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Abstract. The representation of geometric concepts of three-dimensional space
is a well-identified predicament that can undermine the understanding of
geometry in particular, and mathematics, in general. Branco Grünbaum men-
tioned that no method of presentation is satisfactory for much more than the
simplest situations and expressed the hope “that computer-based modes of
presentation will alleviate this difficulty in the near future” [1]. Aiming to
address specific concepts of polyhedral geometry, we’ve been exploring a 3D
modelling software and its graphical algorithm editor as digital tools to illustrate
certain concepts through accurate graphical descriptions that are dynamic and
interactive and imply the knowledge of several geometric operations. Among
the several possibilities that could illustrate the software potential, we have
chosen the concepts of expansion and contraction of polytopes conceived by the
Irish mathematician Alicia Boole Stott in 1910 [2], in our opinion, one of the
most visually interesting for a dynamic description. For the sake of concision,
we will restrict our presentation to two- and three-dimensional polytopes and
illustrate the possibilities of dynamically interact with virtual models to visu-
alize, in real-time, the expansion and contraction of regular polygons and uni-
form convex polyhedra. The purpose of this research is thus to graphically
clarify Stott’s methods through a dynamic approach made possible with con-
temporary digital tools and demonstrate how this kind of analysis may simplify
further researches on the subject and enhance the didactics of these concepts in
particular and, more generally, of polyhedral geometry.
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1 Digital Tools to Work in Space

To achieve an interactive representation of the concepts devised by Alicia Boole Stott,
we have chosen a specific three-dimensional modelling software1 in articulation with
its graphic algorithm editor.2 The key-features that, in our belief, consistently con-
tribute to the results accomplished, are highlighted in the following:

– the quality of visualization and its accuracy, through which the models are depicted
in linear perspective, axonometric and/or orthogonal projection, that can be shown
in single or multiple viewports in the graphic area, combined with the possibility to
navigate around the models and zoom in to a high power of magnification (and even
analyze the models as if cut by a moving clipping plane with any orientation);

– the level of precision modelling and the myriad of geometric operations made
possible with the software’s 2D and 3D editing tools, that allows the user to accu-
rately work with geometric concepts and transformations as if “directly in space” [3];

– the possibility to visualize and graphically manipulate the parameters and opera-
tions involved in the generation algorithm created for each construction,3 with no
need of any knowledge on programming, scripting or source code editing [4];

– the possibility of editing predefined parameters at any stage of the modelling process,
without affecting the hierarchy and connections between the elements involved in the
construction. Any changes performed in “the chains of scripted graphical transfor-
mation result in an immediate visual update” [5] of the active viewport(s).

The last two are characteristic features of the software’s algorithmic editor, that
perform very differently from, for instance, the “Construction Protocol” of the dynamic
geometry software GeoGebra, that might me navigated to add steps to any construction
but does not allow editing previous steps. With Stella4D, a powerful software with
many interesting features through which three- and four-dimensional polytopes can be
visualized, created and manipulated, a movable dynamic expansion of the faces of a
polyhedron and the visualization of the resulting polyhedron would not have been
possible, given that the necessary geometric operations are not included in its tools [6].

2 Expansion and Contraction of Polyhedra

Drawing inspiration from the “stereographic photographs of semiregular polyhedra sent
to her by Schoute” [7], Alicia Boole Stott published in 1910 a research [2] on the
expansion and contraction of 2-, 3- and 4-dimensional polytopes (Fig. 1), in which their
limits are equallymoved away from the center (or contracted inwards), until, for each case,
a newuniformpolytope is outlined. Coxeter denotes that Stott’s expansion ek is equivalent
to the insertion of a ring between the initial and new polytopes, while contractionmatches
“the removal of a ring” [8]. The n-dimensional version of expansion is known as

