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Abstract Offshore installations are complex and need to be maintained properly to
sustain expected performance. Critical failures on these installations could pose
great threats to productivity, personnel safety, and the environment. The research is
designed to suggest some practical solutions for improving decision quality and
reliability. During operation and maintenance (O&M) activities, much data are
collected, and it is believed that making full use of them has great potential for
improving production efficiency, as well as for reducing risks. Drawworks is
studied to elaborate a data-driven methodology. The research suggests some
practices for identifying and using critical data sets as a driving force to improve
decision-making. Both qualitative and quantitative analysis are used during the
study. Competence management is also studied as a necessary part of the
data-driven decision-making setting.

1 Introduction

Offshore oil & gas (O&G) operations are expensive and generally have higher
safety requirements compared to onshore operations. Production safety and avail-
ability are largely influenced by the performances and conditions of key equipment
of offshore installations. Human decisions play an important role in the process.
However, in traditional terms, decisions related to operation and maintenance
activities are often made based on experiences. The consistency and quality of
experience-based decision practices are questionable [17].

It has been widely acknowledged that data & information have great potentials
for improving the quality of decision-making [1, 4, 12]. With the development of
sensor technology and digitalization, more and more data are collected and need to
be integrated into decision making, but the definition of the most critical data sets,
and the integration process are still heavily experience-based. The paper promotes a
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normative approach to help decision-makers gain more control of data and explore
the maximum value of them in a systematic way. A critical equipment in offshore
drilling is selected and described in Sect. 2. In Sect. 3, the methodology of the
data-driven approach is explained. In Sect. 4, the failure mechanism of the selected
equipment is studied, and how to establish the contextual data architecture for
decision-making is explained.

2 Drawworks

Faller [7] listed the most critical equipment for offshore drilling facility as including
top drive (crown block), drawworks, and mud pumps. Drawworks was selected in
this study as its criticality in offshore drilling was sometimes overlooked. An
operator from North Sea recoded all maintenance activities related to the draw-
works between 2004 and 2014. Records showed that 10% of total maintenance
activities were corrective maintenance, while the rest was planned maintenance.
From the oil operator’s point of view, the drawworks was quite reliable. However, a
drawwork incident several years back induced a production shutdown for more than
two weeks, which caused great economic loss. Drawworks can, in many ways, be
the reason for production loss or catastrophic failures that threaten the environment
and human lives. Its possible impacts should not be neglected. A system of systems
diagram of drawworks is depicted in Fig. 1.

Some essential functions that drawworks perform include: dragging the drill
string/casing out of the hole; controlling the speed of drill string/casing; controlling
the weight that is applied on the drilling bit; providing a power take-off for the
chain-driven rotary table if no other hoisting equipment is installed [6, 14].

Oil & Gas Activities

Exploration Drilling Production Transportation

Production drilling Exploration drilling

Mobile drilling unit Fixed driling rig

Drill floor Mud system Hoisting system Pipe handling Cementing systemWell control 
system

Drilling data 
acquisition 

Derrick DrawworksCrown block Travelling block Drilling line

Drum assembly Braking system

Hook

Electric motors Drill control system Lubrication system Supporting system

Fig. 1 System of systems. Adapted from [3, 15, 19]
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3 Methodology

New sources of data are generated and collected with the development of advanced
monitoring technologies and with the increasing requirement on safety. The paper
promotes a normative data-driven approach to help improve the contextual
awareness and assist decision-makers to define and make use of the right data in
decision-making processes.

The study began with the identification of critical failure modes and mechanisms
of drawworks that had the severest impacts on production, safety, or the environ-
ment. Failure modes and symptoms analysis (FMSA) and fault tree analysis
(FTA) were implemented to study the failure logic and symptoms. This process
helped define the critical parts/systems that the data architecture could be built
around, and provided a reasoning logic for decision-making, both qualitatively and
quantitatively. The definition and collection of various data sets and dissemination
of data were explained with a case study. In the end, the paper studied the role and
competence of personnel in the new decision setting.

4 Case Study Results and Analysis

4.1 Failure Modes and Symptoms of Drawworks

Failure modes and symptom analysis (FMSA) is a systematic risk analysis tool,
where failure modes, causes, local effect, and system effect are identified, following
the guidelines defined by ISO [11]. FMSA analysis was performed at the compo-
nent level of drawworks, and more than 80 failure modes were analysed [19]. The
highest-ranking failure modes are listed in Table 1.

In the analysis, shutdowns of the whole system or threats to human safety or
environment were all considered unacceptable. The analysis used the monitoring
priority number (MPN) as an indicator to help prioritize the monitoring sequence of
failure modes. The formula for calculating MPN is [10]:

MPN ¼ DET� SEV� DGN� PGN ð1Þ

where, DET refers to probability of detection, SEV is severity of failure, DGN is
diagnosis confidence, and PGN is prognosis confidence. The numbers for DET,
SEV, DGN and PGN in the table are assigned subjectively from 1 to 5, which
represents the degree of confidence from weak to strong. According to the defini-
tion of MPN, the higher its value is, the higher is its monitoring priority [10].
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4.2 Fault Tree and Reliability

In this paper, both qualitative and quantitative reliability analysis were needed for
decision-making. Due to the limited reliability data from OREDA [16], electric
motor was used to illustrate the process. There are two redundant electric motors in
drawworks. The fault tree analysis (FTA) is depicted in Fig. 2.

