the discussion that
follows it) and Sect. 6.1.3.

Let G be a classical Z-group and St : ̂G→ SLn the standard representation of ̂G.
We will need to specify the analysis above in this context. Let Irr(GC) be the set of
isomorphism classes of finite-dimensional irreducible C-representations of GC. For
each V ∈ Irr(GC), we consider the semisimple conjugacy class St(InfV ) ⊂Mn(C)
(recall that InfV ∈ ĝss denotes the infinitesimal character of V ). Through a careful
examination of the root data (Sect. 6.1.3), we deduce that there are three clearly
distinct cases:

I. If ̂G = SOn(C) with n = 2g + 1 odd, then V → St(infV ) induces a bijection
between Irr( ̂G) and the set of semisimple conjugacy classes X ⊂ Mn(C) such
that −X = X and that the eigenvalues of X are all distinct and in Z.

II. If ̂G = Spn(C) (and thereforen is even), thenV → St(InfV ) induces a bijection
between Irr( ̂G) and the set of semisimple conjugacy classes X ⊂ Mn(C) such
that −X = X and that the eigenvalues of X are all distinct and in 1

2Z− Z.
III. If ̂G = SOn(C) with n even, then V → St(InfV ) induces a surjection from

Irr( ̂G) to the set of semisimple conjugacy classes X ⊂ Mn(C) such that
−X = X and that the eigenvalues of X are all in Z and distinct, with the
possible exception of the eigenvalue0, whose multiplicity is at most 2. Moreover,
St(InfV ) = St(InfV ′) if and only if V and V ′ are each other’s conjugates under
the outer action ofOn(C) (which impliesV = V ′ if and only if 0 is an eigenvalue
of InfV = InfV ′ ).

Thus, in all cases, the eigenvalues of St(InfV ) are in w
̂G/2 + Z.

Definition 8.2.9. A representation π ∈ Πcusp(PGLn) is called regular if we have
|Weights(π)| = n.

Proposition 8.2.10. Let G be a classical Z-group and St : ̂G → SLn the stan-
dard representation of ̂G. Suppose ψ = ⊕r

i=1πi[di] ∈ XAL(SLn), where πi ∈
Πcusp(PGLni) for every i = 1, . . . , k, and ψ∞ = St(InfV ), where V ∈ Irr(GC).

Let i ∈ {1, . . . , k}. Then πi is algebraic, with motivic weight w(πi) ≡ di − 1 +
w

̂G mod 2, and self-dual. Moreover, πi is regular unless we are in the following
exceptional case:

(a) ̂G(C) � SO2r(C) and ψ∞ admits 0 as a double eigenvalue;
(b) di = 1, ni ≡ 0 mod 2, and |Weights(πi)| = ni − 1; and
(c) for every j �= i, the representation πj is regular and nj ≡ 0 mod 2.

Proof. With the exception of the assertion on the self-duality of πi, the proposi-
tion immediately follows from the analysis of the cases I, II, and III above and
Proposition 8.2.8.

Let us verify the self-duality of πi. By Proposition 8.2.5, there exists a j such that
πj = π∨

i and dj = di. By Proposition 8.2.11 below, πj = π∨
i implies c∞(πj) =

c∞(πi). In view of the assumption on ψ∞ and the analysis of the cases I, II, and
III, this implies j = i or ni = nj = 1. In the latter case, we necessarily have
πj = πi = 1, and therefore we indeed have π∨

i = πi in all cases. ��
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In the proof above, we have called upon the following proposition (which is
obvious if π is supposed to be self-dual).

Proposition 8.2.11. If π ∈ Πcusp(PGLn) is algebraic, then π∞ is isomorphic to its
dual. In particular, we have c∞(π) = c∞(π∨) = −c∞(π) and

(i) w → −w is a bijection of Weights(π);
(ii) if we haven ≡ 1 mod 2, then 0 is inWeights(π) and we havew(π) ≡ 0 mod 2.

To explain this, we will need to study the Archimedean components of the el-
ements of Πcusp(PGLn) in more detail. Another motivation for this is that the
self-dual regular algebraic representations, as well as those that intervene in the ex-
ceptional case of the Proposition 8.2.10, satisfy certain hidden additional properties,
which we will need to specify. This analysis will also be necessary to apply Arthur’s
statements. Indeed, the latter will involve ε-factors of pairs of algebraic representa-
tions, which can also be read (as Γ-factors) on their Archimedean components. This
work has already been carried out in [55, Sect. 3.11], from which we recall several
results in the next subsections.

8.2.12 Representations of GLn(R)

Let WR be the Weil group of the field R [196, Sect. 1]. This is a topological
group, a nontrivial extension of Gal(C/R) = Z/2Z by C

× for the natural action
by conjugation. It is generated by its open subgroupC× together with an element j,
with relations j2 = −1 and jzj−1 = z for every z ∈ C

×.
Following Langlands [137], the continuous and semisimple representations

WR → GLn(C) will play an important role. Let us recall the form of the irre-
ducible representations, which are of dimension 1 or 2. Let

η : WR → R
×

be the unique group morphism such that η(j) = −1 and η(z) = zz for every z ∈ C
×;

it induces an isomorphism Wab
R

∼→ R
×. The continuous morphisms WR → C

× are
therefore the |η|s and εC/R|η|s, where s ∈ C and εC/R = η/|η|. For an integer
w ≥ 0, consider the induced representation

Iw = IndWR

C×

(

z →
(

z

|z|
)w )

.

It is irreducible if and only if w �= 0, and moreover I0 � 1 ⊕ εC/R. The irreducible
representations of dimension 2 of WR are the Iw ⊗ |η|s with w �= 0 and s ∈ C.

We denote by Φ(GLn(R)) the set of isomorphism classes of semisimple contin-
uous representations WR → GLn(C). The Langlands parametrization associates
with each irreducible unitary representation U of GLn(R) (and, more generally,
with every irreducible (g,K)-module of GLn(R)) an element L(U) ∈ Φ(GLn(R))
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that determines U up to isomorphism [137, 120]. Although the map U → L(U) can
be made completely explicit [120], this is not really relevant; the following com-
patibility statements, which hold for every irreducible unitary representation U of
GLn(R), suffice:

(i) (Duality) L(U∗) � L(U)∗.
(ii) (Central character) det L(U) = χU ◦ η, where χU : R× → C

× is the central
character of U .

(iii) (Infinitesimal character) Let us write L(U)|C× � ⊕n
i=1χi, where the χi for

1 ≤ i ≤ n are characters C
× → C

×. For every i, there consequently exists
a unique ordered pair (λi, μi) ∈ C

2 with λi − μi ∈ Z, such that5 χi(z) =
(z/|z|)λi−μi |z|λi+μi . Then InfU is the semisimple conjugacy class of Mn(C)
whose eigenvalues are the λi for i = 1, . . . , n.

The parametrization above applies, in particular, to irreducible unitary repre-
sentations of PGLn(R), viewed as representations of GLn(R) with trivial central
character.

Assertion (i) of the following proposition is the so-called purity lemma of Clozel
[59, Lemma 4.9]; it implies Proposition 8.2.11.

Proposition 8.2.13. Let π ∈ Πcusp(PGLn) be algebraic with weights the ωi/2
(counted with multiplicity), where ω1 ≥ · · · ≥ ωn. Let E and F be the subsets of
{1, . . . , n} defined by E = {i ; ωi > 0} and F = {i ; ωi = 0}.

(i) There exists a unique (mj) ∈ {0, 1}F such that

L(π∞) �
⊕

i∈E

Iωi ⊕
⊕

j∈F

ε
mj

C/R ;

in particular, |F | ≡ n mod 2 and π∞ is isomorphic to its dual.
(ii) If w(π) ≡ 0 mod 2, then

∑

j∈F mj ≡ |E| mod 2.
(iii) If π is regular and w(π) ≡ n ≡ 0 mod 2, then n ≡ 0 mod 4.
(iv) If |Weights(π)| = n−1, thenn ≡ 0 mod 2 andF = {n/2, n/2+1}. Moreover,

n ≡ 0 mod 4 if and only if L(π∞) � ⊕n/2
i=1Iwi .

Proof (See [55, Sect. 3.11]). Let us recall the argument of Clozel’s purity lemma.
Suppose that Iw⊗|η|s/2 (resp. |η|s/2 or εC/R|η|s/2) is a subrepresentation ofL(π∞),
with w ∈ Z and s ∈ C. In particular, (s± w)/2 (resp. s/2) is a weight of π, by the
compatibility of the Langlands parametrization with the infinitesimal character. The
assumption Weights(π) ⊂ 1

2Z therefore implies s ∈ Z. But by Jacquet and Shalika,
the assumption π ∈ Πcusp(PGLn) implies |" s| < 1/2, which shows s = 0. Thus,
L(π∞) is a direct sum of representations of the form Iw, 1, and εC/R. The first
assertion of part (i) is then a consequence of the compatibility of the Langlands
parametrization with the infinitesimal character. The congruence |F | ≡ n mod 2

5 Following Langlands, it is suggestive to write zλzμ for the element (z/|z|)λ−μ|z|λ+μ when
z ∈ C× and λ, μ ∈ C are such that λ− μ ∈ Z.
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follows. The self-duality of π∞ follows from that of L(π∞) (as a representation of
WR) and from the compatibility of the Langlands parametrization with the dual.

For part (ii), note that det(L(π∞)) = 1 (compatibility with the central character),
which suffices because det(Iw) = εw+1

C/R and ωi ≡ w(π) mod 2 for every i. Part (iii)
follows from part (ii) because if π is regular and n ≡ 0 mod 2, then part (i) implies
F = ∅ and |E| = n/2. If |Weights(π)| = n − 1, then part (i) shows that 0 is the
unique double weight and n ≡ 0 mod 2; hence w(π) ≡ 0 mod 2, |F | = 2, and
|E| = n/2− 1. Finally, part (ii) implies part (iv). ��
Remark 8.2.14. Let π ∈ Πcusp(PGLn) be such that we have λ − μ ∈ Z for all
λ, μ ∈ Weights(π). Then a modification of the argument for part (i) shows that π
is algebraic, that is, Weights(π) ⊂ 1

2Z. Indeed, L(π∞) is a direct sum of repre-
sentations of the form ri ⊗ |η|si/2 with |" si| < 1/2 and ri isomorphic to Iw, 1,
or εC/R. The weights of π corresponding to the factor ri ⊗ |η|si/2 are of the form
(si +mi)/2, with mi = ±w or 0 according to whether or not we have ri � Iw.
It therefore suffices to see that we have si = sj for every i, j since this implies
si = 0 for every i because of the relation det(L(π∞)) = 1. But for every i, j,
we have (si +mi)/2 − (sj +mj)/2 ∈ Z by assumption. Since we have mi ∈ Z

and |" si| < 1/2 for every i, we deduce si − sj ∈ Z and |" (si − sj)| < 1, and
consequently si = sj .

This statement and Proposition 8.2.10 show that if G is a classical group and
if π ∈ Πdisc(G) is such that Infπ∞ = InfV for some V ∈ Irr( ̂G), then ψ(π, St)
satisfies certain combinatorial constraints, which we summarize in the following
statement [55, Lemma 3.23].

Corollary 8.2.15. Let G be a classical Z-group and St : ̂G → SLn the stan-
dard representation of ̂G. Suppose ψ = ⊕r

i=1πi[di] ∈ XAL(SLn), where πi ∈
Πcusp(PGLni) for every i = 1, . . . , k, and ψ∞ = St(InfV ), where V ∈ Irr(GC).

(i) If ̂G(C) � SO2g+1(C), then there exists a unique 1 ≤ i0 ≤ k such that
ni0di0 ≡ 1 mod 2. Moreover, nidi ≡ 0 mod 4 for every i �= i0.

(ii) If ̂G(C) � Sp2g(C), then nidi ≡ 0 mod 2 for every i.
(iii) If ̂G(C) � SOn(C) with n ≡ 0 mod 4, then nidi ≡ 0 mod 4 for every i unless

we are in the following exceptional case: 0 is a double eigenvalue of St(c∞(π))
and there exist exactly two integers i, say i1 and i2, such that nidi �≡ 0 mod 4.
These integers satisfy ni1di1ni2di2 ≡ 3 mod 4.

Proof. Suppose ̂G(C) � SO2g+1(C). Since we have
∑k

i=1 nidi = 2g + 1, there
exists at least one integer i0 such that ni0di0 ≡ 1 mod 2. For such an integer,
c∞(πi0) admits the eigenvalue 0 because πi0 = π∨

i0
and ni0 is odd. Since di0 is also

odd, [di0 ]∞ also admits the eigenvalue 0, and therefore so does (πi0 [di0 ])∞. The first
part of assertion (i) follows because 0 is a simple eigenvalue of ψ∞ by case I of the
analysis of Sect. 8.2.6. For the second part, we observe that for every i = 1, . . . , k,
we have w(πi) ≡ di − 1 mod 2, which suffices when w(πi) is odd; the remaining
case follows from part (iii) of Proposition 8.2.13.
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If ̂G(C) � Sp2g(C), the relationw(πi)+di−1 ≡ 1 mod 2 for every i = 1, . . . , k
shows that if di is odd, then so isw(πi), and thereforeni is even (Proposition 8.2.11).
This proves part (ii).

Finally, suppose ̂G(C) � SOn(C)withn ≡ 0 mod 4. In particular,w(πi) ≡ di−
1 mod 2 for every i = 1, · · · , k. If w(πi) ≡ 1 mod 2 (and thereforeni ≡ 0 mod 2),
then di is even and therefore nidi ≡ 0 mod 4. If w(πi) ≡ 0 mod 2 and ni ≡
0 mod 2, Proposition 8.2.13 (iii) asserts that we have ni ≡ 0 mod 4, except perhaps
if πi is not regular. If this happens, it does so for a unique i0, by Proposition 8.2.10,
and in this caseni ≡ 0 mod 2 for every i �= i0, so that in the end,nidi ≡ 0 mod 4 for
every i �= i0. The result follows from the identity n =

∑k
i=1 nidi ≡ ni0di0 mod 4

and the assumption n ≡ 0 mod 4. We can therefore rule out this exception and
suppose that πi is regular for every i; in particular, nidi ≡ 0 mod 4 for every i such
that ni is even. Let J ⊂ {1, . . . , k} be the set of i such that ni is odd (in which case
di is odd and w(πi) is even); we may assume J nonempty. By the argument given for
part (i), this implies that 0 is a double eigenvalue of ψ∞ and that we have |J | ≤ 2.
This concludes the proof because n ≡∑j∈J njdj mod 4. ��

8.2.16 The Ramanujan Conjecture and Galois Representations

A particular case of the Langlands conjectures, in the spirit of the famous
Shimura–Taniyama–Weil conjecture, is that the set of L-functions of the form
L(s + w(π)/2 + m,π), where m ∈ Z and π runs through the algebraic repre-
sentations of Πcusp(PGLn) for n ≥ 1, should coincide exactly with the set of
L-functions of the motives over Q with good reduction everywhere (and, say, “with
coefficients in Q” and “simple”) [139, 153]. The Ramanujan conjecture for an alge-
braic π (Sect. 6.4.12) would then be a consequence of the existence of the associated
motiveM(π) and the Weil conjectures, proved by Deligne. Owing to the work of nu-
merous mathematicians (including Eichler–Shimura, Deligne, Langlands, Kottwitz,
Clozel, Harris–Taylor, Waldspurger, Ngô, Laumon, Clozel–Harris–Labesse, Shin,
Chenevier–Harris), we nowadays dispose of a weakened construction of M(π) for
the regular and self-dual algebraicπ that, nevertheless, suffices to prove the following
theorem. If π ∈ Πcusp(PGLn) is a regular, self-dual algebraic representation, it is
known that the characteristic polynomial6

Pp(π) = det
(

t− cp(π) p
w(π)/2

) ∈ C[t]

has coefficients in the subfield Q ⊂ C of algebraic numbers. The following theorem
is proved in [61, 189, 52, 60] (see also [44]).

6 In this definition of Pp(π), it is understood that cp(π) pw(π)/2 denotes the semisimple conjugacy
class of GLn(C) obtained by taking the product of the class cp(π), viewed in GLn(C) ⊃ SLn(C),
and the scalar pw(π)/2 ∈ C∗ ⊂ GLn(C).
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Theorem 8.2.17. Let π ∈ Π⊥
cusp(PGLn) be algebraic and regular.

(i) The representation π satisfies the Ramanujan conjecture.
(ii) Let � be a prime, and let Q� be an algebraic closure of Q� and ι : Q → Q�

an embedding. There exists a continuous representation ρπ,ι : Gal(Q/Q) →
GLn(Q�), unique up to isomorphism, that is semisimple and unramified outside
� and satisfies

det(t− ρπ,ι(Frobp)) = ι(Pp(π))

for every prime p �= �.

In this statement, Frobp denotes a conjugacy class of arithmetic Frobenius ele-
ments at p. We, moreover, know by proc. cit. that the restriction of the representation
ρπ,ι to Gal(Q�/Q�) is crystalline in the sense of Fontaine, with Hodge–Tate weights
the λ + w(π)/2, where λ ∈ Weights(π). It has been conjectured that ρπ,λ is irre-
ducible, but this is known only for n ≤ 3 (Ribet, Blasius-Rogawski). Note that the
self-duality of π and Chebotarev’s density theorem imply the isomorphism

ρ∗π,ι � ρπ,ι ⊗ ω
−w(π)
� , (8.2.1)

where ω� : Gal(Q/Q) → Z
×
� denotes the �-adic cyclotomic character. It can be

proved that if w(π) ≡ 1 mod 2 (resp. w(π) ≡ 0 mod 2), then there exists a non-
degenerate Gal(Q/Q)-equivariant pairing ρπ,ι ⊗ ρπ,ι → ω

w(π)
� that is alternating

(resp. symmetric) [20].

Remark 8.2.18. Part (ii) of the theorem is expected to hold without assuming that π
is regular or self-dual. Recent works of Harris–Lan–Taylor–Thorne and of Sholze
show that the self-duality assumption can be removed (but these authors do not prove
part (i) for these π). Finally, let us mention that if π ∈ Π⊥

cusp(PGLn) is algebraic
and satisfies |Weights(π)| = n− 1 and n ≡ 0 mod 4, it is also known how to prove
part (ii) [94], but not part (i).

Corollary 8.2.19. Let G be a classical Z-group and π ∈ Πdisc(G) such that π∞ has
the same infinitesimal character as a finite-dimensional irreducible representation
of G(C). We suppose that the Arthur–Langlands conjecture is true for (π, St). If
̂G(C) � SOm(C), we moreover suppose m �≡ 2 mod 4.

Let � be a prime, and let Q� be an algebraic closure of Q� and ι : Q → Q�

an embedding. There exists a unique (up to isomorphism) continuous semisimple
representation, unramified outside �,

ρπ,ι : Gal(Q/Q) −→ GLn
̂G
(Q�)

such that for all p ∈ P− {�}, we have

det(t− ρπ,ι(Frobp)) = ι
(

det
(

t− St(cp(π)) p
w

̂G/2
))

.

The fact that det
(

t − St(cp(π)) p
w

̂G/2
)

is an element of Q[t] is part of the
assertion (and can easily be verified directly in the cases that interest us).
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Proof. Let us write ψ(π, St) = ⊕k
i=1πi[di]. Theorem 8.2.17 and Remark 8.2.18

apply to the automorphic representations πi, by Proposition 8.2.10 and Corol-
lary 8.2.15 (iii). It then suffices to set

ρπ,ι =

k
⊕

i=1

ρπi,ι ⊗
(⊕di−1

j=0 ωj
�

)⊗ ω
(w

̂G−w(πi)+1−di)/2

� .

The uniqueness follows from the Chebotarev density theorem. ��
Let us specify this result in the case of On, using formula (6.2.5).

Corollary 8.2.20. Let n ≡ 0 mod 8, and let F ∈ MU (On) be an eigenform for
H(On), say such that Tp(F ) = λpF for every prime p. We suppose that the Arthur–
Langlands conjecture is true for the pair (π, St), where π ∈ Πdisc(On) is the
representation generated by F (Sect. 6.4.7).

Let � be a prime, and let Q� be an algebraic closure of Q� and ι : Q →
Q� an embedding. There exists a unique (up to isomorphism) representation
ρF,ι : Gal(Q/Q) −→ GLn(Q�) that is continuous, semisimple, and unramified
outside �, such that for every prime p �= �, we have trace ρF,ι(Frobp) = ι(λp).

8.2.21 L-Functions of Pairs of Algebraic Representations

Let π ∈ Πcusp(PGLn) and π′ ∈ Πcusp(PGLn′); the L-function of the pair {π, π′}
is defined by the Euler product

L(s, π × π′) =
∏

p∈P

det(Inn′ − p−s cp(π) ⊗ cp(π
′))−1 .

This is a particular case of Langlands’ construction, recalled in Sect. 6.4.11, where
G = PGLn × PGLn′ and where r is the tensor product of the standard representa-
tions of SLn and SLn′ . We recover L(s, π) when π′ = 1 is the trivial representation
of PGL1. ThisL-function has been studied by Rankin and Selberg when n = n′ = 2
and by Jacquet, Piatetski-Shapiro, and Shalika for all n, n′. These authors prove that
the Euler product above is absolutely convergent when " s > 1 and that it admits
a meromorphic continuation to all of C. Moreover, if L∞(s, π × π′) is a suitable
product of Γ-factors and if ξ(s, π×π′) = L∞(s, π×π′) L(s, π×π′), then we have
a functional equation of the form

ξ(s, π × π′) = ε(π × π′) ξ(1− s, π∨ × (π′)∨) ,

where ε(π × π′) ∈ C
×. We refer to the lectures of Cogdell [62, Sect. 9] for an

overview of these results. Let us add that if π and π′ are self-dual, the relation
ξ(s, π × π′) = ε(π × π′) ξ(1 − s, π × π′) implies that ε(π × π′) = ±1 is just
a sign. Let us recall the exact method for obtaining ε(π × π′) and L∞(s, π × π′),
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for later use. They both depend only on the Archimedean components of π and π′.
To simplify, we restrict this discussion to the case where π and π′ are algebraic
representations, the only case we will need.

LetRepalg(WR) be the set of isomorphism classes of continuous and semisimple
representations of WR on finite-dimensional C-vector spaces that are trivial on the
subgroup R>0 ⊂ C

× of WR. The elements of Repalg(WR) are exactly the direct
sums of representations of the form1, εC/R, or Iw forw > 0 (Sect. 8.2.12).According
to Weil, there is a unique way to associate with every ρ ∈ Repalg(WR) a fourth root
of unity ε(ρ) ∈ {1, i,−1,−i} and a meromorphic function Γ(s, ρ) in the complex
variable s such that for every ρ, ρ′ ∈ Repalg(WR), we have

ε(ρ⊕ ρ′) = ε(ρ)ε(ρ′) , Γ(s, ρ⊕ ρ′) = Γ(s, ρ)Γ(s, ρ′) ,

as well as

(i) ε(Iw) = iw+1 and Γ(s, Iw) = ΓC(s+ w/2) for every w ≥ 0,
(ii) ε(1) = 1 and Γ(s, 1) = ΓR(s).

Recall that Γ(s) =
∫∞
0

e−t ts dt/t if " s > 0 and that it is customary to set

ΓR(s) = π−s/2Γ(s/2) and ΓC(s) = 2(2π)−sΓ(s) ,

so that ΓC(s) = ΓR(s)ΓR(s + 1) (duplication formula). Note that from the case
w = 0, we deduce ε(εC/R) = i and Γ(s, εC/R) = ΓR(s+ 1).

Proposition 8.2.22. Let π ∈ Πcusp(PGLn) and π′ ∈ Πcusp(PGLn′) be algebraic.
Set ρ = L(π∞)⊗ L(π′

∞). We have

ε(π × π′) = ε(ρ) and L∞(s, π × π′) = Γ(s, ρ) .

Proof. The statement concerning L∞(s, π× π′) has a meaning because L(π∞) and
L(π′

∞) are in Repalg(WR) by Proposition 8.2.13 (i). The assertion L∞(s, π×π′) =
Γ(s, ρ) holds by definition [62, Chap. 9]. A close examination of the formulas in
[196, Sect. 3] shows that for every ρ ∈ Repalg(WR), the number ε(ρ) defined above
is exactly the one denoted by ε(ρ, ψ, dx) loc. cit., where dx is the Lebesgue measure
on R and ψ : R → C

× is the character x → e2iπx. Since π and π′ are “unramified
at all finite places” in the usual terminology, this factor ε(ρ) therefore coincides with
ε(π × π′) [62, Chap. 9]. ��

It follows from these formulas that ε(π×π′) is an explicit function of the weights
of π and π′. It is useful, at this point, to note that we have Iw ⊗ εC/R � Iw and

Iw ⊗ Iw′ � Iw+w′ ⊕ I|w−w′|

for all integers w,w′ ≥ 0. In particular, ε(Iw ⊗ Iw′) = (−1)1+max(w,w′).
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8.3 Arthur’s Multiplicity Formula

8.3.1 Arthur’s Symplectic-Orthogonal Alternative

Recall that ifH is a classicalC-group, we denote by nH the dimension of its standard
representation.

Theorem� 8.3.2 (Arthur). Let π ∈ Π⊥
cusp(PGLn). There exists a classical Cheval-

ley Z-group Gπ , unique up to isomorphism, with the following properties:

(i) We have n
̂Gπ = n.

(ii) There exists a π′ ∈ Πdisc(G
π) such that c(π) = ψ(π′, St).

This is a particular case of [13, Theorems 1.4.1 and 1.5.2] (see also the descent
method of Ginzburg, Rallis, and Soudry [93] for a weakened statement). By defini-
tion, the groupGπ satisfies n

̂Gπ = n. When n is odd, the only possibility is therefore
Gπ � Spn−1, but when n is even, Gπ is isomorphic to SOn/2,n/2 or SOn/2+1,n/2

(exclusively). If n = 2, then Gπ � SO2,1 � PGL2 because SO1,1 � Gm is not
semisimple. Finally, when n = 1, so that π is the trivial representation of PGL1, we
have Gπ = SO1,0 (the trivial Z-group).

The representation π ∈ Π⊥
cusp(PGLn) is called orthogonal if ̂Gπ(C) � SOn(C)

(or, equivalently, if w
̂Gπ = 0 in the notation of Sect. 8) and symplectic otherwise.

Proposition� 8.3.3. Let π ∈ Π⊥
cusp(PGLn) be algebraic. Suppose that π has at least

one weight that is a simple eigenvalue of c∞(π). Then π is symplectic if and only if
w(π) ≡ 1 mod 2.

Proof. This is a variant of [55, Corollary 3.8]. Following Arthur [13, Theo-
rem 11.4.2], the representation L(π∞) of WR on C

n preserves a nondegenerate
bilinear form b that is alternating if π is symplectic and symmetric otherwise. The
assumption on π implies that at least one of the representations 1, εC/R, and Iw with
w > 0 occurs in L(π∞) with multiplicity 1 (Proposition 8.2.13 (i)); we denote the
corresponding subspace by E ⊂ C

n. Since each of these representations is irre-
ducible and self-dual, the restriction of b to E is nondegenerate. Given the relation
det Iw = εw+1

C/R , we see that b is alternating if and only if we have E � Iw with
w ≡ 1 mod 2. ��

Arthur’s results also have consequences for the L-functions of pairs of self-dual
representations; see [13, Theorem 1.5.3]. In particular, if π ∈ Π⊥

cusp(PGLn) and
π′ ∈ Π⊥

cusp(GLm) are either both symplectic or both orthogonal, then ε(π×π′) = 1
(this is a �-theorem). In the case where π′ = 1, we deduce from this that

ε(π) := ε(π × 1)

equals 1 if π is orthogonal. When π is algebraic, self-dual, and orthogonal, this gives
a nontrivial relation on its weights; see [55, Proposition 1.8].



8.3 Arthur’s Multiplicity Formula 205

8.3.4 The Multiplicity Formula: General Assumptions

LetG be a classicalZ-group andn= n
̂G the dimension of the standard representation

St of ̂G. Fix an integer k ≥ 1, as well as a pair (πi, di) for every i = 1, . . . , k, where
di ≥ 1 is an integer and πi ∈ Π⊥

cusp(PGLni). We suppose n =
∑k

i=1 nidi and
consider the element

ψ = ⊕k
i=1πi[di]

of X(SLn).
Let U be an irreducible unitary representation of G(R). Arthur’s multiplicity

formula, conjectured in full generality in [9] and proved in [13] when G is a classical
Chevalley group, gives a necessary and sufficient condition for the existence of
π ∈ Πdisc(G) such that π∞ � U and ψ(π, St) = ψ. It can be expressed as the
equality of two characters on an elementary finite abelian 2-group Cψ, which we
give explicitly in the next subsections. The first of these characters, denoted by εψ
and described in Sect. 8.3.5, is independent of U . It is introduced in great generality
by Arthur in [9] and takes into account the signs ε(πi × πj) (Sect. 8.2.21) according
to very precise combinatorics. The origin of the second of these characters, which
is the most delicate of the two, goes back to the work of Shelstad [180] (see also
[2, 3, 9, 13, 121, 133, 140, 181, 186]). It essentially depends only on U and on
a certain morphism SL2(C) × WR → ̂G associated with ψ; we describe it in
Sects. 8.3.8 and 8.4.14.

The work of Arthur [13] is very general, and we will apply it only in very
particular cases, for which the statements are substantially simplified. We assume
that the following conditions hold:

(H1) If ̂G � SOn, then n �≡ 2 mod 4.
(H2) ψ∞ = St(InfV ), where V ∈ Irr(GC) (Sect. 8.2.6).

The first assumption is only a constraint if G is an even special orthogonal group.
In this case, G(R) has signature (p, q) with p ≡ q mod 8 by Scholium 2.2.2 (b), so
that the assumption can also be written p ≡ q ≡ 0 mod 2 (it is, of course, satisfied
if G = SOn with n ≡ 0 mod 8).

The second assumption, on ψ∞, has been made explicit in Sect. 8.2.6 (case I, II,
or III), where we have given several combinatorial consequences concerning the πi.
In particular,

(a) for every i = 1, . . . , k, the representation πi is self-dual and algebraic (and even
regular in all but one exceptional case);

(b) for every i = 1, . . . , k, we have w(πi) + di − 1 ≡ w
̂G mod 2;

(c) for all i �= j, if (ni, di) = (nj , dj), then πj �� πi.

Parts (a) and (b) follow from Proposition 8.2.10. Part (c), which is nontrivial under
condition (H2) only if ni = nj = 1 and di = dj = 1, follows from condition (H1)
and Corollary 8.2.15 (iii).
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8.3.5 The GroupCψ and the Character εψ

We keep the assumptions and notation of the previous subsection. By part (b) above
and Proposition 8.3.3, there exists a C-morphism

ν : SL2 ×
k
∏

i=1

̂Gπi −→ ̂G

such that the C-representation St ◦ ν, with underlying space V � C
n, decomposes

into a direct sum
V = ⊕k

i=1Vi ,

where Vi is isomorphic to the tensor product of the representation Symdi−1St2 of
SL2 and the standard representation of ̂Gπi (the action of the other factors ̂Gπj

for j �= i is trivial). Such a morphism ν is not unique: it is only unique modulo
composition at the target with an automorphism of the C-group ̂G. We fix it once
and for all; when the time comes, we will discuss how the final formula depends on
this choice.

Let Cν be the centralizer of the image of ν in ̂G(C). The representation St
identifies it with the subgroup of SL(V ) consisting of the elements g that preserve
each Vi and satisfy g|Vi

= εi IdVi , where (εi) ∈ {±1}k. Since we have dim(Vi) =
nidi, the group Cν is therefore in a natural exact sequence

1 −→ Cν
St−→ {±1}k δ−→ {±1} ,

where δ(εi) =
∏k

i=1 ε
nidi

i . This abstract description of Cν is clearly independent of
the choice of ν, which is why we denote it simply by Cψ .

The center Z
̂G of ̂G(C) is a subgroup of Cψ. We denote by I ⊂ {1, . . . , k} the

subset consisting of the integers i such that nidi ≡ 0 mod 2, and for every i ∈ I ,
we denote by

si ∈ Cψ

the element that acts by−1 on Vi and by 1 on Vj for j �= i. By assumptions (H1) and
(H2), we can apply Corollary 8.2.15. It implies |I| ≥ k− 1, as well as the following
lemma.

Lemma 8.3.6. The group Cψ is generated by Z
̂G and the si for i ∈ I .

Next, Arthur defines [13, p. 47] a homomorphism εψ : Cψ → {±1} that is trivial
on Z

̂G. To describe it, it suffices to give its value on the elements si for i ∈ I . For
this, Arthur considers the restriction to ν of the adjoint representation of ̂G on Lie ̂G;
this is a representation of the product Cν × SL2 × (

∏k
i=1

̂Gπi). If we fix the integer
i ∈ I , it is an exercise to verify that the subspace of Lie ̂G on which si acts by −1
is isomorphic to

⊕

j �=i Vj ⊗ Vi as a representation of SL2 × (
∏k

i=1
̂Gπi). But if for

d ≥ 1, we denote by rd the representation Symd−1St2 of SL2 (where St2 denotes
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the standard representation, Sect. 6.4.4) and if a ≥ b ≥ 1 are integers, then it is well
known that

ra ⊗ rb � ⊕b
i=1ra−b+2i−1 ;

in particular, ra ⊗ rb has min(a, b) irreducible factors for every a, b ≥ 1. The
method for obtaining εψ described by Arthur loc. cit. therefore takes on the following
form, where we have incorporated the ∗-result of Arthur asserting that we have
ε(π × π′) = 1 if π and π′ are either both symplectic or both orthogonal.
Proposition-Definition 8.3.7. There exists a unique homomorphism εψ : Cψ →
{±1} that is trivial on Z

̂G and satisfies for all i ∈ I the equality

εψ(si) =
∏

j �=i

ε(πi × πj)
min(di,dj).

The product above is taken over all j = 1, . . . , k distinct from i. By the ∗-result of
Arthur mentioned above, we can even restrict ourselves to the integers j = 1, . . . , k
such that w(πj) �≡ w(πi) mod 2. To justify the existence of εψ directly, the reader
should note that the si for i ∈ I are linearly independent over F2 in Cψ and that
if they generate a subgroup that meets Z

̂G nontrivially, then |I| = k and Z
̂G is

generated by
∏k

i=1 si.

8.3.8 The Case of the Chevalley Groups

We keep the notation and assumptions of Sects. 8.3.4 and 8.3.5. Arthur considers a
group morphism

ν∞ : SL2(C)×WR → ̂G(C)

defined as follows.
For every i = 1, . . . , k, an argument similar to that given in the proof of Proposi-

tion 8.3.3, based on Proposition 8.2.13, ensures that there exists a group morphism
μi : WR → ̂Gπi(C) whose composition with the standard representation of ̂Gπi

is isomorphic to L((πi)∞). This property determines μi uniquely modulo compo-
sition with Aut(̂Gπi) at the target, but it will be useful to arbitrarily fix such a
μi. The morphism ν∞ is, by definition, the composition of the diagonal morphism
(g, w) → (g,

∏k
i=1 μi(w)) and the morphism ν. The Aut( ̂G)-orbit of ν∞ in the set

Hom(SL2(C)×WR, ̂G(C)) will be denoted by ψR; it should not be confused with
the semisimple conjugacy class ψ∞, which contains considerably coarser informa-
tion. The orbit ψR depends only on ψ (and not on the choice of ν or of the μi) and,
even better, only on the set of k pairs ((πi)∞, di) for i = 1, . . . k.

Let Cν∞ be the centralizer of the image of ν∞ in ̂G. We clearly have

Cν ⊂ Cν∞ .

It is easy to describe Cν∞ in the same way as we described Cν earlier.
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Lemma 8.3.9. The representation St ◦ ν∞ of SL2(C)×WR is semisimple, without
multiplicities, and all its irreducible components are self-dual. In particular, Cν∞ is
an elementary, finite, abelian 2-group.

Proof. This is [55, Lemma 3.15]. The second assertion follows from the first. The
only point of the latter that does not follow directly from the definitions and condi-
tion (H2) is the assertion of multiplicity 1, which is nontrivial when ψ∞ has 0 as
a double eigenvalue (and therefore w

̂G = 0). In this case, St ◦ ν∞ could contain
either 1 or εC/R with multiplicity 2 (with trivial action of the factor SL2(C) in both
cases). By condition (H1), Corollary 8.2.15 (iii), and Proposition 8.2.13 (iii), these
characters cannot occur with multiplicity 2 in one and the same L((πi)∞). They
would therefore occur (necessarily with multiplicity 1) in L((πi)∞) and L((πj)∞)
with i �= j; moreover, in this case, di = dj = 1 and ni and nj are odd and not con-
gruent modulo 4; see loc. cit. However, since w(πi) = w(πj) = 0, this contradicts
Proposition 8.2.13 (ii). ��

In order to continue our analysis of Arthur’s formula, we first assume G = Sp2g

or SOr+1,r. We denote by Πunit(H) the set of isomorphism classes of irreducible
unitary representations of the real Lie group H . Arthur [13, Theorem 1.5.1] asso-
ciates a finite set7 Π(ν∞) with ν∞, usually called an Arthur packet, endowed with
two maps

Πunit(G(R))
ι←− Π(ν∞)

u�→χu−−−−→ Homgroups(Cν∞ ,C×) . (8.3.1)

The set Π(ν∞) and ι, as well as, in fact, χ once we have clarified the dependence
of Cν∞ on the choice of ν∞, depend only on the Aut( ̂G)-conjugacy class ψR of
ν∞, which is why we also write Π(ψR) for Π(ν∞). Arthur proves a property that
fully characterizes the triple (Π(ψR), ι, χ) [13, Theorem 2.2.1], without, however,
describing this triple concretely. We will return to this point in the next subsection.
As explained by Arthur [13, p. 42], we expect ι to be injective, so that Π(ψR) would
be defined as a subset of Πunit(G(R)) and ι would simply be ignored.

Theorem� 8.3.10 (Arthur’s Multiplicity Formula [13, Theorem 1.5.2]). Suppose
G = Sp2g or SOr+1,r. Fix ψ ∈ XAL(SLn

̂G
) satisfying condition (H2), as well as

U ∈ Πunit(G(R)).
Let π ∈ Π(G) be the unique representation such that π∞ � U and St(cp(π)) =

ψp for every prime p. Then π ∈ Πdisc(G) if and only if there exists a u ∈ Π(ψR)
such that

U = ι(u) and χu|Cν
= εψ .

7 What we denote here by ψR, Cν∞ , and Π(ψR) is denoted by ψ, Sψ , and ˜Πψ, respectively, in
Arthur’s statement; moreover, Arthur does not give a name to ι and for u ∈ Π(ν∞), he writes the
character χu as x �→ 〈x, u〉. The image of ι, a finite subset of Πunit(G(R)), is commonly called
the Arthur packet associated with ψR.
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More precisely, the multiplicity m(π) of π in Adisc(G) (Sect. 4.3.2) is exactly the
number of elements u ∈ Π(ψR) with the property above.

Let us decipher the statement. First, note that the existence and uniqueness of π
come from the fact that if G = Sp2g or SOr+1,r, the map St: ̂G(C)ss → SLn

̂G
(C)ss

is injective and its image is the set of classes equal to their inverse. In particular, the
representation π of the statement is the unique possible candidate such that π∞ � U
and ψ(π, St) = ψ. The theorem first asserts that if U is not in ι(Π(ψR)), then
m(π) = 0. Let us therefore suppose U ∈ ι(Π(ψR)) and also suppose, to simplify,
that we know that ι−1(U) is a singleton {u}. The theorem then asserts thatm(π) �= 0
if and only if χu|Cψ

= εψ, in which case m(π) = 1.
For the sake of completeness, let us now describe the remaining case of the

group G = SOr,r, where r ≡ 0 mod 2 by assumption (H1). In this case, ̂G(C) =

SO2r(C). The image of the map St : ̂G(C)ss → SL2r(C)ss is still the set of classes
equal to their inverse, but the map is no longer injective: two semisimple elements
of SO2r(C) that are conjugate in SL2r(C) are not always so in SO2r(C), and may
only be conjugate in O2r(C). The nonempty fibers of the map above are therefore
exactly the orbits of the natural action of

O2r(C)/SO2r(C) = Out( ̂G) = Z/2Z

on ̂G(C)ss. An analogous phenomenon occurs for St: ĝss → (sl2r)ss.
The action of Or,r(R) on G(R) by conjugation also defines an action of
Z/2Z = Or,r(R)/SOr,r(R) on Πunit(G(R)), whose set of orbits Arthur de-
notes by ˜Πunit(G(R)). His theorem [13, Theorem 1.5.1] then associates with
ν∞ a triple (Π(ψR), ι, χ) as above, with the only difference that ι is now a map
Π(ψR)→ ˜Πunit(G(R)).

Theorem� 8.3.11 (Arthur’s Multiplicity Formula for the Special Orthogonal
Z-group SOr,r [13, Theorem 1.5.2]). Suppose G = SOr,r with r ≡ 0 mod 2.
Fix ψ ∈ XAL(SL2r) satisfying condition (H2), as well as U ∈ ˜Πunit(G(R)). Let
E ⊂ Π(G) be the set of π ∈ Π(G) such that ψ(π, St) = ψ and π∞ ∈ U . Let
F ⊂ Π(ψR) be the set of elements u such that U ∈ ι(u) and χu|Cν

= εψ. Then we
have

∑

π∈E

m(π) = mψ|F | ,

where mψ = 1 unless ψ = ⊕k
i=1πi[di] with di ≡ 0 mod 2 for every i, in which case

mψ = 2.

(Arthur still expects the injectivity of ι, and therefore |F | ∈ {0, 1}.) In order to
apply Theorem 8.3.10 or 8.3.11, it is obviously crucial to know more about the triple
(Π(ψR), ι, χ). The object of the subsections that follow is to recall what is known
on this subject.
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8.4 Discrete Series

8.4.1 Discrete Series, Following Harish-Chandra

The results of this subsection are due to Harish-Chandra. It will be convenient to
refer to Knapp’s book [119] for the proofs.

Let H be a semisimpleR-group. Recall that π ∈ Πunit(H(R)) is a discrete series
if it occurs as a subrepresentation of the regular representation L2(H(R)) [119,
Chap. IX, Sect. 3]. Harish-Chandra proves that H(R) admits discrete series if and
only if H has an anisotropic maximal torus, that is, a sub-R-group T ⊂ H such that
TC ⊂ HC is a maximal torus and T (R) is compact [119, Theorem 12.20]. This is the
case for Sp2g , as well as for the real special orthogonal group with signature (p, q) if
and only if pq ≡ 0 mod 2 or p+ q ≡ 1 mod 2, so that condition (H1) of Sect. 8.3.4
is in fact equivalent to requiring that G(R) admits discrete series.

From now on, we assume that H(R) admits discrete series. The anisotropic
maximal tori of H form a single orbit under the action of H(R) by conjugation; we
fix one of them, which we denote by T . Let us introduce several objects associated
with the pair (H,T ). We will simply write X∗(T ) (resp. X∗(T )) for X∗(TC) (resp.
X∗(TC)). Let

Φ = Φ(HC, TC) ⊂ X∗(T ) and W = W(HC, TC) ;

the latter is the Weyl group of Φ. We also set

Wr = W(H,T )
def= NH(R)(T (R))/T (R) ,

where NH(R)(T (R)) is the normalizer of T (R) in H(R) (the real Weyl group
of (H,T )). Finally, we have a unique maximal compact subgroup K of H(R)
containing T (R) (and therefore NH(R)(T (R))), and we denote by Φc ⊂ Φ the
system of (so-called compact) roots of K with respect to T (R). We have natural
inclusions W(Φc) ⊂Wr ⊂W , which are in general strict.

For V ∈ Irr(HC), we denote by ΠV ⊂ Πunit(H(R)) the set of discrete series
with the same infinitesimal character as V . Harish-Chandraproves that every discrete
series of H(R) belongs to ΠV for a unique V . For a basis Δ of the root system Φ,
he defines a representation πΔ,V ∈ ΠV , uniquely determined by the values taken
on by its character ΘΔ,V on the set T (R)reg ⊂ T (R) of elements t ∈ T (R) such
that α(t) �= 1 for every α ∈ Φ. Specifically, if we write tμ for μ(t) if t ∈ T (R) and
μ ∈ X∗(T ), we have

ΘΔ,V (t) = (−1) 1
2 dimH(R)/K

∑

w∈Wr
ε(w)tw(λ+ρ)−ρ

∏

α∈Φ+(1− t−α)
∀t ∈ T (R)reg ,

whereλ ∈ X∗(T ) denotes the highest weight ofV with respect to the Borel subgroup
TC ⊂ B ⊂ HC defined by Δ, Φ+ ⊂ Φ is the positive system defined by Δ, and 2ρ
is the sum of the elements of Φ+ [119, Theorems 9.20 and 12.7]. Harish-Chandra
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proves that every element of ΠV is of the form πΔ,V and that πΔ,V � πΔ′,V
if and only if Δ′ = w(Δ) with w ∈ Wr [119, Theorem 12.21]. In particular,
|ΠV | = |Wr\W | is independent of V .

Suppose that there exists a subgroup S ⊂ K isomorphic to S
1 such that the set of

fixed points of S for the adjoint action on LieH(R) is exactly Lie(K) (in particular,
S is in the center of the neutral component of K). This is the case, for example,
when H is Sp2g or the special orthogonal group with signature (p, 2) with p ≥ 1.
In this case, H(R) has holomorphic discrete series [119, Chap. VI]; we already
encountered examples in Sect. 6.3.4. In the Harish-Chandra classification, these are
exactly the representations πΔ,V obtained when Δ is the basis of a positive system
of the form {α ∈ Φ ; ϕ(α) > 0}, where ϕ : X∗(T )→ R is a linear form such that

∀α ∈ Φc , ∀β ∈ Φ− Φc , 0 < |ϕ(α)| < |ϕ(β)|

(the compact roots are “smaller” than the noncompact roots), by the remark following
[119, Theorem 9.20].

8.4.2 Shelstad’s Canonical Parametrization, the Case of Split
Groups

We need to recall a second parametrization of the elements of ΠV , where V ∈
Irr(HC) is fixed, that comes up in the statement of Arthur’s multiplicity formula; as
we already mentioned in Sect. 8.3.4, this parametrization is due to Shelstad. It comes
from the existing identities between the characters of the discrete series of H and
those of the discrete series of a collection of associated R-groups, called endoscopic
by Langlands [180]. A detailed exposition of these identities would go well beyond
the scope of this book (and the authors’ competence), and we will not venture into it.
We follow the overview of Shelstad [183], who, in particular, describes the precise
normalizations used by Arthur, while sometimes borrowing the illuminating point
of view of Adams [1].

Let us, from now on, make the additional assumption that H is split over R

(and semisimple and such that H(R) has discrete series). Let T be an anisotropic
maximal torus of H ; we use the notation of Sect. 8.4.1 for the associated objects.
Shelstad’s parametrization is completely canonical only if H is adjoint. In general,
it will depend on the choice of a Wr-orbit of the set B(T ) of bases Δ of the root
system Φ such that Δ ∩ Φc = ∅. This set is nonempty and endowed with a natural
simply transitive action of the real Weyl group W ad

r of (H/Z(H))(R) with respect
to the image of T (R), which satisfies Wr ⊂ W ad

r ⊂ W . The W(H,T )-set B(T )
obviously depends on the choice of T , but the fact that the set of these T forms a
singleH(R)-conjugacy class ensures that the quotient mapW(H,T )\B(T ) depends
only onH ; we denote it byB(H). Results of Kostant and Vogan show that the choice
of a Wr-orbit O ⊂ B(T ), which we also denote by O ∈ B(H), is equivalent to that
of an equivalence class of Whittaker dataD forH(R), a notion we will not introduce
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here, but which is exactly the reference datum for Arthur: the unique discrete series
in ΠV that is generic for D is πΔ,V for Δ ∈ O.

Definition 8.4.3. LetT be an anisotropic maximal torus ofH ,Δ ∈ B(T ), and ρ∨ the
half-sum of the coroots of T positive with respect to Δ. Shelstad’s parametrization
of ΠV with respect to (T,Δ) is the map

κΔ : ΠV −→ X∗(T )⊗ Z/2Z , π → κΔ(π)

defined by κΔ(πw−1Δ,V ) ≡ wρ∨ − ρ∨ mod 2X∗(T ) for every w ∈W .

Let us emphasize that ρ∨ ∈ 1
2X∗(T ) is not, in general, in X∗(T ). On the other

hand, the term wρ∨ − ρ∨ is indeed in X∗(T ): it even belongs to the subgroup
generated by the coroots. We will see further on that π → κΔ(π) is injective.

Let us explain why this definition coincides with the one given by Shelstad [183,
Sect. 8]. Following Langlands and Shelstad, we consider the first cohomology group
H1(R, T ) of T (C), the latter being viewed as a Z[Gal(C/R)]-module. Since we
have Gal(C/R) = Z/2Z = 〈1, σ〉, H1(R, T ) is simply the quotient of the abelian
group

Z1(R, T ) = {t ∈ T (C) ; tσ(t) = 1}
by the subgroup of elements of the form tσ(t)−1 with t ∈ T (C). Let us first recall
that H1(R, T ) can be canonically identified with the target of the map κΔ (Tate–
Nakayama duality). Indeed, let T2 = {t ∈ T (R) ; t2 = 1} = T (R) ∩ Z1(R, T ).
The composition of the natural maps

T2 ↪→ Z1(R, T )→ H1(R, T ) (8.4.1)

is clearly an isomorphism because the torus T is R-isomorphic to a finite product of
copies of S1. For μ ∈ X∗(T ) ⊗ C, we denote by eμ the unique element z ∈ T (C)
such that λ(z) = e〈λ,μ〉 for every λ ∈ X∗(T ). The map μ → eiπμ therefore induces
a natural isomorphism X∗(T ) ⊗ Z/2Z

∼→ T2. By putting the isomorphisms above
end-to-end, we obtain the natural isomorphism

H1(R, T )
∼→ X∗(T )⊗ Z/2Z (8.4.2)

announced earlier.
We also have a natural action of W on H1(R, T ) induced by the inclusion

T ⊂ H , defined as follows [37]. If N is the normalizer of T (C) in H(C), then
nσ(n)−1 ∈ T (C) for every n ∈ N , and therefore (n, t) → n � t := ntσ(n)−1

defines an action of N on Z1(R, T ). By passing to the quotient, it induces an action
of W = N/T (C) on H1(R, T ), which we also denote by (w, x) → w � x. By
definition, for w ∈ W , the element κΔ(πw−1Δ,V ) ∈ X∗(T )⊗ Z/2Z considered by
Shelstad [183, p. 15] is the image of w� 1 ∈ H1(R, T ), where 1 denotes the identity
element of the group H1(R, T ), by the isomorphism (8.4.2).

One should be aware that the isomorphism γ : T2 → H1(R, T ) defined by for-
mula (8.4.1) does not intertwine the obvious action of W on T2 by conjugation and
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that on H1(R, T ) defined above. However, the identity gtσ(g)−1 = gtg−1gσ(g)−1

shows that this does hold for the action of the subgroup Wr. To avoid con-
fusion, we denote by (w, t) → w(t) the usual action of W on T (C) and by
(w, t) → w · t = γ−1(w � γ(t)) the “twisted” action on T2. The exact relation
between the two is given by part (ii) of the following lemma, essentially due to
Langlands [179, Sect. 3], [130, Lemma 5.1], [1, Lemma 7.8]. Fix Δ ∈ B(T ), and
let ρ∨ ∈ 1

2X∗(T ) be the half-sum of the coroots of (HC, TC) positive with respect
to Δ. Following [1], we set

tb = eiπρ
∨ ∈ T (C) .

We have t4b = 1; hence tb ∈ T (R).

Lemma 8.4.4. (i) The centralizer of tb in H(R) is K , and we have t2b ∈ Z(H).
(ii) For every t ∈ T2 and w ∈W , we have w · t = w(ttb)t

−1
b .

The relation w · 1 = eiπ(wρ∨−ρ∨) follows and concludes the proof of our claim
that Definition 8.4.3 coincides with Shelstad’s definition. Note that part (i) implies
that the element tb depends only on the Wr-orbit of Δ in B(T ).

Proof. If α ∈ Φ, then α(tb) = (−1)〈ρ∨,α〉. Let s : Φ→ Z/2Z be the map such that
s−1(0) = Φc. The Cartan decomposition of LieH(R) with respect to K shows that
we have s(α+ β) = s(α) + s(β) whenever α, β, and α+ β are in Φ. By induction
on the “height” |〈ρ∨, α〉|, we have s(α) ≡ 〈ρ∨, α〉 mod 2 for every α ∈ Φ. This
shows that the inner automorphism of H defined by tb is the Cartan involution of
H(R) with respect to K , and therefore part (i).

Since we have t2b ∈ Z(H), the function f(w) = w(tb)t
−1
b defines a 1-cocycle of

W with values in T2. Likewise, g(w) = w · 1 is also a 1-cocycle with values in T2.
Since w · t = w(t)w ·1, it suffices to see that f and g coincide on the sα with α ∈ Δ
or, equivalently, that sα · 1 = f(sα) = eiπα

∨
. This is exactly the computation of

Langlands [179, Proposition 2.1]. This proves part (ii). ��
Finally, note that if Δ ∈ B(T ), w ∈ Wr, and π ∈ ΠV , then we have

κwΔ(π) = wκΔ(π) , (8.4.3)

because of the immediate identity (ww′) · 1 = w · (w′ · 1) for every w′ ∈ W . In
particular, the Wr-orbit of κΔ(π) depends only on that of Δ in B(T ).

8.4.5 Dual Interpretation and Link with Arthur Packets

We keep the notation and assumptions of Sects. 8.4.1 and 8.4.2. Before giving an ex-
ample, let us give the useful dual interpretation of Shelstad’s parametrization. Let ̂H
be the dualC-group ofHC (recall thatH is split overR). Following Langlands [137],
there exists a natural bijection between Irr(HC) and the set of ̂H-conjugacy classes
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of discrete parameters ϕ : WR → ̂H . Recall that, by definition, such an object is
a continuous group morphism such that the subgroup ϕ(WR) ⊂ ̂H consists of
semisimple elements and has a finite centralizer in ̂H , which we denote by Cϕ.
This bijection is characterized by the fact that the infinitesimal character of such a ϕ
coincides with that of the corresponding representation in Irr(HC).

Let us explain this assertion. The subgroup ϕ(C×) ⊂ ̂H is commutative and
connected, and consists of semisimple elements. Its Zariski closure in ̂H is therefore
a torus, and its centralizer in ̂H, which we denote by S, is a Levi subgroup (of
a parabolic subgroup) of ̂H . By definition, Cϕ ⊂ S is the subgroup fixed by
conjugation by ϕ(j). Since it is finite, this forces S to be a maximal torus and ϕ(j)
to act by the inversion s → s−1 (in particular,−1 is an element of the Weyl group of
̂H , which is indeed the case under our assumption on H). Let λφ, μφ ∈ X∗(S)⊗C

be the unique elements such that λφ − μφ ∈ X∗(S) and ξ(ϕ(z)) = z〈ξ,λφ〉z〈ξ,μφ〉

for every z ∈ C
× and ξ ∈ X∗(S) (see the footnote in Definition 8.2.7, p. 195). By

definition, the infinitesimal character of ϕ is the ̂H-conjugacy class of λφ, viewed in
Lie ̂H (formula (6.3.1)). Moreover, we have μφ = −λφ.

Let us now fix a discrete parameter ϕ : WR → ̂H . Note that if ϕ′ is in the ̂H-
conjugacy class ϕ and if h ∈ ̂H satisfies ϕ′ = hϕh−1, the isomorphism Cϕ → Cϕ′

induced by conjugation by h is independent of the choice of h, so that Cϕ is a
canonical abelian group. Let S be the maximal torus of ̂H containing ϕ(C×) and
B ⊂ ̂H the unique Borel subgroup containingS such that the element λφ ∈ 1

2X∗(S)
defined above is dominant with respect to B. Together, Δ ∈ B(T ), which defines
a unique Borel subgroup TC ⊂ Q ⊂ HC, and ̂H define a unique isomorphism
Ψ(HC, T,Q)∨ � Ψ( ̂H,S,B) and, in particular, a distinguished isomorphism ̂T →
S or, equivalently, an isomorphism

iΔ : X∗(T )
∼→ X∗(S) .

That being said, Cϕ = S2 = {s ∈ S ; s2 = 1} and the natural map β : X∗(S) ⊗
Z/2Z → Hom(S2,C

×) is a group isomorphism. To conclude, Shelstad’s map κΔ

(Definition 8.4.3) induces a natural map

χO : ΠV −→ Homgroups(Cϕ,C
×) , (8.4.4)

defined by χO := β ◦ (iΔ ⊗ Z/2Z) ◦ κΔ, where O ∈ B(T ) denotes the Wr-orbit
of Δ. In fact, for w ∈ W , we have iwΔ = iΔ ◦ w−1, so that the map χO indeed
depends only onO, by the relation (8.4.3). Every homomorphism in the image of χO

is trivial on Z( ̂H) because wρ∨ − ρ∨ is a sum of roots of ( ̂H,S) for every w ∈ W .
The map χO is injective but not surjective in general.

The link with Sect. 8.3.8 is that if the homomorphismν∞ defined loc. cit. is trivial
on the factor SL2(C), which is equivalent to requiring di = 1 for every i = 1, . . . , k,
then ν∞ is a discrete parameterWR → ̂G (Lemma 8.3.9) with the same infinitesimal
character as the representation V ∈ Irr(GC) fixed by condition (H2) in Sect. 8.3.4.
To proceed, we need to treat the case SOr,r separately.
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(a) Suppose G = Sp2g or SOr+1,r. Then by [183, 184] and [146], the set Π(ψR)
considered by Arthur is ΠV , the map ι is the obvious inclusion ΠV ⊂ Πunit(G(R)),
and the map χ defined in Diagram (8.3.1) is the map χO defined above. When
G = SOr+1,r (adjoint), there is only one possible choice of O ∈ B(GR), so that
everything is canonically defined. When G = Sp2g, there are exactly two choices
(see below), and we must, of course, make the same choice as Arthur [13, p. 55].
Since the natural map PGSp2g(Z) → π0(PGSp2g(R)) = Z/2Z is surjective, this
choice will not play any role in our applications.

(b) Finally, suppose G = SOr,r with r ≡ 0 mod 2. The group with two elements
Or,r(R)/SOr,r(R) = {1, θ} has a natural action onΠunit(G(R)) and Irr(GC). Note
that θ induces a bijection ΠV

∼→ Πθ(V ).

Lemma 8.4.6. Let H = SOr,r with r ≡ 0 mod 2, let T be an anisotropic maximal
torus of H , Φ = Φ(HC, TC), Δ a basis of Φ, and V ∈ Irr(HC). Then we have
θ(πΔ,V ) � πΔ,θ(V ).

Proof. It is equivalent to fix T or a decomposition of H(Rr) as an orthogonal sum
⊕i∈IPi of planes Pi supposed (positive or negative) definite. Having done this, it
is equivalent to fix Δ, a Borel subgroup of HC containing TC, or a total order on
the set I with, for each i ∈ I , a choice of one of the two isotropic lines in Pi ⊗ C

(Sect. 6.1.3). Let i0 be the greatest element of I . Let s ∈ O(H(Rr)) be the unique
element that acts as the identity on Pi for i < i0 and interchanges the two isotropic
lines in Pi0 . This is a representative of θ that preserves T as well as the basis Δ ⊂ Φ.
This allows us to conclude the proof because the characteristic property of πΔ,V

shows θ(πΔ,V ) = πs(Δ),θ(V ) and we have s(Δ) = Δ. ��
In particular, if θ(V ) � V , then θ acts by the identity on ΠV : every π ∈ ΠV

extends to O(H(Rr)). Let us return to the Z-group G = SOr,r. By the results of
Shelstad and Mezo mentioned above, the setΠ(ψR) considered by Arthur is the image
˜ΠV of ΠV in ˜Πunit(G(R)), and the map ι is the obvious inclusion. For π ∈ ΠV ,
Lemma 8.4.6 asserts that π and θ(π) have the same Shelstad character, which, by
passing to the quotient, provides a well-defined map ˜ΠV → Homgroups(Cν∞ ,C×):
this is the map considered by definition by Arthur. To be completely exact, as in the
case G = PGSp2g , the set B(GR) contains two elements, and we must choose the
one that corresponds to the Whittaker datum fixed by Arthur, but, again, this choice
will not play a role in our applications.

8.4.7 Example: The Holomorphic Discrete Series of Sp2g(R)

Consider the group H = Sp2g, with dual C-group ̂H = SO2g+1. Set E = H(Rg)
endowed with its hyperbolic alternating form a, so that H = SpE . Recall that if
I ∈ Sp(E) is such that I2 = −idE , it endows E with a complex structure, as well as
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a nondegenerate Hermitian form h for this structure, with associated bilinear form

(e, f) → a(Ie, f) + ia(e, f) .

The centralizer of I in SpE is then the unitary R-group Uh. Choose the element
I such that h is positive definite, in which case Uh(R) is a maximal compact
subgroup of SpE . There exists a unique conjugacy class of such elements under
Sp(E). For example, we can take I = J2g in the notation of Sect. 4.5.1; Uh(R) is
then the group K of Sect. 4.5.3 (with complexification j(−, i1g) : K → GLg(C)
defined loc. cit.). The choice of a decomposition of the Hermitian space (E, h) into
an orthogonal sum of lines determines an anisotropic maximal torus T such that
T (R) ⊂ K . In the notation of Sect. 8.4.1 (and in accordance with Sect. 6.3.4), we
have X∗(T ) = ⊕g

i=1Zεi,

Φ = {±2εi ; i = 1, . . . , g} ∪ {±εi ± εj ; 1 ≤ i < j ≤ g} ,

and Φc = {±(εi − εj) ; 1 ≤ i < j ≤ g}. In particular, Wr = W(Φc) is none
other than the symmetric group Sg acting on X∗(T ) � Z

g in the usual way, and
W ad

r = Wr×{±id}. The set of bases B(T ) consists of two Wr-orbits, interchanged
by x → −x; for example, one of them is

Δ = {2εg,−εg − εg−1, εg−1 + εg−2,−εg−2 − εg−3, . . . , (−1)g−1(ε2 + ε1)} .

Note that if ε∗i ∈ X∗(T ) is the dual basis of (εi), thenΔ is the basis of the positive sys-
tem {α ∈ Φ ; f(α) > 0}, wheref = ε∗g−2 ε∗g−1+3 ε∗g−2+· · ·+(−1)g−1 (g−1) ε∗1.
A short calculation then shows that we have ρ∨ =

∑g
i=1(−1)i−g 1

2 (2g − 2i+ 1) ε∗i ,
and therefore

ρ∨ ≡ 1

2

g
∑

i=1

ε∗i mod 2X∗(T ) .

Note that this element is indeed invariant under Wr. Let A ⊂ W be the subgroup
consisting of the elements a ∈ W such that a(εi) = ±εi; it is clearly isomorphic to
{±1}g. We see that every element X∗(T ) is congruent modulo 2 to an element of
the form aρ∨ − ρ∨ for a unique a ∈ A: the action of A on H1(R, T ) is therefore
simply transitive, and κΔ (resp. χO) is bijective. Finally, note that if we replace O
by the Wr-orbit −O, which is equivalent to changing w to −w, we have

κΔ ≡ κ−Δ + 2ρ∨ mod 2X∗(T ) .

Now, consider the holomorphic discrete series in ΠV ; see Sects. 6.3.4 and 8.4.1.
One easily verifies that there exist exactly two Wr-orbits of bases ofΦ whose associ-
ated positive system is such that the compact roots are smaller than the noncompact
roots, namely the orbits of the basis ±Δ′, where

Δ′ = {2εg} ∪ {εi+1 − εi ; i = 1, . . . , g − 1}
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(consider, for example, the linear form
∑g

i=1(g+ i) ε∗i ). By the chosen conventions,
which we do not need to specify, one of these bases leads to the representations
denoted by π′

W in Sect. 6.3.4, while its opposite leads to the outer conjugates under
PGSp2g(R) (in the literature, we sometimes encounter the names holomorphic and
antiholomorphic discrete series to distinguish between these two types). We then
have Δ′ = w−1Δ, where w ∈W is the element that sends εi to (−1)g−iεi. Hence

κΔ(πΔ′,V ) ≡ wρ∨ − ρ∨ ≡
∑

i�≡g mod 2

ε∗i mod 2 , (8.4.5)

which agrees with the computation carried out in [55, Lemma 9.1]. Likewise, we
obtain κΔ(π−Δ′,V ) ≡ κΔ(πΔ′,V ) + 2ρ∨ mod 2X∗(T ).

8.4.8 Pure Forms of the Split Groups

In this subsection, we recall how the parametrization of Sect. 8.4.2 extends to all
pure forms of the split R-group H , following Vogan, Kottwitz, Arthur, Shelstad,
and Adams [2], [10, Sect. 1]. Our exposition is largely inspired by the pleasant
presentation of Adams [1], as well as the notes of Shelstad [182, 183]. We refer to
[176, Chap. III, Sect. 1], [2, Sect. 2], and [37] for general results on the forms of real
groups.

Let us first consider an arbitrary R-group G. The set G(C) is endowed with an
action of Gal(C/R) = {1, σ}. Let

Z1(R, G) = {x ∈ G(C) ; xσ(x) = 1} .

The group G(C) acts on Z1(R, G) by (g, x) → gxσ(g)−1; the quotient set is the
usual cohomology set H1(R, G). To every element x ∈ Z1(R, G) corresponds an
involution

σx = innx ◦ σ
of G(C). This is the Galois involution of a unique real structure on the C-group GC,
whose associated real group we denote by Gx. In particular,

Gx(R) = {g ∈ G(C) ; σ(g) = x−1gx} .

Such a real form of G is called pure. The following lemma is obvious.

Lemma 8.4.9. The stabilizer in G(C) of x ∈ Z1(R, G) is Gx(R).

If x and x′ ∈ Z1(R, G) have the same class in H1(R, G) and if h ∈ G(C) is
such that hxσ(h)−1 = x′, then σx′ ◦ innh = innh ◦ σx, so that

innh : Gx → Gx′
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is an isomorphism defined over R. An important point is that it does not depend on
the h chosen above, at least modulo the inng with g ∈ Gx(R), by the lemma above.
In other words, if x and x′ are equivalent in H1(R, G), the R-groups Gx and Gx′

are naturally isomorphic, and even canonically so modulo “inner automorphisms.”
Hence, while some caution is necessary, it makes sense to speak of the R-group
Gc defined “up to inner automorphisms” as being the R-group Gx for any x ∈
Z1(R, G) in the class c ∈ H1(R, G). In particular, there is an obvious definition of
Πunit(Gc(R)) for c ∈ H1(R, G).

Example 8.4.10. Let us give some classical examples [176, Chap. III, Sect. 1.2]. If
E is a finite-dimensional R-vector space, then Z1(R,GLE) is the set of semilinear
involutions ofE⊗RC. By Hilbert’s theorem 90, x → Ex = (E⊗RC)

x=Id identifies
Z1(R,GLE) with the set of real structures on the C-vector space E ⊗R C and we
have (GLE)x = GLEx for every x ∈ Z1(R,GLE). One immediately sees that if E
is a q-vector space over R, then Z1(R,OE) ⊂ Z1(R,GLE) can be identified with
the real structures Ex ⊂ E ⊗R C such that q(Ex) ⊂ R. For x ∈ Z1(R,OE), we
therefore have a q-vector space Ex for the form q|Ex

, and we have (OE)x = OEx .
The map x → Ex then induces a bijection between H1(R,OE) and the set of
isomorphism classes of q-vector spaces overR of rank dim E (the signature), which
has dim(E) + 1 elements. Finally, we see that x ∈ Z1(R, SOE) if and only if E
and Ex have the same discriminant, in which case (SOE)x = SOEx , and then that
x → Ex induces a bijection betweenH1(R, SOE) and the set of isomorphism classes
of q-vector spaces overRwith same rank and discriminant as E. The analog holds in
the alternating case, which is just simpler, because there is only one nondegenerate
alternating form of each even dimension (H1(R, Sp2g) = 1).

Let us now return to our split R-group H , endowed with an anisotropic max-
imal torus T . For c ∈ H1(R, H), we recall the Shelstad parametrization of
the set Πc

V of discrete series of Hc(R) with the same infinitesimal character as
V ∈ Irr(HC) = Irr((Hc)C). The inclusion T ⊂ H induces a natural injection
Z1(R, T )→ Z1(R, H), as well as a map

W\H1(R, T ) −→ H1(R, H) , (8.4.6)

where the action of W on H1(R, T ) is that recalled in Sect. 8.4.2. This map is
bijective by Shelstad (see also [37]). In particular, every pure real form of H is
isomorphic, as an R-group, to Ht for t ∈ T2.

