
Timed Vacuity

Hana Chockler1, Shibashis Guha2(B), and Orna Kupferman3

1 King’s College London, London, UK
2 Université Libre de Bruxelles, Brussels, Belgium

shibashis.guha@ulb.ac.be
3 The Hebrew University, Jerusalem, Israel

Abstract. Vacuity is a leading sanity check in model-checking, applied
when the system is found to satisfy the specification. The check detects
situations where the specification passes in a trivial way, say when a
specification that requires every request to be followed by a grant is
satisfied in a system with no requests. Such situations typically reveal
problems in the modelling of the system or the specification, and indeed
vacuity detection is a part of most industrial model-checking tools.

Existing research and tools for vacuity concern discrete-time systems
and specification formalisms. We introduce real-time vacuity, which aims
to detect problems with real-time modelling. Real-time logics are used
for the specification and verification of systems with a continuous-time
behavior. We study vacuity for the branching real-time logic TCTL, and
focus on vacuity with respect to the time constraints in the specification.
Specifically, the logic TCTL includes the temporal operator UJ , which
specifies real-time eventualities in real-time systems: the parameter J ⊆
IR≥0 is an interval with integral boundaries that bounds the time in
which the eventuality should hold. We define several tightenings for the
UJ operator. These tightenings require the eventuality to hold within a
strict subset of J . We prove that vacuity detection for TCTL is PSPACE-
complete, thus it does not increase the complexity of model-checking
of TCTL. Our contribution involves an extension, termed TCTL+, of
TCTL, which allows the interval J not to be continuous, and for which
model checking stays in PSPACE. Finally, we describe a method for
ranking vacuity results according to their significance.

1 Introduction

In temporal logic model-checking, we verify the correctness of a system with
respect to a desired behavior by checking whether a mathematical model of the
system satisfies a temporal-logic formula that specifies this behavior [12]. When
the formula fails to hold in the model, the model checker returns a counterex-
ample — some erroneous execution of the system [13]. In the last years there
has been a growing awareness of the need of suspecting positive results of the
model-checking process, as errors may hide in the modelling of the system or the
behavior [22]. As an example, consider the property G(req → F grant) (“every
request is eventually granted”). This property is clearly satisfied in a system in
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 438–455, 2018.
https://doi.org/10.1007/978-3-319-95582-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_26&domain=pdf

Timed Vacuity 439

which requests are never sent. It does so, however, in a vacuous (non-interesting)
way, suggesting a suspicious behavior of the system.

In [6], Beer et al. suggested a first formal treatment of vacuity. As described
there, vacuity is a serious problem: “our experience has shown that typically
20% of specifications pass vacuously during the first formal-verification runs of
a new hardware design, and that vacuous passes always point to a real problem
in either the design or its specification or environment” [6]. In the last decade,
the challenge of detecting vacuous satisfaction has attracted significant attention
(c.f., [5,7–9,11,18–20,23,25–27]).

Different definitions for vacuity exist in the literature and are used in prac-
tice. The most commonly used ones are based on the “mutation approach” of
[6] and its generalization, as defined in [24]. Consider a model M satisfying
a specification Φ. A subformula ψ of Φ does not affect (the satisfaction of) Φ
in M if M satisfies also the (stronger) formula Φ[ψ ← ⊥], obtained from Φ by
changing ψ in the most challenging way. Thus, if ψ appears positively in Φ, the
symbol ⊥ stands for false, and if ψ is negative, then ⊥ is true1. We say that M
satisfies Φ vacuously if Φ has a subformula that does not affect Φ in M . Con-
sider for example the formula Φ = G(req → F grant) described above. In order
to check whether the subformula grant affects the satisfaction of Φ, we model
check Φ[grant ← false], which is equivalent to G¬req . That is, a model with
no requests satisfies Φ vacuously. In order to check whether the subformula req
affects the satisfaction of Φ, we model check Φ[req ← true]. This is equivalent to
GF grant , thus a model with infinitely many grant signals satisfies Φ vacuously.

So far, research on vacuity has been chiefly limited to systems with a discrete-
time behavior, modeled by means of labeled finite state-transition graphs. More
and more systems nowadays have a continuous-time behavior. This includes
embedded systems, mixed-signal circuits, general software-controlled physical
systems, and cyber-physical systems. Such systems are modeled by timed tran-
sition systems [2], and their behaviors are specified by real-time logics [4]. Some
preliminary study of vacuity for the linear real-time logic MITL [3] has been done
in [16]. The framework there, however, considers only mutations that change lit-
erals in the formula to true or false. Thus, it adapts the propositional approach
of [6,24] and does not involve mutations applied to the real-time aspects of the
specifications.

In this paper, we extend the general notion of vacuity to the satisfaction of
real-time properties. We focus on the temporal logic Timed Computation Tree
Logic (TCTL, for short) [1]. The logic TCTL has a single temporal operator UJ ,
where J ⊆ IR≥0 is an interval with integer bounds. The semantics of TCTL is
defined over Timed Transition Systems (TTSs, for short). A TTS is typically
generated by a timed automaton (TA) [2], which is an automaton equipped with
a finite set of clocks, and whose transitions are guarded by clock constraints.

1 The above definition assumes that ψ appears once in Φ, or at least that all its occur-
rences are of the same polarity; a definition that is independent of this assumption
replaces ψ by a universally quantified proposition [5]. Alternatively, one could focus
on a single occurrence of ψ.

440 H. Chockler et al.

The mutations we apply to TCTL formulas in order to examine real-time
vacuity concern the UJ operator. Unlike the approach in [6,16,24], our mutations
are applied to the real-time parameter, namely the interval J . The semantics of
timed eventualities suggests two conceptually different types of strengthening
for the UJ operator. First, we may tighten the upper bound for the satisfaction
of the eventuality; that is, reduce the right boundary of J . Such a mutation
corresponds to a check whether the specification could have actually required
the eventuality to be satisfied more quickly. Second, we may reduce the span
of J , namely replace it by a strict subset. Such a mutation corresponds to a
check whether the specification could have been more precise about the time
in which the eventuality has to be satisfied. From a technical point of view,
when replacing the interval J by a strict subset J ′ (that is, J ′ ⊂ J ⊆ IR≥0),
we distinguish between cases where J ′ is continuous (that is, J ′ is an interval
of the form [m1,m2], (m1,m2], [m1,m2), or (m1,m2), for m1,m2 ∈ IN), and
cases where J ′ is not continuous; that is, J ′ is a union of intervals. Dually, a
specification may be weakened, again by two types of mutations, which replace
J by an interval or a union of intervals J ′ such that J ⊂ J ′.

