
Chapter 4
Bias by Default?

A Means for A Priori Interface Measurement

Joseph A. Cottam and Leslie M. Blaha

4.1 Introduction

Does all data in an application have an equal chance of being seen? The answer to
this question is likely “no”, and that is not necessarily a bad thing. We deliberately
influence what is visible and what is not based on many goals or intentions with an
information representation. In fact, we rely on such imbalances as part of the data
exploration process to keep the information content tractable for human memory
and reasoning [16]. Any time something “just pops out” or is “obvious” in a display,
there is an element of bias at play. However, does the interface naturally bias in a
way that supports or impedes the tasks it was designed to support? Howmuch of that
bias is inherent in the interface, and how much is the result of the ways the interface
interacts with a specific dataset? How much is the result of the user crafting the
interface for personal needs and interests? This chapter proposes Markov modeling
as an approach to begin teasing apart the sources of bias in visual analytic systems.

Friedman and colleagues defined bias in computers systems as a slant which
produces systematic and unfair discrimination against certain individuals or groups,
particularly when that discrimination is paired with unfair outcomes [9, 10]. They
defined three types of biases: pre-existing, technical and emergent. Although we
disagree that bias only produces unfair outcomes, we find these classes useful for
thinking about the bias that can estimated about the system with and without user
interactions. Pre-existing bias reflects how a system embodies cultural norms, prac-
tices and attitudes that exist in the environment in which the system was developed,
programmed or deployed. Pre-existing biases in visual analytics might reflect the
culture of the company or research group that developed the system. They could be
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as simple as the default interface elements, like default color schemes or variable
placements on axes. For example, thewww.SmartMoney.comMapof theMarket was
a popular example of a treemap compactly representing stock market values [20].
The default color scheme for the map was on a red-green spectrum, with green repre-
senting positive trending stocks (gains) and red representing negative trending stocks
(losses). The red-green spectrum plays off the cultural norm of green for go and red
for stop, adopted from traffic signals. The treemap offered an alternative yellow-blue
color map, particularly as an alternative for people with red-green color blindness;
however, we have no compelling a priori cultural association for whether yellow or
blue should be assigned to gains or losses. Without the pre-existing bias, we lose
some intuition for interpreting the visualization.

Other system biases are technical biases. These arise from technical constraints
or considerations in the design process, such as choice of hardware or peripherals,
which shape the capabilities of the system. Technical bias in visual analytic systems
can influence the initial layout, the available algorithms or the options for interaction
techniques. Interaction options have implications for the amount of information that
needs to be available on the screen. For example, hover and roll-over functions
may not be enabled without a mouse or touchpad. Without a hover option, tooltips
may not be possible, so information that might have been available on demand may
need to be readily available in other ways or on the screen at all times. Or the
burden can be placed on the user to query for the information; however, if the user is
inexperienced with the system or poor at formulating queries, then some information
may not be queried and so may not be seen. Another form of technical bias can be
seen in the specific algorithms provided in a tool. They are often chosen based on
expected performance on reference hardware for anticipated datasets. As hardware
advances, previously intractable algorithms can be implemented, and as new datasets
are approached with a tool, different algorithms may be preferred.

A third class of system biases are emergent biases that result from the interactions
of users with the system. These are very much of interest to visual analytic systems
which aremeant to facilitate extensive interactions for data exploration [3]. However,
we suspect that emergent biases can only be measured from user interactions with
the system. This is because each user has unique biases from attitudes, experience
and task goals that will shape the emergent biases [17, 18]. Whether the goal of
measurement is online or post hoc bias assessment, it is hard to predict emergent
biases in the absence of specific user characteristics and interaction behavior data.

