q

Check for
updates

A New Approach for Mining
Representative Patterns

Abeda Sultana, Hosneara Ahmed, and Chowdhury Farhan Ahmed®)

Department of Computer Science and Engineering,
University of Dhaka, Dhaka, Bangladesh
abidal616@gmail.com, hosneara_17@yahoo.com, farhan@du.ac.bd

Abstract. With the revolution of science and technology, we can accu-
mulate huge amount of data which requires to be manipulated efficiently
since the amount of data is expanding hence scarcity of knowledge is also
increasing. Therefore analysis for more useful and interesting knowledge
is on demand. Representative patterns can be a solution to represent
data in a more concise way. Different efficient methods for mining fre-
quent and erasable patterns exist in representative pattern mining field
that are regarded as significant. We have proposed a new type of pat-
tern called decaying pattern. These patterns are characterized as those
patterns that were frequent for a time being and then decayed with
time. These patterns of declining nature can give us the opportunity to
analyze reasons behind items’ decrease such as extinct animals, finding
unsolved accidental news, analysis of buying behavior of customers etc.
that require further inspection.

Keywords: Frequent pattern - Erasable pattern
Representative pattern + Pattern tree - Decaying pattern

1 Introduction

Data mining is the process of analyzing large amount data to discover knowledge
and finding patterns and relationship among them. By means of data mining we
can renovate huge amount of information into useful knowledge. This knowledge
is immensely important on various applications and research field. Frequent pat-
tern mining is one of the most significant field of data mining. Another important
domain of data mining is mining representative patterns. Different kind of fre-
quent patterns can be formed in itemsets, sequences, episodes and substructures
and so on. Representative frequent pattern mining refers to finding precise, dis-
tinctive and explicable set of patterns of each class that represent their key
characteristics among other classes. Representative patterns represent a dataset
and extract the significant knowledge from huge amount of data. This represen-
tation can be done in many criteria. Many efficient and noble works are already
done on these e.g. some patterns are most significant in the database, that are
mined as representative frequent patterns, some patterns are so insignificant that

© Springer International Publishing AG, part of Springer Nature 2018
P. Perner (Ed.): ICDM 2018, LNAI 10933, pp. 44-58, 2018.
https://doi.org/10.1007/978-3-319-95786-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95786-9_4&domain=pdf

A New Approach for Mining Representative Patterns 45

they are better to be pruned, these type of patterns are mined as representative
erasable patterns [7,9,10]. Again maximal, closed, top rank-k, top-k frequent
regular [1,2,6] are also developed for representative pattern mining.

There are some patterns which are frequent in a database for some time being,
then they are lost. These patterns could be a part of representative frequent
pattern set but due to their decaying nature, they fail to get a place there. This
type of patterns are ignored but have importance in various research fields. We
focus on this decaying representative patterns which can be a means of mining
important knowledge from huge amount of data. Erasable closed pattern set
consists of the least frequent patterns and subsets of these patterns are also
erasable. On the other hand, decaying pattern has two attributes- at first it
needs to be highly frequent for a span of time, secondly its frequency will decay
and so the resulting pattern becomes infrequent.

1.1 Motivation

With the existing algorithms we can only find the patterns which were most
frequent or too scarce. Patterns having both characteristics- that were frequent
for a while but have become infrequent with time are not mined yet. This type
of patterns are not observed but have importance in various research fields.

Motivating Example

Suppose a large electronics company sells various types of products like laptops,
smartphones, smartwatches, tablets etc. Laptops and smartphones are very pop-
ular among the buyers of that company. These two products were sold through-
out the year. On the other hand, smartwatches are not greatly welcomed by the
customers, so the sale of smartwatches remained below the expectation. How-
ever, in case of tablet situation was slightly disparate. Notwithstanding, when
company released it first, it was a very welcoming product, after there second
release the sale suddenly decreased.

