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Abstract The design of Cyber-Physical Systems (CPS) poses a number of chal-
lenges, in particular for cyber-security. Eliciting Security Requirements is a key
aspect in the early system design stages; however it is important to assess which
requirements are more stringent and grant protection against the higher-value assets.
Cyber-security Risk Assessment (SecRA) has a key role in determining threat
scenarios and evaluating the risks associated to them but it is a practice that has
been principally developed for IT systems, thus focusing on cyber threats. In this
chapter, we discuss the state of the art in SecRA methodologies and the challenges
to be addressed for developing new CPS-oriented SecRA methodologies. Based on
the most relevant standards for industrial control systems and automotive domain
(such as the ISA/IEC-62443 and the J3061), we propose the adoption of an asset-
driven viewpoint and a model-based approach to SecRA, and we identify current
gaps. In particular we discuss (i) CPS (security) modeling languages and method-
ologies, (ii) vulnerabilities cost models and the network of public repositories of
vulnerabilities, (iii) attacker models and profiles, and (iv) complex cyber-physical
attack chains. Finally, we discuss our vision, focusing on assets and leveraging
model-based design practices can provide a more rigorous approach to SecRA for
CPS, allow taking into consideration their peculiarities, and support to manage the
large complexity involved in their operation. The desired outcome is to provide
the system design team with methods and tools to identify complex attacks and
perform a cost/benefit tradeoff analysis to justify the adoption of specific Security
Requirements and the necessary costs implied by the corresponding mitigations.
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1 Introduction

The design of modern cyber-physical, embedded systems poses complex challenges
in terms of cyber-security. The adoption of (1) more complex and distributed
electronics (e.g. in the automotive domain [1]), (2) an increasing number of software
components (e.g. as reported in [2] the Airbus A320 avionics system has around
80,000 lines of code while the Boeing 777 exceeds 4 million lines), and (3)
remote monitoring, configuration, maintenance, and software update capabilities
(e.g. firmware update over-the-air [3]) provide new entry-points to security threats.
Therefore, system designers need to face the complexity of securing a significantly
increased system attack surface. Following a secure-by-design approach [4], several
standards provide guidelines and processes to support the design and deployment
of secure systems by careful evaluation of external system entry-points and internal
architecture from the perspective of an attacker (e.g. ISA/IEC-62443 for Industrial
Control Systems [5], the ISO/IEC-27000 family [6] and NIST 800-53 for IT
Security [7], DO-356 for Avionics Industry [8], and J3061 for the automotive
domain [9]). A key step, identified in the processes proposed by standards, is that
of Cyber-security Risk Assessment (SecRA), which supports the identification of
threats and the evaluation of the risks to which the system is exposed. The principal
outcome of SecRA is a set of mitigations for the higher criticality risks, which
are translated into derived security requirements and added to a set of Minimum
Security Requirements (MSR) either (1) obtained directly from the customer or (2)
product/domain-specific, or (3) inherited from regulations and standards (such as
the common criteria of ISO/IEC-15408 [10]). See Fig. 1 for a conceptual workflow
showing the role of Risk Assessment and compare also to the J3061 process [9].

SecRA is typically performed as a structured process [11] that guides through the
identification of the key system assets, the elicitation of relevant threats and of the
vulnerabilities they can leverage, and an informal evaluation of the impact (with an

Fig. 1 Role of risk assessment in a secure-by-design workflow
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associated likelihood) that those threats can have on the system assets. Knowledge
of both the application domain and of the (expected) system design is critical to
ensure an effective evaluation of the risks.

In this chapter, we discuss two potential shortcomings of this common approach
to SecRA. First, the reasoning behind the analysis of impact and likelihood is often
not supported by formal artifacts (e.g. functional/architectural diagrams [12, 13]
or attack trees [14]). Thus, the evaluation of completeness of the assessment and
correctness of the results relies entirely on the system engineers (and/or security
experts), with the side effect of producing few or no artifacts that document the
rationale behind the analysis (e.g., for future and third-party reviews). Second, the
classic SecRA process provides limited support for the analysis of the impact on risk
evaluations of any system design change, due to the absence of the aforementioned
architectural artifacts and consequent lack of traceability of risks to system design
elements (e.g. to architecture elements).

The role of SecRA is well understood for IT/software systems (and a number
of tools exist to support it [15]), but this is not the case for Cyber-Physical Systems
(CPS), which are complex systems involving software, hardware, actuators, sensors,
plant and environment interactions with strict performance and safety constraints
[16]. The challenge of secure design of these systems stems from the complex
interaction between physical and virtual components, exposing the physical world
to the effects of cyber threats, with direct impacts on safety (e.g., Stuxnet [17] and
other examples in [18]). Therefore, the aforementioned shortcomings of common
SecRA approaches are more relevant for CPS and cannot be overlooked.

Our first claim is that we envision a fruitful synergy between Model-Based
Design [19] and SecRA resulting in an “MB-SecRA” approach that can (1)
improve confidence on completeness and correctness of SecRA results by providing
reviewable artifacts documenting the risk assessment rationale, and (2) provide
support to change management by explicit traceability of risks to design elements.