Thus, the goal of this chapter is to propose a framework by which we can mea-
sure the biases of an interface from the design of the system, including choices of
visualizations and interactions. This may include elements of both technical and
pre-existing biases, which do not require the collection of user interaction data for
assessment. Of particular interest, at present, is predicting if the system design will
steer users into system states where information is systematically unavailable or hard
to recover, which will bias their exploratory reasoning and inference processes. Iden-
tifying the biases a priori helps (1) identify when and which biases are important,
(2) compensate for biases when they hinder task performance and (3) constructively
employ biases when they help.

www.SmartMoney.com
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The chapter is structured as follows. First, we review how our concept for a
priori bias compares to analytic provenance and interaction sequences. Then we
overview the Gapminder tools for the Gapminder World data,1 which we use as a
running example to demonstrate measuring a priori bias. Then we introduce Markov
modeling for capturing interfaces as a state space model and introduce two models
for a priori system bias. Finally, we present an analysis of Gapminder visualizations.
We end with discussions of other potential formalisms and next steps in using this
approach to capture biases in analytic tools.

4.2 Relationship to Analytic Provenance

Modeling a priori system bias provides an important complement to analytic prove-
nance modeling. The goal of provenance modeling is to leverage the sequence of
user actions to characterize a user’s analytic process [13, 21]. Xu et al. [21] argue that
there are two important uses for analytic provenance: users can plan further analyses
and systems can suggest related but unexamined data. If captured and interpreted
automatically, rather than through intensive manual annotation, a mixed-initiative
system could incorporate analytic provenance into intelligent recommendations, as
illustrated by Endert et al. [6] and Cook et al. [2]. Notably, Dabek and Caban [4] use
captured actions to automatically build Markov-model-like automata that form the
basis of their intelligent recommender system.

Additionally, when used post hoc, provenance enables analysts to study their own
and others’ processes. Toward this end, there have been efforts to develop visual-
izations for showing analytic provenance. GraphTrail [5] uses a graph visualization
approach where the states of the analytic system are nodes, and the links illustrate the
analyst’s transition path between the visualizations. Those links could be enriched
by identifying the types of actions they represent in the analytic process, using the
catalog of activity developed by Gotz and Zhou [13], for example.

From a system design perspective, analytic provenance analysis allows designers
to inspect how design choices and interface elements were used throughout task
completion. Our proposed Markov chain model for interface and exploration biases
offers a predictive analysis for what might happen. This analysis can be conducted
before the system is given to users; it can be engaged early and often in the design
process. Importantly, our proposed interface and exploration bias computations are
common across users, because they are about the system structure, not the specific
user interactions or tasks. Thus, the emergent system biases introduced by the user
interactions with the system may be teased apart from the other system biases by
leveraging a combination of Markov-chain-based interface analyses and analytic
provenance modeling.

Analytic provenance can then capture what a user actually does with a system,
which can be compared to the predicted provenance from the Markov chain. We

1http://gapminder.org.
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propose that modeling the system independent of user interactions is also valuable.
Such modeling targets the potential biases in the system that would influence the
ways a user could or should use the system. In many ways, this may be considered
task-independent modeling of the potential interaction sequences. Yet, from the per-
spective of pre-existing bias, this process is also capturing the way system structure
and readily available interactions contribute to all tasks attempted with the system.
Technical or pre-existing biases may create some systems states that are not useful or
would strongly sway the analytic process. While we can observe if or when analysts
navigate into those states using analytic provenance, a priori modeling may help us
to predict or prevent states unhelpful to the sensemaking process, or that might be
compounded by user biases to create strong emergent biases.

4.3 Gapminder

Throughout the rest of this chapter, we will use the Gapminder tools as example
visual analytic interfaces. Gapminder is a Swedish organization that curates data and
statistics about the world, made available for research and education purposes on
http://www.gapminder.org. The Gapminder World data includes variables like the
population size, income per capita and life expectancy. The organization offers a set
of web browser-based interactive visualizations for exploring the Gapminder World
data. Figure 4.1 shows an example of the Maps visualization, which has data points
plotted as color circles overlaid on the map of the world, one circle per country. In
this view, the data are taken from the year 2015, with color indicating world region
and the size of the circles representing Income per Person. Possible interactions in
this system include changing the variables and settings, selecting countries either by
clicking on the circles or on the country name list and watching the data over time
through playback controls.

