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Abstract. In modern time of flowing data where more data accumulate
every minute than we can store or make sense of, a fast approach for ana-
lyzing incremental or dynamic database has a lot of significance. In a lot
of instances, the data are sequential and the ordering of events has inter-
esting meaning itself. Algorithms have been developed to mine sequential
patterns efficiently from dynamic databases. However, in real life not all
events bear the same urgency or importance, and by treating them as
equally important the algorithms will be prone to leaving out rare but
high impact events. Our proposed algorithm solves this problem by tak-
ing both the weight and frequency of patterns and the dynamic nature of
the databases into account. It mines weighted sequential patterns from
dynamic databases in efficient manner. Extensive experimental analysis
is conducted to evaluate the performance of the proposed algorithm using
large datasets. This algorithm is found to outperform previous method
for mining weighted sequential patterns when the database is dynamic.
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1 Introduction

Data Mining is the analysis of data, usually in large volumes, for uncovering
useful relationships among events or items that make up the data. Frequent
pattern mining is an important data mining problem with extensive application;
here patterns are mined which occur frequently in a database. Another important
domain of data mining is sequential pattern mining where the ordering of items in
a sequence is important. Unless weights (value or cost) are assigned to individual
items, they are usually treated as equally valuable. However, that is not the case
in most real life scenarios. When the weight of items is taken into account in a
sequential database, it is known as weighted sequential pattern mining.

As technology and memory devices improve at an exponential rate, their
usage grows along too, allowing for the storage of databases to occur at an even
higher rate. This calls for the need of incremental mining for dynamic databases
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whose data are being continuously added. Most organizations that generate and
collect data on a daily basis have unlimited growth. When a database update
occurs, mining patterns from scratch is costly with respect to time and memory.
It is clearly unfeasible. Several approaches have been adopted to mine sequential
patterns in incremental database that avoids mining from scratch. This way,
considering the dynamic nature of the database, patterns are mined efficiently.
However, the weights of the items are not considered in those approaches.

Consider the scenario of a supermarket that sells a range of products. Each
item is assigned a weight value according to the profit it generates per unit. In
the classic style of market basket analysis, if we have 5 items { “milk”, “perfume”,
“gold”, “detergent”, “pen”} from the data of the store, the sale of each unit of
gold is likely to generate a much higher profit than the sales of other items. Gold
will therefore bear a high weight. In a practical scenario, the frequency of sale of
gold is also going to be much less than other lower weight everyday items such
as milk or detergent. If a frequent pattern mining approach only considers the
frequency without taking into account the weight, it will miss out on important
events which will not be realistic or useful. By taking weight into account we are
also able to prune out many low weight items that may appear a few times but are
not significant, thus decreasing the overall mining time and memory requirement.

Existing algorithms for mining weighted sequential patterns or mining
sequential patterns in incremental database give compelling results in their own
domain, but have the following drawbacks: existing sequential pattern mining
algorithms in incremental database do not consider weights of patterns, though
low-occurrence patterns with high-weight are often interesting, hence they are
missed out if uniform weight is assigned. Weighted sequential patterns are mined
from scratch every time the database is appended, which is not feasible for any
repository that grows incrementally. These motivated us to overcome these prob-
lems and provide a solution that gives better result compared to state-of-the-art
approaches. In our approach we have developed an algorithm to mine weighted
sequential patterns in an incremental database that will benefit a wide range of
applications, from Market Transaction and Web Log Analysis to Bioinformatics,
Clinical and Network applications.

With this work we have addressed an important sub-domain of frequent pat-
tern mining where several categories such as sequential, weighted and incremen-
tal mining collide. Our contributions are: (1) the construction of an algorithm,
WincSpan, that is capable of mining weighted sequential patterns in dynamic
databases continuously over time. (2) Thorough testing on real life datasets to
prove the competence of the algorithm for practical use. (3) Marked improvement
in results of the proposed method when compared to existing algorithm.

