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Foreword

Cyber-physical systems (CPS) study the close interaction and the deep integration
between cyber information systems and dynamic physical systems. Those physical
systems could be energy systems, automotive systems, human activities, surround-
ing environment, etc. The key is to identify the deep underlying links between
the information system and the target physical system. In particular, CPS security
studies the security issues in such links.

The formulations of CPS security problems emphasize the impacts to physical
systems resulting from the attacks to information systems. For example, a smart
grid is usually associated with thousands of information nodes. Only small portions
of those information nodes are “critical,” which means that hacking them could
lead to large impact to the power systems. The classical cybersecurity usually
deals only with the information system. It does not distinguish critical information
nodes from noncritical information nodes in terms of the physical impacts, which
is however important in many real-world applications. In contrast, CPS security
research jointly models the dynamics of the information system and the physical
system and evaluates the cyberattack impacts. It heavily interleaves the security
studies in both systems, which is the key to the interdisciplinary “cyber-physical”
security research.

In terms of developing attack detection techniques, typically an incomplete phys-
ical model and a set of data are given. The target is to make the incomplete physical
model “more complete” and more useful. In other words, one needs to develop
the confluence of physical model-based approach and data-driven approach, which
characterizes the “cyber-physical” solution. Finding the underlying links between
the information system and the physical system to build such a cyber-physical
solution is difficult. In addition, the induced computational complexity, scalability,
efficient updating, threat modeling, and behavior modeling issues impose significant
challenges as well.

This book addresses the issue of resilience in the context of cyber-physical
systems. Resilience is the ability to provide and maintain an acceptable level of
service in the face of faults and challenges to normal operation. Resilience is a
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viii Foreword

composed dependability attribute that is much stronger and more dynamic than
reliability, safety, or security, although it includes them, together with concepts
like threat tolerance and self-healing. The chapters included in this book deal with
methodological aspects related to resilience modeling and evaluation, including risk
assessment, as well as technologies and tools for implementing effective resilience
in real applications from diverse and current domains. As such, I believe this book is
an excellent source for students, researchers, and practitioners needing to investigate
issues related to resilient cyber-physical systems in order to analyze vulnerabilities
and mitigate consequences through not only prevention but also active response and
dynamic reconfiguration.

Chair of Cyber-Physical Systems Professor Shiyan Hu, Ph.D.
Linnaeus University
Växjö, Sweden



Preface

In the last years, we have witnessed an acceleration in the adoption of computer sys-
tems in all societal sectors. Experts have started figuring out many new definitions
and paradigms to catch the crucial characteristics of modern computing, including
pervasive computing, ubiquitous computing, etc. Now, we are entering a computing
era in which, together with aspects like size, distribution, and heterogeneity,
other complexity factors have become to emerge, mainly related to autonomy and
symbiosis. In other words, novel challenges are arising when diverse connected IoT
(Internet of Things) smart devices start to cooperate autonomously with each other,
and with humans, by leveraging on artificial intelligence and machine-learning
techniques. Those challenges are especially critical in domains, like Industry 4.0
and intelligent transportation systems, where the cyber and physical worlds merge
to create almost indistinguishable electromechanic entities (i.e., cyber-physical
systems) needing holistic analysis and control. Among all the challenges, the ones
addressing reliability, safety, and security are the most critical. On that regard,
the scientific community decided to extend and update the traditional taxonomy
of embedded real-time systems and dependable computing in order to cope with
the aforementioned paradigms of modern computing. One of the attributes that
best captured the evolving dependability requirements of cyber-physical systems
is the one known as “resilience.” As many other bio-inspired paradigms, the word
resilience brilliantly catches the capacity to adapt/react, reconfigure, and self-heal
required to symbiotic autonomous cyber-physical systems.

Together with the societal, ontological, and technological implications of such a
rapid evolution, risk analysis remains a central theme that is still essential to drive
the design, development, and management of cyber-physical systems. Nowadays,
one of the main challenges with risk analysis is to develop scalable model-based
and model-driven approaches providing quantitative results that are suitable to a
large class of different systems featuring a growing complexity. Furthermore, with
Internet-connected devices, it is essential to assess vulnerabilities in a continuous
cycle, in order to cope with the most recent cyber-security threats.

ix



x Preface

It is clear that in such a scenario, control systems and information infrastructures
would greatly benefit from techniques automating the whole risk management
process, or at least part of it. To tackle this challenge, I do believe future efforts
in research and innovation must go in the direction of investigating proactive
resilience, merging threat tolerance and artificial intelligence in all their possible
declinations, with the potential of creating the next generation of resilient cyber-
physical systems.

This book explores some of the aforementioned issues by addressing resilience in
the context of cyber-physical systems. It consists of three parts, each one including
three chapters.

The first part of the book addresses “Challenges and Frameworks” to achieve
resilience in cyber-physical systems.

The first chapter of Part I by Dániel Tokody, József Papp, László Barna Iantovics,
and Francesco Flammini, entitled “Complex, Resilient and Smart Systems,” intro-
duces the reader to the context and theoretical concepts of smart cyber-physical
systems as well as to novel paradigms of machine intelligence enabling future-
generation resilience.

In the second chapter of Part I by Marco Rocchetto, Alberto Ferrari, and
Valerio Senni, entitled “Challenges and Opportunities for Model-Based Security
Risk Assessment of Cyber-Physical Systems,” the authors address in an extensive
survey the issue of model-based security risk assessment in modern cyber-physical
systems from most current and critical industry domains, highlighting state-of-the-
art methods and reference standards.

The third chapter of Part I by Hassan Mokalled, Concetta Pragliola, Daniele
Debertol, Ermete Meda, and Rodolfo Zunino, entitled “A Comprehensive Frame-
work for the Security Risk Management of Cyber-Physical Systems,” continues
along the lines set by the topics of the previous chapter. It proposes a holistic
framework for systematic risk management applied to IT systems validated in
a relevant industrial application of railway supervision, monitoring, and control
systems.

The second part of the book presents “Evaluation Methodologies and Tools” for
resilience modeling and assessment of cyber-physical systems.

The first chapter of Part II (4th book chapter) by Janusz Górski and Andrzej
Wardziński, entitled “Supporting Cybersecurity Compliance Assessment of Indus-
trial Automation and Control System Components,” introduces a tool for compli-
ance assessment against cybersecurity standards applicable to industrial automation
and control systems, through a clear and very effective running example.

In the second chapter of Part II (5th book chapter) by Oleksandr Netkachov,
Peter Popov, and Kizito Salako, entitled “Quantitative Evaluation of the Efficacy
of Defence-in-Depth in Critical Infrastructures”, the authors report on a model-
based approach in assessing cyber-risks by deploying a defense-in-depth approach
implementing the so-called pro-active recovery of protection devices in order to
ensure resilience against threats.

In the third chapter of Part II (6th book chapter) by Frederik Gossen, Tiziana
Margaria, Johannes Neubauer, and Bernhard Steffen, entitled “A Model-Driven and
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Generative Approach to Holistic Security with C-IME,” the authors present a cyber
resilience tool allowing for automatic generation of security features through proper
model-driven engineering and domain-specific languages.

The third part of the book describes relevant “Industrial Applications” of electri-
cal distribution, water supply, and nuclear plants, focusing on specific approaches
and countermeasures.

In the first chapter of Part III (7th book chapter) by Julian L. Rrushi, enti-
tled “Multi-range Decoy I/O Defense of Electrical Substations Against Industrial
Control System Malware,” the author addresses a specific application of electrical
substations needing protection against industrial control systems malware. He
provides the specific case study description and related results in extensive details.

In the second chapter of Part III (8th book chapter) by Fabio Tarani, Chiara
Arrighi, Laura Carnevali, Fabio Castelli, and Enrico Vicario, entitled “Flood
Resilience of a Water Distribution System,” the authors tackle the specific challenge
of ensuring the resilience of a computer-controlled water supply system against
flooding risks.

In the third chapter of Part III (9th and last book chapter) by Wei Wang,
Francesco Di Maio, and Enrico Zio, entitled “A Non-parametric Cumulative Sum
Approach for Online Diagnostics of Cyber Attacks to Nuclear Power Plants,”
the authors face the issue of managing cyberattacks to nuclear plants. In such
a context, they focus on diagnostics to drive protection and mitigation actions
and mathematical/probabilistic modeling of system resilience, providing several
interesting and useful results.

It is important to underline that each chapter in this book has been peer-reviewed
prior to final acceptance. Authors have been requested to take into account any
concerns and to implement all the suggestions provided by the reviewers.

I would like to take this opportunity to express my sincere gratitude to the
authors, to the members of the Editorial Advisory Board, to the additional reviewers,
and to anyone who has helped me in book development and quality improvement,
for their invaluable contributions and support.

Special thanks go to my beloved family, Liana and Marina, for being so tolerant
(and resilient!) against my cyber-nerd attitude and variable mood.

Rome, Italy Francesco Flammini
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Part I
Challenges and Frameworks



Complex, Resilient and Smart Systems

Dániel Tokody, József Papp, László Barna Iantovics, and Francesco Flammini

Abstract “Cyber-Physical Systems or “smart” systems are co-engineered inter-
acting networks of physical and computational components. These systems will
provide the foundation of our critical infrastructure, form the basis of emerging
and future smart services, and improve our quality of life in many areas.” (National
Institute of Standards and Technology: Cyber-physical systems. [Online]. Available:
https://www.nist.gov/el/cyber-physical-systems. Accessed 31 Dec 2017, 2017). The
concept of Smartness has been increasingly used as a marketing catchphrase.
This study seeks to explain that smartness can be a serious indicator which can
help to describe the machine intelligence level of different devices, systems or
networks weighted by, among others, the usability index. The present study aims
to summarize the implementation of complex, resilient and smart system on the
level of devices, systems and complex system networks. The research should
consider a smart device as a single agent, the system as a multi-agent system,
and the network of complex systems has been envisaged as an ad hoc multi-
agent system (Farid AM: Designing multi-agent systems for resilient engineering
systems. In: Lecture notes in computer science (including subseries lecture notes
in artificial intelligence and lecture notes in bioinformatics), vol 9266, pp 3–8,
2015) organised in a network. The physical incarnations of this latter could be, for
example, the subsystems of a smart city. In order to determine the smartness of a
certain system, the Machine Intelligence Quotient (MIQ) (Iantovics LB, Gligor A,
Georgieva V: Detecting outlier intelligence in the behavior of intelligent coalitions

D. Tokody (�) · J. Papp
Doctoral School on Safety and Security Sciences, Óbuda University, Budapest, Hungary
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of agents. In: 2017 IEEE congress on evolutionary computation (CEC), pp 241–248,
2017; Park H-J, Kim BK, Lim KY: Measuring the machine intelligence quotient
(MIQ) of human-machine cooperative systems. IEEE Trans Syst Man Cybern –
Part A Syst Humans 31(2):89–96, 2001; Park HJ, Kim BK, Lim GY: Measuring
machine intelligence for human-machine coop-erative systems using intelligence
task graph. In: Proceedings 1999 IEEE/RSJ international conference on intelligent
robots and systems. Human and environment friendly robots with high intelligence
and emotional quotients (Cat. No.99CH36289), vol 2, pp 689–694, 1999; Ozkul
T: Cost-benefit analyses of man-machine cooperative systems by assesment of
machine intelligence quotient (MIQ) gain. In: 2009 6th international symposium
on mechatronics and its applications, pp 1–6, 2009), Usability Index (UI) (Li C,
Ji Z, Pang Z, Chu S, Jin Y, Tong J, Xu H, Chen Y: On usability evaluation of
human – machine interactive Interface based on eye movement. In: Long S, Dhillon
BS (eds) Man-machine-environment system engineering: proceedings of the 16th
international conference on MMESE. Springer, Singapore, pp 347–354, 2016;
Szabó G: Usability of machinery. In: Arezes P (ed) Advances in safety management
and human factors: proceedings of the AHFE 2017 international conference on
safety management and human factors, July 17–21, 2017, The Westin Bonaventure
Hotel, Los Angeles, California, USA. Springer International Publishing, Cham, pp
161–168, 2018; Aykin N (ed): Usability and internationalization of information
technology. Lawrence Erlbaum Associates, Inc., Publishers, Mahwah, 2005) and
Usability Index of Machine (UIoM), Environmental Performance Index (Hsu A
et al: Global metrics for the environment. In: The environmental performance
index ranks countries’ performance on high-priority environmental issues. Yale
University, New Haven, 2016) of Machine (EPIoM) indexes will be considered.
The quality of human life is directly influenced by the intelligence and smart design
of machines (Farid AM: Designing multi-agent systems for resilient engineering
systems. In: Lecture notes in computer science (including subseries lecture notes in
artificial intelligence and lecture notes in bioinformatics), vol 9266, pp 3–8, 2015;
Liouane Z, Lemlouma T, Roose P, Weis F, Liouane Z, Lemlouma T, Roose P, Weis F,
Neu HMAG: A genetic neural network approach for unusual behavior prediction in
smart home. In: Madureira AM, Abraham A, Gamboa D, Novais P (eds) Advances
in intelligent systems and computing, vol 2016. Springer International Publishing
AG, Porto, pp 738–748, 2017). Smartness of systems have an indispensable role to
play in enabling the overall resilience of the combined cyber-physical system.

1 Introduction: From Automated Machine to Autonomous
Smart Machine

There is a global demand for maintaining or improving the quality of life of citizens
and increased efforts are being made at all levels in order to fulfil such a demand.
Some regions are becoming overpopulated while others suffer from depopulation,
and, despite contrary efforts, there is a growing inequality in the distribution of
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resources. Technological development and automation have had a complex effect
on the whole mankind. Automation has a significant importance for the society,
as it can help to reduce human factors in different processes to such an extent
which ensures greater resilience, usability and cost-efficiency in various sectors of
both industrial production and everyday life. Automation is not simply a technical
question; it is also an economic and social issue which concerns the whole society.
A fully-automated society saves humans a considerable amount of time which can
be used for scientific and cultural purposes or other useful activities. The primary
aim of this chapter is to discuss the present and future role of automation in human
life. It will highlight how to reach early automation systems to smart autonomous
cyber-physical systems.

What are the technical and economic advantages of automation? Improved
living standards, workforce efficiency, energy saving, cost reduction, better working
conditions, health protection, quality improvement, reduced amount of rejects,
increased operational safety and reliability, etc.

How long has automation been present and what does it mean exactly? The
roots of automation can be found in the word “automata”. This word originates
from the Greek language and means self-operating or self-moving. No one knows
exactly who made the first “automata” and when it was made. It is probable that
the first structure of this type was built in ancient times as a result of much-feared
sorcery and parallel scientific developments. In this context, medieval legendary
mentions the name of Albertus Magnus (later: Saint Albert the Great). As a major
scientist of his age, he was referred to as “Magnus in magia, major in philosophia,
maxmus in theologia” or “Doctor Universalis”. Legend says that he was working
for many decades on the construction of a mechanic servant. The fate of the
construction, however, was doomed when one of his apprentices, who was received
by the “servant” and heard it say to wait for the master, claimed that the machine
must be the devil’s invention. Other legends have a different ending. According to
these records Magnus’ apprentice, Thomas Aquino (later Saint Thomas Aguinas)
destroyed the work of his master. It is also interesting to mention that Albertus
Magnus is, among others, the patron saint of scientists [12].

The path leading to full automation or smart autonomous systems has been
lined with many milestones in the course of time. Such milestones were the first
steam engines and centrifugal governors, then the emergence of controllable electric
machines and the appearance of computers, whose future role in automation is
difficult to predict as yet. In other words, these human-made devices have been
aimed to tame first the power of steam, then electricity and finally information.

The use of machines and the application of automation eliminate inappropriate
or inadequate human factors in the processes where their use has been justified. Due
to the fact that machines lack self-awareness, they can perform the tasks allocated
to them at their best knowledge, the fastest and most efficient way. They will not be
affected by ignorance, tiredness or any other human or physiological needs. As long
as the conditions necessary for their functioning are ensured, they will accomplish
their tasks. Full automation can be achieved first by partial and then by complex
mechanisation.
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From the viewpoint of automation, different levels can be distinguished. In case
of partial automation, the system cannot function without human presence in the
measuring, supervising and controlling roles. Without human contribution they
are unable to operate. In case of complex automation, these roles are completely
overtaken from humans by the automated systems. With fully self-operating systems
only the tasks of supervision, development, checking, repair and maintenance will
be performed by humans [12].

In the 1970s, the importance of automation was recognised from the point
of industrial use in the increase of productivity. Today its significance has far
exceeded its industrial role, as automation has been introduced in all fields of life.
For example, by the development of nanorobots [13] and their use in the medical
treatment of animals and humans, automation provides great opportunities for the
society. Not to mention another exciting area of automation represented by robots
(e.g. UAVs [14] or industrial robots [15]) or human-like robots, in other words,
androids.

From the point of humanity, the significance of automation can be compared to
the significance of the industrial revolution, or rather, mechanisation and automation
can be regarded as the stages of development that finally determined the industrial
revolution [12].

Wolfgang Wahlster, Director of the German Research Centre for Artificial
Intelligence, already talked about Industry 4.0 in a presentation in 2013. According
to his view we live in the age of the 4th industrial revolution that in terms of
industrial automation, means the implementation of cyber-physical systems [16].

Cyber-physical systems will play an increasingly important role in automation,
but not only in industrial automation. This new industrial revolution will affect many
other fields of science.

Our life has been automated to such level which, for example, allows for
autonomously operating vehicles to get from point A to point B safely (e.g. sensor-
based intelligent mobile robot navigation [17]). Of course, these systems also
require specific conditions and have their own limitations, but they are able to
operate in an increasingly automatic way to perform a growing number of tasks
[18].

But what is the exactly a smart machine? “A smart machine is a device embedded
with machine-to-machine (M2M) and/or cognitive computing technologies such as
artificial intelligence (AI), machine learning or deep learning, all of which it uses to
reason, problem-solve, make decisions and even, ultimately, take action” [19].

2 Usability, Environmental Performance, Smartness
and Resilience

What is Smart Machine design? At the design stage of the system, it is necessary
to quantify the system parameters and check the main system features as early as
possible. In general, it can be said that in order to develop a practicable, flexible
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Fig. 1 5C architecture for design of smart cyber-physical systems [21, 22]

and resilient system, the aspects of scalability, modularity and extensions must be
taken into consideration. There is a growing tendency of considering such subjective
parameters as elegance or the comfort level ensured by the system. Ideally at the
planning phase the possibilities of creating a future-proof design which allows the
system to be used for future purposes should also be considered. In the course of
such planning it is important to bear in mind the rapidly changing technological
developments as well as the compliance with various international standards. With
regard to economy, energy efficiency and other requirements for such systems,
it is necessary to identify the bottlenecks hidden in the system. A system will
always have some bottlenecks, either because of economic conditions or the limited
availability of resources. If such bottlenecks are planned, however, the optimality
of the system can be ensured and a harmonious system can be developed [20]. (see
Fig. 1. 5C architecture for implementation and design [21]).

What is resilience? According to the Cambridge English Dictionary, the
resilience is the quality of being able to return quickly to a previous good condition
after problems. How can smartness support future-proof resilience? Smartness
is the road to future-proof resilience since it enables novel paradigms like pro-
active dependability and self-healing. Those paradigms are completely different
from the current implementations of safety-critical and dependable systems where
threats, vulnerabilities and consequences are supposed to be known in advance
during risk assessment or somehow updated and uploaded later (e.g. threat
signatures/patterns, vulnerability information, troubleshooting instructions and
repair workflow, etc.). Resilience in future smart-systems will increasingly leverage
on embedded intelligence in order to anticipate and detect unknown threats and
automatically compute the most appropriate and safe solutions by using approaches
based on machine learning, heuristics, fuzzy logic, bayesian inference and artificial
neural networks driving real-time co-simulation and online model-checking.

Smart machines represent a new field which is still to be thoroughly researched.
Recent research shows that the creation of smart machines is bringing to a higher
level of automation in many fields and that trend will continue in the future.
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We mentioned that automation can be a tool to improve resilience. In terms of
functionalities, this automation level is close to robotisation, although there are
some differences. To make things more complex, the usage of smart systems in
critical infrastructures is actually generating the new paradigm of “Smart Critical
Infrastructures”, whose resilience evaluation becomes even more challenging.
“The resilience of an infrastructure is the ability to anticipate possible adverse
scenarios/events (including the new/emerging ones) representing threats and leading
to possible disruptions in operations/functionality of the infrastructure, prepare for
them, withstand/absorb their impacts, recover from disruptions caused by them and
adopt ti the changing conditions.” [23] There are five main resilience engineering
phases in protecting smart critical infrastructures: understand risk, anticipate or
prepare, absorb/withstand, respond/recover, adapt/learn [24]. Adaptation/learning
must leverage on machine intelligence.

Machine intelligence was first mentioned probably in the 1940s. With the
origin of cybernetics, the possibilities to create thinking machines and robots were
reconsidered. The creation of smart machines is based on the development of
machine intelligence. Among other trends, connectionism has also had a great
influence on the development of smart machines [25].

How could it be possible to create machines which would solve the problems of
humanity? The planning and development of smart machines are often limited by
human abilities. As it is the case, for example, with the way of thinking software
developers acquire at school. In fact, today software development is based on the
well-established methods learnt at school according to widely accepted conventional
paradigms. Different paradigms are not combined until software developers form
their own style. One of the primary aims of software development is to make these
programs error-free. It is obvious that errors cannot be completely eliminated; still
software developers will always aim to find new improved solutions for the given
tasks. Would all this guarantee problem-free operation? Even if it was possible to
develop a perfect program, one question would still remain to answer. How could
such a rigid system fit into a world that is continuously changing? How human or
natural processes adapt to new or unknown situations? Could this be implemented
in the system of machines? If humans meet new problems while performing their
tasks, they will try to find new solutions to solve them. Today’s machines are
rarely capable of doing something similar. It is enough to consider the example
of autonomous self-driving vehicles, which represent one of the most advanced and
discussed modern technologies. If a self-driving vehicle equipped with state-of-the-
art artificial vision approaches a lorry, the back of which is covered with a picture of
a group of cyclists, the vehicle will interpret this image as a different traffic situation.
For humans, it is not a problem to recognise the situation, as they are able to perceive
more details and make various decisions based on formerly learned patterns, as they
will know which pattern would work in this situation. Similar considerations make
today’s most advanced smart-systems still seem rather “stupid” when compared
with basic human intelligence, adaptation and problem-solving capabilities.
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2.1 Usability Index and the Usability Index of Machine –
UIoM

What is Usability?
The word usability means that the people that use a product can do so quickly and

easily to accomplish their own tasks. This definition comes up from four points, which are
essential for understanding what usability really are.

1. Focusing on the user
2. People use products to be productive
3. Users are busy people trying to accomplish tasks
4. The user decides when a product is easy to use

This means that to develop a usable product it’s important that the developer know, or
understand, how the potential user works. No one can fully replace the potential user, hence
the first point. [9]

In order to determine the Usability Index, it is necessary to consider aspects
of multiple research fields at the same time. One of these fields is ergonomics,
which aims to understand human capacities and abilities. The other field is
Human-Computer Interaction, which deals with the planning, implementation and
evaluation of computer systems used by humans. The third aspect is User Experi-
ence, which refers to the expectations and the real experience humans have while
using a product, a device or a machine from the date of purchase to their disposal.
This will include the shopping experience, the helpdesk support provided during
the use of the product, the convenience, luxury and the feeling that is associated
with the product. The fourth field is User-centred design, a planning process which
integrates the user’s expectations and demands. In many cases this also includes the
involvement of the user in the planning process. The final aspect to be considered
is Usability, which measures the effectiveness, efficiency and satisfaction the user
experiences while performing a specific task with the help of the product in a given
environment [26, 27].

The criteria referring to the general usability design of machines (see Fig. 2
Usability Engineering process) can be determined on the basis of the information
provided by a much researched field. This is the field of the usability design of
medical devices. The process of the usability design of machines consist of ten steps
[26, 27].

Step 1 (User research): the Application specification contains the concept of usage,
the users and operators, the connections of the device to other devices, the
conditions of its use and the basic principles of operation. Such a specification
must be based on a user survey and market research carried out in advance.
The developers’ team must have a coherent vision of the device to be developed
and its long-term purposes in order to understand the basic requirements for the
developed product [26, 27].

Step 2 (Conceptual design): the Frequently used functions are specified in the course
of the theoretical design, in order to define the most frequently used and most
important functions of the device [26, 27].
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Fig. 2 Usability engineering process (© IEC 62366:2007, Fig. D.1) [27]

Step 3 (Conceptual design): the conceptual design deals with the Identification of
hazards and hazardous situations related to usability. User activities and the use
of the device – with the exception of fully autonomous devices – can generate
errors. The prior identification and treatment of errors is done as part of the risk-
management procedure which also affects this phase of the usability process.
Therefore, it is necessary to define the criteria for the safe use of the device and
to identify the hazards which could be detected in advance [26, 27].

Step 4 (Requirement): furthermore, the Primary operating functions and require-
ments must be determined. Among the frequently used functions, safety critical
functions are those functions which are the most critical from the point of
hazardousness.

Step 5 (Requirement): the second phase of the elaboration of requirements is
Usability specification, which summarises the information collected about the
device in the previous phases, with special attention made to primary operational
functions. This is the basic document of the certification and validation of
usability [26, 27].

Step 6 (Requirement): the third phase of the elaboration of requirements is the
development of the Usability validation plan. The Usability validation plan must
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be prepared prior to the validation procedure, as this document specifies the
validation methods, validation criteria and the examinations carried out with the
involvement of representative users [26, 27].

Step 7 (Detailed design and specification): in this phase a detailed design must
be provided which includes the User interface design and implementation. It
should also include software development, the making of prototypes and the
simultaneous evaluation of usability [26, 27].

Step 8 (Usability verification): The evaluation of the created device starts with the
Usability verification. This means the comparison of the device with its specifi-
cations and purposes. It ensures the product’s compliance with its requirements
[26, 27].

Step 9 (Usability validation): Usability validation is the second phase of the evalu-
ation, in which the compliance with user requirements is analysed according to
the validation plan. The methods used in the usability evaluation process include
analytic, empiric, formative or summative methods, which help to reveal any
usability issues [26, 27].

Step 10 (Monitoring): Usability issues can prevent the device from performing its
task or fulfilling its purposes. It can cause uncertainty in the users, who might
make a mistake as a consequence (e.g. they might fail to notice something,
make incorrect assumptions, perform inappropriate actions or misinterpret some
information). The surveillance and monitoring of the device can be done after it
has been introduced into the market. Any feedback from the users may help to
correct the errors [26, 27].

The applied main components are listed in Table 1 with reference to the Usability
Index of Machine (UIoM). From the discussion in this section, it should be clear that
usability is strictly related to the interference of human-factors with attributes like
performability and resilience, since e.g. bad design of Human-Machine interfaces
can facilitate human faults. Human faults can generate errors and then failures when
those errors activate. Human mistakes and response delays can also significantly
impact on the threat/crisis management workflow in business continuity, disaster
recovery and reaction to emergencies. Generally speaking, since human actions
are error-prone, wherever total automation cannot be achieved yet and human
intervention is still required, those aspects are of paramount importance in cyber-
physical systems design.

2.2 Environmental Performance Index of Machines – EPIoM

Environmental Performance Index of Machines was developed as a result of the
co-operation of Yale University, Columbia University, the World Economic Forum
and the European Commission and it was first published in 2002 [10]. This study
refers to the EPI version which is related to machines. In case of machines
it is especially important to reduce the use of non-renewable resources and to
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benefit from renewable energy. They must be designed in a way that considers the
optimisation of the use of raw materials and the recycling of future (electronic)
waste, in order to ensure the environmentally conscious use of the device in its
whole lifecycle [28, 29]. The applied main components are listed in Table 1 with
reference to EPIoM.

3 The Implementation of Complex, Resilient and Smart
Systems

3.1 Smart Device – Smart Agent

What is a smart agent used for? And what makes it smart? A smart agent (see
Fig. 3a) has artificial intelligence, and it stores the information necessary for
its operation in ontologies by means of knowledge representation and semantic
models. It can also gain knowledge by learning. Supported by this knowledge,
it can recognize and even change the surrounding environment. It is capable of
independent operation, but it can also work as part of a system with cooperation
and self-organization capabilities [3, 30–32].

Smart systems are based on some forms of machine intelligence; therefore, in
order to create smart machines, it is necessary to know how develop machine intel-
ligence. Wechsler defined the concept of intelligence as the following: “Intelligence
is the aggregate or global capacity of the individual to act purposefully, to think
rationally and to deal effectively with his environment” [42]. This definition has
been given with regards to human intelligence. However, it is also relevant for
machines, as the basis of machine intelligence also includes environment detection,
decision making and intervention control. At a higher level, intelligent machines are
capable of recognising objects and events, representing knowledge or determining

Fig. 3 (a) A proposed operational architecture for Holonic Smart Agent [30, 35]; (b) General CPS
architecture [33, 34]
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their future operation. In order to ensure intelligent operation, smart machines
also need to be capable of learning. This learning feature requires data and the
information generated from this data, which are collected by detection. A smart
system will not only use the data of its own detection, but it will also leverage on
co-operation as a multi-component system. Therefore, a device or machine which is
capable of co-operation can be defined as a smart device. In other words, different
levels of smartness can be distinguished even in case of machines. As an illustration,
Fig. 3 shows the architecture of a smart agent. Regarding resilience related aspects,
the aforementioned paradigm of pro-active dependability also refers to smart agents
that warn other cooperative agents about possible dangers, exactly like humans
working together warn each other when they realize other peers are in danger.

3.2 Smart Systems – Smart Multi-agent Systems

Why should individual agents be connected? How could they be connected? There
are several reasons for this: autonomy versus team work, strength in unity, self-
defence or error-tolerant group coherence.

According to Csermely [36], humans are communal beings, and as a result, our
brain has developed in a way that it can list, revise and activate our relationships. The
network of relationships is the key to human survival. Social-psychological surveys
show that humans divide the world into groups of 5, 15, 35, 80 and 150 individuals,
and these groups represent our family, close friends, further acquaintances, and other
smaller groups. We are closed into our cognitive space determined by our cognitive
characteristics, and it is difficult for us to think and work in a bigger perspective. We
can be successful and we can communicate and exist in this small world restricted
by our cognitive characteristics. Random networks, where relationships between
the elements have been made by chance, and these relationships are easy to make,
also have these small-world characteristics. It is easy to make relationships, because
neighbours know each other. In these networks, clustering is fast and frequently
occurring [36].

The smart operation of machines is essentially in the realisation of the natural
analogue. That is the reason for working with self-organising elements. It is easy
to see that one agent is not enough to perform a complicated task. Therefore, it is
necessary to build a smart multi-agent system of several co-operating agents.

Intelligence depends on the learning capacity of machine systems, which is
based on the finding, using, processing, connecting and fusioning of data, or, in
other words, on generating information. Knowledge Discovery and Data Mining
is a research field which aims to create knowledge from this immense amount of
data. This can be automated by using smart agents. With the help of these co-
operative systems, which are capable of learning, a complex adaptive system can
be built. In nature, for example, in case of floods, fire ants are able to link their
bodies together and float on the surface of water saving their own lives and their
colony. A swarm intelligent system can also be made by the co-operative operation
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Fig. 4 Smart multi-agent system architecture – random temporary cluster

of machines, and this system can be recognised by the interactions between the
above-mentioned smart agents and the agents in their immediate environment or
between the agents and the environment. In this system, cognitive science can help
to realise machine learning. “Complex systems network theory provides techniques
for analysing structure in a system of interacting agents, represented as a network”.
(see Fig. 4) [37].

3.3 Smart Complex Systems Network – Ad-hoc Networked
Smart Multi-agent System Sociograms

Following the analogy with nature, the example of cells can be mentioned in the
way they work and perform their tasks in the human body. A complex artificial
world can be created by computers and the programs running in their memories, as
today there is a tiny computer in almost every device. In order to perform their tasks,
machines need an executable program. The more precisely we would like to instruct
machines, the more detailed programs are needed, and this can be expensive, time-
consuming and requiring considerable resources. The solution to this problem lies in
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Fig. 5 Ad-hoc networked smart multi-agent system sociograms

the autonomy of machine systems. By creating a network in which smart agents are
able to autonomously co-operate, coordinate and communicate with each other for
a common purpose – a temporarily-organised network to perform specific tasks –
and to make any related decisions and interventions (actions), an ad-hoc networked
Smart Multi-Agent System could be built (see Fig. 5).

The reason for organising such networks or clusters can be, for example, that
in case of single smart agents, the embedded functions are not always sufficient
to perform the given tasks. Furthermore, they can only address the challenges of
today’s fast-changing world promptly and find the solution to a special problem if
they work together. Regarding resilience, that also holds when smart-agents need
to counteract threats or restore from failures requiring a joint effort of multiple
cooperating agents.

4 From Machine Intelligence Theory to Smart Machine
Theory

According to Bein et al. [38] Machine Intelligence Quotient (MIQ) consists of
four key attributes, such as Autonomy, Human–Machine Interaction, Controllability
for Complicated Dynamics and Bio-inspired Behavior. The Machine Intelligence
Quotient is a measure to assess the intelligence of a Machine. Each attribute has
a number of major components. In case of Autonomy, these components are self-
calibration, self-diagnostics, self-tuning and fault-tolerance. Human–Machine Inter-
action includes human-like understanding communication, emergence of artificial
emotion and ergonomic design, while Controllability for Complicated Dynam-
ics covers non-conventional, model-based, adaptation, motion planning and non-
linearity. Bio-inspired Behavior involves Neuro-science, Biologically motivated
behavior, Cognitive-based. According to the theory, in the model space Autonomy
and Human–Machine Interaction are constant factors, while Controllability for
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Complicated Dynamics and Bio-inspired Behavior are application specific. It is
important to define the conditions of use for the model environment, which is
done according to the original theory of dynamic, unstructured, and uncertain
characteristics of Environment. It suggests three methods to determine MIQ:
Fuzzy Logic, Neural Networks and Genetic Algorithms (e.g. neuro-fuzzy-genetic
controller for robot manipulators [39]). According to Bein et al., any intelligent
system with those features can lead to improved safety, enhanced reliability, higher
efficiency and sustainability [38].

4.1 Smart Cyberspace Theory – The Intelligent Cyberspace
and the Smart Cyberspace

Figure 6 shows those spaces which are created by human activities and thinking. In
the centre of the space, the human can be found, as an individual who is physically
present only in real space, but whose mind creates the virtual space, and can extend
his physical activities into this virtual space. Physical space represents the geosphere
of the Earth. Biosphere is only a part of this space. This is the biological space where
the conditions of life are ensured for humans and other living creatures on Earth.
Anthropogenic space refers to the world created by humans. Cities, infrastructures
and man-made facilities can be found in this space. Individual space makes only a
small part of anthropogenic space use by the individual. This is where the individual
lives and moves, and where, by his personal activities, he creates the smallest space
surrounding him. With regards to humans, the above-mentioned spaces depend on
the development level of the society, or, among others, the age, the income, etc. of
the individual. For example, the individual space is much smaller for a child than for
a professor at the top of his career or for a constantly travelling businessman who is
able to influence a more extended space [40].

Virtual spaces are built from the real space and they are shaped by the thoughts of
the individual (cognitive space). This cognitive space includes the individual’s view
of the world, which is the mind’s mapping of the physical world in a subjective
way. Cyberspace is the artificial world of man-made devices, systems and networks
beyond the physical space. A typical example of this is the cyber world of the
Internet. Cyberspace is the mapping of the physical space, for example, in case of
the Internet, the servers, optical cables, routers and nodes of which the real physical
infrastructure is made. Cyberspace inherits the flexibility of the cognitive space,
therefore its construction, transformation or use may only be limited by human
imagination. Fictional space stands the furthest from reality in comparison with
other virtual spaces. At the same time, fictional space can also include real elements.
Quite obviously, these imaginary spaces are not in the scope of this study. A smart
agent is capable of the interactions shown in Fig. 6 [40].

From the viewpoint of this study, there is a growing number of applications where
the two MIQ factors (Controllability for Complicated Dynamics, and Bio-inspired
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Fig. 6 A model of human perception versus human-like machine perception [35, 40]

Behavior) have equal importance. Therefore, we created an improved version of the
above model, and we can state that there are certain cases when these two factors
co-exist in space and time.

The geometry of more than three space dimensions can be mathematically
described. The fourth space dimension is perpendicular to the other three (X, Y, Z)
dimensions, which are commonly used in everyday life. The space defined by four
dimensions (X, Y, Z, W) is called a four-dimensional space. The fourth dimension
is represented by the W axis. This concept can be difficult to demonstrate in three
dimensions, but Fig. 7 shows a generally accepted illustration of a four-dimensional
space. The Intelligent Cyberspace can be imagined with the help of the four-
dimensional space theory. This space, which is illustrated by Fig. 7 as a hypercube,
contains the Machine Intelligence Index (marked in red in Fig. 7) defined by the
four attributes/dimensions which characterise Machines. For each device, this point
can be found in a different part of space depending on the values of the attributes.
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Fig. 7 Forth dimensions as the intelligent cyberspace, visualization of machine intelligence index
[own]

The major components of the main attributes have already been defined, but after
15 years we felt it was necessary to redefine them. Table 1 contains these revised
definitions.

It is quite difficult to illustrate a four-dimensional space in two dimensions. In
case of a six-dimensional space, however, it is almost impossible. Figure 8 shows
one way of representing a six-dimensional space in two dimensions. The Smartness
Quotient will be defined in this space.

The Smartness Quotient can be illustrated with the help of the Hexeract. The
six dimensions are the following: Dim. 1: Autonomy, Dim. 2: Human–Machine
Interaction, Dim. 3: Controllability For Complicated Dynamics, Dim. 4: Bio-
Inspired Behavior, Dim. 5: Usability Index Of Machine, Dim. 6: Environmental
Performance Index of Machine. The values of these dimensions determine a point
in the special six-dimensional Smart Cyberspace. The six-dimensional hypercube
represents the space in which the Smartness Quotient is a point, like in the case of
the MIQ.

Why should spaces be discussed in such detail? The world and its higher
dimensions have always interested humans, and it could not be possible to imagine
the existence of smart devices if we did not know how they can become smart.
The above described theory can show us how human mind can create from smart
machines and devices a space that is no longer cognitive or fictive, but a real Smart
Cyberspace.
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Fig. 8 Hexeract [41]
(six-dimensional
hypercube) – Petrie polygon
orthographic projections –
The representation of the
sixth dimension as the smart
cyberspace

5 Smartness Theory, Smartness Quotient

What does Smartness Quotient mean exactly, what is it used for and what does it
describe? It is the measure of the success factor of the people-centred planning,
implementation, use, operation, disassembling and material recycling of machines
in relation to environmental effects and from the point of user experience. Its use is
based on the view of holistic systems, from the planning, through operation to disas-
sembling and material recycling of the machines. It shows how efficiently a machine
can work as an artificial form of life in interaction with humans, the environment and
with other machines. With the help of Smartness Quotient, it is possible to compare
machines in an objectively quantitative way, in terms of how they are capable of
ensuring a safe, sustainable, efficient and convenient life for humans. It can also
help to determine the direction of machine development and to define Machine
Service Quality on the basis of empiric research. In case of traditional MIQ, the
operation of “simple” machines can be examined in a four-dimensional space
with a functionality-based approach, while SQ ensures a knowledge and ability-
based examination in a six-dimensional space, which supports the development of
machines with artificial intelligence with the user in focus.
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6 Conclusion

This chapter has presented the basics of developing smart machines in a micro
and macro perspective, from machine intelligence, through the agents capable of
machine learning, to the theory of networks. Such a view is based on a multi-
dimensional space including MIQ and SQ attributes. We have pointed out the
difficulties of the path leading from machines to smart machines, and discussed the
previously defined and designed characteristics and major components which turn a
machine into a an artificial form of life, in the way Albertus Magnus had imagined.

One of the further objectives of research is to make the SQ value of machines
calculable by quantifying the main components in order to measure and categorise
the beneficiary effects to the society. Besides human failure analysis and usabil-
ity planning, further research will need to deal with hidden errors in technical
systems and automatic corrections by smart-troubleshooting and self-healing. A
further refinement of the major components of EPIoM is possible by defining the
parameters strongly related to smart machines for the more general components.

The development of smart systems is part of the endeavour to ensure human
development, survival and well-being. Machine intelligence and smart systems are
transforming digital societies. In the Internet of Things era, smart-agents embedded
in cyber-physical systems enable new paradigms for Intelligent Transport Systems,
Smart Cities and Smart Factories, where the complexity of infrastructural networks
and its components is growing exponentially. The use of machine intelligence
will also result in increased resilience (including reliability, safety, security, main-
tainability, self-healing, etc.), efficiency and sustainability in future generation
cyber-physical systems.
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23. Øien K, Jovanović A, Grøtan TO, Choudhary A, Øren A, Tetlak K, Bodsberg L, Jelic M (2017)
Assessing resilience of smart critical infrastructures smart resilience based on indicators.
Zenodo, Stuttgart, p 87

24. Jovanovi A, Choudhary KØ, Choudhary A (2018) An indicator-based approach to assessing
resilience of smart critical infrastructures. In: Fekete A, Fiedrich F (eds) Urban disaster
resilience and security. Springer International Publishing, Cham, pp 285–311

25. Schank R. Chapter 8: Smart machines. [Online]. Available: https://www.edge.org/
conversation/marvin_minsky-chapter-8-smart-machines. Accessed 21 Aug 2017

26. Béky Z (2013) Az orvosi eszközök használhatósági tervezése (Usability Engineering). B.
Braun Medical Kft

27. Electrotechnical Commission International (2007) IEC 62366: 2007, medical devices — appli-
cation of usability engineering to medical devices. International Electrotechnical Commission

28. Wang Z, Zhang B, Guan D (2016) Take responsibility for electronic-waste disposal. Nature
536(7614):23–25

https://www.nature.com/news/dna-robot-could-kill-cancer-cells-1.10047
https://searchcio.techtarget.com/definition/smart-machines
https://www.edge.org/conversation/marvin_minsky-chapter-8-smart-machines


24 D. Tokody et al.

29. Necula D, Vasile N, Stan MF (2013) The impact of the electrical machines on the environment.
In: 2013 8th international symposium on advanced topics in electrical engineering (ATEE), pp
1–4

30. Tokody D, Flammini F (2017) Smart systems for the protection of individuals. Key Eng Mater
755:190–197

31. Iantovics LB, Rotar C, Nechita E (2016) A novel robust metric for comparing the intelligence
of two cooperative multiagent systems. Procedia Comput Sci 96:637–644

32. Iantovics BL, Crainicu B (2008) Complex mobile multiagent systems. In: 2008 first interna-
tional conference on complexity and intelligence of the artificial and natural complex systems.
Medical applications of the complex systems. Biomedical Computing, pp 21–30

33. Esfahani A, Mantas G, Yang D, Nascimento A, Rodriguez J, Neves J (2015) Towards secure
network coding–enabled wireless sensor networks in cyber-physical systems. In: Cyber-
physical systems. CRC Press, pp 395–414

34. Zanni A (2015) Cyber-physical systems and smart cities learn how smart devices, sensors, and
actuators are advancing internet of things implementations. IBM developer works, no. April.
pp 1–8

35. Velik R (2008) A bionic model for human-like machine perception. Vienna University of
Technology

36. Csermely P (2009) Why do we like networks? In: Weak links: the universal key to the stability
of networks and complex systems. Springer, Berlin/Heidelberg, pp 5–52

37. Crowcroft J (2011) Network/graph network/graph theory theory. University of Cambridge
38. Bien Z, Bang W-C, Kim D-Y, Han J-S (2002) Machine intelligence quotient: its measurements

and applications. Fuzzy Sets Syst 127(1):3–16
39. Mester G (1995) Neuro-fuzzy-genetic controller design for robot manipulators. In: Industrial

electronics, control, and instrumentation, 1995. Proceedings of the 1995 IEEE IECON 21st
international conference on, 1995, vol 1, pp 87–92

40. Pirisi G, Trócsányi A (2011) Általános társadalom – és gazdaságföldrajz. Pécsi Tudománye-
gyetem, Pécs

41. 6-cube. [Online]. Available: https://en.wikipedia.org/wiki/6-cube. Accessed 21 Aug 2017
42. Wechsler D (1940) Non-intellective factors in general intelligence. Psychol Bull 37:444–445

https://en.wikipedia.org/wiki/6-cube


Challenges and Opportunities for
Model-Based Security Risk Assessment
of Cyber-Physical Systems
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Abstract The design of Cyber-Physical Systems (CPS) poses a number of chal-
lenges, in particular for cyber-security. Eliciting Security Requirements is a key
aspect in the early system design stages; however it is important to assess which
requirements are more stringent and grant protection against the higher-value assets.
Cyber-security Risk Assessment (SecRA) has a key role in determining threat
scenarios and evaluating the risks associated to them but it is a practice that has
been principally developed for IT systems, thus focusing on cyber threats. In this
chapter, we discuss the state of the art in SecRA methodologies and the challenges
to be addressed for developing new CPS-oriented SecRA methodologies. Based on
the most relevant standards for industrial control systems and automotive domain
(such as the ISA/IEC-62443 and the J3061), we propose the adoption of an asset-
driven viewpoint and a model-based approach to SecRA, and we identify current
gaps. In particular we discuss (i) CPS (security) modeling languages and method-
ologies, (ii) vulnerabilities cost models and the network of public repositories of
vulnerabilities, (iii) attacker models and profiles, and (iv) complex cyber-physical
attack chains. Finally, we discuss our vision, focusing on assets and leveraging
model-based design practices can provide a more rigorous approach to SecRA for
CPS, allow taking into consideration their peculiarities, and support to manage the
large complexity involved in their operation. The desired outcome is to provide
the system design team with methods and tools to identify complex attacks and
perform a cost/benefit tradeoff analysis to justify the adoption of specific Security
Requirements and the necessary costs implied by the corresponding mitigations.
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1 Introduction

The design of modern cyber-physical, embedded systems poses complex challenges
in terms of cyber-security. The adoption of (1) more complex and distributed
electronics (e.g. in the automotive domain [1]), (2) an increasing number of software
components (e.g. as reported in [2] the Airbus A320 avionics system has around
80,000 lines of code while the Boeing 777 exceeds 4 million lines), and (3)
remote monitoring, configuration, maintenance, and software update capabilities
(e.g. firmware update over-the-air [3]) provide new entry-points to security threats.
Therefore, system designers need to face the complexity of securing a significantly
increased system attack surface. Following a secure-by-design approach [4], several
standards provide guidelines and processes to support the design and deployment
of secure systems by careful evaluation of external system entry-points and internal
architecture from the perspective of an attacker (e.g. ISA/IEC-62443 for Industrial
Control Systems [5], the ISO/IEC-27000 family [6] and NIST 800-53 for IT
Security [7], DO-356 for Avionics Industry [8], and J3061 for the automotive
domain [9]). A key step, identified in the processes proposed by standards, is that
of Cyber-security Risk Assessment (SecRA), which supports the identification of
threats and the evaluation of the risks to which the system is exposed. The principal
outcome of SecRA is a set of mitigations for the higher criticality risks, which
are translated into derived security requirements and added to a set of Minimum
Security Requirements (MSR) either (1) obtained directly from the customer or (2)
product/domain-specific, or (3) inherited from regulations and standards (such as
the common criteria of ISO/IEC-15408 [10]). See Fig. 1 for a conceptual workflow
showing the role of Risk Assessment and compare also to the J3061 process [9].

