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Abstract. Analyses of mechanical interactions between soil and structural
members in geotechnical engineering are long-standing challenges in the design
of piles, foundations, retaining walls, and culverts. Due to the high nonlinearity
of these problems, numerical solutions using finite element method (FEM) and
finite differences are dominant in engineering practice. In this paper, a detailed
procedure of FEM implementation is presented to solve 2D frictional interaction
problems with finite sliding. This presentation starts from the geometrically
exact theory to express the kinematics of contact, virtual work equation and
linearization in the local convective coordinate system. Formulations of the
contact tangent stiffness become straightforward and easy to understand. Tan-
gential behavior is simulated by the regularized Coulomb friction law and
constraints are enforced by the penalty approach. If linear finite elements are
used, local smoothing is essential to improve convergence performance. Two
applications in geotechnical engineering are presented to demonstrate the
capabilities of this implementation.

Keywords: Node-to-segment � Penalty � Frictional � Finite element
Covariant coordinate

1 Introduction

Soil-structure interaction problems are frequently encountered in geotechnical engi-
neering, such as interactions between soil-culvert, soil-retaining wall, soil-pile,
soil-concrete dam, etc. Contact states can be “in contact” or “open” in the normal
direction, and “sticking” or “sliding” in the tangential direction. These problems are
highly nonlinear in nature and closed-form solutions are only available for few cases.
Most solutions have to be obtained by numerical approaches like the finite element
method (FEM). After more than thirty years of effort, a framework for analysis of
contact problems has been well established and general-purpose FEM programs are
available to solve complicated contact problems in today’s engineering practice.
However, due to complexity in theory and significant difficulties in the development of
programs, availability of FEM software to solve interaction problems in geotechnical
engineering is still limited.
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Using FEM to solve soil-structure interactions can trace its origin to the early
1960s. Goodman [1] developed an interface element with zero thickness to simulate the
interface behavior in rock. Desai and Zaman [2] proposed a thin-layer interface element
to simulate rock joints. In these methods, node-to-node contact status must be main-
tained. This approach has the benefit of convenient implementation. However, when
the interface has finite sliding this approach can have major difficulties because
node-to-node contact status cannot be maintained.

In solid mechanics, versatile approaches have been developed to solve general
multi-body contact problems. References [3–5] are early advances in this field where
Lagrange multiplier method or the penalty method is employed to apply contact
constraints. The interface can be frictionless or frictional. Among various approaches,
the penalty method has attracted more interest. Although impenetrability
(non-penetration) is only approximately satisfied, the penalty approach has advantages
of good convergence performance and convenient incorporation into current FE codes.
Kikuchi and Oden [6] have discussed theoretical formulations and implementation of
penalty approach for frictionless and frictional contacts. Other early references related
with the penalty approach can be found in [7, 8].

In linearization of the variational equation, the direct approach is popular in
publications in which linearization is applied to discrete configurations. However,
procedures of linearization to generate a consistent stiffness matrix are usually com-
plicated and difficult to understand. An alternative approach is known as covariant
approach. Kinematics of contact bodies are expressed in local coordinate system.
Linearization is applied to the weak form of the continuous version to obtain the
tangent contact stiffness in a covariant form. This approach involves many covariant
operations; however, formulations of contact stiffness are straightforward and more
understandable. Details of this approach can be found in [9, 10].

In this work, implementation of computational contact analysis to solve problems
in geotechnical engineering is introduced. After the introduction section, the kinematics
of contact, virtual work and tangent stiffness in the covariant form are described.
Following is the section about finite element discretization, calculation of closest point
projection (CPP) and other issues related with program development. In the last sec-
tion, two applications in geotechnical engineering are presented.

