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Abstract. Class imbalance is one of the challenging problems in classifi-
cation domain of data mining. This is particularly so because of the inabil-
ity of the classifiers in classifying minority examples correctly when data
is imbalanced. Further, the performance of the classifiers gets deteriorated
due to the presence of imbalance within class in addition to between class
imbalance. Though class imbalance has been well addressed in literature,
not enough attention has been given to within class imbalance. In this
paper, we propose a method that can adaptively handle both between-
class and within-class imbalance simultaneously and also that can take
into account the spread of the data in the feature space. We validate
our approach using 12 publicly available datasets and compare the clas-
sification performance with other existing oversampling techniques. The
experimental results demonstrate that the proposed method is statisti-
cally superior to other methods in terms of various accuracy measures.

Keywords: Classification · Imbalanced dataset · Oversampling
Model based clustering · Lowner John ellipsoid

1 Introduction

In data mining literature, class imbalance problem is considered to be quite
challenging. The problem arises when the class of interest contains a relatively
lower number of examples compared to other class examples. In this study, the
minority class, the class of interest is considered positive and the majority class
is considered negative. Recently, several authors have addressed this problem
in various real life domains including customer churn prediction [6], financial
distress prediction [10], employee churn prediction [39], gene regulatory network
reconstruction [7] and information retrieval and filtering [35]. Previous studies
have shown that applying classifiers directly to imbalance dataset results in poor
performance [34,41,43]. One of the possible reasons for the poor performance is
skewed class distribution because of which the classification error gets dominated
by the majority class. Another kind of imbalance is referred to as within-class
imbalance which pertains to the state where a class composes of different number
of sub-clusters (sub-concepts) and these sub-clusters in turn, containing different
number of examples.
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In addition to class imbalance, small disjuncts, lack of density, overlapping
between classes and noisy examples also deteriorate the performance of the clas-
sifiers [2,28–30,36]. The between-class imbalance along with within-class imbal-
ance is an instance of problem of small disjuncts [26]. Literature presents dif-
ferent ways of handling class imbalance such as data preprocessing, algorithmic
based, cost-based methods and ensemble of classifier sampling methods [12,17].
Though no method is superior in handling all imbalanced problems, sampling
based methods have shown great capability as they attempt to improve data
distribution rather than the classifier [3,8,23,42]. Sampling method is a prepro-
cessing technique that modifies the imbalanced data to a balanced data using
some mechanism. This is generally carried out by either increasing the minority
class examples called as oversampling or by decreasing the majority examples,
referred to as undersampling [4,13]. It is not advisable to undersample the major-
ity class examples if minority class has complete rarity [40]. The current literature
available on simultaneous between-class imbalance and within-class imbalance is
limited.

In this paper, an adaptive method for handling between class imbalance and
within class imbalance simultaneously based on an oversampling technique is
proposed. It also factors in the scatter of data for improving the accuracy of
both the classes on the test set. Removing between class imbalance and within
class imbalance simultaneously helps the classifier to give equal importance to
all the sub-clusters, and adaptively increasing the size of sub-clusters handles the
randomness in the dataset. Generally, classifier minimizes the total error, and
removal of between class imbalance and within class imbalance helps the classifier
in giving equal weight to all the sub-clusters irrespective of the classes thus
resulting in increased accuracy of both the classes. Neural network is one such
classifier and is being used in this study. The proposed method is validated on
publicly available data sets and compared with well known existing oversampling
techniques. Section 2 discusses the proposed method and analysis on publicly
available data sets is presented in Sect. 3. Finally, Sect. 4 concludes the paper
with future work.

2 An Adaptive Oversampling Technique

The approach in this proposed method is to oversample the examples in such
a way that it helps the classifier in increasing the classification accuracy on the
test set.

The proposed method is based on two challenging aspects faced by the clas-
sifiers in case of imbalanced data sets. First one is the case of the loss function,
where the majority class dominates the minority class and thus eventually, min-
imization of the loss function is largely due to minimization of the majority
class. Because of this, the decision boundary between the classes does not get
shifted towards the minority class. Removing the between class and within class
imbalance helps in removing the dominance of the majority class.