SecRA is typically performed as a structured process [11] that guides through the
identification of the key system assets, the elicitation of relevant threats and of the
vulnerabilities they can leverage, and an informal evaluation of the impact (with an

Fig. 1 Role of risk assessment in a secure-by-design workflow
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associated likelihood) that those threats can have on the system assets. Knowledge
of both the application domain and of the (expected) system design is critical to
ensure an effective evaluation of the risks.

In this chapter, we discuss two potential shortcomings of this common approach
to SecRA. First, the reasoning behind the analysis of impact and likelihood is often
not supported by formal artifacts (e.g. functional/architectural diagrams [12, 13]
or attack trees [14]). Thus, the evaluation of completeness of the assessment and
correctness of the results relies entirely on the system engineers (and/or security
experts), with the side effect of producing few or no artifacts that document the
rationale behind the analysis (e.g., for future and third-party reviews). Second, the
classic SecRA process provides limited support for the analysis of the impact on risk
evaluations of any system design change, due to the absence of the aforementioned
architectural artifacts and consequent lack of traceability of risks to system design
elements (e.g. to architecture elements).

The role of SecRA is well understood for IT/software systems (and a number
of tools exist to support it [15]), but this is not the case for Cyber-Physical Systems
(CPS), which are complex systems involving software, hardware, actuators, sensors,
plant and environment interactions with strict performance and safety constraints
[16]. The challenge of secure design of these systems stems from the complex
interaction between physical and virtual components, exposing the physical world
to the effects of cyber threats, with direct impacts on safety (e.g., Stuxnet [17] and
other examples in [18]). Therefore, the aforementioned shortcomings of common
SecRA approaches are more relevant for CPS and cannot be overlooked.

Our first claim is that we envision a fruitful synergy between Model-Based
Design [19] and SecRA resulting in an “MB-SecRA” approach that can (1)
improve confidence on completeness and correctness of SecRA results by providing
reviewable artifacts documenting the risk assessment rationale, and (2) provide
support to change management by explicit traceability of risks to design elements.

A second challenge, rising in modern CPS, is the increasing complexity of
hardware and software, which opens CPS to the risk of sophisticated multi-step
attacks. A notable example is the aerospace domain; with a tremendous increase
in use of software to replace hardware functionalities (e.g. see the study on
software complexity from NASA [20]). Similarly, in the automotive domain, the
number of lines of code (LOC) and of CPUs present in a modern car makes the
system highly subject to advanced cyber-attacks [9]. In commercial applications,
to reduce the time to market, it is common to reuse existing software components,
protocols or platforms and this raises the concern of how wide is the impact of
a known vulnerability. There are large public databases such as OWASP [21] or
CWE [22] that report hundreds of vulnerabilities affecting widely adopted software
components. For hardware components there are no databases of equal scope yet but
we envision a growing need in this area. This complexity of the software/hardware
architecture opens up for complex attacks known as advanced persistent threats
(APT), where an attacker (willing to invest resources and time to archive its
objectives) is able to reach core system assets by exploiting multiple (apparently
not so critical) vulnerabilities in a synergistic way (kill- or attack-chains [23]) to
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achieve increasingly more information about the system and higher privileges, until
he is able to produce system-level damages. Kill chains and APTs are very hard to
identify at system design time and also at run-time due to their sophistication [24].

For a correct evaluation of cyber-security risks in complex systems it is necessary
to change the traditional approach of considering the impact of a single vulnerability
in isolation and turn the attention to attack chains. From this perspective, a
vulnerability may be discovered to play a critical role in multiple attack chains and
thus become one of the highest-ranked among the identified mitigation actions.

A growing number of Security Risk Assessment tools and methodologies (e.g.,
CORAS [25], ThreatModeler [26], Microsoft STRIDE [27]) adopt design artifacts
such as software/hardware architecture schemes, network topology diagrams, and
data-flow diagrams to support the evaluation of system-level effects of local
vulnerabilities. However, they leave the actual evaluation of the impact and the risk
caused by those vulnerabilities to a manual and informal analysis of those artifacts
performed by a system engineer. This direction seems promising but still suffers
from two issues: first, the number of vulnerabilities to be combined can give rise to
hundreds of potential attack scenarios and a high review complexity, and second,
there is limited documentation of the reasoning behind the analysis of system-
level impacts of local vulnerabilities. Our second claim is that, the contribution
of MBD into Cyber-security Risk Assessment should not be limited to driving the
identification and evaluation of risks (e.g., by means of formal architectural artifacts)
but also leverage abstract behavioral models that allow the representation of data-
and function-flows that an attacker can use to propagate the effects of a vulnerability
exploitation. A successful approach in the design of high-assurance systems has
been the adoption of formal, automated and exhaustive analysis methodologies to
ensure the absence of undesired behaviors in software design (e.g. see adoption of
formal methods in avionics [28]), including absence of cyber-security vulnerabilities
such as potential attacks in protocols design [29]. We believe formal security
analysis can be successfully applied also in the area of Risk Assessment.

The objectives of this chapter are (1) to identify challenges and opportunities to
improve current SecRA methodologies for the specifics of CPS, and lay the basis
of an MB-SecRA approach to improve confidence on completeness and correctness
of risk assessment by leveraging formal and traceable model-based artifacts and (2)
provide a high-level a workflow for formal analysis of known vulnerabilities and
identification of attack-chains, and finally, (3) to discuss several open challenges
and gaps that need to be filled to realize the proposed MB-SecRA approach.

1.1 Structure

In Sect. 2, we discuss the state-of-the-art of SecRA and the open challenges for CPS.
In Sect. 3, we discuss the opportunities we envision in developing a model-based
approach to system, attacker and vulnerabilities modeling for Risk Assessment. In
Sect. 4, we describe a possible roadmap to implement model-based SecRA and use
a small example to illustrate the concepts.
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2 Background and Open Challenges

Cyber-security Risk Assessment has been extensively discussed over the past years
[30, 31] and attracted special attention in the field of SCADA systems [32] given
their role in managing and controlling critical infrastructures. Despite the large
amount of work in the field, this area is in practice still widely addressed by using
informal artifacts and tools [33] (such as Excel spreadsheets) and strongly relies on
the domain expertise of review teams.

In this section, we discuss the open challenges that we identified for the
application of model-based SecRA for CPS. Moreover, we discuss the opportunities
to increase the effectiveness of SecRA in terms of (1) completeness and correctness
of the results, (2) capability of managing design changes, and (3) understanding of
system-level effects of attack-chains.

2.1 Cyber-Security Risk Assessment Methodologies

Following to the ISO 31000 [31] (a consolidated standard providing a framework
for risk management), Risk Assessment is characterized by three main activities: (1)
Risk Identification, (2) Risk Analysis, and (3) Risk Evaluation.

In the cyber-security context [30], Risk Identification is the process of recog-
nizing and describing risks. Based on the Assets (what is protected), the Incidents
(events that have negative consequences on the Assets), and the system cyber-
security Vulnerabilities (design or implementation flaws that, if exploited, can cause
an Incident), a Risk identifies the conditions under which external or internal Threats
can exploit existing vulnerabilities with the purpose of causing an incident and,
thus, a damage to the Assets. The Risk Analysis activity has the objective to review
the identified risks and to provide a quantitative estimate for the likelihood of a
specific risk and the related impact on assets. Finally, during the Risk Evaluation
activity, each risk is compared with the evaluation criteria. The quantitative estimate
of impact and likelihood is used to determine the risks that should be considered
for treatment. Risk treatment typically implies the identification of derived security
requirements indicating the required security measures, e.g. elimination of vulner-
abilities or restriction of accessibility. Several methodologies for SecRA leverage
a representation of the system architecture and data-flow to support a more formal
and repeatable approach to Risk Identification and Risk Analysis.

Microsoft proposes a methodology based on (1) the threat classification model
STRIDE (Spoofing, Tampering, Repudiation, Information disclosure, Denial of
service, Elevation of privileges) and (2) a language for threat modeling based
on abstract software elements (Entities, Processes, Data-flows, Data Stores, Trust
Boundaries) to represent and analyze paths that links vulnerabilities to incidents
[34]. STRIDE than allows to choose to proceed either “per component” or “per
interaction” to perform the assessment of risks. A tool (Microsoft Threat Modeler)
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implements STRIDE “per component” and supports the application of STRIDE
categories to each component in the threat model. Pre-determined templates are
available for typical software components (e.g. services, databases) with specific
questions to characterize the risk for the specific component. In this methodology
the architecture model has mainly the role of supporting reviews and ensuring
completeness of SecRA, but does not allow understanding the actual effect at
system-level of the component vulnerabilities. This focus on a specific library of
software components together with the lack of system-level assessment leads us to
consider this methodology not adequate to CPS.

The SESAR SecRAM methodology [35] has an implicit dependency to the
notion of system architecture. It starts from the identification of Primary Assets,
that are abstract critical system functions or services, and adopts an approach
similar to STRIDE by considering a categorization of the threats based on the CIA
(Confidentiality, Integrity and Availability) paradigm. Based on these categories,
SecRAM is able to provide a preliminary assessment of the impact areas and a
corresponding evaluation of criticality. By leveraging a representation of the physi-
cal architecture of the system, SecRAM maps the Primary Assets to the Physical
Assets: impacts are inherited in this mapping process. Thus, the methodology
can proceed backwards considering the vulnerabilities of each component and
producing chains Vulnerability-Impact-Asset. The final step consists in computing
the likelihood of the risks. The advantage of SecRAM is to take into account
the system-level by starting from Primary Assets. The mapping to the (physical)
architecture provides a better understanding of how the vulnerabilities affecting
single (physical) components might impact on Primary (Immaterial) Assets. Still,
this valuable information is provided by the system and security engineers through
an informal review.

CORAS [25, 36] is an explicitly model-driven SecRA methodology in the sense
that models are not implicit but are adopted to support and execute all the Risk
Identification, Analysis and Evaluation activities. The diagrams and views provided
by CORAS are designed to be straightforward and to enable the capture and
documentation of relations between threats, vulnerabilities, incidents and impact
on assets. The diagrams are created with the purpose of supporting discussion
and documenting structured brainstorming sessions. CORAS is the methodology
closer to our vision since its process is based on a functional justification of
the vulnerabilities effects. Threat Diagrams are graphs structured into specific
layers: (1) a mapping of Assets to Incidents affecting them, (2) a mapping of
Incidents to a chain of internal System States and Vulnerabilities enabling this
chain, and (3) a mapping of vulnerabilities to Threats that can exploit them. This
representation provides a valuable representation of the potential path of an attack
(Threat Scenario), it is useful to justify how a Threat agent is expected to exploit
Vulnerabilities to affect the Assets, and clarifies the risk analysis rationale. However,
Threat Diagrams are very high-level and applicable for the concept design phase
[12] (i.e., the very first engineering design step). They are created in a non-rigorous
way by system and security engineers and their level of abstraction makes it hard
to extract concrete attacks from the results (such as those obtained from CWE
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[22], NVD [37] or threat reports). The motivation is to be found in the fact that
Threat Diagrams are unrelated to the actual system logical/physical architecture and
behavior. Thus, there is no formal justification for the identified Threat Scenarios,
captured and described by the analyst based on his experience.

Our claim is that the manual extraction of Threat Scenarios is extremely complex
and highly error prone when considering a CPS, and may be unfeasible for large-
scale CPS, where there can be thousands of complex attacks. For this reason we see
the opportunity of improving state-of-the-art risk assessment approaches to allow
the systematic extraction of Threat Scenarios by leveraging different system view-
points (e.g., logical and physical architectural views, behavioral and vulnerability
models, attacker models). Models can also support automated extraction of Threat
Scenarios, thus making the Risk Assessment activity less error prone. In the context
of model-based system design flows [19], systematic extraction of Threat Scenarios
from models can pave the way to the identification of potential attacks that are easier
to reproduce on the actual system in the security validation phase.

2.2 CPS Design Languages for Security

The systematic or automated extraction of Threat Scenarios and the consequential
analysis of risks are applicable under the assumption that the CPS design is based
on models and a specific security viewpoint is captured and documented. In this
section, we briefly review the state-of-the-art of system modeling languages and
their support for security viewpoints.

CORAS is based on UML [13], a robust and highly adopted [38] (open) standard
modeling language for software engineering. In UML, it is possible to define
two main types of diagrams: structural (e.g., class and package diagrams), and
behavioral (e.g., sequence and activity diagrams). The structural diagrams are used
to decompose software into different parts (e.g., packages, classes, methods) while
the behavioral diagrams supports the design of the semantics of those different
parts. UML supports mechanisms, called profiles, which allow its users to make
extensions to the language itself (i.e., semantics refinements of UML). The CORAS
language for risk modeling was initially defined as a UML profile [39, 40], and
standardized as part of the UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms (UML QoS&FT). There exist
several other profiles that extend UML to model security properties or risk-related
information. Examples of the former are SecureUML [41] and UMLSec [42], while
examples of the latter are Abuse-Cases by McDermott and Fox [43].

In [43], McDermott and Fox first proposed the idea of applying specialized use-
cases for the purpose of threat identification, and misuse-cases [44] (that extends
UML use-cases) to elicit security requirements. Another approach is provided by
UMLSec, that extends UML with tags (called stereotypes) that allow the modeler
to define security properties and constraints. Similarly, SecureUML extends UML
allowing the modeler to express access control policies as constraints. The focus of
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UML is mainly on software development rather than embedded systems or CPS. On
the other hand, SysML [45] (Systems Modeling Language) extends UML to support
the design of complex hardware/software systems by introducing new diagrams to
define requirements and constrains on the system properties (e.g., performance or
reliability) and block diagrams to better describe the structure of hardware/software
components and interfaces. Similarly to UML, SysML extensions have been
proposed with the goal of introducing security concepts to the SysML language.
SysML-Sec [46, 47], developed in the context of the EU project EVITA [48],
is one such extension. SysML-Sec is designed to take into account security and
safety during the engineering development of embedded systems and shares some
commonalities with our vision. Specifically, SysML-Sec leverages SysML block
and state machine diagrams enriched with security aspects that allow the modeler to
consider both architectural and behavioral aspects. However, SysML-Sec lacks of
any physical aspect in attack modeling and no support for considering attack-chains
exploiting multiple vulnerabilities in sequence.

The Architecture Analysis and Design Language (AADL) is designed for the
specification, analysis, automated integration and code-generation of real-time
distributed systems [49]. In [50], the authors consider a set of security requirements
that have been proved to mitigate set of attacks (exploiting known weaknesses in the
software architecture designs) to authentication and input validation methods. The
authors were able to define architecture design constraints that, if satisfied, ensure
the satisfaction of those highly relevant security requirements. Exploiting this result
and the available analysis tools for AADL they were able to formally prove whether
an architecture is robust against attacks to authentication and input validation
mechanisms. The approach leverages STRIDE to derive specific authentication and
validation requirements for the system under analysis, then these requirements are
used to validate the architecture against the above mentioned security requirements.
This approach provides high assurance against a fixed set of security requirements
that can be expressed in terms of architectural constraints. The challenge we propose
is to develop an approach that is not specific for a set of security requirements
but can be applied to general security requirements to validate both the system
architecture and the system behavior.

2.3 Open Challenges

In this section, after the review and assessment of the state-of-the-art, we summarize
the challenges identified for Cyber-security Risk Assessment of CPS:

1. Model-driven method for Cyber-security Risk Assessment of CPS. The adoption
of models can (a) increase confidence and completeness in risk assessment, (b)
provide formal support for a more objective evaluation and documentation of
the risk assessment rationale through reviewable artifacts, (c) support change
management though traceability of risks to design elements.
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2. Support for risk assessment of complex cyber-physical attacks. To overcome
the complexity of modern CPS hardware and software, the high number of
vulnerabilities, and to be able to evaluate risks of sophisticated multi-step
attacks we envision the development of tools that can automate portions of the
risk assessment leveraging the models fostered in challenge (1). The research
community is well aware of this problem and has been actively working on that
over the past few years ([51–54] to name a few).

3. Formal models of CPS. Modelling a CPS is challenging because it requires to
consider physical aspects (e.g. accessibility) together with software and network
aspects. Further understanding of potential attacks can be achieved considering
also the system behavior, that is, use cases, data flows and components’ role in
the protection of the system assets. For this reason it is important to develop a
view-based approach to system modeling to allow easier maintenance and review
of the different viewpoints.

4. Formal models of vulnerabilities and attackers. To have a formal approach to
assessing complex risk scenarios it is necessary to capture vulnerabilities and
their effects on the nominal system behavior. There is still no broadly accepted
library of vulnerabilities even though (as we are going to describe in Sect. 3.3.2)
there exists a number of libraries of public vulnerabilities. The problem with
existing vulnerability libraries is twofold: (a) representation of vulnerabilities is
often informal, and (b) for industrial products it is often impossible to retrieve
vulnerability reports. For this reason, a vulnerability library is an important asset
for a company and should be devised to be reusable to mitigate maintenance
costs. A second important part of the risk assessment model is the attacker, which
is required to capture the potential interactions with the system as well as the cost
and likelihood of the single events.

3 Model-Driven Cyber-Security Risk Assessment

In this section, we discuss some opportunities we currently identified in the
roadmap to address the open challenges discussed so far. We consider, in particular,
abstraction levels, expressiveness, and complexity of CPS modeling. We propose
an approach to vulnerabilities and attackers modeling and we also consider aspects
related to cost models.

3.1 CPS Formal Model and Abstraction Level

The adoption of formal system modeling languages is influenced by expressiveness,
usability, and support by automated tools. Expressiveness of a formal language
is directly related to the level of abstraction of the system model. Modeling the
system in high details has the advantage of lowering the gap between the model and
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the real system, resulting in more precise analyses, at the cost of maintenance and
high skills required to develop the models. The correct tradeoff between complexity
and abstraction level is the principal aspect to consider. However, for security there
is also another axis to be considered, which is the complexity of defining correct
security models and properties, see for example the interesting discussion on how
to define a system to be secure [55]. To give an example of this, a vulnerability
may be publicly available and studied, but the impact of that vulnerability has to be
related to the specific system and depends also from the perception of the system
owner. For this reason Assets are a key input that should be provided by the system
owner for any security analysis.

To evaluate the system-level impact of a vulnerability, a model of a CPS
should consider both its architecture and its behavior. The architecture captures the
topology and the interactions between components; while the behavior defines the
dynamics and functionalities of the CPS. The formal modeling of architectures has a
fairly extensive reference literature and several surveys exist on the topic (see, e.g.,
[56] for the protocols, and [57] for the architecture). Formal models of protocols
behavior typically rely on transition system expressing how the information is sent
(structure of the packets) and the evolution of the knowledge of the parties involved
in the communication. Similarly, the architecture should take into account how the
topology allows the exchange of information between subsystems. The behavior of
the overall system relies on the behaviors of the various components of the system
and, in turn, on the inputs/outputs generated and sent between components.

As discussed in [51], the correct modeling of the physical environment (e.g., the
dynamic of the system or the laws of physics) of the CPS plays an important role
in the correctness of the modeling and of the results of the security analysis. To
mitigate the effort and complexity of modeling the physical environment there are
opportunities in automated identification of the dynamic of the system [58], which
is still an open research challenge. It is important to consider that faithful physical
models may be hard to analyze formally [59] and can benefit from domain specific
abstractions leveraging expressive formal languages [60]. Core formal analysis
engines (e.g., Z3 [61], nlSAT [62], Yices [63], MathSAT [64], CVC4 [65]) have
made big steps forward in solving non-linear mathematical models, thus making
formal analyses closer to be applicable to CPS, see for example the promising
benchmarks recently obtained by the NuXMV model checker [66]. In summary,
there are several open scientific challenges in security analysis of CPS and we see
opportunities emerging for formal and automated extraction of attack scenarios.

3.2 Attacker Models

In the literature there is an extensive list of (formal or semi-formal) attacker models.
One of the most widespread attacker models is the so called Dolev-Yao model (DY)
[67]. The DY has been extensively used in the past few decades in a number of
security protocol verification tools (e.g., ProVerif [56], MaudeNPA [68]). For the
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purpose of security analyses, protocols are modeled as a set of agents exchanging
messages over a network. The (DY) attacker is usually assumed to be part of
the network and to be able to read as well as modify the messages, performing
operations such as encryption and concatenation. Protocol analysis typically applies
the ‘perfect security’ assumption, where the attacker cannot break cryptographic but
only leverage the protocol logic for the attack.

The model of the attacker for CPS shall be different from the ones considered
for protocol verification [53]. Usually, the focus is not on cryptography but more
on the control of the network extended with some physical properties (e.g., the
physical location of the attacker with respect to the CPS [69]). In fact, the physical
part of the CPS allows the attacker to perform a number of attacks which extends
to physical interactions with the system (e.g., physical-layer interactions or side-
channel attacks). There is still no unified theory of a cyber-physical attacker model
but some approaches have proposed their attacker model for CPS.

3.2.1 Profiling the Attacker

We remark that the focus of risk assessment is not on identifying new vulnerabilities
but rather to be able to precisely estimate the risk associated to known vulnerabil-
ities. Therefore, we are not interested in an attacker that can show, e.g., new flaws
on a CPS but on an attacker that can leverage known vulnerabilities to impact the
assets of a CPS.

According to [53] “an Attacker Model (together with compatible system models)
will ideally fully characterize the possible interactions between the attacker and
the system under attack. In particular, the model will define constraints for the
attacker (e.g. finite computational resources, no access to shared keys)”. Below we
summarize the main characteristics of the attacker (i.e., attacker profile) that can
be used as a basis for the definition of a vulnerability model. In the description we
stress in italics the metrics we derived from [53].

– Knowledge. We consider the worst-case scenario and a fair attack surface, where
the attacker has an incomplete understanding of the system under attack (system).
The model specifies sub-system that are not directly accessible from the attacker,
but also the knowledge of the attacker about those sub-systems and how they
work (e.g. what communication protocols are in place, credentials, etc.). The
attacker has (partial) visibility over a protocol or the functioning of a component
but, in general, cannot directly modify the behavior of components (source code).
Therefore, we can consider cases where the attacker just waits until the system
reaches a specific configuration so that he can perform his attacks. The offensive
skills of the attacker are strongly connected to the vulnerabilities of the system,
i.e., an attacker can interact with the system as a regular user (physical), and can
exploit attacks that leverage vulnerabilities of the system.

– Resources. We consider scenarios where the attacker has physical access to the
system, and scenarios where the attacker needs to exploit some vulnerability to
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Fig. 2 System design extended with a security viewpoint

access to the system. The effort that the attacker puts into his attacks is also an
important parameter. It is possible to formalize the notion of cost for each attack
step and have an analysis to take into account the cost model for effective analysis
of the most likely attack.

– Psychology. The attacker is dishonest and driven by (i) the maximization of
the impact of a vulnerability on the nominal behavior of the system and on his
knowledge, and (ii) the cost of exploiting such vulnerability (aim). The strategy
of the attacker is driven by the exploitation cost of the vulnerabilities and the
assets of the system model.

The attacker model can be seen as an extra component that is able to stimulate
both the nominal inputs of the system and also the vulnerabilities, which are able
to change the nominal behavior of the system. We also envision having another
element of the model that is able to capture costs and impacts. The attacker may
choose to exploit a vulnerability based on the cost associated to the relative attack.
In Fig. 2, we provide a conceptual representation of how a system design model can
be extended with a model of the attacker and a model of costs/impacts.

The key aspects that we have not discussed yet are how to model vulnerabilities,
their effects on the components behavior, and the cost of exploitation.

3.3 Vulnerability and Cost Models

Formal risk assessment requires correct modeling of vulnerabilities and their effects
[70]. Typically, public vulnerability repositories do not provide a description of
vulnerabilities effects that is sufficiently detailed to support formal modeling. This is
not surprising, because vulnerabilities effects are software/hardware/OS-dependent
and are much better described in terms of the mechanism that they exploit, to allow
covering several cases and conveying the logic of the attack, rather than the technical
detail. Therefore, a model of the vulnerability effect is an effort that is application-
specific and becomes an important asset of a company. To mitigate this effort it is
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important to define ad-hoc libraries (which often remains private) [71] that enable
reuse. Another approach is to encode vulnerabilities in the system models as it is
done, for example, in security mutation testing [72]. In order to provide a general
methodology, similarly to [71], we now discuss the opportunities available in public
software vulnerability repositories.

The National Vulnerability Database [37] (NVD), is a public database provided
by the National Institute of Standards and Technology of the U.S. Department of
Commerce. NVD provides a detailed overview of each vulnerability by providing
(1) an informal description of the attack vector and the conditions under which
the vulnerability is exploitable, (2) affected software and versions, and (3) a
scoring number, defined according to the Common Vulnerability Scoring System
(CVSS) [73] and providing an evaluation of the attack complexity and of the
potential impacts. Every NVD description has a unique Common Vulnerability and
Exposures (CVE) identifier and description [74]. The CVE database is maintained
by the MITRE organization with the objective of facilitating and standardizing
information exchange on vulnerabilities.

The Open Vulnerability and Assessment Language (OVAL) [75] is an important
tool for automated assessment of vulnerabilities: it provides a formal description of
the necessary preconditions for exploitation of a CVE entry. OVAL descriptions are
structured to be processed by an automated tool in order to evaluate whether a CVE
is applicable to a specific system/environment.

Another important source of information is the database of Common Weaknesses
Enumerations (CWE) [22]. A CWE entry describes a weakness that can occurs in
a software architecture, design, code or implementation that can lead to exploitable
security vulnerabilities. So a CWE description provides details and examples on
poor software designs that can lead a software system to be subject to a CVE. Some
CVE entries are linked to one or more CWE entries.

Patterns of use of vulnerabilities are captured in the Common Attack Pattern Enu-
meration and Classification (CAPEC™) [76] database, where attack prerequisites,
outcomes, indicators, execution flow, severity, solutions and mitigations, attacker
skills or knowledge required, and attack variations are captured. Used together,
CWE and CAPEC provide a complete viewpoint on where and how software is
likely to be attacked.

The amount of information provided by this network of repositories covers
several important areas for understanding risks in software design: (i) typical attack
patterns and vulnerabilities they exploit, (2) existing preconditions on software
design, (ii) the cost of exploitation and access of a vulnerability, and (iii) the
typical impacts of the vulnerabilities. An open challenge is how to create a
similar infrastructure for cyber-physical systems. The principal limitation we should
overcome is lack of disclosure of information on commercial HW/SW components.
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3.3.1 Mitigation/Exploitation Cost of Vulnerability Exploits

We consider two different costs: the cost for the attacker to exploit an attack due
to a vulnerability of the system (exploitation cost), and the cost to mitigate/fix the
vulnerability and prevent the attacks associated to it (mitigation cost). Information
on the exploitation cost could be derived from the vulnerability databases described
in the previous section. The estimate of the mitigation cost is depending from a
number of factors that are out of scope for the current discussion, including the
estimation of the value of the asset to be protected.

We now discuss metrics provided by the CVSS system and can be used to define
an estimate of the exploitation cost of an attack:

– Severity base score, estimates the severity of a CVE. An attacker is likely to put
more effort in exploiting high-severity vulnerabilities. The severity of the CVSS
(version 3.0) is divided into four categories: low (0.0–3.9), medium (4.0–6.9),
high (7.0–8.9), critical (9.0–10.0). This value is calculated as a function of other
metrics: exploitability, scope, and impact.

– Exploitability score, is the most important factor in the equation to calculate
the exploitation cost. It estimates how easy it is for an attacker to exploit a
vulnerability through an attack. The CVSS exploitability score relies on the
following metrics.

Attack vector, the context by which the exploitation is possible.
Attack complexity, considers the conditions, beyond the attacker control, that

must exist to exploit the vulnerability.
Privileges required, determines the level of privileges an attacker must have to

exploit the vulnerability.
User interaction, determines if the vulnerability requires user involvement or

collaboration to be exploited.

– Scope (or authorization scope). A Boolean value used to estimates if a vulnera-
bility can impact resources beyond its means of privileges.

– Impact score. Estimates the impact on the core confidentiality, integrity and
availability security properties.

Considering cyber-physical systems, there is a number of areas where research
on the definition of adequate metrics. For example, we should include the physical
distribution of the system, the physical accessibility, the effort to influence the state
of a plant and disguise supervisory controls. On the other side, the potential impacts
are enormous and therefore be motivating for higher investment.

3.3.2 A High-Level Representation of Vulnerabilities

A first approximation for representing vulnerabilities for the purpose of high-
level Security Risk Assessment is to describe (1) the preconditions that allow
the exploitation of the vulnerability by the attacker, and (2) how it impacts the
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Fig. 3 (left) Exploitation graph and (right) its implementation in a toy example

system. An exploit can be used whenever the preconditions are in place in the
current status of the system. However, the attacker does not use all the exploits
whenever he can, but he considers the cost of using an exploit and tries to select the
cheapest combination of exploits that reaches the attacker’s goals. The impact of the
exploitation of vulnerabilities in CPS is a deviation of the system behavior from the
nominal one, leading to damages to the system assets.

If we assume the nominal system behavior is represented as a transition system
an exploit can be modeled as an enriched transition from a nominal state of the
system model to a new state, enabled by the exploitation of a vulnerability. As
depicted in Fig. 3 (left), a vulnerability is enabled when specific attack preconditions
are satisfied in a system state. The vulnerability, once exploited, results in a set of
post-conditions, whose effects entail a variation of the system state. Whenever a
vulnerability exploit is executed, the attack cost is incremented and a new system
state is reached.

As an example, in Fig. 3 (right), we assume that an access control panel requires
demonstrating valid credentials through use of a card to access to a restricted
maintenance room of a CPS. The vulnerability is modeled so that whenever the
attacker has physical access to the authentication panel (precondition), he can
exploit an integrity vulnerability (attack), e.g. by physical tampering of the card
reader, and gain access to the CPS. The post-conditions are expressed in terms of
the effects of the exploitation of the attack, i.e., the changing of the physical position
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of the attacker. This is a deviation from the system nominal behavior that expects
the access to be granted only to persons that own a badge.

4 A Vision for CPS Security Risk Assessment

We now provide a summary of the challenges and opportunities discussed so far
in the form of a high-level description of how we envision SecRA to be performed
for CPS. The purpose is to stimulate further discussions and to serve as a starting
point for the definition of a research roadmap on this novel and challenging area.
The summary we propose leverages practices that are already adopted in safety-
relevant and high-assurance systems (e.g. model-based design flows [19], structured
approaches to security and safety from the automotive and aerospace domains
[8, 9], and standards for Cyber-security Risk Assessment [5]) but requires to
address multiple challenges before reaching the required level of automation and
formalism.

1. Secure system architecture and behavior design is structured into progressive
refinement steps, supported by models, and organized into viewpoints:

1.2 Refinement steps: (ref. to Fig. 1) the design starts from the definition of
a concept, where there is no notion of security and the principal system
functions are identified and allocated to a high-level physical architecture,
then is refined into a functional security architecture, where (given a decom-
position of system functions into component functions and a refinement of
the physical architecture by defining interfaces and data-flows) the security
measures and controls are identified on the basis of a preliminary SecRA,
then it is finalized into a technical security architecture, where (given a
complete definition of system functions, physical components interfaces and
data-flows) the security measures and controls are defined in details on the
basis of the results of SecRA.

1.3 Models: should cover both the architecture and the behavior

1.3.1 Architecture: shall be used to understand the attack surface, the attack
paths, the location of security controls and measures, the layers of
security to design defense in depth.

1.3.2 Behavior: shall be modeled to support automated extraction of threat
scenarios, to support simulation of identified threat scenarios, and also
to allow better run-time security measures and controls.

1.4 Viewpoints: shall be used to decompose the system modeling activity into
teams (function, safety, security, validation, environment, etc.), to manage
complexity of the overall design, and to leverage work shared across team.

2. Adoption of Formal Behavioral Models: the adoption of formal models can be
challenging, require specific expertise, and cause an extra effort in the process.
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However, it opens up the opportunity of performing automated and exhaustive
analyses, where the provided assurance is higher than with other methods. It
requires the use of specific modeling languages, supported by formal analysis
tools, that are typically very effective to model digital systems and have currently
partial support for complex, physics-based models. For all these reasons, we
envision the use of formal and automated analyses for SecRA either at the level
of the functional security architecture, where more abstract models can be used,
or for the Risk Assessment of specific high-criticality components.

3. Compositionality and Reuse: the architecture and behavioral models should be
developed in a compositional approach (ref. to Fig. 2), to allow replacement and
reuse of different models to construct multiple versions of the Nominal System
Model, defining the system behavior under normal conditions. Compositionality
applies also to the Attacker Model since, depending on the asset we should
protect and on the environment the system shall operate in, we envision reusing
the nominal system behavior model, and composing it with different attacker
profiles. Similar considerations apply to the Cost and Impact Model and, clearly
to the Environment Model. Finally, we envision the need of defining and maintain
a Library of Vulnerability Models that should be applicable by composition to the
single components and have the role of changing the nominal component model
to a Component Under Attack Model. This component-driven extension approach
shall support the derivation of a System Under Attack Model without additional
effort.

4. Security Goals and Risk Assessment: we take an asset-driven approach to SecRA,
which (in our experience) allows us to better define the security goals in terms of
minimizing the loss of value of the assets. Security Goals should be formulated
in terms of description of events that have an impact on the assets (Incidents) and
should be avoided. Asset values can be used to provide a quantitative ranking
of the Incidents. Therefore, formal analysis can be used to evaluate multiple
scenarios that can lead to an Incident by leveraging known vulnerabilities of the
system. A cost/benefit analysis can provide a ranking of the different attacks,
in terms of the cost they require from the attacker and the impact they can
cause on Assets. From this analysis, we expect to extract the most critical risks
and perform a root-cause analysis to determine what vulnerabilities are more
influential and shall be mitigated.

As discussed in Sect. 2.2, there are several existing languages and toolchains that
can support the System Architecture and Behavior Design step described previously.
A notable example is SysML, which embeds the notion of viewpoint natively,
supports compositional definition of behaviors by Sequence Diagrams or Statecharts
[77], and is implemented in several toolchains, that typically allow exporting models
to perform analyses leveraging external tools [78].

Concerning the modeling of component vulnerabilities, as described in the
Compositionality and Reuse step, there are several challenges and opportunities,
described in Sect. 3.3. Our current vision on how to extend the system nominal
behavior has been described in Sect. 3.3.2. The effect of a vulnerability (which



42 M. Rocchetto et al.

Fig. 4 WTP physical architecture

can be extracted from public repositories such as NVD) is expressed in terms of
behavioral changes of the nominal system model or as changes to the knowledge
of the attacker. The latter case can lead to a reduction of the cost associated to the
exploitation of vulnerabilities, thus influencing the Cost/Impact Model.

Finally, there is an interesting aspect to be discussed on the Security Goals and
Risk Assessment step. Security Goals should capture conditions that avoid Incidents
to Assets. Our current approach on this aspect is to formally define Security Goals
as invariants with an associated numeric value and a related Asset. Violation of an
invariant represents a state of the system where an Incident occurred and damage
has been caused to an Asset with a specific value loss. This allows ranking attacks
in terms of the value loss they produce. Let us now consider an example where some
of the ideas discussed so far can be seen in practice.

Example We consider a Water Treatment Plant (WTP) as in Fig. 4, completely
disconnected from the Internet, during operation, located in a Machine Room phys-
ically accessible through a Maintenance Access Gate through an Authentication
Panel (AP). The WTP is periodically maintained by a technician, who connects his
laptop to the Supervisory Control PC to collect performance and diagnosis data,
which are sent back to the WTP production company, both for diagnosis purposes
and for performance analysis.

Similarly to [79], inside the WTP there is an initial tank where the raw water is
stored. The tank is connected via pipes to several intermediate steps where the water
is purified by means of chemicals which are then filtered by filtering procedures
(e.g., Uultraviolet filters for dechlorination). The principal asset we consider in this
example is the physical intergrity of the raw water tank. Two important indirect
assets are (a) safety of technicians (possibly in the premises of the plant) and (b)
building integrity, which may be compromised by the effect of burst and water
dispersion. For the sake of simplicity, we suppose there are only the following
threats (summarized in Table 1):
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1. Pressure safety control, the WTP system does not have a safety control against
the increase of pressure in the tank above a critical threshold. Therefore, if
attacker is able to change the pressure of the raw water tank then he can
lead the tank, eventually, to burst. Considering the accessibility of the WTP,
its architecture, and the fact that controllers are not connected to the Internet,
the only way for the attacker to increase the pressure is by acquiring physical
access to the WTP and manipulate the valves and pumps of the system. The
cost for the attacker is high since (we supposed) access to the plant requires
valid credentials (which the attacker does not know). The mitigation cost is
high too (8/10) because it requires the installation of an intrusion detection
system (plus additional costs to manage the system) and/or the introduction of
authentication/encyption schemes in the communication between components.
We note that the assumptions on both the vulnerability and the costs are fair since
similar situations have been reported on real-world water treatement testbed and
plants (see, e.g., [80]).

2. Ethernet local network, since the local network is isolated from the Internet, the
are no security protocols implemented to guarantee the basic security properties
(i.e., confidentiality, integrity, availability). An attacker can easily modify the
content of the packets exchanged between PLC. We assume (as in [81]), that
the logic of the control of valves and pumps is implemented in the Supervisory
Control PC while PLC converts analog to digital messages. Therefore, if the
attacker has access to the Ethernet network (similarly to [80]), he can modify the
payload of the network packets affecting the control logic of valves and pumps.
Considering the accessibility of the WTP, and the isolation from the Internet,
the cost for the attacker is high. The mitigation costs are high too, since the
introduction of security mechanisms that guaratee the basic security properties
requires the re-ingeneering of the local network. Furthermore, those security
mechanisms need to take into account the timing constraints such as the safety
response time of the WTP that may result in ad-hoc solutions or delicate fine-
tuning of security protocols.

3. Authentication, the storage room hosting the WTP can be accessed through
authentication on a panel. The panel is subject to (a) physical tampering, (b)
attacks through accessible port used for firmware updates, and (c) remote attacks
through the access control management server. An attacker that is able to exploit
any of these vulnerabilities can gain access to the room. We assume that for an
attacker can be realatively easy to bypass authentication procedures since there
is a wide number of vulnerabilities and social engineering techniques that have
been effectively exploited in the past decades. For the same reason, properly
mitigate this risk is not trivial but a number of techniques can be used to mitigate
this risk.

4. USB, disbling USB ports in a computer connected to a plant increases the security
of the overall system with a relative cheap cost of finding other methods to
transfer data into the system. On the other hand, if not disabled, many examples
(e.g., [17]) showed that USB can be easily exploited by attackers to get access to
the system and/or to introduce malwares.
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Table 1 Exploitation and
mitigation cost in isolation

Threats Attacker cost Mitigation cost

Pressure changing 10/10 8/10
Ethernet integrity 9/10 9/10
Authentication bypass 4/10 6/10
USB (SCADA system) 8/10 2/10

An example multi-stage attack that can be identified by the application of
a model-based SecRA mixes cyber and physical vulnerabilities with ascending
attacker cost.

1. The attacker access to the WTP exploiting social engineering attacks (e.g.,
piggybacking or tailgating) or integrity vulnerability exploits of the AP.

2. Once the attacker has access to the CPS, he can exploit the USB vulnerability to
get access to the network of the plant.

3. Since there are no security mechanisms on the Ethernet network, the attacker can
easily alter the payloads of the messages.

4. The attacker alters the nominal behavior of the system (e.g., opening the intake
valve and closing the pump after the raw water tank) and burst the water tank.

Such attack shows that the exploitation cost in isolation of Table 1 should change
after the discovery of attack chains. In fact, Table 1, the attacker exploitation cost of
the USB, and Ethernet threats is high because based on the assumption that access to
the CPS is forbidden. However, the attack shows that the attacker cost of exploiting
USB, or Ethernet threats is linked to the authentication bypass cost.

Summarizing, instead of estimating the risk as the vulnerability exploitation
cost in isolation, model-based analysis techniques can be applied leveraging system
architecture and nominal behavior models extended with vulnerabilities. In this way,
one could discover complex attack chains and estimate the risks more precisely,
based on the interconnection between different vulnerabilities. In our example, the
authentication bypass vulnerability has the highest risk because, if not mitigated,
can be used to lower the exploitation cost of all the other vulnerabilities.

5 Conclusion

We discussed challenges and opportunities to develop a model-based SecRA for
CPS, adopting an asset-driven viewpoint to evaluate risks at system-level, and
we identified gaps. We considered modeling languages, techniques, and tools
for the SecRA, discussing limitations in their direct application to a CPS. We
defined a roadmap of research opportunities for (i) CPS (security) modeling, (ii)
vulnerabilities and cost models, (iii) integration with public vulnerability repos, (iii)
attacker models and profiles, and (iv) automated discovery of cyber-physical attack
chains.
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Abstract Cyber Physical Systems are facing huge and diverse set of security risks,
especially cyber-attacks that can cause disruption to physical services or create a
national disaster. Information and communication technology (ICT) has made a
remarkable impact on the society. As a Cyber Physical System (CPS) relies basically
on information and communication technology, this puts the system’s assets under
certain risks especially cyber ones, and hence they must be kept under control by
means of security countermeasures that generate confidence in the use of these
assets. And so there is a critical need to give a great attention on the cybersecurity
of these systems, which consequently leads to the safety of the physical world. This
goal is achieved by adopting a solution that applies processes, plans and actions
to prevent or reduce the effects of threats. Traditional IT risk assessment methods
can do the job, however, and because of the characteristics of a CPS, it is more
efficient to adopt a solution that is wider than a method, and addresses the type,
functionalities and complexity of a CPS. This chapter proposes a framework that
breaks the restriction to a traditional risk assessment method and encompasses wider
set of procedures to achieve a high level strategy that could be adopted in the risk
management process, in particular the cybersecurity of cyber-physical systems.
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1 Introduction

A cyber-physical system refers to the system that combines both cyber and physical
resources, where there is a strong relation and coordination between these resources.
Such systems are controlled or monitored by computer-based algorithms, tightly
integrated with the internet and its users. CPS is basically a control system with
distributed networked, adapted and predictable, real-time, intelligent characteris-
tics, where human-computer interaction may exist. It is widely used in critical
national infrastructure, such as electric power, petroleum and chemical and so on
[1]. Moreover, many urban transportation and railway systems around the world
have deployed some form of communications-based automatic train control (e.g.,
[2]). And in those systems, multiple cyber components exist, including wireless
communication. The potential implications of this evolution could be multi-faceted
and profound, especially when it comes to the issue of security. If such systems were
subject to a physical or cyber threat, the consequences will be unimaginable. These
systems are susceptible to different types of risks related to information systems
vulnerabilities. No one doubts about the hazardous consequences that would occur
in case a malicious software succeeds in controlling the system, i.e. any fail in
systems controlling drive-less metros will lead to huge loss. Security breaches in
the cyber domain, such as falsified information or malicious control logic, can have
a complicated impact on the physical domain [3]. “The cyber breach will lead to
complicated physical consequences”. Cybersecurity breaches can range from no or
limited impact to Distributed Denial of Services (DDoS), stealing of data, or even
taking over control of systems and harm the physical world [4]. In energy industry,
the computer system of Iran Bushehr nuclear power plant was invaded by “Stuxnet”
in 2010, leading a serious chaos in the automated operation of the nuclear facilities
and a serious setback of Iran’s nuclear program. In transport service, in the network
for managing and monitoring the operation of the Shinkansen, due to an exception
in the management system of control schedule, signaling and line switching point
in 2011, Japan’s 5 Shinkansen operation management system encountered failure,
15 trains were in outage, 124 trains were delayed and 8.12 million people’s travel
were affected. In water Industry, in 2011, Illinois water system was hacked and
a malfunction occurred in the water pump SCADA, which leading to the pump’s
damage and scrap. In this way, we can conclude that CPS security is so important
that risk incidents in the system may affect national security and stability. Taking
all these security incidents seriously, we conclude that any attack in the cyber layer
of the cyber physical system could lead to hazardous situations and even to loss in
lives [1].

