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Abstract. A model presented in current paper designed for dynamic classifying
of real time cases received in a stream of big sensing data. The model comprises
multiple remote autonomous sensing systems; each generates a classification
scheme comprising a plurality of parameters. The classification engine of each
sensing system is based on small data buffers, which include a limited set of
“representative” cases for each class (case-buffers). Upon receiving a new case,
the sensing system determines whether it may be classified into an existing class
or it should evoke a change in the classification scheme. Based on a threshold of
segmentation error parameter, one or more case-buffers are dynamically
regrouped into a new composition of buffers, according to a criterion of seg-
mentation quality.
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1 Introduction

Sensors are located in environments that change dynamically and are required not only
to detect the values of all parameters measured, but also to assess the situation and alert
accordingly, based on predefined rules managed by a “Classifier-engine”. Since the
environments are dynamically changed and there may be new situations that were not
known in advance, which are reflected in new combinations of parameter values, there
is a need for a dynamic updating of the sensor’s classifier.

One exemplary application for such dynamic classification unit (DCU) is a
screening gate including biometric sensors that screen travelers entering a high security
area such as an airport. The sensors may be configured to test multiple parameters of a
traveler, such as heart rate, heart pressure, perspiration, etc. The classification system
may be set to measure two classes of travelers, the bulk of travelers who have “normal”
parameters and should pass the biometric screening without interference, and those
who should be checked by security personnel. Upon receiving a new case, the sensing
system determines whether it may be classified into one of the existing classes, or it
should evoke a change in the classification scheme. Thus, over the course of a day,
environmental conditions may change; ranges of values that haven’t been observed
before may appear causing dynamic changes-updates in sensor’s classifier.

Changes in the sensor’s classifier (i.e. classification scheme) are triggered based on
a threshold of segmentation error parameter. The sensor’s classifier is based on small
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data buffers and collects remembers a limited set of “representative” cases for each
class (case-buffers). As a result of the trigger’s appeal, one or more case-buffers are
dynamically regrouped into a new composition of buffers, according to segmentation
quality criteria.

The novelty of this real-time mechanism lies in the fact that the entire process is
based on the use of limited memory buffers. In addition, each DCU, which is a remote
autonomous sensing system, can communicate with multiple additional remote auton-
omous sensing systems. In such situations, the case buffers, as well as the case history,
can be synchronized and managed via a central controller. Furthermore, in a distributed
environment, regardless the existence of a central controller, the contents of the case
buffers and the classifier scheme of each DCU can be synchronized between the multiple
remote autonomous agents (sensing-systems). Synchronization may be performed after
each regrouping process. That is to say that each incremental updating at any local DCU
may initiate synchronization among all connected autonomous agents.

2 Related Work

In the reality of the dynamic data environment, when a huge amount of raw data and
information flows ceaselessly, the main purpose of individuals and organizations is
discovering the optimal way to find a hidden potential in it, through the constant
cooperation of human intelligence and machine capabilities. The techniques and
models that successfully functioned in stable data environment are outdated and need to
be corrected to deal with dynamic data environment. “Databases are growing in size to
a stage where traditional techniques for analysis and visualization of the data are
breaking down” [1, 2]. Because of the constant increase in data volume, interpreting of
similarities of different sub-populations becomes the new dimension of data mining
goal. The data usually flows from different sources and has to be handled and processed
simultaneously [3].The development of new and advanced techniques in data mining in
dynamic data environment covers more and more fields, for instance, computer sci-
ences, medicine [4], security systems [5] and social networks [6, 7]. And it is not just
an application of existing algorithmic tools in these fields, but the inclusion of elements
and logic and even tools, that were created purposefully for them.

As a result of the constant need to get real-time solutions, the research is naturally
directed into a new field — incremental data processing. The motivation is to maximize
the quality of solutions through minimizing the process cost [8—10]. The algorithmic
tools have to be adjusted to dynamic data environment and be capable to absorb
significant amounts of data, possibly to handle with the Big Data environment. The
main idea of incremental techniques is to use small segments of data and not the whole
historical data [11-13].

One of the commonly used directions in data mining is classification process, in
which the objects are classified into homogeneous groups, with a maximal diversity
between groups and minimal within groups. The proximity of an object to group centroid
is usually measured by similarity measures, such as RMSE (root mean square error), used
in the current paper [14]. The classification tasks are usually divided into two main types:
if the target attribute is previously known, the process is called “classification”, and if the
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target attribute is not known, it is called “clustering” [2, 10, 15, 16]. In the case of
clustering problems, the interpretation of achieved clusters is one of the main challenges.
For example, if a higher education consultant has to recommend the future student what is
the best faculty for him, he will probably pick the faculty name from the existing list in the
university. On the other hand, if the security system bank controller needs to identify the
type of a new financial fraud trend, he needs to be very open-minded and be able to
classify the action undertaken by a fraudster to an absolutely different type and give it an
appropriate description. In some cases, there is a need to create a set of groups/classes
based on items/customers/actions that are needed to be classified without any information
about the target attribute. Different kinds of classification/clustering tasks in dynamic data
environment in combination of existing and new techniques became the basis for
extensive research [17-19].