4.4 Markov Models

We propose that Markov chains can be used to model user interfaces and reveal
potential biases in those interfaces. That is, we can model interface changes as a
probabilistic sequence through a system’s state space. We focus on the visual states
that can be observed, leaving aside state changes that are only based on hidden
internal representation changes.

A general Markov model is a statistical process that can be represented as a
sequence of states and transition probabilities between those states (i.e., a state ma-
chine). Formally, let Si for i = 1, . . . , n be a set of n possible states, and we define
P(Si |Sj ) = p ji as the transition probability from state Sj to state Si . A sequence of
states may be thought of formally as {Si , Sj , Sk, Si , . . .}, where a repeated state, like
Si represents re-visiting a state. All Markov models adhere to the Markov property,

http://www.gapminder.org
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Fig. 4.1 Gapminder Maps interface showing the initial state of the interface with 2015 data. See
text for more details (Images from https://www.gapminder.org, CC-BY license)

which means transitions only depend on the current state (also called being “memo-
ryless”). We represent this as the state of the system at time t being only a function
of the state at time t − 1, P(St |{S1, S2, . . . , St−1}) = P(St |St−1).

The state machine model is the basis for other Markov processes. For example, a
Markov chain is a path through a Markov model [15]. Hidden Markov models are
Markov models that maximize the probability of observed chains when the underly-
ing state space and probabilities are not known [1]. Markov models are “simple” in
that they are amenable to many different kinds of analyses that yield useful informa-
tion. Therefore, building aMarkovmodel that faithfully reproduces system behaviors
can lead to useful insights about expected behaviors under other circumstances.

The sequence of states in a Markov chain can represent a sequence of states the
visual interface can go through. Those state changes maybe driven by direct user
actions, streaming data updates or mixed-initiative analysis as it makes recommen-
dations. The complete set of states in the Markov model is comprised of the union
of all valid chains. This concept is illustrated in the Gapminder Bubbles visualiza-
tion in Fig. 4.2. The three screenshots show a progression of states in the system.
Figure 4.2(top) shows the initial view of the data when the year 2015 is selected.
Figure 4.2(middle) shows the interface after the country India is selected by click-
ing on the India circle. Figure 4.2(bottom) shows the interface after the circle for
Switzerland has been hovered over with the mouse. We note that a display changes
can result from two types of changes. The first is a change in content/data produced
by replaying the data over time with the playback controls. The second is a change in

https://www.gapminder.org
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the layout or design parameters, resulting from a reconfiguration of the visualization
through the right-side panel. To supply the transition probabilities, and thereby com-
plete the Markov model, we assume that possible states of the interface are states in
the Markov model and transition probabilities are derived from the screen presence
of interface elements. A user session is a Markov chain, drawn from the probability
space defined by the model. Analyzing the Markov model state machine provides
insight into possible and probable user session patterns.

We can gain insight about potential system biases, pre-existing and technical,
by examining the structure of connections between and understanding the relative
likelihoods of interface states. For example, some statesmay not be reachablewithout
a specific sequence of user actions, making them less likely to occur. Other states
may have likelihoods that change over time because of certain design or algorithm
choices. Still, others may be dependent on the default settings (the initial conditions)
of the system.Modeling the user interface independent of actual user actions provides
a basis for comparing interfaces to each other. Additionally, examining user interface
actions in light of interface bias can tell you if observed biases came from the tool or
from the operator. It allows us to distinguish the potential technical and pre-existing
biases from the emergent biases in interactive visual analytic systems.