Another challenge faced by the classifiers is the accuracy of the classifiers
on the test set. Due to the randomness of data, if the test example lies in the
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Fig. 1. Synthetic minority class examples generation on the peripheral of Lowner John
ellipsoids

outskirts of the sub-clusters, there is a need to adjust the decision boundary
to minimize misclassification. This is achieved by expanding the size of the sub-
cluster in order to cope with such test examples. Now the question is, what is the
surface of the sub-clusters and how far the sub-clusters should be expanded. To
answer this, we use minimum volume ellipsoid that contains the dataset known
as Lowner John ellipsoid [33]. We adaptively increase the size of the ellipsoid
and synthetic examples are generated on the surface of the ellipsoid. One such
instance is shown in Fig. 1 where minority class examples are denoted by stars
and majority class examples by circle.

In the proposed method, the first step is data cleaning where the noisy exam-
ples are removed from the dataset as this helps in reducing the oversampling of
noisy examples. After data cleaning, the concept is detected by using model
based clustering and the boundary of each of the clusters is determined by
Lowner John ellipsoid. Subsequently, the number of examples to be oversam-
pled is determined based on the complexity of sub-clusters and synthetic data
are generated on the peripheral of the ellipsoid. Following section elaborates the
proposed method in detail.

2.1 Data Cleaning

In data cleaning process, the proposed method removes the noisy examples in
the dataset. An example is considered as noisy if it is surrounded by all the
examples of other class as defined in [3]. The number of examples is taken to be
5 in this study as also being considered in other studies including [3,32].
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2.2 Locating Sub-clusters

Model based clustering [16] is used with respect to minority class to identify the
sub-clusters (or sub-concepts) present in the dataset. We have used MCLUST
[15] for implementing the model based clustering. MCLUST is a R package that
implements the combination of hierarchical agglomerative clustering, Expecta-
tion Maximization (EM) and Bayesian Information criterion (BIC) for compre-
hensive cluster analysis.

2.3 Structure of Sub-clusters

The structure of sub-clusters can be obtained using eigenvalues and eigenvector.
Eigenvectors gives the shape of sub-cluster and size is given by eigenvalues. Let
X = {x1, x2, . . . , xm} be a dataset having m examples and n features. Let the
mean vector of X be μ and the covariance matrix computed by Σ = E[(X −
μ)(X − μ)T ]. The eigenvalues (λ) and eigenvectors v of the covariance matrix Σ
are found such that Σv = λv.

2.4 Identifying the Boundary of Sub-clusters

For each of the sub-clusters, Lowner-John ellipsoid is obtained as given by
[33]. This is a minimum volume ellipsoid that contains the convex hull of
C = {x1, x2, . . . , xm} ⊆ Rn. The general equation of ellipsoid is

ε = {v|||Av + b||2 ≤ 1} (1)

We assume that A ∈ Sn
++ is a positive definite matrix where the volume of

ε is proportional to detA−1. The problem of computing the minimum volume
ellipsoid containing C can be expressed as

minimize logdetA−1

subject to ||Axi + b||2 ≤ 1, i = 1, . . . ,m.
(2)

We use CVX [21], a Matlab-based modeling system for solving this optimization
problem.

2.5 Synthetic Data Generation

The synthetic data generation is based on the following three steps

1. In the first step, the proposed method determines the number of examples
to be oversampled per cluster. The number of minority class examples to be
oversampled is computed using Eq. (3).

N = TC0 − TC1 (3)

where N is the number of minority class examples to be oversampled, TC0 is
the total number of examples of majority class class 0 and TC1 is the total
number of examples of class 1.
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It then computes the complexity of sub-clusters based on the number of dan-
ger zone examples. An example is called a danger zone example or a borderline
example if an example under consideration is surrounded by more than 50%
examples of other class as also being considered in other studies including
[23]. That is, if k is the number of nearest neighbors under consideration, an
example being a danger zone example implies k/2 ≤ z < k where z is the
number of other class examples among the k nearest neighbor examples. For
example, Fig. 2 shows two sub-clusters of minority class having 4 and 2 danger
zone examples. In this study, we consider k = 5 as in [3]. Let c1, c2, c3, . . . , cq
be the number of danger zone examples present in the sub-clusters 1, 2, . . . , q
respectively. The number of examples to be oversampled in the sub-cluster i
is given by

ni =
ci ∗ N

∑q
i=1 ci

(4)

2. Having determined the number of examples to be oversampled, the next task
is to weigh the danger zone examples in accordance with the direction of the
ellipsoid and its distance from the centroid. These weights are computed with
respect to the eigenvectors of the variance-covariance matrix of the dataset.
For example, consider Fig. 3 where A and B denote the danger zone examples.
Here we compute the inner product between danger zone examples A and
B with the eigenvectors Evec1 and EVec2 that form acute angles with the
danger zone examples. The weight of A, W (A) is computed as