The current research presents a dynamic classifier based on incremental dynamic
clustering process. It permits the use of small data buffers that represent existing
groups. This approach is significantly different from other approaches and methods,
considered in the literature.

The dynamic classifier, proposed in the current paper, functions as a sensor. It works
as a screening gate that distinguishes between “regular” items that are close enough to at
least on of existing groups and alerts when the relatively “different” item occurs. The
model permits not just an alert in such situation, but the action required to classify the
item. Lots of studies combine different sensors in decision making processes [20-23].

3 Model Architecture

Figure 1 presents a schematic architecture of the proposed system, showing one DCU
connected to a central controller as well as to other remote autonomous sensors-agents.

Classifier Buffers

Engine /
Incremental

Central Controller .
Case Histo
v Remote
/ \ Autonomous
Classifiers

Operator Interface |

Fig. 1. Schematic architecture of the system.
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The real-time data flows through the “Sensor” (Fig. 1, first component) to the
“Classifier-engine”. The “Classier-engine” performs a decision process based on a
classification scheme, as described in the flow diagram in Fig. 2. The “Gate” com-
ponent represents the output, or, in other words, the decision regarding the classifi-
cation of object. Based on a threshold of segmentation error parameter and
segmentation quality criteria, the DCU incrementally updates the population of the
relevant “Case-buffers”. The mechanism that manages the population (i.e. cases) stored
in each buffer can use diverse policies, such as FIFO policy (First-In First-Out), or a
selection policy that may store extreme-farthest cases of each group (“outliers” that are
still classified to that group).

The term “Sensor” represents the “funnel” through which the data stream flows.
Thus, a sensor can be a physical object, as well as a logical handshake through which
the data flows into the system. The flow chart, illustrated in Fig. 2, presents the
real-time decision-making process for each new sensing data element (i.e. each new
case).

The version control is managed by sequential numbering approach.

Table 1 presents the notations used in the flowchart:

Table 1. Notations

X; New case

R The closest group

e Minimal distance measure RMSE between a new case and existing groups centroids
1) Threshold that determines the decision of update

R New group

Ry(n) | Number of cases in the buffer

Znin | Minimal number of cases in buffer that justifies the update of the buffer

Zmax | The buffer size — maximal number of cases stored in the buffer

The mechanism presented in Fig. 2 works as follows: The new item X; passes
through the sensor, the distance measure between the new item and the centroids of
existing groups are calculated and the minimal value e is registered. The threshold level
9, the maximal buffer size Zmax and the rest of parameters have to be determined at
this point of time. If the minimal distance e is less than a threshold, no rearrangement
needed and a new case X; joins the closest group (completion). If e exceeds the
threshold level, the number of items in the buffer is checked. If there are not enough
cases (the number of cases is less than Zmin), the new case creates an absolutely new
group. If there are enough cases in the buffer, the new case removes the oldest case and
a new distribution is created (by splitting or merging of the existing groups).
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Fig. 2. A flow diagram of a process for real-time data classification based on dynamic updating
of sensor’s classifiers.

4 Model Validation

Since the model deals with a stream of real-time data, which is a continuous flow of
new cases, the validation was based on datasets of classification problems. The model
is implemented by the code developed in Python and combines the k-means algorithm
package [24].

The following datasets were used: (1) “ERA” dataset, donated by Prof. Ben-David
[25]. This data set was originally gathered during the academic decision-making
experiment. Input attributes are candidates’ characteristics (such as past experience,
verbal skills etc.), output attribute is a subjective judgement of a decision-maker to
which degree he/she tends to accept the applicant to the job or to reject him. All the
input and output attributes have ordinal values. The data set contains 1000 instances,
four input attributes and one output attribute. (2) “Car Evaluation” dataset that was
retrieved from the UCI Machine Learning Repository [26-28]. Input attributes are cars
properties and an output attribute is a class value (unacceptable, acceptable, good and
very good). The data set contains 1728 instances.
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4.1 Optimal Situation as a Baseline

The theoretical optima in such case is the situation in which the algorithm runs across
the entire dataset. Thus, based on the results obtained by the clustering k-means
algorithm, while analyzing all the records in the dataset, we can find the best set of
rules, and the required total number of rules, that achieve the best classification
accuracy.