The paper is organized as follows: Sect.2 talks about the preliminary con-
cepts and discusses some of the state-of-the-art mining techniques which directly
influence this study. In Sect. 3, the proposed algorithm is developed and an exam-
ple is worked out. Comparison of results of the proposed algorithm with existing
algorithm is given in Sect. 4. And finally, the summary is provided as conclusions
in Sect. 5.
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2 Preliminary Concepts and Related Work

Let us expand our discussion to better understand the concepts that lie at the
heart of mining frequent patterns of different types. Let I be the set of all items
I, I5,...,1I,. A set of transactions is considered as a transaction database where
each transaction is a subset of I. Sequence database is a set of sequences where
every sequence is a set of events <ej e; es ...e;>. The order in which events or
elements occur is important. Here, event e; occurs before event es, which occurs
before ez and so on. Each event e; C I

In a sequence database, support is the count of how frequently a pattern
or sequence appears in the database. The support of a pattern P with respect
to a sequence database is defined as the number of sequences which contain
P. In Table1, a sequence database is given along with one increment, where
in first sequence, there are 2 events: (ab) and (e). For brevity, the brackets are
omitted if an event has only one item. Here, (ab) occurs before (e). Given a set of
sequences and a user-specified minimum support threshold min_sup, sequential
pattern mining is regarded as finding all frequent subsequences whose support
count is no less than min_sup. If « = <(ab)b> and 8 = <(abc)(be)(de)c>, where
a, b, ¢, d, and e are items, then « is a subsequence of f3.

Many algorithms, such as GSP [13] and SPADE [16], mine frequent sequen-
tial patterns. GSP uses Apriori based approach of candidate generate and test.
SPADE uses the same approach as GSP but it maps a sequence database into
vertical data format unlike GSP. They also obey the antimonotone or downward-
closure property that if a sequence does not fulfill the minimum support require-
ment then none of its super-sequences will be able to fulfill it as well. FreeSpan [7]
takes motivation from FP-Growth Tree and mines sequential patterns. SPAM [2]
mines sequential patterns using a bitmap representation. PrefixSpan [12] main-
tains the antimonotone property and uses a prefix-projected pattern growth
method to recursively project corresponding postfix subsequences into projected
databases.

The usage and improvement of technology and memory devices grow at an
exponential rate which means the databases are also growing dynamically. This
calls for the need of incremental mining for dynamic databases whose data is
being continuously added, such as in shopping transactions, weather sequences
and medical records. The naive solution for mining patterns in dynamic database
is to mine the updated database from scratch, but this will be inefficient since the
newly appended portion of the database is often much smaller than the whole
database. To produce frequent sequential patterns from dynamic database in an
efficient way, several algorithms [9-11] were proposed. One of the algorithms for
mining sequential patterns from dynamic databases is IncSpan [4]. Here, along
with frequent sequences, semi-frequent sequences are also saved to be worked
on when new increment is added. For buffering semi-frequent sequences along
with frequent sequences, a buffer ratio is used. In our approach, we will use this
concept for buffering weighted semi-frequent sequences for further use.

Considering the importance or weights of items, several approaches such as
WSpan [15], WIP [14], WSM [5] etc. have been proposed for mining weighted
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frequent patterns. WSpan mines weighted frequent sequential patterns. Using
the weight constraint for mining weighted sequential patterns WSpan [15]
uses the prefix projected sequential pattern growth approach. According to
WSpan, the weight of a sequence is defined as the average weight of all its
items from all the events. For example, using the weight table provided in
Table 2, we can calculate the weight of the sequential pattern P = <abc> as
W(P)=(0.41+0.48+0.94)/3=0.61.

There exists many work in the field of weighted sequential pattern mining
and in the field of incremental mining of sequential patterns separately. But
there has been no complete work in the field of mining weighted sequential
patterns in incremental databases. A work [8] has attempted to mine weighted
sequential patterns in incremental databases, but no complete details and com-
parative performance analysis were provided there. We are proposing a new
algorithm WlncSpan which provides a complete work of how weighted sequen-
tial patterns can be generated efficiently from dynamic databases and providing
detailed experimental results of its performance.

3 The Proposed Approach

In previous section we discussed the preliminary concepts and existing methods
of mining frequent sequential patterns separately in weighted and incremental
domains. In this chapter we merge those concepts to propose a new method
for weighted sequential pattern mining in incremental databases. A sequence
database is given in Table 1. Here, from sequences 10 through 50 represent the
initial database D and sequences 60 through 80 represent Adb which is the new
appended part of the whole database D’. The corresponding weights of the items
of D' is given in Table 2.