There are several approaches for the problem of risk assessment and treatment:
informal handbooks, methodical approaches or supporting tools, where all provide
a guide for risk assessment and treatment. However, methods might differ in some
steps, or in the way of identifying and valuating the assets or threats. Some are
basically used in cyber security of information systems, and others can be used
in physical security. Many of the proposed solutions try to measure or estimate
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the probability and the severity of the risks after identifying the assets and threats
using traditional IT risk assessment methods, some of these solutions do not address
the characteristics and the complexity of CPS, which needs a broad range of
management. The great challenge of these approaches is the complexity of the
problem they have to face; in the sense that there are many elements to be considered
and, if it is not done rigorously, the conclusions will be unreliable.

Ansaldo STS is a leading Company operating in the sector of high technology
for Railway and Urban Transport. The Company has the experience and resources
to supply innovative transport and signaling systems for freight yards, regional and
freight lines, underground and tramway lines, and standard and High-Speed railway
lines. With an international geographical organization, the Company operates
worldwide as lead contractor, system integrator and supplier “turnkey” of the most
important projects of mass transportation in metro and urban railways. Ansaldo STS
has a great experience in the design, implementation and management of systems
and services for signaling and supervision of railway and urban traffic [5].

Ansaldo STS believes that there is a critical need to adopt a comprehensive
strategy for the problem of applying risk management study to a cyber-physical
system. As the complexity of the CPS is greater and such systems need more
procedures to be performed, a framework was developed that aims to reach a
common high level solution, it is different and broader than a traditional IT risk
management methods whose goal is mainly focused on identifying and measuring
the severity of the risks and try to reduce it to an acceptable extent. In fact, it
encompasses seven steps and inspired by the PDCA cycle, and centered upon the
cyber side and its assets; however, this doesn’t mean that the physical assets are out
of the frame, as the physical assets of a CPS are mostly controlled by others in the
cyber side. This framework is characterized by a set of procedures that starts by
modeling the system’s assets and functionalities, selection of potential threats to the
CPS, conducting risk assessment and treatment through a methodical way, safeguard
implementation, vulnerability assessment, ensuring the compliance with global and
local applicable laws, and finally applying maintenance and improvement activities.
This chapter is divided as follows: Sect. 2 presents a set of aspects that the approach
mentions, Sect. 3 describes the proposed framework. Section 4 is the case study
that shows how Ansaldo STS Company applies this framework, and finally Sect. 5
concludes the work.

2 Aspects and Requirements

2.1 Cyber Physical System Security

CPS security has some distinct characteristics as a CPS is different from traditional
IT system. In traditional IT systems the first important aspect of information security
is confidentiality. Confidentiality means the protection of data, providing access for
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those who are allowed to see it while disallowing others from learning anything
about its content. However for CPS, the availability comes first, then integrity and
confidentiality.

CPS has more attack points and fault points than IT system. Any safeguard
measures shall not interrupt the response to the physical system or delay the
response. In traditional IT system access control can be deployed without affecting
the services of IT system. In CPS all these measures should be discussed and tested
to great details. The data flow shall not be hindered or interfered. CPS is a system of
systems, the tight coupling between the physical system and cyber system has led
to potential cascade effect of the whole system. Malfunction whether in cyber part
or in the physical part will spread to other part of system [1].

2.2 Threats and Vulnerabilities

The two main kinds of threats that affect any organization are internal and external
threats. Internal threats occur from within the organizations. This is probably one
of the most dangerous situations because for instance co-workers may know how to
access the systems and are aware of how the systems are set up. And external threats
are attacks done by externals and hackers [6].

(i) Internal Threats: Statistics [7, 8] show that a large amount of security
and privacy breaches are due to insiders. Protection from insider threats is
challenging because insiders may have access to many sensitive and high-
privileged resources. Similar style of exploitation is reported in [9, 10].

(ii) External threats: External threats are those done by individuals from outside
a company or organization, who seek to break defenses and exploit vulnerabil-
ities. Spying or eavesdropping, DoS, Spoofing, Phishing, viruses, etc. . . . , are
all examples of external threats or cyber-attacks.

On the other hand vulnerability is defined as a weakness in the system assets or
safeguards that facilitates the success of a potential threat and could cause damage;
they could exist in system, software, network, etc . . .

2.3 Security Requirements

The cyber security of a CPS calls for the use of a wide set of security controls
to protect the whole system against compromises of their Confidentiality, Integrity
and Availability (CIA). The cybersecurity of CPS must address these main security
requirements:

(i) Integrity: It means that only the authorized users can change in the assets, it is
satisfied if the assets are not changed by an unauthorized party.
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(ii) Confidentiality: This means that the assets must not be exposed to unautho-
rized individuals, and the access must be restricted to those authorized. This is
satisfied if the assets are not read or accessed by an unauthorized party.

(iii) Availability: This is satisfied if the assets or services are available and without
delay.

If the system was exposed to malicious activities, physical components would also
be affected and even damaged as a consequence. It can be said that in a CPS, the
availability comes first, then the integrity and confidentiality.

2.4 Dependencies and Accumulated Risk

As mentioned above, it is more efficient for a security strategy to start with
functional modeling of assets with defining relations and dependencies, as it leads
to more precise and coherent study. Dependencies affect all the calculations done
to assess the risk. Since assets depend on each other, the occurrence of threats on
assets causes a direct harm on them and an indirect harm on others that depend on
them.

3 A Comprehensive Framework for the Risk Management–
Cybersecurity in CPS

Commonly, when there is a need to assess risks, traditional methods are used to
do the job. Traditional risk management methods involve the following step: risk
identification, assessment and mitigation plan definition. However, a well-designed
risk assessment of CPS will provide an overall view of CPS security status and
support efficient allocations of safeguard resources. Though traditional IT system
risk assessment is quite mature, a distinct risk assessment method for CPS is needed
to cover the growing security issues due to the large differences between IT systems
and CPSs [1]. This framework is inspired by the PDCA (PLAN-DO-CHECK-ACT)
cycle. It adds a broader set of procedures for a traditional risk assessment method.

Companies must realize the necessity of managing data protection, they should
better treat and manage the security strategy addressing the organizational and
the technological aspects of the system [11], and also address the complexity and
additional type of assets that a CPS encompass. In order to assure compliance with
security and safety requirements, there is a need to define and adopt a holistic
framework for risk assessment and treatment activities of CPSs, and so this section
shows the proposed framework. Figure 1 shows how each step of the framework
falls inside one of the phases of the PDCA cycle. It is a divided into the following
seven steps:
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• Adding/ Modeling specific 
threats according to the CPS.

• Valuation vs CIA triad.

• Conducting risk assessment 
• Using a specific dedicated 

tool that matches our CPS.

• Execute and operate.

Start

• Asset functional design of the CPS
• Relations and the dependencies btw 

components
• Asset rating vs CIA.

1. System Functional Modeling

• Regularity analysis and Auditing

• Check Compliance with global and 
local applicable laws. 

6. Compliance

• Using dedicated tools to check 
for vulnerabilities.

• Check at all levels: network, OS, 
applications and services. 

5. Vulnerability Assessment

2. Threat Selection/ Modeling

3. Risk Management

4. Safeguard implementation:

• Evaluate and monitor the 
effectiveness of the safeguards

• Are the applied safeguards acting 
well after observing them 

7. Maintenance & Improvement

DO

CHECKACT

PLAN

Fig. 1 The proposed framework inspired by the PDCA cycle

1. System Functional Modeling
2. Threat Selection and Modeling
3. Applying a Risk Management method (Assessment and Treatment plan)
4. Safeguard Implementation
5. Vulnerability Assessment
6. Compliance and Validation
7. Maintenance and Improvement

To ensure the continuous improvement, the framework is based on Deming PDCA
Cycle where each phase, because of the complexity of a CPS, can be divided further
in a few steps. The steps are applied in order: starting by the “PLAN” phase, first
step is the “System Functional Modeling” which designs the model of the CPS
showing the functionalities, dependencies, relations between the assets and defines
also rules and Acceptable Risk Levels. Then the second step, “Threat Modeling
and Selection” selects the potential “threats” that match the CPS’s assets: this can
be done by referring to historical data such as reports, statistics, observations, logs,
etc. Finally, always in the PLAN phase, the first two steps are the input to the
“Risk Management” step, where an appropriate method is selected to assess the risk
(Risk Assessment) and helps in selecting the appropriate measures for keeping the
risks under control (Risk Treatment). After that “Safeguard Implementation” takes
place, reflecting the “DO” phase of a PDCA, where the chosen decisions in the Plan
phase are put into operation. Afterwards there is the CHECK phase, represented by
the “Vulnerability Assessment and Penetration Test” process: it plays a key role in
revealing the vulnerabilities yet present on the system and not protected by already
installed safeguards. Because a CPS contains various set of HW/SW assets such
as network appliances, servers, end-points, applications, web services, databases,
etc., the Vulnerability Assessment and Penetration Test activity is applied basically
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on three levels: Application, Network and Operation System Levels. Based on all
previous findings and evidences, the CHECK phase is completed by a compliance
control to ensure complying of the system to security best practices or international
standards, e.g. ISO/IEC 27001/27002. Finally, the Deming Cycle is concluded
by the ACT phase which contains “Maintenance and Improvement” activities to
correct and improve the system.

3.1 System Functional Modeling (Asset Modeling)

Creating a functional model has a great impact in showing the structure and the
components of the CPS, and in demonstrating the relations and the dependencies
between the different assets, and hence to have a clear and precise simulation for the
system in real life. It is the step where the whole framework depends on, in this stage
it is meant to model the physical and cyber components and their interactions and
operational characteristics. Asset Modeling can be considered as the most important
step in this approach, it must be done first with the owners of the system. The scope
of this part is to help the system’s owners or information sources in creating a system
functional model and in the valuation of the system’s assets. For this task, two steps
are followed:

(i) Creating a functional model for the system which is a structured representa-
tion of the system’s components (assets) and functions (activities, processes,
operations).

(ii) Rating of the assets (based on CIA) using criticality levels and according to the
consequences on CIA that would happen in case of their protection failure.

The two steps must be done by the owners or under the supervision of them. In this
way, a typical representation or a general view for the system is carried out which
aids in the risk management study.

3.2 Threat Selection and Modeling

Each CPS differs by the services and functionalities that it offers. Threats vary from
one system to another, based on the available assets and their level of valuation.
Different CPSs means different assets and though different types of threats. Threats
can be grouped and associated to homogenous group of assets called asset classes.
Threat selection is about understanding the most suitable threats that are expected
to happen and matching them with the different asset classes of the cyber physical
system. The appropriate threats-to-assets should be selected in this step to be fed into
the “Risk Management study” step, and should be applicable to the assets presented
in the previous step. Mainly cyber-security threats are covered; that is, threats
applying to information and communication technology assets, but additional non-
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Fig. 2 Common threats for the “Threat selection and Modeling” step in CPS

IT threats could also be included in order to cover threats to physical assets that
are necessary for the operation of the CPS. This work can be done by referring to
historical data, e.g.: reports, statistics, observations, logs, etc.

The ENISA Threat Landscape provides an overview of threats, together with
current and emerging trends. It is based on publicly available data and provides
an independent view on observed threats, threat agents and threat trends. Over 140
recent reports from security industry, networks of excellence, standardization bodies
and other independent institutes have been analyzed [12], Fig. 2 shows a sample
for some threats that threaten cyber physical systems. However risk analysts are the
ones responsible for selecting and valuating the appropriate and expected threats that
are likely to occur and match the system’s assets. First the general model is obtained
by experts, reports, statistics, and then threats that match the context, type of the
CPS and the given assets are kept and fed to the next step. Threat Modeling eases
the risk analysis study in various ways, mainly it prepares a wealthy and substantial
threats-to-assets convenient dataset that fits a case study. There are some dedicated
tools that help in threat modeling, and Sect. 4.2 shows one of them which is used by
Ansaldo STS Company.
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3.3 Risk Management Plan

Risk management is divided into risk analysis and risk treatment, with risk analysis
being the systematic process for estimating the risks to which the system’s assets are
exposed to [13]. Risk management is a part of planning, where treatment decisions
are taken. These decisions are demonstrated and established in the implementation
step.

1. Risk analysis: A risk is an indicator of what could happen to the assets if
not properly protected. It is important to know what features are of interest in
each asset and to what extent these features are in danger, that is, analyze the
system [13]. There are several methods and ways for the problem of analyzing
the risks: informal handbooks, methodical approaches or supporting tools, where
all provide a guide for risk analysis. However, methods might differ in some
steps, or in the way of identifying and valuating the assets or threats. Some are
basically used in cyber security of information systems, and others can be used
in physical security. Risk analysis study must be applied using an appropriate
method and tool for the risk analysis step in the cybersecurity of CPSs. Applying
a risk analysis study includes:

(i) Identifying and classifying assets by types, establishing dependencies
between them and evaluating them according to security dimensions.

(ii) Identifying and valuating threats and their likelihood.
(iii) Identifying current safeguards and valuating them according to the level of

effectiveness.
(iv) Evaluating the risk on the CPS system where valuations for assets, depen-

dencies, and threats are all involved in the calculation.

2. Treatment plan: On the other hand, this sub-step must also carry out the risk
treatment activities that should be applied. Risk treatment activities allow a
security plan to be prepared which, when implemented and operated, meets
the proposed objectives with the level of risk accepted by the Management. In
the treatment plan, the right counter measures are selected with types, and then
prioritized. Moreover defining their cost/complexity, effectiveness and efficiency
metrics must be also addressed. The objective is to deploy the controls selected
by type and in a prioritized and effective way. For example, same safeguard
can contrast more threats at the same time and overlapping/redundant safeguards
should be avoided. However, sometimes, when a series of safeguards are in place
and the management process is mature to a certain extent, the system will still be
exposed to a risk called “residual”.
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3.4 Safeguard Implementation: Operations

This step deals with the implementation of security plans and decisions taken in the
treatment plan, it takes as input the activities defined and puts them into operation.
It also deals more with the technical side, and defines the best technological
solutions based on the countermeasures to be adopted and the approved budget in
accordance with the defined strategy. Implementation of safeguards must ensure
the availability and the capability of the organizational staff to manage the tasks
scheduled to implement them, as well as other factors, such as the budget of the
organization, relations with other bodies, legal, regulatory or contractual changes,
etc. So applying security patches and ensuring the secure configuration of all
appliances is maintained continuously, also assets are monitored and logs are
analyzed to detect any improper actions. Even when the risks have been treated,
residual risks will generally remain. Residual risk means that that the current level
of risk is accepted and is under a “carefully chosen” threshold, as trying to eliminate
it could be extremely expensive.

3.5 Vulnerability Assessment

Vulnerability is a weakness in the assets that a malicious attacker could use to
cause damage. Increasingly sophisticated tools help to penetrate existing network
connections. After implementing the safeguards in the previous step, a vulnerability
management process is needed to check if the assets of the cyber physical system
are really still exploitable to threats. At the technical level, the focus is on cyber
assets, this step is done by vulnerability exposure tools, with simulation of attack
paths (similar to MITRE attack matrix). The end result can be patch management or
better, in some complex environment, virtual patching (i.e. putting layer of defense
that stop the attack before it reaches the endpoint, without the need to change
configurations of the endpoint itself). Furthermore, log analysis could be useful
in revealing vulnerabilities; but consider that doing manual log analysis requires a
significant amount of expertise, knowledge, and is very time consuming. At the end,
when detecting issues, it is required to return to the iteration cycles for proposals
and solutions.

3.6 Compliance

Assessing the adherence of security configurations to the policies, requirements and
regulations are set out in this stage. Compliance activities also involve regulatory
analysis in order to ensure the compliance with global and local applicable laws
based on the requirements, or even with respect to verification schemes to be
achieved or maintained. And in case of non-compliance, it is required to return to
the iteration cycles for proposals and solutions.
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3.7 Maintenance and Improvements

Finally, the evaluation of the effectiveness and efficiency of the applied safeguards is
measured to achieve the needed improvement and maintenance. It is recommended
to deploy some elements that allow controlling the measures implemented in order
to assess their effectiveness and to have an insight about them to figure out if there
are new problems or there is a need to update their level.

4 Case Study: Adopting the Framework by Ansaldo STS
Company

This section shows how the proposed framework is applied at Ansaldo STS
Company. Each subsection describes the procedure followed in the goal of adopting
it. The seven steps are demonstrated below, showing how they were applied to
achieve this overall high level framework of risk analysis and treatment for CPS.

4.1 System Functional Model

The first step is to design a functional model for the system, i.e. it is fundamental
to define the scope of the system, the basic components forming the CPS and
their composing assets (physical and cyber), and also establishing the relations and
dependencies between them. This step is done based on information coming from
the owners, since they are familiar and have the knowledge about their system. The
functional model will be used to rate the assets against the basic security dimensions
Confidentiality, Integrity and Availability (CIA triad), as shown in Fig. 3.

Then provide a high level asset rating for each with the assistance of the system’s
owners and based on the tables defined below. Figure 4 gives an example of the
asset’s security dimensions rating, where each asset has a triad rating that represents
respectively the confidentiality, integrity and availability rate.

The assets’ rating is carried out on each security dimension. Rating represent a
pre-valuation step for the assets, where criticality levels will be used with a scale
from 1 to 4, where “1” describes the lowest critical level and “4” is the highest. And
so, each security dimension gets one of the four levels representing the rate value.
For each level, a description is given that helps in choosing the suitable asset’s
level. The three tables below explain the levels of rating according to each security
dimension (Tables 1, 2 and 3).
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Fig. 3 A functional model example for the CPS

Fig. 4 Rating each security
dimension for each asset

4.2 Threat Modeling and Selection: Using RMAT Software

Threat modeling and selection step is about preparing a set of appropriate threats and
associate them to asset classes and organizing them also into classes. In particular to
execute these actions a dedicated commercial tool, called RMAT, has been identified
and adopted. Modeling is meant to prepare the threats selected; RMAT software can
be used in the modeling. RMAT is used to create TSV files using a GUI (Fig. 5),
a TSV file is a representation for threats. Identifying threats for the TSV file is
made by associating threats to asset families. The left panel of Fig. 6 shows the
asset families and the threats associated to each one, while the right panel shows the
single threats and the asset families associated to each one.
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Table 1 Asset’s rating levels for Confidentiality

CONFIDENTIALITY
Level Title Description Consequence in case of loss of 

confidentiality

4 Confidential Asset 
Asset with a special sensitivity which 
must be accessed by special authorized 
staff or services.

Serious impact: Damage could affect
directly the system, customer or
organizations.

3 Restricted Asset
Assets which must be accessed only by 
authorized staff members or services.

Significant impact: the reputation of the
system can be harmed.

2 Internal Asset
Assets for internal usage in the system 
which must be accessed only by 
internal staff.

Negligible Impact: If the confidentiality
is breached, small or inconsiderable
consequences will happen to the system.

1 Public Assets Assets of the system which can be 
accessed by anyone or any service. 

Insignificant impact. No damages for
the system, customer or organizations.

Table 2 Asset’s rating levels for Integrity

Integrity
Level Title Description

4 High
The assets must not be compromised by 
anyone.

Serious impact: The consequences could be 
catastrophic for the system.

3 Medium

The assets can be compromised by only 
service personnel with privileged or 
extended user rights.

Significant impact. The consequences are
major and widespread. System errors and 
services breach persist for a substantial 
amount of time.  

2 Low
The assets can be compromised by internal 
users even if not having any privileged and 
extended user right.

Minor Impact. The consequences are
noticeable but workaround can be 
implemented within the system.  

1 Negligible
The assets can be compromised by anyone 
even external users.

Negligible impact. Small or inconsiderable
consequences which will not have noticeable 
influence on the system’s operation. 

Consequence if there would be 
an Integrity failure 

Table 3 Assets’ rating levels for Availability

AVAILABILITY
Level Title Description

4 Significant 

Unavailability is unacceptable. The asset 
fails immediately and cannot be re-
established by a workaround. 

High impact on system’s operation, which 
may lead to a complete stop or a main impact 
on the system. Impacts on the public image of
the system and/or of the customer. 

3 Major
A very short period of unavailability can be 
accepted during which assets will be unable 
to provide the intended work. 

Medium impact affects the system partially
and may lead to a delay in the operation of the
system.   

2 Minor
A short period of unavailability can be 
accepted,assets can be re-established by the 
implementation of alternative procedures. 

Small impact on the operation.
Small delay with low impact on the operation.

1 Insignificant 
Unavailability is acceptable. 
Asset’s continuity is not affected. 

Very-small impact on the operation.
No direct delay on the system.  

Consequence of Availability 
deficiency 
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Fig. 5 Creating TSV file
using RMAT

Fig. 6 Associating threats to
asset classes using RMAT

The structure of .TSV files that is used to create threat families is:

file ::=
<threat-standard-values>

{ family }0+
</threat-standard-values>

family ::=
<family F >

{ threat }0+
</family>

threat ::=
<threat Z f [ s ] >

{ set }0+
</threat>

set ::=
<set D deg />
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After creating the appropriate set of threat families, next step is to use it as input
to the risk analysis study.

4.3 Conducting Risk Management Study Using MAGERIT
Method

For performing this job, Ansaldo STS has identified and adopted a commercial tool,
named PILAR, that implements a method called MAGERIT which is suggested
by the European Union Agency for Network and Information Security (ENISA).
Following a methodical way in a risk management study is significant in order
to obtain an efficient study. The objective of MAGERIT method is to cover both
risk analysis and treatment for a thorough risk management. MAGERIT is an
open methodology for Risk Analysis and Management, developed by the Spanish
Ministry of Public Administrations. The purpose of this method is directly related
to the generalized use of IT systems, communications, and electronic media. This
method follows the international concepts as in ISO 31000 and ISO/IEC 27005
[13]. MAGERIT offers a systematic method for analyzing risks, and helps in
describing and planning the appropriate measures for keeping the risks under
control. And finally, prepares the organization for the processes of evaluating,
auditing, certifying or accrediting, as relevant in each case. On the other hand,
PILAR software implements MAGERIT method and is used to perform its steps. Its
GUI (graphical user interface) enables the user to execute the MAGERIT method
in an understandable and easy way, also making it reproducible. The tool provides
fast calculations and generates a quantity of textual and graphical reports. PILAR
software has been funded by the Spanish National Security Agency. It is designed
to support the risk management process along long periods, providing incremental
analysis as the safeguards improve [14]. PILAR enables the user to create a project,
identify the assets for the system under study, and generate threats and safeguards
and other functionalities (Fig. 7).

Furthermore, PILAR can be customized to use TSV files created by RMAT as
input for the risk management study, so in this case the threats will be selected based
on the model created before in” Threat Modeling” step.

4.4 Safeguard Implementation

The safeguard implementation step reflects the “DO” phase of the PDCA, which
is putting the chosen decisions in the previous treatment plan into operation. At
Ansaldo STS, the Defense in Depth (DiD) approach is adopted while implementing
safeguards, an approach that is based on layering and that helps in faster detection
and slowing down of attacks. In IT environments, DiD is intended to increase the
costs of an attack against the organization, by detecting attacks, allowing time to
respond to such attacks, and providing layers of defense so that even successful
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Fig. 7 PILAR software:
homepage

Fig. 8 Layering: defense in
depth

attacks will not fully compromise an organization. A DiD strategy is necessary
because of the new security threats and the importance of IT security monitoring
of assets (Fig. 8).
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4.5 Vulnerability Assessment for Cyber Assets

The cyber side of a CPS contains various set of assets such as network appliances,
servers, software, web applications, databases, etc. At Ansaldo STS, vulnerability
assessment is applied basically on 3 levels: operating system, netowrk and applica-
tion levels.

• OS Vulnerability Assessment: On the level of operating system, what is meant
is to apply host vulnerability assessment through scanning specific hosts. This
allows the administrators to go beyond testing for known network vulnerabil-
ities, but also examining more vulnerabilities such as patch levels, check OS
configuration, and installed software on computers running operating system.

• Network Vulnerability Assessment: Network scanners are useful to analyze the
network, and hosts on the network to detect vulnerabilities. Nmap (Network
Mapper) is a security scanner used on this level to discover hosts and services
on a computer network, thus building a “map” of the network. Nmap features
include host discovery, port scanning, OS detection, which all help in finding
and exploiting vulnerabilities in the network.

• Web Application Vulnerability Assessment: This can be done using automated
web application and web services vulnerability scanning solutions that apply
attack algorithms and determine the existence and relative severity of vulnerabil-
ities. Some dedicated tools employ an extensive arsenal of attack agents designed
to detect security flaws in web-based applications. Such tools probe the system
with thousands of HTTP requests and evaluates each individual response. This
assessment detects vulnerabilities, pinpoint their location in the application, and
recommend corrective actions.

4.6 Compliance

Compliance can be oriented to internal policies and rules or to external laws and
regulations, but in any case it represents a fundamental step in order to maintain
the organization control inside its specific regulatory environment. PILAR software
can be also used to conduct this step by using a security profile (EVL file) that is a
description for a list of policies that a system would comply to. It is a view over a
collection of safeguards that aim to protect a system. Security profiles may focus on
some specific aspects, or may be general. The use of a security profile in a project
is basically to check and ensure compliance. It is also possible to create custom
security profiles, while some widely known are already available e.g.: ISO/IEC
27002. PILAR maps security profiles to its safeguards in such a way to estimate
to which extent the system is compliant (Fig. 9).

After loading a security profile into the project, the set of controls for that
particular profile are given a score based on the evaluation of safeguards that are
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Fig. 9 Applying the security
profiles in the compliance
step

relevant to those controls only, thus giving a measure to check the compliance of
the system to the selected security profile.

4.7 Maintenance and Improvement

At the end, after executing all the steps of the framework, it is critical to monitor and
observe if the decisions taken were effective, and if there is a need for maintenance
or improvement or even adding a missing measure. On the other hand, in some
situations it could be necessary to reduce the cost of a certain countermeasure. Using
PILAR in the PLAN phase, the “current” stage represents the current state of the
system, and “target” stage represents the goal to reach (Fig. 10). However, now
in the “ACT” phase, a new target (Fig. 11) will represent the new goal to achieve
based on the new observations and analysis done, and putting all (new) safeguards
into operation. The system is monitored and a set of investigations and observations
based e.g. on some key performance indicators is done to apply the refinement in
case it is required.

5 Conclusion

In recent years, a growth has been seen in the development of various types of
Cyber-Physical Systems (CPS). They have brought impacts to almost all aspects of
our daily life. Many of such systems are deployed in critical infrastructures, and so,
they are exposed to different types of attacks. A Cyber Physical System (CPS) relies
basically on information and communication technology, which puts the system’s
assets under certain risks especially cyber ones. On the other hand, because of the
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Fig. 10 Safeguards values in
PLAN phase

Fig. 11 New Safeguards
values in ACT phase

characteristics of a CPS, it is more efficient to adopt a solution that is wider than a
method, that addresses the type, functionalities and complexity of a CPS. Moreover,
following a comprehensive framework ensures a lot of key points such as organizing
the steps of a management study, preserving the order of the tasks without missing
one, and basically doing the work once in a formalized structure, which is the key
spirit of what is called “Comprehensive”, and this should lead automatically to the
customer satisfaction and ensuring that the risk management study is complied with
laws and regulations. In this chapter, a holistic framework is proposed that breaks
the restriction to a traditional risk assessment method, and encompasses wider set
of procedures which can be followed in the risk management study for the CPSs,
giving more attention to the cyber side that usually controls the physical side of
CPSs. Finally, this framework is also ready to accommodate another two security
dimensions which are the “authenticity” and “traceability”, that are relevant and
should be addressed as security requirements for the risk management of CPSs.
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Evaluation Methodologies and Tools



Supporting Cybersecurity Compliance
Assessment of Industrial Automation
and Control System Components

Janusz Górski and Andrzej Wardziński

Abstract The chapter presents a case study demonstrating how security require-
ments of an Industrial Automation and Control System (IACS) component can
be represented in a form of Protection Profile that is based on IEC 62443
standards and how compliance assessment of such component can be supported
by explicitly representing a conformity argument in a form based on the OMG
SACM metamodel. It is also demonstrated how an advanced argument assessment
mechanism based on Dempster-Shafer belief function theory can be used to support
assessors while analyzing and assessing the conformity argument related to an IACS
component. These demonstrations use a NOR-STA tool for representing, managing
and assessment of evidence-based arguments, which have been developed in our
research group.

Keywords Cybersecurity · IACS component · Protection profile · Security
standards · Evidence-based argument · Conformance case · Certification · Tools

1 Introduction

Cybersecurity assessment of an IACS (Industrial Automation and Control System)
component involves identification and examination of its critical assets, related
threats and security functions which aim at preventing the threats from occurrence
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and/or from violating security of the assets [1]. For each security function, a
set of more detailed security requirements can be specified down to the level
where the satisfaction of each requirement can be demonstrated by the available
evidence. Specification of critical assets, related threats, security functions and
the corresponding security requirements together with the contextual information
form what is called a protection profile. Protection profile is an implementation-
independent set of generic security requirements for a family of components and is
usually used as the reference in the security assessment and certification process. It
is expected that the manufacturer of a component provides evidence demonstrating
that the security requirements specified in the protection profile are met by the
component. The assessment of the support given by this evidence to the security
requirements is part of the component security certification process.

The evidence comes from different sources, including compliance examination
based on the submitted documentation, evidence resulting from security testing, and
evidence related to development, shipping, installation and maintenance processes
of the component. Figure 1 illustrates how evidence is used in relation to the main
elements of the protection profile of a given component.

Critical asset

Threat

Security Function

Security Requirement

Evidence

Documentation compliance
evidence

Process compliance
evidence

Test compliance
evidence

can be

can be can be

demonstrated by

represented by

countermeasured by

endangered by

Fig. 1 Evidence-based cybersecurity assessment schema of an IACS component
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In this chapter we present the idea that security of a component can be claimed
by building an evidence-based argument which argues that the security functions
identified in the related protection profile are adequately implemented by the corre-
sponding security requirements, where the satisfaction of security requirements is
demonstrated by the available evidence. In general, such an argument represents
a security assurance case of the considered component (for a meta-model of
assurance cases see [2] and for recommendations related to assurance cases see
[3]). Different tools are available to support development of assurance cases. In our
case study we have used NOR-STA [4] which supports integrated management of
argument, evidence and assessment.

Following [1, 5] we assume that a component delivered by its vendor is being
evaluated against security requirements which are represented in a protection profile
specific for a given family of components. We assume that a mechanism for
defining, endorsing and maintaining the protection profiles of IACS components is
available to the vendors, users and certification bodies. The following are examples
of IACS component families [6]: engineering software, firewall, historian station,
manufacturing execution system server, Programmable Logic Controller (PLC),
Remote Telecontrol Unit (RTU), SCADA client, SCADA server, switch, VPN
gateway, WIFI access point.

In this chapter we first introduce the IEC 62443 concepts to which we refer
while describing protection profiles of IACS components and then we introduce
our case study – a protection profile of the RTU (Remote Terminal Unit) family
of components. Then we present how security requirements of the protection
profile were represented in the form of an evidence-based argument pattern (called
conformance template) and how such conformance template could be used to
develop a complete conformance argument of a component belonging to the RTU
family. This is followed by a demonstration how the argumentation assessment
mechanism based on Dempster-Shafer belief functions theory can be used to support
compliance assessment of IACS components against the security requirements. At
the end, we summarize our experiences in the conclusions.

We demonstrate our ideas using the NOR-STA system for developing, maintain-
ing and assessing evidence-based arguments [7].

2 Related Works

Protection Profile is one of the core concepts in Common Criteria [5] and together
with the concept of Security Target (ST) refers to the security requirements related
to the target object subjected to security assessment. These concepts were used (with
some modifications) in [1] and we follow [1] in this respect.

Using evidence-based arguments to demonstrate conformity has been argued in
[8] and applied in different domains, including medical, oil and gas, automotive
and others. Several researchers attempted to demonstrate and assess security
by developing explicit assurance cases. [9] proposes an argument structure that
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decomposes the main security claim into four sub-claims: (C1) System security
requirements are effectively formulated, (C2) System security requirements are
captured in design, (C3) System implementation is secure, and (C4) Operational
security requirements compliance measures are clearly defined (effectively put in
place). Here, claim C1 corresponds to a Protection Profile and its argumentation
strategy is to identify all threats, possible attack surfaces, attack scenarios and
effective counter-measures which are translated into implementation and operation
related security requirements.

[10] presents an approach where the goal is to demonstrate a set of security
capabilities (like Automatic Logoff, Transmission Confidentiality or Cyber Security
Product Upgrades) and an argumentation pattern is used to demonstrate each of
these capabilities. This approach has been used in IEC 80001 series of standards (in
particular part 2–9 published in 2017 includes guidance for use of security assurance
cases to demonstrate device security).

A systematic approach to develop an evidence-based argument demonstrating
that security requirements are met has been proposed in [11]. The approach is
based on incremental development of the security argument as the design and
implementation decisions are made and providing evidence in the development and
testing process.

3 Introduction to IEC 62443

IEC 62443 is a series of standards and technical reports addressing security
assurance of Industrial Automation and Control Systems. The standards apply to
manufacturers, integrators as well as to end-users (the standards were initially
developed by the International Society for Automation and they are also referred
to as ISA99 standards [12]). IEC 62443 consists of several standards covering
four areas: general definitions and metrics, policies and procedures for the plant
owners and suppliers, security requirements for systems, and security requirements
for components.

In IEC 62443, security requirements for IACS components are decomposed
into seven Foundational Requirements (FR). These FRs are the categories used to
organize technical security controls and form the basis for subsequent more specific
requirements. They are as follows [13]:

FR1: Identification and authentication control (IAC): necessary capabilities to
reliably identify and authenticate all users (humans, software processes and
devices) attempting to access the Target of Evaluation (ToE) shall be provided.

FR2: Use control (UC): necessary capabilities to enforce the assigned privileges
of an authenticated user (human, software process or device) to perform the
requested action on the system or assets and monitor the use of these privileges
shall be provided.
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FR3: System integrity (SI): necessary capabilities to ensure the integrity of the ToE
to prevent unauthorized manipulation shall be provided.

FR4: Data confidentiality (DC): necessary capabilities to ensure the confidentiality
of information on communication channels and in data repositories to prevent
unauthorized disclosure shall be provided.

FR5: Restricted data flow (RDF): necessary capabilities to segment the control sys-
tem via zones and conduits (communications channels) to limit the unnecessary
flow of data shall be provided.

FR6: Timely response to events (TRE): necessary capabilities to respond to security
violations by notifying the proper authority, reporting needed evidence of the
violation and taking timely corrective actions when incidents are discovered shall
be provided.

FR7: Resource availability (RA): necessary capabilities to ensure the availability of
the control system against the degradation or denial of essential services shall be
provided.

For each Foundational Requirement, part 62443-4-2 provides a lists of Compo-
nent Requirements (CR). For instance, the following CRs correspond to FR4 (for
the full inventory of CRs see [14]):

CR4.1: Information confidentiality – components need to provide for protection of
the confidentiality of information in transit.

CR4.2: Information persistence – components need to provide the capability to
erase all information, for which explicit read authorization is supported, from
components to be released from active service and/or decommissioned.

CR4.3: Use of cryptography – if cryptography is required, the component needs to
use cryptographic security mechanisms according to internationally recognized
and proven security practices and recommendations.

4 Case Study: Remote Terminal Unit

In this section we present an excerpt from the Protection Profile of a sample family
of IACS components, namely the Remote Terminal Unit (RTU) family. This case
study has been elaborated by the National Exercise Team in Poland (NET-PL)
while working on the validation of the European IACS components Cybersecurity
Certification Framework (ICCF) [1].

4.1 Component Description

Remote Terminal Unit (RTU), in the following text also referred to as Target
of Evaluation (ToE), monitors and controls instruments of SCADA systems used
in industrial critical infrastructure processes, like oil and gas pipelines, electric
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power generation and transmission, chemical manufacturing, physical and technical
protection systems, water treatment or others.

RTU main functions include:

• collecting measurements from sensors,
• execution of logic and control calculations,
• user program execution,
• issuing control commands that modify a process,
• communicating with external applications and other devices,
• administration functions to configure or program other functionalities; several

administration interfaces are possible: administration console, programming
workstation, web-clients,

• supporting removable devices (USB drives, SD memory cards etc.),
• local logging (in particular logging security and administration events),
• remote logging (in particular logging security and administration events).

The usage context of the ToE is presented in Fig. 2. The four parts labelled P1,
P2, P3 and P4 shown in Fig. 2 are the interfaces through which RTU interacts with
its environment. These parts represent flows (data, control) between RTU and the
environment and are included in the scope of security assessment of RTU.

Internally ToE is decomposed into other parts that are relevant from the security
perspective. These parts are presented in Fig. 3.

TOE

Remote Terminal
Unit (RTU)

P1. Data exchange
between the TOE

and the supervision

P2. Control-command
of the process

P3. Data exchange
between the TOE
and other RTUs

P4. Engineering
workstation flow

Supervision system

Other RTUs

Administrator

Controlled processes

User

Fig. 2 ToE (RTU) in its target environment
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Fig. 3 ToE (RTU) internal
structure Remote Terminal Unit (RTU)

P5. Operating system
(kernel)

P6. Firmware P7. Configuration

P8. User
authentication mech.

P9. User secrets

P10. Access control
policy

P11. Local logging

P12. Remote logging

P13. Local logs

P14. Remote logs

Table 1 RTU critical assets (identified by the ‘x’ symbol)

Security characteristic

Part Availability Confidentiality Integrity Authenticity

P5. Operating system (kernel) x x
P6. Firmware x x x
P7. Configuration x x x
P8. User authentication mechanism x x
P13. Local logs x x
P14. Remote logs x x

4.2 Protection Profile of RTU

We assume (based on [1]) the following main elements of a protection profile
structure: (1) Description of the family of products (ToE); (2) Parts; (3) Operating
conditions; (4) Critical assets; (5) Threats; (6) Protection assumptions; (7) Residual
threats; (8) Security functions; (9) Threats vs security functions; (10) Mapping of
security functions to security requirements.

RTU parts (presented in Figs. 2 and 3) were subjected to security analysis to
assess the risk related to violation of their security properties like availability,
confidentiality, integrity or authenticity. The result is a set of critical assets that
are to be protected against attacks (a critical asset is a security property of a part
that needs to be protected by security measures). Selected critical assets of ToE are
given in Table 1.

The following are example threats that have been identified as being relevant,
during the security analysis of the ToE.
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Table 2 RTU critical assets affected by the threats

Parts

Threats
P5. Operating
system (kernel)

P6.
Firmware

P7. Config-
uration

P13. Local
logs

P14. Remote
logs

T1. Operating
system/firmware alteration

I, Au I, Au

T2. Configuration alteration I, Au
T3. Local logs alteration I, Au
T4. Remote logs alteration I, Au

T1. Operating system/firmware alteration: The attacker manages to inject and
run a corrupted OS/firmware on ToE (for instance, inserts modifications
without having the privilege to do so). The code injection may be temporary
or permanent and this does include any unexpected or unauthorized code
execution. An authorized user may attempt to install a malicious update of ToE
by legitimate means.

T2. Configuration alteration: The attacker manages to modify, temporarily or
permanently, ToE configuration.

T3. Local logs alteration: The attacker manages to delete or modify a local log
entry without being authorized by the access control policy of ToE.

T4. Remote logs alteration: The attacker manages to delete or modify a remote log
entry without the receiver (the component hosting the log) being able to notice
it.

Table 2 presents which critical assets of ToE can be affected by the identified
threats (Av stands for availability, I for integrity, C for confidentiality, and Au for
authenticity). For instance, integrity of local logs (column P13) can be violated by
the Local logs alteration threat (row T3).

Critical assets are protected by Foundational Requirements (FR) that are selected
to address the related threats. Table 3 presents the selection of FRs to protect the
critical assets of RTU.

By grouping the critical assets assigned to the same Foundational Requirements
in Table 3, we obtain the list of Security Functions (SF) of RTU. A selected SF of
RTU is presented in Table 4.

Then the FRs assigned to a particular Security Function can be decomposed down
to the Component Requirements (CR). For instance, consider the assignment of CRs
to SF4: User authentication and authorization of ToE functions. As shown in Table
4, SF4 has been mapped on two Foundational Requirements: FR1: Identification
and authentication control and FR4: Use control. The present version of 62443-4-2
(still not formally endorsed) maps FR1 on 14 different CRs and FR4 is mapped on
13 different CRs. This leads to the assignment of CRs to SF4 which is presented in
Table 5. From Table 4 we see that SF4 addresses only some of the critical assets of
ToE and therefore not all CRs will be relevant for these critical assets. In Table 5 this
is represented by listing the irrelevant CRs in gray and the relevant CRs in black.
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Table 3 Foundational Requirements assigned to critical assets of RTU

Parts

Threats

P5. Operating
system
(kernel) P6. Firmware

P7.
Configuration

P13. Local
logs

P14. Remote
logs

T1. Operating
system/-
firmware
alteration

Au: FR1,
FR2
I: FR3

Au: FR1,
FR2
I: FR3

T2.
Configuration
alteration

Au: FR1,
FR2
I: FR3

T3. Local logs
alteration

Au: FR1,
FR2
I: FR3, FR6

T4. Remote
logs alteration

Au: FR1,
FR2
I: FR3, FR6

Table 4 Example Security Function of RTU

Security function
Protected critical
assets

Foundational
requirements Addressed Threats

SF4. User
authorization in TOE
functions

Authenticity of:
P5. Operating system
(kernel)
P6. Firmware
P7. Configuration
P8. User
authentication
mechanism
P13. Local logs
P14. Remote logs

FR 1 identification
and authentication
control
FR 2 use control

T1. Operating
system/firmware
alteration
T2. Configuration
alteration
T3. Authentication
violation
T4. Local logs
alteration
T5. Remote logs
alteration

5 Support for Representing Security Requirements

Evidence-based arguments are widely used to argue about achievement of some
(important) goals. For instance, an argument can justify compliance with a chosen
standard or can demonstrate a critical property of a considered object, like safety of
a device, security of a service and so on. An argument demonstrating the compliance
is called conformance case whereas an argument demonstrating the selected
property (such as safety, security, reliability, privacy etc.) is called assurance case.
Recommendations on structuring assurance cases can be found in [2, 3].

Conformance case of a component belonging to a given family of products
can be based on a common argument template derived from the related protection
profile. Such template can be re-used in several concrete arguments [8]. Typically,
a template contains the higher (more abstract) part of the argumentation and while
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Table 5 Example Security Function with corresponding Component Requirements

Security function IEC 62443-4-2 requirements
SF4. User authorization 
in TOE functions 

CR 1.1 – Human user identification and authentication
CR 1.2 – Software process and device identification and authentication
CR 1.3 – Account management
CR 1.4 – Identifier management
CR 1.5 – Authenticator management
CR 1.6 – Wireless access management
CR 1.7 – Strength of password-based authentication
CR 1.8 – Public key infrastructure certificates
CR 1.9 – Strength of public key authentication
CR 1.10 – Authenticator feedback
CR 1.11 – Unsuccessful login attempts
CR 1.12 – System use notification
CR 1.13 – Access via untrusted networks
CR 1.14 – Strength of symmetric key authentication

CR 2.1 – Authorization enforcement
CR 2.2 – Wireless use control
CR 2.3 – Use control for portable and mobile devices
CR 2.4 – Mobile code
CR 2.5 – Session lock
CR 2.6 – Remote session termination
CR 2.7 – Concurrent session control
CR 2.8 – Auditable events
CR 2.9 – Audit storage capacity
CR 2.10 – Response to audit processing failures
CR 2.11 – Timestamps
CR 2.12 – Non-repudiation
CR 2.13 – Use of physical diagnostic and test interfaces

converting the template to a concrete argument it is necessary to complement it with
a more specific argumentation and the supporting evidence. The argument extension
explicitly describes strategies of implementing the higher level security require-
ments in ways that are specific for a particular component. The resulting argument
(containing the template, possibly some additional extended argumentation and the
supporting evidence) can be subjected to the assessment, as illustrated in Fig. 4.

