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Abstract. This paper presents our experience with formal verification
of C code that is automatically generated from Simulink open-loop con-
troller models. We apply the state-of-the-art commercial model checker
BTC EmbeddedPlatform to two Ford R&D prototype case studies: a
next-gen Driveline State Request and a next-gen E-Clutch Control.
These case studies contain various features (decision logic, floating-point
arithmetic, rate limiters and state-flow systems) implemented in discrete-
time logic. The diverse features and the extensive use of floating-point
variables make the formal code verification highly challenging. The paper
reports our findings, identifies shortcomings and strengths of formal
verification when adopted in an automotive setting. We also provide
recommendations to tool developers and requirement engineers so as
to integrate formal code verification into the automotive mass product
development.

1 Introduction

The Need for Formal Verification in Automotive. In the automotive industry
an increasing number of features are implemented in software. As a result the
complexity and dependence on produced artefacts is on the rise. Additionally,
customers demand more flexibility in selecting features leading to an ever increas-
ing number of feature flags and build configurations. The automotive functional
safety standard ISO 26262 defines a ASIL (Automotive Safety Integrity Level)
classification scheme and recommends appropriate verification techniques for
each ASIL level such as testing and formal verification. Testing focuses on show-
ing the presence of bugs, whereas the rigorous state exploration provided by
formal verification aims to show the absence of bugs. Although testing nowa-
days is commonplace, the application of formal verification to software artefacts
in the industry is in its infancy.

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 312–328, 2018.
https://doi.org/10.1007/978-3-319-95582-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_18&domain=pdf


Verifying Auto-generated C Code from Simulink 313

Verifying Simulink Models. This paper considers the use of formal verification
in a model-based system development process in the automotive domain. We
concentrate on Simulink, a popular model-based software development tool that
is widely used in the automotive industry. Simulink is developed by MathWorks
and provides a graphical environment for modeling, simulating and analyzing
dynamical systems. Formal verification of Simulink so far has primarily con-
centrated on the model level verification, which has been done with the first
generation of model checkers, i.e., verification tools that focus on verifying mod-
els of real artefacts. Experiences using the commercial Simulink Design Verifier
(SLDV) [1] as well as using model checkers such as NuSMV, SPIN and Uppaal
[2–4] have been reported.

Verifying C Code. In contrast, this paper considers the formal verification of
C code that is automatically generated from Simulink models. More precisely,
we aim at checking whether the requirements imposed on Simulink models are
satisfied by the C code that is obtained by push-button technology from these
models. Formal verification of auto-generated code is of interest as automo-
tive companies such as Ford Motor Company have been deploying more and
more auto-generated code to reduce development time and lower the risk of
introducing errors by manual coding. The auto-generated C code may differ
from the behavior of the Simulink model due to the lack of formal seman-
tics, or potential bugs in the translation procedure. Program code verification
is supported by second-generation model checkers such as CBMC [5], Ultimate
Automizer [6], and CPA Checker [7], to mention a few. As our aim is to integrate
formal code verification into Ford’s mass product development, we focus on a
commercial verification tool for code verification. We selected the BTC Embed-
dedPlatform1 (BTC, for short) as developed by BTC Embedded Systems AG.
This tool includes amongst others CBMC. It has been developed for industrial
use and a dedicated support team is available.

Approach. This paper reports on our findings by applying BTC on two R&D
prototype case studies: a next-gen Driveline State Request and a next-gen
E-Clutch Control. Their Simulink models consist of a few thousand blocks, and
their C code is about 2,000 and 5,000 lines of code, respectively. The formal ver-
ification of industrial-scale open-loop2 controller models is challenging especially
due to the diverse feature-set and the extensive use of floating-point variables, see
also [8]. We checked these models against 42 and 70 requirements, respectively,
which were made available to us in textual form as Microsoft Word documents.

Our Findings. The formal verification—including the formalization of the
requirements and running the verification tool—was carried out by researchers
having knowledge in model checking. Issues were found in 43% of the 112 require-
ments. 35 requirements were either ambiguous, incomplete or inconsistent, nine

1 https://www.btc-es.de/en/products/btc-embeddedplatform/.
2 Open-loop means that the model does not include the controlled environment.

https://www.btc-es.de/en/products/btc-embeddedplatform/
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requirements could not be taken into account due to restrictions of the verifier
while four requirements were missing details about the exact algorithm to be
implemented. The formal verification revealed 20 code implementations that are
inconsistent with the requirements of the prototype features. These errors could
all be traced back to the Simulink models. All detected issues were communicated
with Ford Motor Company and subsequently resolved. For 29 requirements, only
a bounded proof of correctness could be derived. These findings stress the impor-
tance of formal verification for automotive software.

