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Abstract We propose a semiparametric valuation model for heterogeneous assets
that fits within Generalized Additive Model (GAM) framework. Using micro data
for individual asset sales we are able to estimate the impact and relative importance
of macro market conditions and the influence of technical specifications and asset
age. We apply our model to the valuation of oceangoing chemical tankers. Our
empirical results suggest that asset valuation is a non-linear function of main drivers
such as ship size, age, and market conditions, whilst other engineering parameters
that are specific to the chemicals market such as tank coating grade and cargo
diversity also play a significant role. An asset valuation model that can account for
generic market factors as well as highly heterogeneous asset-specific characteristics
is important for owners and financiers, particularly in markets with limited liquidity.

1 Introduction

The ocean transportation of cargoes such as chemicals and petrochemical gases is
undertaken by vessels that are technologically advanced, highly specialised and
capital intensive, with a wide range of technical specifications. The heterogeneous
and relatively small global fleet of such vessels and a concentrated ownership
structure leads to low liquidity in the second-hand asset markets. For these reasons,
asset valuation is a much more challenging task than for the larger segments of
commodity shipping, but no less important for the market players and financial
institutions involved. Research into the formation of second-hand ship prices has
hitherto been based on time series of values for generic vessels in the tanker or
drybulk sectors (see for instance [3, 5–7]). As the sole exception, Adland and
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Koekebakker [2] propose a nonparametric ship valuation model based on sales data
for Handysize bulk carriers, though they consider only the size and age of the ship
and the state of the freight market.

In this paper, we extend the research on ship valuation using micro data on
vessel transactions and technical specifications by proposing a semi-parametric
generalized additive model. Under the assumption of separable factors, we can
quantify the pricing effect of a large number of technical variables in the valuation
of highly sophisticated chemical tankers. Such a vessel valuation model is partic-
ularly valuable for brokers, financiers and owners when performing “desktop val-
uations” of specialised ships where brokers estimates are costly or perhaps not
available.

2 Methodology

A Generalized Additive Model is the extension of a generalized linear model to a
combination of linear predictors and the sum of smooth functions of explanatory
variables. In general, a model may look like

gðliÞ ¼ X�
i hþ f1ðx1iÞþ f2ðx2i; x3iÞ. . . ð1Þ

where µi � E(Yi), Yi is the response variable distributed according to some expo-
nential family distribution, Xi

* is a vector of explanatory variables that enter the
model parametrically, h is a corresponding parameter vector and fj are smooth
functions of the variables that are modelled non-parametrically. GAMs provide
enough flexibility to take non-linear relationships into account without making any
specific assumptions about the functional form of these relations. They also provide
reliable results in samples of moderate size.

The bases for our estimations are thin plate regression splines (TPRS) in com-
bination with a general cross validation procedure (GCV). Standard bases for
regressions splines, such as cubic splines, require the user to choose knot locations,
i.e. the basis dimension. Furthermore, they allow only for the representation of the
smooth of one predictor variable. TPRS surmount these problems and are in a
limited sense ‘optimal’ with respect to these problems1. Given the problem of
estimating g(x) such that yi = g(xi) + ei, thin plate spline smoothing estimates g
(x) by finding the function f minimising

y� fk k2 þ kJmdðf Þ ð2Þ

where Jmd(f) is a penalty function measuring the “wiggliness” of f and k is a
penalisation parameter. Instead of choosing the basis dimension to control the

1See Wood [8, pp. 154].
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models smoothness, the trade-off between model fit and smoothness is controlled
by the smoothing parameter k. If k = 0 the spline is unpenalized while k ! 1
leads to a straight-line estimate (over-smoothing). Furthermore, k relates to the
effective degrees of freedom (EDF) of a smooth term, i.e. the larger the complexity
of a smooth term the larger the EDF and the lower k.

The problem of choosing some optimal value for k is solved via generalized
cross validation (GCV). For more details on GAM’s and the practical implemen-
tation the interested reader is referred to for example Härdle et al. [4] or Wood [8].
One disadvantage in using GAMs is that hypothesis testing is only approximate and
that satisfactory interval estimation requires a Bayesian approach. Using the
Bayesian posterior covariance matrix and a corresponding posterior distribution
allows us to calculate p-values and confidence intervals. Typically, the p-values
calculated this way will be too low, because they are conditional on the uncertain
smoothing parameter [8]. Therefore, we are restrictive when interpreting results and
significance levels.

