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Abstract. The success of dynamic verification techniques for Message
Passing Interface (MPI) programs rests on their ability to address com-
munication nondeterminism. As the number of processes in the program
grows, the dynamic verification techniques suffer from the problem of
exponential growth in the size of the reachable state space. In this work,
we provide a hybrid verification technique for message passing programs
that combines explicit-state dynamic verification with symbolic analysis.
The dynamic verification component deterministically replays the exe-
cution runs of the program, while the symbolic component encodes a
set of interleavings of the observed run of the program in a quantifier-
free first order logic formula and verifies it for communication deadlocks.
In the absence of property violations, it performs analysis to generate
a different run of the program that does not fall in the set of already
verified runs. We demonstrate the effectiveness of our approach, which is
sound and complete, using our prototype tool Hermes. Our evaluation
indicates that Hermes performs significantly better than the state-of-
the-art verification tools for multi-path MPI programs.
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1 Introduction

Message passing (MP) is a prominent paradigm via which nodes of the dis-
tributed systems can communicate. Typically, the MP programs are run on large
computer clusters and are developed not only by career computer professionals
but also by unconventional programmers affiliated to other disciplines of sci-
ence. However, designing MP programs is known to be a challenging exercise.
Programmers have to anticipate the messaging patterns, perform data marshal-
ing and compute the locations for coordination in order to design correct and
efficient programs. Unsurprisingly, this design complexity lends itself to the veri-
fication complexity of MP programs. The problem of communication races, which
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leads to data corruption or communication deadlocks, plays a central role in the
verification complexity of MP programs.

In the context of discovering communication deadlocks, the problem has been
studied extensively over the years [2,11,14,17,19,20,23,25,28]. However, a scal-
able solution remains elusive; this is primarily due to the nondeterminism in
the semantics of MP primitives. For instance, in MPI (Message Passing Inter-
face [21], a popular standard for writing parallel programs in C/Fortran) use
of the wildcard receive call can lead to nondeterministic matching with poten-
tial senders at runtime [30]. Presence (or absence) of buffering in MPI nodes
can also contribute to nondeterminism; for instance, standard blocking sends
semantics are dependent on the presence of system buffering – under no system
buffering the send calls behave as synchronous calls while under infinite buffer-
ing the same send calls complete immediately without even requiring a matching
receive call. MPI implementations allow nodes to provide buffering in order to
improve the performance, however, the nondeterminism resulting from buffering
can potentially introduce additional deadlocks [31].

It is worthwhile to note that nondeterministic communication of data can
affect the control-flow of the program (e.g., when the communicated data to
a wildcard receive is used in a subsequent branch instruction of the program).
Programs with the pattern mentioned above are termed as multi-path programs
[9], and they significantly affect the scalability of existing verification techniques.
Correspondingly, single-path programs are those (paraphrasing from [9]) where
the program executes irrespective of the data communicated to a receive call,
the same sequence of instructions, i.e., the control-flow of the program remains
unaffected by the communication actions in the program.

Explicit-state runtime model checkers of MPI programs, such as ISP [30]
and DAMPI [33], can analyse multi-path (and single-path) MPI programs for
the absence of communication deadlocks and assertion violations. However, they
require the programs to be repeatedly run such that in each run a distinct com-
munication pattern (such as a send-receive match) is explored. Though the said
model checkers are exhaustive in their exploration under a fixed input and a
buffering mode (viz. zero and infinite [31]), they suffer from a possible require-
ment of a considerable number of program re-runs. It is often the case that
much of the time is spent in verifying the loops of the program containing only
computation code that is of little relevance to establish the correctness of the
communication structure of the program.

Recently, symbolic analysis techniques for MP program executions have been
proposed. Although they do address the problem of program re-runs by symbol-
ically encoding the interleavings to explore, they can only be applied to single-
path programs [10,15,22]. These techniques are classified as trace verification
techniques and the tools as trace verifiers.

Techniques which perform full-blown symbolic execution of a program can
discover deadlocks and other assertion violations in multi-path programs [3,11,
28]. While they cover both the input space and communication nondeterminism,
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they are known to not scale beyond a relatively small size of the program and a
few processes.

We present a sound and complete technique to verify multi-path MPI that is
complementary to the above-mentioned techniques. Our technique combines the
strengths of trace verification and symbolic execution techniques, which, respec-
tively, provide scalability and multi-path coverage. Furthermore, our technique
is able to verify programs with not only zero- or inifinite-buffering, but also with
nondeterministic buffering decisions up to a bound k. While we present the tech-
nique in the context of verifying MPI programs for the absence of deadlocks, it
can be applied to other properties, such as assertion violations. We demonstrate
the effectiveness of the technique by implementing it as a prototype tool Hermes
and comparing it with state-of-the-art tools.

2 Overview

In this section, we present an overview of our hybrid method which discovers
deadlocks in multi-path MPI programs. The technique exhaustively explores
the executions of the program under a fixed input as follows: (i) it obtains
a concrete run ρ of the program via dynamic analysis (via a scheduler that
orchestrates a run); (ii) encodes symbolically the set of feasible runs obtained
from the same set of events as observed in ρ such that each process triggers the
same control-flow decisions and executes the same sequence of communication
calls as in ρ (note that the encoding captures the entire set of runtime matches of
communication events from ρ); (iii) check for violations of any property (in our
case, communication deadlocks); and (iv) if no property is violated, then alter
the symbolic encoding to explore the feasibility of taking an alternate control
flow behavior which is different from ρ. In case of such a feasibility, initiate a
different concrete run.