Our Recommendations. This paper reports on our findings, identifies shortcom-
ings and strengths of formal verification when adopted in an automotive setting.
Our focus points were automation, scalability and usability, that are necessary
for an integration into a large-scale automotive development process. Though
the verification of both models was successful, we encountered different techni-
cal challenges with respect to requirement formalization, tool usage and model
structures. Integrating formal verification into mass automotive product devel-
opment is not easy: engineers are not familiar with formal methods, and are
not trained in writing formal requirements. We provide a detailed set of rec-
ommendations to ease the requirement formalization, most notably by using
specification patterns and the use of pre-defined requirement blocks. We also
present some ideas for new features in verification tools that can further support
the integration of formal verification into C code targeted development in the
automotive sector: The mitigation of spurious counterexamples, enabling batch
processing, and support for automated “continuous” verification, i.e., when parts
of the Simulink model, the requirement or the tools change.

Main Contributions. To summarize, our main contributions are:

– a detailed report on experiences with using a modern commercial verification
tool to formally verify C code automatically generated from Simulink models,

– a detailed set of recommendations for engineers in the automotive domain to
enable the use of formal code verification in the design process, and

– a detailed list of recommendations for verification tool builders to integrate
their tools into the automotive mass product development.

Organization of the Paper. Section 2 introduces the two R&D prototype case
studies. Section 3 briefly introduces the BTC verification tool and its features.
Section 4 presents our findings concerning requirement formalization and formal
code verification. Section 5 presents our observations and recommendations for
enabling and integrating formal verification into the automotive development
process. Section 6 concludes the paper.

2 The Case Studies

The aim of this joint project between Ford Motor Company and RWTH Aachen
University is the feasibility analysis of discrete-time verification of industrial-
scale C code controllers for mass production. The aim includes assessing the
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current state of requirement specification within Ford, check the quality of
generated C code from Simulink models by a commercial verification tool and
identify possible solutions for a highly-automated verification tool-chain that can
be integrated into an automotive development process. This section presents the
two R&D prototype case studies from Ford. Due to confidentiality reasons, we
cannot provide access to model files, source code or requirements.

Table 1. The variables and calibration parameters of the Simulink models.

Scalar Array/Matrix

bool int float bool int float

DSR I/O Vars 7 16 8 0 1 (1×10) 1 (1×10)

Calibration Pars 15 3 24 1 (1×12) 1 (1×32) 9 (1×6 . . . 12)

ECC I/O Vars 3 4 29 0 0 0

Calibration Pars 7 1 71 0 0 72 (1×2 . . . 11×11)

R&D Prototype Features. Our case study was conducted using the auto-
generated code of two R&D prototype Simulink models: a model of the next-gen
Driveline State Request (DSR) feature and of the next-gen E-Clutch Control
(ECC) feature. None of these features are safety-critical. Let us describe the role
and importance of these two features. Energy saving, exhaust emission reduction,
and exhaust noise reduction are among the main objectives in the development
of modern vehicles. On flat roads, the engine drag torque typically slows down
the vehicle when the driver takes his foot from the accelerator pedal. A vehicle
with a combustion engine can be operated in Sailing Mode when the vehicle is
rolling without engine drag torque in order to maintain its speed and to save
fuel in certain driving situations and where the driver is not actively accelerating
or braking the vehicle. In Sailing Mode, the driveline3 is opened automatically
when the driver releases the accelerator pedal. When the driveline is open, the
engine can be shut off or run at idle speed without introducing drag torque in
order to reduce fuel consumption. Different system- or driver-interactions, such
as pressing the brake or accelerator pedal, will result in closing the driveline
again. The DSR feature implements the decision logic to open or close the driv-
eline. This feature takes driver interactions and vehicle status information to
decide in which situations the driveline should be opened and closed again. The
ECC feature calculates the desired clutch torque capacity and corresponding
engine control torques or speeds for opening and closing the driveline.