After two or three years when a data analyst of that company mined the
most remunerative products, he got laptop and smartphone as the number of
sale was higher and so the profit. Contrarily, as least profitable product, he got
smartwatch. So company will take action for further development of it. As tablets
do not fit in any of the two categories, company will never know the problem why
the sale of tablets decreased and it will not take any necessary step. If analyst
would observe decaying nature in the trade, this tablet will come to light for
finding the reason behind consumers’ sudden displeasure toward this product.

There are more important applications of decaying patterns. Everyday acci-
dents or unusual occurrences are happening that appear in newspaper and social
media so frequently for some days and then perish of being heedless. In most
cases, they remain unresolved. Mining those patterns can help correspondents
write follow-ups. Again, we can find this pattern in species data of animals and
plants which have become extinct such as Sea Mink, Tasmanian Tiger, West
African Black Rhinoceros and so on. In many cases this decaying nature is pre-

46 A. Sultana et al.

vailing but does not come to light. This gradual going off detection is our main
purpose of proposing new type of pattern.

1.2 Contributions

— We have proposed a concept of new type of representative patterns named
“Decaying patterns” which represents those which were once in frequent pat-
tern set but decayed with time. This could be put into representative pattern
set but due to fall off nature, they fail to remain there.

— We have developed an algorithm to mine this type of patterns from real life
large datasets which are collected from famous data mining repositories FIMI
and SPMF.

— Data that we have used to test are considered as data stream so we have
divided it into set of windows and for any current window we have observed
whether it is frequent or erasable which assures getting recent result always.

— We have run our algorithm on six real life datasets and two synthetic datasets.
Further our own web service to collect news from prominent online newspa-
pers provided us with floods of daily news. We have pre-processed that huge
data and applied our algorithm. From all of these real life large datasets,
significant number of decaying patterns have been observed.

The rest of the paper is organized as follows. In Sect.2, some overview of
related works on representative pattern has been given. Section 3 consists of our
proposed approach, algorithm and a small simulation to exemplify it. Section 4
contains the experimental analysis based on different performance metrics using
the algorithm on many real life and synthetic datasets. Finally, in Sect. 5, we
concluded with discussion on the future scope of robustness of our algorithm.

2 Related Work

Maximal Frequent Itemsets [3]: Low min_sup generates large number of pat-
terns. Bayardo [3] proposed for storing long patterns (maximal frequent item-
sets) in roughly linear scale. If a pattern is X is frequent, all Y where Y C X is
frequent.

FPclose [4]: Implements another distinction of FP-tree known as CFI-tree
(Closed Frequent Itemset Tree). Four fields are necessary for this tree struc-
ture - item name, count, node link and level. Subset test of maximality is done
with level. Count works for checking if the support count is equal to it’s superset
and if it is not, both superset and subset are stored in memory. FP-close is the
fastest among the algorithms of that time when minimum support is low but
when minimum support is high it becomes slow than Apriori.

TFP [12]: For mining top-k frequent closed items, TFP is an efficient algorithm.

The common factor among all approaches of frequent pattern mining is the
usage of min_sup threshold which ensures generation of accurate and entire set
of frequent item sets which leads to two problems stated below -

http://fimi.ua.ac.be
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

A New Approach for Mining Representative Patterns a7

First, an appropriate min_sup is taken as input but this requires detailed knowl-
edge on mining query. Again setting min support is quite problematic in the sense
that a too small threshold may produce thousands of itemsets on the other hand
a too big threshold may generate no answers.

Second, Due to the downward closure property, when a long itemset is mined,
it may generate an exponential number of itemsets.

To solve these problems they proposed a new approach of mining top-k fre-
quent closed itemsets of minimum length min_l, where k is user given number
of frequent closed itemset that they want to be mined. k is easy to specify and
top-k means k most frequent closed itemsets. min_l helps to mine long itemset
without mining the short ones first.