4.5 Interface Models

There are at least two conditions to interfacemodeling: with and without data loaded.
With a dataset loaded, we propose to construct the Markov model with three key
features: (1) each link is a possible action; (2) each node is an interface state that
results from an action; and (3) links areweighted proportional to the target area on the
screen. The above procedure captures the essential idea, but it probably needs to be
tempered in some cases. Figure 4.3 illustrates some of the network shapes that result
from applying this process by hand to parts of the Gapminder “Bubbles” interface.
Linear dependencies are evident, showing that moving large distances in time incurs
many step costs, biasing the user to make comparisons in near neighborhoods.

Applying the same procedure to the Gapminder “Map” interface (Fig. 4.1) yields
similar patterns BUTwith different weights. For example, in the “Bubbles” interface
it is possible to directly select the Switzerland bubble, as in Fig. 4.2(top). How-
ever, in the map view, Switzerland is completely occluded by neighboring data.
A data-dependent analysis of the interface would directly reveal this bias against
such data points by examining the weights derived from screen space. Similarly,
data-dependent analysis could reveal if the bias toward particular data points is pro-
portional to bias in the dataset.

We have only done a partial analysis of the Gapminder interfaces, but we expect
similar patterns to be components of full-application analysis. Just observing struc-
tural patterns, these patterns can illustrate potential biases. For example, isolated
groupings show areas that may be difficult to move between - a bias for staying with
the current representation.Moving tomore algorithmic analysis, it would be possible
to identify unreachable and difficult-to-access data.
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Fig. 4.2 Series of images of a Gapminder “Bubbles” view in sequential states: (top) initial 2015
data, (middle) select India, (bottom) hover Switzerland. Images from gapminder.org, CC-BY li-
cense. In the top image, (A) indicates the map plot window, (B) are the interface settings controls,
and (C) is the playback controls to show animations over time. The data is shown with Income per
Person on the x-axis and Life Expectancy (in years) on the y-axis. The size of the circles represent
population, and the circles are colored by region
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Modeling with weights in proportion to a target’s area is at least partially justified
by the Shannon entropy interpretation of Fitts’ Law [8]. In brief, if a longer sequence
of actions (or a sequence of more unlikely actions) is required to reach a state,
that state is less likely to be encountered by chance. A sequence of user actions
can be viewed as a string that encodes the address of an interface state. In terms of
information, if bits of informationmust be supplied to “address” a state, the likelihood
of an error increases. If there are more redundant paths, it is analogous to encoding
redundancy and the state is more likely.

The Markov chain conceptualization for data-dependent biases derives the tran-
sition probabilities, p ji , from this weighting schema. We are capturing biases where
the transition probabilities shape Markov chains to end up in a particular part of the
state space or make some transitions more likely than others. With data in the sys-
tem, we are measuring some of the technical biases. The data representations reflect
the results of the underlying encoding/embedding schemes and choice of machine
learning or analytic algorithms. These technical choices can bias the data available
in the system. Pre-existing biases may come into play if the system is applied to
data types for which it was not designed, because the norms and practices will not
properly apply. This would occur, for example, if numerical techniques are applied
ineffectively to encode text data. But predominantly, data-dependent Markov chains
capture technical system biases.

This preliminary analysismakes it evident that the basic procedure naïvely applied
yields a combinatorial explosion of states. For example, sequential data selection
is done when picking specific countries in the Gapminder “Bubbles” chart. A full
model is a lattice of all possible combinations of selections (A, B, C, A&B, A&B&C,
A&C, B&C, etc.). For all but trivial examples, this is likely to be computationally
intractable. Tempering full data dependence is probably necessary and is the focus of
the next section. In truth, amixture of data-dependent and data-independentmodeling
is likely to yield the best tractablemodels. Some of the simplifications used in Dabek
andCaban [4] reduce the impact of redundant combinationsmay also have analogous
simplifications for this a priori modeling.