Model Characteristics. The aim of this study is to investigate how C code formal
verification performs when applied to the auto-generated code of Simulink mod-
els having decision logic, state-charts, filters, rate limiters, look-up tables and
3 A motor vehicle’s driveline consists of the parts of the powertrain excluding the

engine. It is the portion of a vehicle, after the prime mover, that changes depending
on whether a vehicle is front-wheel, rear-wheel, or four-wheel drive.
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feedback control. Therefore, we selected two features that contain mixtures of
these different kinds of functionalities. The Simulink model for the DSR feature
has 42 functional requirements, 28 inputs, six outputs, 53 calibration parame-
ters and 1149 blocks. Calibratable parameters remain constant during software
execution but can be adjusted before the execution for tuning or selecting the
possible functionalities. Calibration is the adjustment of calibratable parameters
of software functions realizing the control functionalities. This model contains
several variables as summarized in the first two rows of Table 1. The C code
comprises about 2100 lines. The next-gen DSR feature has several calibration
parameters, amongst others 42 scalar parameters and nine array parameters
of six to 12 single-precision floating-point elements, one Boolean array with 12
elements and one unsigned 8-bit integer array with 32 elements.

The Simulink model for the next-gen ECC feature has 70 functional require-
ments, 27 inputs, nine outputs, 151 calibration parameters and 2098 blocks. In
total, it comprises about 4900 lines of C code. This model contains Boolean,
integer and a huge number of floating-point variables, see Table 1. The calibra-
tion parameters include 79 scalar parameters and 13 arrays of single-precision
floats.

Requirement Characteristics. For the DSR case study, from 42 functional
requirements we extracted 54 properties, consisting of 50 invariants and four
bounded-response properties. Invariant properties are assertions that are sup-
posed to hold for all reachable states. Bounded-response properties request that
a certain assertion holds within a given number of computational steps when-
ever a given, second assertion holds. For the ECC case study, from 70 functional
requirements we extracted 82 invariants and two bounded-response properties.

3 The BTC Tool

We exploited BTC, a commercial tool for formal specification and verification.

3.1 The BTC EmbeddedPlatform

BTC is an integrated development environment featuring requirements-based
testing, back-to-back testing and a formal verification suite with an integrated
graphical user interface aiding the formal specification. The user interface aims to
support industry software engineers without much knowledge in formal methods.
An overview of the formal verification portion is illustrated in Fig. 1.

The initial architectural set-up of a new BTC project requires in-depth knowl-
edge of the C code to be verified, its structure and variables.

A BTC Project Setup. Our imported C code defines the architecture of a project,
including available functions, variables, entry points and initialization routines.
Auto-generated C code for automotive controllers usually consists of an initial-
ization and a step routine. After selecting a (sub-)set of available functions to
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instrument, global and local variables are collected and categorized as “input”,
“output”, “local”, “parameter” or “ignore” through manual user input and sim-
ple heuristics. The range of input variables and parameters can be restricted by
specifying minimal and maximal values. The execution time per step, i.e., the
amount of time that passes between two consecutive executions of the main step
method, can be configured as a constant when creating the project. The user
interface is divided into views, each focusing on different aspects of testing and
formal verification. Here, we only consider the latter view.

Textual
Requirements

Formal
Specification

C code

Bounds
In/Out/Parameter

Variable Information:

Formal
Verification

CBMC VIS

AutoFXP SMIBMC

Valid

Undecided

Invalid with
Counterexample

Architecture

BTC
EmbeddedPlatform

Fig. 1. Overview of the ins and outs of the BTC.

Formal Specification. The requirements of the two case studies are textual,
i.e., use natural language (English) for describing functional feature behavior.
BTC supports importing textual requirements from various sources, such as
Microsoft Excel, allowing engineers to develop the formal (requirement) specifi-
cation directly on the requirement text.

Pattern-Based Specification. Whereas most model checkers use some form of
temporal logic for the property specification, BTC supports safety as well as
liveness properties through pattern-based specification [9]. These patterns are a
kind of template and are based on an intuitive and graphical representation of the
formal semantics. The patterns enable the usage of BTC without being an expert
in temporal logic. In its most basic form, a BTC pattern-based specification rep-
resents an invariant together with start-up delays, or models Trigger/Action con-
ditions with timing information. The BTC user goes through the textual require-
ment (template), selects and maps parts of the text to macros, place-holders for
logical formulas. Take e.g., the expression “When in reverse, [...]”, containing
a high-level description of an external input state condition, namely the gear
selection. By creating a macro mapping the term in reverse to a formal defini-
tion in terms of variables and values like “selectedGear == −1”, the textual
requirement is enriched with the information necessary for formalization. Macros
can be shared between multiple requirements in the same project/architecture
and may contain other macros, but do not support parameters.
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Operators. The specification language used for defining triggers, actions and
invariant conditions contains all basic boolean operators (NOT, logical OR and
AND, ⇒, =, �=), bitwise operators (�, &, |, ⊕) as well as basic math operators
(+, −, ·, /, < and >). Additionally, floating-point operators (fabs, feq, min,
max) and temporal operators for step-based timing information are available.