The forms Ht with t ∈ T2, and more generally t ∈ Z1(R, T ), have the nice
property that they all share T as anisotropic maximal torus, because σt coincides
with σ on T . Since, moreover, HC = (Ht)C, the root system Φ of (HC, TC) is
canonically that of ((Ht)C, TC), and likewise for its Weyl group W (on the other
hand, the real Weyl subgroup W(Ht, T ) ⊂W does, of course, depend on t). If Δ is
a basis of Φ and t ∈ T2, it consequently makes sense to consider the discrete series
πΔ,V,t of Ht(R) associated by Harish-Chandra with the basis Δ of Φ, in the notation
of Sect. 8.4.1. Recall that the set B(T ) defined in Sect. 8.4.2 is defined with respect
to the pair (H,T ).
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Definition 8.4.11. Let c ∈ H1(R, H) and V ∈ Irr(HC). Let T be an anisotropic
maximal torus of H , Δ ∈ B(T ), and ρ∨ the half-sum of the coroots of T positive
with respect to Δ. The Shelstad parametrization map with respect to Δ is the unique
map

κc
Δ : Πc

V −→ X∗(T )⊗ Z/2Z , π → κc
Δ(π)

such that for every t ∈ T2 in the class c and everyw ∈W , we haveκc
Δ(πw−1Δ,V,t) ≡

w(μ + ρ∨)− ρ∨ mod 2X∗(T ), where μ ∈ X∗(T ) is such that t = eiπμ.

Hidden behind this definition is the following fact: let w ∈ W and t ∈ T2, and let
n ∈ H(C) be a representative of w such that n� t = w · t, so that innn : Ht → Hw·t
defines an R-isomorphism; then the restriction of the representation πwΔ,V,w·t of
Hw·t(R) to innn is isomorphic to the representation πΔ,V,t of Ht(R). When c = 1,
we have κ1

Δ = κΔ, and we, of course, recover Definition 8.4.3. We easily verify, as
in Sect. 8.4.2, that κc

wΔ = w ◦κc
Δ for everyw ∈W(H,T ). Part (i) of Lemma 8.4.12

below moreover asserts that κc
Δ is injective, so that the map

∐

c∈H1(R,G)

κc
Δ :

∐

c∈H1(R,H)

Πc
V −→ X∗(T )⊗ Z/2Z

is bijective.
The agreement of this presentation with the definition given by Shelstad [182,

183], which sends πw−1Δ,V,t to the class of w · t in H1(R, T ), immediately follows
from Lemma 8.4.4. This is essentially the point of view given by Adams in [1], up to
the fact that his starting point is an R-group with real points that is compact, rather
than split (and that he considers general inner forms). The definition above admits
a dual interpretation identical to that mentioned in Sect. 8.4.5, in terms of discrete
parameters of H , and leads to a canonical map

χc
O = β ◦ (iΔ ⊗ Z/2Z) ◦ κc

Δ , Πc
V → Homgroups(Cϕ,C

×) ,

which depends only on the Wr-orbit O of Δ in B(T ) (let us emphasize again that
this choice is with respect to H and not Hc). Let us note that in her exposition,
following Arthur and Kottwitz, Shelstad limits herself to the c ∈ H1(R, H) that
are in the image of the natural map H1(R, Hsc) → H1(R, H), where Hsc → H
denotes the simply connected cover of H . The disjoint union of the Hc indexed by
such classes c then forms a K-group in the sense of Arthur. This corresponds to
restricting oneself to elements t ∈ T2 of the form eiπμ, where μ ∈ X∗(T ) is a sum
of coroots of (HC, TC) or, equivalently, to the elements of X∗(̂T ) ⊗ Z/2Z that are
trivial on the center of ̂H.

Lemma 8.4.12. Let T be an anisotropic maximal torus of H and t ∈ T2.

(i) W(Ht, T ) = {w ∈W ; w · t = t}.
(ii) innttb is a Cartan involution of Ht, where tb ∈ T2 is the element defined in

Sect. 8.4.2 and associated with a Wr-orbit in B(T ).
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Proof. We have w · t = t if and only if there exists a representative n ∈ H(C) of w
that fixes t ∈ Z1(R, H), that is, is an element of Ht(R) by Lemma 8.4.9. Part (ii)
follows from the case t = 1, which is Lemma 8.4.4 (i). ��

If c ∈ H1(R, H) and V ∈ Irr(HC), then V can be viewed, by restriction, as
a finite-dimensional irreducible representation of Hc(R) that is well defined up to
isomorphism. When Hc(R) is compact, it is the unique element of the singleton Πc

V

(Sect. 8.4.1). Part (ii) of Lemma 8.4.12 shows that this occurs if and only if tb ∈ T2

and c is the class of a t ∈ tbZ(H). Recall that Z(H) ⊂ T2 because −1 ∈ W (this
follows from the fact that H is split over R and has a compact maximal torus).

Corollary 8.4.13. Let c ∈ H1(R, H) be such that Hc(R) is compact, let V ∈
Irr(HC) and Δ ∈ B(T ), and let ρ∨ ∈ 1

2X∗(T ) be associated with Δ. Then ρ∨ ∈
X∗(T ) and κc

Δ(V ) ≡ ρ∨ + ν mod 2X∗(T ), where eiπν ∈ Z(H).

Let us consider the interesting example of the holomorphic discrete series of the
special orthogonal group with signature (m, 2) for m ≥ 1 odd (it is split only if
m ≤ 3). We begin with the split R-group H = SOr+1,r. We write H(Rr) ⊕ R as
an orthogonal sum of a line D and planes Pi for i = 1, . . . r, each definite and with
a sign that we will give further on. This decomposition defines a unique anisotropic
torus T of H that preserves D and each of the Pi. For i = 1, . . . , r, we choose,
arbitrarily, one of the isotropic lines �i of Pi ⊗ C; we denote the character of T on
�i by εi ∈ X∗(TC). As in Sect. 6.1.3, the sequence �1, . . . , �r defines a unique Borel
subgroup of HC containing TC, which corresponds to the standard basis

Δ = {εr} ∪ {εi − εi+1 ; 1 ≤ i < r}

of Φ = Φ(HC, TC). Now, suppose that we have chosen the Pi with sign (−1)i−1

and D with sign (−1)r, which is allowed. We see that no element of Δ is compact,
so that Δ ∈ B(T ) (it is not difficult to see that B(T ) forms a single Wr-orbit).
Moreover, Sect. 6.1.3 shows that the half-sum ρ∨ of the coroots of (HC, TC) positive
with respect to Δ is

ρ∨ =
r
∑

i=1

(r − i+ 1)ε∗i ∈ X∗(TC) ,

where ε∗i ∈ X∗(TC) denotes the dual basis of (εi), so that εi(tb) = (−1)r−i+1.
Having said this, let us turn to the real forms ofH . By Example 8.4.10, there exists

a unique class c ∈ H1(R, H) such that Hc is isomorphic to the special orthogonal
group with signature (2, 2r − 1). Concretely, if t ∈ T2 acts by multiplication by
sj = ±1 on the plane Pj and by 1 on D, then the real form of the q-vector space
H(Rr) ⊕ R associated with t is the direct sum of D, the Pj such that sj = 1, and
the iPj such that sj = −1. In particular, Ht is the special orthogonal group with
signature (2a, b), where a is the number of 1 ≤ j ≤ r such that sj(−1)j−1 �= (−1)r
and 2a+ b = 2r + 1. In other words, Ht � H ′ if and only if there exists an integer
1 ≤ s ≤ r such that t = tbe

iπε∗s . Since these elements of T2 form only one W -orbit
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for the twisted action, they indeed belong to the same class c ∈ H1(R, H). Let us,
for example, identify H ′ with Ht′ , where

t′ = tbe
iπε∗1

(since every R-isomorphism of H ′ is of the form innh with h ∈ H ′(R), the choice
of the identification does not matter). The set Φ′

c ⊂ Φ of compact roots of (Ht′ , T )
is

Φ′
c = {±εi ; i = 2, . . . , r} ∪ {±εi ± εj ; 2 ≤ i < j ≤ r} ,

by Lemma 8.4.12. By considering the linear form (2r− 2) ε∗1+
∑r

i=2(r− i+1) ε∗i ,
we see that the positive system of the basis Δ above is such that every element of Φ′

c

is smaller than every element of Φ−Φ′
c (Sect. 8.4.1). It is even the unique basis with

this property modulo the action of the real Weyl group of (Ht′ , T ). Hence, there
exists a unique holomorphic discrete series πhol,V of H ′ with the same infinitesimal
character as V ∈ Irr(HC), and we have

κc
Δ(πhol,V) ≡ (r − 1)(ε∗1 + ε∗2) +

r
∑

i=3

(r − i+ 1)ε∗i mod 2X∗(TC) . (8.4.7)

Indeed, this is Definition 8.4.11 applied to w = 1 and t = t′ = eiπ(ρ
∨+ε∗1).

8.4.14 Adams–Johnson Packets

Let H be a split semisimple R-group admitting discrete series and T an anisotropic
maximal torus of H . We again denote its roots system by Φ = Φ(HC, TC) ⊂ X∗(T )
and the Weyl group of Φ by W .

In this subsection, we briefly recall certain sets, or packets, of unitary irreducible
representations of H(R) defined by Adams and Johnson in [3], which play an
important role in Arthur’s theory [9, Sect. 5] (see also [2] for a very general context).
The starting point consists of an Adams–Johnson parameter

ϕ : SL2(C)×WR → ̂H(C) ,

which is a group morphism with certain properties that we first discuss informally
and then specify further on. Adams and Johnson associate with it a finite subset

ΠAJ(ϕ) ⊂ Πunit(H(R))

that depends only on the ̂H(C)-conjugacy class of ϕ.
The parameter ϕ first determines a representation Vϕ ∈ Irr(HC). For example,

the Adams–Johnson parameters that are trivial on the factorSL2(C) can be identified
exactly with the discrete Langlands parameters recalled in Sect. 8.4.5, and for such a
ϕ, by definition,ΠAJ(ϕ) = ΠVϕ . In general,ΠAJ(ϕ) consists of representations with
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the same infinitesimal character as Vϕ; even better, they have (h,K)-cohomology
with coefficients in V ∗

ϕ [204]. Concretely, with each basis Δ ⊂ Φ, the parameter ϕ
associates a parabolic subgroup PΔ,ϕ ⊂ HC containing TC. Let LΔ,ϕ ⊂ H be the
Levi subgroup ofPΔ,ϕ containingT ; it is necessarily defined overR becauseT (R) is
compact (of course, none of the proper parabolic subgroups of HC containing T are
defined overR). Finally,ϕ determines a representation ρ ofLΔ,ϕ(R) of dimension 1.
Its exact description by Adams and Johnson is rather delicate, at least whenLΔ,ϕ(R)
is not connected,8 but for the most part, we will not need to understand it for our
discussion. The data of PΔ,ϕ and ρ then allows us to define a representation

πΔ,ϕ ∈ Πunit(H(R))

by cohomological induction in the relevant degree [202, 203]. The set of these
representations, when Δ runs through the bases of Φ, is by definition the packet
ΠAJ(ϕ). Let Wr = W(H,T ) ⊂ W (Sect. 8.4.1). If we fix a basis Δ ⊂ Φ and
L = LΔ,ϕ, then the map W → ΠAJ(ϕ) defined by w → πwΔ,ϕ induces a bijection
(that depends on Δ)

Wr\W/W(LC, TC)
∼→ ΠAJ(ϕ) .

Let us now state the axioms (AJ1) and (AJ2) that defines the Adams–Johnson
parameters, following [3], [130, p. 195], [55, App. A]. Let ϕ : SL2(C) ×WR →
̂H(C) be a group morphism assumed to be continuous, algebraic on the factor
SL2(C), and such that ϕ(1 ×WR) consists of semisimple elements. Consider the
homomorphism ϕ̃ : WR → ̂H(C) obtained by composing ϕ with the following
morphism introduced by Arthur:

WR → SL2(C)×WR , g →
[ |η(g)|1/2 0

0 |η(g)|−1/2

]

× g ,

where η : WR → R
× is the character recalled in Sect.8.2.12. The subgroup ϕ̃(C×) ⊂

̂H(C) is connected and consists of semisimple elements; we can therefore embed it
in a maximal torus

S ⊂ ̂H .

There then exist unique λ, μ ∈ X∗(S)⊗C such that λ−μ ∈ X∗(S) and ξ(ϕ̃(z)) =
z〈ξ,λ〉z〈ξ,μ〉 for every ξ ∈ X∗(S) and every z ∈ C

× (see the footnote at the beginning
of Sect. 8.2.12, p. 198).

The ̂H(C)-conjugacy class of λ, viewed in Lie ̂H, is the infinitesimal
character of a finite-dimensional representation Vϕ ∈ Irr(HC).

(AJ1)

8 When LΔ,ϕ(R) is connected, the character ρ is determined by its differential at the identity, itself
characterized by the property that the representation πΔ,ϕ defined in the text must have the same
infinitesimal character as V .
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This implies, in particular, that S is the unique maximal torus of ̂H containing
ϕ̃(C×). This also endows ̂H with a unique Borel subgroupB containing S such that
λ is dominant with respect to B. Next, we consider the centralizer M ⊂ ̂H(C) of the
commutative connected subgroup consisting of the semisimple elementsϕ(1×C

×);
this is therefore a Levi subgroup (of a parabolic subgroup) of ̂H . It contains S.

Choosing a basis Δ of Φ allows us to identify the based root datum
(X∗(T ),Φ,Δ, · · · )∨ with Ψ( ̂H,S,B) and, in particular, provides a privileged
isomorphism

iΔ : X∗(T )
∼→ X∗(S)

that sends Δ∨ onto the basis of Φ( ̂H,S) associated with B. Let LΔ,ϕ ⊂ HC

be the unique Levi subgroup (of parabolic subgroups) containing T such that
iΔ(Φ

∨(LΔ,ϕ, TC)) = Φ(M,S) (in particular, M � L̂Δ,ϕ). Let PΔ,Φ ⊂ HC be
the unique parabolic subgroup with Levi subgroup LΔ,ϕ containing the Borel sub-
group of HC containing T and associated with Δ; it is the subgroup mentioned in
the informal description above. The remaining axiom serves to define the character
χ (see [3] and the work of Taïbi [195, Sect. 4.2.2] for more details on this subject).

The homomorphism SL2(C) → M induced by ϕ is principal, that is,
induces an sl2-triple of LieM that is principal in the sense of Kostant
[128]. Moreover, the centralizer Cϕ of Imϕ in ̂H(C) is finite.

(AJ2)

The first assumption implies that the centralizer of ϕ(SL2(C) × C
×) in ̂H(C) is

the center Z(M) of M . The group Cϕ is therefore the subgroup of Z(M) fixed by
conjugation by ϕ(1× j). The second assumption asserts that

Cϕ = Z(M)2
def= {z ∈ Z(M) ; z2 = 1}

(see, for example, [55, Lemma A.1]). As noted by Taïbi [195, Sect. 4.2.2], under the
first assumption of (AJ2), the second one is also equivalent to requiring that ϕ be
trivial on 1 × R>0 (this is obviously necessary, because R

× is the center of WR,
but it is also sufficient). When H is a classical group, it is easy to determine all its
Adams–Johnson parameters; see Example 8.4.15 and Lemma 8.4.16.

The Case of Pure Real Forms

To conclude this subsection, let us consider the general case of the pure real forms
of H . Let c ∈ H1(R, H). The construction of Adams and Johnson in [3], which is
not specific to split groups, also associates with every Adams–Johnson parameter ϕ
of H a set of representations

Πc
AJ(ϕ) ⊂ Πunit(Hc(R)) .

If t ∈ T2 is in the class c and Δ is a basis of Φ, we again have the parabolic subgroup
TC ⊂ PΔ,ϕ ⊂ (Ht)C = HC. Its Levi subgroup T ⊂ LΔ,ϕ,t ⊂ Ht, defined over R,



224 8 Arthur’s Classification for the Classical Z-groups

is the pure real form of LΔ,ϕ associated with σt (Sect. 8.4.8). Adams and Johnson
associate a character ρ : LΔ,ϕ,t(R) → C

∗ with this group and from ρ define a
representation

πΔ,ϕ,t ∈ Πunit(Ht(R))
∼→ Πunit(Hc(R))

by cohomological induction toHt(R)with respect toPΔ,ϕ, in a suitable degree. They
setΠc

AJ(ϕ) = {πΔ,ϕ,t}, whereΔ runs through the bases ofΦ and t ∈ T2 through the
representatives of c. As in Sect. 8.4.8, the variablesΔ and t are redundant and linked
by the relation πwΔ,ϕ,w·t � πΔ,ϕ,t that holds for every basis Δ ⊂ Φ, every t ∈ T2,
and every w ∈ W . If we fix t ∈ T2 and a basis Δ ⊂ Φ, and if L = LΔ,ϕ,t ⊂ Ht is
the associated Levi subgroup, then, this time, the map W → Πunit(H(R)) defined
by w → πwΔ,ϕ,t induces a bijection

W(Ht, T )\W/W(LC, TC)
∼→ Πc

AJ(ϕ) .

The particular case c = 1 gives another point of view on Π1
AJ(ϕ) = ΠAJ(ϕ).

8.4.15 Example: Adams–Johnson Parameters of Sp2g

Consider the R-group H = Sp2g . Let V = C
2g+1 be the underlying space of the

standard representation of ̂H = SO2g+1, endowed with the standard quadratic form
q. Letϕ : SL2(C)×WR → SO(V ) be a continuous homomorphism that is algebraic
on the factor SL2(C) and trivial on 1×R>0. Since WR/R>0 is compact, the group
SL2(C)×WR acts in a semisimple manner on V , which therefore decomposes into
an orthogonal sum

V =
⊕

j∈J

Vj

of irreducible subspaces Vj . As a representation of SL2(C) ×WR that is trivial
on 1 × R>0, Vj is necessarily self-dual. Also note that if q|Vj

is degenerate, then
q(Vj) = 0 and there exists j′ �= j such that Vj′ � V ∗

j � Vj .
Suppose that ϕ satisfies (AJ1); we will analyze ϕ and, in particular, see that (AJ2)

is automatically satisfied. By case I of Sect. 8.2.6, the Vj are pairwise nonisomorphic
(and therefore nondegenerate), and only one of them has odd dimension; we may
assume that it is V0. It is then obvious thatCϕ is the finite subgroup of SL(V ) consist-
ing of the elements g such that g(Vj) ⊂ Vj for every j and g|Vj

= ±idVj . Moreover,
V0 is an irreducible representation of SL2(C), with WR acting by multiplication by
a character χ0, and for j �= 0, we can write

Vj � Qj ⊗Rj , Qj � Symdj−1St2 , Rj � Irj ,

with rj > 0 and dj + rj ≡ 1 mod 2. We can endow Qj and Rj with nondegenerate
bilinear forms that are preserved by SL2(C) and WR, respectively, and whose tensor
product is the bilinear form on Vj associated with q. The restriction of Rj to
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C
× ⊂WR is the direct sum of the two stable and isotropic lines, say �j and �′j ; the

element z ∈ C
× acts on �j by multiplication by (z/|z|)rj . Thus, M ⊂ SOV is the

subgroup
SOV0 ×

∏

j �=0

Mj ,

whereMj ⊂ SOVj is the stabilizer of the transverse LagrangiansQj⊗�j andQj⊗�′j .
In particular, Mj � GLdj , M is indeed the Levi subgroup of a parabolic subgroup
of SOV , and Cϕ = Z(M)2. Recall that a C-morphism SL2 → L with L classical
(resp. GLd) is principal if and only if the representation of SL2 composed of f and
the standard (resp. tautological) representation of L is irreducible or the sum of the
trivial representation and a nontrivial irreducible representation ifL(C) � SO2r(C).
This shows that (AJ2) is satisfied. More generally, an analysis similar to the one just
carried out shows the following lemma.

Lemma 8.4.16. Suppose HC ∈ ClassC, and let St : ̂H(C) → SLn(C) be the stan-
dard representation. Let ϕ : SL2(C) ×WR → ̂H(C) be a continuous morphism
that is algebraic on the factor SL2(C) and trivial on 1 × R>0. Then ϕ is an
Adams–Johnson parameter if and only if it satisfies (AJ1) and if the representation
St ◦ ϕ : WR → SLn(C) has no multiplicities.

Let us continue studying the previous example: we describe the torus S and the
Borel subgroupB of SOV associated with ϕ. We set Q0 := V0. Note that the restric-
tion of Qj to the diagonal torus of SL2(C) is the direct sum of dj canonical stable
lines �j,n for n = (dj − 1)/2, · · · , (1− dj)/2, where the element

[

|z|1/2 0

0 |z|−1/2

]

acts on �j,n by multiplication by |z|n. On the one hand, we have an orthogonal
decomposition

V = V + ⊕ V − ⊕ �0,0 ,

where V + (resp. V −) is the Lagrangian that is the direct sum of the Qj ⊗ �j (resp.
Qj ⊗ �′j) and the �0,n with n > 0 (resp. n < 0). On the other hand, the space
V + is itself the direct sum of g lines �0,n (with n > 0) and �j,m ⊗ �j (j �= 0,
m arbitrary). Condition (AJ1) determines a unique way to order these g isotropic
lines, say Ce1, . . . ,Ceg ⊂ V +, so that for every z ∈ C

×, the element ϕ̃(z) acts by
multiplication by zwizw

′
i on ei, where (wi, w

′
i) is an ordered pair of integers such

that the wi satisfy
w1 > w2 > · · · > wg > 0

(these can, of course, be expressed simply in terms of the rj and dj , but it will not
be necessary to specify how). The torus S is the stabilizer in SOV of the lines Cei
for i = 1, . . . , g and of V −. The Borel subgroup S ⊂ B ⊂ SO2g+1 is the stabilizer
of the flag associated with the ei as in Sect. 6.1.3; the element λϕ is dominant with
respect to S by the decreasing order and positivity of the wi.

Finally, let us describe the LΔ,ϕ. Consider the hyperbolic a-vector space E =
H(Rg), an element I ∈ Sp(E)with square−idE , and the associated positive definite
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Hermitian form h on E as in Sect. 8.4.7. Choose a decomposition of the Hermitian
space (E, h) as an orthogonal sum of I-stable R-planes, and let T ⊂ Uh be the
associated torus, consisting of the elements of SpE that stabilize each of these
planes; it is an anisotropic maximal torus of H . If P ⊂ E is an I-stable R-plane, we
have a canonical decomposition

P ⊗R C = P+ ⊕ P−

as a sum of 1-dimensional eigenspaces of I for the respective eigenvalues+i and−i.
The choice of a basisΔ ofΦ(HC, TC) is equivalent to that of a numberingP1, . . . , Pg

of the R-planes defining T , as well as a sign si ∈ {+,−} for every i = 1, . . . , g: the
Borel subgroup containing T associated with such data is the stabilizer of the flag
formed on the spaces

P s1
1 , P s2

2 , . . . , P sg
g

(see Sect. 6.1.3). Having made such a choice, let us describe the associated R-group
LΔ,ϕ. Let ηi ∈ X∗(TC) be the character of TC on P si

i , and let (η∗i ) be the dual basis
of the (ηi) in X∗(TC). By Sect. 6.1.3, the isomorphism iΔ : X∗(TC) � X∗(S) sends
η∗i onto the character of S on the line Cei, and by definition, iΔ(Φ∨(LΔ,ϕ, TC)) =
Φ(M,S). The C-groupLΔ,ϕ immediately follows. Concretely, there exists a unique
decomposition E = ⊕j∈JEj , where Ej is the direct sum of the R-planes Pi for
the indices i such that Cei ⊂ Vj . In particular, dimR Ej = dimC Vj if j �= 0 and
dimR E0 = dimC V0 − 1. Moreover, if j �= 0, there exists a decomposition into a
sum of transverse Lagrangians

Ej ⊗ C = E+
j ⊕ E−

j ,

where E+
j (resp. E−

j ) is the direct sum of the P si
i (resp. P−si

i ) belonging to Ej ⊗C.
By definition, the C-group LΔ,ϕ is the subgroup

SpE0⊗C
×
∏

j �=0

Lj

of SpE⊗C
, where Lj � GLE+

i
is the stabilizer in SpEi⊗C

of the subspaces E+
j

and E−
j . It remains to give the real structure. Let I ′ ∈ T (R) ⊂ Sp(E) be the

element with square −idE coinciding with siI on Pi. Let h′ be the Hermitian form
on E associated with I ′, defined by h′(u) = a(I ′u, u), and let h′j : Ej → R be the
restriction of h′ to Ej ; it has signature (pj , qj), where qj is the number of indices
i such that P−

i ⊂ E+
j . The element I ′ induces a central element of Lj for every

j �= 0, and thereforeLj = Uh′
j
. To conclude, we have the isomorphism of R-groups

LΔ,ϕ � SpE0
×
∏

j �=0

Uh′
j
.

In particular, LΔ,ϕ(R) is connected.
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8.4.17 Dual Parametrization ofΠc
AJ(ϕ)

Let ϕ be an Adams–Johnson parameter of the split R-group H and c ∈ H1(R, H)
a pure real form of H . Following [3, Sect. 3] and [9, Sect. 5], the packet Πc

AJ(ϕ) is
again endowed with a natural parametrization map

Πc
AJ(ϕ) −→ Homgroups(Cϕ,C

×) , π → χc
O,ϕ(π) ,

induced by that of Shelstad, which we now recall (see also [130, Sect. 8], [55,
App. A], [195, Sect. 4.2.2]). As in Sect. 8.4.2, it depends only on the choice of an
O ∈ B(H), which we assume fixed from now on.

Let M ⊃ S ⊂ B ⊂ ̂H be associated with ϕ as in Sect. 8.4.14. In particular,
Cϕ = Z(M)2. Fix Δ ∈ O, which defines ρ∨ ∈ 1

2X∗(T ) (Sect. 8.4.2), a privileged
isomorphism iΔ : X∗(T )

∼→ X∗(S) (Sect. 8.4.5), as well as a Levi subgroup L =
LΔ,ϕ ⊂ H (Sect. 8.4.14). The inclusion T → L induces a bijection

W(LC, TC)\H1(R, T )
∼→ H1(R, L) ,

following Shelstad (see also [37]). This bijection and Lemma 8.4.12 (i) show that
the map

fΔ : Πc
AJ(ϕ)→ H1(R, L)

that sends πw−1Δ,ϕ,t, for w ∈ W and t ∈ T2 in the class c, onto the image of the
element w � t ∈ H1(R, T ) in H1(R, L), is well defined. Moreover, it is injective,
with image equal to the fiber of the natural map H1(R, L)→ H1(R, H) above the
class c. We also have a commutative diagram

The vertical maps are the obvious ones (in particular, the one on the right is induced
by the inclusion Z(M)2 ⊂ S), the map hΔ is the composition of iΔ⊗Z/2Z and the
canonical isomorphismH1(R, T )

∼→ X∗(T )⊗Z/2Z recalled in Sect. 8.4.5, and the
map g (a special case of the general constructions of Kottwitz [129]) is the unique
map that makes the diagram commute. Concretely, for x ∈ H1(R, L) and t ∈ T2 in
the class x, written as t = eiπμ with μ ∈ X∗(T ), the image g(x) is the restriction to
Z(M)2 of the character iΔ(μ) ∈ X∗(S) (it depends neither on the choice of t in the
class x nor, of course, on that of μ). Finally, we set

χc
O,ϕ(π)

def= gΔ ◦ fΔ(π)

(it depends only on O and not on Δ ∈ O). Concretely, for every w ∈ W and
t = eiπμ ∈ T2 in the class c, the character χc

O,ϕ(πw−1Δ,ϕ,t) is the restriction to
Z(M)2 of iΔ(w(μ+ ρ∨)− ρ∨), where ρ∨ is with respect to Δ.
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We should note that as remarked by Adams and Johnson, π → χc
O,ϕ(π) is not,

in general, injective. Let us conclude with a few simple but important observations
on the behavior of discrete series, following [130, Sect. 8] and [55, App. A]. First of
all, we have already said that when ϕ is trivial on the factor SL2, the construction of
Adams and Johnson recovers the equality Πc

AJ(ϕ) = ΠVϕ . More precisely, in this
case we have M = S and LΔ,ϕ = T for every basis Δ of Φ, and the representation
πΔ,ϕ,t coincides with πΔ,Vϕ . It is then clear that the two parametrizations χc

O,ϕ and
χc
O coincide. When correctly formulated, this property extends to the discrete series

of Hc(R) that appear in Πc
AJ(ϕ) for every ϕ, as observed by Kottwitz [130, p. 196];

let us recall how. For this, we fix an Adams–Johnson parameter ϕ of H . With it is
associated a series of inclusions

Cϕ = Z(M)2 ⊂ S ⊂ B ⊂ ̂H (8.4.8)

defined in Sect. 8.4.14. Following Kottwitz, note that there exists a discrete Langlands
parameter ϕdisc : WR → ̂H(C), unique up to conjugation by S(C), with the same
infinitesimal character as Vϕ, such that ϕdisc(C

×) ⊂ S(C), and with infinitesimal
character dominant with respect to B (Sect. 8.4.5). In particular, we have a canonical
inclusion

Cϕ = Z(M)2 → Cϕdisc
= S2 . (8.4.9)

Proposition 8.4.18. Let ϕ be an Adams–Johnson parameter of H and c ∈
H1(R, H). Let T ⊂ H be an anisotropic maximal torus, O a Wr-orbit in B(T ),
tb ∈ T2 the element associated with O, t ∈ T2 in the class c, and Δ a basis of
Φ(HC, TC).

(i) The discrete series πΔ,Vϕ,t belongs to Πc
AJ(ϕ) if and only if ttb ∈ Z(LΔ,ϕ), in

which case πΔ,Vϕ,t � πΔ,ϕ,t.
(ii) If π ∈ Πc

AJ(ϕ) is a discrete series, then χc
O,ϕ(π) is the restriction of χc

O(π) to
Cϕ via the canonical homomorphism (8.4.9).

Proof. This follows from [55, Lemmas A.3 and A.5] and [130, p. 196]. ��
Example 8.4.19. Let c ∈ H1(R, H) be such thatHc(R) is compact. ThenΠc

AJ(ϕ) =
{Vϕ} for every Adams–Johnson parameter ϕ. Moreover, by Corollary 8.4.13 and
Proposition 8.4.18, the character χc

O,ϕ(Vϕ) is the restriction to Cϕ = S2 → S

of ρ∨ + ν ∈ X∗(S). Here, S denotes the maximal torus of ̂H associated with ϕ,
ρ∨ denotes the half-sum of the positive roots of ( ̂H,S) with respect to the unique
Borel subgroup with respect to which the infinitesimal character of ϕ is dominant
(Sect. 8.4.14), and the image of ν in X∗(S)⊗ Z/2Z is defined in Corollary 8.4.13.
Alternatively, the element ν belongs to the kernel of the natural map X∗(S) ⊗
Z/2Z → X∗(Ssc) ⊗ Z/2Z, where the torus Ssc denotes the inverse image of S in
the universal cover of ̂H [55, Lemma A.6].

Example 8.4.20. Let H = Sp2g(R), V ∈ Irr(HC), and let π be the holomorphic
or antiholomorphic discrete series of H(R) with the same infinitesimal character as
V (Sect. 8.4.7). Let T ⊂ H be an anisotropic maximal torus and K ⊂ H(R) the
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maximal compact subgroup containing T (R), chosen, for example, as in Sect. 8.4.7.
We already saw in that subsection that π � π±Δ′,Vϕ,1, where Δ′ is the basis
given there. Let ϕ : SL2(C) × WR → ̂H(C) be an Adams–Johnson parameter
such that Vϕ � V . Proposition 8.4.18 therefore shows that π ∈ ΠAJ(ϕ) if and
only if tb ∈ Z(L±Δ′,ϕ). By Lemma 8.4.4 (i), this is also equivalent to requiring
L±Δ′,ϕ(R) ⊂ K . But L±Δ′,ϕ is obtained as described in Sect. 8.4.15; knowing that,
by construction, the basis Δ′ has the property that all si have the same sign, we
see that L±Δ′,ϕ(R) ⊂ K if and only if dimE0 = d0 − 1 = 0 in the notation of
that subsection. To conclude, π ∈ ΠAJ(ϕ) if and only if the only component of odd
dimension of the semisimple representation St ◦ϕ is of dimension 1 (we have given
a new proof of [55, Lemma 9.4]).

8.4.21 Adams–Johnson Packets and Arthur Packets

The following conjecture is part of folklore [9, Sect. 5], [13, p. 43].

Conjecture 8.4.22. Let H be the split R-group Sp2g or SOr+1,r, and let ϕ be
a ̂H(C)-conjugacy class of Adams–Johnson parameters of H . If (Π(ϕ), ι, χ) de-
notes the triple associated with it by Arthur [13, Theorem 1.5.1], in the notation of
Sect. 8.3.8, then

(a) the map ι : Π(ϕ)→ Πunit(H(R)) is an injection with image ΠAJ(ϕ);
(b) the character χ ◦ ι−1 : ΠAJ(ϕ) → Homgroups(Cϕ,C

×), which is well defined
by part (a), coincides with the character π → χ1

O,ϕ(π) defined in Sect. 8.4.17.

In part (b) above, O ∈ B(H) corresponds with the Whittaker datum chosen by
Arthur [13, p. 55].

Remark 8.4.23. As already mentioned in Sect. 8.4.5, this conjecture is known if ϕ is
trivial on the factorSL2(C), by the work of Shelstad and Mezo. In the general setting,
progress concerning this conjecture has recently been made by Colette Moeglin and
Nicolas Arancibia (Ph.D. thesis [8]). More precisely, Arancibia announces the proof
of Conjecture 8.4.22 in the particular case where each irreducible component of the
representation St ◦ϕ, which we can write as U ⊗ V with U (resp. V ) an irreducible
representation of SL2(C) (resp. WR), satisfies dim V = 1 or dim U ≤ 4.

Remark 8.4.24. Conjecture 8.4.22 (and the theorem of Arancibia) admit a variant
for the R-group H = SOr,r with r ≡ 0 mod 2, in which Πunit(H(R)) is replaced
by ˜Πunit(H(R)) (Sect. 8.3.8) and ΠAJ(ϕ) by its image in ˜Πunit(H(R)) (we have an
analog of Lemma 8.4.6 for ΠAJ(ϕ)).

As announced by Arthur [13, Chap. 9], his description of Πdisc(G) and the
multiplicity formula stated in Sect. 8.3.8 for the Chevalley Z-groups G admit an
analog for other classical Z-groups, namely the special orthogonal Z-groups SOL

introduced in Sect. 8.1. Let us therefore fix such an L and set G = SOL; we,
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moreover, suppose that G(R) has discrete series, that is, that L ⊗ R has an even
signature if it has even rank (the important case for further on is G = SOn). We
denote by G� the (special orthogonal) Chevalley group such that GC � G�

C
.

In the generality considered by Arthur, the statement itself of his formula depends
on an additional datum, namely a “realization” ofG as an inner form of G�. The spe-
cial case of the Z-groupG = SOL is particularly nice because G can be constructed
as a pure inner form of G� “over Z”; let us simply say that this follows from the fact
that 〈±1〉⊗L is locally isomorphic to H(Zr) for the étale topology on Spec(Z) if L
has even rank, and to H(Zr)⊕A1 otherwise (Sect. 2.2, Appendix B). This property
seems to significantly simplify the situation for questions of normalization of the
transfer factors invoked by Arthur loc. cit. and studied by Kaletha [115].

More concretely, a real realization of G is defined to be a pair ξ = (c, f) with
c ∈ H1(R, G�

R
) and f : GR

∼→ (G�
R
)c an isomorphism. There always exist real

realizations of G: we saw this in the example treated at the end of Sect. 8.4.8 when L
has odd rank; the case of even rank is analogous (it uses that the signature ofL⊗R is
even). Given such a realization, we can define, for every Adams–Johnson parameter
ϕ of GR and O ∈ B(G�

R
), a pair

(Πξ
AJ(ϕ), χ

ξ
O,ϕ)

with Πξ
AJ(ϕ) ⊂ Πunit(G(R)) and χξ

O,ϕ : ΠAJ(ϕ) → Homgroups(Cϕ,C
×), by

simply transporting the pair (Πc
AJ(ϕ), χ

c
O,ϕ) by the bijection Πunit(G(R))

∼→
Πunit((G

�
R
)c(R)) induced by f .

A second interesting phenomenon is that the projective similitude group P ˜G(Z)

meets all connected components of P ˜G(R) (to see this, use, for example, The-
orem 2.2.7). As already observed in [55], this suggests that Arthur’s final for-
mula must be completely canonical. As in Sect. 8.3.8, it involves certain sets of
unitary representations of G(R) (depending on the choice of a real realization
of G) whose existence, as well as a characterization, was announced by Arthur.
We expect that those that contain discrete series of G(R) are exactly the Adams–
Johnson packets. To avoid multiplying the statements and because we have already
treated the case of Chevalley groups in detail, we will only state the expected fi-
nal conjecture, it being understood that it is a concatenation of two statements.
For U,U ′ ∈ Πunit(G(R)), we write U ∼ U ′ if U � U ′ or if G(R) is an even
special orthogonal group and U and U ′ are outer conjugates of each other by the
corresponding even real orthogonal group. Finally, for X ⊂ Πunit(G(R)), we write
˜X = {U ∈ Πunit(G(R)) ; ∃U ′ ∈ X,U ∼ U ′}.
Conjecture 8.4.25. Let G be a classical Z-group, St : ̂G → SLn the standard rep-
resentation, ψ ∈ XAL(SLn), and U ∈ Πunit(G(R)) a discrete series such that
St(InfU ) = ψ∞.

Let ξ be a real realization of G, E ⊂ Π(G) the set of representations π such
that π∞ ∼ U , and ψ(π, St) = ψ (this is a singleton if G is not an even special
orthogonal group), and let ν∞ : SL2(C) ×WR −→ ̂G be an Adams–Johnson pa-
rameter associated with ψ as described in Sect. 8.3.8. ThenE∩Πdisc(G) = ∅ unless
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U ∈ Πξ
AJ(ν∞) and

(χξ
O,ν∞(U))|Cψ

= εψ , (8.4.10)

in which case
∑

π∈E m(π) = mψ, where the integer mψ is 1 unless G is an even
special orthogonal group and ψ = ⊕iπi[di] with di ≡ 0 mod 2 for every i, in which
case mψ = 2.

Specifically, the canonicity mentioned above means that even though the character
χξ
O,ν∞ depends on the choices of O and ξ, its restriction to Cψ ⊂ Cν∞ does not

depend on them. Indeed, it is clear if G is an odd special orthogonal group because
every R-automorphism of GR is an inner automorphism and |B(GR)| = 1. If
G � G∗ � Sp2g , the groupAutR(GR)/Int(G(R)) = Z/2Z acts simply transitively
on B(GR) and |B(GR)| = 2, so that there are exactly two choices to consider; as
already observed in [55, Lemmas 9.5 and 9.6], criterion (8.4.10) is in fact the same
in the two cases (this will be clear in the proof of Theorem 8.5.2). The situation is
similar if G is an even special orthogonal group, for which we must also take into
account the outer automorphism derived from the corresponding orthogonal group
(it is, in fact, defined over Z whenever L admits a root, that is, an element α such
that q(α) = 1).

8.5 Explicit Multiplicity Formulas

If we confront Arthur’s general theorem, Theorem 8.3.10 (or Conjecture 8.4.25) with
the considerations and examples in Sect. 8.4, we obtain explicit forms of Arthur’s
multiplicity formula. In this section, we propose to describe them, in the manner of
[55, Sect. 3.29], in the cases that are particularly important for this book, namely
where G = Sp2g and π∞ is an Archimedean component in the holomorphic discrete
series, or where G = SOn for n ≡ −1, 0, 1 mod 8.

8.5.1 Explicit Formula for Sp2g

In this subsection, g ≥ 1 denotes an integer. Let

ψ = ⊕k
i=1πi[di] ∈ XAL(SL2g+1) ,

where k ≥ 1 is an integer and we have πi ∈ Π⊥
cusp(PGLni) and di ≥ 1 for every

i = 1, . . . , k. We suppose that ψ∞ satisfies condition (H2) with respect to Sp2g

(Sect. 8.3.4), which means that the eigenvalues of ψ∞ are 2g + 1 distinct integers

w1 > · · · > wg > 0 > −wg > · · · > −w1

(Sect. 8.2.6, case I). By Lemma 8.2.15 (i), there exists a unique integer i0 ∈
{1, . . . , k} such that ni0di0 is odd. After reindexing the πi if necessary, we may
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assume i0 = k without loss of generality. By the same lemma, we also have
ni ≡ 0 mod 2 and nidi ≡ 0 mod 4 for every i �= k, and nkdk ≡ 2g + 1 mod 4.

Consider the homomorphism of multiplicative groups χ : {±1}k−1 → {±1}
defined as follows. Fix 1 ≤ i ≤ k− 1, and let si ∈ {±1}k−1 be the element defined
by (si)j = −1 if and only if j = i. There are two cases:

(i) If di ≡ 0 mod 2, we set χ(si) = (−1)nidi/4.
(ii) If di ≡ 1 mod 2, we set χ(si) = (−1)|Ki|, where Ki is the set of odd indices

1 ≤ j ≤ g such that wj ∈Weights(πi).

Theorem� 8.5.2. Let ψ = ⊕k
i=1πi[di] ∈ XAL(SL2g+1) and χ be as above. Let

π ∈ Π(Sp2g) be the unique representation such that ψ(π, St) = ψ and π∞ is a
holomorphic discrete series. Suppose that Conjecture 8.4.22 is true for Sp2g and
the morphism ν∞ associated with ψ defined in Sect. 8.3.8 (this holds, for example,
if we have di = 1 for every i = 1, . . . , k).

Then π ∈ Πdisc(Sp2g) if and only if the following two conditions are satisfied:

(a) dk = 1.
(b) For every i = 1, . . . , k − 1, we have

χ(si) =
∏

1≤j≤k,j �=i

ε(πi × πj)
min(di,dj) .

Finally, if these conditions are satisfied, then m(π) = 1.

Proof. Let us apply a few constructions from Sect. 8.3.8. In particular, we choose
ν : SL2(C)×

∏k
i=1

̂Gπi(C)→ SO2g+1(C) associated with ψ as in that subsection,
and for each i = 1, . . . , k, we choose a homomorphism μi : WR → ̂Gπi(C) such
that St ◦ μi � L((πi)∞). The group Cν defined in Sect. 8.3.5 can be naturally
identified with {±1}k−1, with their respective distinguished elements s1, . . . , sk−1.
We, moreover, have a homomorphism

ν∞ : SL2(C)×WR −→ SO2g+1(C)

deduced from ν and the μi. Condition (H2) and Lemmas 8.4.16 and 8.3.9 imply
that this is an Adams–Johnson parameter of Sp2g (and even a discrete Langlands
parameter if di = 1 for every i). As a consequence, Conjecture 8.4.22 applies to ν∞.

By Example 8.4.20, the holomorphic discrete series πhol of Sp2g(R), with in-
finitesimal character z such that St(z) = ψ∞, is in Π(ν∞) if and only if St ◦ ν∞
does not contain a representation of the form Symd−1St2 ⊗ χ with d > 1 and
χ ∈ {1, εC/R}. This is equivalent to requiring dk = 1. Indeed, for i = 1, . . . , k,
we see that c∞(πi) admits the eigenvalue 0 if and only if ni is odd, that is, i = k
(Sect. 8.2.6). By Theorem 8.3.10 and Conjecture 8.4.22 for the pair (Sp2g, ν∞), it
remains to prove

χ1
O,ν∞(πhol)|Cν

= χ .

For this, we will specify the constructions of Sect. 8.4.14 with respect to ν∞, in
the manner of the analysis carried out in Example 8.4.15. We consider the homomor-
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phism ν̃∞ : WR → SO2g+1(C) deduced by composing ν∞ and Arthur’s morphism
as in Sect. 8.4.14. The analysis of Sect. 8.4.15 shows that there exists a unique or-
dered pair (V +, V −) of transverse Lagrangians of the q-vector space V = C

2g+1

such that

– V + and V − are stable under ν̃∞(C×);
– V + has a C-basis e1, . . . , eg such that for every j = 1, . . . , g and every z ∈ C

×,
the relation ν̃∞(z)(ej) = zwjzw

′
jej holds.

In this relation, w1, . . . , wg are the integers deduced from ψ∞ defined before
Theorem 8.5.2, and the w′

i are also uniquely determined integers (that we will
not need to specify). As in Sect. 8.4.15, giving this Lagrangian C-basis (ej)1≤j≤g

determines a unique maximal torusS ⊂ SO2g+1, as well as a unique Borel subgroup
of B containing S. As in Sect. 6.1.3, we write

X∗(S) = ⊕g
j=1Zεj ,

where εj is the character of S over Cej . Let ε∗j ∈ X∗(S) be the dual basis of (εj).
Let λ ∈ 1

2X∗(S) be the element associated with ν̃∞ appearing in axiom (AJ1) of
Sect. 8.4.14. We clearly have

λ =

g
∑

j=1

wjε
∗
j ,

so thatλ is dominant with respect toB, by the inequalitiesw1 > w2 > · · · > wg > 0.
Up to here, we have made explicit the sequence of inclusions

Cν ⊂ Cν∞ ⊂ S ⊂ B ⊂ SO2g+1

associated with ν and ν∞. Proposition 8.4.18 (ii), as well as the example of
Sect. 8.4.7, implies that the character χ1

O,ν∞(πhol) : Cν∞ → C
× is the restriction to

Cν∞ of one of the following two elements of X∗(S):

χ0 =
∑

j≡0 mod 2

εj or χ1 =
∑

j≡1 mod 2

εj ,

where the sums are taken over the j ∈ {1, . . . , g} with the given parity.
Finally, let us verify that the restriction to Cν of either of these two characters χu

for u ∈ {0, 1} coincides with the characterχ. Fix 1 ≤ i ≤ k−1. Let Ji be the subset
of {1, . . . , g} consisting of the integers j such that wj is an eigenvalue of (πi[di])∞.
Let us first note that, by construction, the image of the element si ∈ Cν = {±1}k−1

by the natural inclusion Cν ⊂ S is determined by the following relation, satisfied
for every j ∈ {1, . . . , g}:

εj(si) = −1 ⇔ j ∈ Ji .
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Let us write Ji = J0
i

∐

J1
i , where Ju

i = {j ∈ Ji ; j ≡ u mod 2}. By definition,

χu(si) = (−1)|Ju
i | .

If di is even, in which case πi is symplectic and ni is also even, Ji is the disjoint
union of |Ji|/2 = nidi/4 pairs of consecutive integers, so that

χ0(si) = χ1(si) = (−1)nidi/4 = χ(si) .

Finally, suppose that di is odd, so that πi is orthogonal and ni ≡ 0 mod 4 by
Corollary 8.2.15. Let Pi ⊂ Ji be the subset of j ∈ Ji such that wj ∈Weights(πi).
Then Ji is the disjoint union of Pi and its translates by

±1,±2, . . . ,±di − 1

2
.

But for 1 ≤ d ≤ (di − 1)/2, we necessarily havewi+d = wi−d andwi−d = wi+d.
Since the indices i− d and i+ d are congruent modulo 2, it follows that

χu(si) = (−1)|Pu
i | ,

where Pu
i = {j ∈ Pi ; j ≡ u mod 2}. We therefore have χ1(si) = χ(si) and also

χ0(si) = χ1(si) because |Pi| = ni/2 ≡ 0 mod 2. ��
Example 8.5.3. By way of example, let us compare the statements of Theorem 8.5.2
and Ikeda’s Theorem 7.3.1. Let k′ > 0 be an even integer, and let π ∈ Πcusp(PGL2)
be the representation generated by an eigenform in Sk′ (SL2(Z)). Consider the pa-
rameter ψ = π[g]⊕ [1]. Since Weights(π) = {±(k′ − 1)/2}, we see that ψ satisfies
condition (H2) if and only if g ≡ 0 mod 2 and k′ > g, in which case the eigenvalues
of ψ∞ are

k′ − 1

2
,
k′ − 3

2
, · · · , k

′ − g

2
, 0,−k′ − g

2
, · · · ,−k′ − 3

2
,−k′ − 1

2
.

We, of course, have k = 2 and d2 = 1, and Cψ = {±1} is generated by the element
s1. We also have

εψ(s1) = ε(π × 1) = ε(π) = ik
′
= (−1)k′/2 .

Moreover, since g is even, we have χ(s1) = (−1)g/2. Under Conjecture 8.4.22, the
necessary and sufficient condition for the existence of π′ ∈ Πcusp(Sp2g) such that
π′∞ is a holomorphic discrete series and ψ(π′, St) = ψ can therefore be written as

(−1)k′/2 = (−1)g/2

or, equivalently, k′ ≡ g mod 4. This is indeed the condition in Ikeda’s statement.
Ikeda’s result is in fact stronger, first because it is unconditional, but also because we
do not need to assume k′ > g (and it would be interesting to also study the Arthur
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packets corresponding to this more general case). Let us also mention that in his
supplement [110] to [109], Ikeda proves that if k′ ≡ g mod 4 (resp. k′ �≡ g mod 4),
then m(π′) = 1 (resp. m(π′) = 0); see [110, Theorem 7.1, Sect. 15].

Let us conclude this subsection with a translation of the multiplicity 1 assertion
in Theorem 8.5.2 to the classical language.

Corollary� 8.5.4. Let W be the C-representation of GLg of highest weight
∑g

i=1 miεi with m1 > m2 > · · · > mg > g + 1 (Sect. 6.3.4). If
F,G ∈ SW (Sp2g(Z)) are two eigenforms for H(Sp2g) and if every element of
H(Sp2g) admits the same eigenvalue on F and G, then F and G are proportional.
When g = 2, the same assertion holds by supposing only m1 > m2 > 2.

Proof. Recall (Corollary 6.3.7 and the remark that follows it) that we have an isomor-
phism of Hopp(Sp2g)-modules SW (Sp2g(Z))

∼→ Aπ′
W
(Sp2g). It therefore suffices

to show that if π is the representation generated by an eigenform of SW (Sp2g(Z))
under the action of H(Sp2g), then m(π) = 1. Recall that π∞ � π′

W and St(Infπ′
W
)

has eigenvalues 0 and the ±(mr − r) for r = 1, . . . , g (Corollary 6.3.6): the lat-
ter are therefore pairwise distinct and nonconsecutive by assumption. If we write
ψ(π, St) = ⊕iπi[di], which is allowed by Theorem 8.1.1, we therefore have di = 1
for every i, and we conclude using Theorem 8.5.2. When g = 2 and m1 > m2 = 2,
we can also conclude because the only other possibility ψ(π, St) = π1 ⊕ [3] with
π1 ∈ Πcusp(PGL2) does not occur because such a π1 is necessarily symplectic
(Sect. 8.3.1 or Proposition 8.2.13 (i)). ��

We expect this corollary to hold for everyW : this follows from Conjecture 8.4.22
whenever mg > g.

8.5.5 Explicit Formula for SOn with n ≡ ±1 mod 8

Now, suppose that n is an integer congruent to±1 mod 8, and consider the Z-group
SOn. Let

ψ = ⊕k
i=1πi[di] ∈ XAL(SLn−1) ,

where k ≥ 1 is an integer and we have πi ∈ Π⊥
cusp(PGLni) and di ≥ 1 for every

i = 1, . . . , k. We suppose that ψ∞ satisfies condition (H2) with respect to SOn

(Sect. 8.3.4), which means that the eigenvalues ofψ∞ are n−1 distinct (nonintegral)
half-integers

w1 > · · · > w(n−1)/2 > −w(n−1)/2 > · · · > −w1

(Sect. 8.2.6, case II). By Lemma 8.2.15 (ii), for every i = 1, . . . , k, we have nidi ≡
0 mod 2.
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Consider the homomorphism of multiplicative groups χ : {±1}k → {±1} de-
fined as follows. Fix 1 ≤ i ≤ k, and let si ∈ {±1}k be the element defined by
(si)j = −1 if and only if j = i. There are two cases:

(i) The integer di is even. If ni is even, we set χ(si) = (−1)(nidi)/4. If ni is
odd, we set χ(si) = εi · (−1)(ni−1)di/4, where εi = (−1)[3di/4] is −1 if
di/2 ≡ 1, 2 mod 4 and 1 otherwise. (In all cases, χ(si) = (−1)[3nidi/4].)

(ii) The integerdi is odd. We setχ(si) = (−1)|Ki|, whereKi is the set of indices 1 ≤
j ≤ (n− 1)/2 congruent to (n− 1)/2 mod 2 such that wj ∈Weights(πi).

Theorem 8.5.6 (Case n ≡ ±1 mod 8). Let ψ = ⊕k
i=1πi[di] ∈ XAL(SLn−1) and χ

be as above. Let π ∈ Π(SOn) be the unique representation such that ψ(π, St) = ψ.
Suppose that Conjecture 8.4.25 is true forSOn and the morphism ν∞ associated with
ψ defined in Sect. 8.3.8. Then π ∈ Πdisc(SOn) if and only if for every i = 1, . . . , k,
we have

χ(si) =
∏

1≤j≤k,j �=i

ε(πi × πj)
min(di,dj) .

Finally, if these conditions hold, then m(π) = 1.

Proof (See [55, Sect. 3.30.1]). The proof is similar to that of Theorem 8.5.2, which
is why we will only mention the differences with the latter. An analysis of ν∞ similar
to that of Sect. 8.4.15, keeping in mind that this time, the dual group is Spn−1, leads
to a specification of the sequence of canonical inclusions

Cν = {±1}k ⊂ Cν∞ ⊂ S ⊂ B ⊂ Spn−1 .

We then invoke Corollary 8.4.13 instead of Example 8.4.7 (and Conjecture 8.4.25
instead of Conjecture 8.4.22 and Theorem 8.3.10). Since the center of SOn is trivial,
this corollary asserts that the character χξ

O,ν∞(π∞) is the restriction to Cν∞ of the
half-sum ρ∨ of the positive roots of T with respect toB, which it therefore suffices to
specify. Set n = 2r+1 and consider the standard based root datum of Sp2r recalled
in Sect. 6.1.3. In the notation loc. cit., we see that

ρ∨ =

r
∑

i=1

(r − i+ 1)εi ≡ εr + εr−2 + · · · mod 2 .

We conclude as in the proof of Theorem 8.5.2 that the restriction of this character to
Cψ is the character χ of the theorem. We should take extra care with the case where
the integer i ∈ {1, . . . , k} satisfies di ≡ 0 mod 2 and ni ≡ 1 mod 2, because 0 is
then a weight of πi. In this case, the set Ji defined in that proof is the disjoint union
of (ni − 1)di/4 pairs of consecutive integers and the set {r, r−1, . . . , r+1−di/2},
whence the need to modify the definition of χ in case (i). ��



8.5 Explicit Multiplicity Formulas 237

8.5.7 Explicit Formula for SOn with n ≡ 0 mod 8

Finally, let us consider the Z-group SOn for n ≡ 0 mod 8. Let

ψ = ⊕k
i=1πi[di] ∈ XAL(SLn) ,

where k ≥ 1 is an integer and we have πi ∈ Π⊥
cusp(PGLni) and di ≥ 1 for every

i = 1, . . . , k. We suppose that ψ∞ satisfies condition (H2) with respect to SOn

(Sect. 8.3.4), which means that the eigenvalues of ψ∞ are n integers

w1 > · · · > wn/2 ≥ −wn/2 > · · · > −w1

(Sect. 8.2.6, case III). Let I1 ⊂ {1, . . . , k} be the subset of indices i such that
nidi ≡ 1 mod 2, and set I0 = {1, . . . , k} − I1. By Lemma 8.2.15 (ii), we have
either I1 = ∅ or |I1| = 2 (the latter can only happen if wn/2 = 0). Moreover,
nidi ≡ 0 mod 4 if i ∈ I0.

Consider the homomorphism of multiplicative groups χ : {±1}I0 → {±1} de-
fined as follows. Fix i ∈ I0, and let si ∈ {±1}I0 be the element defined by
(si)j = −1 if and only if j = i.

(i) If di ≡ 0 mod 2, we set χ(si) = (−1)nidi/4.
(ii) If di ≡ 1 mod 2, we set χ(si) = (−1)|Ki|, where Ki is the set of odd indices

1 ≤ j ≤ n/2 such that wj ∈Weights(πi).

Theorem 8.5.8 (Case n ≡ 0 mod 8). Let ψ = ⊕k
i=1πi[di] ∈ XAL(SLn), the parti-

tion {1, . . . , k} = I0
∐

I1, and χ be as above. Let Π ⊂ Π(SOn) be the subset of
representations π such that ψ(π, St) = ψ; this is a singleton if I1 �= ∅. Suppose that
Conjecture 8.4.25 is true for SOn and the morphism ν∞ associated with ψ defined
in Sect. 8.3.8. Then Π ∩ Πdisc(SOn) �= ∅ if and only if we have

χ(si) =
∏

1≤j≤k,j �=i

ε(πi × πj)
min(di,dj) ∀i ∈ I0 . (8.5.1)

Finally, if this condition holds, then we have
∑

π∈Πm(π) = 1 if I1 is not empty, and
∑

π∈Π m(π) = 2 otherwise.

Proof (See [55, Sect. 3.30.2]). The proof is similar to that of Theorem 8.5.6. As in
Sect. 8.4.15, we specify the sequence of canonical inclusions

Cν ⊂ Cν∞ ⊂ S ⊂ B ⊂ SOn .

The homomorphism {±1}I0 → Cν that sends the element si for i ∈ I0 defined
above to the element of the same name defined in Sect. 8.3.5 induces a surjection
{±1}I0 → Cν/Z(SOn). In the standard based root datum of (SOn, S, B) recalled
in Sect. 6.1.3, we now see that the half-sum of the positive roots equals

ρ∨ =

r
∑

i=1

(r − i)εi ≡ εr−1 + εr−3 + · · · mod 2 ,
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where r = n/2. Since the center of SOn is nontrivial, Corollary 8.4.13 only asserts
that χξ

O,ν∞(π∞) is the restriction to Cν∞ ⊂ S of either ρ∨ or ρ∨ + ν, where

ν ≡
r
∑

i=1

εi mod 2 .

But ν|Cν
= 1 because nidi ≡ 0 mod 4 for every i ∈ I0, and the rest follows. ��

Remark 8.5.9 (On Multiplicity 2). Let α ∈ En be such that α · α = 2, and let
sα ∈ O(En) be the orthogonal symmetry associated with this root. Outer conjugation
by sα induces an involution of Π(SOn), which we denote by S, of which we have
already studied certain aspects in Sect. 4.4.4, as well as in the examples of Sects. 6.2.1
and 6.4.7. Those subsections show that if π ∈ Π(SOn), then m(π) = m(S(π)), and
for every v ∈ P ∪ {∞}, the conjugacy classes cv(π) and cv(S(π)) are each other’s
images under the action of the nontrivial element of On(C)/SOn(C). In particular,
S preserves Πdisc(SOn) and ψ(S(π), St) = ψ(π, St). Moreover, this implies that
S(π) is isomorphic to π if and only if ±1 (resp. 0) is an eigenvalue of cp(π) for
every prime p (resp. of c∞(π)). Let us now assume the hypotheses of Theorem 8.5.8
and also assume that (8.5.1) holds. The previous observations show that the set Π of
the theorem is stable under S. In particular, if S has no fixed point in Π, the theorem
asserts that Π∩Πdisc(SOn) consists of two representations interchanged by S, each
of multiplicity 1. Here are two particular cases where this applies:

I. 0 is not an eigenvalue of ψ∞: S(π)∞ �= π∞ for every π ∈ Π.
II. πi is symplectic for i = 1, . . . k: S(π)p �= πp for every π ∈ Π and p prime.

Indeed, the eigenvalues λ of cp(πi) satisfy p−1/2 < |λ| < p1/2 by Jacquet–
Shalika (and even |λ| = 1 by Ramanujan’s conjecture, Sect. 6.4.12), while
the eigenvalues μ of [di]p satisfy |μ| ≥ p1/2 or |μ| ≤ p−1/2 (because di ≡
0 mod 2), so that |λμ| �= 1 and ±1 is not an eigenvalue of ψp.

In the general case, a combination of these ideas shows that for there to exist a
representation of multiplicity greater than 1 in a Πdisc(SOn), it is necessary and
sufficient that there exist a self-dual, algebraic, orthogonal π ∈ Πcusp(PGL4m) such
that |Weights(π)| = 4m − 1 and cp(π) admits the eigenvalue ±1 for every p. We
can show that no such element exists when m = 1.

Two Criteria

Let us give two criteria for relation (8.5.1) to hold.

Criterion 8.5.10. Suppose that ψ is of the form
(⊕k−2

i=1 πi[di]
)⊕ [dk−1]⊕ [1] with

di ≡ 0 mod 2 for every i = 1, . . . , k − 2 and dk−1 > 1 odd. Then relation (8.5.1)
holds if and only if for every i = 1, . . . , k − 2, we have

(−1)nidi/4 = ε(πi)
1+min(di,dk−1) .



8.5 Explicit Multiplicity Formulas 239

Proof. This is an immediate application of the formulas and the fact that ε(πi×πj) =
1 if i, j ∈ I0 = {1, . . . , k − 2}. The latter can either be viewed as a particular case
of Arthur’s general result, because the representations πi and πj are symplectic
(Sect. 8.3.1), or be proved directly because ε(Ia ⊗ Ib) = (−1)1+max(a,b) = 1 if a
and b are odd (Sect. 8.2.21). ��
Criterion 8.5.11. Suppose that ψ is of the form

(⊕k−2
i=1 πi[di]

)⊕ πk−1 ⊕ [dk] with

(i) di ≡ 0 mod 2 for every i = 1, . . . , k − 2 and
(ii) πk−1 ∈ Πcusp(PGL3) such that w(πk−1) > max1≤i≤k−2 w(πi).

Relation (8.5.1) holds if and only if for every i = 1, . . . , k − 2, we have

(−1)(ni/2)((di/2)−1) = ε(πi)
1+min(di,dk) .

Proof. Recall that ε(Iw ⊗ Iw′) = (−1)1+max(w,w′) and Iw ⊗ εC/R � Iw. Since
w(πi) is odd if i < k− 1 and even if i = k− 1, the assumption on w(πk−1) ensures
that for every i ≤ k − 2,

ε(πi × πk−1) = ε(L(πi)∞ ⊗ Iw(πk−1))ε(L(πi)∞ ⊗ εC/R) = (−1)ni/2ε(πi) .

This allows us to conclude because ε(πi × πj) = 1 if i, j ≤ k − 2. ��

Examples

If we admit Conjecture 8.4.25, Theorem 8.5.8 becomes a powerful tool for verifying
(and perhaps, in the near future, re-proving) the results obtained previously in this
book. Its most immediate application concerns the case where ψ is such that either
I0 = ∅ or k = 1, because condition (8.5.1) then holds trivially. We recover, for
example, the conclusion of Theorem 7.2.1 (ii), as well as that of part (i) if we simply
require that the representation π′ be in Πdisc(SO8) rather than Πdisc(O8). We also
recover the assertion concerning Δ11[12] in Corollary 7.3.4 (see Sect. 9.2.10).

For another example, consider the case where

ψ = π1[d1]⊕ [d2]⊕ [1]

with π1 ∈ Πcusp(PGL2) of weight in {±(k − 1)/2}, for k a strictly positive integer.
We have ε(π1) = (−1)k/2. By Criterion 8.5.10, the relation (8.5.1) holds if and only
if either

(I) d1 < d2 and d1 ≡ k mod 4, or
(II) d1 > d2 and d1 ≡ 0 mod 4.

For example, ifψ = Δ11[4]⊕[7]⊕[1], in which case n = 16 andψ∞ = St(Inf1), we
are in case (I) above. This immediately re-proves the assertion concerningψ(π, VSt)
in Corollary 7.2.6, as well as part (i) of Theorem 5.2.2. We also recover the assertions
of Corollary 7.3.4 for k > 12 (see Sect. 9.2.10): we are in case (II) for k = 16
because (d1, d2) = (8, 7) and in case (I) for k > 16 because 24− k ≡ k mod 4 and
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2k − 25 > 24− k. As far as ψ = Δ17[14]⊕ [3]⊕ [1] is concerned, we are neither
in case (I) nor in case (II), which, as promised, corroborates Corollary 7.3.5.

Finally, let us explain Table 7.1 of Sect. 7.4. In view of the analysis above, it only
remains to understand the bold cases of this table. But ifψ = Δw[2]⊕Sym2Δ11⊕[1]
with w < 22 = w(Sym2Δ11), then Criterion 8.5.11 shows that relation (8.5.1)
holds, which suffices to conclude.

8.6 Compatibility with the Theta Correspondence

Let n ≡ 0 mod 8 and g ≥ 1 be integers such that n > 2g. Let

ψS = ⊕k
i=1πi[di] ∈ XAL(SL2g+1) ,

where k ≥ 1 and πi ∈ Π⊥
cusp(PGLni) for every i = 1, . . . , k. Suppose that

ψO := ψS ⊕ [n− 2g − 1] ∈ XAL(SLn)

satisfies condition (H2) with respect to SOn. This is equivalent to requiring that the
eigenvalues of (ψS)∞ be 2g + 1 integers

w1 > · · · > wg > 0 > −wg > · · · > −w1

with, moreover, wg ≥ n/2 − g. We choose the indexation of the πi such that
nkdk ≡ 1 mod 2 (Sect. 8.5.1). Finally, we assume dk = 1, which is automatic if
n �= 2g + 2.

Let πO ∈ Π(SOn) (resp. πS ∈ Π(Sp2g)) be the unique representation such that
ψ(πO , St) = ψO (resp. ψ(πS , St) = ψS). Let m(πO) and m(πS) be the respective
multiplicities of πO and πS in Πdisc(SOn) and πdisc(Sp2g)). They are each 0 or 1
by Arthur’s multiplicity formula, under Conjecture 8.4.25.

Proposition 8.6.1. Assume Conjecture 8.4.25. We have m(πO) = m(πS) if and
only if for every i = 1, . . . , k− 1 such that di ≡ 0 mod 2 and di ≥ n− 2g, we have
ε(πi) = 1.

Proof. This immediately follows from the explicit formulas given in Sect. 8.5.1 and
Sect. 8.5.7. Indeed, the natural injection

CψS → CψO

induces an isomorphism CψS

∼→ CψO/Z(SOn). The group CψS can be naturally
identified with {±1}k−1 (see the proof of Theorem 8.5.2), and the injection above
identifies it (with its distinguished elements si) with the subgroup {±1}I0 defined
in Sect. 8.5.7 (in particular, I0 = {1, . . . , k − 1}). Via this identification, we see
that the character χ of {±1}k−1 defined in Sect. 8.5.1 coincides with the character
χ of {±1}I0 defined in Sect. 8.5.7. By Theorems 8.5.2 and 8.5.8, the condition for
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m(πO) = m(πS) is therefore equivalent to

ε(πi)
min(di,n−2g−1) = 1

for every i = 1, . . . , k − 1. This automatically holds when di is odd because πi is
orthogonal. ��

When m(πS) = 1, Böcherer’s criterion (Remark 7.2.4) gives a necessary and
sufficient condition, at least if the integers wi are consecutive, for the eigenform
of Sw1+1(Sp2g) (that is well defined up to a scalar) generating πS to admit a
ϑ-correspondent π′ in Πdisc(On): it is necessary and sufficient that L(s, πS , St)
be nonzero at s = n/2 − g. By restriction to SOn (Sect. 4.4.4), the existence of
π′ implies that m(πO) is nonzero (Corollary 7.1.3). It is therefore important to
verify that Böcherer’s criterion is compatible with Proposition 8.6.1. The following
proposition shows that this is indeed the case.

Proposition 8.6.2. The L-function L(s, πS, St) is nonzero at s = n/2 − g if and
only if for every i = 1, . . . , k− 1 such that di ≥ n− 2g and di ≡ 0 mod 2, we have
L(1/2, πi) �= 0 (and therefore ε(πi) = 1). In particular, L(n/2 − g, πS, St) �= 0
whenever n > 3g.