Data Independent Modeling

Interesting patterns in the interface may be revealed by ignoring details of the data
presentation. In the data-independent scenario, the resulting model is simplified but
necessarilymore abstract. It is constructed in the sameway as the data-dependent bias
case but with two simplifications. First, all interactions that directly involve the data
are collapsed into a single link by type. For example, instead of a selection-related
link for each data point, there is a single data-selection link. This necessarily implies
that data-related states are also compressed together. The general transformation
is shown in the difference between the top and bottom row in the left column of
Fig. 4.3. Second, because we are no longer considering the data representation, we
can no longer use screen-space to weight the links. Instead, we propose to make all
links that leave a node equally likely. This is termed a regularMarkov chain, with the
transition probability matrix P = [

1
n

]
. This initial assumption provides a baseline

against which we can study a system.
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Fig. 4.3 Markov model structures from Gapminder “Bubbles” regions noted in Fig. 4.2(top). The
difference between the data-dependent and data-independent cases is evident in the difference of
complexity between the rows

Data-independent Markov chains have transition probabilities that are regular or
are shaped by the initial conditions of the system. If the transition probabilities are
dependent on initial conditions, we are capturing a pre-existing bias in the system.
That is, the assumptions made by the designer as to default settings produced a bias
toward data availability that changed when those default settings were adjusted to
some alternative initial configuration. Additional pre-existing biases are captured in
the overall design elements in the display or choices of representation implemented,
because all reflect some methodological attitude or cultural norm for that system.
Technical biases can also be revealed if the data-independent display incorporates
structures output from some internal algorithm, or the structure reflects technology
choices on which the system is implemented. But we argue that data-independent
Markov chains serve to capture pre-existing system biases.

Modeling an interface with a specific dataset represented is likely to be more
directly actionable than the data-independent model. However, the models are likely
to be large relative to the data-independent case because many common interface
patterns are combinatoric in the elements of the dataset. Working with the data-
independent model has the effect of reducing the size the model significantly, but it
makes the results more abstract and thus more difficult to interpret.

4.6 Application: Gapminder Analysis

We prototyped the bias measurement procedure on the Gapminder world map visual-
ization. The target application is show in Fig. 4.1. The data-based components were
recreated using Gapminder’s demographic data [12] and geographic centroids [11].
Countries are represented by circles, the areas of which correspond to the income
variable. Figure 4.4 shows the basic result of this abstraction.

Estimating bias according to the procedure outlined in Sect. 4.5 requires measur-
ing the proportion of pixels allocated to various interactive elements. This can be
accomplished by assigning each interactive element a unique color and counting how
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Fig. 4.4 Re-representation of Gapminder Maps with random colors for measuring bias. Circle size
represents Income, and position of each circle is the same as in the Maps view in Fig. 4.1

many pixels in the end image contain each color. To properly measure the interface
bias, an image must be measured for the interactive state of each interface element.
In the Gapminder Map, the main map interaction is selecting countries. When a
country is selected its label is rendered top-most and can be used for selection in
the same way that the circles can be. Therefore, the measurement process creates
a separate image for each interactive state. In this case, each image corresponds to
selecting a different country and includes a label box for the selected country. The
label box is filled by the same color as the country because, in the Gapminder map,
country labels behave as selection targets in the same way the country’s circle does.
The underlying map is not directly interactive and is thus omitted from Fig. 4.4. The
various controls on the periphery are also omitted from this analysis.

With an image similar to that in Fig. 4.4 generated for each country, the number
of pixels allocated for each country can be counted directly. Because the background
color is the most common color (comprising 88% of the image), it was omitted from
this model. However, in modeling other interfaces it may be valuable to include.
Each image corresponds to a state in the Markov model and the percent of pixels for
each country corresponds to the transition probabilities.