Verification. After formalizing the requirements, the Formal Verification view
allows for creating a proof for the requirements. For model-checking purposes,
BTC uses four back-end verification engines: CBMC [5], SMIBMC, VIS [10] and
AUTOFXP. These can be turned on and off—the default, used by us, is to use
all four. We treat the verification engine and its back-ends as black box as no
further information is available. A time limit, a maximum search depth, the
number of loop unrolling iterations and a memory limit can be set. Currently,
batch execution of proofs is only possible using a non-standard plugin which
is available upon request from BTC. This plugin executes all proofs; selecting
a subset is not possible. If a counterexample is found, the analysis terminates
and the counterexample is automatically simulated on the C code to account for
errors between the internal data representation and the C semantics.

4 Experience Report

This section reports our experiences with the formal verification (using BTC) of
the two R&D prototype case studies focusing on verifying the auto-generated C
code of a few thousand lines from Simulink models.

4.1 Formalizing the Requirements

For a formal verification, formally specified requirements are indispensable. At
the start of this work, the requirements were available in the form of textual
phrases formulated in natural language. This section reports the issues that were
encountered when formalizing these requirements for subsequent use by the C
code verification by BTC. These issues range from incomprehensibility of some
of the requirements to incomplete requirements, ambiguities and inconsistencies.

Requirement Formalization. We incrementally formalized the Ford requirements
given to us in textual form and turned them into BTC formal requirements.
Unclarities or other issues were discussed with the Ford engineers. Small issues
involving missing domain knowledge were often solved by looking at the cor-
responding code implementation. The process of requirement formalization took
most of the total project time of about 900 man hours and involved frequent meet-
ings between the researchers conducting the verification and the Ford engineers.

While reviewing and formalizing the 112 requirements, we identified 35 issues
that can be categorized into ambiguous wording, inconsistencies and underspeci-
fication. Without a background in automotive engineering, the learning curve for
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formalization, especially regarding domain knowledge, was steep, further indi-
cating issues of underspecification.

Each formalized requirement resulted in one or more Formal Requirements
for BTC. If a requirement contains multiple cases or can be easily split into dis-
tinct logical blocks, we did so. Splitting eases verification by the model checker.
Nine requirements could not be formalized due to the fact that BTC does not
support the use of array access with variables as index nor the use of lookup
tables with pointers in the formal specification. Four requirements have not been
considered as they use underspecified complex operators such as rate limiters and
filters.

Table 2. Identified requirement issues.

Case study Incomplete Ambiguous Inconsistent

DSR 12 5 1

ECC 11 3 3

If varA is set to [TRUE] and varB is above a threshold with hysteresis (calVarBThres,
calVarBHyst), OR (varA is set to false and varC is above a threshold with hysteresis
(calVarCThres, calVarCHyst) AND (varC - varD) is above a threshold with hysteresis
(calVarCThres, calVarCHyst)), then varE shall be set to true, and to false otherwise.

Fig. 2. Example of an incomplete requirement involving hysteresis.

Incomplete Requirements. We encountered 23 incomplete requirements (Table 2).
Typical examples of incompleteness are preconditions like “when no preprocessing
feature is active” where no information on signals related to the status of prepro-
cessing features is given, and declarations like “variable A shall be input B with
hysteresis (lower threshold calibratable C and upper threshold calibratable D)”;
see also Fig. 2. Hysteresis is often used to prevent rapid toggling when observing
an input signal against some threshold and can be implemented using a set-reset
flip-flop.

Other encountered issues are whether the thresholds are strict (e.g., <10)
or non-strict (e.g., ≤10), and what the initial output state should be. The
analyzed requirements include several such abstract high-level descriptions of
functionality. In these complex cases, e.g., when using hysteresis, saturation
or rate limiting, the requirements are often lacking necessary information for
accurately specifying function behavior. Several of these issues could not be
resolved without consulting the code. Typical omitted information in the require-
ments includes the initial configuration, exact (formal) state change conditions
including a priority ordering of the signals, and complete documentation of state
variables.
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For the successful verification of a stateful system, access to all state vari-
ables is required. These are usually not visible in the global interface as they
are unnecessary for using and embedding the system. Therefore, we manually
adapted the Simulink model by adding necessary variables to the global interfaces.