A second challenge, rising in modern CPS, is the increasing complexity of
hardware and software, which opens CPS to the risk of sophisticated multi-step
attacks. A notable example is the aerospace domain; with a tremendous increase
in use of software to replace hardware functionalities (e.g. see the study on
software complexity from NASA [20]). Similarly, in the automotive domain, the
number of lines of code (LOC) and of CPUs present in a modern car makes the
system highly subject to advanced cyber-attacks [9]. In commercial applications,
to reduce the time to market, it is common to reuse existing software components,
protocols or platforms and this raises the concern of how wide is the impact of
a known vulnerability. There are large public databases such as OWASP [21] or
CWE [22] that report hundreds of vulnerabilities affecting widely adopted software
components. For hardware components there are no databases of equal scope yet but
we envision a growing need in this area. This complexity of the software/hardware
architecture opens up for complex attacks known as advanced persistent threats
(APT), where an attacker (willing to invest resources and time to archive its
objectives) is able to reach core system assets by exploiting multiple (apparently
not so critical) vulnerabilities in a synergistic way (kill- or attack-chains [23]) to
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achieve increasingly more information about the system and higher privileges, until
he is able to produce system-level damages. Kill chains and APTs are very hard to
identify at system design time and also at run-time due to their sophistication [24].

For a correct evaluation of cyber-security risks in complex systems it is necessary
to change the traditional approach of considering the impact of a single vulnerability
in isolation and turn the attention to attack chains. From this perspective, a
vulnerability may be discovered to play a critical role in multiple attack chains and
thus become one of the highest-ranked among the identified mitigation actions.

A growing number of Security Risk Assessment tools and methodologies (e.g.,
CORAS [25], ThreatModeler [26], Microsoft STRIDE [27]) adopt design artifacts
such as software/hardware architecture schemes, network topology diagrams, and
data-flow diagrams to support the evaluation of system-level effects of local
vulnerabilities. However, they leave the actual evaluation of the impact and the risk
caused by those vulnerabilities to a manual and informal analysis of those artifacts
performed by a system engineer. This direction seems promising but still suffers
from two issues: first, the number of vulnerabilities to be combined can give rise to
hundreds of potential attack scenarios and a high review complexity, and second,
there is limited documentation of the reasoning behind the analysis of system-
level impacts of local vulnerabilities. Our second claim is that, the contribution
of MBD into Cyber-security Risk Assessment should not be limited to driving the
identification and evaluation of risks (e.g., by means of formal architectural artifacts)
but also leverage abstract behavioral models that allow the representation of data-
and function-flows that an attacker can use to propagate the effects of a vulnerability
exploitation. A successful approach in the design of high-assurance systems has
been the adoption of formal, automated and exhaustive analysis methodologies to
ensure the absence of undesired behaviors in software design (e.g. see adoption of
formal methods in avionics [28]), including absence of cyber-security vulnerabilities
such as potential attacks in protocols design [29]. We believe formal security
analysis can be successfully applied also in the area of Risk Assessment.

The objectives of this chapter are (1) to identify challenges and opportunities to
improve current SecRA methodologies for the specifics of CPS, and lay the basis
of an MB-SecRA approach to improve confidence on completeness and correctness
of risk assessment by leveraging formal and traceable model-based artifacts and (2)
provide a high-level a workflow for formal analysis of known vulnerabilities and
identification of attack-chains, and finally, (3) to discuss several open challenges
and gaps that need to be filled to realize the proposed MB-SecRA approach.

1.1 Structure

In Sect. 2, we discuss the state-of-the-art of SecRA and the open challenges for CPS.
In Sect. 3, we discuss the opportunities we envision in developing a model-based
approach to system, attacker and vulnerabilities modeling for Risk Assessment. In
Sect. 4, we describe a possible roadmap to implement model-based SecRA and use
a small example to illustrate the concepts.
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2 Background and Open Challenges

Cyber-security Risk Assessment has been extensively discussed over the past years
[30, 31] and attracted special attention in the field of SCADA systems [32] given
their role in managing and controlling critical infrastructures. Despite the large
amount of work in the field, this area is in practice still widely addressed by using
informal artifacts and tools [33] (such as Excel spreadsheets) and strongly relies on
the domain expertise of review teams.

In this section, we discuss the open challenges that we identified for the
application of model-based SecRA for CPS. Moreover, we discuss the opportunities
to increase the effectiveness of SecRA in terms of (1) completeness and correctness
of the results, (2) capability of managing design changes, and (3) understanding of
system-level effects of attack-chains.

2.1 Cyber-Security Risk Assessment Methodologies

Following to the ISO 31000 [31] (a consolidated standard providing a framework
for risk management), Risk Assessment is characterized by three main activities: (1)
Risk Identification, (2) Risk Analysis, and (3) Risk Evaluation.

In the cyber-security context [30], Risk Identification is the process of recog-
nizing and describing risks. Based on the Assets (what is protected), the Incidents
(events that have negative consequences on the Assets), and the system cyber-
security Vulnerabilities (design or implementation flaws that, if exploited, can cause
an Incident), a Risk identifies the conditions under which external or internal Threats
can exploit existing vulnerabilities with the purpose of causing an incident and,
thus, a damage to the Assets. The Risk Analysis activity has the objective to review
the identified risks and to provide a quantitative estimate for the likelihood of a
specific risk and the related impact on assets. Finally, during the Risk Evaluation
activity, each risk is compared with the evaluation criteria. The quantitative estimate
of impact and likelihood is used to determine the risks that should be considered
for treatment. Risk treatment typically implies the identification of derived security
requirements indicating the required security measures, e.g. elimination of vulner-
abilities or restriction of accessibility. Several methodologies for SecRA leverage
a representation of the system architecture and data-flow to support a more formal
and repeatable approach to Risk Identification and Risk Analysis.

