
Chapter 10
Environmental Adaptations: Desiccation
Tolerance

Ralph O. Schill and Steffen Hengherr

Abstract Survival in microhabitats that experience extreme fluctuations in water
availability and temperature requires extreme adaptations. Antonie van Leeuwen-
hoek was the first who describe the phenomenon of the resurrection of a desiccated
rotifer in 1702. As with some rotifers and other small organisms, tardigrades enter a
desiccated state known as anhydrobiosis to withstand such environmental condi-
tions. This allows them to cope with the temporal variation of available water and to
extend their lifespan in an anhydrobiotic state by up to 20 years without biological
aging, according to the Sleeping Beauty hypothesis. Heat shock proteins serve as
molecular chaperones to preserve or restore protein integrity, and tardigrade-specific
intrinsically disordered proteins (TDPs) as well as metabolite help prevent the
formation of damaging cellular compartments aggregates during water stress.

10.1 Life Without Water

The first to describe the phenomenon of the resurrection of a desiccated animal was
the Dutch naturalist Antonie van Leeuwenhoek. He discovered that when dry and
apparently lifeless dust from a roof gutter was rehydrated with clean water in a small
glass, many “animalcules” (small organisms) became active within an hour (van
Leeuwenhoek 1702). He noticed: “I confess, I never thought that there could be any
living creature in a substance so dried as this was.” These animals were probably of
the bdelloid rotifer species Philodina roseola (Tunnacliffe and Lapinski 2003). In
the past 300 years, various names were used for this phenomenon until David Keilin,
who is most known for his research and rediscovery of cytochrome in the 1920s,
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published a benchmark review and defined the term cryptobiosis. He called it “the
state of an organism when it shows no visible signs of life and when its metabolic
activity becomes hardly measurable, or comes reversibly to a standstill” (Keilin
1959). Of course, the difference between a “hardly measurable”metabolism and one
that is at a “reversible standstill” is of considerable significance. The latter is difficult
to interpret, because it ultimately means neither alive nor dead. Due to the fact that,
for example, anhydrobiotic organism contains no or only a little water means that
also no functional enzymes are available, and therefore no metabolism is possible.
Despite this circumstance, the anhydrobiotes are able to survive desiccation and to
continue to live normally after rehydration. Cryptobiosis results from desiccation
(anhydrobiosis), low temperature (cryobiosis), lack of oxygen (anoxybiosis), high or
low salt concentration (osmobiosis), or combinations of these (Keilin 1959). How-
ever, there are always similarities between these kinds of cryptobiotic states, for
example, between the state of anhydrobiosis and cryobiosis. In both states, the
amount of free water in the cells is reduced by desiccation or ice formation.
Nevertheless, various studies suggest that the two conditions are not equivalent
and that different mechanisms of survival have been developed (Crowe et al.
1992). The ability to enter cryptobiosis is quite common in nature. It occurs in
many invertebrate taxa like sponges, crustaceans, rotifers, nematodes, and tardi-
grades (Crowe and Clegg 1973, 1978; Lapinski and Tunnacliffe 2003; Womersley
1987; Wright 2001). But also many prokaryotes such as bacteria and blue-green
algae (Potts 2001), plant seeds (Alpert 2000; Chandler and Bartels 1999; Ingram and
Bartels 1996; Priestley 1986; Vertucci and Farrant 1995), and also tissues of some
higher plants have developed this ability. Particularly noteworthy here is the resur-
rection plant Selaginella lepidophylla, also known as the “Rose of Jericho” (Scott
2000; Tomos 1992).