Given a TTS M and a TCTL formula Φ, we say that a subformula ψ with a
UJ operator (that is, ψ is AΦ1U

JΦ2 or EΦ1U
JΦ2) is not tight in Φ with respect

to M if J can be strengthened to J ′ and still M satisfies Φ with the tighter
eventuality. For example, if ψ = AΦ1U

JΦ2, then M satisfies Φ[ψ ← AΦ1U
J ′

Φ2].
We say that Φ is timed-vacuous in M if M |= Φ and has a subformula ψ that
is not tight in Φ. Note that timed vacuity is interesting only in cases ψ affects
the satisfaction of Φ in M in the untimed case. In other words, if we could
have mutated ψ to true or false without affecting the satisfaction of Φ in M ,
then clearly mutating J is not interesting. Thus, while we focus in this paper
on timed vacuity, it is important to combine it with traditional vacuity checks.
Consider for example the formula Φ = G(req → F [0,4]grant), asking each request
to be satisfied within 4 time units. In order to check whether the subformula
F [0,4]grant is tight, we can model check Φ[F [0,4]grant ← F [0,1]grant], where
requests are asked to be satisfied within 1 time unit. A model that satisfies the
stronger specification then satisfies Φ timed vacuously.

The need to consider mutations in which J ′ is not continuous results in for-
mulas that are not in TCTL. Indeed, in the UJ operator in TCTL, the interval
J is continuous, and we would like to examine mutations that replace, for exam-
ple, the interval [0, 4] by the union of the intervals [0, 1] ∪ [3, 4]. We introduce
an extension TCTL+ of TCTL that allows to express eventualities that occurs
in a union of a constant number of intervals with integral boundaries. We prove
that the complexity of TCTL+ model-checking is PSPACE-complete, thus it is
not more complex than TCTL model checking. The PSPACE model-checking
procedure for TCTL+ leads to a PSPACE algorithm for timed vacuity, and we
provide a matching lower bound.

In the case of traditional vacuity, it has been recognized that vacuity results
differ in their significance. While in many cases vacuity results are valued as
highly informative, there are also cases in which the results are viewed as

Timed Vacuity 441

meaningless by users. Typically, a user gets a long list of mutations that are
satisfied, each pointing to a different cause for vacuous satisfaction. In [15], the
authors suggest a framework for ranking of vacuity results for LTL formulas.
The framework is based on the probability of the mutated specification to hold
in a random computation: the lower the probability of the mutation to hold is,
the more alarming the vacuity information is. For example, the probability of
G¬req to hold in a random computation is low, hence if the system satisfies it,
this probably needs to be examined. We suggest an extension of the framework
to TCTL. The extension involves two technical challenges. First, moving to a
branching-time setting requires the development of a probabilistic space for trees
(rather than computations). Second, the timed setting requires the probabilistic
space to capture continuous time. We argue that once we move to an approxi-
mated reasoning about the probability of the mutations, the framework in [15]
can be easily extended to TCTL, thus vacuity results can be ranked efficiently.

2 Preliminaries

2.1 TCTL, Timed Automata, and Timed Transition Systems

We assume that the reader is familiar with the branching time temporal logic
CTL. We consider the logic Timed CTL (TCTL) [1], which is a real time exten-
sion of CTL. Formulas in TCTL are defined over a set AP of atomic propo-
sitions and use two path quantifiers A (for all paths) and E (exists a path),
and one temporal operator UJ . A TCTL path formula is defined by the syntax
ϕ ::= Φ1U

JΦ2, where J ⊆ IR≥0 is an interval whose bounds are natural numbers.
Thus, the interval J is of the form [m1,m2], (m1,m2], [m1,m2), or (m1,m2), for
m1,m2 ∈ IN and m1 ≤ m2. For right-open intervals, we have m2 = ∞. We refer
to the quantity m2 − m1 as the span of J . Note that the next-step X operator
of CTL is absent in TCTL, as time is considered to be continuous.

A timed automaton (TA, for short) is a non-deterministic finite state automa-
ton that allows modelling of actions or events to take place at specific time
instants or within a time interval. A TA expresses timed behaviours using a
finite number of clock variables. All the clocks increase at the same rate. We
use lower case letters x, y, z to denote clock variables and C to denote the set of
clock variables. Clock variables take non-negative real values.

A guard is a conjunction of assertions of the form x ∼ k where x ∈ C, k ∈ IN
and ∼ ∈ {≤, <,=, >,≥}. We use B(C) to denote the set of guards. A clock
valuation or a valuation for short is a point v ∈ IRC

≥0. For a clock x ∈ C, we use
v(x) to denote the value of clock x in v. We use
v(x)� to denote the integer part
of v(x) while frac(v(x)) is used to denote the fractional part of v(x). We define
�v(x)� as
v(x)� + 1 if frac(v(x)) �= 0, else �v(x)� =
v(x)�. Along with other
propositions, we will also use propositions of the form v(x) ∈ J , where v(x) is
the valuation of clock x and J is an interval with integer boundaries.

For a clock valuation v and d ∈ IR≥0, we use v + d to denote the clock
valuation where every clock is being increased by d. Formally, for each d ∈ IR≥0,
the valuation v + d is such that for every x ∈ C, we have (v + d)(x) = v(x) + d.

442 H. Chockler et al.

For a clock valuation v and a set R ⊆ C, we use v[R←0] to denote the clock
valuation in which every clock in R is set to zero, while the value of the clocks in
C\R remains the same as in v. Formally, for each R ⊆ C, the valuation v[R←0]

is such that for every x ∈ C, we have

v[R←0](x) =
{

0 if x ∈ R
v(x) otherwise

A timed automaton is defined by the tuple 〈AP,L, l0, C,E, L〉, where AP is a set
of atomic propositions, L is a finite set of locations, l0 ∈ L is an initial location,
C is a finite set of clocks, E ⊆ L × B(C) × 2C × L is a finite set of edges, and
L : L �→ 2AP is a labeling function.

A timed transition system, (TTS for short) [21], is S = 〈AP,Q, q0,→, ↪→, L〉,
where AP is a set of atomic propositions, Q is a set of states, q0 ∈ Q is an
initial state, → ⊆ Q × IR≥0 × Q is a set of delay transitions, ↪→ ⊆ Q × Q is a set

of discrete transitions, and L : Q �→ 2AP is a labelling function. We write q
d−→ q′

if (q, d, q′) ∈ → and write q ↪→ q′ if (q, q′) ∈ ↪→.
Let A = 〈AP,L, l0, C,E, L〉 be a timed automaton. The semantics of a timed

automaton is described by a TTS. The timed transition system T (A) generated
by A is defined as T (A) = (AP,Q, q0,→, ↪→, L), where

– Q = {(l, v) | l ∈ L, v ∈ IR≥0
C}. Intuitively, a state (l, v) corresponds to A

being in location l and the clock valuation is v. Note that due to the real
nature of time, this set is generally uncountable.