2 Kinematics of Contact

The configuration of a contact problem between two solid bodies is depicted in Fig. 1.
We use the symbols XA and XB to denote solid bodies and Cu, Cr, and Cc to denote the
displacement boundary, force boundary and contact boundary respectively. The ter-
minology “master-slave” is adopted to distinguish XA from XB. The “master” body has
a larger Young’s modulus or stiffer material. In geotechnical engineering, structures are
usually concrete or steel. Thus, the “master” title is assigned to the structure and
“slave” is assigned to the soil generally. In the “node-to-segment” approach discussed
in this work, the terminology “contact pairs” is used to describe the interaction on the
interface. Each contact pair includes one “slave” point from the slave body and one
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piece of the “master” 2D curve or 3D surface as depicted in Fig. 2. The local coor-
dinate system is defined on the master body side. We denote the position vector of the
slave point by rs and the master surface by the position vector

q ¼ q n1; n2
� � ð1Þ

where n1; n2 are local coordinates. When contact happens, impenetrability should be
satisfied so that the slave point has zero gap to its projection on the master surface. The
procedure to find the “Closest Point Projection (CPP)” can be expressed as
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Fig. 1. Configuration of two-body contact problem

rs

slave

1

master2

1

2

n

3

Fig. 2. Local coordinate system and closest point projection
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minjjrs � q n1; n2
� �jj ð2Þ

The normal gap n3 between the slave point and its CPP is computed using

rs ¼ q n1; n2
� �þ n3n ð3Þ

where n is the outward unit norm on the master surface.

3 Normal Contact

In the normal direction, a slave point may have a positive gap (separation) with zero
contact traction, or touch the master surface with zero gap and non-zero contact
traction. This geometrical constraint can be described by the Kuhn-Tucker condition by
measurement of n3 (see Fig. 2 for definition of n3).

n3 [ 0; no contact and tN ¼ 0
n3 � 0; in contact and tN ¼ R

Nn
3

�
ð4Þ

where tN is the normal contact traction and �N is the normal penalty parameter. One may
note that tN is negative in Eq. 4 and penetration does not vanish when contact occurs.
Although the penalty approach satisfies the non-penetration constraints approximately,
results with good engineering accuracy are still available when appropriate penalty
parameters are used. In theory, �N is recommended to be set as large as possible.

4 Tangential Contact

A frictional contact is more common than a frictionless one. The interface of
soil-structure interactions is often rough and tangential friction stresses may play an
important role in analysis. However, interface friction is a complicated phenomenon
that involves normal pressure, roughness of the interface, temperature and relative
velocity, etc. Among various approaches, the Coulomb friction law is widely adopted.
Classical Coulomb law assumes that there is no relative tangent displacement when the
tangential force is smaller than a threshold value. Once sliding starts, the tangent
friction force is linearly proportional to the normal pressure. The classical Coulomb law
has implementation difficulties due to the sudden change from zero relative displace-
ment to sliding. Regularized Coulomb friction law is recommended which allows a
small relative motion before sliding.

Tangential contact status should be distinguished as “sticking” or “sliding”. As an
analogy to elasto-plasticity, we define the tangential sliding function as

U ¼ tTj j � ltN ð5Þ

where l is the coefficient of interface friction and tT is the tangential contact traction.
Equation 5 has the difficulty of differentiability and regularization is necessary.
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We follow the same regularization as in [14], and rewrite the relative sliding velocity vr
in the regularized form:

dtT
dt

¼ ��Tvr ð6Þ

where �T is the tangential penalty parameter.
The left part in Eq. 6 is the time derivative of the tangent contact tractions. For

static problems in 2D assumptions, local coordinates reduce to one parameter and we
can use an increment of displacement Dn1 to replace the rate form of Eq. 6. Thus,

T1
nþ 1 � T1

n ¼ ��TDn
1 ¼ ��T n1nþ 1 � n1n

� � ð7Þ

The subscript n and n + 1 represent consecutive load increments. At initial con-
ditions, T1

0 ¼ 0, n10 ¼ nc, where nc is the initial Closest Point Projection.
Determination of tangential contact status of a slave point under the n + 1 load

increment has the following steps:

• Calculate trial of tT . In case of a 2D problem, trial of T1 at n + 1 load increment is
calculated as

T1;trial
nþ 1 ¼ ��TDn

1 ð8Þ

• Real tangential traction is determined by the returning mapping algorithm.