Proof. The function L(s, πS, St) is the product of the L(s+ j, πi) for i = 1, . . . , k
and j ∈ (di − 1)/2 + Z such that |j| ≤ (di − 1)/2. Recall that if πi �= 1, the
Euler product of L(s, πi) is absolutely convergent for " s > 1 and that ξ(s, πi) =
Γ(s,L((πi)∞))L(s, πi) admits a holomorphic extension toC such that ξ(1−s, πi) =
ε(πi)ξ(s, πi) (Sect. 6.4.11). Moreover, we have L(1, πi) �= 0 [111]. By assumption,
if πi = 1, then i = k and dk = 1, and L(s, πi) is the Riemann ζ-function. Note that
if this happens, then n− 2g − 1 ≡ 3 mod 4; in particular, if we set

s0 =
n

2
− g ,

then s0 ≥ 2 is neither a zero nor a pole of ζ. Since dk = 1 and s0 ≥ 1, we have
L(s0, πS, St) = 0 if and only if there exist 1 ≤ i ≤ k − 1 and j ∈ (di − 1)/2 + Z

with |j| ≤ (di − 1)/2 such that L(s0 + j, πi) = 0.
Fix i < k. Since the representation πk is the only one of the πs to have a weight

equal to 0, the representation L((πi)∞) is the direct sum of the Iw, where w/2
runs through the strictly positive weights of πi. The function Γ(s) is nonzero on
the real axis and its only poles are the nonpositive integers. The description of
Γ(s,L((πi)∞)) (Sect. 8.2.21) and the properties of ξ(s, πi) recalled above therefore
show that if L(s, πi) = 0, say for s ∈ R, then either 0 < s < 1 or s ≤ −w, where
w is the lowest positive weight of πi. But w − (di − 1)/2 ≥ wg ≥ n/2 − g = s0,
so that for j ≥ (1− di)/2, we have

s0 + j > −s0 + 1− di
2
≥ −w .
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Finally, 0 < s0 + j < 1 is equivalent to s0 + j = 1/2 if j ∈ 1
2Z. The first assertion

follows because 1/2 is of the form n/2− g + j with (1− di)/2 ≤ j ≤ (1− di)/2
and j ∈ (di − 1)/2 + Z if and only if di ≡ 0 mod 2 and n− 2g ≤ di. The second
assertion comes from the obvious relation di ≤ g. ��
Remark 8.6.3. Note that the sufficient condition n > 3g obtained above, which is
justified by Arthur’s Theorem� 8.1.1, turns out to be better than Böcherer’s general
condition n > 4g.

In theory, there could exist parameters ψS such that m(πO) = m(πS) = 1, but
such that πO and πS are not ϑ-correspondent. To produce such an example, one
would need to find a symplectic, self-dual, regular algebraic representation � such
that L(1/2, �) = 0 but ε(�) = 1. The authors do not know of such an example
(compare with Remark 7.3.3). This is a fact that we use to our advantage several
times in this book!

8.7 Compatibility with Böcherer’s L-function

Let g ≥ 1 be an integer, k ∈ Z, F ∈ Sk(Sp2g(Z)) an eigenform, and πF ∈
Πcusp(Sp2g) the representation generated by F . Böcherer proved, in [26], that the
Euler productL(s, πF , St) (defined in Sect. 6.4.11) is absolutely convergent if" s >
g + 1 and that the function

ξB(s, πF , St) :=
(

Γ(s, εg
C/R)

g
∏

i=1

ΓC(s+ k − i)
)

L(s, πF , St)

admits a meromorphic continuation to C as well as a functional equation

ξB(s, πF , St) = ξB(1− s, πF , St)

(see also [138, 6, 161]). Recall that we have Γ(s, 1) = ΓR(s) and Γ(s, εC/R) =
ΓR(s + 1) in the notation of Sect. 8.2.21. The poles of ξB(s, πF , St) have been
studied by Mizumoto [150, Corollary to Theorem 1]. For k ≥ g he proves that
ξB(s, πF , St) admits at most simple poles at s = 0 and s = 1, and it is holomorphic
elsewhere.

Now, suppose that we have the relation

ψ(πF , St) = ⊕r
i=1πi[di] ,

where πi ∈ Π⊥
cusp(PGLni) and di ≥ 1 for every 1 ≤ i ≤ r, which we may always

do according to Arthur (Theorem 8.2.4). The theory of the standard L-functions of
the elements of Πcusp(PGLm), by Godement and Jacquet, shows that the function
defined by ξ(s, πi) = Γ(s,L((πi)∞))L(s, πi) (Sect. 8.2.21) has a meromorphic
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continuation to C and a functional equation s → 1 − s. This therefore provides a
second natural way to complete L(s, πF , St), by simply setting

ξA(s, πF , St) :=

r
∏

i=1

di−1
∏

j=0

ξ
(

s+ j − di − 1

2
, πi

)

.

This function is also meromorphic on C and invariant under s → 1 − s (a priori
up to a sign, but that sign is in fact equal to 1 because following Arthur [13,
Theorem 1.5.3 (b)], we have ε(π) = 1 for every self-dual orthogonal representation
π ∈ Πcusp(PGLm)).

Thus, ξB(s, πF , St)/ξA(s, πF , St) is an “explicit” quotient of products of Γ-
factors. When k > g+1, it is easy to deduce from the respective descriptions of these
factors that this quotient is 1, that is, ξB(s, πF , St) = ξA(s, πF , St). The situation
turns out to be more interesting whenk ≤ g+1, in which case the comparison of these
factors, combined with the properties of the poles of ξB(s, πF , St) and ξA(s, πF , St)
recalled above, has nontrivial consequences for ψ(πF , St). Proposition 8.7.1 below
is suggested by part (a) of Theorem 8.5.2 (and therefore by Conjecture 8.4.22) when
k = g + 1. To state it, we need to introduce several preliminary quantities.

For every integer a ≥ 1, we set

δ(πF , a) = ords=a

∏

{i ;πi �=1}

di−1
∏

j=0

ξ
(

s+ j − di − 1

2
, πi

)

.

Recall that if π ∈ Πcusp(PGLm) is such that π �= 1, then ξ(s, π) is an entire function
of s. Moreover, if s ∈ 1

2Z satisfies ξ(s, π) = 0, then by Jacquet–Shalika, we have
s = 1/2 and ords=1/2Γ(s,L(π∞)) = 0. We therefore have the following equality
for every integer a ≥ 1:

δ(πF , a) :=
∑

{i ; di≡0 mod 2, di≥2a}
ords=1/2L(s, πi) . (8.7.1)

In particular, we have the inequalities 0 ≤ δ(πF , b) ≤ δ(πF , a) for b ≥ a ≥ 1. For
use further on, we define, for every integer n ≥ 0,

pn(s) =
ΓC(s+ n)

ΓC(s− n)
and γn(s) =

Γ(s, εn
C/R)

ΓR(s)

n
∏

i=1

ΓC(s+ i)

ΓR(s− i)ΓR(s+ i)
.

Using the formulas ΓC(s+ 1) = (s/2π) ΓC(s) and ΓC(s) = ΓR(s)ΓR(s + 1), we
verify that the following equalities hold for every integer n ≥ 0:

pn(s) = (2π)−2n
∏

1−n≤m≤n

(s−m) and γn(s) =
∏

0≤2m≤n

pn−2m(s) .

In particular, pn and γn are polynomials in s invariant under s → 1− s.
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Proposition� 8.7.1. LetF ∈ Sk(Sp2g(Z)) be an eigenform with k = g or k = g+1.
Suppose ψ(πF , St) = ⊕r

i=1πi[di] with πr = 1 and dr > 1. Then we have the
inequality δ(πF , (dr + 1)/2) > 0.

Proof. Let us first treat the case k = g + 1. Since ψ(πF , St)∞ admits 0 as simple
eigenvalue (the eigenvalues are the 2g+1 integersn such that |n| ≤ g by Sect. 6.3.6),
we have πi �= 1 if i < r, and therefore the equality

ords=(dr+1)/2 ξA(s, πF , St) = δ
(

π,
dr + 1

2

)

− 1 (8.7.2)

by the above. We also see that if i < r, then πi is regular. We therefore have, by
definition, the equalities

ξB(s, πF , St)

ξA(s, πF , St)
=

Γ
(

s, εg
C/R

)

ΓR(s)

(dr−1)/2
∏

i=1

ΓC(s+ i)

ΓR(s+ i)ΓR(s− i)

=
Γ
(

s, εg
C/R

)

Γ
(

s, ε
(dr−1)/2
C/R

) γ(dr−1)/2(s) .

This term is nonzero and finite at s = (dr + 1)/2. Suppose δ(π, (dr + 1)/2) = 0;
we then have ords=(dr+1)/2ξB(s, πF , St) = −1. But by Mizumoto, the only possible
poles of ξB(s, πF , St) are at s = 0 or s = 1, which implies dr = 1.

The case k = g is similar. In this case, ψ(πF , St)∞ admits 0 as triple
eigenvalue and the integers ±1, . . . ,±(g − 1) as simple eigenvalues. In partic-
ular, πi may have a weight equal to 0 for i < r, but in that case we have
di = 1. Equality (8.7.2) therefore still holds. Moreover, the same argument shows
ξB(s, πF , St)/ξA(s, πF , St) = μ(s) γ(dr−1)/2(s) with

μ(s) =
ΓC(s)Γ

(

s, εg
C/R

)

Γ
(

s, ε
(dr−1)/2
C/R

)

ΓR(s+ e1)ΓR(s+ e2)

for certain elements e1, e2 ∈ {0, 1} that we will not need to specify (see Re-
mark 8.7.2). The function μ(s) is finite and nonzero at s = (dr + 1)/2, and we
conclude as in the case k = g + 1 by using Mizumoto’s result. ��
Remark 8.7.2. Let a, b ∈ Z. If the meromorphic function ΓR(s)

aΓR(s + 1)b is
invariant under s → 1 − s, then a = b = 0. Indeed, the vanishing order of this
function at s = 2, 1, 0, and −1 is, respectively, 0, 0, −a, and −b. The invariance
under s → 1− s of the functions ξA(s, πF , St) and ξB(s, πF , St), as well as γn(s)
for every n ≥ 0, therefore allows us to complete the analysis made during the proof
of Proposition 8.7.1. First of all, we deduce the congruence (dr − 1)/2 ≡ g mod 2
for k = g + 1, already obtained another way in Sect. 8.5.1. In the case k = g, we
also deduce the equality of the images of the sets {e1, e2} and {(dr + 1)/2, g} in
Z/2Z.



Chapter 9
Proofs of the Main Theorems

9.1 Tsushima’s Modular Forms of Genus 2

For integers j ≥ 0 and k, we denote by Sj,k the space SW (Sp4(Z)), where W

is the representation Symj
C

2 ⊗ detk of GL2(C) (Sects. 4.5 and 6.3.4). It is zero
if j ≡ 1 mod 2, because −12 then acts by −id on W , or if k ≤ 0 (Freitag [89,
Proposition 4.6]), which is why we will always assume j ≡ 0 mod 2 and k > 0.

9.1.1 Tsushima’s Dimension Formula

An explicit formula for dim Sj,k was determined by R. Tsushima for k ≥ 5 [199],
extending a result of Igusa concerning the scalar-valued forms (case j = 0, k ∈ Z

arbitrary [105]). When j + 2k − 3 ≤ 21, which will turn out to be the case that
interests us in this book, Tsushima’s formula shows Sj,k = 0 for all except six values
(j, k) given in the following table, for which dim Sj,k = 1. As we will see further
on, dimSj,k is also zero when k ≤ 4 and j + 2k− 3 ≤ 21; see Remark 9.3.41. The
line (w, v) in Table 9.1 will be explained in Sect. 9.1.3.

Table 9.1 The pairs (j, k) such that dimSj,k �= 0, for j + 2k − 3 ≤ 21 and k ≥ 5, according to
Tsushima

(j, k) (0, 10) (6, 8) (0, 12) (4, 10) (8, 8) (12, 6)

(w, v) (17, 1) (19, 7) (21, 1) (21, 5) (21, 9) (21, 13)
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For each of the six pairs (j, k) above, let Fj,k be a generator of Sj,k(Sp4(Z)).
Given the important role played by these Siegel forms further on, let us explain how
to show their existence directly, through a construction of theta series based on the
lattice E8.

Fix j ≥ 0 even and k ≥ 4, for now arbitrary integers. There exists a unique isomor-
phism of C-algebrasC[X,Y ]

∼→ SymC
2 that sends X and Y , respectively, onto the

elements (1, 0) and (0, 1) of C2. By transport of structure, this isomorphism endows
C[X,Y ]with a representation ofGL2(C). The subspaceC[X,Y ]j ⊂ C[X,Y ] of ho-
mogeneous polynomials of degree j is a subrepresentation isomorphic to Symj

C
2.

Let I ⊂ E8 ⊗ C be an isotropic subspace of dimension 2, and let u, v, and w be
three elements of I . Consider the map E2

8 → C[X,Y ]j defined by

Pj,k,u,v,w(x, y) = detk−4

[

x · u x · v
y · u y · v

]

(

(x · w)X + (y · w)Y )j .

The functional equation of the Jacobi ϑ-function (in two variables) allows one to
prove that the function

ϑ2(E8,Pj,k,u,v,w) =
∑

(x,y)∈E8×E8

Pj,k,u,v,w(x, y) q
1
2 [

x·x x·y
y·x y·y ]

is a Siegel modular form for Sp4(Z) with coefficients in the representation Symj ⊗
detk [86, Sect. 2]. It is clearly cuspidal if k > 4, and if k = 4, the coefficient of Xj

in its image by the Siegel operator Φ1 is the theta series of the harmonic polynomial
x → (x · w)j on E8 (Sect. 5.4.1), an element of Mj+4(SL2(Z)) that is cuspidal if
j > 0.

Numerical Application. Using a computer, it is easy to determine the Fourier co-
efficients of fj,k,u,v,w = ϑ2(E8,Pj,k,u,v,w) in Gram matrices of small discriminant;
we refer to the code [54], and its output therein, to justify the affirmations that follow.
Let us describe the result of these computations in discriminant less than or equal to
12, obtained by taking u = (2, i, i, i, i, 0, 0, 0), v = (0, 0, 0, i,−i, i, i, 2),w = u+v,
and simply listing all ordered pairs (x, y) ∈ E2

8 whose Gram matrix is one of the
seven matrices in Table C.2. We see that for each of the six pairs (j, k) in question,
all computed coefficients are nonzero, except for one when (j, k) = (6, 8). Table C.2
gives exactly the Fourier coefficients of (1/λj,k)fj,k,u,v,u+v , where λj,k ∈ Z− {0}
is a constant that does not have any particular meaning and that we will not give
explicitly. By way of verification, let us mention that for (j, k) = (0, 10), our com-
putations are compatible with Table IV of [171]. Since we have S14(SL2(Z)) = 0,
this re-proves Sj,k �= 0 in all cases.

Having fixed the pair (j, k), we can also verify that if we vary the parameters u, v,
and w in the computation above (or even use a formal computation), the quadruple
of computed coefficients (polynomials!) is modified by only a scalar, as it should be
because dimSj,k = 1. This can also be proved in another way, as follows.

Set Wj,k = Symj
C

2 ⊗ detk and denote by Uj,k the natural representation of
O8(C) on the space of polynomialsE8⊗C2 →Wj,k−4 that areGL2(C)-equivariant
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and pluriharmonic [116, 86]; the function Pj,k,u,v,w is a typical element of Uj,k.
These references assert that if k ≥ 4, the pair (Uj,k,Wj,k) is compatible in the sense
of Sect. 7.1.1. Specifically, we have a linear map

ϑ : MUj,k
(O8) −→ MWj,k

(Sp4(Z)) (9.1.1)

that sends the element [E8,Pj,k,u,v,w], defined at the end of Sect. 4.4.7, to the theta
series ϑ2(E8,Pj,k,u,v,w), for every triple of elements u, v, w belonging to the same
isotropic subspace of rank 2 of E8 ⊗ C.

One easily verifies that the representation Uj,k, which is irreducible when re-
stricted to SO8(C) by Kashiwara and Vergne [116], admits a highest weight of the
form (j + k− 4)ε1 +(k− 4)ε2 in the notation of Sect. 6.4.3. But the tables1 of [55]
show that for the six pairs (j, k) that interest us, we have dimMUj,k

(O8) = 1. It
follows, as promised, that the space ϑ(MUj,k

(O8)) is of dimension 1 for these pairs.
Since we also have dim Sj,k = 1, we obtain the following proposition.

Proposition 9.1.2. If (j, k) is one of the six pairs of Table 9.1, then the map (9.1.1)
induces an isomorphism MUj,k

(O8)
∼→ Sj,k between spaces of dimension 1.

9.1.3 Standard Parameters of the First Six Forms of Genus 2

Let F ∈ Sj,k be an eigenform for the action of H(PGSp4). Denote by πF ∈
Πcusp(PGSp4) the representation generated by F (Corollary 6.3.7). Note that the
Chevalley group PGSp4 is a classical Z-group, since it is isomorphic to the Z-
group SO3,2. Its Langlands dual is the C-group Sp4; it is endowed with its standard
representation of dimension 4. By (the end of) Sect. 6.3.4, the semisimple conjugacy
class St(c∞(πF )) ⊂ M4(C) has eigenvalues±w/2 and ±v/2, where

(w, v) = (j + 2k − 3, j + 1) ,

which explains the second line of Table 9.1. Note that the map (j, k) → (w, v) is a
bijection between the set of ordered pairs (j, k) with j ≥ 0 even and k ≥ 3, and the
set of ordered pairs (w, v) with w, v odd such that w > v > 0.

For each of the six pairs (j, k) of Table 9.1, the action of H(PGSp4) on Sj,k is
then trivially scalar, that is, Fj,k is an eigenform; we will study the parameter

ψj,k = ψ(πFj,k
, St) ∈ X(SL4) .

The case of the scalar-valued form F0,10 has a famous history because it is the first
Saito–Kurokawa form, associated with the modular form of weight 18 for SL2(Z)
([132], Sect. 7.3). Because we view πF0,10 as a representation of PGSp4, rather than

1 See http://gaetan.chenevier.perso.math.cnrs.fr/table/dim_SO8_dom.txt.

http://gaetan.chenevier.perso.math.cnrs.fr/table/dim_SO8_dom.txt
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Sp4, we have the relation (see [79, 216])

ψ0,10 = Δ17 ⊕ [2] ,

which is clearly compatible with the equality (w, v) = (17, 1) (the notation Δw

was introduced in Sect. 7.3). The case of the form F0,12 is similar, and we have
ψ0,12 = Δ21 ⊕ [2] by Andrianov, Maass, and Zagier. As also guessed by Kurokawa
and explained by Arthur [12], the situation is quite different for the four other
representations.

Proposition� 9.1.4. Suppose j > 0 even and k ≥ 3.

(i) (Multiplicity 1) If F,G ∈ Sj,k are two eigenforms for the action of H(Sp4) and
if every element of H(Sp4) has the same eigenvalue on F and G, then F and G
are proportional.

(ii) If F ∈ Sj,k is an eigenform for the action of H(PGSp4), then ψ(πF , St) = π
with π ∈ Π⊥

cusp(PGL4).
(iii) The map F → ψ(πF , St) induces a bijection between the set of 1-dimensional

eigenspaces of Sj,k(Sp4(Z)) under the action of H(PGSp4) and the set of
π ∈ Π⊥

cusp(PGL4) such that we have Weights(π) = {±(j + 2k − 3)/2,
±(j + 1)/2}.

Proof. Part (i) is the particular case g = 2 of Corollary 8.5.4: in the notation loc. cit.,
we have (m1,m2) = (j + k, k), so that m1 > m2.

Set (w, v) = (j + 2k − 3, j + 1). Let F ∈ Sj,k(Sp4(Z)) be an eigenform for
H(PGSp4). Apply Theorem 8.1.1 to the classical Z-group PGSp4 � SO3,2 and
its representation πF ∈ Πdisc(PGSp4). Since a representation π ∈ Π⊥

cusp(PGL2)
is symplectic (Proposition 9.1.5) and ±1/2 is not an eigenvalue of St(c∞(πF ))
because j > 0, there are only two possibilities for ψ(πF , St) (Corollary 8.2.15 (ii)):
either

(a) ψ(πF , St) = π1 ∈ Π⊥
cusp(PGL4), or

(b) ψ(πF , St) = π1 ⊕ π2 with π1, π2 ∈ Πcusp(PGL2) such that w(π1) = w and
w(π2) = v.

To prove part (ii), we must therefore show that case (b) does not occur. Note that
for the four pairs (j, k) of Table 9.1, we have v ∈ {5, 7, 9, 13}, so that this follows
directly from Proposition 9.1.5 and the fact that we have dimSv+1(SL2(Z)) = 0
for these values of v. For a general pair (j, k), this is, instead, a consequence of
Arthur’s multiplicity formula for SO3,2 (Theorem 8.3.10). Indeed, suppose that we
have ψ = π1 ⊕ π2 ∈ XAL(SL4), where π1 and π2 are as in case (b) above. Con-
sider homomorphisms ν and ν∞ associated with ψ as in Sect. 8.3.8. By definition,
ν : SL2× (SL2×SL2)→ Sp4 is trivial on the first factor SL2 and St◦ν is the direct
sum of the tautological representations of the two other factors SL2, so that the in-
clusion {±1}2 = Cν ↪→ Cν∞ is an equality. It follows that we have εψ = 1 (because
“di = 1 for every i”) and that Π(ν∞) is the set consisting of the two discrete series
in SO3,2(R) with infinitesimal character ψ∞, by Sect. 8.4.5. One is holomorphic,
say πhol, and the other is generic (here, the notion is canonical because SO3,2 is
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adjoint), so that the Shelstad characterχπhol
is the nontrivial character of Cν∞ that is

trivial on the center of ŜO3,2 = Sp4, namely the diagonal subgroup {±1} in Cν∞ .
Another way to determine χπhol

is to simply apply formula (8.4.7) in the particular
case r = 2. It follows that the restriction of χπhol

to Cν = Cν∞ is nontrivial, and
Arthur’s multiplicity formula asserts that the unique π ∈ Π(PGSp4) such that we
have π � πhol and ψ(π, St) = ψ is of multiplicity zero (Theorem 8.3.10). Since
m(πF ) > 0, we are in case (a) above, which proves part (ii) of the proposition.
The same multiplicity formula of Arthur then asserts that we have m(πF ) = 1 and,
more generally, that for every π ∈ Πcusp(PGL4)with weights {±w/2,±v/2}, there
exists (a unique) π ∈ Πdisc(PGSp4) such that ψ(π, St) = π and π∞ � πhol, and
that this π satisfies m(π) = 1 (this is the case where nothing needs to be verified
because Cψ = Z( ̂G)). Assertion (iii) then follows from Corollary 6.3.7. ��

We have used the following very classical result.

Proposition 9.1.5. Let k ≥ 2 be an even integer and Fk ⊂ Sk(SL2(Z) the set of
modular forms that are eigenforms for H(PGL2) and normalized (that is, the first
Fourier coefficient equals 1). The map that sends F ∈ Fk to the representation
πF ∈ Πcusp(PGL2) it generates induces a bijection between Fk and the set of
π ∈ Πcusp(PGL2) such that Weights(π) = {±(k − 1)/2}.
Proof. Recall that the first Fourier coefficient of an eigenform F in Sk(SL2(Z)) is
always nonzero and that if the eigenform is normalized, it is uniquely determined
by its eigenvalues under H(PGL2) [177, Chap. VII, Theorem 7]; in particular,Fk is
a basis of the vector space Sk(SL2(Z)). Let Uk be the discrete series of PGL2(R)
such that InfUk

⊂ M2(C) has eigenvalues±(k − 1)/2. A well-known special case
of Proposition 6.3.7 is that we have an H(PGL2)-equivariant isomorphism between
Sk(SL2(Z)) and AUk

(PGL2) = HomPGL2(R)(Uk,Acusp(PGL2)) [92, Chap. I,
Sect. 4]. This shows that the map in the proposition is well defined and injective.

A sophisticated justification of the surjectivity consists in invoking Proposi-
tion 8.2.13 (i). We can also use Bargmann’s classification [18] of the unitary dual
of SL2(R). It shows that if U is an irreducible unitary representation of PGL2(R)
such that InfU ⊂ M2(C) has eigenvalues ±(k − 1)/2, then either U � Uk, or
dimU = 1 and k = 2. Indeed, the representations of the principal series have an
infinitesimal character whose eigenvalues are of the form±is with s ∈ R (the “tem-
pered” case) or of the form±s with s ∈]− 1/2, 1/2[ (the “complementary series”);
moreover, the infinitesimal character of the “limit of discrete series” is 0. To elim-
inate the case dimU = 1, note that formula (4.5.1) implies that the only elements
of A2(PGL2) invariant under PGL2(R)

+ are the constant functions, which are not
cuspidal, concluding the proof. ��

Proposition 9.1.4 and Tsushima’s table justify the following Definition-
Proposition.

Proposition-Definition� 9.1.6. Let (w, v) be one of (19, 7), (21, 5), (21, 9), and
(21, 13); then there exists a unique representation in Π⊥

cusp(PGL4) that is algebraic
with weights {±w/2,±v/2}. We denote it by Δw,v.
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Thus, if (j, k) is one of (6, 8), (4, 10), (8, 8), and (12, 6), we have the relation
ψj,k = Δw,v with (w, v) = (j+2k− 3, j+1), and ψj,k cannot be expressed using
forms of genus 1.

9.1.7 A Few Eigenvalues of Hecke Operators

Let (j, k) ∈ {(6, 8), (4, 10), (8, 8), (12, 6)} and (w, v) = (j + 2k − 3, j + 1), and
let p be a prime and n ≥ 1 an integer. Set

τj,k(p
n) = pnw/2 trace St(cp(πFj,k

)n) = pnw/2 trace (cp(Δw,v)
n) . (9.1.2)

The conjugacy classSt(cp(πFj,k
)) ⊂ SL4(C) is equal to its inverse; the characteristic

polynomial of pw/2cp(πFj,k
) is therefore

t4 − τj,k(p) t
3 +

τj,k(p)
2 − τj,k(p

2)

2
t2 − τj,k(p)p

j+2k−3 t+ p2j+4k−6 . (9.1.3)

In particular, the complex number τj,k(pn) is a polynomial with integer coefficients
in τj,k(p) and 1

2 (τj,k(p)
2 − τj,k(p

2)).
The following proposition was known to Shimura [187]. As Gross already ex-

plained in [97, Sect. 6], it is also an immediate consequence of the relation (6.2.8)
(see also Sect. 6.4.3).

Proposition 9.1.8. Let j, k be as above and p a prime.

(a) The complex number τj,k(p) is the eigenvalue of the Hecke operator
p(j+2k−6)/2Kp acting on the line Sj,k.

(b) The complex number 1
2 (τj,k(p)

2 − τj,k(p
2)) is the eigenvalue of the Hecke

operator pj+2k−5(Tp + 1) + pj+2k−3 acting on the line Sj,k.

By Relation (4.5.4), the operator p(j+2k−6)/2 Kp coincides with the one denoted
byT(p) by Van der Geer [89, Sect. 16], at least when the latter is defined by including
the normalization between parentheses in Definition 16.5 loc. cit. The operator we
denote by Tp is sometimes denoted by T1(p

2) in the literature, up to a factor of a
power of p depending on the authors.

The problem of determining the eigenvalues of the Hecke operators acting on the
spaces Sj,k is significantly more difficult in practice than its analog in genus 1. One
reason is the difficulty in determining the Fourier coefficients of the forms of genus
2, in particular those indexed by Gram matrices of large determinant. Moreover, the
relation between the Fourier coefficients and eigenvalues, studied in this context by
Andrianov [4] for the scalar-valued forms and extended to the vector-valued forms by
Arakawa [7], is more subtle than in genus 1. In what follows, we recall this relation
in the case of the Hecke operators Kp and Tp. From this, we will deduce both the
following proposition and the computation of several values of the integers τj,k(p).
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Proposition 9.1.9. Let (j, k) ∈ {(6, 8), (4, 10), (8, 8), (12, 6)}, and let p be a prime
and n ≥ 1 an integer. We have τj,k(pn) ∈ Z, as well as the congruence

τj,k(p
2) ≡ τj,k(p)

2 mod 2 pk−2 .

Set Γ = Sp4(Z), and consider the following elements of GSp4(Z[1/p])
+:

γ :=

⎡

⎢

⎣

1 0 0 0
0 1 0 0
0 0 p 0
0 0 0 p

⎤

⎥

⎦ and γ′ :=

⎡

⎢

⎣

1 0 0 0
0 p 0 0
0 0 p2 0
0 0 0 p

⎤

⎥

⎦ .

Lemma 9.1.10. (a) The Hecke operator Kp ∈ Hp(PGSp4) is of degree (1 +
p)(1 + p2). Its matrix is the characteristic function of the image of Γγ−1Γ
in PGSp4(Z[1/p])

+, in the sense of the identifications (4.2.2) and (4.5.3). The
double coset ΓγΓ is the disjoint union of the right-cosets Γγi, where γi runs
through the list of elements of the following form:

⎡

⎢

⎣

p 0 0 0
0 p 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎦
,

⎡

⎢

⎣

1 0 a b
0 1 b c
0 0 p 0
0 0 0 p

⎤

⎥

⎦
,

⎡

⎢

⎣

p 0 0 0
−d 1 0 e
0 0 1 d
0 0 0 p

⎤

⎥

⎦
, or

⎡

⎢

⎣

1 0 f 0
0 p 0 0
0 0 p 0
0 0 0 1

⎤

⎥

⎦
,

with a, b, c, d, e, f integers lying between 0 and p− 1;
(b) Likewise, Tp ∈ Hp(PGSp4) is of degree p (p4 − 1)(p− 1)−1, and its ma-

trix is the characteristic function of the image of Γγ′−1
Γ in the group

PGSp4(Z[1/p])
+. The double coset Γγ′Γ is the disjoint union of the right-

cosets Γγ′
i, where γ′

i runs through the list of elements of the following form:
⎡

⎢

⎣

p 0 0 0
0 p2 0 0
0 0 p 0
0 0 0 1

⎤

⎥

⎦
,

⎡

⎢

⎣

p2 0 0 0
−ap p 0 0
0 0 1 a
0 0 0 p

⎤

⎥

⎦
,

⎡

⎢

⎣

p 0 b c
0 p c d
0 0 p 0
0 0 0 p

⎤

⎥

⎦
,

⎡

⎢

⎣

p 0 0 pe
−f 1 e ef + g
0 0 p pf

0 0 0 p2

⎤

⎥

⎦
, or

⎡

⎢

⎣

1 0 h i
0 p pi 0
0 0 p2 0

0 0 0 p

⎤

⎥

⎦
,

with a, b, c, d, e, f, i integers lying between 0 and p−1, such that c2 ≡ bd mod p
and (b, c, d) �= (0, 0, 0), and with g and h integers lying between 0 and p2 − 1.

Proof. The fact that the matrices of Kp and Tp are the characteristic functions of
the images of the double cosets Γγ−1Γ and Γγ′−1

Γ, respectively, is formula (6.2.7).
The degree ofKp ∈ Hp(PGSp2g) is the number of Lagrangians of the hyperbolic

a-vector spaceH(Fg
p), namely

∏g
i=1(1+pi). Likewise, the degree ofTp is the number

of (isotropic) lines in H(Fg
p), multiplied by the number of (isotropic) lines in H(Fp)

transverse to a given line, which gives p(pg − 1)(p− 1)−1.
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The assertions concerning the decompositions of the double cosets are due to
Andrianov [4, 5]. Let us justify them briefly, following the notes of Buzzard [42].
An element of GL4, which we assume given by blocks of size 2× 2 and of the form

[

a b
0 d

]

,

is in GSp4 for the similitude factor ν if and only if a tb = b ta and a td =
ν1g (Sect. 4.5.1). This shows that each of the elements of the statement is in
GSp4(Z[1/p]), with similitude factor p in case (a) and p2 in case (b).

Let h ∈ GSp4(Z[1/p])∩M4(Z), and let h ∈ M4(Z/p) be the reduction modulo
p of h. The theory of “symplectic elementary divisors” shows that h is in Γγ′Γ (resp.
ΓγΓ) if and only if ν(h) = p2 and the rank of h is 1 (resp. ν(h) = p). This shows
γi ∈ ΓγΓ and γ′

i ∈ Γγ′Γ for every i.
Finally, we verify that γiγ−1

j ∈ Γ (resp. γ′
iγ

′−1
j ∈ Γ) implies i = j. To do this,

it is useful to note that all elements above are in a same Borel subgroup of GSp4
because the “projection onto the diagonal” is a homomorphism. This suffices to
conclude because in both cases, the cardinality of the list is the degree of the Hecke
operator. ��

Let j ≥ 0 be an integer. Denote by ρj the natural representation of GL2(C) on
the space Wj := Symj

C
2. Recall that for w ∈ Wj and n ∈ M2(C), the notation

w qn is used for the function H2 →Wj defined by τ → e2iπ tr(nτ) w (Sect. 4.5.2).
Let k ∈ Z, and let F be a Siegel modular form for Sp4(Z) with coefficients in

the representationWj,k := Wj ⊗detk of GL2(C). By definition, this representation
has underlying space Wj , and GL2(C) acts on it by g → ρj(g)det(g)

k. Recall that
the form F admits a Fourier expansion, which we write here as

F =
∑

n∈N

a(n;F ) qn ,

where N ⊂ 1
2M2(Z) is the subset consisting of the matrices that are symmetric,

positive, and with diagonal coefficients in Z, and where we have a(n;F ) ∈ Wj for
everyn ∈ N (Sect. 4.5.2). It will be convenient to set a(n;F ) = 0 ifn ∈M2(Q)−N.

Recall that in Sect. 4.5.1, we defined a right action of GSp4(R)
+ on the space

of functions H2 → Wj,k , which we denote by (f, γ) → f|Wj,k
γ. Let w ∈ Wj and

n ∈ M2(C), and let γ =
[

a b
0 d

]

in GSp4(R)
+ have similitude factor ν; we have

w qn|Wj,k
γ = ν−(j+2k)/2 · det(a)k · e(2iπ/ν)tr(tanb) · ρj(ta)w q

tana/ν (9.1.4)

(recall the relation d−1 = ν−1 ta). It will be convenient to let the group GL2(C) act
on M2(C) by (g, s) → g · s := g s tg.
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Corollary 9.1.11. Let j ≥ 0 and k be integers. Let F ∈ Sj,k, and let p be a prime
and n ∈ N. We have

p(j+2k)/2a(n; Kp F ) = pj+2k a

(

1

p
n;F

)

+ p3 a(p n;F )

+ pk+1

p−1
∑

d=0

ρj

([

p −d
0 1

])

a

([

1 d
0 p

]

· 1
p
n;F

)

+ pk+1 ρj

([

1 0
0 p

])

a

([

p 0
0 1

]

· 1
p
n;F

)

and

pj+2ka(n; Tp F ) = pj+3k ρj

([

1 0
0 p

])

a

([

p 0
0 1

]

· 1
p2

n;F

)

+ pj+3k

p−1
∑

a=0

ρj

([

p −a
0 1

])

a

([

1 a
0 p

]

· 1
p2

n;F

)

+ δ(n, p) pj+2k a(n;F )

+ pk+3

p−1
∑

f=0

ρj

([

p −f
0 1

])

a

([

1 f
0 p

]

· n;F
)

+ pk+3 ρj

([

1 0
0 p

])

a

([

p 0
0 1

]

· n;F
)

,

where δ(n, p) ∈ Z is defined by formula (9.1.5) below; δ(n, p) ≡ −1 mod p.

Proof. By Lemma 9.1.10 and the diagram (4.5.4), we have

KpF =
∑

i

F|Wj,k
γi and TpF =

∑

i

F|Wj,k
γ′
i .

In view of the uniform convergence of the Fourier expansion of F on every compact
subset of H2, the corollary is a direct application of formula (9.1.4). Note that if
a, d ∈ GL2(C), b ∈ M2(C), ν ∈ C

∗, and m,n ∈ M2(C) are such that n =
ν−1 tama and d−1 = ν−1 ta, then m = d · ν−1 n and tr(tamb) = tr(bn td).

By way of example, let us determine the contribution of the p2 − 1 elements γ′
i

of the form
⎡

⎢

⎢

⎣

p 0 b c
0 p c d
0 0 p 0
0 0 0 p

⎤

⎥

⎥

⎦
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with b, c, d as in Lemma 9.1.10 (ii) to the sum defining pj+2k a(n; TpF ). The latter
can be written pj+2k δ(n, p) a(n;F ), where

δ(n, p) :=
∑

v∈V−{0}, det(v)=0

e(2iπ/p)tr(vn) (9.1.5)

and V ⊂ M2(Z/pZ) is the subspace of symmetric matrices. The quadratic form
det : V → Z/pZ admits p+ 1 isotropic lines. If a is the number of these lines that
are in the kernel of the linear form v → tr(vn), so that a ∈ {0, 1, 2, p+ 1}, then
δ(n, p) = (p− 1) · a− (p+ 1− a) = p(a− 1)− 1. ��

Since the monoid ρj(M2(Z) ∩ GL2(C)) preserves the lattice Symj
Z
2 ⊂ Wj ,

this leads to the following corollary.

Corollary 9.1.12. Let j, k be integers with j ≥ 0 and k ≥ 2. For every prime p,
the Hecke operators p(j+2k−6)/2 Kp and pj+k−3 (Tp +1) preserve the subgroup of
Sj,k consisting of the elements whose Fourier coefficients all have their values in the
subgroup Symj

Z
2 ⊂Wj .

Proof of Proposition 9.1.9. LetSintj,k ⊂ Sj,k be the subgroup defined in the statement.
Since theC-vector space Sj,k is finite dimensional, there exists a finite subsetN ⊂ N

such that the linear map

F → (a(n;F ))n∈N , Sj,k →WN
j

is injective. It sends the Z-module Sintj,k into (Symj
Z
2)N . This shows, on the one

hand, that the Z-module Sintj,k is free of finite rank and, on the other hand, that the
natural map η : Sintj,k ⊗Z C→ Sj,k is injective, because this is the case for the natural
map Symj

Z
2 ⊗ C→Wj .

The map η may be bijective in full generality, but we have not found a reference
for this. Let us prove this when (j, k) is in the list given in Proposition 9.1.9. In
this case, Sj,k is of dimension 1, so that it suffices to verify that Sintj,k is nonzero.
Consider the modular form fj,k,u,v,w = ϑ2(E8,Pj,k,u,v,w) in Sj,k, constructed in
Sect. 9.1.1. Its coefficients are in Z[i][X,Y ], where Z[i] is the ring of Gaussian
integers, because the harmonic polynomial Pj,k,u,v,w sends E2

8 into Z[i][X,Y ]; the
few nonzero Fourier coefficients of fj,k,u,v,w that we have determined are even in Z

(Table C.2). Note that for every n ∈ N, we have a(n; fj,k,u,v,w) = a(n; fj,k,u,v,w),
where z → z denotes complex conjugation on C[X,Y ] and E8 ⊗ C, respectively.
Hence, fj,k,u,v,w + fj,k,u,v,w is a nonzero element of Sintj,k.

To conclude this proof of Proposition 9.1.9, it suffices to apply Proposition 9.1.8
and Corollary 9.1.12. ��
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Let n =
[

n11 n12/2
n12/2 n22

]

∈ N, and let p be a prime. We have the identities

[

p 0
0 1

]

· 1
p
n =

[

pn11 n12/2
n12/2 n22/p

]

,

[

1 d
0 p

]

· 1
p
n =

[

(n11 + dn12 + d2n22)/p (n12/2) + dn22

(n12/2) + dn22 pn22

]

.

Hence, if the quadratic form on Z
2 defined by n is anisotropic modulo the prime

p, then neither n/p nor one of the two matrices above is in N. Proposition 9.1.11
therefore has the following corollary.

Scholium 9.1.13. Suppose that F ∈ Sj,k is an eigenvector of the operator
p(j+2k−6)/2 Kp, with eigenvalue λ. If n ∈ N and 2n is a Gram matrix of a
quadratic form on Z

2 that is anisotropic modulo the prime p, then we have the rela-
tion λ a(n;F ) = a(pn;F ). In particular, this relation determines λ if a(n;F ) �= 0.

This scholium applies, for example, for

2n =

[

2 −1
−1 2

]

,

which is none other than the standard Gram matrix of the lattice A2, when A2 ⊗ Fp

does not represent 0, that is, p ≡ −1 mod 3. We therefore deduce the following
corollary from Table C.2.

Corollary 9.1.14. The integers τ6,8(2), τ4,10(2), τ8,8(2), and τ12,6(2) equal, respec-
tively, 0, −1680, 1344, and −240.

Remark 9.1.15. Suppose that F ∈ Sj,k is an eigenvector of the operator
2j+2k−5(T2 + 1) + 2j+2k−3, with eigenvalue λ, and set

n =
1

2

[

2 −1
−1 2

]

and m =
1

2

[

2 0
0 6

]

.

We leave it to the reader to deduce the following relation from Corollary 9.1.11:

(λ − 2j+2 k−4) a(n;F ) =

2k−2

(

ρj

([

2 0
−1 1

])

+ ρj

([−1 1
2 0

])

+ ρj

([

1 −1
1 1

]))

a(m;F ) .

(Verify, in particular, that we have δ(n, 2) = −3.) Using the values of Table C.2, this
formula allows one to prove that the integers τ6,8(4), τ4,10(4), τ8,8(4), and τ12,6(4)
are, respectively, 409600,−700160, 348160, and 4276480.

It turns out that the eigenvalues of theFj,k were studied by Faber and Van der Geer
[83], [89, Sect. 24] in a completely different way, by counting curves of genus 2 over
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finite fields in the manner of Deligne. If q denotes a power of a prime, they were able
to determine τj,k(q) for every q ≤ 37 (by, however, admitting an expected property
of the cohomology of certain sheaves on the Siegel space of genus 2 [89, Sect. 24]);
loc. cit., they give several values, including the value τj,k(2) above. Further on, we
will present a very different method to determine τj,k(q), which will lead to a proof
of the following theorem.

Theorem� 9.1.16. Let p be a prime and (j, k) one of the pairs (6, 8), (4, 10), (8, 8),
and (12, 6).

(i) If p ≤ 113, the integer τj,k(p) is given by Table C.3.
(ii) If p ≤ 29, the integer τj,k(p2) is given by Table C.4.

Finally, let us mention that in a recent work [58, Sect. 8], Clery and Van der Geer
have recovered the values τ6,8(q) for q ≤ 49 using yet another method.

9.1.17 Where We Explain the Occurrence of the ψj,k in Table 7.1

Fix one of the four pairs (j, k) of Table 9.1 with j > 0. Let U ′
j,k be the irreducible

representation of SO8(C) of highest weight (12j + k − 4)(ε1 + ε2) +
1
2j(ε3 + ε4)

(Sect. 6.4.3); it factors through PGSO8(C). We then have natural isomorphisms

MU ′
j,k

(SO8)
∼← MU ′

j,k
(PGSO8)

∼→ MUj,k
(PGSO8)

∼→ MUj,k
(SO8)

∼← MUj,k
(O8)

∼→ Sj,k .

Indeed, the first and third are general (a variant of Lemma 5.4.8 based on Propo-
sition 4.1.4). The last isomorphism is that of Proposition 9.1.2. The before-
last morphism is injective for general reasons (Sect. 4.4.4) and bijective because
dimMUj,k

(SO8) = 1 by Chenevier and Renard [55, Table 2]. The one in the middle
is induced by the triality. Indeed, by a computation left to the reader, based on the
well-known action of the triality on the Dynkin diagram of type D4, we see that if
an irreducible C-representation of PGSO8(C) has highest weight

∑4
i=1 niεi, then

the two representations deduced from it by applying the triality automorphisms have
highest weight

∑4
i=1 miεi, where

m1 =
n1 + n2 + n3 + n4

2
, m2 =

n1 + n2 − n3 − n4

2
,

m3 =
n1 − n2 + n3 − n4

2
, ±m4 =

∣

∣

∣

∣

n1 − n2 − n3 + n4

2

∣

∣

∣

∣

.

The occurrence of the ψj,k in Table 7.1 is therefore a consequence the series of
isomorphisms above and Theorem 7.2.3 (i).

Finally, let us mention that this subsection suggests an alternative method for
determining the τj,k(q), based on a computation of eigenvalues of Hecke operators
for O8. We refer to work by Mégarbané [143] on this subject.
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9.2 Πdisc(SO24) and the Nebe–Venkov Conjecture

9.2.1 A Characterization of Table 1.2

Consider the following subset of
∐

n≥1 Πalg(PGLn) :

Π = {1,Δ11,Δ15,Δ17,Δ19,Δ21, Sym
2Δ11,Δ19,7,Δ21,5,Δ21,9,Δ21,13} .

The proposition below gives a direct “definition” of Table 1.2.

Proposition� 9.2.2. The set of ψ ∈ X(SL24) such that

(i) the eigenvalues of ψ∞ are the 22 integers ±11,±10, . . . ,±1, as well as the
integer 0 with multiplicity 2;

(ii) ψ is of the form ⊕k
i=1πi[di] with πi ∈ Π for every i

is exactly the set given by Table 1.2. It has 24 elements.

Proof. This is a simple exercise in combinatorics that can be treated as follows.
Consider, more generally, for every integer n ≥ 1, the set Ψn of elements ψ ∈
X(SLn) satisfying assertion (ii) and such that

– the eigenvalues ofψ∞ are the n integers±(n− 1)/2,±(n− 3)/2, . . . ,±1, and
0 if n is odd;

– the eigenvalues of ψ∞ are the n−2 integers±(n− 2)/2,±(n− 4)/2, . . . ,±1,
as well as the integer 0 with multiplicity 2 if n is even.

The problem is determining Ψ24. We will, more generally, specify Ψn for every
1 ≤ n ≤ 24, by induction on n. For c ∈ X(SLa) and Ψ ⊂ X(SLb), it will be
convenient to denote by c ⊕ Ψ the set of elements of X(SLa+b) of the form c ⊕ ψ
with ψ ∈ Ψ.

Let 1 ≤ n ≤ 24 be an even integer and ψ ∈ Ψn. Write ψ = ⊕k
i=1πi[di], as

in assertion (ii). The inequality n ≤ 24 implies that for every i, the eigenvalues
of (πi[di])∞ are at most 11. Fix an integer i such that (πi[di])∞ has eigenvalue 0.
Lemma 9.2.3 shows that we are in one of the following cases:

– πi = 1,
– πi = Δ11, di = 12, n = 24, and therefore ψ = Δ11[12],
– πi = Sym2Δ11, in which case di = 1 and n = 24.

In particular, we see that under the assumption n ≤ 22, there exist two integers i
such that πi = 1, of which exactly one moreover satisfies di = 1. We therefore have
the equality Ψn = [1] ⊕ Ψn−1 for n even and at most 22. Moreover, this analysis
shows

Ψ24 = { Δ11[12] } ∪ [1]⊕Ψ23 ∪ Sym2Δ11 ⊕Ψ21 .

It remains to describe Ψn for n odd and at most 23. Since the nontrivial elements of
Π have motivic weight at least 11, we obviously have Ψn = { [n] } for every odd
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integer 1 ≤ n ≤ 11. Since the only representation in Π of motivic weight less than
15 is Δ11, we moreover have

Ψ13 = { [13], Δ11[2] ⊕ [9] } and Ψ15 = { [15], Δ11[4] ⊕ [7] } .

Likewise, we deduce the following assertions:

– Ψ17 is the union of { [17], Δ11[6]⊕ [5] } and Δ15[2]⊕Ψ13;
– Ψ19 is the union of { [19], Δ11[8]⊕ [3], Δ15[4]⊕ [11] } and Δ17[2]⊕Ψ15;
– Ψ21 is the union of the sets Δ17[4]⊕ Ψ13, Δ19[2]⊕Ψ17, and

{ [21], Δ11[10]⊕ [1], Δ15[6]⊕ [9], Δ19,7[2]⊕Δ15[2]⊕Δ11[2]⊕ [5] } ;

– Ψ23 is union of { [23], Δ15[8] ⊕ [7], Δ17[6] ⊕ [11], Sym2Δ11 ⊕ Δ11[10] },
Δ19[4]⊕Ψ15, Δ21[2]⊕Ψ19, and the set

{Δ21,5[2]⊕Δ17[2]⊕Δ11[4]⊕ [3], Δ21,9[2]⊕Δ15[4]⊕ [7],

Δ21,13 ⊕Δ17[2]⊕ [11] } .

To conclude, this analysis shows that the set Ψ24 is the set consisting of the 24
elements of Table 1.2. One way to show that these 24 elements are distinct is to
invoke Proposition 6.4.5 (the Jacquet–Shalika theorem). Note that the intersection
of [1] ⊕ Ψ23 and Sym2Δ11 ⊕ Ψ21 is the singleton { Sym2Δ11 ⊕Δ11[10] ⊕ [1]}.
More generally, Table 9.2 gives the cardinality of Ψn in terms of n ≤ 24.

Table 9.2 The cardinality of the subset Ψn ⊂ X(SLn) introduced in the proof of Proposition 9.2.2

n ≤ 12 13 14 15 16 17 18 19 20 21 22 23 24

|Ψn| 1 2 2 2 2 4 4 5 5 10 10 14 24

(Another way to show that the 24 elements of Table 1.2 are distinct, to which we will
come back in Sect. 9.2.4, would consist in observing that the components of these
elements at the prime 2 have distinct traces.) ��
Lemma 9.2.3. Let π ∈ Π− {1}, let d ≥ 1 be an integer, ψ = π[d], and Λ ⊂ C the
set of eigenvalues of ψ∞. Suppose Λ ⊂ Z and |λ| ≤ 11 for every λ ∈ Λ. Then we
have

|λ| ≥ d− 1

2

for every λ ∈Weights(π). Moreover, the following assertions hold:

(i) If 0 ∈ Λ, then we have either π = Sym2Δ11 and d = 1, or π = Δ11 and
d = 12.

(ii) If 1 ∈ Λ, then we have π = Δ11 and d ∈ {10, 12}.
Proof. This immediately follows by studying the list Π. ��
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9.2.4 Statements and an Overview of the Proofs

Let ψ be one of the 24 elements listed in Table 1.2. By Proposition 9.2.2 and the
examples of Sect. 6.4.3, we have ψ∞ = St(infV ), where V is the trivial representa-
tion of SO24(R). Since the set Π consists of self-dual representations, the following
statement (which is also Theorem E) is not absurd!

Theorem� 9.2.5. The standard parameters ψ(π, St) of the 24 representations π in
Πdisc(O24) with π∞ = 1 are the 24 elements of Table 1.2.

Let us emphasize that in his work [109] (which, in particular, depends on [31, 108],
and [156]), Ikeda succeeded in identifying 20 of these 24 parameters, namely those
in the list that “do not contain” one of the four representations Δw,v.

In order to say a bit more about this, let us recall some notation introduced in
Sect. 5.3. For i = 1, . . . , 24, we denote by λi the 24 distinct eigenvalues of the
operatorT2 acting on C[X24], in decreasing order, as done by Nebe and Venkov (Ta-
ble 5.1). Fix an eigenvector vi ∈ Z[X24] of T2, and therefore of H(O24), associated
with λi. Denote by πi ∈ Πdisc(O24) the representation generated by vi, and denote
its standard parameter by

ψi = ψ(πi, St) .

Theorem 9.2.5 asserts that these 24 parameters ψi are those of Table 1.2. Given that
the 24 eigenvalues of T2 are distinct, the relation

λi = 211 trace (ψi)2 = 211 trace St c2(πi)

uniquely characterizes the map i → ψi. Moreover, this provides a first verification of
Theorem 9.2.5 because we can show that the four values τj,k(2) (Corollary 9.1.14,
[89, Sects. 24 and 27]), as well as the coefficients τk(2) of q2 in the normalized
modular forms for SL2(Z) of weight k ≤ 22, are compatible with the computation
of the λi by Nebe and Venkov.

By way of example, consider the parameter

ψ = Δ21,5[2]⊕Δ17[2]⊕Δ11[4]⊕ [1]⊕ [3] .

We have τ4,10(2) = −1680, τ12(2) = −24, and τ18(2) = −528, so that

211 trace(St(ψ2)) = (1 + 2) · (−1680) + 22 · (1 + 2) · (−528)
+ 24 · (1 + 2 + 22 + 23) · (−24) + 211

+ 210 · (1 + 2 + 22)

=− 7920 .

We recover the eigenvalue λ21 of Nebe-Venkov; that is, ψ = ψ21.
Finally, we denote by gi the degree of vi, defined in Sect. 5.3: since the eigenvalue

λi has multiplicity 1, it is the least integer g such that πi admits a ϑ-correspondent in
Πcusp(Sp2g) in the sense of Sect. 7.1.1. By convention, we have g1 = 0. As already
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explained in Sect. 5.3, the gi were determined by Nebe and Venkov for i �= 19, 21 in
[156]; they, moreover, conjectured the values g19 = 9 and g21 = 10.

Theorem� 9.2.6. (i) The gi are given by Table C.5. In particular, the Nebe–Venkov
conjecture [156, Sect. 3.3] is true.

(ii) For every i ≤ 23, the degree gi is the least integer m ≥ 0 such that ψi is of the
form [23− 2m]⊕ ψ′

i with ψ′
i ∈ XAL(SL2m+1). Finally, we have g24 = 12.

One should be aware that in our Table C.5, the degrees gi are in increasing order,
but this does not quite hold for the indices i. We will first prove, in Sect. 9.2.8,
that Theorem 9.2.5 implies Theorem 9.2.6. Then, we will give three proofs of
Theorem 9.2.5, the first two of which are conditional:

– The first, and undoubtedly most natural, is a direct application of Arthur’s
multiplicity formula for SO24. Its obvious disadvantage is that it depends on
establishing Arthur’s multiplicity formula for the Z-groups SOn, as well as
the analog of Conjecture 8.4.22 for these groups; we combined the two into
Conjecture 8.4.25 in Chap. 8. This conditional proof is explained in Sect. 9.2.10.

– Next, in Sect. 9.2.11, we give a second conditional proof, which this time only
uses Arthur’s theory for Chevalley groups, Conjecture 8.4.22, as well as “ϑ-
correspondence” arguments. In this second approach, we in fact simultaneously
prove the assertions (i) and (ii) of Theorem� 9.2.6 above.

– Finally, in Sect. 9.4.3, we give a last proof of Theorem 9.2.5, this time un-
conditional. This proof, rather different in spirit and already discussed in the
introduction, does not depend on Arthur’s multiplicity formula at all. It will give
a deeper justification for the statement of Theorem 9.2.5.

Remark 9.2.7. (i) Curiously, the Hecke operator T3 on C[X24] has eigenvalue
1827360 with multiplicity 2. This is a translation of the slightly miraculous equality
of the traces of the components at p = 3 of the parameters ψ19 = Sym2Δ11 ⊕
Δ19,7[2]⊕Δ15[2]⊕Δ11[2]⊕ [5] and ψ21 = Δ21,5[2]⊕Δ17[2]⊕Δ11[4]⊕ [1]⊕ [3],
as one can verify using Table C.3.

(ii) The Hecke operator T2 acting on C[X32] has noninteger eigenvalues. Indeed,
let Δ23 be one of the two normalized eigenforms of weight 24 for SL2(Z). It is
well known that its Fourier coefficients are in Q(

√
144169); for example, the second

is 540 ± 12
√
144169. This suffices to conclude because by Ikeda and Böcherer

(Sect. 7.3), there exists a π ∈ Πdisc(O32) such that we have ψ(π, St) = Δ23[8] ⊕
[15]⊕ [1].
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9.2.8 Theorem 9.2.5 Implies Theorem 9.2.6

We now explain how to deduce the values of the gi from the list of theψi in Table C.5.

Lemma 9.2.9. We have the inequalities g23 ≤ 11 and gi ≤ 10 for i ≤ 22, as well as
the equality g24 = 12.

Proof. As recalled in Sect. 5.3, Erokhinproved gi ≤ 12 for every i in [80]. This result
was recovered by Borcherds, Freitag, and Weissauer in [31], where they, moreover,
verify the inequality gi ≤ 11 for all i except exactly one (this is the assertion that
Kerϑ11 is of dimension 1). To do this, they compute, explicitly, the coefficients
of the theta series of the Niemeier lattices corresponding to Gram matrices of the
lattices of the form Q(R), where R is an irreducible root system of type ADE and
rank at most 12 [31, Table p. 146]. As observed by Nebe and Venkov [156, Sect. 3.1,
Lemma 3.3], these computations show, more precisely, the inequalities g23 ≤ 11,
gi ≤ 10 for every i ≤ 22, and g24 = 12 (at least one of the gi must equal 12 by the
result of [31] mentioned above). ��
Proof that Theorem 9.2.5 Implies Theorem 9.2.6. Let 1 ≤ i ≤ 23, and let ψ′

i ∈
X(SL2gi+1) be the standard parameter of the ϑ-correspondentof πi inΠcusp(Sp2gi).
By Lemma 9.2.9, we have gi ≤ 11, so that by Rallis (Corollary 7.1.3), we have the
identity

ψi = ψ′
i ⊕ [23− 2gi] .

By Arthur’s Theorem 8.1.1, we have ψ′
i ∈ XAL(SL2gi+1). The uniqueness of the

Arthur–Langlands parameters (Jacquet–Shalika, Proposition 6.4.5) therefore shows
that gi has the property that [23− 2gi] is a “component” of ψi in Table C.5.

For i ≤ 22, Lemma 9.2.9 implies gi ≤ 10, that is, 23 − 2gi ≥ 3. In this case,
23 − 2gi is the unique integer mi > 1 such that [mi] is a component of ψi; the
other possible component of ψi of the form [d] is [1]. This trivially determines gi
for i ≤ 22 by a direct examination of Table C.5. Likewise, the inequality g23 ≤ 11
and the identity ψ23 = Sym2Δ11 ⊕ Δ11[10] ⊕ [1] show that we necessarily have
g23 = 11. This concludes the proof. ��

Note that the approach used here does not depend on the refined computations
of Sects. 3.3 and 3.4 of [156], but “only” on the table [31, p. 146] of Borcherds–
Freitag–Weissauer and the computation of T2 by Nebe and Venkov.

9.2.10 First, Conditional, Proof of Theorem 9.2.5

Let us admit Conjecture 8.4.25 and apply Theorem 8.5.8 to each parameter ψ of
Table 1.2 (the assumptions hold withψ∞ = St(Inf1)). We assert that Equality (8.5.1)
still holds, which is, in itself, a rather miraculous phenomenon. It is, of course,
something one can simply verify in each of the 24 cases. We can also make the
following remarks.
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(a) Ifψ does not containSym2Δ11 andψ �= Δ11[12], thenψ satisfies the assumption
of Criterion 8.5.10, that is, it is of the form

(⊕k−2
i=1 πi[di])⊕ [dk−1]⊕ [1]

with πi symplectic for every i ≤ k − 2. A quick examination shows that we always
have either di < dk−1 and ε(πi) = (−1)nidi/4, or di > dk−1 and di ≡ 0 mod 4
(which only occurs for ψ13, ψ21, and ψ22). Concretely, we see that the ε-factor
ε(Δj,k) = (−1)k is 1 for the four pairs (j, k) we are interested in, and that each time
a component of the form Δw[d] appears in ψ, we have d ≡ w + 1 mod 4. We can
therefore conclude using Criterion 8.5.10.

(b) If ψ contains Sym2Δ11, then ψ is of the form

(⊕k−2
i=1 πi[di])⊕ Sym2Δ11 ⊕ [1]

with πi symplectic for every i ≤ k − 2; it therefore satisfies the assumption of
Criterion 8.5.11. We therefore again conclude using this criterion, by observing that
we still have either di < dk−1 and ε(πi)(−1)ni/2 = (−1)nidi/4, or di > dk−1 and
di ≡ 2 mod 4 (which only occurs for ψ20 and ψ23).

Thus, for every i ≤ 23, the unique representation π′
i ∈ Π(SO24) such that we

have ψ(π′
i, St) = ψi satisfies m(π′

i) = 1. Finally, if we have ψ = ψ20 = Δ11[12],
Equality (8.5.1) trivially holds, and Remark 8.5.9 asserts that there exist exactly two
representations π′

24, π
′′
24 = S(π′

24) ∈ Πdisc(SO24) with standard parameter ψ24 and
that, moreover, m(π′

24) = m(π′′
24) = 1.

This discussion provides25 distinct elements ofΠdisc(SO24), each of multiplicity
1. Since h(SO24) = |˜X24| = 25 (Corollary 4.1.9), these are exactly the π ∈
Πdisc(SO24) such thatπ∞ = 1. TheH(O24)-equivariant decomposition (Sect.4.4.4)

MC(SO24) = MC(O24)⊕Mdet(O24) ,

combined with the fact that T2 has 24 distinct eigenvalues on MC(O24), shows
that the standard parameters of the 24 representations π ∈ Πdisc(O24) such that
π∞ = 1 are exactly the ψi of Table 1.2. It also shows that the unique representation
π ∈ Πdisc(O24) such that we haveπ∞ = det has parameterΔ11[12] (in other words,
we also recover Proposition 7.5.1!).

9.2.11 Second Proof of Theorem 9.2.5, Modulo Conjecture 8.4.22

Let us now give a “less conditional” proof of Theorem 9.2.5, which does not use
Conjecture 8.4.25 and only depends on Conjecture 8.4.22. We begin with two ob-
servations.
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Observation 1. Let 1 ≤ g < 12, and consider the map of Sect. 5.1

ϑg : C[X24] −→ M12(Sp2g(Z)) .

Suppose that F ∈ S12(Sp2g(Z)) is an eigenform for H(Sp2g), and denote by πF ∈
Πdisc(Sp2g) the representation it generates. By Arthur’s Theorem 8.1.1, we can write

ψ(πF , St) = ⊕k
j=1πj [dj ] ∈ XAL(SL2g+1) .

By Böcherer, F is in the image of ϑg if and only if we have L(12− g, πF , St) �= 0
(Remark 7.2.4). By Proposition 8.6.2, we have L(12− g, πF , St) �= 0 if and only if

∀ 1 ≤ j ≤ k such that dj ≡ 0 mod 2 and dj > 23− 2g, (9.2.1)

we have L
(1

2
, πj

)

�= 0 .

If this condition is satisfied, the representationπF therefore admits aϑ-correspondent
π′
F in Πdisc(O24) such that (π′

F )∞ = 1 and

ψ(π′
F , St) = ψ(πF , St)⊕ [23− 2g] ,

by Rallis (Corollary 7.1.3).

Observation 2. Consider Table C.5. We see that for every 2 ≤ i ≤ 23, there exists
a unique ψ′

i ∈ XAL(SL2gi+1) such that we have

ψi = ψ′
i ⊕ [23− 2gi] .

Clearly, the eigenvalues of (ψ′
i)∞ are the 2gi+1 integers±11,±10, . . . ,±(12−gi),

as well as 0. Let �i ∈ Π(Sp2gi) be the unique representation such that ψ(�i, St) =
ψ′
i and (�i)∞ � π′

det12
(the holomorphic discrete series introduced in Sect. 6.3.4).

As already explained several times, the multiplicity m(�i) is nonzero if and only if
there exists an eigenformFi ∈ S12(Sp2gi(Z)) such that πFi � �i (Corollary 6.3.7).

These two observations suggest the following optimistic strategy for proving
Theorem 9.2.5.

1. Show m(�i) �= 0 for every 2 ≤ i ≤ 23.
2. Using Böcherer’s criterion (9.2.1), verify, for every 1 ≤ i ≤ 23, that if there

exists an eigenformFi ∈ S12(Sp2gi(Z)) such thatπFi � �i, thenFi ∈ Im(ϑgi).

Indeed, once this is done, we deduce from this the existence, for every 2 ≤ i ≤ 23,
of a representation in Πdisc(O24) with trivial Archimedean component and standard
parameter ψi, namely a ϑ-correspondent of �i. The existence of a representation
in Πdisc(SO24) with standard parameter ψ1 = [23] ⊕ [1] is clear: we can take the
trivial representation (Examples 6.4.7). Finally, the existence of a representation
in Πdisc(SO24) with standard parameter ψ24 = Δ11[12] was already proved in
Corollary 7.3.4 (work of Ikeda and Böcherer).
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Verification of Item 2. By examining the ψ′
i, we see that there is nothing to check,

because no integer j satisfies dj ≡ 0 mod 2 and dj > 23 − 2gi (Criterion (9.2.1))
unless i ∈ {13, 20, 21, 22, 23}, in which case the criterion can simply be written as
L(1/2,Δ15) �= 0 for i = 13 and L(1/2,Δ11) �= 0 for i ≥ 20. This suffices to con-
clude because these two values of L-functions are indeed nonzero by Remark 7.3.3.

Conjectural Verification of Item 1. The value of m(�i) is, of course, determined
by Theorem 8.5.2. To apply this theorem, we must on the one hand, know that the
morphism ν∞ satisfies Conjecture 8.4.22 and, on the other hand, verify conditions
(a) and (b) of the theorem. Condition (a) is clearly always satisfied, as can be seen by
examining theψ′

i. As far as condition (b) is concerned, we assert that it is also always
satisfied. This is a miracle of the same nature at that encountered in Sect. 9.2.10,
which we could verify the same way (or case by case!). This is not, in fact, necessary,
because by Proposition 8.6.1 (or, more exactly, by the proof of that proposition), this
verification can be deduced, formally, from that carried out in Sect. 9.2.10 if we
verify that for every component of ψ′

i of the form π[d] with d ≡ 0 mod 2 and
d > 23− 2gi, we have ε(π) = 1. But a direct examination of Table C.5 shows that
such a component exists only for the parameters of index i ∈ {13, 20, 21, 22, 23}
and that in all cases π = Δ11 or Δ15, so that we indeed have ε(π) = 1. The fact that
we recover exactly the exceptions we already needed to consider in the verification
of item 2 is not, of course, a coincidence, as we explained in Sect. 8.6. Thus, if for
a given i, Conjecture 8.4.22 is known to be true for the ν∞ associated with ψ′

i, the
equality m(�i) = 1 follows. ��
Remark 9.2.12. Except for the case i = 2, where ψ′

i = Sym2Δ11 (and where it
is clear that m(�i) = 1!), the criterion “dj = 1 for every j” unfortunately never
holds. On the other hand, we see that if we had the particular case of Conjec-
ture 8.4.22 announced by Arancibia, described in Remark 8.4.23, namely the case
where “πj �= 1 ⇒ dj ≤ 4,” we could conclude that m(�i) = 1 holds whenever
i /∈ {11, 12, 13, 20, 22, 23}. Since, furthermore, the work of Ikeda mentioned earlier
[109] asserts that we have m(�i) �= 0 whenever i /∈ {10, 15, 19, 21}, this would
lead to an unconditional proof of the theorem.

9.3 Algebraic Representations of Motivic Weight at Most 22

9.3.1 A Classification Statement

The aim of this subsection is to prove the following theorem.

Theorem 9.3.2. Letn ≥ 1, and letπ ∈ Πcusp(PGLn) be algebraic of motivic weight
w ≤ 22. Then we are in one of the following cases:

(i) n = 1, w = 0, and π is the trivial representation;
(ii) n = 2, w ∈ {11, 15, 17, 19, 21}, and π is the representation Δw generated by

the unique normalized modular cusp form of weightw+1 for the group SL2(Z);
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(iii) n = 3, w = 22, and π is the symmetric square of Δ11;
(iv) n = 4 and Weights(π) is of the form {±w/2,±v/2} with

(w, v) = (19, 7) , (21, 5) , (21, 9) , or (21, 13) .

In this case, π is the unique representation in Πalg(PGL4) with weights
{±w/2,±v/2}; in particular, we have π � π∨.

(v) n = 4, w = 22, and Weights(π) = {±11,±v} with v = 4, 5, or 6.
In this case, the representations π and π∨ are not isomorphic, and they are the
only representations in Πalg(PGL4) with weights {±11,±v}.

Moreover, if there exist representations inΠalg(PGL4)with weights {±21/2,±9/2}
and {±21/2,±13/2}, respectively, then case (v) does not occur.

Let us emphasize that assertion (iv) of this theorem asserts only the unique-
ness, and not the existence, of a representation π ∈ Πalg(PGL4) with weights
{±w/2,±v/2}, where (w, v) run through the four ordered pairs in the statement.
However, in Definition-Proposition 9.1.6, we showed, using Tsushima’s formula and
the results of Arthur, that there indeed exists such a representation, which we de-
noted by Δw,v. The reason why we formulate Theorem 9.3.2 this way is that its
proof, as we will see, does not require the existence of these representations and,
in particular, does not depend on the work of Arthur. We can therefore deduce the
following theorem from it2 (Theorem F of the introduction).

Theorem� 9.3.3. Let n ≥ 1, and let π ∈ Πcusp(PGLn) be algebraic of motivic
weight at most 22. Then π belongs to the following list of 11 representations:

1, Δ11, Δ15, Δ17, Δ19, Δ19,7, Δ21, Δ21,5, Δ21,9, Δ21,13, and Sym2Δ11 .

As we already explained in the introduction, our proof of Theorem 9.3.2 depends
on an analog, in the setting of automorphic L-functions, of the explicit formulas
of Riemann and Weil in the theory of prime numbers. We refer to the surveys of
Poitou [165, 166] on this subject. This analog was developed by Mestre [144] and
then applied by Fermigier to the functionsL(s, π) for π ∈ Πcusp(PGLn) [84]. From
this, the latter deduced loc. cit. the vanishing of the “cuspidal” cohomology of the
group SLn(Z) with rational coefficients for n < 24. This result was subsequently
extended to n < 27 by Miller [147], inspired by work of Rudnick and Sarnak [173],
by considering instead the function L(s, π × π∨), which has several advantages
regarding convergence and positivity.3 This will also be our starting point. More
generally, we will examine, in detail, the inequalities given by the explicit formula
applied to the function L(s, π × π′) for every pair of representations {π, π′} with
π ∈ Πalg(PGLn) and π′ ∈ Πalg(PGLn′).

