Klaus Havelund
Jan Peleska

Bill Roscoe

Erik de Vink (Eds.)

Formal Methods

LNCS 10951

Formal Methods

22nd International Symposium, FM 2018
Held as Part of the Federated Logic Conference, FloC 2018
Oxford, UK, July 15-17, 2018, Proceedings

Lecture Notes in Computer Science
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA

Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Formal Methods

Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK
Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany
Annabelle Mclver, Macquarie University, Sydney, NSW, Australia
Peter Miiller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

10951

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Klaus Havelund - Jan Peleska
Bill Roscoe - Erik de Vink (Eds.)

Formal Methods

22nd International Symposium, FM 2018

Held as Part of the Federated Logic Conference, FloC 2018
Oxford, UK, July 15-17, 2018

Proceedings

@ Springer

Editors

Klaus Havelund Bill Roscoe

NASA Jet Propulsion Laboratory University of Oxford
Pasadena, CA Oxford

USA UK

Jan Peleska Erik de Vink

University of Bremen Eindhoven University of Technology
Bremen Eindhoven

Germany The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-95581-0 ISBN 978-3-319-95582-7 (eBook)

https://doi.org/10.1007/978-3-319-95582-7
Library of Congress Control Number: 2018947575
LNCS Sublibrary: SL2 — Programming and Software Engineering

© Springer International Publishing AG, part of Springer Nature 2018

Chapter “Formal Specification and Verification of Dynamic Parametrized Architectures” is licensed under the
terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/). For further details see license information in the chapter.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-7079-0472
http://orcid.org/0000-0003-3667-9775

Preface

FM 2018 was held in Oxford as part of FloC during July 15-17, with additional
workshops on July 14 and during 18—19. It was a great pleasure to return to one of the
spiritual homes of Formal Methods. This was the 22nd of a series stretching back to
1987. We are delighted to present its proceedings, once again published by Springer.
FM is a core event for the formal methods community and brings together researchers
working on both more theoretical aspects and industrial practice. Once again we had an
Industry Day, or I-Day.

In all, there were 110 submitted papers for the main conference of which 35 were
accepted, an acceptance rate of 32%. Kim G. Larsen, Annabelle Mclver, and Leonardo
de Moura gave invited talks. For I-Day, nine presenters were invited to share insights
about applications of formal methods in industry.

Seven workshops were associated with FM this year: F-IDE, Overture, QAPL,
AVoCS, REFINE, TLA+, and VaVas.

We offer our sincere thanks to all who helped make the conference a success and
assisted with the preparation of these proceedings. This includes the FM committee
chaired by Ana Cavalcanti, the FloC Organizing Committee led by Moshe Vardi,
Daniel Kroening, and Marta Kwiatkowska, as well as the staff and volunteers who
supported this event. Naturally, we also thank the Program Committee members and
others who put so much effort into ensuring the quality of the program, as well as all
authors who submitted papers.

FLoC had many sponsors including Oxford University Computer Science Depart-
ment, Springer, and Diffblue. We thank them all.

June 2018 Erik de Vink
Jan Peleska

Bill Roscoe

Klaus Havelund

Program Chairs

Jan Peleska
Bill Roscoe

Workshop Chairs

Maurice ter Beek
Helen Treharne

Industry Day Chairs

Klaus Havelund
Jan Peleska
Ralf Pinger

Organization

University of Bremen, Germany
University of Oxford, UK

CNR/ISTI, Italy
University of Surrey, UK

NASA Jet Propulsion Laboratory, USA
University of Bremen, Germany
Siemens, Germany

Doctoral Symposium Chairs

Eerke Boiten
Fatiha Zaidi

Organizing Committee

Erik de Vink
(General Chair)
Mahmoud Talebi (Website)

Program Committee

Bernhard K. Aichernig
Joerg Brauer

Ana Cavalcanti

Frank De Boer

John Fitzgerald

Martin Fraenzle

Vijay Ganesh

Diego Garbervetsky
Dimitra Giannakopoulou
Thomas Gibson-Robinson
Stefania Gnesi

De Montfort University, UK
Université Paris-Sud XI, France

Eindhoven University of Technology, The Netherlands

Eindhoven University of Technology, The Netherlands

TU Graz, Austria

Verified Systems International GmbH, Germany
University of York, UK

CWI, The Netherlands

Newcastle University, UK

Carl von Ossietzky Universitidt Oldenburg, Germany
University of Waterloo, Canada

University of Buenos Aires, Argentina

NASA Ames Research Center, USA

University of Oxford, UK

ISTI-CNR, Italy

VI Organization

Klaus Havelund
Anne E. Haxthausen
Ian J. Hayes
Constance Heitmeyer
Jozef Hooman

Laura Humphrey
Fuyuki Ishikawa
Einar Broch Johnsen
Cliff Jones
Joost-Pieter Katoen
Gerwin Klein

Laura Kovacs
Peter Gorm Larsen
Yves Ledru
Rustan Leino
Elizabeth Leonard
Martin Leucker
Michael Leuschel
Zhiming Liu
Tiziana Margaria
Mieke Massink
Annabelle Mclver
Dominique Mery

Mohammad Reza Mousavi

Peter Miiller
Colin O’Halloran
Jose Oliveira

Olaf Owe

Sam Owre

Jan Peleska
Alexandre Petrenko
Anna Philippou
Ralf Pinger
Elvinia Riccobene
Bill Roscoe
Grigore Rosu
Augusto Sampaio
Gerardo Schneider
Natasha Sharygina
Ana Sokolova

Jun Sun

Stefano Tonetta
Farn Wang

NASA Jet Propulsion Laboratory, USA

Technical University of Denmark, Denmark

The University of Queensland, Australia

Naval Research Laboratory, USA

TNO-ESI and Radboud University Nijmegen,
The Netherlands

Air Force Research Laboratory, USA

National Institute of Informatics, Japan

University of Oslo, Norway

Newcastle University, UK

RWTH Aachen University, Germany

NICTA and The University of New South Wales,
Australia

Chalmers University of Technology, Sweden

Aarhus University, Denmark

Université Grenoble Alpes, France

Amazon Web Services, USA

Naval Research Laboratory, USA

University of Liibeck, Germany

University of Diisseldorf, Germany

Southwest University, China

University of Limerick and Lero, Ireland

ISTI-CNR, Italy

Macquarie University, Australia

Université de Lorraine, LORIA, France

University of Leicester, UK

ETH Zurich, Switzerland

D-RisQ Software Systems, UK

University of Minho, Portugal

University of Oslo, Norway

SRI International, USA

TZI, University of Bremen, Germany

CRIM, Canada

University of Cyprus, Cyprus

Siemens, Germany

University of Milan, Italy

University of Oxford, UK

University of Illinois at Urbana-Champaign, USA

Federal University of Pernambuco, Brazil

Chalmers University of Technology, Sweden

University of Lugano, Switzerland

University of Salzburg, Austria

Singapore University of Technology and Design,
Singapore

FBK-irst, Italy

National Taiwan University, Taiwan

Heike Wehrheim
Michael Whalen
Jim Woodcock
Hiisnii Yenigiin
Fatiha Zaidi
Gianluigi Zavattaro

Additional Reviewers

Abbyaneh, Alireza
Agogino, Adrian
Aldini, Alessandro
Antignac, Thibaud
Antonino, Pedro
Araujo, Hugo
Arcaini, Paolo
Archer, Myla
Asadi, Sepideh
Astrauskas, Vytautas
Avellaneda, Florent
Basile, Davide
Baxter, James
Berger, Philipp
Blicha, Martin
Bodeveix, Jean-Paul
Boudjadar, Jalil
Braghin, Chiara
Bugariu, Alexandra
Byun, Taejoon
Carvalho, Gustavo
Castafio, Rodrigo
Chen, Taolue

Chen, Yu-Ting
Chen, Zhenbang
Chimento, Jesus Mauricio
Ciancia, Vincenzo
Ciolek, Daniel
Colvin, Robert

de Gouw, Stijn
Dodds, Mike
Ehlers, Riidiger
Eilers, Marco
Even-Mendoza, Karine
Fages, Frangois

Organization

University of Paderborn, Germany
University of Minnesota, USA

University of York, UK

Sabanci University, Turkey

Université Paris-Sud, France

University of Bologna, Italy

Fantechi, Alessandro
Fava, Daniel
Ferrére, Thomas
Foltzer, Adam
Foster, Simon
Gazda, Maciej
Ghasemi, Mahsa
Ghassabani, Elaheh
Gomez-Zamalloa, Miguel
Govind, Hari
Giinther, Henning
Hagemann, Willem
Henrio, Ludovic
Holzer, Andreas
Hyvirinen, Antti
Hofner, Peter
Jaafar, Fehmi
Junges, Sebastian
Katis, Andreas
Khakpour, Narges
Kharraz, Karam
Kiesl, Benjamin
Kotelnikov, Evgenii
Kouzapas, Dimitrios
Krings, Sebastian
Kulik, Tomas
Konig, Jirgen
Laarman, Alfons
Latella, Diego
Legunsen, Owolabi
Lester, Martin Mariusz
Li, Guangyuan

Li, Ian

Liang, Jimmy

Liu, Si

Longuet, Delphine
Lucanu, Dorel
Macedo, Hugo Daniel
Macedo, Nuno
Madeira, Alexandre
Marescotti, Matteo
Markin, Grigory
Matheja, Christoph
Mathur, Umang
Mauro, Jacopo
Mazzanti, Franco
Meinicke, Larissa
Merz, Stephan
Monahan, Rosemary
Mota, Alexandre
Neubauer, Felix
Nguena-Timo, Omer
Nguyen, Huu Nghia
Noll, Thomas
Oortwijn, Wytse
Palmskog, Karl
Pardo, Raul

Pauck, Felix

Pedro, André

Pena, Lucas
Proenca, Jose

Qu, Hongyang
Robillard, Simon
Scheffel, Torben
Schmidt, Joshua
Schmitz, Malte
Schneider, David
Schoepe, Daniel
Scott, Joe

Sewell, Thomas

IX

X Organization

Sharma, Arnab

Singh, Neeraj

Steffen, Martin
Stewart, Danielle
Stolz, Volker

Stumpf, Johanna Beate
Swaminathan, Mani
Syeda, Hira

Tabaei, Mitra

Taha, Safouan

Ter Beek, Maurice H.
Ter-Gabrielyan, Arshavir
Thoma, Daniel
Thorstensen, Evgenij
Thule, Casper

Toews, Manuel
Tribastone, Mirco
Tschaikowski, Max
Tveito, Lars

van Glabbeek, Rob

Voisin, Frederic
Winter, Kirsten
Yakovlev, Alex
Ye, Kangfeng
Yovine, Sergio
Zeyda, Frank
Zhao, Liang
Zoppi, Edgardo
Zulkoski, Ed

Contents

Invited Papers

Processing Text for Privacy: An Information Flow Perspective
Natasha Fernandes, Mark Dras, and Annabelle Mclver

20 Years of Real Real Time Model Validation
Kim Guldstrand Larsen, Florian Lorber, and Brian Nielsen

FM 2018 Main Conference

Deadlock Detection for Actor-Based Coroutines
Keyvan Azadbakht, Frank S. de Boer, and Erik de Vink

An Algebraic Approach for Reasoning About Information Flow
Arthur Américo, Mario S. Alvim, and Annabelle Mclver

Towards ‘Verifying’ a Water Treatment System
Jingyi Wang, Jun Sun, Yifan Jia, Shengchao Qin, and Zhiwu Xu

FSM Inference from Long Traces
Florent Avellaneda and Alexandre Petrenko

A Weakness Measure for GR(1) Formulae
Davide Giacomo Cavezza, Dalal Alrajeh, and Andras Gyérgy

Producing Explanations for Rich Logics.
Simon Busard and Charles Pecheur

The Compound Interest in Relaxing Punctuality
Thomas Ferrere

IPL: An Integration Property Language for Multi-model

Cyber-physical Systemsottt
Ivan Ruchkin, Joshua Sunshine, Grant Iraci, Bradley Schmerl,
and David Garlan

Timed Epistemic Knowledge Bases for Social Networks
Raul Pardo, César Sanchez, and Gerardo Schneider

Optimal and Robust Controller Synthesis: Using Energy Timed Automata
with Uncertainty
Giovanni Bacci, Patricia Bouyer, Uli Fahrenberg,
Kim Guldstrand Larsen, Nicolas Markey, and Pierre-Alain Reynier

XII Contents

Encoding Fairness in a Synchronous Concurrent Program Algebra 222
lan J. Hayes and Larissa A. Meinicke

A Wide-Spectrum Language for Verification of Programs on Weak
Memory Modelso 240
Robert J. Colvin and Graeme Smith

Operational Semantics of a Weak Memory Model with Channel
Synchronization 258
Daniel Schnetzer Fava, Martin Steffen, and Volker Stolz

Stepwise Development and Model Checking of a Distributed
Interlocking System - Using RAISE 277
Signe Geisler and Anne E. Haxthausen

Resource-Aware Design for Reliable Autonomous Applications
with Multiple Periods 294
Rongjie Yan, Di Zhu, Fan Zhang, Yiqi Lv, Junjie Yang, and Kai Huang

Verifying Auto-generated C Code from Simulink: An Experience Report

in the Automotive Domain. 312
Philipp Berger, Joost-Pieter Katoen, Erika Abrahdm,
Md Tawhid Bin Waez, and Thomas Rambow

QFLan: A Tool for the Quantitative Analysis of Highly

Reconfigurable Systems. 329
Andrea Vandin, Maurice H. ter Beek, Axel Legay,
and Alberto Lluch Lafuente

Modular Verification of Programs with Effects and Effect Handlers in Coq ... 338
Thomas Letan, Yann Régis-Gianas, Pierre Chifflier, and Guillaume Hiet

Combining Tools for Optimization and Analysis
of Floating-Point Computations., 355
Heiko Becker, Pavel Panchekha, Eva Darulova, and Zachary Tatlock

A Formally Verified Floating-Point Implementation of the Compact

Position Reporting Algorithm L . 364
Laura Titolo, Mariano M. Moscato, César A. Murioz, Aaron Dutle,
and Francois Bobot

Formal Verification of Automotive Simulink Controller Models:

Empirical Technical Challenges, Evaluation and Recommendations. 382
Johanna Nellen, Thomas Rambow, Md Tawhid Bin Waez,
Erika Abrahdam, and Joost-Pieter Katoen

Multi-robot LTL Planning Under Uncertainty 399
Claudio Menghi, Sergio Garcia, Patrizio Pelliccione, and Jana Tumova

Contents

Vector Barrier Certificates and Comparison Systems
Andrew Sogokon, Khalil Ghorbal, Yong Kiam Tan, and André Platzer

Timed Vacuity e
Hana Chockler, Shibashis Guha, and Orna Kupferman

Falsification of Cyber-Physical Systems Using Deep

Reinforcement Learning.
Takumi Akazaki, Shuang Liu, Yoriyuki Yamagata, Yihai Duan,
and Jianye Hao

Dynamic Symbolic Verification of MPI Programs.
Dhriti Khanna, Subodh Sharma, César Rodriguez, and Rahul Purandare

To Compose, or Not to Compose, That Is the Question: An Analysis
of Compositional State Space Generation.
Sander de Putter and Anton Wijs

View Abstraction for Systems with Component Identities.
Gavin Lowe

Compositional Reasoning for Shared-Variable Concurrent Programs
Fuyuan Zhang, Yongwang Zhao, David Sandn, Yang Liu, Alwen Tiu,
Shang-Wei Lin, and Jun Sun

Statistical Model Checking of LLVM Code
Axel Legay, Dirk Nowotka, Danny Bogsted Poulsen,
and Louis-Marie Tranouez

SDN-Actors: Modeling and Verification of SDN Programs.
Elvira Albert, Miguel Gomez-Zamalloa, Albert Rubio, Matteo Sammartino,
and Alexandra Silva

CompoSAT: Specification-Guided Coverage for Model Finding
Sorawee Porncharoenwase, Tim Nelson, and Shriram Krishnamurthi

Approximate Partial Order Reduction
Chuchu Fan, Zhenqi Huang, and Sayan Mitra

A Lightweight Deadlock Analysis for Programs with Threads
and Reentrant Locks
Cosimo Laneve

Formal Specification and Verification of Dynamic
Parametrized Architectures.
Alessandro Cimatti, Ivan Stojic, and Stefano Tonetta

X1V Contents

FM 2018 Industry Day

From Formal Requirements to Highly Assured Software
for Unmanned Aircraft Systems 647
César Munioz, Anthony Narkawicz, and Aaron Dutle

Interlocking Design Automation Using Prover Trident. 653
Arne Bordly

Model-Based Testing for Avionics Systems 657
Jorg Brauer and Uwe Schulze

On Software Safety, Security, and Abstract Interpretation. 662
Daniel Kdstner, Laurent Mauborgne, and Christian Ferdinand

Variant Analysis with QL 666
Pavel Avgustinov, Kevin Backhouse, and Man Yue Mo

Object-Oriented Security Proofs 671
Ernie Cohen

Z3 and SMT in Industrial R&D 675
Nikolaj Bjorner

Evidential and Continuous Integration of Software Verification Tools 679
Tewodros A. Beyene and Harald Ruess

Disruptive Innovations for the Development and the Deployment
of Fault-Free Software. 686
Thierry Lecomte

Author Index e 691

Invited Papers

®

Check for
updates

Processing Text for Privacy:
An Information Flow Perspective

Natasha Fernandes, Mark Dras, and Annabelle McIver(®)

Department of Computing, Macquarie University, North Ryde, Australia
annabelle.mciver@mg.edu.au

Abstract. The problem of text document obfuscation is to provide an
automated mechanism which is able to make accessible the content of a
text document without revealing the identity of its writer. This is more
challenging than it seems, because an adversary equipped with powerful
machine learning mechanisms is able to identify authorship (with good
accuracy) where, for example, the name of the author has been redacted.
Current obfuscation methods are ad hoc and have been shown to provide
weak protection against such adversaries. Differential privacy, which is
able to provide strong guarantees of privacy in some domains, has been
thought not to be applicable to text processing.

In this paper we will review obfuscation as a quantitative information
flow problem and explain how generalised differential privacy can be
applied to this problem to provide strong anonymisation guarantees in a
standard model for text processing.

Keywords: Refinement + Information flow
Privacy - Probabilistic semantics + Text processing
Author anonymity - Author obfuscation

1 Introduction

Up until the middle of the nineteenth century it was common for British authors
to publish their work anonymously. There were many reasons for the practice,
and surprisingly many well-known authors practised it including (as we now
know) Alexander Pope, Jonathan Swift, Jane Austen and Daniel Defoe. But
can a work ever be entirely anonymous, in the sense that it is not possible
to identify the author with full certainty? Authors typically develop their own
personal style, and the famous example of the “Federalist papers” showed that
the analysis of word frequencies can be used to build compelling evidence to
support the identification of authors of anonymous works [22].

Koppel et al. [14] trace the development of techniques from that of Mosteller
and Wallace [22] (and earlier) to more recent machine learning methods, which

A. Mclver—We acknowledge the support of the Australian Research Council Grant
DP140101119.
© Springer International Publishing AG, part of Springer Nature 2018

K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 3-21, 2018.
https://doi.org/10.1007/978-3-319-95582-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_1&domain=pdf

4 N. Fernandes et al.

have taken advantage of the observation that many aspects of style — not only
word counts — in writing can be captured by statistical methods. For the last
decade, stylometric machine learners have been able to identify authors with
accuracy better than 90% from a set of 50 candidates, and have been successfully
applied to identification tasks on sets of (anonymous) documents written by tens
of thousands of authors.

Methods related to these were employed by researchers working on the 2006
Netflix release of a “deidentified” database of movie reviews in order to allow
researchers to work on improving its recommendation systems.

Unfortunately deidentifying data (i.e. removing names) is very different from
properly anonymising it and, in this case, privacy researchers were able to demon-
strate publicly that Netflix’s data contained more information than intended
leading to a lawsuit.

There remain many legitimate reasons why an author might want to dis-
guise his or her identity. Indeed could Netflix have done a better job to protect
its contributors whilst still preserving the information contained in the reviews
well enough to be useful to researchers working on improving Netflix’s recom-
mendation systems? In response to the Netflix lawsuit, and other such breaches
of privacy, “PAN” a series of scientific events and shared tasks on digital text
forensics! proposed a task to encourage research into creating systems which are
able to truly anonymise. The statement of the task is:

Given a document, paraphrase it so that its writing style does not match that of
its original author, anymore.

As an example, consider this extract from George Orwell’s Nineteen
FEighty-Four:

“The object of persecution is persecution. The object of torture is torture.
The object of power is power.”

It’s clear that Orwell’s intent was to evoke a sense of shock by the overwhelming
use of strong repetition. Another way of saying the same thing might be:

“The aim of persecution, abuse and power is respectively to mistreat, to
torture and to control.”

which, stripped of of its powerful stylistic ruse, has been rendered into a rather
dull opinion.

The range of approaches to “obfuscating” text documents automatically that
have been attempted up to and including the PAN task have had limited success.
Many of those approaches were inspired by k-confusability which articulates
the idea of “confusing” some secret with k other things, but turns out to be
susceptible to the well-known “linkage” and “intersection” attacks.

Methods based on differential privacy (DP) [10] — which provide some pro-
tection from these attacks — have not been attempted to date for this problem.

! http://pan.webis.de/index.html.

http://pan.webis.de/index.html

Processing Text for Privacy: An Information Flow Perspective 5

There has been interest for some time in combining DP with machine learn-
ing in general (for example, [7]), including recent “deep learning” approaches
[1], although applications to text are challenging because of its discrete, com-
plex and unstructured nature. Moreover, a key difference with our application
of interest is that we want to conceal the authorship of an individual released
document; the goal for DP with machine learning is typically to preserve the
privacy of members of the training dataset.

In this paper we link the original goals of the PAN obfuscation task to two
theoretical areas in computer science, with the aim of providing a solid founda-
tion for the enterprise and to enable new techniques in theoretical privacy to be
applied to this problem.

We explain how this task can be viewed as a problem of Quantitative
Information Flow where we describe the result of an obfuscation process as
a “channel”. In this way we can show upper bounds on the ability of any adver-
sary to determine the real author (whether or not the adversary is using machine
learning).

Second, we describe how the novel metrics used in machine learning
algorithms for author identification can in fact be used after all to define obfus-
cators based on differential privacy. The trick is to used Generalised Differential
Privacy [6] originally used in location-based privacy and which can be used for
unstructured data.

2 Text Document Processing

Text documents are processed in many different ways depending on the objective.
For example a document might need to be classified in terms of its topic which
can be helpful for cataloging in document repositories; or documents can be
paraphrased so that domain professionals are able to determine which documents
are relevant for their research or report compilation. Statistical and machine
learning approaches are the standard way now to tackle these tasks [18]; most
recently, approaches falling within the “deep learning” paradigm, using neural
networks with many layers, have become dominant and produced state-of-the-art
results for many tasks [26].

All these approaches use very different algorithms and representations of
documents, but the basic idea is the same, even when the representations and
implementations differ: thousands of document samples are analysed to identify
important “features” depending on the specific goal of the task. This constitutes
the “learning phase” and the result is a “best possible” correlation between
categories and the discovered features. Learning algorithms (for classification
problems) are evaluated by subjecting the learned correlation to the identifica-
tion to datasets which are not part of the learning set, and typically counts of
correct identification or classification are used to rate the success of the method.

For us the aim is to determine how to obfuscate automatically according to
the following constraints:

6 N. Fernandes et al.

The result of an obfuscated document must retain as much of the original
content in such a way that the author of the obfuscated document cannot

be identified.

As a simplification, we focus on the identification of author, and (separately)
topic classification (rather than full “content”) both of which are examples of
“classification problems” in machine learning.

2.1 Representing Documents for Topic Classification and Author
Identification

In machine learning documents are transformed into representations that have
been found to enable the discovery of features which perform well on a par-
ticular classification task. A very simple representation is to choose the word
components of a document, so for example,

“The object of persecution is persecution” can be represented by the set:

{“The”, “object”, “of”, “persecution”, “is” }. (1)
This, of course has lost some useful details such as the number of times that
words appear; an alternative richer representation is a “bag of words” which, in
this case, retains the repetition of “persecution”:

{{“The”, “object”, “of”, “persecution”, “persecution”, “is”[}. (2)

Even though it still loses a lot information from the original sentence, such
as word order, it turns out that the the bag of words representation is still very
useful in topic classification, where correlations between topics and the types and
frequency of words can be used to assign a topic classification to a document. It
can also be used in some stylometric analysis where authors can be correlated
with the number of times they use a particular word — in the identification of
the authors of the Federalist papers, it was discovered that Hamilton only used
“while” whereas Madison preferred “whilst”, and used “commonly” much more
frequently than did Hamilton.

More recent, widely used author identifiers use “character n-gram” represen-
tation for documents. The n-gram representation transforms a document into a
list of each subsequence of characters of length n, including (sometimes) spaces
and punctuation. Such a character 3-gram representation of our example is:

<“Th€77, (Lh€777 ueow’ “Ob”, “Obj”’ “bje777 Aéjecﬂ, “ect777 uct” . >. (3)

This representation seems to capture things like systematic punctuation and
common word stems, all of which can characterise an author. A particular char-
acter n-gram-based method of interest is the one developed by Koppel et al. [15].
This method uses character 4-grams (but without spaces) to classify author-
ship on a document set consisting of blog posts from thousands of authors, and
achieve in excess of 90% precision with 42% coverage for a 1000-author dataset.

Processing Text for Privacy: An Information Flow Perspective 7

On account of its strong performance and suitability for large author sets, and
the fact that it underpins the winning systems of PAN shared tasks on author
identification [13,24], this algorithm is one of the standard inference attackers
used in the PAN obfuscation task. This is therefore the authorship identification
algorithm we use in the rest of this paper.

2.2 Privacy Versus Utility

Obfuscating a document means changing the words somehow, and with the use
of machine learning as an adversary (as in author identification) or as a friend
(as in topic identification) we can see that the bag of words (2) or n-gram rep-
resentation (3) will be affected.

What we would like is to be able to show that for any adversary whether
or not they are using the n-gram representation that the obfuscation method
reduces their ability to identify authors, whereas using a state-of-the-art method
based on a bag of words representation the topic identification remains almost
as it was before obfuscation.

To deal with the former, we shall follow Alvim et al. [2] to model a pri-
vacy mechanism as an information flow channel; for the latter we will use gener-
alised differential privacy to show how to preserve topicality using an appropriate
metric for “meaning”.

3 Channels, Secrets and Information Flow

A privacy mechanism produces observations determined by secret inputs; the
elements of the channel model for information flow are inputs of type X, obser-
vations of type) and a description of how the inputs and observations are
correlated. For any set S we write DS for the set of discrete distributions on S.

A channel between X and) is a (stochastic) matrix whose X-indexed rows
sum to 1. We write the type of such channels/matrices as X —) and for C: X —Y
its constituents are elements C, , at row and column y that gives the condi-
tional probability of output y from input z, the z’th row C, _ and the y’'th
column C_,. Any row C, _ of C:X—Y can be interpreted as an element
of DY.

A secret is a distribution in DAX’; initially we call such secrets priors, by which
we mean that the adversary might have some prior knowledge which means that
knows some secret values are more likely than others, however the fact that
his knowledge is represented as a distribution means that he does not know for
sure. The mechanism modelled by a channel C' produces a correlation between
the inputs and the observables.

Given a channel C: X—) and prior m: X' the joint distribution J: D(X x}) is
given by J; ,:=m;Cy . For each y the column J_ ,, the adversary can update
his knowledge a-posteriori using Bayesian reasoning that revises the prior: i.e.
normalising J_ ,? to give the posterior induced on 7 by that y. We write m)C for

2 If several distinct y’s produce the same posterior, they are amalgamated; if there is
y with zero marginal probability, it and its (undefined) posterior are omitted.