W (A) = 〈A,EV ec1〉 + 〈A,Evec2〉 (5)

Similarly the weight of B, W (B) is computed as

W (B) = 〈B,EV ec1〉 + 〈B,Evec2〉 (6)

Thus, when data is n dimensional, the total weight of the bthk danger zone
example wk is

wk =
n∑

i=1

〈 bk, ei〉 (7)

where ei is the eigenvector.
3. In each of the sub-clusters, synthetic examples are generated on the Lowner

John ellipsoid by linear extrapolation of the selected danger zone example
where the selection of danger zone example is carried out with respect to the
weights obtained in step 2. Here

P (bk) =
wk∑ci
i=1 wi

(8)

where P (bk) is the probability of selecting danger zone example bk and
wk is the weight of kth danger zone example present in the sub-cluster ci.
The selected danger zone example is extrapolated and a synthetic example
is generated on the Lowner John ellipsoid at the point of intersection of the
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Fig. 2. Illustration of danger zone examples of minority class sub-clusters

extrapolated vector with Lowner John ellipsoid. Let the centroid of the ellip-
soid be center = −A−1 ∗b and if bk is the danger zone example selected based
on the probability distribution given by Eq. (8), the vector v = bk − center
is extrapolated by ‘r’ units to intersect with the ellipsoid and the synthetic
example st thus generated is given by

st = center +
(r + C) ∗ v

‖v‖ (9)

where C controls the expansion of the ellipsoid.

Fig. 3. Illustration of danger zone examples A & B of minority class forming acute
angle with eigenvector in bold line
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The whole procedure of the algorithm is explained in Algorithm1.

Algorithm 1. An Adaptive Oversampling Technique for Imbalanced Data sets
Input: Training dataset: S = {Xi, yi}, i = 1, ..., m; Xi ∈ Rn and yi ∈ {0, 1} Positive

class: S+ = {X+
i , y+

i }, i = 1, .., m+; Negative class: S− = {X−
i , y−

i }, i = 1, ..., m−;
S = S+∪S−; m = m++m− and No. of examples to be oversampled: N = m−−m+

Output: Oversampled Dataset
1: Clean the training set
2: Apply Model-Based clustering on S+, return {smin1, .....sminq} sub-clusters.
3: for each minority sub-cluster smini, 1 ≤ i ≤ q do
4: Bi ← DangerzoneExample(smini) //Return list of danger zone examples
5: end for
6: for each minority sub-cluster smini, 1 ≤ i ≤ q do
7: ni =

length(Bi)∗N∑q
n=1 length(Bi)

for i = 1, ..., q // No of examples to oversample in sub-

cluster i
8: end for
9: for i = 1 to q do
10: μi ← mean(smini)
11: Σi ← cov(smini)
12: Compute the Lowner John ellipsoids of smini as given in Subsect. 2.4 gives A

and b
13: The eigenvectors v1, ..., vn and eigenvalues λ1, ...λn of the covariance matrix Σi

of dataset in sub-clusters smini is computed by Σvi = λiv
14: for j = 1 to length(Bi) do
15: bj ← Bi[j]
16: wj = 0
17: for t = 1 to n do
18: weight = 〈 bj , vt〉
19: if weight ≥ 0 then
20: wj = wj + weight
21: end if
22: end for
23: end for
24: p(bj) =

wj
∑length(Bi)

n=1 wn

// Compute the prob. dist of danger zone examples

25: NewSyntheticExample = Φ
26: for t = 1 to ni do
27: Select the danger zone example based bi based on step 24
28: Synthetic example st has been generated as given in equation (9)
29: NewSyntheticExample = NewSyntheticExample ∪ {st}
30: end for
31: oversamplei = smini ∪ NewSyntheticExample
32: end for

33: Oversampled Dataset =
q⋃

i=1

oversamplei
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3 Experiments

3.1 Data Sets

We evaluate the proposed method on 12 publicly available datasets which have
skewed class distribution available on the KEEL dataset [1] repository. As yeast
and pageblocks data sets have multiple classes, we have suitably transformed the
data sets to two classes to meet our needs of binary class problem. In case of
yeast dataset, it has 1484 examples and 10 classes {MIT, NUC, CYT, ME1,
ME2, ME3, EXC, VAC, POX, ERL}. We choose ME3 as the minority class
and the remaining are combined to form the majority class. In case of pageblocks
dataset, it has 548 examples and 5 classes {1, 2, 3, 4, 5}. We choose 1 as majority
class and the rest as the minority class. Minority class is chosen in both the data
sets in such a way that it contains reasonable number of examples to identify
the presence of sub-concepts and also to maintain the imbalance with respect
to the majority class. The rest of the data sets were taken as they are. Table 1
represents the characteristics of various data sets used in the analysis.