4.2 The Initial Stage

According to widely used methodology in machine learning, each dataset was divided
into training set (with about two thirds of data) and test set (with about one third of
data). The training set provides the initial groups and the test set simulates a new data
stream. Worth mention that the initial stage is mainly used to shorten the “reset-cycle”
of the decision-making process. In cases where there is no urgency, the system can stat
with no decision rule at all, and with totally empty “Case-buffers”.

4.3 The “Dynamic-Flow” Stage

The test set was used in an unsupervised mode (while hiding the target-labeled field).
The records flowed through the “Sensor” to the “Classifier-engine” without any
information regarding the right classification-filtering.

e The “Classifier-engine” and the “Incremental-updater” used the flow diagram
mechanism described in Fig. 2.

e The delta symbol (), in Fig. 2, represents Root-mean-square error (RMSE) that
was used as a threshold.

e The parameters in each experiment were set as follows:
ERA data-set: three threshold levels: 2, 2.25, 2.5; initial number of groups: 10;
buffer size: 25; training set = 600, test set = 400.

Car evaluation data-set: three threshold levels: 0.8, 0.9, 1; initial number of groups:
15; buffer size: 25; training set = 1400, test set = 328.

In accordance with the schematic architecture of the system (illustrated in Fig. 1), a
case is either directly classified, or initiates an incremental reevaluation (supported by
the “Incremental-updater” component) till the threshold is satisfied, then the
“Case-buffers” and the “Classifier-engine” are dynamically updated.

5 Results and Discussion

As shown in Figs. 3, 4 and in Table 2, we can see that although the learning mech-
anism uses only small data increments, it succeeds to perform good and consistent
results. Figures 3 and 4 represent the dynamics of group set updating for different
threshold levels. The process converges in both data sets for all sensitivity levels.
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Fig. 4. Rules convergence using k-means with “Car evaluation” dataset.

We can see that in all three threshold values a reach a convergence of the classi-
fication process. In order to trace the dependence of aggregate rate of total number of
groups on the sensitivity level, we chose three threshold levels for each data set. We
can see that the convergence is faster as the threshold refers to lower accuracy value,
but even at a high accuracy threshold, a relatively rapid convergence was achieved. The
application of this result is very practical: on one hand, the dynamic data environment
dictates us to act in real time, that is why we use small increments of data to be able to
classify objects immediately; on the other hand, we need to provide good classification
results and identify new trends or significant changes in data distribution. The con-
vergence of classification process shows the ability of the proposed model to catch the
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critical moments when an update is needed, without too much computational effort.
The updated groups set becomes more and more representative, that is why the periods
of time between every two updates lengthens.

Table 2 presents the numerical results of all experiments in two data sets. The
distance measure RMSE was calculated for each classified item (in most cases the
distance between the item and at least one of the existing groups is less than a threshold
level, so the item is joins the existing group; sometimes the threshold is achieved and
the update is needed). The average and standard deviation of all minimal RMSE values
are calculated for each experiment. The total number of groups in the end of each
experiment is presented in addition. As sensitivity of a threshold level decreases (higher
values of 9), the average distance measure grows. This result is expected: if a threshold
level is relatively high, less items are defined as “far” or “non-similar” and more items
succeed to join existing groups. Their minimal RMSE value is weighted into the
calculation of average RMSE and we get bigger result. The same effect usually happens
in standard deviation.

Table 2. The dynamic incremental updating of group set, according to threshold level.

Data set 0 Average RMSE for classified | Std. Number of
instances dev. clusters
ERA 2 0.9048 0.6349 |23
Initial number of 225 |1.1967 0.6677 |19
clusters = 10 2.5 | 1.4455 05842 |14
Cars evaluation 0.8 0.6 0.1133 |35
Initial number of 0.9 0.6871 0.1184 |27
clusters = 15 1 0.7433 0.1199 |17

In the conclusion of the above facts, we can see that the proposed incremental
dynamic mechanism succeeds to achieve good results, that can be adopted in industry
or in academical research as well.

6 Conclusions

Dynamic incremental classifier presented in this paper is designed to improve the
classification process in state of dynamic data environment. The constant changes in
data characteristics and preferences require from the mechanism immediate solutions.
In addition to this obligatory condition, the process has to be economic. There is no
dispute that the most qualitative solution will be obtained through the update of whole
relevant data, but it is not possible in dynamic data environment. We assume that it is
not possible to revise all previous data, so we choose to demonstrate the incremental
mechanism that functions using small data buffers.

Experiments with different data sets showed that the loss of quality in classification
results is not significant and the mechanism succeeds to identify the important changes
in data stream and converges during the process.
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The further research is planned in different possible directions: dealing with a big

data sets that simulate big data environment; new trend and outlier detection; text data
processing etc.
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