Templates, concrete arguments, evidence and assessments can be managed with
tool support and an example of such tool is NOR-STA [4] which was used in RTU
case study. NOR-STA implements TCL metamodel of evidence-based arguments
compliant with ISO 15026 [3] and OMG SACM metamodel [2].

5.1 Representing Conformance Arguments

For a given protection profile (PP), the conformance argument demonstrates that all
security functions that are relevant for this PP are effective and provide adequate
protection of the related critical assets.
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Conformance argument

Conformance
template

Evidence

Arguing
conformance

Assessing
Conformance

Assessment resultConformance
template

Argument extension

Fig. 4 Use of a conformance template while developing and assessing arguments

Fig. 5 A fragment of RTU Protection Profile represented in NOR-STA

The following TCL elements are dedicated to representing arguments. Argument

conclusion is represented by a claim ( ) node. A node of type argumentation

strategy (denoted ) links the claim with the corresponding premises and uses a

rationale node (denoted ) to explain and justify the inference leading from the
premises to the claim. A premise is a sort of assertion and can be in particular

another claim to be further justified by its own premises, a fact (denoted )
represented by an assertion to be demonstrated by the supporting evidence, or an

assumption (denoted ). In addition, the reference node (denoted ) can be used to
point to external documents which are integrated with the argument (for instance, to
integrate external files containing evidence supporting argumentation). An auxiliary

information node (denoted ) is used to provide more structure and to explain the
contents of the argumentation.

Figure 5 illustrates how the above elements are used to represent the topmost
structure of the conformance argument for RTU Protection Profile.
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Fig. 6 An argument fragment showing how FRs support SF4 security function

5.2 From Security Functions to Component Requirements

In the RTU Protection Profile, Security Functions are assigned to critical assets and
are supported by selected Foundational Requirements, as shown in Table 4. This
relationship between Security Functions and the supporting Foundational Require-
ments is illustrated in Fig. 6 and is specified with the use of an argumentation
strategy node and the rationale node which justifies the inference leading from the
premises to the conclusion.

The argumentation strategy and its rationale explain that FR1 and FR2 were
identified as the support for SF4 following the Guideline of building Protection
Profiles that has been agreed and accepted. Note that if such argumentation strategy
is considered acceptable, then to demonstrate SF4 it is sufficient to demonstrate that
the requirements related to FR1 and FR2 were satisfied by ToE.

Foundational Requirements (FR) selected to support a given Security Function
(SF) can themselves be decomposed down to the level of Component Requirements
(CR). For the RTU Protection Profile, an example of such decomposition is
presented in Table 5. And this decomposition can be represented by the argument
fragment shown in Fig. 7.

In Fig. 7, the same argumentation strategy is used to justify that both FR1 and
FR2 will be satisfied if the Component Requirements (CRs) that support particular
FR are demonstrated to be satisfied. The strategy is the same for both FRs but
it has be accepted separately. If we accept the argumentation strategy for FR1,
the requirement will be satisfied depending on the satisfaction of the component
requirements CR1.1, CR1.2, CR1.3, CR1.4, CR1.5, CR1.11 and CR1.12.

Satisfaction of each Component Requirement (CR) can then be argued by
referring to some facts that assert about component design, test results, reviews/in-
spections, handling procedures and so on. Figure 8 illustrates how the satisfaction of
CR 1.11 from Fig. 7 could be argued by referring to the recommended best practices
of unsuccessful login handling. The facts shown in Fig. 8 are supported by the
evidence which can be accessed through the corresponding reference nodes. The
files containing the evidence can be stored in any external repository, for instance in
the design documentation repository, test results repository and others. For instance,
the evidence demonstrating that F1.11.3: the mechanism for setting limit for unsuc-
cessful logins is in place could be composed of two pieces of evidence: E1.11.3.1:
an excerpt from the design documentation explaining the mechanism and E1.11.3.2:
the report from tests verifying that the mechanism works as expected (see Fig. 8).
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Fig. 7 SF4 supported by FRs and corresponding CRs

Fig. 8 Argument fragment how CR1.11 is supported by facts and evidence

6 Support for Conformance Assessment

Conformance arguments can be extended with the assessment data as presented in
Fig. 4. In the RTU case study we used the assessment method based on Dempster-
Shafer theory of evidence (the details can be found in [15]). The assessment process
is explained below.
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The assessor issues her/his opinion related to the acceptance/rejection of the
assessed object and specifies the confidence level associated with this opinion. The
assessed objects are argumentation strategies (in this case the assessor decides if
he/she accepts the strategy) and facts (in this case the assessor decides to which
extent a given fact has been demonstrated by the evidence supporting this fact). The
assessments are expressed using linguistic values. The following values are used to
express the decision of the assessor: acceptable, tolerable, opposable, rejectable,
where acceptable means that the evidence fully demonstrates the assessed fact,
whereas rejectable means that the presented evidence demonstrates the opposite.
In addition, the assessor expresses confidence in her/his decision using the follow-
ing linguistic values: for_sure, with_very_high_confidence, with_high_confidence,
with_low_confidence, with_very_low_confidence, lack_of_confidence. In this case,
for sure means that the assessor is fully confident in the decision, whereas lack
of confidence means that he/she is fully uncertain (and in this case the decision is
irrelevant). The aggregation functions of the mechanism provide for automatic prop-
agation of these assessments into the assessments of the claims of the argumentation
(for full explanation of this mechanism see [15]).

The assessment scale can be presented as an assessment triangle as illustrated
in Fig. 9. The assessment result is a point on the assessment scale (a small shallow
token shown at the top of Fig. 9). The scale values are described on the bottom and
on the right of the assessment triangle.

Figure 10 presents the result of assessing (a fragment of) the Protection Profile
of RTU. The assessed element is fact F1.11.3 marked on the argument element tree.
This fact is supported by evidence E1.11.3.1 and E1.11.3.2. The assessor should
inspect these evidence items to decide how they support the fact and then should
express his/her opinion using the assessment scale. If the evidence is not complete
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Fig. 9 The assessment scale for Dempster-Shafer method
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Fig. 10 Assessment of the fact F1.11.3

or ambiguous he/she may give assessment with low level of confidence. Depending
on the content of the evidence the result may be acceptance or rejection.

Assume now that the assessor has already issued his/her assessments for facts
F1.11.1, F1.11.2 and F1.11.3 and in addition she/he has fully accepted the rationale
of argumentation strategy for claim CR1.11. Now facts F1.11.1 and F1.11.2 are fully
accepted and fact F1.11.3 has been assessed as “acceptable with high confidence”
(as in Fig. 10). In such case the assessment of claim CR1.11 will be calculated
automatically from the assessments of the related argumentation strategy and its
premises. And the resulting assessment of CR1.11 is “acceptable with very high
confidence” as shown in Fig. 11. The assessment results can also be presented
with color scale: green, red and yellow colors to represent respectively acceptance,
rejection and uncertainty (the colors are not visible in the black and white text of
this chapter).

To assess the whole conformance argument presented in Fig. 5 it would be
necessary to assess all argumentation strategies and to assess all facts supporting
the claims related to Security Functions of RTU. Note however that all those assess-
ments are ‘local’ in the sense that they require that the assessor focuses on just one
section of the argumentation structure (when assessing an argumentation strategy,
the assessment scope covers the claim, the strategy and premises supporting it).
Then, the assessment of the top claim can be calculated automatically by applying
assessment aggregation rules.
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Fig. 11 Assessment of CR1.11 based on the assessments of F1.11.1, F1.11.2 and F1.11.3

7 Conclusions

In this chapter we presented a case study demonstrating how security requirements
of an IEC 62443 based Protection Profile of a family of IACS components can be
represented in the form of an evidence-based argument and how such argument
could be used to support assessment of the compliance of an IACS component.

The proposed approach has the following advantages:

• The security requirements of the Protection Profile can be represented as an
argumentation scheme (called conformance template) which can be reused for
different components belonging to the same family;

• The template becomes a complete conformance argument by extending it with
the argumentation that is specific for a given component and then submitting the
evidence and integrating it with the argument;

• Assessment of a conformance argument can be supported by using advanced
methods which provide for explicit representation of assessor’s decisions as well
as the uncertainty associated with these decisions;

• Automatic aggregation functions facilitate assessment of large arguments which
can be encountered in practice reducing the tedious effort of calculating the
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overall assessment result and tracking relations between the evidence, security
requirements, security functions and objectives;

• The process of template development, argument instantiation for a specific
component, integration of the evidence, security assessment, and reporting and
visualization of the results can be supported by a dedicated tool.

The protection profiles, related conformance arguments, the evidence supporting
the argumentation and the results of conformance assessment form together a
complex set of interrelated data and documentation. To process such data accurately
and efficiently and to provide for scalability of such processing, it is essential to
have an adequate tool support. It is important that such tools allow for seamless
cooperation between security experts, component engineers and assessors.
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Quantitative Evaluation of the Efficacy
of Defence-in-Depth in Critical
Infrastructures

Oleksandr Netkachov, Peter Popov, and Kizito Salako

Abstract This chapter reports on a model-based approach to assessing cyber-
risks in a cyber-physical system (CPS), such as power-transmission systems. We
demonstrate that quantitative cyber-risk assessment, despite its inherent difficulties,
is feasible. In this regard: (i) we give experimental evidence (using Monte-Carlo
simulation) showing that the losses from a specific cyber-attack type can be estab-
lished accurately using an abstract model of cyber-attacks – a model constructed
without taking into account the details of the specific attack used in the study; (ii)
we establish the benefits from deploying defence-in-depth (DiD) against failures
and cyber-attacks for two types of attackers: (a) an attacker unaware of the nature
of DiD, and (b) an attacker who knows in detail the DiD they face in a particular
deployment, and launches attacks sufficient to defeat DiD. This study provides
some insight into the benefits of combining design-diversity – to harden some of
the protection devices in a CPS – with periodic “proactive recovery” of protection
devices. The results are discussed in the context of making evidence-based decisions
about maximising the benefits from DiD in a particular CPS.

Keywords Stochastic models · Defence-in-depth · Power transmission system ·
Adversary model · Cyber-attacks · NORDIC-32 · IEC 61850

1 Introduction

Security of industrial control systems (ICS) used to control critical infrastructure
(CI) has attracted the attention of researchers and practitioners. The evidence is
overwhelming that the services offered by CI are somewhat robust with respect
to single component failures of the underlying network. The reaction to multiple
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and cascade failures, however, is much more difficult to understand and to predict,
especially when cyber-attacks are taken into consideration.

Dealing adequately with cyber-threats requires a credible assessment of the
effectiveness of cyber-security controls deployed in a particular system. This is
particularly important if the results from the analysis are used to support decision
making, e.g. about how to maximize the benefits from a given limited investment.
Cyber-security assessment has matured over the last decade.1 Yet, recommendations
to deploy specific security controls are often made with no quantification of the
benefits these are likely to bring to a particular system. The assessment results,
especially when qualitative assessment techniques are used, are often difficult to
reproduce. Decision makers struggle to justifiably answer practical questions such
as “How much should I invest in improving cyber-security?”, “How much better
is my system after spending the available budget on additional cyber-security
controls?”, and “Have I done enough to secure my system?”

Probabilistic models for assessment are widely used in critical systems, for
quantitative reliability assessment as well as highlighting serious misconceptions,
e.g. the well-known controversy surrounding the quantification of the benefits from
design diversity for software reliability [1, 2]. The success of these models motivated
the present work – using a similar style of modelling, we develop a method for
cost-benefit analysis of defence-in-depth in a CI. Defence-in-depth (DiD) – a multi-
layered approach to defending against accidental and design faults – has been widely
used in safety-critical systems for many decades. The essence of DiD is that a
number of defence mechanisms, typically diverse in nature, are deployed to defend
a system from threats, such as accidental/design faults or malicious activities (e.g.
cyber-attacks). Respectable bodies, e.g. ICS-CERT, have recommended DiD for
cyber-security of ICS [3]. While DiD has been demonstrated to bring significant
safety benefits in safety-critical systems, its benefits with respect to cyber-threats
are yet to be demonstrated convincingly. In this chapter we take some steps in this
direction.

In this chapter:

• We study how the behaviour of a complex system model (of a power transmission
system) is affected by the level of abstraction in modelling the effect of cyber-
attacks on smart devices (i.e. those devices containing non-trivial software)
deployed in a power transmission network. We compare the behaviour of the
same system model using two alternative models for the effect of cyber-attacks
on the smart devices: i) a conceptual (i.e. abstract) model of the reliability of
smart devices deployed in adverse environments and ii) a more detailed model
of the effects of successful, specific cyber-attacks described in our previous work
[4]. Our results demonstrate how the abstract cyber-attack model can be tuned
by a suitable parameterisation, so that the system model behaves comparably
to how it behaves using the more detailed cyber-attack model. This observation

1A range of standards deal with risk assessment including cyber-attacks on industrial control
systems, e.g. IEC 62443, ISO/IEC 15408, ISO 27005, etc.
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suggests that a model-based risk assessment (or a cost-benefit analysis) can be
performed, perhaps even for unknown cyber-threats, by using an abstract model
of cyber-attacks with a suitable parameterisation.

• We apply the abstract model in studying the benefits from deploying a specific
form of DiD in a power transmission network and its respective ICS. Here, DiD
involves replicating some of the smart devices using design diversity, e.g. devices
from different vendors are combined, together with a maintenance policy, such
as “proactive recovery” [5] or “cleansing” [6].

The rest of the chapter is organized as follows: In Sect. 2 we state the problem of
quantifying the benefits from DiD against cyber-attacks in CI. In Sect. 3 we provide
a brief description of the case study and the particular models adopted for DiD.
Section 4 summarizes our findings, which we discuss in Sect. 5. Related research is
highlighted in Sect. 6 and, finally, Sect. 7 concludes the chapter with an outline of
directions for future research.

2 Problem Statement

Investment in improving CI resilience is high on the agenda of many companies’
boards. An investment decision is typically taken in the face of a large number of
alternatives and uncertainties, thus requiring an evaluation and comparison of the
efficacy and associated risks of employing each of these alternatives. An example
investment decision, taken from a power systems context, considers whether or not
the monitoring of physical network assets should be accomplished using either
Wide Area Measurements Systems (WAMS) that employ high frequency GPS-
synchronized phasor-measurement units (PMU), or a more traditional monitoring
network comprised of low frequency remote terminal units (RTU).

WAMS, being newer technology than RTU-based monitoring solutions, allow
operators in control centres to conduct more sophisticated and accurate calculations
of a power system’s state. However, the adoption of WAMS appears to be largely
driven by the “obvious” superiority of the new WAMS technology over more
traditional RTU-based state estimators.2 But there are risks in adopting this new
technology, not least its apparent sensitivity to cyber-threats, and such risks do not
appear to have been adequately addressed. For instance, take WAMS dependence on
GPS. A recognized concern, GPS signal jamming, is a critical failure-mode. Recent
studies, e.g [7, 8], demonstrate that sophisticated man-in-the-middle (MiM) attacks
on PMU readings may remain unnoticed by WAMS state-estimation algorithms
and lead to significant biases in the power system state perceived by operators in
control centres. This approach to adopting technological improvements – based on

2This came to our attention from private conversations with WAMS vendors.
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“obvious” benefits and either disregarding or underestimating new risks – seems to
follow a well-established pattern in industry.3

Furthermore, while WAMS may well bring benefits to both vendors and adopters
alike in the long-run, short term risks for early adopters may be significant;
quantification of these risks seems highly desirable. The decision “to invest now or
not” should be based on a sound cost-benefit analysis. Some of the costs and benefits
are clear: (i) technical advantages of WAMS over traditional state-estimators are
demonstrable; (ii) the upfront costs are known. The costs due to failures, however,
are much more difficult to estimate. They depend on the frequency of failures and on
the harm these failures cause, how good the new technology is in the face of failure,
the particular operational environment, and any additional controls used in the
particular deployment. For instance, in some installations, the WAMS dependence
on GPS may be compensated by deploying atomic clocks which allow the PMU
to continue to work with accurate timestamps even if the GPS signal becomes
unavailable (e.g. due to accidental failure of a GPS receiver or due to jamming).
Absence of atomic clocks in a particular installation will make WAMS dependence
on GPS a serious risk for this system. Similarly, if controls are in place (e.g. strong
encryption) which make MiM attacks unlikely, perturbation of the PMU readings
may be assumed unlikely, which in turn will justify ignoring the problems discussed
in [7, 8]. Finally, if one is uncertain about the quality of the controls,4 then a more
detailed study of how the quality of a particular control impacts system operation
may be needed.

Given all of the foregoing, we contend that a sound risk assessment (or a cost-
benefit analysis) should be done for a specific system, rather than solely relying on
the results of pilot studies conducted elsewhere or merely adopting generic “best
practices” which may ignore important deficiencies of a specific system. Consider
the case when one needs to spend a fixed budget, sensibly, to improve a particular
system. A rational approach to solving this problem would be exploring the space of
possible system changes, i.e. consider a number of alternative ways of investing in
CI resilience and ranking the alternatives according to the benefits each of these
bring. It is typically too expensive for more than a few alternatives to be tried
for real. But this problem can be overcome by using high fidelity models – one
per plausible alternative – and conducting a model-based comparison. Provided
the models are credible [10], one can establish the losses due to failures under
comparable threat scenarios, an essential consideration for making a sound cost-
benefit analysis of the planned investment.

3In a highly regarded book on the theory of “disruptive innovation”, [9], Christensen demonstrated
that the initial technological inferiority of products and services is typically temporary and is no
impediment for adopting disruptive products/technologies, provided this addresses real market
needs (e.g. creates new markets, reduces the cost, etc.). Here, the WAMS technology may be
inferior in terms of cyber-risks, e.g. GPS jamming is not a problem at all for low-frequency state-
estimation, but it is a critical failure mode for WAMS.
4For instance, strong encryption may guarantee the integrity of PMU readings, but i) the use of
encryption in practice is not guaranteed, and ii) encryption keys may be compromised.
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Such an approach is feasible – we study the benefits from adopting a specific
form of defence-in-depth on a non-trivial CPS such as NORDIC-32, a reference
architecture of a power transmission system. Of particular interest is the effect
of hardening the instrumentation/control by introducing design diversity in the
protection devices of power lines, generators and loads. We consider investment
in protection devices by replacing legacy devices with fault-tolerant, two-channel
protection devices, each of which works as a 1-out-of-2 system. That is, the
specific function of the device (e.g. a line protection) only fails if both channels
become failed simultaneously. We assume that the channels, although functionally
equivalent, are implemented differently. For example, when protection is based
on different algorithms (functional diversity) or on different implementations (by
different vendors) of the same algorithm. There are two important consequences
of such diversification: the channels may be less likely to i) fail simultaneously
due to the same design fault (e.g. the same software bug); ii) contain the same
exploitable vulnerabilities (than if the channels were identical). Thus, repeating the
same attack on each of the channels is unlikely to compromise both. Compromising
both channels is still possible, but may require different attacks be carried out either
simultaneously (or in quick succession, but with a very short duration between each
attack) or at different times.

3 The Case Study

We use a non-trivial case study of a power transmission network, NORDIC-
32, to demonstrate our approach. The system model was developed by the FP7
EU project AFTER – the NORDIC-32 network was enhanced with an industrial
distributed control system (IDCS), compliant with the international standard IEC
61850 “Communication networks and subsystems in sub-stations”. A detailed
description of the system model is beyond the scope of this chapter, but a short
summary is provided below.

3.1 The Cyber-Physical System under Study

The transmission network (Fig. 1) consists of a large number of transmission lines,
which connect 19 power generators and 19 loads. All of the connections of the lines,
generators and links are done in 32 substations.

Each substation is arranged in a number of bays. Each bay is responsible for
connecting a single element – a line, a generator or a load – to the transmission
network. The substations are assumed compliant with IEC 61850. Figure 2 shows
an example of one such substation (substation 4011). The other substations have
similar architecture, but they may differ in their number and types of bays. Some
substations have generators and/or loads, and all sub-stations contain Line-bays
connecting transmission lines to the bus-bar of the particular substation.
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Fig. 1 NORDIC-32 power system topology. This topology is well documented in the technical
literature, e.g [11] or the more easily accessible [12]

Each sub-station has a Local Area Network (LAN), allowing local devices to
communicate with one another. The LAN is protected from the rest of the world by
a firewall. Legitimate traffic in and out of the sub-station is allowed, of course.
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Fig. 2 Substation topology (IEC 61850 compliant)

The substations are connected via a sophisticated communication infrastructure
(Fig. 3), which includes a number of control centres, communication channels and
data centres.

During system operation, each protection/control function (with respect to the
individual bays in substations) that is needed to maintain system integrity is either
available when needed or unavailable. Availability is determined by the state
(operational or not) of the equipment required for enacting the control function. For
instance, shedding off a specific load to balance the power between the available
generators and loads in the system, can only be achieved if the respective compo-
nents – relays, communication from control centres to the respective substations,
etc. – are all operational. So, in a model of the system, availability of a control
function is determined by a predicate on the minimal cut set for the function
(measurement, protection or control). Only when the predicate evaluates to “true”
is the respective function available; if the predicate evaluates to “false” instead, the
respective function becomes unavailable. The function will only deliver the expected
outcome when it is available. If an unavailable function is called upon to execute, it
will fail to achieve the required outcome. For instance, if the function to shed some
load is called upon when it is unavailable, the load will not be disconnected from
the power network.
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Fig. 3 Communication topology (EMS + SCADA)

Each bay is responsible for (dis)connecting one element from the transmission
network. Protection devices (breakers) serve to disconnect power elements from
the transmission network, e.g. because of the over-loading of a line or a generator.
Control devices, on the other hand, are used to connect or disconnect power elements
from the network and are typically used by either the operators in the respective
control centres or by special purpose software (SPS) designed to undertake some of
the operators’ functions automatically.

Some functions are implemented using functionally redundant components,
others are not.

We model the behaviour of the entire system using a hybrid model: a combination
of probabilistic and deterministic models to capture different aspects of system
behaviour. Each element in the system model – whether it be a power element
or an element for instrumentation and control – is modelled as a stochastic state
machine. The effect of component failures on power-flow across the network is
captures by a deterministic power-flow model (a DC approximation). A more
detailed description of the method used to create the system model is given in [13].
Each state machine has at least two states – “OK” and “Failed”. Some state machines
(e.g. all power elements) may have an additional state, e.g. “Disconnected”. Some
other components containing software, such as those that facilitate control and
instrumentation, may have the additional state “Compromised”, the semantic of
which we detail later.
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Depending on the element type, its model, in addition to a state machine, may
include specific additional properties needed to capture the functionality of the
component. For instance, the model of a generator will have a property defining
the maximum power that the generator can produce; the model of a load will have
an additional property defining the power consumed; a power line will have two
properties – one that defines the line capacity and another that defines the power
(current) through the line. The full list of properties for the different components
that occur in the system model are beyond the scope of this chapter. However, we
provide an illustration of these concepts in Appendix A. The listed properties for a
given element may vary depending on the level of detail used in the model – e.g.
depending on whether DC or AC power-flow calculations are used to establish the
new state of the power network following a disruption. The complete model used in
the study can be found in [14].

The reader familiar with state-based probabilistic models may have realised
that these properties extend the state space of the state machines implicitly. This
complication is handled in our model by having a clear separation between the
state captured by the states of the respective state machine and the state extension
captured by the values of the various properties. The discrete part of the state
evolves according to the logic built into the topologies of the state machines of the
individual components. The dependencies between the state-machines are captured
by different models, chief among them power-flow calculations that use the state
of components across the entire power network, and predicates that determine the
operational status of protection/control/measurement devices based on the state
of all related components, etc. This pragmatic approach allows us to apply in
the studies well-known methods of solving Markov processes despite the use of
properties attached to some of the components.

3.2 Modelling Protection Devices

In our study we compare the behaviour of systems using non-replicated protection
devices, with the behaviour of systems with (some) replicated protection devices –
replication being the use of functionally equivalent, but “diverse”, channels in the
devices.

The state machines of both 1-channel and 2-channel protection devices are shown
in Figs. 4 and 6, respectively. In these diagrams we refer to a “Compromised” state
which will be defined in detail in Sect. 3.3.

A Markov chain is shown in Fig. 5, which corresponds to the state-machine
shown in Fig. 4 under the assumption of exponentially distributed sojourn-times.

The states of the Markov chain correspond to the states in the UML diagram,
except for two differences: (i) there are two failed states – “Failed” and “Failed
Compromised” states. This is necessary since the state machine in Fig. 4 models a
non-Markov process: which state the device is restored to from a failure is dependent
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Fig. 4 A UML state machine diagram of a single channel protection device

μFC

μC λC

0 1

2 3

λ

μ

λCF

0 – channel is OK
1 – channel is failed
2 – channel is compromised
3 – channel is Failed Compromised

Fig. 5 A Markov chain diagram illustrating the behavior of a single channel protection device

on the state the device was in prior to failure (“OK” or “Compromised”); (ii) the
maintenance state is not explicitly shown.5 The maintenance occurs while the device
is in one of the failed states.

The transition rates are as follows:

λ – rate of failure in non-compromised state.
μ – rate of repair after a failure.

5The maintenance activity in the UML diagram is one which affects all of the devices across the
network, and one via which transitions from the “Compromised” to the “OK” state in the Markov
chain are realized. This could be modelled as a “shared activity”, but would require an adequate
modelling support (e.g. available in Mobius SAN v2.5).
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Fig. 6 UML state machine diagram depicting the behaviour of a 2-channel protection device

λC – rate of attack. This parameter is related to a system-wide rate of attacks
(discussed later). During an attack, depending on an attacker’s preferences, a
particular protection device is selected (e.g. no preferences, preferences for larger
assets, etc.). As a result of such a selection, the rate of attack of a specific
protection device is modelled as a fraction of the rate of attacks on the system.

μC – rate of inspection (i.e. of returning to OK state from a compromised state). This
is a system-wide parameter. In our studies we ignore the time taken to inspect
different devices and restore their operation after a compromise. We model the
inspections by defining the distribution of times between successive inspections
(e.g. exponential distribution with mean – a day, a week, etc.). The inspection
is assumed to restore, simultaneously, the normal operation of all compromised
devices.

λCF – rate of failure in compromised state.
μFC – rate of repair in Failed-Compromised state.

The behavior of a 2-channel protection device is shown in Fig. 6.
The 2-channel version implements a 1-out-of-2 architecture. |That is, the 2-

channel device fails only if both channels have failed. As long as at least one
of the channels is operational (in either “OK” or “Compromised” state), the 2-
channel breaker itself is also assumed to work correctly. The diagram uses the
advanced features of UML 2.X to model the behaviour of each of the channels,
including their possible failure, repair and maintenance. A channel can be restored
on its own (triggered by the event “restore_operation”) or by a repair of the 2-
channel system (triggered by “restored” event). In the former case the respective
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channel is returned to the operational state it was in prior to this channel failure
captured by “deep history” (H*) pseudo-state.6 The latter case leads to forking a
signal “restore” to both channels, which in turn returns each of the channels to the
respective deep history pseudo-state. The “Breaker” state machine further models
the device maintenance and eliminates the effects of a malicious compromise of
the device via either the possibility of “cleansing” [6] – e.g. restoring the device to
a known clean software configuration – or by patching it. In the model we assume
that maintenance is always successful, hence it returns the state machine to OK state
(modelled as “shallow history”, H, in the diagram, Fig. 4).

When a breaker fails, the corresponding component (line, generator, etc.)
becomes disconnected. In either case, the failed protection device would respond
to commands from the control centre (to connect or disconnect the respective line).

An external event, “successfulAttack”, triggers the transition “OK” → “Com-
promised”. A return to the OK state requires maintenance.

In a “Compromised” state the protection device (or a channel, in the case of a
two channel device) continues to operate, but it may fail in circumstances in which
the device in an “OK” state would not, i.e. the failure-rate in a “Compromised” state
is higher than it would be in an “OK” state. The rationale for this modelling choice
is the desire to capture the effect of advanced persistent threats (APT), e.g. Stuxnet
[15], under which the affected devices may continue to operate for some time before
a failure occurs.7 This model of how cyber-attacks affect device (channel) behaviour
in a compromised state is a special case of the model developed in [16], where the
interested reader may find further detail.

Figure 7 depicts a Markov chain which models the behaviour of the 2-channel
protection device assuming exponentially distributed sojourn-times for all transi-
tions. The state space of the chain is a is a Cartesian product of the channels’
state-spaces (defined in Fig. 5). The transitions correspond to the rates defined for
the single channel device. The transition from state “2,2” to “0,0” captures the fact
that the inspection of all devices is assumed an atomic operation, hence the states
of both channels, when found “Compromised”, are changed simultaneously.

The shaded states, “1,1”, “1,3”, “3,1” and “3,3” are the states when the 2-channel
device itself fails – both channels are in either “Failed” or “Compromised-Failed”
state. According to our assumption that the device is a 1-out-of-2 protection device,
when the chain is in one of these shaded states, the 2-channel protected device
(a line, a generator or a load) is disconnected from the power network, which in

6The terms “deep history” and “shallow history” are part of the UML state-machine jargon. These
refer to pseudo-states which are used with composite states (i.e. states which consist of two or more
sub-states). The pseudo state “deep history” is used to signify that when a state machine enters a
composite state, it will in fact enter the sub-state of this composite state in which the state machine
was prior to leaving the composite state for the last time. The “shallow history” pseudo-state,
instead, will always enter the same “initial” sub-state of the composite state.
7In fact, APT introduce subtle changes in the behaviour of the compromised devices (software),
which are difficult to distinguish from normal operation, hence the compromised state may remain
undetected for a long time.
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Fig. 7 A Markov chain
diagram illustrating the
behavior of a 2-channel
protection device. The labels
attached to the states indicate
the state of each of the
channels, e.g. “2,0” means
that channel 1 is in a
“Compromised” state (“2”)
and the second channel is in
an “OK” state (“0”)

μFC

0 – channel is OK
1 – channel is failed
2 – channel is compromised
3 – channel is Failed Compromised

μFC

μFC

μFC

μFCμFC

λCF

λCFλCF

λCFλCF

λCFλCF

λCF

λC λC μC
μC

μC

μC

μC λC

λC

λC

λC

λC

λC

μ

μ

μ

λ

λ

λμ

μ

λ
λ0,0

1,0

0,1

1,2

2,1

1,3

0,2

1,1

0,3

2,0

2,2

2,3
3,3

3,1

3,0

3,2

λ

μ

μC

μC

turn triggers a redistribution of the power in the power network, i.e. the power-
flow calculation will be computed, which in turn may lead to more devices being
disconnected if lines get overloaded.

Clearly, while in an operational state – “OK” or “Compromised” – the protection
device works according to its specification: it either keeps the respective protected
device connected to the power network or, when a power overload threshold is
exceeded, the protection device will enact a powerline trip. This behaviour is not
visible in the diagrams. Note that while the UML state-machine diagram captures
normal operational behaviour – the device keeps the protected asset either connected
to, or disconnected from, the power network – capturing these details with the
Markov chain would be problematic. This is because transitions between operational
sub-states (connected/disconnected) are triggered by changes of the entire power
system – changes which are external to the protection device and typically follow
deterministically after a change of the power network topology. External stimuli
can be modelled with a UML state-machine while this is problematic for Markov
chains.
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We compare the effect on a system model’s behaviour using two different models
of a compromised breaker:

(i) as soon as the line breaker is compromised its tripping threshold is set to a
value which is 10% above the load to/from/through the protected asset (line,
load or generator) at the time of the compromise. This tripping threshold can
be significantly lower than the “correct” threshold, linked to the capacity of
the respective asset, e.g. a line. We used this model in [4], following reports in
the literature that similar attacks have indeed been observed [17]. The device
failure may have no immediate consequence: it is only manifested once the
state of the power network changes (e.g. as a result of accidental failure of a
power component), resulting in the redistribution of electrical power flowing
across the power network. If the flow through the protected asset then exceeds
the incorrect tripping value set by a successful attack, the associated breaker
will disconnect the asset;

(ii) significantly increasing the rate of failure of a channel in a compromised state.
An example would be an increase from a rate of failure once in 10 years in the
non-compromised state to a rate of failure once a day in a compromised state
(i.e. over 3 orders of magnitude). Once the breaker fails (with a high failure-
rate), under this model, it disconnects the respective protected element (a line,
a generator or a load).

Clearly, the two models possess quite different levels of abstraction. The first
one deterministically defines the breaker failure behaviour and requires detailed
knowledge about the actions taken by an adversary. Such knowledge is only avail-
able for known attacks, for which extensive forensic analysis has been undertaken
and their consequences established with certainty. Such knowledge, however, is
not available for attacks which have not been seen or studied, e.g. those that use
0-day vulnerabilities. The first model, therefore, cannot be used for analysis in
the face of unknown attacks. The second, more abstract model of a compromised
breaker, instead, merely hypothesizes that a breaker compromise leads to a higher
failure intensity, without defining specifics beyond the failure mode (that should the
breaker fail it disconnects the protected component). Importantly, a lack of specific
knowledge about unknown attacks is not, by itself, an impediment for using the
abstract model to study the effects of these attacks.

Via suitable parameterization of the abstract model, can one reproduce system
behaviour that is close to the behaviour arising when using the specific model of
the compromised breaker instead? If it turns out that this is indeed possible, then
there is an argument for using the abstract model in risk-assessment that includes
unknown cyber-attacks. Varying the parameters of the abstract model might allow
one to explore a spectrum of possible losses, without a detailed knowledge about
how (unknown/future) cyber-attacks may compromise the respective devices.
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3.3 Modelling Cyber-Attacks

Now we briefly describe the adversary model, which captures the behaviour of the
attacker. This model is derived from [4] and is extended to capture the knowledge
that an adversary may have about the deployed architecture of the breaker, e.g.
whether defence-in-depth in the form of replicated breakers is deployed.

For the system under study we assumed that each substation has a dedicated
firewall (indicated by the “brick wall” in Fig. 2), which isolates the sub-station from
the rest of the world. We also assume that an intrusion detection/prevention system
(IDS/IPS) monitors traffic in the sub-station’s LAN. When an IDS/IPS detects
illegitimate traffic, it blocks an adversary from accessing those assets located at
the substation.

Our study is limited to the effect of a single type of attack on the modelled
system: a cyber-attack via the firewall of a sub-station. The model is shown in Fig. 8
using the Stochastic Activity Networks (SAN) formalism.

This model assumes that the adversary is periodically idle (represented by
the SAN-place labelled “Idle”). With some regularity, defined by the activity
Attack_interval, the adversary launches a cyber-attack on the system by trying to
penetrate the Firewall (modelled in Fig. 8 by the activity Firewall_attack) of one of
the 32 sub-stations defined in the NORDIC-32 model.

The selection of a substation to attack8 is driven by either a uniform distribution,
defined over the 32 sub-stations (“Indiscriminate attacker profile”) or by a non-
uniform distribution defined in a way to capture the preferences of the adversary,
which are discussed elsewhere [18]. In this chapter, we limit the study to an
indiscriminate adversary. Under the current model we also assume that the firewalls
of all sub-stations are equally easy/difficult to penetrate. This model shows the steps
that follow the adversary’s initial selection of a sub-station to attack:

Fig. 8 Model of adversary applied to NORDIC-32

8Figure 8 does not show how the adversary chooses a sub-station.
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– The adversary may target each of the firewall configuration rules. The decision
of which rule to attack is modelled by the activity Firewall_attack. In Fig. 8 we
assume that there are 4 rules to choose between, which is just an example. The
model assumes that the rules are equally likely to be chosen by an attacker – the
probabilities associated with the outputs of the Firewall_attack activity are all set
to 0.25.

– Once a rule is selected (modelled by the places Rule_1 – Rule_4), the adversary
spends time trying to break the selected rule. This is modelled by activities
Attack_1 – Attack_4, respectively. Her efforts may be successful or unsuccessful.
In the case of a failed attempt, the adversary returns to the state Under_attack and
may try another rule.

– However, in the case of a successful penetration through the firewall, the state
“Penetrated” is reached, in which case the adversary now has two further options
for proceeding9:

• compromise the protection device of a single line,
• compromise the protection devices of all lines in the particular substation.

If the adversary succeeds, she leaves the substation. This choice is modelled
by the instantaneous activity Next_step, which returns the adversary to the state
“Idle”.

– When the protection device (breaker) is replicated, the adversary is presented
with two further choices when in a “Penetrated” state (modelled by the
“Select_Model” instantaneous activity):

• Independent attacks: one of the channels of the breaker is selected at
random and attacked. If the attack is successful, this channel enters the
“ChX_compromised” state; the state of the second channel remains unaffected
by the attack. This models the behaviour of an adversary unaware of the
particular form of defence-in-depth (diverse replication of the breaker) she
is facing. Note, with this adversary model, the two channels of the breaker
may still eventually become simultaneously compromised, e.g. as a result of
2 separate attacks on the same substation, each attacking different channels of
the same breaker;

• Synchronised attacks: here, the adversary tries to compromise both channels
of the breaker in the same attack, using suitably devised attacks for each of
the channels. So each channel may be compromised as a result of a single
attack. This adversary model captures an adversary with detailed knowledge
of the deployed defence-in-depth. In this case the likelihood of compromising
both channels of a protection device is clearly significantly higher than in the
previous model with independent channel attacks.

9The actions that an adversary can take are not modeled in detail in Fig. 8. The specific logic of
successful attacks – either changing the tripping threshold immediately or increasing the failure
rate in the future, however, is implemented in the solver (simulator) of NORDIC-32.
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– IDS/IPS is modelled by the activity IDS_detection, which is enabled if the model
state is “Penetrated”. This activity competes with the activities for the adversary
selecting and attacking the breaker channels. The adversary may be detected
before she completes the attacks – as soon as the activity IDS_detection fires,
the attack is aborted and the adversary is returned to “Idle”.

Finally, a channel of a protection device attacked multiple times may end up
being compromised multiple times [16]. In this study, however, we ignore the
implications of this possibility, assuming that the cumulative effect of multiple
compromises of the same channel is no worse than the effect of a single successful
attack; this is, admittedly, a simplifying assumption.

4 Results

First we compare the behaviour of the system model with two different adversary
models: i) the adversary model described in [4]. Under this model, if the adversary
succeeds in getting unauthorised access to the protection devices of a substation, she
changes the tripping threshold from being set at a value slightly over the capacity of
the protected device (line, generator and load) to a value that is merely 10% above
the current flow through the protected device at the time of the successful attack;
ii) the adversary model [16] discussed above. Under this model the rate of failure
of a compromised protection device is set to a value of 103 greater than the rate of
failure of the uncompromised device (i.e. before the successful attack on it).

In both cases a measure of interest is the expected value of the supplied power,
as a fraction of the maximum power that can be supplied in the model, 10,940 MW.
This measure is calculated via Monte-Carlo simulation. The NORDIC-32 system
is simulated as running for 10 years of operation, repeated 300 times. The 300
simulation runs are a sample, allowing us to compute a sample estimate of the
expected supplied power, as well as confidence intervals for this statistic at stated
confidence levels.

In all simulated cases, in addition to those measures which seek to prevent an
adversary from accessing assets of a substation, a periodic activity of “proactive
recovery” (or cleansing) of the protection devices is in place. This activity restores
the successful operation of protection devices by eliminating any effects of compro-
mises that have taken place. When an adversary alters tripping thresholds, cleansing
restores tripping thresholds to their nominal values. For the abstract model of a
compromise, cleansing restores the failure-rates to the values assumed for non-
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compromised states of the protection device. The cleansing procedure is assumed
“perfect”, i.e. its outcome is always a success.10 Later in the chapter we discuss the
implications of relaxing this assumption.

4.1 High Fidelity Vs. Abstract Adversary Models

In this section we summarise the results from the studies with the two adversary
models. These are detailed in Table 1. The labels attached to the columns are as
follows:

– μ represents the expected supplied power as a fraction of the nominal supplied
power. The expectation is calculated over a number of simulation runs, N,
typically 300. The average supplied power, P, is a random variable. For each
simulation run, i, P takes some value pi. We define μ as the expected value of

P, and it is computed as: μ ≡ E [P] =
∑N

i=1 pi

N
. Values of μ close to 1 (100%)

represent cases with small average losses, while large deviations of μ from 100%
indicate more significant losses, e.g. those due to cyber-attacks.

– σ is the standard deviation of P.

Table 1 Lost power due to attacks tampering with the tripping threshold of a protection device

Case μ σ LB UB p-value

A
tta

ck
s c

ha
ng

e 
pr

ot
ec

tio
n 

th
re

sh
ol

d

Daily attacks, no inspections 0.0319 0.0171 0.03 0.0338 <0.0005
Weekly attacks, no inspections 0.2180 0.1143 0.205 0.2309 <0.0005
Monthly attacks, no inspections 0.7185 0.2101 0.695 0.7423 <0.0005
Yearly attacks, no inspections 0.9681 0.0552 0.962 0.9744 <0.0005
Weekly attacks, inspect daily 0.9832 0.0015 0.983 0.9833 0.74823
Weekly attacks, inspect weekly 0.9800 0.0028 0.980 0.9803 0.00070
Weekly attacks, monthly inspections 0.9692 0.0089 0.968 0.9702 <0.0005
Weekly attacks, yearly inspections 0.7653 0.1243 0.751 0.7794 <0.0005

A
tta

ck
s r

ed
uc

e 
re

lia
bi

lit
y

Weekly attacks, no inspections 0.7913 0.0106 0.790 0.7925 0.031739

Weekly attacks, monthly inspections 0.9772 0.0021 0.977 0.9774 0.90484

Weekly attacks, yearly inspections 0.9226 0.0185 0.920 0.9249 <0.0005

No 
attacks

Baseline 0.9845 0.0012 0.984 0.9846 0.53410

10Clearly, this is a simplifying assumption, which may not hold true in practice: the cleansing
procedure itself may be fallible or it may be unavailable due to an insufficient number of personnel
or insufficient amount of resource required for its enactment.
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– LB and UB are the lower and upper bounds, respectively, of the 95% confidence
interval for μ computed under the assumption that P is normally distributed.

– p-values are computed for the Anderson-Darling statistic, in a test for statistical
normality. A value of the test statistic is computed for each sample of simulation
runs (typically a sample-size of 300), and the associated p-value for the sample
is the probability of observing a value for the test statistic that is no less extreme
than the value computed from the sample, assuming the sample was indeed drawn
from a normal distribution. This p-value should be compared with the required
significance level, typically 0.05, to pass a judgement about normality – as values
smaller than the significance level suggest that the hypothesis about normality
should be rejected.

The top part of the table summarises the observations when the adversary
model follows a specific cyber-threat closely – changing protection thresholds of
the protection devices. Successful attacks of this kind have no immediate visible
consequence and may manifest themselves only if/when the topology of the power
network changes and the flow of power alters in such a way as to exceed the
thresholds of some compromised devices and, thereby, trigger line trips. The
problem may escalate over time, and unless the tripping thresholds are restored to
their proper values the losses will be very significant, as the top 3 rows in the table
indicate. Such large losses are clearly intolerable, and the problem with thresholds
is likely to be identified and fixed. For this reason, although the studies point to a
potentially serious type of attack, the fix is relatively simple.

Looking at those rows of the table which summarise the effect of inspections,
one sees that the frequency of inspections affects losses, which is not surprising.
Monthly inspections leave the losses within 2% of the baseline – 0.9692 vs 0.9841
for the average supplied power.

Let us now compare the model results with the two models of attacks – using
a detailed model of stealth attacks vs the more abstract model of the effect attacks
would have on compromised protection devices. The two highlighted rows of the
table show losses calculated with the two models. It is striking how close the
average losses are: 0.9692 for the stealth model vs. 0.9772 for the abstract model
of the compromised protector. Although the difference between these averages
is statistically significant11 the absolute difference is negligible – less than 1%!
This observation suggests that despite conceptual differences between these models
of how attacks compromise protection devices, the average losses from stealth
attacks for the particular case (of weekly attacks and monthly inspections) for this
particular system, NORDIC-32, can be estimated quite accurately using a model
which operates at a much higher level of abstraction. And more importantly, the
abstract model does not rely on detailed knowledge of the mechanisms of how the

11We do not present the results from testing statistically the hypothesis that the means of the two
samples are the same, but did conduct this test and the null hypothesis was strongly rejected.
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stealth attacks might alter the behaviour of the protection devices, which makes
the abstract models potentially very attractive for assessing the risk from future,
unknown attacks.

Perhaps it is noteworthy that these results were “easily” obtained from an initial
informal exploration of the abstract model’s parameter space. We ran a short
campaign with an order of magnitude increase of the failure rate as a result of a
compromise. The effects on the system model were negligible. We then tried an
increase of 3 orders of magnitude and this choice of parameterisation for the abstract
model produced the agreement between the models we report here.