With the Markov model defined, analysis can proceed. There are two basic mea-
sures: the baseline probability and the stable distribution. The baseline probabil-
ity is the average probability across all possible transitions. Shown in Fig. 4.5 in
comparison to the population distribution, the distributions are distinctly different.
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Fig. 4.5 Screen space and proportional incomes compared (ordered by screen space). If screen
space were allocated proportional to income, the blue and green series of bars would both mono-
tonically decrease. Because they do not, there is disproportionate representation
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Treating screen and data proportion as a sorted list, the relationship between the two
can be measured with Spearman’s rank correlation (i.e., Spearman’s ρ). ρ ranges
from −1 to 1, corresponding to inversely ordered to identically ordered. A value of
0 indicates that the orders are unrelated, and is the null hypothesis. With an order-
ing of countries based on screen proportion and another based on data proportion,
ρ = −0.02, with p = 0.75. Relative to the common type I error rate α = 0.05, this
result indicates that the orders cannot be distinguished from random. We must con-
clude that any bias in the visualization is not related the distribution in the source
income data.

The other basic measure is to look at the stable distribution, essentially modeling
what random walks across the interface would produce. The data-dependent case,
where the actual data values are used to scale the circles, is shown in Fig. 4.6. It is
clear that there is a significant bias towards specific countries, but that bias is not
matched by the per-capita income of those countries. In fact, several highly populated
countries are at the bottom of the distribution (Luxembourg, Switzerland, Austria,
Netherlands, Germany, Montenegro, El Salvador), but all are in regions of the world
withmany political boundaries close together such asEurope andCentralAmerica. In
contrast, the top of the distribution (UnitedKingdom,Brunei, Japan, Iceland, Taiwan,
Canada, Australia, United States) is made of geographically isolated countries, even
though they do not have the highest per-capita incomes.

Interpreting these results requires knowing what the desired outcome is. The
argument for approximately equal distributions is that each item is equally selectable.
Our analysis indicates that the Gapminder interface essentially supports this type of
analysis when used interactively, but only when used interactively. In contrast, if a
bias that follows the data distribution is desired (that the answers should “pop out”)
this layout fails both interactively (where distributions are too even) and statically
(where the image does not allocate pixels proportional to the source data).

The data-independent analysis reveals limits about the interface regardless of exact
data values. In this analysis, images were generated where each country was given
the same value. Exploring different cases involved using different assigned values.
To provide an even distribution statically or in the stable distribution at common
screen (100 dpi) or print resolutions (300 dpi), the circle for each country would
need to be smaller than a single pixel. This is impractical, and thus we conclude that
the map layout provided is incapable of providing an even bias.

Our re-implementation of the Gapminder interface is not perfect. There are three
main differences. First, Gapminder’s actual interface uses an area-preserving ge-
ographic projection (or a compromise project that includes area-preservation as a
partial criterion). For simplicity, we used an equi-rectangular projection. This does
not affect the procedural validity, but it likely influences the exact weights in the
Markov model as overlapping regions may shift around. It is likely that our analy-
sis reports less bias than a matching projection because much of the bias is found
in Europe, which is more compressed in most area-preserving projections than in
equi-rectangular. Second, We have omitted the controls surrounding the main map
and the background map itself. The background map was omitted because it is es-
sentially non-interactive. Other controls were omitted for simplicity of analysis.
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Fig. 4.6 Interactive, data-dependent Markov-modeled bias of the Gapminder Maps interface
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Finally, the scaling factor used for circles approximates that of the Gapminder inter-
face, but is not a perfect match.

Our analysis can be used to directly explore alternative implementation decisions.
For example, to faithfully reproduce the Gapminder Maps interactive interface el-
ements, country circles are rendered such that smaller values lay on top of larger
values. This makes it more likely that small countries will be selected than their
proportion of the data would indicate. Using our analysis techniques, we can also
measure what the bias would be if countries were rendered in other orders. If large
income countries were rendered on top, the interactive case appears more like the
background data distribution (see Fig. 4.5, right column), but not sufficiently to be
statistically significant (Spearman’s ρ = 0.06, p = 0.38). This indicates that the bias
is dominated by something other than rendering order.

Rendering the order by other data values would also provide other bias profiles,
some of which may be useful for specific contexts (e.g., conditioning income maps
by population may bias the interface towards discovering patterns in poverty). This
approach provides opportunities to explore interface decisions and how they may be
made in context-specific ways.