T1 ¼
T1;trial
nþ 1 if T1;trial

nþ 1

��� ���� ljtN j
q1j j keepsticking

� Dn1

Dn1j j
ljtN j
q1j j if T1;trial

nþ 1

��� ���� ljtN j
q1j j changetosliding

8<
: ð9Þ

If sliding occurs, update closest point projection nc using

nc ¼ n1nþ 1 �
Dn1

Dn1
�� �� ljtN j�T q1j j ð10Þ

where q1 is the first derivative q1 ¼ @q

@n1

5 Weak Equilibrium

On the contact interface, active contact tractions between XA and XB have the same
value, but directions are inverted. Therefore, it is possible to write the total contact
traction tc acting on the slave point as
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tc ¼ tNnþ tT ¼ tNnþ Tiqi ð11Þ

Assuming the interface deformation to be small and problems to be static, the
virtual work of the two-body contact problem has the following form

Z

XA

rA : rdu� bA � du� �
dXþ Z

XB

rB : rdu� bB � du� �
dX

� Z
Cr

tAr � dudCr � Z
Cr

tBr � dudCr � Z
Cc

tc � drs � dqð ÞdCc

ð12Þ

where du is the virtual displacement and b is the body force.
The last component in Eq. 12 is the virtual work dWc contributed from the contact

tractions. In 2D conditions, dWc can be simplified to follows:

dWc ¼ dWc
N þ dWc

T ¼ Z
tNdn

3 þ T1 q1 � q1ð Þdn1� �
dCc ð13Þ

6 Linearization

In this section, we focus on linearization of the contact virtual work dWc only. Since
contact analysis is highly nonlinear, an iterative method such as Newton’s method is
required. Therefore, it is necessary to develop the tangent stiffness of Eq. 13.
Operations of the time derivative to Eq. 13 are quite complicated. Thus, this part is
omitted in this paper. Interested readers can refer to [9–11] for more detail. Here we
only list results after linearization. Assuming the problems are 2D, the normal and
tangential contact stiffness have the following formulations:

7 Directional Derivative of the Normal Part

Dv dWc
N

� � ¼ Z
s

�NH �n3
� �

drs � dqð Þ � n� nð Þ vs � vð Þds

� Z
s

�Nn
3H �n3

� �
ds � n� sð Þ vs � vð Þþ drs � dqð Þ � s� nð Þ @s

@t

� 	
ds

� Z
s

�Nn
3H �n3

� �
j drs � dqð Þ � s� sð Þ vs � vð Þds ð14Þ

where vs ¼ drs
dt is the absolute velocity of the slave point, v ¼ dq

dt is the velocity of the
point with CPP on the master surface, j is the curvature, and H �ð Þ is the Heaviside
function.

Equation 14 has three components as mentioned in Ref. [13]. These components
include the primary part, the rotation part and the curvature part sequentially. If
deformation at the interface is small, the rotation and curvature parts can be ignored.
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Additionally, the curvature part vanishes if linear finite elements are used because the
curvature of a straight line is zero.

8 Directional Derivative of the Tangential Part

Contact statuses in the tangential direction are distinguished as “sticking” and “slid-
ing”. For the sticking status, linearization has the following result:

Dv dWc
T

� � ¼ � Z
s

�T
q1 � q1

drs � dqð Þ � q1 � q1ð Þ vs � vð Þds

� Z
s

Treal

ðq1 � q1Þ2
drs � dqð Þ � q1 � q1ð Þ @v

@n
þ dq1 q1 � q1ð Þ vs � vð Þ

� 	
ds

� Z
s

Trealh11
ðq1 � q1Þ2

drs � dqð Þ q1 � nþ n� q1ð Þ vs � vð Þds

ð15Þ

Similar to Eq. 14, the second and third lines in Eq. 15 are the rotation and curvature
parts respectively, both of which can be ignored if the contact deformation is small.
Obviously, the tangent stiffness for the sticking pair is symmetric if only the primary
part of Eq. 15 is used.