Consider the program shown in Fig. 1(a). It is a nondeterministic, multi-path,
and deadlock-free program. The non-colored lines illustrate the pseudo-code of
the program. It is worthy to note that trace verifiers will fail to verify the
program since the program has multiple control flow branches and the nonde-
terministic matching choice of R1 governs the execution of these branches.

Our approach statically discovers the code locations where the received data
or message tags (a field in MPI send and receive calls that serve as a unique
marker for messages) are used to branch at conditional statements. At these
locations, we instrument certain calls to a scheduler. The scheduler schedules the
MPI calls of the program according to the MPI semantics and drives the execu-
tion. The scheduler is also responsible for building a partially ordered happens-
before relation between these calls (refer Sect. 3). At runtime, the instrumented
code communicates the predicate expression in the branching instruction to the
scheduler. The instrumented code is shown in blue color in Fig. 1(a).

Based on a trace ρ the symbolic encoding is generated from the execution
of the program with instrumented code. The communication events and the
branching decisions made in this trace are modeled as an SMT formula. This
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formula encodes all the semantically possible schedules of events observed in ρ,
which follow the same control-flow decisions as made in ρ.

Process 0 Process 1
Recv(*, x); //R1 Send(P0, 10); //S1

if (x==10) Process 2
Recv(*, y); //R2 Send(P0, 10); //S2

toScheduler(‘x==10’); Process 3
else if (x==20) Send(P0, 30); //S3

Recv(*, y); //R3
toScheduler(‘x==20’);

else if (x==30)
Recv(*, y); //R4
toScheduler(‘x==30’);

Recv(*, z); //R5

(a) Instrumented non single-path program.
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(b) All possible interleavings.

Fig. 1. Multi-path program and its interleavings. (Color figure online)

In the example shown in Fig. 1(a), Process 0 executes the first control flow
branch if R1 matches with either S1 or S2. If R1 matches S1, the SMT formula
will encode the interleavings 1 and 2 as shown in Fig. 1(b). An SMT solver is
used to solve this formula, which checks for the violation of the safety property.
This verifies two interleavings. If there is no property violation, we verify another
control flow path that may have been taken if R1 had matched with some other
send. To this effect, we want to change the path condition obtained from the
trace to reschedule another execution through an unvisited control-flow. Hence,
we alter the path condition (in a typical symbolic execution style) and execute
the program again, so that it follows the path corresponding to the altered path
condition. To force the scheduler to follow a different control-flow branch, we
may also have to force a wildcard receive call to match with a send call that
sends data different from the send call that matched before. We repeat this
process until all the paths in the program are exhausted. In the context of the
above example, in the second execution, R1 must match S3, and it must avoid
matching S2 because S2 is sending the same data as S1 (S1 had already matched
with R1 in the first execution). The encoding resulting from this run will cover
schedules 3 to 6.

The example program has six possible interleavings across multiple control
flow paths. Our technique executes the program only twice to cover all of them
and thus shows the contrasting difference from trace verification which does not
provide full path coverage and from dynamic verification which executes the
program as many times as there are possible interleavings.

3 MPI Model and Execution Semantics

In this section we formalize the execution of an MPI program. The MPI run-
time often provides buffers to store the data of issued but unfinished calls. The
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presence of buffers can introduce subtle behaviors in a program [26,31]. Due to
space limitations we present a zero-buffer semantics, but our results hold for
zero-, infinite-, and κ-buffer modes, with κ ∈ N.

We consider MPI programs consisting of n ∈ N processes P1, · · · , Pn in a
single communication group. Each process Pi manipulates a set of process-local
variables Vari. Let Var =

⋃
i Vari. We model the execution of the program as

a sequence of events, one for each executed MPI call. An event of process Pi

is a tuple e := 〈c, a, d〉, where c is a path constraint over Vari (describing the
conditional branches taken by Pi to produce the event, the constraint language
is left unspecified), a is an MPI call, and d ∈ N is a depth which increments
monotonically with the events of Pi. We let E denote the set of all possible
events, p(e) := Pi the process of e, and l(e) := a the MPI call of e.

Without loss of generality, we only model nonblocking MPI operations and
MPI Wait. Nonblocking calls return immediately with a handle that can later
be passed to MPI Wait for the process to block until the operation completes.
An MPI call is either a nonblocking send (resp. receive) issued by process Pi

to send data to (resp. receive from) process Pj with tag t, denoted by Si,j,t

(resp. Ri,j,t); or a nonblocking barrier issued by process Pi, denoted by Bi;
or a (blocking) wait issued by process Pi in order to wait for the completion
of the so-called corresponding event at depth h, denoted by Wi,h. For a wait
event e := 〈c,Wi,h, d〉 the corresponding event, corr(e), is the only event of Pi

whose depth is h.
The MPI runtime matches send and receive operations (among others) using

the well-defined semantics. Given events e := 〈c, a, d〉 and e′ := 〈c′, b, d′〉, we say
that e matches before e′, denoted by e1 ≺mo e2, iff p(e) = p(e′), and d ≤ d′, and
one of the following is satisfied: (i) a and b are send calls (resp. receive calls) to
the same destination (resp. from the same source) with the same tags; (ii) a is
a wildcard receive call and b is a receive call sourcing from the same process, or
a wildcard receive and the tags of calls a and b are the same, or the tag of call a
is a wildcard; (iii) a is a nonblocking call and b is an associated wait call.