10.2 Tardigrades and Their Longevity

10.2.1 Longevity in Anhydrobiosis

To date, few comparative studies have been carried out to obtain information on how
long anhydrobiotes can remain in anhydrobiosis without losing their vitality after
rehydration. Most studies were performed in the first half of the twentieth century
(Baumann 1927; Fielding 1951; Franceschi 1948; Goodey 1923; Lee 1961; Rahm
1923; Steiner and Albin 1946). More information is available about parasitic nem-
atodes of plants. For example, Steiner and Albin (1946) reported on two nematode
species that successfully survived 28 and 30 years, respectively, in anhydrobiosis.
Fielding (1951) also reported a nematode species that survived dehydrated for
20–28 years. Goodey (1923) and Lee (1961) in turn found a maximum time span
of 9 and 10 years, respectively. There is much less information about tardigrades
(Fig. 10.1a, b) and rotifers. One of the first who did extensive experiments was
Baumann (1927). One species of the genus Macrobiotus was successfully
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rehydrated after 7 years (Baumann 1927). Richtersius oberhaeuseri survived up to
1604 days and Echiniscus sp. survived up to 1085 days in anhydrobiosis (Franceschi
1948). Franceschi (1948) even reported a tardigrade that came from a 120-year-old
moss and showed briefly movement after rehydration before it died. Meanwhile, it is
doubted whether the observed animal was alive. Presumably, passive rehydration
caused the animal’s supposed movements (Jönsson and Bertolani 2001). The longest
reliable documented survival time in anhydrobiosis is known from the
heterotardigrade Echiniscus testudo with 20 years (Jørgensen et al. 2007).

10.2.2 Sleeping Beauty Hypothesis

Very little is known about the effects of anhydrobiosis on life cycle and longevity
achieved thereby. So far, little information is available, mainly about nematodes and

Fig. 10.1 (a) SEM picture
of an active tardigrade of the
species Paramacrobiotus
richtersi and (b)
anhydrobiotic tun state
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rotifers (Ricci 2001; Ricci and Caprioli 2005; Ricci and Covino 2005; Ricci and
Pagani 1997; Ricci et al. 1987; Wharton 2003; Wharton and Aalders 1999). Ricci
and Pagani (1997) postulated three hypotheses of what effects anhydrobiosis could
have on the life of organisms. The first hypothesis assumes that the time an animal
spends in anhydrobiosis is ignored and biological aging is halted. This hypothesis is
also referred to as the “Sleeping Beauty” model. The second hypothesis is that the
internal clock and thus biological aging is slowed down. The third model describes
unrestricted biological aging, even during anhydrobiosis. Studies on the rotifer
species Macrotrachela quadricornifera and Adineta ricciae clearly demonstrated
that the “Sleeping Beauty” model is correct and that the life cycle is not affected by
occasional anhydrobiosis (Ricci and Caprioli 1998; Ricci et al. 1987). Even with
nematodes, the internal clock seems to be stopped because, despite a short lifetime,
they can be rehydrated again after months or years and can continue to live normally
(Ricci and Covino 2005; Ricci et al. 1987). Since tardigrades, like nematodes and
rotifers, can spend long periods in anhydrobiosis (Baumann 1927; Bertolani et al.
2004; Guidetti and Jönsson 2002), the “Sleeping Beauty” model has been investi-
gated with the species Milnesium tardigradum (Hengherr et al. 2008). They were
exposed to alternate dry periods of 7 days each compared to an active control group.
The animals of the control group reached an age of 82.7 � 2.7 days. The age of the
animals exposed to the periodic drought periods, minus the times spent in
anhydrobiosis, was 79.7 � 5.7 days. The total time period including the dry periods
was 133.2 � 11.7 days. The result shows that the “Sleeping Beauty” model is valid
for the tardigrades, and the time spent in anhydrobiosis is not counted as biological
age (Hengherr et al. 2008). Nevertheless, there seems to be an upper limit to persist
in anhydrobiosis. One possible explanation is that the anhydrobionts die during
anhydrobiosis due to cellular damage from chemical aging (Schöneich 1999), since
no repair mechanisms can become active in the desiccated state (Clegg 1967; Crowe
and Madin 1975; Örstan 1998; Wright 2001).