8 N. Fernandes et al.

the joint distribution J, and J :DY for the (right) marginal probability defined
Jy = >,y Jay- For each observation y we denote the corresponding posterior
JYi=J [Jy.

There are two operations on channels which we will use to model two attacks
on privacy.

Definition 1. Let C: X =Y and D: X —) be channels. We define the sequen-
tial composition C; D: X — (Y1 xV2) as follows:

(C; D)m’(Cﬂwn X Dw7y2.

Y1,Y2)

Sequential composition allows the adversary to amalgamate his knowledge
about the secret which is leaked from bth C' and D.

The second operator models the situation where a channel leaks information
about a secret from X which has an interesting correlation wth a second secret
Z. The adversary can then use channel C: X —) to deduce some information
about the second secret!

Definition 2. Given channel C:X — Y and joint distribution Z:D(ZxX)
expressing an interesting correlation between two secret types Z and X, we define
the Dalenius composition Z - C: Z — Y defined by “matriz multiplication”:

(Z-C)., = Z Zow X Coy.
x: X

Dalenius composition® can be used the model the risk posed by mechanisms
that inadvertently release information about a second secret that is known to be
correlated with secrets associated with the mechanism.

3.1 Vulnerability Induced by Gain-Functions

When a channel publishes its observables, the most important concern is to
determine whether an adversary can do anything damaging with the informa-
tion released. We can investigate an adversary’s ability to use the information
effectively using the idea of “vulnerability” [4], a generalisation of entropy, no
longer necessarily e.g. Shannon, and whose great variety allows fine-grained con-
trol of the significance of the information that might be leaked [4,5].

Given a secret-space X', vulnerability is induced by a gain function over that
space, typically g of type GyyX = W—X—R, for some space of actions w: W.
When W is obvious from context, or unimportant, we will omit it and write just
g:GX. Given g and w (but not yet z) the function g.w is of type X—R* and

3 Named after Tore Dalenius who pointed out this risk in statistical databases [9].

4 We write dot for function application, left associative, so that function g applied to
argument w is g.w and then g.w.z is (g.w) applied to z, that is using the Currying
technique of functional programming. This convention reduces clutter of parentheses,
as we see later.

Processing Text for Privacy: An Information Flow Perspective 9

can thus be regarded as a random variable on X. As such, it has an expected
value on any distribution 7 over X, written &, g.w:= >) g.w.x X 7,.°

Once we have z, the (scalar) value g.w.z is simply of type R and represents
the gain to an adversary if he chooses action w when the secret’s actual value is
x. A particularly simple example is where the adversary tries to guess the exact
value of the secret. His set of actions is therefore equal to X', with each action a
guess of a value; we encode this scenario with gain function bv defined

bvaw.x = (1 if w =z else 0), (4)

so that the adversary gains 1 if he guesses correctly and 0 otherwise. A special
case of this is when an attacker tries to guess a property of the secret (rather
than the whole secret). For example let ~ be an equivalence class over secrets,
and suppose that the attacker tries to guess the equivalence class. The guesses
W now correspond to equivalence classes, and:

bvow.x=(1if x € w else 0). (5)

A gain function g: GX induces a g-vulnerability function V,: DX —R so that
Vylm] for m: DX is the maximum over all choices w: W of the expected value of
g.w on 7, that is max,, (E; g.w). In the simple 1-or-0 case above, the vulnerability
Vi is called the Bayes vulnerability; it is one-minus the Bayes-Risk of Decision
Theory, and it gives the maximum probability of an adversary guessing the secret
if his prior knowledge about it is 7.

We can now use g-vulnerability to determine whether the information leaked
through a channel is helpful to the adversary.

Definition 3. Given a prior m € DX, a channel C: X — Y and gain function
g:GX, we define the average posterior vulnerability as

VolmCl = >y VY],
y: Y

where J:= (m)C).

For each observation, the posterior JY is the adversary’s revised view of the
value of the secret; the posterior is actually more vulnerable because the adver-
sary can choose to execute a different action (compared to his choice relative
to the prior) to optimise the vulnerability V,[J¥]. The posterior vulnerability
V4[m)C] is then his average increase in gain. Comparing V,[m)C] and Vj[n] then
gives an idea of how much information the adversary can usefully use relative to
the scenario determined by g.

In this paper we shall use the multiplicative g-leakage, defined by

Ly(C) = Vy[mCl/Vyln], (6)

5 In general we write & f for the expected value of function f: X¥—R on distribution
m:DX.

10 N. Fernandes et al.

which gives the relative increase in gain. Moreover the leakage measure exhibits
an important robust approximation which will be relevant for privacy mecha-
nisms in text processing.

Theorem 1. [4] Let C: X —) be a channel, and let u: DX be the uniform prior
over X. Then for all priors m and non-negative gain functions g we have that:

VolmC/Vyln] < Vg, [w)C1/ Vg, [u] -

A final theoretical idea which will be useful for our application to privacy
is that of security refinement. If C C D (defined below) then D is more secure
than C in any scenario, because D’s posterior vulnerability relative to any gain
function is always less than C’s and therefore the information D releases is less
useable than the information released by C.

Definition 4. Let C: X — Y, and D: X — Y? be channels. We say that
CCDif

for all gain functions g and priors .
We can use security refinement to express compositionality properties.

Theorem 2. [3,19] Let C,D,E be channels and Z:D(Zx)) be a correlation
between secret types Z and X. The following inequalities hold.

1.CcD = C,ECD;FE
2.Cch = Z.-CC.Z-D

3.2 Privacy Mechanisms as Channels

A privacy mechanism is normally modelled as a function K which, given a value
x from a secret set X, outputs some observable value y:). The exact output
could be determined by a probability distribution which, in an extreme instance
such as redaction, could be a point distribution without any randomness applied.

Traditional approaches to privacy are founded on a principle we call “con-
fusablity”. Roughly speaking a mechanism imbues privacy by ensuring that the
real value of the secret could be confused amongst several other values. In this
section we examine confusability in terms of information flow to show how simple
confusability mechanisms provide weak privacy.

3.3 Attacks on Simple Confusability

Traditional approaches to privacy in text programming use the idea of k-
anonymity [25], which is related to confusability.

Definition 5. A channel C € X — Y is k-confusable if for each column y
(observable), the entries Cy,, are non-zero for at least k distinct values of x.

Although k-confusable seems like a nice, straightforward property, it has some
problems when combined with prior knowledge, and k-confusable mechanisms
are susceptible to intersection and linkage attacks.

Processing Text for Privacy: An Information Flow Perspective 11

Intersection Attacks. A mechanism that is k-confusable separates the values
of the secret into two subsets (for each observation): one for secret values that
are still possible, and one for values which are not possible.

An intersection attack refers to the scenario where two different mechanisms
are used, one after another. An adversary is able to combine the information
flow from both mechanisms to deduce more about the value of the secret than
he can from either mechanism separately. For example define two channels as
follows. Let X:={xq, z1, 22,23} and YV = {yo, v1}.

Cr,y, = (i =jmod 2) (7)
Dyy, = 1iff G=0Ai<2)V(=1Ai>2) (8)

Both C' and D are 2-confusable since C' divides the secret into two equivalence
classes: {zg, 22} and {x1, 23}, whereas D divides it into {xo,z1} and {z2, x3}.
Thus if only C or D is used then indeed the secret is somewhat private, but if
both are used one after the other then the secret is revealed entirely, since the
adversary can identify the secret by locating it simultaneously in an equivalence
class of C and of D.

We can, model such a scenario by the sequential composition of the two
mechanisms separately, i.e. the mechanism of an intersection attack is modelled
by C; D. The susceptibility of k-confusable mechanisms to intersection attacks
is summed up by a failure of compositionality for k-confusability.

Lemma 1. k-confusability is not preserved by to sequential composition.

Proof. We use the counterexample described above: C' and D defined respec-
tively at (7) and (8) are 2-confusable but C'; D is not 2-confusable.

Lemma 1 implies that mechanisms based on k-confusability are vulnerable
to intersection attacks, a flaw that has been pointed out elsewhere [11].

Linkage Attacks. A linkage attack can be applied when the adversary has
some prior knowledge about how some secret Z is correlated to another secret
X. When information leaks about X through a channel C: X —) the adversary
is able to deduce something about Z. A simple example of this occurs when for
example secret z has value zg exactly when = has value x; or x3, and z has value
z1 otherwise. In this example z and x are linked through the correlation defined

Zyw, = (i=jmod2). (9)

In this case, since the mechanism C' defined above at (7) leaks whether z is in
{zg,x2} or {x1,x3}, this information put together with correlation Z leaks the
value of z exactly. Even though C is 2-confusable.

Dalenius composition Z - C' now models such linkage attacks, combining cor-
relations with information flows to yield a mechanism describing the leaks about
a correlated secrets. As for intersection attacks, we see that k-confusability fails
compositionality with respect to Dalenius composition.

12 N. Fernandes et al.

Lemma 2. k-confusability is not preserved by Dalenius composition.

Proof. We observe that C' defined above at (7) is 2-confusable but that Z - C' is
not 2-confusable (for z), where Z is defined at (9).

Lemma 2 implies that privacy that relies on k-confusability is vulnerable to
attacks that can use prior knowledge.

3.4 Universal Confusability

We can avoid intersection attacks and linkage attacks by strengthening k-
confusability to “universal confusability”.

Definition 6. We say that a channel C is universally confusable if it is k-
confusable for all k > 1.

A channel is universally confusable if all its entries C , are non-zero. This
means that for any posterior reasoning, the channel will maintain any extent of
confusability that was already present in the prior. In fact universal confusability
is (somewhat) robust against intersection and linkage attacks, because the strong
confusability property is compositional with respect to sequential and Delanius
composition. Universal confusability is particularly important for text processing
because all kinds of unforeseen and unexpected correlations can be learned and
used, even if they are too strange to understand.

3.5 Differential Privacy

We turn to the question of how to implement mechanisms that are universally
confusable; the answer is given by differential privacy, which not surprisingly
was defined to defend against linkage and intersection attacks.

The definition of an e-differentially private mechanism is normally described
as a function of type X — DY), satisfying the following constraint. Let
dist: X x X — R be a distance function, then for all z, 2’ € X with dist(z,2") <
1, and properties a, we must have:

K.az(a)/Ka' (o) < e (10)

In fact, as has been pointed out by Alvim et al. [2] the mechanism K corresponds
to a channel in C*: X —) where the rows are defined by Cﬁy::lC.x(Y =y).
From (10) it is clear that C* is strongly confusable because if any non-zero entry
was present, the multiplicative constraint would fail to hold.

Moreover we can also obtain an upper bound for the scenario of an attacker
trying to use the information leaked to guess the secret, in the sense that the
following leakage bound holds [4]. For any prior T,

The probability of correctly guessing the secret after applying K
Vi [) CK]
Sum of the column maxima of C* x V;,[n].

INIA

Processing Text for Privacy: An Information Flow Perspective 13

What this means is that even if the attacker uses machine learning to try to
deduce properties about the original data, its ability to do so is constrained by
this upper bound.

As an example, suppose there are three possible values a secret can take,
drawn from ., T, Z., each a distance 1 apart from eachother.® A differentially
private mechanism K could release three possible results, say a, b, ¢, with cor-
responding channel:

K - cp .
Crj = 1/2 ifi=j, elsel/d.

Here K is log 2-differentially private, since the maximum of K.z(«) is at most
maxXji’ea,b,c Cﬁj/Cfl/] S %/% = 2.

Unfortunately we cannot apply the original definition of differential privacy
(10) to text documents because, unlike databases, texts are highly unstructured.
Indeed the applicability of differential privacy to text documents has been dis-
missed [8,23]. We propose instead to use a generalisation of differential privacy
that can apply to unstructured domains, suggesting that we can after all find
an obfuscation mechanism based on generalised differential privacy. The trick to

generalising differential privacy is to use a general distance function as follows.

Definition 7. [6] Let K: X — DY, and let dist: ¥ xX — Rxsq be a distance
function on X. We say that K is e-differentially private with respect to dist if,
for all properties o, we must have:

K.x(a)/K2' (o) < eexdist(z,a’)

Definition 7 says that a mechanism imbues privacy by confusing the exact value
of a secret = with other values 2’ with a level proportional to dist(x,«’). Thus if
x,2" are “close” (as measured by dist) then it’s quite likely that they could be
confused, but if they are far apart, then they would be less likely, although still
possibly, be confused.

Putting this together with the channel theorem above, means if we choose € so
that e<*4(=:2") is as close to 1 as we can make it, then the chance of distinguishing
z from 2’ becomes extremely small.

Even if we do no know the channel matrix exactly, we are still able to obtain
a bound on the information leakage.

Theorem 3. Let K be an e- generalised differentially private mechanism wrt.
metric d. Then for any gain function g,
EQ(C)C) < €e><d*7

where d*:= max, yex d(z,z').

6 These could, for example, correspond to different possible data values in a database.

14 N. Fernandes et al.

3.6 Privacy Versus Utility

Information leakage on its own, in the case that it is large, implies that the
probability of determining some property of the system will be high; if the upper
bound is small, then it implies the mechanism does not leak very much infor-
mation about anything. When we bring utility into the mix what we want is
that the mechanism leaks a lot of information about a property which is not
deemed sensitive, but keeps secret some other property that is deemed private.
Not surprisingly there are constraints as to how much both requirements can
be served simultaneously, however differential privacy can be used as a way to
randomise whilst preserving some modicum of utility. We first use some notions
from Quantitative Information flow to understand the trade-off between privacy
and utility.

Let ~4 and ~p represent two equivalence classes on a set of (secret) data
S. We want to release the equivalence class ~p but keep ~ 4 private using some
mechanism M. We can determine how successful we are by measuring the leakage
with respect to the two equivalence classes, where we use a specialised version
of vulnerability based on the scenario where an adversary tries to guess which
equivalence class.

Definition 8. M is e-hiding wrt. ~ 4 if
Ly (M) <1+e€,
where bu.., is defined at (5) and leakage is defined at (6).

The maximum chance of an adversary guessing which equivalence class of ~ 4
the secret is for an e-hiding mechanism is bounded above by (1 +€) x Vi _ [7],
giving a robust privacy guarantee on ~ 4.

Definition 9. M is A-revealing wrt. ~7 if
1+AL EbvNT(M) R
where bu..,. is defined at (5) and leakage is defined at (6).

The best chance of an adversary guessing which equivalence class of ~p
the secret is for a A-revealing mechanism could therefore be as much as
(1+4) X Vo [7].

Theorem 4. If M| T My then the following applies:

— If My is e-hiding of ~ 4 then so is My
— If Ms is A-revealing of ~1 then so is M,

Note that when data is provided to the user in a different representation,
such as character n-grams, this is called “post-processing”; as noted elsewhere
[4] post-processing is an instance of refinement, thus, as Theorem 4 indicates the
action of transforming documents into either character n-grams or some other
representation provides more privacy and less accuracy for utility.

Next we can look at some constraints between privacy and utility.

Processing Text for Privacy: An Information Flow Perspective 15

Theorem 5. If ~sC~r and M is both € hiding for ~4 and A revealing for ~r
(both under a uniform prior) then A <e.

Proof. Note that Ly, (M) is equal to V., [u)M]/V., [u]. But this is bounded
above by N x V., [u)M]/V.,[u], where N is the size of the maximum equiva-
lence class of ~p. But now V., [u] is equal to N/|S|, thus leakageofbv..,. (M) is
bounded above by N x V., [u) M] x |S| which is equal to L, , (M). The result
now follows.

In particular if ~ 4=~ then revealing any of ~p will reveal the same about
~4. In general if ~4 is finer than ~7 (as equivalence relations) revealing the
equivalence class for ~7 almost exactly, already reveals quite a lot about the
equivalence classes of ~ 4

Consider however the following example where there are four secret values:
{a,b, ¢, d}. Suppose we have equivalence classes of ~7 are {{a, b}, {¢,d}} and for
~7 are {{a,c},{b,d}}. The mechanism given by

. . ze{a,b} Ay=0
My, = 1lif <\/:c€{c,d}/\y1 else 0 .

has maximum leakage 2, and is 1-revealing wrt. ~p and O-revealing wrt. ~4;
this means that the adversary has maximum chance of 1 of guessing ~p, but
minimal chance of 1/2 of guessing ~ 4.

This suggests that where ~ 4 represents equivalence classes over authors, and
~7 represents equivalence classes over topics, if enough different authors write
on the same topic, there is a good chance of being able to disguise the writing
style whilst remaining in the same topic.

4 Generalised Differential Privacy and Obfuscation

We can start to bring to bear the above observations to our simplified PAN
obfuscation task. In particular we explore whether there are mechanisms whose
properties can be understood from the perspective of generalised differential
privacy. In our simplified version we imagine that we are already working with a
bag-of-words (BoW) representation and our mechanism X will produce another
(randomised) bag-of-words representation, i.e.

IC : BoW — DBoW.

Unlike our example above, we can no longer work with clear, a priori equiva-
lence relations for authorship (~,4) and topic (~7). Instead we use, as is done
in machine learners, similarity relationships for categorising topics and iden-
tifying authors. For topicality we use a metric based on a learned distance
between “Word2Vec word embeddings” and its lifting to documents via the
“Earth Movers distance” [16], and for authorship we use the “Ruzicka metric”.
Both have been found experimentally to provide good results in author identifi-
cation and topic classification.

16 N. Fernandes et al.

Word2Vec [21] is a representation of words as a vector of values which,
roughly speaking, captures relationships between words in terms of their mean-
ings. Since this is a learned representation its accuracy depends very much on
the quality of the documents. Remarkably the representation supports a metric”
which captures similarity in meaning between words. For example Word2Vec
embeddings put “queen” and “monarch” close together, but “monarch” and
“engineer” far apart. Using the distance between words defined on Word2Vec
representations as a base, the Earth Mover’s distance can then be defined to
compare documents for topicality. An example is given at Fig. 1.

Definition 10. Let d,d’ be documents represented as bags of words. Define
|d — d'|7 to be the word mover’s distance between the movement based on the
distance between Word2Vec word embeddings.

Informally, given two documents d, d' represented as bags of words, we let R
be a “move relation” so that Ry ., € [0,1] represents the proportion of w € d
that corresponds to w' € d'. R is set up so that for each w' € d', we have
Y wed Bww =1, and for each w € d, we have), ., Ry w = 1. The cost of
the move is given by >, . Ruw.w X dist(w,w’), and the word mover’s distance
is then the minimum over all such move relations.

document 1 ‘greets’ document 2
Obama ‘Obama ./' The
speaks . ‘.. , ‘speaks’ President

to President greets
the the
media ‘Chicago’ press
in | ‘media’ in
Illinois . e o< . Chicago
“Illinois’ "press -

word2vec embedding

Fig. 1. Depiction of a move relation defining the Word Mover distance [16]

Definition 11. Let d,d’ be documents and dr be its representation as a a char-
acter n-gram vector. In this representation, the vector is composed of discovered
“features” which are experimentally found to be good for grouping similar writing

styles together. With this in place, we define |d — d'|a:=(1 — gf#w).
J J

" There are several ways to define distance between word embeddings, but “cosine
similarity” seems to be a popular one; this isn’t a metric, but can be used to define
one.

Processing Text for Privacy: An Information Flow Perspective 17

Documents close in the | - |4 metric are likely to be authored by the same
author. To obtain a mechanism K which has a privacy guarantee on obfuscation,
we would have the following:

K(@)(a)/K(d)(a) < e @eHdd),

for dist an appropriate metric. Since this has the form of a differentially pri-
vate mechanism it would be somewhat resistant to linkage and intersection
attacks. Similar to Theorem 3, among distances no more than some fixed K,
and € ~ 1/10K then the right-hand side shows that the entries in each column
of the channel for those documents are approximately 1.1, thus suggesting that
all such documents would be confused with eachother.

It can also be shown [20] that using the Laplace distribution combined with
a given metric dist it is possible to define a mechanism M so that the output
remains close to the input z with high probability (proportional to €) when
measured using dist.

4.1 Experiments

Using the above observations as a guide, we designed a simple mechanism using
BoW representations based on Definition 10 designed therefore to preserve top-
icality. The idea is to use an underlying Laplace mechanism combined with the
Word2Vec distance independently applied to each word in the input bag of words.

Next we tested the results, both for privacy and for topicality; our hypothesis
was that randomising directly on words would mean that the character n-gram
representation would be changed sufficiently to hide stylistic traits. Moreover,

Dataset Accuracy Obfuscation Accuracy
Reuters Baseline Scale=0.1 Scale=0.2 Scale=0.5
Raw 71.1 - - -
Content-Words 68.5 67.9 67.9 41.7
BOW-1000 65.9 62.1 63.5 41.9
BOW-500 64.1 61.7 62.1 40.9
BOW-200 47.9 46.9 48.5 27.1
BOW-50 23.9 20.0 19.0 6.2
Fan fiction Baseline Scale=0.1 Scale=0.2 Scale=0.5
Raw 70.6 - - -
Content-Words 67.7 67.7 67.6 4.9
BOW-1000 48.0 35.3 40.2 2.0
BOW-500 46.1 34.3 34.3 5.9
BOW-200 36.3 19.6 18.6 8.8
BOW-50 13.7 4.9 4.9 1.0

Fig. 2. Results for authorship attribution over the various unobfuscated and obfuscated
test sets. Uniformly randomly assigning authorship would have an accuracy of 1% over
100 possible authors for the Fan fiction dataset, and 5% over 20 authors for the Reuters
dataset.

18 N. Fernandes et al.

Dataset Accuracy Obfuscation Accuracy
Reuters Baseline Scale=0.1 Scale=0.2 Scale=0.5
Raw 81.4 - - -
Content-Words 81.4 81.6 81.0 71.9
BOW-1000 80.4 80.8 80.8 75.2
BOW-500 79.2 79.4 79.4 70.7
BOW-200 76.0 76.0 76.0 66.7
BOW-50 66.3 67.9 68.1 61.7
Fan fiction Baseline Scale=0.1 Scale=0.2 Scale=0.5
Raw 82.4 - - -
Content-Words 83.3 79.4 79.4 54.9
BOW-1000 83.3 77.5 76.5 57.8
BOW-500 81.4 80.4 81.4 63.7
BOW-200 79.4 71.6 71.6 53.9
BOW-50 60.8 49.0 49.0 46.1

Fig. 3. Results for topic classification over the various unobfuscated and obfuscated
test sets. Classification accuracy is significantly lower for scale = 0.5, which corresponds
to more obfuscation. However, accuracy is still well above the ‘random’ baseline of 20%.

our theoretical approach shows only that where documents close in topicality
can be confused, so therefore can their authors. Authors that are only known
for their work on a single topic cannot be confused with authors who write on
entirely different subjects.

To test the results we needed large collections of documents written by differ-
ent authors, and representing a number of different topics. We were able to use
one standard dataset from the Natural Language Processing (NLP) literature;
a second data set was constructed by us.

1. The Reuters RCV1 dataset is a standard dataset used in language processing
tasks, and consists of over 800,000 Reuters news articles separated into various
topics [17]. Although not originally constructed for author attribution work,
it has been used previously in this domain by making use of the <byline> tags
inside articles which designate article authors [22]. The dataset was chosen
because it contains documents of reasonable length, which is required for
successful author identification. In addition, this dataset is similar to the
dataset on which the Word2Vec vectors used in this experiment were trained
on, and thus we would expect high quality outputs when using Word2Vec
with this data.

2. Our second data set consisted of “Fan fiction” samples®. This data set there-
fore consists of stories collected over the 5 most popular book-based topics.
Fan fiction has been used previously in PAN author attribution tasks, and is
suitable for this task because of the content length of the texts and the diver-
sity of authorship styles present in these texts, as stylistic writing qualities
are important in this domain.

8 https://www.fanfiction.net.

https://www.fanfiction.net

Processing Text for Privacy: An Information Flow Perspective 19

For each of the documents in the data sets we used our obfuscation mecha-
nism described above to a bag of words representation. We then used appropriate
machine learners to try to categorise the results by author and (separately) by
topic. In each case we applied the same machine learning techniques to the orig-
inal (bag of words representations) of the documents to provide a baseline with
which to compare.

In Fig.2 we can see the result of obfuscation: with increasing randomness
(as measured by Scale) the ability to identify the author becomes harder, as
compared to the Baseline (i.e. unobfuscated documents). This is compared to
Fig. 3 which we can see preserves the topicality very well — which is to be
expected because of the use of the Laplace mechanism based on Word2Vec.

5 Conclusions and Future Work

This paper has brought two conceptual ideas together to provide some founda-
tions for privacy mechanisms in text document processing. We used generalised
differential privacy based on metrics used in machine learning as a way to cre-
ate a mechanism, and noted how to understand the privacy that it provides in
terms of generalised differential privacy cast in terms of channels for quantitative
information flow.

We also observed experimentally that the mechanism seems to preserve top-
icality well, whilst achieving good privacy. We note here that although we have
not provided a mechanism that produces human-readable documents, the mech-
anism still maintains a variety of words, which fits with the spirit of the PAN
obfuscation task.

There is, of course, a long way to go before we have a true summarisation
mechanism that is private; with this foundation we have the tools to understand
the extent of privacy in future obfuscation mechanisms as they become available.

While the approach outlined in this paper used a simple Word2Vec embed-
ding substitution mechanism over a bag of words representation, there is very
promising recent work that uses deep learning to generate paraphrased text,
taking text as input. For instance, [12] gives a method for producing syntacti-
cally controlled adversarial paraphrases for text: paraphrases that have the goal
of confounding a machine learner, which in our context would be an inference
attacker; an alternative approach based on generative adversarial networks is
described by [27]. Incorporating a DP mechanism, along the lines of the one pre-
sented in this paper, is one possible avenue to solving the original obfuscation
problem presented in Sect. 2.

References

1. Abadi, M., Chu, A., Goodfello, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang,
L.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communication Security (CCS 2016), pp.
303-318, Vienna, Austria, 24-28 October (2016)

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

N. Fernandes et al.

Alvim, M.S., Chatzikokolakis, K., Degano, P., Palamidessi, C.: Differential privacy
versus quantitative information flow. CoRR, abs/1012.4250 (2010)

Alvim, M.S., Chatzikokolakis, K., Mclver, A., Morgan, C., Palamidessi, C., Smith,
G.: Additive and multiplicative notions of leakage, and their capacities. In: IEEE
27th Computer Security Foundations Symposium, CSF 2014, Vienna, Austria, 19—
22 July, 2014, pp. 308-322. IEEE (2014)

. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-

tion leakage using generalized gain functions. In: Proceedings of the 25th IEEE
Computer Security Foundations Symposium (CSF 2012), pp. 265-279, June 2012
Alvim, M.S., Scedrov, A., Schneider, F.B.: When notall bits are equal: Worth-based
information flow. In: Proceedings of the 3rd Conference on Principles of Security
and Trust (POST 2014), pp. 120-139 (2014)

Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broaden-
ing the scope of differential privacy using metrics. In: De Cristofaro, E., Wright,
M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82-102. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39077-7_5

Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk
minimization. J. Mach. Learn. Res. 12, 1069-1109 (2011)

Cumby, C., Ghani, R.: A machine learning based system for semi-automatically
redacting documents. In: Proceedings of the Twenty-Third Conference on Innova-
tive Applications of Artificial Intelligence (IAAI) (2011)

Dalenius, T.: Towards a methodology for statistical disclosure control. Statistik
Tidskrift 15, 429-44 (1977)

Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3-4), 211-407 (2014)

Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary
information in data privacy. In: Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 265-273. ACM
(2008)

Iyyer, M., Wieting, J., Gimpel, K., Zettlemoyer, L.: Adversarial example generation
with syntactically controlled paraphrase networks. In: North American Association
for Computational Linguistics (to appear, 2018)

Khonji, M., Iraqi, Y.: A Slightly-modified GI-based Author-verifier with Lots of
Features (ASGALF). In: Working Notes for CLEF 2014 Conference (2014)
Koppel, M., Schler, J., Argamon, S.: Computational methods in authorship attri-
bution. JASIST 60(1), 9-26 (2009)

Koppel, M., Schler, J., Argamon, S.: Authorship attribution in the wild. Lang.
Resour. Eval. 45(1), 83-94 (2011)

Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings
to document distances. In: Proceedings of the 32nd International Conference on
Machine Learning, pp. 957-966 (2015)

Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for
text categorization research. J. Mach. Learn. Res. 5, 361-397 (2004)

Manning, C.D., Schiitze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge, MA, USA (1999)

Mclver, A., Meinicke, L., Morgan, C.: Compositional closure for bayes risk in prob-
abilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223-235.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1_19

https://doi.org/10.1007/978-3-642-39077-7_5
https://doi.org/10.1007/978-3-642-14162-1_19

20.