We view the execution of an MPI program as a sequence of events in E∗, but
not all sequences correspond to executions. We now define a Labeled Transition
System (LTS) 〈Q,→, q0〉 whose runs capture the valid executions. The states
in Q are tuples of the form 〈I,M, z〉 where I ⊆ E is the set of issued events,
M ⊆ E is the set of matched events, and z : N → N maps every process to
the depth of the next event expected from that process. The initial state q0 is
〈∅, ∅, zo〉, where z0 maps all processes to 0.

The ≺mo order captures matching constraints that exclusively depend on
the types of the calls involved in the check. However, matching Ri,∗,t calls
requires information about the state. Given a state s := 〈I,M, z〉 and events
e := 〈c,Ri,j,t, d〉 and e′ := 〈c′, Ri,∗,t, d

′〉, we say that e conditionally matches
before e′, denoted by e ≺co e′, iff d ≤ d′ and ∃ê ∈ I such that l(ê) = Sj,i,t.

The transitions in → ∈ Q× 2E ×Q are labeled by sets of events representing
either the issuing or completion of MPI calls to the runtime or the matching of
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communication calls by the runtime. Thus, we have three classes of transitions:
Issue, Match, and Complete transitions.

Issue transitions capture the call to a nonblocking MPI primitive represented
by event e := 〈c, a, d〉. Formally, 〈I,M, z〉 {e}−−→ 〈I ∪ {e},M, z′〉 iff d = z(p(e)),
and z′ is equal to z except for z′(p(e)) which is z(p(e)) + 1, and I does not
contain any event whose action is a wait from process p(e).

Match transitions correspond to the MPI runtime matching a set of issued
events (e.g., a send with a receive). Formally, 〈I,M, z〉 m−→ 〈I \ m,M ∪ m, z〉
exactly when there is some m ⊆ I such that either of the three conditions hold:
(i) m := {e, e′} with l(〈e, e′〉) = 〈Si,j,t, Rj,i,t′〉 and �ê ∈ I, (ê ≺mo e ∨ ê ≺mo e′),
and t′ ∈ {t, ∗}; or (ii) m := {e, e′} with l(〈e, e′〉) = 〈Si,j,t, Rj,∗,t′〉 and �ê ∈
I, (ê ≺mo e ∨ ê ≺mo e′ ∨ ê ≺co e′), and t′ ∈ {t, ∗}; or (iii) m := {e1, . . . , en} with
l(ei) = Bi for all i ∈ {1, . . . , n} and �ê ∈ I, (ê ≺mo e1 ∨ . . . ∨ ê ≺mo en).

Finally, complete transitions correspond to calls to MPI wait returning the
control to the process because the corresponding event has already been matched.
Formally, 〈I,M, z〉 {e}−−→ 〈I\{e},M\{corr(e)}, z〉 iff l(e) := Wi,d and corr(e) ∈ M .

An execution trace (or just trace) ρ ∈ E∗ is any sequence formed by the
events contained in the singletons that label a run of the LTS which only uses
issue transitions. An MPI program P has a deadlock if it can generate a trace ρ
that ends in a deadlocking state, i.e., one with no successors in the LTS. Deciding
whether a single-path program has a deadlock is an NP-complete problem [10],
under finite and infinite system buffering. Note that our events are guarded MPI
calls and thus each trace of P is essentially a single-path program. Since, P has
a finite number of single-path programs, it follows that the deadlock detection
problem under κ-buffering for P is also NP-complete.

4 Encoding Rules

In this section we define SMT encoding rules such that for a deadlocking execu-
tion trace ρ, the variables of the encoding get satisfied and the generated model
provides information about the calls that remained unmatched in ρ. The first
step is defining an (over-approximated) set of sets of events, M

+ ∈ 2E , consisting
of all possible sets that the LTS could make using the match transition using
the same events as in ρ but possibly issued in a different order.

Definition 1. M
+: The M

+ set is an over-approximate set of the matching calls
in a trace [10]:

M
+ = {{a, b} ⊆ E | a = 〈−, Si,j,−,−〉, b = 〈−, Rj,i/∗,−,−〉,

∀a′ ≺mo a ∃ b′ ��mo b : { a′, b′} ∈ M
+,

∀b′ ≺mo b ∃ a′ ��mo a : { a′, b′} ∈ M
+}

∪ {{a} ⊆ E | a = 〈−,Wi,h,−〉}
∪ {{a1, · · · , aN} ⊆ E | ∀i ∈ {1, . . . , n}, ai = 〈−, Bi,−〉} .
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Let M
+(a) =

⋃{b|∃α ∈ M
+ : a, b ∈ α} be the set of all potential matching

calls for the operation a. Let Imm(a) be the set of all immediate ancestors of
event a. We define it by Imm(a) = {x|x ≺ a,∀z : x � z � a =⇒ z ∈ {x, a}}.
Note that ≺= (≺mo ∪ ≺co) (resp. for �).

Following [10], we restrict our presentation to problems without barriers with-
out introducing spurious models. In Fig. 2, we provide the list of rules that encode
all feasible interleavings of a given ρ. First, we explain the meaning and purpose
of each variable used in the encoding. We use tag, src (resp. dest), and val as
integer variables to encode MPI call operands such as message tag, sender’s
(resp. receiver’s) identity, and the data payload, respectively. Note that for sim-
plicity we assume the data payload to be of primitive types (such as Integer). In
order to model an interleaved run, we use an integer variable clk for each call in
ρ. Variables m and r are boolean variables which signify the matching and the
readiness (all ≺mo ancestors of the event are matched) of an event, respectively.
A boolean variable bufferUsed is used when an event uses the buffer provided by
the MPI runtime. We refer the above mentioned variables corresponding to an
event a by the variable name sub-scripted with event symbol, for instance, clock
variable for event a is denoted by clka.