1 Rhinoceros 3D Homepage, https://www.rhino3d.com, last accessed 2018/04/12.
2 Grasshopper Community Homepage, http://www.grasshopper3d.com, last accessed 2018/04/12.
3 A “Grasshopper Definition”, hereafter referred to as “Definition”.
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cantellation [9]. For dimension 3, Stott described a method to obtain the achiral Archi-
medeans that Ball & Coxeter considered as “far more elegant” [10] than Kepler’s. The
limits (in this case, the faces) of a specific convex uniform polyhedron are uniformly
displaced from the centroid, each face in the direction of its normal, until the distance
between the new location of consecutive vertices equals the edge’s length of the original
polyhedron. The expanded faces remain parallel to the former, retaining their original size.
The gaps between the new edges that are coplanar are filled by regular faces and, as such,
the new polyhedron remains semiregular. No transformation is necessary (as in Kepler’s
method to construct the rhombic and rhombitruncated Archimedeans4) and the eleven
achiral Archimedean are constructible from a specific regular, quasirregular or semireg-
ular polyhedron. The two remaining Archimedeans, both enantiomers, are, at first,
obtainable from the expansion of the faces of the cube and the regular dodecahedron,
respectively, but a slight rotation [12] of the expanded faces is necessary to fill the gaps
between the faces with equilateral triangles.

Through contraction, the whole procedure is inverted, as the limits of a given
polyhedron are moved “uniformly toward the centre until they meet” [13].

3 Expansion e1

In dimension 2, the e1 expansion stands for the edges of a regular polygon being equally
moved away from the centre in the direction perpendicular to each side, so that, as Stott
denotes, “any regular polygon changes into a regular polygon having the same length of

Fig. 1. The rhombitruncated cuboctahedron, derived from a cube, reduced to an octahedron
(drawn by A. B. Stott [2] to illustrate an example of combination of inverse operations)

4 All the designations for polyhedra follow [11].
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edge and twice as many sides” [2]. Figure 2 illustrates the expansion of the edges of any
regular n-gonmade possible by aDefinition (of which a section in shown in the right side)
considering n > 3. The point (shown as a small sphere, in the left) moves along the line
segment that connects the nearest polygon vertex to the intersection between the planes
depicted. The left image portrays the situation inwhich this point is halfway along the path
that transforms a regular heptagon into a regular tetradecagon. The number of segments of
the base-polygon are selectable through a slider and every resulting polygon confirms
Stott’s assertion that any {n} expands into a {2n}.

An adaptation of this Definition allowed us to verify how the edges’ expansion
work for regular n-gons of density 1 < d < n/2 in which n and d are coprime [14], in
other words, regular star-gons, identified with the Schläfli symbol {n/d}. As Fig. 3
demonstrates for a {5/2} and a {7/2}, regular pentagrams and heptagrams respectively
expand into regular decagons and tetradecagons, confirming that any{n/d} expands
into a regular polygon of density 1, 2n sides and edge length equal to the side of {n/d}.
Figure 3 shows the initial and final situations and the stage in which the movable point
is half-way through its path.

Fig. 2. A regular n-gon expands into a regular 2n-gon

Fig. 3. A regular star-gon expands into a regular convex polygon
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In the following, we analyse the results of the expansion e1 in dimension 3 with
convex regular polyhedra, whose edges expand to outline faces with twice as many
sides, as we have seen. Every vertex will thus transform into a face with the config-
uration of the corresponding vertex-figure and, consequently, the base-polyhedron into
its semiregular truncated version.

Much the same way as Stott, we begin with the expansion of the edges of a cube,
whose faces transform into regular octagons (Fig. 4, left). Through translation of these
to a suitable position (centre), a semiregular truncated version of the cube is obtained
(right) and the vertices of {4,3} transform into triangular faces. Through our Definition,
it is not only possible to dynamically see the transformation of the cube, but to con-
clude that the distance between the edges of the cube and the closest parallel edges of
the truncated cube equals the edge length. This distance is illustrated (right), with the
dashed lines parallel to one of the 2-fold symmetry axis.