Microsoft proposes a methodology based on (1) the threat classification model
STRIDE (Spoofing, Tampering, Repudiation, Information disclosure, Denial of
service, Elevation of privileges) and (2) a language for threat modeling based
on abstract software elements (Entities, Processes, Data-flows, Data Stores, Trust
Boundaries) to represent and analyze paths that links vulnerabilities to incidents
[34]. STRIDE than allows to choose to proceed either “per component” or “per
interaction” to perform the assessment of risks. A tool (Microsoft Threat Modeler)
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implements STRIDE “per component” and supports the application of STRIDE
categories to each component in the threat model. Pre-determined templates are
available for typical software components (e.g. services, databases) with specific
questions to characterize the risk for the specific component. In this methodology
the architecture model has mainly the role of supporting reviews and ensuring
completeness of SecRA, but does not allow understanding the actual effect at
system-level of the component vulnerabilities. This focus on a specific library of
software components together with the lack of system-level assessment leads us to
consider this methodology not adequate to CPS.

The SESAR SecRAM methodology [35] has an implicit dependency to the
notion of system architecture. It starts from the identification of Primary Assets,
that are abstract critical system functions or services, and adopts an approach
similar to STRIDE by considering a categorization of the threats based on the CIA
(Confidentiality, Integrity and Availability) paradigm. Based on these categories,
SecRAM is able to provide a preliminary assessment of the impact areas and a
corresponding evaluation of criticality. By leveraging a representation of the physi-
cal architecture of the system, SecRAM maps the Primary Assets to the Physical
Assets: impacts are inherited in this mapping process. Thus, the methodology
can proceed backwards considering the vulnerabilities of each component and
producing chains Vulnerability-Impact-Asset. The final step consists in computing
the likelihood of the risks. The advantage of SecRAM is to take into account
the system-level by starting from Primary Assets. The mapping to the (physical)
architecture provides a better understanding of how the vulnerabilities affecting
single (physical) components might impact on Primary (Immaterial) Assets. Still,
this valuable information is provided by the system and security engineers through
an informal review.

CORAS [25, 36] is an explicitly model-driven SecRA methodology in the sense
that models are not implicit but are adopted to support and execute all the Risk
Identification, Analysis and Evaluation activities. The diagrams and views provided
by CORAS are designed to be straightforward and to enable the capture and
documentation of relations between threats, vulnerabilities, incidents and impact
on assets. The diagrams are created with the purpose of supporting discussion
and documenting structured brainstorming sessions. CORAS is the methodology
closer to our vision since its process is based on a functional justification of
the vulnerabilities effects. Threat Diagrams are graphs structured into specific
layers: (1) a mapping of Assets to Incidents affecting them, (2) a mapping of
Incidents to a chain of internal System States and Vulnerabilities enabling this
chain, and (3) a mapping of vulnerabilities to Threats that can exploit them. This
representation provides a valuable representation of the potential path of an attack
(Threat Scenario), it is useful to justify how a Threat agent is expected to exploit
Vulnerabilities to affect the Assets, and clarifies the risk analysis rationale. However,
Threat Diagrams are very high-level and applicable for the concept design phase
[12] (i.e., the very first engineering design step). They are created in a non-rigorous
way by system and security engineers and their level of abstraction makes it hard
to extract concrete attacks from the results (such as those obtained from CWE
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[22], NVD [37] or threat reports). The motivation is to be found in the fact that
Threat Diagrams are unrelated to the actual system logical/physical architecture and
behavior. Thus, there is no formal justification for the identified Threat Scenarios,
captured and described by the analyst based on his experience.

Our claim is that the manual extraction of Threat Scenarios is extremely complex
and highly error prone when considering a CPS, and may be unfeasible for large-
scale CPS, where there can be thousands of complex attacks. For this reason we see
the opportunity of improving state-of-the-art risk assessment approaches to allow
the systematic extraction of Threat Scenarios by leveraging different system view-
points (e.g., logical and physical architectural views, behavioral and vulnerability
models, attacker models). Models can also support automated extraction of Threat
Scenarios, thus making the Risk Assessment activity less error prone. In the context
of model-based system design flows [19], systematic extraction of Threat Scenarios
from models can pave the way to the identification of potential attacks that are easier
to reproduce on the actual system in the security validation phase.

2.2 CPS Design Languages for Security

The systematic or automated extraction of Threat Scenarios and the consequential
analysis of risks are applicable under the assumption that the CPS design is based
on models and a specific security viewpoint is captured and documented. In this
section, we briefly review the state-of-the-art of system modeling languages and
their support for security viewpoints.

CORAS is based on UML [13], a robust and highly adopted [38] (open) standard
modeling language for software engineering. In UML, it is possible to define
two main types of diagrams: structural (e.g., class and package diagrams), and
behavioral (e.g., sequence and activity diagrams). The structural diagrams are used
to decompose software into different parts (e.g., packages, classes, methods) while
the behavioral diagrams supports the design of the semantics of those different
parts. UML supports mechanisms, called profiles, which allow its users to make
extensions to the language itself (i.e., semantics refinements of UML). The CORAS
language for risk modeling was initially defined as a UML profile [39, 40], and
standardized as part of the UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms (UML QoS&FT). There exist
several other profiles that extend UML to model security properties or risk-related
information. Examples of the former are SecureUML [41] and UMLSec [42], while
examples of the latter are Abuse-Cases by McDermott and Fox [43].