4.7 Discussion

ClassicMarkovmodeling is a “memory free” technique. It only takes the current state
into consideration when making a transition. However, data exploration necessarily
includes human memory [16]. Modeling multi-step memory with static Markov
models is cumbersome at best (and practically impossible in combinatoric cases).
However, compressing combinatoric cases into abstract chains (as discussed earlier)
can be seen as a simple memory model. A similar compression technique might be
used to model a simple form of memory. An alternative to combinatoric compression
of states would be to use a model that includes memory in a structured way. Dynamic
Markov, Push-down automata, and RAM-based automata (with limited RAM) are
also viable options. Each has afinite state space and awell-developedfield of analysis.

Our proposed weighting scheme is simple, and may not be sufficient to illumi-
nate some bias patterns. There are some interesting challenges. For example, in the
data-dependent construction, the size-based weighting is derived from Fitts’ Law.
However, Fitts’ Law does not account for convention or attention. Therefore, some
interface elements may be relatively large by convention but the probability that they
will be interacted with is not proportional to their size. For example, menu bars have
a size and position dictated by the interface guidelines of the platform, and that may
be significantly larger than the representation of a single data point. Capturing such
differences in the interaction probabilities requires reaching beyond Fitts’ Law for
transition probabilities.

In the data-dependent Markov modeling, only the screen real-estate is used to
model direct data interactions. Logical extensions include using visual similarity
(along many retinal dimensions) to up-weight or down-weight items. This could be
extended further with a dynamic Markov model, so weights change based on what
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states have been visited in earlier interactions. Proper dynamic weighting requires
knowledge of the task as well as the visual representation. It makes sense to up-
weight similar things when the retinal variables correspond to the desired task but
to (possibly) down-weight similar items when the retinal variable does not have a
bearing on the task. Also, exploration versus verification probably has different inter-
action patterns. Such modeling may be achieved using a Markov Decision Process.
In addition to a transition probability, the model is extended with a payoff matrix
and a “discount” factor. Payoffs are provided when a specific transition is taken. The
discount factor determines whether immediate payoffs or future expected payoffs
are prioritized. Decisions are still based on the information observable in the cur-
rent state, but the probability of a transition is made a factor of the base probability,
the payoff, the expected future payoff and the discount factor. Payoff and discount
factors can be adjusted to model different goal-directed behaviors. Similar dynamic
re-weighting is done in Dabek and Caban [4], captured in their “ideology” factors.

Analytic provenance models suggest another approach to Markov modeling. In
particular, if a provenance tracking system records information about the state of the
interface, we could use a hidden Markov model to derive the Markov chain of the
original interface state space [7]. This might be helpful in cases where we have in-
complete information about the structure or state space of an interface. This inference
process could leverage existing graph modeling systems for analytic provenance, as
in GraphTrail [5], to interpret the hidden model states. This approach bears some
similarity to Jankun-Kelly’s [14] P-setModel of visualization exploration. He defines
two key concepts. A P-set is a set of parameters that define a visualization system,
and visualization transformation is an operation on the P-set that creates a particular
visualization view. Each set of parameter values (P-set) defines a state space with
weighted connections (transformations) between the states. The difference between
our Markov chain approach is that our links between the states quantify the proba-
bility of moving between states, rather than defining the parameter transformations
themselves. An interesting direction for future work is to relate the transformations
to transition probabilities between parameter states to capture emergent bias.

4.8 Conclusion

We note that methods for measuring information content in a visual analytic system
remain an open challenge for the field [19]. Suchmeasures are important for the over-
all evaluation of systems, particularly for calibrating our expectations for how much
information usersmay be able to extract froma system.Wepropose thatmeasurement
of information availability and the interface biases that may shape that information
availability should be modeled in systems before they are put into human-in-the-
loop evaluations. Markov models, as proposed herein, provide a promising direction
for conceptualizing the state space of a visual analytic system and understanding
system-level biases through the transition probabilities over the state space.
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