10.2.3 Desiccation Tolerance in Embryonic Stages

In recent decades, a variety of experiments have shown that adult tardigrades can
spend long periods, from months to several years, in the anhydrobiotic state.
Bertolani et al. reported the successful hatching of four juveniles of the species
Richtersius oberhaeuseri from 13 eggs, which were rehydrated after 9 years
(Bertolani et al. 2004). This was the first study to show that not only adults have
the ability to enter anhydrobiosis but also embryos. In the species Ramazzottius
oberhaeuseri and Milnesium tardigradum, successful hatching after 1604 days of
anhydrobiosis has been demonstrated (Rebecchi et al. 2006). The anhydrobiosis of
embryos is considered to be an adaptation strategy, since Paramacrobiotus richtersi
is also able to undergo a time-shifted hatching depending on the environmental
conditions (Altiero et al. 2006). For rotifers of the species Adineta vaga (Örstan
1995) and other species (Ricci 1998), desiccation tolerance, depending on the stage
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of development, has already been demonstrated. The first comparative study in
tardigrades has been done with the parthenogenetic tardigrade species Milnesium
tardigradum which lives in microhabitats that dry out regularly (Ramazzotti and
Maucci 1983; Wright 1991). It was shown that both factors, the humidity and the
state of development (several stages from the blastula stage to the hatching juve-
niles), are decisive for desiccation tolerance (Schill and Fritz 2008). The less the
embryos were developed, the lower was the survival rate for all humidities between
10 and 81%. When the developing embryos were dehydrated during the first 3 days
of their development at low humidities, the survival rates were particularly low. The
older they are, the better is the survival rate, especially for those which are close to
hatching and which were dried slowly at high humidities (Schill and Fritz 2008).
Tardigrades are thus successfully adapted to microhabitats in all stages of life, which
are subject to regular dehydration and rehydration processes (Fig. 10.2).

Fig. 10.2 A slow desiccation of a tardigrade results in biochemical and biophysical adaptations and
a high survival rate after rehydration
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10.3 Tardigrades and Stress Proteins

Heat shock reactions were first observed in 1962 as a puffing pattern in Drosophila
larvae correlated with a temperature increase and later shown to produce heat shock
proteins (Hsp) (Tissières et al. 1974). Although called heat shock proteins, their
induction is not only due to temperature effects but to a whole series of other
stressors. They play a critical role in intracellular protection against protein-
denaturing factors, acting as molecular chaperones, helping to fold newly synthe-
sized proteins, and preventing stress-induced denaturation or aggregation
(proteotoxicity). Furthermore, they are involved in the renaturation and transmem-
brane transport of proteins. Their molecular and cellular physiological functions
have been studied extensively in various fields of biology and have been the subject
of numerous review articles (e.g., Feder and Hofmann 1999; Gething and Sambrook
1992; Morimoto 1993; Parsell and Lindquist 1993). Their classification is based on
their respective molecular weights. The best known are the very conserved families
Hp60, Hsp70, and Hsp90. Among them Hsp70 is one of the best studied families;
their induction mechanism is by means of HSF (heat shock factor) and HSE (heat
shock element). There is a whole range of heterogeneous low molecular weight Hsps
with a molecular weight below 30 kDa (low molecular weight (LMW), which are
also referred to as small Hsps).

10.3.1 Small Stress Proteins

Large amounts of two small stress proteins, artemin (Arrigo and Müller 2002; De
Graaf et al. 1990) and p26 (Clegg et al. 1994, 1995), were found in stress-resistant,
encysted embryos of the brine shrimp species Artemia franciscana. Both proteins
have been extensively studied in the context of anhydrobiosis and osmobiosis (Chen
et al. 2003, 2007; Clegg et al. 1995, 1999; Liang et al. 1997a; Liang and MacRae
1999; Warner et al. 2004; Willsie and Clegg 2002). p26 belongs to the small heat
shock/α-crystallin protein family, which has molecular chaperone activity in vitro
(Liang et al. 1997a, b) and probably also in vivo (Liang and MacRae 1999). During a
long-term study over several years, Artemia franciscana embryos showed no evi-
dence of misfolded proteins or protein aggregation (Clegg 1997; Clegg et al. 1999).
The amount of artemin and p26 was between 10 and 15% of the non-yolk protein in
these embryos. However, the proteins have been found only in the early stages
during development, not in the adult animals (Clegg et al. 1999). There is strong
evidence that p26 in particular plays an important role as a molecular chaperone and
is responsible for the high tolerance of embryos (Clegg 2007). Other studies indicate
that artemin might even play a role as a molecular chaperone for RNA (Warner et al.
2004). Several cDNA libraries and thus expressed sequence tags (EST) ofMilnesium
tardigradum were created, and thus a whole range of different stress protein families
were identified (Reuner et al. 2009). The in silico analysis of two existing sequences
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showed that Milnesium tardigradum possesses proteins that contain a small
Hsp/α-crystallin domain. Based on their amino acid sequence, the molecular weights
were determined and the proteins designated as MtHsp19.5 and MtHsp17.2. Small
Hsps form large complexes of several hundred kilodaltons during heat stress, which
are able to stabilize the structure of other proteins. Expression analyses inMilnesium
tardigradum showed that Mthsp17.2 is significantly upregulated by heat stress. In
contrast to p26 in Artemia, however, no increased expression of Mthsp19.5 and
Mthp17.2 was detectable in anhydrobiotic tardigrades. A cDNA library of
Milnesium tardigradum also contained the complete, coding sequence for Hsp10
(chaperonin). Hsp10, like Hsp60, is a chaperone found in the mitochondria and
cytoplasm. Hsp60 shows chaperone activity, while Hsp10 serves as a functional
regulator (Reuner et al. 2009).