ECP (Erasable Closed Pattern) [11]: In factories, for the optimization of pro-
duction plans erasable pattern (EP) mining plays an important role. For efficient
mining of these patterns various algorithms have been proposed. Nevertheless,
number of EPs becomes numerous because of large threshold values which cause
memory usage overhead. Hence it becomes requisite to mine compressed EPs
representation. This paper first came up with the concept of erasable closed pat-
terns (ECPs). These ECPs can be represented without losing information. They
at first gave a theory to detect ECPs based on a structure name dPidset and
proved it. Then two efficient algorithms, ECPat and dNC-ECPM are proposed.
Their result of experiment on these two algorithm shows that for sparse datasets
ECPat performs the best but ECPM algorithm is more efficient in the case of
memory usage and runtime for rest of the datasets.

DSTree (Data Stream Tree) [8]: In this paper, Leung et. al. proposed the
concept of data stream tree. Transactions are sorted in any canonical order
chosen by user. Each node keeps a list for frequency count. With the appearance
of a new batch of transaction, it is appended to the list to each of the node and
frequency count of that node in the current batch. The last entry of a certain
node N is the frequency count of that node in the current batch. When the next
batch of transactions arrives after fulfilling the batches in a window, the list is
shifted to left to place the newest batch to be added as the most recent one. In
DSTree costly deletion is not required, only shifting and updating the frequency
list will suffice to update tree.

3 Our Proposed Approach

Decaying patterns are important and useful for analysis and many other purposes
in many data repository. To the best of our knowledge, it is the first approach
for mining decaying pattern. By observing the enormous application in many
sectors, we hope these patterns will be effective and useful for gaining knowledge.

As we proposed our algorithm to work on stream of data, we used DSTree
based algorithm which serves pretty well for the data stream. Again we have
proposed a pattern tree approach to mine decaying patterns and sub patterns
of different length, which is also a significant part of our algorithm. We consider

48 A. Sultana et al.

sliding window technique for capturing data effectively. We also thought about
including dynamic future of window and batch which we’ll adopt as our future
contribution.

3.1 Preliminaries

A window is comprised of a set of batches and a batch consists of a set of
transactions.

— win_F (Frequent window length in decaying pattern) The number of consec-
utive windows where a pattern has to be frequent.

— win_IF The number of consecutive windows where a pattern needs to be
infrequent. (Difference between total window size & win_F).

— min.WT (Minimum window support threshold) A threshold that is to be
crossed by a pattern by occurrence to be frequent in a window.

— ET (Error threshold in win_F) The maximum number of batches in win_F
where a pattern can be infrequent.

— ET’ (Error threshold in win_IF') The maximum number of batches in win_IF
where pattern can be frequent.

Definition 1 (Decaying pattern). Consider a set of batches B =
{b1, b2, b3,...,b,} where each batch consists of a number of transactions T' =
{t1, ta, t3,...,tm}. If & pattern is frequent (meets min_-WT) in frequent win-
dows (each window of win_F') and then becomes infrequent in decay windows
(each window of win_I'F'), it is called decaying pattern.

e.g. a pattern with a window length 9 and the frequency list of the pattern in
these windows is [9, 5, 10, 4, 3, 3, 2, 0, 0]. Let the min_WT is 4, frequent window
length win_F is 4. Here the for first four window [9, 5, 10, 4] the pattern meets
min_WT(4). The pattern remains infrequent for last five windows win_IF' [3, 3,
2, 0, 0]. So this pattern is our desired decaying pattern.

— Batch size and window size generation
The size of batch and windows will be based on the number of transaction in
a database. In a database with small transactions this value should be kept
as small as possible. If user wants to observe the decaying characteristics
intensely then he should keep batch size small because the window will move
slowly in that case. In general case, as the batch size increases, number of
decaying patterns also increases. For sparse dataset, batch size should be as
large as possible for this reason.

— win_F and win_IF generation

For dense dataset)]
Total window size

2

win_F' =

or
2 x Total window size

3

win_F' =

A New Approach for Mining Representative Patterns 49

For sparse dataset
Total window size

3
win_IF = Total window size — win_F

win_F' =

But this can be tuned by user according to his demand.