Corresponding to every α ∈ M
+ we have a boolean variable sα which we set

to true when the events in α occur as a match in ρ. We further define I ⊆ Eρ to
be the set of event pairs (a, b) such that a and b are consecutive sends from one
process but with different destinations. Buffering a can potentially impact the
≺mo relation with respect to call b. When both a and b are send calls targeting
the same destination, then, despite buffering, the ≺mo relation between a and b
stands unmodified. This is because the FIFO matching guarantee provided by
the MPI standard is impervious to the underlying system buffering.

In Fig. 2, most SMT rules are similar to the propositional rules from [10],
except Rules 2, 5, 10, 11 and 14. Rule 1 encodes the ≺mo relation with an
exception – the order between a pair of send calls (a, b) ∈ I is encoded in
Rule 10. Rule 5 encodes the semantics of ≺co ordering. We start with an over-
approximate set E that has pairs of receive calls (deterministic receive call, a,
followed by a wildcard receive call b). An order is established between such a
pair only when there is a ready send call that can match a but no send call that
can match b. To record the notion of time at which calls become ready, we use
the variable rclk. Rules 12 and 13 encode the deadlock detection constraints.

Encoding for κ-Buffer Mode Semantics: Rules 10 and 11 encode the behav-
ior of a program with κ-buffer semantics. The maximum number of buffer slots,
κ, available with the program is provided by the user. If a buffer slot is avail-
able, the partial order relation between some of the send calls can be relaxed (as
explained before).

Encoding for Path Condition: Rule 14 encodes the guards of each event
in Eρ. The guards are the path constraints obtained from the expressions of
conditional statements encountered along the program execution.
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1. Partial Order:
∧

b∈Eρ

∧

a∈Imm(b):(a,b) I∈�
clka < clkb

2. Match Pair:
∧

a:(s,r)∈M+
sa → (clks = clkr) ∧ (datas = datar) ∧ (tags = tagr)

3. Unique Match for Send:
∧

(a,b)∈M+

∧

(a,c)∈M+
sab →!sac

4. Unique Match for Receive:
∧

(a,b)∈M+

∧

(c,b)∈M+
sab →!scb

5. Conditional Partial Order:
(a)

∧

a∈Eρ

ra → r clka = clkImm(a) + 1

(b)
∧

(a,b)∈E

∧

c∈M+(b)
(r clkc > r clka ∧ ∧

d∈M+(a)
r clkc > r clkd) → clka < clkb

6. Match Correct:
∧

a∈r

(ma → ∨

(b,a)∈M+
(sba)) ∧ ∧

a∈s

(ma → ∨

(a,b)∈M+
(sab))

7. Matched only:
∧

a:(a1,a2,...,an)∈M+
sa → ∧

ai∈a

mai

8. All Ancestors Matched:
∧

b∈Eρ

(rb ↔ ∧

a=Imm(b)
ma)

9. Match Only Issued:
∧

a∈Eρ

(ma → ra)

10. Use Buffer:
∧

(a,b)∈I
(ra∧k > 0 → (bufferUseda∧dec(k)))∧(k = 0 →!bufferUseda∧

clka < clkb)
11. Free buffer:

∧

a∈Eρ

k = ite(ma ∧ bufferUseda, inc(k), k)

12. No Match Possible:
∧

a∈M+(
∨

t∈a(mt∨!rt))
13. Not All Matched:

∨
a∈Eρ

!ma

14. Path Condition: πρ

Fig. 2. SMT rules.

Theorem 1. Given a trace ρ of program P , ρ ends in a deadlocking state iff
there is a satisfying assignment of the variables to values in the SMT encoding
of the deadlock detection problem.

The proof of this theorem is similar to the one used in [10]. It suffices to
show that (i) for every deadlocking trace of the program, the encoding rules are
satisfied, and (ii) whenever the rules are satisfied, the trace deadlocks. For this,
we construct a trace corresponding to the model generated by the solver (which
conforms to the MPI semantics) and prove that it is deadlocking. Theorem 1
formally establishes the correctness of our SMT encoding.

5 Design

Hermes comprises of three components: program instrumenter, constraint gen-
erator and solver, and instruction rescheduler. In this section, we describe the
functionality of these components and present the algorithm that Hermes imple-
ments. Figure 3 gives an architectural overview of Hermes.
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5.1 Components

Program Instrumenter: The instrumenter is developed using Clang [5]. Clang is
the front-end for the LLVM compiler and provides features to analyse, optimize,
and instrument C/C++ source code. It targets the locations in the code where
the data or the tag received in a wildcard receive is decoded in the predicate
expression of a conditional construct, the body of which issues an MPI call. It
instruments these locations with TCP calls to the scheduler which is responsible
for driving the execution of the program. The instrumented calls are used to
communicate the predicate expressions to the scheduler at runtime. We use ISP’s
dynamic verification engine as the scheduler.

Constraint Generator and Solver: The instrumented program is input to the
ISP scheduler which executes it. The execution of the program drives the instru-
mentation to generate a path condition π which corresponds to the expressions
of the conditional constructs encountered at target locations during the run. We
also generate a set of potential matches, M

+, and a sequence of MPI events, ρ,
from the run. M

+, π, and ρ are used to encode the trace of the program in the
form of SMT rules given in Sect. 4, which conform to the MPI semantics. The
satisfiability of the rules signifies the presence of a deadlock. Please note that
the technique presented in this paper is a general verification technique to cover
all possible schedules for a given input. The encoding rules provided in Sect. 4,
however, are targeted for deadlock detection.