10.3.2 Hsp60 and Hsp70

The first tardigrade partial heat shock protein gene sequences with a molecular
weight of 70 kDa were found in the species Milnesium tardigradum (Schill et al.
2004). All sequences showed a different expression pattern but were inducible by
heat shock. Additional Hsp70 isoforms and one Hsp90 sequence were found later in
a cDNA library (Reuner et al. 2009). Only one of three Hsp70 isoforms was
significantly expressed during dehydration and is still found in the anhydrobiotic
state. Maybe the RNA will be translated only after rehydration, so that the chaper-
ones can fold new proteins or renature others. Accumulation of RNAs associated
with anhydrobiosis is known from prokaryotic and eukaryotic cells (Albertson et al.
1990). For example, a high amount of mRNAs was detected in the cryptobiotic
stages of the ciliates Colpoda inflata (Benítez and Gutiérrez 1997) and Sterkiella
histriomuscorum (Tourancheau et al. 1999). Likewise, various fungi that form
surviving spores are known to store mRNAs (Camonis et al. 1982). Byers et al.
(Byers et al. 1991; Martinez-Guitarte et al. 2007) and Gutierrez et al. (Martinez-
Guitarte et al. 2007) could also detect Hsp70 mRNA in anhydrobiotic stages of
Colpoda inflata and Colpoda nova. However, two yeast studies with Saccharomyces
cerevisiae andDebaryomyces hansenii showed that Hsp70 does not protect the yeast
cells from dehydration stress during desiccation (Guzhova et al. 2008). This may
also be the case for tardigrades in anhydrobiosis.

Unlike Hsp70, the cytoplasmic Hsp90 is not generally involved in the folding of
new proteins (Nathan et al. 1997). Hsp90 differs from Hsp70, that most of the known
substrates are signal transduction proteins (e.g., steroid receptors and signal kinases)
(Picard et al. 1990; Xu and Lindquist 1993). Therefore, it plays an important role in
the network of cellular signaling pathways and is part of a broader chaperone
mechanism (Bose et al. 1996; Freeman and Morimoto 1996; Schumacher et al.
1996). The complexity of Hsp90 also makes it much harder to investigate its
capabilities compared to Hsp70. In tardigrades, it is only significantly expressed in
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anhydrobiosis. Which function it has shortly before complete dehydration, or
whether it is translated only after renewed rehydration, requires further studies.