21.

22.

23.

24.

25.

26.

27.

Processing Text for Privacy: An Information Flow Perspective 21

McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceed-
ings of the 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 94-103. IEEE (2007)

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Burges, C.J.C.,
Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in
Neural Information Processing Systems, vol. 26, pp. 3111-3119. Curran Associates
Inc. (2013)

Mosteller, F., Wallace, D.L.: Inference in an authorship problem: a comparative
study of discrimination methods applied to the authorship of the disputed federalist
papers. J. Am. Stat. Assoc. 58(302), 275-309 (1963)

Sénchez, D., Batet, M.: C-sanitized: a privacy model for document redaction and
sanitization. J. Assoc. Inf. Sci. Technol. 67(1), 148-163 (2016)

Seidman, S.: Authorship Verification Using the Imposters Method. In: Working
Notes for CLEF 2013 Conference (2013)

Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty,
Fuzziness Knowl. Based Syst. 10(5), 557-570 (2002)

Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning
based natural language processing. CoRR, abs/1708.02709 (2017)

Zhao, Z., Dua, D., Singh, S.: Generating natural adversarial examples. In: Inter-
national Conference on Learning Representations (2018)

q

Check for
updates

20 Years of Real Real Time Model
Validation

Kim Guldstrand Larsen® Florian Lorber, and Brian Nielsen

Department of Computer Science, Aalborg University, Aalborg, Denmark
{kgl,florber,bnielsen}@cs.aau.dk

Abstract. In this paper we review 20years of significant industrial
application of the UpPAAL Tool Suite for model-based validation, per-
formance evaluation and synthesis. The paper will highlight a number of
selected cases, and discuss successes and pitfalls in achieving industrial
impact as well as tool sustainability in an academic setting.

1 Introduction

In 1995 the first release of the real-time verification tool UPPAAL [43] was pre-
sented — together with a number of other emerging tools such as HyTeCH and
Kronos — at the very first TACAS conference [15]. Soon after the tool was used
for off-line verification of a number of real (i.e. industrially used) protocols, where
real-time aspects were of essence. Today, in 2018, the most recent branches of
UpPAAL are applied for on-line optimization of home automation and traffic
control systems. In this short note, we aim to recall some of the success stories
of UPPAAL over the years in terms of industrial applications, discuss what it
takes to achieve lasting industrial take-up as well as reflect on the influence on
the development of the tool from industrial feedback.

An overview of the most important case studies which will be discussed
whithin this paper can be found in Fig. 1.

The remainder of the paper will be structured as follows: first, in Sect. 2,
we will give an overview of the UPPAAL tool family. Then, in Sect.3 we will
present our major use cases in the context of verification. Afterwards, in Sect. 4,
we present our case studies in the area of testing and in Sect.5 we will present
cases in which we used UPPAAL for scheduling and controller synthesis. Finally,
in Sect. 6, we will present the most important lessons we learned while working
on the presented case studies.

2 The UprraAL Tool Suite

This section will give an overview over the UPPAAL tool family, its components
and their main purposes.

Work supported by Innovation Center DiCyPS, DFF project ASAP, and the ERC
Advanced Grant Project Lasso.
© Springer International Publishing AG, part of Springer Nature 2018

K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 22-36, 2018.
https://doi.org/10.1007/978-3-319-95582-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_2&domain=pdf

20 Years of Real Real Time Model Validation

Usecase H Tool Goal Partners Outcome
PACP UPPAAL Verification Philips Significant tool
improvement
BRP UPPAAL Verification Philips, Twente | Protocol verified
University
BOP UPPAAL Verification | Bang & Olufsen | Bug found and
corrected
BOPC UPPAAL Verification | Bang & Olufsen | Frequency limits
identified
FR UPPAAL Verification FlexRay Improved
Consortium fault-tolerance
guarantees
FW UPPAAL Verification Radboud Sound timing
University restrictions
identified
GC UPPAAL Verification MECEL, Several
Uppsala requirements
University verified
HPS UPPAAL Verification Herchel & Schedulability of
Planck task-set
established
NMN UPPAAL Verification Neocortec Energy
performance of
protocol
D UppaAL TRON Testing Danfoss Demonstration
of feasibility of
online testing
NN UPPAAL Testing Novo Nordic Two times
Y GGDRASIL industrial takeup
UppaaL CORA
G UPPAAL Modelling, Grundfos Interest
Y GGDRASIL Testing provoked - new
collaboration
S UppaAL TIGA Controller Skov Synthesis of
Synthesis zone-based
controller
H UprraaL TIGA Controller Hydac, ULB, Improved
Synthesis ENS Cachan controller
BPNS UPPAAL Scheduling GomSpace Batterty life
STRATEGO improvement of
a satellite
HA UPPAAL Controller Seluxit Intelligent floor
STRATEGO Synthesis heating
ICTL UPPAAL Controller Municipality of | Efficient traffic
STRATEGO Synthesis Kgge controller

23

Fig. 1. Industrial use cases using UPPAAL.

24 K. Guldstrand Larsen et al.

UpPPAAL. The underlying formalism of UPPAAL is that of timed automata with
the tool providing support for model checking of hard real-time properties. Since
the introduction of the tool in 1995, significant effort have been put into devel-
opment and implementation of improved datastructures and algorithms for the
analysis of timed automata. Besides the several advances with respect to the
verification engine, significant effort has over the years been put on the graph-
ical interface of the tool (e.g. [8]), and on the modelling side the introduction
of user-defined, structured datatypes and procedures has undoubtedly made the
tool significantly more usable in modeling real control programs and communi-
cation protocols [7].

UppAAL CORA. Motivated by the need for addressing (optimal) usage of
resources, priced timed automata were introduced in 2001. [4,9] (indepen-
dently) demonstrated decidability of cost-optimal reachability. Soon after, an
efficient priced extension of the symbolic datastructures used in UPPAAL was
implemented in the branch UppPaAL CORA. Combined with a symbolic
A* algorithm UpPAAL CORA turned into a new generic tool for cost-optimal
planning which was competitive to traditional OR methods such as Mixed-
Integer Linear Programming [39].

UprprAAL TRON. In 2004 the branch UppPAAL TRON was introduced offering
the possibility of performing on-line conformance testing of realistic real-time
systems with respect to timed input-output automata [41,45]. UppaAL TRON
implements a sound and (theoretically) complete randomized testing algorithm,
and uses a formally defined notion of correctness to assign verdicts: i.e. relativized
timed input/output conformance providing a timed extension of Jan Tretmans
ioco [52]. Using online testing, events are generated and simultaneously executed
on the system under test.

UPPAAL YGGDRASIL. is an off-line test case generator integrated into the main
UPPAAL component. [t aims at creating a test suite for edge coverage in a three
phase process, which includes testing according to user-specified test purposes,
random testing, and afterwards reachability analysis towards uncovered tran-
sitions. The tool enables the user to associate test code with transitions and
locations, which is integrated into the test case whenever a trace traverses them.
This enables UPPAAL Y GGDRASIL to create test scripts in any desired language,
which can be executed directly by the chosen execution engine.

UprPAAL TIGA. In 2005 - encouraged by suggestions from Tom Henzinger — the
branch UPPAAL TIGA was released, allowing for control strategies to be synthe-
sized from timed games, i.e. two-player games played on timed automata [6,16].
The branch implements an efficient symbolic on-the-fly algorithm for synthesiz-
ing winning strategies for reachability, safety as well as Biichi objectives and
taking possible partial observability into account [17]. The branch marks a dis-
ruptive direction with respect to development of control programs for embedded
systems: rather than manually developing the control program with subsequent
model checking (and correction), UPPAAL TIGA provides a fully automatic
method for deriving a correct-by-construction control program.

20 Years of Real Real Time Model Validation 25

EcDAR. In 2010 the branch ECDAR was introduced supporting a scalable
methodology for compositional development and stepwise refinenemet of real-
time systems [29,30]. The underlying specification theory is that of timed I/O
automata being essentially timed games (with inputs being controllable, and
outputs being uncontrollable) equipped with suitable methods for refinement
checking (in terms of an alternating simulation between two timed game speci-
fications), consistency checking, logical as well as structural composition. For a
full account of ECDAR we refer the reader to the tutorial [28].

UprPAAL SMC. One of the most recent branches of the UPPAAL tool suite —
UppAAL SMC introduced in 2011 — allows for performance evaluation on the
expressive formalisms of stochastic hybrid automata and games [26,27], and has
by now been widely applied to analysis of a variety of case studies ranging from
biological examples [25], schedulability for mixed-critical systems [14,22], eval-
uation of controllers for energy-aware buildings [19], social-technical attacks in
security [31], as well as performance evaluation of a variety of wireless communi-
cation protocols [53,53]. For a full account of UpPAAL SMC we refer the reader
to the recent tutorial [24].

UPPAAL STRATEGO. from 2014 [20,21] is the most recent branch of the UPPAAL
tool suite that allows to generate, optimize, compare and explore consequences
and performance of strategies synthesized for stochastic priced timed games
(SPTG) in a user-friendly manner. In particular, UPPAAL STRATEGO comes
with an extended query language, where strategies are first class objects that
may be constructed, compared, optimized and used when performing (statistical)
model checking of a game under the constraints of a given synthesized strategy.

3 Verification

The early development of UPPAAL was highly driven by colleagues in the Nether-
lands using the tool for automatic verification of industrial protocols. During a
time-span of only a few years this resulted in a huge performance improvement
reducing both time- and space-consumption with over 99%.

Philips Audio Control Protocol (PACP). Before the release of UPPAALBosscher,
Polak and Vaandrager had in 1994 modelled and verified a protocol developed by
Philips for the physical layer of an interface bus that connects the various devices
of some stereo equipment (tuner, CD player,...). Essentially — after a suitable
translation — the model of the protocol is a timed automata. Whereas the first
proof in [13] was manual, the first automated verification of the protocol was
done using the tool HyTech. Later, automated — and much faster — verifications
were obtained using UPPAAL and Kronos. However, all these proofs were based
on a simplification on the protocol, introduced by Bosscher et. al. in 1994, that
only one sender is transmitting on the bus so that no bus collisions can occur. In
many applications the bus will have more than one sender, and the full version of
the protocol by Philips therefore handles bus collisions. Already in the autumn
of 1995 an automatic analysis of a version of the Philips Audio Control Protocol

26 K. Guldstrand Larsen et al.

with two senders and bus collision handling was achieved using UPPAAL 0.96.
To make the analysis feasible a notion of committed location was introduced
(to remove unnecessary interleavings) and the analysis was carried out on a
super computer, a SGI ONYX machine [11]. The total verification time was
8.82 hrs using more 527.4 MB. It is interesting to note that using UPPAAL 3.2
the same verification was reduced to only 0.5 sec using 2.5 MB of memory.
In any case, the success in 1996 was a true milestone in the development of
UPPAAL as this version of the protocol was orders of magnitude larger than the
previously considered version with only one sender, e.g. the discrete state-spaces
was 103 times larger and the number of clocks and channels in the model was
also increased considerably.

Bounded Retransmission Protocol (BRP). In parallel with the collaboration with
the group of Vaandrager, a group from Twente University (D’Argenio, Katoen,
Reus and Tretmans) was also applying — and seriously testing — the first versions
of UPPAAL. In particular, they successfully modelled and verified the Bounded
Retransmission Protocol, a variant of the alternating bit protocol introduced by
Philips. In [18] it is investigated to what extent real-time aspects are important to
guarantee the protocol’s correctness using UPPAAL and the Spin model checker.

B&O Protocol (BOP). In 1996, we were ourselves approached by Bang & Olufsen
with a request of “analysing their proprietary IR Link protocol”. The protocol,
about 2800 lines of assembler code, was used in products from the audio/video
company Bang&Olufsen throughout more than a decade, and its purpose was
to control the transmission of messages between audio/video components over a
single bus. Such communications may collide, and one essential purpose of the
protocol was to detect such collisions. The functioning was highly dependent on
real-time considerations. Though the protocol was known to be faulty (in the
sense that messages were lost occasionally), the protocol was too complicated in
order for the company to locate the bug using normal testing. However - after 4-
5 iterations refining the model of the protocol - an error trace was automatically
generated using UPPAAL and confirmed in the actual implementation of the
protocol. Moreover, the error was corrected and the correction was automatically
proven correct, again using UPPAAL [36].

B&O Powerdown control (BOPC). [35] Our first collaboration with Bang &
Olufsen was very much characterized as a reverse engineering exercise of an
existing protocol: the only documentation of the protocol was the 2800 lines of
assembler code together with 3 flow-charts and a (very) knowledgeable B&O
engineer. In our second collaboration with the company, modelling and verifi-
cation in UPPAAL was carried out in parallel with the actual implementation
of a new real-time system for power-down control in audio/video components.
During modeling 3 design errors were identified and corrected, and the following
verification confirmed the validity of the design but also revealed the necessity
for an upper limit of the interrupt frequency. The resulting design was later
(seamlessley) implemented and incorporated as part of a new product line.

20 Years of Real Real Time Model Validation 27

Whereas the above collaborative projects with B&O were very successful,
neither UPPAAL nor model-driven development were taken-up in the company.
An obvious reason could the immaturity (and lack of GUI) of the tool back then.
However, in retrospect, an other equally likely reason is the fact that we were
spending (all) our effort in collaborating with technicians in the company and
not on marketing our tool and “disruptive” methodology to decision-makers in
the company.

Flexray (FR). As part of the German DFG project AVACS! the FlexRay pro-
tocol was modeled and verified using UPPAAL. Flexray is a standard, developed
by a cooperation of leading companies in the automotive industry, as a robust
communication protocol for distributed components in modern vehicles. Devel-
oped by the FlexRay Consortium, a cooperation of leading companies including
BMW, Bosch, Daimler, Freescale, General Motors, NXP Semiconductors, and
Volkswagen, FlexRay was first employed in 2006 in the pneumatic damping sys-
tem of BMW’s X5, and fully utilized in 2008 in the BMW 7 Series. The FlexRay
specification was completed in 2009 and is widely expected to become the future
standard for the automotive industry. In [34] a timed automata model of its
physical layer protocol is presented, and UPPAAL is used to automatically prove
fault tolerance under several error models and hardware assumptions. In partic-
ular, it is shown that the communication system meets, and in fact exceeds, the
fault-tolerance guarantees claimed in the FlexRay specification.

Firewire (FW). The IEEE 1394-1995 serial bus standard defines an archi-
tecture that allows several components to communicate at very high speed.
Originally, the architecture was designed by Apple (FireWire), with more than
70 companies having been involved in the standardisation effort. In [50] a timed
automata model of the leader election protocol is presented and its correctness
is established using UPPAAL. In particular, it is shown that under certain timing
restrictions the protocol behaves correctly. The timing parameters in the IEEE
1394 standard documentation obey the restrictions found in this proof.

MECEL Gear Controller (GC). In [44] an application of UPPAAL to the mod-
elling and verification of a prototype gear controller was developed in a joint
project between industry and academia. In particular, the project was car-
ried out in collaboration between Mecel AB and Uppsala University. Within
the project, the (timely) correctness of the controller was formalized (and
verified) in 47 logical formulas according to the informal requirements delivered
by industry.

Herchel & Planck Schedulatilibity (HPS). In the danish project DaNES, we
collaborated with the company Terma on using timed automata model checking
as a more exact method for establishing schedulability of a number of periodic
tasks executing on a single CPU under a given scheduling policy. In particular a
fixed priority preemptive scheduler was used in a combination with two resource
sharing protocols, and in addition voluntary task suspension was considered.

! http://www.avacs.org.

http://www.avacs.org

28 K. Guldstrand Larsen et al.

In [46] schedulability was established under the assumption of exact computa-
tion times of the tasks. In [23] non-deterministic computations times were con-
sidered; depending on the size of the computation time interval, schedulability
was either verified (using UPPAAL) or refuted (using the concrete search engine
of UppAaAL SMC).

4 Testing

Our research on model-based test generation for timed (event recording)
automata started with the thesis work around 1996-2000 in [47]. The approach
aimed at covering timed equivalence classes defined through the clock guards
of the timed automata. It assumed strictly deterministic systems, and its scal-
ability was limited by the analysis techniques of the time. It thus had limited
industrial applicability [48,49].

Later (2002-2004), inspired by [32,52], we developed the online testing tool
UpPAAL TRON [3]. This approach could effectively handle non-determinism in
both the specification (due to abstraction) and system under test (due to uncer-
tainties in scheduling, execution times, timing, etc.), scaled to large models, and
provided response times low enough for many practical cases [5,42,51]. Ounline
testing generates effective randomized long tests, but coverage must be evalu-
ated post-mortem and cannot be guaranteed a priori. Moreover, it is difficult to
repeat the precise same test and inspect the set of test cases (might be required
by certification bodies).

Our first work on offline test-case generation (with Uppsala University) ap-
peared [37] in 2003. Here we showed how to interpret witness traces generated by
the UPPAAL model-checker as test cases for the sub-class deterministic output
urgent timed automata. Specifically, we showed how to generate the test cases
with the minimum duration that satisfied a given test purpose formulated as
a reachability property by exploiting UPPAAL’s fastest witness trace generation
feature. We furthermore formulated coverage as a reachability question, giving
the ability to generate (time optimal) tests that guarantee meeting common
coverage criteria. This work led to the UpPAAL COVER tool (no longer developed)
and UPPAAL YGGDRASIL.

The Danfoss Case (D). We applied and evaluated UpPAAL TRON on an embed-
ded controller supplied by the company Danfoss’ Refrigeration Controls Division
around year 20032004 [42]. The target device was a stable product of a refrig-
erator controller for industrial and large supermarket installations. As computer
scientists we did not have domain expertise, and it soon became clear that the
supplied documentation (high-level requirements and user manuals) was insuffi-
cient for us to build accurate models. Hence, we ended up formulating a hypoth-
esis model, running the test, and refining the model when the test failed. The
final model consisted of 18 concurrent components (timed automata), 14 clock
variables, and 14 discrete integer variables, and was thus quite large for the time.
When confronting the refined model with Danfoss engineers, they too were sur-
prised about certain aspects of its behavior, and needed to have that confirmed

20 Years of Real Real Time Model Validation 29

by other developers. Although we found no confirmed defects, the case showed
that our techniques were practically applicable, and effective in finding discrep-
ancies between specified and observed behavior. Encouraged by these results,
both parties continued the collaboration on automated testing. At the end, our
testing approach was not included in their new test setup that emphasized a new
test harness for automated execution of manually defined scripts. Retrospec-
tively, the gap between our method and their established development processes
and tools was too big.

The Novo Nordic Case (NN). The first version of UPPAAL YGGDRASIL was
developed in 20072009 specifically to support a collaboration with Novo Nordic
for model-based GUI testing for medical devices. This version used UPPAAL
CORA as back-end, and operated in a 3 step process inspired by the company’s
needs: (1) Generating a separate test sequence for each user defined (supposedly
critical) test purpose, (2) using UPPAAL’s search heuristics for optimizing model
(edge) coverage considering constraints on the maximum lengths of the test
cases, and (3) generating targeted test cases for each of the remaining uncovered
transitions. The actual test case code was generated from model-annotations
that the test engineers added to the model issuing appropriate GUI commands
and assertions. Initially, the models were made using UML state-charts (and then
translated into the UPPAAL syntax) due to the engineers familiarity with this
notation. It is important to remark that the engineers had no prior experience
with formal modelling, and models were made for illustrative purposes using
Microsoft Visio. Even then, making models that now had a tangible and formal
meaning required a substantial training period. First the models were jointly
developed assisted by the tool developer, and later only by company engineers
with ordinary support.

This approach reduced the time used on test construction from upwards of
30 days to 3 days spent modelling and then a few minutes on actual test genera-
tion. At the same time, coverage was easier to establish than in the manual app-
roach, and script maintenance greatly reduced. Later again, the company started
using the UppPAAL-editor directly, circumventing a heavy (and costly) UML tool.
The approach was thus successfully embedded within the company. Unfortu-
nately, that development team was dissolved as part of a company restructuring
a year later, and the competence was no longer used.

MBAT. Since the original UPPAAL YGGDRASIL was tailormade for this collab-
oration, and since it used the UppPAAL CORA engine that is also no longer
being developed, it ended up in a non-usable state. Recently, as part of the EU
Artemis MBAT (Combined Model-based Testing and Analysis) project, we re-
architected the tool, and integrated it into — and shipped with — the main
branch of UPPAAL, such that it now (1) uses the normal search engine, and (2)
uses the graphical editor to create the needed annotations, and (3) provides a
GUI widget for creating the test case configurations.

UPPAAL YGGDRASIL was applied to a case-study [38], and evaluated posi-
tively by a few consortium member companies. However, the collaboration did
not result in commercial exploitation, partly because the project came to an

30 K. Guldstrand Larsen et al.

end, and partly because we did not have an established company that could sell
the licenses, and required maintenance, training, and consultancy.

MBAT also facilitated further developments for tool interoperability that is
seen as crucial for large companies owning hundreds of various software devel-
opment tools. That included prototyping of Open Services for Lifecycle Collab-
oration (OSLC)? adaptors for UPPAAL, and prototyping of Functional Mock-up
Interfaces (FMI)? co-simulation interfaces. So it is regretful that this source of
funding for Artemis/ECSEL industrial collaboration at a European scale ceased,
as the Danish government halted national co-funding.

Grundfos (G). Grundfos is a major Danish company and world renowned for
its pump products. In a recent meeting in the context of the DiCyP$S project*,
we discussed different possible topics for further evaluation, including model-
based testing. Based on our positive experiences with Danfoss (whose refrigerator
controllers at an abstract level are similar to Grundfos pump controllers) we
presented all the benefits/strengths of online model-based tested. However, it was
when we presented offline testing that their interest was really triggered. They
in particular liked our idea of modelling each of their requirements, using this
(combined) model to automatically generate test scripts, and executing these on
their existing test harness. Hence, there is a strong fit with their existing testing
process and equipment. Also they believed that the (formalized) requirement
models could be a valuable documentation complementing the existing design
documentation. Hence, we decided to focus the collaboration on this approach,
and postpone online testing.

In the first phase, we (university /tool provider/academics) perform the mod-
elling and test case generation in order to prepare the tool and evaluate the
method, for this particular case. We have identified an interesting, non-trivial
subsystem of a newly developed pump controller exhibiting core functionality. If
this stage is successful we plan to train selected Grundfos engineers and evaluate
their experiences. Since the collaboration is ongoing, we cannot report on the
outcome here.

5 Planning, Scheduling and Synthesis

Within its newer branches, the UPPAAL tool suite allows for the usage of prices
and stochastic elements, in order to enable various features, such as cost-optimal
reachability, optimal scheduling or synthesis of strategies. The first practical step
in this direction was made in 2002, with the initial release of UppPAAL CORA.
UppAAL CORA was developed as part of the VHS and AMETIST projects, and
uses linear priced timed auomata (LPTA) for reachability problems, searching for
paths with the lowest accumulated costs. The idea behind UPPAAL STRATEGO

2 https://open-services.net.

3 http://fmi-standard.org.

4 National Innovation Fund supported project on Data-Intensive Cyber-Physical
Systems.

https://open-services.net
http://fmi-standard.org

20 Years of Real Real Time Model Validation 31

came up in the CASSTING project. It was released in 2014, and facilitates the
generation, optimization, comparison as well as consequence and performance
exploration of strategies for stochastic priced timed games (SPTGs) in a user-
friendly manner. The tools were since applied in several case studies, such as
optimal planning of missions for battery-powered nano-satellites [12], efficient
heating in home automation [40] or traffic light scheduling [33]. Below we will
give an overview of the three mentioned case studies.

Battery-Powered Nano-Satellites (BPNS). This case study focused on the bat-
tery consumption of a GOMX-3 satellite built by the company GomSpace. It
contains several antennas, solar panels and a battery. Depending on the schedul-
ing of the different tasks of the satellite, the deterioration of the battery may
vary significantly, depending on, for instance, the depth the battery is discharged
to before reloading it. UPPAAL STRATEGO was used to analyze different battery
usage profiles, to optimize the lifetime of the satellite. This was done via a wear
score function, which ranked the profiles according to their impact on the bat-
tery life. Additionally, the satellite was modelled as an SPTG in an abstract
way. It could choose between the four different experiment types with different
strains on the battery. Using the reinforcement learning approach implemented
in UPPAAL STRATEGO we could near-optimize the scheduling of the experiments
with respect to both the battery life and the number of experiments performed.

Home Automation (HA). In [40] we collaborated with the Danish company
Seluxit within the European project CASSTING. Our focus was on using timed
games to synthesize a controller for a floor heating system of a single family
house. Each room of the house has its own hot-water pipe circuit, which is
controlled based on the room temperature. The original system used a simple
“Bang-Bang”-like strategy, which turned the heating on if the temperature fell
below a certain threshold, and turned it back off if it exceeded another threshold.
Our goal was to use weather forecast information to synthesize an improved con-
trol strategy. Due to the state-space explosion caused by the number of control
modes, we could not apply UPPAAL STRATEGO directly. To cope with this, we
proposed a novel online synthesis methodology, which is periodically called and
learns an optimal controller for a limited timeframe. We further improved this
approach by applying compositional synthesis, making it scalable enough for the
study. The controller could access the weather forecast for the next 45 minutes,
and used that information to shut down or start the valves much earlier than
other controllers, resulting in substantial energy savings and increased comfort.

Intelligent Control of Trafic Light (ICTL). Within the Innovation Center
DiCyPS we used UPPAAL STRATEGO for the synthesis of an efficient traffic
control strategy. The controller gains information about the traffic via radar
detectors and aims at optimizing the total traffic flow in a given traffic light
junction. The strategy optimizes the total delay, the queue length and the num-
ber of times the vehicles have to stop. Again the synthesis is done online, this
time in 5 second intervals, during which the next operation of the traffic light is
calculated. We investigated an existing intersection in the municipality of Kgge,

32 K. Guldstrand Larsen et al.

Denmark, and simulated it with the open source tool SUMO and the commercial
tool VISSIM. The strategy computed by UPPAAL STRATEGO could be integrated
into these tools, to analyze the behaviour based on randomly generated traffic
scenarios. We evaluated the strategies in comparison to a static controller and a
so called Loop controller, under three types of traffic szenarios with low, medium
and maximal traffic. For low traffic, all controllers performed very similar, with
the Loop controller showing the best results and for medium traffic, all performed
equally. However, for high traffic, UPPAAL STRATEGO outperformed both other
controllers significantly, essentially halving the expected waiting time [33].

6 Lessons Learned

Based on 20years of practical experience in using UPPAAL on industrial case
studies — as illustrated by the list of case studies given in the previous sections
— we believe that a number of lessons may be learned.