Ambiguous Requirements. We identified eight cases of ambiguity in the prototype
features, mostly related to cases of missing parentheses. We identified cases where
in chains of AND- and OR-conditions either applying the mathematical operator
precedence did not make sense when considering the condition content or where
there were an uneven number of opening and closing parentheses present.

Inconsistencies. Another group of issues focuses on inconsistencies between
requirements. We found four issues in the prototype features where a common-
ality shared between several requirements is invalidated by another one. Take,
e.g., n requirements of the form “When in state X, do...” among which a single
requirement specifying similar behavior, is missing the “When in state X” scope.
It is unclear whether this omission is intentional or not. While this inconsistency
is not a problem of the formalization per se, these discrepancies are often closely
related to incompleteness issues in requirements, e.g., when “boilerplate” infor-
mation is omitted because preconditions like being in a specific state are made
implicit by a chapter heading or a requirement name. While implicit precondi-
tions may be acceptable for textual requirements, it hampers formal verification.

Table 3. Verification results on the case studies using BTC.

Case study Calibration type Valid Unknown Invalid

DSR Fixed 24 (Bounded: 7) 8 10

Varying 23 (Bounded: 8) 12 7

ECC Fixed 44 (Bounded: 22) 16 10

Varying 36 (Bounded: 24) 20 14

4.2 Formal Verification of Auto-generated Code

We now report our findings when applying BTC to the C code of the two R&D
prototype features. All verification experiments were carried out on a Intel Core
i7-6700HQ machine with 16 GB RAM, running Windows 7 (64-bit), BTC v2.0.34

and Matlab R2015b. The maximal verification time was set to 7200 s.

Verification Results. Each formalized requirement was formally verified on the
C code of the entire respective feature with fixed calibration parameters. To ease
the verification, we fixed the time bounds in the Ford requirements to five simula-
tion steps (50 ms). Typical time bounds in the model vary between 50 ms and 5 s.

4 The most recent version of BTC as of submission is v2.1.0.
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For three requirements involving direct lookup tables (i.e., no interpolation)—not
natively supported by BTC—we embedded their data directly into the formal
specification. Table 3 summarizes our verification results. We consider the fixed
calibration parameters unless stated otherwise; we will discuss the varying cali-
bration parameters later on. In our experience, model checking is performed by
BTC in three phases:

1. CBMC runs for a number of iterations, in many cases returning counterex-
amples (if any) in a matter of seconds.

2. If CBMC is not able to refute the property, a combination of AUTOFXP and
SMIBMC is used.

3. If the combination is not successful, i.e., results in an unbounded proof, the
tool switches back to CBMC, providing a bounded result.

Most of our results seem to be mostly a result of CBMC as we did not observe
termination during the AutoFXP/SMIBMC phase. Runtime data like memory
consumption or CPU time is only shown while the tools are actively running
and can unfortunately not be obtained once model checking has terminated.

Implementation Flaws. In total, BTC found 20 cases of invalid code imple-
mentations against the formal requirement specification with fixed calibration
parameters of the R&D prototype features. These include:

– Four instances of incorrect relational operators (e.g., < instead of ≤).
– Four instances of incorrect variables used in comparisons. As inputs are pro-

cessed, for many there are secondary variables available containing derived
versions of the input, for example with rate-limiting applied. When comparing
inputs, it is important to select the right variant.

– 12 cases where variables were named differently than in the specification.
– One instance where the implementation contained a fix for a logical error in

the specification which was not passed back and reflected in the requirements.
– One instance where an output signal was unexpectedly delayed by one time

step even though the delay was not apparent from the requirement
specification.

– Two instances of incorrect use of negations.
– Various instances of the incorrect use of chained if-statements. When a

requirement contains several consecutive if-statements followed by a final
else-statement, the activation condition for the else section is comprised
of the negation of the disjunction over all preceding if-conditions. When
changing the else if blocks, correcting all dependents is easily forgotten.

– One instance where an initialization step was not implemented . This omis-
sion leads to minor initial differences.

– Two instances where part of a comparison was omitted .
– An offset mentioned in a requirement that was not used in the code.
– One case where an activation/deactivation was unintentionally implemented

using a state toggle such that no signal has precedence over the other.