For the sliding status, we have the directional derivative of dWc
T as the following:

Dv dWc
T

� � ¼ � Z
s

�Nl � sign Ttrial
1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q1 � q1p drs � dqð Þ � q1 � nð Þ vs � vð Þds

� Z
s

l tNj j � signðTrealÞ
ðq1 � q1Þ3=2

drs � dqð Þ � q1 � q1ð Þ @v
@n

þ dq1 q1 � q1ð Þ vs � vð Þ
� 	

ds

� Z
s

lh11 � signðTrealÞ
ðq1 � q1Þ3=2

drs � dqð Þ 2q1 � nþ n� q1ð Þ vs � vð Þds

ð16Þ

Again, the second and third components in Eq. 16 can be omitted when the contact
deformation is small.

h11 in Eqs. 15 and 16 is the covariant component of the curvature tensor. The
primary part of the tangential stiffness for the sliding pair is non-symmetric as indicated
in Eq. 16. Consequently, the global tangent stiffness is also non-symmetric.

9 Finite Element Discretization

In the procedure of finite element discretization, original continuous domains
are replaced by finite number of small quadrilateral or triangular elements. In contact
analysis, three methods are developed in the discrete level: node-to-node,
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node-to-surface, and surface-to-surface. Node-to-node approach is the simplest one, but
applications are limited to small sliding cases. Node-to-surface or node-to-segment is
applicable to contact problem subjected to finite sliding and large deformations. The
only limitation is that the slave body has to be approximated by linear finite elements.
The surface-to-surface approach is the latest approach which has no limitation of
quadratic approximation. This approach is still under development but represents the
direction of computational contact analysis. However, this approach is more compli-
cated than the node-to-surface approach in both theory and programming. In this paper,
the node-to-segment approach is employed which is suitable for most contact problems
in geotechnical engineering.

The discrete version of a contact pair includes one finite element node from the
slave body and one line segment from the master body. In 2D cases, independent
coordinates in the local coordinate system reduce to one parameter n1. Let x1 and x2
represent position vectors of the start and end nodes of the master segment (Fig. 3),
Closest Point Projection (CPP) has a close form solution as follows:

nc ¼
2rs � x2 � x1ð Þ � x2 � x2 þ x1 � x1

x2 � x1ð Þ � x2 � x1ð Þ ð17Þ

Points on the master segment can be interpolated by

q n1
� � ¼ 1� n1

2
x2 þ 1þ n1

2
x1 ð18Þ

where n1 ¼ �1 at x2 and n1 ¼ 1 at x1.

n

master

x2

x1

s

c

master

s

xc
xc

3

(a) (b)

rs

c

Fig. 3. Depiction of contact pair and location of closest point projection (CPP)
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The position vector from the slave point to the master surface is determined by

rs � q n1
� � ¼ �10 1�n1

2 0 1þ n1

2 0

0� 10 1�n1

2 0 1þ n1

2

" # xs
ys
x2
y2
x1
y1

2
6666664

3
7777775
¼ N½ � xf g ð19Þ

By means of Eqs. 18 and 19, the tangent stiffness of Eqs. 13–16 can be rewritten to
the discrete form. If deformation is small, only the primary parts are reserved. The
normal part of the tangent stiffness matrix reads as

KN½ � ¼ �NH �n3
� �

NT
� �

n� n N½ � ð20Þ

Similarly, the tangent stiffness matrix for the sticking pair is revised as

Kstick
T

� � ¼ �T NT
� �

s� s N½ � ð21Þ

and the sliding pair has tangent stiffness as

Kslide
T

� � ¼ l�N
Dn1

Dn1
�� �� NT

� �
s� n N½ � ð22Þ

Assembling of these contact stiffness KN½ �, Kstick
T

� �
and Kslide

T

� �
into the global

system tangent matrix follows standard procedures.

10 Contact Smoothing

Curved boundaries are not smooth after being discretized by linear finite elements. If
structures have a rectangular shape, the corners are also not smooth. These non-smooth
profiles have following issues:

a. Normal and tangential units jump from one segment to its adjacent segment.
b. Normal and tangential units have no unique value at the interaction node.
c. Unrealistically large penetration may occur at corners of the rectangle.