It is important to have a dedicated team consisting of committed developers
and inquisitive researchers in order to develop efficient and usable tools. In addi-
tion, the tools developed must have an interface and functionality which fits the
use-case company’s tool-chain, development method, and knowledge.

[Formal methods tools must fit development methodology applied by industry.]

Having the tool developer applying it in close interaction with the industrial
user — e.g. through collaborative projects — gives a strong incentive for achieving
alignment with and impact on industrial methodology. The tool developer can
then strive to align the tool and the industrial verification workflow, both by
adapting the tool and by influencing the used methods.

Industrial impact requires an evolution of both their methods and our tools,
potentially in several iterations of collaboration.

The exact formal notations need not be a show-stopper, as long as the nota-
tion used is engineer friendly, and supported by a well-designed user-interface.
Using a familiar notation is helpful in reducing the entry barrier and learning
curve.

[Use of engineer friendly, yet formal, notation increases chances of impact.]

Sustaining use may be difficult in a dynamic industrial environment, and
requires several collaborations and/or repeated introduction. Follow-up projects
can benefit this greatly.

[Sustained industrial use needs repeated committed collaboration.]

Tool development needs to be continuously sustained beyond the first case-
study and paper-publication. This requires committed developers, continuous

20 Years of Real Real Time Model Validation 33

maintenance including bug fixing, making enhancements of usability, functions,
performance, and performing testing, release management, license serving,
This is obviously time consuming and requires financial support. More impor-
tantly, because formal tools often require specialized expertise knowledge, few
of these tasks can be subcontracted to a generic software engineer. Hence, also
academic recognition and rewards are needed for such developments that do not
readily result in publications.

Tool development needs to be continuously sustained. This requires increased
academic recognition to tool developers.

On the other hand, we ourselves only made few serious attempts at commer-
cializing our tools beyond selling licenses. This is likely because we are researchers
at heart.

Industrial impact could be increased by offering tools and consultancy on
commercial terms through spin-out companies.

Finally:

[A successful case study is not the same as industrial impact.]

References

1. Proceedings of the 18th IEEE Real-Time Systems Symposium (RTSS 1997), 3-5
December 1997. IEEE Computer Society, San Francisco (1997)

2. Third International Conference on the Quantitative Evaluation of Systems (QEST
2006), 11-14 September 2006. IEEE Computer Society, Riverside (2006)

3. Mikucionis, M., Larsen, K.G., Nielsen, B.: T-uppaal: online model-based testing
of real-time systems. In: Grunbacher, P. (ed.) 19th IEEE International Conference
on Automated Software Engineering (ASE 2004) Proceedings, pp. 396-397, United
States, IEEE Computer Society Press (2004). ISSN; 1068-3062

4. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata.
In: Benedetto and Sangiovanni-Vincentelli [10], pp. 49-62

5. Asaadi, H.R., Khosravi, R., Mousavi, M.R., Noroozi, N.: Towards model-based
testing of electronic funds transfer systems. In: Arbab, F., Sirjani, M. (eds.) FSEN
2011. LNCS, vol. 7141, pp. 253-267. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29320-7_17

6. Behrmann, G., et al.:. UPPAAL-tiga: time for playing games!. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 121-125. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73368-3_14

7. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: Third International Conference on the Quanti-
tative Evaluation of Systems (QEST 2006) [2], 11-14 September 2006, Riverside,
California, USA, pp. 125-126

8. Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Developing
UPPAAL over 15 years. Softw. Pract. Exper. 41(2), 133142 (2011)

https://doi.org/10.1007/978-3-642-29320-7_17
https://doi.org/10.1007/978-3-642-29320-7_17
https://doi.org/10.1007/978-3-540-73368-3_14

34

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

K. Guldstrand Larsen et al.

Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In:
Benedetto and Sangiovanni-Vincentelli [10], pp. 147-161

Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.): HSCC 2001. LNCS, vol.
2034. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45351-2
Bengtsson, J., et al.: Verification of an audio protocol with bus collision using
UpPAAL. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp.
244-256. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5_73
Bisgaard, M., et al.: Battery-aware scheduling in low orbit: the GoMX-3 case.
In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS,
vol. 9995, pp. 559-576. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48989-6_34

Bosscher, D., Polak, 1., Vaandrager, F.: Verification of an audio control protocol.
In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS,
vol. 863, pp. 170-192. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58468-4_165

Boudjadar, A., David, A., Kim, J.H., Larsen, K.G., Mikucionis, M., Nyman, U.,
Skou, A.: Degree of schedulability of mixed-criticality real-time systems with prob-
abilistic sporadic tasks. In: 2014 Theoretical Aspects of Software Engineering Con-
ference, TASE 2014, Changsha, China, 1-3 September 2014, pp. 126-130. IEEE
Computer Society (2014)

Brinksma, E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.):
TACAS 1995. LNCS, vol. 1019. Springer, Heidelberg (1995). https://doi.org/10.
1007/3-540-60630-0

Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66-80. Springer, Heidelberg (2005). https://doi.org/10.
1007/11539452_9

Cassez, F., David, A., Larsen, K.G., Lime, D., Raskin, J.-F.: Timed control with
observation based and stuttering invariant strategies. In: Namjoshi, K.S., Yoneda,
T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 192-206.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75596-8_15
D’Argenio, P.R., Katoen, J.-P., Ruys, T.C., Tretmans, J.: The bounded retrans-
mission protocol must be on time!. In: Brinksma, E. (ed.) TACAS 1997. LNCS,
vol. 1217, pp. 416-431. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0035403

David, A., Du, D., Larsen, K.G., Mikucionis, M., Skou, A.: An evaluation frame-
work for energy aware buildings using statistical model checking. Sci. China Inf.
Sci. 55(12), 2694-2707 (2012)

David, A., et al.: On time with minimal expected cost!. In: Cassez, F., Raskin,
J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 129-145. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11936-6_10

David, A., Jensen, P.G., Larsen, K.G., Miku¢ionis, M., Taankvist, J.H.: UpPPAAL
STRATEGO. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206-211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0_16

David, A., Larsen, K.G., Legay, A., Miku¢ionis, M.: Schedulability of Herschel-
Planck revisited using statistical model checking. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2012. LNCS, vol. 7610, pp. 293-307. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34032-1_28

https://doi.org/10.1007/3-540-45351-2
https://doi.org/10.1007/3-540-61474-5_73
https://doi.org/10.1007/978-3-319-48989-6_34
https://doi.org/10.1007/978-3-319-48989-6_34
https://doi.org/10.1007/3-540-58468-4_165
https://doi.org/10.1007/3-540-58468-4_165
https://doi.org/10.1007/3-540-60630-0
https://doi.org/10.1007/3-540-60630-0
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/978-3-540-75596-8_15
https://doi.org/10.1007/BFb0035403
https://doi.org/10.1007/BFb0035403
https://doi.org/10.1007/978-3-319-11936-6_10
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-642-34032-1_28

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

20 Years of Real Real Time Model Validation 35

David, A., Larsen, K.G., Legay, A., Mikucionis, M.: Schedulability of herschel
revisited using statistical model checking. STTT 17(2), 187-199 (2015)

David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. STTT 17(4), 397-415 (2015)

David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sedwards, S.:
Statistical model checking for biological systems. STTT 17(3), 351-367 (2015)
David, A., et al.: Statistical model checking for networks of priced timed automata.
In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80—
96. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24310-3_7
David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349-355. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1_27

David, A., Larsen, K.G., Legay, A., Nyman, U., Traonouez, L., Wasowski, A.:
Real-time specifications. STTT 17(1), 17-45 (2015)

David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: ECDAR: an envi-
ronment for compositional design and analysis of real time systems. In: Bouajjani,
A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 365-370. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15643-4_29

David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O
automata: a complete specification theory for real-time systems. In: Johansson,
K.H., Yi, W. (eds.) Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2010, Stockholm, Sweden, 12—
15 April 2010, pp. 91-100. ACM (2010)

David, N., David, A., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Probst,
C.W.: Modelling social-technical attacks with timed automata. In: Bertino, E.,
You, I. (eds.) Proceedings of the 7th ACM CCS International Workshop on Man-
aging Insider Security Threats, MIST 2015, Denver, Colorado, USA, 16 October
2015, pp. 21-28. ACM (2015)

de Vries, R.G., Tretmans, J.: On-the-fly conformance testing using SPIN. STTT
2(4), 382-393 (2000)

Eriksen, A.B., Huang, C., Kildebogaard, J., Lahrmann, H., Larsen, K.G., Muniz,
M., Taankvist, J.H.: Uppaal stratego for intelligent traffic lights. In: ITS European
Congress (2017)

Gerke, M., Ehlers, R., Finkbeiner, B., Peter, H.-J.: Model checking the flexray
physical layer protocol. In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS,
vol. 6371, pp. 132-147. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15898-8_9

Havelund, K., Larsen, K.G., Skou, A.: Formal verification of a power controller
using the real-time model checker UPPAAL. In: Katoen, J.-P. (ed.) ARTS 1999.
LNCS, vol. 1601, pp. 277-298. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48778-6_17

Havelund, K., Skou, A., Larsen, K.G., Lund, K.: Formal modeling and analysis of
an audio/video protocol: an industrial case study using UPPAAL. In: Proceedings
of the 18th IEEE Real-Time Systems Symposium (RTSS 1997) [1], 3-5 December
1997, San Francisco, CA, USA, pp. 2-13 (1997)

Hessel, A., Larsen, K.G., Nielsen, B., Pettersson, P., Skou, A.: Time-optimal test
cases for real-time systems. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003.
LNCS, vol. 2791, pp. 234-245. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-40903-8_19

https://doi.org/10.1007/978-3-642-24310-3_7
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-15643-4_29
https://doi.org/10.1007/978-3-642-15898-8_9
https://doi.org/10.1007/978-3-642-15898-8_9
https://doi.org/10.1007/3-540-48778-6_17
https://doi.org/10.1007/3-540-48778-6_17
https://doi.org/10.1007/978-3-540-40903-8_19
https://doi.org/10.1007/978-3-540-40903-8_19

36

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

K. Guldstrand Larsen et al.

Kim, J.H., Larsen, K.G., Nielsen, B., Miku¢ionis, M., Olsen, P.: Formal analysis
and testing of real-time automotive systems using UPPAAL tools. In: Nunez, M.,
Giidemann, M. (eds.) FMICS 2015. LNCS, vol. 9128, pp. 47-61. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19458-5 4

Larsen, K., et al.: As cheap as possible: effcient cost-optimal reachability for priced
timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 493-505. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44585-4_47

Larsen, K.G., Mikucionis, M., Muiiz, M., Srba, J., Taankvist, J.H.: Online and
compositional learning of controllers with application to floor heating. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 244-259. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_14

Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using
UpPAAL. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
79-94. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31848-4_6
Larsen, K.G., Mikucionis, M., Nielsen, B., Skou, A.: Testing real-time embedded
software using UPPAAL-TRON: an industrial case study. In: Wolf, W.H. (ed.)
EMSOFT 2005, 1822 September 2005, 5th ACM International Conference on
Embedded Software, Proceedings, Jersey City, NJ, USA, pp. 299-306. ACM (2005)
Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134—
152 (1997)

Lindahl, M., Pettersson, P., Yi, W.: Formal design and analysis of a gear controller.
STTT 3(3), 353-368 (2001)

Mikucionis, M., Larsen, K.G., Nielsen, B.: T-UPPAAL: online model-based testing
of real-time systems. In: 19th IEEE International Conference on Automated Soft-
ware Engineering (ASE 2004), 20-25 September 2004, Linz, Austria, pp. 396-397.
IEEE Computer Society (2004)

Mikucionis, M., et al.: Schedulability analysis using uppaal: Herschel-Planck case
study. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 175—
190. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16561-0_21
Nielsen, B.: Specification and Test of Real-Time Systems. Ph.D thesis. Aalborg
University (2000)

Nielsen, B., Skou, A.: Automated test generation from timed automata. In: Mar-
garia, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 343-357. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9_24

Nielsen, B., Skou, A.: Test generation for time critical systems: tool and case study.
In: 13th Euromicro Conference on Real-Time Systems, Delft, The Netherlands, pp.
155-162, June 2001

Romijn, J.: A timed verification of the IEEE 1394 leader election protocol. Formal
Methods Syst. Des. 19(2), 165-194 (2001)

Riitz, C.: Timed model-based conformance testing - a case study using tron: testing
key states of automated trust anchor updating (rfc 5011) in autotrust. B.Sc. thesis
(2010)

Tretmans, J.: A formal approach to conformance testing C-19, 257-276 (1993)
van Glabbeek, R.J., Hofner, P., Portmann, M., Tan, W.L.: Modelling and verifying
the AODV routing protocol. Distrib. Comput. 29(4), 279-315 (2016)

https://doi.org/10.1007/978-3-319-19458-5_4
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1007/978-3-662-49674-9_14
https://doi.org/10.1007/978-3-540-31848-4_6
https://doi.org/10.1007/978-3-642-16561-0_21
https://doi.org/10.1007/3-540-45319-9_24

FM 2018 Main Conference

®

Check for
updates

Deadlock Detection
for Actor-Based Coroutines

Keyvan Azadbakht!2(®) Frank S. de Boer!, and Erik de Vink!?

! Centrum Wiskunde en Informatica, Amsterdam, The Netherlands
{k.azadbakht,f.s.de.boer}@cwi.nl
2 Leiden University, Leiden, The Netherlands
3 Eindhoven University of Technology, Eindhoven, The Netherlands
evink@win.tue.nl

Abstract. The actor-based language studied in this paper features
asynchronous method calls and supports coroutines which allow for the
cooperative scheduling of the method invocations belonging to an actor.
We model the local behavior of an actor as a well-structured transition
system by means of predicate abstraction and derive the decidability of
the occurrence of deadlocks caused by the coroutine mode of method
execution.

Keywords: Deadlock detection - Predicate abstraction + Actor
Cooperative scheduling - Transition system

1 Introduction

Actors [1,15] provide an event-driven concurrency model for the analysis and
construction of distributed, large-scale parallel systems. In actor-based modeling
languages, like Rebeca [20], Creol [17], and ABS [16], the events are generated by
asynchronous calls to methods provided by the actors. The resulting integration
with object-orientation allows for new object-oriented models of concurrency,
better suited for the analysis and construction of distributed systems than the
standard model of multi-threading in languages like Java.

The new object-oriented models of concurrency arise from the combination
of different synchronization mechanisms. By design, the basic run-to-completion
mode of execution of asynchronously called methods as for example provided
by the language Rebeca does not provide any synchronization between actors.
Consequently, the resulting concurrent systems of actors do not give rise to
undesirable consequences of synchronization like deadlock. The languages Creol
and ABS extend the basic model with synchronization on the values returned
by a method. So-called futures [8] provide a general mechanism for actors to
synchronize on return values. Creol and ABS further integrate a model of exe-
cution of methods based on and inspired by coroutines, attributed by Knuth
to Conway [6]. This model allows for controlled suspension and resumption of
the executing method invocation and so-called cooperative scheduling of another

© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 39-54, 2018.
https://doi.org/10.1007/978-3-319-95582-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_3&domain=pdf

40 K. Azadbakht et al.

method invocation of the actor. In [3,4], this mechanism is used to implement
the well-established algorithms for social network simulation.

Both the synchronization mechanisms of futures and coroutines may give rise
to deadlock. Futures may give rise to global deadlock in a system of actors. Such
a global deadlock consists of a circular dependency between different method
invocations of possibly different actors which are suspended on the generation of
the return value. On the other hand, coroutines may give rise to a local deadlock
which occurs when all method invocations of a single actor are suspended on a
Boolean condition. In this paper we provide the formal foundations of a novel
method for the analysis of such local deadlocks.

To the best of our knowledge, our work provides a first method for deciding
local deadlocks in actor-based languages with coroutines. The method itself is
based on a new technique for predicate abstraction of actor-based programs
with coroutines, which aims at the construction of a well-structured transition
system. In contrast, the usual techniques of predicate abstraction [5] aim at the
construction of a finite abstraction, which allows model checking of properties
in temporal logic. In [9], a restricted class of actor-based programs is modeled as
a well-structured transition system. This class does not support coroutines and
actors do not have a global state specifying the values of the global variables.

Methods that utilize different techniques aiming at detection of global dead-
locks in various actor settings include the following. The work in [19] uses own-
ership to organize CoJava active objects into hierarchies in order to prevent
circular relationships where two or more active objects wait indefinitely for one
another. Also data-races and data-based deadlocks are avoided in CoJava by the
type system that prevents threads from sharing mutable data. In [7], a sound
technique is proposed that translates a system of asynchronously communicating
active objects into a Petri net and applies Petri net reachability analysis for dead-
lock detection. The work that is introduced in [11] and extended in [14] defines
a technique for analyzing deadlocks of stateful active objects that is based on
behavioural type systems. The context is the actor model with wait-by-necessity
synchronizations where futures are not given an explicit “Future” type. Also, a
framework is proposed in [18] to statically verify communication correctness in
a concurrency model using futures, with the aim that the type system ensures
that interactions among objects are deadlock-free.

A deadlock detection framework for ABS is proposed in [12] which mainly
focuses on deadlocks regarding future variables, i.e., await and get operations on
futures. It also proposes a naive annotation-based approach for detection of local
deadlocks (await on Boolean guards), namely, letting programmers annotate the
statement with the dependencies it creates. However, a comprehensive approach
to investigate local deadlocks is not addressed.

Our approach, and corresponding structure of the paper, consists of the fol-
lowing. First, we introduce the basic programming concepts of asynchronous
method calls, futures and coroutines in Sect.2. In Sect.3 we introduce a new
operational semantics for the description of the local behavior of a single actor.
The only external dependencies stem from method calls generated by other

Deadlock Detection for Actor-Based Coroutines 41

actors and the basic operations on futures corresponding to calls of meth-
ods of other actors. Both kinds of external dependencies are modeled by non-
determinism. Method calls generated by other actors are modeled by the non-
deterministic scheduling of method invocations. The basic operations on futures
are modeled by the corresponding non-deterministic evaluation of the availabil-
ity of the return value and random generation of the return value itself. Next,
we introduce in Sect.4 a predicate abstraction [5,13] of the value assignments
to the global variables (“fields”) of an actor as well as the local variables of the
method invocations. The resulting abstraction still gives rise to an infinite tran-
sition system because of the generation of self-calls, that is, calls of methods of
the actor by the actor itself, and the corresponding generation of “fresh” names
of the local variables.
Our main contribution consists of the following technical results.

— a proof of the correctness of the predicate abstraction, in Sect. 5, and
— decidability of checking for the occurrence of a local deadlock in the abstract
transition system in Sect. 6.

Correctness of the predicate abstraction is established by a simulation rela-
tion between the concrete and the abstract transition system. Decidability is
established by showing that the abstract system is a so-called well-structured
transition system, cf. [10]. Since the concrete operational semantics of the local
behavior of a single actor is an over-approximation of the local behavior in the
context of an arbitrary system of actors, these technical results together com-
prise a general method for proving absence of local deadlock of an actor. A short
discussion follow-up in Sect. 7 concludes the paper.

2 The Programming Language

In this section we present, in the context of a class-based language, the basic
statements which describe asynchronous method invocation and cooperative

scheduling.
A class introduces its global variables, also referred to as “fields”, and meth-
ods. We use z,v, z, ... to denote both the fields of a class and the local variables

of the methods (including the formal parameters). Method bodies are defined
as sequential control structures, including the usual conditional and iteration
constructs, over the basic statements listed below.

Dynamic Instantiation. For x a so-called future variable or a class variable of
type C, for some class name C, the assignment

T = new

creates a new future or a unique reference to a new instance of class C.

42 K. Azadbakht et al.

Side Effect-Free Assignment. In the assignment
x=e

the expression e denotes a side effect-free expression. The evaluation of such an
expression does not affect the values of any global or local variable and also does
not affect the status of the executing process. We do not detail the syntactical
structure of side effect-free expressions.

Asynchronous Method Invocation. A method is called asynchronously by an
assignment of the form
x=-eglmler,...,e,)

Here, z is a future variable which is used as a unique reference to the return value
of the invocation of method m with actual parameters eq, . .., e,. The called actor
is denoted by the expression ey. Without loss of generality we restrict the actual
parameters and the expression eq to side effect-free expressions. Since ey denotes
an actor, this implies that eg is a global or local variable.

The Get Operation. The execution of an assignment
T =y.get

blocks till the future variable y holds the value that is returned by its corre-
sponding method invocation.

Awaiting a Future. The statement
await x?

releases control and schedules another process in case the future variable = does
not yet hold a value, that is to be returned by its corresponding method invoca-
tion. Otherwise, it proceeds with the execution of the remaining statements of
the executing method invocation.

Awaiting a Boolean Condition. Similarly, the statement
await e

where e denotes a side effect-free Boolean condition, releases control and sched-
ules another process in case the Boolean condition is false. Otherwise, it proceeds
with the execution of the remaining statements of the executing method invo-
cation.

We describe the possible deadlock behavior of a system of dynamically gen-
erated actors in terms of processes, where a process is a method invocation. A
process is either active (executing), blocked on a get operation, or suspended by
a future or Boolean condition. At run-time, an actor consists of an active process
and a set of suspended processes (when the active method invocation blocks on a
get operation it blocks the entire actor). Actors execute their active processes in
parallel and only interact via asynchronous method calls and futures. When an

Deadlock Detection for Actor-Based Coroutines 43

active process awaits a future or Boolean condition, the actor can cooperatively
schedule another process instead. A global deadlock involves a circular depen-
dency between processes which are awaiting a future. On the other hand, a local
deadlock appears when all the processes of an actor are awaiting a Boolean con-
dition to become true. In the following sections we present a method for showing
if an initial set of processes of an individual actor does not give rise to a local
deadlock.

3 The Concrete System

In order to formally define local deadlock we introduce a formal operational
semantics of a single actor. Throughout this paper we assume a definition of a
class C' to be given. A typical element of its set of methods is denoted by m.
We assume the definition of a class C' to consist of the usual declarations of
global variables and method definitions. Let Var(C) denote all the global and
local variables declared in C'. Without loss of generality we assume that there
are no name clashes between the global and local variables appearing in C, and
no name clashes between the local variables of different methods. To resolve in
the semantics name clashes of the local variables of the different invocations of
a method, we assume a given infinite set Var such that Var(C) C Var. The
set Var\Var(C) is used to generate “fresh” local variables. Further, for each
method m, we introduce an infinite set X'(m) of renamings o such that for every
local variable a of m, o(z) is a fresh variable in Var, i.e. not appearing in Var(C).
We assume that any two distinct 0,0’ € |J,,, ¥(m) are disjoint (Here m ranges
over the method names introduced by class C.) Renamings ¢ and ¢’ are disjoint
if their ranges are disjoint. Note that by the above assumption the domains of
renamings of different methods are also disjoint.

A process p arising from an invocation of a method m is described formally as
a pair (o, S), where o € X(m) and S is the sequence of remaining statements to
be executed, also known as continuation. An actor configuration then is a triple
(I, p, @), where I' is an assignment of values to the variables in Var, p denotes
the active process, and) denotes a set of suspended processes. A configuration
is consistent if for every renaming o there exists at most one statement S such
that (0,5) € {p} U Q.

A computation step of a single actor is formalized by a transition relation
between consistent actor configurations. A structural operational semantics for
the derivation of such transitions is given in Fig. 1. Here, we assume a given set
Val of values of built-in data types (like Integer and Boolean), and an infinite
set R of references or “pointers”. Further, we assume a global variable refs such
that I'(refs) C R records locally stored references.

We proceed with the explanation of the rules of Fig. 1. The rule <ASSIGN>
describes a side effect-free assignment. Here, and in the sequel, ec denotes the
result of replacing any local variable z in e by o(z). By I'(e) we denote the
extension of the variable assignment I" to the evaluation of the expression e.
By I'[z = v], for some value v, we denote the result of updating the value of x
in I' by v.

44 K. Azadbakht et al.

<ASSIGN> ;BiEl‘j’z .
(I (o,x=1¢;5),Q) — T re Z)SQ)
ro = I'(eo)], (o,5), » (0, & = new; o), —
(] I'(eo)], (0, 9), Q) (Ilrefs = Flrefs] U ()] (012 = 7:.5).)

<GET-VALUE> <GET-REF>
v e Val reR
(I (0,2 = y.get;S),Q) — (I (0,2 = y.get;S),Q) —
(Izo =v],(0,9),Q) (I'[refs = I'(refs) U{r}], (o, x =1;5),Q)
<REMOTE-CALL > <LOCAL-CALL>
I'(yo) # I'(this) I'(yo) = I'(this)
(I, (0,2 = y!'m(€); S), Q) — (I, (0,2 = y!'m(€); S), Q) —
(I, (0,2 = new; 5), Q) (I'zo’ = I'(€0)], (0, = new; S),Q U {(d",5)})
<IF-THEN> <IF-ELSE>
I'(ec) = true I'(eo) = false
(I, (0,if e {S'} else {S"};59),Q) — (I, (0,if e {S'} else {S"};59),Q) —
(I, (0,5 5),Q) (I, (0,58";5),Q)
<WHILE-TRUE> <WHILE-FALSE>
I'(eo) = true I'(ec) = false
(I, (o,while e {S'}; 5),Q) — (I, (o,while e {S'}; 5), Q) — (I} (0,5),Q)
(T, (0,S;while edo {S'}; 9), Q)
<AWAITB-TRUE> <AWAITB-FALSE>
I'(eo) = true I'(eo) = false (0,9 eq
(I, (0, await e; 5), Q) — (I, (0, await e; .5), Q) —
(I (0,5),Q) (I',(0",8"),(QU{(0,await e; S)})\{ (o', 5)})
<AWAITF-SKIP> <AWAITF-SCHED>
(I, (0,await 27; 5),Q) — (o 7.S) €@
(T, (0,5),0Q) o (I (0, await 27;5),Q) — o
(I, (0", 8),(Q U {(0,await true; S)})\{(c", S")})
<RETURN>
(0,8 eQ

(I, (0, returne), Q) — (I, (o', 8"), Q\{(¢", S")})

Fig. 1. Concrete transition relation

The rule <NEW> describes the non-deterministic selection of a fresh reference
not appearing in the set I'(refs). The rule <GET-VALUE> models an assignment
involving a get operation on a future variable y which holds a value of some built-
in data type by an assignment of a random value v € Val (of the appropriate

Deadlock Detection for Actor-Based Coroutines 45

type). The rule <GET-REF> models an assignment involving a get operation on a
future variable y which holds a reference by first adding a random value r € R to
the set I'(refs) and then assign it to the variable z (note that we do not exclude
that r € I'(refs)).

It should be observed that we model the local behavior of an actor. The
absence of information about the return values in the semantics of a get operation
is accounted for by a non-deterministic selection of an arbitrary return value.
Further, since we restrict to the analysis of local deadlocks, we also abstract from
the possibility that the get operation blocks and assume that the return value
is generated.

The rules regarding choice and iteration statements are standard. The rule
<REMOTE-CALL> describes an assignment involving an external call (I'(yo) #
I'(this), where yo denotes y, if y is a global variable, otherwise it denotes the
variable o(y)). It is modeled by the creation and storage of a new future reference
uniquely identifying the method invocation. On the other hand, according to the
rule <LOCAL-CALL> a local call (I'(yo) = I'(this)) generates a new process and
future corresponding to the method invocation. Here it is implicitly assumed
that the renaming o’ € X'(m) is different from o and all the other renamings in
Q. Further, by I'[zo’ = I'(éc)] we denote the simultaneous update of I" which
assigns to each local variable ¢'(2;) (i.e., the renamed formal parameter z;) the
value of the corresponding actual parameter e; with its local variables renamed
by o, i.e., the local context of the calling method invocation. For technical con-
venience we omitted the initialization of the local variables that are not formal
parameters. The body of method m is denoted by S’.