All detected issues are also present in the respective Simulink models and thus
not the result of incorrect C code generation.
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Undecided. A total of 24 requirements of the R&D prototype features are
undecided, i.e., we were unable to determine whether the implementation and
specification match. More precisely:

– Nine requirements contain properties unsupported (lookup tables containing
pointers, array access with variables as index) by BTC.

– For three requirements we encountered spurious counterexamples which were
automatically detected as spurious by BTC. Whenever a counterexample for
a property is detected, there is a chance that this counterexample exists only
due to imprecision introduced by abstraction, for example when approximat-
ing floating-point numbers. Thus, each counterexample is simulated on the C
code to ensure it is a valid counterexample under the C semantics. Currently,
spurious counterexamples prevent further analysis with this combination of
formal specification and C code in BTC.

– For two requirements, the tool reported that the verification unexpectedly
terminated . We are working with BTC to fix these issues.

– For six requirements, structural properties of the implementation prevent
formal verification as necessary outputs are overridden before they can be
captured . Note that in these cases while formalization was seemingly success-
ful, we discovered during the analysis of counterexamples that because of how
outputs are stored or combined formalization does not work.

– Four requirements were not formalized, mainly due to the mixture of
underspecification and the use of complex operators (low-pass filter, first-
order lead filter, second-order notch filter and rate-limiting) made the
formalization process too time-consuming .

Fixed and Varying Calibration Parameters. We also analyzed the features
with varying calibrations. Where model checking with fixed calibrations only
checks conformance to the specification in one specific calibration setting,
with varying calibrations conformance is checked for all possible calibration
valuations allowed by the configured calibration bounds. With 53 calibration
parameters in the DSR feature and 151 in the ECC feature, we expected the
number of undecided results to go up significantly, but out of 42 requirements
(DSR) and 70 requirements (ECC) only the result of five (DSR) and nine (ECC)
requirements changed . We are unable to fully explain the overall lack of impact.
We did notice a significant change of depth reached in bounded model check-
ing, with differences being as high as depth 151 in fixed calibration versus a
depth of 8 in varying calibration within the same time bound. With DSR, for
one requirement the result changed from unbounded satisfied to bounded sat-
isfied, two requirements changed to undecided because of a detected spurious
counterexample and two more resulted in time-outs during preprocessing (also
now undecided). With ECC, for five requirements the result changed from valid
to invalid, three requirements changed from valid to undecided, one require-
ment changed from invalid to undecided and two requirements changed from
unbounded satisfied to bounded satisfied. We found no cases where a require-
ment was inconsistent with its implementation while analyzing with fixed calibra-
tions but satisfied with varying calibrations. During this analysis we uncovered
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several issues in the implementation that were not visible during analysis with
fixed calibrations.

Bounded and Unbounded Results. BTC was not able to derive an unbounded
proof of correctness for a total of 29 requirements. Whereas a bounded proof
for depth n only guarantees a safety property to hold for the first n steps, an
unbounded proof (if successful) proves such a property for any depth. In the
bounded case [11], correctness is up to depth n and no guarantees are given for
depths beyond n. An unbounded proof of correctness usually includes deriving
loop invariants for all included loops in the C code, a hard problem that is
undecidable in general. Heuristics for generating these loop invariants often only
work on small and simple (e.g., linear) loops with few variables and even fewer
floating-point operations [12].

Subsystem Verification. With subsystem verification the goal is to reduce model
checking complexity by reducing C code size. When a formalized property is
handled entirely within some distinct part of the C code, all surrounding and
unrelated code can be removed, replacing the original interface with one only
containing inputs, parameters and outputs relevant to the selected property. We
picked a set of ten requirements from the DSR case study specifying the behavior
of a stateflow chart to compare formal verification on controller level with that on
subsystem level. We extracted the subsystem from the Simulink model by hand
and generated code from the reduced model. While BTC supports subsystem
verification using a hierarchical architecture representation, the auto-generated
C code in our use case was not in suitable form, making manual preparation
necessary. Using the subsystem significantly shrunk the overall complexity of
the analyzed model (≈ 350 lines of code) and reduced the number of variables
and calibration parameters. The reduced system has six inputs (four Boolean,
one (1 × 16) array of Boolean, one unsigned 8-bit integer), two outputs and one
parameter (one (1 × 32) array of unsigned 8-bit integer). However, the input vari-
able domains might grow since values are no longer restricted by other upstream
parts of the model. In the full feature, the inputs of this subsystem are derived
from external inputs and may be between tight bounds that are not apparent
nor documented explicitly because of implemented behavior. Therefore, subsys-
tem verification over-approximates correctness with respect to the correctness
within the entire system. A specific input valuation leading to a property vio-
lation might be caught and avoided beforehand in the upstream components
of the entire system, but this input restriction is not apparent anymore in the
subsystem. While BTC was not able to produce unbounded correctness proofs
for the ten requirements when verifying the code of the complete feature, using
subsystem verification it was able to do so.