2 Let us mention that, as far as we know, no one has yet proved the existence of a representation
π ∈ Πalg(PGLn) for n ≥ 1 that is not self-dual.
3 In a close context, the advantage of considering this type of L-function had already been observed
by Serre [166, p. 15].
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Before beginning these proofs, let us give a corollary of Theorem 9.3.2 in the
particular case w(π) = 0.

Proposition 9.3.4. Suppose that LZ is a compact topological group satisfying Ax-
ioms (L1) and (L2) introduced on p. xi of the preface. Then LZ is connected.

Proof. Let ψ : LZ → GLn(C) be a continuous irreducible representation of LZ.
By Axiom (L2), there exists a unique representation π in Πcusp(PGLn) satisfying
c(π) = c(ψ) (by convention, we have Πcusp(PGLn) = Πcusp(GLn)). Suppose,
moreover, that the image of ψ is finite; in particular, we have c∞(ψ) = 0 by the
definition of Frob∞ (Axiom (L1)). From this, we deduce c∞(π) = 0; hence all
weights of π are zero, and we havew(π) = 0. Theorem 9.3.2 implies n = 1 and that
π is the trivial representation. Axiom (L2) in the case n = 1 shows that ψ is also the
trivial representation of LZ. Since every nontrivial finite group admits a nontrivial
irreducible representation, we have proved that the compact group LZ does not have
a nontrivial finite quotient: it is a connected group. ��

9.3.5 The Explicit Formula for the L-Functions of Pairs

The explicit formulas depend on the choice of a “test function.” Following the analysis
of Poitou and Weil [165, p. 6], by this, we mean any even function F : R → R

satisfying the following conditions, where Fε, for ε real and positive, denotes the
function R→ R defined by x → F (x)e(1/2+ε)x:

(T1) There exists an ε > 0 such that Fε is integrable over R>0.
(T2) There exists an ε > 0 such that Fε is of bounded variation on R, equal, at each

point, to the average of its left and right limits.
(T3) The function (1/x)(F (x)− F (0)) is of bounded variation on R− {0}.
In particular, every even function of class C2 over R with compact support is a
test function. This will be the case in our applications, where F will be a simple
modification of Odlyzko’s function. For now, however, it will be clearer if we consider
arbitrary test functions.

If F is a test function and if ε > 0 is such that Fε is integrable over R, then the
integral defined by

ΦF (s) =

∫

R

F (x)e(s−1/2)xdx (9.3.1)

is absolutely convergent in the region −ε < " s < 1 + ε in the complex plane.
In particular, the function ΦF (s) is well defined and holomorphic in this region.
The parity of F implies the equality ΦF (s) = ΦF (1 − s). Moreover, the relation
ΦF (s) = ΦF (s) shows ΦF (s) ∈ R for every real s such that 0 ≤ s ≤ 1.

Set
Πalg =

∐

n≥1

Πalg(PGLn) .
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Let π, π′ ∈ Πalg. As recalled in Sect. 8.2.21, according to Jacquet and Shalika [112,
Theorem 5.3], we have an Euler product

L(s, π × π′) =
∏

p

det(1− p−scp(π) ⊗ cp(π
′))−1

that is well defined and absolutely convergent for " s > 1. Moreover, the function

ξ(s, π × π′) := Γ(s,L(π∞)⊗ L(π′
∞)) L(s, π × π′)

admits a meromorphic continuation to all of C satisfying the functional equation
ξ(s, π × π′) = ε(π × π′) ξ(1 − s, π∨ × π′∨) with

ε(π × π′) = ε(L(π∞)⊗ L(π′
∞)) .

In particular, all zeros of ξ are in the critical strip 0 ≤ " s ≤ 1 (Shahidi has even
proved that these zeros are in the interior of this strip). Finally, the function ξ is
holomorphic on C − {0, 1}, and admits a pole at s = 1 if and only if π′ = π∨, in
which case this is a simple pole, by Moeglin and Waldspurger [151, Appendice].

Proposition-Definition 9.3.6. Let π, π′ ∈ Πalg and ξ(s) = ξ(s, π∨ × π′), let F be
a test function and T > 0 a real number. The finite sum

∑

{s∈C ; |� s|<T, ξ(s)=0}
ΦF (s) ordz=s ξ(z)

is real and admits a finite limit as T → +∞; we denote this limit by ZF (π, π′).

This statement is a special case of the results of Mestre [144, Sect. I], which in
turn generalize, rather directly, those of Riemann, Weil, and Poitou [165]. Suppose
π ∈ Πalg(PGLn) and π′ ∈ Πalg(PGLn′). In the notation of Mestre, we take
M = M ′ = nn′, c = 0, L1(s) = L(s, π∨ × π′), L2(s) = L(s, π × (π′)∨),
w = ε(π∨×π′),Λ1(s) = ξ(s, π∨×π′), andΛ2(s) = ξ(s, π×(π′)∨). By definition,
we incorporate the factors that he denotes by As and Bs, as well as his coefficients
ai, a

′
i, bi, b

′
i, in our Archimedean factors Γ, and there is no contribution from the

conductor (which is 1 in this case). Having said this, the assumptions (i), (ii), and
(iii) loc. cit. follow from the functional equation and the finiteness of the number of
poles of the Λi, which have already been justified above. Assumption (iii), namely
that the function ξ minus its singular parts is bounded in the entire vertical strip, is a
theorem of Gelbart and Shahidi [91, Corollary 2]. Finally, only a weakened version
of the last assumption (iv) of Mestre is satisfied, namely the absolute convergence
of the Euler products L1 and L2, as well as their nonvanishing on " s > 1, but that
is all he needs; see [144, pp. 213–214] and especially the argument given by Poitou
[165, pp. 2–3].

The conclusion of this discussion is that all results of [144, Sect. I.2] apply.
The convergence assertion in Proposition-Definition 9.3.6 is, in particular, justified
by Mestre on p. 213. The fact that the finite sum that appears in the proposition-
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definition is real comes from the fact that the region {s ∈ C ; |� s| < T } is stable
under s → 1− s and from the equalities

ξ(1− s, π∨ × π′) = ε(π∨ × π′) ξ(s, π × π′∨) = ε(π∨ × π′) ξ(s, π∨ × π′) .

Mestre also establishes, loc. cit., the explicit formula we will use. It is the result
of integrating the 1-form ΦF (s) dlog ξ(s) on the boundary of the rectangle {s ∈
C ; −ε ≤ " s ≤ 1 + ε, |� s| ≤ A}, where A and ε are suitable strictly positive
real numbers, followed by passing to the limits ε→ 0 and A→∞. In order to state
it in a pleasant form, we first introduce certain “local” preliminary quantities. The
convergence assertion in the following definition is justified in [144, pp. 213–214]
and [165, pp. 2–3].

Proposition-Definition 9.3.7. Let π, π′ ∈ Πalg, and let F be a test function. The
sum

∑

p,k

F (klog(p))
log(p)

pk/2
tr (cp(π)k) tr (cp(π

′)k) ,

taken over all pairs (p, k) with p a prime and k ≥ 1 an integer, is absolutely
convergent; we denote it by ˜BF

f (π, π
′). We have the obvious relations ˜BF

f (π, π
′) =

˜BF
f (π

′, π) = ˜BF
f ((π

′)∨, π∨). Finally, set

BF
f (π, π

′) := " ˜BF
f (π, π

′) .

Let Walg
R

be the the quotient of the Weil group WR by the connected component
of its center, namely R>0. Let K∞ be the Grothendieck ring of the category of
continuous, complex, finite-dimensional representations of the group Walg

R
. By the

statements recalled in Sect. 8.2.12, it is the free abelian group on the (classes of the)
representations

1 , εC/R , and Iw for w ∈ Z>0 .

Note that every element of K∞ is equal to its dual, because this is the case for the
three representations above.

The map V → Γ(−, V ) introduced in Sect. 8.2.21 extends naturally to a homo-
morphism Γ: K∞ → M(C)×, where M(C)× denotes the multiplicative group of
the field M(C) of meromorphic functions on C. The image of this map consists of
functions that have neither a pole nor a zero in the half-plane " s > 0.

Proposition-Definition 9.3.8. If F is a test function, then the map

JF : K∞ → R , V → − 1

2πi

∫

�(s)=1/2

ΦF (s)
Γ′(s, V )

Γ(s, V )
ds
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is well defined and Z-linear. Moreover, we have the identities

(i) JF (1) = (1/2)log(π)F (0) + σF (1/2, 0),
(ii) JF (εC/R) = (1/2)log(π)F (0) + σF (1/2, 1/2),

(iii) JF (Iw) = log(2π)F (0) + σF (1, w/2) for w ≥ 0,

where we have set

σF (a, b) = a

∫ +∞

0

(

F (ax)e−(a/2+b)x(1− e−x)−1 − F (0)e−xx−1
)

dx .

Finally, the map K∞ × K∞ → R defined by (V,W ) → JF (V
∗ ⊗W ) is bilinear;

we denote it by BF
∞. The obvious relation BF

∞(V,W ) = JF (V ⊗ W ) for every
V,W ∈ K∞ shows that BF∞ is symmetric.

Proof. Denote byψ ∈M(C) the digamma function, defined byψ(s) = Γ′(s)/Γ(s).
Also set ψ(s, V ) = Γ′(s, V )/Γ(s, V ) for V ∈ K∞. The map K∞ →M(C) defined
by V → ψ(−, V ) is clearly Z-linear. By the definitions of the Γ(s, V )-factors
recalled in Sect. 8.2.21, we have the identities

ψ(s, 1) = −1

2
log π +

1

2
ψ
( s

2

)

and ψ(s, Iw) = − log(2π) + ψ
(

s+
w

2

)

for every w ≥ 0. The function F is integrable over R by Condition (T1) and equal,
at every point, to the average of its left and right limits by Condition (T2), and
(F (x) − F (0))/x is bounded in the neighborhood of 0 by Condition (T3). The
Fourier inversion formula therefore holds at x = 0; in other words, the integral
−(1/2πi) ∫�(s)=1/2

ΦF (s)ds is convergent and has value −F (0). It remains to
examine the convergence of an integral of the form

− a

2iπ

∫

�(s)=1/2

ΦF (s)ψ(as+ b)ds

with b ∈ R≥0 and a ∈ R>0. The (simple) convergence of this integral is verified
in [165, p. 6–04] and [144, Lemma I.2.1], as is the equality of the sum with the
(equally convergent) integral σF (a, b) of the statement. This implies all parts of the
proposition. ��

We now have all ingredients necessary to state the explicit formula. For the sake
of convenience, we introduce the free abelian group on the set Πalg:

K = Z[Πalg] .

Let F be a test function. Each of the three functions Πalg × Πalg → R that send
(π, π′) onto, respectively,ZF (π, π′),BF

f (π, π
′), and δπ,π′ (Kronecker delta), extends

to a symmetric bilinear map K × K → R associated with F . Denote these three
bilinear maps by ZF , BF

f , and δ, respectively. Furthermore, the map Πalg → K∞
defined by π → L(π∞) extends to a homomorphism L: K → K∞. The map
K× K→ R defined by (V,W ) → BF∞(L(V ),L(W )) is therefore also bilinear and
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symmetric; we allow ourselves the consistent abuse of notation of also denoting it
by BF

∞. Finally, set
BF = BF

f +BF
∞ : K×K→ R .

Proposition 9.3.9 (“Explicit Formula”). For every test function F , we have the
following equality between bilinear forms K×K→ R:

BF +
1

2
ZF = ΦF (0) δ .

Proof. By bilinearity, it suffices to show this equality for the ordered pair (π, π′) ∈
Πalg × Πalg. In this case, in view of the parity of the function F , the formula given
by Mestre [144, Sect. I.2] can be written

BF
∞(π, π′) + BF

∞(π′, π) + ˜BF
f (π, π

′) + ˜BF
f (π

′, π) + ZF (π, π′)

= δπ,π′ (ΦF (0) + ΦF (1)) .

The identities ΦF (1) = ΦF (0), BF
∞(π, π′) = BF

∞(π′, π), and 2BF
f (π, π

′) =
˜BF
f (π, π

′) + ˜BF
f (π

′, π) now suffice to conclude. ��
An element π of K is called effective if it is a finite sum of elements of Πalg

(in other words, a linear combination with nonnegative coefficients). If π and π′

are effective, say π =
∑

i πi and π′ =
∑

j π
′
j with πi, π

′
j ∈ Πalg, we denote by

ξ(s, π×π′) (resp.L(s, π×π′)), the product of the ξ(s, πi×π′
j) (resp.L(s, πi×π′

j)).
Let us furthermore consider the following condition on a test function F :

(T4) The inequality " ΦF (s) ≥ 0 holds for every s ∈ C with 0 ≤ " s ≤ 1.

Recall that ΦF (s) is a real number for every real number s in [0, 1]; in particular,
it is nonnegative if F satisfies Condition (T4). In this book, we will only use the
following corollary of the explicit formula.

Corollary 9.3.10. Let F be a test function, and let π, π′ ∈ K be effective. Suppose
that F satisfies Condition (T4). Then we have the following equality:

BF (π, π′) ≤ ΦF (0) δ(π, π
′) − 1

2
ΦF

( 1

2

)

ords=1/2ξ(s, π
∨ × π′) .

Proof. Under Condition (T4) on F , we have the equality

ZF (π, π′) = "ZF (π, π′) ≥ ΦF

( 1

2

)

ords=1/2ξ(s, π
∨ × π′) .

We conclude using Proposition 9.3.9. ��
Remark 9.3.11. For V ∈ K∞, we see that the meromorphic function Γ(s, V ) is
finite and nonzero at s = 1/2. This implies, for all effective π, π′ ∈ K, the equality
ords=1/2ξ(s, π × π′) = ords=1/2L(s, π × π′). The corollary above therefore also
holds if we replace ξ(s, π∨ × π′) by L(s, π∨ × π′).



9.3 Algebraic Representations of Motivic Weight at Most 22 271

The vanishing order of the functions ξ(s, π × π′) at s = 1/2 is known to be
mysterious. It is traditionally bounded below in the following way. For π, π′ ∈ Πalg,
set e⊥(π, π′) = 1 if π and π′ are both self-dual and satisfy ε(π × π′) = −1;
otherwise, set e⊥(π, π′) = 0. The function e⊥ : Πalg × Πalg → Z extends to a
symmetric bilinear form e⊥ : K × K → Z. Hence, for all effective π, π′ ∈ K, we
have the equality ords=1/2 ξ(s, π × π′) ≥ e⊥(π, π′).

Corollary 9.3.12. Let F be a test function and π, π′ ∈ K be effective. Suppose that
F satisfies Condition (T4) and F ≥ 0. Set

CF (π, π′) = ΦF (0) δ(π, π
′)− 1

2
ΦF

( 1

2

)

e⊥(π, π′) − BF
∞(π, π′) .

We have the following inequalities:

(i) CF (π, π) ≥ 0 (in particular, we have BF
∞(π, π) ≤ ΦF (0) δ(π, π)),

(ii) CF (π, π′) +
√

CF (π, π)CF (π′, π′) ≥ 0.

Proof. Corollary 9.3.10 and the discussion above show that under Condition (T4)
on F , we have BF

f (π, π
′) ≤ CF (π, π′) for all effective π, π′ ∈ K. Note that the

positivity assumption on the function F implies the positivity of the bilinear form
BF

f on K. Indeed, an element � ∈ K⊗R can be written in the form � =
∑

i λiπi,
where the πi are in Πalg and the λi are in R. The identity

BF
f (�,�) =

∑

p,k

F (k log p)
log p

pk/2

∣

∣

∣

∑

i

λi tr c(πi)
k
∣

∣

∣

2

therefore implies BF
f (�,�) ≥ 0. Assertion (ii) follows from the Cauchy–Schwarz

inequality applied to BF
f , which gives

|BF
f (π, π

′)| ≤
√

BF
f (π, π) B

F
f (π

′, π′) ,

and from the obvious inequality |BF
f (π, π

′)| ≥ −BF
f (π, π

′). (One should be aware
that the bilinear form CF is, a priori, only positive on the effective elements of K,
whence the formulation of assertion (ii).) ��

In [147], the inequality (i) of Corollary 9.3.12 is used in the particular case
π ∈ Πalg. For an arbitrary effective π, this inequality implies Corollary 9.3.14
below, first observed by Olivier Taïbi. Inequality (ii) seems new; it will be of great
use in the applications.

Definition 9.3.13. Let V ∈ K∞. Denote by m(V ) the number of representations
π ∈ Πalg that satisfy L(π∞) � V ; by Harish-Chandra, we have m(V ) < +∞
(Sect. 4.3.2). Moreover, denote by m⊥(V ) the number of self-dual representations
π ∈ Πalg that satisfy L(π∞) � V . We have the inequality m⊥(V ) ≤ m(V ).
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An element V of K∞ is called effective if it is the class of a finite-dimensional,
continuous representation ofWalg

R
with coefficients inC. It is clear that ifm(V ) �= 0,

then V is effective.

Corollary 9.3.14 (Taïbi). Let V ∈ K∞ be effective and F a test function, supposed
nonnegative and satisfying condition (T4). We have the inequality

m(V ) BF
∞(V, V ) ≤ ΦF (0) .

Proof. If m(V ) = 0, there is nothing to prove. Therefore, suppose that there exist an
integer r ≥ 1 and distinct representations π1, . . . , πr ∈ Πalg such that L((πi)∞) �
V for every i. Apply part (i) of Corollary 9.3.12 to the elementπ = π1+π2+· · ·+πr

of K. On the one hand, we have the equalities

BF
∞(π, π) = BF

∞(rV, rV ) = r2 BF
∞(V, V )

and, on the other hand, we have δ(π, π) = r. The inequality r2 BF
∞(V, V ) ≤

rΦF (0) follows, and therefore also rBF
∞(V, V ) ≤ ΦF (0). ��

Note that under the additional assumption BF∞(V, V ) > 0, Corollary 9.3.14
provides an explicit upper bound for m(V ). In particular, it re-proves the result
m(V ) <∞ of Harish-Chandra (Sect. 4.3.2) mentioned above.

Corollary 9.3.15. Let V, V ′ ∈ K∞ be effective and F a nonnegative test function
satisfying Condition (T4). Suppose V �= V ′ and m(V )m(V ′) �= 0.

(i) If we set

n(V, V ′) =
m⊥(V )m⊥(V ′)
4m(V )m(V ′)

(1− ε(V ⊗ V ′)) ,

we have the inequality

n(V, V ′)ΦF

(1

2

)

+ BF
∞(V, V ′)

≤
√

(

ΦF (0)

m(V )
− BF∞(V, V )

)(

ΦF (0)

m(V ′)
− BF∞(V ′, V ′)

)

.

(ii) If we, moreover, have m⊥(V )m⊥(V ′) �= 0, then we also have the inequality

1− ε(V ⊗ V ′)
4

ΦF

(1

2

)

+ BF
∞(V, V ′)

≤
√

(

ΦF (0)

m⊥(V )
− BF∞(V, V )

)(

ΦF (0)

m⊥(V ′)
− BF∞(V ′, V ′)

)

.

Proof. Let r, r′ be integers ≥ 1 and π1, . . . , πr, π
′
1, . . . , π

′
r′ ∈ Πalg distinct rep-

resentations such that L(πi) = V for every i and L(π′
j) = V ′ for every j. Set

π =
∑

i πi and π′ =
∑

j π
′
j . We have δ(π, π′) = 0 because V �= V ′. Denote by
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s ≤ r (resp. s′ ≤ r′) the number of self-dual representations among the πi (resp.
π′
j ). We have the obvious equality

e⊥(π, π′) = s s′
1− ε(V ⊗ V ′)

2
.

Moreover, we have

CF (π, π′) +
e⊥(π, π′)

2
ΦF

(1

2

)

= −BF
∞(rV, r′V ′) = −rr′ BF

∞(V, V ′) .

Likewise, it is easy to see that we have the inequalities CF (π, π) ≤ rΦF (0) −
r2 BF

∞(V, V ) and CF (π′, π′) ≤ r′ ΦF (0) − (r′)2 BF
∞(V ′, V ′). Dividing the in-

equality given in part (iii) of Corollary 9.3.12 by rr′ �= 0 leads to the inequality

ss′

4rr′
(1− ε(V ⊗ V ′))ΦF

(1

2

)

+ BF
∞(V, V ′)

≤
√

(

ΦF (0)

r
− BF∞(V, V )

)(

ΦF (0)

r′
− BF∞(V ′, V ′)

)

.

This inequality holds for all integers r and r′ with 1 ≤ r ≤ m(V ) and 1 ≤ r′ ≤
m(V ′), where s and s′ are defined as above. Assertion (i) follows from the special
case (r, r′, s, s′) = (m(V ),m(V ′),m⊥(V ),m⊥(V ′)), and assertion (ii) from the
case (r, r′, s, s′) = (m(V )⊥,m⊥(V ′),m⊥(V ),m⊥(V ′)). ��

As we will see, the corollary typically makes it possible to show that if V �= V ′,
the existence of certain elements π ∈ Πalg such that L(π∞) = V implies the
nonexistence of elements π′ ∈ Πalg such that L(π′

∞) = V ′. It admits several
refinements which we will come back to in Sect. 9.3.29. Let us conclude with a
simple well-known criterion [165] that allows the construction of test functions
satisfying Condition (T4); we repeat the argument for the comfort of the reader.

Lemma 9.3.16. Let g : R → R be an even, integrable, and square-integrable func-
tion. Its Fourier transform ĝ is well defined and real-valued. Suppose ĝ ≥ 0 and
consider the function F : R→ R defined by

F (x) =
g(x)

cosh(x/2)
.

Then ΦF (s) is well defined for every s ∈ C such that 0 ≤ " s ≤ 1 (formula (9.3.1)),
and in this region, we have " ΦF (s) ≥ 0.

Our convention for the Fourier transform of an integrable function g is ĝ(y) =
∫

R
g(x) e−2iπxy dy, where y ∈ R.



274 9 Proofs of the Main Theorems

Proof. Consider y ∈ C with |� y| < 1/2; we have the equalities

ΦF

( 1

2
+ iy

)

= 2π

∫

R

g(2πx)
e2iπxy

coshπx
dx =

∫

R

ĝ(x/2π)

coshπ(x− y)
dx .

The first is trivial for every y ∈ C. The second is, for example, an application of
Plancherel’s formula, because the functions x → g(2πx) and x → e2iπxy/coshπx
are integrable and square-integrable over R, and because the function 1/coshπx is
equal to its Fourier transform. This suffices to conclude because, on the one hand,
we have ĝ(z) ≥ 0 for every z ∈ R by assumption and, on the other hand, we see that
we have the inequality "(1/coshπz) > 0 for every z ∈ C such that |� z | < 1/2.

9.3.17 Odlyzko’s Function

Following Odlyzko [165, Sect. 3], consider the function u : R → R defined by
u(x) = cos(πx) if |x| ≤ 1/2 and u(x) = 0 otherwise, and denote by g twice the
convolution of u with itself, that is g = 2u ∗ u. Concretely, the function g is zero
outside the segment [−1, 1] and for |x| ≤ 1, it is given by the formula

g(x) = (1− |x|) cos(πx) +
1

π
sin(π|x|) .

One immediately verifies that g is an even positiveC2-function with compact support
and that we have g(0) = 1. Its Fourier transform, namely 2 û2, is clearly positive,
because u is real, even, and integrable. In particular, for every λ ∈ R>0, the function
Fλ : R→ R defined by

Fλ(x) = g(x/λ)/cosh(x/2)

is a nonnegative test function satisfying Condition (T4) (Lemma 9.3.16).
Let us explain how to evaluate the linear form JFλ

on K∞ numerically. Recall
that ψ(z) = Γ′(z)/Γ(z) denotes the digamma function. Also set, respectively for
z ∈ C− N and z ∈ C− {±iπ},

φ(z) =
1

2
ψ
( z + 1

2

)

− 1

2
ψ
( z

2

)

and r(z) = 2π2 e−z

(z2 + π2)2
.

Note that we have the formula φ(z) =
∑

n≥0 (−1)n(z + n)−1. We thank Henri
Cohen for putting us on the right track for the following proposition.



9.3 Algebraic Representations of Motivic Weight at Most 22 275

Proposition 9.3.18. Let λ > 0 be a real number.

(i) For every integer w ≥ 0, we have the equality

JFλ
(Iw) = log π − "ψ

(

b+
iπ

2λ

)

+
1

π
�ψ

(

b+
iπ

2λ

)

− 1

2λ
"ψ′

(

b+
iπ

2λ

)

+ r1(w, λ) ,

with b = 1/2 + w/4 and r1(w, λ) = 2λ
∑∞

n=0 r(2λ(b+ n)).
(ii) Moreover, we have the equality

JFλ
(1 − εC/R) = 1 +

2π

λ
�φ

(

1 +
iπ

λ

)

+
2π

λ2
�φ′

(

1 +
iπ

λ

)

+ r2(λ) ,

with r2(λ) = 2λ
∑∞

n=1(−1)n+1 n r(λn).

(iii) Finally, we have ΦFλ
(0) = (8/π2)λ and

ΦFλ

( 1

2

)

=4"φ
( 1

2
+

iπ

λ

)

− 4

π
�φ

( 1

2
+

iπ

λ

)

+
4

λ
"φ′

( 1

2
+

iπ

λ

)

+ r3(λ) ,

with r3(λ) = 4λ
∑∞

n=0(−1)n r(λ(n+ 1/2)).

Proof. If α > 0, set h(α) =
∫ 1

0
g(x) e−αxdx. Using, for example, the definition

g = 2 u ∗ u, we first easily verify the identity g′′(x) + π2g(x) = 2π| sinπx| for
|x| ≤ 1, and then the relation

h(α) =
α

α2 + π2
+ 2π2 1 + e−α

(α2 + π2)2
.

We, moreover, have
∫∞
0

g(x/λ) e−αx dx = λh(λα).
Let w ≥ 0 be an integer; set b = 1/2 + w/4. Proposition 9.3.8 applied to the

function F = Fλ can be written as Jλ(Iw) = log(2π) + σFλ
(1, w/2). Elementary

manipulations lead to the relation

σFλ

(

1,
w

2

)

=

∫ ∞

0

(

2e−2bx

1− e−2x
− e−x

x

)

dx +

∫ ∞

0

(

g
(x

λ

)

−1
) 2e−2bx

1− e−2x
dx .

Let us write this sum in the obvious form σλ(1, w/2) = S1 + S2. Gauss’ formula

ψ(z) = −
∫ ∞

0

(

e−zx

1− e−x
− e−x

x

)

dx

and the identity
∫ ∞

0

e−αx − e−x

x
dx = − log α
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forα > 0 imply the equalityS1 = − log 2 − ψ(b). On the other hand, the expansion

e−2bx

1− e−2x
=
∑

n≥0

e−2(b+n)x

leads to the relation

S2 = 2λ

∞
∑

n=0

(

h(2λ(b + n))− 1

2λ(b + n)

)

.

We have h = h1 + h2 + r with h1(α) = α(α2 + π2)−1 and h2(α) =
2 π2(α2 + π2)−2. Moreover, if u and v are nonzero real numbers, we have the
identities u/(u2 + v2)− 1/u = " (1/(u+ vi) − 1/u) and

2v

(u2 + v2)2
= − 1

v2
�
( 1

u+ vi
− 1

u

)

− 1

v
" 1

(u+ vi)2
.

Let us apply these to v = π/2λ and u = b + n for every integer n ≥ 0 and take
the sum. The formula ψ(b) − ψ(b + z) =

∑

n≥0 1/(b+ z + n) − 1/(b+ n) with
z = iπ/2λ then implies

∑

n≥0

2λ h1( 2λ(b + n) )− 1

b+ n
=
∑

n≥0

(b + n)

(b + n)2 + (π/2λ)2
− 1

b + n

= ψ(b) −"ψ(b+ iπ/2λ) .

Likewise, in view of the identity ψ′(z) =
∑

n≥0 1/(z + n)2, we obtain

∑

n≥0

2λ h2( 2λ(b+ n) ) =
1

π
�ψ

(

b +
iπ

2λ

)

− 1

2λ
"ψ′

(

b+
iπ

2λ

)

.

Putting all these formulas end-to-end gives assertion (i). The proof of assertion (ii)
is similar. From Proposition 9.3.8, we begin by establishing the equality

JFλ
(1 − εC/R) = 1 +

∫ ∞

0

(

g
( x

2λ

)

− 1
) e−x/2

(1 + e−x/2)2
dx .

The expansion e−x/2(1 + e−x/2)−2 =
∑

n≥1 (−1)n+1 n e−nx/2 allows us to write

JFλ
(1− εC/R) = 1 + 2

∑

n≥1

(−1)n+1 (λnh(λn) − 1) .

Moreover, if u and v are nonzero real numbers, we have the identities

u2

u2 + v2
− 1 = v� 1

u+ vi
and

2 u v2

(u2 + v2)2
= −v� 1

(u + vi)2
.
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By setting u = nλ and v = π/λ and noting that we have φ(z + 1) =
∑

n≥1 (−1)n+1(z + n)−1, we find

2
∑

n≥1

(−1)n+1 (λnh1(λn) − 1) =
2π

λ
�φ

(

1 +
iπ

λ

)

,

and then 2
∑

n≥1 (−1)n+1 λnh2(λn) = (2π/λ2)�φ′(1 + iπ/λ). This proves
part (ii). It remains to verify assertion (iii). By the definition of Fλ and g, we have
the equalities ΦFλ

(0) =
∫

R
g(x/λ)dx = 2λ û(0)2; the value of ΦFλ

(0) therefore
follows from the immediate relation û(0) = 2/π. To determine ΦFλ

(1/2), we
proceed as for assertions (i) and (ii) from the immediate identities

ΦFλ

(1

2

)

= 4

∫ ∞

0

g(x/λ)
e−x/2

1 + e−x
dx = 4λ

∑

n≥0

(−1)n h(λ(n+ 1/2)) . ��

Comments on the Numerical Computations Carried Out in the Next
Subsections

(1) The formulas of Proposition 9.3.18, although not very aesthetic, are very ef-
fective for evaluating JFλ

and ΦFλ
(1/2) numerically, and this with an arbitrary

accuracy. In our applications, we will have 0 ≤ w ≤ 46 and λ = logN with
2 ≤ N ≤ 100.

(2) John L. Spouge elaborated, in 1994, a remarkable algorithm to determine the
values of the gamma, ψ (digamma), and ψ′ (trigamma) functions [190]. These
functions are implemented in PARI [160]. However, Henri Cohen has let us know
that for its computations, PARI uses the Euler–MacLaurin formula, and therefore the
Bernoulli numbers, and that after computing a first value, the computation of the
following ones is sped up by storing Bernoulli numbers.

(3) The three functions r1(w, λ), r2(λ), and r3(λ) that appear in Proposition 9.3.18
are defined as sums of series; below, we estimate the “tails”

∑∞
n=N+1 of these series.

(3.1) We have the inequality

0 ≤ r1(w, λ) − 2λ

N
∑

n=0

r(2λ(b+ n)) ≤ 2λr(2λ(b+N + 1))

1− e−2λ
;

this inequality follows from the fact that we have

0 ≤ r(2λ(b+ n)) ≤ e−2λ(n−N−1) r(2λ(b+N + 1))

for every n with n ≥ N + 1.
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(3.2) Since the function in one real variable x → xr(x) has positive values and is
decreasing for x ≥ 0.773, we have the inequality

0 ≤ (−1)N ( r2(λ)− 2λ

N
∑

n=1

(−1)n+1nr(λn) ) ≤ 2λ(N + 1)r(λ(N + 1))

under the assumption λ(N + 1) ≥ 0.773.

(3.2) Since the function in one real variable x → r(x) has positive values and is
decreasing, we have the inequality

0 ≤ (−1)N+1
(

r3(λ)− 4λ

N
∑

n=0

(−1)n r
(

λ
(

n+
1

2

)))

≤ 4λr
(

λ
(

N +
3

2

))

.

(4) The computations carried out using the formulas of Proposition 9.3.18 are
confirmed, with arbitrary accuracy, by the numerical integration routines in PARI.

(5) The functionw → JFλ
(Iw), withλfixed, is decreasing. This follows by invoking

part (iii) of Proposition-Definition 9.3.8, which shows that under the assumptions
F ≥ 0 and w′ ≥ w, the difference JF (Iw)− JF (Iw′) is the integral over [0,+∞[ of
a nonnegative function.

Likewise, the function λ → JFλ
(Iw), with w fixed, is increasing. Indeed, since

Odlyzko’s function is decreasing on [0,+∞[, part (iii) of Proposition-Definition 9.3.8
shows that under the assumption λ ≤ λ′, the difference JFλ′ (Iw) − JFλ

(Iw) is the
integral over [0,+∞[ of a nonnegative function (note that we have Fλ(0) = 1 for
every λ).

The above implies that we have the bounds −1.40 ≤ JFλ
(Iw) ≤ 2.63 for

log 2 ≤ λ ≤ log 100 and 0 ≤ w ≤ 50. Figure 9.1 shows the graph of the function
w → JFλ

(Iw) for several values of the parameter λ.

(6) In the appendix of [144], Mestre describes a computation of σFλ
(1, 1/2) (in

other words, JFλ
(I1)− log 2π) for λ < π using a method that is completely different

from ours; the restriction λ < π comes from the fact that Mestre implicitly uses
the expansion of the holomorphic function z/(ez − 1) as a power series in the disk
|z| < 2π.

9.3.19 Beginning of the Proof of Theorem 9.3.2: The Casew ≤ 20

For every integer w ≥ 0, consider the subgroup of K∞ defined as follows:

K≤w
∞ =

⎧

⎪

⎨

⎪

⎩

(

⊕

1≤j≤w/2 Z I2j

)

⊕ Z 1 ⊕ Z εC/R if w ≡ 0 mod 2 ,

⊕

1≤j≤(w+1)/2 Z I2j−1 if w ≡ 1 mod 2 .

The interest of this definition is that if π ∈ Πalg(PGLn) has motivic weight w, we
have L(π∞) ∈ K≤w

∞ (Proposition 8.2.13). We have two more simple constraints on
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2.6223

-1.3962

0 50

Fig. 9.1 Graph of the map w �→ JFλ
(Iw) on the interval 0 ≤ w ≤ 50, for λ = log 2, log 3 and

log 100

L(π∞). On the one hand, it is an effective element of K∞. On the other hand, we
have the relation det L(π∞) = 1. Recall the identity det Iv = εv+1

C/R for every v ≥ 0.
The general principle of the proof will consist in showing that under a suitable

assumption on π∞, there exist no—or few—representations π ∈ Πalg of motivic
weight at most 22, using the inequalities given by Proposition 9.3.9 applied to the test
functions introduced in Sect. 9.3.17. In this entire subsection, λ will therefore denote
a positive real number, and we consider the associated test function Fλ defined
in Sect. 9.3.17. In the proof, we will systematically use the bilinear form BFλ∞ on
K∞ introduced in Sect. 9.3.5. We will, in particular, need to evaluate this bilinear
form explicitly, which we will do, of course, with the help of a computer, using the
formulas described in Sect. 9.3.17. We refer the reader to the source code [54] for a
justification of the numerical computations we carry out below. In order to acquire
an intuition for this method, we begin by proving the case n = 2 of the theorem.
Since the trivial representation is the only element of Π(PGL1) = Πcusp(PGL1),
note that there is nothing to prove for n = 1!

The Case n = 2 or w ≤ 10

Suppose given a representationπ ∈ Πalg(PGL2) of motivic weightw. The condition
det L(π∞) = 1 shows that there are two cases: either w is odd and L(π∞) = Iw,
or w = 0 and we have L(π∞) = 2 · 1 or L(π∞) = 2 · εC/R.
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If w is odd, Proposition 9.1.5 asserts that π is the representation generated by
a unique normalized modular eigenform of weight w + 1 for the group SL2(Z);
conversely, every such form obviously generates such a π. In other words, in view of
Definition 9.3.13, for every odd w ≥ 1, we have the equality

m(Iw) = dim Sw+1(SL2(Z)) .

Hence, the particular case of Theorem 9.3.2 where n = 2 and the motivic weight
is nonzero is a consequence of the well-known description of Sw+1(SL2(Z)) [177,
Chap. VII]. Since such descriptions ofΠalg(PGLn) do not exist in dimensionn > 2,
it is in our interest to explain how to proceed differently, if possible. In what follows,
we propose to give another proof that Sw+1(SL2(Z)) is zero if w < 11 or w = 13,
and of dimension at most 1 if 15 ≤ w ≤ 21, using Corollary 9.3.10.

Since the function Fλ is continuous and with support in [−λ, λ], we see that for
all π, π′ ∈ Πalg, we have

˜BFλ

f (π, π′) =
∑

pk<eλ

Fλ(klog p)
log p

pk/2
tr (cp(π)k) tr (cp(π

′)k) . (9.3.2)

In particular, we have BFλ

f = 0, that is, BFλ = BFλ∞ , for λ ≤ log 2. Now, consider
π ∈ Πalg(PGL2) of odd motivic weight w and π′ = 1 ∈ Πalg(PGL1), in which
case we have BFλ∞ (π, 1) = JFλ

(Iw). The inequality of Corollary 9.3.10 therefore
implies, in particular,

JFlog 2
(Iw) ≤ 0 .

Table 9.3 gives the numerical evaluation, up to 10−2, of JFlog 2
(Iw), for 1 ≤ w ≤ 21

odd. It contradicts the inequality above for w < 11: the representation π does not
exist. Let us emphasize that this argument is not new: it is, for example, exactly the
method used by Mestre in [144]. Its accuracy is rather surprising, because we already
know that we have S12(SL2(Z)) �= 0. Further on, we will see many other examples
of the fascinating accuracy of the explicit formulas.

Table 9.3 Values of JFlog 2
(Iw) for 1 ≤ w ≤ 21 odd, up to 10−2

w JFlog 2
(Iw) w JFlog 2

(Iw) w JFlog 2
(Iw)

1 0.85 9 0.07 17 −0.40
3 0.61 11 −0.06 19 −0.50
5 0.41 13 −0.19 21 −0.59
7 0.23 15 −0.30

As Mestre essentially remarks [144, Remarque 1, Sect. III], the argument above
has a wider reach: if π ∈ Πalg(PGLn) is of motivic weight at most 10, then
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we have n = 1 and π is the trivial representation. Indeed, for π �= 1, we have
the inequality B

Flog 2∞ (π, 1) ≤ 0, while we easily verify, numerically, that we have
B

Flog 2∞ (V, 1) = JFlog 2
(V ) > 0.002 for V = 1, εC/R, and Iw with w < 11.

Let us now explain how to proceed in the case n = 2, to begin with how to
eliminate the case w = 13. Like every element of Π(PGL2), the representation π is
self-dual; we therefore have ξ(s, π) = ε(π)ξ(1 − s, π) with ε(π) = ε(Iw) = iw+1.
This ε-factor is −1 if w ≡ 1 mod 4. By Corollary 9.3.10, we must therefore have

JFlog 2
(Iw) ≤ −1

2
ΦFlog 2

( 1

2

)

for w ≡ 1 mod 4. A numerical evaluation shows that, up to 10−2, the number
1
2ΦFlog 2

(1/2) is 0.28. Table 9.3 therefore also shows that π does not exist for
w = 13.

Let us now show m(Iw) ≤ 1 for w ≤ 21. We have

m(w) BFλ∞ (Iw, Iw) ≤ ΦFλ
(0)

(

recall : ΦFλ
(0) =

8

π2
λ
)

for every λ > 0, by Corollary 9.3.14. On the other hand, we have

BFλ∞ (Iw, Iw) = JFλ
(I2w) + JFλ

(I0)

by the relation Iu ⊗ Iv = Iu+v + I|u−v|. Experimentally, for small values of w, the
inequality above turns out to be remarkably good. For example, for λ = log 8, we
verify numerically that we have m(I11) ≤ 1.17, m(I15) ≤ 1.48, m(I17) ≤ 1.66,
m(I19) ≤ 1.86, and m(I21) ≤ 2.08. From this, we deduce the stated inequalities
m(Iw) ≤ 1 for w ≤ 19, as well as m(I21) ≤ 2. It does not seem that we can improve
this last equality by simply using other values of λ.

To concludem(I21) ≤ 1, we use Corollary 9.3.15 (ii) applied to V = 1 and V ′ =
I21. Indeed, we have m(1) = m⊥(1) = 1, m(I21) = m⊥(I21), and ε(I21) = −1.
From this, we deduce, for every λ > 0, the inequality

1

2
ΦFλ

(1

2

)

+ JFλ
(I21) ≤

√

(ΦFλ
(0)− JFλ

(1))

(

ΦFλ
(0)

m(I21)
− BFλ∞ (I21, I21)

)

.

But forλ = log 6, we can verify that, up to 10−2, the left-hand side is 0.17, whereas
the right-hand side is 0.13 if m(I21) = 2 (and 0.51 if m(I21) = 1!). ��

The Case w ≤ 19 Odd

Our aim in what follows is to prove that if π ∈ Πalg(PGLn) is of motivic weight at
most 19 and if n > 2, then n = 4 and π is the unique self-dual representation such
that L(π∞) = I19 ⊕ I7. Our starting point is the following result.
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Lemma 9.3.20. If λ = log 9, the restriction of BFλ∞ to K≤19∞ is positive definite

For w ≥ 0, we denote by Gram(w, λ) the Gram matrix of the bilinear form BFλ∞
on K≤w∞ in the natural Z-basis defining K≤w∞ , namely:

– in the case where w is odd, the Iv with 1 ≤ v ≤ w and v odd;
– in the case where w is even, the representations 1, εC/R, and Iv with 0 ≤ v ≤ w

and v even.

Proof. Let B = Gram(19, log 9). The formulas of Proposition 9.3.18 (and the
computer algebra system PARI) make it possible to compute the coefficients of B,
and of Gram(w, λ) in general, with a theoretically arbitrary accuracy (more than 20
significant figures in the output of the source code [54]), and we see that B is indeed
positive definite. The argument we present below shows that we in fact need only
very few significant figures; this argument will in particular be useful in the proof
of Lemma 9.3.22, where one needs to determine the vectors v ∈ K≤19

∞ such that
BFλ∞ (v, v) is less than a certain constant.

We first observe, numerically, that all coefficients of B have absolute value in
the interval ]0.01, 3.48[. Let A ∈ 10−4M10(Z) be the symmetric matrix obtained
by rounding the approximation of B given by the computer to the closest element
of 10−4

Z, so that all coefficients of the matrix A − B have absolute value at most
10−4. An exact computation carried out by the computer shows that A is positive
definite (it suffices to apply Sylvester’s criterion). Let || · || be the norm on Mn(R)
subordinate to the norm supi |xi| on R

n, so that ||(mi,j)|| = supi
∑

j |mi,j |. We
easily check ||A−1|| ≤ 3.23 and, moreover, we have ||A−B|| ≤ 10 · 10−4 = 10−3.
This implies that the spectral radius of A−1(A − B) is at most 0.00323, and in
particular that B is positive definite by Lemma 9.3.21. ��
Lemma 9.3.21. Let V be a finite-dimensional R-vector space, b1, b2 two symmetric
bilinear forms on V , e = (e1, . . . , en) a basis of V , and Mi the Gram matrix of bi
in the basis e. Suppose that b2 is positive definite. For every x ∈ V , we have the
inequality

|b1(x, x)− b2(x, x)| ≤ ρ(M−1
2 (M1 −M2)) b2(x, x) ,

where ρ(M) denotes the spectral radius of the matrix M . If we, moreover, have the
inequality ρ(M−1

2 (M1−M2)) < 1, then b1 is positive definite, and for every x ∈ V ,
we have b2(x, x) ≤ (1− ρ(M−1

2 (M1 −M2)))
−1 b1(x, x) .

Proof. This is a classical consequence of the diagonalizability of the self-dual en-
domorphisms of a Euclidean space. ��

Lemma 9.3.22. Let V ∈ K≤19
∞ be effective and such that B

Flog 9∞ (V, V ) ≤
8 log 9/π2; then either

(i) V = Iw with 9 ≤ w ≤ 19, or

(ii) V = I19 + Iv with 5 ≤ v ≤ 13.
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Proof. Lemma 9.3.20 asserts that there are only finitely many nonzero elements V
in the “lattice” K≤19

∞ such that BFlog 9∞ (V, V ) ≤ 8 log 9/π2. It remains to enumerate
them, which we will do using the algorithm of Fincke and Pohst [85] implemented
in PARI [160] (the command qfminim). In order not to have to justify rounding
errors in the algorithm mentioned above, it is convenient to reuse the approximation
A ∈ 10−4M10(Z) ofGram(19, log 9) introduced in the proof of Lemma 9.3.20. Let
qA : Z10 → 10−4

Z be the positive definite quadratic form x → txAx. If V ∈ K∞
satisfies B

Flog 9∞ (V, V ) ≤ 8 log 9/π2, then its coordinates (x1, x3, . . . , x19) in the
basis I1, . . . , I19 satisfy

104 qA(x1, . . . , x19) ≤ 104 (1− 0.00323)−1 8 log 9

π2
< 17868

by Lemma 9.3.21. The algorithm of Fincke and Pohst asserts that there are exactly
24 pairs of vectors ±(xi) ∈ Z

10 satisfying this inequality and provides a list of
them. Of these, we of course only keep the elements x = (xi) that belong to N

10

(corresponding to effectiveV ); there are 11 such elements, listed in the statement. ��
Remark 9.3.23. Let us point out that 9 is not the least integer m ≥ 2 such that
Gram(19, logm) is positive definite (and even less the only one!). For example,
every integer 5 ≤ m ≤ 100 has this property. Nevertheless, this choice log(9),
obtained through trial and error, has the advantage of minimizing the size of the list
obtained in the statement of Lemma 9.3.22.

Assume now thatπ ∈ Πalg(PGLn) is of odd motivic weightw ≤ 19, and set V =

L(π∞) ∈ K≤19
∞ . Corollary 9.3.12 (i) shows that we haveBFlog 9∞ (V, V ) ≤ 8 log 9/π2,

so that V is in the list given in Lemma 9.3.22. We may assume n = dim V > 2,
because the case n = 2 has already been treated above. It follows that we haven = 4,
w = 19, and V = I19+Iv with 5 ≤ v ≤ 13 and v odd. We want to show v = 7 and
the uniqueness of the representation π. Let us first show that π is unique if it exists.

Lemma 9.3.24. For every v ∈ {5, 7, 9, 11, 13}, we have m(I19 + Iv) ≤ 1.

Proof. Apply Corollary 9.3.14. It suffices to see that for V = I19 + Iv , with v as in
the statement, we have

B
Flog 9∞ (V, V ) >

1

2

8 log 9

π2
.

But a numeric computation shows that, up to 10−2, we have 1
2 8 log 9/π

2 � 0.89,
whereas the left-hand side of the inequality above is 1.65, 1.47, 1.42, 1.49, or 1.70
when v is, respectively, 5, 7, 9, 11, or 13. ��
Lemma 9.3.25. Let V ∈ K∞. Suppose that there exists a unique representation
π ∈ Πalg such that L(π∞) = V . Then π is self-dual. More generally, we have
m(V ) ≡ m⊥(V ) mod 2.

Proof. If π ∈ Πalg, we also have π∨ ∈ Πalg, as well as the equalities L((π∨)∞) =
L(π∞)∗ = L(π∞). ��
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To complete the proof of Theorem 9.3.2 in the case w odd and at most 19, it
remains to prove that there does not exist a self-dual representation π ∈ Πalg such
that L(π∞) = I19 + Iv with v ∈ {5, 9, 11, 13}. A first way to proceed would be
to use Proposition 9.1.4 (iii) as well as Table 9.1 (this table contains the necessary
information because 19 − v ≥ 6 holds in all cases). This is, however, unnecessary,
because we will see that the result follows from Corollary 9.3.15 and the existence of
the representations 1,Δ11, and Δ15. For later use, let us state the following criterion.

Scholium 9.3.26. Let V, V ′ ∈ K∞, and let λ > 0 be a real number. Set

t(V, V ′, λ) =

√

∣

∣

∣

(

ΦFλ
(0)− BFλ∞ (V, V )

)(

ΦFλ
(0)− BFλ∞ (V ′, V ′)

)∣

∣

∣

+
ε(V ⊗ V ′)− 1

4
ΦFλ

(1

2

)

− BFλ∞ (V, V ′) .

Suppose that V and V ′ are distinct and effective, and satisfy m⊥(V ) ≥ 1 and
m⊥(V ′) ≥ 1. Then we have t(V, V ′, λ) ≥ 0. In particular, if V and V ′ satisfy
m(V ) = m(V ′) = 1, then we have t(V, V ′, λ) ≥ 0.

Proof. The first assertion is an immediate consequence of part (ii) of Corol-
lary 9.3.15. The second follows from the first and Lemma 9.3.25. ��

Table 9.4 Values of t(I19 + Iv,L(π′∞), log 5), up to 10−3

����v
π′

1 Δ11 Δ15 Δ17 Δ19 Δ21

13 0.141 0.074 −0.006 0.166 0.088 0.990

11 0.697 −0.492 0.396 0.498 0.376 1.251

9 −0.094 −0.046 0.636 0.689 0.536 1.388

7 0.308 0.223 0.762 0.778 0.597 1.430

5 −0.660 0.359 0.771 0.751 0.546 1.357

We know that we have m(V ) = 1 for V = 1 or V = L((Δw)∞) with w ≤ 21.
Consider Table 9.4. Observe that if v �= 7, there always exists a representation
π′ ∈ {1,Δ11,Δ15} such that t(I19 + Iv,L(π

′
∞), log 5) < 0 (those negatives values

in the table are printed in bold font). By Scholium 9.3.26, this provesm(I19+Iv) �= 1
and therefore completes the proof of the case w ≤ 19 odd. �

Remark 9.3.27. The parameter λ = log 5 has been chosen through trial and error.
A variation of this parameter shows that the existence of a representation in the
case v = 7 seems rather miraculous from this point of view. The property that
seems important is that the successive differences between the four weights, namely
(19− v)/2, v, and (19− v)/2, are almost equal for v = 7.
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The Case w ≤ 20 Even

We proceed in a way strictly similar to that of the case w ≤ 19 odd, which is why
we give fewer details.

Lemma 9.3.28. The restriction of BFlog 9∞ to K≤20
∞ is positive definite. Let V ∈ K≤20

∞
be effective, of determinant 1, and satisfying B

Flog 9∞ (V, V ) ≤ ΦFlog 9
(0); then we

are in exactly one of the following cases:

(i) V = 1,

(ii) V = Iw + εC/R with w = 18 or 20,

(iii) V = Iw + Iv with either w = 18 and 8 ≤ v ≤ 10, or w = 20 and 4 ≤ v ≤ 14,

(iv) V = I20 + Iv + 1 with 10 ≤ v ≤ 16.

Moreover, we have m(V ) ≤ 1.

Proof. The first two assertions follow by studying the matrixGram(20, log 9), which
is analogous to that leading to the proofs of Lemmas 9.3.20 and 9.3.22; see the file
[54]. For the 15 elements V of the statement, we see that we have m(V ) ≤ 1.6 by
using Corollary 9.3.14 applied to λ = log 9, whence the last assertion. ��

It follows that if π ∈ Πalg is of even motivic weight w ≤ 20, then V = L(π∞) is
in the list above, we havem(V ) ≤ 1, and π is self-dual. We eliminate the possibilities

I18 + I10 , I20 + I10 + 1 , and I20 + I16 + 1

for V using the criterion BFλ∞ (V, V ) ≤ ΦFλ
(0) taking λ equal to, respectively,

log 10, log 16, and log 16. Note that for V = I18 +I10 and λ = log 10, the quantity
ΦFλ

(0)− BFλ∞ (V, V ) has value −0.00012 (up to 10−5), which just barely passes!
It remains to show that π does not exist if V �= 1. By chance, we achieve this

using Scholium 9.3.26 applied to the particular cases indicated in Table 9.5. This
concludes the proof of Theorem 9.3.2 when the motivic weight w is even and at
most 20.

Table 9.5 Pairs (V, π′) satisfying t(V,L(π′∞), log 5) < −0.05

V π′ V π′ V π′

I18 + εC/R 1 I20 + I12 Δ15 I20 + I4 1

I20 + εC/R 1 I20 + I10 1 I20 + I14 + 1 Δ15

I18 + I8 Δ11 I20 + I8 1 I20 + I12 + 1 1

I20 + I14 Δ15 I20 + I6 Δ11
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9.3.29 Intermezzo: A Geometric Criterion

Lemma 9.3.30. Let E be a Euclidean space, m ≥ 1 an integer, x0, x1, . . . , xm

elements of E, and C0, C1, . . . , Cm real numbers. Suppose that for every i =
0, . . . ,m, we have the inequality x0 · xi ≤ Ci.

(i) We have C0 ≥ 0 and Ci +
√

C0 (xi · xi) ≥ 0 for every i = 1, . . . ,m.

Let G = (xi · xj)1≤i,j,≤m ∈Mm(R) be the Gram matrix of the vectors x1, . . . , xm

and C the column vector (Ci)1≤i≤m ∈ R
m. Suppose det(G) �= 0, that is, that

the vectors x1, . . . , xm are linearly independent. Then one of the two following
assertions holds:

(ii) At least one of the coordinates of the vector G−1C is strictly positive.
(ii)’ We have the equality (of real numbers) tC G−1 C ≤ C0.

Proof. The inequality C0 ≥ 0 is obvious. Moreover, for i = 1, . . . ,m, the Cauchy–
Schwarz inequality gives

Ci ≥ x0 · xi ≥ −|x0 · xi| ≥ −
√

(x0 · x0)(xi · xi) ≥ −
√

C0 xi · xi .

Let us verify the second assertion of the lemma. Let (x∗
i )1≤i≤m be the dual basis

of (xi)1≤i≤m in the Euclidean space F = VectR(x1, . . . , xm). Let H = (hi,j) ∈
Mm(R) be the matrix defined by the equalities x∗

j =
∑m

i=1 hi,jxi for j = 1, . . . ,m.
By the definition of the dual basis, H is also the Gram matrix (x∗

i · x∗
j ) and we have

the relation H = G−1. Hence, the coefficients of the vectorG−1 C = H C are none
other than the inner products x∗

i · v for i = 1, . . . ,m, with

v :=

m
∑

j=1

Cj x
∗
j .

Suppose that assertion (ii) does not hold, that is, x∗
i · v ≤ 0 for every i = 1, . . . ,m.

We will see that we have x0 · x0 ≥ v · v, which is assertion (ii)’. The vector x0

can be written uniquely as x0 = v −∑m
i=1 tix

∗
i + w with w ∈ F⊥ and ti ∈ R for

i = 1, . . . ,m. For i = 1, . . . ,m, the condition x0 · xi ≤ Ci is equivalent to ti ≥ 0.
Set ‖x‖2 = x · x for x ∈ E. We conclude by considering the following equality:

‖x0‖2 = ‖v‖2 − 2

m
∑

i=1

ti x
∗
i · v + ‖w −

m
∑

i=1

ti x
∗
i ‖2 . ��

Remark 9.3.31. The geometric interpretation of Lemma 9.3.30 is as follows. By
assumption, the point x0 is in the intersection of the ball B with center 0 and radius√
C0 and the “polyhedron”P that is the intersection of them half-spaces x ·xi ≤ Ci

for i = 1, . . . ,m. Assertion (i) asserts that each of these half-spaces meets B, an
obvious necessary condition! The quantity tC G−1 C of the statement is the square
of the distance to the origin of the affine space {x ∈ V ; x · xi = Ci, i = 1 . . .m}
or, equivalently, v + F⊥ in the notation of the proof. If (and only if) condition (ii)
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does not hold, this distance is also the distance from P to the origin, whence the
result.

Corollary 9.3.10 shows that the Satake parameters of a representation π ∈ Πalg

such that we have L(π∞) = V are subject to a set of constraints; these contraints
may be expressed in the setting of Lemma 9.3.30. To set this up, it will be convenient
to denote by Q ⊂ N the subset consisting of the powers of the prime numbers; every
q ∈ Q can thus be written uniquely as q = pk with p prime and k ≥ 1 an integer. To
π ∈ Π(PGLn) and q ∈ Q corresponds the complex number

xq(π) = tr cp(π)
k ∈ C ,

where we have written q = pk with p prime and k ≥ 1. If π is self-dual and in Πalg,
we even have xq(π) ∈ R by Proposition 8.2.2. Fix a real number λ > 0, and set

Qλ = {q ∈ Q, q < eλ} and Eλ =
∏

q∈Qλ

C .

We endow the R-vector space underlying Eλ with the structure of a Euclidean space
via the inner product

(xq) · (yq) =
∑

q∈Qλ

Fλ(log q)
log p√

q
"xq yq ,

where p denotes the prime divisor of q. For every integer n ≥ 1 and every π ∈
Π(PGLn), we have a vector

xλ(π) := (xq(π))q ∈ Eλ .

By the definition of BFλ

f (Proposition-Definition 9.3.7), we have

BFλ

f (π, π′) = xλ(π) · xλ(π
′)

for all π, π′ ∈ Πalg.
Denote by Π⊥

alg ⊂ Πalg the subset of self-dual representations. To avoid multi-
plying the statements, and given the applications we have in mind, we restrict the
analysis below to the elements of Π⊥

alg. Fix π0 ∈ Π⊥
alg and set V0 = L((π0)∞).

Proposition 9.3.10 leads to the following system of inequalities:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

xλ(π0) · xλ(π0) ≤ ΦFλ
(0) − BFλ∞ (V0, V0) ,

and ∀π ∈ Π⊥
alg − {π0} ,

xλ(π0) · xλ(π) ≤ − 1−ε(V0⊗L(π∞))
4 ΦFλ

(

1
2

) − BFλ∞ (V0,L(π∞)) .

(9.3.3)

The assumptions of Lemma 9.3.30 clearly hold, which immediately implies the
following scholium.
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Scholium 9.3.32. Let V0 ∈ K∞, let λ > 0 be a real number, m ≥ 1 an integer, and
π1, . . . , πm distinct elements of Π⊥

alg. Set C0 = ΦFλ
(0) − BFλ∞ (V0, V0),

Ci = − 1− ε(V0 ⊗ L((πi)∞))

4
Φλ

(1

2

)

− BFλ∞ (V0,L((πi)∞))

for i = 1, . . . ,m, and C = (Ci) ∈ R
m. Suppose that the matrix of Mm(R)

G = (xλ(πi) · xλ(πj))1≤i,j≤m

is invertible, that the coordinates of the vector G−1 C are all strictly negative, and
that the real number C0 − Ct G−1 C is strictly negative.

If π ∈ Π⊥
alg satisfies L(π∞) = V0, then there exists 1 ≤ i ≤ m such that π = πi.

In particular, if L((πi)∞) �= V0 for every i, then m⊥(V0) = 0.

In what follows, we apply this criterion to the elements πi of the set

R = {1,Δ11,Δ15,Δ17,Δ19,Δ21, Sym
2Δ11} ⊂ Π⊥

alg .

The vectors xλ(π), for π ∈ R and λ reasonable, are considered known. For example,
we have xλ(1) = (1, 1, 1, . . . ) and

xλ(Δ11) = (τ(2) 2−11/2, τ(3) 3−11/2, (τ(4) − 211) 4−11/2, . . . )

� (−0.530, 0.599, −1.719, . . . ) .

By way of application, let us prove the following result, which we will need further
on.

Lemma 9.3.33. Suppose that V ∈ K∞ belongs to the list of eight elements

I21 + I17 + I7, I22 + I4, I22 + I12, I22 + I16 + 1, I22 + I12 + 1 ,

I22 + I16 + I10 + εC/R, I22 + I20 + I10 + εC/R, I22 + I20 + I14 + I4 .

Then we have m⊥(V ) = 0.

Proof. Apply Scholium 9.3.32 with m = 2, taking for V0, {π1, π2}, λ each of
the triples in Table 9.6. We easily verify case by case that the assumptions of the
scholium are indeed satisfied (see the source code [54]). ��



9.3 Algebraic Representations of Motivic Weight at Most 22 289

Table 9.6 Triples (V0, {π1, π2}, λ) satisfying the assumptions of Scholium 9.3.32

V0 {π1, π2} λ

I21 + I17 + I7 {Δ15, Δ17} log 14

I22 + I12 {Δ11, Δ15} log 5

I22 + I12 + 1 {1, Δ11} log 5

I22 + I20 + I10 + εC/R {Δ19, Sym
2 Δ11} log 38

I22 + I4 {1, Δ21} log 7

I22 + I16 + 1 {1, Δ17} log 8

I22 + I16 + I10 + εC/R {Δ11, Δ15} log 9

I22 + I20 + I14 + I4 {1, Δ21} log 40

9.3.34 End of the Proof of Theorem 9.3.2: The Case of Motivic
Weights 21 and 22

Lemma 9.3.35. Let V ∈ K≤21∞ be such that V − I21 is effective, nonzero, and such
thatBFλ∞ (V, V ) ≤ Φλ(0) for λ = log 28. ThenV is one of the following 26 elements:

(i) I21 + Iv with 17 ≥ v ≥ 3,
(ii) I21 + Iv + Iu with 19 ≥ v ≥ 13, 9 ≥ u ≥ 3, and (v, u) �= (13, 9), or with

(v, u) = (17, 11),
(iii) I21 + I19 + I13 + Iv with 5 ≥ v ≥ 3.

Moreover, we have m(V ) ≤ 1.

Proof. The first assertion follows by studying the (positive definite!) matrix
Gram(21, log 28), which is analogous to that leading to the proofs of Lemmas 9.3.20
and 9.3.22; see [54]. For the 26 elements V of the statement, use Corollary 9.3.14
applied to λ = log 28 to check that we have m(V ) < 1.8, whence the last asser-
tion. ��
Lemma 9.3.36. Let V ∈ K∞ be one of the 26 elements listed in the statement of
Lemma 9.3.35. Suppose that we have t(V,L(π∞), log 27) > 0 for every π ∈ R (see
Scholium 9.3.26 and Sect. 9.3.29). Then V is one of the elements I21 + I5, I21 + I9,
I21 + I13, and I21 + I17 + I7.

Proof. This is a simple numerical computation for which we refer to [54]. ��
Proof of Theorem 9.3.2 in the Case w = 21, End. To prove the casew = 21 of The-
orem 9.3.2, it therefore only remains to show that we have m⊥(I21 + I17 + I7) = 0.
But this has already been proved in Lemma 9.3.33, so we are done. ��
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Lemma 9.3.37. Let V ∈ K≤22∞ . Suppose that V − I22 is effective and that the
inequality BFλ∞ (V, V ) ≤ Φλ(0) holds for λ = log 80.

(i) We have m(V ) ≤ 1, unless V is one of the following elements:

I22 + I12 , I22 + I10 , I22 + I8 ,

in which case we only have m(V ) ≤ 2.
(ii) Suppose, moreover, V �= I22 + εC/R and that we have the inequality

t(V,L(π∞), log 77) > 0 for every π ∈ R. Then V belongs to the follow-
ing list of eight representations:

⎧

⎪

⎨

⎪

⎩

I22 + I12, I22 + I8, I22 + I4, I22 + I16 + 1 ,

I22 + I12 + 1, I22 + I16 + I10 + εC/R ,

I22 + I20 + I10 + εC/R, I22 + I20 + I14 + I4 .

(9.3.4)

Proof. We first verify that the matrix B = Gram(22, log 80) is positive definite,
using the same method as in the proof of Lemma 9.3.20; see [54], in which we
study the symmetric matrix 106A obtained by rounding all coefficients of the matrix
106 B to the nearest integer.

We then proceed as in the proof of Lemma 9.3.22. The algorithm qfminim of
PARI applied to 106A ∈ M12(Z) returns a set of 701 pairs ±V containing all the
elements V ∈ K≤22

∞ satisfying BFλ∞ (V, V ) ≤ Φλ(0) for λ = log 80. If, from this
set, we only retain the subset L consisting of the V such that V − I22 is effective and
satisfies detV = 1, there “only” remain 158 possibilities for V ; in other words, we
have |L| = 158.

Next, we determine the subset consisting of the V ∈ L that moreover satisfy
0 ≤ 2BFλ∞ (V, V ) ≤ Φλ(0) for λ = log 77: we see that there are only three
elements left, of the form I22 + Iv with v = 12, 10, or 8. Since in each of these
cases, we also have the inequality 3BFλ∞ (V, V ) > Φλ(0) (still for λ = log 77),
Corollary 9.3.14 proves the first assertion.

To prove the second assertion, we simply compute the |L| · |R| = 1106 quantities
t(V,L(π∞), log 77), with V ∈ L and π ∈ R. We refer to [54] for the justification of
the results. ��
Proof of Theorem 9.3.2, End. Let π ∈ Πalg be of motivic weight 22. Set V =
L(π∞). The element V − I22 is effective, and we have BFλ∞ (V, V ) ≤ ΦFλ

(0) for
every λ > 0 by Corollary 9.3.12 (i).

First, suppose that π is self-dual; in particular, we have m⊥(V ) ≥ 1.
Scholium 9.3.26 and Lemma 9.3.37 (ii) show that either we have V = I22+ εC/R, or
V is in the list (9.3.4) above. Moreover, it is easy to check that we have the inequality

t(I22 + I8, I11, log 5) < 0 ,
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so that we also haveV �= I22+I8. By Lemma 9.3.33, for the seven remaining elements
W of the list (9.3.4), we havem⊥(W ) = 0. To conclude, we haveV = I22+εC/R. But
Lemma 9.3.37 (i) impliesm(V ) ≤ 1, and thereforem⊥(V ) = 1 and π = Sym2Δ11.

Next, suppose that π is not self-dual. By Lemma 9.3.37 (i), we therefore have
m(V ) = 2 and V = I22 + Iv with v ∈ {8, 10, 12}. In particular, the two represen-
tations � ∈ Πalg that satisfy L(�∞) = V are π and π∨.

To conclude, it suffices to prove that the equalitym(I22+Iv) = 2 for v = 8 (resp.
10, 12) impliesm(I21+Iu) = 0 for u = 9 (resp. 9, 13). Let (v, u) be one of the three
ordered pairs (8, 9), (10, 9), and (12, 13), and let V = I22 + Iv and V ′ = I21 + Iu.
By Corollary 9.3.15 (i), it suffices to verify that there exists a λ > 0 such that we
have the inequality

√

(

ΦFλ
(0)

2
− BFλ∞ (V, V )

)

(

ΦFλ
(0)− BFλ∞ (V ′, V ′)

) − BFλ∞ (V, V ′) < 0 .

But we easily check that for λ = log 22, and say up to 10−2, the left-hand side
has value−0.14,−0.03, and−0.23 when (v, u) equals (8, 9), (10, 9), and (12, 13),
respectively. ��

9.3.38 Complements

The first complement concerns the vanishing order of L(s, π) at s = 1/2 when
π ∈ Πalg is of motivic weight at most 22 (compare with Remark 7.3.3).

Proposition 9.3.39. Let π ∈ Π⊥
alg be of motivic weight at most 22. We have

ords=1/2 L(s, π) =

⎧

⎨

⎩

0 if ε(π) = 1,

1 otherwise.
(9.3.5)

Moreover, we have ε(π) = −1 if and only if π = Δ17 or π = Δ21.

Proof. Set r = ords= 1
2
L(s, π); we also have r = ords= 1

2
ξ(s, π) by the remark

following Corollary 9.3.10. The functional equation

ξ(s, π) = ε(π) ξ(1 − s, π)

shows that r is even if ε(π) = 1 and odd otherwise. It therefore suffices to show
r < 2. We may assume π �= 1 because we have ε(1) = 1 and ζ(1/2) �= 0. An
argument similar to that given in the proof of Corollary 9.3.12 (ii), applied to π and
1, shows that under the assumption r ≥ 2, we have the inequality

−ΦFλ

(1

2

)

−JFλ
(V )+

√

(

ΦFλ
(0)− JFλ

(1)
)(

ΦFλ
(0)− BFλ∞ (V, V )

) ≥ 0 (9.3.6)
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for every λ > 0: it suffices to bound ords=1/2 ξ(s, π) from below by 2 rather than
by e⊥(π, 1). But when V is, respectively,

I11, I15, I17, I19, I21, I19 + I7, I21 + I5, I21 + I9, I21 + I13, I22 + εC/R ,

and, say, λ = log 4, we see that, up to 10−2, the left-hand side of (9.3.6) has value
−1.07, −0.64, −0.49, −0.35, −0.23, −0.79, −0.86, −0.35, −0.05, −0.82. The
first assertion of the proposition therefore follows from Theorem 9.3.2. Note that in
the list of 10 elements V above, we have ε(V ) = 1 except for V = I17 and I21; this
concludes the proof. ��

A very simple, but surprising, consequence of Theorem 9.3.2 is the fact that there
exist only finitely many π ∈ Πalg such that w(π) ≤ 22. Returning to our proof, we
see that this finiteness assertion, which is in fact our starting point, is a consequence
of the following property: if we have w ≤ 22, then there exist real numbers λ > 0
such that the restriction of the symmetric bilinear form BFλ∞ to K≤w

∞ is positive
definite (Lemmas 9.3.20, 9.3.28, 9.3.35, and 9.3.37). It turns out that this property
still holds for w = 23 (but no longer does for w > 23!).