– Let vinit denote the valuation such that vinit(x) = 0 for all x ∈ C. Then
q0 = (l0, vinit).

– → = ∪l∈L ∪
v∈IRC

≥0
∪d∈IR≥0

{(l, v), d, (l, v + d)}.

– ↪→= {((l, v), (l′, v′)) |(l, v), (l′, v′) ∈ Q and there is an edge e = (l, g, R, l′) ∈ E
and v |= g and v′ = v[R←0]}. That is, if there exists a discrete transition from
l that is guarded by g and leads to l′ while resetting the clocks in R, then if
v |= g, the TTS can move from (l, v) to (l, v[R←0]).

A run of a timed automaton is a sequence of the form π = (l0, v0), (l0, v′
0), (l1, v1),

(l1, v′
1), (l2, v2), . . . where for all i ≥ 0, we have (li, vi)

di−→ (li, v′
i), i.e., v′

i = vi+di

and ((li, v′
i), (li, vi+1)) ∈↪→. Note that π is a continuous run in the sense that for

a delay transition (li, vi)
di−→ (li, v′

i), the run also includes all states (li, vi + d)
for all 0 ≤ d ≤ di, where v′

i = vi +di. For a time t≥0, we denote by π[t] the state
in π that is reached after elapsing time t.

Given a state s ∈ Q of a TTS, we denote by Paths(s), the set of all runs
starting at s. Let AP be a set of action propositions. The satisfaction relation
for TCTL formulas is as follows.

– s |= p, for p ∈ AP , iff p ∈ L(s).
– s |= ¬Φ iff s �|= Φ.
– s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2.

Timed Vacuity 443

– s |= AΦ1U
JΦ2 iff for all paths π ∈ Paths(s), there exists a time t ∈ J such

that π[t] |= Φ2 and for all t′ < t, we have π[t′] |= Φ1.
– s |= EΦ1U

JΦ2 iff there exists a path π ∈ Paths(s) and a time t ∈ J
such that π[t] |= Φ2 and for all t′ < t, we have π[t′] |= Φ1.

We say that a timed automaton A satisfies a TCTL formula Φ if the initial
state (l0, v0) of T (A) satisfies Φ.

Consider a timed automaton A = 〈AP,L, l0, C,E, L〉. For each clock x ∈ C,
let Mx be the maximum constant that appears in A. We say that two valuations,
v and v′, are region equivalent with respect to A, denoted v ≡ v′, iff the following
conditions are satisfied.

1. ∀x ∈ C, we have that v(x) > Mx iff v′(x) > Mx, and
2. ∀x ∈ C, if v(x) ≤ Mx, then
v(x)� =
v′(x)� and �v(x)� = �v′(x)�, and
3. for each pair of clocks x, y ∈ C, if v(x) ≤ Mx and v(y) ≤ My, we have

v(x) < v(y) iff v′(x) < v′(y).

For a given valuation v, let [v] = {v′|v′ ≡ v}. Note that the region equivalence is
actually an equivalence relation. Every such equivalence class is called a region.
Note that the number of regions is exponential in the number of clocks of a
timed automaton. A tuple of the form 〈l, [v]〉, where l ∈ L is a location and [v]
is a region is called a symbolic state of A. Two valuations v and v′ of a symbolic
state 〈l, [v]〉 satisfy the same set of TCTL formulas [1].

A region graph is defined using the transition relation � between symbolic
states which is as follows:

– (l, [v]) � (l, [v′]) if there exists a d ∈ IR≥0 such that (l, v) d−→ (l, v′) and
– (l, [v]) � (l′, [v′]) if (l, v) ↪→ (l′, v′).

We note that the transition relation is finite since there are finitely many sym-
bolic states. The size of a region graph equals the sum of the number of regions
and the number of transitions in it. The region equivalence relation partitions
the uncountably many states into a finite number of symbolic states.

2.2 Timed Vacuity

Consider a TCTL formulas Φ. Let ψ be a subformula of Φ, and let ξ be a
TCTL formula. We use Φ[ψ ← ξ] to denote the TCTL formula obtained from
Φ by replacing ψ by ξ.2. Consider a TA A such that A satisfies Φ. We say
that a subformula ψ of Φ does not affect the satisfaction of Φ in A (ψ does not
affect Φ in A, for short) if A satisfies Φ[ψ ← ξ] for every formula ξ. The above
definition adapts the propositional approach of [6,24] to TCTL, and as we show
in Lemma 2, checking this type of vacuity is easy and does not add challenges
that are unique to the real-time setting. We thus focus on mutations applied to
the real-time operator of TCTL.
2 As discussed on Sect. 1, we assumes that ψ appears once in Φ or focus on a single

occurrence of ψ in Φ.

444 H. Chockler et al.

Consider two intervals J, J ′ ⊆ IR≥0 such that J ′ ⊂ J . Clearly, the TCTL
formula QΦ1U

JΦ2, for Q ∈ {A,E}, is weaker than the formula QΦ1U
J ′

Φ2. In
timed vacuity, we are interested in formulas of the form QΦ1U

JΦ2 in which the
interval J can be mutated. Rather than considering all subsets of J , we restrict
attention to subsets that are intervals or the union of two intervals where the
interval boundaries are integers. Formally, we say that J ′ is a strengthening of
J if J ′ ⊂ J and either J ′ is an interval or J ′ = J1 ∪ J2 for intervals J1 and J2.
For example, (2, 5] and [2, 3) ∪ (4, 5] are both strengthenings of [2, 6). Dually, J ′

is a weakening of J if J ⊂ J ′ and either J ′ is an interval or J ′ = J1 ∪ J2 for
continuous J1 and J2. We note here that dividing J into more than two intervals
might not capture the user’s intent.

A subformula ψ of Φ may have either positive polarity in Φ, namely be in
the scope of an even number of negations, or a negative polarity in Φ, namely
be in the scope of an odd number of negations (note that an antecedent of an
implication is considered to be under negation).

Consider a TA A and a TCTL formula Φ such that A |= Φ. Let ψ = QΦ1U
JΦ2

be a subformula of Φ. We say that the ψ is not tight in Φ with respect to A if
ψ is in a positive polarity and J can be strengthened to J ′ or ψ is in a negative
polarity and J can be weakened to J ′ and we have that A |= Φ[ψ ← QΦ1U

J ′
Φ2].

We say that Φ is timed-vacuous in A if A |= Φ and has a subformula ψ that is
not tight in Φ.