Invalid Verification Results. While investigating issues with NaN (not a num-
ber) values on some floating-point variables, we discovered conflicting results for
properties with comparisons involving floating-point variables that can become
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NaN where an incorrect simplification step potentially leads to invalid results.
The issue has been fixed in a new version of BTC.

5 Reflections and Recommendations

This section reflects on our findings and presents our recommendations towards
requirement engineers, verification tool developers as well as tool users.

5.1 Requirements

Requirement Completeness. A big hurdle during this work was domain knowl-
edge implicitly required to understand the textual requirements of Ford. This
domain knowledge ranges from simple things such as unknown abbreviations to
structural details like how the data flow influences delays on certain variables
(breaking circular dependencies requires using one-step delays). Certain infor-
mation is ubiquitous in the Ford development process and not re-iterating every
detail makes requirements short and concise. For the same reason, some require-
ments do not state their full preconditions but instead rely on their positioning
inside the requirement catalogue, e.g., in a chapter containing all requirements
related to being in a certain state, the subsidiary requirements do not state
explicitly that being in that state is a precondition. Four of the requirement
violations were due to unexpected delays introduced to break circular depen-
dencies in the model. In practice, certain bounded and small deviations like one-
or two-step delays are acceptable while basic behavior is correctly implemented,
it highlights the conflict between the ease-of-use of textual requirements and the
degree of precision which is required for formal verification.

Requirement Interdependencies and Priorities. We found several instances
where two requirements could apply simultaneously to the same out-
put variable. In these cases, a priority chain needs to be in place for
defining precedence. It is also advisable to reorder requirements such that
conditions are grouped per output variable so that analyzing a single require-
ment should be sufficient to determine all pre- and postconditions for any given
output variable.

Environmental Assumptions. While performing verification with varying cali-
brations, we encountered situations where the upper bound of a hysteresis block
was calibrated below its lower bound. Calibration parameters should therefore be
clearly documented including side conditions and interdependencies, such that
appropriate assertions can be added for verification.

Specification Patterns. For effectively applying formal verification, we recom-
mend engineers switching from textual requirement specifications to an app-
roach that guarantees unambiguous requirements like a pattern-based approach
[13]. These use specification patterns—templates phrased in natural language



Verifying Auto-generated C Code from Simulink 325

with holes that need to be completed by the verification engineers with condi-
tions on code variables. Tools tailored to the knowledge of the engineers should
be provided in order to help and enforce writing clear, unambiguous and com-
plete specifications in a format that is agnostic of verification tools and can be
automatically transformed for any chosen tool. Specification patterns have been
used in automotive [14], aerospace [15] and service-oriented computing [16].

Tool Support and Automation. We believe that while enforcing completeness,
verification tools need to provide the engineers with the ability of building a
library of more complex pre-defined formal requirement specification blocks. Spec-
ification blocks enable more consistent requirements presented at a high level of
abstraction while still supporting a formal semantics. We found several instances
of complex behavior requiring large and equally complex formalizations that are
ideal for attracting small mistakes during formalization.

5.2 Code Verification

Code Complexity and Subsystem Verification. We found that BTC
works extremely well on invariant properties with no or very few floating-point
variables involved . Counterexamples are typically found within seconds
and even unbounded proofs are mostly found in less than a minute.
Floating-point numbers are ubiquitous in the automotive domain and
pose a challenge to most, if not all, verification tools, see also a dis-
cussion on the results in the latest software verification competition [8].
While BTC scales well with the number of parameters, we found that
subsystem verification is a necessity for tackling more complex properties. In a
proof-of-concept of subsystem verification, we achieved unbounded (rather than
bounded) verification results for all requirements.