10.4 Metabolites for Cell Protection

Several mechanisms probably play a role in the protection of living cells in the
anhydrobiotic state. These include the maintenance of the biologically relevant
structures of macromolecules through the accumulation of disaccharides and other
metabolites (Buitink and Leprince 2004; Crowe et al. 1987; Crowe 2002). Drying
and freezing of cells usually lead to a massive damage of cell proteins and mem-
branes, which normally ends in cell death. However, there are a number of organ-
isms that have the extraordinary ability to survive complete dehydration like
tardigrades (Crowe et al. 1992). The removal of intracellular water causes drastic
changes in inter- and intramolecular interactions. During desiccation, intracellular
proteins and membranes compensate for the loss of hydrogen bonds with water
through hydrogen bonding with other molecules. This leads to forced interactions
between molecules that would normally not react in the presence of water. Protein–
protein interactions induced by water loss can result in irreversible conformational
changes and result in the loss of enzyme activity (Carpenter et al. 1987; Hanafusa
1969; Prestrelski et al. 1993). In membranes, water loss can lead to a phase transition
from the biologically active liquid crystalline to the gel phase (Crowe et al. 1992,
1997). In addition, water loss can result in the fusion of cell organelles. In cells that
exhibit dehydration tolerance, molecular interactions during drying are controlled by
replacing lost hydrogen bonds with reversible molecular interactions. This means
that biomolecules and cellular structures can be protected from degradation by
dehydration and rehydrate to their previous natural conformation. In dehydration-
sensitive cells, on the other hand, the lack of such control means that the bio-
molecules and cellular structures within these cells cannot regain their original
functional conformation after the stressor has disappeared.

Many anhydrobiotic organisms, like some nematodes and yeast cells, accumulate
trehalose (Crowe et al. 1997; Womersley 1987), while sucrose is accumulated in the
tissues of higher plants, especially in seeds and pollen (Hoekstra 1986; Koster and
Leopold 1988). However, there are also exceptions such as the plant Myrothamnus
flabellifolia which concurrently enriches sucrose and trehalose (Bianchi et al. 1993;
Drennan et al. 1993). As a reason for the stabilizing effect of dissacharides, the
“water replacement” (or “water substitute”) and “vitrification” (or “glassy state”)
hypotheses are discussed (Crowe 1971; Webb et al. 1965). These are not alternative,
but rather complementary explanations. Both are necessary but do not seem to be
sufficient to fully protect the membranes during drying and rehydration.
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10.4.1 Water Replacement Hypothesis

In the early 1960s, S. J. Webb postulated the water replacement hypothesis (Webb
et al. 1965). It explains the stabilizing effect of free hydroxyl groups of sugar
molecules that are available to proteins during and after removal of water to form
hydrogen bonds. This lowers the free enthalpy of the system, which stabilizes native
proteins. When unprotected membranes dehydrate, the water molecules that help
maintain the distance between the phospholipid headgroups are removed. This
allows the lipid molecules to come closer together and increase the membrane
phase transition temperature (Tm), resulting in a phase change. In rehydration, a
renewed phase change occurs in membranes, resulting in a brief release of soluble
substances in cells through the membranes (Crowe et al. 1997). By contrast, when
membranes are dried in the presence of trehalose, the water replacement hypothesis
postulates that sugar molecules prevent the closest approach of lipids through
interaction with phospholipid head groups during dehydration (Crowe et al. 1988).
When water is returned to such a system, there is no phase change and the mem-
branes retain their barrier function (Crowe et al. 1992, 1994; Harrigan et al. 1990).