The rule <AWAITB-TRUE> describes that when the Boolean condition of the
await statement is true, the active process proceeds with the continuation, and
<AWAITB-FALSE> describes that when the Boolean condition of the await state-
ment is false, a process is selected for execution. This can give rise to the acti-
vation of a disabled process, which is clearly not optimal. The transition system
can be extended to only allow the activation of enabled processes. However, this
does not affect the results of this paper and therefore is omitted for notational
convenience.

The rule <AWAITF-SKIP> formalizes the assumption that the return value
referred to by x has been generated. On the other hand, <AWAITF-SCHED> for-
malizes the assumption that the return value has not (yet) been generated. Note
that we transform the initial await statement into an await on the Boolean con-
dition “true”. Availability of the return value then is modeled by selecting the
process for execution. Finally, in the rule RETURN we assume that the return
statement is the last statement to be executed. Note that here we do not store
the generated return value (see also the discussion in Sect. 7).

In view of the above, we have the following definition of a local deadlock.

Definition 1. A local configuration (I',p, Q) deadlocks if

for all (0,5) € {p} UQ we have that the initial statement of S is an await
statement await e such that I'(eo) = false.

46 K. Azadbakht et al.

In the sequel we describe a method for establishing that an initial configu-
ration does not give rise to a local deadlock configuration. Here it is worthwhile
to observe that the above description of the local behavior of a single actor pro-
vides an over-approximation of its actual local behavior as part of any system
of actors. Consequently, absence of a local deadlock of this over-approximation
implies absence of a local deadlock in any system of actors.

4 The Abstract System

Our method of deadlock detection is based on predicate abstraction. This boils
down to using predicates instead of concrete value assignments. For the class C,
the set Pred(m) includes all (the negations of) the Boolean conditions appearing
in the body of m. Further, Pred(m) includes all (negations of) equations = =y
between reference variables x and y, where both z and y are global variables of
the class C (including this) or local variables of m (a reference variable is either
a future variable or used to refer to an actor.)

An abstract configuration « is of the form (7, p, Q)), where, as in the previous
section, p is the active process and (@) is a set of suspended processes. The set T’
provides for each invocation of a method m a logical description of the relation
between its local variables and the global variables. Formally, T is a set of pairs
(o,u), where u C Pred(m), for some method m, is a set of predicates of m with
fresh local variables as specified by o. We assume that for each process (o, S) €
{p} UQ there exists a corresponding pair (o, u) € T. If for some (o,u) € T there
does not exist a corresponding process (0,S) € {p} U Q then the process has
terminated. Further, we assume that for any o there is at most one (o,u) € T
and at most one (o,5) € {p} U Q.

We next define a transition relation on abstract configurations in terms of a
strongest postcondition calculus. To describe this calculus, we first introduce the
following notation. Let L(T') denote the set { uo|(o,u) € T'}, where uo = { 90|
¢ € u}, and po denotes the result of replacing every local variable x in ¢ with
o(z). Logically, we view each element of L(T) as a conjunction of its predicates.
Therefore, when we write L(T) | ¢, i.e., ¢ is a logical consequence (in first-order
logic) of L(T), the sets of predicates in L(T') are interpreted as conjunctions. (It
is worthwhile to note that in practice the notion of logical consequence will also
involve the first-order theories of the underlying data structures.) The strongest
postcondition, defined below, describes for each basic assignment a and local
context o € X(m), the set sp,(L(T), a) of predicates ¢ € Pred(m) such that po
holds after the assignment, assuming that all predicates in L(T) hold initially.

For an assignment z = e we define the strongest postcondition by

spo (L(T),x = e) = {¢ | L(T) F pole/x], ¢ € Pred(m)}

where [e/xz] denotes the substitution which replaces occurrences of the variable x
by the side effect-free expression e. For an assignment x = new we define the
strongest postcondition by

spo(L(T),x =new) = {¢ | L(T) F @onew/x], ¢ € Pred(m) }

Deadlock Detection for Actor-Based Coroutines 47

The substitution [new/z] replaces every equation & = y, with y distinct from =,
by false, x = x by true. It is worthwhile to note that for every future variable
and variable denoting an actor, these are the only possible logical contexts con-
sistent with the programming language. (Since the language does not support
de-referencing, actors encapsulate their local state.)

For an assignment z = y.get we define the strongest postcondition by

spo(L(T),z =y.get) ={p | L(T) k- Vz.po, ¢ € Pred(m) }

The universal quantification of the variable £ models a non-deterministic choice
for the value of x.

Figure 2 presents the structural operational semantics of the transition rela-
tion for abstract configurations. In the <ASSIGN> rule the set of predicates u for
each (o/,u) € T, is updated by the strongest postcondition sp,/ (L(T), (x = €)o).
Note that by the substitution theorem of predicate logic, we have for each pred-
icate ¢ of this strongest postcondition that ¢o’ will hold after the assignment
(x = e)o (i.e., xo = eo) because L(T) b pole/x]. Similarly, the rules <GET>
and <NEW> update T of the initial configuration by their corresponding strongest
postcondition as defined above.

In the rule <REMOTE-CALL> we identify a remote call by checking whether
the information this # yo can be added consistently to L(T"). By T'U {(o, ¢)}
we denote the set {(0',u) € T | ¢/ # o} U{(o,uU{¢}) | (o,u) € T}. In
the rule <LOCAL-CALL> the set of predicates u of the generated invocation of
method m consists of all those predicates ¢ € Pred(m) such that L(T') - pleo/Z],
where Z denotes the formal parameters of m. By the substitution theorem of
predicate logic, the (simultaneous) substitution [ec/z] ensures that ¢ holds for
the generated invocation of method m. Note that by definition, L(T") only refers
to fresh local variables, i.e., the local variables of m do not appear in L(T)
because for any (o,u) € T we have that o(z) is a fresh variable not appearing
in the given class C. For technical convenience we omitted the substitution of
the local variables that are not formal parameters. The renaming o', which
is assumed not to appear in T, introduces fresh local variable names for the
generated method invocation. The continuation S’ of the new process is the body
of method m. The generation of a new future in both the rules <REMOTE-CALL>
and <LOCAL-CALL> is simply modeled by the z = new statement.

By <IF-THEN>, the active process transforms to the “then” block, i.e. S,
followed by S, if the predicate set L(T') is consistent with the guard e of the
if-statement. (Note that as L(T') is in general not complete, it can be consistent
with e as well as with —e.) The other rules regarding choice and iteration state-
ments are defined similarly. By <RETURN> the active process terminates, and is
removed from the configuration. A process is selected from @ for execution. Note
that the pair (o,u) € T is not affected by this removal.

The rules <AWAIT-TRUE> and <AWAIT-FALSE> specify transitions assuming
the predicate set L(T') is consistent with the guard e and with —e, respectively.
In the former case, the await statement is skipped and the active process con-
tinues, whereas in the latter, the active process releases control and a process

48 K. Azadbakht et al.

<ASSIGN>
T" = {(0/,spor (L(T), (x = €)0)) | (', u) € T }

(T7 (071' =€ S)vQ) - (T,v (o, S)vQ)

<GET>
T' = { (o', 5po/ (L(T), (x = y-get)o)) | (o', u) € T}
(T, (0733 = y.get;S)7Q) - (Tlv (0-7 S)vQ)

<NEW>
T = {(0', 8pe' (L(T), (x = new)s)) | (¢/,u) €T}
(T, (0,2 =new; 5),Q) — (T",(0,5),Q)

<REMOTE-CALL>
L(T) U {this # yo} I/ false

(T7 (va = y!m(é); S)v Q) - (T U {(Uv this 7& y)}}v (U’I = new; S)vQ)

<LOCAL-CALL>
L(T) U {this = yo} / false u={¢| LTt plec/z], ¢ € Pred(m) }

(T7 (va = y!m(é); S)v Q) -
(TU{(c',u)} U{(o,this = y)}, (0, = new; S),Q U {(c, S)})

<IF-THEN> <IF-ELSE>
L(T)u{eo} ¥ false L(T)U{—eo} V/ false
(T, (0,if e {S'} else {S"};5),Q) (T, (0,if e {S'} else {S"};5), Q)
- (T U {(0'7 e)}v (Ua S/; S)v Q) - (T U {(‘77 _‘e)}a (Jv SH? S)a Q)
<WHILE-TRUE> <WHILE-FALSE>
L(T)U{ec} ¥/ false L(T)U{—ec} I/ false
(T, (o,while edo {S}; 9),Q) (T, (o,while edo {S'}; 9), Q)
— (TU{(0,e)}, (0,5 ;whileedo {S'}; S), Q) — (TU{(c,—e)},(0,9),Q)

<AWAIT-TRUE>
L(T)U{ec} I/ false
(T, (0,await € 5), Q) — (T'U{(0,€)},(0,5),Q)

<AWAIT-FALSE>
L(T) U{—eoc} ¥/ false (0,8 eqQ

(T, (0,await e; 5),Q) — (T U{(0,=e)}, (0", 5"), (Q U {(0, avait ¢; S)}\{(c", 5)})

<AWAITF-SCHED>

<AWAITF-SKIP> S
(T, (0, await x7; 5), Q) (o ,'5)EQ
— (T, (,9),Q) . (T (nawits?5),Q) -
(T, (67,5, (QU{(c,await true; S)})\{(c',5)})
<RETURN>
(0',8)eQ

(T, (0, returne), Q) — (T, (a'/’ Sl): Q\{(U/v S,)})

Fig. 2. Abstract transition system

Deadlock Detection for Actor-Based Coroutines 49

from @ is activated. Similar to the concrete semantics in the previous section, in
<AWAITF-SKIP> and <AWAITF-SCHED>, the active process non-deterministically
continues or cooperatively releases the control. In the latter, a process from @
is activated.

We conclude this section with the counterpart of Definition 1 for the abstract
setting.

Definition 2. A local configuration (T,p,Q) is a (local) deadlock if

for all (0,5) € {p} UQ we have that the initial statement of S is an await
statement await e such that L(T) U {—ec} I/ false.

5 Correctness of Predicate Abstraction

In this section we prove that the concrete system is simulated by the abstract
system. To this end we introduce a simulation relation ~ between concrete and
abstract configurations:

(I'p, Q) ~ (T,p,Q), if I' = L(T)
where I' = L(T') denotes that I' satisfies the formulas of L(T).
Theorem 1. The abstract system is a simulation of the concrete system.

Proof. Given (I',p,Q) ~ (T,p,Q) and a transition (I,p,Q) — (I'',p’,Q’), we
need to prove that there exists a transition (T,p,Q) — (T7,p’,Q’) such that
"y, Q) ~ (1,0, Q).

For all the rules that involve the evaluation of a guard e, it suffices to observe
that I' = L(T') and I' |= e implies L(T") U {e} I/ false.

We treat the case x = e where e is a side effect-free expression (the others
cases are treated similarly). If p = (0,2 = e;5), where e is a side effect-free
expression, then I'" = I'[(z = e)o]. We put T = { (¢/, spo' (L(T), (x = €e)o)) |
(o/,u) € T'}. Then it follows that (T,p,Q) — (T",p',Q’"). To prove I'" = L(T")
it remains to show for (o,u) € T and ¢ € sp,/(L(T), (x = e)o) that I |= o’
Let (o,u) € T and ¢ € spy(L(T), (x = e)o). By definition of the strongest
postcondition, we have L(T) F po'[(x = e)o]. Since I' = L(T), we have I' =
wo'[(z = e)o]. Since " = I'[(x = e)o], we obtain from the substitution theorem
of predicate logic that

I''Epo' < I Epd|(z=e)o]
and hence we are done. O

We conclude this section with the following observation: if the initial abstract
configuration (T, p, Q) does not give rise to a local deadlock then also the config-
uration (I',p, Q) does not give rise to a local deadlock, when I' = L(T'). To see
this, by the above theorem it suffices to note that if (I, p’, Q") is a local dead-
lock and I'" = L(T”) then (T7,p, Q') is a also a local deadlock because for any
(0,await e;S) € {p'} UQ’ we have that I'" | eo implies L(T") U {—ec} I/ false.

50 K. Azadbakht et al.

6 Decidability of Deadlock Detection

The abstract local behavior of a single actor, as defined in the previous section,
gives rise, for a given initial configuration, to an infinite transition system because
of dynamic generation of local calls and the corresponding introduction of fresh
local variables. In this section we show how we can model an abstract system for
which the transition relation is computable as well-structured transition system
and obtain the decidability of deadlock detection for such abstract systems. To
this end, we first provide a canonical representation of an abstract configuration
which abstracts from renamings of the local variables by means of multisets of
closures. A closure of a method m is a pair (u,S), where S is a continuation of
the body of m and u C Pred(m). (Here Pred(m) denotes the set of predicates
associated with m as defined in Sect. 3). The set of continuations of a statement S
is the smallest set Cont(S) such that S € Cont(S) and € € Cont(S), where
the “empty” statement e denotes termination, and which is closed under the
following conditions

- 87;8"” € Cont(S) implies " € Cont(S)

— if e {S1} else {Sa}; S’ € Cont(S) implies S1;5" € Cont(S) and S9;58" €
Conit(S)

— whilee {S'}; S” € Cont(S) implies S’; while e {S'}; S” € Cont(S).

Note that for a given method the set of all possible closures is finite. We formally
represent a multiset of closures as a function which assigns a natural number f(c)
to each closure ¢ which indicates the number of occurrences of ¢. For notational
convenience we write ¢ € f in case f(c) > 0.

In preparation of the notion of canonical representation of abstract configu-
rations, we introduce for every abstract configuration a = (T, p, Q) the set & of
triples (o, u, S) for which (o, u) € T and either (0,5) € {p} UQ or S =e.

Definition 3. An abstract configuration (T, p, Q) is canonically represented by
a multiset of closures f, if for every method m and closure (u,S) of m we have

f((u,8)) ={o|(o,u,5) call
(where |V| denotes the cardinality of the set V).

Note that each abstract configuration has a unique multiset representation. For
any multiset f of closures, let T'(f) denote the set of predicates {Jv | (v,S)" €
f}, where Jv denotes the existential quantification of all the local variables
appearing in the conjunction of the predicates of v. The following lemma states
the equivalence of a set of closures and its canonical representation.

Lemma 1. Let the abstract configuration (T,p,Q) be canonically represented
by the multiset of closures f. Further, let (o,u) € T, where o € X(m), and
@ € Pred(m). It holds that

L(T) = o iff {uf UT(f)F

Deadlock Detection for Actor-Based Coroutines 51

Proof. Proof-theoretically we reason, in first-order logic, as follows. For nota-
tional convenience we view a set of predicates as the conjunction over its ele-
ments. By the Deduction Theorem we have

LTk o iff v L(T) — o
From the laws of universal quantification we obtain
FL(T) — po iff HFVX(L(T) — o)

and
FVX(L(T) — po) iff F3IXL(T) — po

where X denotes the set of local variables appearing in L(T') \{uoc}. Note that
no local variable of X appears in po or uo.

Since any two distinct v,v’ € L(T) have no local variables in common, we
can push the quantification of IX L(T) inside. That is,

FIXL(T) — po iff F{3Xv|ve L(T)}— po
No local variable of X appears in uo, therefore we have
F{3Xv|vel(T)}—poiff FuocA{IXv|veL(T)}— po
Again by the Deduction Theorem we then have
FuocA{IXv|ve L(T)} - goiff {uc}F{3IXv|ve L(T)}— po

Clearly uo - Ju and 3 X is logically equivalent to Jv, for any v € L(T) \{uo}.
So, we have

{uo}F{IXv|ve L(T)} - po iff {uc} - {Fv|ve L(T)} — o

Since f represents (T, p, @) we have that T(f) = {3v | v € L(T) }. Renaming
the local variables of uo and po then finally gives us

{uctbF{Fv|veL(T)} - poiff {u} FT(f) — ¢
which proves the lemma. O
We next define an ordering on multisets of closures.
Definition 4. By f < f' we denote that f(c) < f'(¢) and f'(¢) =0 if f(c) = 0.

In other words, f < f’ if all occurrences of f belong to f’ and f’ does not add
occurrences of closures which do not already occur in f. The following result
states that this relation is a well-quasi-ordering.

Lemma 2. The relation [< f' is a quasi-ordering such that for any infinite
sequence (fy)n there exist indices i < j such that f; < fj.

52 K. Azadbakht et al.

Proof. First observe that for a given class there is only a finite number of closures.
We show that the proof for the standard subset relation for multisets also holds
for this variation. Assume that for some set X of closures we have constructed an
infinite subsequence (f,,)n of (fn)n such that f/(c) < fj(c), foreveryc € X andi <
j-Suppose that forevery c ¢ X theset { k | f(c) = k, j € N }isbounded. It follows
that there exists an fj, which appears infinitely often in (£},),, since there exists only
a finite number of combinations of occurrences of closuresin X = {c¢ | ¢ ¢ X }.
On the other hand, if there exists a d ¢ X such that set {k | fi(d) =k, j € N}
has no upperbound then we can obtain a subsequence (f),, of (f!), such that
fi'(e) < f(c) for every ¢ € X U {d} and i < j. Thus, both cases lead to the
existence of indices ¢ < j such that f; < fj. O

From the above lemma it follows immediately that the following induced ordering
on abstract configurations is also a well-quasi-ordering.

Definition 5. We put (T, (0, 5),Q) < (T7,(¢7,5),Q") iff f < [, for multisets
of closures f and f' (uniquely) representing (T, (o, S),Q) and (T',(c¢’,S),Q’),
respectively.

We can now formulate and prove the following theorem which states that this
well-quasi-ordering is preserved by the transition relation of the abstract system.

Theorem 2. For abstract configurations o, o, and 3, if « — o' and o < 3
then 8 — (', for some abstract configuration 3’ such that o’ < 3.

Proof. The proof proceeds by a case analysis of the transition a — «’. Crucial
in this analysis is the observation that o < 3 implies that o = (T, p, Q) and
8= (T,p,Q), for some T and T” such that

L(T)F po < L(T') F ¢o’

for renamings o,0’ € X (m), where m is a method defined by the given class C,
such that (o,u,S) € @ and (0’,u, S) € 3, for some closure (u, S) and predicate
 of the method m. This follows from Lemma 1 and that f < f/ implies T'(f) =
T(f'), where f and f’ represent « and 3, respectively. Note that by definition,
f’ does not add occurrences of closures which do not already occur in f. O

It follows that abstract systems for which the transition relation is computable
are well-structured transition systems (see [10] for an excellent explanation and
overview of well-structured transition systems). For such systems the covering
problem is decidable. That is, for any two abstract configurations @ and [it is
decidable whether starting from « it is possible to cover §, meaning, whether
there exists a computation o —* o’ such that 3 < o’. To show that this implies
decidability of absence of deadlock, let « be a basic (abstract) deadlock config-
uration if « is a deadlock configuration according to Definition 2 and for any
closure (u, S) there exists at most one renaming o such that (o, u,S) € @. Note
that thus f(c) = 1, for any closure ¢, where f represents a. Let A denote the
set of all basic deadlock configurations. Note that this is a finite set. Further, for

Deadlock Detection for Actor-Based Coroutines 53

every (abstract) deadlock configuration « there exists a basic deadlock configura-
tion o € A such that f < f’, where f and f’ represent o and o', respectively.
This is because the different renamings of the same closure do not affect the
definition of a deadlock. Given an initial abstract configuration «, we now can
phrase presence of deadlock as the covering problem of deciding whether there
exists a computation starting from « reaching a configuration 3 that covers a
deadlock configuration in A.

Summarizing the above, we have the following the main technical result of
this paper.

Theorem 3. Given an abstract system with a computable transition relation
and an abstract configuration «, it is decidable whether

{Bla—="pn{p|3 eA: g <xp}=0 (1)

Given this result and the correctness of predicate abstraction, to show that an
initial concrete configuration (I',p, Q) does not give rise to a local deadlock,
it suffices to construct an abstract configuration o = (T, p, Q) such that I' |
L(T) and for which Equation (1) holds. Note that we can construct 7" by the
constructing pairs (o,u), where u = {¢ € Pred(m) | I' = ¢o} (assuming that
o € X(m)).

7 Conclusion

For future work we first have to validate our method for detecting local deadlock
in tool-supported case studies. For this we envisage the use of the theorem-prover
KeY [2] for the construction of the abstract transition relation, and its integration
with on-the-fly reachability analysis of the abstract transition system.

Of further interest, in line with the above, is the integration of the method of
predicate abstraction in the theorem-prover KeY for reasoning compositionally
about general safety properties of actor-based programs. For reasoning about
programs in the ABS language this requires an extension of our method to
synchronous method calls and concurrent object groups.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
The MIT Press, Cambridge (1986)

2. Wasser, N., Hahnle, R., Bubel, R.: Abstract Interpretation. Deductive Software
Verification — The KeY Book. LNCS, vol. 10001, pp. 167-189. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49812-6_6

3. Azadbakht, K., Bezirgiannis, N., de Boer, F.S.: Distributed network generation
based on preferential attachment in ABS. In: Steffen, B., et al. (eds.) SOFSEM
2017. LNCS, vol. 10139, pp. 103-115. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-51963-0-9

4. Azadbakht, K., Bezirgiannis, N., de Boer, F.S., Aliakbary, S.: A high-level and scal-
able approach for generating scale-free graphs using active objects. In: Proceedings
of the 31st Annual ACM Symposium on Applied Computing, pp. 1244-1250. ACM
(2016)

https://doi.org/10.1007/978-3-319-49812-6_6
https://doi.org/10.1007/978-3-319-51963-0_9
https://doi.org/10.1007/978-3-319-51963-0_9

54

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

K. Azadbakht et al.

Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: Conference on Programming Language Design and
Implementation, pp. 203—213 (2001)

Conway, M.E.: Design of a separable transition-diagram compiler. Commun. ACM
6(7), 396-408 (1963)

de Boer, F.S., et al.: A petri net based analysis of deadlocks for active objects and
futures. In: P&sdreanu, C.S., Salaiin, G. (eds.) FACS 2012. LNCS, vol. 7684, pp.
110-127. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35861-
6-7

de Boer, F.S.; Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316-330. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71316-6_22

de Boer, F.S., Jaghoori, M.M., Laneve, C., Zavattaro, G.: Decidability problems
for actor systems. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS,
vol. 7454, pp. 562-577. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32940-1-39

Finkel, A., Schnoebelen, Ph.: Well-structured transition systems everywhere!. The-
oret. Comput. Sci. 256(1), 63-92 (2001)

Giachino, E., Henrio, L., Laneve, C., Mastandrea, V.: Actors may synchronize,
safely! In: 18th International Symposium on Principles and Practice of Declarative
Programming, pp. 118-131 (2016)

Giachino, E., Laneve, C., Lienhardt, M.: A framework for deadlock detection in
core ABS. Softw. Syst. Model. 15(4), 1013-1048 (2016)

Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72-83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6_10

Henrio, L., Laneve, C., Mastandrea, V.: Analysis of synchronisations in stateful
active objects. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol.
10510, pp. 195-210. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66845-1_13

Hewitt, C.: Description and theoretical analysis (using schemata) of planner: a
language for proving theorems and manipulating models in a robot. Technical
report, Massachusetts Institute of Technology Cambridge Artificial Intelligence
Lab (1972)

Johnsen, E.B., Hahnle, R., Schafer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142-164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_8

Johnsen, E.B., Owe, O., Creol, [.C.Yu.: A type-safe object-oriented model for dis-
tributed concurrent systems. Theoret. Comput. Sci. 365(1-2), 23-66 (2006)
Kamburjan, E., Din, C.C., Chen, T.-C.: Session-based compositional analysis for
actor-based languages using futures. In: Ogata, K., Lawford, M., Liu, S. (eds.)
ICFEM 2016. LNCS, vol. 10009, pp. 296-312. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47846-3_19

Kerfoot, E., McKeever, S., Torshizi, F.: Deadlock freedom through object owner-
ship. In: 5th International Workshop on Aliasing, Confinement and Ownership in
Object-Oriented Programming (2009)

Sirjani, M.: Rebeca: theory, applications, and tools. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 102-126.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74792-5_5

https://doi.org/10.1007/978-3-642-35861-6_7
https://doi.org/10.1007/978-3-642-35861-6_7
https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1007/978-3-642-32940-1_39
https://doi.org/10.1007/978-3-642-32940-1_39
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-319-66845-1_13
https://doi.org/10.1007/978-3-319-66845-1_13
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-319-47846-3_19
https://doi.org/10.1007/978-3-319-47846-3_19
https://doi.org/10.1007/978-3-540-74792-5_5

®

Check for
updates

An Algebraic Approach for Reasoning
About Information Flow

Arthur Américo’®), Mario S. Alvim!, and Annabelle McIver?

! Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
aamerico@dcc.ufmg.br
2 Macquarie University, Sydney, Australia

Abstract. This paper concerns the analysis of information leaks in secu-
rity systems. We address the problem of specifying and analyzing large
systems in the (standard) channel model used in quantitative information
flow (QIF). We propose several operators which match typical interac-
tions between system components. We explore their algebraic properties
with respect to the security-preserving refinement relation defined by
Alvim et al. and Mclver et al. [1,2].

We show how the algebra can be used to simplify large system spec-
ifications in order to facilitate the computation of information leakage
bounds. We demonstrate our results on the specification and analysis
of the Crowds Protocol. Finally, we use the algebra to justify a new
algorithm to compute leakage bounds for this protocol.

1 Introduction

Protecting sensitive information from unintended disclosure is a crucial goal for
information security. There are, however, many situations in which information
leakage is unavoidable. An example is a typical password checker, which must
always reveal some information about the secret password—namely whether or
not it matches the input provided by the user when trying to log in. Another
example concerns election tallies, which reveal information about individual
votes by ruling out several configurations of votes (e.g., in the extreme case
of an unanimous election, the tally reveals every vote). The field of Quantitative
Information Flow (QIF) is concerned with quantifying the amount of sensitive
information computational systems leak, and it has been extremely active in the
past decade [3-9].

In the QIF framework, systems are described as receiving secret inputs from a
set of values X', and producing public, or observable, outputs from a set). Typical
secret inputs are a user’s identity, password, or current location, whereas public
outputs are anything an adversary can observe about the behavior of the system,
such as messages written on the screen, execution time, or power consumption. A
system is, then, modeled as an (information-theoretic) channel, which is a func-
tion mapping each possible pair € X, y €) to the conditional probability p(y |
z) of the system producing output y when receiving input . Channels abstract
© Springer International Publishing AG, part of Springer Nature 2018

K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 55-72, 2018.
https://doi.org/10.1007/978-3-319-95582-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_4&domain=pdf

56 A. Américo et al.

technicalities of the system, while retaining the essentials that influence informa-
tion leakage: the relation between secret input and public output values.

The QIF framework provides a robust theory for deriving security properties
from a system’s representation as a channel. However, obtaining an appropriate
channel to model a system is often a non-trivial task. Moreover, some channels
turn out to be so large as to render most security analyses unfeasible in practice.

In this paper we provide an algebra for describing (larger, more complex)
channels as compositions of other (smaller, simpler) channels. For that, we define
a set of operators, each corresponding to a different way in which components can
interact in a system—namely, parallel composition, visible choice composition,
and hidden choice composition. We prove a series of algebraic properties of
these operators, and use such properties to simplify system specifications so
that bounds on the information leakage of a compound system can be inferred
from the information leakage of its components. In this way, we allow for leakage
analyses of systems which would be intractable with traditional QIF techniques.