Fig. 3. Architecture of the approach.

Instruction Rescheduler: If the
SMT solver cannot generate a
model (UNSAT query), we modify π
in a way similar to the concolic exe-
cution to try and infer the existence
of another executable control flow
path. In a non-chronological order,
we perform a depth-first search over
a tree of control flow paths where
the branching points in the tree map
to the conditional constructs in the
target program. The resulting for-
mula is denoted by φ. Although we

modify the path condition in a fashion similar to concolic execution, we do not
inherit its legacy problem of path complexity. This is because (i) unlike con-
colic execution, we do not symbolically interpret the entire program, and (ii)
in our experience, the conditional expressions in multi-path MPI programs are
simple equality checks (we have not come across benchmark programs where the
relevant conditional expressions were complex).
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Algorithm 1. Deadlock Detection.
Data: Instrumented Program: P
Result:
1. Guarantee that a deadlock does not occur
2. Model of the MPI calls if a deadlock is present

1 <Path Condition: π; Trace: ρ; Potential Matches: M
+ > = execute P

2 while true do
3 φen = encode(M+, ρ)
4 res = solver(φen ∪ φπ)
5 if res == SAT then
6 report ‘Deadlock’; exit
7 else
8 φ = SearchDifferentPath(ρ, π, M

+)
9 if φ = ∅ then

10 report ‘No Deadlock’; exit
11 else
12 < π, ρ, M

+ > = execute P conforming to φ

5.2 Deadlock Detection

Algorithm 1 formally presents the functionality of the components described in
Sect. 5.1. The input to the algorithm is an instrumented MPI program. Execution
of the program at line 1 generates a program trace: ρ, a path condition: π, and
the potential send-receive match set generated from ρ: M

+. The while loop at
line 2 executes the program repeatedly until either all of the possible control
flow paths are explored or a deadlock is reported. In every iteration of the loop,
we encode the trace ρ into a set of SMT rules and check their satisfiability. If
we get a model from the SMT solver, then we report the deadlock as the output
and exit as shown in lines 3–7. Otherwise, we search for a different control flow
path by calling the procedure SearchDifferentPath at line 9. If that procedure
is unable to find any other feasible path, we report an absence of the deadlock
at line 11 and exit. Otherwise, we repeat the entire process.

We describe in Algorithm 2 the procedure SearchDifferentPath, to change
the path condition and to generate constraints φ. The input to the algorithm is
π, ρ, M

+. Incrementally, we start negating the expressions in π from last to first
in the loop starting at line 2. In line 3, we remove the expressions in the path
condition from (i+1)th position until the end and invert the ith last conditional in
π to get the altered conditional expression c at line 5. This c is clubbed with the
already present constraints in a maintained constraint stack to get φ at line 7.

We check if it is possible to drive the execution through the altered path in
lines 8–11. For this, we issue a query to the solver with constraints formed from
the rules given in Sect. 4 (φ′

en) and the constraints accumulated in the constraint
stack (φ).

In order to compute φ′
en, we require (i) a subset of M

+ which we denote by
M

+
clip, and (ii) a subsequence of the execution trace which is denoted by ρclip.
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Algorithm 2. Searching different control flow path.
Data: ρ, π, M

+

Result: φ
1 size = length(π)-1
2 forall i ∈ size : 0 do
3 remove(π[i + 1] : π[size])
4 π′ = negate(π[i])
5 c = π′[i]
6 add c in constraintStack

7 φ =
j=top⋃

j=1

constraintStack[j]

8 φ′
en = encode(M+

clip, σclip) - φsafety

9 res = solver(φ′
en ∪ φ)

10 if res == SAT then
11 return φ

12 return ∅

Both M
+
clip and ρclip, are formed over the set of ordered MPI calls until the point

of the conditional block whose predicate is negated in π′(c). For brevity, we have
only shown the details for chronological backtracking without any optimizations.
An optimization strategy is presented in Sect. 6.1.

5.3 Correctness and Termination

The encoding presented in [10] is shown to be sound and complete. The encod-
ing in Algorithm1 is similar to the encoding from [10], hence the proof of
soundness and completeness is also similar. We omit the proof here due to
space consideration, but it can be found at Hermes’s site.1 The procedure
SearchDifferentPath (shown in Algorithm2) is sound and complete since we
assume the traces are of finite length and the number of distinct control-flow
paths in a program is bounded. Thus, by composition, Hermes is sound and
complete for a single input.

Algorithm 2 returns ∅ and terminates at line 12 when it finishes its exhaus-
tive search corresponding to the complete tree of possible control-flow execu-
tion paths. Note that the tree of possible control-flow paths is of finite height
and width. Algorithm1’s termination is either contingent on the termination of
Algorithm 2 or when a deadlock is found at line 6. We conclude that the analysis
performed by Hermes terminates.

6 Implementation

We have implemented the proposed technique in a prototype tool called Hermes.
We used Clang [5] to instrument the program, ISP [30] as the execution engine or
1 https://github.com/DhritiKhanna/Hermes.

https://github.com/DhritiKhanna/Hermes
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the scheduler, and Z3 [6] as the constraint solver. In the following subsections, we
describe the optimizations that we have implemented to limit infeasible control
flow paths. These optimizations are conservative and do not affect the soundness
and completeness of the approach.