3 TCTL+ and Its Model Checking

Recall that in the definition of strengthening and weakening, we allowed the
replacement of an interval J by the union of intervals. In order to handle such
tightenings, we introduce an extension of TCTL, called TCTL+, where path
formulas may be a disjunction of formulas of the form Φ1U

JΦ2. The semantics
is extended in the expected way. That is, s |= A

∨
1≤i≤k Φi

1U
JiΦi

2 iff for all
paths π ∈ Paths(s) and for every 1 ≤ i ≤ k, there exists a time ti ∈ Ji such
that π[ti] |= Φi

2 and for all t′i < ti, we have π[t′i] |= Φi
1. The definition for the

existential case is similar.

Remark 1. In CTL, allowing Boolean operations within the path formulas does
not extend the expressive power [17]. In particular, the formula A(Fp ∨ Fq),
for p, q ∈ AP , is equivalent to the CTL formula AF (p ∨ q). We conjecture that
in the timed setting, Boolean operations within the path formulas do extend
the expressive power. In particular, we conjecture that the TCTL+ formula
A(F [1,2]p ∨ F [3,4]q), does not have an equivalent TCTL formula. We also think
that a technical proof for the above statement is highly non-trivial.

In this section we show that model-checking of TCTL+ formulas is PSPACE-
complete. First, recall that TCTL model-checking is PSPACE-complete [1].
TCTL model-checking is done by reducing it to CTL model-checking over region
graph. Let A = 〈AP,L, l0, C,E, L〉 be a TA and Φ be a TCTL formula and we
want to check if A |= Φ. Let z be a clock that is not in the set C of clocks of the

Timed Vacuity 445

TA A. Consider the TTS T (A) generated by A. For a state s = (l, v) in T (A),
we denote by s[z = 0], the state (l, v′) such that v′ ∈ IRC∪{z}

≥0 and v′(z) = 0 and
for all clocks x ∈ C, we have v′(x) = v(x). We construct the region graph of A
with this additional clock z such that z is never reset. Now for every state s in
the TTS, we say that s |= E(Φ1U

JΦ2) iff s[z = 0] |= E(Φ1U(z ∈ J ∧ Φ2)) and
s |= A(Φ1U

JΦ2) iff s[z = 0] |= A(Φ1U(z ∈ J ∧ Φ2)).

Algorithm 1. Computation of satisfaction set of TCTL+ formula Φ =
A(Φ1U

J1Φ2 ∨ Φ3U
J2Φ4)

Require: Region graph RA of TA A extended with a fresh clock z that is never reset
and a TCTL+ formula Φ

Ensure: Compute Sat(Φ)
1: T1 ← Sat(z ∈ J1) ∩ Sat(Φ2) � T1 is the set of vertices (regions) all whose
2: successors are in Φ1U

J1Φ2

3: T2 ← Sat(z ∈ J2) ∩ Sat(Φ4) � T2 is the set of vertices (regions) all whose
4: successors are in Φ3U

J2Φ4

5: T3 ← ∅ � T3 is the set of vertices (regions) from which some paths satisfy
6: Φ1U

J1Φ2 while the other paths satisfy Φ3U
J2Φ4

7: T ← T1 ∪ T2 � The satisfaction set of Φ, finally also includes T3

8: T4 ← ∅ � T4 is the set of regions r for which all successor regions
9: are in T but r itself is not in the satisfaction set T

10: while {r ∈ Sat(Φ1) ∪ Sat(Φ3) − (T ∪ T4) | Post(r) ⊆ T} �= ∅ do
11: Let r ∈ Sat(Φ1) ∪ Sat(Φ3) − (T ∪ T4) | Post(r) ⊆ T
12: if r ∈ Sat(Φ1) − T then
13: if Post(r) ⊆ T1 then
14: T1 ← T1 ∪ {r}
15: T ← T ∪ {r}
16: end if
17: end if
18: if r ∈ Sat(Φ2) − T then
19: if Post(r) ⊆ T2 then
20: T2 ← T2 ∪ {r}
21: T ← T ∪ {r}
22: end if
23: end if
24: if r ∈ Sat(Φ1) ∩ Sat(Φ3) − T and Post(r) ⊆ T then
25: if there exist two distinct successors r1 and r2 of r such that r1 ∈ T1 − T2

and r2 ∈ T2 − T1 or there exists a successor r′ of r such that r′ ∈ T3 then
26: T3 ← T3 ∪ {r}
27: T ← T ∪ {r}
28: end if
29: end if
30: if r /∈ T then T4 = T4 ∪ {r}
31: end if
32: end while
33: return T

446 H. Chockler et al.

Let RA be the region graph of TA A. The model-checking procedure involves
CTL model-checking (l0, vinit)[z = 0] |= Φ′, over a region graph over the set
C ∪ {z} of clocks such that clock z is never reset. The formula Φ′ is obtained
from Φ by modifying the path formulas by introducing subformulas of the form
z ∈ J as mentioned above.

For a TCTL+ formula Φ, the set of regions in the region graph of A that
satisfy Φ is denoted by Sat(Φ). In Algorithm 1, we give a method to compute
the satisfaction set for the TCTL+ formula Φ = A(Φ1U

J1Φ2 ∨ Φ3U
J2Φ4). Given

a region r in a region graph, we denote by Post(r), the set of regions that can
be reached from r in a single step, i.e. using the transition � once.

The running time of Algorithm 1 is proportional to the size of the region
graph and the size of the TCTL+ formula. It is easy to see that it runs in
PSPACE. We note here that given a TA and a TCTL formula, model-checking
of TCTL also takes time that is proportional to the size of the region graph of
the TA and the size of the TCTL formula.

Lemma 1. Algorithm 1 runs in PSPACE.

In a TCTL+ formula Φ, if we have arbitrary number of disjunctions of the form
Φ11U

JΦ12 , Φ21U
JΦ22 , . . . , Φn1U

JΦn2 , then we need to maintain different subsets
of the set I = {J1, . . . , Jn} of intervals. For each subset I of I, we have the set
of vertices (regions) from which for every member J ∈ I, there exists a path
satisfying the disjunct Φ1U

JΦ2. Hence with arbitrary number of intervals, the
algorithm is also exponential in the size of the formula, but is still in PSPACE.

Showing PSPACE-hardness for TCTL+ model-checking follows directly from
the complexity of TCTL model-checking, since the syntax of TCTL is a proper
subset of the syntax of TCTL+. Thus we have the following theorem.

Theorem 1. The model-checking problem for TCTL+ is PSPACE-complete.

4 Satisfying a TCTL Formula Timed Vacuously

In this section, we study the complexity of checking vacuity and timed vacuity
in TCTL. We describe algorithms for strengthening an interval J in formulas of
the form QΦ1U

JΦ2 and algorithms for checking timed vacuity.

4.1 Complexity Results

We start with the propositional approach, where a subformula ψ of Φ does not
affect the satisfaction of Φ in a TA A iff A satisfies Φ[ψ ← ξ] for all formulas ξ.
This definition is not effective, as it requires evaluating Φ[ψ ← ξ] for all formulas
ξ. We first prove that as in the case of CTL [24], also in TCTL it is possible to
check only the replacements of ψ by true and false.