In [43], McDermott and Fox first proposed the idea of applying specialized use-
cases for the purpose of threat identification, and misuse-cases [44] (that extends
UML use-cases) to elicit security requirements. Another approach is provided by
UMLSec, that extends UML with tags (called stereotypes) that allow the modeler
to define security properties and constraints. Similarly, SecureUML extends UML
allowing the modeler to express access control policies as constraints. The focus of
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UML is mainly on software development rather than embedded systems or CPS. On
the other hand, SysML [45] (Systems Modeling Language) extends UML to support
the design of complex hardware/software systems by introducing new diagrams to
define requirements and constrains on the system properties (e.g., performance or
reliability) and block diagrams to better describe the structure of hardware/software
components and interfaces. Similarly to UML, SysML extensions have been
proposed with the goal of introducing security concepts to the SysML language.
SysML-Sec [46, 47], developed in the context of the EU project EVITA [48],
is one such extension. SysML-Sec is designed to take into account security and
safety during the engineering development of embedded systems and shares some
commonalities with our vision. Specifically, SysML-Sec leverages SysML block
and state machine diagrams enriched with security aspects that allow the modeler to
consider both architectural and behavioral aspects. However, SysML-Sec lacks of
any physical aspect in attack modeling and no support for considering attack-chains
exploiting multiple vulnerabilities in sequence.

The Architecture Analysis and Design Language (AADL) is designed for the
specification, analysis, automated integration and code-generation of real-time
distributed systems [49]. In [50], the authors consider a set of security requirements
that have been proved to mitigate set of attacks (exploiting known weaknesses in the
software architecture designs) to authentication and input validation methods. The
authors were able to define architecture design constraints that, if satisfied, ensure
the satisfaction of those highly relevant security requirements. Exploiting this result
and the available analysis tools for AADL they were able to formally prove whether
an architecture is robust against attacks to authentication and input validation
mechanisms. The approach leverages STRIDE to derive specific authentication and
validation requirements for the system under analysis, then these requirements are
used to validate the architecture against the above mentioned security requirements.
This approach provides high assurance against a fixed set of security requirements
that can be expressed in terms of architectural constraints. The challenge we propose
is to develop an approach that is not specific for a set of security requirements
but can be applied to general security requirements to validate both the system
architecture and the system behavior.

2.3 Open Challenges

In this section, after the review and assessment of the state-of-the-art, we summarize
the challenges identified for Cyber-security Risk Assessment of CPS:

1. Model-driven method for Cyber-security Risk Assessment of CPS. The adoption
of models can (a) increase confidence and completeness in risk assessment, (b)
provide formal support for a more objective evaluation and documentation of
the risk assessment rationale through reviewable artifacts, (c) support change
management though traceability of risks to design elements.
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2. Support for risk assessment of complex cyber-physical attacks. To overcome
the complexity of modern CPS hardware and software, the high number of
vulnerabilities, and to be able to evaluate risks of sophisticated multi-step
attacks we envision the development of tools that can automate portions of the
risk assessment leveraging the models fostered in challenge (1). The research
community is well aware of this problem and has been actively working on that
over the past few years ([51–54] to name a few).

3. Formal models of CPS. Modelling a CPS is challenging because it requires to
consider physical aspects (e.g. accessibility) together with software and network
aspects. Further understanding of potential attacks can be achieved considering
also the system behavior, that is, use cases, data flows and components’ role in
the protection of the system assets. For this reason it is important to develop a
view-based approach to system modeling to allow easier maintenance and review
of the different viewpoints.

4. Formal models of vulnerabilities and attackers. To have a formal approach to
assessing complex risk scenarios it is necessary to capture vulnerabilities and
their effects on the nominal system behavior. There is still no broadly accepted
library of vulnerabilities even though (as we are going to describe in Sect. 3.3.2)
there exists a number of libraries of public vulnerabilities. The problem with
existing vulnerability libraries is twofold: (a) representation of vulnerabilities is
often informal, and (b) for industrial products it is often impossible to retrieve
vulnerability reports. For this reason, a vulnerability library is an important asset
for a company and should be devised to be reusable to mitigate maintenance
costs. A second important part of the risk assessment model is the attacker, which
is required to capture the potential interactions with the system as well as the cost
and likelihood of the single events.

3 Model-Driven Cyber-Security Risk Assessment

In this section, we discuss some opportunities we currently identified in the
roadmap to address the open challenges discussed so far. We consider, in particular,
abstraction levels, expressiveness, and complexity of CPS modeling. We propose
an approach to vulnerabilities and attackers modeling and we also consider aspects
related to cost models.

3.1 CPS Formal Model and Abstraction Level

The adoption of formal system modeling languages is influenced by expressiveness,
usability, and support by automated tools. Expressiveness of a formal language
is directly related to the level of abstraction of the system model. Modeling the
system in high details has the advantage of lowering the gap between the model and
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the real system, resulting in more precise analyses, at the cost of maintenance and
high skills required to develop the models. The correct tradeoff between complexity
and abstraction level is the principal aspect to consider. However, for security there
is also another axis to be considered, which is the complexity of defining correct
security models and properties, see for example the interesting discussion on how
to define a system to be secure [55]. To give an example of this, a vulnerability
may be publicly available and studied, but the impact of that vulnerability has to be
related to the specific system and depends also from the perception of the system
owner. For this reason Assets are a key input that should be provided by the system
owner for any security analysis.

To evaluate the system-level impact of a vulnerability, a model of a CPS
should consider both its architecture and its behavior. The architecture captures the
topology and the interactions between components; while the behavior defines the
dynamics and functionalities of the CPS. The formal modeling of architectures has a
fairly extensive reference literature and several surveys exist on the topic (see, e.g.,
[56] for the protocols, and [57] for the architecture). Formal models of protocols
behavior typically rely on transition system expressing how the information is sent
(structure of the packets) and the evolution of the knowledge of the parties involved
in the communication. Similarly, the architecture should take into account how the
topology allows the exchange of information between subsystems. The behavior of
the overall system relies on the behaviors of the various components of the system
and, in turn, on the inputs/outputs generated and sent between components.