Reliability and sensitivity analysis was implemented based on the FTA.
Reliability data of electric motor was found in OREDA [16]. Failures of different
parts was assumed to be exponentially distributed with parameter k. Mean time to
failure (MTTF) equals 1=k. The reliability of component i is calculated:

pi ¼ MTTFi

MTTRi þMTTFi
¼ MTTFi

MTTRi þ 1=kið Þ ð2Þ

Terje Aven [2] suggested that Birnbaum’s measurement could be appropriate in
the context of oil production, as small changes in operation and maintenance per-
formance might induce a large change in system reliability. The use of Birnbaum’s
measurement has been elaborated by some researchers [9, 18]. The importance of
component i is calculated [5]:

IBi ¼ h 1i; pð Þ � h 0i; pð Þ ð3Þ

Electric motors

Failure of motor A

No power output Unstable power output

Leakage

Do not start 
on demand Spurious stop

No 
power/
voltage 
input

Control 
failure

Material 
degradation

Valve 
failure

Hose 
failure

Case 
failure

Breakage

Wear

Stator 
failure

Coupling 
failure

Rotor 
failure

Bearing 
failure

Lube oil 
property 
change

Frequency 
converter 

failure

Short 
circuit

Earth 
fault

Wiring 
failure

No 
signal

Wrong 
indication

Instrument 
failure

Switch 
failure

Leakage
No 

power/
voltage 
input

Control 
failure

Material 
degradation

Valve 
failure

Hose 
failure

Case 
failure

Breakage

Wear

Stator 
failure

Coupling 
failure

Rotor 
failure

Bearing 
failure

Lube oil 
property 
change

Frequency 
converter 

failure

Short 
circuit

Earth 
fault

Wiring 
failure

No 
signal

Wrong 
indication

Instrument 
failure

Failure of 
motor B

Alignment 
failure

Faulty 
power/
voltage

Control 
failure

Unstable 
signal

Instrument 
failure

Frequency 
converter 

failure

Connection 
looseness

Rotor 
failure

Radial 
bearing 
failure

Fig. 2 FTA of electric motor in drawworks system [19]
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where IB is the measurement of importance for component i, h 1i; pð Þ is the overall
system reliability when component i is in its best condition, and h 0i; pð Þ is the
overall system reliability when component i fails.

In this case, the basic events in the fault tree were considered independent from
each other, and the state of each component was set to be binary (either fail or
function). A simplified reliability block diagram (shown in Fig. 3) was depicted
based on the FTA, which were later used for reliability calculation. For the parts
that were not recorded in the OREDA handbook, the reliability numbers were
rounded up to 1 for simplification.

The results of Birnbaum’s importance were shown in Table 2. The highlighted
component (instrument failure) was the one that had the highest potential influence
on the system reliability of the electric motor. It was thus suggested that mainte-
nance in relation to the instrument parts be prioritized for continuous monitoring
and preventive maintenance planning.

From the reliability analysis, it is noticeable that the difference of importance
between the components/parts are small, but the difference can be big in other
systems. Operators are recommended to establish and use their own databases to
serve the purpose in addition to the reliability data from industry data base.

Hose 
failure

Stator 
failure

Bearing 
failure

Lube oil 
property 
change

Alignment 
failure

Short 
circuit

Earth 
fault

Wiring 
failure

Instrument 
failure

Hose 
failure

Stator 
failure

Bearing 
failure

Lube oil 
property 
change

Alignment 
failure

Short 
circuit

Earth 
fault

Wiring 
failure

Instrument 
failure

Failure of motor A

Failure of motor B

Fig. 3 Reliability diagram for electric motors. Adapted from Zhu [19]

Table 2 Reliability calculation results with Birnbaum’s importance measurement

Component Failure rate (k) MTTF MTTR IB

Bearing 4.128 242,247 1.4 0.000308867

Hose/pipe 0.458 2,183,329 2.6 0.000308865

Short circuit 0.916 1,091,665 7.5 0.000308867

Open circuit 0.458 2,183,329 7.3 0.000308866

Earth fault 0.916 1,091,665 6.7 0.000308867

Instrument failure 10.094 99,069 15.3 0.000308913
Alignment failure 0.916 1,091,665 5.1 0.000308866

Oil property change 0.916 1,091,665 4.2 0.000308866

Wiring failure 3.67 272,480 29.9 0.000308899

Stator failure 1.374 727,777 9.5 0.000308869

Adapted from Zhu [19]
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4.3 Development of Data Architecture

Various data sources are created during the design, operation and maintenance of
systems. How to manage data efficiently and effectively needs to be addressed.
Different decision-makers have different needs and requirements on data. An
integrated architecture to identify and access key data sets is a key element of
data-driven decision-making. Liyanage [13] introduced a conceptual data archi-
tecture, where he discussed how key data sets should be defined in a holistic
manner and how data should be disseminated depending on the specific context. In
this section, the establishment of the data architecture of drawworks is explained in
two main parts, which are data definition and data dissemination.