— Minimum window support min_ WT
We represent the minimum window support as a percentage value. A mini-
mum window support threshold of 60% means a pattern has to appear in at
least 60% of all the transactions in current window of the data stream. The
min_WT value is calculated as follows:

min WT = min_sup % X number of transactions in current window

— ET and ET’ generation
The error threshold in win_F and win_IF should be 1% for dense dataset
which refers that a pattern which remains frequent in at least 99% windows of
win_F and remains infrequent in at least 99% windows of win_IF, patterns
will be accepted as decaying pattern. For sparse dataset ET and ET’ can
vary from 10% to 20%.

3.2 Tree Construction and Mining

We have used FP-Growth [5] for mining frequent patterns in each window, addi-
tionally, as data is considered as stream, mechanism of DSTree (8] is followed for
sliding window formation which has been modified according to our purpose.

The transactions in the tree are sorted in frequency descending order for
static database. In case of data stream any canonical order can be followed such
as alphabetic order or order based on any specific property. With every node in
the tree a frequency list is added which contains the frequency of current batches
of that item. A batch of transactions is inserted at a time and frequency of each
item is appended to the frequency list of each node. When new batch is added,
the list is shifted to left and the oldest batch frequency is removed. This has the
same effect as deleting the transactions from the oldest batch in a window.

Frequent patterns from each window are added to a new pattern tree. Each
node in a pattern tree also consists of a frequency list. Frequent patterns gener-
ated from each window of data stream tree are considered as a batch of transac-
tions for the pattern tree. The frequency list of each node contains the frequency
of that node in a particular batch. Each batch of frequent patterns are inserted
at a time into tree.

When a complete pattern tree is generated, we extract the patterns of our
interest by checking only the leaf node. If a leaf node meets the condition of being
a decaying pattern the whole branch and the sub-branch of a path including the
leaf node will be considered as decaying pattern.

50

A. Sultana et al.

Example Workout

In Table1 a small transaction dataset is shown. There are seven items {a, b,
¢, d, e, f, g} and fifteen transactions. We have divided the transactions into
five batches.

Each batch consists of three transactions, batch length BS is 3. Each window
consists of 2 batches, window size WS is 2. We consider our minimum window
support threshold min_.WT 3 which means a pattern will be frequent in a
window if the total frequency of a pattern in the batches of that window is
at least 3.

Here, frequent window length in decaying pattern, win_F' is 2. So a decaying
pattern will be frequent in consecutive 2 frequent windows.

Now we have to construct a DSTree with these batches. In Fig. 1a the tree is
constructed with batch-1 and batch-2. The frequency of each batch is inserted
in the frequency list with each node. e.g. ‘a’ has value 3 and 2 in its list which
refers to the frequency of ‘a’ in first batch is 3 and in second batch is 2. In each
window, we mine frequent pattern from the tree with FP-growth algorithm.
The total frequency of ‘a’ in window 1 is 5 which is greater than min - WT,
so ‘a’ is a frequent pattern for window 1.

In this window, we have found {a}, {b}, {d}, {a, b}, {b, d}, {a, d}, {a, b, d}
as frequent patterns.

Table 1. Transactions are arranged in frequency descending order

Batch | Transactions | Contents
First | t1 {a, b, d, e}
tio {a, b, f, d}
t3 {a, b}
Second | t4 {a, b, d, {}
ts {b, f}
te {a, b, d}
Third | t7 {a, b, d, e, f}
ts {d, e}
to {a, f}
Fourth | t10 {a, d, f}
t11 {d, e, g}
t12 {a, ¢, 1, g}
Fifth | tis {a, d}
tia {a, d, f}
t15 {d, e, g}

A New Approach for Mining Representative Patterns 51

/N -

a32 boj1 d01 a21 bo1
A £o1 12 Mot o
b[372 il o1 —
V4 d12
dl12 N
/\ y [el10] o1
lel10 [fl11 f10 1
(a) Tree after including first two batch (b) Tree after inserting 3¢ batch

Fig. 1. Window 1 & 2

— For second window, we have to insert third batch by removing the oldest
batch from the tree. We shifted the frequency list of each node to left and
added the frequency of new batch to the right. Again by mining frequent
patterns we got {a}, {b}, {d}, {f}, {a, b}, {a, d}, {b, d}, {a, b, d} (Fig. 1b).