6.1 Non-chronological Backtracking

Pi Pj

Ri,1(from ∗, x) Rj,1(from ∗, y)
if(x == 10) if(y == 5)
Ri,2(from Pk) Sj,2(to Pi, 10)

Performing chronological backtracking to alter
the path condition π may result in generating
queries that cannot be satisfied by the solver.
Consider the call Ri,1 in the adjoining example
matches with Sj,2. π will contain the constraint

assume(x == 10) which, at some point during backtracking, will be inverted.
However, inverting this condition alone will generate no new feasible control-
flow path unless Ri,1 matches with a send other than Sj,2. Thus, inverting the
constraint assume(x == 10) will require the inversion of assume(y == 5). These
two conditions can be a part of a chain of dependencies that form an unsat-core
of the unsatisfied formula. Hence, instead of chronological backtracking, we find
the culpable conflict and backjump directly to the root of this dependency chain
and negate the expression of the root node. The static analysis component of
the program instrumentation block identifies the conditional expressions which
introduce these dependencies.

In a tree of control flow paths, let there be a dependency chain of size d
on path p. After verifying p, the number of SAT queries required (in the worst
case) to find another feasible control-flow path in chronological backtracking
is d. However, with non-chronological backtracking, only one SAT query should
suffice.

6.2 Terminated Interleavings

Discovering a new control-flow path in Algorithm2 requires a change of received
data of the wildcard receive corresponding to the negated assume expression. In
order to ascertain whether such an execution exists SMT solver is invoked with
the modified path condition along with the other constraints. The constraints of
the modified path condition depend on the over-approximate match-set M

+, but
the program actually runs with ISP’s scheduler which makes the matches based
on the ample-set. Since |ample-set| ≤ |M+|, there may be cases when the SMT
solver returns a model from line 10 in Algorithm2, but an actual run satisfying
φ may not be possible. We handle these scenarios in our implementation by
terminating such runs and restoring the state of the previous correct run. We
provide an example of a terminated interleaving at our tool’s site.2

2 https://github.com/DhritiKhanna/Hermes.

https://github.com/DhritiKhanna/Hermes
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7 Evaluation

The purpose of evaluating Hermes is to assess its efficiency and effectiveness
in verifying message passing programs. We set this evaluation in the context
of C/C++ MPI programs (see footnote 2) and compare Hermes against the
state-of-the-art verification tools. To guide the evaluation, we ask the following
research questions: [RQ1] How well does the proposed approach fair against
state-of-the-art techniques for single-path and multi-path programs? [RQ2] Is
the proposed approach effective in discovering deadlocks exposed under finite
buffer mode?

Artifacts and Runtime Environment: We used the FEVS test-suite [27] and
benchmarks from prior research papers [2,13,29,36]. The multi-path benchmarks
include Matrix Multiply, Integrate, Workers, and Monte Carlo for pi calculation.
A majority of the benchmarks are based on the client-server architecture. The
experiments were performed on a 64 bit, Intel quad-core machine with 1.7 GHz
processors, 4 GB of RAM, and Ubuntu version 14.04. We used ISP version 3.1
and Z3 version 4.4.2. All timings reported are in seconds and are averaged over 20
runs. TO signifies the time-out after 30 min. Note that the number of executions
of Hermes also include the runs which were terminated.
[RQ1] We compared Hermes against the state-of-the-art tools - Mopper (a
trace verifier), Aislinn and ISP (dynamic verifiers), and CIVL (a stateful sym-
bolic model checker). We summarize the results in Table 1. On most single-path

Table 1. Performance comparison for single-path MPI programs.

B’mark #P B D ISP Mopper Aislinn CIVL Hermes

Detect Runs Time Detect Time Detect Time Detect Time Detect Time

DTG 5 0 ✔ Yes 3 2.135 Yes 0.007 Yes 0.830 Yes 8.72 Yes 0.0365

5 ∞ 3 2.257 0.043 0.815 0.077

8 0 ✔ Yes 3 2.220 Yes 0.011 Yes 1.135 Yes 8.78 Yes 0.040

8 ∞ 3 2.307 0.044 1.139 0.080

Gauss Elim 4 0 1 0.529 0.210 8.936 TO 0.300

8 0 1 0.371 0.295 14.322 TO 0.423

16 0 1 2.041 0.408 TO TO 0.659

32 0 1 5.457 0.856 TO TO 1.163

Heat 4 0 ✔ Yes 7 8.572 Yes 0.365 � � Yes 0.389

8 0 ✔ - >1K TO Yes 0.593 � � Yes 0.660

16 0 ✔ - >1K TO Yes 0.927 � � Yes 1.063

32 0 ✔ - >1K TO Yes 1.709 � � Yes 2.036

2D Diffusion 4 0 ✔ Yes 1 0.008 NI Yes 8.523 NI

4 ∞ 90 123.733 0.388 0.908 0.451

8 0 ✔ Yes 1 0.05 NI Yes 12.461 NI

8 ∞ >1.1K TO TO 16.020 TO

Floyd (5) 4 0 1 0.005 0.020 0.640 TO 0.078

8 0 >1.6K TO 0.116 1.391 TO 0.218

16 0 >1.6K TO 0.128 2.998 TO 0.540

32 0 >1.6K TO 3.836 6.424 TO 2.829

B’mark: Benchmark; #P: Number of Processes, B: Buffering Mode; D: Deadlock Exists

�: Benchmark not supported; NI: Not Invoked
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Table 2. Performance comparison for multi-path MPI programs.