Table 1. Appended database D’ Table 2. Weight table for items

Sequence ID|Sequences Item |Weight

D |10 <(ab)e> a 041
20 <ab> b 0.48
30 <a(dc)e> c 0.94
40 <(ab)d> d 0.31
50 <b(dc)e> e 0.10

Adb 60 <(ab)d>
70 <a(dc)(ab)>
80 <a(ab)e>

Definition 1 (Minimum Weighted Support: minw_sup). As we know,
for a given minimum support percentage, the min_sup value is calculated as:
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min_sup = number of transactions in database * minimum support percentage.
We are considering the weight of the items as well, we derive a minimum weighted
support threshold minw_sup:

minw_sup = min_sup * avgW

Here, avgW is the average weight value. This is the average of the total
weight or profit that has contributed to the database upto that point. In ini-
tial database of D', item a occurs 4 times in total, similarly b occurs 4, ¢
occurs 2, d occurs 3 and e occurs 3 times in total. The avgW is calculated
as: avgW = (4*%0.41) + (4*0.48) + (2*%0.94) + (3*0.31) 4+ (3*0.10) /16 = 0.4169.
In initial database D, the minw_sup for minimum support 60% is therefore cal-
culated as: minw_sup =3*0.4169 =1.25 (as min_sup =>5*60% = 3).

Definition 2 (Possible Frequent Sequences). The possible set of frequent
sequences is generated to list sequences or patterns in a database that have a
chance to grow into patterns that could be frequent later. For a sequence to be
possibly frequent, the following condition must be fulfilled:

support x maxW = minw_sup

The notation maxW denotes the weight of the item in the database that has
maximum weight. In our example, it would be 0.94 for the item <c¢>. This value
is multiplied with the support of the pattern instead of taking the actual weight
of the pattern. This is to make sure the anti-monotone property is maintained,
since in an incremental database a heavy weighted item may appear later on in
the same sequence with less weighted items, thereby lifting the overall support of
the pattern. By taking the maximum weight, an early consideration is made to
allow growth of patterns later on during prefix projection. The set thus contains
all the frequent items, as well as some infrequent items that may grow into
frequent patterns later, or be pruned out.

Complete Set of Possible Frequent Sequences. First, the possible length-1
items are mined. For item <a> in D, support,* mazW =4%0.94=3.76>
minw_sup. The item <a> satisfies the possible frequent sequence condition.
Ttems <b>, <c>, <d> and <e> are found to satisfy the condition as well and
therefore are added to the set of possible frequent length-1 sequences.

Possible Frequent length-1 Sequences: {<a>, <b>, <c¢>, <d>, <e>}

Next, the projected database for each frequent length-1 sequence is pro-
duced using the frequent length-1 sequence as prefix. The projected databases
are mined recursively by identifying the local weighted frequent items at each
layer, till there are no more projections. In this way the set of possible fre-
quent sequences is grown, which now includes the sequential patterns grown
from the length-1 sequences. At each step of the projection, the items picked
will have to satisfy the minimum weighted support condition. For example, for
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item <a>, the projected database contains these sequences: <(_b)e>, <b>,
<(dc)e>, <(.b)d>. And the possible sequential patterns mined from these
sequences are: <a>, <ab>, <(ab)>, <ac>, <ad>, <ae>. In the similar way, pos-
sible sequential patterns are also mined from the projected databases with pre-
fixes <b>, <c>,<d> and <e>.

Definition 3 (Weighted Frequent and Semi-frequent Sequences). For
static database, at this moment, only the weighted frequent sequences will be
saved and others will be pruned out. Considering the dynamic nature of the
database, along with weighted frequent sequences, we will keep the weighted
semi-frequent sequences too. From the set of possible frequent sequences, set
of Frequent Sequences (F'S) and Semi-Frequent Sequences (SFS) can be con-
structed as follows:

Condition for FS: support(P) *weight(P) > minw_sup
Condition for SFS: support(P) *weight(P) = minw_sup *

Here, P is a possible frequent sequence and p is a buffer ratio. If the support
of P multiplied by its actual weight satisfies the minimum weighted support
minw_sup then it goes to the FS list. If not, the support of P times its actual
weight is compared with a fraction of minw_sup which is derived from multiplying
minw_sup by a buffer ratio u. If satisfied, the sequence is listed in SFS as a semi-
frequent sequence. Otherwise, it is pruned out.