In practice, the parameterisation of the abstract model is likely to be done more
systematically. Here, we list a number of options worth considering:

– one may carry out systematic sensitivity analysis exploring how failure-rate12

increases affect system behaviour. In case specific models of past cyber-attacks
are available, one could try to identify a range of parameters for the abstract
model, for which the system model behaves comparably to how it behaves when
the more detailed models of compromise are used, e.g. repeat, for a whole
slew of known attacks, a study similar to the one we reported above. Selecting
the abstract model’s parameter values from within this range might give some
indication about the system’s preparedness against both known (which is usually
where security assessment stops!) and unknown cyber-threats which happen to
have consequences that are captured accurately enough by the abstract model
parameterised from the range identified in the sensitivity study.

– Clearly with the abstract model of consequences, the failure-rate may increase
to infinity, which would result in an instantaneous failure of the compromised
device. Instead of using the failure rate increase (i.e. a parameter, relative to
the rate of failure of the non-compromised device), one may parameterise the
abstract model using an absolute failure-rate. With this, a sensitivity analysis
may still be employed to determine a useful range of values: from instantaneous
failure to a rate which corresponds to mean-time-to-failures of a few units of
meaningful time, e.g. seconds, minutes or hours, depending on the specific
context.

12Clearly, by referring to the rate of failure, we implicitly envisage an exponential distribution of
the time to failure, which is often used as it reduces the problem of parameterisation to a single
value. Should there be a reason ruling out the use of exponential distribution, the abstract model
parameterisation will become more complex. It will involve a selection of a suitable family of
probability distributions and applying sensitivity analysis to their respective parameters.
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4.2 Quantification of Defence–In–Depth Using the Abstract
Model

In this section we look at the effect of applying defence-in-depth (DiD) in the form
of 2- channel protection devices deployed at certain points across the network,
instead of 1-channel protection devices. The options that we considered are:
applying DiD to devices protecting lines only, generators only, loads only or all
power elements (lines, and generators, and loads).13

In all of the cases with 2-channel protection devices we study the behaviour of
the system model subjected to different attacks on protection devices:

– Independent attacks: each time an adversary succeeds in gaining access to a 2-
channel protection device, she compromises only one of the channels, selected at
random. Under this mode of attack, compromising both channels is still possible,
but would require at least two separate successful attacks on each of the channels
of the same device, respectively.

– Synchronised attacks: every successful attack on a protection device results in
both channels being compromised (i.e. simultaneously by the same attack).

As stated above, we ignore the effects of the second, third, etc., successful attacks
on the same channel, a simplifying assumption made for convenience (to reduce
the number of modelling parameters). Under rather broad conditions, reducing
the periods between proactive recoveries will reduce the probability of multiple
compromises of the same protection channel, which provides some justification
for the adopted simplification. Clearly, a sufficiently frequent “proactive recovery”
reduces the probability of a protective channel being compromised more than once
to a negligibly small number, justifying ignoring the effects of multiple attacks on
the same protection device.

The results from our studies are reported in Table 2 and grouped according to the
mode of attack – independent or synchronised, whether inspections (i.e. cleansing)
are applied or not and, if applied, the rate of the inspections. At the bottom of
the table, the simulation results are presented for a system with single channel
protection devices. This last case is included to demonstrate some of the benefits
from DiD.

Comparing the three rows labelled “Baseline” clearly indicates that the cases
are statistically indistinguishable from the point of view of the selected measure of
interest (supplied power): the collected measures are practically identical. Statistical
tests of whether the samples from the simulation runs, collected for all 3 cases,
come from the same distribution, provided us with no evidence to suggest that
the hypothesis should be rejected. This observation is somewhat surprising, as it
suggests that using replicated protection devices brings no benefits for the modelled

13Clearly, limiting the total number of 2-channel protection devices, and trying to identify the
optimal places to deploy these resources in the system, is yet another example of a worthwhile
study.
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Table 2 Defense-in-depth: Independent vs. synchronized attacks on protection devices

System model μ σ LB UB p-value
Independent
attacks

Baseline (attacks
disabled) 0.9845 0.0012 0.984 0.985 0.534
No
inspections

Weekly
attacks
(all)

0.9443 0.0079 0.943 0.945 0.481

Weekly
attacks
(genera-
tors)

0.9529 0.0025 0.953 0.953 <0.005

Weekly
attacks
(lines)

0.9577 0.0046 0.957 0.958 0.3977

Weekly
attacks
(loads)

0.9629 0.0013 0.963 0.963 0.4911

Monthly
inspections

Weekly
attacks
(all)

0.9843 0.0012 0.984 0.984 0.145

Weekly
attacks
(genera-
tors)

0.9837 0.0013 0.984 0.984 <0.005

Weekly
attacks
(lines)

0.9843 0.0011 0.984 0.984 0.4103

Weekly
attacks
(loads)

0.9838 0.0012 0.984 0.984 0.008

Yearly
inspections

Weekly
attacks
(all)

0.9801 0.0036 0.98 0.980 <0.005

Weekly
attacks
(genera-
tors)

0.9702 0.0043 0.97 0.971 0.117

Weekly
attacks
(lines)

0.9816 0.0023 0.981 0.982 <0.005

Weekly
attacks
(loads)

0.9752 0.0027 0.975 0.975 0.003

Synchronised
attacks

Baseline (attacks
disabled) 0.9845 0.0012 0.984 0.985 0.416
No
inspections

Weekly
attacks
(all)

0.8930 0.0057 0.892 0.894 0.418

(continued)
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Table 2 (continued)

System model μ σ LB UB p-value

Weekly
attacks
(genera-
tors)

0.9505 0.0016 0.950 0.951 0.187

Weekly
attacks
(lines)

0.9264 0.0037 0.926 0.927 0.884

Weekly
attacks
(loads)

0.9609 0.0011 0.961 0.961 0.462

Monthly
inspections

Weekly
attacks
(all)

0.9810 0.0014 0.981 0.981 0.518

Weekly
attacks
(genera-
tors)

0.9774 0.0016 0.977 0.978 0.278

Weekly
attacks
(lines)

0.9825 0.0013 0.982 0.983 0.718

Weekly
attacks
(loads)

0.9798 0.0012 0.980 0.98 0.056

Yearly
inspections

Weekly
attacks
(all)

0.9560 0.0089 0.955 0.957 <0.005

Weekly
attacks
(genera-
tors)

0.9588 0.0036 0.958 0.959 0.980

Weekly
attacks
(lines)

0.9667 0.0063 0.966 0.967 <0.005

Weekly
attacks
(loads)

0.9672 0.0018 0.967 0.967 0.929

1-channel
protection device

(all) weekly attacks,
no inspections 0.7912 0.0106 0.79 0.792 0.032
(all) weekly attacks,
monthly inspections 0.9772 0.0021 0.977 0.977 0.905
(all) weekly attacks,
yearly inspections 0.9226 0.0185 0.920 0.925 <0.005

Baseline (1-channel
protection device) 0.9845 0.0012 0.984 0.985 0.302
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system, provided the system operates in a trusted environment without attacks. The
reason might be that the rate of failure of the protection devices is very low (MTTF
10 years), which makes redundancy unlikely to improve a device’s reliability in the
face of accidental failure.

The rows at the bottom of Table 2 (labelled 1-channel device) provide measures
from the attack and inspection rates used to study DiD: weekly attacks and no
inspections, monthly and yearly inspections. A comparison of 1-channel and of
2-channel protection devices indicate clear benefits from employing replication in
a trusted environment. The benefits are more clearly pronounced for independent
attacks.

Now let us compare the model behaviour with, and without, DiD, and under
different attack modes: independent and synchronised attacks.

– No inspections.

• Without inspections, the losses under independent attacks are clearly smaller
than the losses under synchronised attacks: the expected value of supplied
power under independent attacks is closer to the values recorded for the
Baseline studies than the losses from synchronised attacks.

• Stratification – attacks are applied to all protection devices vs. to generators
only, lines only and loads only – provides additional insight as to where DiD
would bring the most serious benefits. Under the independent attacks model,
losses from attacks on generators are greater than the losses from attacks on
the lines or on loads. Under synchronised attacks, however, the pattern is
different. With no inspections the largest losses from synchronised attacks are
recorded for attacks on the lines, while the losses from attacks on generators
are lower than from attacks on both lines and loads.

– Inspections (either monthly or yearly). Adding inspections changes the ordering
between the cases quite subtly.

• For independent attacks, even yearly inspections make the system comparable
to the Baseline case: the additional power lost due to weekly cyber-attacks
is only a small fraction of a percent. Clearly, the combination of replication
in protection, together with the favourable attack regime (one channel at
a time), is sufficient for the effects of cyber-attacks to be almost entirely
compensated; the additional losses are very small. Increasing the rate of
inspections (monthly) reduces the additional losses due to cyber-attacks even
further, which is not surprising.

• For synchronised attacks the fact that the two channels of a protection device
can be compromised by the same attack, leads to device failure shortly (on
average 7.5 h later) after a successful attack. A device failure, in turn, leads
to disconnecting the respective protected component (a generator, a line or a
load) from the power network, i.e. the topology of the power network changes,
and some power losses become inevitable. Yearly inspections are simply not
frequent enough to mitigate the additional losses due to cyber-attacks: with
yearly inspections the losses due cyber-attacks are almost 3 times greater than
they are due to accidental failures (the baseline case). Our results suggest that
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monthly inspections can mitigate – to a large extent – the additional losses:
the model behaviour with monthly inspections is very close to the Baseline
case, especially for the cases when power-line protections are under attack.
Intuitively, this last observation is not surprising: disconnecting some lines
may be of no immediate consequence. Whether disconnecting a line will
lead to losses or not depends on the topology of the power network before
and after disconnecting the line. Our study also suggests that the monthly
inspections are less effective in mitigating losses from attacks on protection
devices attached to generators and loads. Although intriguing, this observation
is not surprising either: disconnecting a load in the power network leads to
an immediate loss of power. The effect of disconnecting a generator is less
obvious: in some cases the effect may be nil, e.g. if the operational generators
have spare capacity sufficient to pick up the required power and the topology
of the network is such that it does not get overloaded. If a large generator is
disconnected,14 however, a power loss is imminent and substantial.

5 Discussion

Our studies demonstrate the quantitative analysis of cyber-risks in a complex
industrial system. Contrary to a commonly adopted approach to cyber-risk assess-
ment (e.g. [19]. relying on “high”, “moderate”, or “low” qualitative indicators
of impact), we demonstrate that the impact of cyber-attacks can be meaningfully
established using a model of the particular cyber-physical system. While we share
the view that establishing the likelihood of various cyber-attacks is difficult and,
perhaps, unknowable,15 the quantitative method of cyber-risk assessment we put
forward here seems useful. Dismissing quantitative methods because of a lack
of credible methods to capture likelihoods seems to miss the point. Yes, even
if, somehow, the “true” likelihoods of attacks can be captured today, these are
likely to become hopelessly inaccurate when the landscape of cyber-threats changes
tomorrow. However, instead of giving up on quantitative risk-assessment because
of this difficulty, one could opt for performing sensitivity analysis over a range of
plausible likelihoods. Using such an approach could establish useful bounds for risk
indices of interest (e.g. the lost power in our studies). This is much better than using
questionable indices with values {high, moderate, low} calculated on a scale devoid
of mathematical rigour, and that typically ignore the specific application context!

Now, arguably, there is a fundamental issue with security assessment activities
that are solely based on establishing whether “best practice and engineering
principles” have been followed. While there is no doubt that such assessment
approaches are sensible, they do fall short in answering the question of whether the

14One of the generators in NORDIC-32 provides more than 40% of the power in the network. The
smallest generator – provides less than 10% of the total power.
15This is a “known unknown”.
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system is “secure enough”. Clearly, while undertaking an assessment (certification)
gives some confidence that the system is prepared against anticipated (i.e. known)
attacks, such confidence can be misleading, especially if the system scores very
well in the assessment (certification). The problem is the assessment provides no
indication of how good the system defences are against unknown cyber-threats (e.g.
those that exploit 0-day vulnerabilities).

One approach to tackling this problem was developed recently in [16], which
we have now attempted to validate here. By using an abstract adversary model
consistent with [16], we reproduce the expected power loss experienced by the
NORDIC-32 power system subjected to sophisticated stealth attacks. Here, with
the power system undergoing monthly maintenance inspections and being subjected
to weekly attacks, each successful attack resulted in a modified tripping threshold
for some protection device. The corresponding abstract adversary model does not
explicitly represent these threshold changes; instead, the consequence of a success-
ful attack is represented as an increase in the failure rate of the affected device. And
yet, the expected losses, 0.9692 and 0.9772, under these very different alternative
ways of capturing the effects of successful attacks, are in close agreement. Our
studies highlight the potential for the behaviour of a CPS, subjected to a previously
unknown sophisticated cyber-attack, to be suitably mirrored by subjecting the
CPS to attacks from a properly parameterised abstract adversary model. Fully
demonstrating such a substitute of “the specific” with “the abstract” will take more
than our simulation studies, but we believe the work we report here is important as
it indicates a useful way forward in addressing unknown cyber-attacks. Finding out
how the system might be affected by unknown attacks may prompt system operators
to look for additional controls to bring risk down to an acceptable level.

The final set of results – quantifying the effect of DiD – is also intriguing. With
these we confirm the observations made in [16], but with a much larger CPS – that
a model of an adversary attacking replicated assets (in this case protection devices)
is significantly affected by the adversary’s knowledge of the architecture of the
assets. The improvements DiD bring against independent attacks (i.e. when a single
channel of a replicated asset is attacked) are more significant than the improvements
against synchronised attacks. The magnitude of the difference depends on how
replication is complemented by inspections – measures to cleanse software from
the effects of cyber-attacks.

The main message of the study, however, is in demonstrating the feasibility of
deploying DiD rationally. If an operator has identified a number of plausible and
affordable alternatives, say A, B, C, etc. to deploying DiD, then she doesn’t need to
count on “gut feelings” to choose amongst these. No; instead, she can run model-
based studies with each of the available alternatives and compare the resulting
improvements. Such studies, however computationally demanding, are a small price
to pay in comparison with investing in a sub-optimal alternative that gives little to
no improvement. The feasibility of the approach is demonstrated in this work: we
identified a number of alternative deployments of DiD – all equipment protected,
protection for only generators, or lines, or loads – and report on the benefits each of
these candidate DiD-deployments bring.
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6 Related Research

In addition to the references given earlier, we would like to outline a number of
related sources.

There have been studies applying different modelling techniques to known
attacks. A couple of examples are [20, 21]. The first reference applies a probabilistic
technique to define a model of Stuxnet, and demonstrates how model parameters
can be assigned plausibly. The second example, instead, uses a non-probabilistic
formalism. These authors claim that documenting the particular malware is, itself,
an important contribution. Neither of the two models, however, is used by the
respective authors for an analysis of open research problems. Our focus is quite
different here: instead of merely constructing a model of something that has been
seen, we use a model as a tool to study practical problems such as the effectiveness
of DiD in different, adverse environments.

Somewhat related to the work presented in this chapter is our own previous work
on modelling the effect of cyber-attacks on the reliability of an embedded device
with fault-tolerant software [22]. The style of modelling there and in this chapter
are conceptually similar, but the scope of the analysis is quite different. The tools to
implement the work are also quite different. In [22] we developed a detailed model
of a specific device – to study a specific attack on the safe-state of the device –
using the stochastic activity networks (SAN) formalism. In this chapter, however,
we use complex hybrid models of power systems which combine both probabilistic
(stochastic state machines) and deterministic (e.g. power-flow models) parts. A SAN
is depicted in Fig. 8 merely as an aid in describing the adversary model.

The synchronized attacks that we studied in detail are conceptually similar to
common mode/cause failure; a topic which has been studied extensively in the
context of system/software safety and highly available computer systems.

There is also conceptual similarity in the proposed approach of replacing specific
models of adversaries with more abstract counterparts and the popular approach to
dependability analysis based on fault injection – trying to learn about true faults via
injection of faults believed by the proponents of the methods to be representative.
Despite the conceptual similarities – replacing “reality” with surrogates – there
are significant conceptual differences. Many of the fault-injection based studies
merely assume that injecting faults is a valid approach. In our work, we try to gain
confidence in those model parameter values potentially related to unknown attacks
by identifying those parameter values which make the abstract model suitably mimic
the “real thing”.

Finally, we would like to acknowledge the ADVISE formalism, a part of the
popular Mobius tool (https://www.mobius.illinois.edu/). The ADVISE formalism
captures, probabilistically, the motivation of an adversary, the assets of a particular
system and the rewards that successful attacks will bring to the successful adversary.
ADVISE operates at a high level of abstraction, which may pose some difficulties in
estimating risk indices requiring detailed causal mechanisms for their computation,
such as the expected loss of power which we used in our studies. Modelling

https://www.mobius.illinois.edu/
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synchronized attacks, which require detailed knowledge of defense-in-depth, with
ADVISE is likely to pose additional difficulties too.

7 Conclusions and Future Research

This chapter provides a number of results concerning a quantitative assessment
of cyber-risks in cyber-physical systems (CPS) – one which we proposed a few
years ago. We use a complex model of the power-transmission system, NORDIC-
32, extended with measurement, protection and control, all in line with the recent
standard for interoperable sub-stations, IEC 61850.

We report on two important advances:

• experimental evidence that, via suitable parameterisation of an abstract model,
the expected losses due to a specific attack can be established fairly accurately.
This result is significant as it points to an intriguing prospect of quantifying risks
from unknown cyber-attacks.

• demonstrating that our model-based approach can be used to support rational,
evidence-based decisions, about how to maximise the benefits from investing in
defence-in-depth (DiD). We studied the effectiveness of DiD – a combination of
design diversity in protection devices and proactive recovery of the channels – as
a defence against two types of attackers:

– a naïve attacker, unaware of the nature of DiD, who would select only one of
the channels of the protection device to compromise at any one time, and,

– a knowledgeable attacker. One with detailed knowledge of the DiD they face,
and able to launch attacks which defeat the DiD.

This work can be extended in a number of ways. The encouraging result, that
there are easily identifiable circumstances under which an abstract adversary model
can be used to accurately establish losses from a fully defined attacker, needs further
scrutiny. In what ways can this be harnessed to give more insight into unknown
attacks? In part, this will require exploring more specific models of attacks, studying
how well the abstract model can mimic these, and using sensitivity analysis to
establish ranges of the abstract model’s parameters that result in plausible, but as-
of-yet unseen, cyber-attacks.

It is unclear at this stage whether the abstract adversary model used in this work
is universally applicable, i.e. whether accurate estimates of the loss can be achieved
for any attack type – we suspect not. The modelling circumstances under which
such parity can be accomplished, as well as the generality of the approach, requires
further investigation. In order to shed more light on the problem, we plan to look
at sophisticated attacks, e.g. compromising WAMS software (mentioned earlier) or
other “special purpose software” (SPS). Such cyber-attacks could lead to system
operators being presented with plausible, but nevertheless incorrect, data on the state
of the CPS, causing these operators to take erroneous decisions in the control room.
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It may well turn out that the effects of compromised SPS require a different family
of abstract models. Constructing these with the same objective – getting accurate
estimates of losses due to attacks on SPS – is an important direction for immediate
future research.
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A.1 Appendices

A.1.1 Appendix A: Model of Power Line

1 {
2 “name”: “Link”,
3 “type”: “state-machine”,
4 “comment”: “Represents physical lines between

substations. ”,
5 “properties”: {
6 “from”: {
7 “type”: “Lookup”,
8 “required”: true,
9 “properties”: {
10 “list”: “machines”,
11 “filter”: “name === ’Substation’”,
12 “value”: “name”
13 }
14 },
15 “to”: {
16 “type”: “Lookup”,
17 “required”: true,
18 “properties”: {
19 “list”: “machines”,
20 “filter”: “name === ’Substation’”,
21 “value”: “name”
22 }
23 },
24 “kV”: {
25 “type”: “String”,
26 “required”: true
27 },
28 “x”: {
29 “type”: “Number”,
30 “required”: true
31 },
32 “max”: {
33 “type”: “Number”,
34 “required”: true
35 },
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36 “overloaded”: {
37 “type”: “Boolean”,
38 “required”: true
39 },
40 “connected”: {
41 “type”: “Boolean”,
42 “required”: true
43 },
44 “failure”: {
45 “type”: “Activation”,
46 “required”: true
47 },
48 “recovery”: {
49 “type”: “Activation”,
50 “required”: true
51 },
52 “length”: {
53 “type”: “Number”,
54 “required”: true
55 }
56 },
57 “structure”: {
58 “states”: [
59 “ok”,
60 “fail”
61 ],
62 “initial”: “ok”,
63 “transitions”: {
64 “ok”: {
65 “fail”: [
66 {
67 “type”: “property”,
68 “property”: “failure”
69 }
70 ]
71 },
72 “fail”: {
73 “ok”: [
74 {
75 “type”: “property”,
76 “property”: “recovery”
77 }
78 ]
79 }
80 }
81 }
}

This code fragment provides the definition of a Power Line and includes the
respective state machine and a set of properties defined for the line.
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A.1.2 Appendix B: A Detailed Description of Attacks on a Breaker

1. {
2. “name”: “Breaker Component”,
3. “type”: “state-machine”,
4. “structure”: {
5. “states”: [
6. “ok”,
7. “fail”,
8. “compromised-ok”,
9. “compromised-fail”
10. ],
11. “initial”: “ok”,
12. “transitions”: {
13. “ok”: {
14. “fail”: [
15. {
16. “type”: “probabilistic”,
17. “distribution”: “exponential”,
18. “parameter”: 0.1,
19. “comment”: “once in 10 years”
20. }
21. ]
22. },
23. “fail”: {
24. “ok”: [
25. {
26. “type”: “deterministic”,
27. “parameter”: 0.00086,
28. “comment”: “7.5h”
29. }
30. ]
31. },
32. “compromised-ok”: {
33. “compromised-fail”: [
34. {
35. “type”: “probabilistic”,
36. “distribution”: “exponential”,
37. “parameter”: 365,
38. “comment”: “daily”
39. }
40. ]
41. },
42. “compromised-fail”: {
43. “compromised-ok”: [
44. {
45. “type”: “deterministic”,
46. “parameter”: 0.00086,
47. “comment”: “7.5h”
48. }
49. ]
50. }
51. }
52. }
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The code fragment (in json notation) defines a state machine, which captures
the adversary behaviour. The state machine definition starts in line 4, from which
its structure is defined: i) the states (““ok”, “fail”, “compromised-ok”
and “compromised-fail”), “ok” is defined as the initial state, and ii) the
transitions between the states, which define the source and destination state for
each of the transitions, together with a distribution of the transition duration:
distribution type and the parameters, required by the respective distribution type.
Most of the transitions in this example are assumed exponentially distributed: this
distribution requires a single parameter. The recovery from a failure (with or without
a compromise) is deterministic: a fixed duration of 7.5 h, a somewhat arbitrary
figure. Apart from these two options – exponentially distributed and deterministic –
a number of alternatives distributions for the transition durations are available to a
modeller to choose from.
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A Model-Driven and Generative
Approach to Holistic Security
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Abstract Functional and technical cyber-resilience gain increasing relevance for
the health and integrity of connected and interoperating systems. In this chapter we
demonstrate the power and flexibility of extreme model-driven design to provide
holistic security to security-agnostic applications. Using C-IME, our integrated
modelling environment for C/C++, we show how easily a modelled application
can be enhanced with hardware security features fully automatically during code
generation. We illustrate how to use this approach and design environment to make
any modelled application ready to securely store its data in potentially insecure
environments. The same approach can be used to secure communication over
potentially insecure channels. In fact, our approach does not require any changes
of the application model. Rather, our integrated modelling environment provides
a dedicated modelling language for code generators which resorts to a Domain
Specific Language for security. It is realized as a palette of security primitives whose
implementation is based on underlying hardware security technology. The code
generator injects security appropriately into the models of the applications under
development. We illustrate the use of this security-injecting code generator on the
case study of a to-do list management application. The code generator is generic and
can be used to secure the file handling of any application modelled in the C-IME.
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1 Introduction

In a connected world, security becomes increasingly important as cyber-attacks
emerge quickly on the wealth of new services [9]. Cyber-resilience has been defined
as “the ability to continuously deliver the expected outcome despite adverse cyber-
events.” [2]. Functional and technical integrity play here a particularly important
role, concerning the ability to deliver the expected processes and capabilities in the
context of an IT system, including communication channels and networks. Cloud-
based applications are one example of particularly vulnerable applications as they
store their data online where it is ideally accessible from anywhere, but only to
authorized users. However, there are numerous cases in which these environments
have proven to be insecure. Third parties gained access to data stored in widely
used cloud storage services [8]. One way to protect this data is to enhance security
mechanisms of the environment, but this is only possible within one’s own scope
of control. Popular cloud storage services such as Dropbox [7], Google Drive [14]
or OneDrive [34] are prominent examples for uncontrolled environments. As we
are seeing with increasing frequency also in embedded and cyberphysical systems,
the temporary or permanent storage of data coming from sensors is a hot topic. It
impacts for instance the trust relations underlying sensor and decision-making based
proactive maintenance of remote machines: the sensor data is increasingly often
moved elsewhere for processing and decision-making, often in some form of cloud
and grid computing, in a trust space encompassing machine producer, machine
operator, maintenance service provider, and one or more levels of customers.
Depending on the nature of the data, security, privacy, confidentiality may all
play a role. The risk structure, and as a consequence the resilience of the entire
complex system, hinge on adequate, holistic and integrated protection mechanisms
that go beyond the most frequently practiced but inadequate patchwork of individual
technologies at the different layers of its subsystems.

Rather than relying on secure storage services, one can protect data by encryption
before it is uploaded. However, this native encryption requires secure operations
to be used by applications on every interaction with the data. For example, use
secure file operations whenever interacting with the file system. From the developer
perspective, security is thus a prime example of a cross-cutting concern: it requires
all file operations across the entire application to be consistently implemented
in a secure manner. This globality of scope makes it extremely difficult to add
security features a posteriori, once critical parts of the application are already
implemented, and it makes a case for handling security as an ab-initio design and
quality dimension.

Although some security concerns are often dealt with in the early development
process, many security requirements become known only much later, often even
after deployment [6, 9]. Thus we need methods that can cope with this conflicting
requirement: be holistic, but be able to deal comfortably with evolution and
change, as along the long life of complex systems and applications it will be
needed to security-enhance and security-upgrade applications which are already
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fully functional. The same problem and need applies to secure communication. Our
model-driven approach can be used to tackle communication in the very same way.

In this chapter we show how an application modelled in C-IME [15], our
integrated modelling environment for C/C++, can be enhanced with hardware-based
security features without even touching its models. This ease demonstrates the
power and flexibility of extreme Model-Driven Design (XMDD) [28, 30], the design
and development approach embodied by all our integrated design environments.
C-IME itself is the product variant specialized for C/C++ support in a product
line of integrated modelling environments1 (IMEs) built with the meta tooling
suite CINCO [31]. As we will see in the following, its graphical Domain Specific
Language is a subset of the C/C++ language, and its code generator generates C/C++
source code from application models in this DSL. The specific hardware security we
include in C-IME is based on SEcube security technology [5, 38], an open security
platform that provides encryption running on a separate SoC hardware device.

Figure 1 shows the structure and functioning of C-IME: application models
(top) are transformed to running C/C++ applications (bottom) by a model-to-
code generator G (in the middle). Key to our approach is C-IME’s dedicated
graphical modelling language for model-to-code generators. This language is a
Domain Specific Modelling Languages (DSMLs) [37], and it includes palettes of
primitives that pertain to the application domain(s) its models cover. To address
the specific holistic security language as an aspect, C-IME’s own DSML collection
of palettes is enhanced with a new palette of security primitives, populated with
primitives implemented on top of the SEcube APIs (cf. Fig. 3). The model-to-code
generator generates code from its argument application models fully automatically.
Its structure is simple and consists of three parts, each designed in a dedicated model
(cf. Sect. 5 and Fig. 1 (left)):

1. An initialization model generates setup code for the target platform. In our case
study, the initialization concerns locating and setting up the SEcube device and
performing the login procedure. In general, initialization can include any setup
that is required to enable the inclusion of security features on a specific target
platform.

2. The core of the code generation for the application model. The DSML for code
generators defines the primitives needed to map the model primitives to their
implementation level. In our case study, we use a DSML that corresponds to
language constructs in C, and the model-to-code transformation generates C code
from the models. In case we wish to target a different C platform or a different
language, we need different implementations for the model’s primitives, but we
may start from the very same model. In our case study, this mapping is where we
choose to target either a standard implementation for file operations, or a secure
version that is based on SEcube based security technology.

1We call IMEs the integrated development environments for (graphical) modelling languages, in
analogy to the IDEs (integrated development environments) for classical code-level programming
like Eclipse or IntelliJ.
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           :                      $ ./app
>> Please enter the user PIN
user
>> Do you want to 'add <name>', 'delete <num>', 'clear', 
read
>> Please enter a filename. 
ToDoFebruary 
>> Do you want to 'add <name>', 'delete <num>', 'clear', 
list 
>> Buy Milk
>> Buy Cookies
>> Finish DTIS Paper
>> Do you want to 'add <name>', 'delete <num>', 'clear', 
finish 2
>> Do you want to 'add <name>', 'delete <num>', 'clear', 
list
>> Buy Milk 
>> Buy Cookies 
>> Finish DTIS Paper [done]
>> Do you want to 'add <name>', 'delete <num>', 'clear', 
write 
>> Please enter a filename. 
ToDoFebruary 
>> Do you want to 'add <name>', 'delete <num>', 'clear', 
exit
>> See you later, alligator. 

secube@dtis ~/secube/todoapp/build 

Fig. 1 The modelled code generator consists of three parts and generates applications fully
automatically from process models

3. An epilogue, a counterpart model to the first phase. It generates code to clean up
any setting or configuration due to security before the application terminates, for
example logging out from the SEcube device. In general this epilogue includes
any process needed to restore the original status of the environment and to enable
the application to be executed again at a later point in time.
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The case study illustrates how easy it is to model the code generator for a secure
to-do list management application and how this generator differs from its insecure
counterpart. The generated application comprises secure file operations to allow for
the use in potentially insecure environments for data storage. This code generator
can be used to secure the file handling of any application modelled in C-IME, not
just the one in this case study. This specific model-driven approach is very flexible:
the choice of a security implementation is configurable in the code generator. The
SEcube security technology is our specific choice in this project, but any other
implementation, be it in hardware, software or mixed, could be supported in an
analogous fashion.

In Sects. 2 and 3 we introduce the reader to the C-IME modelling environment
and the process of generating the code of applications from their models. Section 4
describes the SEcube hardware security technology and its API, and Sect. 5 shows
how it is utilized in the case study. Our findings and an outlook on future work
conclude in Sect. 6.

2 The C-IME Modelling Environment

C-IME is itself a product in a product-line of application modelling environments
created with CINCO [31]. While C-IME targets headless C code applications
running in a shell and is rather simple, other products in this IME-product line
are more complex. For example, DIME (Dynamic Web Application Integrated
Modelling Environment) is tailored to model web applications ready to be fully
automatically code-generated and deployed into a Java EE web stack. Once the
web application model is ready and the runtime environment is set up, the DIME

generator produces and deploys a live online application literally with one click. For
example, the website of the SEcube online community is completely modelled in
DIME [4] and produced and maintained in this way. The existence of models allows
verification of properties at the model level [11, 12], i.e. before code generation and
independently of the runtime environment of choice.

This ease of handling and agility is possible because of the thoroughly model-
driven approach to the design of IMEs embodied in CINCO. CINCO-products are
based on meta models for graphs that are customizable to specific graph-like
modelling languages by defining a set of modelling language specific node and
edge types. The appearance of nodes and edges is associated with pictograms
and properties of choice, to match style (representation look) and characteristics
of the elements of a specific modelling language. These can be completely new
modelling languages, but also well known ones: For example DFAs, Petri Nets,
activity diagrams, BPMN were all easily modelled as CINCO model types [37].
CINCO further allows to define constraints on the graph structure that express further
syntactic and behavioural properties of the models in the modelling language under
definition. Examples are constraints on the nodes’ connectivity (e.g., places can
only be connected to transitions in Petri Nets, and viceversa), or on the number of
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nodes of a certain kind in a model (e.g., there can only be a start SIB in Service
Logic Graphs). In CINCO, the meta model of a specific graph language defines its
syntax and properties, while its semantics are implemented in the associated code
generator. A typical CINCO-product, therefore, is de facto a syntax aware editor for
a target modelling language that comes with a code generator that takes models in
that language and generates code for an execution platform of choice. In the case
of C-IME, the target modelling language is Service Logic Graphs (SLGs, [27]), the
domain of discourse is C applications, and the target code is a native (C) application
that can run on a given target platform (a C runtime).

Practically, to create a domain specific modelling environment in CINCO an IME-
designer chooses the modelling style of the CINCO-product under design – a sort of
host model type – then associates with its graphical elements a set of primitives
for a specific application domain, and then a model-to-code compiler that makes
the generated code executable on a technology stack of choice. For example, in a
different case study we chose again SLGs as host modelling language, but robotics
as an application domain, and the ROS platform as target runtime platform [11, 12].

Here we use Service Logic Graphs (SLGs) as process models, and reuse the SLG
definition of DIME, so both C-IME and DIME are close CINCO-products. Figure 2
shows a SLG belonging to the to-do list management application, the case study
chosen to illustrate our security weaving concept. In SLGs, nodes on the graph
canvas represent activities and different types of edges model control flow and data
flow.

The activity nodes, e.g., PrintString in Fig. 2, are called Service Independent
Building Blocks (SIBs). Analogously to a function and its parameters in general-
purpose programming languages, a SIB represents a functionality and has a
list of typed input ports (cf. todos and todosFinished nodes in the SIB
labelled start) that provide the input data. Execution outcomes leading to distinct
continuations are modelled using the concept of SIB branches, used to model the
control flow of the system (cf. solid edges in Fig. 2). SIB branches are represented
as branch nodes and are conceptually a constituent part of the SIB. In Fig. 2 we
see true and false branches. Depending on the execution outcome of a SIB,
the appropriate branch is followed, leading to the appropriate successor SIB, to be
executed next. Outputs are provided by typed output ports that are located in the
branches: the kind of output depends on the execution outcome, thus it makes sense
to locate on each branch the output ports relevant to its continuation. E.g., there may
be no computation result in error cases, thus error branches may not provide outputs,
and different results can be associated with different output data.

The start SIB is the unique entry point of an SLG, represented by a dedicated
node type labelled start. As the entry point is unique, a constraint expressing that
there can only exist one start SIB in every model is enforced by the C-IME graphical
editor. An SLG has one or more exit points, the end SIBs like the node labelled done
in Fig. 2. Each end SIB defines a case of outcome of the entire process. Together,
start and end SIBs with their branches and input/output types declare the interface
of a process model. Consequently, a process model may be integrated into another
SLG as a process SIB with input ports, branches and output ports (i.e., the actual
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Fig. 2 C-IME model WriteList for writing the to-do list management application’s data model to
the file system
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parameters) corresponding to the declaration in the sub process’ start and end SIBs,
thus introducing hierarchical, service-oriented modelling.

The primitive SIBs that define an application domain and all models of that
domain ultimately base on are native SIBs. Here they represent calls to functions
in C, which is the target programming language of C-IME’s generator. In general
native SIBs represent atomic entities that are implemented in some target program-
ming language. The mapping between SIB interfaces and functions is done in a
separate textual domain-specific language. For every SIB this language defines

– the SIB’s name,
– its implementation as a reference to a file and function name,
– the input ports or function parameters
– and its branches with their respective output ports.

The following example is an excerpt from the SIB definition of the SIB
writeListOfTextToFile used for the insecure version of the code generator:

sib writeListOfTextToFile:
atomic_services_file#as_write_list_of_text_to_file
content: [text]
-> true
-> false

The control flow is modelled via the solid arrows that connect a SIB node to its
branches and these to the successor SIBs.

The data flow is modelled using dashed edges. Data can be supplied to a SIB
by the outcome of a previously executed SIB within the same SLG or, for process
SIBs, by their context through the initial output ports of their start SIB. Graphically,
the data flow can be represented as

– Direct data flow: An output port may be directly connected to one or more input
ports (cf. the dashed grey edge from output port todos to input port content
in Fig. 2). Because the source of the data must be unique, every input port can
get its direct data only from one output port, respectively one data source.

– Variable in the data context: if the data collection needed by a SIB comes from
more than one SIB, the data source must be a variable in C-IME. Variables are
represented as nodes, are used to store data and to provide data, and provide the
means for an n : m connection between output and input ports.

In both cases the types of the output ports and the connected input ports must
match. The types are denoted after the name of a port (e.g., todos: [Text]).
Square brackets around a type name denote a list type. A C-IME model validation
component performs type checking and immediately indicates problems to the
modeller [3]. C-IME supports the primitive types Text, Boolean, Integer,
Real, Timestamp as well as their list types. For input ports with primitive types
a modeller may supply a static value instead of using data flow edges (cf. the
parameter a of the SIBs PrintString in Fig. 2).
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3 Model-to-Code Generation in C-IME

A modeller in C-IME does not deal with details of the underlying implementation:
the code generator takes care of transferring the semantics of the process models
to a complete implementation in C code. The central artifact for this mapping is
the library of implementations of the SIBs. The code generator walks along the
structure of an application’s model, and assembles its code using the applications’s
structure and the code implementing the SIBs. This library provides C counterparts
for the types in C-IME as well as their list types. It also offers a simple memory
management solution facilitating reference counting, shipped with C-IME by means
of an easy to use project template. The code generation produces a fully functional
C application that can be directly compiled and used.

The applications will be in many cases embedded systems, where target envi-
ronments typically have constraint hardware, limited computing power and small
available memory. Therefore, the code library implemented along with the generator
is particularly lightweight.

Following the separate compilation principle [1], the C-IME code generator
generates one *.c and one *.h file per SLG. Analogously, the library code and all
the method calls for native SIBs base solely on the corresponding header files. This
way, the implementation of all SIBs (including process SIBs) and library functions
can be replaced transparently (cf. Sect. 5).

Each process model is generated separately, so it is also possible to use C-IME to
model only parts of another application. The generated code is an implementation
in C and can be seamlessly used in other C and C++ applications. This way the
model-driven approach can integrate easily also into pre-existing non model-driven
projects.

In contrast to Java – the generation target of DIME – C does not support high-level
language features like object-orientation, subtype polymorphism, garbage collection
or even namespaces. Hence, all this is emulated in the generated code, and it is
dealt with by the code generator, hiding all this complexity from the modeller. For
example, due to the global namespace in C the generator ensures uniqueness of
all function names it generates by using the model name as a prefix, effectively
emulating namespaces not supported by the target programming language.

The graph structure of a process model cannot be represented canonically in a
block-oriented language like C [10]. This is solved by iterating through an adjacency
structure in the generated code, an implementation that avoids deep call stacks.
While the Java generator in DIME realizes SIB execution via calls to polymorphic
execute-methods, this is emulated in C with function pointers to corresponding
execute-functions. The generator renders dedicated implementations of these
execute-functions for the various kinds of SIBs, which encapsulate the concrete
execution as well as the data flow handling.
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Every process is generated as a C implementation comprising

– a global function to initialize all the data structures needed for the process’
execution,

– a global function implementing the control flow to execute the process and its
SIBs, and

– a global function to explicitly free the process’ data structures if the system runs
short on memory. This feature aims mainly at embedded systems where memory
resources may be limited.

The data flow is realized using a struct that is passed between SIB executions.
Branches of an SLG are implemented as a struct with one member indicating the
branch that was taken and one member for every branch holding an inner struct
representing its output ports’ values. All necessary calls to library methods for the
creation of constants and lists, for memory allocations and deallocations as well as
for reference counting are generated directly into the C code.

4 Hardware-Based Holistic Security

While software implementations of encryption are cost-effective and flexible,
implementation in hardware is generally regarded as being more secure. It is less
vulnerable to common attacks, of which a good summary can be found in [35],
also discussing general advantages and disadvantages of software vs. hardware
implementation of encryption (Fig. 3).

4.1 SEcube Security Platform

One example for a hardware security platform is the SEcube [38]. As shown in
Fig. 4, the SEcube consists of three hardware components embedded in a single
9 mm × 9 mm BGA package:

– A powerful ARM Cortex M4, Floating Point, Low Power CPU,
– A flexible and fast FPGA for HW custom developments,
– An EAL5+ certified secure element.

Having these three elements together in a single SoC makes it possible to create a
versatile and Common Criteria certified security environment where developers can
rapidly implement very complex functions.

The platform implements a set of commonly used encryption algorithms that run
on a device separate from the host machine. In this way the encryption mechanism
is less vulnerable to the attacks listed in [35] than implementations in software. In
particular, the following properties tackle common security risks:
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– No Security Bound Imposed by the OS: All encryption algorithms run on the
SEcube device, that is separate from the host machine. This way they rely in
no way on host machine’s operating system and cannot be attacked through its
potential security flaws.

– No Arbitrary Memory Access: The SEcube device has its own memory, that is
physically separate from the host machine. It is therefore not accessible to other
software running on the same machine.

– Data Integrity Guarantee: The firmware running on the SEcube device cannot
be altered through its interfaces. While this makes the device more secure, it also
makes the solution less flexible. Unlike software implementations of encryption,
the SEcube firmware cannot be updated after the device was physically closed.

– Secure Key Storage: It is crucial to store keys used for encryption and decryption
in a secure location. In case of the SEcube, keys are securely stored on the device
which they will never leave. Keys are identified by their ID and can be used on
the particular SEcube device only.

The SEcube platform is of particular interest to us because it is an entirely open
platform. Most importantly, the software running on the device as well as the API
to be included in applications on the host machine is open source. While the open
source concept is common to software, it is not yet commonly applied to hardware
especially in the security domain [38].

4.2 SEcube API

From the point of view of a software developer, the SEcube comes with a set of APIs
for the programming language C. It is organized in three layers, allowing security
experts to interact directly with the device drivers in a fine granular fashion, whereas
non-experts, typically application developers who are security consumers, can use
higher abstraction levels that shield most technical details. On the highest level, the
API allows to interact with the file system and have all content implicitly encrypted.
With this capability, user can take advantage of the technology without having to
struggle with the details of encryption.

L0 API The lowest layer L0 of the API allows direct interaction with the SEcube
device. It provides basic functionality to discover devices, to open and close them
and also to communicate with them through one generic function. While some
functions are to be used by experts only, device discovery and open/close operations
are useful to every user. In our model driven approach, the API is servified, i.e.
transformed (wrapped) into a collection of microservices that constitutes the L0
SIB palette. We provide as SIBs the most important functions of this L0 API layer,
i.e., those needed to design the model-driven code generator that in our case study
automatically adds security to the target application (cf. Sect. 5)

– L0_discover_init begins an iteration through all connected SEcube
devices,
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– L0_discover_next continues the iteration,
– L0_open opens a connected SEcube device, and
– L0_close closes an open SEcube device.

L1 API The second layer L1 of the API provides functionality to log into the device
and to perform encryption and decryption of data on a byte level. This layer also
allows setting up a connected SEcube device, meaning to add, delete and list keys,
to set the user and the admin PIN and to list available algorithms. Functions of this
layer that will occur in the case study are

– L1_login to authenticate as authorized user to an open SEcube device,
– L1_logout to terminate the session and to restore the device such that it

accepts logins in the future, and
– L1_crypto_set_time to synchronize the time between the host machine

and the SEcube device.

These functions are still close to the management of the security platform, not to
operations on data. We find the corresponding SIBs in the models of the security-
enhancing code generator.

L2 API The highest layer L2 of the API consists of the SEfile and SElink libraries,
which are used to encrypt data at rest respectively data in motion. The provided
functions implement common interfaces used to interact with the file system (SEfile)
and to send data over networks (SElink). Encryption happens implicitly, so that the
user does not have to juggle with technical details of the SEcube. In our case study,
we utilize these libraries to automatically secure file operations of an application
modelled in C-IME. In particular, we use the functions

– secure_init to initialize a SEfile session,
– secure_open to open a new SEfile,
– secure_write to encrypt and write a byte sequence to an open SEfile,
– secure_read to read and decrypt a byte sequence from an open SEfile,
– secure_close to close an open SEfile, and
– secure_finit to terminate a SEfile session.

5 Case Study: A To-Do List Management Application

To show the power and the flexibility of extreme model-driven design, we study the
case of a small to-do list management application that allows users to keep track of
activities to be done in the future. The application allows the user to add new items
to a list and to keep track of their status, namely whether a task is finished or still
pending. For convenience, we want to store the list in a cloud storage service, in
order to access it from any location. While this application has a relatively small
functionality, it has a high demand for security. Users want to securely save their
to-do list in the potentially insecure cloud storage service. Nevertheless they wish



136 F. Gossen et al.

integrity: the list should not be accessible (readable or alterable) by unauthorized
others including the cloud storage provider itself. More abstractly, this is at the
same time a use case for many IoT and CPS applications, where a given data
set should be prevented from unauthorized access (for tampering or reading) and
securely transferred to a destination storage.