This compositional approach seems particularly natural for modeling secu-
rity protocols, which often involve interactions among various entities. Consider,
for instance, the well-known Dining Cryptographers anonymity protocol [10].
A group of n cryptographers has been invited for dinner by the NSA (Amer-
ican National Security Agency), who will either pay the bill, or secretly ask
one of the cryptographers to be the payer. The cryptographers want to deter-
mine whether one among them is the payer, but without revealing which one.
For that, they execute the following protocol. In a first phase all participants
form a circle, and each tosses a coin and shares the result only with the cryp-
tographer on his right. In a second phase, each cryptographer computes the
exclusive-or of the two coins tosses he observed (interpreting heads as 0 and
tails as 1), and publicly announces the result. The only exception is the pay-
ing cryptographer (if any), who announces the negation of his exclusive-or. In a
third phase, the cryptographers compute the exclusive-or of all announcements.
One of them is the payer if, and only if,
the result is 1. It has been shown that,

if all coins are fair, no information is @} The Dining Cryptographers IECTETNY
leaked about who the paying cryptog-
rapher is [10].
Despite the Dining Cryptographers \ - Public N
. Input) | I & Announcements (g M/
relative simplicity, deriving its channel
can be a challenging task. Since each
of the n cryptographers can announce S —N
: : et = = =| Loves
either 0 or 1, the size of the output set

Y, and, consequently, of the channel,

increases exponentially with the num-
ber of cryptographers. The problem is
worsened by the fact that computing
the probabilities constituting the chan-
nel’s entries is not trivial. The algebra

Fig. 1. Schematic representation of the
Dining Cryptographers protocol as: (i) a
monolithic channel (top); (ii) a composi-
tion of two channels (middle); and (iii) a
composition of eight channels (bottom).

An Algebraic Approach for Reasoning About Information Flow 57

we introduce in this paper allows for an intuitive and compositional way of build-
ing a protocol’s channel from each of its components. To illustrate the concept,
Fig. 1 depicts three alternative representations, using channels, for the Dining
Cryptographers with 4 cryptographers and 4 coins. In all models, the input is
the identity of the payer (one of the cryptographers or the NSA), and the out-
put are the public announcements of all cryptographers. The top model uses a
single (enormous) channel to represent the protocol; the middle one models the
protocol as the interaction between two smaller components (the coins and the
party of cryptographers); the bottom one uses interactions between even smaller
channels (one for each coin and each cryptographer).
The main contributions of this paper are the following.

— We formalize several common operators for channel composition used in the
literature, each matching a typical interaction between system components.
We prove several relevant algebraic and information-leakage properties of
these operators.

— We show that the substitution of components in a system may be subject
to unexpected, and perhaps counter-intuitive, results. In particular, we show
that overall leakage may increase even when the new component is more
secure than the one it is replacing (e.g., Theorems 5 and 6).

— We show how the proposed algebra can be used to simplify large system
specifications in order to facilitate the computation of information leakage
bounds, given in terms of the g-leakage framework [1,2,9,11].

— We demonstrate our results on the specification and analysis of the Crowds
Protocol [12]. We use the proposed algebra to justify a new algorithm to
compute leakage bounds for this protocol.

Detailed proofs of all of our technical results can be found in an accompanying
technical report [13].

Plan of the Paper. The remainder of this paper is organized as follows. In Sect. 2
we review fundamental concepts from QIF. In Sect. 3 we introduce our channel
operators, and in Sect.4 we provide their algebraic properties. In Sect.5 we
present our main results, concerning information leakage in channel composition.
In Sect.6 we develop a detailed case study of the Crowds protocol. Finally, in
Sect. 7 we discuss related work, and in Sect. 8 we conclude.

2 Preliminaries
In this section we review some fundamentals from quantitative information flow.

Secrets, Gain Functions and Vulnerability. A secret is some piece of sensitive
information that one wants to protect from disclosure. Such sensitive information
may concern, for instance, a user’s password, identity, personal data, or current
location. We represent by X the set of possible secret values the secret may take.

58 A. Américo et al.

The adversary is assumed to have, before observing the system’s behaviour,
some a priori partial knowledge about the secret value. This knowledge is mod-
eled as a probability distribution 7 € DX, where DX denotes the set of all
probability distributions on X'. We call 7 a prior distribution, or simply a prior.

To quantify how wvulnerable a secret is—i.e., how prone it is to exploitation
by the adversary—we employ a function that maps probability distributions to
the real numbers (or, more in general, to any ordered set). Many functions have
been used in the literature, such as Shannon entropy [14], guessing-entropy [15],
Bayes vulnerability [16], and Rényi min-entropy [6]. Recently, the g-leakage [1]
framework was proposed, and it proved to be very successful in capturing a
variety of different scenarios, including those in which the adversary benefits
from guessing part of secret, guessing a secret approximately, guessing the secret
within a number of tries, or gets punished for guessing wrongly. In particular,
the framework has been shown to be able to capture all functions mentioned
above [9]. In this framework, a finite set W of actions is available to the adversary,
and a gain-function g : W x X — [0,1] is used to describe the benefit g(w,x)
an adversary obtains when he performs action w € W, and the secret value is
2 € X. Given an appropriate gain-function g, the secret’s (prior) g-vulnerability
is defined as the expected value of the adversary’s gain if he chooses a best
possible action,

Vylr] = max 3" w(@)g(w, 2),
zeX

and the greater its value, the more vulnerable, or insecure, the secret is.

Channels and Posterior Vulnerabilities. In the QIF framework, a system is usu-
ally modeled as an (information theoretic) channel taking a secret input x € X,
and producing a public, or observable, output y €). Each element of) rep-
resents a behaviour from the system that can be discerned by the adversary.
Formally, a channel is a function C' : X x Y — R such that C(x,y) is the condi-
tional probability p(y | x) of the system producing output y € Y when input is
rEeX.

A channel C together with a prior w induce a joint probability distribution
p on the set X x), given by p(z,y) = w(x)C(z,y). From this joint distribution
we can derive, for every z € X and y €), the marginal probabilities p(z) =
>, p(x,y) and p(y) = >_, p(z,y), and the conditional probabilities p(z | y) =
p(zy)/py) and p(y |) = P(=.¥)/p(z). Note that p(z) = w(z) and, if p(z) # 0,
p(y | z) = Clz,y).

By observing the output produced by the system, the adversary can update
his knowledge about the secret value. More specifically, if the system outputs
y € Y, an adversary can update the prior 7 to a revised posterior distribution
Pxjy € DX on X given y, defined for all z € X and y €) as px|,(z) = p(z | y).

An Algebraic Approach for Reasoning About Information Flow 59

Ezample 1. Let X = {x1, 22,23} and Y = {y1, Y2, y3,ya} be input and output
sets. Let m = (1/2,1/3,1/6) be a prior, and C' be the channel below. The combi-
nation of 7 and C yield a joint probability p, according to the tables below.

Clyr Y2 Ys ua PlYL Yo Y3 Ya
x1| Y6 2/3 s 0O I /12 1/3 /12 0
x2| Y2 s s 0O x2| Y6 112 /12 0
x3| Y2 13 0 /s x3|t12 /18 0 1/36

By summing the columns of the second table, we obtain the marginal prob-
abilities p(y1) = Y3, p(y2) = 17/36, p(ys) = 16 and p(ys) = !/36. These
marginal probabilities yield the posterior distributions px,, = (1/4,1/2,1/4),
Pxly, = (117,3/17,2/17), pxy, = (1/2,Y/2,0), and pxyy, = (0,0,1). O

The posterior g-vulnerability of a prior m and a channel C is defined as the
expected value of the secret’s g-vulnerability after the execution of the system:

V) €l = 3 max 3 Cla,y)m(@g(e,w)

yeY zeX

The information leakage of a prior and a channel is a measure of the increase
in secret vulnerability caused by the observation of the system’s output. Leakage
is, thus, defined as a comparison between the secret’s prior and posterior vulner-
abilities. Formally, for a gain-function g, and given prior m and channel C, the
multiplicative and the additive versions of g-leakage are defined, respectively, as

Lgm) Cl = Valm) ClJv,[x], and LI[r) C] = Vy[r)C] = Vy[n].

Since prior vulnerability does not depend on the channel, we have that
Lyln) C1] 2 Ly[r) Co] & L [r)C1] = L[m) Ca] & Vgr) Ci] = Vyr) Co,

and, hence, the posterior vulnerability of a channel is greater than that of another
if, and only if, both multiplicative and additive leakage also are.

Channel Ordering and the Coriaceous Theorem. We now define a common com-
position of channels, called cascading. This operation can be interpreted as the
result of a channel post-processing the output of another channel. Formally, given
two channels C': X x Y — R and D : Y x Z — R, their cascading is defined as

(CD)(x,2) =Y Cla,y)D(y, 2),

yey

for all x € X and z € Z. If we represent channels as tables, as we did in Exam-
ple 1, the cascading operation corresponds to a simple matrix multiplication.
An important question in QIF is to decide whether a channel Cs is always at
least as secure as a channel Cp, meaning that C5 never leaks more information
than C7, for whatever choice of gain function g and of prior 7. Let us write

60 A. Américo et al.

C1 C, Cy (read as Co refines Cy) to denote that there exists a channel D such
that C1D = Cy. We write C7 =~ Cs, and say that C is equivalent to Cs, when
both C; C, Co and Cy C, Cy hold. The Coriaceous Theorem [1,2] states that,
C1 T, Cs if, and only if, Vy[r) C1] > Vy[r) Cs] for all 7, g. This result reduces
the comparison of channel security to a simple algebraic test.

The refinement relation C, is a preorder on the set of all channels having the
same input set. This preorder can be made into a partial order by using abstract
channels [2], an equivalence relation that equates all channels presenting same
leakage for all priors and gain functions. This partial order coincides with how
much information channels leak, being the least secure channel (i.e., the “most
leaky” one) at its bottom, and the most secure (i.e., the “least leaky”) at its top.

3 Operators on Channel Composition

We shall say that two channels are compatible if they have the same input set.
Given a set X', we denote by Cx the set of all channels that have X as input set.
Two compatible channels with same output set are said to be of the same type.

In this section we introduce several binary operators—i.e., functions of type
(Cx X Cx) — Cxy—matching typical interactions between system components,
and prove relevant algebraic properties of these operators. We refer to the
result of an operator as a compound system, and we refer to its arguments as
components.

3.1 The Parallel Composition Operator ||

The parallel composition operator || models the composition of two independent
channels in which the same input is fed to both of them, and their outputs are
then observed. By independent, we mean that the output of one channel does not
interfere with that of the other. This assumption, while not universal, captures
a great variety of real-world scenarios, and is, hence, of practical interest.

For example, side-channel attacks occur when the adversary combines his
observation of the system’s output with some alternative way of inferring infor-
mation about the secret (e.g., by observing physical properties of the system
execution, such as time elapsed [17,18] or change in magnetic fields [19]). In
such attacks, the channel used by the adversary to infer information about the
secret can be modeled as the composition of a channel representing the program’s
intended behaviour in parallel with a channel modeling the relation between the
secret and the physical properties of the hardware.

Definition 1 (Parallel composition operator ||). Given compatible channels
Cr: X xY1 = Rand Cy : X x Yo — R, their parallel composition C; || Cs :
X X (V1 x Vo) — R is defined as, for allx € X, y1 € V1, and ys € Vo,

(C1 || C2)(z, (y1,y2)) = C1(w,y1)Ca(w, y2).

Notice that this definition comes from the independence property, as we have
Cr(z,51)Ca(x,y2) = p(yr | 2)p(y2 |) = p(y1,92 | @)

An Algebraic Approach for Reasoning About Information Flow 61

3.2 The Visible Choice Operator ,LI

The visible choice operator plJ models a scenario in which the system has a
choice among two different components to process the secret it was fed as input.
With probability p, the system feeds the secret to the first component, and, with
probability 1 — p, it feeds the secret to the second component. In the end, the
system reveals the output produced, together with the identification of which
component was used (whence, the name “visible choice”).

As an example, consider an adversary trying to gain information about a
secret processed by a website. The adversary knows that the website has two
servers, one of which will be assigned to answer the request according to a
known probability distribution. Suppose, furthermore, that the adversary can
identify which server was used by measuring its response time to the request.
This adversary’s view of the system can be modeled as the visible choice between
the two servers, since, although the adversary does not know in advance which
server will be used, he learns it when he gets the output from the system.

Before formalizing this operator, we need to define the disjoint union of sets.
Given any sets A and B, their disjoint union is AU B = (A x {1}) U (B x {2}).

Definition 2 (Visible choice operator ,l1). Given compatible channels Cy :
XxY1 = Rand Cy : X x Yy — R, their visible choice is the channel Cq ,LI Cy :
X x (M1 Uds) — R defined as, for all x € X and (y,i) € Y1 U Vs,

) o (i) — pC1(,y), ifi=1,
(Cy pld Co)(z, (y,1)) {(1_1))02(%% Jioo

3.3 The Hidden Choice Operator ,&

Similarly to the visible choice case, the hidden choice operator ,& models a
scenario in which the system has a choice of feeding its secret input to one com-
ponent (with probability p), or to another component (with probability 1 — p).
In the end, the system reveals the output produced, but, unlike the visible choice
case, the component which was used is not revealed. Hence, when the same obser-
vations are randomized between the two channels, the adversary cannot identify
which channel produced the observation (whence, the name “hidden choice”).
As an example, consider statistical surveys that ask some sensitive yes/no
question, such as whether the respondent has made use of any illegal substances.
To encourage individuals to participate on the survey, it is necessary to control
leakage of their sensitive information, while preserving the accuracy of statisti-
cal information in the ensemble of their answers. A common protocol to achieve
this goal works as follows [20]. Each respondent throws a coin, without letting
the questioner know the corresponding result. If the result is heads, the respon-
dent answers the question honestly, and if the result is tails, he gives a random
response (obtained, for example, according to the result of a second coin toss).
If the coins are fair, this protocol can be modeled as the hidden choice T"1/,® C

62 A. Américo et al.

between a channel T representing an honest response (revealing the secret com-
pletely), and a channel C' representing a random response (revealing nothing
about the secret). The protocol is, hence, a channel that masks the result of T'.

Definition 3 (Hidden choice operator ,&). Given compatible channels Cy :
X xY — Rand Cy : X x Yo — R, their hidden choice is the channel Cy ,@® Cs :
X X (V1 UYs) — R defined as, for allz € X and y € Y1 U Vs,

pCl(xay)+(1_p)CQ(xay)v ifyeylmy%
(C1 p® Co)(z,y) = { pCi(x,y), ifyeVi\ Vs,
(1 —p)Cs(z,y), ify € 2\ 1.

Note that when the output sets of C; and Cs are disjoint the adversary can
always identify the channel used, and we have C; 11 Co=C; ,@ Cb.

3.4 A Compositional Description of the Dining Cryptographers

We now revisit the Dining Cryptographers protocol example from Sect. 1, show-
ing how it can be modeled using our composition operators.

We consider that there are 4 cryptographers and 4 coins, and denote the
protocol’s channel by Dining. The channel’s input set is X = {c1, ¢2, 3, ¢4,n},
in which ¢; represents that cryptographer i is the payer, and n represents that
the NSA is the payer. The channel’s output set is Y = {0,1}%, i.e., all 4-tuples
representing possible announcements by all cryptographers, in order.

Following the scheme in Fig. 1 (middle), we begin by modeling the protocol
as the interaction between two channels, Coins and Announcements, represent-
ing, respectively, the coin tosses and the cryptographers’ public announcements.
Since in the protocol first the coins are tossed, and only then the corresponding
results are passed on to the party of cryptographers, Dining can be described as
the cascading of these two channels:

Dining = (Coins)(Announcements).

To specify channel Coins, we use the parallel compo-

sition of channels Coiny, Coing, Coing and Coing, each [Coin,| Tails Heads
representing one coin toss. Letting p; denote the proba- c1 i 1—p;
bility of coin ¢ landing on tails, these channels are defined C2 Di L—p;
as on Table2. e | pi lep

Besides the result of the tosses, Coins also needs to i‘; g’ 17?

pass on to Announcements the identity of the payer. We
then introduce a fifth channel, 7 : X x X — R, that
simply outputs the secret, i.e., I(z1,22) = 1 if £ = x2,
and 0 otherwise. Hence, a complete definition of channel
Coins is

Fig. 2. Channel rep-
resenting toss of coin
Coin;.

Coins = Coiny || Coing || Coing || Coing || I.

As we will show in Sect. 4, parallel composition is associative, allowing us to
omit parentheses in the equation above.

An Algebraic Approach for Reasoning About Information Flow 63

We now specify the channel Announcements, which takes as input a 5-tuple
with five terms whose first four elements are the results of the coin tosses, and the
fifth is the identity of the payer. For that end, we describe each cryptographer as
a channel with this 5-tuple as input, and with the set of possible announcements
{0,1} as output set. Crypto; below describes the first cryptographer.

1,if ty =t; and z = ¢y, or ty £ t; and x # ¢4

Cryptoq(t1,ts,t3, ts,) =
yptor(tr, tz, ts, ta, @) {O, otherwise

Channels Cryptos, Cryptos and Crypto, describing the remaining cryptog-
raphers are defined analogously. Channel Announcements is, hence, defined as

Announcements = Crypto, || Cryptoy || Cryptos || Crypto,.

Note that our operators allow for an intuitive and succinct representation
of the channel Dining modeling the Dining Cryptographers protocol, even when
the number of cryptographers and coins is large. Moreover, the channel is easy to
compute: we need only to first calculate the parallel compositions within channels
Crypto and Announcements, and then multiply these channels’ matrices.

4 Algebraic Properties of Channel Operators

In this section we prove a series of relevant algebraic properties of our channel
operators. These properties are the key for building channels in a compositional
way, and, more importantly, for deriving information flow properties of a com-
pound system in terms of those of its components.

We begin by defining a notion of equivalence stricter than a2, which equates
any two channels that are identical modulo a permutation of their columns.

Definition 4 (Channel equality). Let C; : X xY; > R and Co : X x Yy — R
be compatible channels. We say that Cy; and Cy are equal up to a permutation
, and write Cy = Cs, if there is a bijection ¥ : Y1 — Yy such that Cy(x,y) =
Co(z,(y)) forallz e X, y € .

Note that, if C; = Cy, then O ~ Cy.!
In remaining of this section, let C; : X x Y1 - R, Cy : X x Vo — R and
C5: X x Y3 — R be compatible channels, and p, g € [0, 1] be probability values.

4.1 Properties Regarding Channel Operators

We first establish our operators’ associativity and commutativity properties.
Proposition 1 (Commutative Properties)

C1]|Ca = Co||Cy, C1 pld O = Cy (1_pylt C1, and Cy & Ca = Cs (1)@ Ch.

L' A complete, formal definition of such bijections can be found in an accompanying
technical report [13].

64 A. Américo et al.

Proposition 2 (Associative Properties)

(Ci[|Co) | C3=Cy || (Ca | C3), (Chpll Ca) 4l C5 = Cy prlid (Co ool Cs),

and (C1 ,® C2) ¢® C3 = C1 ® (Co @ Cs), s.t. p = pq and ¢ = (@=p)/(1-pq).

We now turn our attention to two kinds of channels that will be recurrent
building blocks for more complex channels. A null channel is any channel O :
X x Y — R such that, for every prior 7 and gain-function g, V[) 0] = V,[n].
That is, a null channel never leaks any information. A channel 0 is null if, and
only if, 0(z,y) = 0(z/,y) for all y € ¥ and z,2’ € X. On the other hand, a
transparent channel is any channel I : X x) — R that leaks at least as much
information as any other compatible channel, for every prior and gain-function.
A channel T is transparent if, and only if, for each y €), there is at most one
x € X such that I(z,y)>0. The following properties hold for any null channel 0
and transparent channel I compatible with C;, Cy and Cs.

Proposition 3 (Null and Transparent Channel Properties)
null channel: (Cy || 0) =~ C1, C1 C, (Cy ,110), C1 S, (Ch 9 0).
transparent channel: (Cy || I) =1, (Cy pld 1) Co Cy.

Note that, in general, (C; ,@ I) Z, C;. To see why, consider the two trans-
parent channels I; and I, with both input and output sets equal {1,2}, given
by I1(z,2') = 1 if x = 2/, and 0 otherwise, and Is(z,2’) = 0 if x = 2/, and 1
otherwise Then, I ,® I5 is a null channel, and the property does not hold for
Ci=1,,1=1,.

We now consider idempotency.

Proposition 4 (Idempotency)
& || C, G, Cf, 1 pld Cy = (C, and Cy p® Cy =0C.

Note that C1]|Cy =~ C; holds only when C is deterministic or equivalent to
a deterministic channel.

Finally, we consider distributive properties. In particular, we explore inter-
esting properties when an operator is “distributed” over itself.

Proposition 5 (Distribution over the same operator)
(Co [l Co) | (Cy]I C5) Eo Cy | (C2 || Cs),
o pld (02 gt Cg) ~ (Cl pld CQ) g (Cl pld Cg),
Cl p@ (02 q@ 03) = (Cl p@ 02) q@ (Ol p@ 03)

Proposition 6 (Distribution over different operators)

C1 || (Ca plt C3) = (Cy || C2) it (Cy || C3),
C1 [(C2 p® C3) = (C1 || C2) ,® (C1 || C3),
& pl (Cz ¢® 03) = (Cl ol CQ) ¢® (Cl pld 03).

Unfortunately, the distribution of ,l over ||, ,@ over ||, or ,&® over ,L is not
as well behaved. A complete discussion is available in the technical report [13].

An Algebraic Approach for Reasoning About Information Flow 65

4.2 Properties Regarding Cascading

We conclude this section by exploring how our operators behave w.r.t. cascading
(defined in Sect. 2). Cascading of channels is fundamental in QIF, as it captures
the concept of a system’s post-processing of another system’s outputs, and it is
also the key to the partial order on channels discussed in Sect. 2.

The next propositions explore whether it is possible to express a composition
of two post-processed channels by a post-processing of their composition.

Proposition 7. Let D1 : V1 x 21 = R, Dy : Vo X Z9 — R be channels. Then,
(C1Dy) || (C2D2) = (Cy || C2) DV,

where DI (V1 x o) x (21 X 2Z3) — R is defined, for all y, € Y1, y2 € Vs,
21 € 21, and 2 € 25, as DV((y1,92), (21, 22)) = D1(y1, 21) Da(y2, 22).

Proposition 8. Let D1 : Yy x Z1 = R, Dy : Vo X Z5 — R be channels. Then,
(CIDI) p|;| (OQDQ) = (Cl p|;| CQ)DLI,

where DY 1 (V11U)s) X (21UZ25) — R is defined as D*((y,14),(2,5)) = D1(y, 2)
ifi=j=1, or Da(y,2) if it = j = 2, or 0 otherwise, for all y1 € Y1, y2 € Vo,
zZ1 € Zl, 29 € Zo.

A similar rule, however, does not hold for hidden choice. For example, let Cy
and Cy be channels with input and output sets {1,2}, such that Cy(z,2’) =1
if x = 2/, or 0 otherwise, and Cs(z,2’) = 0 if x = 2/, or 1 otherwise. Let
Dy and Dy be transparent channels whose output sets are disjoint. Then,
(C1D1) 1/,® (C2D3) is a transparent channel, but Cy 1/,® Cy is a null chan-
nel. Thus, it is impossible to describe (C1D1) 1/,® (CoDs) as Cy 1/,® O3 post-
processed by some channel. However, we can establish a less general, yet relevant,
equivalence.

Proposition 9. Let C; : X XY — R and Cy : X x Y — R be channels of
the same type. Let D : Y x Z — R be a channel. Then, (C1D) ,& (CoD) =
(Ol p®D OQ)D

5 Information Leakage of Channel Operators

This section presents the main contribution of our paper: a series of results
showing how, using the proposed algebra, we can facilitate the security analysis
of compound systems. Our results are given in terms of the g-leakage framework
introduced in Sect. 2, and we focus on two central problems. For the remaining
of the section, let C; : X x)Y; — Rand Cs : X x> — R be compatible channels.

66 A. Américo et al.

5.1 The Problem of Compositional Vulnerability

The first problem consists in estimating the information leakage of a compound
system in terms of the leakage of its components. This is formalized as follows.

The Problem of Compositional Vulnerability: Given a composition oper-
ator x on channels, a prior m € DX, and a gain function g, how can we estimate
Vy[r) C1 * Cq] in terms of Vy[m) C1] and Vy[m) Ca]?

Theorem 1 (Upper and lower bounds for V, w.r.t. ||). For all gain func-
tions g and m € DX, let X' ={x € X | Jw e W ot 7 z)g(w,z) > 0}. Then

Vylr) Cu[Ca] > max(V[m) Cu, Vylr) Cl), and

Vylm) C1]|C2) < min (Y C4] Zmang(x y2), Vg[m) C2] ZmaxCl(:v y1)> .

Theorem 2 (Linearity of V, w.r.t. ,l0). For all gain functions g, 7 € DX
and p € [0,1],

Volm) C1 pld Co] = pVylm) Ci] + (1 = p)Vym) .

Theorem 3 (Upper and lower bounds for V, w.r.t. ,®). For all gain
functions g, 1 € DX and p € [0,1],

Vglm) C1 p® Co] 2 max(pVy[m) C1], (1 = p)Vy[m) Ca]), and
Vg[77>cl p® Co] < pVg[ﬂ'> Ci]+ (1 _p)vg[ﬁ> Cal.

The three theorems above yield an interesting order between the operators.

Corollary 1 (Ordering between operators). Let m € DX, g be a gain func-
tion and p € [0,1]. Then Vy[m) Cy || Co] > Vy[r) Cy pld Co] > Vi[m) Cy @ Cal.

5.2 The Problem of Relative Monotonicity

The second problem concerns establishing whether a component channel of a
larger system can be safely substituted with another component, i.e., whether
substituting a component with another can cause an increase in the information
leakage of the system as a whole. This is formalized as follows.

The Problem of Relative Monotonicity: Given a composition operator * on
channels, a prior m € DX, and a gain function g, is it the case that Vy[r) Cy] <
Vglm) Co]l © VO € Cx. Vy[r) Cr x C] < Vy[m) Cox C) 7

We start by showing that relative monotonicity holds for visible choice. Note,
however, that because Vy[m)Cq Ll C] < Vy[r) Cy ,lu C] is vacuously true if
p = 0, we consider only p € (0,1].

Theorem 4 (Relative monotonicity for ,l1). For all gain functions g, ™ €
DX and p € (0,1],

Vlr) C1] < Vil) Gl 4 V. Vil) C1 512 C] < Vil) Ca 121 €1

An Algebraic Approach for Reasoning About Information Flow 67

Interestingly, relative monotonicity does not hold for the parallel operator.
This means that the fact that a channel C'; is always more secure than a channel
Cs does not guarantee that if we replace C; for C5 in a parallel context we neces-
sarily obtain a more secure system.? However, when the adversary’s knowledge
(represented by the prior) or preferences (represented by the gain-function g)
are known, we can obtain a constrained result on leakage by fixing only 7 or g.

Theorem 5 (Relative monotonicity for ||). For all gain functions g and
e DX

v’ V[DO S Vy[n") Co] < V', CV[n") Gy || CT < Vgln') Co || €, and
V' Vylm) Ch] < Vg [m) Co] Vg, C. Vg [m) Cy || C] < Vi [m) C2 || CT.

Perhaps surprisingly, hidden choice does not respect relative monotonicity,
even when we only consider channels that respect the refinement relation intro-
duced in Sect. 2.

Theorem 6 (Relative monotonicity for ,&). For all p € (0,1), there are
Ci: XxY—-Rand Cy : X x Y — R such that

v, g. Vy[r) C1] < Vy[r) Co] and 3r',¢',C. Vy[n") C1 @ Cl>Vyn') Co @ C1,
The converse, however, is true.

Theorem 7 (Relative monotonicity for ,®, cont.). For all gain functions
g, T €DX and p € (0,1],

YO V,[r) Oy @ C) < V1) Ca @ C] = V[) C1] < V[) Cal.