Root
di/1 al22
/
el11 lel10 bl00d12

(a) Tree after inserting 4" batch (b) Tree after inserting 5" batch

Fig. 2. Window 3 & 4

— For third window (Fig.2a), after inserting fourth batch we got {a}, {e} as

frequent patterns.
— On fourth window (Fig.2b) we got {a} and {g} as frequent patterns.

20003 e003/0 @43/3/4 bl6400 d3445 0033

d3303 5400 3300
d330/0

Fig. 3. Pattern tree with the frequent patterns from all windows

52 A. Sultana et al.

— We have built a pattern tree with all the patterns found above, considering
the patterns from each window as a batch of transactions to insert in the tree.
Each node also consists of a frequency list (Fig. 3).

— Now from this pattern tree, we can easily find out desired pattern only by
checking the leaf nodes. The decaying patters are - {a, b, d}, {b, d}, {a, d}
(Fig. 3).

Algorithm 1: Algorithm for Mining Decaying Patterns

Input : transactions||] where each transaction consists of items, min_sup,
win_F and win_I[F, ET and ET’
Output: List of decaying patterns in structure named Decay_Patterns

1 Sort transactions[] in lexicographic order

2 root—Add_Batch_to_Tree(Batchy,...,Batchm)

3 PatternSet «— FPgrowth(tree)

4 foreach Remaining batch Batch; do

5 Add_batch_to_tree(Batch_i,root)

6 Pattern_set[window—++] «— FP_growth(tree)

7 Pattern_tree(pattern_set, root)

8 end

9 Decay_Patterns < Extract_Pattern(root)
10 Function FEztract_Pattern(root)

11 foreach leaf node in tree do

12 if ItemFreq in win_F > min W'T and ItemFreq in each batch of win_IF

== 0 then

13 keep the node in tree

14 Decay_Patterns[count++] = 3 U leaf node
15 Prune the leaf node upto root;

16 else

17 end

18 return Decay_Patterns

4 Experimental Results

We tested our algorithm on six real life and two synthetic datasets- chess, mush-
room, pumsb, accidents, connect, ¢73d10k, c20d10k. Also we have a web service
where we fetch data from some prominent online news portal of Bangladesh. We
collected around 59,033 news in 4 months (August to November). We processed
the data and applying our algorithm, got our desired result. The algorithm is
implemented in JAVA and experiments are performed in Linux environment
(Ubuntu 16.04), on a PC with Intel(R) Core-i3-4005U 1.70 GHz processor 4 GB
main memory. As there is no literature on finding decaying pattern, we could
not compare our result with any other algorithm. For this reason we have shown
our result on five metrics.

A New Approach for Mining Representative Patterns 53

Algorithm 2: Algorithm for Mining Decaying Patterns
19 Function Add_Batch_to_Tree(batch[], root)

20 if root is NULL then

21 foreach batch; in batch[] and transaction t in batch; do
22 ‘ add t to tree and nodeFrequency to list

23 end

24 else

25 Shift left each node in tree

26 foreach batch; in batch[] and each transaction t in batcho do
27 add t to tree

28 add frequency of node to list

29 end

30 end

31 if frequency of each window is 0 of any node in tree then
32 ‘ delete node and its successors

33 end

34 return root

35 Function Pattern_Tree(patterns]])

36 foreach pattern; in patterns|] do

37 Add pattern; to tree

38 insert frequency of node to freq-list

39 end

— Number of patterns with varying minimum window support
— Number of patterns with varying window size

— Number of patterns with varying batch size

— Runtime with varying minimum support

— Maximum memory usage with varying minimum support.