Figure 5 shows three situations in which the edges of a regular tetrahedron are
expanded in the direction of the corresponding 2-fold symmetry axes. This expansion
has a semiregular truncated tetrahedron (right image) as result if, and only if, the
distance between the closest parallel edges equals the tetrahedron’s bimedian, equiv-
alent to the diameter of the mid-sphere of the {3,3}.

Fig. 4. A truncated cube results from the expansion of the edges of a cube

Fig. 5. A truncated tetrahedron results from the expansion of the edges of a tetrahedron
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When the edges of a regular octahedron are expanded in the direction of its 2-fold
axes, the octahedron transforms into a semiregular truncated octahedron, if the distance
between the closest parallel edges equals the edge length. Figure 6 (left) highlights this
congruence through the edges of a triangular cupola (Johnson Solid J3) whose
hexagonal base coincides with a face of the truncated octahedron. The octahedron’s
faces transformed into regular hexagons and its vertices into squares (represented by its
edges in the right image), the corresponding vertex figures of the {3,4}.

Figure 7 demonstrates that the expansion of the edges of the regular dodecahedron
(left) and the regular icosahedron (right) in the direction of the corresponding 2-fold
symmetry axis transforms them into their semiregular truncated versions. The dodec-
ahedron’s faces and vertices transform into decagons and triangles; and the icosahe-
dron’s, into hexagons and pentagons. Each Definition allowed us to conclude that the
dashed line representing the distance between the edges of the {5,3} and the closest
parallel edges of its truncated version equals the edge length multiplied by the golden
ratio. As such, the distance between the initial and expanded edges is in the golden ratio
to the diameter of the dodecahedron’s mid-sphere. The corresponding distance between
the {3,5} and the truncated icosahedron’s edges matches the diameter of the icosa-
hedron’s mid-sphere, that is to say, the distance between the midpoints of opposed
edges.

Through Table 1, that summarizes the cases that we have seen, we conclude that
every expanded {p,q} is a t{p,q} or, in Cundy & Rollett’s symbols (that slightly
modify Schläfli’s) [15], every expanded pq is a q.(2p)2 (with vertex configuration
q.2p.2p).

Fig. 6. A truncated octahedron results from expansion of the edges of an octahedron

Interactive Expansion of Achiral Polyhedra 1121



4 Expansion e2

Through the e2 expansion in dimension 3, the faces of a given polyhedron expand until
a new uniform polyhedra is obtained. The example we begin with is the regular
tetrahedron (Fig. 8). Every face is expanded in the direction of the corresponding
3-fold symmetry axis (coincident with the face’s normal), so that every vertex trans-
forms into a triangle (similar to the corresponding vertex figure) and every edge, into a
square. Figure 8 (left) shows that the location of one of the expanded vertices is
geometrically determined by the intersection of the normal to a given face of the 33

with the plane perpendicular to the edge opposed to that vertex. With the determination
of this point and the translation of the corresponding face, we outlined the remaining
faces through a combination of geometric transformations involving rotational sym-
metry and reflection. The right image shows the quasiregular cuboctahedron resulting
from the expansion. The distance between the triangular faces matches the radius of the
tetrahedron’s circum-sphere which, for a tetrahedron with unit edge length, is equiv-

alent to
ffiffi
3
8

q
:

Fig. 7. A truncated dodecahedron and a truncated icosahedron result, respectively, from the
expansion of the edges of a dodecahedron (left) and an icosahedron (right)

Table 1. Uniform expansion of the edges of convex regular polyhedra (with unit edge length)

Regular polyhedron Polyhedron resulting from the
edges’ expansion

Distance between the closest
parallel edges

Tetrahedron 33 Truncated
Tetrahedron

3.62 Diameter of the mid-sphere

Cube 43 Truncated Cube 3.82 1
Octahedron 34 Truncated

Octahedron
4.62 1

Dodecahedron 53 Truncated
Dodecahedron

3.102 1þp
5

2 (golden ratio)

Icosahedron 35 Truncated
Icosahedron

5.62 Diameter of the mid-sphere
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The uniform expansion of the faces of a cube leads to the semiregular rhom-
bicuboctahedron, provided that the distance between the faces of the 43 and the
expanded faces of the 3.43 equals half of the face’s diagonal, specifically, 1