6 Case Study: The Crowds Protocol

In this section we apply the theoretical techniques developed in this paper to the
well-known Crowds anonymity protocol [12]. Crowds was designed to protect the
identity of a group of users who wish to anonymously send requests to a server,
and it is the basis of the widely used protocols Onion Routing [21] and Tor [22].

The protocol works as follows. When a user wants to send a request to the
server, he first randomly picks another user in the group and forwards the request
to that user. From that point on, each user, upon receiving a request from another
user, sends it to the server with probability p € (0, 1], or forwards it to another
user with probability 1 — p. This second phase repeats until the message reaches
the server.

ST

2 As a counter-example, consider channels C; = (%) and Cy = (8 1) Let my, =
{Y/3,1/3,1/3} and g;a : X X X — [0,1] s.t. gia(z1,22) = 1 if 1 = 22 and 0 otherwise.
Then, ng‘,d [ﬂ—u > 02} < ng [TFU > Cl]: but V‘h‘d [WU > Cs H Cl} > Vgid, [ﬂu > Ch ” Cl]'

~

68 A. Américo et al.

It is assumed that the adversary controls the server and some corrupt users
among the regular, honest, ones. When a corrupt user receives a forwarded
request, he shares the forwarder’s identity with the server, and we say that
the forwarder was detected. As no information can be gained after a corrupt
user intercepts a request, we need only consider the protocol’s execution until a
detection occurs, or the message reaches the server.

In Crowds’ original description, all users have equal probability of being
forwarded a message, regardless of the forwarder. The channel modeling such
a case is easily computed, and well-known in the literature. Here we consider
the more general case in which each user may employ a different probability
distribution when choosing which user to forward a request to. Thus, we can
capture scenarios in which not all users can easily reach each other (a common
problem in, for instance, ad-hoc networks). We make the simplifying assumption
that corrupt users are evenly distributed, i.e., that all honest users have the same
probability ¢ € (0, 1] of choosing a corrupt user to forward a request to.

We model Crowds as a channel Crowds : X x) — R. The channel’s input,
taken from set X = {uq,us, ..., un,, }, represents the identity u; of the honest user
(among a total of n. honest users) who initiated the request. The channel’s out-
put is either the identity of a detect user—i.e., a value from D = {d;,ds, ..., d,, },
where where d; indicates user u; was detected—or the identity of a user who for-
warded the message to the server—i.e., a value from S = {s1, sa, ..., 8, }, where
s; indicates user u; forwarded a message to the server. Note that D and S are
disjoint, and the channel’s output set is Y =D US.

To compute the channel’s entries, we model the protocol as a time-stationary
Markov chain M = (U, P), where the set of states is the set of honest users U,
and its transition function is such that P(u,,u;) is the probability of u; being
the recipient of a request forwarded by w;, given that u; will not be detected.

We then define four auxiliary channels. Transparent channels I; : U XD — R
and Is : U x S — R are defined as I;(u;,d;) = 1 if i = j, or 0 otherwise, and
I (u;,85) = 1if i = j, or 0 otherwise; and two other channels P; : D x D — R
and P; : § x § — R, based on our Markov chain M, are defined as Py(d;,d;) =
PS(SZ‘, Sj) = P(ui7 ’Ltj).

We begin by reasoning about what happens if each request can be forwarded
only once. There are two possible situations: either the initiator is detected, or
he forwards the request to an honest user, who will in turn send it to the server.
The channel corresponding to the initiator being detected is I, since in this case
the output has to be d; whenever u; is the initiator. The channel corresponding
to the latter situation is I, Ps—i.e., the channel I postprocessed by P;. This is
because, being P based on the transition function of M, the entry (I, Ps)(u;, s;)
gives us exactly the probability that user u; received the request originated by
user u; after it being forwarded once. Therefore, when Crowds is limited to one
forwarding, it can be modeled by the channel I, ,® IsPs®, representing the fact
that: (1) with probability ¢ the initiator is detected, and the output is generated
by I4; and (2) with probability 1 — ¢ the output is generated by I Ps.

3 To simplify notation, we assume cascading has precedence over hidden choice, i.e.,
AB ,@® CD = (AB) ,& (CD).

An Algebraic Approach for Reasoning About Information Flow 69

Let us now cap our protocol to at most two forwards. If the initiator is not
immediately detected, the first recipient will have a probability p of sending the
message to the server. If the recipient forwards the message instead, he may
be detected. Because the request was already forwarded once, the channel that
will produce the output in this case is I;P; (notice that, despite this channel
being equivalent to I, Ps, it is of a different type). On the other hand, if the
first recipient forwards the message to an honest user, this second recipient will
now send the message to the server, making the protocol produce an output
according to I Ps Py (or simply I P?), since (I5P?)(u;, s;) is the probability that
user u; received the request originated by user u; after it being forwarded twice.
Therefore, when Crowds is limited to two forwardings, it can be modeled by the
channel Iy & (I;Ps ,® (IgPy o® I,P2)). Note the disposition of the parenthesis
reflects the order in which the events occur. First, there is a probability ¢ of the
initiator being detected, and 1 — ¢ of the protocol continuing. Then, there is a
probability p of the first recipient sending it to the server, and so on.

Proceeding this way, we can inductively construct a sequence {C;};en,

Ci =14 ¢® (IsPs & (I4Pg ¢® (... p® (I4PY 1 (@ I, PY)..)))),

in which each C; represents our protocol capped at ¢ forwards per request. We can
then obtain C'rowds by taking lim; .., C;. From that, Theorem 3 and Proposi-
tion 2, we can derive the following bounds on the information leakage of Crowds.

Theorem 8. Let {t;};en be the sequence in which ta; = 1 — (1 — q)"1(1 — p)°
and ti41) =1 — (1 —)" ™1 (1 — p)"** for all i € N.

Let Ky = (o (Ia wje,® LP) ®) o ® (IaP). Then,
Vm € N¥,

%

tQng[ﬂ'>Km]a (1)
Volm) lim G < tamVy[m) K] + (1= tam)Vylm) L], and — (2)

Vylr) lim Ci)
(1~ tan)Vy[m) LEPH] < (1= q)™ (1 —p)™ (3)

Equations (1) and (2) provide an effective way to approximate the g-leakage
of information of the channel Crowds with arbitrary precision, whereas Equa-
tion (3) lets us estimate how many interactions are needed for that.

To obtain K,,, we need to calculate m matrix multiplications, which surpass
the cost of computing the m hidden choices (which are only matrix additions).
Thus, Theorem 8 implies we can obtain a channel whose posterior vulnerability
differs from that of Crowds by at most (1—¢q)™*(1—p™) in ~ O(mn237) time
(using the Strassen algorithm for matrix multiplication [23]). Since p is typically
high, (1 — ¢)™*1(1 — p)™ decreases very fast. For instance, for a precision of
0.001 on the leakage bound, we need m = 10 when (1 —¢)(1 —p) is 0.5, m = 20
when it is 0.7, and m = 66 when it is 0.9, regardless of the number n. of honest
users.

70 A. Américo et al.

Therefore, our method has time complexity O(n287) when the number of
users is large (which is the usual case for Crowds), and reasonable values of
forward probability p, and precision. To the best of our knowledge this method is
the fastest in the literature, beating the previous O(n3-87) that can be achieved
by modifying the method presented in [24]—although their method does not
require our assumption of corrupt users being evenly distributed.

7 Related Work

Compositionality is a fundamental notion in computer science, and it has been
subject of growing interest in the QIF community.

Espinoza and Smith [25] derived a number of min-capacity bounds for dif-
ferent channel compositions, including cascading and parallel composition.

However, it was not until recently that compositionality results regarding
the more general metrics of g-leakage started to be explored. Kawamoto et al.
[26] defined a generalization of the parallel operator for channels with different
input sets, and gave upper bounds for the corresponding information leakage.
Our bounds for compatible channels (Theorem 1) are tighter than theirs.

Recently, Engelhardt [27] defined the mix operator, another generalization
of parallel composition, and derived results similar to ours regarding the par-
allel operator. Specifically, he provided commutative and associative properties
(Propositions 1 and 2), and from his results the lower bound of Theorem 1 can
be inferred. He also proved properties similar to the ones in Proposition 3, albeit
using more restrictive definitions of null and transparent channels.

Both Kawamoto et al. and Engelhardt provided results similar to Theorem 5,
but ours is not restricted to when one channel is refined by the other.

Just recently, Alvim et al. investigated algebraic properties of hidden and
visible choice operators in the context of game-theoretic aspects of QIF [28], and
derived the upper bounds of Theorems 2 and 3. Here we expanded the algebra to
the interaction among operators, including parallel composition, derived more
comprehensive bounds on their leakage, and applied our results to the Crowds
protocol.

8 Conclusions and Future Work

In this paper we proposed an algebra to express numerous component composi-
tions in systems that arise from typical ways in components interact in practical
scenarios. We provided fundamental algebraic properties of these operators, and
studied several of their leakage properties. In particular, we obtained new results
regarding their monotonicity properties and stricter bounds for the parallel and
hidden choice operators. These results are of practical interest for the QIF com-
munity, as they provide helpful tools for modeling large systems and analyzing
their security properties.

The list of operators we explored in this paper, however, does not seem to
capture every possible interaction of components of real systems. As future work
we wish to find other operators and increase the expressiveness of our approach.

An Algebraic Approach for Reasoning About Information Flow 71

Acknowledgments. Arthur Américo and Mério S. Alvim are supported by CNPq,
CAPES, and FAPEMIG. Annabelle Mclver is supported by ARC grant DP140101119.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-

tion leakage using generalized gain functions. In: Proceedings of CSF, pp. 265-279
(2012)

Mclver, A., Morgan, C., Smith, G., Espinoza, B., Meinicke, L.: Abstract channels
and their robust information-leakage ordering. In: Abadi, M., Kremer, S. (eds.)
POST 2014. LNCS, vol. 8414, pp. 83-102. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54792-8_5

Clark, D., Hunt, S., Malacaria, P.: Quantitative information flow, relations and
polymorphic types. J. Logic Comput. 18(2), 181-199 (2005)

Kopf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel
attacks. In: Proceedings of CCS, pp. 286-296. ACM (2007)

Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: On the Bayes risk in
information-hiding protocols. J. Comput. Secur. 16(5), 531-571 (2008)

Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288-302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1_21

Mclver, A., Meinicke, L., Morgan, C.: Compositional closure for Bayes risk in
probabilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223-235.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1_19
Boreale, M., Pampaloni, F.: Quantitative information flow under generic leakage
functions and adaptive adversaries. Log. Methods Comput. Sci. 11(4) (2015)
Alvim, M.S., Chatzikokolakis, K., Mclver, A., Morgan, C., Palamidessi, C., Smith,
G.: Axioms for information leakage. In: Proceedings of CSF, pp. 77-92 (2016)
Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. J. Cryptol. 1(1), 65-75 (1988)

Alvim, M.S., Chatzikokolakis, K., Mclver, A., Morgan, C., Palamidessi, C., Smith,
G.: Additive and multiplicative notions of leakage, and their capacities. In: Pro-
ceedings of CSF, pp. 308-322. IEEE (2014)

Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans.
Inf. Syst. Secur. 1(1), 66-92 (1998)

Américo, A., Alvim, M.S., Mclver, A.: An algebraic approach for reasoning about
information flow. CoRR abs/1801.08090 (2018)

Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J.
27(379-423), 625-56 (1948)

Massey, J.L.: Guessing and entropy. In: Proceedings of the IEEE International
Symposium on Information Theory, p. 204. IEEE (1994)

Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage
for one-try attacks. In: Proceedings of MFPS. ENTCS, vol. 249, pp. 75-91. Elsevier
(2009)

Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104-113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

https://doi.org/10.1007/978-3-642-54792-8_5
https://doi.org/10.1007/978-3-642-54792-8_5
https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1007/978-3-642-14162-1_19
https://doi.org/10.1007/3-540-68697-5_9

72

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

A. Américo et al.

Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings of
the 12th Conference on USENIX Security Symposium. SSYM 2003, vol. 12, p. 1.
USENIX Association, Berkeley (2003)

Nohl, K., Evans, D., Starbug, S., Plotz, H.: Reverse-engineering a cryptographic
RFID tag. In: Proceedings of the 17th Conference on Security Symposium. SS
2008, pp. 185-193. USENIX Association, Berkeley (2008)

Warner, S.L.: Randomized response: a survey technique for eliminating evasive
answer bias. J. Am. Stat. Assoc. 60(309), 63-69 (1965). PMID: 12261830
Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137-150. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61996-8_37

Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium, pp. 303-320.
USENIX (2004)

Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354-356
(1969)

Andrés, M.E., Palamidessi, C., van Rossum, P., Smith, G.: Computing the leakage
of information-hiding systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 373-389. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12002-2_32

Espinoza, B., Smith, G.: Min-entropy as a resource. Inf. Comput. 226, 57-75 (2013)
Kawamoto, Y., Chatzikokolakis, K., Palamidessi, C.: On the compositionality of
quantitative information flow. Log. Methods Comput. Sci. 13(3) (2017)
Engelhardt, K.: A better composition operator for quantitative information flow
analyses. In: European Symposium on Research in Computer Security, Proceed-
ings, Part I, pp. 446-463 (2017)

Alvim, M.S., Chatzikokolakis, K., Kawamoto, Y., Palamidessi, C.: Leakage and
protocol composition in a game-theoretic perspective. In: Bauer, L., Kiisters, R.
(eds.) POST 2018. LNCS, vol. 10804, pp. 134-159. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-89722-6_6

https://doi.org/10.1007/3-540-61996-8_37
https://doi.org/10.1007/978-3-642-12002-2_32
https://doi.org/10.1007/978-3-642-12002-2_32
https://doi.org/10.1007/978-3-319-89722-6_6
https://doi.org/10.1007/978-3-319-89722-6_6

®

Check for
updates

Towards ‘Verifying’ a Water
Treatment System

Jingyi Wang"3, Jun Sun'®| Yifan Jial**, Shengchao Qin?3(®&),
and Zhiwu Xu?

! Singapore University of Technology and Design, Singapore, Singapore
sunjun@sutd.edu.sg
2 School of Computing, Media and the Arts,
Teesside University, Middlesbrough, UK
S.Qin@tees.ac.uk
3 College of Computer Science and Software Engineering,
Shenzhen University, Shenzhen, China
4 TUV-SUD Asia Pacific Pte Ltd., Singapore, Singapore

Abstract. Modeling and verifying real-world cyber-physical systems is
challenging, which is especially so for complex systems where manually
modeling is infeasible. In this work, we report our experience on combin-
ing model learning and abstraction refinement to analyze a challenging
system, i.e., a real-world Secure Water Treatment system (SWaT). Given
a set of safety requirements, the objective is to either show that the sys-
tem is safe with a high probability (so that a system shutdown is rarely
triggered due to safety violation) or not. As the system is too compli-
cated to be manually modeled, we apply latest automatic model learning
techniques to construct a set of Markov chains through abstraction and
refinement, based on two long system execution logs (one for training and
the other for testing). For each probabilistic safety property, we either
report it does not hold with a certain level of probabilistic confidence, or
report that it holds by showing the evidence in the form of an abstract
Markov chain. The Markov chains can subsequently be implemented as
runtime monitors in SWaT.

1 Introduction

Cyber-physical systems (CPS) are ever more relevant to people’s daily life.
Examples include power supply which is controlled by smart grid systems, water
supply which is processed from raw water by a water treatment system, and
health monitoring systems. CPS often have strict safety and reliability require-
ments. However, it is often challenging to formally analyze CPS since they exhibit
a tight integration of software control and physical processes. Modeling CPS
alone is a major obstacle which hinders many system analysis techniques like
model checking and model-based testing.

© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 73-92, 2018.
https://doi.org/10.1007/978-3-319-95582-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_5&domain=pdf

74 J. Wang et al.

The Secure Water Treatment testbed (SWaT) built at Singapore University of
Technology and Design [28] is a scale-down version of an industry water treatment
plant in Singapore. The testbed is built to facilitate research on cyber security for
CPS, which has the potential to be adopted to Singapore’s water treatment sys-
tems. SWa'T consists of a modern six-stage process. The process begins by taking in
raw water, adding necessary chemicals to it, filtering it via an Ultrafiltration (UF)
system, de-chlorinating it using UV lamps, and then feeding it to a Reverse Osmo-
sis (RO) system. A backwash stage cleans the membranes in UF using the water
produced by RO. The cyber portion of SWaT consists of a layered communica-
tions network, Programmable Logic Controllers (PLCs), Human Machine Inter-
faces (HMIs), Supervisory Control and Data Acquisition (SCADA) workstation,
and a Historian. Data from sensors is available to the SCADA system and recorded
by the Historian for subsequent analysis. There are 6 PLCs in the system, each of
which monitors one stage using a set of sensors embedded in the relevant physi-
cal plants and controls the physical plants according to predefined control logics.
SWaT has a strict set of safety requirements (e.g., the PH value of the water com-
ing out of SWaT must be within certain specific range). In order to guarantee that
the safety requirements are not violated, SWaT is equipped with safety monitor-
ing devices which trigger a pre-defined shutdown sequence. Our objective is thus
to show that the probability of a safety violation is low and thus SWaT is reliable
enough to provide its service.

One approach to achieve our objective is to develop a model of SWaT and then
apply techniques like model checking. Such a model would have a discrete part
which models the PLC control logic and a continuous part which models the phys-
ical plants (e.g., in the form of differential equations). Such an approach is chal-
lenging since SWaT has multiple chemical processes. For example, the whole pro-
cess is composed of pre-treatment, ultrafiltration and backwash, de-chlorination,
reverse osmosis and output of the processed water. The pre-treatment process
alone includes chemical dosing, hydrochloric dosing, pre-chlorination and salt dos-
ing. Due to the complexity in chemical reactions, manual modeling is infeasible.
Furthermore, even if we are able to model the system using modeling notations
like hybrid automata [11], the existing tools/methods [9, 22, 23] for analyzing such
complicated hybrid models are limited.

An alternative approach which does not require manual modeling is statistical
model checking (SMC) [7,16,35]. The main idea is to observe sample system
executions and apply standard techniques like hypothesis testing to estimate
the probability that a given property is satisfied. SMC however is not ideal for
two reasons. First, SMC treats the system as a black box and does not provide
insight or knowledge of the system on why a given property is satisfied. Second,
SMC requires sampling the system many times, whereas starting /restarting real-
world CPS like SWaT many times is not viable.

Recently, there have been multiple proposals on applying model learning
techniques to automatically ‘learn’ system models from system executions and
then analyze the learned model using techniques like model checking. A variety
of learning algorithms have been proposed (e.g., [4,22,24,25]), some of which

Towards ‘Verifying’ a Water Treatment System 75

require only a few system executions. These approaches offer an alternative way
of obtaining models, when having a model of such complex systems is a must.
For instance, in [6,19,32,33], it is proposed to learn a probabilistic model first
and then apply Probabilistic Model Checking (PMC) to calculate the probability
of satisfying a property based on the learned model.

It is however far from trivial to apply model learning directly on SWaT. Exist-
ing model learning approaches have only been applied to a few small benchmark
systems. It is not clear whether they are applicable or scalable to real-world sys-
tems like SWaT. In particular, there are many sensors in SWaT, many of which
generate values of type float or double. As a result, the sensor readings induce an
‘infinite’ alphabet which immediately renders many model learning approaches
infeasible. In fact, existing model learning approaches have rarely discussed the
problem of data abstraction. To the best of our knowledge, the only exception
is the LAR method [32], which proposes a method of combining model learning
and abstraction/refinement. However, LAR requires many system executions as
input, which is infeasible in SWaT. In this work, we adapt the LAR method
so that we require only two long sequences of system execution logs (one for
training and the other for testing) as input. We successfully ‘verified” most of
the properties for SWaT this way. For each property, we either report that the
property is violated with a certain confidence, or report that the property is sat-
isfied, in which case we output a model in the form of an abstract Markov chain
as evidence, which could be further validated by more system runs or expert
review. Note that in practice these models could be implemented as runtime
monitors in SWaT.

The remainders of the paper are organized as follows. Section 2 presents back-
ground on SWaT, our objectives as well as some preliminaries. Section 3 details
our learning approach. We present the results in Sect. 4 and conclude with related
work in Sect. 5.

2 Background

In this section, we present the target SWaT system and state our motivation
and goals.

System Overview. The system under analysis is the Secure Water Treatment
(SWaT) built at the iTrust Center in Singapore University of Technology and
Design [20]. It is a testbed system which scales down but fully realized the
functions of a modern water treatment system in cities like Singapore. It enables
researchers to better understand the principles of cyber-physical Systems (CPS)
and further develop and experiment with smart algorithms to mitigate potential
threats and guarantee its safety and reliability.

SWaT takes raw water as input and executes a series of treatment and out-
put recycled water eventually. The whole process contains 6 stages as shown in
Fig. 1. The raw water is taken to the raw water tank (P1) and then pumped to
the chemical tanks. After a series of chemical dosing and a static mixer (P2),

76 J. Wang et al.

Raw Water Chemical Tanks and dosing pumps P2 ‘

Lo [o | [neoci| [nac |

LIT101 P101

L |paot Jpzos Jons
Raw Water L x J Static Mixer %
Tank P i

. FIT201, AIT201 Ghemical dosing station

e
w
> —

LIT301
P4 : AIT202, AlIT203
P401 U401 | | DPIT301 P301
Ultraviolet (UV) X RO Feed RO Feed 7XL Ultra-filtration lx UF Feed
Dechlorinator Pump Tank : Unit (UF) Pump
FIT401 i
AIT402X NaHSO03
} P5 P6
v
- Reject UF UF
Cartridge FiIter—X~>{ Rgfﬁ?%t H Rev?:g)%irin:osm } ! Backwash Backwash
AIT P Tank Pump
503 P t P602
P501 ‘ ; rmeate Raw Permeate Water
AlT504 Tank Recycled
AlTxxx: Analyzer Indicator/Transmitter. FITxxx: Flow Indicator/Transmitter. MVxxx: Motorized valve.
DPITxxx: Differential Pressure Indicator/Transmitter. LITxxx: Level Indicator/Transmitter. Pxxx: Pump

Fig. 1. Six stages of water treatment in SWaT [20].

the water is filtered by an Ultra-filtration (UF) system (P3) and UV lamps (P4).
It is then fed to a Reverse Osmosis (RO) system (P5) and a backwash process
cleans the membranes in UF using the water produced by RO (P6). For each
stage, a set of sensors are employed to monitor the system state. Meanwhile, a
set of actuators controlled by the programming logic controller (PLC) are built
in to manipulate the state of the physical process. The readings of sensors are
collected and sent periodically to the PLC, while the PLC returns a set of actu-
ators values according to the control logics and the current sensor values. For
instance, the sensor LIT101 is used to monitor the water level of the Raw Water
Tank. The PLC reads its value and decides whether to set a new value to the
actuators. For example if LIT'101 is beyond a threshold, the PLC may deactivate
the valve MV'101 to stop adding water into the tank.

SWaT has many built-in safety mechanisms enforced in PLC. Each stage is
controlled by local dual PLCs with approximately hundreds of lines of code. In
case one PLC fails, the other PLC takes over. The PLC inspects the received
and cached sensor values and decides the control strategy to take. Notice that
the sensor values are accessible across all PLCs. For example, the PLC of tank 1
may decide whether to start pump P101 according to the value of LIT301, i.e.,
the water level of tank 3. In case the controller triggers potential safety violations
of the system according to the current values of the sensors, the controller may
shut down the system to ensure the safety. The system then needs to wait for
further inspection from technicians or experts. Shutting down and restarting

Towards ‘Verifying’ a Water Treatment System 7

Table 1. Safety properties.

Plant | Sensor Description Operating range points
P1 | FIT101 |Flow Transmitter (EMF) 2.5-2.6m>/h
LIT101 |Level Transmitter (Ultrasonic) |500-1100 mm
P2 AIT201 | Analyser (Conductivity) 30-260 uS/cm
AIT202 | Analyser (pH) 6-9
AIT203 | Analyser (ORP) 200-500mV
FIT201 | Flow Transmitter (EMF) 2.4-2.5m®/h
P3 DPIT301 | DP Transmitter 0.1-0.3 Bar
FIT301 |Flow Transmitter (EMF) 2.2-2.4m*/h
LIT301 |Level Transmitter (Ultrasonic) |800-1000 mm
P4 | AIT401 | Analyser (Hardness) 5-30 ppm
AIT402 | Analyser 150-300 mV
FIT401 |Flow Transmitter (EMF) 1.5-2m?/h
LIT401 |Level Transmitter (Ultrasonic) | 800-1000 mm
P5 | AIT501 | Analyser (pH) 6-8
AIT502 | Analyser (ORP) 100-250 mV
AIT503 | Analyser (Cond) 200-300 wS/cm
AIT504 | Analyser (Cond) 5-10 uS/cm
FIT501 | Flow Transmitter 1-2m?®/h
FIT502 |Flow Transmitter (Paddlewheel) | 1.1-1.3m?3/h
FIT503 |Flow Transmitter (EMF) 0.7-0.9m*/h
FIT504 |Flow Transmitter (EMF) 0.25-0.35m*/h
PIT501 | Pressure Transmitter 2-3 Bar
PIT502 | Pressure Transmitter 0-0.2 Bar
PIT503 | Pressure Transmitter 1-2 Bar

SWaT however is highly non-trivial, which takes significant costs in terms of
both time and resource, especially in the real-world scenario. Thus, instead of
asking whether a safety violation is possible, the question becomes: how often a
system shutdown is triggered due to potential safety violations?

In total, SWaT has 25 sensors (for monitoring the status) and 26 actuators
(for manipulating the plants). Each sensor is designed to operate in a certain safe
range. If a sensor value is out of the range, the system may take actions to adjust
the state of the actuators so that the sensor values would go back to normal.
Table 1 shows all the sensors in the 6 plants, their operation ranges. The sensors
has 3 categories distinguished by their prefixes. For instance, AITzxx stands for
Analyzer Indicator /Transmitter; D PITxxx stands for Differential Pressure Indi-
cator/Transmitter; FITxzxzx stands for Flow Indicator/Transmitter; LITzzx
stands for Level Indicator/Transmitter.

78 J. Wang et al.

SWaT is also equipped with a historian which records detailed system exe-
cution log, including all sensor readings and actuator status. Table2 shows a
truncated system log with part of sensors. Each row is the sensor readings at
a time point and each row is collected every millisecond. Notice that different
sensors may have different collection period. The table is filled such that a sen-
sor keeps its old value if no new value is collected, e.g., AIT202 in Table2. A
dataset of SWaT has been published by the iTrust lab in Singapore University
of Technology and Design [10,27]. The dataset contains the execution log of 11
consecutive days (i.e., 7days of normal operations and another 4days of the
system being under various kind of attacks [10,27]).

Table 2. A concrete system log with the last column being the abstract system log
after predicate abstraction with predicate LIT101 > 1100.

FIT101 |LIT101 |\MV101|P101|P102|AIT201 |AIT202| AIT203|FIT201 \LIT101 > 1100
2.470294/261.5804 |2 244.32848.19008 1 306.101 |2.471278|0
2.457163|261.1879 2 244.32848.19008 | 306.101 |2.468587 |0
2.439548/260.9131 |2 244.32848.19008 1 306.101 |2.467305|0
2.428338/260.285 |2 244.32848.19008 1 306.101 |2.466536 |0
2 0
2 0
2 0

2.424815|259.8925 244.42458.19008 | 306.101 |2.466536
2.425456|260.0495 244.5847|8.19008 | 306.101 |2.465127
2.472857|260.2065 244.5847|8.19008 | 306.101 |2.464742

NN NN NN N
e N e e

Objectives. As discussed above, each sensor reading is associated with a safe
range, which constitutes a set of safety properties (i.e., reachability). We remark
that we focus on safety properties concerning the stationary behavior of the sys-
tem in this work rather than those properties concerning the system initializing
or shutting down phase. In general, a stationary safety property (refer to [6]
for details) takes the form S<,(¢) (where r is the safety threshold and ¢ is an
LTL formula). In our particular setting, the property we are interested in is that
the probability that a sensor is out of range (either too high or too low) in the
long term is below a threshold. Our objective is to ‘verify’ whether a given set of
stationary properties are satisfied or not.