This non-smoothing transition of local unit vectors often triggers convergence
issues. A typical example is occurrence of “chattering” when the slave node slides back
and forth around an intersection on the master surface. In this paper, a Hermite
interpolation method is used to smooth the contact interface as depicted in Fig. 4.
Segments x2x3 and x3x4 are adjacent FE edges on the master body. Point xa locates at
aL23, where 0� a� 0:5 and L23 is the length of segment x2x3. Tangents at ends of this
interpolated curve xaxb are defined as
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dxa
dn
¼ x3
� xa;
dxb
dn
¼ xb
� x3

ð23Þ

The Hermite curve is interpolated by

x ¼ 1
4

n3 � 3nþ 2
� �

xa þ 1
4

�n3 þ 3nþ 2
� �

xb þ 1
4

n3 � n2 � nþ 1
� � dxa

dn

þ 1
4

n3 þ n2 � nþ 1
� � dxb

dn

ð24Þ

where n is the local coordinate of the interpolated curve xaxb.
When Hermite smoothing or other high order smoothing algorithm is used, CPP

procedure should use the Newton method to find nc.

11 Numerical Examples

Two examples in geotechnical engineering are presented in this section. Examples are
analyzed by the FEM software package EnFEM which was developed following
implementations in this paper. Quadrilateral linear four-node elements are used for both
examples.

12 Embedded Culvert Subject to Gravity Load
and Unsymmetrical Ground Surcharge

The initial configuration of this example is illustrated in Fig. 5. The culvert is made up
of concrete with Young’s modulus 2.8 	 107 kPa. This culvert has a 180 cm outer
diameter and a 144 cm inner diameter. The soil is modelled using the Mohr-Coulomb
elasto-plastic material model. The coefficient of friction between the concrete and soil is
0.6. Applied loads include the gravity load and a surcharge load of 35 kPa/per unit
length. Since the ground surcharge is not symmetrical, full model of culvert is used in
simulation.

Two stages are considered in this analysis: stage one, with gravity load applied, and
stage two, with the additional ground surcharge applied. The normal contact pressure
and friction stress at the end of each stage are plotted in Figs. 6 and 7 respectively.

x2

x3

x4

xa

xb

L

master

initial gap

Fig. 4. Smoothing C0 continuous boundary by Hermite interpolation
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Note that central angles start from the culvert top and rotate in the clockwise direction.
Dashed orange lines are results at the end of stage 1. After the surcharge is applied,
distribution of contact pressure is no more symmetric. The minimum normal pressure
locates around the right interface between soft and stiff soil layers. Moment and thrust
forces at the end of each stage are plotted in Figs. 8 and 9 respectively. Distributions of
moment and thrust forces for each stage follow the same oscillation rhythm with shift
of peaks due to the unsymmetrical total loads.

Relative sliding between soil and the culvert is very small, so that all contact pairs
are sticking. No gaps are developed in this simulation.
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Fig. 5. Embedded culvert subject to gravity and unsymmetrical surcharge
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13 Stability Analysis of Slope Strengthened by a Stabilizing
Pile (2D)

The second example is a 2D stability analysis of slope strengthened by a stabilizing
pile. The strength reduction method is used to estimate the factor of safety against
sliding. The stabilizing pile has 20 cm width and 15.6 m of length. Embedded length
into the lower soil layer is about 5 m. Material properties and model geometry are
shown in Fig. 10. The Mohr-Coulomb elasto-plastic material model is used for the soil.
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This model has two analysis stages. Gravity load is applied during the first analysis
stage followed by strength reduction stage until computations no longer converge.
Calculated safety factor is about 1.412, while the safety factor without a stabilizing pile
is about 1.31. Figure 11 displays the contour of horizontal displacements at failure. The
deep blue zone indicates rapid soil motion to the left when slope failure occurs.

Contact pressure and friction shear stresses are plotted in Fig. 12. Approximately at
depth 10 m, there is a severe jump of contact tractions. Contact statuses above this
location are sliding while statuses are sticking below this location.

14 Conclusions

This paper presents implementation of computational contact analysis. Formulations in
covariant form show unique advantages of being concise and easy to understand.
Although non-penetration is satisfied approximately, the penalty approach provides
convenient implementation and robust performance in contact problems involving
finite sliding. Experience has found that local smoothing is essential if linear finite
elements are used because the node-to-segment approach is sensitive to non-smooth
interfaces. Two examples of 2D soil-structure interaction problems are presented.
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Fig. 10. Stability analysis of slope strengthened by a stabilizing pile
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These examples were solved using a FEM software package that was developed using
the recommendations of this paper.
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