2

ffiffiffi
2

p
(for a

cube with unit edge length), as the dashed segments and arc in Fig. 9 (left) denote.
The expansion of the faces of the cube’s dual leads us to a semiregular rhom-

bicuboctahedron as well (Fig. 9, right), as “the number of vertices lying in a face of one
being equal to the number of faces meeting in a vertex of the other” [2:7]. The distance
between the triangular faces of both polyhedra corresponds to the altitude of the
triangular faces, which, for an equilateral triangle of n edge length, is n

2

ffiffiffi
3

p
. Needless to

say, the dual pair illustrated in Fig. 9 (and Fig. 11) do not share the same reciprocating
sphere.

Fig. 8. A cuboctahedron results from the expansion of the faces of a tetrahedron

Fig. 9. A rhombicuboctahedron results from the expansion of the faces of a cube or an
octahedron. 3.43 is therefore recognizable as an expanded cube or an expanded octahedron
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The expansion of the square faces of the rhombicuboctahedron that are not per-
pendicular to the 4-fold symmetry axes produces the semiregular rhombitruncated
cuboctahedron, if the distance between the square faces of both equals the edge length
(Fig. 10). As such, twelve cubes fit between the parallel square faces of both polyhedra.

Further expansion of the rhombitruncated cuboctahedron’s faces does not yield a
uniform polyhedron, since its vertex-figures are cyclic irregular polygons [16: 404].

Figure 11 shows that the expansion of the faces of a regular dodecahedron and a
regular icosahedron (duals of each other) have, both, a semiregular rhombicosido-
decahedron as result. In the left, the procedure for the determination of the distance
between the initial and expanded faces (similar to the one shown in Fig. 8) is
demonstrated. The remaining faces of the rhombicosidodecahedron (in the center) are

Fig. 10. A rhombitruncated cuboctahedron results from expanding the square faces of a
rhombicuboctahedron

Fig. 11. A rhombicosidodecahedron results from the expansion of the faces of a dodecahedron
or an icosahedron. As such, the 3.4.5.4 is an expanded dodecahedron or an expanded icosahedron
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determined by a series of geometric transformations involving reflection and rotational
symmetry, through which the thirty edges of the 53 are transformed into the thirty
square faces of the 3.4.5.4, and the twenty triangular faces of the latter are the result of
the expansion of the dodecahedron’s vertices. In the expansion of the 35, however, the
edges and vertices transform, respectively, into square faces and into pentagonal faces.

In our Definition, in which both polyhedra have unit edge length, the distance
between the initial faces of the dodecahedron and the expanded (pentagonal) faces is
0.951056516295; and the distance between the faces of the icosahedron and the
expanded (triangular) faces is 1.401258538444. Interestingly enough, the distance
mentioned for the dodecahedron matches exactly the radius of the circum-sphere of the
icosahedron; while the distance for the icosahedron equals the radius of the dodeca-
hedron’s circum-sphere.5

Expanding the square faces of the rhombicosidodecahedron has a semiregular
rhombitruncated icosidodecahedron as result (Fig. 12), provided that the distance
between the square faces equals the edge length multiplied by the golden ratio. As
such, the distance between the square faces equals the diagonal of the pentagonal faces.
Figure 12 depicts the situations in which the point that controls the distance between
the closest parallel square faces is halfway through (left) before the end (right). For a
better understanding of the models, only the square faces of the expanded polyhedron
have been represented.

As with the 4.6.8 in Fig. 10, the faces of the 4.6.10 are not expandable onto other
uniform polyhedron, not only because their vertex figures are irregular triangles, but
because the remaining uniform polyhedra with convex octagonal or decagonal faces6

[16: 434–437] are not obtainable through uniform expansion of these Archimedeans.
As Stott did [2: 7], we are now able to conclude that uniformly expanding the faces

of any regular polyhedron produces the three types of faces of the expanded
polyhedron:

1. the expanded faces, parallel to those of the regular polyhedron;
2. the square faces that result from the two new positions of each edge of the regular

polyhedron;
3. the faces that have the configuration of the vertex figure of the regular polyhedron

and correspond, so to speak, to its vertices expansion.

