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Abstract Fault detection of the rolling element bearing (REB) has been the subject
of extensive research because of its detrimental influence on the reliability of
machines. Vibration-based condition monitoring is one of the commonly used
methods. In most cases, vibration signals are attenuated and contaminated resulting
from background noise and complex structure. Independent component analysis
(ICA) has been proved to be an effective method to separate bearing defect related
feature from background noise. However, it is a prerequisite that the number of
observations has to be larger than that of sources. The requirement cannot be
satisfied in helicopter main gearbox (MGB) bearing condition monitoring because it
is not possible to install more sensors than vibration sources considering the
complexity of the MGB. Hence, this paper investigates the feasibility of using
envelope extraction to reduce signal dimension. The experiment was conducted on
a MGB operating under different load level and input speed. The results show that
bearing defect related feature was observed by combing envelope extraction and the
ICA method.
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1 Introduction

Rolling element bearings (REB) are an essential and critical part of rotating
machinery. During the service time, faults occurring in bearings may lead to serious
damage and fatal breakdown. Hence, REB faults detection and diagnosis in the
early stages of damage is necessary to prevent malfunctioning and failure of the
whole device. Once bearing defect occurs, a series of impulses are generated every
time when a running roller passes over the surface of bearing flaws. As a conse-
quence, the vibration signature of the damaged bearing consists of an exponentially
decaying sinusoid having the structure resonance frequency [1]. The amplitude and
periodicity of the impulses are related to the structure of bearing, load, flaw loca-
tion, operating speed and so on. Failures are often preceded by changes in the
normal vibration of the system. Therefore, it is feasible to examine the health
condition of REBs by monitoring the vibration signals.

Vibration sensors (typically accelerometers) are one of the commonly used
sensors in monitoring bearing defects. Since vibrations sensors are normally
attached on the case of machine, faults related features are usually immersed in
background noise, which makes them difficult to be detected. Over the last few
decades, great effects have been made to develop advanced signal processing
methods to extract features from signals. Consequently, bearing fault detection
methods have been derived from simple calculation of kurtosis and root mean
square (RMS) values and Fourier transformation to more sophisticated schemes,
such as spectral kurtosis [2], fast kurtogram [3], empirical mode decomposition [4]
and independent component analysis (ICA) [5].

Since most gearbox includes multiple vibration sources, the observed vibration
signals are the mixtures of different vibration sources. The ICA algorithm has been
employed to decompose vibration sources to extract fault related features [5–7]. As
one of the general requirements of ICA algorithm, the number of observations
should be larger than the number of sources. However, it is not feasible to have
more vibration sensors than the vibration sources in the complex MGB scenario.
Guo et al. [6] proposed using envelope analysis to reduce dimension prior of using
ICA algorithm. The proposed method was validated in a small gearbox with two
gears.

So far, most studies were based on simple machinery structures, which have
limited number of bearings and gears. In this research, bearing defect detection has
been extended from a single bearing to a complex full size helicopter main gearbox
(MGB). The MGB consists of several gears and bearings to convert the engine
power from high speed and low torque to low speed and high torque to drive the
main rotor blades to generate lift. A defect was seeded on one of the planetary gear
bearing outer race of the second stage epicyclic reduction gear module. There are
multiple vibration sources in the MGB because of the complexity of MGB. Hence,
the dimension of recorded vibration signals was firstly reduced by envelope
extraction. Then, FastICA algorithm [8] was applied to decompose vibration
sources. The experiment was conducted under different rotating speed and load
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level. The analysis results proved the efficacy of the combination of the envelope
extraction and FastICA in detecting bearing fault in complex environment.

2 FastICA and Envelope Extraction

2.1 FastICA

The FastICA algorithm is a fast and robust fixed-point algorithms for ICA analysis
[8]. In our previous study, the FastICA algorithm was employed to separate the
multichannel signals into the mutually independent components in the similar
scenario [9]. The recorded vibration signals from m accelerometers were regarded
as observations x ¼ x1; . . .; xm½ �. The FastICA algorithm was utilized to find a
mixing matrix A to separate the source signals s ¼ s1; . . .; si½ �. The general ICA
model can be expressed as