Proposition 9.3.40. There are only finitely many representations in Πalg of motivic
weight w ≤ 23.

Proof. A simple computation indeed shows thatGram(23, 9.74) is positive definite.
��

We defer to a later work the detailed study of the representations inΠalg of motivic
weight w ≥ 23, which would lead us too far from our current preoccupations. Let
us, however, mention two works in relation to these problems. In [55], assuming that
Conjecture 8.4.25 holds, the authors prove an explicit and computable formula for
m⊥(V ) when

– V is without multiplicities; that is, its coefficients in the basis 1, εC/R, {Iw, w >
0} are all in {0, 1};

– dimV ≤ 8, with only partial results when dimV = 7.

In a remarkable tour de force [195], Taïbi then re-proved these formulas by assuming
only Conjecture 8.4.22 and extended them to the more general case dimV ≤ 14. His
results are even independent of any conjecture if the weights of V are “sufficiently
spread out.”4

Let us return to the case of motivic weight 23 and admit Conjecture 8.4.22.
The theory of modular forms of course leads to the equality m(I23) = 2. Next,
consider V ∈ K∞ without multiplicities and such that V − I23 is effective and
satisfies m⊥(V ) ≥ 1. The theory of Siegel forms of genus 2 and Tsushima’s formula

4 Let us be more precise about this notion. Suppose that V is effective, of dimensionn = dimV , and
denote by λ1, . . . , λn the multi-set of n complex numbers associated with V|C∗ as in the assertion
of the compatibility of the Langlands parametrization with the infinitesimal character (Sect. 8.2.12
(iii)). We may assume λi ∈ 1

2
Z for all i and λi − λj ∈ Z for every i, j. We say that the weights of

V are sufficiently spread out if we have the inequality |λi − λj | �= 1 for every 1 ≤ i, j ≤ n.



9.4 Proof of Theorem E 293

(see Remark 9.3.41) show that if dimV = 2, we have m(V ) = 1 and V − I23 ∈
{I7, I9, I13}. The computations of [55, Corollary I.1.5], based on the study of the
invariant polynomials of the orthogonal group of the lattice E7, moreover show that
if 6 ≤ dim V ≤ 8, then we have dimV = 6 and m⊥(V ) = 1, and V − I23 runs
through the following list:

I13 + I5, I15 + I3, I15 + I7, I17 + I5, I17 + I9, I19 + I3, I19 + I11 .

Finally, the results of Taïbi mentioned above show that if 8 < dimV ≤ 14, we
have dimV = 10, m⊥(V ) = 1, and V = I23 + I21 + I17 + I11 + I3. In all, this
gives 13 representations in Πalg of motivic weight 23; the remaining question is
whether there are any others. Let us also mention that we know only three π ∈ Πalg

of motivic weight 24, of respective dimensions 7, 8, and 8. That of dimension 7
satisfies L(π∞) = εC/R⊕

⊕3
i=1 I8i and is related to the triality and to the group G2

[55, Corollary I.1.10].

Remark 9.3.41. A very simple special case of Taïbi’s formulas is that the formula
given by Tsushima [199] to compute dim Sj,k when k ≥ 5 holds more generally for
k ≥ 3 (Sect. 9.1), except for the case (j, k) = (0, 3). An examination of its values
shows, in particular, the vanishing dim Sj,k = 0 when k = 3, 4 and j+2k−3 ≤ 21.
Another proof of this vanishing is given by Theorem 9.3.2 and Proposition 9.1.4.

9.4 Proof of Theorem E

9.4.1 A New Proof of Theorem A

Let us begin by giving a new proof of Theorem A, using a method that will general-
ize to dimension 24. Recall that we have |X16| = 2 and that the Hecke operator T2

admits distinct eigenvalues on Z[X16] (Corollary 2.3.6, Sect. 3.3.1). In particular,
there exist exactly two representations π ∈ Πdisc(O16) such that π∞ is the trivial
representation ofO16(R). We already explained in Sect. 5.2 that the following propo-
sition implies Theorem A; in fact, we already gave a first proof of this proposition
in Corollary 7.2.6 (ii).

Proposition� 9.4.2. The standard parameters ψ(π, St) of the two representations
π ∈ Πdisc(O16) such that π∞ is the trivial representation are [15] ⊕ [1] and
Δ11[4]⊕ [7]⊕ [1].

Proof. By the example given at the end of Sect. 6.4.7, we know that the trivial
representation 1 ∈ Πdisc(O16) satisfies

ψ(1, St) = [15]⊕ [1] .

We must therefore show that if π denotes the nontrivial representation of Πdisc(O16)
such that π∞ is trivial, then ψ(π, St) = Δ11[4]⊕ [7]⊕ [1]. Let us add that we have



294 9 Proofs of the Main Theorems

ψ(π, St) �= ψ(1, St). There is a general reason for this, but one way to see it here is
to use that the two eigenvalues of T2 acting on Z[X16], namely 27 tr ψ(π, St)2 and
27 tr ψ(1, St)2 (formula (6.2.5)), are distinct.

By Proposition 5.2.1, the representation π admits a ϑ-correspondent in genus
1 ≤ g ≤ 4. Given the inequality 16 > 2 g, Arthur’s Theorem 8.1.1 and Corol-
lary 7.1.3 show that the pair (π, St) satisfies the Arthur–Langlands conjecture. In
other words, there exist an integer k ≥ 1 and, for i = 1, . . . , k, representations
πi ∈ Πcusp(PGLni) and integers di ≥ 1, such that

ψ(π, St) = ⊕k
i=1πi[di] .

The assumption on π∞ forces the eigenvalues of St c∞(π) to be the 14 integers
±7,±6, . . . ,±1, and 0with multiplicity 2. It follows that theπi are algebraic (Propo-
sition 8.2.8), of motivic weight satisfying (w(πi) + di − 1)/2 ≤ 7. In particular, we
have w(πi) ≤ 14 for every i.

By Theorem 9.3.2, for every i = 1, . . . , k, we have πi = 1 or πi = Δ11.
Moreover, the weights of Δ11 are±11/2. By considering the eigenvalue±7, which
can only “belong” to a component of the form Δ11[4] or [15], we see that the only
possibilities for ψ(π, St) are the two in the statement. At this point, we can also
invoke the equality Ψ16 = { [15] ⊕ [1], Δ11[4] ⊕ [7] ⊕ [1] }, which was verified
during the proof of Proposition 9.2.2. This concludes the proof (and re-proves the
Witt conjecture g = 4!). ��

9.4.3 Proof of Theorem E

Theorem� 9.4.4. The elements ψ in XAL(SL24) such that the eigenvalues of ψ∞
are the integers ±11,±10, . . . ,±1, as well as the integer 0 with multiplicity 2, are
exactly the 24 parameters of Table 1.2.

Proof. Let ψ ∈ XAL(SL24) be such that ψ∞ satisfies the property of the theorem.
Write ψ = ⊕k

i=1πi[di] with πi ∈ Πalg(PGLni) for every integer 1 ≤ i ≤ k. Let i be
such an integer. The condition on ψ∞ implies (w(πi) + di − 1)/2 ≤ 11, and then
the inequality w(πi) ≤ 22. By Theorem 9.3.2, for every integer i, the representation
πi is therefore in the set Π introduced just before Proposition 9.2.2. An application
of that proposition concludes the proof. ��
Proof of Theorem E. We use the notation of Sect. 9.2.4: in particular, we have 24
elements ψi ∈ X(SO24), for i = 1, . . . , 24, which are distinct by Nebe and Venkov,
and we must prove that they are the elements of Table 1.2. Since this table also
has exactly 24 elements, and given Theorem 9.4.4, it remains to prove that we have
ψi ∈ XAL(SL24) for every i.

Following Ikeda and Böcherer, we already know that we have ψ24 = Δ11[12]
(Corollary 7.3.4; see also the beginning of the proof of Proposition 7.5.1). Let 1 ≤
i ≤ 23, and letψ′

i ∈ X(SL2gi+1) be the standard parameter of theϑ-correspondent of
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πi inΠcusp(Sp2gi) (the notationπi and gi is recalled in Sect. 9.2.4).By Lemma 9.2.9,
we have gi ≤ 11, so that by Rallis (Corollary 7.1.3) we have the identity

ψi = ψ′
i ⊕ [23− 2gi] .

By Arthur’s Theorem 8.1.1, we have ψ′
i ∈ XAL(SL2gi+1). This implies ψi ∈

XAL(SL24) and concludes the proof. ��
Remark 9.4.5. In the proof above, it was convenient to treat the case of the parameter
Δ11[12] separately, which was possible thanks to [108] and [31]. An examination
of the proof we will give for Theorem 9.5.2 in fact shows that we could have done
without these two references and simply used Erokhin’s result [80].

9.5 Siegel Modular Forms of Weight at Most 12

The aim of this section is to study the space Sk(Sp2g(Z)), with g ≤ k ≤ 12.
We wish to first determine its dimension, and then describe, for every eigenform
F ∈ Sk(Sp2g(Z)) for the action of H(Sp2g), the standard parameter ψ(πF , St) of
the representation πF ∈ Πcusp(Sp2g) generated by F . For the sake of brevity, we
simply say that ψ(πF , St) is the standard parameter of the eigenform F .

The problem of determining the dimension of Sk(Sp2g(Z)) has been the object
of works by many authors, in different particular cases. We refer, for example, to
the articles of Poor and Yuen [167, 168], and to that of Nebe and Venkov [156],
for a discussion of the dimensions known before this work and the recent article
[195]. Recall that the case g = 1 is classical, and that in the cases g = 2 and 3, a
formula for dim Sk(Sp2g(Z)) valid for every k was proved by, respectively, Igusa
[105] and Tsuyumine [200]. The situation for g > 3 has long remained very partial,
in the sense that dimSk(Sp2g(Z)) had only been determined for a (finite) small
number of pairs (g, k) with g > 3, k ≥ 0, and gk ≡ 0 mod 2. It has recently
evolved substantially with the algorithm of Taïbi [195], which has led to a concrete
formula for dim Sk(Sp2g(Z)) valid for every k > g and every g ≤ 7; this formula
is, however, still conditional on Conjecture 8.4.22, at least at the time when we write
this!

The method we will use is to a great extent independent of those of the authors
mentioned above. In particular, it uses none of the computations mentioned above
in genus g > 2 and therefore gives new proofs of the previously known cases in
these genera. In spirit, it is close to the proof by Duke and Imamoğlu [77] of the
vanishing Sk(Sp2g(Z)) = 0 for every g ≥ 1 and every k ≤ 6. Indeed, our proof and
theirs have in common the use of “explicit formulas” (in the sense of Sect. 9.3). Duke
and Imamoğlu apply them to the standard L-function of a Siegel eigenform, basing
themselves on the work of Böcherer and Mizumoto recalled in Sect. 8.7, while we
applied them to the L-functions of pairs of cuspidal automorphic representations
of linear groups (Jacquet, Piatetski-Shapiro, Shalika). Our approach is, of course,
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permitted by Arthur’s Theorem 8.1.1. Viewed from this perspective, the crucial
ingredient of the proofs that will follow becomes Theorem 9.3.2.

9.5.1 Forms of Weight 12 and a Proof of Theorem D
of the Introduction

Recall that for every g ≥ 1, we have a linear map ϑg : C[X24]→ M12(Sp2g(Z)), as
well as ϑ0 : C[X24]→ C (Sect. 5.1).

Theorem� 9.5.2. (i) The dimension of the spaces S12(Sp2g(Z)) for g ≤ 12 is given
by the following table:

g 1 2 3 4 5 6 7 8 9 10 11 12

dim S12(Sp2g(Z)) 1 1 1 2 2 3 3 4 2 2 1 1

In particular,
⊕

1≤g≤12 S12(Sp2g(Z)) is of dimension 23.
(ii) For every 1 ≤ g ≤ 12, the map ϑg : C[X24] → M12(Sp2g(Z)) induces an

isomorphism Kerϑg−1/Kerϑg
∼→ S12(Sp2g(Z)).

(iii) There exist exactly 23 representations in the Πcusp(Sp2g(Z)) with 1 ≤ g ≤ 12,
that are generated by a Siegel eigenform of weight 12. Their standard parameters
are those of Table C.1.

Proof. We begin by establishing a preliminary lemma that explains the contents of
Table C.1. Recall the set

Π = {Sym2Δ11 , Δ21,13 , Δ21,9 , Δ21,5 , Δ21 , (9.5.1)
Δ19,7 , Δ19 , Δ17 , Δ15,Δ11 , 1}

introduced before Proposition 9.2.2. Consider, for 1 ≤ g ≤ 12, the set Φg of all
elements φ ∈ X(SL2g+1) such that

(a) the eigenvalues of φ∞ are the 2g+1 integers 0 and±(12−j)with j = 1, . . . , g;
(b) there exist r ≥ 1, integers d1, . . . , dr ≥ 1, and representations π1, . . . , πr ∈ Π,

such that φ = ⊕r
i=1πi[di].

If 1 ≤ g ≤ 12 and φ ∈ Φg, we say that φ satisfies Condition (C) if in its
decomposition as in part (b) above, there does not exist an integer 1 ≤ i ≤ r such
that πi = 1 and di > 1, and if there always exists at most one integer i such that
πi = 1. Condition (C) is always satisfied if g < 11, because in this case 1 is not an
eigenvalue of φ∞ and 0 is a simple eigenvalue of it.
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Lemma 9.5.3. The set of elements of
∐

1≤g≤12 Φg satisfying Condition (C) is exactly
the set of parameters gathered in Table C.1.

Proof. This is an exercise in combinatorics of the same nature as the one carried out
in the proof of Proposition 9.2.2. We can deduce it from this proposition as follows.

Let φ ∈ Φg with g ≤ 11. By Proposition 9.2.2, φ ⊕ [23 − 2g] is an element of
Table 1.2. The property φ ∈ XAL(SL2g+1), Condition (C), and the Jacquet–Shalika
theorem (Proposition 6.4.5) then determine φ uniquely. This is, in fact, how we
defined the 22 elements of Table C.1 corresponding to the genera g < 12.

It remains to see that the only element φ ∈ Φ12 satisfying Condition (C) is
Δ11[12]⊕ [1]. For this, write φ = ⊕r

i=1πi[di] with πi ∈ Π for every i. By Condition
(C), there exists at most one i such that πi = 1. Since the eigenvalue 11 of φ∞ is
simple, there also exists at most one integer i such that πi = Sym2Δ11. Since 0 is
a triple eigenvalue of φ∞, Lemma 9.2.3 (i) shows that there exists an integer i such
that πi = Δ11 and di = 12. The only possibility is then φ = Δ11[12]⊕ [1]. ��

Having established this preliminary lemma, consider an eigenform F ∈
S12(Sp2g(Z)) for H(Sp2g) with 1 ≤ g ≤ 12 and its standard parameter
ψ ∈ X(SL2g+1). By Corollary 6.3.6, the eigenvalues of ψ∞ are the 2g + 1
integers ±11,±10, . . . ,±(12 − g) and 0. All these eigenvalues are simple, except
for the eigenvalue 0 for g = 12, which has multiplicity 3. By Arthur’s Theorem 8.1.1,
we can write

ψ = ⊕r
i=1πi[di] (9.5.2)

with di ≥ 1 and πi ∈ Πcusp(PGLni) for i = 1, . . . , r. We see that the πi are
algebraic of motivic weight at most 22. By Theorem 9.3.2, it follows that for every
i, the representation πi is in the set Π. In other words, we have ψ ∈ Φg.

Lemma� 9.5.4. Let 1 ≤ g ≤ 12, let F ∈ S12(Sp2g(Z)) be an eigenform and ψ the
standard parameter of F . Then ψ is in Φg and satisfies Condition (C).

Proof. We have just verified ψ ∈ Φg. Since condition (C) automatically holds for
g ≤ 10, we may assume g ≥ 11. Write ψ = ⊕r

i=1πi[di] with πi ∈ Π for every i.

The Case g = 11. If g = 11, then 0 is a simple eigenvalue ofψ∞. We may therefore
assume, after reindexing the πi if necessary, that we have5 πr = 1 and dr > 1. Set

g′ =
23− dr

2
.

This is an integer satisfying 0 ≤ g′ ≤ 10 because dr is odd and greater than 1.
Hence, either we have ψ = [23], or we have dr < 23 and ψ can be written as
ψ′ ⊕ [dr] with ψ′ ⊕ [1] ∈ Φg′ . The inequality g′ ≤ 10 ensures that ψ′ ⊕ [1] satisfies
Condition (C): it is one of the 12 elements of Table C.1 containing [1] and satisfying

5 The reader who has digested the considerations of Chap. 8 will note that this assumption is in
contradiction with Conjecture 8.4.22, for example by Theorem 8.5.2; we will, indeed, end up with
a contradiction, but by using instead the results of Sect. 8.7.
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g′ ≤ 10 (Lemma 9.5.3). Consequently, in all, there are 13 possibilities for ψ, and
it remains to prove that none of them is possible. By Proposition 8.7.1 applied
to the form F (the case k = g + 1), for this it suffices to verify that we have
δ(πF , (dr + 1)/2) = 0 in each case, in the notation loc. cit. (see formula (8.7.1)).
This is obvious if ψ = [23]. In the other cases, we conclude by Lemma 9.5.5 below
and the relation dr + 1 = 24− 2g′.

The Case g = 12. We proceed similarly in the case of genus g = 12. Suppose
that ψ does not satisfy Condition (C). We assert that one of the πi equals Sym2Δ11

and that two of the πi equal 1. Indeed, ψ∞ admits 0 as triple eigenvalue and the
integers ±1, . . . ,±11 as simple eigenvalues. If (πi[di])∞, for i = 1, . . . , r, admits
the eigenvalue 0, Lemma 9.2.3 (i) shows that we are in one of the following cases:
πi = Sym2Δ11 and di = 1, or πi = Δ11 and di = 12, or πi = 1. The second case
is excluded because it implies ψ = Δ11[12] ⊕ [1], which satisfies Condition (C).
Since the eigenvalue 11 of ψ∞ is simple, this proves the affirmation above.

So, we have r ≥ 3 and, after reindexing the πi if necessary, we may assume
that we have π1 = Sym2Δ11, πr = πr−1 = 1, dr−1 = 1, and dr > 1 (following
Arthur’s Theorem 8.2.4, recall that we cannot have dr = dr−1 = 1). In particular, if
we once again set g′ = (23− dr)/2, we have

ψ = ψ′ ⊕ [1]⊕ [dr]

with ψ′ ∈ Φg′ containing Sym2Δ11. The inequality dr ≥ 3, that is, g′ ≤ 10, shows
that ψ′ satisfies Condition (C): it is in Table C.1 by Lemma 9.5.3. By examining the
table, we see that there are nine possibilities for ψ′, and hence for ψ.

We then exclude each of these nine possibilities by using Proposition 8.7.1 applied
to F (the case k = g). This proposition concludes the proof in these cases because
of Lemma 9.5.5, which contradicts the inequality δ(πF , (dr + 1)/2) > 0 (note the
relation dr + 1 = 24− 2g′). This concludes the proof of Lemma 9.5.4. ��
Lemma 9.5.5. Let 1 ≤ g′ ≤ 10 and φ ∈ Φg′ . Write φ = ⊕s

i=1�i[qi]. Then we have
L(1/2, �i) �= 0 for every 1 ≤ i ≤ s such that qi ≥ 24− 2g′ and πi �= 1.

Proof. Only the φ of Table C.1 containing a factor of the form Δ17[d] (resp. Δ21[2])
deserve attention, by Proposition 9.3.39. Examining them shows that we always have
24− 2g′ > d (resp. g′ ≤ 10), concluding the proof. ��

Let us finish the proof of the theorem. For this, we first verify assertion (ii),
namely that for every g = 1, . . . , 12, the injection

Kerϑg−1/Kerϑg → S12(Sp2g(Z))

induced by ϑg is surjective. We need to see that if g ≤ 12, every eigenform
F ∈ S12(Sp2g(Z)) is in the image of ϑg. The two lemmas above assert that its
standard parameter ψ(πF , St) is in Table C.1. We conclude by observing that in all
cases, Böcherer’s criterion applies: this has, in fact, already been justified during the
verification of part 2 in Sect. 9.2.11. Assertion (ii) is therefore proved.
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Next, observe that if g ≤ 12 and if G,H ∈ S12(Sp2g(Z)) are two eigenforms
for H(Sp2g) such that ψ(πG, St) = ψ(πH , St), then G and H are proportional.
Indeed, the previous observation ensures that there exist G′, H ′ ∈ C[X24] such
that ϑg(G

′) = G and ϑg(H
′) = H . Since G and H are eigenforms, the Eichler

commutation relations (Proposition 5.1.1) assert that we may assume that G′ and H ′

are eigenforms for T2. This same relation and the identity ψ(πG, St) = ψ(πH , St)
force G′ and H ′ to have the same eigenvalue for T2: they are therefore proportional
by the computation of Nebe and Venkov, and therefore G and H are proportional.

Let Φ be the set of parameters φ of Table C.1 such that there exists an
eigenform G ∈ S12(Sp2g(Z)) satisfying φ = ψ(πG, St) (where the integer g
is, of course, uniquely determined by φ). The previous subsection proves |Φ| =
∑12

g=1 dimS12(Sp2g(Z)). Assertion (ii) of the theorem then implies

|Φ| =
12
∑

g=1

dim(Kerϑg−1/Kerϑg) = dim(Kerϑ0)− dim(Kerϑ12) = 23 ,

where the last equality comes from Erokin’s result Kerϑ12 = 0 [80]. Since there are
only 23 parameters in Table C.1, Φ is the set of all parameters of this table, which
proves assertions (i) and (iii) of the theorem (and justifies Remark 9.4.5). ��
Corollary 9.5.6. Let 1 ≤ g ≤ 12. The map ϑg : C[X24]→ M12(Sp2g(Z)) is surjec-
tive, and the dimension of M12(Sp2g(Z)) is given by the following table:

g 1 2 3 4 5 6 7 8 9 10 11 12

dim M12(Sp2g(Z)) 2 3 4 6 8 11 14 18 20 22 23 24

Proof. We proceed by induction on the integer g. The result is well known if
g = 1. If g > 1, recall that we have the Siegel operator Φg : M12(Sp2g(Z)) →
M12(Sp2g−2(Z)); it satisfies the relation Φg ◦ ϑg = ϑg−1. By the induction hy-
pothesis, the map Φg ◦ ϑg is therefore surjective. But the map ϑg : Ker ϑg−1 →
S12(Sp2g(Z)) is also surjective if g ≤ 12, by assertion (ii) of Theorem 9.5.2. This
proves the the surjectivity of ϑg and Φg. ��
Remark 9.5.7. It is not true that every Siegel cusp form of weight 16 for Sp2g(Z) is a
linear combination of theta series of elements ofX32, as follows from Corollary 7.3.5
(the given counterexample is in genus g = 14).

9.5.8 Forms of Weight at Most 11

Theorem� 9.5.9. Let k, g ∈ Z be such that g ≤ k ≤ 11. Then we have
Sk(Sp2g(Z)) = 0 unless we are in one of the following cases:

(i) k = 8 and g = 4: In this case, S8(Sp8(Z)) is of dimension 1, generated by the
Schottky form, with standard parameter Δ11[4]⊕ [1].
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(ii) k = 10 and g = 2: In this case, S10(Sp4(Z)) is of dimension 1, generated by
the Saito–Kurorawa form F10, with standard parameter Δ17[2]⊕ [1].

(iii) k = 10 and g = 4: In this case, S10(Sp8(Z)) is of dimension 1, generated by
the Ikeda form with standard parameter Δ15[4]⊕ [1].

(iv) k = 10 and g = 6: In this case, S10(Sp12(Z)) is of dimension 1, generated by
a form with standard parameter Δ17[2]⊕Δ11[4]⊕ [1].

(v) k = 10 and g = 8: In this case, S10(Sp16(Z)) is of dimension 1, generated by
the Ikeda form with standard parameter Δ11[8]⊕ [1].

(vi) k = 11 and g = 6: In this case, every eigenform of S11(Sp12(Z)) has standard
parameter Δ17[4]⊕Δ11[2]⊕ [1]. Moreover, if we admit Conjecture 8.4.22, we
have S11(Sp12(Z)) = 0.

Note that the particular case g = 2 of Theorem 9.5.9 follows from the work
of Igusa [105], who shows that Sk(Sp4(Z)) is zero if k ≤ 11, and of dimension
1 and generated by F10 if k = 10; see Sect. 9.1. Also recall that the vanishing
Sk(Sp2g(Z)) = 0 for k ≤ 6 is due to Duke and Imamoğlu [77].

Proof. Let g ≤ k ≤ 11, and let F ∈ Sk(Sp2g(Z)) be an eigenform for
H(Sp2g), with generated representation πF ∈ Πdisc(Sp2g) and standard parame-
ter ψ = ψ(πF , St) = ⊕r

i=1πi[di], by Arthur’s results. Recall that the eigenvalues
of ψ(πF , St)∞ are the 2g + 1 integers 0 and ±(k − j) for j = 1, . . . , g, by Corol-
lary 6.3.6. The representations πi are therefore algebraic of motivic weight w ≤ 20.
Theorem 9.3.2 asserts that the πi are in the set

Π = {1,Δ11,Δ15,Δ17,Δ19,Δ19,7} .

It follows that ψ is a sum, without multiplicities by Arthur [13, Theorem 1.5.2], of
elements of the form [m] with m ≥ 1 odd, or of the set

Ψ := {Δw[d] | d ≡ 0 mod 2, w + d− 1 ≤ 20}
∐

{Δ19,7[2]} .

Lemma� 9.5.10. If F ∈ Sk(Sp2g(Z)) is an eigenform with g ≤ k ≤ 11, then we
have k > g. Moreover, if ψ = ⊕k

i=1πi[di] denotes the standard parameter of F , then
there exists a unique i ∈ {1, . . . , r} such that πi = 1 and we then have di = 1.

Let us temporarily admit this lemma and continue the proof of Theorem 9.5.9.
Note that its statement is obvious under the assumption k > g + 1, which is already
a sufficiently interesting case. We therefore have k > g and ψ is a sum without
multiplicities of [1] and elements of Ψ. We are thus led to study a rather small
number of possibilities, which we will do case by case.

The Case k ≤ 6. In this case, we havew(πi) ≤ 10 for every i, and thereforeψ = [1]
and the form F does not exist!

The Case k = 7. In this case, we have w(πi) ≤ 11, and therefore πi ∈ {Δ11, 1}
for every i. The only possibility is ψ = Δ11[2]⊕ [1], and in particular g = 2, a case
we have already treated: the form F also does not exist because according to Igusa,
we have the vanishing dim S7(Sp4(Z)) = 0.
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The Case k = 8. The only possibility is ψ = Δ11[4]⊕ [1]. In particular, g = 4 and
F ∈ S8(Sp8(Z)). Incidentally, note that if we apply our reasoning to the case where
F = J = ϑ4(E8 ⊕ E8)− ϑ4(E16) is the Schottky form (see Sect. 5.2), we obtain a
new proof of the fact that the standard parameter of the representation generated by
J is Δ11[4]⊕ [1] (Corollary 7.2.6 (i)), because it is the only possible parameter.

To conclude the proof of Theorem 9.5.9 for k = 8, it suffices to invoke the fact
that S8(Sp8(Z)) is of dimension 1 (and generated by the Schottky form) by a result
of Poor and Yuen [167] already mentioned in Sect. 5.2. Let us give another argument.
Note that F is in the image of the linear map ϑ4 : C[X16] → S8(Sp8(Z)). Indeed,
Böcherer’s criterion applies because the function

L(s, πF , St) = ζ(s)
3
∏

i=0

L
(

s+ i − 3

2
,Δ11

)

does not vanish at s = 4 (Sect. 7.2.4). SinceSk(Sp2g(Z)) is generatedby eigenforms,
this shows S8(Sp8(Z)) ⊂ Imϑ4. This finishes the proof because it is obvious that
S8(Sp8(Z))∩Im ϑ4 is generated byJ (Sect. 5.2). Let us emphasize that this argument
for proving dimS8(Sp8(Z)) = 1 is not new: it was already observed by Duke and
Imamoğlu in [77]; they were able to prove that L(s, πF , St) necessarily has a simple
pole at s = 1, without, however, being able to directly deduce from this the presumed
exact form of the parameter ψ.

Finally, let us give a third argument to prove that S8(Sp8(Z)) is of dimension
1. Indeed, it is an immediate consequence of our analysis above and the following
general result of Ikeda refining his own Theorem 7.3.1, which will turn out to be
quite useful in the remainder of this proof (see also Example 8.5.3).

Lemma 9.5.11 ([110, Theorem 7.1, Sect. 15]). Let m and g be even integers, and
let π ∈ Πcusp(PGL2) be the representation generated by an eigenform of weight m
for SL2(Z). There exists an eigenform G ∈ S(m+g)/2(Sp2g(Z)) for H(Sp2g) such
that ψ(πG, St) = π[g]⊕ [1] if and only if m ≡ g mod 4. Moreover, if this condition
is satisfied, then the form G is unique up to a scalar.

The Case k = 9. This time, there are three possibilities for ψ, corresponding,
respectively, to genus 2, 4, and 6. That of genus 2 is ψ = Δ15[2]⊕ [1], which does
not occur because dimS9(Sp4(Z)) = 0 by Igusa. The second is

ψ = Δ15[2]⊕Δ11[2]⊕ [1] ,

for which g = 4. Consider the linear map (Sect. 5.4.1)

ϑ5,4 : MH5,4(R8)(O8)→ S9(Sp8(Z)) .

Since we have L(1/2,Δw) �= 0 for w = 11, 15, the product ζ(s)
∏1

i=0 L(s + i −
1/2,Δ11)L(s+i−1/2,Δ15) has a simple pole at s = 1, so that Böcherer’s criterion
applies and shows that ϑ5,4 is surjective. To eliminate this second case, it therefore
suffices to show MH5,4(R8)(O8) = 0. But this vanishing follows from the tables of
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[55, Sect. 2]; we have, in fact, already come across this property in Sect. 7.4. A more
direct way to obtain it is to note that by triality (Sect. 5.4.14), we have, for every even
integer d ≥ 0, the equality

dimMHd,1(R8)(SO8) = dimMHd/2,4(R8)(O8) . (9.5.3)

This suffices to conclude the proof because we have MH10,1(R8)(SO8) = 0 by
Lemma 5.4.2.

To reassure ourselves, let us verify that this last reasoning is coherent with the
formula of Theorem 8.5.2, in other words, that Arthur’s multiplicity formula indeed
suggests thatΔ15[2]⊕Δ11[2]⊕[1] is not the standard parameter of a Siegel form. But
this follows from the fact that in the notation of that theorem, we have χ(s2) = −1
and ε(Δ15 ×Δ11) = ε(Δ11) = 1.

The last possibility is ψ = Δ11[6] ⊕ [1], for which g = 6. According to Ikeda,
this does not occur, because we have 6 �≡ 12 mod 4 (Lemma 9.5.11).

The Case k = 10. This time, there are four possibilities for ψ, corresponding,
respectively, to genus 2, 4, 6, and 8, namely

Δ17[2]⊕ [1] , Δ15[4]⊕ [1] , Δ17[2]⊕Δ11[4]⊕ [1] , Δ11[8]⊕ [1] .

They are all treated by Lemma 9.5.11, except for that of genus 6, namely ψ =
Δ17[2]⊕Δ11[4]⊕ [1]. This shows the assertions (ii)–(v) of the theorem, except for
the fact that dimS10(Sp12(Z)) = 1 in part (iv).

Let us now prove this assertion. We have seen, above, that every eigenform of
S10(Sp12(Z)) has standard parameter Δ17[2] ⊕ Δ11[4] ⊕ [1]. An examination of
Arthur’s multiplicity formula suggests that such a form exists and has multiplicity 1.
Let us take a different approach. Combined with Böcherer’s criterion, this property
also shows that the linear map

ϑ2,6 : MH2,6(R16)(O16)→ S10(Sp12(Z))

is surjective. To conclude, it therefore suffices to show dimMH2,6(R16)(O16) = 1 and
ϑ2,6 �= 0. But the assertion on the dimension follows from part (i) of Corollary 9.5.13.
The verification of the nonvanishing of ϑ2,6 will be pushed back to the end of the
section so as not to interrupt the flow of this proof.

The Case k = 11. This case is already rather tedious. This time, we find eight
possible parameters ψ: one in genus 2, two in genus 4, two in genus 6, two in genus
8, and one in genus 10.

The two parameters of genus 4 are Δ17[4] ⊕ [1] and Δ19[2] ⊕ Δ15[2] ⊕ [1].
The first does not occur according to Ikeda (Lemma 9.5.11). Consider the map
ϑ7,4 : MH7,4(R8)(O8) → S11(Sp8(Z)). Böcherer’s criterion then shows that ϑ7,4

is surjective. We will see that it is zero, which shows that the case ψ =
Δ19[2] ⊕Δ15[2] ⊕ [1] does not occur either. For this, note that the relation (9.5.3)
ensures dimMH7,4(R8)(O8) = 1, given that we have dimMH14,1(R8)(SO8) = 1
(Lemma 5.4.2). By Theorem 7.2.1, we know that there exists an eigenform
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G ∈ MH7,4(R8)(O8) that generates a representation in Πdisc(O8) with standard
parameter Δ17[4]; we therefore have MH7,4(R8)(O8) = CG. It then suffices to prove
ϑ7,4(G) = 0. If this form is nonzero, the Eichler–Rallis relations show that ϑ7,4(G)
is an eigenform with standard parameter Δ17[4]⊕ [1] (Corollary 7.1.3), which con-
tradicts Lemma 9.5.11 (as well as Böcherer’s criterion!).

The two possible parameters of genus 6 areΔ15[6]⊕[1] andΔ17[4]⊕Δ11[2]⊕[1].
The first is again excluded by Ikeda (Lemma 9.5.11). The second should not occur,
by Arthur’s multiplicity formula. Indeed, in the notation of Theorem 8.5.2, we have
χ(s2) = −1 and ε(Δ11 × Δ17)

2ε(Δ11) = 1. However, we do not see how to
eliminate it directly, which explains part (vi) of the statement of the theorem. Note
that this time, we cannot deduce anything from the map ϑ3,6 : MH3,6(R16)(O16) →
S11(Sp12(Z)), because Böcherer’s criterion shows ϑ3,6 = 0 (in fact, we have
MH3,6(R16)(O16) = 0 by Lemma 9.5.13).

The two possible parameters of genus 8 are Δ19,7[2]⊕Δ15[2]⊕Δ11[2]⊕ [1] and
Δ19[2]⊕Δ11[6]⊕ [1]. Böcherer’s criterion then shows that the map

ϑ3,8 : MH3,8(R16)(O16)→ S11(Sp16(Z))

is surjective, as one can immediately verify using Proposition 9.3.39. Consequently,
we have S11(Sp16(Z)) = 0 because we haveMH3,8(R16)(O16) = 0 by Lemma 9.5.13
(ii).

The last parameter, of genus 10, is Δ11[10] ⊕ [1], but it does not occur, by
Lemma 9.5.11, which concludes the proof of the theorem. It only remains to prove
Lemma 9.5.10. ��
Proof of Lemma 9.5.10. The analysis carried out before Lemma 9.5.10 shows ψ =
⊕r

i=1πi[di], where for every integer i, either πi[di] belongs to the set Ψ introduced
loc. cit., or πi = 1. Set I = {i, πi = 1}; recall that the integers di for i in I are odd,
and distinct by Arthur.

Assume first we have g = k. As the eigenvalue 0 of ψ∞ has multiplicity 3, and
as the other eigenvalues are≤ 10 in absolute value, Lemma 9.2.3 shows |I| = 3. On
the other hand, the eigenvalue 1 has multiplicity ≤ 1, so we have di = 1 for at least
two i ∈ I: a contradiction. We have thus proved k > g. As the eigenvalue 0 of ψ∞
has now multiplicity 1, Lemma 9.2.3 shows |I| = 1, say I = {i}.

Assume we have di > 1. This forces k = g + 1, and Proposition 8.7.1 implies

δ
(

πF ,
di + 1

2

)

> 0 . (9.5.4)

By Proposition 9.3.39, the quantity δ(πF , a) is the number of components ofψ of the
form Δ17[d

′] with d′ ≥ 2a. For such a component we necessarily have d′ ∈ {2, 4}.
This shows di ≤ 3, and thus di = 3. Note that Δ17[d

′]∞ has the eigenvalue 9 (in
particular, we have k = 10 or k = 11). On the other hand, if φ is in Ψ and if 2 is an
eigenvalue of φ∞, we must have φ = Δ11[8] or Δ11[10], so 9 is an eigenvalue of φ:
a contradiction as the eigenvalue 9 has multiplicity 1 in ψ∞. ��
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Proposition 9.5.12. Let L ⊂ R
16 be an even unimodular lattice. Denote by Vλ the

irreducible representation of SO(R16) of highest weight

λ = m1ε1 +m2ε2 + · · ·+m8ε8 with m1 ≥ m2 ≥ · · · ≥ m8 ≥ 0

(Sect. 6.4.3), and by V SO(L)
λ ⊂ Vλ the subspace of invariants under the finite group

SO(L) ⊂ SO(R16). Suppose m1 ≤ 4.

(i) If L � E16, then V
SO(L)
λ = 0, unless λ is equal to 0 or of the form 4(

∑k
i=1 εi)

with 1 ≤ k ≤ 8, in which case dimV
SO(L)
λ = 1.

(ii) IfL � E8⊕E8, then the pairs (λ, dim V
SO(L)
λ ) such that V SO(L)

λ �= 0 are given
by Table C.6.

Proof. This is a computation based on Weyl’s character formula, in the manner of
those carried out in [55, Sect. 2]. We thank Olivier Taïbi for having let us benefit from
his own algorithm, which is faster than that used loc. cit., for the final evaluation. It
requires, as preliminary work, an enumeration of the characteristic polynomials of
the elements of SO(L), as well as their multiplicities. We refer to the output of the
source code [54] for a justification of the affirmations that follow.

For the lattice L = E16, we have O(L) = W(D16) � {±1}15 � S16, and
the enumeration does not pose any difficulty if we use a computer (if we restrict
ourselves to elements of determinant 1, for example, we find 823 polynomials). In
the case of the lattice L = E8 ⊕ E8, the group O(L) is the semidirect product of
Z/2Z andO(E8)

2, whereZ/2Z acts onO(E8)
2 by interchanging the two factors. The

characteristic polynomials of the conjugacy classes of elements ofO(E8) = W(E8),
as well as the cardinalities of these classes, have been determined by Carter [47,
Table 11]. This allows us to conclude by observing that the determinant of a block
matrix of the form

[

X Im g
h X Im

]

, with g, h ∈ Mm and X an indeterminate, is
det(X2Im − gh). For example, after a computation, we find 1544 characteristic
polynomials for SO(E8 ⊕ E8).

Let us mention that with a little patience, which at this point the authors lack, it
should also be possible to prove the proposition “by hand” !

Corollary 9.5.13. (i) We have the equalities

dimMH2,6(R16)(SO16) = dimMH2,8(R16)(O16) = 1 .

(ii) For every integer 1 ≤ g ≤ 8, we have MH3,g(R16)(O16) = 0.

Proof. Recall that if U is a representation of On(R), whose restriction to SOn(R)
we denote by U ′, then MU (On) is a subspace of MU ′(SOn) (it is the map res
introduced in Sect. 4.4.4). Moreover, formula (4.4.1) implies the equality

dimMU ′(SOn) = dim(U ′SO(E16)) + dim(U ′SO(E8⊕E8)) .

If g < r, the irreducible representation Hd,g(R
2r) of O(R2r) remains irreducible

when restricted to SO(R2r); if g = r, it decomposes into a sum of nonisomorphic
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representations Hd,g(R
2r)± that are conjugate under the outer action of O(R2r)

(Sect. 5.4.14). Recall that by formula (5.4.1), the highest weight of Hd,g(R
2r) is

d
∑g

i=1 εi if g < r, and that those of Hd,g(R
2g)± are d(±εg +

∑g−1
i=1 εi). Part (ii)

then follows from Proposition 9.5.12, because the two dimensions in question are
zero for the weights of the form 3(

∑g
i=1 εi), for g ≥ 1. Part (i) is proved similarly,

the nonzero invariants now only arising fromE8⊕E8, by observing the isomorphism

MHd,8(R16)(O16) � MHd,8(R16)±(SO16)

(this is the map ind of Sect. 4.4.4). ��
To conclude this subsection, let us say a few words about the construction of an

element of S10(Sp12(Z)) using theta series. We begin with the lattice L = E8 ⊕E8

of R8 ⊕ R
8. Let e = (e1, . . . , e6) be a 6-tuple of elements of L ⊗ C generating an

isotropic subspace of dimension 6, and let Pe(v1, . . . , v6) = det [ei · vj ]1≤i,j≤6, so
thatP 2

e ∈ H2,6(L⊗R). LetQ ⊂ L be a lattice of rank 6 and v1, . . . , v6 aZ-basis ofQ.
For reasons similar to those mentioned in Sect. 5.4.21, the element Pe(v1, . . . , v6)

2

does not depend on the choice of the Z-basis vi of Q, and may therefore be denoted
by Pe(Q)2. The Fourier coefficient of ϑ2,6(E8⊕E8, P

2
e ) corresponding to the Gram

matrix of a Z-basis of Q is then given by the formula

cQ(P
2
e ) = |O(Q)|

∑

M⊂E8⊕E8

Pe(M)2 ,

where the sum is taken over the sublattices M isometric to Q. We will apply this to
the particular case where Q � Q(R) with R = D6 or R = E6. Set E6 := Q(E6).
First note that if such a sublattice is in E8 ⊕ E8, it is necessarily included in one of
the two factors E8. Moreover, it is not difficult to prove that the sublattices of E8

isometric to D6 (resp. E6) are exactly the orthogonal complements of the sublattices
of E8 isometric to A1⊕A1 (resp.A2); they can therefore easily be enumerated using
a computer (see [54]).

Let us conclude with a numerical application. Denote by ε1, . . . , ε8 the canon-
ical basis of the first factor R

8, by ε′1, . . . , ε′8 that of the second, and let e =
(εj + iε′j)1≤j≤6. The first observation above ensures that if Q � D6,E6, we have
cQ(P

2
e ) = 2|O(Q)|∑M⊂E8⊕0 Pe(M)2, where, this time, the sum is taken over the

sublattices of the first factor E8 isometric to Q. The second observation allows the
evaluation of this sum. The computer gives [54]

cE6(P
2
e )

2|O(E6)| = 120 and
cD6(P

2
e )

2|O(D6)| = 540 .

In particular, these two coefficients are nonzero, and it is easy to see that we have

cD6(P
2
e )

cE6(P
2
e )

= 2 .
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To conclude, the following corollary gives a concrete process for constructing all
Siegel cusp forms of weight at most 11 using theta series.
Corollary� 9.5.14. The maps ϑd,g induce isomorphisms between spaces of dimen-
sion 1:

ϑ4,4 : MH4,4(R8)(O8)
∼→ S8(Sp8(Z)), ϑ6,2 : MH6,2(R8)(O8)

∼→ S10(Sp4(Z)) ,

ϑ6,4 : MH6,4(R8)(O8)
∼→ S10(Sp8(Z)), ϑ2,6 : MH2,6(R16)(O16)

∼→ S10(Sp12(Z)) ,

ϑ2,8 : MH2,8(R16)(O16)
∼→ S10(Sp16(Z)) .

Proof. The assertion on ϑ4,4 is Proposition 5.4.22, and that on ϑ6,4 is likewise con-
tained in Table 5.3. The assertion on ϑ6,2 is a particular case of Proposition 9.1.2.
That on ϑ2,6 follows from the discussion preceding the corollary. Finally, the as-
sertion on ϑ2,8 follows from dimMH2,8(R16)(O16) = 1 (Lemma 9.5.13 (i)) and
Böcherer’s criterion because we have L(1/2,Δ11) �= 0. ��

9.6 Toward a New Proof of the Equality |X24| = 24

The interest of the following theorem resides in the fact that its proof does not use
any computation from the theory of unimodular lattices. In particular, it naturally
does not use Niemeier’s determination of X24. Instead, it relies on Arthur’s theory
and Theorem 9.3.2. Recall that the sets Xn and ˜Xn were introduced in Sect. 4.1.2.
Theorem 9.6.1. Admitting Conjectures 8.1.2 and 8.4.25, we have the equalities

|X24| = 24 and |˜X24| = 25 .

Proof. Let us first prove the equality |˜X24| = 25. Letπ be an element ofΠdisc(SO24).
By Conjecture 8.1.2, we haveψ(π, St) ∈ XAL(SL24). If we, moreover, suppose that
the representation π∞ is trivial, then Theorem 9.4.4 implies that ψ(π, St) is one of
the parameters listed in Table 1.2. The relation

|˜X24| = dim MC(SO24)

shows that it only remains to determine, for each of the parameters ψ of this table,
the sum mψ of the multiplicities of the representations π′ ∈ Π(SO24) such that
π′
∞ = 1 and ψ(π′, St) = ψ. By Conjecture 8.4.25, we always have mψ ∈ {0, 1, 2}.

The exact value of mψ can be determined using the formulas given in Sect. 8.5; as
it happens, here we use Theorem 8.5.8. This determination of the 24 integers mψ,
essentially done “case by case,” has already been carried out in Sect. 9.2.10. The
conclusion of the analysis loc. cit. is the following: if ψ ∈ XAL(SL24) is one of the
elements listed in Table 1.2, then either
(a) ψ �= Δ11[12] and we have mψ = 1, or
(b) ψ = Δ11[12] and we have mψ = 2.
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In the second case, there exist exactly two distinct representations π′, π′′ in
Πdisc(SO24) satisfyingψ(π′, St) = ψ(π′′, St) = ψ, and we havem(π′) = m(π′′) =
1 and π′′ = S(π′) in the sense of Remark 8.5.9.

We have indeed proved |˜X24| = 23 + 2 = 25. Finally, let us show |X24| = 24.
We begin with the equality dim MC(O24) = |X24|. Recall that the group with two
elementsO24(Q)/SO24(Q) = 〈s〉 acts onMC(SO24)with fixed subspaceMC(O24)
(see Example 4.4.6). Let f ′ ∈MC(SO24) be an eigenform underH(SO24) generating
the representation π′ introduced in part (b) above. The assertion S(π′) �= π′ shows
that the line Cf ′ is not stable under the action of the element s and implies that the
linear subspace

V := 〈f, sf〉 ⊂ MC(SO24)

is of dimension 2 and satisfies dim (MC(O24) ∩ V ) = 1 (by the way, this fact has
already been exploited in the proof of Proposition 7.5.1). From this follows, on the
one hand, the inequality |X24| < 25 and, on the other hand, the existence of a
representation π ∈ Πdisc(O24) such that ψ(π, St) = Δ11[12].

To conclude |X24| = 24, it suffices to show that for each of the 23 elements
ψ �= Δ11[12] listed in Table 1.2, there exists a representation π ∈ Πdisc(O24)
such that ψ(π, St) = ψ. This is obvious in the special case ψ = [23] ⊕ [1], which
corresponds to the trivial representation (Examples 6.4.7). For the other cases, the
argument we propose is rather indirect. It consists in applying verbatim the method of
Sect. 9.2.11. It is summarized as follows: first observe that ψ can be written uniquely
in the form ψ′ ⊕ [23 − 2g] with 1 ≤ g < 12 and ψ′ ∈ XAL(SL2g+1), then use
Conjecture 8.4.25 to verify (case by case!) that ψ′ is the standard parameter of a
Siegel cuspidal modular eigenform of weight 12 for Sp2g(Z), and finally, verify that
this modular form is a linear combination of theta series of elements of X24 using
Böcherer’s criterion. None of these arguments use the determination of X24. This
concludes the proof. ��

9.7 A Few Elements ofΠdisc(SOn) for n = 15, 17 and 23

Theorem� 9.7.1. Let n ≥ 1 be an odd integer. The elements ψ ∈XAL(SLn−1) such
that the conjugacy class ψ∞ has as eigenvalues the n− 1 half-integers±(n− 2)/2,
±(n− 4)/2, . . . , ±1/2 are the following:

(i) the unique element [n− 1] if n ≤ 11,
(ii) [12] and Δ11 ⊕ [10] if n = 13,

(iii) [14] and Δ11[3]⊕ [8] if n = 15,
(iv) [16], Δ15 ⊕ [14], Δ15 ⊕Δ11[3]⊕ [8], and Δ11[5]⊕ [6] if n = 17,
(v) the 32 parameters listed in Table C.7 if n = 23.

Proof. This is a consequence of Theorem 9.3.2, whose proof is similar to those of
Theorem 9.4.4 and Proposition 9.2.2. Let us mention that the cases n = 19 and 21,
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although not explicit in the statement, also immediately follow from this method,
and even from Table C.7. ��

This theorem has consequences for the classification of the π ∈ Πdisc(SOn)
satisfying π∞ = 1 ifn is odd, in which case the eigenvalues of Stc∞(π) ⊂ sln−1(C)
are the n− 1 half-integers±(n− 2)/2, ±(n− 4)/2, . . . , ±1/2.

Theorem 9.7.2. Assuming Conjecture 8.1.2, the standard parameters ψ(π, St) of
the representations π ∈ Πdisc(SOn) such that π∞ = 1 are

(i) [14] and Δ11[3]⊕ [8] if n = 15,
(ii) [16], Δ15 ⊕ [14], Δ15 ⊕Δ11[3]⊕ [8], and Δ11[5]⊕ [6] if n = 17.

Proof. Recall that if n = 15 or n = 17, the dimension dimMC(SOn) = |Xn| is,
respectively, 2 or 4 by Corollary 4.1.11. The operator T2 of C[Xn] is determined
in Sect. B.5. In both cases, its eigenvalues are indeed compatible with the theorem
above; what will matter here is that they are distinct. Thus, if n = 15 (resp. n = 17),
there exist exactly two (resp. four) elements of Πdisc(SOn) satisfying π∞ = 1, each
with multiplicity 1. Since the integer n is odd, the standard parameters ψ(π, St) of
these elements are obviously distinct. By Conjecture 8.1.2, these parameters satisfy
the assumptions of Theorem 9.7.1. But by the conclusions of that theorem, there
exist only two possible parameters for n = 15, and four for n = 17, which concludes
the proof. ��
Theorem 9.7.3. Assuming Conjecture 8.4.25, the standard parameters ψ(π, St) of
the representations π ∈ Πdisc(SO23) such that π∞ = 1 are the 32 elements listed
in Table C.7 if n = 23.

Proof. Recall the equality |X23| = 32 (Corollary 4.1.11). Let ψ be one of the
32 elements of Table C.7 and π ∈ Π(SO23) the unique representation such that
ψ(π, St) = ψ. We must prove that the multiplicity of π is nonzero. By Conjec-
ture 8.4.25, for this, it suffices to apply Arthur’s multiplicity formula in the form
given by Theorem 8.5.6. We argue using a case-by-case analysis, which we can
simplify slightly by using criteria of the same type as those given in Sect. 8.5.7 in the
case n ≡ 0 mod 8. We leave this as an exercise for the reader because the reasoning
is very similar to that studied in detail loc. cit. To conclude, we note, oh miracle, that
we indeed have m(π) = 1, regardless of the element ψ chosen initially. ��
Remark 9.7.4. (i) Theorem 9.7.3 was extended to dimension 25 in [55, Theo-
rem 1.14]. The 121 parameters in question involve, in particular, the seven rep-
resentations in Πalg(PGL6) of motivic weight 23 mentioned in Sect. 9.3.38.

(ii) An argument similar to that of the proof of Theorem 9.6.1 allows one to re-
prove the equalities |X7| = |X9| = 1, |X15| = 2, |X17| = 4, and |X23| = 32, using
Theorem 9.3.2 and conditionally on Conjectures 8.1.2 and 8.4.25, but without any
computation from the theory of Euclidean lattices.
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Let us conclude with a curious observation. For every integer n ≤ 24 such that
n ≡ −1, 0, 1 mod 8, we have described, in this book, the subset

Φn ⊂ X(SL2[n/2])

consisting of the elements of the form ψ(π, St) with π ∈ Πdisc(SOn) such that
π∞ = 1. For example, Φ24 and Φ25 are, respectively, given by Tables 1.2 and C.7.
This description is still conditional when n is odd, in which case it even extends to
n = 25 by Remark 9.7.4 (i), but that is not the problem in this discussion, where we
would gladly admit Conjecture 8.4.25. Consider the second problem, which appears
rather different, of determining the subset

Φ′
n ⊂ XAL(SL2[n/2])

consisting of all the ψ such that ψ∞ is the infinitesimal character of the trivial
representation of SOn(R) (a simple condition on its eigenvalues). Arthur’s theory
first asserts Φn ⊂ Φ′

n; it also gives an explicit criterion, “Arthur’s multiplicity
formula,” that allows one to determine whether a given element ψ ∈ Φ′

n is in Φn:
these are the formulas in Theorems 8.5.6 and 8.5.8. But Theorem 9.3.2 allows one
to determine Φ′

n for every n ≤ 24. The miraculous property, satisfied in all cases, is
then the equality

Φn = Φ′
n ∀n ≤ 24 . (9.7.1)

It is even conceivable that this equality extend to n = 25. Concretely, this means that
for n ≤ 24 and every ψ ∈ Φ′

n, Arthur’s multiplicity formula applied to ψ always
leads to a nonzero multiplicity. It would be interesting to find a deeper reason for
this phenomenon.

One might hope that Equality (9.7.1) holds for every n ≡ −1, 0, 1 mod8, at
least if we replace Φ′

n by its subset consisting of the ψ such that ψp = ψ−1
p for every

p. This is not so. Indeed, Arthur’s multiplicity formula shows that if n = 32, the
parameter Δ17[14]⊕ [3]⊕ [1] of Φ′

32 does not belong to Φ32. Likewise, the element
Δ17[13] ⊕ [4] of Φ′

31 must not belong to Φ31. If S14(SL2(Z)) were not zero, such
examples would also exist in dimensions 23 and 24.



Chapter 10
Applications

10.1 24 �-Adic Galois Representations

Recall that the vector space Q[X24] admits a Q-basis v1, . . . , v24 consisting of
eigenvectors common to all elements of H(O24) (Sect. 9.2). Each of these vectors
vi generates an automorphic representation πi ∈ Πdisc(O24) whose standard pa-
rameter ψ(πi, St) is determined by Theorem∗ 9.2.5 (Table C.5). In particular, the
pair (πi, St) satisfies the Arthur–Langlands conjecture, so that Corollary 8.2.19 ap-
plies and associates with it the 24-dimensional �-adic representations of the group
Gal(Q/Q). In what follows, we specify the resulting statement.

For a prime p and 1 ≤ i ≤ 24, denote by λi(p) ∈ Z the eigenvalue of Tp on
the vector vi. By formula (6.2.5), we have λi(p) = p11 trace St(cp(πi)). More
generally, the following lemma shows that the polynomial det(t − p11 St(cp(πi)))
(in the indeterminate t) has integral coefficients, each of which can be seen as the
eigenvalue of a well-chosen Hecke operator in H(O24).

Lemma 10.1.1. Let G be a split semisimple Zp-group, λ a dominant weight of ̂G,
Vλ the associated irreducible representation of ̂G, and ρ the half-sum of the positive
roots of GC. For every integer m ≥ 1, there exists a unique element T ∈ H(G) such
that for every c ∈ ̂Gss, we have

pm〈λ,ρ〉 trace(c |ΛmVλ) = tr(c)(Sat(T )) .

Moreover, if G = SOn and if the representation Vλ extends to On(C), for example
if V = St, then T belongs to the subring H(On) ⊂ H(SOn).

Proof. The existence and uniqueness of an element T ∈ H(G) ⊗ Z[p−1/2] with
Sat(T ) = pm〈λ,ρ〉[ΛmVλ] is an immediate consequence of the Satake isomorphism
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(Sect. 6.2.1). We must therefore show that we have T ∈ H(G). Recall that we have

p〈ρ,μ〉[Vμ] ∈ Sat(H(G))

for every dominant weight μ of ̂G, by formula (6.2.4). The case m = 1 immedi-
ately follows. For an arbitrary m ≥ 1, observe that the irreducible components of
ΛmVλ, which are of the form Vμ, with μ a dominant weight of ̂G, satisfy μ ≤ mλ
(Sect. 6.1.4). Indeed, this inequality holds more generally for all weights μ of V ⊗m

λ ,
andΛm Vλ is a quotient of the latter. The first assertion of the lemma follows because
for such a μ, 〈ρ,mλ− μ〉 is a nonnegative integer.

To verify the second assertion, concerningG = SOn, it suffices to note that if Vλ

extends to On(C) ⊃ ̂G = SOn(C), then the same holds for ΛmVλ. Relation (6.2.2)
then shows that the element T ∈ H(SOn) defined above belongs to H(On). ��
Remark 10.1.2. In general, it is difficult to explicitly determine the operator T given
by Lemma 10.1.1, say in terms of the Z-basis consisting of the cμ (Sect. 6.2.5),
even in the particular case of the group G = SOn and the standard representation
Vλ = St of ̂G. In this case, however, we already noted that we have T = Tp for
m = 1, and, furthermore, we have T = pTp,p+pn/2−1+

∑n/2−2
i=0 p2i+1 form = 2

(formula (6.2.6)).

In Sect. 8.2, we recalled the existence and several properties of the Galois repre-
sentations ρπ,ι associated with an algebraic, self-dual, regular automorphic repre-
sentation π ∈ Πcusp(PGLn) and an embedding ι : Q → Q�, where Q� denotes an
algebraic closure of Q�. The Galois representation ρπ,ι is continuous, semisimple,
and unramified outside �, and its isomorphism class is uniquely determined by the
relation

det(t− ρπ,ι(Frobp)) = ι
(

det
(

t− cp(π)p
w(π)/2

))

(10.1.1)

for every prime p �= � (the uniqueness follows from the Chebotarev density theorem).
If the polynomial det(t− cp(π)p

w(π)/2) is in Q[t] for every prime p, then the Galois
representation ρπ,ι depends only on � and not on the choice of ι; we then denote it
simply by ρπ,�.

The automorphic representations π of interest to us here will be the Δw and
the Δw,v. In these cases, the Galois representations ρπ,ι (satisfying conditions (i)
and (ii) of Theorem 8.2.17) have been constructed by, respectively, Deligne [70]
(generalizing a prior construction of Eichler, Shimura, Kuga, and Sato [131]) and
Weissauer [212] (see also prior work of Chai–Faltings [57] and Taylor [197]).

When π is generated by a modular form f = q + a2 q
2+ ... in Sk(SL2(Z)) that is

an eigenform for the Hecke operators, the relation (10.1.1) reduces to the well-known
relation det(t − ρπ,ι(Frobp)) = t2 − ι(ap)t + pk−1. This polynomial has integral
coefficients if k ≤ 22 (because the form f does); it is, moreover, well-known that
ρπ,� can in this case be chosen with coefficients in the field Q�.
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Recall that when π is one of the four representations Δw,v defined in Sect. 9.1,
the right-hand side of Equality (10.1.1) can also be written as

t4 − τj,k(p) t
3 +

τj,k(p)
2 − τj,k(p

2)

2
t2 − τj,k(p) p

j+2k−3 t + p2j+4k−6 ,

where (j, k) = (v−1, (w−v)/2+2) (formula (9.1.3)). Here again, this polynomial
has rational coefficients, and even integral ones by Proposition 9.1.9.

Theorem� 10.1.3. Let i = 1, . . . , 24; let � be a prime and Q� an algebraic closure
of Q�. There exists a continuous semisimple representation ρi,� : Gal(Q/Q) −→
GL24(Q�), unique up to isomorphism, that is unramified outside � and such that for
every prime p �= �, we have the following equality in Z[t]:

det(t − ρi,�(Frobp)) = det(t− p11 St(cp(πi))) . (10.1.2)

In particular, we have λi(p) = trace ρi,�(Frobp) for every prime p �= �.

Proof. Let i = 1, . . . , 24. Theorem 9.2.5 asserts that ψ(πi, St) is of the form
⊕k

j=1�j [dj ], where the �j are among the automorphic representations 1, Δw,
Δw,v, and Sym2Δ11. The existence of ρi,� follows by setting

ρi,� =

k
⊕

j=1

ρ�j ,� ⊗ (⊕dj−1
m=0ω

m
� )⊗ ω

(22−w(�j)+1−dj)/2
� , (10.1.3)

using the notation ρ�j ,� introduced after Remark 10.1.2. The uniqueness follows
from the Chebotarev density theorem. Naturally, when �j is the trivial automorphic
representation Πcusp(PGL1), ρ�j ,� denotes the trivial Galois representation (of
dimension 1). Moreover, we can take the representation Sym2ρΔ11,� for ρSym2Δ11,�.

Remark 10.1.4. Following the construction of Weissauer [212], it should be possible
to show that the representations ρΔw,v,�, hence also the ρi,�, are defined over Q�,
because we have dimSj,k = 1 for the four corresponding pairs (j, k) (Sect. 9.1.1).

It would be interesting to study in detail the images of the Galois representa-
tions ρΔw,v,�, in the way done by Serre and Swinnerton-Dyer in their work on the
representations ρΔw,� [194]. We will content ourselves, in Sect. 10.4, with proving
several congruences satisfied by these representations, in the spirit of the Ramanujan
congruence.

Corollary� 10.1.5. Let i = 1, . . . , 24, and let � be a prime. There exists a con-
tinuous semisimple representation ρi,� : Gal(Q/Q) −→ GL24(F�), unique up to
isomorphism, that is unramified outside � and such that for every prime p �= �, we
have the congruence

det(t − ρi,�(Frobp)) ≡ det(t− p11 St(cp(πi))) mod � . (10.1.4)

In particular, we have λi(p) ≡ trace ρi,�(Frobp) mod � for every prime p �= �.
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The uniqueness follows from the Chebotarev density theorem and a classical
result of Brauer–Nesbitt.1 The existence of ρi,� follows from that of ρi,� by a standard
general procedure, recalled below.

Fix an algebraic closure Q� (resp. F�) of Q� (resp. F�), as well as a ring ho-
momorphism O → F�, where O ⊂ Q� is the integral closure of Z�. Let G be a
profinite group and ρ : G→ GLn(Q�) a continuous representation. It is shown that
the following hold:

(i) The polynomial det(t− ρ(g)) belongs to O[t] for every g in G.
(ii) There exists a continuous semisimple representation ρ : G→ GLn(F�), unique

up to isomorphism, such that for every g in G, the characteristic polynomial
det(t− ρ(g)) is the image of det(t− ρ(g)) ∈ O[t] in F�[t].

(iii) If, moreover, det(t − ρ(g)) belongs to Q�[t] for every g in G, then ρ can be
chosen with coefficients in F� and its isomorphism class does not depend on
the choice of the morphism O→ F�.

The representation ρ is then called “the” residual representation of ρ. This construc-
tion (including Assertion (iii)) applies to the ρi,�, as well as to the representations of
the form ρπ,� introduced earlier; it leads to residual representations ρi,� and ρπ,� with
coefficients in F�. Naturally, the relation (10.1.3) induces a similar decomposition

ρi,� �
k
⊕

j=1

ρ�j ,� ⊗ (⊕dj−1
m=0ω�

m)⊗ ω�
(22−w(�j)+1−dj)/2. (10.1.5)

Let us briefly indicate how to prove Assertions (i), (ii), and (iii). First, a classical
application of the Baire category theorem asserts that we have ρ(G) ⊂ GLn(F ),
where F ⊂ Q� is a finite extension of Q�. After conjugating ρ by an element of
GLn(F ) if necessary, the compactness of ρ(G) allows us to assume that we have
ρ(G) ⊂ GLn(OF ), where OF = O ∩ F . Assertion (i) follows. Composing with
the ring homomorphism O→ F� gives a continuous representation G→ GLn(F�).
To prove part (ii), it suffices to take a semisimplification of this representation for
ρ. The uniqueness, as well as the last assertion of part (iii), follows from the result
of Brauer–Nesbitt. Since Schur’s obstruction is trivial over finite fields, the first
assertion of part (iii) follows (see [197, Lemma 2]).

Remark 10.1.6. Let ρ = ρΔw,v,�. In Sect. 8.2.16, formula (8.2.1), we already ob-
served that we have an isomorphism ρ∗ � ρ ⊗ ω−w

� . Even better, by Bellaïche
and Chenevier [20, Corollary 1.3], there exists a nondegenerate, alternating, and
Gal(Q/Q)-equivariant pairing ρ ⊗ ρ → ωw

� (see also [212]). It is not difficult to
deduce from this the existence of a nondegenerate, alternating, and Gal(Q/Q)-
equivariant pairing ρ⊗ ρ→ ω�

w.

1 Let us recall the statement of the latter. Let G be a group, k a field, and ρ1, ρ2 : G → GLm(k)
two semisimple representations. The representations ρ1 and ρ2 are isomorphic if and only if we
have det(t− ρ1(g)) = det(t − ρ2(g)) for every g ∈ G.
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10.2 Back to p-Neighbors of Niemeier Lattices

We number the 24 Niemeier lattices (or, rather, their isomorphism classes)
L1,L2, . . . ,L24, following the conventionused by Conway and Sloane [68, Chap. 16,
Table 16.1] (the Greek letters α, β, . . . , ω of this reference being replaced with the
integers 1, 2, . . . , 24). We therefore have R(Li) = Ri for i ≤ 23 (see Sect. 2.3), and
L24 is the Leech lattice that we also denoted by Leech in Sect. 3.4.

Let p be a prime; we denote byTp the matrix of the Hecke operatorTp : Z[X24]→
Z[X24] in the basis (L1,L2, . . . ,L24).

As mentioned before, Nebe and Venkov determined T2 and deduced that the
eigenvalues of this operator are integral and distinct. Denote them by

λ1 > λ2 > . . . > λ24 .

Denote by vj , for 1 ≤ j ≤ 24, an eigenvector associated with λj whose coordinates,
in the bases mentioned above, are integral and pairwise relatively prime (such an
eigenvector is determined up to a sign); denote by V the 24× 24 matrix whose jth
column is the column vector vj .

Denote by λj(p) the integer defined by the equality Tpvj = λj(p)vj (recall that
T2 and Tp commute); we therefore have λj(2) = λj , by definition.

Set θ1(p) = τ12(p)(= τ(p)), θ2(p) = τ16(p), θ3(p) = τ18(p), θ4(p) = τ20(p),
and θ5(p) = τ22(p); in other words, denote by θr(p) the pth Fourier coefficient of the
normalized cusp form (for SL2(Z)) of respective weight 12, 16, 18, 20, 22 for r =
1, 2, 3, 4, 5. Set θ6(p) = (θ1(p))

2 − p11 (we have θ6(p) = p11 tr(Sym2cp(Δ11))).
Finally, set θ7(p) = τ6,8(p), θ8(p) = τ8,8(p), θ9(p) = τ12,6(p), and θ10(p) =
τ4,10(p).

By Theorem 9.2.5 and formula (6.2.5), there exist uniquely determined polyno-
mials Cj,r in Z[X ], for 1 ≤ j ≤ 24 and 0 ≤ r ≤ 10, such that we have

λj(p) = Cj,0(p) +
10
∑

r=1

Cj,r(p) θr(p) (10.2.1)

for every prime p.
Let us recall the value of some of these polynomials Cj,r.
We have C1,0 =

∑k=22
k=0 Xk +X11 and C1,r = 0 for r ≥ 1; in other words, we

have λ1(p) = c24(p) :=
∑k=22

k=0 pk + p11 (see Proposition 3.2.4 and Proposition-
Definition 3.2.1).

We have C2,0 =
∑k=21

k=1 Xk, C2,6 = 1, and C2,r = 0 for r �= 0, 6.
For r ≥ 7, the polynomials Cj,r are as follows:

– Cj,7 = 0 for j �= 19 and C19,7 = X(X + 1);
– Cj,8 = 0 for j �= 15 and C15,8 = X + 1;
– Cj,9 = 0 for j �= 10 and C10,9 = X + 1;
– Cj,10 = 0 for j �= 21 and C21,10 = X + 1.
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Considering the formula

Tp = V diag(λ1(p), λ2(p), . . . , λ24(p)) V−1 (10.2.2)

(here, diag(λ1(p), λ2(p), . . . , λ24(p)) denotes the diagonal matrix with diagonal
entries the λj(p)), leads to the following statement.

Theorem 10.2.1. Let L and L′ be two even unimodular lattices of dimension 24.
There exist polynomialsPr(L,L

′;X) in Q[X ], for 0 ≤ r ≤ 10, uniquely determined
in terms of the isomorphism classes of L and L′, such that we have

Np(L,L
′) = P0(L,L

′; p) +
10
∑

r=1

Pr(L,L
′; p) θr(p)

for every prime p.

Remark. By definition, for every r with 0 ≤ r ≤ 10, we have the following equality
of 24× 24 matrices with coefficients in Q[X ]:

[ Pr(Lj ,Li;X) ] = V diag(C1,r(X),C2,r(X), . . . ,C24,r(X)) V−1 .