Lemma 2. For every subformula ψ of a TCTL formula Φ and for every TA
A such that A |= Φ, if A |= Φ[ψ ← ⊥], then for every formula ξ, we have
A |= Φ[ψ ← ξ].

Timed Vacuity 447

Proof. We prove that for every formula ξ, the implications A |= Φ[ψ ← ⊥] →
A |= Φ[ψ ← ξ]. This can be shown by proving Φ[ψ ← ⊥] → Φ[ψ ← ξ]. The proof
is by structural induction on the syntax of TCTL formulas.

We only need to prove the induction step for the subformulas with a timed
component, as the other cases are proved in [24].

Let Φ = E(Φ1U
JΦ2). Thus we want to prove that for every formula ξ, we

have E(Φ1[ψ ← ⊥]UJΦ2[ψ ← ⊥]) → E(Φ1[ψ ← ξ]UJΦ2[ψ ← ξ]).
By induction hypothesis, we have that E(Φ1[ψ ← ⊥]) → E(Φ1[ψ ← ξ]) and

E(Φ2[ψ ← ⊥]) → E(Φ2[ψ ← ξ]).
Suppose A |= E(Φ[ψ ← ⊥]). Hence we have a time t ∈ J and a run

ρ = (l0, v0)
d0−→ (l0, v0 + d) τ−→ (l1, v1)

d1−→ . . .
di−→ (li, vi) . . . such that

t =
∑i

j=0 dj , and si = (li, vi) |= E(Φ2[ψ ← ⊥]). By the induction hypothe-
sis, (li, vi) |= E(Φ2[ψ ← ξ]). Also since A |= E(Φ[ψ ← ⊥]), we have that over all
the intermediate (possibly uncountably many) states s in ρ from (l0, v0) to si and
possibly excluding si, we have s |= E(Φ1[ψ ← ⊥]). Again, from the induction
hypothesis, we have that s |= E(Φ1[ψ ← ξ]). Hence A |= E(Φ1[ψ ← ξ]UJΦ2[ψ ←
ξ]), i.e., A |= Φ[ψ ← ξ].

The proof for A(Φ1U
JΦ2) is similar. ��

Theorem 2. Given a TA A, a TCTL formula Φ and a subformula ψ of Φ
such that A |= Φ, the problem of checking whether ψ does not affect Φ in A is
PSPACE-complete.

Proof. We prove that the complementary problem, of deciding whether ψ affects
Φ in A is PSPACE-complete. Since PSPACE is closed under complementation,
the result follows. The membership follows from the fact that whether ψ affects
the satisfaction of Φ in A can be decided by checking whether A |= Φ[ψ ← ⊥]
and that TCTL model-checking is PSPACE-complete [1].

We prove PSPACE-hardness using a reduction from TCTL model checking.
We construct a formula ¬Φ′, a subformula ψ of ¬Φ′ and a TA A′ such that
A |= Φ iff ψ affects the satisfaction of ¬Φ′ in A′. Let A = 〈AP,L, l0, E,C, L〉.
We define A′ = 〈AP ′,L, l0, E,C, L′〉, such that AP ′ = AP ∪{q, r} and q, r /∈ AP
and L′(l0) = L(l0) ∪ {r} and L′(l) = L(l) for l �= l0 ∈ L. Let Φ′ = q ∧ Φ. Clearly
A′ �|= Φ′ and hence A′ |= ¬Φ′. If A |= Φ, then considering ψ = q and ξ = r,
we have that A′ |= Φ′[ψ ← ξ], and hence A′ �|= ¬Φ′[ψ ← ξ], i.e., q affects the
satisfaction of Φ′ in A′. Now consider the case A �|= Φ. Then also A′ |= Φ and
hence A′ �|= q ∧ Φ = Φ′. Thus if A �|= Φ, we still have A′ |= ¬Φ. For all ξ, we
have A′ �|= Φ′[ψ ← ξ], and hence A′ |= ¬Φ′[ψ ← ξ], i.e. q does not affect the
satisfaction of Φ′ in A′. ��

We now proceed to timed vacuity. In Theorem 3 below, we use a reduction
from the set consisting of the true quantified boolean formulas (TQBF) which
is a canonical PSPACE-complete problem.

Theorem 3. Given a TA A, a formula Φ such that A |= Φ and a subformula
ψ = QΦ1U

JΦ2 of Φ (where Q stands for a path quantifier A or E), the problem
of checking whether ψ is not tight in Φ with respect to A is PSPACE-complete.

448 H. Chockler et al.

Fig. 1. Timed Automata encoding QBF in the proof of Theorem 3

Proof. We show that the complementary problem, of deciding whether ψ is tight
in Φ with respect to A is PSPACE-complete. Since PSPACE is closed under
complementation, the result follows. The membership follows from the fact that
whether ψ is tight in Φ with respect to A can be decided by checking whether
A |= Φ[ψ ← QΦ1U

J ′
Φ2] where J ′ is a largest proper subset of J when ψ has

a positive polarity and J ′ is a smallest proper superset of J when ψ has a
negative polarity and this can be done in PSPACE. For example, if J is of the
form [m1,m2] and ψ has a positive polarity, then we consider replacing J with
both (m1,m2] and [m1,m2), while if ψ has a negative polarity, then we consider
replacing J with both (m1 − 1,m2] and [m1,m2 + 1).

For the lower bound, we show a reduction from TQBF3, which is known
to be PSPACE-complete [28]. Let α = Q1p1.Q2p2 . . . Qnpn.β(p1, . . . , pn) be a
quantified boolean formula (QBF), such that β is a propositional formula over
the propositions p1, . . . , pn, and each Qi ∈ {∃,∀} is an existential or a universal
quantifier.

Consider the timed automaton A = 〈{p}, {l0, . . . , ln}, l0, C,E, L〉 shown in
Fig. 1. The set of clocks C is {x, x1, . . . , xn}, i.e., we have a clock x and for each
proposition pi, with 1 ≤ i ≤ n, we have a clock xi. The guard g is obtained
from β by replacing each pi in β with the atomic formula xi = n + 1. For
example, considering n = 3, if β(p1, p2, p3) = (p1 ∨ ¬p2) ∧ (¬p1 ∨ p3), then
g = (x1 = 4 ∨ x2 �= 4) ∧ (x1 �= 4 ∨ x3 = 4). We have L(ln+1) = {p}, and for all
0 ≤ i ≤ n, we have L(li) = ∅.