Table 1. The data sets

Data sets Total exp Minority exp Majority exp No. attribute

glass1 214 76 138 9

pima 768 268 500 8

glass0 214 70 144 9

yeast1 1484 429 1055 8

vehicle2 846 218 628 18

ecoli1 336 77 259 7

yeast 1484 163 1321 8

glass6 214 29 185 9

yeast3 1484 163 1321 8

yeast-0-5-6-7-9 vs 4 528 51 477 8

yeast-0-2-5-7-9 vs 3-6-8 1004 99 905 8

pageblocks 548 56 492 10

3.2 Assessment Metrics

Traditionally, performance of classifiers is evaluated based on the accuracy and
error rate as defined in (10). However, in case of the imbalanced dataset, the
accuracy measure is not appropriate as it does not differentiate misclassification
between the classes. Many studies address this shortcoming of accuracy measure
with regard to imbalanced dataset [9,14,20,31,37]. To deal with class imbalance,
various metric measures have been proposed in the literature that is based on
the confusion matrix shown in Table 2.
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Table 2. Confusion matrix

True class

Classifier output p n

P TP FP

N FN TN

Accuracy =
TP + TN

TP + FN + FP + TN

Error rate = 1 − Accuracy

(10)

These confusion matrix based measures described by [25] for imbalanced
learning problem are precision, recall, F-measure and G-mean. These measures
are defined as

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F -Measure =
(1 + β2)Recall ∗ Precision

β2 ∗ Recall + Precision
(13)

Here β is a non-negative parameter that controls the influence of precision
and recall. In this study, we set β = 1 implying that precision and recall are
equally important.

G-Mean =

√
TP

TP + FN

TN

TN + FP
(14)

Another popular technique for evaluation of classifiers under imbalance
domain is the Receiving Operating Characteristic (ROC) curve [37]. ROC curve
is a graphical representation of the performance of the classifier by plotting TP
rates versus FP rates over possible threshold values. The TP rates and FP rates
are defined as

TP rate =
TP

TP + FN
(15)

FP rate =
FP

FP + TN
(16)

The quantitative representation of a ROC curve is the area under this curve
and is called AUC [5,27]. For the purpose of evaluation, we use AUC measure as
it is independent of the distribution of positive class and negative class examples
and hence this metric is not overwhelmed by the majority class examples. Apart
from this, we have also considered F -Measure for both minority and majority
class and G-Mean for comparative purposes.
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Fig. 4. Results of F-measure of majority class for various methods with the best one
being highlighted.

3.3 Experimental Settings

In this work, we have used the feed-forward neural network with backpropa-
gation. The structure of the network is such that it has input layers with the
number of neurons being equal to the number of features. The number of neurons
in the output layer is one as it is a binary classification problem. The number of
neurons in the hidden layer is the average of the number of features and num-
ber of classes [22]. The activation function used at each neuron is the sigmoid
function with learning rate 0.3.

We compare our proposed method with well known existing oversampling
methods such as SMOTE [8], ADASYN [24], MWMOTE [3] and CBO [30].
We use default parameter settings for these oversampling techniques. In case of
SMOTE [8], the number of nearest neighbor k is set to 5. In case of ADASYN
[24], the number of nearest neighbor k is 5 and desired level of balance is 1.
In case of MWMOTE [3], the number of neighbors used for predicting noisy
minority class examples is k1 = 5, the number of nearest neighbors used to
find majority class examples is k2 = 3, the percentage of original minority class
examples used in generating synthetic examples is k3 = |Smin|/2, the number of
clusters in the method is Cp = 3 and smoothing and rescaling values of different
scaling factors are Cf(th) = 5 and CMAX = 2 respectively.

3.4 Results

The results of 12 data sets for metric measures F-measure of majority and minor-
ity class, G-mean and AUC are shown in Figs. 4, 5, 6 and 7. It is enough to
show F-measure rather than explicitly showing Precision and Recall because
F-measure integrates Precision and Recall. We used 5-fold stratified cross-
validation technique that runs 5 independent times and average of this is pre-
sented in Figs. 4, 5, 6 and 7. In 5-fold stratified cross-validation technique, a
dataset is divided into 5 folds having an equal proportion of the classes. Among
the 5 folds, one fold is considered as the test set and the remaining 4 folds are
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Fig. 5. Results of F-measure of minority class for various methods with the best one
being highlighted.