As Figs. 10 and 12 demonstrate, certain faces of the achiral Archimedeans are
expandable to obtain other Archimedeans.7 Expanding faces of a certain type produces
a specific polyhedron and expanding faces of another type produces another

5 These distances confirm the displacements of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
8 5þ ffiffiffi

5
p� �q

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
8 3þ ffiffiffi

5
p� �q

between the initial
and expanded faces mentioned in [17], as well as the formulas for the circumradius of the regular
icosahedron [18] and the regular dodecahedron in [19].

6 Only three concave uniform polyhedra with octagonal faces exist (models number 69, 79 and 86 in
[11]) and nine with decagonal faces (72, 74, 75, 82, 84, 89, 90, 91 and 98 in [11]).

7 Although the distance between the initial and expanded faces might be determined geometrically,
further researches might find [17] of great interest, since the distances between the initial faces of the
Platonic or Archimedean solids and the resulting faces are summarized and, for each case, the faces
to expand (or contract) specified.
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polyhedron. For instance, if we expand the triangular faces of a quasiregular cuboc-
tahedron with unit edge length until the distance between the initial and expanded faces
equals the triangle’s height, 1

2

ffiffiffi
3

p
, a semiregular truncated cube is obtained. If, on the

other hand, we expand the square faces as far as the distance of half the square
diagonal, 1

2

ffiffiffi
2

p
, the resulting polyhedron is the semiregular truncated octahedron.

Furthermore, if the hexagonal faces of the latter are expanded with 1
2

ffiffiffi
3

p
of distance in

between, the rhombitruncated cuboctahedron is obtained.

Figure 13 demonstrates that the expansion of the triangular faces of the icosido-
decahedron produces the semirregular truncated dodecahedron (left), while the
expansion of the pentagonal faces produces the semirregular truncated icosahedron
(right). In the first situation, the distance between parallel triangular faces corresponds
to the circumradius of a dodecahedron with the same edge length as the icosidodec-
ahedron. In the second situation, the distance between parallel pentagonal faces

Fig. 12. A rhombitruncated icosidodecahedron results from expanding the square faces of a
rhombicosidodecahedron

Fig. 13. A truncated dodecahedron and a truncated icosahedron result from the expansion of,
respectively, the triangular faces or the pentagonal faces of an icosidodecahedron
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matches the radius of the circum-sphere of an icosahedron with similar edge length. As
we have already seen, these distances are respectively equivalent, for an icosidodec-

ahedron of unit edge length, to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
8 3þ ffiffiffi

5
p� �q

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
8 5þ ffiffiffi

5
p� �q

.

Last but not least, we present an example of contraction of a semiregular truncated
tetrahedron and the regular octahedron obtained within (Fig. 14, left). The distance
between parallel triangular faces is the same through which, in Fig. 8, we expanded a
tetrahedron of unit edge length to obtain the truncated tetrahedron—specifically, the

circumradius of the tetrahedron,
ffiffi
3
8

q
, although the direction now is the opposite, that is

to say, inwards. If, on the other hand, the hexagonal faces of the truncated tetrahedron
are expanded outwards considering the same distance, a semirregular truncated octa-
hedron will be obtained (Fig. 14, right).

To conclude, and as the examples presented aimed to demonstrate, the algorithmic
editor of the software selected proved to be especially adequate for this research, being
fully capable of handling the more complex situations without losing any of its char-
acteristic, to which the accuracy is of the outmost importance. Further researches will
allow us to systematize the results obtained and dynamically model more situations to
understand the expansion of concave uniform polyhedra.
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Fig. 14. An octahedron results from the contraction of the triangular faces of a truncated
tetrahedron. A truncated octahedron results from the expansion of its hexagonal faces
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