To securely save all data, we want to protect it by encryption before saving and
uploading. Using C-IME, we can tackle the security cross-cutting concern in the
code generator rather than in the application model. We thus model the application
independently from our security requirement, so that the application model only
concerns the pure functionality, remaining small and easy to comprehend and
modify. All the file operations occurring in the model can be secured automatically
by adding the security aspect per model-to-code transformation, during the ensuing
code generation. In this way, we ensure that the security enhancement happens
systematically, uniformly and coherently. The generated application will have all its
file-related operations secured so that its files can be synchronized to cloud storage
services at no risk.

The original to-do list management application was indeed already modelled in
C-IME prior to the work on security. Like many other applications, it uses read and
write file operations to persist its data model to the hard drive. These operations
are typically not encrypted. In order to secure these operations we could have
manually changed the model, adding the necessary operations for managing the
SEcube hardware devices, the login process, the keys and encryptions/decryptions.

Much more desirable would be to use a technique that does not require any
change of the application’s models, and sufficiently generic for the models and
applications that the very same technique can be applied systematically to any other
application modelled in C-IME. To this aim, we propose a method that instead
models the C-IME code generator using yet other domain-specific languages in such
a way that critical parts of any C-IME-modelled application can be automatically
secured during its code generation as part of a security-enhanced code generation
process.

The resulting to-do list management application is a near-hardware application in
C/C++ that interacts with the SEcube through its C API. As such it is ideal to study
the appropriateness of the extreme model-driven approach implemented in C-IME
when applied to a low-level target programming language and when interacting with
hardware.

5.1 The To-Do List Management Application

The basic functionality of a to-do list management application is generally known,
but we will describe the features included in this case study in detail in order to then
discuss the security critical parts of the actual C-IME models. The fully generated
to-do list management application is a command line tool that allows a user to
manage all the items on a to-do list by means of simple commands. The application
further allows the user to write the list to a file and read it back. This can be done
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in a secure manner with encryption using the SEcube technology or in an insecure
manner using standard C functionality. Both alternatives will be generated from the
very same model, allowing the user to choose at generation time the preferred one.

The to-do list management application takes input commands and processes
them in a loop until the user terminates the application. The application offers the
following user commands:

– add t it le adds a new element with a given title to the to-do list. The element is
initially added as unfinished.

– finish i sets the status of the ith element to finished.
– delete i deletes the ith element from the to-do list counting from zero.
– clear deletes all items from the to-do list.
– list prints all items and their status to the console.
– write allows the user to write the to-do list to a file. The user is prompted for

a filename. In the secure version of the to-do list management application this
operation will encrypt all data so that all files can be stored in cloud storage
where they are unreadable even to other parties that have access to the storage.

– read allows to read a to-do list from a file. The user is prompted for a filename
and all the items are appended to the existing to-do list. For the secure version
of the to-do list management application this operation also decrypts the data to
make it readable to the user.

– exit terminates the application.

Figure 5 shows a screenshot of the to-do list management application during
execution. In this secure version, the user is prompted for the PIN to log into the

Fig. 5 Secure to-do list
management application
during execution

          :                      $ ./app
>> Please enter the user PIN
user
>> Do you want to 'add <name>', 'delete <num>', 'clea
read
>> Please enter a filename. 
ToDoFebruary 
>> Do you want to 'add <name>', 'delete <num>', 'clea
list 
>> Buy Milk
>> Buy Cookies
>> Finish DTIS Paper
>> Do you want to 'add <name>', 'delete <num>', 'clea
finish 2
>> Do you want to 'add <name>', 'delete <num>', 'clea
list
>> Buy Milk 
>> Buy Cookies 
>> Finish DTIS Paper [done]
>> Do you want to 'add <name>', 'delete <num>', 'clea
write
>> Please enter a filename. 
ToDoFebruary 
>> Do you want to 'add <name>', 'delete <num>', 'clea
exit
>> See you later, alligator. 

secube@dtis ~/secube/todoapp/build 
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SEcube immediately after the application is started. The user reads a to-do list from
a file, marks one item as finished and writes the list back to the file.

5.2 To-Do List Management Application Model

The to-do list management application already modelled in C-IME prior to this work
was security-agnostic and it did not use encryption. The desire to retrofit security on
the app arose with this work, and the security requirement to encrypt all data when
stored on the hard drive (but it could also happen in the cloud) was stated only after
the original application was deployed and running.

Identifying the security critical operations with regard to this security require-
ment is easy as all C-IME applications share the same dedicated SIB palette.
For the to-do list management application, the critical operations are OpenFile,
Write...ToFile, Read...FromFile and CloseFile. As the C-IME
models for reading and writing the to-do list are similar, in the following we will
describe the write process.

Figure 2 shows the model WriteList within the to-do list management application
that writes its simple data model to the hard drive. The only data stored in
memory at runtime are the to-do list’s items. They consist of a title and a Boolean
state indicating whether or not the item was already marked as finished. In the
application’s data model this information is represented by a list of texts and a list
of Boolean values. Only these two lists are passed to the write process as input
parameters todos and todosFinished.

Upon execution start of this model, the first SIB executed, PrintString,
prompts the user to enter a filename that identifies which file to write to. The SIB
receives a static text as an input and prints it to the console telling the user what to
do. This SIB has only the default success branch and no data output. The SIB
ReadString reads the user’s choice from the command line. This SIB too has
only the default success branch, but it provides the desired filename as a result
through an output port. With this information, the successive SIB OpenFile can
open the file specified by the filename input directly connected to the output port of
its predecessor. File operations can fail for many reasons, so a Boolean return value
indicates whether or not the operation was successful. Accordingly, this C-IME
SIB has the two branches true and false, and the control flow is split in two
alternative continuations. In case of success, the model proceeds to write the data
model to the open file, first the list of booleans, then the list of data. In case of failure
it prints an error message and aborts the process. If all file operations succeed, the
execution traces vertically from the top down, opening the file, writing both lists to
it and finally closing it. The lists are passed from the sub models input parameters to
the SIB’s input ports through direct data flow edges. If any file operations fails, the
model reaches the corresponding PrintString SIB, which prints a meaningful
static error message before the sub model terminates.



A Model-Driven and Generative Approach to Holistic Security 139

Both read and write file operations are available for all the primitive types and
lists supported by C-IME, allowing the modeller to seamlessly persist the to-do list
management application’s data model to the file system.

5.3 Modelling a Secure Code Generator

The SIBs used in the to-do list management application can be linked to one
or more implementations conform to their respective interfaces (cf. Sect. 3). By
changing the implementation to which a SIB is associated, it is possible to generate
different versions of an application from the exact same C-IME model. In particular,
using customized code generators this allows us to generate both a secure and an
insecure version of the to-do list management application from its model. They
share most of the SIB definitions, only the file-related operations OpenFile,
Read...FromFile, Write...ToFile and CloseFile have to be generated
in the two versions with different implementations.

As described in Sect. 3, in our service-oriented approach implementations of
native SIBs are invoked from within the generated code. The code of the expected
implementations must therefore be available when compiling the generated code.
It is at this point that a customized code generator may choose one of multiple
implementations to automatically secure file operations. Such a customized code
generator is independent of the specific application model and can thus be used to
secure not only the to-do list management application but any application modelled
in C-IME.

To use the hardware encryption provided by the SEcube we also need to initialize
the SEcube API and to close it. These steps can be routinely performed at the
very beginning respectively at the very end of any application’s execution, so that
we decided to make them part of the enhanced code generator itself. In this way
the actual application’s models remain untouched and security requirements are
automatically implemented by the code generation process.

Accordingly, to model a code generator for C-IME we need additional domain-
specific languages and models to define the following three parts:

– An initialization process to set up the environment for the SIB implementations
that are included in the generated application (cf. Part 1 in Fig. 1). For the
SEcube this is the login routine, where the device is opened and the user
authenticated. The initialization process is modelled using SLGs similarly to
the main application, but with a different SIB palette dedicated to initialize the
SEcube. The modelled process will be automatically included in any generated
application by this particular code generator.

– A mapping from SIBs in the model to concrete implementations written in C (cf.
Part 2 in Fig. 1). Depending on this mapping, the code generator will choose the
secure or the insecure version of file operations.
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– A finalization process, as the counterpart to the initialization to clean up the
environment (cf. Part 3 in Fig. 1). The logout procedure from the SEcube device
happens here.

These three parts together model the code generator that can then be used to
generate the to-do list management application fully automatically from its models.
Figure 1 visualizes both, the code generator models and the application models.
The three parts on the left side, initialization, SIB mapping and finalization define
the code generator G. The generator G is then used to generate the concrete
application in the desired version with its desired properties fully automatically from
the application models. The result is a C implementation of to-do list management
application that can be compiled and used from the command line.

For the to-do list management application, the standard and secure versions of the
application’s code are generated by two different code generators, both modelled
in our domain-specific languages. They share the same mapping from SIBs to
implementations, except for the file operations: the standard code generator includes
an implementation based on the standard C file operations, while the code generator
for secure applications includes an implementation based on the SEfile API. As a
policy, only the qualifier of the function name would differ in the code generators,
while the SIBs signature is the same. In the code generator of secure version of
the apps, for the writeListOfTextToFile-SIB this mapping is defined as
follows:

sib writeListOfTextToFile:
atomic_services_se3#as_se3_write_list_of_text_to_sefile
content: [text]
-> true
-> false

For the insecure version if the code generator only the function name differs while
the remainder of the SIB definition equals.

Initialization and finalization are only needed to set up the SEcube environment.
The code generator for secure apps thus includes the modelled login and logout
processes, while for the standard code generator these two processes are empty.

Figure 6 shows the model for the secure code generator’s initialization. The
model invokes a sequence of native SIBs each of which can succeed or fail. In case
of failure an error message is printed to inform the user and the model immediately
terminates. To enable the SEfile API used by the SIB’s secure implementations,
the SEcube is opened, the user is prompted for the PIN and the login is finally
performed. To use encryption it is further necessary to set the time and encryption
parameters. The model for finalization is even simpler, keeping all models for the
secure code generator small and simple.

The initialization and finalization models in C-IME use the SIB palette of SEcube
technology security primitives. This palette comprises all the needed functionalities
of the various SEcube APIs that are needed to allow for secure file operations, and
lifts them to the C-IME modelling level. For our case study, we used the following
security primitive SIBs:
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– SE3openDevice allows to find and to open the ith connected SEcube device.
This SIB uses internally the SEcube API functions L0_discover_init and
L0_discover_next to iterate through connected devices and to open the
chosen one. Only the integer i is expected as an input.

– SE3login is used to authenticate as authorized user to an open SEcube device.
The SIB is based on the API function L1_login. It expects as an input a textual
user PIN and the role of the user, namely whether or not admin privileges are
seeked.

– SE3setTime synchronizes the time between the host machine and the SEcube
device. This synchronization is required before invoking any encryption algo-
rithm. The implementation wraps the API function L1_crypto_set_time.

– SE3initSEfile initializes the SEfile session that is needed to enable succes-
sive secure file operations. The SIB is implemented based on the SEcube function
secure_init and it uses default parameters for simplicity.

– SE3finitSEfile wraps the function secure_finit and closes the SEfile
session.

– SE3logout is based on L1_logout and terminates the login session to restore
the device status such that it can again accept logins.

– SE3closeDevice is based on L0_close and closes the device to allow for
it to be reopened and used in the future.

All these SIBs have true and false branches, indicating whether or not the
respective operation was successful. Figure 7 shows a screenshot of the secure code
generator’s initialization process in C-IME. On the right side the palette of security
primitives is highlighted in blue.

This way, the code generator is itself very flexible, and generates code for any
application modelled in C-IME that has implicitly secured file operations. Note that
the code generator is in no way specific to the to-do list management application
but it can easily be applied to any other C-IME application as well. Because the
code generator is itself modelled, it is also very flexible and extensible: we are
not limited to using only SEcube security technology. In fact, we could wrap any
other implementation for secured operations in an analogous fashion, extending the
palette of microservices or creating a new palette, this way making other security
mechanisms and technologies available to the application designers.

5.4 Ready for Cloud Storage

In many projects, data must typically be accessible not only to one person but to
many members of a team, often in file form. Convenient and popular file sharing
technologies are cloud storage services such as Dropbox [7], Google Drive [14]
or OneDrive [34]. These services synchronize the local hard drive with the cloud
service and make files and folders available on multiple machines to many users
and different locations. In the context of smart spaces and Industry 4.0, this way of
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Fig. 7 Screenshot of the code generator’s intialization process in C-IME. The SIB palette is
highlighted in blue

storing and potentially sharing data is seen as attractive, but with caveats: While this
is a convenient solution that integrates well into the operating system’s file system,
it presents data security and compliance problems. In numerous cases unauthorized
parties gained access to data stored in the cloud [8]. Because the data is stored
externally on servers under the control of third parties, there is no way to configure
these services with regard to own custom security requirements. Rather than relying
on the security of these cloud storage services, one can make the data that is being
uploaded unusable to others. This can be achieved though encryption – ideally
hardware encryption – to grant access only to users in possession of the physical
encryption device that holds the correct key. In this way a high standard of security
can be achieved with no assumptions about the underlying cloud storage technology.
Even if the data was stored in a completely public manner, meaning that the general
public was allowed to download the files, this approach would still guarantee high
security.

Our case study showed how hardware security features based on SEcube
technology can be seamlessly integrated into C-IME models and in the code of the
applications. Applications secured in this way allow for the secure use of cloud
storage services, in the sense that they rely only on the trust in the underlying
encryption technology but do not rely on the environment. This way, we can free
users from the need to trust the security of the cloud storage technology, so that
they can create applications that are secure by construction in a fashion controlled
by the application designer. This capability allows taking advantage of services
that are either not secure, or whose security mechanisms are not configurable
or controllable as a user, including existing potentially insecure cloud storage
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technology. Following our model-driven approach to holistic security there is no
need to trust in the security mechanisms of the underlying environment.

Our approach is flexible and can be used to security-enhance not only file
operations but any operation that is modelled in C-IME. In this way our approach
is not limited to deal with insecure file storage environments but it can also be used
to base on insecure channels of communication. In the very same way we secured
file operations during code generation, we can secure communication operations
as well. All complexity of this is hidden from the modeller. He or she will work
with “normal” communication primitives while the code generator takes care of the
security fully automatically.

6 Conclusion

In this chapter we have shown a model-driven and generative approach to holistic
security. We have shown how running C/C++ applications that were developed
in a model-driven fashion can be easily enhanced with hardware secured file
operations simply by changing the according code generator to make them ready for
insecure environments. In this way we create applications that can store their data
in potentially insecure cloud storage services. Key to our approach is the full code
generation philosophy of XMDD, which guarantees that each running application
has a valid model from which it was generated. This approach allows us to realize
certain cross-cutting concerns like security via a corresponding code generator in
a fashion reminiscent of aspect oriented programming [21] and without touching
the application models. The code generator itself is modelled using a dedicated
graphical modelling language for code generators that embodies a palette of security
primitives based on any underlying hardware or software security technology. We
have illustrated how easily such code generators can be modelled using a to-do list
management application as a case study. It should be noted that handling security via
the code generator this way is not application specific but allows us to automatically
secure the file handling of any application that was modelled this way.

Currently, we only secure applications concerning data at rest. The philosophy
underlying the XMDD paradigm [29], where complex applications are modelled
via a number of strongly linked individual models is however much more general,
as witnessed, e.g., by DIME [3, 5, 16] our most elaborate CINCO-product variant. We
are currently investigating how to best approach also aspects like data in motion in
this context. Additionally, up to now we introduced solely compile-time variability
for C-IME, although we have shown the impact of runtime variability for a wide
range of applications [32, 33] for high-level programming language targets. We
are planning to apply this approach also to C-IME. The to-do list management
application, e.g., would significantly benefit if the application could dynamically
decide at runtime to use hardware security in case the SEcube device is available,
and degrade to a software security variant as long as a cryptographic key is known,
or else simply use an insecured variant. Important for us is, however, the simplicity
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principle [25, 26], which clearly favours reduced tailored solutions to generic
approaches. In this case this means for a modeller to be able to model any C-IME
application without worrying about security concerns, which adds an incremental
requirement specification flavour to the entire design approach [17]. This feature
is of particular importance in the context of smart advanced manufacturing, as
investigated by the new Irish Science and Research Centre Confirm. In that context,
we plan to extend the work on aspect-enhancing code generation for a variety of
platforms building on this specific experience and on the legacy of Genesys [19, 20],
as well as using synthesis [23, 36] based on loose programming [22, 27] to provide
correct-by-construction techniques to deal with security enhancement. The goal is to
apply them seamlessly to robotics-like applications, as in [18, 24], and more recently
in [11, 12].
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Multi-range Decoy I/O Defense
of Electrical Substations Against
Industrial Control System Malware

Julian L. Rrushi

Abstract Industrial control system malware campaigns, such as BlackEnergy and
Dragonfly, targeted electrical substations at various ranges relative to the computers
that pushed the attacks into substation relays after being infected. Worm-like prop-
agation of industrial control system malware in the Internet traverses paths along
computers that may be far from their target, and that often are completely unrelated
to power grid functions. Industrial control system malware hop from computer to
computer until landing on one that has access to a target industrial environment.
Industrial control system malware enabled by spear-phishing or website redirection
attacks exploit web browser vulnerabilities coupled with human factors of energy
company personnel. Watering hole attacks cause the installation of industrial control
system malware on the computers of power grid operators, and sometimes even on
the protective relays of an electrical substation. In this chapter we present a line of
work that creates and operates industrial mirages, i.e., phantom substation targets for
industrial control system malware to pursue, to intercept such malware bound for the
power grid. The discussion focuses on decoy I/O. We also generally describe other
key elements of industrial mirage at large, and explain how decoy I/O and those
elements work together as integral components of the industrial mirage capability.
Industrial mirage is able to actively redirect industrial control system malware to
decoys, and can sustain prolonged interaction with such malware. We validated this
line of work against numerous malware samples involved in recent industrial control
system malware campaigns.
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1 Introduction

The electrical power grid was recently targeted by industrial control system (ICS)
malware during the BlackEnergy [1, 2] and Dragonfly [3] campaigns. With ICS
malware we mean malware that contains code that is specific to industrial control
systems. The BlackEnergy and Dragonfly ICS malware exploited vulnerabilities
in computers and human factors, and were able to self-propagate. It has been
known to the cyber security community for quite some time that an attacker can
program malware to cause physical destruction of power grid equipment, or silently
conduct cyber espionage to prepare for one. Those are exactly the operations that
were performed by BlackEnergy and Dragonfly, respectively. BlackEnergy enabled
attackers to access the protective relays of electrical substations over the network.
Those accesses allowed for operating circuit breakers to cause power outages to
several large regions. Dragonfly did not attempt physical alterations of the electrical
power grid, however it conducted extensive cyber espionage on every industrial
computer it could compromise.

Contribution We discuss our work on stealth defensive deception to protect the
electrical power grid from malware attacks. The cyber-physical system of reference
is an electrical substation. Deception is commonly perceived as a characteristic of
a dishonest person, but in reality that is not always the case. In times of conflict,
deception can be a formidable defense tool. The use of deception for legitimate
defense predates modern time. For example, a fifteenth century historical figure
known as the hero of Europe [4], namely George Kastrioti, war name Skanderbeg,
was able to defend his country from Ottoman conquest for 25 years. The Ottoman
empire at that time was one of the most powerful military powers on earth,
whereas Skanderbeg’s army was small in size and drew its members mostly from
the general population. Skanderbeg’s use of smart deception techniques provided
various advantages on the battlefield and in the background.

The contribution of this chapter is twofold. Firstly, we discuss developments of
industrial mirage as a deception capability for defending the electrical power grid
from ICS malware. Industrial mirage is not a standard term in industrial process
control, but rather a term that we chose to dub the defensive deception work that we
discuss in this chapter. This will be a general discussion given with an eye towards
the future, and centered on areas that have shown potential during head-to-head
runs against live ICS malware. Secondly, we give a detailed discussion of decoy
I/O, which may be considered the foundation of industrial mirage. We also explain
how decoy I/O supports and cooperates with the other elements of industrial mirage.
Decoy I/O projects an industrial mirage at various ranges, enabling the defender to
intercept ICS malware at multiple locations while en route from a compromised
computer to a target electrical substation. In addition to intercepting ICS malware
after the fact, decoy I/O and the other elements of industrial mirage work together to
proactively interfere in the ICS malware’s target selection, redirecting ICS malware
to decoys.
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Chapter organization The remaining of this chapter is organized as follows.
Section 2 provides background on ICS malware campaigns and attack code.
Section 2 discusses also the effectiveness of industrial honeypots versus those
ICS malware. In Sect. 3 we discuss the prospect of industrial mirage. In Sect. 4
we describe the main ideas behind the decoy I/O concepts, as well as their core
architectures and principal techniques. Section 5 provides a broad description of
the other elements of industrial mirage, and explains their cooperation with decoy
I/O. In Sect. 6 we discuss an empirical evaluation of the performance of industrial
mirage in a testbed that resembles an electrical substation. In Sect. 7 we summarize
our contribution, and conclude the chapter.

2 ICS Malware vs. Current Defensive Deception

ICS malware and attack code The ICS malware used in BlackEnergy and
Dragonfly targeted electrical substations at various ranges. They penetrated the
networks of energy companies through e-mail spear phishing attacks supported by
spam campaigns. Phishing e-mails contained malicious attachments, such Portable
Document Format (PDF) containing embedded JavaScript code, or Microsoft Office
file attachments that leveraged the macro functionality. Both resulted in code
execution on the target computer. The attackers ran watering hole attacks by
injecting an HTML iframe into several websites related to energy. The HTML
iframe redirected visitors to another website, which the attackers had compromised
as well. That other website in turn ran the LightsOut exploit kit, which executed
exploits against a visitor’s browser or browser plugins to install the malware.

In both cases, once inside the networks of the power company, the malware
executed ICS specific code to search for and later access target ICS servers. Lastly,
the attackers compromised the websites of three different ICS equipment providers,
and subsequently trojanized the software bundles that were available for download.
The installation of those software bundles can bring ICS malware directly onto the
human-machine interface (HMI) machines, i.e. computers, engineering machines,
and even on protective relays.

Stuxnet was able to propagate over the network by exploiting a vulnerability
in the Print Spooler service, and a vulnerability in the Server service [5]. The
reader is referred to the Microsoft security bulletins MS10-061 and MS08-067,
respectively, for a description of the root cause of those vulnerabilities. Stuxnet was
also able to propagate through network shares. The ICS worm may travel a shorter
range when the target industrial facility is predetermined and located ahead of time.
Stuxnet could land on the networks of a target industrial facility right away if an
insider purposely plugged a Stuxnet-infected removable flash drive into a Windows
machine in those networks. Stuxnet modified the Siemens ICS engineering software
SIMATIC WinCC/Step 7, more specifically the dynamic-link library s7otbxdx.dll of
SIMATIC WinCC/Step 7, to inject attack MC7 code into target programmable logic
controllers (PLCs).
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MC7 is the compiled assembly of code written in the Structured Text (ST)
programming language. ST in turn is one of the five programming languages
supported by the IEC 61131-3 standard to program PLCs. The MC7 code injection
was done over the network via the S7comm protocol, i.e., a Siemens proprietary
protocol used for PLC programming, data exchange between PLCs, and PLC
data access from supervisory control and data acquisition (SCADA) systems [6].
Stuxnet turned a compromised machine into a modified S7comm client and was
mostly selective when searching for its targets, although unintended machines were
compromised during the attacks.

Although the ICS attack code may be inside the networks of an industrial facility,
there is still way to go. A machine that the ICS attack code has just compromised
may not be usable to attack or manipulate field devices. Stuxnet, for example,
needed to compromise the so-called SIMATIC Field PGs, which are Windows
machines used to program PLCs. Stuxnet spread within the networks of a target
industrial facility. It hopped from machine to machine until landing on a SIMATIC
Field PG, from whence it injected attack code into PLCs and hence sabotaged
the physical processes they were controlling. Another ICS attack code, namely
IronGate, uses attack techniques that are similar to those of Stuxnet [7]. IronGate
operates at medium range, and searches for very specific target machines, as Stuxnet
did. Nevertheless, IronGate was deemed to be simply a proof of concept or research
activity, given that it is not associated with any attack campaigns or threat actors [7].

Not all interactions of ICS malware with power grid equipment are actual attacks
aiming at causing physical damage right away. As in the case of Dragonfly, ICS
malware may limit their operations to spying on the power grid, which entails the
following operations:

– Identifying power equipment and substation physical processes along with their
parameters. This operation aims at inferring the substation layout, which can
later be reconstructed as diagrams with power lines, busbars, switches, circuit
breakers, and power transformers.

– Locating and characterizing field devices, i.e., protective relays, aka intelligent
electronic devices (IEDs), PLCs, and phasor measurement units (PMUs). This
operation discovers their system and network configurations, including their IP
addresses. It also determines their substation functions, such as transformer pro-
tection, feeder protection, etc., and hence discovers the cyber-physical mappings.
A cyber-physical mapping indicates which field device monitors and controls
what specific substation equipment and physical process.

– Locating and characterizing HMI machines, engineering machines, routers, and
possible firewalls and anti-malware systems currently in use.

Target selection In ICS malware, it can be highly cognizant of the mechanics
and physics of physical equipment and processes in an electrical substation. Those
details are quite visible to a knowledgeable attacker through sophisticated analysis
of network traffic and control system activity, i.e., machine and IEC 61131-3
code, I/O traffic, operating system events, etc. That is why traditional information
technology (IT) honeypots are unable to trap a knowledgeable attacker in an
industrial facility.
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Industrial honeypots One of the most important developments in cyber deception
is the honeypot concept. There are a number of works in this field, including variants
for industrial process control networks. One notable example is a PLC honeypot by
Buza et al. known as CryPLH [8]. CryPLH implements several PLC services that
are integrated into a Linux-based virtual machine (VM), which forms the honeypot.
Another PLC honeypot is CONPOT, which was designed and implemented by
Rist et al. [9]. CONPOT relies on Python scripts to emulate a range of common
industrial communication protocols. Yet another industrial honeypot was developed
by Vollmer and Manic [10]. Their industrial honeypot is able to do self-configuration
based on passive observations of control system network traffic.

CryPLH, CONPOT, and other industrial honeypots along their line of work, focus
on presenting a convincing PLC interface once an attacker has actively connected to
the honeypot. They do not, however, provide a means to get the attacker to pursue the
honeypot in the first place, nor can they sustain interactions with the attacker after
an initial exchange of network packets. By comparison, our work seeks to create a
more convincing target by simulating a greater feature set, which can sustain long
term communications with the attacker.

CryPLH, CONPOT, and other industrial honeypots are characterized by an
absence of system and network activity. By contrast, however, industrial control
systems such as protective relays in electrical substations are constantly in action.
They read from sensors, analyze data, submit reports to human operators, and send
commands to actuators. Industrial process control is a highly dynamic operation full
of system and network activities. Industrial honeypots cannot operate on industrial
control systems in production, consequently need dedicated computers to run on.
Furthermore, the substation data that are stored on the flash drives of industrial
control systems, or that are transmitted over the network, obey the physics laws
of the diverse physical processes and equipment operations that take place in an
electrical substation. Industrial honeypots do not have the capability to reproduce
and expose control system dynamics for the purpose of defensive deception against
ICS malware.

3 The Prospect of Industrial Mirage

Substation equipment reflect in cyber space All physical equipment of an
electrical substation, and the physics therein, are reflected in industrial control
systems and networks, as well as in general-purpose computers involved in the
monitoring and control of the electrical power grid. They are all visible on those
systems, which in this chapter are collectively referred to as ICS machines. The
reflection is manifested in various forms, depending on the range from which those
ICS machines sense and operate an electrical substation over the network. At the
level of protective relays, i.e. industrial control systems that are directly attached
to substation equipment, with the advent of IEC 61850 standard [11], the reflection
is manifested explicitly as data objects called logical nodes that model substation
equipment and processes.
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At the level of HMI computers, the reflection in question is manifested in a
highly distributed form. It mainly consists of I/O data stored in various buffers, as
well as substation-specific computing and network traffic. A similar manifestation is
observed at the level of SCADA machines. These are computers that enable a human
operator to monitor and operate an electrical substation from a remote location over
a long distance network.

Industrial mirage The concept refers to a reflection of substation equipment and
related processes that do no exist, but appear as real in cyber space at various
ranges relative to the site where they are hosted. They are in fact virtual substation
equipment and emulated physics with no real counterparts. In our prior work [12],
we explored analog-to-digital (A/D) and D/A conversion as a physical barrier to hide
the virtual equipment and emulated physics from malware. However, the approach
did not scale well and had limited deployability.

Research question The ultimate objective of industrial mirage is to protect the
electrical power grid from ICS malware developed by knowledgeable attackers. Our
research investigates on how to develop an effective industrial mirage, and most
importantly how to leverage an industrial mirage to attain the following security
and usability goals:

– Detect malware bound for the electrical power grid without any prior knowledge
of their code and data. Such zero-knowledge detection needs to be performed on
ICS machines that are in actual production.

– Enable cyber operations against attackers for attribution purposes.
– Enable an ICS machine to isolate the malware and fully recover from them.
– Have 0-interference in the legitimate work of ICS machines, and an absolute

safety towards the electrical power grid.

Composition Industrial mirage consists of a stack of deception layers as sum-
marized in Fig. 1, which are integrated into the software, firmware, and hardware
of an ICS machine. They all work together to project an industrial mirage onto
cyber space, and leverage it to redirect the target selection of ICS malware towards
decoy substation equipment. Particularly useful is operating system (OS) kernel
coding that engineers decoy targets and target search mechanisms with foundations
in decoy I/O devices such as network interface cards (NICs), disks and solid
state drives, and I/O boards. Another important layer in the stack consists of
deception algorithms, which are based on mathematical learning of adversarial
cyber interactions and are supported by decoy I/O devices in the OS kernel.

The zero-knowledge detection of ICS malware performed by industrial mirage
includes a second-order form. Second-order detection refers to detection at a
time that postdates the data interception mounted by ICS malware. The deception
algorithms covertly inject various decoy data into the data stream of ICS malware in
order to affect their behavior and overall operations. This enables industrial mirage
to use deception-guided big data analytics to attain second-order detection of ICS
malware. Industrial mirage aims at countering all types of malware bound for the
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Fig. 1 A deception stack projecting industrial mirages of substation equipment for ICS malware
to pursue

electrical power grid, including kernel-level malware, which by definition have
direct access to the underlying hardware. Consequently, industrial mirage relies on
hardware support provided by a deception processor.

4 OS Kernel Interventions

4.1 Decoy I/O Devices

Creating imaginary networks A decoy network interface card (NIC) has shown
to be an enabler of industrial mirage. We designed and implemented a decoy NIC
by researching kernel driver techniques for Windows [13]. The central component
of a decoy NIC is a low-level deceptive driver, which is integrated with other drivers
specialized in handling real NICs. The concept is depicted on the left lower part of
Fig. 2. In Windows, the drivers that manage an I/O device in general are organized
in a stack. As applications issue system calls to send and receive data, a component
of the Windows kernel called I/O manager packages the request data into an I/O
request packet, which it sends to the driver at the top of the stack. Once that driver
is done with its processing of the I/O request packet, it passes the packet down to
the lower driver. Eventually the I/O request packet reaches the lowest driver, i.e. the
deception driver in our case.

Instead of interacting with a real NIC controller through the main CPU or a
direct-memory-access controller, the deception driver emulates the underlying hard-
ware and all protocol interactions with that hardware. I/O device emulation at the
device-driver level is advantageous to the defender, given that by definition the I/O
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Fig. 2 Decoy NIC along with decoy and real HMI process handles

subsystem of the OS kernel is not supposed to be aware of the underlying hardware
and protocol communications. The deception driver is linked with Windows kernel
libraries, which enable it to interact with the upper drivers in the stack identically to
how a real driver does. Now the ICS malware see an imaginary network that they
think they may use to reach and exploit ICS machines. The decoy NIC is consistent
and resembles closely its real counterpart depicted on the right lower part of Fig. 2.
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Auxiliary decoy I/O devices We use similar techniques to realize decoy secondary
storage, i.e. disks and solid state drives. Decoy secondary storage is used to store
decoy HMI applications, their configuration files, and decoy substation data. Our
goal is to create an attack surface over which to leak decoy data. Some of the
decoy data come from decoy secondary storage, while others come from a decoy
keyboard. Similarly to a decoy NIC, a decoy keyboard is based on a low-level
deception driver, which emulates and exposes keystrokes modeled after actual users.
The decoy keyboard is able to shadow the physical keyboard so that one single
keyboard appears on the machine at all times. When the deception driver detects a
time window of user inactivity, it detaches the physical keyboard from the device
tree and attaches the decoy keyboard there. When a user returns to work and presses
any key on the physical keyboard, the deception driver receives the keystroke and
hence immediately restores the physical keyboard in the device tree [14]. A decoy
mouse is realized using the decoy keyboard’s algorithms as well.

Decoy I/O boards Protective relays use I/O boards to sense and actuate substation
equipment. Sensors provide measurements through the I/O control inputs of an I/O
board, for example phase current measurements, for a protective relay to read. A
protective relay can send commands, for example trip a circuit breaker, by writing
to the I/O control outputs of an I/O board. We developed a decoy I/O board to make
a protective relay appear to be connected to substation equipment, which are in fact
industrial mirages. A decoy I/O board marks the end of the decoy I/O line. We
realize a decoy I/O board by emulating an I/O board controller in the OS kernel.
This is a layer of code that mimics a special-purpose microprocessor that operates
and manages an I/O board, which is a decoy as well. As in the case of a decoy NIC,
a deception driver drives emulation rather than actual hardware. The end result is an
industrial mirage that can be sensed and actuated locally on the protective relay.

4.2 Decoy User-Space Activity

Decoy processes The creation of an attack surface for ICS malware to pursue is
aided by decoy OS processes, which appear to work with decoy I/O devices. With
reference to our example, there are decoy processes to mimic an HMI application
that sends and receives data over a decoy NIC, as well as read and write files
that reside on decoy secondary storage. The introduction of decoy processes in
the equation is depicted at the top of Fig. 2. Some of the decoy processes appear
to run without interruption, while others, such as a decoy controller configuration
tool in memory, appear to run only occasionally. The decoy user activity is realized
by instrumenting OS data structures that pertain to processes and their threads, as
well as techniques to maintain safety. For example, it is important that the central
processing unit (CPU) scheduler does not dispatch the CPU to decoy processes and
hence waste CPU cycles.

Deception goals The desirable effect of decoy processes is twofold, namely to
make any Windows machine, whether it is ICS related or unrelated, appear as a
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real-time automation controller or SCADA client, and to make a decoy NIC on that
machine appear as sending and receiving substation network traffic. That effect is
intended to serve the goal of causing ICS malware to conclude that a compromised
machine is a valid target; that the target is directly or indirectly connected to an
electrical substation; and that a decoy NIC leads to other machines in the electrical
substation, including field devices and data concentrator machines. As defenders,
we want ICS malware to exercise ICS specific search and attack techniques over a
decoy NIC. We know from our previous work that Windows non-ICS goodware may
send network traffic over a decoy NIC, however the fact that the traffic in question is
not part of a valid ICS protocol communication can be validated reliably and in little
time [15]. Because we take measures to ensure that a human does not send network
traffic over a decoy NIC, incoming valid ICS communications unequivocally expose
the source as ICS malware.

With reference to Fig. 2, the decoy processes mimic an HMI application running
on a real-time automation controller. An automation controller machine in a real
electrical substation already runs real HMI application code, consequently it leaves
no room for decoy HMI processes. We do not run decoy HMI processes on a
real-time automation controller. We only display a decoy presence of network
communications between those real HMI processes and a decoy NIC. We do so to
redirect at least some of the network operations of ICS malware onto a decoy NIC.
Even limited malicious network communications over a decoy NIC would suffice to
detect the ICS malware and hence identify their location in memory. This explains
the presence of decoy handles that are made to appear as if they existed within the
address space of a real HMI process.

Data instrumentation The main technique that we use to display decoy processes
is to instrument the OS data structures that pertain to processes and their threads. We
instrument data structures both in user space and in kernel space. A diagram of the
data structure instrumentations is depicted in Fig. 3. In user space, a decoy process
is supported by a process environment block (PEB), which is identical to the PEB
of the process’ real counterpart. For example, the decoy PEB contains a pointer to
a doubly-linked list of loaded modules, as well as a session identifier, a path of the
image executable file, and input arguments. A decoy process is also supported by
thread environment blocks (TEBs), which display a state for each decoy thread. A
decoy process is given a virtual address space, which is mapped to a file on the
decoy secondary storage and hence does not consume any physical main memory
frames.

Other user-space support for a decoy process includes an entry in a linked list
maintained by the Client/Server Runtime Subsystem process, or csrss.exe, which in
turn is considered to be the user space component of the Windows subsystem. The
entry at hand describes the structure of a decoy process and its threads, just like
the other entries describe real processes and their threads. A decoy process has a
representation in the kernel component of the Windows subsystem as well. More
specifically, the Windows subsystem maintains a doubly linked list in the kernel,
where each process is reflected in a data structure. We populate and add one for a
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Fig. 3 Data structure instrumentation that displays a decoy process

decoy process. The most potent data structure that models and represents a process
is the EPROCESS. Similarly, a thread is modeled by an ETHREAD. We develop an
EPROCESS for a decoy process, as well as an ETHREAD for each of its threads.
These data structures are encapsulated as objects by the Object Manager of the
Windows kernel.

Discoverability The data structure instrumentations make the decoy processes
discoverable. For instance, the ps command lists the names of the decoy processes
along with the most important parameters that characterize them. The process
viewer tool from the Sysinternals suite finds and details the decoy processes as
well. Also, invoking application programming interfaces (APIs) of the process status
API (PSAPI) library results in the discovery and detailing of the decoy processes.
The discoverability of decoy processes creates a decoy attack surface, which ICS
malware could examine, pursue, or do both. ICS malware could mount local exploits
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against a decoy process. ICS malware could land on its target machine through
removable media, or over one of the real NICs. As it is shown in Fig. 3, a decoy
process is paired with a decoy NIC and hence an imaginary network that leads to
decoy targets, i.e. emulated field devices and other substation machines.

4.3 Decoy ICS Targets

Decoy I/O devices are a pivot for target emulation The modus operandi of ICS
malware involves a search for targets, which is performed by querying network
resources [Dragonfly and BlackEnergy], or by analyzing code and data on the file
system of the compromised machine [Stuxnet and IronGate]. Decoy I/O devices
are leveraged to interfere with these target searches. For example, a decoy NIC can
display an imaginary network along with decoy Object Linking and Embedding
(OLE) for Process Control (OPC) protocol servers [16]. The decoy OPC servers
appear to be reachable over the imaginary network. If ICS malware want them, they
need to access the decoy NIC. This principle forms the basis of zero-knowledge
detection in industrial mirage. ICS malware are detected on the first encounter solely
on the basis of their interaction with a decoy I/O device and the decoy targets that it
leads to [15].

Exploring ICS mechanics Now that an imaginary carrier is displayed for ICS
malware to see, i.e. an imaginary network in the example of Fig. 2, a decoy target
needs to be realized. We developed target emulation engines for that purpose.
The decoy support layer shown in the lower left corner of Fig. 2 includes target
emulation engines that we designed to work closely with the deception drivers
discussed previously in this chapter. They use the mechanics of ICS protocols,
HMI applications, SCADA tools, protection and control algorithms, and control
system configuration tools, to realize decoy targets that resemble realistically their
real counterparts. The decoy targets can be discovered and attacked by ICS malware
without a single network packet ever leaving the boundaries of the OS kernel of the
compromised machine.

For example, the deceptive emulation of IEC 61850 referenced in Fig. 2 main-
tains logical devices, each of which is a composition of logical nodes that have
common features. Those logical devices together form a physical device that
represents a protective relay, which in reality does not exist but yet appears to be
existent and reachable over a decoy NIC. The deceptive emulation includes network
communication services defined as per the IEC 61850 Abstract Communication
Service Interface (ACSI). Some of the services offer a client-server model, which
ICS malware can use to set or get substation data. Other services offer a peer-to-peer
model, in which ICS malware may be involved to maliciously exchange data with
its target protective relay. Either form of interaction with a decoy protective relay
establishes a path for transmission of data over the network, i.e. an association in
the IEC 61850 language, which leads to immediate detection.
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Given that IEC 61850 is a virtual protocol, it needs an actual carrier. The
deceptive emulation maps the IEC 61850 data and services to the Manufacturing
Messaging Specification (MMS) [17]. It is very common in actual electrical
substations for IEC 61850 to be mapped to a protocol stack comprised of MMS,
TCP/IP, and Ethernet. MMS was designed specifically for transferring in real time
large volumes of physical process data and supervisory commands. MMS has object
models and services that can easily accommodate those of the IEC 61850 standard.
The physical process data that the deceptive emulation serves to ICS malware
are decoys as well. For consistency reasons, those data are generated by using
existing power system simulation tools such as the real time digital power simulator
(RTDS) [18]. Their simulation algorithms ensure that the decoy data comply with
the physics of an electrical substation. Those simulation algorithms per se are not
part of industrial mirage, but are instead used by industrial mirage as they are.

4.4 Safety and Usability

The main challenge stems from humans, i.e. system operators, power engineers,
device technicians, or even simple users, accessing decoy I/O devices, decoy targets
of any kind, and decoy OS processes and other consistency mechanisms that the
deception algorithms may engage on the computer or ICS machine. For example, a
system operator could run by mistake a decoy HMI application stored on a decoy
disk partition. The decoy HMI application could connect to a decoy OPC server over
a decoy NIC, and retrieve the decoy substation data stored in decoy OPC objects. In
addition to raising numerous false positives, the system operator could take action
on an electrical substation based on the decoy data. Equally dangerous is a situation
in which a power engineer writes protection and control code that acts on the I/O
control inputs and outputs of a decoy I/O board.

Figure 4 illustrates the research path that we have found to show potential to make
the mirage-centric capability absolutely transparent to people with legitimate access
to computers and ICS machines. Search-and-filter techniques, which operate within
the driver stack of a monitor, analyze and possibly revise picture frames bound for
the monitor. Those techniques are designed to remove all entries that pertain to
decoy I/O. The removal takes place before those entries are visualized on a monitor
along with other data for a human to see. With reference to Fig. 4, the IP addresses
of two decoy OPC servers and the data of two decoy IEC 61850 logical nodes,
namely a decoy circuit breaker (XCBR) and a decoy power transformer (YPTR),
are removed on the fly. If a system operator does not see the decoy OPC servers,
he/she will not be able to connect to them. Similarly, if the system operator does
not see the decoy XCBR and YPTR, he/she cannot trip the decoy circuit breaker,
nor can the operator take action based on any data that pertain to the decoy power
transformer.

We have experimented with some basic keyword-based search-and-filter tech-
niques in an OPC environment, which we discuss in detail in [15].
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Fig. 4 High level illustration of the monitor filtering capability

5 Other Tools and Techniques

The elements of industrial mirage, except the deception-guided big data algorithms,
run on ICS machines that reside within an electrical substation, namely HMI
machines, i.e., real-time automation controllers, engineering servers, and protective
relays. They also run on machines that reside in the enterprise networks of a power
utility company, as well as engineering laptop machines. These machines perform
power grid related functions. Some of them may have remote virtual private network
(VPN) access to substation networks. Industrial mirage may also run on other
machines on the Internet that are not related to the electrical power grid. In this
latter case, the defense is particularly useful against ICS malware that have a worm-
like propagation. As to the deception-guided big data algorithms, they run on a big
data computing platform of general use.
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5.1 Deception Algorithms

Purpose The deception algorithms drive mirage operations such as to maximize the
likelihood of decoy I/O devices and emulated targets being pursued by ICS malware.
The deception algorithms choose optimal consistency measures, depending on the
current dynamics of the system. They determine the deceptive environment that is
presented at any point in time. After ICS malware are detected, the deception algo-
rithms sustain continuous interaction with attackers in support of cyber operations
against them. An unconventional goal is to exploit cyber techniques such as to push
adversarial operations onto the physical world, where counter intelligence personnel
can use traditional human intelligence (HUMINT) methods to attain attribution.
Other goals pertain to generating wanted data that are particularly useful for attack
attribution.

Mathematical modeling Nonlinear dynamics [19] has shown potential to charac-
terize the decision making of ICS malware, which is modeled as a complex system
composed of nonlinear constituents. Of particular interest are the emergent patterns
of the behavior of such complex system. These patterns of behavior originate from
the low-level constituents of the complex system in question, but are not observable
in its constituents individually. The main research challenges here consist of
finding a correct mathematical formulation of the complex system, determining
emergent patterns in the behavior of the complex system, and how to actively cause
the appearance of those emergent patterns of behavior. Mathematically, we view
adversarial behavior as specific temporal evolutions of the states of the nonlinear
dynamical system in the associated phase space.