Since the columns of V are pairwise orthogonal for the inner product with matrix
diag(|O(L1)|, |O(L2)|, . . . , |O(L24)|) (Proposition 3.2.3), this equality shows that
we have

1

|O(L)| Pr(L,L
′;X) =

1

|O(L′)| Pr(L
′, L;X)

for every r, L, and L′ (which is, of course, compatible with Scholium 3.1.7).

Denote by Proj1 the orthogonal projection for the inner product introduced in
Proposition 3.2.3, fromQ[X24] onto the line generated by v1. Denote byw the vector
∑

x∈X24
(1/|O(x)|)x in Q[X24]; it follows from Proposition 3.2.4 that the vector v1

is collinear to the vector w. Let y be an element of X24; the equalities w.y = 1 and
w.w =

∑

x∈X24
1/|O(x)| imply

Proj1 (y) =
w

∑

x∈X24
1/|O(x)| =

∑

x∈X24

μ(x) x

with
μ(x) =

1/|O(x)|
∑

x∈X24
1/|O(x)| .

Note that μ(x) is the quotient of the mass of x and the mass of the genus of the
even unimodular lattices of dimension 24, masses in the sense of Minkowski–Siegel:
∑

x∈X24
μ(x)δx is the probability measure of Minkowski–Siegel on the set X24.
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Theorem 10.2.2. As the prime p tends to infinity, we have

Tp = p22 Proj1 + O(p21)

(the notation O(−) is the notation of Landau. . . and has nothing to do with orthog-
onal groups!).

Proof. In view of Proposition 3.2.3, we have Tp =
∑24

j=1 λj(p)Projj , where Projj
is the orthogonal projection from Q[X24] onto the line generated by vj . But we have
λ1(p) = p22 + O(p21) and the Ramanujan inequalities for the θr imply λj(p) =
O(p21) for j ≥ 2. Let us recall these inequalities. We have |τk(p)| ≤ 2p(k−1)/2 for
k = 12, 16, 18, 20, 22, |τ(p)2 − p11| ≤ 3p11, |τ6,8(p)| ≤ 4p19/2, and τj,k(p)| ≤
4p21/2 for (j, k) = (8, 8), (12, 6), (4, 10). The first five inequalities are due to
Deligne [70], the last four to Weissauer [212] (the sixth is a consequence of the first!);
for a general discussion concerning this type of inequality, see Sect. 8.2.16. ��
Scholium 10.2.3. Let x and y be two elements of X24; we have

Np(x, y)

c24(p)
= μ(y) + O

(

1

p

)

as p tends to infinity.

Comments. Let L be an even unimodular lattice of dimension 24 and y an element
of X24. The quotient

Np([L], y)

c24(p)
=

Np([L], y)

|CL(Fp)|
is the proportion of the points cof the quadricCL(Fp) such that the isomorphism class
of the p-neighbor ofL associated with c (see Proposition 2.1.5) is y. Scholium 10.2.3
says that this proportion tends to μ(y) as p tends to infinity (with convergence rate
1/p).

Remark. The Minkowski–Siegel probability measure on X24 is very far from being
uniform. For example, we have μ([E24]) ≈ 2.42 × 10−17 (this is the minimum of
the function μ on X24), μ([L21]) ≈ 0.426 (this is the maximum), and μ([L20]) +
μ([L21]) + μ([L22]) ≈ 0.906.

Remark. By examining the equalities (10.2.1), we see that the Ramanujan inequali-
ties give λj(p) = C0,j(p) + O(p33/2) for every j. As before, this leads to estimates
of the form

Np(x, y)

c24(p)
= μ(y)

(

1 +

5
∑

n=1

κn(x, y)
1

pn
+ O

(

p−11/2
)

)

;

the relation between the eigenvector v2 and the theta series of genus 1 of the even
unimodular lattices of dimension 24 make it possible to give κ1(x, y) explicitly:

κ1(x, y) =
37092156523

34673184000

(

h(x) − 2730

691

)(

h(y)− 2730

691

)

.
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Let us give some details on the relation between v2 and the theta series of genus 1 invoked
above; these details are in fact an expansion of the second comment after Table 5.1. On the one
hand, Theorem 5.5.1 shows that the diagram

is commutative (the Eichler commutation relations). On the other hand, {E12,Δ} is a basis of the
C-vector space M12(SL2(Z)) that consists of eigenvectors for the Hecke operators; in particular,
we have T(p2)(Δ) = τ(p2)Δ = (τ(p)2 − p11)Δ. Let coordΔ : M12(SL2(Z)) → C be the linear
form giving the coordinate “of index Δ” defined by this basis and η : C[X24] → C the composed
linear form coordΔ ◦ ϑ1. It follows from the above that η is an eigenvector of the endomorphism
T∗

p of (C[X24])∗, for the eigenvalue
∑21

k=1 p
k + (τ(p)2 − p11) = λ2(p). We easily verify that we

have
η(x) = |R(x)| − 65520

691
= 24

(

h(x)− 2730

691

)

for every x in X24 (see, for example, [177, Sect. 6.6, formule (108)]). As in Sect. 2.2 (Proposi-
tion 3.2.4), it follows that the vector

∑

x∈X24

1

|O(x)|
(

h(x) − 2730

691

)

x

is an eigenvector of the endomorphism Tp of C[X24], for the eigenvalue λ2(p).

On the Diameter of the Graph of the p-Neighbors in Dimension 24

The formula of Theorem 10.2.1 shows that if we have Np(L,L
′) = 0, then we have

P0(L,L
′; p) 2 =

( 10
∑

r=1

Pr(L,L
′; p) θr(p)

)2

.

By the Schwarz inequality, we have

( 10
∑

r=1

Pr(L,L
′; p) θr(p)

)2

≤
( 10
∑

r=1

γr Pr(L,L
′; p)2

)( 10
∑

r=1

γ−1
r θr(p)

2

)

for every 10-tuple (γ1, γ2, . . . , γ10) of strictly positive real numbers. By taking

(4p11, 4p15, 4p17, 4p19, 4p21, 9p22, 16p19, 16p21, 16p21, 16p21)

for (γ1, γ2, . . . , γ10), in view of the Ramanujan inequalities, we obtain the inequality

( 10
∑

r=1

Pr(L,L
′; p) θr(p)

)2

≤ 10

( 10
∑

r=1

γr Pr(L,L
′; p)2

)

.
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Set
(Γ1(X),Γ2(X), . . . ,Γ10(X)) = (4X11, 4X15, . . . , 16X21)

and

Q(L,L′;X) = P0(L,L
′;X)2 − 10

( 10
∑

r=1

Γr(X) Pr(L,L
′;X)2

)

;

we see that Q(L,L′;X) is a polynomial in Q[X ] whose monomial of highest degree
is μ(L′)2 X44. Note that the remark following Theorem 10.2.1 implies the equality
μ(L)2 Q(L,L′;X) = μ(L′)2 Q(L′, L;X). Denote by ρ(L,L′) the greatest real root
of the polynomialQ(L,L′;X) (we could agree to set ρ(L,L′) = −∞ ifQ(L,L′;X)
does not have any real roots, but this polynomial in fact always has real roots); finally,
denote byp(L,L′) the least prime strictly greater than ρ(L,L′). We did the necessary
to ensure Np(L,L

′) > 0 for p ≥ p(L,L′).

Example. The 24-tuple (ρ(Li,Leech))1≤i≤24 is approximately as follows:

(46.77 , 30.11 , 30.88 , 23.97 , 21.71 , 17.80 , 17.59 , 15.63 , 13.72 , 12.00 , 11.27 ,

12.14 , 9.36 , 9.58 , 8.48 , 7.03 , 6.19 , 5.21 , 5.86 , 4.12 , 3.10 , 2.13 , 1.37 , 1.68) .

On a case-by-case basis, we check that for every Niemeier lattice L, the prime
p(L,Leech) is the least prime greater than or equal to the Coxeter number h(L).
This checking and Proposition 3.4.1.1 show that the statement “Np(L,L

′) > 0 for
p ≥ p(L,L′)” is optimal for L′ = Leech.

Again on a case-by-case basis, we check that we have

ρ(L,L′) ≤ ρ(E24,Leech) < 47

for all Niemeier lattices L and L′. We therefore see that the graph of the p-neighbors
in dimension 24 is the complete graph with set of vertices X24 for p ≥ 47. Since we
have computed the τj,k(p) for p ≤ 43 (and even p ≤ 113, see the next subsection), we
are now able to determine the diameter of the graph of the p-neighbors in dimension
24; here is the result.

Theorem 10.2.4. Let p be a prime. The diameter of the graph K24(p) is as follows:
5 for p = 2, 4 for p = 3, 3 for p = 5, 2 for 7 ≤ p ≤ 43, and 1 for p ≥ 47.

10.3 Determination of the τj,k(q) for Small Values of q

The τj,k(q) in question, where q = pn with p prime and n ≥ 1 integral, are defined
in Sect. 9.1.7; we have seen that the determination of the τj,k(pn) for n > 2 reduces
to that of the τj,k(pn) forn = 1, 2. The values of the τj,k(p) for p ≤ 113 are gathered
in Table C.3, those of the τj,k(p

2) for p ≤ 29 in Table C.4.
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10.3.1 Determination of the τj,k(p) for p ≤ 113

The integers θr(p) for r ≤ 6 are not difficult to compute (at least for a prime of
reasonable size!). On the other hand, as already mentioned, the tables for the θr(p)
for r ≥ 7 are quite short. We propose to show that the theory developed in this book
and the information we collected in Sect. 3.4 on the last column of Tp (that is, on the
number of neighbors Np(L,Leech) for L an even unimodular lattice of dimension
24 representing 2) allow us to determine these θr(p) for p ≤ 113. Formulas (10.2.1)
and (10.2.2) (or, equivalently, Theorem 10.2.1) and the determination of τ6,8(p),
τ8,8(p), τ12,6(p), and τ4,10(p) for p ≤ 113 make it possible to compute explicitly
the Hecke operator Tp : Z[X24]→ Z[X24] for p ≤ 113.

Write Np(L,L
′) = N1

p(L,L
′) + N2

p(L,L
′) with

N1
p(L,L

′) = P0(L,L
′; p) +

6
∑

r=1

Pr(L,L
′; p) θr(p)

(this is the “easily computable” term) and

N2
p(L,L

′) =

10
∑

r=7

Pr(L,L
′; p) θr(p)

(this is the “mysterious” term). In view of what we recalled earlier on the polynomials
Cj,r, with j ≥ 1, r ≥ 7, that occur in the expression of the λj(p), we have

N2
p(L,L

′) = c7(L,L
′) p(p+ 1) θ7(p) +

10
∑

r=8

cr(L,L
′) (p+1) θr(p) , (10.3.1)

where the cr(L,L
′), for r ≥ 7, are rational numbers determined in terms of the

isomorphism classes of the lattices L and L′.
We therefore see that if we know the integers Np(L,L

′) for four ordered pairs
(L,L′) (whose orbits under the action ofS2 by interchanging the factors are distinct),
then we may hope to determine the θr(p) for r ≥ 7 by solving a linear system.

From here on, we take the Leech lattice forL′, and forL the four Niemeier lattices
with greatest Coxeter number: L1 := E24 (h = 46), L2 := E16 ⊕ E8 (h = 30),
L3 := E8 ⊕ E8 ⊕ E8 (h = 30), and L4 := A+

24 (h = 25).
The four equalities N2

p(Li,Leech) =
∑10

r=7 Pr(Li,Leech; p) θr(p), for i =
1, 2, 3, 4, can also be written as

A(p)

⎡

⎢

⎢

⎣

θ7(p)
θ8(p)
θ9(p)
θ10(p)

⎤

⎥

⎥

⎦

= B(p) , (10.3.2)
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where A(p) is the 4× 4 matrix obtained by taking the product of the matrix

a :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−20360704
297

31085824
1495

210852224
15795

182174720
9963

−1048320
2057

110194560
116909

901568
2223

−15608320
77121

16329600
22627

16092820800
16717987

12615840
35321

27014400
94259

994175
4752

−36575
208

37053115
202176

−4447625
79704

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10.3.3)

and the diagonal matrix diag(p(p+1), p+ 1, p+1, p+1), and B(p) is the column
matrix

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Np(E24,Leech)−N1
p(E24,Leech)

Np(E16 ⊕ E8,Leech)−N1
p(E16 ⊕ E8,Leech)

Np(E8 ⊕ E8 ⊕ E8,Leech)−N1
p(E8 ⊕ E8 ⊕ E8,Leech)

Np(A
+
24,Leech)−N1

p(A
+
24,Leech)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

We see that we have det a �= 0 (thanks, PARI); the linear system (10.3.2) there-
fore makes it possible to determine the θr(p) for r ≥ 7 if we know the integers
Np(Li,Leech) for i = 1, 2, 3, 4.

The Cases p ≤ 23

Let L be an even unimodular lattice of dimension 24 with roots. Proposition 3.4.1.1
says that we have Np(L,Leech) = 0 for p < h(L). In particular, we therefore have
Np(Li,Leech) = 0 for i = 1, 2, 3, 4: the linear system (10.3.2) makes it possible to
determine the θr(p) with r ≥ 7 for p ≤ 23.

The Cases p = 29 and p = 31

We computed Np(A
+
24,Leech) in Sect. 3.4.3 for p = 29 and p = 31. By Proposi-

tion 3.4.1.1, we haveN29(L,Leech) = 0 forL = E24 , E16⊕E8 , E8⊕E8⊕E8 and
N31(L,Leech) = 0 for L = E24; on the other hand, part (d) of Theorem 3.4.2.10
gives the value of N31(L,Leech) for L = E16 ⊕ E8 , E8 ⊕ E8 ⊕ E8. The linear
system (10.3.2) also makes it possible to determine the θr(p) with r ≥ 7 for p = 29
and p = 31.
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The Cases p = 3 and 7 ≤ p ≤ 59

Although elementary, the computation of N31(A
+
24,Leech) evoked above is quite

acrobatic. Below, we propose a method, which, while far from being as elementary, is
decidedly more effective, to determine the integersNp(L,Leech) forL the Niemeier
lattice with roots, when p is “not too great in terms of L,” at least if p does not divide
the index of the submodule of L generated by its roots; recall that we introduced the
notation g(L) for this index in Sect. 3.4. This method is based on the following two
observations:

– Let p be a prime that does not divide g(L). Scholium-Definition 3.4.3.3 says that
Np(L,Leech) belongs to an arithmetic sequence (containing 0) with common
difference

pas(L; p) :=
|W(L)|

gcd(p− 1 , 24h(L) , |W(L)|) .

– Let L and L′ be two even unimodular lattices of dimension 24. The Ramanujan
inequalities for the θr(p) for r ≥ 7 provide a lower and upper bounds

Ninf
p (L,L′) ≤ Np(L,L

′) ≤ Nsup
p (L,L′)

such that the difference Nsup
p (L,L′) − Ninf

p (L,L′) is 2K(L,L′)(p + 1)p21/2

with K(L,L′) := 4
∑10

r=7 |cr(L,L′)| (notation of (10.3.1)).

For L, we take a Niemeier lattice with roots with g(L) not divisible by p, and
for L′, we take the Leech lattice. If the difference in question is strictly less than
pas(L; p), then Np(L,Leech) is uniquely determined.

Let us be more precise. We have |θ7(p)| ≤ 4p19/2 and |θr(p)| ≤ 4p21/2 for
r = 8, 9, 10. We consequently have the inequality

|N2
p(L,L

′)| ≤ K(L,L′)(p + 1)p21/2 .

We set

Ninf
p (L,L′) = N1

p(L,L
′)−K(L,L′)(p+ 1)p21/2 ,

Nsup
p (L,L′) = N1

p(L,L
′) + K(L,L′)(p+ 1)p21/2 .

Recall that np(L) is the integer defined by the equality Np(L,Leech)
= np(L) pas(L; p). Set

νinfp (L) =
Ninf

p (L,Leech)

pas(L; p)
, νsupp (L) =

Nsup
p (L,Leech)

pas(L; p)
;

we therefore have the bounds νinfp (L) ≤ np(L) ≤ νsupp (L).
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Examples. Let us illustrate the effectiveness of these bounds through a few examples:

– We have νinf3 (L23) ≈ 0.99953 and νsup3 (L23) ≈ 1.00041, from which follow
n3(L23) = 1 and N3(L23,Leech) = 8388608, which agrees with part (d) of
Theorem 3.4.2.10.

– We have νinf31 (A
+
24) ≈ 275.99920 and νsup31 (A+

24) ≈ 276.00061, from which fol-
low n31(A

+
24)=276 and N31(A

+
24,Leech)=142703132398645071052800000,

which agrees with the computation carried out in Sect. 3.4.3.
– We check that we have νsupp (E8 ⊕ E8 ⊕ E8) < 8 · 10−6 for p ≤ 29, from

which follows Np(E8 ⊕ E8 ⊕ E8,Leech) = 0 for p ≤ 29, which agrees with
Proposition 3.4.1.1.

– We have νinf47 (E24) ≈ 0.99992 and νsup47 (E24) ≈ 1.00006, from which follow
n47(E24) = 1 and N47(E24,Leech) = 113145617964492744063713280000,
which agrees with part (d) of Theorem 3.4.2.10.

Set ninfp (L) = %νinfp (L)& and nsupp (L) = 'νsupp (L)(. Let us recall the notation:
for a real number ν, %ν& is the least integer n with ν ≤ n and 'ν( is the greatest
integer n with n ≤ ν. By definition, we therefore have the bounds

ninfp (L) ≤ np(L) ≤ nsupp (L) .

Denote by ep(L) the nonnegative integer nsupp (L)− ninfp (L). If we have ep(L) = 0,
then Np(L,Leech) is uniquely determined: Np(L,Leech) = ninfp (L) pas(L; p).

Example. Let L = E24. Since we have g(E24) = 2, we must assume p ≥ 3 for
the theory above to apply. PARI tells us that ep(E24) is zero for 3 ≤ p ≤ 131. The
integer Np(E24,Leech) has been determined for these primes; for example, we have
(for the childish pleasure of writing a very large integer!):

N131(E24,Leech) = 123625448053001992116952381878687498240000 .

Now, we consider the quadruple

ep := (ep(E24) , ep(E16 ⊕ E8) , ep(E8 ⊕ E8 ⊕ E8) , ep(A
+
24)) ;

since we have (g(E24) , g(E16 ⊕ E8) , g(E8 ⊕ E8 ⊕ E8) , g(A
+
24)) = (2, 2, 1, 5),

we assume p �= 2, 5. PARI tells us that we have ep = (0, 0, 0, 0) for p = 3 and
7 ≤ p ≤ 59. The integers Np(Li,Leech) have been determined for these primes and
i = 1, 2, 3, 4; consequently, the linear system (10.3.2) allows the computation of the
θr(p) with r ≥ 7 for the primes in question.

The Cases 61 ≤ p ≤ 107

For 61 ≤ p ≤ 107, we no longer have ep = (0, 0, 0, 0); we will, however, show
that we can still determine the θr(p) for r ≥ 7. The method is described below. Set
np(Li) = ninfp (Li) + xi for 1 ≤ i ≤ 4; (x1, x2, x3, x4) is therefore a quadruple of
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nonnegative integers that need to be determined. This quadruple is subject to the
following constraints, numbered (1)–(4):

(1) We have the inequalities 0 ≤ xi ≤ ep(Li) for 1 ≤ i ≤ 4.
(2) The quadruple (x1, x2, x3, x4) satisfies linear congruences modulo p or mod-

ulo divisors of p+ 1. Let us be more precise: the relation (10.3.2) can be written in
the following form:

⎡

⎢

⎢

⎣

p(p+ 1)θ7(p)
(p+ 1)θ8(p)
(p+ 1)θ9(p)
(p+ 1)θ10(p)

⎤

⎥

⎥

⎦

= F(p)

⎡

⎢

⎢

⎣

x1

x2

x3

x4

⎤

⎥

⎥

⎦

+G(p) , (10.3.4)

where F(p) is the square matrix a−1diag(pas(L1; p), . . . , pas(L4; p)) and G(p) is
the column matrix a−1Binf(p) with

Binf(p) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ninfp (L1)pas(L1; p)−N1
p(L1,Leech)

ninfp (L2)pas(L2; p)−N1
p(L2,Leech)

ninfp (L3)pas(L3; p)−N1
p(L3,Leech)

ninfp (L4)pas(L4; p)−N1
p(L4,Leech)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The matrix F(p) has integral coefficients for p �≡ 1 mod 23. Let us explain why.
As in the remark following Scholium-Definition 3.4.3.3, we write pas(Li; p) =
pas1(Li)pas2(Li; p). We see that the matrix

a−1 diag(pas1(L1), . . . , pas1(L4)) diag(23, 1, 1, 1)

(which is independent of p) has integral coefficients; now, by its very definition, 23
divides the integer pas2(E24; p) for p �≡ 1 mod 23. Note that if F(p) has integral
coefficients, then in view of (10.3.4), the same holds for G(p). The fact that F(p)
and G(p) have integral coefficients and that the θr(p) with r ≥ 7 are integral leads
to the congruences mentioned above.

(3) Let θr(p;X1, X2, X3, X4), for 7 ≤ r ≤ 10, be the four linear polynomials in
Q[X1, X2, X3, X4] defined by

⎡

⎢

⎢

⎣

θ7(p;X1, X2, X3, X4)
θ8(p;X1, X2, X3, X4)
θ9(p;X1, X2, X3, X4)
θ10(p;X1, X2, X3, X4)

⎤

⎥

⎥

⎦

:=

diag(p(p+ 1), p+ 1, p+ 1, p+ 1)−1

(

F(p)

⎡

⎢

⎢

⎣

X1

X2

X3

X4

⎤

⎥

⎥

⎦

+G(p)

)
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(the notation is strange. . . but transparent; note that Condition (2) is equivalent to the
fact that θr(p;x1, x2, x3, x4) is integral for 7 ≤ r ≤ 10). Let Tp(X1, X2, X3, X4)
be the matrix obtained by substituting in (10.2.2) the θr(p;X1, X2, X3, X4) for the
θr(p), when we have r ≥ 7; Tp(X1, X2, X3, X4) is therefore a 24 × 24 matrix
whose coefficients are linear polynomials in Q[X1, X2, X3, X4], such that we have
Tp(x1, x2, x3, x4) = Tp. Denote by Np(Li,Lj ;X1, X2, X3, X4) the coefficient of
index (j, i) of Tp(X1, X2, X3, X4) and set, for i ≤ 23,

np(Li;X1, X2, X3, X4) :=
Np(Li,Leech;X1, X2, X3, X4)

pas(Li; p)

(hence, by construction, we havenp(Li;X1, X2, X3, X4) = Xi+ninfp (Li) for i ≤ 4).
For example, we have

np(L5;X1, X2, X3, X4) =

4
∑

i=1

αiγi(p)Xi + β(p)

with

(α1, α2, α3, α4) =
(

− 1472 , −41

8
,
119

16
,
281

256

)

γi(p) =
gcd(p− 1, 24h(L5))

gcd(p− 1, 24h(Li))
, β(p) =

N1
p(L5,Leech)

pas(Li; p)
.

By Scholium-Definition 3.4.3.3, np(L5;x1, x2, x3, x4) = np(L5) is integral; it fol-
lows that the quadruple (x1, x2, x3, x4) satisfies a linear congruence modulo an
explicit integer depending on p, which we denote by m(p). Let us be more precise.
We see that the common denominator of the rational numbersαiγi(p) (in irreducible
form) is m(p); for 61 ≤ p ≤ 113, the function p → m(p) is given by the following
table (we have added the values of m(p) for p = 109 and p = 113 in view of a later
application):

p 61 67 71 73 79 83 89 97 101 103 107 109 113

m 1280 256 1280 768 256 256 256 128 6400 256 256 768 128

From this, we deduce that m(p)β(p) is integral and also deduce the congruence
mentioned above.

Note that the 2-adic valuation of v2(γi(p)) is zero for i = 1, 2, 3 and that we
have v2(γ4(p)) = 0 when v2(p− 1) ≤ 3 and v2(γ4(p)) = 1 when v2(p− 1) ≥ 4.
By considering the quadruple (α1, α2, α3, α4), it follows that the congruence we
have just deduced determines the class of x4 modulo 16 for p �= 97, 113 (and
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61 ≤ p ≤ 113) and modulo 8 for p = 97, 113. The value of x4 modulo 16 for
61 ≤ p ≤ 113 is given by the following table:

p 61 67 71 73 79 83 89 97 101 103 107 109 113

x4 mod 16 3 0 2 11 7 3 2 0, 8 5 4 5 0 0, 8

From now on, we will denote this weak form of Constraint (3) by (34).
(4) We must have the inequalities |θ7(p;x1, x2, x3, x4)| ≤ 4p19/2 and

|θr(p;x1, x2, x3, x4)| ≤ 4p21/2 for r = 8, 9, 10.

The Case p = 61. We have e61 = (0, 0, 0, 5). Constraint (34) determines the desired
quadruple: (x1, x2, x3, x4) = (0, 0, 0, 3).

The Case p = 67. We have e67 = (0, 0, 0, 1). Constraint (34) determines the desired
quadruple: (x1, x2, x3, x4) = (0, 0, 0, 0).

The Case p = 71. We have e71 = (0, 0, 0, 6). Constraint (34) determines the desired
quadruple: (x1, x2, x3, x4) = (0, 0, 0, 2).

The Case p = 73. We have e73 = (0, 6, 9, 20). Constraint (2) gives, in particular,
(x1, x2, x3, x4) ≡ (0, 3, 5, 11) mod 37. The desired quadruple is (0, 3, 5, 11).

The Case p = 79. We have e79 = (0, 0, 1, 12). Constraint (2) gives 2x3 + x4 ≡
9 mod 79; the bounds 0 ≤ 2x3 + x4 ≤ 14 then imply the equality 2x3 + x4 = 9.
Constraint (34) then determines the desired quadruple: (x1, x2, x3, x4) = (0, 0, 1, 7).

The Case p = 83. We have e83 = (0, 0, 0, 6). Constraint (34) determines the desired
quadruple: (x1, x2, x3, x4) = (0, 0, 0, 3).

The Case p = 89. We have e89 = (0, 6, 10, 67). Constraint (2) gives−2x2−7x3+
x4 +7 ≡ 0 mod 89; the bounds−75 ≤ −2x2− 7x3 + x4− 7 ≤ 74 then imply the
equality x4 = 2x2 +7x3− 7. Constraint (3) gives 10x2+3x3− 45 ≡ 0 mod 256;
the same argument as before shows that we have 10x2+3x3−45 = 0. In particular,
x2 is divisible by 3. The bounds 0 ≤ x3 ≤ 10 then imply the equality x2 = 3. The
desired quadruple is (0, 3, 5, 34).

The Case p = 97. We have e97 = (0, 117, 187, 548). The computer says that the
quadruples satisfying Constraints (1)–(3) are (0, 22, 63, 432) and (0, 71, 105, 272)
(we can help the computer by observing that Constraint (2) implies (x2, x3) ≡
(1, 0) mod 7 and that Constraint (34) says that x4 is divisible by 8). The first does
not pass the “Ramanujan test” (Constraint (4)): (x1, x2, x3, x4) = (0, 71, 105, 272).

The Case p = 101. We have e101 = (0, 78, 124, 3643). The computer says that the
only quadruple satisfying Constraints (1)–(3) is (0, 30, 63, 2149).

The Case p = 103. We have e103 = (0, 29, 46, 273). The computer says that
the quadruples satisfying Constraints (1)–(3) are (0, 7, 46, 196), (0, 15, 27, 148),
and (0, 23, 8, 100). The first and third do not pass the “Ramanujan test”:
(x1, x2, x3, x4) = (0, 15, 27, 148).
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The Case p = 107. We have e107 = (0, 14, 23, 141). The computer says that the
only quadruple satisfying Constraints (1)–(3) is (0, 7, 10, 53).

The Cases p = 109 and p = 113

An unexpected consequence of Theorem 10.4.4, which we will prove in the next
subsection by invoking the theory of Galois representations, is that the quadruple
(x1, x2, x3, x4) introduced while studying the cases 61 ≤ p ≤ 107 satisfies linear
congruences modulo divisors of p+ 1, of which some may be “independent” of the
congruences of Constraint (2). These additional constraints allow the determination
of the quadruple (x1, x2, x3, x4) for p = 109 and p = 113.

The Case p = 109. We have e109 = (0, 337, 538, 1049). The computer says
that there exist 208 quadruples satisfying Constraints (1)–(3) and that of these,
12 satisfy Constraint (4). Denote these 12 quadruples of nonnegative integers by
x(1), x(2), . . . , x(12); suppose, to fix ideas, that we have x(1) < x(2) < . . . < x(12)

for the lexicographical order. For k = 1, 2, . . . , 12, we easily verify that T109(x
(k))

has integral coefficients and that n109(Li;x
(k)) is also integral for 6 ≤ i ≤ 23 (we

have done the necessary to ensure that n109(Li;x
(k)) is integral for 1 ≤ i ≤ 5).

The above shows that the method that made it possible to determine τ6,8(p),
τ8,8(p), τ12,6(p), and τ4,10(p) for p ≤ 107 does not work for p = 109. However,
we succeed in removing this indetermination as follows. Consider the sequence of
quadruples of integers

(

θ7
(

109;x(k)
)

, θ8
(

109;x(k)
)

, θ9
(

109;x(k)
)

, θ10
(

109;x(k)
))

k=1,2,...,12
.

Luckily, only one of these quadruples, namely the fifth, verifies the congruence
imposed by item (12) of Theorem 10.4.4 (incidentally, the quadruple in question is
the one that was the most probable “in the sense of Sato–Tate”). Note that item (12)
of Theorem 10.4.4 is a congruence modulo 11 and that 11 divides 109 + 1!

We can paraphrase the above as follows. In addition to Constraints (1)–(4), for
i = 1, 2, 3, 4, the nonnegative numbers xi := n109(Li)−ninf109(Li) are subject to the
constraint, which we call (2-supp), imposed by item (12) of Theorem 10.4.4. It is
not difficult to give (2-supp) explicitly: it is the congruence

x1 + x2 + 6x3 + x4 + 2 ≡ 0 mod 11 .

Only one quadruple (x1, x2, x3, x4) satisfies Constraints (1), (2), (2-supp), (3), and
(4): the quadruple (0, 138, 284, 576).

The Case p = 113. We have e113 = (0, 227, 361, 1058). This time, consider
items (3) and (4) of Theorem 10.4.4 (because 19 divides 113 + 1). These two
items impose one constraint on the quadruple (x1, x2, x3, x4), which we denote by
(2-supp), consisting of two linear congruencesmodulo19; we easily see that these are
independent of the two linear congruences modulo 19 that appear in Constraint (2).
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Consequently, the quadruple (x1, x2, x3, x4) is fixed modulo 19; we find

(x1, x2, x3, x4) ≡ (0, 6, 3, 16) mod 19

(the presence of the 0 in the first position on the right-hand side is reassuring!).
The computer then shows that there exist only two quadruples satisfying Constraints
(1), (2), (2-supp), and (3): (0, 120, 155, 396) and (0, 177, 326, 244). The second
does not pass the Ramanujan test. The integers τ6,8(113), τ8,8(113), τ12,6(113), and
τ4,10(113) and the endomorphism T113 of Z[X24] are thus determined.

For example, we find

N113(L12,L21) = 633323838523478069636624166862873752207360000

(this is the greatest number of p-neighbors for p prime among those we were able to
compute).

The Case p = 127

The methods that have allowed us to determine τ6,8(p), τ8,8(p), τ12,6(p), and τ4,10(p)
for p ≤ 113 do not work for p = 127. Let us explain why below (in a smaller font).

– The computer says that there exist 3329 quadruples that satisfy Constraints (1), (2), (3), and (4),
which we denote by x(1), x(2), . . . , x(3329) . For k = 1, 2, . . . , 3329, we check that T127(x(k))
has integral coefficients and that n127(Li; x(k)) is also integral for 6 ≤ i ≤ 23.

– The only prime that divides 127 + 1 is 2, and we easily see that the integers θr(127; x(k)),
for 7 ≤ r ≤ 10 and 1 ≤ k ≤ 3329, are all even, which agrees with congruence (12) of
Theorem 10.4.4. In fact, by considering the four polynomials θr (127;X1, X2,X3, X4), for7 ≤
r ≤ 10, we see that we have θ7(127; x) ≡ 134400 mod 218, θ8(127; x) ≡ 3840 mod 213 ,
θ9(127; x) ≡ −3840 mod 213, and θ10(127; x) ≡ 256 mod 210 for every x in Z4.

10.3.2 Determination of the τj,k(p2) for p ≤ 29

Below, we denote by�1, �2, . . . , �10, respectively, the automorphic representations
Δ11,Δ15,Δ17,Δ19,Δ21, Sym2Δ11,Δ19,7,Δ21,9,Δ21,13, andΔ21,5 (see Sects. 7.3
and 6.4.7 and Definition 9.1.6). The representation �r is therefore in Πcusp(PGL2)
for r ≤ 5, in Πcusp(PGL3) for r = 6, and in Πcusp(PGL4) for r ≥ 7.

Let p be a prime. By definition, the integers θr(p), for 1 ≤ r ≤ 10, that we
introduced in Sect. 10.2 satisfy the relation

θr(p) = pw(�r)/2 trace cp(�r) .

(See Sects. 6.4.1 and 8.2.6; recall thatw(π) denotes the motivic weight of an algebraic
automorphic representation π in Πcusp(PGLn). Here we have w(Δw) = w and
w(Δw,v) = w.)
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Likewise, set
θr(p

2) := pw(�r) trace (cp(�r)
2) .

For r ≥ 7, the definition above agrees with Sect. 9.1.7: θ7(p2) = τ6,8(p
2), θ8(p2) =

τ8,8(p
2), θ9(p2) = τ12,6(p

2), and θ9(p
2) = τ4,10(p

2).
On the other hand, let us stress that for r = 1, 2, 3, 4, 5, θi(p2) is not the value

in p2 of the arithmetic functions τ12, τ16, τ18, τ20, τ22, respectively; we in fact have
θ1(p

2) = τ12(p)
2 − 2p11, θ2(p2) = τ16(p)

2 − 2p15, θ3(p2) = τ18(p)
2 − 2p17,

θ4(p
2) = τ20(p)

2 − 2p19, and θ5(p
2) = τ22(p)

2 − 2p21. Finally, it is easy to verify
that we have θ6(p2) = τ12(p)

4 − 4p11 τ12(p)
2 + 3p22.

Let VSt be the standard representation of SOn(C). For a prime p, denote by Tψ2

p

the Hecke operator in Hp(On) defined, via the Satake isomorphism, by the formula

p2−n Sat(Tψ2

p ) = ψ2 [VSt] := [VSt ⊗VSt]− 2 [Λ2VSt]

(see Sect. 6.2.1). This operator, which is a priori in Hp(On)[p
−1/2], in fact belongs

to Hp(On) by Lemma 10.1.1; actually, in the present case, we have

Tψ2

p = T2
p − 2pTp,p − 2p

(

n/2−2
∑

i=0

p2i + pn/2−2

)

(10.3.5)

by formulas (6.2.5) and (6.2.6).
Now, suppose n = 24, and for 1 ≤ j ≤ 24 denote by λψ2

j (p) the eigenvalue of
Tψ2

p on the vector vj of Z[X24]; we have done what we can to obtain

λψ2

j (p) = p22 trace St(cp(πj)
2) = Cj,0(p

2) +

10
∑

r=1

Cj,r(p
2) θr(p

2) ,

where the polynomials Cj,r in Z[X ] are those introduced in Sect. 10.2.
Let us return to the general case. The formula

(p+ 1)Tp,p = T2
p − Tp2 − (pn/2 − 1)(pn/2−1 + 1)

(p− 1)

of Example 6.2.11 and formula (10.3.5) shows that the operatorTp2 can be expressed
in terms of Tψ2

p and T2
p:

Tp2 =
p+ 1

2p
Tψ2

p +
p− 1

2p
T2

p − pn−2 + pn/2−2 . (10.3.6)

Since we determined the τj,k(p) for p ≤ 113 in Sect. 10.3.1, the considerations
above show that determining the τj,k(p

2) with p ≤ 29 reduces to determining the
number of neighbors Np2(Li,Leech) for i ≤ 4 and p ≤ 29 (recall that we have
set E24 = L1, E16 ⊕ E8 = L2, E8 ⊕ E8 ⊕ E8 = L3, and A+

24 = L4). Indeed, the
system that expresses the Np2(Li,Leech) in terms of the “unknowns” τj,k(p

2) is
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still a system with as many equations as variables and a unique solution, because the
matrix a of (10.3.3) is invertible. We determine these numbers of neighbors below.

The Case p ≤ 3. We have Np2(Li,Leech) = 0 for i ≤ 4 and p = 2, 3 by Proposi-
tion 3.4.1.1.

The Case p = 5. We again have N25(Li,Leech) = 0 for i ≤ 3, by Proposi-
tion 3.4.1.1; part (d) of Theorem 3.4.2.10 gives the value of N25(L4,Leech).

The Case p = 7. We adapt the method used previously to determineNp(Li,Leech)
for i = 1, 2, 3, 4, in the cases 7 ≤ p ≤ 59.

Proposition 3.4.3.1, whose notation we use, must be modified as follows.

Proposition 10.3.2.1. Let L be a Niemeier lattice with roots and p a prime that does
not divide the index of Q in L; let S be the stabilizer, for the action of W , of an
element of Preg

L (Z/p2).

(a) The group S can be identified with a subgroup of (Z/p2)×.
(b) Let Sp be the image of S by the endomorphism x → xp of the group (Z/p2)×;

the action of Sp on R (induced by that of W ) is free.

Consequently, Scholium-Definition 3.4.3.3 must be modified as follows.

Scholium-Definition 10.3.2.2. Let L be a Niemeier lattice with roots and p a prime;
denote by pas(L; p2) the integer defined by

pas(L; p2) :=
|W(L)|

gcd(p(p− 1) , 24ph(L) , |W(L)|) .

If p does not divide the index ofQ inL, thenNp2(L,Leech) is divisible by pas(L; p2).
In this case, we denote by np2(L) the integer defined by

Np2(L,Leech) = np2(L) pas(L; p2) .

Remark. As we have 9 = h(L16) + 1, item (d) of Theorem 3.4.2.10 gives us the
value of N9(L16,Leech) and therefore that of n9(L16). We find n9(L16) = 1; as
we have g(L16) = 64, this shows that Scholium-Definition 10.3.2.2 is, in a sense,
optimal.

We then proceed as when we determined Np(Li,Leech) for i = 1, 2, 3, 4 and
7 ≤ p ≤ 59. Mutatis mutandis, we define “easily computable” integers ninfp2 (L) and
nsupp2 (L) such that we have the bounds

ninfp2 (L) ≤ np2(L) ≤ nsupp2 (L) .

Let us be more precise. To obtain these bounds, consider the expression (10.3.6) of
Tp2 in terms of Tp and Tψ2

p obtained earlier, and use the determination of Tp for
p ≤ 113 and the Ramanujan inequalities for the τj,k(p2), namely |τ6,8(p2)| ≤ 4 p19,
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|τ8,8(p2)| ≤ 4 p21, |τ12,6(p2)| ≤ 4 p21, and |τ4,10(p2)| ≤ 4 p21 (for finer Ramanujan
inequalities, see (10.3.8)).

We find ninf49 (Li) = nsup49 (Li) for i = 1, 2, 3, 4; from this we deduce the determi-
nation of N49(Li,Leech) for i = 1, 2, 3, 4.

The Cases 11 ≤ p ≤ 29

This time, we adapt the method used to determine Np(Li,Leech) for i = 1, 2, 3, 4
in the cases 61 ≤ p ≤ 107.

Set xi = np2(Li) − ninfp2 (Li); we must once again determine the quadruple of
nonnegative integers (x1, x2, x3, x4).

Set ep2(Li) := nsupp2 (Li)− ninfp2 (Li) for 1 ≤ i ≤ 23 and

ep2 := (ep2(L1), ep2(L2), ep2(L3), ep2(L4)) .

By definition, we then have the inequalities

(1) x1 ≤ ep2(L1) , x2 ≤ ep2(L2) , x3 ≤ ep2(L3) , x4 ≤ ep2(L4) .

The Case p = 11. First, compute e112 ; this gives e112 = (1, 1868, 270, 17436).
Then, express the integers τj,k(112) in terms of the “unknowns” x1, x2, x3, x4;

this gives (the computation uses the determination ofT11 that we carried out earlier):
⎡

⎢

⎢

⎣

τ6,8(11
2)

τ8,8(11
2)

τ12,6(11
2)

τ4,10(11
2)

⎤

⎥

⎥

⎦

=
1

61
A

⎡

⎢

⎢

⎣

x1

x2

x3

x4

⎤

⎥

⎥

⎦

+
1

61
B ,

where A and B are two explicit matrices with integral coefficients, of respective
sizes 4×4 and 4×1 (the occurrence of the prime 61 is due to the fact that 61 divides
112 + 1).

Note that the reduction modulo 61 of the matrix A is invertible; we can therefore
compute the reduction modulo 61 of the quadruple (x1, x2, x3, x4). This gives

(2) (x1, x2, x3, x4) ≡ (1, 52, 25, 15) mod 61

(note that this congruence already implies the equality x1 = 1).
Next, also express the integers n112(Li) for 5 ≤ i ≤ 23 in terms of x1, x2, x3, x4;

this gives

n112(Li) = ai,1x1 + ai,2x2 + ai,3x3 + ai,4x4 + bi ,

where ai,1, ai,2, ai,3, ai,4, bi are rational numbers. This equality shows that the
quadruple (x1, x2, x3, x4) satisfies a certain linear congruence (that may be trivial)
modulo the gcd of the denominators of the ai,j for 1 ≤ j ≤ 4; we denote by (3) the
set of these new congruences.
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The computer says that the only quadruples satisfying (1), (2), and (3) are

(1, 662, 269, 6481) , (1, 1333, 147, 6481) , (1, 1333, 208, 17217) .

Finally, the first and third quadruple do not pass the Ramanujan test. This con-
cludes the determination of the τj,k(112).

Alternative Method. By Proposition 9.1.9, the coefficient of t2 in the characteristic
polynomial det(t − pw(�i)/2 cp(�i)), for i = 7, 8, 9, 10, is divisible by p6, p6, p4,
p8, respectively; that is, we have the congruence

τj,k(p)
2 ≡ τj,k(p

2) mod 2pk−2 . (10.3.7)

Set εj,k(p) := 1
2 (τj,k(p)

2 − τj,k(p
2)) and express these εj,k(p) in terms of the

quadruple of nonnegative integers (xi)1≤i≤4 := (np2(Li)− ninfp2 (Li)) (assume that
the τj,k(p) are known, which is the case for all primes we are interested in here). We
obtain an expression of the form

⎡

⎢

⎢

⎣

ε6,8(p)
ε8,8(p)
ε12,6(p)
ε4,10(p)

⎤

⎥

⎥

⎦

= E(p)

⎡

⎢

⎢

⎣

x1

x2

x3

x4

⎤

⎥

⎥

⎦

+H(p) ,

where E(p) and H(p) are two matrices with rational coefficients of respective size
4× 4 and 4×1. The fact that the εj,k(p) are integers and satisfy the congruences mod-
ulo pk−2 provided by (10.3.7) imposes a constraint on the quadruple (x1, x2, x3, x4),
which we denote by (2-bis).

For p = 11, we easily see that there exists a single quadruple that satisfies
Constraints (1) and (2-bis), namely (1, 1333, 147, 6481).

The Cases p = 13, p = 17 and p = 19. We have
e132 = (655, 121728, 14943, 1135678) ;

e172 = (536541, 5855913, 9346120, 46438144) ;

e192 = (2884703, 84510145, 134879385, 4993470088) .

We see that in all three cases, there exists a single quadruple (x1, x2, x3, x4) that
satisfies Constraints (1) and (2-bis), namely

(453, 50943, 3642, 439453) for p = 13 ,

(217661, 1571118, 3271290, 261210371) for p = 17 ,

(964326, 29790571, 55543719, 3055506804) for p = 19 .

The Case p = 23. We have
e232 = (93365728, 753181406, 1202088152, 161617609778) .

This time, there exist two quadruples that satisfy Constraints (1) and (2-bis). The
only one to pass the Ramanujan test is

(52157635, 398996852, 418588772, 78467649933) .
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The Case p = 29. We have
e292 = (1662796593, 308516971151, 492397438725, 2878328193860) .

There exist 156 quadruples that satisfy Constraints (1) and (2-bis). Of these, only
six that pass the Ramanujan test.

To carry out a final selection, proceed as in the case p = 11, first method. Express
n292(L5) in terms of (x1, x2, x3, x4) and observe that the integrality of n292(L5)
implies that the quadruple (x1, x2, x3, x4) satisfies a certain congruence modulo
256, which we denote by (3). We easily check that this constraint is satisfied for only
one of the six quadruples above, namely

(773950187, 87165709281, 106617389411, 1454026724829)

(in fact, this quadruple is the only one to satisfy both Constraint (1) and Constraint
(3)).

Remark. The determination of the τj,k(p2) for p ≤ 29 allows us to compute explicitly
the Hecke operator Tp2 : Z[X24]→ Z[X24] for p ≤ 29. For example, we find

N292(E24,L21) =

9787847431870605615736000813350868753051894303124387738419200000

(approximately 0.98× 1064, a new record!).

The Case p = 31

The method we used for 11 ≤ p ≤ 29 does not work for p = 31. Let us explain why
(in a smaller font).

This method can be described as follows. Set np2 (Li) = ninf
p2

(Li) + xi, with xi ∈ Z, for
i = 1, 2, 3, 4. Set x = (x1, x2, x3, x4), so x is a priori an element of Z4 ⊂ R4.

The Ramanujan inequalities satisfied by the τj,k(p2) say that x belongs to a parallelotope, which
we denote by Parp, in the affine space R4; the definition of the integers ninf

p2
(Li) and nsup

p2
(Li) is

such that the condition x ∈ Parp implies the bounds 0 ≤ xi ≤ ep2 (Li). The fact that the εj,k(p)

are integers, that these integers satisfy the congruences modulo pk−2 provided by (10.3.7), and
finally that the np2(Li) are integers for 5 ≤ i ≤ 23 (these np2 (Li) can be expressed as linear
functions of x with rational coefficients) mean that x belongs to a translate Γaff

p of a lattice Γp in
the vector space R4, containing Z4.

Consider the quotient

φ(p) :=
volume (Parp )

covolume (Γp )

(volume and covolume for the Lebesgue measure). The essential difference between the cases
p = 29 and p = 31 is the following: we have φ(29) ≈ 0.02409 and φ(31) ≈ 31918.2436. In the
first case, we have been able to show that the intersection Γaff

29 ∩ Par29 contains a single point and
to determine this point. In the second case, the computation of φ(31) indicates, heuristically, that
the number of points of Γaff

31 ∩ Par31 is approximately 32000; in fact, this number is 31995.
The diligent reader will object that we have been a bit lazy regarding the Ramanujan inequal-

ities. Indeed, we have simply used the fact that for 7 ≤ r ≤ 10, θr(p2) is the sum of four
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complex numbers of absolute value pw(
r) (recall that θ7, θ8, θ9, θ10 is an alternative notation
for τ6,8, τ8,8, τ12,6, τ4,10). But here we know the θr(p) for 7 ≤ r ≤ 10; the fact that the roots
in C of the characteristic polynomial det(t − pw(
r)/2 cp(�r)) have absolute value pw(
r)/2 is
equivalent to the inequalities

− 4 pw(
r) +
θr(p)2

2
≤ θr(p

2) ≤ (2 pw(
r)/2 − |θr(p)| )2 . (10.3.8)

These inequalities show that the point x belongs to a parallelotope Parslimp contained in Parp. We
have

volume (Parslimp )

volume (Parp )
=

10
∏

r=7

(

1− |θr(p)|
4pw(
r)/2

)2
.

For p = 31, this ratio is approximately 0.2115 and the cardinality of Γaff
31 ∩ Parslim31 is 6735.

10.4 Harder-Type Congruences

This section consists of three parts.
In the first, very elementary one, we exploit the following observation: the very

fact that the endomorphismsTp ofZ[X24] for p prime have (after extension of scalars
to Q) a basis of common eigenvectors, namely that of T2, implies that the λj(p)
satisfy numerous congruences. For example, we obtain the following congruence:

(p+ 1)(τ4,10(p)− τ22(p)− p13 − p8) ≡ 0 mod 41 .

In the second, more subtle part, we “divide by p+ 1” some of the congruences ob-
tained in the first part by, in particular, invoking the theory of Galois representations.
For example, we prove that we have the congruence

τ4,10(p) ≡ τ22(p) + p13 + p8 mod 41

conjectured by Günter Harder [100]. In the third part, we analyze the form that can a
priori be taken by a decomposition into irreducible components of the �-adic residual
representation associated with a τj,k . From this analysis and the computations carried
out in Sect. 10.3, we deduce that some of these representations are irreducible, which
explains why the corresponding τj,k do not appear in the congruences stated in the
second part of this section.

On Certain Congruences Satisfied by the λj(p)

We again consider formula (10.2.2):

Tp = V diag(λ1(p), λ2(p), . . . , λ24(p)) V−1 .
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The matrix V has integral coefficients, but this is not the case for the matrix V−1.
Indeed, PARI tells us that we have

| detV| = 2220 · 385 · 535 · 723 · 119 · 1310 · 173 · 192 · 232 · 41
· 131 · 2832 · 593 · 6172 · 69110 · 36174 · 438673 ;

PARI also tells us that the least integer d > 0 such that dV−1 has integral coefficients
is

D := 221 · 310 · 55 · 72 · 113 · 132 · 17 · 19 · 232 · 41
· 131 · 283 · 593 · 617 · 6912 · 3617 · 43867 .

We therefore see that for the matrix Tp to have integral coefficients, numerous
congruences modulo the divisors of D, which imply the eigenvalues of λj(p), must
be satisfied. Now that we have the matrix V (thanks to Nebe–Venkov), obtaining
these congruences involves only the theory of modules over principal ideal domains.
The expression (10.2.1) of the λj(p) in terms of τ12(p), τ16(p), τ18(p), τ20(p),
τ22(p), τ6,8(p), τ8,8(p), τ12,6(p), and τ4,10(p) then gives congruences concerning
these arithmetic functions.

The theory of modules over principal ideal domains tells us that there exist two
matrices R and S in GL24(Z) and strictly positive integers d1, d2, . . . , d24 with dj
dividing di for j > i, such that we have

V = R diag(d1, d2, . . . , d24) S−1

(note that we have d1 = D and
∏

i di = | detV|).
The following conditions are equivalent:

– The matrix V diag(λ1(p), λ2(p), . . . , λ24(p)) V
−1 has integral coefficients.

– The matrix

diag(d1, . . . , d24) S
−1 diag(λ1(p), λ2(p), . . . , λ24(p)) S diag(d−1

1 , . . . , d−1
24 )

has integral coefficients.

Let k be an integer with 1 ≤ k ≤ 24; set

Ek := S−1 diag(δk,1, δk,2, . . . , δk,24) S

(δ−,− is the Kronecker delta), and denote by ei,j,k the coefficient of index (i, j) of the
matrix Ek (the ei,j,k are “universal” integers, determined by V and a choice of the
ordered pair (R, S)). The second condition above is also equivalent to the following:

– For every ordered pair (i, j) with i > j, we have the congruence

24
∑

k=1

ei,j,k λk(p) ≡ 0 mod
dj
di

. (10.4.1)
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Let us conceptualize the above a little.
First of all, observe that the only property of Tp that we have used above is that

for 1 ≤ j ≤ 24, the vj are all eigenvectors of Tp. Let U be an endomorphism of
Z[X24] satisfying this property, and for 1 ≤ j ≤ 24, let λj(U) be the integer defined
by the equality U(vj) = λj(U) vj ; then for every ordered pair (i, j) with i > j, we
have the congruence

24
∑

k=1

ei,j,k λk(U) ≡ 0 mod
dj
di

. (10.4.2)

Denote by C the subring of EndZ(Z[X24]) consisting of the endomorphisms U
considered above; the maps λj : C → Z given by U → λj(U) are ring homomor-
phisms whose product

λ : C→ Z
24 , U → (λ1(U), λ2(U), . . . , λ24(U))

is an injective ring homomorphism (which, in particular, shows that the ring C is
commutative). The image of λ is the subring of Z

24 consisting of the 24-tuples
(x1, x2, . . . , x24) satisfying

24
∑

k=1

ei,j,k xk ≡ 0 mod
dj
di

for every ordered pair (i, j) with i > j.
Remarks.

(1) Since the coefficients of V are pairwise relatively prime, we have d24 = 1 (in
fact, we have dj = 1 for j ≥ 21).

(2) Setd := (d1, d2, . . . , d24), and denote byΓ(d) the subgroup ofGL24(Z) defined
as the intersection of GL24(Z) and diag(d) GL24(Z) diag(d)

−1 in GL24(Q).
We see that the class of S in the finite set GL24(Z)/Γ(d) depends only on V
and that we can define the subring C of Z24 in terms of the 24-tuple d and this
class.

(3) Let � be a prime; then the ring homomorphismsC→ Z/�, viewed as elements of
the Z/�-vector space HomZ(C,Z/�), are linearly independent (“independence
of the characters”). If the �-adic valuation of D is 1, in other words, if � appears
in the list

{17, 19, 41, 131, 283, 593, 617, 3617, 43867} ,
then Z(�) ⊗Z cokerλ is annihilated by the multiplication by �. In this case, the
previous observation shows that there exists a uniquely determined equivalence
relation on {1, 2, . . . , 24}, which we denote by R�, such that Z(�) ⊗Z C is
the subring of Z24

(�) consisting of the 24-tuples (x1, x2, . . . , x24) satisfying the
congruences xi ≡ xj mod � for iR� j. For example, we will see further on that
Z(41) ⊗Z C is the subring of Z24

(41) consisting of the 24-tuples (x1, x2, . . . , x24)
satisfying x18 ≡ x21 mod 41.
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In general, we can determine the isomorphism class of the (Z/D)-module cokerλ
using the linear algebra “routines” of PARI (mathnf, mathnfmod, and matsnf). We
have carried out the computation, viewing C as the submodule of Z24 consisting
of the 24-tuples (x1, x2, . . . , x24) such that the matrix

∑

j xjProjj has integral
coefficients (the notation Projj was introduced in the proof of Theorem 10.2.2). We
give the result below.

Proposition 10.4.1. Let � be a prime that divides D, in other words, an element of
the list

{2, 3, 5, 7, 11, 13, 17, 19, 23, 41, 131, 283, 593, 617, 691, 3617, 43867} .

We have isomorphisms of the form

Z(�) ⊗Z coker(λ : C→ Z
24 ) � Z/�e	,1 × Z/�e	,1 × . . .× Z/�e	,r	 ,

where e� := (e�,1, e�,2, . . . , e�,r	) denotes the finite decreasing sequence of strictly
positive integers given explicitly below:

e2 = (21, 19, 17, 17, 15, 15, 14, 14, 12, 12, 11, 10, 9, 9, 9, 8, 8, 7, 6, 6, 3, 1) ,

e3 = (10, 9, 9, 7, 7, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 1) ,

e5 = (5, 5, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1) ,

e7 = (2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) ,

e11 = (3, 2, 1, 1, 1, 1, 1) ,

e13 = (2, 2, 1, 1, 1, 1, 1, 1, 1) ,

e17 = (1, 1, 1) ,

e19 = (1, 1) ,

e23 = (2) ,

e41 = (1) ,

e131 = (1) ,

e283 = (1, 1) ,

e593 = (1) ,

e617 = (1, 1) ,

e691 = (2, 1, 1, 1, 1, 1, 1, 1, 1) ,

e3617 = (1, 1, 1, 1) ,

e43867 = (1, 1, 1) .

Let us now describe two generalizations of the congruences (10.4.2)
(and (10.4.1)).

(1) A priori, the congruences (10.4.2) involve the 24 eigenvalues λj(U) simul-
taneously. Let J be an arbitrary subset of {1, 2, . . . , 24}; below, we describe an
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algorithm, similar to the one that leads to (10.4.2), to obtain congruences that in-
volve only the λj(U) with j in J .

Denote by MJ and LJ , respectively, the submodule of Z[X24] generated by the
vj with j ∈ J and the intersection of Q ⊗Z MJ and Z[X24] in Q[X24]. Still by the
theory of modules over principal ideal domains, there exist

– a J × J matrix SJ = [sJ,i,j ](i,j)∈J×J with integral coefficients that is invertible
and whose inverse S−1

J also has integral coefficients,
– strictly positive integers dJ,i, for i ∈ J , with dJ,j dividing dJ,i for i < j,

such that the set
{

1

dJ,j

∑

i∈J

sJ,i,j vi

}

j∈J

is a basis of LJ (so that the quotient LJ/MJ is isomorphic to a direct sum
⊕

j∈J Z/dJ,j).
Let (i, j, k) be an element of J ×J ×J ; denote by eJ,i,j,k the coefficient of index

(i, j) of the matrix S−1
J diag((δk,i)i∈J ) SJ . For every ordered pair (i, j) with i > j,

we have the congruence

∑

k∈J

eJ,i,j,k λk(U) ≡ 0 mod
dJ,j
dJ,i

(10.4.3)

(note that the sum
∑

k∈J eJ,i,j,k is zero).

(2) Let m be a divisor of D; denote by Z(m) the localization of Z obtained by
inverting the elements prime to m. We obtain congruences modulo divisors of a
power of m (and of D) by replacing the principal ideal domain Z in item 1 above
with the principal ideal domain Z(m).

Finally, consider a particular case of the above. Set V = {v1, v2, . . ., v24}. Let
W be a subset of V; denote by J(W) the subset of {1, 2, . . . , 24} consisting of the j
with vj ∈W.

Let m be a divisor of D and ρm : Z[X24] → (Z/m)[X24] the homomorphism
defined by reduction modulo m. Let W be a subset of V. First, suppose that m is
prime. If the set of vectors ρm(W) is linearly dependent and if W is minimal among
the subsets of V with this property, then for every v in W, the image ρm(W− {v})
is a basis of the linear subspace generated by ρm(W). Next, suppose that m is an
arbitrary divisor of D; we say, more generally, that W is a minimal m-unfree set if
the submodule of (Z/m)[X24] generated by ρm(W) is a free (Z/m)-module and if
ρm(W − {v}) is a basis of this space for every v in W. If W is minimal m-unfree,
then the Z(m)-module Z(m) ⊗Z (LJ(W)/MJ(W)) is isomorphic to Z/m̃, with m̃ a
multiple of m that divides a power of m. Item 2 above provides congruences modulo
m̃ and a fortiori modulo m.

Proposition 10.4.2. Let U be an endomorphism of Z[X24] that has the vj , for 1 ≤
j ≤ 24, as eigenvectors, with respective eigenvalues λj(U). Let m be a divisor of D
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and W a minimal m-unfree subset of V. Then we have the congruences

λi(U) ≡ λj(U) mod m

for all i and j in J(W).

For the comfort of the reader, we give a proof of Proposition 10.4.2 ab initio.

Proof. By definition, we have at our disposal a dependence relation of the form
∑

v∈W μv ρm(v) = 0 with μv ∈ (Z/m)×, and if
∑

v∈W μ′
v ρm(v) = 0 is another

dependence relation, then we have μ′
v/μv = μ′

w/μw for all v and w in W. The
proposition follows by considering the dependence relation U(

∑

v∈W μv ρm(v))
= 0. ��

It is clear that the cardinality of a minimal m-unfree subset of V is greater than or
equal to 2. The following proposition, which we verify on a case-by-case basis says
that we often have equality, at least if m is prime.

Proposition 10.4.3. Let � be a prime divisor of D other than 3, 5, 7, 11 and W a
minimal �-unfree subset of V. Then the cardinality of W is 2.

Remark. Let PX24 be the Z-scheme whose A-points (A a commutative ring with
unit) are the direct factors of rank 1 of A[X24] (PX24 is therefore an avatar of the
projective space P23). There is a canonical subset of PX24(Q) = PX24(Z), namely
the set consisting of the classes of the vj ; denote it by [V]. The proposition above
says that this set of 24 elements is far from being “generic.” Indeed, it shows that for
the � in its statement, the points of ρ�([V]) are “projectively independent.”

Examples

The Case m = 43867. The minimal m-unfree subsets of V are {v1, v11}, {v2, v8},
and {v3, v6}. By taking U = Tp with p prime in Proposition 10.4.2, we obtain the
following congruences modulo 43867:

λ1(p) ≡ λ11(p) , λ2(p) ≡ λ8(p) , λ3(p) ≡ λ6(p) . (10.4.4)

We see that we have

λ11(p)− λ1(p) = (p5 + p4 + p3 + p2 + p+ 1)(τ18(p)− p17 − 1) ,

λ8(p)− λ2(p) = (p4 + p3 + p2 + p)(τ18(p)− p17 − 1) ,

λ6(p)− λ3(p) = (p3 + p2)(τ18(p)− p17 − 1) .

Since the gcd of the polynomialsX5+X4+X3+X2+X+1,X4+X3+X2+X ,
and X3 +X2 is X + 1, we see that (10.4.4) implies the congruence

(p+ 1)(τ18(p)− p17 − 1) ≡ 0 mod 43867 . (10.4.5)
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This congruence is weaker than the well-known congruence (see, for example, [194])

τ18(p)− p17 − 1 ≡ 0 mod 43867 (10.4.6)

(nonetheless, note that (10.4.5) implies (10.4.6) for p �≡ −1 mod 43867!). Never-
theless, during the proof of Theorem 10.4.4, we will explain how the intervention
of the theory of Galois representations and a more elaborate version of Proposi-
tion 10.4.2 (Proposition 10.4.5) make it possible to obtain (10.4.6) (which gives a
quite complicated proof of this congruence!).

Remark. By Proposition 10.4.1, we have Z(43867) ⊗Z cokerλ ≈ (Z/43867)3; the
above in fact shows that Z(43867) ⊗Z C is the subring of Z24

(43867) consisting of the
24-tuples (x1, x2, . . . , x24) satisfying x1 ≡ x11, x2 ≡ x8, and x3 ≡ x6 modulo
43867.

The Case m = 3617. The minimal m-unfree subsets of V are {v1, v13}, {v2, v12},
{v3, v9}, and {v4, v7}. This time, we obtain the following congruences modulo
3617:

λ1(p) ≡ λ13(p) , λ2(p) ≡ λ12(p) , λ3(p) ≡ λ9(p) , λ4(p) ≡ λ7(p) .

As before, we see that these congruences imply the congruence

(p+ 1)(τ16(p)− p15 − 1) ≡ 0 mod 3617 .

The Case m = 691. The minimal m-unfree subsets have cardinality 2, and there
are 12 of them. Considering the two m-unfree sets {v1, v24} and {v2, v23} leads to
the congruence

(p+ 1)(τ12(p)− p11 − 1) ≡ 0 mod 691 .

The Case m = 283 ·617. The minimalm-unfree subsets are {v1, v5} and {v2, v4}.
This time, we obtain the congruence

(p+ 1)(τ20(p)− p19 − 1) ≡ 0 mod 283 · 617 .

The Case m = 131 · 593. The only minimal m-unfree subset is {v1, v3}. Since
we have the equality λ3(p) − λ1(p) = (p + 1)(τ22(p) − p21 − 1), we obtain the
congruence

(p+ 1)(τ22(p)− p21 − 1) ≡ 0 mod 131 · 593 .

The Case m = 41. In this case, the only minimal m-unfree subset is {v18, v21}.
Since we have the equality λ21(p)−λ18(p) = (p+1)(τ4,10(p)−τ22(p)−p13−p8),
we obtain the congruence

(p+ 1)(τ4,10(p)− τ22(p)− p13 − p8) ≡ 0 mod 41 . (10.4.7)
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As already mentioned, we will see that the theory of Galois representations makes
it possible to show that, in fact, we have

τ4,10(p)− τ22(p)− p13 − p8 ≡ 0 mod 41 , (10.4.8)

a congruence conjectured by G. Harder [100].
The subset {v18, v21} is minimal m-unfree for m = 24 · 3 · 41, so that the

congruence (10.4.7) refines to

(p+ 1)(τ4,10(p)− τ22(p)− p13 − p8) ≡ 0 mod 24 · 3 · 41 .

Remark. In view of Proposition 10.4.1, the above shows thatZ(41)⊗ZC is the subring
of Z24

(41) consisting of the 24-tuples (x1, x2, . . . , x24) satisfying x18 ≡ x21 mod 41.

The Case m = 23. In this case, the only minimal m-unfree subset is {v13, v15};
in fact, {v13, v15} is minimal m̃-unfree with m̃ = 232. This time, we obtain the
congruence

(p+ 1)( τ8,8(p)− (p6 + 1)τ16(p) ) ≡ 0 mod 232 . (10.4.9)

Here, too, we will see further on that we in fact have

τ8,8(p)− (p6 + 1)τ16(p) ≡ 0 mod 232 .

By the same argument as before, the congruence (10.4.9) refines to

(p+ 1)( τ8,8(p)− (p6 + 1)τ16(p) ) ≡ 0 mod 23 · 32 · 232 .

Remark. In view of Proposition 10.4.1, the above shows thatZ(23)⊗ZC is the subring
ofZ24

(23) consisting of the 24-tuples (x1, x2, . . . , x24) satisfyingx13 ≡ x15 mod 232.

The Case m = 19. The minimal m-unfree subsets are {v9, v10} and {v21, v22}.
Considering {v9, v10} leads to

(p+1)( τ12,6(p)−(p4+p2)τ16(p)+p2 τ18(p)−τ22(p)) ≡ 0 mod 19 . (10.4.10)

Since {v9, v10} is minimal m-unfree for m = 24 · 19, we also have

(p+ 1)( τ12,6(p)− (p4 + p2)τ16(p) + p2 τ18(p)− τ22(p) ) ≡ 0 mod 24 · 19 .

Considering {v21, v22} leads to

(p+ 1)( τ4,10(p)− (p8 + p2)τ12(p) + p2 τ18(p)− τ22(p) ) ≡ 0 mod 19 .

Since {v21, v22} is minimal m-unfree for m = 24 · 32 · 19, we also have

(p+ 1)( τ4,10(p)− (p8 + p2)τ12(p) + p2 τ18(p)− τ22(p) ) ≡ 0 mod 24 · 32 · 19 .
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The Case m = 17. The minimal m-unfree subsets are {v5, v9}, {v15, v17}, and
{v19, v20}. The congruences associated with these unordered pairs are, respectively,

(p+ 1)((p4 + p2)τ16(p)− (p2 + 1)τ20(p) + τ22(p)− p17 − p4) (10.4.11)
≡ 0 mod 17 ,

(p+ 1)(τ8,8(p)− (p6 + p4)τ12(p) + (p4 + p2)τ16(p)− (p2 + 1)τ20(p))
(10.4.12)

≡ 0 mod 17 ,

(p+ 1)(τ6,8(p)− (p6 + p2)τ12(p) + p2 τ16(p)− τ20(p)) (10.4.13)
≡ 0 mod 17 .

The Case m = 13. The minimal m-unfree subsets have cardinality 2, and there are
12 of them. Considering the minimalm-unfree sets {v6, v10}, {v9, v15}, {v10, v11},
{v15, v17}, and {v15, v18} leads, respectively, to the congruences

(p+ 1)(τ12,6(p)− τ22(p)− p17 − p4) ≡ 0 mod 13 , (10.4.14)

(p+ 1)(τ8,8(p)− τ22(p)− p15 − p6) ≡ 0 mod 13 , (10.4.15)

(p+ 1)(τ12,6(p)− (p4 + 1)τ18(p)) ≡ 0 mod 13 , (10.4.16)

(p+ 1)(τ8,8(p)− (p6 + p4)τ12(p) + (p4 + p2)τ16(p)− (p2 + 1)τ20(p))

≡ 0 mod 13 ,

(p+ 1)(τ8,8(p)− (p6 + p4)τ12(p) + (p4 + p2)τ16(p)− p2 τ18(p)− τ22(p))

≡ 0 mod 13 .

In fact, {v10, v11} is minimal m-unfree for m = 25 · 7 · 13, so that the congru-
ence (10.4.16) refines to

(p+ 1)(τ12,6(p)− (p4 + 1)τ18(p)) ≡ 0 mod 25 · 7 · 13 . (10.4.17)

The Case m = 11. The minimal m-unfree subsets are {v5, v13}, {v10, v15},
{v14, v16}, {v14, v19}, {v16, v19}, {v17, v21}, and {v7, v8, v12} (note that the last
subset has three elements!).

By taking W = {v7, v8, v12} in Proposition 10.4.2, we obtain

λ7(p) ≡ λ8(p) ≡ λ12(p) mod 11 .