As discussed in [51], the correct modeling of the physical environment (e.g., the
dynamic of the system or the laws of physics) of the CPS plays an important role
in the correctness of the modeling and of the results of the security analysis. To
mitigate the effort and complexity of modeling the physical environment there are
opportunities in automated identification of the dynamic of the system [58], which
is still an open research challenge. It is important to consider that faithful physical
models may be hard to analyze formally [59] and can benefit from domain specific
abstractions leveraging expressive formal languages [60]. Core formal analysis
engines (e.g., Z3 [61], nlSAT [62], Yices [63], MathSAT [64], CVC4 [65]) have
made big steps forward in solving non-linear mathematical models, thus making
formal analyses closer to be applicable to CPS, see for example the promising
benchmarks recently obtained by the NuXMV model checker [66]. In summary,
there are several open scientific challenges in security analysis of CPS and we see
opportunities emerging for formal and automated extraction of attack scenarios.

3.2 Attacker Models

In the literature there is an extensive list of (formal or semi-formal) attacker models.
One of the most widespread attacker models is the so called Dolev-Yao model (DY)
[67]. The DY has been extensively used in the past few decades in a number of
security protocol verification tools (e.g., ProVerif [56], MaudeNPA [68]). For the
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purpose of security analyses, protocols are modeled as a set of agents exchanging
messages over a network. The (DY) attacker is usually assumed to be part of
the network and to be able to read as well as modify the messages, performing
operations such as encryption and concatenation. Protocol analysis typically applies
the ‘perfect security’ assumption, where the attacker cannot break cryptographic but
only leverage the protocol logic for the attack.

The model of the attacker for CPS shall be different from the ones considered
for protocol verification [53]. Usually, the focus is not on cryptography but more
on the control of the network extended with some physical properties (e.g., the
physical location of the attacker with respect to the CPS [69]). In fact, the physical
part of the CPS allows the attacker to perform a number of attacks which extends
to physical interactions with the system (e.g., physical-layer interactions or side-
channel attacks). There is still no unified theory of a cyber-physical attacker model
but some approaches have proposed their attacker model for CPS.

3.2.1 Profiling the Attacker

We remark that the focus of risk assessment is not on identifying new vulnerabilities
but rather to be able to precisely estimate the risk associated to known vulnerabil-
ities. Therefore, we are not interested in an attacker that can show, e.g., new flaws
on a CPS but on an attacker that can leverage known vulnerabilities to impact the
assets of a CPS.

According to [53] “an Attacker Model (together with compatible system models)
will ideally fully characterize the possible interactions between the attacker and
the system under attack. In particular, the model will define constraints for the
attacker (e.g. finite computational resources, no access to shared keys)”. Below we
summarize the main characteristics of the attacker (i.e., attacker profile) that can
be used as a basis for the definition of a vulnerability model. In the description we
stress in italics the metrics we derived from [53].

– Knowledge. We consider the worst-case scenario and a fair attack surface, where
the attacker has an incomplete understanding of the system under attack (system).
The model specifies sub-system that are not directly accessible from the attacker,
but also the knowledge of the attacker about those sub-systems and how they
work (e.g. what communication protocols are in place, credentials, etc.). The
attacker has (partial) visibility over a protocol or the functioning of a component
but, in general, cannot directly modify the behavior of components (source code).
Therefore, we can consider cases where the attacker just waits until the system
reaches a specific configuration so that he can perform his attacks. The offensive
skills of the attacker are strongly connected to the vulnerabilities of the system,
i.e., an attacker can interact with the system as a regular user (physical), and can
exploit attacks that leverage vulnerabilities of the system.

– Resources. We consider scenarios where the attacker has physical access to the
system, and scenarios where the attacker needs to exploit some vulnerability to
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Fig. 2 System design extended with a security viewpoint

access to the system. The effort that the attacker puts into his attacks is also an
important parameter. It is possible to formalize the notion of cost for each attack
step and have an analysis to take into account the cost model for effective analysis
of the most likely attack.

– Psychology. The attacker is dishonest and driven by (i) the maximization of
the impact of a vulnerability on the nominal behavior of the system and on his
knowledge, and (ii) the cost of exploiting such vulnerability (aim). The strategy
of the attacker is driven by the exploitation cost of the vulnerabilities and the
assets of the system model.

The attacker model can be seen as an extra component that is able to stimulate
both the nominal inputs of the system and also the vulnerabilities, which are able
to change the nominal behavior of the system. We also envision having another
element of the model that is able to capture costs and impacts. The attacker may
choose to exploit a vulnerability based on the cost associated to the relative attack.
In Fig. 2, we provide a conceptual representation of how a system design model can
be extended with a model of the attacker and a model of costs/impacts.

The key aspects that we have not discussed yet are how to model vulnerabilities,
their effects on the components behavior, and the cost of exploitation.

3.3 Vulnerability and Cost Models

Formal risk assessment requires correct modeling of vulnerabilities and their effects
[70]. Typically, public vulnerability repositories do not provide a description of
vulnerabilities effects that is sufficiently detailed to support formal modeling. This is
not surprising, because vulnerabilities effects are software/hardware/OS-dependent
and are much better described in terms of the mechanism that they exploit, to allow
covering several cases and conveying the logic of the attack, rather than the technical
detail. Therefore, a model of the vulnerability effect is an effort that is application-
specific and becomes an important asset of a company. To mitigate this effort it is
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important to define ad-hoc libraries (which often remains private) [71] that enable
reuse. Another approach is to encode vulnerabilities in the system models as it is
done, for example, in security mutation testing [72]. In order to provide a general
methodology, similarly to [71], we now discuss the opportunities available in public
software vulnerability repositories.