For example, the single length sequence <a> has weighted support
4*0.41 =1.64. Since 1.64 is greater than the minw_sup value 1.25, <a> is added
to FS. Considering the value of u as 60%, minw_sup * p=1.25* 60% = 0.75. Here,
<bd> has support count of 2 and weight of (0.48 +0.31)/2 =0.395. Its weighted
support 2*0.395=0.79 is greater than 0.75, so it goes to SF'S list. For initial
sequence database D, mined frequent sequences are: <a>,<b>,<c>, <(dc)>
and semi-frequent sequences are: <(ab)>, <bd>,<d>. Other sequences from
possible set of frequent sequences are pruned out as infrequent. Interestingly,
we see that <d> is a semi-frequent pattern but when we consider it in an
event with highly weighted item <c¢>, <(dc)> becomes a frequent pattern. This
is possible in our approach as a result of considering the weight of sequential
patterns.

Dynamic Trie Maintenance. An extended trie is constructed from F'S and
SFS patterns from D which is illustrated in Fig. 1. The concept of the extended
trie is taken from the work [4]. Each node in the trie will be extended from its
parent node as either s-extension or i-extension. If the node is added as different
event, then it is s-extension, if it is added in the same event as its parent then it
is i~extension. For example, while adding the pattern <(ab)> to the trie, we first
go to the branch labeled with <a>, increment its support count by the support
count of <(ab)>, then add a new branch to it labeled with <b> as i-extension.
The solid lines represent the F'S patterns and the dashed lines represent the SFS
patterns. Each path from root to non-root node represents a pattern along with
its support.
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When new increments are added, rather than scanning the whole database
to check the new support count of a pattern, the dynamic trie becomes handy.
This trie will be used dynamically to update the support count of patterns when
new increments will be added to the database. Traversing the trie to get the new
support count of a pattern is performed a lot faster than scanning the whole
database.

Increment to Database. At this point, if an update to the database is made,
which is a common nature of most real-life datasets, it is not convenient to run
the procedure from scratch. How the appended part of the database will be
handled, how new frequent sequences will be generated using the FS and SFS
lists, how the dynamic trie will be helpful, all are explained below.

The Proposed Algorithm. Here, the basic steps of the proposed WincSpan
algorithm is illustrated to mine weighted sequential patterns in an incremental
database. Further, an incremental scenario is provided to better comprehend the
process.

Snapshot of the Proposed Algorithm. The necessary steps for mining
weighted sequential frequent patterns in an incremental database are:

1. In the beginning, the initial database is scanned to form the set of possible
frequent patterns.

2. The weighted support of each pattern is compared with the minimum
weighted support threshold minw_sup to pick out the actual frequent pat-
terns, which are stored in a frequent sequential set FS.

3. If not satisfied, the weighted support of the pattern is checked against a
percentage (buffer ratio) of the minw_sup to form the set of semi-frequent set
SFS. Other patterns are pruned out as infrequent.

4. An extended dynamic trie is constructed using the patterns from FS and SFS
along with their support count.

5. For each increment in the database, the support counts of patterns from the
trie are updated.

6. Then the new weighted support of each pattern in FS and SFS is again
compared with the new minw_sup and then compared with the percentage
of minw_sup to check whether it goes to new frequent set F'S’ or to new
semi-frequent set SF'S’, or it may also become infrequent.

7. FS" and SFS’ will serve as F'S and SFS for next increment.

8. At any instance, to get the weighted frequent sequential patterns till that
point, the procedure will output the set FS.

An Incremental Example Scenario. When an increment to database D
occurs, it creates a larger database D’ as shown in Tablel. Here, three new
transactions have been added which is denoted as Adb.
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The minw_sup will get changed due to the changed value of min_sup and
avgW. Taking 60% as the minimum support threshold as before, new absolute
value of min_sup =8*60% =5 and the new avgW is calculated as 0.422. So, the
new minw_sup value is now: 5*0.422 =2.11. The sequences in Adb are scanned
to check for occurrence of the patterns from FS and SFS, and the support count
is updated in the trie. When the support count of patterns in the trie is updated,
their weighted support are compared with the new minw_sup and minw_sup * u
to check if they become frequent or semi-frequent or even infrequent.