x ¼ As ð1Þ

or equivalent expression of

s ¼ A�1x ð2Þ

ICA algorithm seeks a matrix W, which has a good approximation of A�1. The
FastICA algorithm is based on a fixed-point iteration scheme for finding a maxi-
mum of the non-Gaussianity of wTx, where w is the row vector of matrix W. w can
be calculated by using approximate Newton iteration

wþ ¼ w� l E xg wTx
� �� �� bw

� ��
E g0 wTx

� �� �� b
� � ð3Þ

w� ¼ wþ =jjwþ jj ð4Þ

where w� and wT denote the new value and transpose of w, respectively; µ is a step
size parameter that may change with the iteration count, E �f g is the mathematical
expectation; g0 �ð Þ is the derivative of contrast function G �ð Þ; b ¼ E wTxg wTxð Þf g.
The selection criteria of G and recommended contrast functions can be found in the
literature [8]. The algorithm firstly generates W 0ð Þ with random elements. Then, the
new matrix W kð Þ is calculated using Eqs. 3 and 4. The algorithm iterates until the
value of I � WT k � 1ð ÞW kð Þj j is less than a threshold e or the iteration number k is
larger than a given value M.

In that study, the MGB was operated at the high input speed of 16,000 rpm and
high loading level of 180 kW. The defect related feature was clearly revealed in one
of the independent components spectrum separated by FastICA [9]. However, the
FastICA cannot separate the recorded vibration signals when MGB run at low speed
and low loading level due to the limited number of vibration sensors. In general, the
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number of observations should be larger than the number of sources to have a good
separation. However, it is not possible to have more accelerometers than vibration
sources in MGB. As an alternative, envelop analysis was employed in this paper to
reduce signal dimension to compensate of the limited number of sensors. The
envelope analysis method was briefly introduced in the next section.

2.2 Envelope Analysis

Envelope analysis a commonly used method to obtain the bearing defect harmonics
from the envelope signal spectrum analysis. The spectral kurtosis (SK) is one of the
well-known envelope analysis techniques to detect and characterise transients in a
signal. It computes a kurtosis at given frequency resolution in order to discover the
presence of hidden non-stationeries and their corresponding frequency bands. The
high SK value indicates that the strong impulsive component occurs. The SK can be
defined as the fourth-order normalized cumulant

kx fð Þ ¼
H n; fð Þj j4

D E

H n; fð Þj j2
D E2 � 2; ð5Þ

where H(n, f) is the complex envelope of x(n) at frequency f.
Among newly developed envelope extraction methods, the fast kurtogram

algorithm, proposed by Antoni [3], is able to compute the kurtogram over finely
samples. The high efficiency of the algorithm makes it more suitable for on-line
faults diagnosis. In order to increase the calculation efficiency of SK, the fast
kurtogram employed binary tree algorithm to split frequency bands. Figure 1
illustrate the kurtogram representation at nodes {fi; Dfk} of the {f; Df} plane, which
is compounded of 2K − 1 kurtosis values.

Fig. 1 Sketch of the binary frequency and frequency resolution plane of the fast kurtogram
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3 Experiment Rig and Results Analysis

3.1 Experiment Rig

The experiment rig is shown in Fig. 2. The selected CS29 Category “A” SA330
Puma helicopter MGB was mounted on a platform. Flanges at both sides of the
platform were designed to support the absorption dynamometer. The absorption
dynamometer used air pressure to generate a clamping force between the rotating
drive plates driven by the output shaft of the MGB. The level of resistance is
proportional to the desired loading on the MGB. Air pressure and flowing water,
which was used to remove heat generated by the frictional torque, were delivered to
the absorption dynamometer using flexible external tubes.

The MGB consists of five reduction gear modules (RGMs), forward
(Fwd) RGMs and after (Aft), left hand (LH) and right hand (RH) RGMs, main
RGM and 2-stage epicyclic (Epi) RGM. In the 2-stage Epi RGM, the first and
second stage contains 8 and 9 planets gears, respectively. The defect was seeded on
one of the planetary gear bearing outer race of the second stage Epi RGM, as shown
in Fig. 1b, c. The vibration signals were measured by two PCB triaxial
accelerometers (356A32/NC, 100 mV/g). Two accelerometers were located at the
case of Epi RGM and Fwd RGM, respectively. The vibration signals were captured
by a NI cDAQ-9188XT CompactDAQ data acquisition with sampling frequency of
25.6 kHz.