4.1 Pattern Count w.r.t. Minimum Window Support

With varying minimum support value, number of decaying patterns also varies.
Number of patterns and minimum support change proportionally to each other
but in case of decaying pattern this trend does not hold always. Plausibly because
when minimum support is low, the patterns tend to be frequent in the decaying
window (win_IF') and those patterns are rejected as per the definition of decay-
ing pattern. When minimum support is higher those rejected patterns are added
in decaying pattern list. From Fig. 4, result of two dense datasets (Fig.4b and a)
connect and mushroom are shown where pattern number decreases with increas-
ing min_WT while results of sparse dataset accident and ¢20d10k (Fig.5b and
a respectively) are different. Number of patterns tends to increase with increas-
ing min_WT for accidents. Nearly reverse nature is noticed for ¢20d10k. So this
variation actually depends on dataset.

Our news dataset was highly sparse as we got news of four months only.
For better output we splitted the dataset by taking two months’ news in a

54 A. Sultana et al.

Mushroom (Number of Pattern vs Minimum Support) connect (Number of patterns vs Minimum support)
400 800
350 700
300 600
§ 250 § s00
g £
< 20 Window size 40 5 40
3 150 Batch size 90 2 300 Window size 10
H s Batch size 1000
2 100 2 200
: inm .
0 — 0 — —
45 47 a8 49 52 % % %8)
Minimum support (in %) Minimum support (in %)
(a) Mushroom dataset (b) Connect dataset

Fig. 4. Pattern number vs Minimum window support (min_-WT)

©20d10k (Number of patterns vs Minimum support) Accidents (Number of pattemns vs Minimum support)
100
35

920

80 30
E 70 E 25
£ 60 £
& 5 ® 20 Window size 30
S wn LT Batch size 1000
3 o
£ o Window Size 10 §
3 BalchSize 400 £ 10

20 2

») I .

0 o W
24 25 27 29 40 43 47 50
Minimum support Minimum support (in %)
(a) c20d10k dataset (b) Accident dataset

Fig. 5. Pattern number vs Minimum window support (min_WT')

group. From the news of August and September, we observed several decaying
patterns (Fig. 6a). Most of them are murder incidents including 16" amendments
of Bangladesh constitution, floods in northern part of Bangladesh. From August
to November (Fig. 6b), the important decaying news mostly are rape and murder
case including some international matters like Rohinga issue, issue of mosque Al-
Agsa in Palestine etc.

4.2 Pattern Count w.r.t. Window Size

In case of dense dataset generally pattern number tends to increase with increas-
ing window size (Fig. 7a) because in larger window, longer decaying pattern can
be generated and in that case there will be lot of sub patterns. But in case of
sparse dataset the opposite tendency is noticed (Fig. 7b) because sparse dataset
contains small number of decaying patterns and with increase of window size
possibility of being frequent in a large set of transaction decreases. For this rea-
son, many patterns are rejected as they are infrequent in the frequent windows.
This characteristic varies with dataset.

A New Approach for Mining Representative Patterns 55

August, September (Number of patterns vs Minimum support) August, Septermber, October, November (Number of patterns vs Minimum support)

35 45
30 4
35
2 P
% 20 § 25

§ » Window size 5 § 2 Window size 5

£ Batch size 4 g 15 Batch size 6
z zZ 1
5 H =
0 — 0

70 75 0 % 9% 57 63 67 70 7
Minimum support (in %) Minimum support (in %)
(a) News dataset (b) News dataset
(August and Semptember) (August to November)

Fig. 6. Pattern number vs Minimum window support (min_-WT)

Chess (Number of pattems vs Window size) €20d10k (Number of pattem vs Window size)
600
60
500
50
E 400 »
£ §
2 300 #
s 2 30 Batch size 200
2 200 Batch size 50 £ Min_support 27%
£ Min_support90% 8 59
= £
100 z
- 10
o -
16 20 24 28 9 p 35 g 3
Window size Window size
(a) Chess dataset (b) C20d10k dataset