10.4.1.1 Trehalose in Anhydrobionts

Trehalose was detected in anhydrobiotic states of the freshwater sponge
Trochospongilla sp. (gemmules), the bryozoan Cristatella mucedo (statoblasts),
and embryos of the crustaceans Daphnia magna, Daphnia pulex, Triops
longicaudatus, and Triops cancriformis (Hengherr et al. 2011; Hengherr and Schill
2011). In particular, anhydrobiotic embryos of the brine shrimp Artemia franciscana
have been the subject of intense research over the past three decades. They increase
to 15–18% trehalose on a dry weight basis as they enter the anhydrobiotic stage
(Clegg 1986; Clegg and Conte 1980; Clegg and Drost-Hansen 1990). The chiron-
omid larva Polypedilum vanderplanki also stores around 18% trehalose (Watanabe
et al. 2002) and nematodes, depending on the species, 4 to 15% (Madin and Crowe
1975). The first quantitative detection of trehalose in tardigrades was performed in
the species Paramacrobiotus areolatus (Crowe 1975). Later, trehalose was also
detected in Amphibolus nebulosus and Richtersius coronifer (Westh and Ramlov
1988). Quantitative studies in Richtersius coronifer showed that the highest amount
of trehalose is found in the anhydrobiotic state but with a rather low content of up to
2.3% trehalose based on dry weight (Westh and Ramlov 1991). In a comparative
quantitative amperometric chromatography study with several tardigrade species, it
was shown that in species of the genera Paramacrobiotus and Macrobiotus, treha-
lose is accumulated during dehydration, whereas in Milnesium tardigradum treha-
lose could not be detected either in the active or in the anhydrobiotic or the respective
transitional stages (Hengherr et al. 2008). The highest trehalose amount was mea-
sured with 0.472 � 0.037% dry weight in a Paramacrobiotus species (Hengherr
et al. 2008). This is much less than measured by Westh and Ramlov (1991), possibly
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due to different measuring methods. Although small amounts of trehalose could be
detected in the heterotardigrades Echiniscus testudo and Echiniscus granulatus,
accumulation of trehalose did not occur during dehydration (Hengherr et al. 2008).
The rotifer species Philodina roseola and Adineta vaga, which also have the ability
to completely dehydrate, are known to have no trehalose and no corresponding gene
for trehalose-6-phosphate synthase (Lapinski and Tunnacliffe 2003). Anhydrobiosis
without incorporation of trehalose for cell stabilization seems to be possible, at least
for the tardigrade species Milnesium tardigradum, as well as these rotifer species.
Nevertheless, sugars appear to play an important role in the tolerance to desiccation
stress in many microorganisms, invertebrates, and plants and to impart stability to
dried biomolecules and membranes in vitro (Tunnacliffe et al. 2001).

10.4.2 Vitrification Hypothesis

The second important protective function of dissacharides, as well as other carbo-
hydrates and proteins, is vitrification at low water content (Crowe et al. 1998; Crowe
2002; Sun and Leopold 1997). The “glassy state” hypothesis postulates the forma-
tion of glassy states to immobilize proteins, which greatly reduces the reaction
kinetics. The glass of carbohydrates is a solid-like amorphous material which pre-
vents diffusion-limiting destruction processes, such as membrane fusions. In order to
convert proteins into a “solid” state, the glass transition temperature of the amor-
phous system must be lowered. In the temperature range just above the glass
transition temperature, but below the eutectic point of the constituents contained,
the product is in a highly viscous state. In this range, a gradual transformation of an
unstable amorphous liquid into a metastable amorphous solid state occurs. Not only
sugars but also proteins may be involved in cell stabilization. In model systems,
proteins have had a considerable effect on the molecular properties of carbohydrate
glasses (Bell and Hageman 1996; Kalichevsky et al. 1992; Wolkers et al. 1998). For
example, the addition of proteins to a glass caused a much higher glass transition
temperature (Tg) (Slade and Levine 1991) and a mean hydrogen bonding strength of
the mixture compared to a pure sugar matrix (Wolkers et al. 1998). A mixture of
protein and sugar is more dense than a pure carbohydrate or protein glass. In
addition, proteins increase the temperature difference between the glass transition
temperature and the critical temperature at which the dynamics of the glass transition
from a solid-like to a liquid state. Proteins and carbohydrates probably interact
through hydrogen bonds during the dry state in the cytoplasm of anhydrobiotes.
By differential scanning calorimetry (DSC) measurements and Fourier transform
infrared (FTIR) analyses, the “water replacement” and “vitrification” hypothesis
could be examined for the first time in the drought-tolerant African chironomid
larva Polypedilum vanderplanki (Sakurai et al. 2008). It was found that the
anhydrobiotic larvae were in a glassy state; at a temperature above 65 � C, the
stabilizing glass melted. The previously mentioned high concentrations of trehalose
have been detected throughout the organism, and the authors believe that trehalose
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plays an important role in water replacement and intracellular glass formation. In
order to detect possible vitrification in tardigrades, DSC measurements were used in
combination with experiments on heat tolerance in several species of the genera
Paramacrobiotus, Macrobiotus, Echiniscus, and Milnesium (Fig. 10.3). In the
species of the genera Paramacrobiotus and Macrobiotus, a glass transition and
thus a vitrified state could be detected (Hengherr et al. 2009). When temperature
tolerance of these species is considered, in parallel, it can be seen that when the glass
transition temperature (Tg) of about 80 �C is exceeded, the survival rates of the
tardigrades drop sharply. This could indicate the loss of the protective function of the
glassy state or the importance of vitrification in cellular protection. Macrobiotus
hufelandi survived a short exposure to temperatures between 120 and 125 �C
(Doyère 1842). Later, Baumann (1927) reported that anhydrobiotic tardigrades
could tolerate 100 �C for 6 hours, and Richtersius coronifer survived temperatures
up to approximately 70 �C for 60 minutes without any decrease in survival (Ramløv
andWesth 2001). In the speciesMilnesium tardigradum, Echiniscus granulatus, and
Echiniscus testudo, in which no or little trehalose was detected, no vitrification has
been observed (Hengherr et al. 2009). It was found that exactly these species have a
much better tolerance to high temperatures. At temperatures up to 90 �C, Milnesium
tardigradum, Echiniscus granulatus, and Echiniscus testudo still showed survival
rates of 90.0 � 5.4% and 54.2 � 13.7%, respectively, and 30.0% � 11.2% after