Fig. 2 a Experimental rig; b 2-stage Epi RGM; c Seeded defect at the bearing outer race
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3.2 Bearing Defect Detection Methodology

In this study, the experiment was conducted under different loading level and input
speed, which were tabulated in Table 1. The seeded bearing defect was simulated
by machining a rectangular slot across the bearing outer race with length, width and
depth of 10, 4 and 3 mm, respectively. Once bearing outer race defect occurs, the
ball impacts on the defect every time when it passes the defect on the outer race.
The impact generated vibration can be regarded as a defect signature for fault
diagnosis. The defect signature so called bearing outer race defect (ORD) frequency
fORD can be calculated by using

fORD ¼ N
2

S
60

1� d
D
cos a

	 

; ð6Þ

where N = 13 is the number of rollers; S is planet gear speed of the second stage
Epi RGM. d = 12.5 mm is the diameter of roller; D = 63.65 mm is the pitch
diameter and a = 0 is the nominal contact angle. The calculated fORD is equal to
59.88 and 68.55 Hz when the input speed is 14,000 and 16,000 rpm, respectively.

Although the ORD frequency is independent of loading level, the low speed and
low loading level made the fORD difficult to be detected using the FastICA scheme.
Therefore, the fast kurtogram algorithm was firstly employed to reduce the
dimension of signal.

3.3 Validation and Analysis

Two triaxial accelerometers generate a total six observations. The worst scenario of
low input speed of 1400 rpm and low loading level of 100 kW was utilized to
illustrate the effectiveness of the combination of two methods. Firstly, the envelopes
of seven observations were extracted by the fast kurtogram algorithm. Figure 3a, b
show the original vibration signal waveforms of the sensor 1 in tri-axis and their
corresponding envelope extracted using the fast kurtogram algorithm. The optimal
level and filtering band were set to 7 and 150 Hz, respectively to keep the same
length of the envelopes. Although each signal has different optimal level and fil-
tering band, these two values were chosen based on the most common values of

Table 1 Experimental
conditions for bearing outer
race fault

Input speed (rpm) Loading level (kW) BPFO (Hz)

14,000 100 59.88

14,000 180 59.88

16,000 100 68.55

16,000 180 68.55
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each signal. Similarly, Fig. 4a, b show the original vibration signal waveforms of
the sensor 2 in tri-axis and their corresponding envelope.

Finally, the FastICA was utilized to separate vibration sources from 6 mixtures.
The separated independent components were transferred from time domain to
frequency. The spectrum of these independent components was shown in Fig. 5.
Although there was still some mixing frequency components presented in the
separation, the defect related feature fORD of 59.88 Hz was clearly observed in the
spectrum of the independent component 4 and 6.

The same procedure was applied to the rest operating condition. The defect
related feature fORD of 59.88 Hz were observed at the spectrum of one of the
independent component when the MGB operated at 14,000 rpm input speed, as
shown in Fig. 6. Likewise, the defect related feature fORD of 68.55 Hz were
observed at the spectrum of one of the independent component when the MGB
operated at 16,000 rpm input speed.

Fig. 3 a Original waveforms of sensor 1 in tri-axis; b envelope of sensor 1 waveforms in tri-axis

Fig. 4 a Original waveforms of sensor 2 in tri-axis; b envelope of sensor 2 waveforms in tri-axis
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4 Conclusion

Since the vibration sensors are usually mounted on the case of helicopter MGB,
vibration signal are attenuated and contaminated resulting from strong background
noise and multipath transmission. Under these circumstances, it is difficult to extract
faults related features from recorded vibration signals. This paper investigates the
possibility of combining the fast kurtogram algorithm and the FastICA algorithm to
extract faults related features from recorded vibration signals. The fast kurtogram
algorithm was firstly utilized to reduced signal dimension to eliminate the constraint
of limited number of sensors. Then, the FastICA algorithm was employed to sep-
arate vibration sources. The experiment was conducted under different loading level
and input speed. In all cases, the defect related feature fORD was clearly observed at
the spectrum of one of the independent component. These results prove the efficacy
of the combination of the fast kurtogram algorithm and the FastICA algorithm.

Fig. 5 Spectrum of independent components separated by FastICA

Fig. 6 Independent components including fORD under different input speed and loading level
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