Fig. 7. Pattern number vs Window size

4.3 Pattern Count w.r.t. Batch Size

The next metric is number of patterns w.r.t batch size. Similar characteristic
is observed as to previous metric. In case of dense dataset (Fig.8a) number of
patterns increase with increasing batch size because of longer pattern generation
and when batch size increases total number of window decreases. So a pattern
has to be frequent and infrequent in small number of windows. This increases
the probability of getting decaying pattern with increasing batch size. Again, for
sparse dataset (Fig. 8b) number of patterns tends to decrease because with batch
size is larger window slides faster. In case of sparse dataset, frequent patterns in
one window tend to become infrequent in subsequent windows which result in
small number of patterns. This characteristic also varies with dataset as depicted
in the figures. So we cannot conclude a rigid relationship between pattern count
and batch size in mining decaying patterns.

56 A. Sultana et al.

Chess (Number of patterns vs Batch size) €20d10k (Number of pattems vs Batch size)
7000 70
6000 60
. g so
E <
£ 4000 ‘g 40
5 s Window size 10
] Windc
H 00 Mil":]_ S‘C';.féfégﬁ E o Min_support 27%
2 2000 E 20
2
1000 10
. 0
50 60 70 80 100 350 400 450 600
Batch size Batch Size
(a) Chess dataset (b) C20d10k dataset

Fig. 8. Pattern number vs Batch size

4.4 Runtime Evaluation

Runtime graphs are shown with varying min_WT on three batches for a dense
[Chess] (Fig.9a) and a sparse dataset [c20d10k] (Fig. 9b). Run time depends on
the number of patterns generated and total number of windows to calculate.
From the graph, it is comprehensible that run time increases with decreasing
minimum support and batch size. For sparse dataset, result is a bit different.
With increasing batch size, number of patterns decreases as before which requires
greater runtime. In case of sparse dataset, pattern number changes differently
with varying win_W'T so as the runtime.

Chess (Runtime vs Minimum support) €20d10k (Runtime vs Minimum support)
600 70,
500 60
2 a0 § 50 1
g s
$ —m—Baich100 g 4 —&— Batch 400
e ™ ——Bacniso £ —+— Batch 450
2 Batch 200 H Batch 500
= 200 =
é s 20
100 10
oL L
95 93 20 85 80 29 27 26 25 24
Minimum support (in %) Minimum support (in %)
(a) Chess dataset (b) C20d10k dataset

Fig. 9. Runtime (in second) vs win -WT

4.5 Maximum Memory Usage Evaluation

Memory usage also depends on the number of patterns generated. With varying
minimum support, the variation of maximum memory usage during run time is
shown. We determined maximum memory usage for any instance. During the
execution of the code, we have kept the maximum value of memory usage. If at
any instance more memory is used than the value, we have updated it. Here we
have shown memory consumption of two dataset- chess (Fig. 10a), the dense one
and ¢23d10k (Fig. 10b), the sparse one.

A New Approach for Mining Representative Patterns 57

Chess (Maximum memory usage vs Minimum support) c20d10k (Maximum memory usage vs Minimum support)
800 359
= 700 @ 358
) =
I g s m/-\./
< @
& 500 g 36
3 —&— Batch 100 2 355 —=— Batch 400
z 40 ——Bach150 5 354 —e— Batch 500
E S
Batch 200 Batch 550
g 0 g 3s3 =t
é 200 E 352
3 10 E 35
= 3
0 = 350
95 3 90 85 80 29 27 26 25 24
Minimum support (in %) Minimum support (in %)
(a) Chess dataset (b) C20d10k dataset

Fig. 10. Maximum memory usage (in MB) vs win . WT

5 Conclusions

Many significant patterns are stale with time which should be in representative
pattern and need proper attention. This type of patterns are important because
if we only focus on those which are always in representative set, some promising
patterns that suddenly started decaying will remain neglected. For this, mining
this type of patterns are important for different contexts. We have developed an
algorithm for mining decaying patterns and applied it by merging the concept
of data stream. We have constructed pattern tree structure which speeds up the
mining process. As we are dealing with data stream, more interesting knowledge
can be found at any instance of time from the patterns.