The National Vulnerability Database [37] (NVD), is a public database provided
by the National Institute of Standards and Technology of the U.S. Department of
Commerce. NVD provides a detailed overview of each vulnerability by providing
(1) an informal description of the attack vector and the conditions under which
the vulnerability is exploitable, (2) affected software and versions, and (3) a
scoring number, defined according to the Common Vulnerability Scoring System
(CVSS) [73] and providing an evaluation of the attack complexity and of the
potential impacts. Every NVD description has a unique Common Vulnerability and
Exposures (CVE) identifier and description [74]. The CVE database is maintained
by the MITRE organization with the objective of facilitating and standardizing
information exchange on vulnerabilities.

The Open Vulnerability and Assessment Language (OVAL) [75] is an important
tool for automated assessment of vulnerabilities: it provides a formal description of
the necessary preconditions for exploitation of a CVE entry. OVAL descriptions are
structured to be processed by an automated tool in order to evaluate whether a CVE
is applicable to a specific system/environment.

Another important source of information is the database of Common Weaknesses
Enumerations (CWE) [22]. A CWE entry describes a weakness that can occurs in
a software architecture, design, code or implementation that can lead to exploitable
security vulnerabilities. So a CWE description provides details and examples on
poor software designs that can lead a software system to be subject to a CVE. Some
CVE entries are linked to one or more CWE entries.

Patterns of use of vulnerabilities are captured in the Common Attack Pattern Enu-
meration and Classification (CAPEC™) [76] database, where attack prerequisites,
outcomes, indicators, execution flow, severity, solutions and mitigations, attacker
skills or knowledge required, and attack variations are captured. Used together,
CWE and CAPEC provide a complete viewpoint on where and how software is
likely to be attacked.

The amount of information provided by this network of repositories covers
several important areas for understanding risks in software design: (i) typical attack
patterns and vulnerabilities they exploit, (2) existing preconditions on software
design, (ii) the cost of exploitation and access of a vulnerability, and (iii) the
typical impacts of the vulnerabilities. An open challenge is how to create a
similar infrastructure for cyber-physical systems. The principal limitation we should
overcome is lack of disclosure of information on commercial HW/SW components.
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3.3.1 Mitigation/Exploitation Cost of Vulnerability Exploits

We consider two different costs: the cost for the attacker to exploit an attack due
to a vulnerability of the system (exploitation cost), and the cost to mitigate/fix the
vulnerability and prevent the attacks associated to it (mitigation cost). Information
on the exploitation cost could be derived from the vulnerability databases described
in the previous section. The estimate of the mitigation cost is depending from a
number of factors that are out of scope for the current discussion, including the
estimation of the value of the asset to be protected.

We now discuss metrics provided by the CVSS system and can be used to define
an estimate of the exploitation cost of an attack:

– Severity base score, estimates the severity of a CVE. An attacker is likely to put
more effort in exploiting high-severity vulnerabilities. The severity of the CVSS
(version 3.0) is divided into four categories: low (0.0–3.9), medium (4.0–6.9),
high (7.0–8.9), critical (9.0–10.0). This value is calculated as a function of other
metrics: exploitability, scope, and impact.

– Exploitability score, is the most important factor in the equation to calculate
the exploitation cost. It estimates how easy it is for an attacker to exploit a
vulnerability through an attack. The CVSS exploitability score relies on the
following metrics.

Attack vector, the context by which the exploitation is possible.
Attack complexity, considers the conditions, beyond the attacker control, that

must exist to exploit the vulnerability.
Privileges required, determines the level of privileges an attacker must have to

exploit the vulnerability.
User interaction, determines if the vulnerability requires user involvement or

collaboration to be exploited.

– Scope (or authorization scope). A Boolean value used to estimates if a vulnera-
bility can impact resources beyond its means of privileges.

– Impact score. Estimates the impact on the core confidentiality, integrity and
availability security properties.

Considering cyber-physical systems, there is a number of areas where research
on the definition of adequate metrics. For example, we should include the physical
distribution of the system, the physical accessibility, the effort to influence the state
of a plant and disguise supervisory controls. On the other side, the potential impacts
are enormous and therefore be motivating for higher investment.

3.3.2 A High-Level Representation of Vulnerabilities

A first approximation for representing vulnerabilities for the purpose of high-
level Security Risk Assessment is to describe (1) the preconditions that allow
the exploitation of the vulnerability by the attacker, and (2) how it impacts the
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Fig. 3 (left) Exploitation graph and (right) its implementation in a toy example

system. An exploit can be used whenever the preconditions are in place in the
current status of the system. However, the attacker does not use all the exploits
whenever he can, but he considers the cost of using an exploit and tries to select the
cheapest combination of exploits that reaches the attacker’s goals. The impact of the
exploitation of vulnerabilities in CPS is a deviation of the system behavior from the
nominal one, leading to damages to the system assets.

If we assume the nominal system behavior is represented as a transition system
an exploit can be modeled as an enriched transition from a nominal state of the
system model to a new state, enabled by the exploitation of a vulnerability. As
depicted in Fig. 3 (left), a vulnerability is enabled when specific attack preconditions
are satisfied in a system state. The vulnerability, once exploited, results in a set of
post-conditions, whose effects entail a variation of the system state. Whenever a
vulnerability exploit is executed, the attack cost is incremented and a new system
state is reached.

As an example, in Fig. 3 (right), we assume that an access control panel requires
demonstrating valid credentials through use of a card to access to a restricted
maintenance room of a CPS. The vulnerability is modeled so that whenever the
attacker has physical access to the authentication panel (precondition), he can
exploit an integrity vulnerability (attack), e.g. by physical tampering of the card
reader, and gain access to the CPS. The post-conditions are expressed in terms of
the effects of the exploitation of the attack, i.e., the changing of the physical position
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of the attacker. This is a deviation from the system nominal behavior that expects
the access to be granted only to persons that own a badge.