Our independent variables include both macro and ship-specific variables and
can be justified as follows (subscript i is omitted, but refers to the value of the
variable for sales transaction i, or at the time of transaction i for the macro
variables):

NB Newbuilding price (USD/Compensated Gross Tonnes, CGT). The
cost of ordering a brand new vessel (i.e. replacement value).

EARN spot market vessel earnings ($/day) as calculated on the benchmark
Houston–Rotterdam route basis $/tonne rates for 3000 tonnes
‘easychem’ parcels.

SIZE deadweight carrying capacity of the vessel (tonnes). A larger vessel
should attract a higher price due to higher earnings capacity, all else
equal.

SPEED design speed of the vessel (knots). A greater speed indicates higher
efficiency, though this may come at a cost of higher fuel
consumption.

AGE Age of the vessel at the time of the sale (years). As vessels
depreciate, older vessels have lower values, all else equal.

NOTANK the number of cargo tanks. A higher number is increases the
potential number of different chemical parcels carried
simultaneously.

IHULL Dummy variable indicating hull configuration (double hull, double
bottom, double sides and single hull).

ICOAT Dummy variable indicating tank coating type (epoxy-, polyur-
ethane-, zinc-, and stainless steel-coating). Higher-grade coating
increases the cargo flexibility.

IIMO Dummy variable for the vessel’s IMO classification of the
environmental and safety hazard of the cargoes (Type 1, 2, 3 with
Type 1 being most severe).

ICOUNTRY Country of build as a proxy for perceived overall build quality.
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CARGODIV an interaction variable representing cargo diversity of the vessel as
measuredby theproduct of thenumberof coatingsandnumber of tanks.

PUMPDIV an interaction variable representing the ability and flexibility of cargo
handling as the product of the number of discharge pumps and pump
capacity

As an example, the most comprehensive model specification can be written as:

gðEðPRICEij:ÞÞ ¼ c0 þ sðNBiÞþ sðEARNiÞþ sðSIZEiÞþ sðAGEiÞþ IHULLi

þ sðCARGODIViÞþ sðPUMPDIViÞþ IIMO
i

þ sðSPEEDiÞþ ICOUNTRYi

ð3Þ

All regressions are carried out using g(.) = log(.) as link-function and assumes
that second hand prices follow a Gamma distribution, PRICEi * G(a, b) (a, b).
Experiments with the Normal distribution and different link-functions did not
improve results.

3 Data and Empirical Results

Tables 1 and 2 show the descriptive statistics for our variables. The dataset obtained
from Clarkson Research Ltd. includes 842 observations of chemical tanker sales
since October 1990. We remove vessels sold under unusual circumstances, including
those sold at auction, judicial sales, vessels sold with attached time charter contracts
and en-bloc transactions, leaving 736 observations for further analysis.

Table 3 shows the regression results for four different specifications (A toD) of the
general pricing model in Eq. 1. The upper panel shows the results for the
non-parametric components as estimated degree of freedom (EDF) which reflects the
degree of non-linearity present in the regressors and the significance of this
explanatory factor. The lower panel provides information on the parametric compo-
nents given as point estimate (PE) and its significance which can be interpreted
directly.

Table 1 Data overview Variable Min Average Max

Price (mUSD) 0.25 11.09 100.00

NB price (USD/CGT) 829 1012 1315

Earnings (USD/day) 6054 17,205 40,984

Age 0 12 25

Size (DWT) 1032 17,485 50,600

No. tanks 4 17 43

No. pumps 2 12 43

Pump capacity 150 2890 8670

Speed (knots) 10.5 13.5 17.0
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Table 2 Data distribution for build country, coating, hull and IMO type

Build country Coating Hull type IMO type

Japan 44.9% Epoxy 46.5% D/
Bottom

46.3% IMO1 29.2%

S. Korea 10.7% S. Steel 6.4% D/Hull 29.4% IMO2 46.6%

Croatia 7.9% S. Steel Epoxy 6.0% D/
Sides

2.7% IMO3 3.9%

Norway 5.6% S. Steel Epoxy
Zinc

6.4% S/Skin 8.0% N/A 20.2%

Denmark 4.3% S. Steel Poly. 11.1% N/A 13.7%

Germany 3.8% S. Steel Zinc 7.1%

Sweden 3.0% Zinc 4.1%

Others 19.8% Misc. 12.6%

Table 3 Regression results for models A through D

A B C D

EDF Sig. EDF Sig. EDF Sig. EDF Sig.