Adversarial behavior is characterized as mathematical chaos. This means that
the system-level events and network packets that are generated by ICS malware
originate from a set of deterministic local rules that govern the ICS malware’s
decision making. Although those system-level events and network packets are
generated deterministically, they appear to be random and unpredictable due to the
effect of conditions in the computing environment. Even a small change in those
conditions can alter to a large degree the decisions made by the malware. Such
randomness makes the identification of emergent patterns of adversarial behavior
impossible by traditional statistical-norm data mining. This characterization of
adversarial behavior may mean that the temporal evolutions of the states can be
defined by a system of nonlinear difference equations. The trajectories of those
evolutions appear as irregular or random motion in phase space as the system has
sensitive dependencies on initial conditions [20].

Controlling ICS malware’s behavior mathematically Industrial mirage uses
chaos control theory [21, 22] for mathematical control of adversarial behavior.
The assumption in most cases is that a target adversary, i.e. ICS malware or the
people behind them, would respond to probes only if the information conveyed in
the probes is of interest. At least in signal systems in biology, receivers of signals
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respond only if that benefits them, as a synthesis of reliability and deception in
those signal systems suggests [23]. The adversarial models can evolve using genetic
algorithms [24] to avoid an overly local focus in optimization. With regards to
sustaining prolonged interaction with attackers, nonlinear time-series analysis is
used to reconstruct the underlying chaos of adversarial behavior from captured
malware data.

Critical tasks include identifying the state or condition variables that define the
states of the nonlinear dynamical system, i.e. ICS malware’s decision making, and
the input or control variables to which the nonlinear dynamical system is highly
sensitive. Of particular importance are also the systems of nonlinear difference
equations that represent the local chaos-generation rules of the nonlinear dynamical
system at hand. Knowledge of the chaos-generation rules may help with the
engineering of a more accurate redirection intervention on ICS malware. The
deception algorithms include elements of estimation and control based on control
theory [25]. The motivation for control theory is to be able to run deception
algorithms autonomously, and also be able to conduct self-management and tuning.
State estimation techniques that have shown potential for coping with chaos noise
in ICS malware behavior are the nonlinear or unscented Kalman filters [26].

Interaction with other I/O devices Deception algorithms work also with decoy
keyboards, decoy mice, and decoy webcams, to enable second-order detection and
to better guide cyber operations. These are devices that are intercepted by ICS
malware as well, although the ultimate target is the electrical power grid. Deception
algorithms are stochastic in nature and hence unpredictable.

Covert communications With malware penetrating the OS kernel, the computer
becomes a battlefield where ICS malware code and industrial mirage code operate
in close range to each other. Industrial mirage uses steganographic methods [27]
to enable deception algorithms, decoy I/O devices, decoy targets, consistency
measures, and the deception processor, to communicate with each other secretly
over channels that are possibly interceptable by malware.

5.2 Deception-Guided Big Data Analytics

The need for big data analytics Malware may access decoy I/O devices and
decoy targets when under the influence of decoy data, in which case a second-order
detection is attained. For example, a deception algorithm may use a decoy keyboard
to leak fake credentials that provide access to a VPN, which appears to be reachable
only over a decoy NIC. VPNs in the business network of a power utility company
are of particular interest to attackers, since some of them provide remote access to
electrical substation networks. The use of the fake credentials over the decoy NIC
leads to an unequivocal second-order detection of the ICS malware. However, ICS
malware may access real I/O devices too as a result of decoy data. For example,
malware may trip a real circuit breaker with the intention of disrupting a decoy
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Fig. 5 Big data computing integrated with industrial mirage

power transformer. In this latter case, second-order detection can be attained only
by collecting and analyzing data from ICS machines other than decoys. Industrial
mirage uses big data analytics that is guided by highly specific knowledge coming
from its various decoy mechanisms. The concept is illustrated in Fig. 5.

Same platforms, but new algorithms The platforms for big data computing that
we use in industrial mirage are those of big data computing in other fields where
big data analytics is utilized. More specifically, Hadoop [28] and MapReduce [29]
work very well on running deception-guided big data algorithms. However, the
algorithms need to be specialized and thus are to be designed specifically for that
purpose. Merely adapting existing big data analytics algorithms from other fields
does not work. Recommendation algorithms in various forms, namely content-
based filtering, collaborative filtering, and hybrid filtering, are particularly useful
with regards to predicting malware operations based on knowledge of decoy data.
Clustering algorithm can leverage relations between decoy data to group individual
pieces of data and/or code that belong to malware. Classification algorithms can
predict how malware interact with real I/O devices based on past observations of
their interactions with decoy I/O devices. Of practical value are also distributed
algorithms over very large graphs and matrices, which have shown potential to
model and recognize complex interactions between real data and decoys.
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A two-way relation So far we discussed how decoys can guide big data algorithms
for zero-knowledge malware detection, but their cooperation goes both ways. Big
data algorithms can help with determining what specific decoy data and other decoy
mechanisms to use, and where specifically in the electrical power grid to deploy
them.

5.3 Future Work: Hardware Support

Rationale Kernel-level ICS malware are in the position to initiate reconnaissance
probes directly on hardware buses for the purpose of verifying the existence of
their target I/O devices. Given that decoy I/O devices do not exist, there would
be no replies returned. If not addressed, this issue would result in a complete loss
of the defense value of decoy I/O devices along with the decoy targets that they
support. Furthermore, hardware support has potential to help with all the mirage
tasks discussed previously in this chapter.

Research direction We are researching solutions based on a programmable gate
arrays (FPGA) device, which will be added to the overall decoy system architecture
at the hardware level. This deception processor will respond on hardware buses
on behalf of all decoy I/O devices projected on the computer or ICS machine,
and will also act like a device controller for them. The deception processor will
be attached to the main circuit board, and will have access to the main peripheral
component interconnect (PCI) bus, as well as to the bus that connects the primary
microprocessor with the physical memory. Research on hardware solutions is not
unprecedented. There is already an established line of related work that explores
hardware support solutions for security. Examples range from making a software
system to be copy and tamper resistant [30], to certifying program execution [31].

Protection of own code and data This is a challenge that affects not only industrial
mirage, but also all anti-malware systems, academic and commercial. ICS malware
that penetrate the OS kernel are expected to attack the security mechanisms so
that to disable them or otherwise bypass the defense that they provide. Industrial
mirage includes algorithmic uses of memory manager components to trace accesses
to memory regions of interest. As with decoy I/O devices, discovery probes issued
by malware can be used to detect those malware. Of interest are address translation
and page fault handling along with memory mapping techniques, combined with
hardware support, which can be leveraged to hide all code and data of industrial
mirage, without losing the ability to run the deception capability. Decoy I/O devices
expose no attack surface over the network, since their input comes only from within
the machine on which they are deployed.
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6 Evaluation

Realistic testbed We tested industrial mirage in a research testbed that resembled
a substation network. The research testbed was comprised of real-world ICS
machines, which are instances of industrial control systems that are widely deployed
in the electrical power grid in North America. All machines in the research testbed
were connected on a local area network. There were no connections to any outside
networks due to safety reasons. A list of the ICS machines in our research testbed
and their main characteristics are given in Table 1. The SEL-487E-3 is a protective
relay that can monitor and protect a power transformer from electrical faults. It runs
intelligent algorithms to detect various types of faults. It is able to take action in a
timely manner by operating electrical circuit breakers and disconnect switches. The
SEL-421-4 is a protective relay that can perform industrial automation functions. It
includes 32 programmable elements for local control, remote control, automation
latching, and protection latching.

A SEL-421-4 can also perform various functions to protect overhead electrical
transmission lines and underground cables. The SEL-3355 performs several sub-
station functions as well. It has an integrated HMI, with a local display port. In
this line of work, the SEL-3355 operated as a real-time automation controller. The
SEL-3355 periodically polls the SEL-487E-3 and SEL-421-4 protection relays to
collect substation data from them. The S7-1500 is a PLC from Siemens. It has
I/O modules that can be directly attached to sensors and physical equipment. The
network communications between the SEL machines take place over the distributed
network protocol (DNP3) [32] and IEC 61850. We integrated an engineering server
into the research testbed. The engineering server hosted an OPC server, which in
turn ran an IEC 61850 protocol driver to get substation data from the SEL machines.

One of the general-purpose Windows machines acted as a field programmer
(PG) towards the S7-1500. It ran the totally integrated automation (TIA) portal,
and hence included ICS software such as Step7 and WinCC. The field PG machine
communicated with S7-1500 over the S7comm protocol.

Remote data acquisition attacks We tested industrial mirage against a large
number of OPC malware samples involved in the Dragonfly cyber espionage

Table 1 Testbed machines and their main ICS protocols

Machine ICS function ICS protocol

SEL-3555 Automation controller DNP3, IEC 61850

SEL-487E-3 Transformer protection relay DNP3, IEC 61850

SEL-421-4 Protection, automation, and control DNP3, IEC 61850

Windows OPC server, PG DNP3, OPC, IEC 61850

Windows OPC client OPC

Windows None None

SIMATIC S7-1500 Programmable logic controller S7comm
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campaign. There are many versions of those malware samples, all of which are
publicly available for research on academic malware repositories. We ran the
ICS malware samples on the OPC client machine and on the other Windows
machine with no apparent power grid functions. All of these malware samples
were intercepted by industrial mirage when they attempted to discover target OPC
servers over an imaginary network created by a decoy NIC. We also ran rogue IEC
61850 client tools and S7comm tools on all Windows machines of the research
testbed. Industrial mirage intercepted those rogue clients when they tried to use the
MMS and S7comm protocols to connect to decoy IEC 61850 and S7comm devices,
respectively, on the imaginary network. A sample of data seen by the decoy NIC
while those network attacks were taking place is given in Fig. 6.

Some of the OPC data items on the real OPC server were paired with attributes
of decoy IEC 61850 logical nodes on the protective relays. The decoy IEC 61850
logical nodes, in turn, were mapped to I/O control inputs of a phantom I/O board. In
these circumstances, we let all malware samples discover the engineering server.
They connected to the OPC server, and collected over OPC the substation data
originating in the protective relays over IEC 61850. Furthermore, we directed the
rogue IEC 61850 client tools to retrieve substation data directly from the protective
relays. Some of those data were the ones to be mapped to I/O control inputs of a
phantom I/O board. Industrial mirage intercepted all these attacks when the decoy
I/O board controller received requests to read the I/O control inputs of the phantom
I/O board. A sample of data that were seen by the decoy I/O board controller as
these attacks were taking place is plotted in Fig. 7.
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Fig. 6 Packet data arrivals on the decoy NIC (Combined malicious OPC, IEC 61850/MMS, and
S7comm traffic)
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Fig. 7 Data traversing the decoy I/O board controller (Combined OPC and IEC 61850/MMS
attacks)

When no malware are running, there should not be any data traversing decoy
NICs or decoy I/O board controllers, unless there is a failure of the safety and
usability tools. An experimental feature of decoy I/O consists of using decoy I/O
devices to generate synthetic data, which in turn result in traffic of our own traveling
over the driver stack of decoy NICs or decoy I/O board controllers. Since our code
is the source of the synthetic data in question, we can easily differentiate own traffic
from any other traffic. The transmission of own traffic over the driver stack of decoy
I/O devices in general serves the purpose of making those devices appear to be in
full operation.

Remote command injection attacks This part of the testing involved
BlackEnergy-style attacks. BlackEnergy had a keylogger module that intercepted
keystrokes on compromised machines in the enterprise network of a target utility
company. The keylogger intercepted VPN credentials and subsequently used those
credentials to access substation networks over a VPN. At that point, the attackers ran
rogue SCADA client software on the compromised machines and hence sent remote
commands to an electrical substation [2]. We replayed the BlackEnergy attacks in
order to send remote actuator commands over the network to the protective relays
in our research testbed. The purpose of the actuator commands was to trip circuit
breakers. Although BlackEnergy operates on substation equipment similarly to
legitimate system operators, there is a key difference between them.

Because of the monitor filtering capability, a legitimate system operator does not
see decoy NICs, decoy I/O boards, and any form of industrial mirage, unlike an
attacker who sees them all as real. We used a decoy keyboard as discussed earlier
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in this chapter to leak VPN credentials, which in turn redirected the attacks onto
a decoy target over the decoy NIC. The attacks were detected when the malicious
network traffic landed on the decoy NIC. When the rogue SCADA client software
communicated over a real NIC, the attacks were detected too. Some of the circuit
breakers tripped by the remote actuator commands were industrial mirages. The
actuating requests reached the decoy I/O board controller, asking to access I/O
control outputs of the phantom I/O board, which is when detection was attained. The
data encountered by the decoy NIC and decoy I/O board controller are somewhat
similar to those plotted in Figs. 6 and 7, respectively. The only difference is that the
requests are fewer, and the data sizes encountered are generally much smaller.

Local sensing and actuating attacks This part of the testing involved the emu-
lation of ICS malware attacks on protective relays. The test code obtained direct
readings of sensors and also injected actuator commands bound for circuit breakers.
These attacks were detected because the I/O operations reached the decoy I/O board
controller. The test code also modified an actuating command on the fly shortly
after it was issued by a decoy protection and control application on the protection
relay. This other attack was detected because of a mismatch between the command
that arrived at the decoy I/O board controller and the command that the decoy
protection and control application was driven to issue. Yet in another attack, the
test code captured an actuating command and discarded it entirely. This other attack
was detected because the decoy I/O board controller was expecting the actuating
command and its waiting period expired. Same results were obtained when the
actuating command originated in the decoy NIC before being modified on the fly or
entirely suppressed by the test code. Same results were also obtained when sensor
measurements were manipulated or denied by the test code.

No false positives Because legitimate system operators cannot see the decoy I/O
devices, industrial mirages, and decoy entries in general along with their respective
data, on their monitors, they cannot act or react on any of them. On the other hand,
the decoy user-space activity that was discussed earlier in this chapter makes it
appear as if they do access decoy I/O, take action upon decoy data, and monitor and
control industrial mirages as well. This makes decoy I/O and industrial mirages in
general quite indiscernible from their real counterparts, while keeping the approach
completely transparent to system operators. Consequently, because the various traps
do not receive any normal activity from system operators, no false positives have
been observed.

Execution overhead We express the measure of overhead as the approximate
average fraction of 1 millisecond that goes to executing instructions of decoy I/O.
Although this measure is an estimate, it clearly quantifies the effort that the CPU
makes to run decoy I/O instructions. We work with the million of instructions
per second (MIPS) metric of the CPU on the machine on which decoy I/O
is deployed. MIPS metrics are measured by Dhrystone computing benchmark
programs under realistic workloads. Dhrystone’s measurements are cognizant of
instruction pipelining. We acquire high-resolution time stamps at various points in
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the code. These points are organized as StartingTime and EndingTime. We
subtract StartingTime from EndingTime to obtain the length of the time interval
for which to compute the overhead estimate. We also insert debugging instructions
to measure the number of decoy I/O instructions that are executed during the time
interval at hand. The instructions in a loop are counted anew on each iteration.

Given the MIPS metric from Dhrystone, we calculate an estimate of the total
amount of instructions that were executed during that time interval. We then
calculate the fraction of those instructions that belongs to decoy I/O, which now
becomes the fraction of 1 millisecond that was, on average, spent by the CPU to
execute decoy I/O instructions. For example, if Dhrystone indicates a MIPS of 4800,
and the time interval under consideration is 0.4 s, an estimate of the total number of
instructions executed on the CPU is 192∗107. If the count of decoy I/O instructions
is 384, and taking into account that 1 millisecond is equal to 106 nanoseconds, then
the overhead estimate pertaining to the time interval at hand is 384

192∗107 ∗ 106 =
0.2 nanoseconds.

When the ICS machines are not under attack, the execution overhead of the decoy
code fluctuates between 100 and 300 picoseconds at most. Most of this overhead is
due to consistency measures. When under attack, the execution overhead increases
up to under 1.5 nanoseconds due to the large volume of I/O requests and replies
that the decoy code has to process. The various ICS malware analytics add to the
execution overhead too. A sample of overhead measurements on a protective relay
is given in Fig. 8. Execution overheads on other ICS machines are similar. These
execution overheads are insignificant for protective relays and ICS machines in
general.
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Fig. 8 A sample of execution overhead on a protective relay
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7 Conclusions

Industrial mirage makes it highly complex for ICS malware to find their way to
real segments of the electrical power grid without falling into a trap. ICS malware
are detected on ICS machines in production on the very first encounter with them,
and hence without any prior knowledge of their code and data. Decoy I/O of various
forms characterize ICS malware in sufficient detail to enable ICS machines to isolate
them and gradually recover from them entirely. Effective cyber operations can be
enabled against ICS malware to trace and discover the human factors behind the
attacks for the purpose of attribution. Industrial mirage is usable in practice, and
has already demonstrated to be effective against the ICS malware samples that were
used in recent campaigns. Further research will make industrial mirage absolutely
safe to both legitimate applications and users on ICS machines, and the equipment
and physics of the electrical power grid.
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Flood Resilience of a Water Distribution
System

Fabio Tarani, Chiara Arrighi, Laura Carnevali, Fabio Castelli,
and Enrico Vicario

Abstract Extreme weather events such as heavy rains and floods are becoming
more frequent and severe due to global warming, therefore leading to an increasing
interest in methods to evaluate environmental consequences and mitigation strate-
gies. Water supply systems (WSS) represent a class of safety-critical infrastructure
prone to damage, with direct impact on public health. They can be cast in the
class of cyber-physical systems, since their operation is governed by their physical
behaviour—related to topology, fluid-dynamics and technology—which in turn is
steered by operation policies and user behaviour—pump and valve management,
demand–response mechanisms, etc. In this context, we propose an approach to
estimate resilience in the indirect damage caused by a flood on a Water Supply
System (WSS). To this end, we combine analysis of an inundation model, which
computes the floodwater depth over time on the studied territory, and evaluation
of a hydraulic network model by a Pressure-Driven Demand (PDD) approach,
which also allows for demand–response mechanisms. Flood damage is assessed in
terms of both lack of service experienced by inhabitants and length of pipeworks
contaminated by floodwater. The approach is experimented on the WSS of Florence,
Italy, which serves about 380,000 users and lies in a flood-prone territory. A
sensitivity analysis is with respect to demand–response efficiency, speed, and start
time.
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1 Introduction

Extreme weather events and natural disasters are raising increasing concerns
worldwide, also due to climate change perspectives [10, 15, 25]. In particular,
interest is spreading on the consequences on population [2], environment [6], urban
areas and, infrastructures [7, 13, 19, 22]. In this context, the estimation of flood
impact opens new research perspectives, as shown by the sustainability criterion
adopted by the flood risk mitigation strategies of the EU Parliament [9], which
promotes quantitative flood risk assessment [18] and flood damage maps [8, 19].

Water Supply Systems (WSS, see Table 1 for a list of acronyms frequently
used in the chapter) are safety-critical network infrastructures as a main factor in
environmental sustainability, public health, and resilience [14, 24]. Their behaviour
is intrinsically cyber-physical due to the interaction of management of operation,
which lies on an abstract, information-based layer, with a physical system ruled by
partial differential equations. In this context, the increasing availability of smart
metering and control devices will increase the influence of cybernetic control
aspects on network operation, for example by directly managing demand or allowing
a finer control on network operation. Moreover, WSS can be cast in the class
of Stochastic Hybrid Systems (SHS) [1, 4, 16] due to their continuous behaviour
undergoing sudden changes at stochastic times due to a number of discrete variables,
related for example to pump operation schedules or pressure-controlled sectioning
valves.

Due to their great spacial extent and the functional interdependencies among
their components, WSS and other network infrastructures propagate the effects of
contingencies affecting some part of the network farther from the location of the
event. Hence, the detrimental consequences of a contingency are usually classified
into direct and indirect damage. In the case of inundations, the former relates to
physical contact with floodwater, accounting for instance for damaged equipment or
contaminated pipes, and is often estimated by means of damage curves, whereas the
latter refers to the impact outside the flooded area, e.g- to the number of inhabitants
experiencing lack of service even if located far from the flooded areas.

Management of flood risk entails a combined approach comprising mitigation,
preparedness, response, and recovery [24], a fundamental role being played by
hazard identification and vulnerability analysis. Impact assessment is a valid
support for decision makers: in particular, being able to identify impacts and to

Table 1 Acronyms used in
this chapter

Acronym Definition

DTM Digital Terrain Model

DWTP Domestic Water Treatment Plant

LIDAR Light Detection and Ranging

PDD Pressure-Driven Demand

RI Recurrence Interval

WDN Water Distribution Network

WSS Water Supply System
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estimate the effects of various mitigation strategies is fundamental both in a tactical
and strategical outlook: from a tactical perspective, an optimal exploitation of
available resources can be achieved during the emergency phase, e.g. by controlling
service levels and providing appropriate backup systems, whereas on the long-term,
strategic run, a better allocation of budget can be attained in terms of resilience
maximisation.

In this chapter, the impact of a flood on a WSS in terms of indirect damage is
evaluated. The implemented method exploits an automated procedure integrating,
by means of a GIS infrastructure, an inundation model, and a hydraulic network
model with Pressure-Driven Demand (PDD) [5, 21]. Two measure for the assess-
ment of flood impact are introduced to quantify functional deficit—in terms of lack
of service—and structural damage—in terms of pipe contamination. The method
is tested on a real case study, namely the WSS of Florence, Italy, which serves
approximately 380,000 inhabitants and lies in a flood-prone area.

The remainder of the chapter is organized as follows: in Sect. 2, the application
context is described in detail; in Sect. 3, the model, its constituent sub-models,
and the defined measures are presented; in Sect. 4, the calculated measures are
shown and sensitivity analyses are performed on the key input parameters. Finally,
conclusions are drawn in Sect. 5.

2 Application Context

The fresh water supply chain comprises several phases: abstraction from source,
transport, treatment, and distribution. The last two operations are performed by
means of WSS, which typically include one or more treatment plants, where water
conveyed from the source is processed and made biologically and chemically safe,
and a set of pipes connected in a network, which delivers it to users.

The network can be abstracted as a graph, where nodes represent junctions
and users (demand nodes), whereas edges correspond to pipes. Each node is
characterised by an elevation and a time-varying nodal demand, which depends on
the type of associated users (domestic, office, industry, etc.) and is null for junction
nodes. Each pipe has a set of attributes which may include inner diameter, length,
material, age, and minor loss coefficient.

Special nodes are used to represent tanks and reservoirs, whereas pumps and
valves (sectioning, pressure-control, etc.) are more easily represented as edges.
Tanks are used to provide storage capacity and enhance stability of operation by
decoupling demand (largely time-varying) and production rate (usually constant).
They are often filled by a dedicated lifting station which is turned on either on a
predefined schedule or based on a pressure measurement in the network. Their effect
on network operation is twofold. On the one hand, they lead to a hybrid behaviour
because their finite capacity leads to discrete changes in their working condition
even if the dynamics are generally continuous. On the other hand, they introduce
memory, thus ruling out strategies based on steady-state analysis. For what concerns
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hybrid behaviour, a tank can be in one of three states: in operation, full, or drained.
When it is in operation, water can freely enter or leave the tank according to pressure
and mass balances; when full, water can only exit the tank, so that, if water head in
the network is higher than in the tank (i.e., the network is pushing water inside the
tank), the latter is considered as a regular junction node (no demand) and allows no
water inlet. A similar reasoning applies when the tank is drained and water can enter
the tank if required but not leave it.

Special edges such as pumps—used to maintain required heads, to fill elevated
tanks and to displace water throughout the network—and valves—employed for
flow control and pipe sectioning—also contribute to the hybrid behaviour of the
system and strengthen the cybernetic aspects. Even if variable-speed motors are
increasingly available, most pumps are controlled in a binary fashion, being turned
off and on according either to a schedule or to a level/pressure measurement. Valves,
on their part, can either be intrinsically discrete (e.g., backflow valves) or they can
be controlled by the network operator, either locally or remotely.

The large number of special components in real networks—even a medium-sized
network may contain several tanks, pumps and valves—and the intrinsic non-
linearity of the partial differential equations governing pressure loss in pipes lead
to a great complexity of the problem, ruling out linear solution methods and calling
for specifically designed analysis techniques [17]. Most used techniques involve
discretisation on the time-domain and iterative solution of the non-linear system
representing the system state at each timestep, for example by Newton-Raphson
methods. A set of checks is also necessary to promote stability of the solution and
ensure convergence.

The presented methodology is applied to the urban area of Florence, Italy, with
an extension of 102 km2, which is crossed by the river Arno whose bed, extending
for 8 km, conveys an average flowrate of 60 m3s=1. Notwithstanding the broadness
of its catchment area (8200 km2), the low permeability of its territory leads to a
highly torrential flow pattern, with recorded flow rates as low as 1 m3s=1 and as
high as 4100 m3s=1. Due to such variability, the area is extremely flood-prone,
fact witnessed by historical records which mention over 150 such events in the last
millennium.

For what concerns the WSS, the city is served by a treatment plant which lies
next to the upstream section of the river and abstracts in regular operation an average
flowrate of 1.4 m3s=1, which is treated and pumped into the distribution network by
three 710-kW pumps. The network features over 900 km of pipeworks and 17 tanks,
mostly located on the hills around the city, whose total storage capacity of 42,000 m3

is used to enhance stability of supply.

3 Methodology

The methodology for the evaluation of indirect flood damage interleaves the analysis
of two models: an inundation model, which is used to predict the time-varying
floodwater depth on the studied territory in case of flood, and a WSS model, which
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accounts for the behaviour of the WSS during the event. In the following paragraphs,
both models are presented in detail together with the overall data flow.

3.1 General Structure

The methodology is based on the following considerations regarding the behaviour
of the WSS. Following common practices enabled by the increasing availability of
smart metering and control devices and technologies, we consider demand–response
measures activated so as to limit water consumption in case of a flood forecast.
Specifically, these measures may include issuing a warning to the population asking
to limit water consumption or actual throttling or closing on terminal pipes by
means of smart devices. Starting from a certain time tDR, consumption is reduced
exponentially with respect to regular operation till an asymptotic reduction factor
is achieved. Without loss of generality, the following equation is used to calculate
requested flowrate of each user at time t :

Dreq,i (t) =
{

Dnom,i (t) ift ≤ tDR

Dnom,i (t)
[
(1 − DRE) + DRE e−(t−tDR)/τDR

]
ift > tDR

(1)

where Dreq,i (t) is the demand required by node i at time t , Dnom,i (t) is the
corresponding nominal demand, DRE is the total Demand Response Effectiveness,
and τDR is the time constant of the demand response process. The demand–response
behaviour is thus defined by three parameters: tDR, τDR and DRE.

After the event begins, floodwater affects WSS operation in a twofold way: on
the one hand, it leads to failure of exposed active components, e.g. by impairing
power supply or by damaging essential subsystems; on the other hand, it leads to
pipe contamination.

• As regards failure of components, in a first approximation and lacking more
detailed data on mechanical and electrical layouts, it is assumed that all
electrically-powered devices are failure-prone, and that failure is triggered by
the floodwater level with respect to the ground. A constant threshold of 0.5 m
is defined, i.e. the device fails when water level exceeds this value, at time tfail.
This approach can easily be refined if more data about installation geometry is
available.

• Pipe contamination occurs where floodwater head exceeds freshwater head inside
the pipe. When this happens, contaminated water from the ground containing
potentially harmful substances or bacteria may enter the network through
junction clearances or small cracks, which are always present to some extent
in real networks, therefore requiring thorough cleaning before the affected pipe
is used again to deliver drinking water.

Figure 1 shows the general structure of the methodology. First, either a hydro-
meteorological model, taking into account weather and land morphology, or
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e

Fig. 1 Data flow diagram of the methodology. Greyed-out background indicates that the activity
is not part of the methodology

empirical data are used to generate an hydrograph for the river (a), i.e. to estimate the
flowrate conveyed by the river as a function of time following a period of exceptional
precipitations on its catchment area. Hydrographs typically feature an hill-shaped
pattern, with flow rate rising rapidly from a base level to a peak value and then
slowly reverting to the initial value. Afterwards, the Digital Terrain Model (DTM)
and the hydrograph are used in the inundation model (1) to compute transient
floodwater levels (b). An exposure analysis (2) is then performed to obtain a list of
failing devices and their failure times (c). Computed failure times, network topology,
operation data (demands, pumps schedules and rules, etc.) and assumptions on the
demand–response patterns are used in the WSS model (3) to evaluate transient nodal
heads (d). Hydraulic head (henceforth abbreviated as “head”) is a measure of the
pressure of a fluid expressed in length units, and is commonly employed in the
field of WSS. Nodal heads, together with floodwater levels, are used by the data
aggregation procedure (4) to determine measures of interest (e).

It should be pointed out that for a correct interaction of the models, items and
events must be consistently located in space and time, respectively. To this end,
a GIS framework is used to reference both the DTM and the network topology,
whereas the start time of the hydrograph, coinciding with the arrival of the
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flood-wave, is taken as reference time for all events. In particular, demand–response
start time tDR can also be negative (procedures activated preventively), whereas
failure time tfail is always positive.

3.2 Analysis of the Inundation Model

The inundation model shall take a hydrograph and a DTM as inputs and returns a
flood scenario as the output. Among the many available tools, the Telemac-Mascaret
framework has been chosen to simulate flood dynamics during the event. Telemac-
Mascaret is an integrated suite of solvers widely used for free-surface flow studies,
and is de facto one of the major standards in its field, developed and managed by
a consortium of industries and research organisations, and open source [11]. The
simulation modules use algorithms based on the finite-element method [12]. Space
is discretised in the form of an unstructured grid of triangular elements, which means
that it can be refined particularly in areas of special interest.

The module used for the purpose of this research solves the Navier-Stokes
Partial Differential Equations (PDE) for liquid flow, taking into account both sub-
and super-critical flows and ground friction. Geographic data is supplied as a 2-D
triangular mesh representing the topography of the studied area with an elevation
value assigned to each node. On the boundary nodes of the mesh, specific flow
conditions must be given. In particular, three types of boundary conditions are
chosen for the riverine flow analysis: the upstream boundary of the riverbed is
assigned time-varying free surface elevation and flow rate profiles, the downstream
border is assigned a fixed elevation for stability issues, whereas the remainder of the
boundary is assumed closed (no throughflow). All of them are simplified conditions
which must be carefully supervised as not to affect the reliability of results. In
particular, the most stringent condition refers to the outflow boundary: as long as the
flow regime along such border is supercritical no issue emerges, since downstream
conditions cannot affect the studied domain. If the flow is subcritical, however, some
information on the flow capacity of the downstream area should be provided for
increased precision. In the present study, a fixed-elevation, free-flowrate regime has
been used to improve computation stability. A sensible elevation on the outflow
boundary has been chosen, keeping in mind that estimated water depth near such
border is subject to a higher error than the remainder of the domain.

In summary, the implemented inundation model takes the following inputs:
(1) land topography as a triangular unstructured 2-D mesh with elevation values,
(2) time-varying inlet flow rate at upstream boundary, and (3) elevation at down-
stream boundary. The time-varying water depth at each node is returned as an
output. Even if a time-continuous, space-continuous system is analysed, the model
returns water depths for a finite number of nodes at a finite number of timesteps.
If water depth is needed for points not belonging to the mesh at other times
(e.g. to evaluate floodwater depth on a WSS component with given coordinates),
interpolation in space and time must be used.
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3.3 Analysis of the WSS Model

The WSS model takes network topology, demand–response data (nodal demands)
and operation data (schedules, failed components) as inputs and returns nodal heads
throughout the network as output. The behaviour of the WSS is simulated by
means of EPANET [20], a software that models water distribution piping systems,
developed by the United States Environment Protection Agency (EPA) and freely
distributed. The tool solves flows in pipe networks using mass conservation and
the Hazen-Williams equations for head loss, performing quasi-static time-varying
simulations also implementing tank dynamics. The hybrid behaviour introduced
by discrete-dynamics components such as time- or level-switched pumps is also
effectively taken into account. In particular, EPANET calculates time-varying
pressures at the nodes given a set of initial tank levels, pump switching criteria,
node base demands and demand patterns.

The main hindrance to using the standard EPANET implementation for the
purposes of current research is its strict demand-driven approach, which stems
from the primary goal of simulating correctly-operated networks. In such networks,
pressure at each node is sufficient so as to allow withdrawal of required demand
from each node, so that demands can be assumed as defined input data. However,
when simulating strongly off-design networks, nodes featuring a reduced pressure
are common, so that a pressure-driven approach is needed [5, 23]. PDD models
differ from conventional ones in that demands at nodes are not attributed a priori,
but their value depends on the current pressure at the considered node.

As done in [3] consistently with practice, in the presented implementation each
node can be in one of three states:

fully served if the node is able to withdraw its nominal demand, i.e. when
Hi(t) ≥ Hservice, where Hi(t) is nodal head at time t and Hservice is the minimum
head to be considered fully served; the served demand of node i, Di , is therefore
equal to its required demand: Di = Dreq,i ;

partially served if the node experiences lack of pressure ( Hservice > Hi(t) > 0)
and withdraws a reduced demand; this reduced demand is expressed as

Di = Dreq,i

(
Hi

Hservice

)α

(2)

where α is a constant exponent deriving from the physics (in particular from the
relationship between kinetic energy and velocity) and set to 0.5;

non served if pressure is null (Hi(t) = 0) and the node is unable to withdraw any
water, yielding null served demand (Di = 0).

In order to allow for such behaviour, the standard EPANET must be modified. In
fact, EPANET only allows two types of nodes: nodes are assigned a time-varying,
pressure-independent demand, and can be effectively used to model fully served
users, whereas emitters, conceived to model fixed cross-section water outlets
such as fire hoses and orifices, adequately model the aforementioned behaviour



Flood Resilience of a Water Distribution System 185

1: procedure PDDEPANETRUN(nodeStates)
2: t ← 0
3: while t < Duration do
4: INITIALIZENODESTATES(nodeStates)
5: RUNEPANET(nodeStates)
6: while ARENODALHEADSNOTCONSISTENT(nodeStates) do
7: UPDATENODESTATES(nodeStates)
8: RUNEPANET(nodeStates)
9: end while
10: INCREASETIME(t)
11: end while
12: end procedure

Fig. 2 Pseudocode for the MATLAB implementation

of partially served users. Emitters are defined by a fixed exponent α, equal for all
instances, and a flow coefficient Ki which represents the volume flow rate for unitary
pressure loss across the orifice. In detail, flow rate through emitters is computed as:

Di = Ki Hi(t)
α (3)

where Ki is the emitter flow coefficient, Hi(t) is the head at time t and α is the
emitter exponent, equal to 0.5 due to the physics. Unfortunately, emitters do not
cope well with calculated negative pressures, attributing a negative (entering) flow
rate where such negative pressures occur.

A MATLAB code has been implemented so as to exploit the aforementioned
characteristics to run transient analysis while correctly using a PDD approach. The
code—as shown in pseudocode Fig. 2—works as follows: three node states are
defined: “2” for served nodes, “1” for partially served ones, and “0” for non-served
ones; type 2 and type 0 nodes are modelled as EPANET nodes with nominal demand
equal to the assigned nominal demand Dreq,i and 0 respectively, whereas type 1
nodes are modelled as emitters whose flow coefficients are calculated to ensure that
Di = Dreq,i if Hi = Hservice. For each timestep, a first trial simulation is run with
all nodes in state 2 in order to get the expected pressures. Afterwards, each node
is checked to assess whether its pressure is in the pressure range corresponding to
the current flow regimen and, if this is not the case, its state is accordingly raised or
lowered by one unit (namely, it is not possible to jump from state 2 to state 0 and
vice versa). After node states have been changed, simulation is repeated till no more
node state change is necessary. Calculated flow rates and pressures are considered to
represent network operation during the following timestep. In particular, flow rates
are used to calculate the time to the next event (tank being filled or emptied), and the
first event affecting network topology is considered (e.g. demand change, or pump
setting toggle due to time pattern, tank getting empty or full). Tank levels are then
updated and simulation proceeds to the next timestep.

The described procedure allows to calculate head and supplied demand at each
node for each timestep, therefore fully estimating the network state in each moment.
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3.4 Definition of Measures

Two measures have been defined in order to evaluate functional and structural
impact of the flood on the network.

First, impact of the flood on operation is assessed by estimating the fraction of
the required demand not met by the WSS.

DNM(t) = 1 − Dmet(t)

Dreq,TOT(t)
= 1 −

∑
i Di(t)

∑
i Dreq,i (t)

(4)

where Dmet(t) is the total met demand at time t and Dnom,TOT(t) is the total required
demand at time t , as defined in (1).

As a second measure, network damage due to pipe contamination is evaluated by
calculating the total length of pipework to be decontaminated. A pipe is considered
to be contaminated at time t if at any preceding moment in time the head inside the
pipe is lower than the floodwater head outside, or below zero:

L(t) =
∑

i∈I

∑

j∈Ji

Lj with I = {
i | ∃ τ < t s.t. Hi(τ) < Hflood,i (τ )

}
(5)

where Ji is the set of pipes with either end connected to node i and Lj is the
length of pipe j . Hflood,i (t) is the floodwater head on the node, and is obtained
by interpolating the data given in output by the inundation model so as to match the
geographical location of the node.

4 Experimental Results

The proposed methodology is implemented in a toolchain, using input data referring
to the urban area of Florence, Italy, for a flooding event with Recurrence Inter-
val (RI) 200 years and duration 18 h. The two defined measures have been calculated
during the day of the event and the following, and the sensitivity to the three
parameters defining demand–response effects (DRE, tDR, τDR) has been evaluated.
In the following, the employed data is described and the obtained experimental
results are discussed.

4.1 Flood Dynamics

The mesh needed by the inundation model has been obtained by interpolation
on data from a laser altitude (Laser Imaging Detection and Ranging—LIDAR)
acquisition campaign promoted by the City Administration (Comune di Firenze).
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Fig. 3 Elevation data of the studied spacial domain, a subset of the urban area of Florence, Italy.
Darker areas in the lower corners lie outside administrative borders and are not available

Used elevation data are collected on a regular square grid with 10 m spatial
resolution. The generated triangular mesh features variable density: an average edge
length of 10 m is used in an area extending 10 m on both sides of the riverbed, in
order to better estimate the conveyable flowrate, whereas a coarser length of 40 m
is used elsewhere, so as to improve computation times. Overall, the mesh includes
74,860 nodes, with elevation values ranging from to 27 to 410 m (a contour plot of
the elevation data for the analysed domain is shown in Fig. 3).

For what concerns the inflow, data have been provided by the river Catchment
Authority (Autorità di bacino del fiume Arno). Data is made available for a set of
scenarios, with RI ranging from 30 to 500 years and event duration from 3 to 36 h.

Simulation has been performed for the data based on the 200-year recurrence
interval and 18-h event duration (the corresponding hydrograph is shown in Fig. 4).
Simulated timespan is twice the event duration (36 h), with a calculation timestep
of 2 s. Analysis has taken 180 mins on a quad-core i7 Intel CPU equipped with 8 GB
RAM. The map in Fig. 5 shows in overlay the inundated areas at different times
during the event.

The event leads to a maximum inundated area of 20.3 km2, with a maximum
water depth of 6.1 m. According to the previously mentioned failure criterion,
pumping station failure is attained when water depth at the corresponding node
reaches 0.5 m, i.e. 8.2 h after the beginning of the event.

4.2 Water Supply System Dynamics and Sensitivity Analysis

Network topology and component data for the EPANET model have been provided
by the company managing the WSS (Publiacqua SpA). The slightly skeletonised
model provided includes 4880 nodes, 6336 pipes, 17 tanks and 16 pumps, with a
total pipe length of over 600 km.
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and 18-h duration

Fig. 5 Flooded areas at different times after the arrival of the flood wave
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The model has been exploited to evaluate the influence of some input parameters
on the evolution of the defined measures. In particular, temporal parameters defining
the demand–response mechanism were varied to appreciate their influence on the
evolution of Demand Not Met (DNM) and contaminated length L. The flood wave is
assumed to start at midnight, and WSS failure occurs accordingly at 8 am. Measures
are calculated, starting from midnight, during 48 h, thus covering two whole days.
Recovery transient is not evaluated in the work, but it may be assumed that, starting
from the time at which full treatment capacity is restored, (1) L stops rising, while
(2) DNM quickly drops to zero, even if delivered water may not be biologically safe
till pipe decontamination has been carried out. In this perspective, estimated L helps
the network operator to understand how critical the responsiveness to contingency
is. Following paragraphs report the main results of the analysis.

4.2.1 Sensitivity to Demand–Response Efficacy

The efficacy of the demand–response measures DRE, as defined in (1), has been
varied in the set {0.1, 0.3, 0.5} and the results are shown in Figs. 6 and 7.

Figure 6 shows unmet demand DNM, as defined in (4), as a function of time
(time is counted starting from midnight, two whole days are represented, and
failure occurs at t = 8 h). DRE has a direct and strong influence on the service
levels. Demand patterns are still recognisable in most cases, although their imprint
decreases as DRE increases. Rising the DRE from 0.1 to 0.3 halves the unmet
demand always but during the demand peaks, whereas in the 0.5 case the lack of
service is almost unnoticeable. During the first day, the trend is descending for
all curves: in this phase, the influence of the diminishing demand—due to the
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demand–response policies—prevails over the gradual draining of the tanks. The
behaviour diverges during the second day: values keep rising in all cases except
when DRE = 0.5. This happens because of the long-term flow balance: if the
residual demand is lower than a threshold, the system is still able to supply most
user notwithstanding its reduced production capacity, thus the unmet demand is
very low. On the contrary, if production is lower than reduced demand, tanks will
keep emptying, so that in the long-term, when all previously stored water has been
supplied, most users will experience lack of service.

Figure 7 shows the total length of contaminated pipeworks L, as defined in (5).
The measure rises quickly after the failure, and tends to keep rising in discrete
jumps. This is related to the hybrid behaviour of the system due to draining tanks,
which cannot provide adequate head in some zone of the network. For higher values
of DRE, jumps occur later in time so that the measure rises more slowly. Overall,
contamination affects less than 20% of the network in the worst case (no demand–
response policy).

4.2.2 Sensitivity to Demand–Response Time Constant

Figures 8 and 9 show the influence of the demand–response policy time constant,
varied in the set {3, 6, 9} h, on the defined measures. Again, the speed of the
reaction positively affects operation, especially in the first hours after the failure.
During day 1, for example, lack of service can be halved by doubling the policy
speed (τDR = 3 h). The effect is much less noticeable at the end of day 2, when
demand reduction has attained its asymptotic value independently of the chosen
time constant.
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Figure 9 shows that the demand–response time constant slightly affects pipe
contamination: a slower demand–response leads to less consumption and delays
the time at which tanks drain.

4.2.3 Sensitivity to Demand–Response Start Time

Figures 10 and 11 show the influence of the demand–response policy start time,
varied in the set {−4, 0, +4} h with respect to failure time, on the defined measures.
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The influence of the start time on both measures is stronger during the first hours
after failure. Delaying start time by 4 h, from 8 o’clock (time of failure) to midday,
increases unmet demand by 50% during the first 10 h after failure. The effect of
start time is barely evident during day 2, due to the steady-state condition attained
in demand reduction. For what concerns contaminated pipe length, anticipating
demand response leads two a lower consumption during peak hours and thus to
a slower effect on tank draining and pipe contamination.
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5 Conclusions

Water supply systems are cyber-physical systems with critical impact on public
safety and prone to failure in case of flood. In this chapter, we have presented a
methodology to evaluate the indirect impact of a flood on a water supply system.
The approach leverages the analysis of an inundation model to predict floodwater
levels in the transient phase following the extreme event with a hydraulic network
model. In particular, the computed floodwater levels enable an exposure analysis
to forecast failure times of critical devices, which, in turn, are used in the analysis
of the hydraulic model of the WSS to derive measures of the flood impact, both in
terms of demand not met and in terms of pipe contamination.

Experiments performed on the WSS of Florence, Italy, prove feasibility and
effectiveness of the approach on a real case. Notably, the results of a sensitivity
analysis with respect different demand–response parameters can be used to compare
different strategies for reduction of water consumption, supporting decisions of
WSS operators.