After the database update, the newly mined frequent sequences and semi-
frequent sequences are listed in Table3. Patterns not shown in the table are
pruned out as infrequent. Although <(ab)> was a semi-frequent pattern in D,
it became frequent in D’. On the other hand, the frequent pattern <(dc)> only
appears once in Adb, but it became semi-frequent now. Another pattern, <bd>,
which was semi-frequent in D only increases one time in support in D’. So, <bd>
falls under the category of infrequent patterns.

Table 3. Weighted frequent and semi-frequent sequences in D’

Frequent sequences Semi-frequent sequences

<a>, <b>, <>, <(ab)> | <(dc)>, <d>

After taking the patterns from Adb into account, the updated F.S” and SFS’
trie that emerges is illustrated in Fig. 2.

<> <>
<a>s4 <b>s:4 <c>s:2 <<i;s:3 <a>s:7 <b>s:7 <c>s:3 <c];s:5
<b>i:2 <d>s:2 <c>i:2 <b>i:5 <c>i:3
Fig. 1. The sequential pattern trie of Fig. 2. The updated sequential pattern
FS and SFS in D trie of ¥ and SFS’ in D’

3.1 The Pseudo-code

To get the weighted sequential patterns from the given databases which are
dynamic in nature, we will use the proposed WlIncSpan algorithm. A sequence
database D, the minimum weighted support threshold minw_sup and the buffer
ratio p are given as input to the algorithm. Algorithm WIncSpan will generate
the set of weighted frequent sequential patterns at any instance. The pseudo-code
is given in Algorithm 1.



Mining Weighted Sequential Patterns in Dynamic Databases 223

Algorithm 1. WIncSpan: Weighted Sequential Pattern Mining in Dynamic
Database

Input: A sequence database D, the minimum weighted support threshold minw_sup
and the buffer ratio p

Output: The set of weighted frequent sequential patterns FS.

Method:
Begin
1. Let WSP be the set of Possible Weighted Frequent Sequential Patterns, F'S be the
set of Frequent Patterns and SF'S be the set of Semi-Frequent Patterns.
Now,
WSP«—— {}, FS«—— {}, SFS— {}
WSP = Call the modified WSpan(WSP, D, minw_sup)
for each pattern P in WSP do
if sup(P) * weight(P) > minw_sup then
insert (F'S, P)
else if sup(P) * weight(P) > minw_sup * u then
insert (SFS, P)
end if
9. end for
10. for each new increment Adb in D do
11.  FS, SFS = Call WincSpan(F'S, SFS, Adb, minw_sup, )
12.  output FS
13. end for

End

Sl I e

Procedure: WincSpan(F'S, SFS, Adb, minw_sup, )
Parameters: F'S: Frequent Sequences upto now; SFS: Semi-Frequent Sequences upto
now; Adb: incremented portion of D; minw_sup: minimum weighted support threshold;
w: buffer ratio.
1. Let F'S" and SFS’ be the set of new frequent and semi-frequent patterns respec-
tively.

2. Initialize F'S" «—— {}, SFS" — {}

3. for each pattern P in F'S or SFS do

4. check Asup(P)

5. sup(P) = supp (P)+Asup(P)

6. if sup(P) * weight(P) > minw_sup then

7. insert(FS’, P)

8. else if sup(P) * weight(P) > minw_sup * p then
9. insert (SFS’, P)

10. end if

11. end for

12. return F'S’, SFS’

In the algorithm, the main method creates the possible set of weighted
sequential patterns by calling the modified WSpan as per above discussion.
And from that set, the set of frequent sequential patterns FS and the set of
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semi-frequent sequential patterns SFS are created according to pre-defined con-
ditions. Each increment is handled in this method. For each of the increment,
Procedure: WIncSpan is called with necessary parameters. It creates the set of
new frequent and semi-frequent sequential patterns F'S” and SF'S’ respectively.
Here, the support count of each pattern of F\S and SFS is updated and then the
pattern goes to either F'S” or SF.S’ based on two conditions provided. It returns
the complete F.S” and SF'S” which are to be used for further increments.