NB 6.102 *** 6.107 *** 5.566 *** 5.438 ***

EARN 5.454 *** 5.934 *** 3.197 * 3.019 *

SIZE 8.373 *** 8.225 *** 7.607 *** 6.701 ***

AGE 7.413 *** 6.109 *** 6.723 *** 6.962 ***

NOTANKS – 8.356 ** – –

CARGODIV – – 8.230 *** 7.884 ***

PUMPDIV – – 1.000 *** 1.000 ***

SPEED – – – 7.228 ***

PE Sig. PE Sig. PE Sig. PE Sig.

D/Bottom – −0.260 *** −0.217 *** −0.164 ***

D/Sides – −0.418 ** −0.181 * −0.207 *

S/Skin – −0.427 *** −0.298 *** −0.244 ***

S. Steel – 0.131 – –

Poly – 0.042 – –

Epoxy – 0.261 – –

Zinc – 0.062 * – –

IMO2 – 0.254 *** 0.257 ***

IMO3 – 0.299 ** 0.303 ***

Intercept 2.049 *** 2.041 *** 2.066 *** 2.004 ***

No. obs. 736 736 736 736

Adj. R2 81.9% 84.7% 85.7% 86.3%
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The results are broadly consistent across specifications and can be summarized
as follows. Firstly, the relationships between asset value and the replacement cost
(NB price), vessel age, earnings and vessel size are non-linear and highly signifi-
cant. Secondly, non-double-hulled tonnage attracting a substantial discount.
Thirdly, perhaps somewhat surprising, tank coating does not significantly affect
asset values. Fourthly, our proxies for versatility and efficiency (CARGODIV,
PUMPDIV, SPEED) are highly significant. Finally, IMO classification matters,
albeit perhaps not in the way expected, as IMO2 and IMO3 vessels carry a premium
compared to the technically more advanced IMO1 vessels. The explanatory power
of the model is relatively high, starting out at 81.9% for the basic ‘macro’ model
and increasing to 86.3% as we add more technical vessel variables.

Table 4 presents the results for our most comprehensive model (Eq. 3). The
results from the earlier specifications remain robust. Additionally, vessels built in
certain countries (Denmark, Germany and Norway) attract a quality premium, while
Ukrainian-built tonnage has perceived lower quality reflected in asset values.

Figure 1 presents the smooth of new building prices, earnings, size and age to
second-hand prices. The relationships are strongly non-linear, with small confi-
dence bands. Second-hand prices increase with size, decrease with age, and are also
broadly increasing with the replacement cost and spot market earnings. The latter
effect is less clear for high values, due to fewer observations and mean reversion in
rates [1].

Table 4 Regression results for final model

Model E Country of build

EDF Sig. PE Sig.

NB 5.902 *** Belgium 0.342 *

EARN 3.514 *** China 0.134

SIZE 4.114 *** Croatia 0.045

AGE 5.871 *** Denmark 0.448 ***

NOTANKS – Finland 0.282 *

CARGODIV 7.412 *** France −0.130

PUMPDIV 1.001 ** Germany 0.402 ***

SPEED 7.785 *** Italy 0.227 *

pe Sig. Netherlands 0.232 *

D/Bottom −0.113 * Norway 0.307 ***

D/Sides −0.413 *** Poland −0.114

S/Skin −0.200 ** South Korea −0.054

IMO2 0.166 *** Spain 0.172 *

IMO3 0.218 * Sweden 0.149 *

Intercept 1.938 *** Turkey 0.232 *

Ukraine −0.381 ***

No. obs 736 UK 0.056

Adj. R2 88.0% Other 0.039
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Figure 2 illustrates the joint non-linear effect of vessel age and vessel size on
second-hand prices, similar to Adland and Koekebakker [2].

Fig. 1 Smooth of NB price, earnings, size, and age

Fig. 2 3D plot of asset values against size and age
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4 Concluding Remarks

We have developed a comprehensive multivariate semi-parametric framework for
the estimation of chemical tanker second hand prices. Previous non-parametric
models have shown that non-linear modelling is appropriate, but have suffered from
the curse of dimensionality. Our model surmounts these issues and extends the
existing literature by applying semi-parametric GAMs to a cross sectional dataset of
actual sale and purchase transactions of chemical tankers. Even the heterogeneous
nature of chemical tankers and the high variation in chemical tanker second hand
prices can be satisfactorily modelled with this framework. Ship specific factors
which have not been included in previous models are shown to have a significant
impact on prices and the explanatory power of this model appears to outperform
linear methods of estimation. Most of the factors turned out to show the expected
effects on prices. To sum up, semi-parametric methods—especially GAMs—pro-
vide an appropriate framework to model asset values for highly heterogeneous
assets.
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