For every run of A, for every 1 ≤ i ≤ n, the location li is reached at time
i. Let v be the clock valuation at time n when location ln is reached. Note that
v(x) = n, and for every 1 ≤ i ≤ n, we have that v(xi) equals n if at location li−1,
the edge (li−1, l

′
i) is taken and equals n − i, if at location li−1, the edge (li−1, li)

is taken. There are 2n different paths from l0 to ln, and each can be viewed as
encoding a different truth assignment for the n propositions p1, . . . , pn. Location
ln+1 is reached at time n + 1 with clock valuation v + 1. Let Φ be the TCTL
formula Q′

1F
[0,1)(Q′

2F
[1,1](Q′

3F
[1,1] . . . Q′

nF [1,1](EF [1,1]p)) . . .) with Q′
i = A if

Qi = ∀ and Q′
i = E if Qi = ∃ for all 1 ≤ i ≤ n. Note that A �|= Φ since

location l1 is reached only after 1 unit of time elapses and we have Q′
1F

[0,1).
Thus A |= ¬Φ. We claim that if α is satisfiable, then the subformula ψ = Φ of
¬Φ is tight in Φ with respect to A. Note that ψ has a negative polarity in ¬Φ,

3 A similar construction has been used in [1] for showing the lower bound of model-
checking TCTL formulas, but the proof we have here is different and more involved.

Timed Vacuity 449

and hence we consider weakening the interval [0, 1) in Q′
1F

[0,1). We consider the
minimum possible weakening of [0, 1) which gives us the interval [0, 1]. Let Φ′

be the formula obtained from Φ by replacing Q′
1F

[0,1) with Q′
1F

[0,1]. Note that
A |= Φ′ and hence A �|= ¬Φ′. Thus the formula ψ = Φ is tight in ¬Φ w.r.t. A.

On the other hand, if α is not satisfiable, then also A �|= Φ and hence A |= ¬Φ,
and no matter how we weaken the interval F [0,1) in Q′

1F
[0,1) in ¬Φ, we have that

A satisfies the resultant formula. Thus if α is not satisfiable, then ψ is not tight
in Φ with respect to A, and we are done. ��
Theorem 4. Given a TA A and a TCTL formula Φ, checking whether Φ is
timed vacuous in A is in PSPACE.

Proof. By Theorem 3, for a given ψ, the problem of checking whether ψ is not
tight is in PSPACE. Since there are there are |Φ| subformulas, we are done. ��

4.2 Algorithms for Tightening TCTL Formulas

In this section we propose some algorithms for tightening TCTL formulas of the
form QΦ1U

JΦ2, for Q ∈ {A,E}. We consider two types of tightening that are
the most interesting ones from a user’s perspective: One in which the interval
J is strengthened to an interval that ends at the earliest possible time, and the
other one in which J is strengthened to the smallest possible span.

Given a TA A, a TCTL formula Φ and a subformula ψ of Φ, we propose an
algorithm that strengthens J so that it ends at the earliest possible time. The
algorithm proceeds as follows. Consider a path formula ψ = Φ≺l,r

1 Φ2, where
≺ l ∈ {[l, (l} and r �∈ {r), r]}, and assume that ψ appears in a positive polarity.
Then, ψ is tightened to ψ′ = Φ1U

≺l′,r′
Φ2 if there is no ψ′′ = Φ1U
≺l′′,r′′
Φ2

such that A |= Φ[ψ ← ψ′′] and one of the following holds:

1. r′′ < r′.
2. r′′ = r′, ψ′′ = Φ1U

≺l′′,r′)Φ2, and ψ′ = Φ1U
≺l′,r′]Φ2.

3. r′′ �= r′ � and l′ < l′′.
4. r′′ �= r′ �, l′ = l′′, ψ′′ = Φ1U

(l′,r′
Φ2, and ψ′ = Φ1U
[l′′,r′
Φ2.

Given a TA A, a TCTL formula Φ such that A |= Φ, and a subformula ψ =
Φ1U

≺l,r
Φ2 of Φ, we first fix the right boundary, i.e. change r � to r′ �′ and get
a formula ψ′ = Φ1U

≺l,r′
′
Φ2. The bound is found by a binary search on the right

boundary, while keeping ≺ l fixed and each time dividing the current interval
in two. Once the right boundary is fixed in the subformula, the left boundary is
tightened in a similar way.

The algorithm makes O(log(n)) calls to TCTL model-checking procedure
where n = r − l.

With inputs from a user, we can further tighten TCTL formulas is to split
the interval, resulting in a TCTL+ formula. As the split might result in a pair
of intervals such that their union is smaller than the original interval, the user
might choose this tightening option. The split and tightening algorithm proceeds
as follows. For a formula ψ = Φ1U

JΦ2, let J =≺ l, r �. The user can specify

450 H. Chockler et al.

how to split the J , i.e. remove an interval I from J and check if A satisfies the
formula Φ[ψ ← (Φ1U

≺l,inf(I)]Φ2)∨ (Φ1U
[sup(I),r
]Φ2)]. If A satisfies the formula,

then the intervals in each of the disjunct can be strengthened subsequently. A
user can actually use the algorithm to strengthen an interval J to J ′ and then
split J ′ leading to a TCTL+ formula.

The second interesting algorithm tightens a subformula Φ1U
JΦ2 by strength-

ening J to the smallest possible single interval J ′ ⊆ J . This algorithm performs
a binary search on the length of J ′ and makes O(n log(n)) calls to TCTL model-
checking procedure (compared with the naive approach that tries all possibilities,
hence making O(n2) calls).

If ψ has a negative polarity then we weaken J to get the largest possible
interval. We argue below that the weakening too can be done in PSPACE. If
ψ = Φ1U

JΦ2 has a negative polarity then we weaken J to J ′. Suppose J =≺
m1,m2 �, where ≺ m1 ∈ {[, (} and m2 �∈ {],)}. We reduce the left boundary of
the interval, i.e. replace ≺ m1 with [0, (0, [1, (1, . . . , [m1 one after another when
≺ m1 = (m1 and replace ≺ m1 with [0, (0, [1, (1, . . . , (m1 − 1 when ≺ m1 = [m1

one after another and for each replacement check whether A still satisfies the
formula obtained after the replacement.

Once we fix the left boundary to ≺ l, we check how far the right boundary can
be increased. Finding this maximum right boundary is tricky. We first replace
m2 � with ∞) and check if the formula obtained by replacing J with J ′ =≺ l,∞)
in ψ is satisfied by A. If A satisfies the formula obtained by replacing J with
J ′, we are done. Otherwise, Let R be the number of regions in the region graph
of A. All valuations of a region satisfy the same set of TCTL formulas [1] and
the amount by which the right boundary of J can be increased is related to the
number of regions in the region graph of A. We note that from any region r,
a given region r′ can be reached within a maximum time of R time units. If
A does not satisfy the formula obtained by replacing J with J ′, then we find
the maximal weakening of the right interval by replacing m2 � with m2 + R],
m2 + R), m2 + R − 1], . . . , m2] one after another when m2 � is m2) and by
replacing m2 � with m2 + R], m2 + R), m2 + R − 1], . . . , m2 + 1) one after
another when m2 � is m2] and checking if A satisfies the formula obtained after
the replacement.