Requirement Robustness. While experimenting with scalability we discovered
that even small changes to the requirements can have great impact on the ver-
ification times. Take, e.g., a requirement describing that event A implies that
event B occurs exactly one time step later. This requirement can be modeled
using a Trigger/Action (response) pattern or using an Invariant pattern. While
these specifications are semantically equivalent, the corresponding verification
times are not. In some instances, the Invariant approach took seconds to ver-
ify whereas the Trigger/Response variant took several hours. We recommend
tool vendors to adapt internal optimization routines such that, by default, the
simplest requirement representation is used.

Counterexample Verification. During verification, we encountered several
instances where BTC concluded after internal simulations that a dis-
covered counterexample was in fact spurious, i.e., the counterexample
was introduced due to used approximations. Verification tools should
automatically mitigate spurious counterexamples whenever possible.
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Verification Times. In our experiments, we noticed that generally an unbounded
result is obtained within the first minute or no such result is obtained at all.
Outliers are obtained for temporal properties that usually include a timer that
has to expire. We encoded these properties using a Trigger/Action pattern where
the delay between the two is given by a calibration parameter. As BTC does not
offer access to verification timing data, a more detailed analysis of verification
times is not possible. In academia, CPU time and memory consumption are
common practice [8] and the means to compare verification algorithms and tools.
This comparison is useful for industrial applications too as it enables comparing
different verification engines (even within a single tool) and provides a means to
study scalability.

Tool Automation. Repetitive verification tasks are prone to human errors. Hence
we envision a fully automated continuous integration pipeline for mass prod-
uct development where model checking is performed whenever the specification,
the code or the tools change. Similar approaches—referred to as continuous
verification—have been advocated for adaptive software [17]. Therefore, verifica-
tion tools should support batch processing of verification tasks, provide a better
automation interface and a structured output of all relevant result data. A new
version of BTC released after conducting our study comes with an automation
API and Jenkins integration, enabling continuous verification.

Bug Reporting. Because source code, models and requirement documents usu-
ally are confidential, reporting bugs and spurious counterexamples is difficult
and time consuming, usually involving an engineer shrinking and anonymiz-
ing the code by hand. Automated tools for this purpose such as CReduce
[18] require an adequate automation interface. We recommend to include the
automated generation of minimal anonymized examples of bug triggers in verifi-
cation tools.

Counterexample Representation. Currently counterexamples can be either
viewed as charts showing variable values in each time step or by export-
ing a stimulation vector containing the generated sequence of input val-
ues as a Microsoft Visual Studio C code project. It would be very helpful
to see what part of a requirement is inconsistent with its implementation, espe-
cially when dealing with large conjunctions. Going through a huge number of
variables, comparing them to other variables or constants and evaluating the
boolean expressions one by one on a sheet of paper is very time consuming and
error prone. A graphical tree representation of the formal specification could be
beneficial.

6 Conclusion

In this paper, we reported our experiences and presented our recommendations
concerning applying formal verification with BTC on two case studies provided
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by Ford Motor Company. We performed formal verification of 7000 lines of code
generated from two Simulink models implementing 112 textual requirements.
We identified 35 requirements of the R&D prototype features which are either
ambiguous, incomplete or inconsistent; nine cannot be verified due to restrictions
of the verifier; while four could not be formalized. Formal verification revealed
20 code implementations that were inconsistent with the requirements.

We spent more than 70% of the project time on requirement analysis and
formalization. The overhead should be much larger if performed by automo-
tive engineers whom do not have experience in formal methods. In the automo-
tive industry, both the software-requirements and their implementations change
rapidly within strict deadlines. Natural languages, hence, are preferred over for-
mal notations to write requirements in the practice although natural languages
often lead to ambiguity, incompleteness and inconsistency. Moreover, we experi-
enced that not all open-loop requirements can be formalized and are supported
by the formal verification tools. We also observed spurious counterexamples and
unexpected terminations. Recently formal verification tools matured a lot but
have yet to provide unbounded and decisive results for most industrial cases.

Our case studies show the benefits that formal verification can add into the
automotive development process. We, therefore, believe the use of formal ver-
ification will increase slowly but surely in this domain. For this progress, we
recommend to develop a technique—such as automated conversion of textual
requirements into formal requirements—that will allow engineers to use formal
specifications for a fast pace industry without introducing much overhead. Tool
vendors need to increase the percentages of unbounded and conclusive results.
Additionally, to enable an easier integration of verification tools into the (auto-
motive) industrial design process, we also recommend improving the usability
of these tools such as automated mitigation of spurious counterexamples and
better diagnostic feedback for the refuted properties.
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