At any instance, we can check the FS list to get the weighted frequent sequen-
tial patterns till that point.

4 Performance Evaluation

In this section, we present the overall performance of our proposed algorithm
WincSpan over several datasets. The performance of our algorithm WlncSpan
is compared with WSpan [15]. Various real-life datasets such as SIGN, BIBLE,
Kosarak etc. were used in our experiment. These datasets were in spmf [6] for-
mat. Some datasets were collected directly from their site, some were collected
from the site Frequent Itemset Mining Dataset repository [3] and then converted
to spmf format. Both of the implementations of WincSpan and WSpan were
performed in Windows environment (Windows 10), on a core-i5 intel processor
which operates at 3.2 GHz with 8 GB of memory.

Using real values of weights of items might be cumbersome in calculations.
We used normalized values instead. To produce normalized weights, normal dis-
tribution is used with a suitable mean deviation and standard deviation. Thus
the actual weights are adjusted to fit the common scale. In real life, items with
high weights or costs appear less in number. So do the items with very low
weights. On the other hand items with medium range of weights appear the
most in number. To keep this realistic nature of items, we are using normal
distribution for weight generation.

Here, we are providing the experimental results of the WincSpan algorithm
under various performance metrics. Except for the scalability test, for other
performance metrics, we have taken an initial dataset to apply WincSpan and
WSpan, then we have added increments in the dataset in two consecutive phases.
To calculate the overall performance of both of the algorithms, we measured their
performances in three phases.

Performance Analysis w.r.t Runtime. We measured the runtime of Winc-
Span and WSpan in three phases. The graphical representations of runtime with
varying min_sup threshold for BMS2, BIBLE and Kosarak datasets are shown in
Figs. 3, 4 and 5 respectively. Like sparse dataset as Kosarak, the runtime perfor-
mance was also observed on dense dataset as SIGN. Figure 6 shows the graphical
representation.

In the figures, we can see that the time required to run WincSpan is less
than the time required to run WSpan. And their differences in time becomes
larger when the minimum support threshold is lowered. To understand how the
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Fig. 3. Runtime for varying min_sup in Fig. 4. Runtime for varying min_sup in
BMS2 dataset. BIBLE dataset.

runtime calculation is done more clearly, Table4 shows the runtime in each
phase for both WincSpan and WSpan in Kosarak dataset. The total runtime is
calculated which is used in the graph. It is clear that WincSpan outperforms
WSpan with respect to runtime. With the dynamic increment to the dataset, it
is desirable that we generate patterns as fast as we can. WincSpan fulfills this
desire, and it runs a magnitude faster than WSpan.

Table 4. Runtime performance of WSpan and WIncSpan with varying min_sup in
Kosarak dataset

min_sup (in %) | Runtime in Runtime after | Runtime after | Runtime total

initial 1°% increment | 2°¢ increment | (in seconds)

database

WSpan | WIncSpan | WSpan | WincSpan | WSpan | WIncSpan | WSpan | WincSpan
0.22% 81.3 81.3 66.8 1.66 65.5 1.53 213.6 | 84.49
0.26% 228 |22.8 38.4 | 1.56 51.1 | 0.82 108.3 |25.18
0.3% 14.5 14.5 20.3 0.75 26.8 0.63 61.6 |15.88
0.34% 4.63 4.63 8.12 | 0.56 15.1 0.48 27.85| 5.67
0.38% 2.11 2.11 3.11 | 0.48 5.11 | 0.54 10.33 | 3.13

Performance Analysis w.r.t Number of Patterns. The comparative per-
formance analysis of WincSpan and WSpan with respect to number of patterns
for Kosarak and SIGN datasets are given in Figs.7 and 8 respectively. In these
graphs, we can see that the number of patterns generated by WSpan is more
than the number of patterns generated by WincSpan. As the minimum threshold
is lowered, this difference gets bigger. However, the advantage of WincSpan over
WSpan is that it can generate these patterns way faster than WSpan as we saw
in the previous section.