5 Ranking Vacuity Results

In [15], the authors suggest to rank vacuity results for LTL according to their
significance, where significance is defined using probability. The probabilistic
model in [15] is that for each atomic proposition p and for each state in a random
computation π, the probability of p to hold in the state is 1

2 . Then, pr(Ψ), namely
the probability of an LTL formula Ψ , is defined as the probability of Ψ to hold in a
random infinite computation. To see the idea behind the framework, consider the
LTL specification G(req → F grant) and its mutations G(¬req) and GF grant .
It not hard to see that in the probabilistic model above, the probability of
G(¬req) to hold in a random infinite computation is 0, whereas the probability

Timed Vacuity 451

of GF grant to hold is 1. It is argued in [15] that the lower is the probability
of the mutation to hold in a random computation, the higher the vacuity rank
should be. In particular, vacuities in which the probability of the mutation is 0,
as is the case with G(¬req), should get the highest rank and vacuities in which
the probability is 1, as is the case with GF (grant), should get the lowest rank.
Intuitively, when a mutation with a low probability holds, essentially against all
chances, then the user should be more alarmed than when a mutation with a
high probability holds, essentially as expected.

Since the problem of calculating pr(Ψ) is PSPACE-complete [14,15], an effi-
cient way to obtain an estimated probability of satisfaction in random computa-
tions has been proposed in [15]. Rather than a probability in [0, 1], the estimation
is three valued, returning 0, 1, or 1

2 , with 1
2 indicating that the estimated prob-

ability is in (0, 1). Extending the framework to TCTL involves two technical
challenges: a transition to a branching-time setting, and a transition to a timed
setting. As we show below, once we compensate on an estimated reasoning, the
transitions do not require new techniques.

Let us start with the transition to the branching setting. Recall that the
probabilistic model in [15] defines pr(Ψ) as the probability of Ψ to hold in a
random infinite computation. Thus, [15] ignores the structure of the analyzed
system, in particular the fact that infinite computations are generated by finitely
many states. This makes a difference, as, for example, the probability of Gp to
hold in a computation generated by n states is 1

2n , whereas pr(Gp) = 0. In the
branching setting, ignoring the structure of the analyzed system plays an addi-
tional role, as it abstracts the branching degree. For example, the probability of a
CTL formula AXp to hold in a state with n successors is 1

2n (see also [10]). Note,
however, that once we move to a three-valued approximation, the approximated
probability of AXΦ to hold in a state agrees with the approximated probability
of Φ to hold in a state, and is independent of the number of successors! Moreover,
the same holds for existential path quantification: the approximation probability
of EXΦ agrees with that of Φ. It follows that the calculation of the estimated
probability of a CTL formula can ignore path quantification and proceeds as the
one for LTL described in [15].

We continue to the timed setting and TCTL formulas. Our probabilistic
model is based on random region graphs. Indeed, as the truth value of a TCTL
formula in a TTS is defined with respect to the induced region graph, we define
the probability of a TCTL formula as its probability to hold in a random region
graph. It is easy to see that for TCTL formulas of the form true, false, p, ¬Φ,
and Φ∨Ψ , the estimated probability defined for CTL is valid also for TCTL. We
continue to formulas of the form AΦUJΨ and EΦUJΨ . Here too, we can ignore
path quantification and observe that if the estimated probability of Ψ is 0, then
so is the estimated probability of ΦUJΨ , and similarly for 1. Another way for
ΦUJΨ to have estimated probability 1 is when the estimated probabilities of
Φ is 1, that of Ψ is in (0, 1), and J = [0,∞). In all other cases, the estimated
probability of ΦUJΨ is in (0, 1).

452 H. Chockler et al.

By the above, the three-valued estimated probability of a TCTL formula
Φ, denoted Epr(Φ), is defined by induction on the structure of the formula as
follows (with Q ∈ {A,E}).

– Epr(false) = 0.
– Epr(true) = 1.
– Epr(p) = 1

2 .
– Epr(¬Φ) = 1 − Epr(Φ).

– Epr(Φ ∧ Ψ) =

⎧⎨
⎩

1 if Epr(Φ) = 1 and Epr(Ψ) = 1
04 if Epr(Φ) = 0 or Epr(Ψ) = 0
1
2 otherwise.

– Epr(QΦUJΨ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if Epr(Ψ) = 0
1 if (Epr(Ψ) = 1) or

(Epr(Φ) = 1, Epr(Ψ) = 1
2 , and J = [0,∞))

1
2 otherwise.

Recall that we calculate the three-valued estimated probability for the muta-
tions of a given TCTL specification. Thus, the calculation may also be applied
for TCTL+ formulas. Fortunately, the estimated probability of a disjunction∨

1≤i≤k ΦiUJiΨ i follows the same lines as these in which k = 1. In particular,
for the purpose of calculating the estimated probability of mutations, we know
that the formula at hand is obtained by strengthening QΦUJΨ by splitting J to
intervals that form a strict subset of it. Hence, we can assume that the formula
is of the form Q

∨
1≤i≤k ΦUJiΨ (that is, same Φi and Ψ i in all disjuncts), and

the union of the intervals Ji is a strict subset of [0,∞). Accordingly, we have the
following.

– Epr(Q
∨

1≤i≤k ΦUJiΨ) =

⎧⎨
⎩

0 if Epr(Ψ) = 0
1 if Epr(Ψ) = 1
1
2 otherwise.

Note that the estimation not only loses preciseness when the probability is
in (0, 1) but also ignores semantic relations among subformulas. For example,
Epr(p∧¬p) = 1

2 , whereas pr(p∧¬p) = 0. Such relations, however, are the reasons
to the PSPACE-hardness of calculating pr(ϕ) precisely, and the estimation in
Epr is satisfactory, in the following sense:

Theorem 5. For every TCTL+ formula Φ, the following hold.

– If pr(Φ) = 1, then Epr(Φ) ∈ {1, 1
2}, if pr(Φ) = 0, then Epr(Φ) ∈ {0, 1

2}, and
if pr(Φ) ∈ (0, 1), then Epr(Φ) = 1

2 .
– Epr(Φ) be calculated in linear time.

By Theorem 5, ranking of mutations for TCTL formulas by estimated prob-
ability of their mutations can be done in linear time. Now, one can ask how
helpful the estimation is. As demonstrated in [15], the estimation agrees with
the intuition of designers about the importance of vacuity information. In fact,
when Epr(Φ) does not agree with pr(Φ), the reason is often inherent vacuity
in the specification [18], as in the example of p ∧ ¬p above, where we want the
formula to be ranked as alarming.