By taking W = {v14, v16}, W = {v14, v19}, and W = {v17, v21} in the same
proposition, we obtain, respectively,

λ14(p) ≡ λ16(p) mod 11 , λ14(p) ≡ λ19(p) mod 112 , λ17(p) ≡ λ21(p) mod 112 .
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The second congruence can also be written as

p(p+ 1)(τ6,8(p)− τ20(p)− p13 − p6) ≡ 0 mod 112 ,

a congruence that, by considering the case p = 11, implies the following:

(p+ 1)(τ6,8(p)− τ20(p)− p13 − p6) ≡ 0 mod 112 . (10.4.18)

The third can also be written as

(p+ 1)(τ4,10(p)− (p2 + 1)τ20(p) + p2 τ18(p)− p13 − p8) ≡ 0 mod 112 .
(10.4.19)

Examples of Specializations of Congruence (10.4.3) that Escape Proposition 10.4.2

– Since the three sets {v9, v15}, {v15, v17}, and {v17, v18} are minimal 13-unfree,
we have λ9(p) ≡ λ15(p) mod 13, λ15(p) ≡ λ17(p) mod 13, and λ17(p) ≡
λ18(p) mod 13 (the first two congruences were used above, the third was not
because it does not involve the τj,k). Let us analyze what the congruence (10.4.3)
gives for J = {9, 15, 17, 18} (and (i, j) = (4, 1)).

We obtain (thanks, PARI)

2407302λ9(p)− 513085λ15(p)− 482792λ17(p)− 1411425λ18(p)

≡ 0 mod 28 · 32 · 132 · 17

and a fortiori

λ9(p) + 64 λ15(p)− 89 λ17(p) + 24 λ18(p) ≡ 0 mod 132 .

We have

λ9(p) + 64 λ15(p)− 89 λ17(p) + 24 λ18(p) =

λ9(p)− λ15(p) + 2 λ17(p)− 2 λ18(p)

− 65 (λ17(p)− λ15(p)) + 26 (λ18(p)− λ17(p)) .

Since the two differences λ17(p)− λ15(p) and λ18(p)− λ17(p) are divisible by 13,
we end up with the congruence

λ9(p)− λ15(p) + 2 λ17(p)− 2 λ18(p) ≡ 0 mod 132

or, equivalently,

(p+1)(τ8,8(p)+2p2 τ18(p)−2(p2+1)τ20(p)+τ22(p)−p15−p6) ≡ 0 mod 132 .
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Remark. The computer says that we in fact have

λ9(p)− λ15(p) + 2 λ17(p)− 2 λ18(p) ≡ 0 mod 24 · 32 · 5 · 132

for p ≤ 113 (recall that we computed the τj,k(p) for p ≤ 113). We can show that we
have

λ9(p)− λ15(p) + 2 λ17(p)− 2 λ18(p) ≡ 0 mod 5

for every p, as follows. We verify that {v9, v14, v15} and {v6, v17, v18} are,
respectively, minimal 25-unfree and minimal 5-unfree; in particular, we have
λ9(p) ≡ λ15(p) mod 25 and λ17(p) ≡ λ18(p) mod 5.

– Earlier, we saw that we have the congruences λ14(p) ≡ λ19(p) mod 112 and
λ14(p) ≡ λ16(p) mod 11; we therefore also have

λ19(p)− λ14(p) + 22 (λ16(p)− λ14(p)) ≡ 0 mod 112 .

The congruence (10.4.3) for J = {14, 16, 19} (and (i, j) = (3, 1)) makes it
possible to show, using the same method as above, that we in fact have

λ19(p)− λ14(p) + 22 (λ16(p)− λ14(p)) ≡ 0 mod 113 .

– If we take J = {1, 2, 23, 24} (and (i, j) = (4, 1)), we obtain

λ1(p)− λ2(p) + 2 λ23(p)− 2 λ24(p) ≡ 0 mod 6912 ;

this congruence is not very surprising because the left-hand side is equal to
(τ(p)− p11 − 1)2!

Where We Explain How the Theory of Galois Representations Allows the
“Division by p+ 1” of Certain of the Previous Congruences

Theorem� 10.4.4. For every prime p, the following congruences hold:

(1) τ4,10(p) ≡ τ22(p) + p13 + p8 mod 41 (Harder conjecture [100]),
(2) τ8,8(p) ≡ (p6 + 1)τ16(p) mod 232 ,

(3) τ12,6(p) ≡ (p4 + p2)τ16(p) mod 19 ,

(4) τ4,10(p) ≡ (p8 + p2)τ12(p) mod 19 ,

(5) τ6,8(p) ≡ (p6 + p2)τ12(p) mod 17 ,

(6) τ8,8(p) ≡ (p6 + p4)τ12(p) mod 17 ,

(7) τ8,8(p) ≡ p8 + p6 + p3 + p mod 13 ,

(8) τ12,6(p) ≡ p8 + p5 + p4 + p mod 13 ,

(9) τ6,8(p) ≡ p8 + p6 + p3 + p mod 11 ,
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(10) τ6,8(p) ≡ τ20(p) + p13 + p6 mod 112 ,

(11) τ4,10(p) ≡ p10 + p8 + p3 + p mod 11 ,

(12) τ8,8(p) ≡ τ12,6(p) mod 11 ,

(13) τ12,6(p) ≡ p5 + p4 + p2 + p mod 7 ,

(14) pτ6,8(p) ≡ τ8,8(p) ≡ τ4,10(p) mod 7 ,

(15) τ8,8(p) ≡ 2(p3 + p2) mod 5 ,

(16) τ6,8,(p) ≡ τ12,6(p) ≡ τ4,10(p) ≡ p4 + p3 + p2 + p mod 5 ,

(17) τj,k(p) ≡ 2(p2 + p) mod 3 ,

(18) τj,k(p) ≡ 0 mod 2 .

Proof of Item (1). Earlier, we showed that we have the congruenceλ18(p) ≡ λ21(p)
modulo 41, using Proposition 10.4.2, and by invoking Theorem 9.2.5 (the principal
result of this book!), we saw that we have

λ21(p)− λ18(p) = (p+ 1) ( τ4,10(p)− (τ22(p) + p13 + p8) ) .

From this, we deduced the congruence (10.4.7) that we now need to “divide
by p + 1.” To do this, we will involve the 24 �-adic Galois representations
ρi,� : Gal(Q/Q) → GL24(Q�) introduced in Sect. 10.1. These are semisimple and
unramified outside � (with, in this case, � = 41) and characterized by the equalities
λi(p) = trace ρi,�(Frobp) for every p �= �.

In Sect. 10.1, we also saw that the characteristic polynomial of ρi,�(Frobp) has
integral coefficients (that are, moreover, independent of �) and that there exists a
continuous, semisimple representation ρi,� : Gal(Q/Q)→ GL24(F�), unique up to
isomorphism, that is unramified outside � and such that the characteristic polyno-
mial of ρi,�(Frobp) is the reduction modulo � of the characteristic polynomial of
ρi,�(Frobp). Lemma 10.1.1 and Proposition 10.4.2 imply the following statement.

Proposition 10.4.5. Let m be a divisor of D, � a prime divisor of m, and W a
minimal m-unfree subset of V. Then we have the congruence

det(t− ρi,�(γ)) ≡ det(t− ρj,�(γ)) mod mZ�

for all i, j with vi, vj in W and all γ in Gal(Q/Q). In particular, the representations
ρi,� and ρj,� are isomorphic.

By taking m = � = 41 and W = {v18, v21} in Proposition 10.4.5, we obtain
ρ18,41 � ρ21,41. To obtain an equation of a form similar to that of (10.4.7), we
introduce the following formalism.

Let � be a prime; denote by A� the Grothendieck ring of finite-dimensional
continuous representations ofGal(Q/Q)with coefficients in F�, which we assume to
be unramified outside �. Therefore, by its very definition, we have ρ21,41−ρ18,41 = 0
in A41.

The �-adic representations denoted by ρΔw,� for w = 11, 15, 17, 19, 21 and
ρΔw,v ,� for (w, v) = (19, 7), (21, 9), (21, 13), (21, 5) in the proof of Theorem 10.1.3
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will, here, be respectively denoted by ri;� with i = 12, 16, 18, 20, 22, and rj,k;�
with (j, k) = (6, 8), (8, 8), (12, 6), (4, 10). With this notation, we have τi(p) =
trace ri;�(Frobp) and τj,k(p) = trace rj,k;�(Frobp) for every p �= �.

A few reminders:

– The representations ri;� and rj,k;� are of dimension 2 and 4, respectively.
– The representations ri;� can be defined over Z�. It is probable that this also holds

for the representations rj,k;� (see Remark 10.1.4); in what follows, we will use
that they can be defined over the integral closure of Z� in a finite extension of
Q� (see the proof of Corollary 10.1.5).

– We denote by ω� : Gal(Q/Q) → Z
×
� the homomorphism (the �-adic represen-

tation of dimension 1) defined by the action of Gal(Q/Q) on the �αth roots of
unity, with α ≥ 1.

– We have det ri;� = ωi−1
� , det r6,8;� = ω38

� , and det rj,k;� = ω42
� for (j, k) =

(8, 8), (12, 6), (4, 10), respectively.
– We denote by ri;� : Gal(Q/Q) → GL2(F�), rj,k;� : Gal(Q/Q) → GL4(F�),

and ω� : Gal(Q/Q) → F
×
� the respective residual representations associated

with the �-adic representations ri;�, rj,k;� (see Corollary 10.1.5), and ω�; the
representation ω� can be identified with the homomorphism defined by the
action of Gal(Q/Q) on the �th roots of unity, a homomorphism that we will
also denote by χ�.

In what follows, the prime � will be fixed, hence we will leave the index � out of
the notation except in the case of A�.

Let us now return to the proof of the congruence in item (1). Take � = 41. The
equalities

ρ18 = (ω14 ⊕ ω13 ⊕ ω12 ⊕ 2 ω11 ⊕ ω10 ⊕ ω9 ⊕ ω8) ⊕
(ω7 ⊕ ω6 ⊕ ω5 ⊕ ω4)⊗ r12 ⊕ (ω3 ⊕ ω2)⊗ r18 ⊕ (ω ⊕ 1)⊗ r18

and

ρ21 = (ω12 ⊕ 2 ω11 ⊕ ω10) ⊕
(ω7 ⊕ ω6 ⊕ ω5 ⊕ ω4)⊗ r12 ⊕ (ω3 ⊕ ω2)⊗ r18 ⊕ (ω ⊕ 1)⊗ r4,10

imply that in the Grothendieck ring A41, we have the equality

ρ21 − ρ18 = (χ+ 1) ( r4,10 − (r18 + χ13 + χ8) )

and the promised equation

(χ+ 1) ( r4,10 − (r18 + χ13 + χ8) ) = 0 , (10.4.20)

which is the “Galois counterpart” of (10.4.7). To “divide this equation by χ+1,” we
use Proposition 10.4.6 below. Before stating this proposition, we will need to make
a few observations and introduce some more notation.
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Let � be a prime and ρ a finite-dimensional continuous representation of
Gal(Q/Q) with coefficients in F� that is unramified outside �. The map ρ → dim ρ
induces a ring homomorphism that we also denote by dim: A� → Z. The
Knonecker–Weber theorem shows that the determinant of ρ is a power of χ. The
map ρ → det ρ induces a map A� → Cχ, where Cχ denotes the subgroup of A×

�

generated by χ; this map is also denoted by det. Since χ is of order � − 1, the
group Cχ is canonically isomorphic to Z/(� − 1). We easily verify that we have
det(x+ y) = det(x) det(y) and det(xy) = det(x)dim y det(y)dimx for all x and y
in A�.

The abelian group underlying the commutative ring A� is the free abelian group
generated by the set S of isomorphism classes of the simple representations. Let
H =

∑

S∈S nS S, with nS ∈ Z, be an element of A�; set

‖H‖ =
∑

S∈S

|nS | dimS .

The map A� → N defined by H → ‖H‖ is a “norm”; in other words, it has the
following properties:

– H = 0 ⇐⇒ ‖H‖ = 0;
– ‖nH‖ = |n|‖H‖ for every n in Z;
– ‖H1 +H2‖ ≤ ‖H1‖+ ‖H2‖ for all H1 and H2 in A�.

Let ρ+ and ρ− be two representations of Gal(Q/Q) with coefficients in F�; we
observe that we have the equalities ‖ρ+‖ = dim ρ+ and ‖ρ−‖ = dim ρ− and the
inequality ‖ρ+ − ρ+‖ ≤ dim ρ+ + dim ρ−.

We finally reach the statement we had in mind.

Proposition 10.4.6. Let � �= 2 be a prime, and let H be an element of A�. If we
have (χ + 1)H = 0, then the integer ‖H‖ is divisible � − 1. If we moreover have
detH = 1, then the integer ‖H‖ is divisible by 2(�− 1).

Proof. The obvious action of the group Cχ on the abelian group underlying A�,
given by (χk, x) → χkx, preserves the subset S introduced above. Let S be an
element of S; denote by Ω(S) the orbit of S under the action of Cχ, by m(S) the
cardinality of this orbit (in other words, m(S) is the least integer k ≥ 1 such that we
have χkS = S), and by Z[Ω(S)] the (free abelian) subgroup of the abelian group
underlying A� generated by S. We therefore have a decomposition of the abelian
group underlying A� into a direct sum:

A� =
⊕

S∈S0

Z[Ω(S)] ,

where S0 ⊂ S is a system of representatives for the quotient set Cχ\S. This decom-
position is compatible with the action of Cχ; in particular, each factor is sent to itself
by the multiplication by χ+ 1.
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Proposition 10.4.7. Let S be an element of S. Let Ω(S) be the orbit of S under the
action of Cχ and m(S) the cardinality of this orbit, that is, the least integer k ≥ 1
such that we have χkS = S.

(a) The integer m(S) divides �− 1 and �− 1 divides m(S) dimS.
(b) The kernel of the endomorphism of the abelian group Z[Ω(S)] induced by the

multiplication by χ+ 1 is trivial if m(S) is odd and is generated (as an abelian
group) by

(1− χ+ χ2 − χ3 + . . .− χm(S)−1) S

if m(S) is even.

Proof. The only part that is not completely obvious is the second part of item (a).
To see that it is true, note that we have χm(S)S = S and det(χm(S)S) =
χm(S) dimS detS. ��
Proof of Proposition 10.4.6, Continued. Let S0,0 be the subset of S0 consisting of
the S with m(S) even; Proposition 10.4.7 shows that if we have the equality (χ +
1)H = 0, then there exist integers nS , where S runs through S0,0, such that we have

H =
∑

S∈S0,0

nS (1− χ+ χ2 − χ3 + . . .− χm(S)−1) S . (10.4.21)

By the very definition of ‖H‖, we have

‖H‖ =
∑

S∈S0,0

|nS |m(S) dimS .

The second part of item (a) of Proposition 10.4.7 says that all the products
m(S) dimS in the sum are divisible by � − 1, which proves the first part of Propo-
sition 10.4.6.

Let us turn to the proof of the second part of Proposition 10.4.6. Equality (10.4.21)
implies

detH = χ
− 1

2

∑

S∈S0,0
nS m(S) dimS

(note that we have dim(1−χ+χ2−χ3+ . . .−χm(S)−1) = 0 and det(1−χ+χ2−
χ3 + . . .− χm(S)−1) = χ−m(S)/2), so that the equality detH = 1 is equivalent to
the congruence

∑

S∈S0,0

nS m(S) dimS ≡ 0 mod 2(�− 1) .

Since |nS | and nS have the same parity and all the m(S) dimS are divisible by
� − 1, we see that the equalities (χ + 1)H = 0 and detH = 1 indeed imply that
‖H‖ is divisible by 2(�− 1). ��
Remark. The equality (χ + 1)H = 0 implies dimH = 0 and (detH)2 = 1. This
implication is “optimal” (for � �= 2). To see this, take H = H0 := 1 − χ + χ2 −
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χ3 + . . . − χ�−2 and check that we have detH0 = χ(�−1)/2. We also see that we
have ‖H0‖ = �− 1, which shows that the first part of Proposition 10.4.6 is optimal;
moreover, we have (χ + 1)(2H0) = 0, det(2H0) = 1, and ‖2H0‖ = 2(� − 1),
which shows that the second part of this proposition is also optimal.

Proof of Item (1) of Theorem 10.4.4 Using 10.4.6. Take � = 41 and H = r4,10 −
(r18 +χ13 + χ8). We have ‖H‖ ≤ 8. Since we have (χ+ 1)H = 0 (Eq. (10.4.20)),
Proposition 10.4.6 says that ‖H‖ is divisible by 40 (and even 80 because we have
detH = 1). From this, we deduce ‖H‖ = 0 and H = 0. By evaluating the
representations r4,10 and r18⊕χ13⊕χ8 “at the conjugation class Frobp,” we obtain
item (1) for p �= 41. Moreover, the congruence (10.4.7) trivially implies item (1) for
p = 41. ��
Proof of Item (2) of Theorem 10.4.4. Fix � = 23.

By taking m = � = 23 and W = {v13, v15} in Proposition 10.4.5, we obtain, as
before, the isomorphism of Galois representations

r8,8 � (χ6 ⊕ 1)⊗ r16 (10.4.22)

and the congruence

τ8,8(p) ≡ (p6 + 1)τ16(p) mod 23 .

To obtain the congruence (2) (which refines both this congruence and the congru-
ence (10.4.9)), we use the lemma below.

Lemma 10.4.8. Let B be an Artinian local ring with residue field k, G a group,
and V1, V2, W1, W2, B[G]-modules that we assume to be free of finite dimension as
B-modules. We make the following assumptions:

(i) For i = 1, 2, the semisimplifications of the k[G]-modules k⊗B Vi and k⊗B Wi

are isomorphic.
(ii) The k[G]-modules k⊗BV1 and k⊗BV2 have no common Jordan–Hölder factor.

(iii) For every g in G, we have det(t− g|V1⊕V2
) = det(t− g|W1⊕W2

).

Then for i = 1, 2 and for every g, we have det(t− g|Vi
) = det(t− g|Wi

).

Proof. Let U be the B[G]-module V1 ⊕ V2 ⊕W1 ⊕W2 and R the B-algebra that is
the image of B[G] in EndB(U). Let J be the Jacobson radical of R. Since the B-
module underlying R is of finite type, J is the greatest nilpotent bilateral ideal of R.
It is also the kernel of the natural homomorphism from R to the endomorphisms of
the semisimplification of k⊗B U . In particular, we have mR ⊂ J , where m denotes
the maximal ideal of B and R/J is a finite-dimensional semisimple k-algebra.

Artin–Wedderburn theory applied to R/J and assumption (ii) show that we can
find an idempotentf inR/J such that f acts by the identity on the semisimplification
of k ⊗B V1 and by 0 on that of k ⊗B V2. Since J is nilpotent, this idempotent lifts
to an idempotent e in R. This ensures that e acts by 0 on V2 (because it acts that
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way on all its Jordan–Hölder factors) and by the identity on V1 and W1 (for the same
reason).

The classical Amitsur identity, which expresses the coefficients of the character-
istic polynomial of a sum of two matrices as a universal function of the coefficients
of the characteristic polynomials of these two matrices, shows that the equality of
the determinants in assumption (iii) more generally implies det(t − r|V1⊕V2

) =
det(t− r|W1⊕W2

) for every r in R. The lemma follows: let g be an element of G; for
i = 1 (resp. i = 2), we specialize this identity to r = ge (resp. r = g (1− e)). ��
Proof of Item (2) of Theorem 10.4.4 Using 10.4.8. We specialize the lemma in
question.

(Recall: the prime � is fixed, equal to 23, the notation r8,8, r16, ω, ρ13, ρ15, and χ
that appears below is the abbreviation of r8,8;23, r16;23, ω23, ρ13,23, ρ15,23, and χ23,
respectively.)

The representation r8,8 can be defined over the integral closure of Z23 in a finite
extension of Q23, which we denote by D. The representation r16 can be defined over
Z23 and a fortiori over D; likewise, the representation ω is defined over Z23 and a
fortiori over D.

For B, take the quotient ring D/232. The ring B is local, its residue field k is a
finite field of characteristic 23; B is Artinian (it is finite!).

For G, take the Galois group Gal(Q/Q).
For V1, V2, W1, and W2, take the B-module B4 endowed with the linear action

of the group G given by the representations (ω6 ⊕ 1) ⊗ r16, ω ⊗ (ω6 ⊕ 1) ⊗ r16,
r8,8, and ω ⊗ r8,8, respectively.

Assumption (i) of Lemma 10.4.8 follows from the isomorphism (10.4.22) and the
extension of scalars of F23 to k.

It is not difficult to verify assumption (ii). The (residual) representation r16 (mod-
ulo 23) is simple [194] (to see this ab initio, note that we have 47 ≡ 1 mod 23
and τ16(47) �≡ 2 mod 23); it follows, again by Kronecker–Weber, that k ⊗F23 r16 is
also simple. The Jordan–Hölder factors of k ⊗B V1 (resp. k ⊗B V2) are therefore
k⊗F23 r16 and k⊗F23 (χ

6 r16) (resp. k⊗F23 (χ r16) and k⊗F23 (χ
7 r16)). We conclude

by observing that the determinant of r16, χ6 r16, χ r16, and χ7 r16 is, respectively,
χ15, χ5, χ17, and χ7.

Assumption (iii) of Lemma 10.4.8 is implied by Proposition 10.4.5 and the fact
that we have ρ13 = v ⊕ σ and ρ15 = w ⊕ σ, with v = (ω ⊕ 1) ⊗ (ω6 ⊕ 1) ⊗ r16,
w = (ω ⊕ 1)⊗ r8,8, and σ a 23-adic representation of dimension 16.

The conclusion of the lemma says that “the characteristic polynomials at Frobp,”
for p �= 23, of the 23-adic representations (ω6 ⊕ 1) ⊗ r16 and r8,8 are congruent
modulo 232. A fortiori, “the traces in Frobp,” for p �= 23, are congruent modulo 232;
in other words, the congruence in item (2) is satisfied for p �= 23. The case p = 23
trivially follows from the congruence (10.4.9). ��
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Proof of Item (3) of Theorem 10.4.4. Fix � = 19.
By taking m = � = 19 and W = {v9, v10} in Proposition 10.4.5 and using

Proposition 10.4.6, we obtain the equality

r12,6 − (χ4 + χ2) r16 + χ2 r18 − r22 = 0

in the Grothendieck ring A19 or, equivalently, the isomorphism of representations

r12,6 ⊕ χ2 r18 � (χ4 ⊕ χ2) r16 ⊕ r22 . (10.4.23)

Since the representations r16 and r22 are simple (we can see this by observing that
we have τ16(5) �≡ τ16(43) mod 19 and τ22(5) �≡ τ22(43) mod 19, while we have
5 ≡ 43 mod 19), the representation χ2 r18 is necessarily isomorphic to one of the
representations χ4 r16, χ2 r16, or r22. Computing the determinants shows that the
only possibility is

χ2 r18 � r22 . (10.4.24)

Since the representations r12,6 and (χ4 ⊕ χ2) r16 are semisimple, the isomor-
phisms (10.4.23) and (10.4.24) imply

r12,6 � (χ4 ⊕ χ2) r16 .

This isomorphism implies item (3) for p �= 19. We easily verify that this congruence
also holds for p = 19 (the use of the computation of τ12,6(19) can be avoided by
observing that the congruences 192τ18(19) ≡ τ22(19) and (10.4.10) imply item (3)
for p = 19). ��
Proof of Items (4), (5), and (6) of Theorem 10.4.4. The proof of item (4) is the same
as that of item (3); it is, moreover, quicker if we use (10.4.24).

Let us move on to items (5) and (6). Obviously, set � = 17.
By using the “Galois counterpart” of (10.4.13) and copying the proof of item (3),

we obtain the isomorphisms of representations

χ2 r16 � r20 (10.4.25)

and
r6,8 � (χ6 ⊕ χ2)⊗ r12 .

This isomorphism implies item (5) for p �= 17; the case p = 17 can be taken care of
as in the case of item (3).

The Galois counterpart of (10.4.12) is the following equation in A17:

(χ+ 1) (r8,8 − (χ6 + χ4)r12 + (χ4 + χ2)r16 − (χ2 + 1)r20) = 0 .

This equation and the isomorphism (10.4.25) imply

(χ+ 1) (r8,8 − (χ6 + χ4)r12) = 0 .
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By invoking Proposition 10.4.6, we obtain the equation

r8,8 − (χ6 + χ4)r12 = 0

or, equivalently, the isomorphism of representations

r8,8 � (χ6 ⊕ χ4)⊗ r12

(the two sides are semisimple). This isomorphism implies item (6) for p �= 17; the
case p = 17 can be taken care of as before. ��
Remark. The Galois counterpart of (10.4.11) is the following equation in A17:

(χ+ 1) ((χ4 + χ2)r16 − (χ2 + 1)r20 + r22 − χ17 − χ4) = 0 .

In view of (10.4.25), this gives the equation

(χ+ 1) (r22 − χ17 − χ4) = 0 .

By once again invoking Proposition 10.4.6, we obtain the equation

r22 − χ17 − χ4 = 0

or, equivalently, the isomorphism of representations

r22 � χ17 ⊕ χ4 = χ⊕ χ4 .

This isomorphism r22 � χ⊕ χ4 is one of the isomorphisms given by Swinnerton-
Dyer in [194]; from now, we systematically use this type of isomorphism.

Proof of Items (7), (8), (9), (11), and (13) of Theorem 10.4.4. The starting point of
these proofs is, respectively,

– the equation in A13 that is the Galois counterpart of the congruence (10.4.15),
– the equation in A13 that is the Galois counterpart of the congruence (10.4.14)

or the congruence (10.4.16),
– the equation in A11 that is the Galois counterpart of the reduction modulo 11 of

the congruence (10.4.18) (that is a congruence modulo 112),
– the equation in A11 that is the Galois counterpart of the reduction modulo 11 of

the congruence (10.4.19) (that is a congruence modulo 112),
– the equation in A7 that is the Galois counterpart of the reduction modulo 7 of the

congruence (10.4.17) (that is a congruence modulo 25 · 7 · 13 whose reduction
modulo 13 is the congruence (10.4.16) mentioned above).

By the method we repeatedly used above, we express the rj,k that interest us in
terms of certain ri and χ. All the ri that appear can, in turn, be expressed in terms
of χ thanks to the Swinnerton-Dyer isomorphisms [194]. In the end, we obtain
isomorphisms of the form rj,k � χa1 ⊕ χa2 ⊕ χa3 ⊕ χa4 that lead to items (7), (8),
(9), (11), and (13).
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Let us, for example, treat the case of the congruence in item (13).
We fix � = 7. By taking m = � = 7 and W = {v10, v11} in Proposition 10.4.5,

we obtain the following equation in A7:

(χ+ 1)(r12,6 − (χ4 + 1)r18) = 0 .

Since the representations r12,6 and (χ4⊕1)⊗r18 have the same determinant (namely
χ42) and since we have the inequality ‖r12,6− (χ4 +1)r18‖ ≤ 8, the second part of
Proposition 10.4.6 shows that we in fact have the equation

r12,6 − (χ4 + 1)r18 = 0

or, equivalently, the isomorphism of representations

r12,6 � (χ4 ⊕ 1)⊗ r18 .

But Swinnerton-Dyer tells us that we have r18 � χ ⊕ χ4, so that in the end, we
obtain

r12,6 � χ5 ⊕ χ4 ⊕ χ2 ⊕ χ .

This isomorphism gives item (13) for p �= 7; the case p = 7 follows from (10.4.17).
��

Proof of Item (10) of Theorem 10.4.4. This is similar to that of item (2).
Fix � = 11.
By taking m = � = 11 and W = {v14, v19} in Proposition 10.4.5, we obtain the

following equation in A11:

χ(χ+ 1) (r6,8 − r20 − χ13 − χ6) .

We “divide this equation by χ(χ + 1),” observing that χ is invertible and using
Proposition 10.4.6; we thus obtain the isomorphism of Galois representations

r6,8 � r20 ⊕ χ13 ⊕ χ6

and the congruence

τ6,8(p) ≡ τ20(p) + p13 + p6 mod 11 . (10.4.26)

This congruence transforms into that in item (9) using the congruence τ20(p) ≡
p8 + p mod 11 of [194].

But in the first part of this section, we saw that for every prime p, we have the
congruence (10.4.18):

(p+ 1)(τ6,8(p)− τ20(p)− p13 − p6) ≡ 0 mod 112 .
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To “divide this congruence by p+1,” we use the method that has allowed us to obtain
item (2) from the congruence (10.4.9) (namely, the application of Lemma 10.4.8).

��
Remark. We cannot have a congruence of the form

τ6,8(p) ≡ pa1 + pa2 + pa3 + pa4 mod 112

for every prime p, where we assume p �= 11. Indeed, in view of item (10), we would
have τ20(p) ≡ pa1 +pa2 +pa3 +pa4−p13−p6 mod 112. But this congruence does
not hold for the least prime p with p ≡ 1 mod 112, namely p = 727: τ20(727) ≡
68 �≡ 2 mod 112.

Remark. In the first part of this section, we saw that for every prime p, we have the
congruence (10.4.19):

(p+ 1)(τ4,10(p)− (p2 + 1)τ20(p) + p2 τ18(p)− p13 − p8) ≡ 0 mod 112 .

The Galois counterpart of the reduction modulo 11 of this congruence is the following
equation in A11:

(χ+ 1)(r4,10 − (χ2 + 1)r20 + χ2 r18 − χ13 − χ8) = 0 .

Using the isomorphisms r20 � χ8 ⊕ χ and r18 � χ6 ⊕ χ of [194], we obtain the
equation

(χ+ 1)(r4,10 − χ8 − χ3 − χ− 1) = 0

that, after “dividing by p + 1,” leads to the congruence in item (11). But this time,
Lemma 10.4.8 does not allow “dividing the congruence (10.4.19) by p+1” because
the assumption on the Jordan–Hölder factors is not satisfied. However, we see that
the congruence

τ4,10(p) ≡ (p2 + 1)τ20(p)− p2 τ18(p) + p13 + p8 mod 112

holds for p ≤ 113 (recall that we have determined the τj,k(p) for p ≤ 113); note
that this is truly information only for the primes p ≤ 113 with p + 1 ≡ 0 mod 11,
namely 43 and 109!

Proof of Items (12) and (14) of Theorem 10.4.4. The proofs of these items are of the
same type (which is why we combined them). Let us prove, for example, that for
every prime p, we have the congruence

pτ6,8(p) ≡ τ8,8(p) mod 7 . (10.4.27)

Fix � = 7.
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By taking m = � = 7 and W = {v15, v19} in Proposition 10.4.5, we obtain the
following equation in A7:

(χ+ 1)r8,8 − χ(χ+ 1)r6,8

+ (χ5 + χ2)r16 − (χ5 + 1)r12 − Sym2 r12 + χ5 + 2χ2 = 0 . (10.4.28)

We see that the isomorphisms r16 � χ2 + χ and r12 � χ4 + χ of [194] imply

(χ5 + χ2)r16 − (χ5 + 1)r12 − Sym2 r12 + χ5 + 2χ2 = 0 ,

so that Eq. (10.4.28) simplifies to the following:

(χ+ 1)r8,8 − χ(χ+ 1)r6,8 = 0 . (10.4.29)

Set H = r8,8−χr6,8; Eq. (10.4.29) says that we have (χ+1)H = 0, and we see that
we have detH = 1. We can therefore apply the second part of Proposition 10.4.6:
‖H‖ is divisible by 12. Since, a priori, we have ‖H‖ ≤ 8, it follows that we have
H = 0, the isomorphism of representations

χ r6,8 � r8,8 , (10.4.30)

and the congruence (10.4.27) for p �= 7. The case p = 7 is left to the reader. ��
Proof of Items (15), (16), (17), and (18) of Theorem 10.4.4. As before, the proofs of
these items are all of the same type. We give a few details on the proof of the congru-
ences in item (16), and we restrict ourselves to indicating the essential modifications
needed to obtain the proofs of items (15), (17), and (18).

Fix � = 5.
Consider the subset W := {v10, v17, v19, v21} of V; we easily verify that W is

minimal 5-unfree. By Proposition 10.4.5, it follow that the four representations ρ10,
ρ17, ρ19, and ρ21 are pairwise isomorphic. The isomorphism ρ10 � ρ17 gives the
following equation in A5:

(χ+ 1)r12,6 = (χ3 + χ2 + χ+ 1)r20 − (χ3 + χ2)r18 (10.4.31)
+ (χ3 + χ2 + χ+ 1)r12 − 2χ3 − χ2 − 1 .

In view of [194], this equation becomes

(1 + χ)r12,6 = 2(1 + χ+ χ2 + χ3) . (10.4.32)

This equation shows that the (semisimple) representation (1⊕ χ)⊗ r12,6 is a direct
sum of powers of χ; it follows that the same holds for r12,6. Consequently, in A5 we
have an equation of the form

r12,6 = a0 + a1χ+ a2χ
2 + a3χ

3 (10.4.33)
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with ak, for k = 0, 1, 2, 3, integers satisfying ak ≥ 0 and a0 + a1 + a2 + a3 = 1.
Equation (10.4.32) can be rewritten as follows:

(1 + χ)(r12,6 − (1 + χ+ χ2 + χ3)) = 0 ;

this form and part (b) of Proposition 10.4.7 (take S = χ) show that there exists an
integer n such that we have

r12,6 = 1 + χ+ χ2 + χ3 + n(1− χ+ χ2 − χ3) .

The inequalities ak ≥ 0 show that we have |n| ≤ 1. The computation of the
determinant of the two sides shows that we have n ≡ 0 mod 2. We therefore have
n = 0 and an isomorphism of representations

r12,6 � 1⊕ χ⊕ χ2 ⊕ χ3 .

This isomorphism implies the congruence τ12,6(p) ≡ 1 + p + p2 + p3 mod 5 or,
equivalently, τ12,6(p) ≡ p4 + p3 + p2 + p mod 5, for p �= 5. The case p = 5 is left
to the reader.

Likewise, the isomorphisms ρ19 � ρ17 and ρ21 � ρ17 lead to the congruences
τ6,8(p) ≡ p4 + p3 + p2 + p mod 5 and τ4,10(p) ≡ p4 + p3 + p2 + p mod 5.
(Note that the isomorphism ρ19 � ρ17 naturally leads to the isomorphism χr6,8 �
1⊕ χ⊕ χ2 ⊕ χ3 but that we have χ−1 (1⊕ χ⊕ χ2 ⊕ χ3) ∼= 1⊕ χ⊕ χ2 ⊕ χ3.)

The congruence in item (15), in turn, follows by taking, for example, W =
{v3, v15}.

Let us finally move on to the congruences in items (17) and (18). We can prove
them by taking � = 2, 3,m = 6, andW = {v6, v10}, {v6, v15}, {v6, v19}, {v6, v21}
in Proposition 10.4.5.

Recall that when the prime � is 2 or 3, the isomorphisms of [194] that concern us
take on a particularly simple form: ri � 1⊕ 1 for � = 2 and ri � 1⊕ χ for � = 3.

For � = 2, the previous methods give

rj,k � 1⊕ 1⊕ 1⊕ 1 . (10.4.34)

For � = 3, we find that the representations rj,k are each isomorphic to one of the
following three representations: 1⊕ 1⊕ 1⊕ 1,1⊕ 1⊕χ⊕χ, or χ⊕χ⊕χ⊕χ. We
remove the ambiguity by using the fact that the dual representation r∗j,k is isomorphic
to the representation χrj,k (see the beginning of Remark 10.1.6):

rj,k � 1⊕ 1⊕ χ⊕ χ . (10.4.35)
��

On the Decomposition of the rj,k;� into Irreducible Factors

As we have just seen, items (12) and (14) of Theorem 10.4.4 are consequences
of isomorphisms between certain representations of the form rj,k;� or χ ⊗ rj,k;�.



10.4 Harder-Type Congruences 357

Each of the other congruences of this theorem, with the exception of those in items
(2) and (10) (however, their reductions modulo 23 and 11, respectively, are no
exception), is the manifestation of a reducibility property of a representation rj,k;�.
Proposition 10.4.9 below, which is probably well known, describes exhaustively the
different possibilities for a reduction of a representation of this type; it explains, in
part, the structure of the congruences we have stated.

Let � be a prime, and let κ be an integer. Denote by Rκ,� the (finite) set of the
isomorphism classes of irreducible representations Gal(Q/Q) → GL2(F�) of the
form ρπ,ι, where π ∈ Πcusp(PGL2) is the automorphic representation generated by
an element ofSκ(SL2(Z)) that is an eigenform for the Hecke operators. Recall that we
denote by ν : GSp2g → Gm the “similitude factor” homomorphism (see Sect. 2.1).
Finally, if S is a finite-dimensional irreducible F�-representation of Gal(Q/Q),
denote bym(S) the least integerm ≥ 1 such that we haveχm⊗S � S (recall that we
have set χ = ω�); this notation agrees with the one introduced in Proposition 10.4.7.

Proposition 10.4.9. Let � be an odd prime and

r : Gal(Q/Q)→ GSp4(F�)

a continuous semisimple representation that is unramified outside �. Denote by w
the element of Z/(�− 1) such that we have ν ◦ r = χw, and suppose w ≡ 1 mod 2.

Then we are in one, and only one, of the following cases:

(i) There exist a and b inZ/(�−1) such that we have r � χa⊕χb⊕χw−a⊕χw−b.
(ii) There exist κ ≤ � + 1, a representation ρ in Rκ;�, and a, b in Z/(� − 1) with

2a+ κ− 1 ≡ w mod m(ρ), such that we have r � (χa ⊗ ρ)⊕ χb ⊕ χw−b.
(iii)1 There exist κ ≤ � + 1, a representation ρ in Rκ,�, and a in Z/(� − 1) with

2a+ κ− 1 �≡ w mod m(ρ), such that we have r � (χa ⊕ χw−a−κ+1)⊗ ρ.
(iii)2 There exists a F�-representation ρ, irreducible of dimension 2, of determinant

det ρ = χa with a ∈ 2Z and a �≡ w mod m(ρ), such that we have r �
(1⊕ χw−a)⊗ ρ.

(iv) For i = 1, 2, there exist κi ≤ � + 1, a representation ρi in Rκi;�, and ai
in Z/(� − 1) with 2ai + κi − 1 ≡ w mod m(ρi), such that we have r �
(χa1 ⊗ ρ1)⊕ (χa2 ⊗ ρ2).

(v) The representation r is irreducible.

Proof. Let V be a finite-dimensional F�-representation of G = Gal(Q/Q); denote
by i(V ) the representationV ∗⊗χw. It is clear that we have V ∼= i(i(V )) and that the
map V → i(V ) defines an auto-equivalence, which is exact and contravariant, of the
category of finite-dimensional F�-representations of G. In particular, the finite set
J(r) of Jordan–Hölder factors of the representation r is stable under the involution i.

Note that the elements of J(r) are of dimension 1 or 2. Indeed, suppose r � V ⊕W
with V irreducible of dimension 3 (andW of dimension 1). The nondegenerate alter-
nating bilinear form associated, by definition, with the F�-vector space underlying r
provides a naturalG-equivariant isomorphism r→ i(r) that induces an isomorphism
V → i(V ). It follows, in particular, that the restriction to V of the alternating bilinear
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form mentioned above is nondegenerate, which is absurd because the dimension of
V is odd.

As mentioned before, the Kronecker–Weber theorem asserts that the only homo-
morphisms G→ F

×
� , assumed continuous and unramified outside �, are the powers

of χ. Since the integers � and w are odd, we have i(χa) = χw−a �= χa for every a
in Z, so that no representation of dimension 1 of G is “fixed” by i. In particular, r is
the sum of four characters if and only if we are in case (i) of the proposition.

Let V be an irreducible F�-representation of dimension 2 of G assumed to be
continuous and unramified outside �. Recall that V is called odd if the conjugacy
class of G consisting of the complex conjugations admits the eigenvalues 1 and −1
in the representation V . This is equivalent to saying that we have detV = χs with
s ≡ 1 mod 2. If V is odd, then the “level 1 case” of Serre’s conjecture, proved
by Khare [117], asserts that there exist a in Z/(� − 1), an integer κ ≤ � + 1,
and a representation ρ in Rκ;�, such that we have V � χa ⊗ ρ. The equality
det ρ = χκ−1 moreover shows that we have V � i(V ) if and only if we have
2a+ κ− 1 ≡ w mod m(ρ).

Suppose that there exists a V in J(r) of dimension 2 with i(V ) �� V . In this case,
we have r � V ⊕ i(V ) and i(V ) � V ⊗ χw (det V )−1. We are therefore in case
(iii)1 if V is odd, and in case (iii)2 otherwise. Note that V is odd if and only if i(V )
is, so that cases (iii)1 and (iii)2 are mutually exclusive.

We may therefore assume that every representation V of J(r) is either of di-
mension 1, or of dimension 2 with i(V ) � V . Note that in the latter case, V
is automatically odd (because w ≡ 1 mod 2). By Khare’s theorem, V is there-
fore of the form χa ⊗ ρ with ρ ∈ Rκ;� and κ ≤ � + 1, and, moreover, we have
2a + κ − 1 ≡ w mod m(ρ). We are therefore in case (ii) or (iv), according to
whether J(r) contains a representation of dimension 1 or two representations of
dimension 2, respectively. In the remaining case, r is irreducible. ��

This result and Table C.3, in turn, make it possible to prove the nonexistence of
certain congruences. Let us give a few examples to conclude.

Proposition� 10.4.10. The representation rj,k;� is irreducible (over F�) in each of
the following cases:

(j, k) = (6, 8) and � = 7, 13, 19,
(j, k) = (8, 8) and � = 7, 11, 19,
(j, k) = (12, 6) and � = 11, 17,
(j, k) = (4, 10) and � = 7, 13, 17.

Moreover, in each of these cases, we have m(rj,k;�) = � − 1, except when (j, k) =
(6, 8) and � = 13, in which case we merely have m(r6,8;13) ≡ 0 mod 6.

Proof. The representation rj,k;�, viewed over F�, satisfies the assumptions of Propo-
sition 10.4.9 (with w = j + 2k − 3), by Remark 10.1.6. Applying this proposition,
we must therefore exclude, for each of the triples (j, k; �) in the statement above, the
possibility of a decomposition of the form (i)–(iv). Table C.3 is sufficiently stocked
to allow us several ways to proceed. Let us give a few simple recipes.
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Criterion 1. If rj,k;� is in one of the cases (i), (ii), (iii)1, and (iv), and if p is a prime
with p ≡ 1 mod �, we have, respectively,

τj,k(p) ≡ 4 mod � in case (i),
τj,k(p) ≡ τκ(p) + 2 mod � in case (ii),
τj,k(p) ≡ 2τκ(p) mod � in case (iii)1, and
τj,k(p) ≡ τκ1(p) + τκ2(p) mod � in case (iv).

Criterion 2. If rj,k;� is in case (iii)2, then τj,k(p) ≡ 0 mod � for every prime p with
p ≡ −1 mod �.

First, suppose � = 7. We have Sκ(SL2(Z)) = 0 for every κ ≤ � + 1, and
Rκ,7 = ∅ for κ ≤ 8. It therefore suffices to eliminate the cases (i) and (iii)2. We have
29 ≡ 1 mod 7, and from Table C.3 we extract the congruences

τ6,8(29) ≡ τ4,10(29) ≡ τ8,8(29) ≡ 0 mod 7 ,

which eliminates case (i) by Criterion 1. We eliminate case (iii)2 likewise, using
Criterion 2: we have 13 ≡ −1 mod 7, τ6,8(13) ≡ 6 mod 7, and τ4,10(13) ≡
τ8,8(13) ≡ 1 mod 7.

Suppose � = 11. We eliminate cases (i) and (iii)2 as before, by observing first
that we have 23 ≡ 1 mod 11 while we have τ8,8(23) ≡ τ12,6(23) ≡ 0 mod 11, then
that we have 43 ≡ −1 mod 11 while we have τ8,8(43) ≡ τ12,6(23) ≡ 6 mod 11.
The unique integer κ ≤ � + 1 such that we have Sκ(SL2(Z)) �= 0 is κ = 12, and
we have τ12(23) ≡ −1 mod 11. The irreducibility of rj,k;11 for (j, k) = (8, 8) and
(12, 6) follows by observing that we have τj,k(23) �≡ 1,−2 mod 11 (Criterion 1).

The case � = 13 is similar because we have S14(SL2(Z)) = 0. Criterion 1
applies because we have 53 ≡ 1 mod 13, τ12(53) ≡ −3 mod 13, and τ6,8(53) ≡
τ4,10(53) ≡ 3 mod 13. Criterion 2 also applies because we have 103 ≡ −1 mod 13,
τ6,8(103) ≡ 11 mod 13, and τ4,10(103) ≡ 5 mod 13.

In the case � = 17, we again conclude using Criteria 1 and 2, thanks to the
following congruences: 103 ≡ 1 mod 17, τ12(103) ≡ 2 mod 17, τ16(103) ≡
6 mod 17, τ18(103) ≡ 8 mod 17, and τ4,10(103) ≡ τ12,6(103) ≡ 1 mod 17;
67 ≡ −1 mod 17, τ4,10(67) ≡ 8 mod 67, and τ12,6(67) ≡ 12 mod 67.

In the case � = 19, the least prime p with p ≡ 1 mod 19 is 191 > 113, which falls
outside of Table C.3. On the other hand, Criterion 2 does eliminate case (iii)2 because
we have 37 ≡ −1 mod 19, τ6,8(37) ≡ 4 mod 19, and τ8,8(37) ≡ 8 mod 19. Let us
state another criterion. This one is based on the following observation: for � ≤ 19, if
rj,k;� is not in case (iii)2, then all its Jordan–Hölder factors are defined over F�. This
follows from Proposition 10.4.9 and the fact that we have dimSκ(SL2(Z)) ≤ 1 for
κ ≤ �+ 1 ≤ 20.

Criterion 3. Suppose that we have � ≤ 19 and that rj,k;� is not in case (iii)2.
Suppose, moreover, that there exists a prime p �= � such that the polynomialPp(t) :=
det(t− rj,k;�(Frobp)) in Z[t] is irreducible modulo �. Then the representation rj,k;�
is irreducible.
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As we have already determined the τj,k(p) for p ≤ 113 (Table C.3) and the
τj,k(p

2) for p ≤ 29 (Table C.4), formula (9.1.3) shows that we have polynomials
Pp(t) at our disposal for p ≤ 29. In the case � = 19, the criterion above holds for
(j, k) = (6, 8) and p = 3, and for (j, k) = (8, 8) and p = 13.

It remains to justify the last assertion of Proposition 10.4.10 concerning the
m(rj,k;�). We use the following observation: let p �= � be a prime with τj,k(p) �≡
0 mod �; then m(rj,k;�) is divisible by the order of p in (Z/�)×.

For example, the prime 3 generates (Z/7)×, and we have the congruences
3τ6,8(3) ≡ τ4,10(3) ≡ τ8,8(3) ≡ 4 mod 7. This shows m(r6,8;7) = m(r8,8;7) =
m(r4,10;7) = 6. The other cases are similar. For � = 13, we use that the prime
2 generates (Z/�)×, and the congruence τ4,10(2) ≡ 10 mod 13, so that we have
m(r4,10;13) = 12. On the other hand, we have τ6,8(2) ≡ 0 mod 13. We show
m(r6,8;13) ≡ 0 mod 6 using the congruence τ6,8(17) ≡ 7 mod 13. ��

It is clear that the ad hoc methods used above are rather coarse, and that it
is possible to study the potential decompositions of the representations rj,k;� for
characteristics � > 19. We postpone this study, as well as the more interesting matter
of determining the images of the rj,k;�, to a later work. To self-congratulate ourselves,
we note that the triples (j, k; �) that appear in the statement of Proposition 10.4.10
are exactly those that do not occur in the statement of Theorem 10.4.4 when we have
� ≤ 19.

Remark 10.4.11. Suppose that rj,k;� is irreducible over F� (and therefore, in partic-
ular, that we have � > 5). The following assertions are equivalent:

(i) For every prime p that is not a square modulo �, we have τj,k(p) ≡ 0 mod �.
(ii) The integer m(rj,k;�) divides (�− 1)/2.

(iii) The residual representation rj,k;� is induced by an irreducible representation of
dimension 2, with coefficients in F�2 , of the absolute Galois group of Q(

√
�∗)

with �∗ = (−1)(�−1)/2�.

In the cases (j, k) = (6, 8) and � = 13, an examination of Table C.3 shows that
the congruence of assertion (i) holds for every prime p ≤ 113. It is tempting to
conjecture that it always holds, in other words, that we have m(r6,8;13) = 6.



Appendix A
The Barnes–Wall Lattice and the Siegel
Theta Series of Even Unimodular Lattices
of Dimension 16

(Following Martin Kneser [124])

We describe in this appendix the elegant and elementary proof given by M. Kneser
of the fact that the Siegel theta series with genus ≤ 3 of the two even unimodular
lattices of dimension 16 coincide.

The Barnes-Wall lattice is a remarkable lattice of dimension 16 discovered by
Barnes and Wall in 1959 [19]. It appears repeatedly in [68], where it is denoted
by Λ16 or BW16 (Conway and Sloane mischievously mention that it has been
rediscovered by many authors). In [19], Barnes and Wall in fact define a sequence of
lattices (Λ2n)n∈N−{0}, where Λ2n has dimension 2n; the first three lattices in this
sequence are isomorphic to, respectively, I2, D4, and E8. For a simple and elegant
introduction to the Barnes–Wall lattices, we recommend [154] and [155]; one can
also consult [41]. The lattice U that appears in the reference [124] is an avatar of
Λ16. The definition of Λ16 we give below suffices for us.

Let I be a Lagrangian of the q-vector spaceF2⊗ZE8 (we therefore have q(I) = 0
and dimF2 I = 4). We denote by Λ16 the submodule of E8 ⊕ E8 consisting of the
ordered pairs (x1, x2) of elements of E8 whose reductions x̄1 and x̄2 modulo 2
satisfy x̄1 + x̄2 ∈ I; Λ16 can be viewed as an integral lattice (in the quadratic sense)
in Q⊗Z (E8 ⊕ E8).

Proposition A.1. The lattice Λ16 has the following properties:

(a) We have q(x) ≥ 2 (or, equivalently, x.x ≥ 4) for every x in Λ16 − {0}.
(b) We have ξ.ξ ∈ Z for every ξ in the dual lattice Λ�

16, and Λ�
16 endowed with the

quadratic form ξ → ξ.ξ is isomorphic to Λ16 (as a q̃-module).
(c) The module underlying the qe-module resΛ16 is annihilated by 2, and the qe-

module resΛ16 is isomorphic to the hyperbolic F2-q-vector space H(I) via the
canonical embedding of F2 in Q/Z.

Proof of Part (a). Let x = (x1, x2) be an element of Λ16 − {0}. If x1 and x2 are
nonzero, then we have q(x) = q(x1) + q(x2) ≥ 1 + 1. If xi is zero for some i, then
x3−i belongs to I (and is nonzero) and q(x3−i) is even. ��
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Proof of Part (b). The lattice Λ�
16 is the submodule of Q ⊗Z (E8 ⊕ E8) consisting

of the elements ξ = (ξ1, ξ2) such that (ξ1 + ξ2, ξ1 − ξ2) belongs to Λ16. Since we
have the identity q(ξ1 + ξ2) + q(ξ1 − ξ2) = 2(q(ξ1) + q(ξ2)), this concludes the
proof of property (b). ��
Proof of Part (c). Let ΔI be the linear subspace of F2 ⊗Z (E8 ⊕ E8) = (F2 ⊗Z

E8)⊕ (F2⊗Z E8) that is the diagonal image of I . Note that Λ16 is the submodule of
E8 ⊕ E8 obtained by taking the inverse image of (ΔI)⊥ under the homomorphism
E8⊕E8 → F2⊗Z (E8⊕E8). Having made this observation, we see that property (c)
is a manifestation of the general phenomenon described below.

Let L be a q-module over Z. Let p be a prime and J a linear subspace of Fp⊗Z L
with q(J) = 0. Let M be the submodule of L consisting of the elements whose
reduction modulo p is orthogonal to J . Then the abelian group resM is annihilated
by p and the qe-module resM is isomorphic to the hyperbolic Fp-q-vector space
H(J) (∼= H(J∗) ∼= H(L/M)), via the canonical embedding of Fp in Q/Z. ��

Corollary A.2. We have ξ.ξ ≥ 2 for every ξ in Λ�
16 − {0}.

Let us now explain how to use the properties of the lattice Λ16, following Kneser’s
strategy, to deduce the equality of theta series

ϑ
(g)
E8⊕E8

= ϑ
(g)
E16

for g ≤ 3 (a result due to Witt for g ≤ 2 [213]).
This equality can be reformulated in terms of representations of integral quadratic

forms by E8 ⊕ E8 and E16. Let us explain the terminology. Let L be an even uni-
modular lattice and G a free, finite-dimensionalZ-module endowed with a quadratic
form with integral values (in view of what follows, we may assume that these values
are nonnegative); a representation of G by L is a homomorphism f : G → L with
q(f(x)) = q(x) for every x in G. We denote byRep(G,L) the set of representations
of G by L; this set is clearly finite. Here is the reformulation we announced:

Theorem A.3. Let G be a free, finite-dimensional Z-module endowed with a
quadratic form with integral values. If we have dimG ≤ 3, then the sets
Rep(G,E8 ⊕ E8) and Rep(G,E16) have the same cardinality.

Proof. The key point is the following observation.
Let γ : Λ�

16 → resΛ16 be the passage to the quotient. We denote by I the (finite)
set of Lagrangians of resΛ16 and byL the set of even unimodular lattices inQ⊗ZΛ16

containing Λ16 (and thus contained in Λ�
16). Recall that the map I → L defined by

I → γ−1(I) is a bijection (compatible with the inclusion relations).
Let J be a submodule of resΛ16 with q(J) = 0 and dimF2 J = 3. Let M be

the lattice γ−1(J); we have resM ∼= J⊥/J � H(Z/2) (see Proposition 2.1.1). Let
B be the lattice that is the inverse image under the homomorphism M � → resM
of the nonisotropic “line” (nonisotropic in the quadratic sense but isotropic in the
bilinear sense); B is an odd unimodular lattice (see the discussion “2-Neighbors,
The Point of View of Borcherds” after Proposition 3.1.9). Since B is contained in
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Λ�
16, Corollary A.2 implies that we have x.x ≥ 2 for every x in B − {0}. Finally,

Scholium-Definition 3.3.3.2 shows that B is isomorphic to the lattice Bor16 defined
there and that the two even unimodular lattices that are the inverse images of the two
isotropic “lines” of resM are nonisomorphic (note, incidentally, that this observation
also shows that the isomorphism class of M is independent of the choice of J).

The observation above leads to the following lemma. We also use the term
representation of G by Λ�

16 for a homomorphism f : G→ Λ�
16 with q(f(x)) = q(x)

for every x in G.

Lemma A.4. Let f be a representation of G by Λ�
16 with dimG ≤ 3. Let L(f) be

the subset ofL consisting of the lattices L containing f(G). Let L1(f) andL2(f) be
the subsets of L(f) consisting of the lattices L isomorphic to, respectively, E8 ⊕E8

and E16. Then L1(f) and L2(f) have the same cardinality.

Proof. Let the subsets I(f), I1(f), and I2(f) of I be the respective inverse images
of the subsets L(f), L1(f) and L2(f) of L under the inverse of the bijection I →
γ−1(I). Let J be the set of the submodules J of resΛ16 considered above; let J(f)
be the subset of J consisting of the J with J ⊃ (γ ◦ f)(G). Let K(f) ⊂ I(f)×J(f)
and Ki(f) ⊂ Ii(f)× J(f) for i = 1, 2 be the subsets consisting of the pairs (I, J)
with I ⊃ J . Finally, let πJ : K(f) → J(f) and πI : K(f) → I(f) be the maps
(I, J) → J and (I, J) → I . It is clear that πJ is surjective and that its fibers all
have two elements. Likewise, πI is surjective and its fibers all have 2(4−δ(f)) − 1
elements, where δ(f) ≤ 3 is the dimension of the F2-vector space (γ ◦ f)(G). In
view of the above, the maps K1(f) → J(f) and K2(f) → J(f) induced by πJ

are still surjective. Since we have |K1(f)| + |K2(f)| = |K(f)| = 2|J(f)| (where
| − | denotes the cardinality of a finite set), we see that we have |K1(f)| = |J(f)|
and |K2(f)| = |J(f)|. By definition, we have K1(f) = π−1

I (I1(f)) and K2(f) =
π−1
I (I2(f)), giving the equality |I1(f)| = |I2(f)|. ��

Proof of Theorem A.3, Continued.
Let L1 and L2 be the subsets of L consisting of the lattices isomorphic to,

respectively, E8 ⊕ E8 and E16. Note that we have L1 = L1(0) and L2 = L2(0)

(where 0 denotes the unique representation of 0 by Λ�
16) and therefore |L1| = |L2|.

Denote by Rep(G,Λ�
16) the (finite) set of representations of G by Λ�

16, set r1(G) =
|Rep(G,E8 ⊕ E8)| and r2(G) = |Rep(G,E16)|, and consider the subsets Ri(G)

(i = 1, 2) of Li × Rep(G,Λ�
16) consisting of the pairs (L, f) with L ⊃ f(G). By

projecting onto each of the two factors of the productLi×Rep(G,Λ�
16), we see that

we have

|Ri(G)| = |Li| ri(G) and |Ri(G)| =
∑

f∈Rep(G,Λ�
16)

|Li(f)| .

Lemma A.4 now implies the equality r1(G) = r2(G). ��



Appendix B
Quadratic Forms and Neighbors in Odd
Dimension

In this appendix,we present the “odd-dimensional”counterpart of some of the theory
we developed “in even dimension” in Chaps. 2 and 3.

B.1 Basic Concepts in the Theory of Quadratic Forms on a
Projective Module of Odd Constant Rank

Let A be a commutative ring with unit. In Chap. 2, we defined a q-module over
A to be a projective A-module L of finite type endowed with a quadratic form
q: L→ A such that the associated symmetric bilinear form is nondegenerate. If 2 is
not invertible in A and L has constant rank, then the nondegeneracy forces this rank
to be even (consider a homomorphism fromA to a field k of characteristic 2 and note
that the symmetric bilinear form associated with the quadratic form on k ⊗A L is
alternating). If L has odd constant rank, then, classically, q is called nondegenerate
if the degeneracy of the associated bilinear form is “minimal.” We will make this
definition more precise further on. Our presentation emphasizes the notion of half-
determinant (see, for example, [125]); for a more sophisticated presentation, see [71,
Exp. XII].

Let k ≥ 1 be an integer; we denote by

ψk
L : Λ

kL→ Λk−1L⊗ L and φk
L : Λ

k−1L⊗ L→ ΛkL ,

respectively, the “coproduct” and “product” homomorphisms induced by the Hopf
algebra structure of the exterior algebra ΛL (the tensor products and the exterior
algebra are over A).
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Lemma B.1.1. Let L be an A-module endowed with a quadratic form q : L → A,
and let b : L × L → A be the associated symmetric bilinear form. The symmetric
bilinear form associated with the quadratic form (Λk−1b⊗ q) ◦ ψL is kΛkb.

Proof. This follows from the fact that the composed homomorphism φk
L ◦ ψk

L is k
times the identity on ΛkL. ��

Let β be a symmetric bilinear form. We denote the quadratic form x → β(x, x)
by qd(β); the associated bilinear form is 2β.

The proofs of statements B.1.2–B.1.4 below are immediate.

Proposition-Definition B.1.2 (Odd Exterior Powers of a Quadratic Form). Let L
be an A-module endowed with a quadratic form q and k an odd integer. Set

Λkq = (Λk−1b⊗ q) ◦ ψk
L −

k − 1

2
qd(Λkb) ,

where b is the symmetric bilinear form associated with q (Λkq is therefore a quadratic
form on ΛkL).

The symmetric bilinear form associated with Λkq is Λkb. The form Λkq is called
the kth exterior power of q.

Proposition B.1.3. Let L be a projective A-module of finite type; we denote the A-
module consisting of the symmetric bilinear forms L× L→ A (resp. the quadratic
forms L → A) by B(L) (resp. Q(L)). If L has rank 1, then the homomorphism of
A-modules qd: B(L)→ Q(L) is an isomorphism.

Proposition-Definition B.1.4. Let L be a projective A-module of finite type of odd
constant rank n, endowed with a quadratic form q; denote the symmetric bilinear
form associated with q by b. The two symmetric bilinear forms Λnb and qd−1(Λnq)
with which the projective A-module of rank 1 ΛnL is endowed are related by the
equality

Λnb = 2 qd−1(Λnq) .

The symmetric bilinear form qd−1(Λnq) (or the projective A-module ΛnL endowed
with this form) is called the half-determinant of q (recall that the symmetric bilinear
form Λnb is called the determinant of b; see Sect. 2.1). The half-determinant of q is
denoted by 1

2 -det q or 1
2 -detL.

(The terminology and notation are of course justified by the fact that we have
detL = 2 (12 - detL).)

Example. Let a be an element of A. Recall that 〈a〉 is the A-module A endowed
with the symmetric bilinear form (x, y) → axy; we therefore denote by qd(〈a〉) the
A-module A endowed with the quadratic form x → ax2. We did the necessary to
ensure that the half-determinant of qd(〈a〉) is 〈a〉.
Proposition B.1.5. Let P and L be two projective A-modules of finite type of even
and odd constant rank, respectively, endowed with a quadratic form. We have a
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canonical isomorphism of projectiveA-modules of rank 1 endowed with a symmetric
bilinear form:

1
2 - det(P ⊕ L) ∼= detP ⊗ 1

2 - detL .

Proof. Let qP , bP , qL, bL, respectively, be the quadratic and bilinear forms on
P and L; let m be the rank of P and n that of L. We must show that we have
Λm+n(qP ⊕ qL) = ΛmbP ⊗ ΛnqL. By using the naturality of exterior powers of
bilinear forms (resp. odd exterior powers of quadratic forms), we reduce to the
“universal case.” In this case, the ring A is a polynomial ring with coefficients in Z,
in m(m+ 1)/2 + n(n+ 1)/2 variables, and 2 is not a zero divisor. Since we have
det(P ⊕ L) ∼= detP ⊗ detL, this suffices to conclude. ��
Definition B.1.6. Let L be a projective A-module of finite type and odd constant
rank endowed with a quadratic form q. We say that q is minimally degenerate if the
symmetric bilinear form 1

2 - det q is nondegenerate. For short, we call a projective
A-module of finite type and odd constant rank endowed with a minimally degenerate
quadratic form a q-i-module over A.

Example-Remark. Let A be a ring, P a q-module over A of even constant rank, and
u an element of A×. Proposition B.1.5 shows that the orthogonal sum P ⊕ qd(〈u〉)
is a q-i-module over A. Proposition 1.2 of [71, Exp. XII] says that, locally for the
étale topology, every q-i-module is of this type with, moreover, P hyperbolic.

Classical Groups (Continued)

Let L be a q-i-module over A of rank n; as in Chap. 2, an endomorphism α of the
A-module underlying L is called orthogonal if it preserves the quadratic form. The
naturality of exterior powers of quadratic forms shows that Λnα is an orthogonal
endomorphism of the b-module 1

2 - detL and therefore that the endomorphisms
Λnα and α are automorphisms. The orthogonal endomorphisms form a group for
the composition, which is called the orthogonal group of L and denoted by O(L).
The functor R → O(R⊗A L), defined on the category of commutative A-algebras
and with values in the category of groups, is an A-group scheme that we denote
by OL. In view of the above, the composition OL → GLL

det→ Gm induces a
homomorphism det : OL → μ2 (note that O 1

2 -detL can be identified with μ2). We
denote the kernel of the induced homomorphism by SOL (again, the group SOL(A)
is simply denoted by SO(L)).

If L has rank 1, then the group OL can again be identified with μ2, so that we
may not expect OL to be smooth over A in all generality. It does, however, hold for
SOL.

Proposition B.1.7. For every q-i-moduleL over a commutative ring A with unit, the
A-group scheme SOL is smooth over A.

Proof. Since the property we wish to verify is local for the étale topology, we may
assume, by [71, Exp. XII, Proposition 1.2], that we haveL = H(An)⊕qd(〈u〉) with
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u in A×. Since the two q-modulesH(An) and 〈u〉⊗H(An) are isomorphic, we may,
moreover, assume u = 1 and therefore, ultimately, A = Z and L = H(Zn) ⊕ A1;
the group SOL is then the group denoted by SOn+1,n in Sect. 8.1. The fact that
SOn+1,n is smooth over Z is well known. Below, we show that this property can be
seen as a consequence of Proposition 2.1.5; this (very indirect!) proof is in the spirit
of Sect. B.2.

Set P = H(Zn) ⊕ H(Z). Let (e1, e2) be the canonical basis of the factor H(Z),
and set e = e1 + e2 and f = e1 − e2; we therefore have q(e) = 1, q(f) = −1, and
e.f = 0. We easily see that L can be identified (with its quadratic form) with the
orthogonal complement of f .

Let C be the affine quadric with equation q = −1 (q being here the quadratic
formP is endowed with); thisZ-scheme is smooth over Z. LetOP,f be the subgroup
of the group OP (which is smooth over Z by Proposition 2.1.5) defined as the
stabilizer of f for the obvious action of OP on C; “differential calculus” shows that
the group OP,f is smooth over Z. The equality L = f⊥ provides a homomorphism
of group schemes ω : OP,f → OL. Statements B.1.8 and B.1.9 below concern this
homomorphism; the second implies Proposition B.1.7. The proof of the first is left
to the reader. ��
Proposition B.1.8. The diagram

in which the arrow denoted by ˜detis the restriction of the homomorphism ˜det: OP →
Z/2, is commutative.

Denote the kernel of the homomorphism ˜det: OP,f → Z/2 by SOP,f . Proposi-
tion B.1.8 shows that the homomorphism ω induces a homomorphism from SOP,f

to SOL, which we denote by ωS.

Proposition B.1.9. The homomorphism of Z-group schemes

ωS : SOP,f −→ SOL

is an isomorphism.

Proof. Let A be a commutative ring with unit.
We first show the injectivity of the homomorphism SOP,f(A) → SOL(A). For

this, consider the commutative diagram of Z-group schemes
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in which the two horizontal arrows on the left are the obvious inclusions. Since an
element of OP (A) whose restriction to A⊗Z H(Z

n) is the identity can be identified
with an element of OH(Z)(A), it follows that the kernels of OP,f(A)→ OL(A) and
OH(Z),f(A) → OA1(A) coincide. We conclude by noting that the composition of
the two upper horizontal arrows is an isomorphism.

Next, we show that the homomorphism SOP,f (A)→ SOL(A) is surjective. Let
α be an element of OL(A). Write A⊗Z L = H(An)⊕Ae and set M = α(H(An)).
Let M⊥ be the orthogonal complement of M in A⊗Z P , viewed as a submodule of
A⊗Z P ; this module M⊥ has the following properties:

– The A-module M⊥ is projective of rank 2.
– The restriction of the quadratic form of A⊗Z P to M⊥ is nondegenerate.
– The q-module A⊗Z P is isomorphic to the orthogonal sum M ⊕M⊥.
– The discriminant Δ(M⊥) is trivial (see [71, Exp. XII, 1.11]).
– The elements α(e) and f of A⊗Z P belong to M⊥.

The following proposition, whose proof is left to the reader, shows that the q-module
M⊥ is isomorphic to H(A) (note that we have q(α(e)) = 1).

Proposition B.1.10. LetN be a q-module overA of rank 2. The following properties
are equivalent:

(i) The module N is isomorphic to the hyperbolic q-module H(A).
(ii) The discriminant Δ(N) is trivial, and there exists an e in N with q(e) = 1.

Let γ be an automorphism of the q-module A ⊗Z P = H(An)⊕ H(A) induced
by the isomorphism α : H(An) → M , an isomorphism β : H(A) → M⊥, and the
isomorphismM⊕M⊥ → P . Since the orthogonal groupOH(Z)(A) acts transitively
on the set of x with q(x) = 1, we may assume β(f) = f and therefore γ ∈
OP,f (A). Since the homomorphism ˜det: OH(Z),f → Z/2 is an isomorphism, we
may, moreover, assume γ ∈ SOP,f (A). By construction, α−1 ◦ ωS(γ) is then an
element of SOL(A) that is the identity on H(An); but such an element is the
identity. ��
Remark. The homomorphism OH(Z),f → OP,f can be identified with a ho-
momorphism Z/2 → OP,f that is a “central” section of the homomorphism
˜det : OP,f → Z/2; it follows that the group OP,f is canonically isomorphic to
the product SOP,f × Z/2. Likewise, the group OL is canonically isomorphic to the
product SOL × μ2, and the homomorphism ω : OP,f → OL can be identified with
the product of the isomorphism ωS and the canonical homomorphism Z/2→ μ2.

We conclude this subsection with the following statement; the reader will have
no trouble deciphering the notation.