Fig. 6. Results of G-mean for various methods with the best one being highlighted.

combined and considered as the training set. Oversampling is carried out only
on the training set and not on the test set in order to obtain unbiased estimates
of the model for future prediction.

Figure 4 shows the results of F-measure of majority class. It is clear from the
figure that the proposed method outperforms the other oversampling methods
for different values of C. In this study, we consider C ∈ {0, 2, 4, 6} where C
controls the expansion of the ellipsoid. C = 0 gives the minimum volume Lowner-
John ellipsoid and C = 2 means the size of ellipsoid increases by 2 units. The
results of Fmeasure1 is shown in Fig. 5. From the figure it is clear that the
proposed method outperforms the other methods except in case of data sets
glass1, glass0 and yeast1 where CBO, SMOTE and MWMOTE perform slightly
better. Similarly, the results in case of G-mean and AUC are shown in Figs. 6
and 7 respectively. The method yielding the best result is highlighted in all the
figures.

To compare the proposed method with other oversampling methods, we car-
ried out non-parametric tests as suggested in the literature [11,18,19]. Wilcoxon
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Fig. 7. Results of AUC for various methods with the best one being highlighted.

Table 3. Summary of Wilcoxon signed rank test between our proposed method and
other methods

Methods Proposed method Metric measure Hypothesis

Prior
oversampling

p value = 0.003204 F-measure of majority H0 rejected

p value = 0.002516 F-measure of minority H0 rejected

p value = 0.0004883 G-mean H0 rejected

p value = 0.003857 AUC H0 rejected

SMOTE p value = 0.002516 F-measure of majority H0 rejected

p value = 0.02061 F-measure of minority H0 rejected

p value = 0.07733 G-mean Fail to reject H0

p value = 0.0004883 AUC H0 rejected

ADASYN p value = 0.0004883 F-measure of majority H0 rejected

p value = 0.009766 F-measure of minority H0 rejected

p value = 0.2298 G-mean Fail to reject H0

p value = 0.004164 AUC H0 rejected

MWMOTE p value = 0.002478 F-measure of majority H0 rejected

p value = 0.01344 F-measure of minority H0 rejected

p value = 0.02531 G-mean H0 rejected

p value = 0.003857 AUC H0 rejected

CBO p value = 0.0004883 F-measure of majority H0 rejected

p value = 0.0009766 F-measure of minority H0 rejected

p value = 0.01669 G-mean H0 rejected

p value = 0.001465 AUC H0 rejected
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signed-rank non-parametric test [38] is carried out on F-measure of majority
class, F-measure of minority class, G-Mean and AUC. The null and alternative
hypothesis are as follows:

H0: The median difference is zero
H1: The median difference is positive.

This test computes the difference in the respective measure between the
proposed method and the method compared with it and ranks the absolute
differences. Let W+ be the sum of the ranks with positive differences and W−
be the sum of the ranks with negative differences. The test statistic is defined as
W = min(W+,W−). Since there are 12 data sets, the W value should be less
than 17 (critical value) at a significance level of 0.05 to reject H0 [38]. Table 3
shows the p-values of test statistics of Wilcoxon signed-rank test.

The statistical tests indicate that the proposed method statistically outper-
forms the other methods in terms of AUC and F-measure of both minority and
majority class, although in case of G-mean measure, the proposed method does
not seem to outperform SMOTE and ADASYN. Since we use AUC for compar-
ison purpose, it can be inferred that our proposed method is superior to other
oversampling methods.

4 Conclusion

In this paper, we propose an oversampling method that adaptively handles
between class imbalance and within class imbalance simultaneously. The method
identifies the concepts present in the data set using model based clustering and
then eliminates the between class and within class imbalance simultaneously by
oversampling the sub-clusters where the number of examples to be oversampled
is determined based on the complexity of the sub-clusters. The method focuses
on improving the test accuracy by adaptively expanding the size of sub-clusters
in order to cope with unseen test data. 12 publicly available data sets were ana-
lyzed and the results show that the proposed method outperforms the other
methods in terms of different performance measures such as F-measure of both
the majority and minority class and AUC.

The work could be extended by testing the performance of the proposed
method on highly imbalanced data sets. Further, in our current study, we have
expanded the size of clusters uniformly. This could be extended by incorporating
the complexity of the surrounding sub-clusters in order to adaptively expand the
size of various sub-clusters. This may reduce the possibility of overlapping with
other class sub-clusters resulting in increase of classification accuracy.
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