4 A Vision for CPS Security Risk Assessment

We now provide a summary of the challenges and opportunities discussed so far
in the form of a high-level description of how we envision SecRA to be performed
for CPS. The purpose is to stimulate further discussions and to serve as a starting
point for the definition of a research roadmap on this novel and challenging area.
The summary we propose leverages practices that are already adopted in safety-
relevant and high-assurance systems (e.g. model-based design flows [19], structured
approaches to security and safety from the automotive and aerospace domains
[8, 9], and standards for Cyber-security Risk Assessment [5]) but requires to
address multiple challenges before reaching the required level of automation and
formalism.

1. Secure system architecture and behavior design is structured into progressive
refinement steps, supported by models, and organized into viewpoints:

1.2 Refinement steps: (ref. to Fig. 1) the design starts from the definition of
a concept, where there is no notion of security and the principal system
functions are identified and allocated to a high-level physical architecture,
then is refined into a functional security architecture, where (given a decom-
position of system functions into component functions and a refinement of
the physical architecture by defining interfaces and data-flows) the security
measures and controls are identified on the basis of a preliminary SecRA,
then it is finalized into a technical security architecture, where (given a
complete definition of system functions, physical components interfaces and
data-flows) the security measures and controls are defined in details on the
basis of the results of SecRA.

1.3 Models: should cover both the architecture and the behavior

1.3.1 Architecture: shall be used to understand the attack surface, the attack
paths, the location of security controls and measures, the layers of
security to design defense in depth.

1.3.2 Behavior: shall be modeled to support automated extraction of threat
scenarios, to support simulation of identified threat scenarios, and also
to allow better run-time security measures and controls.

1.4 Viewpoints: shall be used to decompose the system modeling activity into
teams (function, safety, security, validation, environment, etc.), to manage
complexity of the overall design, and to leverage work shared across team.

2. Adoption of Formal Behavioral Models: the adoption of formal models can be
challenging, require specific expertise, and cause an extra effort in the process.
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However, it opens up the opportunity of performing automated and exhaustive
analyses, where the provided assurance is higher than with other methods. It
requires the use of specific modeling languages, supported by formal analysis
tools, that are typically very effective to model digital systems and have currently
partial support for complex, physics-based models. For all these reasons, we
envision the use of formal and automated analyses for SecRA either at the level
of the functional security architecture, where more abstract models can be used,
or for the Risk Assessment of specific high-criticality components.

3. Compositionality and Reuse: the architecture and behavioral models should be
developed in a compositional approach (ref. to Fig. 2), to allow replacement and
reuse of different models to construct multiple versions of the Nominal System
Model, defining the system behavior under normal conditions. Compositionality
applies also to the Attacker Model since, depending on the asset we should
protect and on the environment the system shall operate in, we envision reusing
the nominal system behavior model, and composing it with different attacker
profiles. Similar considerations apply to the Cost and Impact Model and, clearly
to the Environment Model. Finally, we envision the need of defining and maintain
a Library of Vulnerability Models that should be applicable by composition to the
single components and have the role of changing the nominal component model
to a Component Under Attack Model. This component-driven extension approach
shall support the derivation of a System Under Attack Model without additional
effort.

4. Security Goals and Risk Assessment: we take an asset-driven approach to SecRA,
which (in our experience) allows us to better define the security goals in terms of
minimizing the loss of value of the assets. Security Goals should be formulated
in terms of description of events that have an impact on the assets (Incidents) and
should be avoided. Asset values can be used to provide a quantitative ranking
of the Incidents. Therefore, formal analysis can be used to evaluate multiple
scenarios that can lead to an Incident by leveraging known vulnerabilities of the
system. A cost/benefit analysis can provide a ranking of the different attacks,
in terms of the cost they require from the attacker and the impact they can
cause on Assets. From this analysis, we expect to extract the most critical risks
and perform a root-cause analysis to determine what vulnerabilities are more
influential and shall be mitigated.

As discussed in Sect. 2.2, there are several existing languages and toolchains that
can support the System Architecture and Behavior Design step described previously.
A notable example is SysML, which embeds the notion of viewpoint natively,
supports compositional definition of behaviors by Sequence Diagrams or Statecharts
[77], and is implemented in several toolchains, that typically allow exporting models
to perform analyses leveraging external tools [78].

Concerning the modeling of component vulnerabilities, as described in the
Compositionality and Reuse step, there are several challenges and opportunities,
described in Sect. 3.3. Our current vision on how to extend the system nominal
behavior has been described in Sect. 3.3.2. The effect of a vulnerability (which
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Fig. 4 WTP physical architecture

can be extracted from public repositories such as NVD) is expressed in terms of
behavioral changes of the nominal system model or as changes to the knowledge
of the attacker. The latter case can lead to a reduction of the cost associated to the
exploitation of vulnerabilities, thus influencing the Cost/Impact Model.

Finally, there is an interesting aspect to be discussed on the Security Goals and
Risk Assessment step. Security Goals should capture conditions that avoid Incidents
to Assets. Our current approach on this aspect is to formally define Security Goals
as invariants with an associated numeric value and a related Asset. Violation of an
invariant represents a state of the system where an Incident occurred and damage
has been caused to an Asset with a specific value loss. This allows ranking attacks
in terms of the value loss they produce. Let us now consider an example where some
of the ideas discussed so far can be seen in practice.