Scholium B.1.11. Let A be a commutative ring with unit. Let P be a q-module over
A of even constant rank, endowed with an element e with q(e) ∈ A×. Let L be the
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orthogonal complement of e in P . Then

– L is a q-i-module over A;
– the A-group SOL can be identified with the A-group SOP,e;
– the A-groups OP,e and OL can be identified, respectively, with the products
SOL × Z/2 and SOL × μ2;

– the canonical homomorphism OP,e → OL can be identified with the homomor-
phism induced by the homomorphism Z/2→ μ2.

B.2 On the q-i-Modules over Z

A q-i-module over Z is nothing but a free Z-module L, of odd finite dimension,
endowed with a symmetric bilinear form that is even (that is, such that x.x is even
for every x in L) with |detL| = 2. In fact, part (a) of the following proposition
shows that the properties of the bilinear form induce that of the dimension.

Proposition B.2.1 (Classification of the Z-q-i-modules).

(a) Let L be a free Z-module of finite dimension, endowed with an even symmetric
bilinear form, with |detL| = 2. Then there exists an element ε of {±1}, uniquely
determined in terms of L, such that the signature of L satisfies the congruence
τ(L) ≡ ε (mod 8) (so that the dimension of L is odd).

(b) Let P be a free Z-module of finite dimension, endowed with an even symmetric
bilinear form, with |detP | = 1, and an element e with |e.e| = 2. Let L be the
orthogonal complement of e, endowed with the even symmetric bilinear form
that is the restriction of that of P . Then L is a free Z-module of finite dimension
(since P/L is free of dimension 1) with detL = (e.e) detP .

(c) Let (n, ε) be an element of N × {±1} with n odd; let QIn,ε be the set of iso-
morphism classes of Z-q-i-modules L with dimL = n and τ(L) ≡ ε (mod 8).
Let (n, ε) be an element of N × {±1} with n even; let QRn,ε be the set of
isomorphism classes of Z-q-modules endowed with an element e with e.e = 2ε.
Then the map

(P, e) → e⊥

induces a bijection from QRn,ε to QIn−1,−ε.

Proof of Part (a). We viewL as a q̃-module. The group underlying its residue resL
can be identified with Z/2, and its quadratic linking form satisfies q(1̄) = ε/4
with ε = ±1. We are therefore led to introduce the orthogonal sum of q̃-modules
L⊕〈−ε〉⊗A1 (note thatA1 = Q(A1) is nothing but theZ-moduleZ endowed with
the quadratic form x → x2) whose residue can be identified with the orthogonal
sum of qe-modules resL⊕〈−1〉⊗ resL. This qe-module has a unique Lagrangian,
namely the diagonal; we denote byP the q-module corresponding to this Lagrangian
via Proposition 2.1.1. Since the signature of P is divisible by 8, we indeed have the
congruence τ(L) ≡ ε (mod 8). ��
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Proof of Part (b). This follows, for example, from assertion (c) of the following
statement, which will be useful to have in this book. The verification of this statement
is left to the reader. ��
Proposition B.2.2. Let A be a Dedekind domain. Let L be a q-module over A, and
let M be a submodule and M⊥ its orthogonal complement. Suppose that M is a
direct factor in L (in other words, that the quotient L/M has no torsion; note that
M⊥ is a direct factor in L for every M ).
(a) We have (M⊥)⊥ = M .

Suppose, moreover, that the restriction of the bilinear form of L to M is nonsingular,
in other words, that the induced homomorphism M → HomA(M,A) is injective;
M is therefore a q̃-module over A. Then the following hold:

(b) The restriction of this bilinear form to M⊥ is also nonsingular.
(c) The canonical homomorphism of A-modules M ⊕M⊥ → L is injective, and

we have an exact sequence of A-modules

0 −→M ⊕M⊥ −→ L −→ resM −→ 0 ,

in which the homomorphism L → resM is the composition of the isomor-
phism L → HomA(L,A) induced by the bilinear form of L and the canonical
homomorphisms HomA(L,A)→ HomA(M,A) and HomA(M,A)→ resM .

(d) The isomorphisms of A-modules resM ∼= L/(M ⊕ M⊥) and resM⊥ ∼=
L/(M ⊕M⊥) (note that M and M⊥ play symmetric roles) induce an isomor-
phism of A-modules ϕ : resM → resM⊥ such that we have q(ϕ(ξ)) = −q(ξ)
for every ξ in resM . In other words, we have a canonical isomorphism of
A-qe-modules

resM⊥ ∼= 〈−1〉⊗ resM .

(e) Via Proposition 2.1.1 and the isomorphism of qe-modules res(M ⊕M⊥) ∼=
resM ⊕ resM⊥, the q-module L corresponds to the the graph of ϕ, which is
the Lagrangian of resM ⊕ resM⊥.

Remarks.

– There exists a “bilinear version” of Proposition B.2.2 in which the q-modules
(resp. q̃-modules, resp. qe-modules) are replaced by b-modules (resp. ˜b-
modules, resp. e-modules).

– There also exists, in a particular case, a “bilinear-quadratic version” of Propo-
sition B.2.2. Let us be more precise. Let L be an odd b-module over Z; let
u be a Wu vector of L that we assume to be indivisible and nonisotropic. By
construction, the orthogonal complement u⊥ of u in L is an even ˜b-module, in
other words, a q̃-module. Proposition B.2.2 says that as an e-module, resu⊥ is
isomorphic to Z/u.u endowed with the linking form defined by 1̄.1̄ = −1/u.u.
For its part, the quadratic linking form is defined by

q(1̄) =
1

2

(

1− 1

u.u

)

.
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Proof of Part (c) of Proposition B.2.1.
Denote by ωn,ε : QRn,ε → QIn−1,−ε the map induced by (P, e) → e⊥. Let

(n, ε) be an element of N×{±1}with n odd. By construction, the q-module P that
appears in the proof of part (a) of Proposition B.2.1 is endowed with an element
e with e.e = −2ε. The uniqueness of the Lagrangian invoked in this construction
shows that the mapL → (P, e) induces a mapQIn,ε → QRn+1,−ε, which we denote
by πn,ε. The two maps ωn,ε and πn−1,−ε are each other’s inverses. ��
Scholium B.2.3. Let L be a q-i-module over Z, and let ε be the element of {±1}
defined by τ(L) ≡ ε (mod 8). Then the qe-module resL is isomorphic to Z/2
endowed with the quadratic linking form defined by q(1̄) = ε/4.

Proposition B.2.1 and Scholium 2.2.1 also lead to the following statement.

Scholium B.2.4. Let L1 and L2 be two q-i-modules over Z. The following two
conditions are equivalent:

(i) The two b-vector spaces Q⊗Z L1 and Q⊗Z L2 over Q are isomorphic.
(ii) The two b-vector spaces R⊗Z L1 and R⊗Z L2 over R are isomorphic.

Genus of a q-i-Module over Z

The method used to prove Proposition B.2.1 provides the following statement (the
heading refers to part (b)).

Proposition B.2.5. Let L be a q-i-module over Z of dimension 2n+ 1 and determi-
nant 2ε with ε = ±1; let p be a prime.

(a) The q-i-vector space Fp ⊗Z L is isomorphic to H(Fn
p )⊕ qd(〈(−1)nε〉).

(b) The q-i-module Zp ⊗Z L is isomorphic to H(Zn
p )⊕ qd(〈(−1)nε〉).

Remark. For p �= 2, a q-i-vector space over Fp (resp. a q-i-module over Zp) is
nothing but a b-vector space (resp. b-module) of odd dimension.

The Positive Definite Case

Let L be a q-i-module over Z with R ⊗Z L positive definite. In view of the above,
such an L is nothing but an (integral) even lattice of determinant 2. From here on,
we abandon the term “positive definite q-i-module over Z” (which is far from being
classical!) for the term “even lattice of determinant 2.”

Let L be an even lattice of determinant 2; part (a) of Proposition B.2.1 shows that
we have the congruence dimL ≡ ±1 (mod 8).

We first study the case dimL ≡ −1 (mod 8). Part (c) of Proposition B.2.1
specializes as follows.
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Proposition B.2.6. For an integer n > 0 with n ≡ −1 (mod 8), let Xn be the set of
isomorphism classes of even lattices L with dimL = n and detL = 2. For an even
integer n > 0 with n ≡ 0 (mod 8), let XA1

n be the set of isomorphism classes of
even unimodular lattices P of dimension n endowed with an element e with e.e = 2
(in other words, a root). Then the map

(P ; e) → e⊥

induces a bijection from XA1
n to Xn−1.

(We justify the notation XA1
n as follows: giving a root of P is equivalent to giving

a representation of A1 by P . It is the counterpart of the notation XE7
n introduced

further on.)

Examples

Determination of X7. Since X8 has only one element, namely the class of E8,
and the Weyl group of E8 (which coincides with the orthogonal group of E8) acts
transitively on the set of roots, the set X7 has only one element, namely the class
of the orthogonal complement of a root in E8. We use the notation E7 for this
orthogonal complement, which agrees with that adopted in Chap. 2: E7 = Q(E7).

Determination of X15. Since the Weyl group of D16 (which coincides with the
orthogonal group of E16) acts transitively on the set of roots and the same holds for
the orthogonal group of E8 ⊕ E8, the set X15 has two elements:

– the class of the orthogonal complement of a root in E16, say E15,
– the class of E7 ⊕ E8.

Determination of X23. In view of Proposition B.2.6 and Theorem 2.3.17, this de-
termination is a consequence of the following observation.

Let L be an even unimodular lattice of dimension 24 with roots. Let e1 and e2
be two roots of L, and let Ri, for i = 1, 2, be the irreducible component of the root
system R(L) to which ei belongs. Then the following two conditions are equivalent:

(i) The two root systems R1 and R2 are isomorphic.
(ii) There exists an element α of the orthogonal group O(L) such that we have

α(e1) = e2.

The implication (ii)⇒(i) is obvious. The implication (i)⇒(ii) can be verified on a
case-by-case basis. We give a few details on this verification below.

Consider the decomposition of the root system R(L) into irreducible components

R(L) �
∐

R∈R

m(R)R ,

where R denotes the set of isomorphism classes of irreducible root systems of type
ADE, m: R → N is a map with finite support, and m(R)R is the disjoint union of
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m(R) copies of R. Recall that we denote by A(R(L)) the orthogonal group of the
latticeQ(R(L)) and that the Weyl groupW(R(L)) is a normal subgroup ofA(R(L)).
Also recall that we denote by G(R(L)) the quotient group A(R(L))/W(R(L)) and
that we have a group isomorphism (canonical in an obvious way)

G(R(L)) ∼=
∏

R∈R

(

G(R)m(R)
�Sm(R)

)

=
(
∏

R∈R

G(R)m(R)
)

�

(
∏

R∈R

Sm(R)

)

,

where Sm(R) is the symmetric group of order m(R) that has an obvious action
on the group G(R)m(R). Finally, we paraphrase part (b) of Scholium 2.3.15: the
orthogonal group O(L) is the subgroup of A(R(L)) defined as the inverse image
under the homomorphism A(R(L))→ G(R(L)) of the subgroup that stabilizes the
LagrangianL/Q(R(L)) of the qe-module resQ(R(L)). In [81], V.A. Erokhin spec-
ifies this stabilizer, which he denotes by H(L), case by case for the 23 isomorphism
classes of even unimodular lattices of dimension 24 with roots. It is clear that we
have a canonical exact sequence of groups

1→ H1(L)→ H(L)→ H2(L)→ 1 ,

where H1(L) can be identified with a subgroup of the product
∏

R∈R G(R)m(R)

and H2(L) with a subgroup of the product
∏

R∈R Sm(R), namely the image of
the restriction to H(L) of the canonical homomorphismG(R(L))→∏

R∈R Sm(R)

(although this is not stated explicitly, the groupsH1(L) andH2(L) are the groupsG1

and G2 whose cardinalities appear in columns 5 and 6 of [68, Chap. 16, Table 16.1]).
The implication (i)⇒(ii) we are considering follows from the fact that for every

R in R, the image of H2(L) in Sm(R) is a transitive subgroup, which we easily
verify by going through the list in [81] (clearly, the only R we need to consider are
those for which we havem(R) ≥ 2!). By way of example, let us give these transitive
subgroups for the first five root systems of the list in question:

(1) R(L) = 24A1

The image of H2(L) in S24 is the Mathieu group M24.
(2) R(L) = 12A2

The image of H2(L) in S12 is the Mathieu group M12.
(3) R(L) = 8A3

There exists a bijection from the set {1, 2, . . . , 8} to the set underlyingF3
2, viewed

as an affine space of dimension 3 over F2, which induces an isomorphism from
H2(L) to the subgroup of affine transformations.

(4) R(L) = 6A4

There exists a bijection from the set {1, 2, . . . , 6} to the set underlying P1(F5),
which induces an isomorphism from H2(L) to the set of projective transforma-
tions. (Take note: the list of generators for H(L) given in [81] is incomplete.)
More precisely, in this case the exact sequence 1 → H1(L) → H(L) → H2(L) → 1 is
isomorphic to the exact sequence 1 → F

×
5 /{±1} → GL2(F5)/{±Id} → PGL2(F5) → 1.

(5) R(L) = 4A6
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The image of H2(L) in S4 is the alternating subgroup A4.

So, in the end, we see that the set X23 can be identified with the subset of
the product X24 × R consisting of the pairs (x, r) such that r is the isomorphism
class of an irreducible component of the root system R(x) (the abuse of notation is
venial). The cardinality of X23 is obtained by considering the second column of [68,
Chap. 16, Table 16.1] (our Table 1.1):

|X23| = 32

= 1 + 2 + 1 + 1 + 1 + 2 + 2 + 2 + 1 + 1 + 3 + 1 + 2

+ 1 + 1 + 2 + 1 + 2 + 1 + 1 + 1 + 1 + 1 + 0

(this cardinality should clearly be compared with the number of representations in
Table C.7).

Let us now study the case dimL ≡ 1 (mod 8).

Proposition B.2.7. For an integer n > 0 with n ≡ 1 (mod 8), let Xn be the set of
isomorphism classes of even lattices L with dimL = n and detL = 2. For an even
integern > 0with n ≡ 0 (mod 8), letXE7

n be the set of isomorphism classes of even
unimodular lattices P of dimension n endowed with a homomorphism f : E7 → P
with q(f(x)) = q(x) for every x in E7 (in other words, with a representation of E7

by P ). Then the map
(P ; f) → (f(E7))

⊥

induces a bijection from XE7
n to Xn−7.

Proof. This is a variant of the proof of part (c) of Proposition B.2.1. This time, we
consider the orthogonal sumL⊕E7. By Scholium B.2.3, the residue of this q̃-module
is again isomorphic to resL⊕ 〈−1〉 ⊗ resL. We conclude mutatis mutandis. ��
Notation-Remark. Let G and L be two integral lattices; recall that a representation
of G byL is a homomorphism of Z-module f : G→ L with f(x).f(y) = x.y for all
x and y in G and that the (finite) set of these f is denoted by Rep(G,L). We denote
by Rep(G,L) the quotient Rep(G,L)/O(G) of the right action of the orthogonal
group O(G) on Rep(G,L) (this action is free); Rep(G,L) can be viewed as the set
of submodules of L isomorphic to G as integral lattices.

Examples

Determination of X17. We check on a case-by-case basis that the only irre-
ducible root systems of type ADE that contain E7 are E7 and E8 (use, for ex-
ample, [39, Chap. VI, Sect. 1, Proposition 24]). A further examination then shows
that the only root systems appearing in the classification of Niemeier that con-
tain E7 are R2 = D16

∐

E8, R3 = E8

∐

E8

∐

E8, R6 = A17

∐

E7, and
R7 = D10

∐

E7

∐

E7. Let Pi, for i ∈ {2, 3, 6, 7}, be “the” even unimodular
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lattice R(Pi) ≈ Ri (we apologize for deviating here from the notation introduced at
the beginning of Sect. 10.2); we easily verify that the orthogonal group O(Pi) acts
transitively on the set Rep(E7,Pi) in all four cases. The verification is immediate
for the first three; for the fourth, we use the observation made at the end of the fifth
illustration we gave of Proposition 2.3.13. Proposition B.2.7 therefore shows that the
set X17 has four elements. Let us be inordinately precise. We choose a sublattice of
Pi isomorphic to E7 and denote by Li the orthogonal complement of this sublattice;
we have X17 = {[L2], [L3], [L6], [L7]} (where [L] denotes the isomorphism class of
an even lattice L of dimension 17 and determinant 2).

It is not difficult to give a definition ab initio of the lattices Li:

– L2 = E16 ⊕A1,
– L3 = E8 ⊕ E8 ⊕A1,
– L6 = A+

17 (the qe-module resA17 is isomorphic to Z/18 with q(k̄) = 17k2/36,
A+

17 is the even lattice corresponding to the submodule generated by 6̄ via part (b)
of Proposition 2.1.1),

– L7 = (D10 ⊕ E7)
+ (the qe-module res(D10 ⊕ E7) contains two isotropic

nontrivial submodules, (D10 ⊕ E7)
+ is the even lattice corresponding to either

one of these submodules via part (b) of Proposition 2.1.1).

Determination of X9. Proposition B.2.7 shows thatX9 has a single element, namely
the class of the lattice E8 ⊕A1.

On the Determination of X25. The isomorphism X25
∼= XE7

32 of Proposition B.2.7
cannot be used to determine X25 because X32 has not been determined yet. On
the other hand, part (c) of Proposition B.2.1 can be applied; it says that X25 is in
bijection with the set of isomorphism classes of pairs (P ; e) with P a q-module
over Z of dimension 26 with signature 24 and e an element of P with e.e = −2.
But all P of this type are isomorphic, by Theorem 2.2.7. As a representative of
this class, we can choose the q-module II25,1 (notation of [68], [29]), which can
be viewed as the lattice of the q-vector space Q

26 endowed with the quadratic
form 1

2 (
∑25

i=1 x
2
i − x2

26), generated by the submodule of Z
26 consisting of the

(x1, x2, . . . , x26) with
∑26

i=1 xi even and the vector 1
2 (1, 1, . . . , 1). Let Y be the set

of elements e of II25,1 with e.e = −2; in [29], Borcherds describes an algorithm to
determine the set O(II25,1)\Y, which, by the above, is in bijection with X25 (note
that |X25| = 121).

B.3 The Theory of p-Neighbors for q-i-Modules over Z

Here is the counterpart (at least for the Dedekind ring Z) of part (a) of Proposi-
tion 3.1.1.

Proposition B.3.1. Let V be a q-vector space over Q. Let L1 and L2 be two integral
lattices (in the quadratic sense) in V of index 2 in their duals (in particular, the
lattices L1 and L2 are two q-i-modules and L1 ∩ L2 is a q̃-module over Z).
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Set I1 = L1/(L1 ∩ L2), I2 = L2/(L1 ∩ L2), and R = (L�
1 ∩ L�

2)/(L1 ∩ L2).

(a) We have L1 ∩ L�
2 = L1 ∩ L2 and L2 ∩ L�

1 = L1 ∩ L2.
(b) The two canonical homomorphismsR→ L�

i/Li, for i = 1, 2, are isomorphisms.
(c) The three inclusions of L1, L2, and L�

1 ∩ L�
2 in (L1 ∩ L2)

� induce a canonical
isomorphism of abelian groups

I1 ⊕ I2 ⊕ R ∼= res(L1 ∩ L2)

(that allows the identification of the source and target).
(d) The pairing I1× I2 → Q/Z induced by the linking form of the residue res(L1∩

L2) is nondegenerate. For this form, the two submodules I1 ⊕ I2 and R are
orthogonal and canonically isomorphic, as qe-modules, to H(I1) and resL1,
respectively, so that the qe-module res(L1 ∩ L2) is canonically isomorphic to
the orthogonal sum H(I1)⊕ resL1.

Proof. We verify part (a) and the isomorphism of qe-modulesR ∼= resL1; the proof
of the rest of the statement is left to the reader.

Let L(V ) be the set of integral lattices of V ordered by inclusion; we see that an
integral lattice in V of index 2 in its dual is a maximal element of L(V ) (in fact, all
maximal elements are of this type). Part (a) follows from this observation. Consider
the lattice (L1 ∩ L�

2) + L2. It belongs to L(V ) and contains L2; we therefore have
the equality (L1 ∩ L�

2) + L2 = L2, which implies L1 ∩ L�
2 = L1 ∩ L2.

The submoduleL1 of (L1∩L2)
� corresponds, via part (b) of Proposition 2.1.1, to

the isotropic submodule I1 of res(L1 ∩L2). Part (c) of this same proposition shows
that we have resL1

∼= I⊥1 /I1. Since I⊥1 /I1 can be identified with R as a qe-module,
this suffices to conclude. ��

The verification of the following statement is immediate.

Proposition-Definition B.3.2. Let V be a q-vector space over Q; let L1 and L2 be
two integral lattices (in the quadratic sense) in V of index 2 in their duals.

Let p be a prime. The following conditions are equivalent:

(i) The intersection L1 ∩ L2 has index p in L1.
(ii) The intersection L1 ∩ L2 has index p in L2.

If these conditions are satisfied, the lattices L1 and L2 are called p-neighbors (or
L2 is called a p-neighbor of L1). In this case, the quotients L1/(L1 ∩ L2) and
L2/(L1 ∩ L2) are the only nontrivial isotropic submodules of res(L1 ∩ L2).

We now fix a q-i-module L over Z and analyze the set of p-neighbors of L in
Q ⊗Z L; in this context, a p-neighbor of L is an integral lattice L′ in Q ⊗Z L with
L′ of index 2 in L′� and L ∩ L′ of index p in L. Let M = L ∩ L′. The analysis in
question proceeds as in Chap. 3 and gives the following results:

– The lattice pL′ is contained in M .
– The image of the composition pL′ ⊂ M ⊂ L→ L/pL is an isotropic line c in
L/pL endowed with its structure of q-i-vector space over Z/p.
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– The lattice M is the inverse image of c⊥ under the homomorphismL→ L/pL;
here, c⊥ denotes the linear subspace of L/pL orthogonal to the line c.

– The lattice L′ is the inverse image, under the homomorphism M � → resM ,
of the unique nontrivial submodule distinct from L/M that is isotropic for the
quadratic linking form.

Conversely, we have the following result.

Proposition B.3.3. Let c be an isotropic line in L/pL, and let M be the submodule
of L defined as the inverse image of c⊥ under the homomorphismL→ L/pL. Then:

(a) The qe-module resM is isomorphic to H(Z/p)⊕ resL.
(b) The inverse image, under the homomorphism M � → resM , of the unique

nontrivial submodule distinct from L/M that is isotropic for the quadratic
linking form is a p-neighbor L′ of L with L ∩ L′ = M .

Proof of Part (a). This is very similar to the proof of Proposition 3.1.4.
Let u be an element of L whose class modulo p generates the line c; since this

line is isotropic, we have q(u) ≡ 0 mod p. Let b be the symmetric bilinear form
associated with the quadratic form of L/pL. If p is not 2, then b is nondegenerate,
so that there exists an element v of L with u.v ≡ 1 mod p. This is also the case for
p = 2. To see this, it suffices to show that the class of u modulo 2 does not belong
to ker b. Since L is a q-i-module over Z, the quotient L/2L is naturally a q-i-vector
space over Z/2; part (a) of Proposition B.2.5 shows that ker b is of dimension 1 and
that the restriction of the quadratic form to ker b is nontrivial (in fact, this is a general
phenomenon for q-i-vector spaces over a field of characteristic 2; see, for example,
the remark following Definition B.1.6).

We see that v and u/p belong to M �; set w = u/p − (q(u)/p)v. In Q/Z, the
equalities q(v) = 0, q(w) = 0, and v.w = 1/p hold. Let H be the submodule of
resM generated by the classes of v and w (or those of v and u/p); the previous
observation shows that the restriction of the linking form to H is nondegenerate, that
H is aZ/p-vector space of dimension 2with a basis consisting of the classes of v and
w, that H is isomorphic to H(Z/p) as a qe-module, and finally that the qe-module
resM is isomorphic to the orthogonal sum H ⊕H⊥. Let I be the submodule L/M
of resM (the submodule generated by v); I is isotropic, and the qe-module I⊥/I
can be identified with H⊥. Part (c) of Proposition 2.1.1 therefore shows that H⊥

can be identified with resL. ��
Ultimately, we see that Proposition 3.1.5 on the q-modules over Z remains true,

word for word, for the q-i-modules over Z. The statement below only involves p-
neighbors for p prime; the reader will have no trouble verifying that it extends to
d-neighbors for every d ≥ 1. Let us make this more precise. Let L be a q-i-module
over Z. We denote the associated projective quadric by CL; it is again smooth over
Z (this is, by the way, the elegant criterion chosen by Deligne in [71, Exp. XII] to
characterize the quadratic forms he qualifies as nondegenerate). Let c be a point of
CL(Z/p); we denote by voisp(L; c) the lattice L′ in Q ⊗Z L associated with c by
the process described in part (b) of Proposition B.3.3, and by Voisp(L) the set of
p-neighbors of L in Q⊗Z L.
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Proposition B.3.4. The map

CL(Z/p)→ Voisp(L) , c → voisp(L; c)

is a bijection.

B.4 The Theory of p-Neighbors for Even Lattices of
Determinant 2

Let E be one of the two lattices A1 and E7 (so E is even of determinant 2); in this
subsection, E is fixed unless mentioned otherwise.

Let n > 0 be an integer with n ≡ − dimE (mod 8). Denote by Un the Q-vector
space Q

n endowed with the quadratic form

(x1, x2, . . . , xn) → 1

2

n−1
∑

i=1

x2
i + x2

n .

Set Vn = Un ⊕ (Q ⊗Z E) (Vn is isomorphic, as a q-vector space, to Q
n+dimE

endowed with the quadratic form (x1, x2, . . . , xn+dimE) → 1
2

∑

i x
2
i ).

Let X(Un) (resp. X(Vn)) be the set of even lattices of determinant 2 in Un (resp.
of even unimodular lattices in Vn). We therefore have Xn = O(Un)\X(Un) =
SO(Un)\X(Un) (resp. Xn+dimE = O(Vn)\X(Vn)). Let X(Vn; E) be the subset
of X(Vn) consisting of the P containing E, and let O(Vn; E) be the subgroup of
O(Vn) consisting of the elements that are the identity on E. With this notation, we
can paraphrase Propositions B.2.6 and B.2.7 as follows.

Proposition B.4.1. The map

X(Vn; E)→ X(Un) , P → P ∩Un

is an equivariant bijection with respect to the group isomorphism

O(Vn; E)
∼=→ O(Un) .

The specialization of Sect. B.3 to the positive definite case, in turn, leads to the
following statement.

Proposition B.4.2. Let P1 and P2 be two even unimodular lattices in Vn containing
E. Let L1 and L2, respectively, be the two even lattices in Un of determinant 2,
namely P1 ∩ Un and P2 ∩ Un. Let p be a prime. The following two conditions are
equivalent:

(i) P1 and P2 are p-neighbors.
(ii) L1 and L2 are p-neighbors.
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Proof of (i)⇒ (ii). By its very definition, for i = 1, 2, the canonical homomorphism
Li/(L1 ∩ L2) → Pi/(P1 ∩ P2) is injective. By Proposition-Definition B.3.2, we
have the following alternative: either L1∩L2 is of index p in L1 andL2, orL1 = L2.
But the map P → P ∩ Un is injective. ��
Proof of (ii)⇒ (i). Consider the following lattice N in Vn:

N := (L1 ⊕ E) ∩ (L2 ⊕ E) = (L1 ∩ L2)⊕ E .

By part (d) of Proposition B.3.1 and part (d) of Proposition B.2.2, the qe-module
resN is canonically isomorphic to the orthogonal sum

H(L1/(L1 ∩ L2)) ⊕ 〈−1〉 ⊗ resE ⊕ resE ,

and we see that P1 ∩ P2 is the submodule of N � corresponding, via part (b) of
Proposition 2.1.1, to the “diagonal” of the factor 〈−1〉 ⊗ resE ⊕ resE. Part (c) of
the same proposition shows that we have res(P1 ∩ P2) ∼= H(L1/(L1 ∩ L2)). We
conclude by applying part (a) of Proposition 3.1.1. ��

As above, let n > 0 be an integer with n ≡ − dimE (mod 8); let p be a
prime. The Hecke operators Tp : Z[Xn] → Z[Xn] are defined as in the case n ≡ 0
(mod 8):

Tp [L] :=
∑

L′∈Voisp(L)

[L′]

for every even lattice L of determinant 2 and dimension n. Let L and L′ be two even
lattices of determinant 2 and dimension n; again as in the case n ≡ 0 (mod 8), the
integer Np(L,L

′) is defined as the [L′]-coordinate of Tp [L].
Part (a) of Proposition B.2.5 shows that all quadrics CL(Z/p) have the same

cardinality, which we again denote by cn(p); this time, we have

cn(p) =

n−2
∑

m=0

pm .

Proposition 3.2.2 still holds, word for word, giving the following statement.

Proposition B.4.3. Let p be a prime. We have
∑

y∈Xn

Np(x, y) = cn(p)

for every x in Xn.

To state the analog of Proposition 3.1.10, we need to introduce some additional
notation.

Denote by Bn(p) the set of isomorphism classes of q̃-modules M over Z with
dimM = n, R⊗Z M > 0, and resM � H(Z/p)⊕ 〈−1〉 ⊗ resE. Note that every
automorphism of the qe-moduleH(Z/p)⊕〈−1〉⊗ res E is the identity on the factor



B.4 The Theory of p-Neighbors for Even Lattices of Determinant 2 381

〈−1〉 ⊗ resE, so that the qe-module is canonically endowed with a direct factor
〈−1〉 ⊗ resE .

Denote by ˜Bn(p) the set of isomorphism classes of pairs (M ;ω)withM as before
and ω a bijection from the set of nontrivial isotropic submodules of resM to the set
{1, 2}. By definition, ˜Bn(p) is endowed with a left action of the symmetric group
S2 and the quotient set S2\˜Bn(p) can be identified with Bn(p).

Let (M ;ω) be as above. Denote by di(M ;ω), for i = 1, 2, the inverse image of
ω−1(i) under the surjection M � → resM ; d1(M ;ω) and d2(M ;ω) are two even
lattices of determinant 2 (and dimension n) that are p-neighbors in Q ⊗Z M . By
passing to isomorphism classes, we obtain two maps from ˜Bn(p) to Xn that we also
denote by d1 and d2.

We can now state the analog of Proposition 3.1.10.

Proposition B.4.4. Let p be a prime, and let x1 and x2 be two elements of Xn. We
have

Np(x1, x2) =
∑

β ∈ d−1
1 (x1)∩d−1

2 (x2)

|O(x1)|
|O(β)|

with |O(β)| = |Aut(M ;ω)|, where (M ;ω) represents β.

Let us now reformulate, at least in a special case, the statement above using the
even unimodular lattices associated with even lattices of determinant 2.

Let L be an even lattice of determinant 2 and dimension n. As before, we set
P = (L ⊕ E)+. By construction, P is canonically endowed with a representation
i : E→ P . Denote by ρ(L) (resp. ρ̄(L)) the cardinality of the orbit of i (resp. i(E))
under the action of the group O(P ). As already mentioned (at least in the case
E = E7), we have ρ(L) = ρ̄(L) |O(E)|. We therefore have two functions, ρ and ρ̄,
from Xn to N−{0} (it will, in fact, be easier to work with ρ in the case E = A1 and
with ρ̄ in the case E = E7).

Let M be a q̃-module over Z, with dimM = n, R ⊗Z M > 0, and resM �
H(Z/p) ⊕ 〈−1〉 ⊗ resE. Set R = (M ⊕ E)+. Let us decipher this. It follows
from the observation made above that the qe-module res(M ⊕ E) is canonically
endowed with a direct factor 〈−1〉 ⊗ resE ⊕ resE; R is the lattice corresponding,
via part (b) of Proposition 2.1.1, to the “diagonal” of the direct factor, and part (c) of
the same proposition shows that we have resR � H(Z/p). Again, R is canonically
endowed with a representation i : E → R, and we again denote by ρ(M) (resp.
ρ̄(M)) the cardinality of the orbit of i (resp. i(E)) under the action of the group
O(R). We therefore also have two functions ρ and ρ̄ from Bn(p) to N − {0} with
ρ(−) = ρ̄(−) |O(E)|.

The above shows that we have natural maps from Xn (resp. Bn(p)) to Xn+dimE

(resp. Bn+dimE (p)); we denote these maps by π.
Finally, let B0

n(p) be the subset of Bn(p) consisting of the isomorphism classes of
the M as above such that the two even lattices L1 andL2 of determinant 2 associated
with M are nonisomorphic. Denote by e the map from B0

n(p) to the set of even
elements of Xn that sends [M ] to the set {[L1], [L2]}.
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Proposition B.4.5. Let x1 and x2 be two distinct elements of Xn. We have

Np(x1, x2) =
∑

b ∈ e−1({x1,x2})

|O(π(x1))|
|O(π(b))|

ρ(b)

ρ(x1)
=

∑

b ∈ e−1({x1,x2})

|O(π(x1))|
|O(π(b))|

ρ̄(b)

ρ̄(x1)
.

Proof. We see that the assumption x1 �= x2 allows us to transform Proposition B.4.4
into Proposition B.4.5. Represent the element β of ˜Bn(p) in the former by a pair
(M ;ω), and set L1 = d1(M ;ω), P1 = (L1 ⊕ E)+, and R = (M ⊕ E)+. We have

|O(L1)|
|O(M ;ω)| = [O(M) : O(M ;ω)]

|O(L1)|
|O(M)| = [O(M) : O(M ;ω)]

|O(P1)|
|O(R)|

ρ(M)

ρ(L1)
.

The assumptionx1 �= x2 impliesO(M ;ω) = O(M); in fact, if this equality does not
hold, there exists an element of O(M) that interchanges the two nontrivial isotropic
submodules of resM, in which case x1 = x2. ��

2-Neighbors, the Point of View of Borcherds (Continued)

Propositions B.2.6 and B.2.7 say that the map π : Xn → Xn+dimE considered above
is the composition of a bijectionXn

∼= XE
n+dimE and a “forgetful map”XE

n+dimE →
Xn+dimE. Likewise, the map π : Bn(p) → Bn+dimE (p) is the composition of a
bijection Bn(p) ∼= BE

n+dimE (p) and a forgetful map BE
n+dimE (p)→ Bn+dimE (p);

the definition of the set BE
n+dimE (p) holds no surprises: BE

n+dimE (p) is the set of
isomorphism classes of pairs (R; f), where R and f denote, respectively, an even
lattice with resR � H(Z/p) and a representation of E in R.

We saw in Chap. 3 (following Borcherds) that the set Bn+dimE (2) can be identi-
fied with the set, denoted by Bn+dimE, of isomorphism classes of odd unimodular
lattices of dimension n + dimE. Likewise, the set BE

n+dimE (2) can be identi-
fied with the set of isomorphism classes of odd unimodular lattices of dimension
n+dimE endowed with a representation ofE, a set that we will denote byBE

n+dimE.
We also have an identification in the sense of Borcherds, Bn(2) ∼= Bn, where
Bn denotes the set of odd lattices of determinant 2: with an even lattice M with
resM � H(Z/2)⊕〈−1〉⊗ resE, we associate the lattice corresponding, via Propo-
sition 2.1.1 (bilinear version), to the unique nontrivial submodule of resM that is
isotropic in the bilinear sense but not in the quadratic sense.

Let (Q; f) be an odd unimodular lattice of dimension n+ dimE endowed with
a representation f : E→ Q. The reader can verify that the correspondenceQ →M
can be described in the following two ways:

– Consider the submodule R of index 2 of Q consisting of the x with x.x even.
We have f(E) ⊂ R; M is the orthogonal complement of f(E) in R.

– Consider the orthogonal complement Λ of f(E) in Q. We see that Λ is odd (if
this were not the case, we would have R = Λ⊕ f(E), an equality that may not
hold because the bilinear residue of the right-hand side is not hyperbolic). The
module M is the submodule of Λ consisting of the x with x.x even.
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Finally, the map ρ : BE
n+dimE → N − {0} (resp. ρ̄ : BE

n+dimE → N − {0})
induced by the identification BE

n+dimE (2)
∼= BE

n+dimE sends the class of the pair
(Q; f) to the cardinality of the orbit of f (resp. f(L)) under the action of the group
O(Q).

In Chap. 3, we noted, following Nebe and Venkov, that if an odd unimodular
lattice L of dimension divisible by 8 represents 1, then the two even unimodular
lattices that are 2-neighbors of L are isomorphic (Corollary 3.1.16). We conclude
this section with the following technical statement that can be seen as the counterpart
of this observation in the present context.

Proposition B.4.6. Let n > 0 be an integer with n ≡ − dimE (mod 8). Let L1

and L2 be two even lattices of determinant 2 in a q-vector space U of dimension
n; set V = U ⊕ (Q ⊗Z E). Suppose that L1 and L2 are 2-neighbors in U and
nonisomorphic. Let Pi, for i = 1, 2, be the even unimodular lattice in V containing
E associated with Li, and let Q be the odd unimodular lattice in V containing E
whose even 2-neighbors are P1 and P2.

(a) In the case E = E7, the lattice Q does not represent 1.
(b) In the case E = A1, we have the following alternative:

(b.1) The lattice Q does not represent 1.
(b.2) The lattices P1 and P2 are isomorphic, and there exists an isomorphism of

lattices φ : Q ∼= I2 ⊕Q′ with I2 containing φ(A1) and Q′ not representing
1.

Proof. Denote by Q1 the submodule of Q generated by the elements x with x.x = 1
and by Q′ its orthogonal complement. We have a decomposition Q = Q1 ⊕ Q′ as
an orthogonal sum; the lattice Q1 is isomorphic to Im (with m = dimZ Q

1), and
the set R(Q) of roots of Q is isomorphic to the disjoint union R(Im)

∐

R(Q′) =
R(Dm)

∐

R(Q′).

The Case E = E7. By the above, E7 is contained in Q′, which implies m = 0.
Indeed, if there exists an e in Q with e.e = 1, then the orthogonal symmetry se is
the identity on E7 and interchangesP1 and P2 (see Corollary 3.1.16), so that L1 and
L2 are isomorphic.

The Case E = A1 and m �= 0. The lattices P1 and P2 are isomorphic by Corol-
lary 3.1.16. Let α be a root of A1, say “the” positive root. We necessarily have
α ∈ Q1 or α ∈ Q′. The same argument as before implies that we cannot have
α ∈ Q′. We therefore have α ∈ Q1, which implies m ≥ 2. On the other hand, we
have m < 3. Indeed, if we have m ≥ 3, then there exists an element e in Q1 with
e.e = 1 and e.α = 0 and we again have se(α) = α and se(P1) = P2. ��
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B.5 Examples

B.5.1 Determination of T2 for n = 17

The matrix of the Hecke operator T2 : Z[X17] → Z[X17] in the basis (E16 ⊕
A1,E8 ⊕ E8 ⊕A1,A

+
17, (D10 ⊕ E7)

+) is the following (we also denote it by T2) :

T2 =

⎡

⎢

⎢

⎣

20265 18225 153 63
12870 14910 0 90
16384 0 21624 18432
16016 32400 43758 46950

⎤

⎥

⎥

⎦

.

Below, we explain how the theory of Sect. B.4 leads to this equality. We use the
notation introduced at the end of Sect. B.2.

Let i and j be two elements of the set {2, 3, 6, 7} with i �= j. Borcherds’ table
[68, Chap. 17] provides the list of isomorphism classes of odd unimodular lattices
of dimension 24 whose even unimodular 2-neighbors are isomorphic to Pi and Pj:

– The list is empty for {i, j} = {3, 6}.
– The list has only one element, which we denote by [Bori,j ], for {i, j} �= {3, 6}.

Borcherds’ table also shows that in the case {i, j} �= {3, 6}, the orthogonal group
O(Bori,j) acts transitively on the set Rep(E7,Bori,j).

Recall that the group O(Pi) acts transitively on the set Rep(E7,Pi) for i =
2, 3, 6, 7.

Proposition 3.3.3.1 gives

N2(Pi,Pj) = 0 for {i, j} = {3, 6} ,

N2(Pi,Pj) =
|O(Pi)|
|O(Bori,j)| for {i, j} �= {3, 6} .

Proposition B.4.5 and the discussion following it therefore give

N2(Li,Lj) = 0 for {i, j} = {3, 6} ,

N2(Li,Lj) =
|Rep(E7,Bori,j)|
|Rep(E7,Pi)|

N2(Pi,Pj) for {i, j} �= {3, 6} .

Consider, for example, the case {i, j} = {7, 2}. Borcherds’ table mentioned above
shows that we are in the case |Rep(E7,Bor7,2)| = 1; in fact, Borcherds tells us
that the set of roots of Bor7,2 (which has number 150 in the table) is isomorphic to
D10

∐

E7

∐

D6

∐

A1. On the other hand, we have |Rep(E7,P7)| = 2 because the
set of roots of P7 is isomorphic to D10

∐

E7

∐

E7. It follows that we have

N2(L7,L2) =
1

2
N2(P7,P2) = 63 .
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Remark. The reader will note that we have N2(E16 ⊕ A1,E8 ⊕ E8 ⊕ A1) =
N2(E16,E8 ⊕ E8) and N2(E8 ⊕ E8 ⊕ A1,E16 ⊕A1) = N2(E8 ⊕ E8,E16). . . and
will have no trouble finding an explanation for this phenomenon.

As in the case n = 24, we see that the eigenvalues of the Hecke operator
T2 : Z[X17] → Z[X17] are integral and simple. Hence, assuming Conjecture 8.1.2,
part (ii) of Theorem 9.7.2 determines the Hecke operators Tp : Z[X17] → Z[X17]
for every prime p. For example, we obtain the following formula:

7

286
Np(E16 ⊕A1,E8 ⊕ E8 ⊕A1) =

(5p4 + 7p3 + 7p2 + 7p+ 5)
p11 − τ(p) + 1

691
− 26

p15 − τ16(p) + 1

3617
,

where τ16(p) denotes the pth Fourier coefficient of the normalized modular cusp
form (for SL2(Z)) of weight 16.

B.5.2 Determination of T2 for n = 15

Part (b) of Proposition B.4.6 and the same arguments as before (rather, a simpler
version of them) give

N2(E15,E7 ⊕ E8)

N2(E16,E8 ⊕ E8)
=
|R(Bor16)|
|R(E16)| ,

N2(E7 ⊕ E8,E15)

N2(E8 ⊕ E8,E16)
=

|R(Bor16)|
|R(E8 ⊕ E8))| ,

where Bor16 is the odd unimodular lattice of dimension 16 introduced in Scholium-
Definition 3.3.3.2, which “makes the jump” between E16 and E8 ⊕ E8. Since we
have R(Bor16) = D8

∐

D8 (Scholium-Definition 3.3.3.2), we find

N2(E15,E7 ⊕ E8)

N2(E16,E8 ⊕ E8)
=

7

15
,

N2(E7 ⊕ E8,E15)

N2(E8 ⊕ E8,E16)
=

7

15
. (*)

It follows that the matrix of the Hecke operator T2 : Z[X15] → Z[X15] in the basis
(E15,E7 ⊕ E8) is the following (we also denote it by T2):

T2 =

[

10377 8505
6006 7878

]

.

As before, assuming Conjecture 8.1.2, part (i) of Theorem 9.7.2 shows that the
equalities (*) above generalize to every prime p:

Np(E15,E7 ⊕ E8)

Np(E16,E8 ⊕ E8)
=

p3 − 1

p4 − 1
,

Np(E7 ⊕ E8,E15)

Np(E8 ⊕ E8,E16)
=

p3 − 1

p4 − 1
.
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B.5.3 On the Determination of T2 for n = 23

The map π : X15 → X16 is injective; this implies that case (b.2) of Proposition B.4.6
does not occur for n = 15 (this argument has in fact been used above to determine
T2 for n = 15). On the other hand, the map π : X23 → X24 is not injective, and we
will see that case (b.2) of Proposition B.4.6 does occur for n = 23.

Let us, for example, specifyπ−1([E16⊕E8]). The quotientO(E16⊕E8)\R(E16⊕
E8) can be identified with the disjoint unionO(E16)\R(E16)

∐

O(E8)\R(E8) (and
is therefore a set with two elements). By Proposition B.2.6, it follows that we have
π−1([E16 ⊕ E8]) = {[E15 ⊕ E8], [E16 ⊕ E7]}.

Below, we show that the two elements [E15 ⊕ E8] and [E16 ⊕ E7] of X23 are
2-neighbors and that the set e−1({[E15 ⊕ E8], [E16 ⊕ E7]}) (notation of Propo-
sition B.4.5), viewed as a subset of BA1

24 (notation introduced in the discussion
following Proposition B.4.5), is the singleton {[(I2 ⊕ Λ; ι)]}, where Λ denotes the
unimodular lattice of dimension 22 corresponding to the obvious Lagrangian of the
e-module res(E15⊕E7) (we could also denoteΛ by (E15⊕E7)

+) and ι : A1 → I2⊕Λ
is the representation induced by the canonical representation A1 → I2.

Set S = A1 ⊕ A1 ⊕ E15 ⊕ E7; denote by σ the obvious element of O(S) that
interchanges the two factors A1. Denote by �i the generator of the residue of the
ith factor of S. The qe-module resS is therefore a Z/2-vector space of dimension
4, with basis {�1, �2, �3, �4}, where the quadratic linking form is defined by
q(�i) = 1/4 for i = 1, 2, q(�i) = −1/4 for i = 3, 4, and �i.�j = 0 for i �= j.
The structure of a Venkov qe-module is, for its part, determined byqm(�i) = 1/4 for
i = 1, 2 and qm(�i) = 3/4 for i = 3, 4. The qe-module resS has two Lagrangians:

– the subspace J1 generated by �1 +�3 and �2 +�4,
– the subspace J2 generated by �1 +�4 and �2 +�3.

Note that these two Lagrangians are the graphs of the two isomorphisms of qe-
modules from res(A1⊕A1) to 〈−1〉⊗ res(E15⊕E7) and that they are interchanged
by σ.

For k = 1, 2, denote by Pk the even unimodular lattice with S ⊂ Pk ⊂ S� and
Pk/S = Jk. It is clear that P1 and P2 are both isomorphic to E16⊕E8 and that they
are interchanged by Q⊗Z σ.

Set K = J1 ∩ J2; this is the subspace of resS of dimension 1 generated by
�1 + �2 + �3 + �4. Denote by R the even lattice with S ⊂ R ⊂ S� and
R/S = K; we clearly have R = P1 ∩ P2. We identify the qe-module resR with
K⊥/K (Proposition 2.1.1); note that resR is generated by the classes of �1 +�3

and �1 + �4. This observation allows us to deduce that resR is isomorphic to
H(Z/2). Consequently, we see that P1 and P2 are 2-neighbors, say in Q⊗Z S.

Let Lk, for k = 1, 2, be the orthogonal complement of the first factor A1 of S in
Pk . We have L1 � E15 ⊕ E8 and L2 � E16 ⊕ E7. Proposition B.4.2 indeed shows
that L1 and L2 are 2-neighbors (say in the orthogonal complement) of the first factor
A1 of S in Q⊗Z S.

Let J3 be the linear subspace of resS generated by �1 + �2 and �3 + �4;
then J3 is a “Lagrangian of resS in the bilinear sense.” The e-module res(A1⊕A1)
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(resp. res(E15⊕E7)) has a unique Lagrangian, which we denote by J4 (resp. J5); the
subspace J3 is the orthogonal sum of J4 and J5. The unimodular lattice associated
with the pair (A1⊕A1; J4) is isomorphic to I2. As stated before, we denote by Λ the
unimodular lattice of dimension 22 associated with the pair (E15⊕E7; J5); it is the
first lattice of the table of Conway and Sloane [68, Chap. 16, Table 16.7, dim = 22].
We see that Λ does not represent 1 by invoking the structure of a Venkov qe-module
of res(E15⊕E7). The unimodular lattice associated with the pair (S; J3) is therefore
isomorphic to I2 ⊕ Λ. We have K ⊂ J3; consequently, the Lagrangian of resR in
the bilinear sense is J3/K and the odd unimodular lattice whose even 2-neighbors
are P1 and P2 coincides with the unimodular lattice associated with the pair (S; J3).

Finally, we deduce the following equality in BA1
24 :

e−1({[E15 ⊕ E8], [E16 ⊕ E7]}) = {[(I2 ⊕ Λ; ι)]}

by considering the first column of the table of Conway and Sloane mentioned above.
In view of this equality, we can determine N2(E15 ⊕ E8,E16 ⊕ E7) using, for

example, Proposition B.4.4:

N2(E15 ⊕ E8,E16 ⊕ E7) =
|O(E15 ⊕ E8)|

|O(A1 ⊕ E15 ⊕ E7)| =
|O(E8)|

|O(A1 ⊕ E7)| = 120 .

To conclude this subsection, let us consider for n = 23 the observation made
by Nebe and Venkov for n = 24: since the sum

∑

y∈X23
N2(x, y) is known for

every x (Proposition B.4.3), to determine the Hecke operator T2 : Z[X23] →
Z[X23], it suffices to compute N2(x, y) for x �= y. This observation and part (b) of
Proposition B.4.6 (and the previous example) lead us to pose the following question:

Can we determine T2 for n = 23, in the manner of Nebe–Venkov, by simply
considering Borcherds’ table [68, Chap. 17] and that of Conway and Sloane [68,
Chap. 16, Table 16.7, dim = 22]?



Appendix C
Tables

In this appendix, we gather together the main tables of this book.

Table C.1 Standard parameters ψ(π, St) of the representations π in Πcusp(Sp2g) generated by a
Siegel modular form of weight 12 for Sp2g(Z), in genus g ≤ 12

g ψ(π, St) g ψ(π, St)

7 Sym2Δ11 ⊕Δ17[4]⊕Δ11[2]

1 Sym2Δ11 7 Sym2Δ11 ⊕Δ15[6]

2 Δ21[2]⊕ [1] 8 Δ15[8]⊕ [1]

3 Sym2Δ11 ⊕Δ19[2] 8 Δ21[2]⊕Δ17[2]⊕Δ11[4]⊕ [1]

4 Δ21[2]⊕Δ17[2]⊕ [1] 8 Δ19[4]⊕Δ11[4]⊕ [1]

4 Δ19[4]⊕ [1] 8 Δ21,9[2]⊕Δ15[4]⊕ [1]

5 Sym2Δ11 ⊕Δ19[2]⊕Δ15[2] 9 Sym2Δ11 ⊕Δ19[2]⊕Δ11[6]

5 Sym2Δ11 ⊕Δ17[4] 9 Sym2Δ11 ⊕Δ19,7[2]⊕Δ15[2]⊕Δ11[2]

6 Δ17[6]⊕ [1] 10 Δ21[2]⊕Δ11[8]⊕ [1]

6 Δ21[2]⊕Δ15[4]⊕ [1] 10 Δ21,5[2]⊕Δ17[2]⊕Δ11[4]⊕ [1]

6 Δ21,13[2]⊕Δ17[2]⊕ [1] 11 Sym2Δ11 ⊕Δ11[10]

7 Sym2Δ11 ⊕Δ19[2]⊕Δ15[2]⊕Δ11[2] 12 Δ11[12]⊕ [1]
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Table C.3 Eigenvalues of Hecke operators in genus 2: the integer τj,k(p) for p prime and p ≤ 113

p τ6,8(p) τ8,8(p)

2 0 1344

3 −27000 −6408

5 2843100 −30774900

7 −107822000 451366384

11 3760397784 13030789224

13 9952079500 −328006712228

17 243132070500 5520456217764

19 595569231400 −28220918878760

23 −6848349930000 79689608755152

29 53451678149100 −1105748270340

31 234734887975744 1851264166857664

37 448712646713500 22115741387845324

41 −1267141915544076 −29442241674311916

43 −1828093644641000 308109789751260712

47 −6797312934516000 43932618784857504

53 30226618925077500 −1178253142902441108

59 −51143734375273800 −3366234739477561080

61 7626516406720684 −8962102322409921476

67 −12252758021387000 14381861853876396664

71 −225641741059730736 40475791736823448944

73 486083162996216500 −11604559187113183148

79 1424574980940205600 14996327278915320160

83 −1351980902639367000 −154502893221792192168

89 −1127953215815294700 −49999331367987019020

97 −2710671093611565500 765838865005585444804

101 14595359522423307804 −1274759541025862678196

103 18796572299556586000 1130145111856472690992

107 −23385476046562641000 542230976527798722984

109 36219247764172458700 −884687494456719863780

113 −53733316769620465500 705599831303150185572
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Table C.3 (continued)

p τ12,6(p) τ4,10(p)

2 −240 −1680

3 68040 55080

5 14765100 −7338900

7 −334972400 609422800

11 3580209624 25358200824

13 91151149180 −263384451140

17 −11025016477020 −2146704955740

19 −22060913325080 43021727413960

23 195863810691120 −233610984201360

29 −1743496339579620 −545371828324260

31 1979302106496064 830680103136064

37 −3685951226317460 11555498201265580

41 106065086529460884 −56208480716702316

43 74859021001125400 160336767963955000

47 156108802652634720 −116311331328502560

53 −1224706812408694260 −1944489787072554420

59 6289866383536712760 1843701997761637080

61 4857626575164933724 2376385974282228124

67 10336923176891703880 487223803841627560

71 −39237199980379430256 18272191888645387344

73 9078939377243940820 26899631446378070740

79 71873557961577515680 −80184572998399700960

83 94316650925918995560 157078549808482338120

89 115915137334350529140 22873692749841743220

97 894968190691418183620 −219326787347594393660

101 75745749887557044204 867394381514415093804

103 229164380766640031440 −657903326636255684720

107 −3571178446181577738600 −395867979731685155400

109 −2024515635534667135940 30287010492785677180

113 −4230007868022803115420 1657202008073896578660
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Table C.4 Eigenvalues of Hecke operators in genus 2: the integer τj,k(p2) for p prime and p ≤ 29

p τ6,8(p
2) τ8,8(p

2)

2 409600 348160

3 333371700 748312020

5 −15923680827500 −395299890927500

7 −253514141409500 −155544419215478300

11 −75764187476725473836 19641545832571328136244

13 −4843967045593944889100 −596184280686941758305260

17 101161485715920379759300 −208424259842935445790738620

19 2430966330762186234484084 −1388004707990982166729991276

23 −129889399810754988793919900 −36435169742921431436190920540

29 −7216762572241226809807993676 −18636070203076686393140997747116

p τ12,6(p
2) τ4,10(p

2)

2 4276480 −700160

3 −8215290540 1854007380

5 722477627072500 −904546757727500

7 −1126868422025500700 −391120313742441500

11 −2263452414601610414156 −18738678558496864257356

13 −299941151717771094659180 323494600665947822387860

17 −94260803115254202283241660 70477693184423227137834820

19 −475514565037103383307581676 −1048771276144665792567133676

23 −505868492227965057753270620 −93299515424177439346879450460

29 −11097155072276494608459664937516 −2847689414234249875206600521516
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Table C.5 Standard parameters ψ(π, St) of the 24 representations π in Πdisc(O24) such that π∞
is trivial, ordered by increasing degree

i ψi λi gi

1 [23]⊕ [1] 8390655 0

2 Sym2Δ11 ⊕ [21] 4192830 1

3 Δ21[2]⊕ [1]⊕ [19] 2098332 2

4 Sym2Δ11 ⊕Δ19[2]⊕ [17] 1049832 3

5 Δ19[4]⊕ [1]⊕ [15] 533160 4

6 Δ21[2]⊕Δ17[2]⊕ [1]⊕ [15] 519120 4

7 Sym2Δ11 ⊕Δ19[2]⊕Δ15[2]⊕ [13] 268560 5

8 Sym2Δ11 ⊕Δ17[4]⊕ [13] 244800 5

9 Δ21[2]⊕Δ15[4]⊕ [1]⊕ [11] 145152 6

10 Δ21,13[2]⊕Δ17[2]⊕ [1]⊕ [11] 126000 6

11 Δ17[6]⊕ [1]⊕ [11] 99792 6

12 Sym2Δ11 ⊕Δ15[6]⊕ [9] 91152 7

14 Sym2Δ11 ⊕Δ19[2]⊕Δ15[2]⊕Δ11[2]⊕ [9] 69552 7

16 Sym2Δ11 ⊕Δ17[4]⊕Δ11[2]⊕ [9] 45792 7

13 Δ15[8]⊕ [1]⊕ [7] 89640 8

15 Δ21,9[2]⊕Δ15[4]⊕ [1]⊕ [7] 51552 8

17 Δ19[4]⊕Δ11[4]⊕ [1]⊕ [7] 35640 8

18 Δ21[2]⊕Δ17[2]⊕Δ11[4]⊕ [1]⊕ [7] 21600 8

19 Sym2Δ11 ⊕Δ19,7[2]⊕Δ15[2]⊕Δ11[2]⊕ [5] 17280 9

20 Sym2Δ11 ⊕Δ19[2]⊕Δ11[6]⊕ [5] 5040 9

21 Δ21,5[2]⊕Δ17[2]⊕Δ11[4]⊕ [1]⊕ [3] −7920 10

22 Δ21[2]⊕Δ11[8]⊕ [1]⊕ [3] −16128 10

23 Sym2Δ11 ⊕Δ11[10]⊕ [1] −48528 11

24 Δ11[12] −98280 12
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Table C.6 The 8-tuples of integers (m1, . . . , m8) satisfying 4 ≥ m1 ≥ m2 ≥ · · · ≥ m8 ≥ 0 with
V Γ
λ �= 0, where Vλ is the irreducible representation of SO(R16) of highest weight λ =

∑8
i=1 miεi

and Γ = SO(E8 ⊕ E8)

(m1, . . . ,m8) dimV Γ
λ (m1, . . . ,m8) dimV Γ

λ (m1, . . . ,m8) dimV Γ
λ

(0, 0, 0, 0, 0, 0, 0, 0) 1 (4, 4, 0, 0, 0, 0, 0, 0) 1 (4, 4, 4, 4, 2, 2, 0, 0) 1

(2, 2, 0, 0, 0, 0, 0, 0) 1 (4, 4, 2, 2, 0, 0, 0, 0) 1 (4, 4, 4, 4, 2, 2, 2, 2) 1

(2, 2, 2, 2, 0, 0, 0, 0) 1 (4, 4, 2, 2, 2, 2, 0, 0) 1 (4, 4, 4, 4, 4, 0, 0, 0) 1

(2, 2, 2, 2, 2, 2, 0, 0) 1 (4, 4, 2, 2, 2, 2, 2, 2) 1 (4, 4, 4, 4, 4, 2, 2, 0) 1

(2, 2, 2, 2, 2, 2, 2, 2) 1 (4, 4, 4, 0, 0, 0, 0, 0) 1 (4, 4, 4, 4, 4, 4, 0, 0) 1

(4, 0, 0, 0, 0, 0, 0, 0) 1 (4, 4, 4, 2, 2, 0, 0, 0) 1 (4, 4, 4, 4, 4, 4, 2, 2) 1

(4, 2, 2, 0, 0, 0, 0, 0) 1 (4, 4, 4, 2, 2, 2, 2, 0) 1 (4, 4, 4, 4, 4, 4, 4, 0) 1

(4, 2, 2, 2, 2, 0, 0, 0) 1 (4, 4, 4, 4, 0, 0, 0, 0) 2 (4, 4, 4, 4, 4, 4, 4, 4) 2

(4, 2, 2, 2, 2, 2, 2, 0) 1

Table C.7 Standard parameters of the 32 representations π in Πcusp(SO23) with π∞ = 1,
assuming Conjecture 8.4.25

[22] Δ11[11]

Δ15[7]⊕ [8] Δ17[5]⊕ [12]

Δ19[3]⊕ [16] Δ21 ⊕ [20]

Δ17[5]⊕Δ11 ⊕ [10] Δ19[3]⊕Δ11[5]⊕ [6]

Δ19[3]⊕Δ15 ⊕ [14] Δ21 ⊕Δ11[9]⊕ [2]

Δ21 ⊕Δ15[5]⊕ [10] Δ21 ⊕Δ17[3]⊕ [14]

Δ21 ⊕Δ19 ⊕ [18] Δ21,9 ⊕Δ15[5]⊕ [8]

Δ21,13 ⊕Δ17[3]⊕ [12] Δ19[3]⊕Δ15 ⊕Δ11[3]⊕ [8]

Δ21 ⊕Δ17[3]⊕Δ11[3]⊕ [8] Δ21 ⊕Δ19 ⊕Δ11[7]⊕ [4]

Δ21 ⊕Δ19 ⊕Δ15[3]⊕ [12] Δ21 ⊕Δ19 ⊕Δ17 ⊕ [16]

Δ21,13 ⊕Δ17[3]⊕Δ11 ⊕ [10] Δ21 ⊕Δ19 ⊕Δ15[3]⊕Δ11 ⊕ [10]

Δ21 ⊕Δ19 ⊕Δ17 ⊕Δ11[5]⊕ [6] Δ21 ⊕Δ19 ⊕Δ17 ⊕Δ15 ⊕ [14]

Δ21,5 ⊕Δ19 ⊕Δ17 ⊕Δ11[5]⊕ [4] Δ21,9 ⊕Δ19 ⊕Δ15[3]⊕Δ11 ⊕ [8]

Δ21,9 ⊕Δ19,7 ⊕Δ15[3]⊕Δ11 ⊕ [6] Δ21,13 ⊕Δ19 ⊕Δ17 ⊕Δ15 ⊕ [12]

Δ21 ⊕Δ19 ⊕Δ17 ⊕Δ15 ⊕Δ11[3]⊕ [8] Δ21 ⊕Δ19,7 ⊕Δ17 ⊕Δ15 ⊕Δ11[3]⊕ [6]

Δ21,5 ⊕Δ19,7 ⊕Δ17 ⊕Δ15 ⊕Δ11[3]⊕ [4] Δ21,13 ⊕Δ19 ⊕Δ17 ⊕Δ15 ⊕Δ11 ⊕ [10]
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Postface

In this postface, added in 2018, we mention some results which are related to this
book, but which have been proved after the end of its writing (June 2015).

(a) Conjecture 8.4.22 has been proved by Arancibia, Moeglin, and Renard in their
work Paquets d’Arthur des groupes classiques et unitaires, to appear in Annales
de la faculté des sciences de Toulouse. Moreover, conjectures 8.1.2 and 8.4.25
have also been proved by Taïbi, in his work Arthur’s multiplicity formula for
certain inner forms of special orthogonal and symplectic groups, to appear in
Journal of the European Mathematical Society. As a consequence, our Theo-
rems 8.5.2, 8.5.6, 8.5.8, 9.7.1, and 9.7.2, as well as the proofs in Sects. 9.2.10
and 9.2.11, are now unconditional. Moreover, by the discussion at the end of
Sect. 8.5.7, this fully justifies all the information in Table 7.1, and by The-
orem 9.5.9, this also shows the vanishing S11(Sp12(Z)) = 0 mentioned in
Theorem G of the introduction.

(b) The methods of this book have been used by Mégarbané to study Xn for n =
23 and n = 25 in his work Calcul des opérateurs de Hecke sur les classes
d’isomorphisme de réseaux pairs de déterminant 2 en dimensions 23 et 25,
Journal of Number Theory 186, pp. 370–416 (2018). He computes a matrix ofT2

acting onZ[Xn] and studies the corresponding graphsKn(p) for those two values
of n. This allows him to refine some of the congruences of Theorem 10.4.4. For
instance, he shows τ4,10(p) ≡ τ22(p) + p8 + p13 mod 9840 for every prime p,
which is an optimal strengthening of Harder’s original congruence.

(c) The study of the modular Galois representations rj,k;� started in Sect. 10.4 has
been pursued by Tayou in his work Images de représentations galoisiennes
associées à certaines formes modulaires de Siegel de genre 2, International
Journal of Number Theory 13, 1129 (2017). Tayou substantially refines the
statement of Proposition 10.4.10 and shows that for any prime � > 19, and any
of the four relevant pairs (j, k), the representation rj,k;� is irreducible, except of
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course for (j, k; �) = (8, 8; 23) and (j, k; �) = (4, 10; 41). He also shows that
when rj,k;� is irreducible, its image contains Sp4(F�), except perhaps if we have
(j, k; �) = (6, 8; 13) or (j, k; �) = (4, 10; 17) (the first of these two exceptions is
compatible with our last Remark 10.4.11). It would be interesting to determine
the image in these remaining two cases.
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ĝss, 161
gi, 128, 259
H(−) (hyperbolic functor), 22, 23
H(−) (Hecke ring), 96, 98
H(f) (morphism between Hecke

rings), 105, 153
Hp(G), vii, 99
H(β) (height of a root), 68
h(G), 89
h(L), 35
h(R), 2
Hd,g(R

n), 7, 130, 139
I∨, 23

© Springer Nature Switzerland AG 2019
G. Chenevier, J. Lannes, Automorphic Forms and Even Unimodular Lattices,
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern
Surveys in Mathematics 69, https://doi.org/10.1007/978-3-319-95891-0

411

https://doi.org/10.1007/978-3-319-95891-0


412 NOTATION INDEX

In, 30
infV , 162
inng, 146
ι(R), 81
Irr(H), 108
Iw, 197
JF , 268
κΔ, 212
K∞, 14, 268
K≤w

∞ , 278
Kn(p), 4, 52, 319, 409
Kp, 102
K±

p , 136
L�, 19
L(U), 198
LZ, x, 266
λi, 128, 259
λi(p), 311, 315
Leech (Leech lattice), 2, 43
Ln, ix, 1, 112
L(s, π), 10, 174, 202
L(s, π × π′), 202, 267
L(s, π, r), 10, 174
m(V ), m⊥(V ), 271
m(π), vii, 109
MU (G), 111
MW (Sp2g(Z)), 117
Mk(Sp2g(Z)), 6, 117
Md(L;−), 47
Nd(−,−), 49
Np(−,−), 3, 49, 380
N±

p (−,−), 130
np(L), 77, 322
ν∞, 207
On (complex group), 178
On (group scheme over Z), 93, 112
O(L), 25, 367
OL, 25, 367
ω�, 201
P, 89
PGOL, 27
PGSOL, 27
PGSp2n, 27
PL, 47
Preg
L , 64

pas(L; p), 77, 322
ΦF , 266
Φ(G, T ), 147
Φc, 210
Pinn, 173
πi, 259, 311
π∨, 193
π∞, vii, 109
πf , vii, 109
πp, vii, 167
ΠV , 210
Πalg, 266
Π⊥

alg, 287
Π(G), vii, 108
Πcusp(G), viii, 110
Π⊥

cusp(PGLn), 194
Πdisc(G), vii, 9, 108
Π(ψR), 208
Πunit(H), 208
Pr(L,L

′;X), 316
Ψ(G) (root datum), 147
Ψ(G, T,B), 147
Ψ(G) (hypothetical parameters), xi
ψR, 207
ψi, 259
ψ(π, r), 10, 169
qL, 1
qd(−), 366
qm, 37
Q(R), 33
RA(V ), 89
Ra

A(V ), 91
Rb

A(V ), 95
Rh

A(V ), 91
Rh

A(V ), 91
R(G), 89
R(L), 1, 33
Rep(G), 151
res, 20
ρ, 5, 65
rk;� (or rk), 346
rj,k;� (or rj,k), 346, 358, 409
R/2, 85
R∨, 33
SO(L), 26, 367



NOTATION INDEX 413

SOL, 26, 367
SOn (complex group), 149, 178, 192
SOn (group scheme over Z), ix, 95,

112, 191
SOr,r, SOr+1,r, 191, 368
SpL, 27
Sp2n, 27
SW (Sp2g(Z)), 118
Sk(Sp2g(Z)), 7
Sj,k, 245
sα, 146
Sat, 152
si, 206
Sp, 124
St, 10, 171
Sym2Δw, 11
TA, 55, 100, 156
T±

A, 104
T(A,i), 101, 156
Td, 55, 101
Tp, ix, 3, 55, 380
Tp,p, 158
Tψ2

p , 329
τj,k(q), 15, 250, 256, 319
τk(p), 315
τ(n), 3, 126
ϑg(L), 6, 123
ϑg(L, P ), 131
θr(p), 315
θr(p

2), 329

T t, 97
U(g), 160
vi, 128, 259, 311
voisd(L;−), 47
Voisd(L), 48
Voisd(−,−), 49
voisp(L;−), 48, 378
Voisp(L), 48, 378
voisp(L;−), 3
WR, 197
Walg

R
, 268

Weights(V ), 151
Weights(π), 195
W(R), 33
w(π), 195
Wr, 210
W ad

r , 211
X(−), 166
XAL(SLn), 170
ξ(s, π × π′), 202
Xn (n ≡ 0 mod 8), 1
˜Xn, ix, 94
Xn (n ≡ ±1 mod 8), 373, 375
X+, 150
X∗(T ), 147
X∗(T ), 147
ZF , 267
Z(G), 145
Z(U(g)), 160
̂Z, 89



Terminology Index

A
∗-action, 107
Adams–Johnson

packet, 221, 229
parameter, 221, 224

ae-module, 20
Alcove, 38
a-module, 20
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ring, 96
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Lagrangian

of an a-module, 22
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Standard
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