Definition of Data Sets

Project data include the system, location and field in which the drawworks is
operated. ISO [11] defines the characteristics and attributes in defining and col-
lecting equipment data, failure data, and maintenance data. Equipment data include
the manufacturing information of the drawworks, its operating mode, operating
power, the location of its applications and so on. Failure data needs to be recorded
with the correct identification and with a time tag. Failure modes, possible causes,
and potential consequences could be identified with the help of FTA and FMSA. In
addition, it is suggested that failure data from both the operator and drawworks’
suppliers are recorded and shared for a better understanding of the system. As
proposed by ISO [11], maintenance data should cover the category of maintenance
activity, the item maintained, the resources and manpower used, the impact from
maintenance, downtime and so on. There can be overlappings of events between
failure data and maintenance data, but they are stored with different criteria and
serve different purposes. Reliability analysis, as explained in Sect. 4.2, uses failure
history or industry database as the basis for calculation.

Building a contextual database is the key part of the data architecture and plays a
critical role in O&M decision-making. The use of FMSA analysis explains how key
monitoring parameters are defined, as discussed in Sect. 4.1. Table 3 shows the use
of FMSA as a platform for discussing the technical options of gaining condition
data. Alternative methods may exist to collect specific data, and the decision as to
which method is more efficient and cost-effective belongs to the operator. The
identifications of failure symptoms and failure mechanisms is helpful in imple-
menting diagnosis and prognosis of the system.

Dissemination of Data

The basic principle of data dissemination is to make sure that the right people have
access to the right data at the right time [8]. In the data architecture, data are used
for both common and specific purposes. Common use data include project data,
equipment data, industry database, and so on. These kinds of data provide the basic
information of drawworks’ operating context and environment and should be
available and accessible for all personnel involved. Specific data include failure
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data, maintenance data, reliability data, and contextual data of the drawworks.
These data sets are directly connected to the history, condition and performance of
the drawworks. Not all personnel need to access and understand these data sets, but
these data are critical for maintenance engineers, drilling engineers, and so on, to
gain context awareness, to optimize maintenance plans, and to implemented critical
tasks.

In the case, condition monitoring system has not been applied with full scale on
drawworks. One challenge was the lack of definition of critical parameters to
monitor. Another major challenge was the lack of platform to integrate these data
into decision-making. With the help of FMSA, the first challenge can be easily
solved by analysing the components/sub-systems with the highest value on MPN
and Birnbaum’s importance measurement. For the second challenge, FTA results
can be used as the platform for decision-making, both logically and with quanti-
tative analysis.

4.4 Extended Competence Management

Three disciplines are involved in the O&M activities regarding drawworks,
including drilling, maintenance, and safety. Based on the observations, employees
with roles and responsibilities related to drawworks have been working in their
positions for many years. The knowledge and competence of each discipline were
observed to be specialized but comprehensive related to the tasks they performed.

However, the complexity of the conditions in which the drawworks is operated
still keeps growing, even though the field has been developed for a long time. New
sensors and equipment have been added, and new levels of safety and production
performance are expected. The interconnections of different data sets, the knowl-
edge from different domain experts and the decision alternatives are increasing.
Making informed decisions in the way they used to do is becoming more and more
challenging. There is a trend of different disciplines being expected to become
multi-disciplinary to improve work performance [13]. In the new context, drilling
engineers may be expected to understand safety concerns, as well as financial costs,
from example. Companies need to realize that extended competence can play a key
role in realizing the full value of the new data architecture, as well as in improving
decision-making quality.

5 Discussion and Conclusion

The industry is moving towards an era with great appreciation of data and infor-
mation. Decision makers are expected to continuously define critical data sets and
to make efficient and informed decisions with the right data. A pressure vessel
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model is used to illustrate the value of the data-driven decision method compared to
traditional experience-based decision model, as shown in Fig. 4.

In the pressure vessel model in Fig. 4, either pressure gauge or pressure relief
valve can be installed to respond to a possible overpressure scenario. The traditional
experience-based decision model is just like the pressure gauge in the model, which
only means something when someone with the right experience happens to notice it
and knows how to react to it. The suggested data-driven approach is like the
pressure relief valve, which comes with a whole solution for decision-makers, with
the context awareness, failure modes and mechanisms, diagnosis, and consequences
displayed and explained.

The paper promotes a normative approach to help decision-makers define the
scope of key data sets as well as the process to establish a contextual data archi-
tecture for decision-making. The analysis tools that are used in the approach are
known to most decision-makers in the offshore O&G industry sector, which makes
the approach relatively simpler to be implemented. The method aims to provide
some practices to help decision-makers gain control and confidence when too much
data can become overwhelming and confusing. The approach can be used to assess
other critical equipment or systems with simple adaptations.
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