Example We consider a Water Treatment Plant (WTP) as in Fig. 4, completely
disconnected from the Internet, during operation, located in a Machine Room phys-
ically accessible through a Maintenance Access Gate through an Authentication
Panel (AP). The WTP is periodically maintained by a technician, who connects his
laptop to the Supervisory Control PC to collect performance and diagnosis data,
which are sent back to the WTP production company, both for diagnosis purposes
and for performance analysis.

Similarly to [79], inside the WTP there is an initial tank where the raw water is
stored. The tank is connected via pipes to several intermediate steps where the water
is purified by means of chemicals which are then filtered by filtering procedures
(e.g., Uultraviolet filters for dechlorination). The principal asset we consider in this
example is the physical intergrity of the raw water tank. Two important indirect
assets are (a) safety of technicians (possibly in the premises of the plant) and (b)
building integrity, which may be compromised by the effect of burst and water
dispersion. For the sake of simplicity, we suppose there are only the following
threats (summarized in Table 1):
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1. Pressure safety control, the WTP system does not have a safety control against
the increase of pressure in the tank above a critical threshold. Therefore, if
attacker is able to change the pressure of the raw water tank then he can
lead the tank, eventually, to burst. Considering the accessibility of the WTP,
its architecture, and the fact that controllers are not connected to the Internet,
the only way for the attacker to increase the pressure is by acquiring physical
access to the WTP and manipulate the valves and pumps of the system. The
cost for the attacker is high since (we supposed) access to the plant requires
valid credentials (which the attacker does not know). The mitigation cost is
high too (8/10) because it requires the installation of an intrusion detection
system (plus additional costs to manage the system) and/or the introduction of
authentication/encyption schemes in the communication between components.
We note that the assumptions on both the vulnerability and the costs are fair since
similar situations have been reported on real-world water treatement testbed and
plants (see, e.g., [80]).

2. Ethernet local network, since the local network is isolated from the Internet, the
are no security protocols implemented to guarantee the basic security properties
(i.e., confidentiality, integrity, availability). An attacker can easily modify the
content of the packets exchanged between PLC. We assume (as in [81]), that
the logic of the control of valves and pumps is implemented in the Supervisory
Control PC while PLC converts analog to digital messages. Therefore, if the
attacker has access to the Ethernet network (similarly to [80]), he can modify the
payload of the network packets affecting the control logic of valves and pumps.
Considering the accessibility of the WTP, and the isolation from the Internet,
the cost for the attacker is high. The mitigation costs are high too, since the
introduction of security mechanisms that guaratee the basic security properties
requires the re-ingeneering of the local network. Furthermore, those security
mechanisms need to take into account the timing constraints such as the safety
response time of the WTP that may result in ad-hoc solutions or delicate fine-
tuning of security protocols.

3. Authentication, the storage room hosting the WTP can be accessed through
authentication on a panel. The panel is subject to (a) physical tampering, (b)
attacks through accessible port used for firmware updates, and (c) remote attacks
through the access control management server. An attacker that is able to exploit
any of these vulnerabilities can gain access to the room. We assume that for an
attacker can be realatively easy to bypass authentication procedures since there
is a wide number of vulnerabilities and social engineering techniques that have
been effectively exploited in the past decades. For the same reason, properly
mitigate this risk is not trivial but a number of techniques can be used to mitigate
this risk.

4. USB, disbling USB ports in a computer connected to a plant increases the security
of the overall system with a relative cheap cost of finding other methods to
transfer data into the system. On the other hand, if not disabled, many examples
(e.g., [17]) showed that USB can be easily exploited by attackers to get access to
the system and/or to introduce malwares.
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Table 1 Exploitation and
mitigation cost in isolation

Threats Attacker cost Mitigation cost

Pressure changing 10/10 8/10
Ethernet integrity 9/10 9/10
Authentication bypass 4/10 6/10
USB (SCADA system) 8/10 2/10

An example multi-stage attack that can be identified by the application of
a model-based SecRA mixes cyber and physical vulnerabilities with ascending
attacker cost.

1. The attacker access to the WTP exploiting social engineering attacks (e.g.,
piggybacking or tailgating) or integrity vulnerability exploits of the AP.

2. Once the attacker has access to the CPS, he can exploit the USB vulnerability to
get access to the network of the plant.

3. Since there are no security mechanisms on the Ethernet network, the attacker can
easily alter the payloads of the messages.

4. The attacker alters the nominal behavior of the system (e.g., opening the intake
valve and closing the pump after the raw water tank) and burst the water tank.

Such attack shows that the exploitation cost in isolation of Table 1 should change
after the discovery of attack chains. In fact, Table 1, the attacker exploitation cost of
the USB, and Ethernet threats is high because based on the assumption that access to
the CPS is forbidden. However, the attack shows that the attacker cost of exploiting
USB, or Ethernet threats is linked to the authentication bypass cost.

Summarizing, instead of estimating the risk as the vulnerability exploitation
cost in isolation, model-based analysis techniques can be applied leveraging system
architecture and nominal behavior models extended with vulnerabilities. In this way,
one could discover complex attack chains and estimate the risks more precisely,
based on the interconnection between different vulnerabilities. In our example, the
authentication bypass vulnerability has the highest risk because, if not mitigated,
can be used to lower the exploitation cost of all the other vulnerabilities.

5 Conclusion

We discussed challenges and opportunities to develop a model-based SecRA for
CPS, adopting an asset-driven viewpoint to evaluate risks at system-level, and
we identified gaps. We considered modeling languages, techniques, and tools
for the SecRA, discussing limitations in their direct application to a CPS. We
defined a roadmap of research opportunities for (i) CPS (security) modeling, (ii)
vulnerabilities and cost models, (iii) integration with public vulnerability repos, (iii)
attacker models and profiles, and (iv) automated discovery of cyber-physical attack
chains.
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