Fig. 10.3 As long as the heat exposure of a vitrified tardigrade is below the glass transition
temperature (Tg), the protective function of the glassy state is available and the tardigrade becomes
alive after rehydration
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subsequent rehydration. The all-time record is held by Milnesium tardigradum at
100 �C with a survival rate of 91.7 � 6.9%. Only higher temperatures led to a
marked decline in survival rates, at 110 �C 1 � 2% still survived (Hengherr et al.
2009). The temperature at which glass devitrifies (Tg) depends on several factors
(Slade and Levine 1991). Interestingly, recent evidence suggests that various stress
or late embryogenesis abundant (LEA) proteins that accumulate during dehydration
may also be involved in glass formation and improve overall stability (Wolkers et al.
1999, 2001). This could at least explain why tardigrades have a glass transition and
thus a vitrified state, although no or only small amounts of trehalose could be
detected.

10.5 Tardigrade-Specific Intrinsically Disordered Proteins
(TDPs)

10.5.1 Late Embryogenesis Abundant (LEA) Proteins

In plants, and more recently in several animals, induction of high levels of hydro-
philic proteins, in particular the late embryogenesis abundant (LEA) proteins, has
been associated with water stress. LEA proteins were first identified 30 years ago in
plants, where they are produced during seed development (Galau et al. 1986;
Grzelezak et al. 1982). However, their precise function is poorly understood. To
be classified as molecular chaperones, LEA proteins must not only prevent aggre-
gation, they must additionally form transient, non-covalent complexes (Ellis 2004).
Unfavorable protein–protein interactions, however, can lead to irreversible confor-
mational changes and, in enzymes, a loss of catalytic activity (Crowe et al. 1987).
LEA proteins might simply function as “molecular shields,” forming a physical
barrier between partially unfolded neighboring proteins and preventing contact
between them (Tunnacliffe and Wise 2007). LEA protein expression has more
recently been demonstrated in other organisms and is also linked to desiccation
stress and the acquisition of desiccation tolerance. So far these organisms include
microorganisms (Battista et al. 2001), nematodes (Browne et al. 2002, 2004; Goyal
et al. 2003, 2005), rotifers (Tunnacliffe et al. 2005), chironomid larvae (Kikawada
et al. 2006), and Collembola (Bahrndorff et al. 2008). Research on LEA proteins has
recently focused on tardigrades because of the evidence that these proteins play an
important role in protecting cellular proteins. For the first time, putative LEA pro-
teins have been detected in the anhydrobiotic state of the species Macrobiotus
hufelandi (McGee et al. 2004). With high-throughput, high-accuracy proteomics in
combination with a newly developed tardigrade-specific protein database (Schokraie
et al. 2012), more than 3000 proteins were identified inMilnesium tardigradum. This
comprehensive proteome resource includes protein families such as chaperones,
antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein
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channels, nutrient reservoirs, and developmental proteins. Within these proteins,
also those belonging to the LEA family (group 3) were identified.