Acknowledgements We acknowledge the network operator Publiacqua SpA for the WSS
hydraulic model of the city of Florence, Italy.
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A Non-parametric Cumulative Sum
Approach for Online Diagnostics
of Cyber Attacks to Nuclear Power Plants

Wei Wang, Francesco Di Maio, and Enrico Zio

Abstract Both stochastic failures and cyber attacks can compromise the correct
functionality of Cyber-Physical Systems (CPSs). Cyber attacks manifest themselves
in the physical system and, can be misclassified as component failures, leading
to wrong control actions and maintenance strategies. In this chapter, we illustrate
the use of a nonparametric cumulative sum (NP-CUSUM) approach for online
diagnostics of cyber attacks to CPSs. This allows for (i) promptly recognizing
cyber attacks by distinguishing them from component failures, and (ii) guiding
decisions for the CPSs recovery from anomalous conditions. We apply the approach
to the Advanced Lead-cooled Fast Reactor European Demonstrator (ALFRED) and
its digital Instrumentation and Control (I&C) system. For this, an object-oriented
model previously developed is embedded within a Monte Carlo (MC) engine that
allows injecting into the I&C system both components (stochastic) failures (such as
sensor bias, drift, wider noise and freezing) and cyber attacks (such as Denial of
Service (DoS) attacks mimicking component failures).
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Abbreviations

CPS Cyber-Physical System
NP-CUSUM Non-Parametric CUmulative SUM
ALFRED Advanced Lead-cooled Fast Reactor European Demonstrator
I&C Instrumentation and Control
MC Monte Carlo
NPP Nuclear Power Plant
PI Proportional-Integral
DoS Denial of Service
PID Proportional-Integral-Derivative
FDI False Data Injection
SG Steam Generator
FA Fuel Assembly
CR Control Rod
SISO Single Input Single Output
DAC Digital-to-Analog Converter
LSB Least Significant Bit

Nomenclature

PTh Thermal power
hCR Height of control rods
TL,hot Coolant core outlet temperature
TL,cold Coolant SG outlet temperature
¦ Coolant mass flow rate
Tfeed Feedwater SG inlet temperature
Tsteam Steam SG outlet temperature
pSG SG pressure
Gwater Feedwater mass flow rate
Gatt Attemperator mass flow rate
kv Turbine admission valve coefficient
PMech Mechanical power
Kp,j Proportional gain value of j-th PI
Ki,j Integral gain value of j-th PI
t Time
tR Accident time
tM Mission time
Δt Sensor measuring time interval
y Variable (safety parameter)
yref Reference value of controller set point value of y
yreal(t) Real value of y
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ysensor(t) Sensor measurement
yfeed(t) Measurement received by the computing (feeding) subsystem
ymonitor(t) Measurement received by the monitoring subsystem
Y(t) Redundant channel measure, Y = yfeed and ymonitor

δy(t) Sensor measuring error
qy(t) Converter quantization error
a Accidental scenario
b Bias factor
c Drift factor
SY (t) Score function-based statistic of the collected Y(t), SY (t) = S

f eed
y (t)

and Smonitor
y (t)

hy Positive threshold

τY Time to alarm, τY = τ
f eed
y and τmonitor

y

�τ y Delay difference between τ
f eed
y and τmonitor

y

�
ref
y Reference delay difference

cy NP-CUSUM parameter
εy NP-CUSUM parameter
ωy NP-CUSUM positive weight
gY Score function
�gY Score function difference value
μY Pre-change mean value of Y
θY Post-change mean value of Y
θ̂Y (t) On-line estimate of θY

μ�gY
Known pre-change mean value of �gY

θ�gY
Unknown post-change mean value of �gY

αh
y False alarm rate

βh
y Missed alarm rate

γ
(
�

ref
TL,cold

)
Misclassification rate with respect to �

ref
y

1 Introduction

Cyber-Physical Systems (CPSs) feature a tight combination of (and coordination
between) the system computational units and physical elements. To the benefit of
safe operation, the integration of computational resources into physical processes
is aimed at adding new capabilities to stand-alone physical systems, to enable
functionalities of real-time monitoring, dynamic control and decision support during
normal operation as well as in case of accidents. In CPSs, cyber and physical
processes are dependent and interact with each other through feedback control loops
(e.g., embedded cyber controllers monitor and control the system physical variables,
whilst physical processes affect, at the same time, the monitoring system and the
computation units by wired or wireless networks [2, 24, 27, 40]). The benefit of
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such self-adaptive capabilities is the reason why CPSs are increasingly operated in
energy, transportation, medical and health-care, and other applications [6, 23, 27].
In the context of nuclear energy, the introduction of digital Instrumentation and
Control (I&C) systems allows Nuclear Power Plants (NPPs) to take advantage of
the new technologies in the field, for safe operation [21].

In the context of CPSs, sensor measurements can be used to monitor the behavior
of the systems under different operational conditions, including hazardous and
malicious ones. Indeed, CPS functionality can be compromised by both hazards
(safety related) and malicious threats (security related) [13, 26, 41, 65]. Hazards
and cyber threats originate from different sources (stochastic degradations and
accidental conditions, for the former, external malevolent activities that are usually
less accessible and less predictable for the latter [4, 26]). Distinct properties and
mechanisms between them suggest different assessment methodologies for their
identification.

The difficulty lies in the fact that components hazards and malicious threats
can lead to similar consequences on the system [25, 29, 45, 58]. For example,
in a situation where system shutdown is demanded, both failure of the shutdown
of the actuator and interception of the shutdown command by an attacker result
in unavailability of the safety action. In such situation, diagnosing of the failure
cause would allow taking the right decision to respond to the system shutdown
unavailability with the right emergency procedure (e.g., manual operation of the
actuation in the case of such cyber attack).

In this sense, diagnostic of cyber attacks and component failures is important for
the system protection and resilience, allowing prompt recovery from the effects of
disruptive events and, thus, increasing system resilience [14, 20, 35, 38, 69, 70].

In this work, we develop a nonparametric cumulative sum (NP-CUSUM) detec-
tion approach [44, 51–53] for diagnosing cyber attacks, distinguishing them from
component failures. The proposed approach is illustrated considering the possible
occurrence of stochastic components failures and cyber attacks in the digital I&C
system of the Advanced Lead Fast Reactor European Demonstrator (ALFRED)
[16]. An object-oriented simulator previously developed [42, 43], and comprising a
multi-loop Proportional-Integral (PI) control scheme [49], is utilized for simulating
the ALFRED dynamic response to failures and cyber attacks.

The main original contribution of this work lies in the prompt recognition
and distinction of cyber attacks from component failures in CPSs by relying on
the simultaneous treatment, within a consolidated NP-CUSUM approach, of the
measurements taken from redundant channels, guiding decisions for the CPSs
recovery from anomalous conditions.

The chapter is organized as follows. Section 2 sets the issue of security analysis
in the framework of risk assessment and, highlights the contributions of cyber attack
diagnostics to overall system resilience. Section 3 presents the main characteristics
of the ALFRED reactor, with the data measuring and transmission, and control
schemes in the channels of its digital I&C system at full power nominal conditions,
and the MC engine for injection of component failures and cyber breaches. In
Sect. 4, the proposed NP-CUSUM diagnostic algorithm is presented. The NP-
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CUSUM diagnostic method is illustrated in Sect. 5 and evaluated with respect to
its diagnostic performances, such as false alarm, missed alarm and misclassification
rates in Sect. 6. Conclusions are drawn in Sect. 7.

2 Hazards and Threats for CPSs

CPSs demand that in the risk analysis both safety and security aspects are considered
[12, 26, 41, 65]. With respect to safety, hazards relate to components failures that can
result in accidental scenarios leading to unacceptable consequences on the system
physical processes; as for security, malicious attacks can impair both the physical
and cyber parts of the system, possibly leading to unacceptable consequences.

2.1 Hazards

Failures of both hardware and software can compromise the functionality of CPSs.
During operation, failures of embedded hardware components (e.g., sensors

and actuators) can be induced by aging, degradation, and process and operational
conditions, which modify the way components work and interact with each other,
generating multiple failure modes [56]. For example, sensors can degrade and fail
in different modes such as bias, drift and freezing [56]; actuators can fail stuck,
accidentally driving the physical process to be isolated from the controlling units of
the cyber domain [67, 71].

Components failures can lead to two types of misoperations: (1) failure on-
demand, e.g., failing to trigger protections or execute proper control strategies
(when demanded); (2) malfunction, e.g., spurious triggering of protections (e.g.,
unintentional shutdown) or incorrect execution of control actions. Failures on-
demand and malfunctions of both hardware and software components have gained
increasing attention in the risk community [1, 32].

Resilience of CPS to failures can be granted by self-adaptiveness of control deci-
sions on actuators, resorting to intelligent control systems that properly manipulate
sensors measurements [31]. For example, Proportional-Integral-Derivative (PID)
controllers, typically used as feedback controller in CPS to retroact to actuators
the actions to be undertaken for responding to changes of physical parameters,
may suffer of software failures/errors (generated from inadequate specification,
incomplete testing scope and algorithm/logic failures) that are latent and triggered
only when context modifications are to be met [1, 22]. In these situations, control
rules adaptability to variable physical conditions is a fundamental requirement to
the robustness of CPS for resilience during CPS operation.
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2.2 Threats

CPSs reliance on digitalization and remote control systems increases their exposure
to cyber attacks to controllers, databases, networks and human-system interfaces,
that can result in the loss of system functionality. Malicious activities can be
manifested as Denial of Service (DoS) attacks [45, 47, 63, 66], False Data Injection
(FDI) attacks (e.g., packet/data modification) [30, 34, 50], network scan & sniffing
attacks [45, 55], integrity attacks (e.g., through malware contagion) [36, 37] and,
illegal command executions [48]. They can be initiated in the cyber domain through
local or remote accesses, mimicking the components failures but isolating the
connectivity between cyber and physical systems, leaving the physical process
uncontrolled and possibly drifting towards severe consequences.

Cyber attacks can cause serious security issues [61]. Under cyber attacks,
e.g., by contagion of malware, security-related system features may result to be
compromised and, the system safety potentially endangered. The identification
of the cyber threats most affecting the system response is quite important for
decision-making on optimal protection and resilience, as prevention and mitigation
of malicious attacks contribute to guaranteeing CPS functionality [14, 20, 57, 64].

2.3 Hazards and Threats Diagnosis

From the perspective of integrated safety and security of CPSs, distinguishing cyber
attacks from component failures is important for anticipating the potential impact
on the system functionality and defining proper protection and mitigation actions
for resilience.

Cyber threats aimed at altering the CPS normal operation can be diagnosed either
by comparison of statistical estimates of occurrence probabilities from field data
collected on the real CPS with reference values of failure probabilities of the CPS
components [22, 48, 58], or by scenario processing (i.e., modeling the malicious
cyber events and their manifestation on the physical domain, affecting, in turn, both
cyber and physical properties of the CPS) [7, 8, 33, 51, 54].

A variety of methods for scenario processing have been proposed, based on
artificial intelligence techniques. In general terms, observations are compared with
the normal conditions measurements and a deviation from the legitimate data flow
is found by methods such as the Sequential Probability Ratio Test (SPRT) [19,
59], the Cumulative Sum (CUSUM) chart [39, 51, 52], the Exponentially Weighted
Moving Average (EWMA) inspection scheme [46], the Reversible-jump Markov
Chain Monte Carlo (RJ-MCMC) [68, 72], the control charts [63] and the transfer
entropy [47].
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Practically, both components stochastic failures and cyber attacks occur at
unknown times, leading to unpredictable changes in the distributions of physi-
cal variables that differ from the normal condition distribution. The sequential
Non-Parametric CUSUM (NP-CUSUM) approach [51] has been shown capable
of distinguishing normal from abnormal conditions. Based on this approach, we
originally design a framework for early diagnostics of cyber attacks in CPSs. The
novelty of the work lies in the reliance on the simultaneous treatment within the
NP-CUSUM approach of the measurements taken from redundant channels.

3 The Advanced Lead-Cooled Fast Reactor European
Demonstrator

The ALFRED reactor and the MC scheme for injecting component failures and
cyber breaches are described in Sects. 3.2 and 3.3, respectively.

3.1 ALFRED Description

ALFRED is a small-size (300 MW) pool-type lead-cooled fast reactor, whose
primary system configuration is shown in Fig. 1 [16]. All components of the primary
cooling system, including core, primary pumps and Steam Generators (SGs), are
contained in the main reactor vessel, located in a large pool within the reactor

Fig. 1 ALFRED primary system layout [16]



202 W. Wang et al.

tank. The ALFRED core providing the thermal power PTh is composed by wrapped
hexagonal Fuel Assemblies (FAs) with pins arranged on a triangular lattice. Control
Rods (CRs) systems adjusting the heights of CRs hCR have been foreseen for power
regulation and reactivity swing compensation during a fuel cycle, and for scram
purposes with the required reliability for a safe shutdown [17].

At full power nominal conditions, the coolant (i.e., lead) flow coming from the
cold pool enters the core at temperature TL,cold equal to 400 ◦C and, once passed
through the core, it is collected in the volume of the hot collector at temperature
TL,hot equal to 480 ◦C; from there, it is distributed to eight parallel pipes and
delivered to as many SGs. After leaving the SGs, the coolant enters the cold pool
through the cold leg and returns to the core.

The eight SGs work at pressure pSG equal to 180 bar. The feedwater of the
secondary cooling system flows in the SGs, at pressure pSG and temperature Tfeed

equal to 335 ◦C, and leaves the SGs after absorbing heat from the primary coolant,
entering the turbine as steam at temperature Tsteam equal to 450 ◦C (at full power
nominal conditions). From a control point of view, it is worth noticing that the steam
mass flow rate is considered proportional to the inlet pressure and governed by
maneuvering the turbine valve admission (kv), not by throttling. An attemperator
is foreseen between the SG outlet header and the turbine, to limit the steam
temperature at the turbine inlet Tsteam, keeping it as close as possible to its nominal
value, by adjusting the attemperator mass flow rate Gatt.

Eventually, ALFRED produces mechanical power PMech to be transformed for
the power grid.

A simplified schematics of the ALFRED primary and secondary cooling systems
is shown in Fig. 2. The parameters specification of ALFRED at full power nominal
conditions are reported in Table 1.

Condenser

Turbine

TL,cold

TL,hot

Gwater

kvhCR pSG

PTh

Tsteam

Water Pump

Attemperator

Gatt
Core

Steam
Generator

Header

Tfeed

Turbine Admission Valve
Control Rods

PMech

Fig. 2 ALFRED simplified schematics
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Table 1 ALFRED parameters values, at full power nominal conditions

Parameter Parameter description Value Unit

PTh Thermal power 300·106 W
hCR Height of control rods 12.3 cm
TL,hot Coolant core outlet temperature 480 ◦C
TL,cold Coolant SG outlet temperature 400 ◦C
¦ Coolant mass flow rate 25,984 kg·s−1

Tfeed Feedwater SG inlet temperature 335 ◦C
Tsteam Steam SG outlet temperature 450 ◦C
pSG SG pressure 180·105 Pa
Gwater Feedwater mass flow rate 192 kg·s−1

Gatt Attemperator mass flow rate 0.5 kg·s−1

kv Turbine admission valve coefficient 1 –
PMech Mechanical power 146·106 W

3.2 The Reactor Digital Control Scheme

A multi-loop PI (Proportional and Integral) digital control scheme, i.e., a decen-
tralized control scheme, is developed because of its simplicity of implementation
and robustness to malfunctioning of the single control loops [43]. Indeed, it can
be regarded as constituted by several redundant SISO (Single Input Single Output)
control loops [28].

To design the regulators and simulate the system controlled response, an object-
oriented model of the entire plant has been developed (Fig. 3). Based on the
Modelica language [15] and implemented in the Dymola environment [11], the
corresponding simulator has been built by connecting several dedicated models for
the description of the reactor (for details, see [42, 43]).

Both feedback and feedforward digital control schemes are adopted for ALFRED
(see Fig. 3 shadowed part). The control aims at keeping the controlled variables
of the control loops approximately at the steady state values, for operating a
constant mechanical power. The PI-based feedback control configuration employs
four SISO control loops independent of each other [43]. The parameters of the PI
regulators reported in Table 2 are calibrated by adopting the procedures commonly
employed for the SISO systems and the tuning for each PI control loop is verified
by adopting the Bode criterion [28]. The values represent the optimal working
conditions of the system at full power nominal conditions. The overall control
scheme has been verified to effectively damp disturbances due to the change of
the operating conditions. The proposed feedback scheme is improved by adding
a feedforward control action, thanks to which the water mass flow rate (Gwater)
is adjusted according to the value of the thermal power (PTh) exchanged at the
SG interface. The implemented feedforward controller allows adjusting the heat
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Turbine

TL,cold

TL,hot
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Attemperator
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Gatt

Gwater

hCR

PI1

PI2

PI3

PI4

T_feed

Feedforward

Turbine Admission Valve
Control Rods

PMech

Physical System

Fig. 3 ALFRED reactor control scheme

Table 2 Parameters of PI controllers

Control loop Controller parameters, j = 1,2,3,4
PI Controlled variable Control variable Kp,j Ki,j

PI1 Tsteam (◦C) Gatt (kg·s−1) 1·10−1 5·10−2

PI2 pSG (Pa) kv (−) 3·10−7 1·10−8

PI3 TL,cold (◦C) Gwater (kg·s−1) 6·10−1 1·10−2

PI4 PTh (W) hCR (cm) 2·10−11 4·10−11

exchange conditions in the SGs and enhancing the robustness of the control system
against errors on the evaluation of the time delay between the SGs and the core due
to transport phenomena.

Redundancy is commonly applied to sensors and signal processing units of a
digital I&C system [3]. In the ALFRED digital control scheme, redundancy has
been used to design each independent SISO loop.

Figure 4 shows an example of the redundant design scheme of the TL,cold-PI3-
Gwater control loop. The real values of the coolant SG outlet temperature TL,cold(t)
are measured by a sensor. After collected and converted to quantized (discretized)
values by a data acquisition system, the measurements are duplicated by two iden-
tical digital-to-analog converters (DACs) to Subsystem 1 for computing (feeding)
and 2 for monitoring, respectively. The received measurements of Subsystem 1
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Data
acquisition

Subsystem 1

Subsystem 2
TL,cold
sensor

PI3

The TL,cold -PI3-Gwater control loopPhysical System

TL,cold (t)
(t),

sensor
L coldT

(t),
feed

L coldT

(t),
monitor

L coldT

Gwater

Fig. 4 The redundancy design of the TL,cold-PI3-Gwater control loop

Table 3 List of reference parameters for safety variables

Variable, y
Reference value, yref , at full
power nominal conditions

Sensor measuring
error δy(t)

Converters quantization
error qy(t)

Tsteam (◦C) 450 N(0,1) [−0.05, +0.05]
pSG (Pa) 180·105 N(0,0.1) ·105 [−0.01,+0.01]·105

TL,cold (◦C) 400 N(0,1) [−0.05, +0.05]
PTh (W) 300·106 N(0,0.5) ·106 [−0.05,+0.05]·106

T
f eed
L,cold (t) is fed to the computational unit PI3, whereas those of Subsystem 2

T monitor
L,cold (t) are taken as redundant data, for detecting anomalous conditions of the

physical system.
Measurements are realistically considered to be affected by two types of

errors [18, 60]: measurement errors (assumed distributed according to a normal
distribution) and quantization errors (which are rooted in the DACs and are assumed
uniformly distributed between −1/2 and + 1/2 Least Significant Bit (LSB)).
For simplicity, but without loss of realism, Table 3 lists the reference values of
the controlled variables, the distributions of sensor measurement errors and the
quantization errors that each control loops is subjected to.

In Fig. 5, measurements from the four control loops of the ALFRED are
shown, on a time horizon tM equal to 1000s,: the values of the variables are kept
approximately at their nominal values, at full power nominal conditions, with some
measurement errors (white noise) and quantization errors.

3.3 Failures and Cyber Breaches

To model failures and cyber attacks, a MC sampling scheme is integrated with the
ALFRED model for injecting stochastic failures of sensors and cyber breaches, at
random times and of random magnitudes.
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Fig. 5 Measurements from the four control loops of ALFRED at full power nominal conditions
(star values for computing subsystem and triangle values for monitoring subsystem): (a) Steam SG
outlet temperature; (b) SG pressure; (c) Coolant SG outlet temperature; and (d) Thermal power

(a) Bias

y(t)

Failure

0 tF t
(b) Drift

y(t)

Failure

0 tF t

y(t)

(c) Wider noise

Failure

0 tF t

y(t)

(d) Freezing

Failure

0 tF t

b

t

c(t)=c·(t-tA)
yref yref

yref yref

b

ysensor (t)
ysensor (t)

ysensor (t)

ysensor (t)

Fig. 6 Sensor failure modes: (a) bias; (b) drift; (c) wider noise; and (d) freezing. Solid lines
represent the real measurements of the controlled variables, whereas dotted lines are the altered
measurements of the failed sensors (for the sake of clarity, measurement and quantization errors
are neglected)
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Four types of sensor failure modes that may occur at random time tR are
considered [5]: (a) bias, (b) drift, (c) wider noise and (d) freezing (see dotted lines
in Fig. 6a–d, respectively). The occurrence of any of these failure modes results in
altered sensor measurements ysensor(t), as in Eq. (1):

ysensor (t)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y(t) + δ(t), δ(t) = N (0, σ ) , σ > 0, t ≥ 0, normal

y(t) + δ(t) + b, ḃ(t) ≡ 0, b (tR) 
= 0, t ≥ tR, bias

y(t) + δ(t) + c(t), c(t) = c · (t − tR) , t ≥ tR, drif t

y(t) + δ′(t), δ′(t) = N (0, ασ ) , α > 1, t ≥ tR, wider noise

ysensor (tR − �t) , t ≥ tR, f reezing

(1)

where y(t) is the real value of the controlled variable y at time t, δ(t) is the
nominal measuring error, distributed according to a normal distribution N(0,σ ), b
is a constant bias factor, c is a constant drift factor, δ’(t) is a wider measuring error,
distributed according to a normal distribution N(0,ασ ) with a variance larger than
δ(t) (α > 1).

Without loss of generality, only the TL,cold sensor (see Fig. 7) is hereafter
considered (but the following discussion remains valid for any other sensor of the
I&C system). Stochastic failures cause differences of the measurements T sensor

L,cold (t)

from the real values of the controlled variable in the physical system. The MC
sampling procedure used to inject stochastic failures to the TL,cold sensor at uniform
random time tR consists in sampling the uncertain parameters b, c, δ’(t) from
the distributions listed in Table 4 and, then, running the ALFRED simulator
for generating the controlled variables evolution throughout the mission time tM .
Erroneous measurements are, then, converted to two sets of quantized data in the
data acquisition system and fed to both the computing (feeding) and monitoring
subsystems.

Data
acquisition

Subsystem 1

Subsystem 2
TL,cold
sensor

PI3

The TL,cold -PI3-Gwater control loopPhysical System

TL,cold (t)
( ),

sensor
L cold

( ),
feed

L cold

( ),
monitor

L cold

T t

T t

T t

Gwater

X

Fig. 7 Schematics of TL,cold sensor stochastic failures

Table 4 Parameters of sensors

Failure factors
Sensor Nominal error δ(t) Bias b Drift c Wider noise δ’(t) Freezing

TL,cold (◦C) N(0,1) U(−30,30) U(−1,1) N(0,5) 0
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Data
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Subsystem 1

Subsystem 2
TL,cold
sensor

PI3

The TL,cold -PI3-Gwater control loopPhysical System

TL,cold (t)
( ),

sensor
L cold

( ),
monitor

L cold

Gwater

Malicious packet traffic

X
Legitimate packet

traffic blocked

( ),
feed

L cold

T t

T t

T t

Fig. 8 Schematics of DoS attacks

Alternatively, a DoS attack is modelled to block a legitimate packet traffic that
processes the genuine connection and is substituted by a malicious packet traffic
[7, 51]. Figure 8 shows the schematics of a DoS attacks, in which the computing
unit is fed by malicious packet traffic, altering the legitimate information, whereas,
a legitimate packet traffic is regularly fed to the monitoring unit. DoS attacks are
modelled to occur at uniform random time tR within the time horizon tM , and the
uncertain parameters b, c, δ’(t) are sampled from the distributions of Table 4, as
previously explained for the sensor failure.

4 The Nonparametric Cumulative Sum Approach
for Real-Time Diagnostics of Cyber Attacks

The diagnostic approach is based on a NP-CUSUM algorithm of literature [51],
whose details are given in Appendix A.

4.1 The Diagnostic Approach

The diagnostics approach is here illustrated with reference to the stochastic failures
and the DoS attacks described in Sect. 3.3. As shown in Fig. 9, the approach involves
two main steps: (i) on-line collection of measurements received by the controllers,
which are fed to the NP-CUSUM algorithm that is (off-line) trained on different
system behaviors to set its parameters; (ii) an on-line application of the rules of
classification of failures and cyber attacks.

(i) On-line collection of measurements and application of the NP-CUSUM
approach

The redundant channel measurements Y(t), Y = yfeed and ymonitor, where
y = TL,cold, are collected online by the subsystems as follows. At each time t,
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1. The sensor measures the values y = TL,cold, which is affected by the sensor
measurement error δy(t) distributed as a normal distribution of Table 3, i.e.,
ysensor(t) = yreal(t) + δy(t);

2. The data acquisition system collects and converts ysensor(t) with the quantization
accuracy qy(t) of Table 3, resulting in two redundant channels of quantized
measurements;

3. The computing and monitoring subsystems receive the redundant measurements
Y(t);

4. The NP-CUSUM algorithm calculates score function-based statistics SY (t) of
the collected Y(t), to check whether either S

f eed
y (t) or Smonitor

y (t) exceeds a
predefined threshold hy:

• If yes, record the time to alarm τY (τf eed
y or/and τmonitor

y , respectively, and
proceed with the rule-based diagnostics at Step (ii));

• If either S
f eed
y (t) or Smonitor

y (t) exceeds hy, collect the successive measure-
ment because the monitored component is working under normal conditions.

(ii) On-line application of rules

5. If both τ
f eed
y and τmonitor

y exist, calculate the delay difference �τ y (i.e., denoting

the difference between the time-to-detection delays τ
f eed
y and τmonitor

y ):

�τy =
∣
∣
∣τ

f eed
y − τmonitor

y

∣
∣
∣ (2)

Otherwise, set τmonitor
y equal to tM (when Smonitor

y (t) has not exceeded hy when

S
f eed
y (t) does, and vice versa, respectively).

If neither exists before tM , continue diagnostics.

6. Compare �τ y with a predefined reference delay difference �
ref
y and take

decision:

• If �τy ≤ �
ref
y , classify the event as Failure;

• If �τy > �
ref
y , classify the event as Cyber Attack.

The reference delay difference �
ref
y is estimated on a batch of Nm = 100

reference simulations, where, for each m-th simulation, a known component failure
or cyber attack is injected. The minimum and maximum collected values of �τ y

are found to be equal to 0 s and 3 s in case of components failures, and 12 s and
501 s in case of cyber attacks. Thus, we conservatively set �

ref
y equal to 10s, so

that �τ y larger than 10s indicates that a cyber attack has occurred on the feeding
subsystem.
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(iii) Off-line training of the NP-CUSUM algorithm

The NP-CUSUM algorithm requires that the parameters cy and hy be customized
to the different system behaviors, to guarantee the maximum capability of discrimi-
nating between failures and cyber attacks, in the ALFRED system.

(1) Estimation of cy

A positive constant of cy needs to be set in such a way to guarantee a negative
mean value of μ�gY

= ∑

t

�gY (Y (t)) /t , t = dt, 2dt, . . . , t, (t < tR), to hold before

any anomaly (either failure or cyber attack) is detected, and a positive mean value
θ�gY

= ∑

t

�gY (Y (t)) / (t − tR), t = tR, tR + dt, tR + 2dt, . . . , to hold after the

anomaly occurrence [51], viz:

μ�gY
= E

[
ωy · (|Y (t) − μY | − cy

)] = −ωy ·
(

2σY√
2π

− cy

)

< 0 (3)

θ�gY
≥ ωy · (∣

∣θ̂Y (t) − μY

∣
∣
min − cy

)
> 0 (4)

where,
∣
∣θ̂Y (t) − μY

∣
∣
min is defined as the minimum difference between the estimated

post-change mean θ̂�gY
and the known pre-change mean μ�gY

. As a result,

2σY√
2π

< cy <
∣
∣θ̂Y (t) − μY

∣
∣
min (5)

where,

cy = εy · θ̂Y,a (6)

where θ̂Y,a is a postulated post-change mean value for an accidental scenario a.
Since under normal conditions, the probability of Y(t) (distributed according to a

normal distribution N(μY , σ Y )) of falling within the interval [μY -2σ Y , μY + 2σ Y ]
is at least equal to 0.95 [10], viz:

Pr [μY − 2σY ≤ Y (t) ≤ μY + 2σY ] ≥ 0.95 (7)

we assume an anomaly to be occurred if θ̂Y,a falls outside the interval [μY -2σ Y ,
μY + 2σ Y ]. Without loss of generality, we suppose that θ̂Y,a > μY . The minimum
value of θ̂Y,a results to be equal to μY + 2σ Y and, thus,

∣
∣θ̂Y,a − μY

∣
∣
min is equal to

2σ Y . Eqs. (5) and (6) change to:

1√
2π

(

1 − μY

μY + 2σY

)

< εy < 1 − μY

μY + 2σY

(8)
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In conclusion, without loss of generality, we take a value of ε y equal to:

εy = 1

2

(

1 − μY

μY + 2σY

)

(9)

that, with respect to (TL,cold distributed as N(400,1)◦C) makes cy turn out to be equal
to 1.005 ◦C.

(2) Estimation of hy

The threshold hy can be set relying on a batch of Nk reference simulations under
normal conditions, whose behaviors of the variable y without change points to
failures or cyber attacks can be learnt, the NP-CUSUM statistics calculated and
the parameter tailored to the simulation results. Specifically, we utilize Nk = 100
ALFRED randomly generated simulations. For each k-th simulation,

(a) Record the redundant channel measurements, Y(t), Y = yfeed or ymonitor, at each
time t, t = dt, 2dt, . . . , tM;

(b) Calculate the corresponding NP-CUSUM statistics, SY (t).
(c) Set the threshold hy such that:

hy > max
1≤k≤Nk

{
hy,k

}
(10)

where,

hy,k = max
1≤t≤tM

{SY (t)}k (11)

and, {SY (t)}k is the collection of the statistics for the k-th simulation.
As shown in Fig. 10 with respect to TL,cold, the maximum value of the NP-

CUSUM statistics is equal to 3.6 and, therefore, in what follows, we conservatively
set hTL,cold

equal to 4.0.

5 Results

We illustrate the results of the NP-CUSUM-based diagnostic approach considering
different TL,cold sensor failures and cyber attacks to the TL,cold-PI3-Gwater control
loop.

5.1 Bias Failure Mode

Figure 11 presents the results of injecting bias failure at time tR = 630 s with a factor
b equal to 7.569 ◦C on TL,cold sensor measurements. As shown in Fig. 11a, the TL,cold

sensor bias failure deviates both measurements T
f eed
L,cold (t) and T monitor

L,cold (t) from the



Fig. 10 Estimation of the threshold hTL,cold
: (a) the received measurements of the two subsystems

of the control loop; (b) the corresponding statistics calculated from the measurements

Fig. 11 TL,cold sensor bias failure mode: (a) the received measurements of feed and monitor
Subsystems in which the bias occurs at time tR equal to 630 s; (b) the corresponding NP-CUSUM
statistics for diagnosing the bias failure
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Fig. 12 Cyber attack to the computing unit mimicking a bias failure mode: (a) the received
measurements of feed and monitor Subsystems in which the cyber attack occurs at time tR equal
to 630 s; (b) the corresponding NP-CUSUM statistics for diagnosing the cyber attack

real values of the physical system T real
L,cold (t). Figure 11 shows that the bias b results

in very quick response of both statistics evaluated on the measurements T
f eed
L,cold (t)

and T monitor
L,cold (t): both statistics reach quickly the threshold hTL,cold

(dotted line) and

the difference �τTL,cold
between times to alarm (τf eed

TL,cold
and τmonitor

TL,cold
) turns out to be

equal to 0 (i.e., less than �
ref
y equal to 10s) (see Fig. 11b), allowing for a (correct)

identification of the event as a sensor failure mode and not as a cyber attack.
Contrarily, Fig. 12a shows a cyber attack to the computing unit mimicking a

bias failure mode at tR = 630 s (with b again equal to 7.569 ◦C): this leads
T

f eed
L,cold (t) to deviate from T monitor

L,cold (t) (that, indeed, is the legitimate T sensor
L,cold (t)

measured by the TL,cold sensor). The different values between the malicious and
the legitimate measurements, then, lead to a delay response �τTL,cold

equal to 66 s

(larger than �
ref
y ) between the threshold exceedance of Smonitor

TL,cold
(t) and S

f eed
TL,cold

(t)

(see Fig. 12b), and allowing for a (correct) identification of the event as a cyber
attack.
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5.2 Drift Failure Mode

Figure 13 presents the results of injecting a drift at time tR = 740 s, with the
drift factor c equal to 0.398. The drift c results in a very quick response of both
statistics evaluated on the measurements T

f eed
L,cold (t) and T monitor

L,cold (t): both statistics
reach quickly the threshold hTL,cold

(dotted line) and the difference �τTL,cold
between

times to alarm (τf eed
TL,cold

and τmonitor
TL,cold

) turns out to be equal to 0 (i.e., less than �
ref
y )

(see Fig. 13b), allowing for a (correct) identification of the event as a sensor failure.
Contrarily, Fig. 14a shows a cyber attack to the computing unit mimicking a drift

failure mode at tR = 740 s (with c again equal to 0.398), leading T
f eed
L,cold (t) to deviate

from the legitimate T monitor
L,cold (t). The different values between the malicious and

the legitimate measurements, then, lead to a delay response �τTL,cold
equal to 41 s

(larger than �
ref
y ) between the threshold exceedance of Smonitor

TL,cold
(t) and S

f eed
TL,cold

(t)

(see Fig. 14b), allowing for a (correct) identification of the event as a cyber
attack.

Fig. 13 TL,cold sensor drift failure mode: (a) the received measurements of feed and monitor
Subsystems in which the drift occurs at time tR equal to 740 s; (b) the corresponding NP-CUSUM
statistics for diagnosing the bias failure
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Fig. 14 Cyber attack to the computing unit mimicking a drift failure mode: (a) the received
measurements of feed and monitor Subsystems in which the cyber attack occurs at time tR equal
to 740 s; (b) the corresponding NP-CUSUM statistics for diagnosing the cyber attack

5.3 Wider Noise Failure Mode

Figure 15 presents the results of injecting wider noise at time tR = 750 s. This results
in a very quick response of both statistics evaluated on the measurements T

f eed
L,cold (t)

and T monitor
L,cold (t): both statistics reach quickly the threshold hTL,cold

(dotted line) and

the difference �τTL,cold
between times to alarm (τf eed

TL,cold
and τmonitor

TL,cold
) turns out to be

equal to 0 (i.e., less than �
ref
y ) (see Fig. 15b), allowing for a (correct) identification

of the event as a sensor failure mode.
Contrarily, Fig. 16a shows a cyber attack to the computing unit mimicking

a wider noise failure mode at tR = 750 s, leading T
f eed
L,cold (t) to deviate from

the legitimate T monitor
L,cold (t). The different values between the malicious and the

legitimate measurements, then, lead to a delay response �τTL,cold
equal to 247 s

(i.e., larger than �
ref
y ) at tM (see Fig. 16b), allowing for a (correct) identification of

the event as a cyber attack.
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Fig. 15 TL,cold sensor wider noise failure mode: (a) the received measurements of feed and
monitor Subsystems in which the wider noise failure occurs at time tR equal to 750 s; (b) the
corresponding NP-CUSUM statistics for diagnosing the bias failure

5.4 Freezing Failure Mode

Figure 17 presents the results of injecting freezing at time tR = 460 s with the frozen
T sensor

L,cold (t) equal to 402.53 ◦C. The freezing results in a very quick response of both

statistics evaluated on the measurements T
f eed
L,cold (t) and T monitor

L,cold (t): Both statistics
reach quickly the threshold hTL,cold

(dotted line) and the difference �τTL,cold
between

times to alarm (τf eed
TL,cold

and τmonitor
TL,cold

) turns out to be equal to 0 (i.e., less than �
ref
y )

(see Fig. 17b), allowing for a (correct) identification of the event as a sensor failure
mode.

Contrarily, Fig. 18a shows a cyber attack to the computing unit mimicking
a freezing failure mode at tR = 460 s (with frozen T sensor

L,cold (t) again equal to

402.53 ◦C), leading T
f eed
L,cold (t) to deviate from the legitimate T monitor

L,cold (t). The
different values between the malicious and the legitimate measurements, then, lead
to a delay response �τTL,cold

equal to 187 s (i.e., larger than �
ref
y ) between the

threshold exceedance of Smonitor
TL,cold

(t) and S
f eed
TL,cold

(t) (see Fig. 18b), allowing for a
(correct) identification of the event as a cyber attack.
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Fig. 16 Cyber attack to the computing unit mimicking a wider noise failure mode: (a) the received
measurements of feed and monitor Subsystems in which the cyber attack occurs at time tR equal
to 750 s; (b) the corresponding NP-CUSUM statistics for diagnosing the cyber attack

The results of these illustrative examples show that the NP-CUSUM-based
diagnostics approach is capable of diagnosing cyber attacks, distinguishing them
from stochastic failures of components, based on the identified rules of assignments.

6 Performance of the Diagnostic Approach

The previous examples shown in Sect. 5 demonstrate the effectiveness of the NP-
CUSUM diagnostics approach. Since the proposed diagnostic approach may suffer
from either large false alarm rate (if the threshold is set too small) or high missed
alarm rate (if the threshold is set too large) [9], an extensive and massive test with
respect to unknown sensor failures and/or unknown cyber attacks is performed for
assessing its diagnostic capabilities. We calculate false alarm, missed alarm and
misclassification rates with respect to 100 randomly sampled stochastic failures and
100 different cyber attacks for each failure mode (i.e., bias, drift, wider noise or
freezing) (thus, a total of NA = 800 runs). At each run of the simulation: a random
time tR within the mission time tM = 1000s and an uncertain parameter value (i.e.,
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Fig. 17 TL,cold sensor freezing failure mode: (a) the received measurements of feed and monitor
in which the freezing occurs at time tR equal to 460 s; (b) the corresponding NP-CUSUM statistics
for diagnosing the bias failure

b for bias, c for drift, δ’(t) are sampled from the distributions listed in Table 4 for
wider noise or frozen value for freezing) and used to inject a TL,cold sensor failure
or a cyber attack to the computing unit. Then, the NP-CUSUM-based diagnostic
algorithm is applied to both T

f eed
L,cold (t) and T monitor

L,cold (t), to calculate S
f eed
L,cold (t) and

Smonitor
L,cold (t), respectively. The diagnostic performances are measured as follows:

• False alarm rate αh
TL,cold

: the probability of either S
f eed
L,cold (t) or Smonitor

L,cold (t) in an
accidental scenario exceeding the threshold hTL,cold

before tR.

• Missed alarm rate βh
TL,cold

: the probability of neither S
f eed
L,cold (t) nor Smonitor

L,cold (t) in
an accidental scenario exceeding the threshold hTL,cold

within the mission time
tM .

• Misclassification rate γ
(
�

ref
TL,cold

)
: given a reference delay difference �

ref
TL,cold

, the

probability of a misclassified assignment of an event.

Table 5 lists the estimates of αh
TL,cold

and βh
TL,cold

with respect to the threshold
hTL,cold

equal to 4.0, among the total of NA = 800 runs of stochastic failures and
cyber attacks. The results in the Table show that the total values of αh

TL,cold
and
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Fig. 18 Cyber attack to the computing unit mimicking a freezing failure mode: (a) the received
measurements of feed and monitor Subsystems in which the cyber attack occurs at time tR equal
to 460 s; (b) the corresponding NP-CUSUM statistics for diagnosing the cyber attack

Table 5 False and missed alarm rates with respect to hTL,cold

Character Bias Drift Wider noise Freezing Total

αh
TL,cold

8/200 8/200 1/200 8/200 25/800 = 0.0313

βh
TL,cold

13/200 5/200 0/200 2/200 20/800 = 0.0250

βh
TL,cold

are equal to 0.0313 and 0.0250, respectively, and the low values are accepted
in the diagnostics of cyber attacks of the ALFRED.

To analyze the effect of an improper choice of �
ref
TL,cold

that may mistakenly
ascribe an accidental scenario to inconsistent reasons and lead to misclassified
diagnostics, we estimate γ

(
�

ref
TL,cold

)
among the NA = 800 scenarios, with respect

to different values of �
ref
TL,cold

. We assess the misclassification rates by defining four
misclassification types (i.e., Misclassification I, II, III and IV), that differ in terms of
the difference between alarm delays �τTL,cold

to a reference value �
ref
TL,cold

in Table 6.

Figure 19 shows the calculated misclassification rates γ
(
�

ref
TL,cold

)
varying with

�
ref
TL,cold

from 0 to 60. γ
(
�

ref
TL,cold

)
is calculated by summing all the misclassified

assignments of the accidental scenarios, which are recorded in the way of false and
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Fig. 19 The misclassification rates varying with �
ref
TL,cold

missed alarm of sensor failures and of cyber attacks, respectively. Results show
that the minimum misclassification rate (equal to 0.02875) can be achieved if the
categorical difference �

ref
TL,cold

is optimally equal to 8 s or 9 s. It is also noted that, the

minimum rate being larger than βh
TL,cold

(equal to 0.025) turns out to be reasonable
because the identified misclassification scenarios here include the missed alarms
identified with respect to hTL,cold

equal to 4.0.

7 Conclusions

In this chapter, we presented a nonparametric cumulative sum (NP-CUSUM)
approach to enable real-time diagnosis of cyber attacks on Cyber-Physical Systems
(CPSs). The diagnostics approach allows distinguishing between components fail-
ures and cyber attacks to the controllers, guiding decisions for recovering CPSs from
anomalies.

The diagnostic performance of the approach has been analyzed by the false and
missed alarm rates, with reference to a prespecified threshold, and the misclassifica-
tion rates varying with the reference delay differences for identifying a cyber attack
or a sensor failure.

We have applied the diagnostics approach to the digital Instrumentation and
Control (I&C) system of the Advanced Lead-cooled Fast Reactor European Demon-
strator (ALFRED). Cyber breach events attacking the embedded CPS controllers
and sensor failures are injected by a Monte Carlo sampling procedure, at random
times and with random magnitudes. Results show that the diagnostic approach is
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capable of identifying most of the generated failure/attack scenarios, with low false
alarm rate, missed alarm rate and misclassification rate.

Future work will regard, on one hand, the optimization of the threshold setting
and the decision of the reference delay difference, for further minimizing the false
and missed alarms, and, on the other hand, the development of an extended multi-
variable/channel NP-CUSUM diagnostics framework (e.g., for all the four control
loops in the digital I&C system of ALFRED), for localizing and recognizing the
failures and/or cyber attacks.

Acknowledgement The authors are thankful to Prof. Antonio Cammi and Dr. Stefano Lorenzi
of the Energy Department, Politecnico di Milano, for providing guidance and training on code
simulating the ALFRED reactor.

Appendix A: The NP-CUSUM Algorithm

Without loss of generality, let us consider an accidental scenario a simulated over
a mission time tM , during which a cyber attack occurs at random time tR (tR < tM).
Considering a time interval dt, we can define the pre-attack signal mean value
μY (Y (t)) = ∑

t

Y (t)/t , t = dt, 2dt, . . . , t, (t < tR), where Y(t) is the measurement Y

of a controlled variable y at time t under normal operation conditions (see Fig. A.1a,
for example). Assume that DoS attacks lead to arbitrary and abrupt changes in the
distributions of observations, such that the (unknown) post-attack mean value results
to be θY (Y (t)) = ∑

t

Y (t)/ (t − tR), t = tR, tR + dt, tR + 2dt, . . . .

We define a score function gY (Y(t)) as:

gY (Y (t)) =
∑

t

ωy · �(Y(t)) =
∑

t

ωy · (|Y (t) − μY | − cy(t)
)

(A.1)

where ωy is a positive weight that is used for normalizing �(Y(t)) and chosen
equal to 1/σ Y , where σ Y is the standard deviation of Y(t), t = dt, 2dt, . . . , and
the parameter cy(t) depends on the past t-1 measurements as in Eq. (A.2):

cy(t) = εy · θ̂Y (t) (A.2)

where εy is a tuning parameter belonging to the interval (0,1) and θ̂Y (t) is an
estimate of the unknown mean value θY (Y(t)). In practice, it is difficult to estimate
θ̂Y (t) on-line. Hence, Eq. (A.1) is simplified in:

�gY (Y (t)) = ωy · (|Y (t) − μY | − cy

)
(A.3)
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Fig. A.1 The NP-CUSUM algorithm: (a) a stream of measurement Y(t) of an accidental scenario
in which a cyber attack occurring at time tR; (b) the corresponding NP-CUSUM statistic SY (t) for
diagnosing the cyber attack at the time to alarm τY

The score function SY (t) adopted in the NP-CUSUM algorithm is, then, defined
as:

SY (t) = max {0, SY (t − 1) + �gY (Y (t))} (A.4)

where, SY (0) = 0.
In practice, with respect to a stream of measurement Y(t), the NP-CUSUM

statistics SY (t) remain close to zero or slightly positive under normal operation
conditions, whereas, it starts drifting and increasing when a cyber attack occurs
at time tR and, ends up with exceeding a predefined positive threshold hy (see
Fig. A.1b). An alarm can be triggered when SY (t) reaches hy at the time of alarm:

τY = min
{
t ≥ 1 : SY (t) ≥ hy

}
(A.5)

The detection delay dτY between tR and τY depends on the choice of hy. A good
diagnostic algorithm is expected to perform with a low False Alarm Rate (FAR) and
a small value dτY .
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