Timed Vacuity 453

6 Conclusions

Vacuity detection is a widely researched problem, with most commercial model-
checking tools including an automated vacuity check. In this paper, we extended
the definition of vacuity to the timed logic TCTL and demonstrated that vacuous
satisfaction can indicate problems in the timing aspects of the modelling or the
specification. We considered strengthening of TCTL properties resulting from
tightening the interval J in the operator UJ . While we can tighten the interval
in many different ways, we considered only the tightenings that preserve the
user’s intent: tightening the right bound (forcing the eventuality to happen as
early as possible), shortening the interval (forcing it to be tighter), and replacing
the interval J with a strictly smaller union of its two sub-intervals J1 and J2

(allowing the tightening be more precise). We note that, in principle, it is possible
to examine a replacement of J by a union of a larger number of sub-intervals,
incurring only a polynomial increase in runtime. Replacing an interval J with J1∪
J2 results in a formula that is not in TCTL. We introduced an extension TCTL+

of TCTL, which includes eventualities occurring in a union of a constant number
of intervals and proved that TCTL+ model-checking is PSPACE-complete, thus
it is not higher than that of TCTL. We also proved that the vacuity problem
for TCTL is in PSPACE, hence it is not harder than model checking. Finally,
as extending vacuity to consider real-time leads to a high number of vacuity
results, we observed that the framework for ranking of LTL vacuity results by
their approximated importance can be applied to TCTL as well.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Com-
put. 104(1), 2–34 (1993)

2. Alur, R., Dill, D.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–236 (1994)

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996)

4. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol.
600, pp. 74–106. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031988

5. Armoni, R., et al.: Enhanced vacuity detection in linear temporal logic. In: Hunt,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 368–380. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6 35

6. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in
ACTL formulas. Formal Methods Syst. Des. 18(2), 141–162 (2001)

7. Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular
vacuity. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp.
191–206. Springer, Heidelberg (2005). https://doi.org/10.1007/11560548 16

8. Chechik, M., Gheorghiu, M., Gurfinkel, A.: Finding environment guarantees. In:
Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 352–367. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71289-3 27

https://doi.org/10.1007/BFb0031988
https://doi.org/10.1007/978-3-540-45069-6_35
https://doi.org/10.1007/11560548_16
https://doi.org/10.1007/978-3-540-71289-3_27

454 H. Chockler et al.

9. Chockler, H., Gurfinkel, A., Strichman, O.: Beyond vacuity: towards the strongest
passing formula. In: Proceedings of the 8th International Conference on Formal
Methods in Computer-Aided Design, pp. 1–8 (2008)

10. Chockler, H., Halpern, J.Y.: Responsibility and blame: a structural-model app-
roach. In: Proceedings of the 19th International Joint Conference on Artificial
Intelligence, pp. 147–153 (2003)

11. Chockler, H., Strichman, O.: Before and after vacuity. Formal Methods Syst. Des.
34(1), 37–58 (2009)

12. Clarke, E., Grumberg, O., Long, D.: Verification tools for finite-state concurrent
systems. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993.
LNCS, vol. 803, pp. 124–175. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58043-3 19

13. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of
counterexamples and witnesses in symbolic model checking. In: Proceedings of the
32st Design Automation Conference, pp. 427–432. IEEE Computer Society (1995)

14. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42, 857–907 (1995)

15. Ben-David, S., Kupferman, O.: A framework for ranking vacuity results. In: Van
Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 148–162. Springer,
Cham (2013). https://doi.org/10.1007/978-3-319-02444-8 12

16. Dokhanchi, A., Hoxha, B., Fainekos, G.E.: Formal requirement elicitation
and debugging for testing and verification of cyber-physical systems. CoRR,
abs/1607.02549 (2016)

17. Emerson, E.A., Halpern, J.Y.: Sometimes and not never revisited: on branching
versus linear time. J. ACM 33(1), 151–178 (1986)

18. Fisman, D., Kupferman, O., Sheinvald-Faragy, S., Vardi, M.Y.: A framework for
inherent vacuity. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp.
7–22. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01702-5 7

19. Gurfinkel, A., Chechik, M.: Extending extended vacuity. In: Hu, A.J., Martin, A.K.
(eds.) FMCAD 2004. LNCS, vol. 3312, pp. 306–321. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30494-4 22

20. Gurfinkel, A., Chechik, M.: How vacuous is vacuous? In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 451–466. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24730-2 34

21. Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In: de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS,
vol. 600, pp. 226–251. Springer, Heidelberg (1992). https://doi.org/10.1007/
BFb0031995

22. Kupferman, O.: Sanity checks in formal verification. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 37–51. Springer, Heidelberg (2006).
https://doi.org/10.1007/11817949 3

23. Kupferman, O., Li, W., Seshia, S.A.: A theory of mutations with applications to
vacuity, coverage, and fault tolerance. In: Proceedings of the 8th International
Conference on Formal Methods in Computer-Aided Design, pp. 1–9 (2008)

24. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Softw.
Tools Technol. Transf. 4(2), 224–233 (2003)

25. Namjoshi, K.S.: An efficiently checkable, proof-based formulation of vacuity in
model checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
57–69. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 5

https://doi.org/10.1007/3-540-58043-3_19
https://doi.org/10.1007/3-540-58043-3_19
https://doi.org/10.1007/978-3-319-02444-8_12
https://doi.org/10.1007/978-3-642-01702-5_7
https://doi.org/10.1007/978-3-540-30494-4_22
https://doi.org/10.1007/978-3-540-24730-2_34
https://doi.org/10.1007/BFb0031995
https://doi.org/10.1007/BFb0031995
https://doi.org/10.1007/11817949_3
https://doi.org/10.1007/978-3-540-27813-9_5

Timed Vacuity 455

26. Purandare, M., Somenzi, F.: Vacuum cleaning CTL formulae. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 485–499. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45657-0 39

27. Purandare, M., Wahl, T., Kroening, D.: Strengthening properties using abstraction
refinement. In: Proceedings of Design, Automation and Test in Europe (DATE),
pp. 1692–1697. IEEE (2009)

28. Stockmeyer, L.J.: On the combinational complexity of certain symmetric boolean
functions. Math. Syst. Theory 10, 323–336 (1977)

https://doi.org/10.1007/3-540-45657-0_39

	Timed Vacuity
	1 Introduction
	2 Preliminaries
	2.1 TCTL, Timed Automata, and Timed Transition Systems
	2.2 Timed Vacuity

	3 TCTL+ and Its Model Checking
	4 Satisfying a TCTL Formula Timed Vacuously
	4.1 Complexity Results
	4.2 Algorithms for Tightening TCTL Formulas

	5 Ranking Vacuity Results
	6 Conclusions
	References