B’mark #P B D ISP Aislinn CIVL Hermes

Runs Time Time Time Runs Time

Monte (0.15) 4 0 6 6.025 0.971 � 3 2.326

5 0 24 28.346 1.668 � 4 3.472

6 0 120 151.598 5.028 � 5 4.819

8 0 >1.2K TO 10.173 � 7 7.434

MatrixMul (2 × 2 matrices) 4 ∞ 36 39.669 0.866 17.93 1 7.252

5 ∞ 144 163.277 1.101 25.307 1 9.993

6 ∞ 720 837.633 1.334 48.068 1 12.925

8 ∞ ∼1.5K TO 2.206 258.86 1 19.670

Integrate 4 0 27 32.755 0.858 910.36� 1 0.206

5 0 256 332.362 3.030 156.82� 1 0.302

6 0 3125 TO 27.839 157.63� 1 0.497

8 0 >1.5K TO TO 173.27� 1 0.852

Workers (8 jobs; size of job = 2) 4 0 18 20.975 1.549 37.76 1 0.360

5 0 24 28.433 1.368 72.333 1 0.384

6 0 120 151.525 2.286 1027.31 1 0.510

8 0 ∼1.3K TO 9.113 TO 1 1.021

B’mark: Benchmark; #P: Number of Processes, B: Buffer Mode; D: Deadlock Exists
�: Benchmark not supported; �: Result = null (probably an internal CIVL error: the theorem
prover has not said anything)

benchmarks the performance of Hermes is comparable to Mopper and con-
siderably better than the other state-of-the-art explicit-state model checkers
without compromising on error-reporting. Benchmark 2D Diffusion exhibits
a complex communication pattern and a high degree of nondeterminism which
leads to a huge M+. Hence, symbolic analysis tools do not perform well for such
benchmarks. We use --potential-deadlock option of CIVL which verifies the
program irrespective of the buffering mode.

Evaluation with multi-path programs required us to compare Hermes with
all tools except Mopper, since Mopper is constrained to work with only single-
path programs. The basis for comparing against ISP is the number of times a
program is executed while the basis for comparing with other tools is the time
taken to complete the verification. The results of our comparison are summa-
rized in Table 2. On all benchmarks ISP times out for as few as 8 processes.
Aislinn on most benchmarks (barring MatrixMul) either takes longer execution
time in comparison with Hermes or times out. The results indicate that when
the number of processes increases, the growth in execution time is relatively
reasonable in Hermes in comparison with ISP and Aislinn. The scalability of
Hermes regarding number of processes comes from the fact that it prunes out
the redundant paths and explores only the feasible ones. CIVL is a powerful
and a heavy stateful model checker that can backtrack as soon as it witnesses
a visited state. An advantage of CIVL over the other tools is that it can verify
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programs on complex correctness properties over a wide range of inputs. How-
ever, CIVL was consistently slower than Hermes on all benchmarks barring
Heat. The Heat benchmark contained MPI calls that are not supported by CIVL
yet.
[RQ2] MPI standard allows flexibility in the ways send calls are buffered. Aislinn
buffers send calls if the size of the sent message is not greater than a parameter
provided by the user. On the other hand, we follow the approach taken by Siegel
et al. [26] and model the buffer as a limited resource. In other words, send calls
use the buffer if it is available. Due to these differences, we cannot compare
Hermes with Aislinn in the context of κ-buffer mode.

To demonstrate the importance of κ-buffer mode, we ran Hermes on the
benchmarks used in [2,31]. Hermes detected the deadlocks when a buffer of size
one was provided. The deadlock in the program disappears under zero-buffer
and infinite-buffer modes.

8 Related Work

Deadlock detection in message passing programs is an active research domain
with a rich body of literature. There are numerous popular debuggers or program
correctness checkers which provide features such as monitoring the program run
[16,18,32]. However, they fall short to verify the space of communication non-
determinism.

Predictive trace analysis for multi-threaded C programs is another popular
area of work. The central idea in these techniques is to encode the thread inter-
leavings of a program execution [34,35]. These techniques rely on the computa-
tion of a symbolic causal relation in the form of a partial order. The work in [34]
motivated the predictive trace analysis work for MPI, MCAPI, and CSP/CCS
programs [7,9,14,15,22]. The encoding presented by Forejt et al. [9] is similar
to the encoding for a static bounded model checking approach to analyse shared
memory programs [1] but is restricted to single-path programs.

Hermes’s contribution on selective program instrumentation is motivated
by the work in [12], which identified, using taint analysis, the relevant input
sources and shared accesses that influence control-flow decisions. The use of
taint analysis to extract input sources and shared accesses is an important step
for covering relevant program behaviors.

Marques et al. developed a type-based strategy to statically verify MPI pro-
grams [17,20]. They verify the annotated MPI program against the protocol
specifications capturing the behavior of the program using session types. Unlike
model checking, their approach is not influenced by the number of processes
and problem size and is insensitive to scalability issues. But they consider only
deterministic and loop-free programs.

Concolic Testing (Dynamic Symbolic Execution) combines concrete execu-
tion and symbolic execution [4,24] to overcome the limitation of SAT/SMT
solvers when faced with nonlinear constraints. Sherlock [8] is a deadlock detector
for Java concurrent programs which combines concolic execution with constraint
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solving. While we use SMT encoding to scan through all permissible schedules of
a path, Sherlock instead permutes the instructions of one schedule to get another
schedule. A fair comparison of Hermes with concolic execution techniques can-
not be performed since Hermes does not consider every conditional statement
to be included in the path condition.