10.5.2 CAHS, SAHS, and MAHS Proteins

Tanaka et al. (2015) found in Ramazzottius varieornatus two novel mitochondrial
heat-soluble proteins, RvLEAM (a group 3 LEA) and MAHS (mitochondrial abun-
dant heat soluble), as potent mitochondrial protectants. The MAHS protein is also a
heat-soluble protein that might have protective roles in tardigrades. In the tardigrade
species Ramazzottius varieornatus, a further five abundant heat-soluble proteins
have been found, but all of them showed no sequence similarity with LEA proteins.
They formed two novel protein families, the cytoplasmic abundant heat soluble
(CAHS) and secretory abundant heat soluble (SAHS) protein families, according to
their localization (Yamaguchi et al. 2012). Both protein families were also found in
Hypsibius dujardini and Milnesium tardigradum, but not in other phyla. Therefore
LEA, CAHS, SAHS, and MAHS families have become referred to as the tardigrade-
specific intrinsically disordered proteins (TDPs). Boothby et al. (2017) showed that
the TDP genes are constitutively expressed at high levels or induced during desic-
cation in the tardigrade species Hypsibius dujardini and Paramacrobiotus richtersi.
All TDPs form noncrystalline amorphous solids upon desiccation, and this vitrified
state mirrors their protective capabilities.

10.6 DNA Damage During Anhydrobiosis

One reason for the decline in survival with increasing time in anhydrobiosis could be
oxidative damage caused by reactive oxygen species (ROS) (Womersley 1987).
Since enzymes do not work without water and therefore no metabolism can be
detected, even energy-dependent repair systems cannot be activated. This causes an
accumulation of DNA damage until it reaches a lethal limit, eventually leading to the
death of the whole organism (Lindahl 1993). Deoxyribonucleic acids are a preferred
biological target of ROS (Gros et al. 2002). For example, they may spontaneously
result from the chemical degradation of various substances in the metabolism and
have a deleterious effect on proteins, membranes, and DNA (Mattimore and Battista
1996). The phenomenon of induced double-strand breaks by dehydration is already
known in bacteria (Billi 2009). Blasius et al. (2008), as well as Mattimore and
Battista (1996), believe in effective repair of DNA as one of the most important
survival mechanisms (Blasius et al. 2008; Mattimore and Battista 1996). To visual-
ize and detect DNA damage, e.g., single- and double-strand breaks, incomplete
excision repair, alkali-labile sites, and cross-linking, storage cells of anhydrobiotic
tardigrades of the species Milnesium tardigradum were examined with single-cell
gel electrophoresis (comet assay) (Neumann et al. 2009). The animals which spent
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2 days in anhydrobiosis showed little DNA damage (2.09 � 1.98% DNA) in the
comet tail, compared with the DNA damage in the comet tail of active animals
(0.44 � 0.74%). With increasing time in anhydrobiosis, DNA damage increased.
After 6 weeks of anhydrobiosis, 13.63 � 6.41% DNA was found in the comet tail
and 23.66 � 7.56% DNA after 10 months (Neumann et al. 2009). The amount of
DNA damage correlated with the duration of anhydrobiosis, since storage cells from
animals that spend only 2 days in anhydrobiosis have relatively little damage and
cells that are longer in anhydrobiosis show significantly greater damage. However, it
is assumed that the DNA damage does not occur during the dehydration process but
rather during anhydrobiosis. They can accumulate DNA damage over time. Of
course, a repair process can only become activated after rehydration. The exact
causes of the damage are not yet sufficiently known, but a direct or indirect
involvement of reactive oxygen species and/or free radicals is likely.

In the last decade, many data from the tardigrade species Echiniscus testudo,
Milnesium tardigradum, Hypsibius dujardini, Paramacrobiotus richtersi, and
Ramazzottius varieornatus have been generated with state-of-the-art methods in
genomics, transcriptomics, proteomics, and bioinformatics (e.g., Arakawa 2018;
Arakawa et al. 2016; Beisser et al. 2012; Bemm et al. 2016; Boothby et al. 2015,
2017; Borner et al. 2014; Förster et al. 2009, 2011a, b; Kondo et al. 2015; Mali et al.
2008; Schokraie et al. 2010, 2012; Tanaka et al. 2015; Yamaguchi et al. 2012;
Yoshida et al. 2017). This is an excellent basis for further studies to understand the
mechanisms of desiccation tolerance in tardigrades.
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