The application field of this algorithm is huge beginning from market basket
data to find new characteristics in dataset. We applied the work on many real life
dataset and have got expected results. Our work is highly applicable for mining
decaying news and we have depicted significant result from our own processed
news data. As a future work, we are planning to develop more compressed struc-
ture of tree, applying more efficient mining methodology. We will also carry out
more research for generalizing the algorithm so that it can be performed with
dynamic window adjusting feature to get the best result without user’s input.

References

1. Amphawan, K., Lenca, P., Surarerks, A.: Efficient mining top-k regular-frequent
itemset using compressed tidsets. In: Cao, L., Huang, J.Z., Bailey, J., Koh, Y.S.,
Luo, J. (eds.) PAKDD 2011. LNCS (LNAI), vol. 7104, pp. 124-135. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28320-8_11

2. Amphawan, K., Lenca, P., Surarerks, A.: Mining top-k regular-frequent itemsets
using database partitioning and support estimation. Expert Syst. Appl. 39(2),
1924-1936 (2012)

3. Bayardo, R.J. : Efficiently mining long patterns from databases. In: Proceeding of
the ACM-SIGMOD International Conference on Management of Data, pp. 85-93
(1998)

https://doi.org/10.1007/978-3-642-28320-8_11

58

10.

11.

12.

A. Sultana et al.

Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using FP-trees.
IEEE Trans. Know. Data Eng. 17(10), 1347-1362 (2005)

Han, J., Pei, J., Yin, J.: Frequent patterns without candidate generation a frequent-
pattern tree approach. Data Min. Knowl. Disc. 8(1), 53-87 (2004)

Han, J., Wang, J., Lu, Y., Tzvetkov, P.: Mining top-k frequent closed pat- terns
without minimum support. In: Proceedings of the 2002 IEEE International Con-
ference on Data Mining (ICDM 2002), Maebashi City, Japan, 9-12 December, pp.
211-218 (2002)

Lee, G., Yun, U., Ryang, H.: Mining weighted erasable patterns by using underesti-
mated constraint-based pruning technique. J. Intell. Fuzzy Syst. 28(3), 1145-1157
(2014)

Leung, C.K.S., Khan, Q.I.: DSTree: a tree structure for the mining of frequent
sets from data streams. In: Proceedings of the Sixth International Conference on
Data Mining (ICDM 2006), pp. 928-932. IEEE Computer Society, Washington,
DC (2006)

Nguyen, G., Le, T., Vo, B., Le, B.: Discovering erasable closed patterns. In: Nguyen,
N.T., Trawinski, B., Kosala, R. (eds.) ACIIDS 2015. LNCS (LNAI), vol. 9011, pp.
368-376. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15702-3_36
Nguyen, G., Le, T., Vo, B., Le, B.: EIFDD: an efficient approach for erasable
itemset mining of very dense datasets. Appl. Intell. 43(1), 85-94 (2015)

Vo, B., Le, T., Nguyen, G., Hong, T.: Efficient algorithms for mining erasable
closed patterns from product datasets. In: IEEE Access, p. 1 (2017)

Wang, J., Han, J., Lu, Y., Tzvetkov, P.: TFP: an efficient algorithm for mining
top-k frequent closed itemsets. IEEE Trans. Knowl. Data Eng. 17(5), 652-664
(2005)

https://doi.org/10.1007/978-3-319-15702-3_36

	A New Approach for Mining Representative Patterns
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related Work
	3 Our Proposed Approach
	3.1 Preliminaries
	3.2 Tree Construction and Mining

	4 Experimental Results
	4.1 Pattern Count w.r.t. Minimum Window Support
	4.2 Pattern Count w.r.t. Window Size
	4.3 Pattern Count w.r.t. Batch Size
	4.4 Runtime Evaluation
	4.5 Maximum Memory Usage Evaluation

	5 Conclusions
	References