CIVL [19] is an intermediate language to capture concurrency semantics of
a set of concurrency dialects such as OpenMP, Pthreads, CUDA, and MPI. The
back-end verifier can statically check properties such as functional correctness,
deadlocks, and adherence to the rules of the MPI standard. CIVL creates a
model of the program using symbolic execution and then uses model checking.
Hermes creates a model of a single path of the program and uses symbolic
encoding to verify that path of the program. It also uses data-aware analysis
to prune irrelevant control-flow branches of the program. CIVL does not handle
non-blocking MPI operations.

Vakkalanka et al. proposed POEMSE algorithm [31] to dynamically verify
MPI programs under a varying buffer capacity of MPI nodes. To this effect they
employ an enumerative strategy to find a minimal set of culprit sends which, if
buffered, can cause deadlocks. Siegel had proposed a model checking approach
where the availability of buffers is encoded in the states of model itself [26].

Aislinn [2] is an explicit-state model checker which verifies MPI programs
with arbitrary-sized system buffers and uses POR to prune the redundant state
space. Aislinn models the buffer as an unlimited entity and the send calls use
the buffers when their message size is bigger than a user provided value.

9 Conclusion and Future Work

We combined constraint solving with dynamic verification to discover communi-
cation deadlocks in multi-path MPI programs. For C/C++ MPI programs, the
technique is concretized in a tool Hermes. It formulates an SMT query from
the program’s trace by conforming to the MPI runtime semantics and the non-
deterministic buffer modes provided by MPI implementations. By capturing the
flow of data values through communication calls, Hermes restricts the dynamic
scheduler to explore a significantly fewer number of traces as compared to the
explorations performed by a dynamic verifier. We tested our proposed technique
on FEVS test suite and other benchmarks used in past research and found that
our technique compares favorably with the state-of-the-art dynamic verification
tools.

In the future, we plan to focus on ensuring the correctness of MPI programs
with collective operations. Currently, we have implemented our tool with the
assumption that the data which is received in a wildcard receive call and used
in a conditional statement is only an integer variable or tag. This is a limitation
of the implementation, which we plan to address in future work. However, a
more subtle limitation that we impose is that the received data is not modified
between the point from where it is received to the point where it is used (in
the conditional statement). The constraint was motivated by analysing a large
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number of benchmarks. We, in our experience, did not find that the received data
underwent a transformation before it was decoded in a control statement. Note,
however, that this limitation can be relaxed by allowing assignment statement in
the trace language that we defined in Sect. 3. Extending the technique on these
lines will possibly allow us to analyse a larger and more complex set of MPI
programs.
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2. Böhm, S., Meca, O., Jančar, P.: State-space reduction of non-deterministically
synchronizing systems applicable to deadlock detection in MPI. In: Fitzgerald,
J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp.
102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6 7

3. Bucur, S., Ureche, V., Zamfir, C., Candea, G.: Parallel symbolic execution for
automated real-world software testing. In: Proceedings of the Sixth Conference on
Computer Systems. EuroSys 2011, pp. 183–198. ACM (2011)

4. Cadar, C., Dunbar, D., Engler, D.: Klee: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation. OSDI
2008, pp. 209–224. USENIX Association (2008)

5. Clang: A C language family frontend for LLVM. http://clang.llvm.org/
6. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

7. Elwakil, Mohamed, Yang, Zijiang, Wang, Liqiang: CRI: symbolic debugger for
MCAPI applications. In: Bouajjani, Ahmed, Chin, Wei-Ngan (eds.) ATVA 2010.
LNCS, vol. 6252, pp. 353–358. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15643-4 27

8. Eslamimehr, M., Palsberg, J.: Sherlock: scalable deadlock detection for concurrent
programs. In: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. FSE 2014, pp. 353–365. ACM (2014)

9. Forejt, V., Joshi, S., Kroening, D., Narayanaswamy, G., Sharma, S.: Precise pre-
dictive analysis for discovering communication deadlocks in MPI programs. ACM
Trans. Program. Lang. Syst. 39(4), 15:1–15:27 (2017)

10. Forejt, V., Kroening, D., Narayanaswamy, G., Sharma, S.: Precise predictive anal-
ysis for discovering communication deadlocks in MPI programs. In: Jones, C.,
Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 263–278. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 19

11. Fu, X., Chen, Z., Yu, H., Huang, C., Dong, W., Wang, J.: Symbolic execution of
MPI programs. In: Proceedings of the 37th International Conference on Software
Engineering, vol. 2. ICSE 2015, pp. 809–810. IEEE Press (2015)

https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-319-48989-6_7
http://clang.llvm.org/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-15643-4_27
https://doi.org/10.1007/978-3-642-15643-4_27
https://doi.org/10.1007/978-3-319-06410-9_19


Dynamic Symbolic Verification of MPI Programs 483

12. Ganai, M., Lee, D., Gupta, A.: DTAM: dynamic taint analysis of multi-threaded
programs for relevancy. In: Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering. FSE 2012, pp. 46:1–46:11
(2012)

13. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message-passing Interface, 2nd edn. MIT Press, Cambridge (1999)

14. Huang, Y., Mercer, E.: Detecting MPI zero buffer incompatibility by SMT encod-
ing. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058,
pp. 219–233. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-
9 16

15. Huang, Y., Mercer, E., McCarthy, J.: Proving MCAPI executions are correct using
SMT. In: Proceedings of the 28th IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 26–36. IEEE (2013)

16. Krammer, B., Bidmon, K., Müller, M.S., Resch, M.M.: MARMOT: an MPI analysis
and checking tool. In: PARCO. Advances in Parallel Computing. Elsevier (2003)
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