Performance Analysis with Varying Buffer Ratio. The lower the buffer
ratio is, the higher the buffer size, which can accommodate more semi-frequent
patterns. We have measured the number of patterns by varying the buffer ratio.
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The graphical representation of the results in BIBLE dataset is shown in Fig. 9.
Here, we can see that by increasing the buffer ratio the number of patterns tends
to decrease. Because smaller number of semi-frequent patterns are generated
and they can contribute less to frequent patterns in the next phase. We can
also see that the number of patterns generated by WSpan is constant for several
buffer ratio because WSpan does not buffer semi-frequent patterns, it generates
patterns from scratch in every phase.

Performance Analysis w.r.t Memory. Figure 10 shows memory consump-
tion by both WincSpan and WSpan with varying min_sup in Kosarak dataset.
For every dataset, it showed that memory consumed by WlncSpan is lower
than memory consumed by WSpan. This is because WincSpan scans the new
appended part of the database and works on the dynamic trie. Whereas WSpan
creates projected database for each pattern and generates new patterns from it.
This requires a lot more memory compared with WincSpan.

Performance Analysis with Varying Standard Deviation. To generate
weights for items, we have used normal distribution with a fixed mean deviation
of 0.5 and varying standard deviation (0.15 in most of the cases). For varying
standard deviation, the number of items versus weight ranges curves are shown
in Fig.11. The range (mean deviation + standard deviation) holds the most
amount of items which is the characteristic of real-life items. In real life, items
with medium values occur frequently whereas items with higher or too lower
values occur infrequently.
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Fig. 12. Runtime evaluation with dif-
ferent standard deviations in Kosarak
dataset.

Figures 12 and 13 show performance of WincSpan and WSpan with respect to
runtime and number of patterns respectively with different standard deviations.
WincSpan outperforms WSpan in case of runtime. The number of patterns in
each case does not differ a lot from each other. So, it is clear that WincSpan can
work better than WSpan with varying weight ranges too.

Scalability Test. To test whether WincSpan is scalable or not, we have run
it on different datasets with several increments. Figure 14 shows the scalabil-
ity performance analysis of WincSpan and WSpan in Kosarak dataset when
the minimum support threshold is 0.3%. After running on an initial set of the
database, five consecutive increments were added and the runtime performance
was measured in each step.

Here, we can see that both WSpan and WlincSpan take same amount of
time in initial set of database. As the database grows dynamically, WSpan takes
more time than WincSpan. WincSpan tends to consume less time from second
increment as it uses the dynamic trie and new appended part of the database
only. From second increment to the last increment, consumed time by WincSpan
does not vary that much from each other. So, we can see that WilncSpan is
scalable along with its runtime and memory efficiency.

The above discussion implies that WIncSpan can be applied in real life appli-
cations where the database tends to grow dynamically and the values (weights)
of the items are important. WincSpan outperforms WSpan in all the cases. In
case of number of patterns, WIncSpan may provide less amount of patterns than
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WSpan, but this behaviour can be acceptable considering the remarkable less
amount of time it consumes. In real life, items with lower and higher values are
not equally important. So, WincSpan can be applied in place of IncSpan also
where the value of the item is important.

5 Conclusions

A new algorithm WIncSpan, for mining weighted sequential patterns in large
incremental databases, is proposed in this study. It overcomes the limitations of
previously existing algorithms. By buffering semi-frequent sequences and main-
taining dynamic trie, our approach works efficiently in mining when the database
grows dynamically. The actual benefits of the proposed approach is found in its
experimental results, where the WincSpan algorithm has been found to outper-
form WSpan. It is found to be more time and memory efficient.

This work will be highly applicable in mining weighted sequential patterns in
databases where constantly new updates are available, and where the individual
items can be attributed with weight values to distinguish between them. Areas
of application therefore include mining Market Transactions, Weather Forecast,
improving Health-Care and Health Insurance and many others. It can also be
used in Fraud Detection by assigning high weight values to previously found
fraud patterns.

The work presented here can be extended to include more research problems
to be solved for efficient solutions. Incremental mining can be done on closed
sequential patterns with weights. It can also be extended for mining sliding
window based weighted sequential patterns over datastreams [1].
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