Manual modeling of SWaT is infeasible, with 6 water tanks interacting with
each other, plenty of chemical reactions inside the tanks and dozens of valves
controlling the flow of water. A group of experts from Singapore’s Public Utility
Board have attempted to model SWaT manually but failed after months of effort
because the system is too complicated. We remark that without a system model,
precisely verifying the system is impossible. As discussed above, while statistical
model checking (SMC) is another option to provide a statistical measure on the
probability that a safety property is satisfied, it is also infeasible in our setting.

Thus, in this work, we aim to verify the system by means of model learning.
That is, given a safety property, either we would like to show that the property is
violated with certain level of confidence or the property is satisfied with certain

Towards ‘Verifying’ a Water Treatment System 79

evidence. Ideally, the evidence is in the form of a small abstract model, at the
right level-of-abstraction, which could be easily shown to satisfy the property.
The advantage of presenting the model as the evidence is that the model could be
further validated using additional data or through expert review. Furthermore,
the models can serve other purposes. Firstly, the models could be implemented
as runtime monitors to detect potential safety violations at runtime. Secondly,
we could also prevent future safety violations by predictive analysis based on the
model and take early actions.

3 Owur Approach

We surveyed existing model learning algorithms (for the purpose of system
verification through model checking) and found most existing model learning
approaches [6,19,33] are inapplicable in our setting. The reason is that the real-
typed (float or double) variables in SWaT lead to an infinite alphabet. The
only method which seems feasible is the recently proposed model learning app-
roach called LAR (short for learning, abstraction and refinement) documented
in [32], which allows us to abstract sensor readings in SWaT and automatically
learn models at a proper level of abstraction based on a counterexample guided
abstraction refinement (CEGAR) framework. However, LAR was designed to
take many independent execution logs as input whereas we have only few long
system logs of SWaT. We thus adapt LAR to sLAR which learns system models
from a single long system log instead. In the following, we briefly explain how
sLAR works. Interested readers are referred to [32] for the detailed explanation
of LAR.

Our overall approach is shown in Fig.2. Given a training log and a safety
property, we first construct an abstract log through predicate abstraction and
use a learner to learn a model based on the abstract log. Then, the safety prop-
erty is verified against the learned model. If the verification returns true, we
report true and output the learned model as evidence. Otherwise, we test the

Input : sLAR : Output
Training log —— E——
: Model . True
; Learner » Verifier :
Safety property | '\)) -
3 Predicate False 3
False ‘ iolation wi
Refiner [« Validator V|oIat‘|on i
confidence

i | —
Testing log |

Fig. 2. Overall approach.

80 J. Wang et al.

property using a validator on the testing log. If the validator finds that the prop-
erty is violated, we report safety violation together with the level of confidence
we achieve. Otherwise, we use a refiner to refine the abstraction and start over
from the learner. Although sLAR is based on LAR, our goal of this case study
is to verify stationary properties of SWaT and construct a stationary proba-
bilistic model from one single long system log, which is different from LAR.
Consequently, the procedures to verify the property and validate the result of
the verifier are different. In the following, we present each part of our approach
in details.

3.1 The Model

From an abstract point of view, SWaT is a system composed of n variables
(including sensors, actuators as well as those variables in the PLC control pro-
gram) which capture the system status. A system observation o is the valuation
of all variables at a time point ¢. A system log L = 04,0y, - - - 04, is a sequence of
system observations collected from time point ¢ to tx. Given a system log L, we
write L(t) = o, to denote the system observation at time ¢ and L,(t) to denote
the system observations before ¢, i.e., from ¢y to ¢. In this case study, we use L
and L; to denote the training log and testing log respectively. We also use T}
and T5 to denote their lasting time respectively.

Several machine learning algorithms exist to learn a stationary system model
from a single piece of system log [6,24,33]. However, applying these algorithms
directly is infeasible because of the real-typed (float or double) variables in
SWaT, since system observations at different time points are almost always
different and thus the input alphabet for the learning algorithms is ‘infinite’.
To overcome this problem, our first step is to abstract the system log through
predicate abstraction [29]. Essentially, a predicate is a Boolean expression over
a set of variables. Given a system log and a set of predicates, predicate abstrac-
tion turns the concrete variable values to a bit vector where each bit represents
whether the corresponding predicate is true or false. For example, given a pred-
icate LIT101 > 1100, the concrete system log on the left of Table 2 becomes the
abstract system log on the right.

The models we learn from the log are in the form of discrete-time Markov
Chain (DTMC), which is a widely used formalism for modeling stochastic behav-
iors of complex systems. Given a finite set of states S, a probability distribution
over S is a function p : S — [0, 1] such that) s pu(s) = 1. Let Distr(S) be the
set of all distributions over S. Formally,

Definition 1. A DTMC M is a tuple {(S,%init, Pr), where S is a count-
able, nonempty set of states; tinix : S — [0,1] is the initial distribution
s.t.) segtinit(s) = 1; and Pr : S — Distr(S) is a transition function such
that Pr(s,s’) is the probability of transiting from state s to state s'.

We denote a path starting with so by 7% = (sg, s1, 82, , Sp), which is a
sequence of states in M, where Pr(s;,s;+1) > 0 for every 0 < i < n. Further-
more, we write Path%,, (M) to denote the set of finite paths of M starting with s.

Towards ‘Verifying’ a Water Treatment System 81

We say that s; € 7% if s; occurs in 7°°. In our setting, we use a special form
of DTMC, called stationary DTMC (written as sDTMC) to model the system
behaviors in the long term. Compared to a DTMC, each state in an sDTMC rep-
resents a steady state of the system and thus there is no prior initial distribution
over the states.

Definition 2. An sDTMC is irreducible if for every pair of states s;,s; € S,
there exists a path % such that s; € m%.

Intuitively, an sDTMC is irreducible if there is path between every pair of
states. For an irreducible sDTMC, there exists a unique stationary probability
distribution which describes the average time a Markov chain spends in each
state in the long run.

Definition 3. Let ui; denote the long run proportion of time that the chain spends
in state sj: pj = limp_oo 250 I{X,, = 5j|Xo = s;} with probability 1, for
all states s;. If for each s; € S, p; exists and is independent of the initial state s;,
and Esjes w; = 1, then the probability distribution p = (fo, 1, -+) s called the

limiting or stationary or steady-state distribution of the Markov chain.

In this work, we ‘learn’ a stationary and irreducible sDTMC to model the
long term behavior of SWaT. By computing the steady-state distribution of the
learned sDTMC, we can obtain the probability that the system is in the states
of interests in the long run.

3.2 Learning Algorithm

After predicate abstraction, the training log becomes a sequence of bit vectors,
which is applicable for learning. We then apply an existing learning algorithm
in [24] to learn a stationary system model. The initial learned model is in the
form of a Probabilistic Suffizx Automata (PSA) as shown in Fig. 3, where a system
state in the model is identified by a finite history of previous system observations.
A PSA is an sDTMC by definition. Each state in a PSA is labeled by a finite
memory of the system. The transition function between the states are defined
based on the state labels such that there is a transition s x ¢ — ¢ iff I(¢) is a
suffix of I(s) - o, where I(s) is the string label of s. A walk on the underlying
graph of a PSA will always end in a state labeled by a suffix of the sequence.
Given a system log L,(t) at ¢, a unique state in the PSA can be identified by
matching the state label with the suffixes of L,(t). For example, ---010 is in
state labeled by 0 and if we observe 1 next, the system will go to state labeled
by 01.

To learn a PSA, we first construct an intermediate tree representation called
Probabilistic Suffiz Tree (PST), namely tree(L) = (N, root, E) where N is the
set of suffixes of L; root = (); and there is an edge (m,m2) € E if and only if
7o = (e) - m1. Based on different suffixes of the execution, different probabilistic
distributions of the next observation will be formed. The central question is how
deep should we grow the PST. A deeper tree means that a longer memory is

82 J. Wang et al.

(0.5,0.5)

(0.5,0.5) @ (0.5,0.5)
(0.25,0.75) (0.75,0.25)

Fig. 3. An example stationary model. The left is the PST representation, where each
state is associated with a label and a distribution of the next observation. The right is
the corresponding PSA model where leaves are taken as states.

1:0.25

Algorithm 1. Learn PST

1: Initialize T to be a single root node representing ();

2: Let S = {o]|fre(o,a) > €} be the candidate suffix set;

3: while S is not empty do

4: Take any 7 from S; Let 7’ be the longest suffix of 7 in T’
5

(B) If fre(m, o) - 35 Pr(m,0) - log]‘f:((:,’;)) > e

add 7 and all its suffixes which are not in T to T
(C) If fre(m,a) > €, add {e) - w to S for every e € X if fre({e) - m,a) > 0;
7: end while

2

used to predict the distribution of the next observation. The detailed algorithm
is shown in Algorithm 1. The tree keeps growing as long as adding children to a
current leaf leads to a significant change (measured by K-L divergence) in the
probability distribution of next observation (line 5). After we obtain the PST,
we transform it into a PSA by taking the leaves as states and define transitions
by suffix matching. We briefly introduce the transformation here and readers are
referred to Appendix B of [24] for more details. For a state s and next symbol
o, the next state s’ must be a suffix of so. However, this is not guaranteed to
be a leaf in the learned T'. Thus, the first step is to extend T to 1" such that
for every leaf s, the longest prefiz of s is either a leaf or an internal node in
T’. The transition functions are defined as follows. For each node s in T NT’
and o € X, let Pr'(s,0) = Pr(s,0). For each new nodes s’ in T — T, let
Pr'(s',0) = Pr(s,o0), where s is deepest ancestor of s’ in T. An example PST
and its corresponding PSA after transformation is given in Fig. 3. Readers are
referred to [24] for details.

Towards ‘Verifying’ a Water Treatment System 83

3.3 Verification

Once we learn an sDTMC model, we then check whether the learned model
satisfies the given safety property. To do so, we first compute the steady-state
distribution of the learned model. There are several methods we could use for the
calculation including power methods, solving equations or finding eigenvector [2].
The steady-state distribution tells the probability that a state occurs in the long
run. Once we obtain the steady-state distribution of the learned model, we could
then calculate the probability that the system violates the safety property in the
long run by summing up the steady-state probability of all unsafe states. Assume
1 is the steady-state distribution, S, is the set of unsafe states in the learned
model and P, is the probability that the system is in unsafe states in the long
run. We calculate the probability of unsafe states as P, = >, cg p{si}. We
then check whether the learned model satisfies the safety property by comparing
whether P, is beyond the safety threshold r. Take the PSA model in Fig.3 as
example. The steady-state distribution over states [1,00,10] is [0.4,0.31,0.29)].
States 1 is the unsafe state. The steady-state probability that the system is in
unsafe states is thus 0.4.

There are two kinds of results. One is that P, is below the threshold r,
which means the learned model under current abstraction level satisfies the safety
requirement. Then, we draw the conclusion that the system is ‘safe’ and present
the learned model as evidence. The soundness of the result can be derived if the
learned abstract model simulates the actual underlying model [12]. However,
since the model is obtained through learning from limited data, it is not guaran-
teed that the result is sound. Nevertheless, the model can be further investigated
by validating it against future system logs or reviewed by experts, which we leave
to future works. The other result is that the learned model does not satisfy the
safety requirement, i.e., the probability of the system being in an unsafe state
in the steady-state is larger than the threshold. In such a case, we move to the
next step to validate whether the safety violation is introduced by inappropriate
abstraction [32] or not.

3.4 Abstraction Refinement

In case we learn a model which shows that the probability of the system being
in unsafe states in long term is beyond the safety threshold, we move on to
validate whether the system is indeed unsafe or the violation is spurious due to
over-abstraction. For spuriousness checking, we make use of a testing log which
is obtained independently and compute the probability of the system being in
unsafe states, which is denoted by P!. The testing log has the same format with
the training log. We estimate P! by calculating the frequency that the system is
in some unsafe states in the testing log. If P! is larger than the threshold r, we
report the safety violation together with a confidence by calculating the error
bound [26]. Otherwise, we conclude that the violation is caused by too coarse
abstraction and move to the next step to refine the abstraction.

84 J. Wang et al.

Algorithm 2. Algorithm CountST(Mp, L;)

1: Augment each transition (s, s;) in Mp with a number #(s;, s;) recording how many
times we observe such a transition in L; and initialize them to 0;
: Let to be the first time that suf fiz(L+(to)) matches a label of a state in Mp and a time
pointer t = to;
. while t < T> do
Refer to M p for the current state s;;
Take L¢(t + 1) from L; and refer to Mp to get the next state s;41;
Add #(s¢, st+1) by 1, add t by 1;
end while

NPT w W

Let N be the total number of states, and n be the number of unsafe states
in the testing log. Let Y = X7 4+ X5 + -+ -+ X, where X; is a Bernoulli random
variable on whether a state is unsafe. The confidence of the safety violation
report is then calculated as & = 1—=P{Y = n|P, < r}. For example, for property
LIT101 > 1000, if we observe 1009 times (n) that LIT101 is larger than 1000
and the total length of the testing log is 100000 (N), then the estimated P is
1009/100000 = 0.010009.

If we conclude that the current abstraction is too coarse, we continue to refine
the abstraction by generating a new predicate following the approach in [32]. The
predicate is then added to the set of predicates to obtain a new abstract system
log based on the new abstraction. The algorithm then starts over to learn a new
model based on the new abstract log. Next, we introduce how to generate a new
predicate in our setting.

Finding Spurious Transitions. A spurious transition in the learned model is a
transition whose probability is inflated due to the abstraction. Further, a tran-
sition (s;,s;) is spurious if the probability of observing s; transiting to s; in
the actual system Paq(s;, s;) is actually smaller than P, (s;,s;) in the learned
model [32]. Without the actual system model, we estimate the actual transition
probability based on the testing log. Given the learned model M p and the test-
ing log L;, we count the number of times s; is observed in L; (denoted by #s;)
and the number of times the transition from s; to s; in is observed L; (denoted
by #(si,s;)) using Algorithm 2. The actual transition probability P(s;,s;) is
estimated by ﬁM(si,sj) = #(si,sj)/#si. Afterwards, we identify the transi-
tions satisfying Paq, (si,5;) — ﬁM(si, sj) > 0 as spurious transitions and order
them according to the probability deviation.

Predicate Generation. After we obtain a spurious transition (s;,s;), our next
step is to generate a new predicate to eliminate the spuriousness. The generated
predicate is supposed to separate the concrete states of s; which transit to s;
(positive instances) from those which do not (negative instances). We collect
the dataset for classification in a similar way to Algorithm 2 by iterating the
testing log. If s; is observed, we make a decision on whether it is a positive

Towards ‘Verifying’ a Water Treatment System 85

Algorithm 3. Algorithm sLAR(L,L;, S<(¢))

1 let P be the predicates in ¢;
2 while true do

3 construct abstract trace Lp based on training log L and P;

4 apply Algorithm 1 to learn a stationary model Mp based on Lp;
5 check M p against ¢;
6

7

8

if Mp = ¢ then
report ¢ is verified, the model M p;

return;
9 use the testing log L: to validate the property violation;
10 if validated then
11 report ¢ is violated with confidence;
12 return;
13 identify the most spurious transitions (s, s’) in Mp;

14 collect labeled dataset DT (s, Mp, L) and D™ (s, Mp, L;);
15 apply SVM to identify a predicate p separating the two sets;
16 add p into P;

or negative instance by telling whether its next state is s;. With the labeled
dataset, we then apply a supervised classification technique in machine learning,
i.e., Support Vector Machines (SVM [1,5]) to generate a new predicate. Then,
we add the predicate for abstraction and start a new round.

3.5 Overall Algorithm

The overall algorithm is shown as Algorithm 3. The inputs of the algorithm
are a system log L for training, a system log L; for testing, a property in the
form of S<,(¢). During each iteration of the loop from line 2 to 16, we start
with constructing the abstract trace based on L and a set of predicates P. The
initial set of predicates for abstraction is the set of predicates in the property.
Next, an abstract sDTMC Mp is learned using Algorithm 1. We then verify
Mp against the property. If the property is verified, the system is verified and
Mp is presented as the evidence. Otherwise, we validate the verification result
using a testing log L; at line 9. If the test passes, we report a safety violation
together with the confidence. Otherwise, at line 13, we identify the most spurious
transition and obtain a new predicate at line 15. After adding the new predicate
into P, we restart the process from line 2. If SVM fails to find a classifier for
all the spurious transitions, Algorithm 3 terminates and reports the verification
is unsuccessful. Otherwise, it either reports true with a supporting model as
evidence or a safety violation with confidence.

86 J. Wang et al.

4 Case Study Results

In the following, we present our findings on applying the method documented in
Sect. 3 to SWaT. Given the 11 day system log [10], we take the 7 day log under
normal system execution and further split it into two parts for training (4 days)
and testing (3 days) respectively. The main reason we split them into training
and testing log is to avoid over-fitting problem without the testing data. Note
that the historian makes one record every second. The training log and testing
log contains 288000 and 208800 system observations respectively. The properties
we verified are whether the steady-state probability that a sensor runs out of its
operating range is beyond or below a threshold. Let Pirqin, Pearn and Pies: be
the probability that a sensor is out of operating range in the training log, learned
models and the testing log respectively. In our study, we set the threshold r in
each property as 20 percent larger than the probability observed in the actual
system for a long time, during which the system functioned reliably. The idea
is to check whether we can establish some underlying evidence to show that the
system would satisfy the property indeed.

The experiment results of all sensors are summarized in Table 3. The detailed
implementation and models are available in [30]. The first column is the plant
number. Column 2 and 3 are the sensors and their properties to verify which are
decided by their operating ranges. The following 4 columns show the probability
that a sensor value is out of operating range in the training log, the safety
threshold, the probability in the learned model and the probability in the testing
log respectively. Column ‘result’ is the verification result of the given safety
properties. ‘SUC’ means the property is successfully verified. ‘FAL’ means the
property is not verified. ‘VIO’ means the property is violated. Column ‘model
size’ is the number of states in the learned model. Column e is the parameter we
use in the learning parameter. The last column is the running time.

Summary of Results. In total, we managed to evaluate 47 safety properties of 24
sensors. Notice that the sensor from P6 is missing in the dataset. Among them,
19 properties are never observed to be violated in the training log. We thus could
not learn any models regarding these properties and conclude that the system is
safe from the limited data we learn from. This is reasonable as according to the
dataset, the probability violating the property is 0. For the rest 28 properties,
we successfully verified 24 properties together with a learned abstract Markov
chain each and reported 4 properties as safety violation with a confidence.

We have the following observations from the results. For those properties
we successfully verified, we managed to learn stationary abstract Markov chains
which closely approximate the steady-state probability of safety violation (evalu-
ated based on the probability computed based on the testing log). It means that
in these cases, sLAR is able to learn a model that is precise enough to capture
how the sensor values change. Examples are FIT101 > 2.6, LIT301 > 1000,
LIT301 < 800 and LIT401 > 1000. Besides, it can be observed that the learned
abstract models are reasonably small, i.e., usually with less than 100 states and
many with only a few states. This is welcomed since a smaller model is easier to

Towards ‘Verifying’ a Water Treatment System 87

Table 3. Experiment results.

Plant | Sensor Property | Pirgin | T Piearn | Piest | Result | Model size | € Time
P1 FIT101 >2.6 0.2371 | 0.2845 | 0.2371 | 0.233 | SUC 26 0.01 | 300
<2.5 0.5092 | 0.611 | 0.5092 | 0.5245 | SUC 31 0.01 |298
LIT101 >800 0.1279 | 0.1535 | 0.1271 | 0.1141 | SUC 130 0.01 4
<500 0.1485 | 0.1782 | 0.147 | 0.0977 | SUC 54 0.01 2
P2 AIT201 | >260 0.6044 | 0.7253 | 0.647 |1 SuUC 2 0.01 31
<250 0 - - - - - - -
AIT202 | >9 0 - - - - - - -
<6 0 - - - - - - -
AIT203 | >500 0.0362 | 0.043 | 0.0363 | 0 SUC 2 0.01 27
<420 0.7654 | 0.9185 | 0.7654 | 1 SuUC 2 0.01 32
FIT201 >2.5 0 - - - - - - -
<24 0.2577 | 0.3092 | 0.2567 | 0.2529 | SUC 59 0.01 4
P3 DPIT301 | >30 0 - - - - - - -
<10 0.2006 | 0.2407 | 0.1991 | 0.1799 | SUC 119 0.01 4
FIT301 >2.4 0 - - - - - - -
<2.2 0.2217 | 0.266 | 0.2209 | 0.1756 | SUC 42 0.01 4
LIT301 >1000 0.134 | 0.1608 | 0.135 | 0.1299 | SUC 60 0.01 4
<800 0.0877 | 0.1052 | 0.0876 | 0.0609 | SUC 69 0.01 2
P4 AIT401 | >100 0.7156 | 0.8587 | 1 1 VIO 2 0.002 | 35
<5 0.2844 | 0.3413 | 0 1 SuUC 2 0.01 33
AIT402 | >250 0 - - - - - - -
<150 0 - - - - - - -
FIT401 >2 0 - - - - - - -
<1.5 0.0117 | 0.014 |0 0 SUC 2 0.01 37
LIT401 >1000 0.0035 | 0.0042 | 0.0037 | 0.0034 | SUC 208 0.002 | 455
<800 0.1227 | 0.1472 | 0.123 | 0.079 | SUC 70 0.01 |2
P5 AIT501 | >8 0 — — - - - — -
<6 0 - - - - - - -
AIT502 | >250 0 - — - — — - -
<100 0 - - - - - - -
AIT503 | 300 0 — — — - — — -
<200 0 - - - - - - -
AIT504 | >10 0.9983 | 1 0.9983 | 1 SUC 2 0.001 | 37
<5 0 - - - - - - -
FIT501 >2 0 - - - - - - -
<1 0.011 |0.0132 |0 0 SuUC 3 0.01 38
FIT502 >1.3 0.0356 | 0.0427 | 0.0361 | 0.3241 | SUC 9 0.01 15
<1l.1 0.0117 1 0.014 |0 0 SucC 2 0.01 38
FIT503 >0.9 0 - - - - - - -
<0.7 0.0117 | 0.014 |0 0 SUC 2 0.01 38
FIT504 >0.35 0 - - - - - - -
<0.25 0.0117 | 0.014 |0 0 SUC 2 0.01 38
PIT501 >30 0.989 |1 1 1 VIO 3 0.01 38
<20 0.011 | 0.0132 |0 0 SUC 3 0.01 38
PIT502 >0.2 0.989 |1 1 1 VIO 3 0.01 37
PIT503 >20 0989 |1 1 1 VIO 3 0.01 37
<10 0.011 |0.0132 |0 0 SUC 3 0.01 38

88 J. Wang et al.

comprehend and thus more meaningful for expert review or to be used as a run-
time monitor. An underlying reason (why a small model is able to explain why a
property is satisfied) is perhaps the system is built such that the system modifies
its behavior way before a safety violation is possible. Besides, we identify two
groups of states which are of special interest. One of them are FIT401 < 1.5,
FIT502 < 1.1, FIT503 < 0.7 and FIT504 < 0.25. The 4 properties have the
same probability 0.0117 of safety violation in the training log and 0 in the test-
ing log. We learn the same models for all of them and Pjeqrn equals 0 which
is the same as the testing log. We could observe that these sensors have tight
connections with each other. Moreover, these sensors are good examples that
our learned models generalize from the training data and are able to capture
the long run behaviors of the system with Pjeqrn equals Piegs, which is 0. The
same goes for the other group of properties, i.e., FIT501 < 1, PIT501 < 20 and
PIT503 < 10.

For those properties we reported as safety violations, i.e., AIT401 > 100,
PIT501 > 30, PIT502 > 0.2 and PIT503 > 20, a closer look reveals that
these sensors all have high probability of violation (either 0.7156 or 0.989) in the
training log. Our learned models report that the probability of violation in the
long term is 1, which equals the probability in the testing log in all cases. This
shows that our learned models are precise even though the properties are not
actually satisfied.

Discussions. (1) We give a 20% margin for the safety threshold in the above
experiments. In practice, the actual safety threshold could be derived from the
system reliability requirement. In our experiments, we observe that we could
increase the threshold to obtain a more abstract model and decrease the thresh-
old to obtain a more detailed model. For instance, we would be more likely to
verify a property with a loose threshold. (2) The parameter e in Algorithm 1
effectively controls the size of learned model. A small € used in the model learn-
ing algorithm leads to a learned model with more states by growing a deeper
tree. However, it is sometimes non-trivial to select a good € [33]. In our experi-
ment, we use 0.01 as the basic parameter. If we can not learn a model (the tree
does not grow), we may choose a more strict e. Examples are LIT'401 > 1000
and AIT504 > 10. This suggests one way to improve existing model learning
algorithms. (3) Each sensor has a different collection period and most of them are
changing very slowly, thus the data is not all meaningful to us and we only take
a data point from the dataset every minute to reduce the learning cost. (4) One
possible reason for the safety violation cases is that the system has not exhibited
stationary behaviors within 7 days as the probability of safety violations is 1 in
the testing data for all these cases.

Limitation and Future Work. Model learning will correctly learn an underlying
model in the limit [18,24]. However, since our models are learned from a lim-
ited amount of data from a practical point of view, they are not guaranteed to
converge to the actual underlying models. One of our future work is how to fur-
ther validate and update the learned models from more system logs. In general,

Towards ‘Verifying’ a Water Treatment System 89

it is a challenging and interesting direction to derive a confidence for the learned
model (as a machine learning problem) or the verification results based on the
learned models (as a model checking problem) given specific training data. Or
alternatively, how can we derive a requirement on the training data to achieve a
certain confidence. Some preliminary results on the number of samples required
to achieve an error bound are discussed in [13].

5 Conclusion and Related Work

In this work, we conducted a case study to automatically model and verify a
real-world water treatment system testbed. Given a set of safety properties of
the system, we combine model learning and abstraction refinement to learn a
model which (1) describes how the system would evolve in the long run and
(2) verifies or falsifies the properties. The learned models could also be used for
further investigation or other system analysis tasks such as probabilistic model
checking, simulation or runtime monitoring.

This work is inspired by the recent trend on adopting machine learning to
automatically learn models for model checking. Various kinds of model learning
algorithms have been investigated including continuous-time Markov Chain [25],
DTMC [6,19,31,33,34] and Markov Decision Process [3,18]. In particular, this
case study is closely related to the learning approach called LAR documented
in [32], which combines model learning and abstraction refinement to automat-
ically find a proper level of abstraction to treat the problem of real-typed vari-
ables. Our algorithm is a variant of LAR, which adapts it to the setting of
stationary probabilistic models [6].

This case study aims to formally and automatically analyze a real-world
CPS by modeling and verifying the physical environment probabilistically. There
are several related approaches for this goal. One popular way is to model the
CPS as hybrid automata [11]. In [23], a theorem prover for hybrid systems is
developed. dReach is another tool to verify the d-complete reachability analysis
of hybrid system [9]. Nevertheless, they both require users to manually write a
hybrid model using differential dynamic logic, which is highly non-trivial. In [22],
the authors propose to learn hybrid models from a sample of observations. In
addition, HyChecker borrows the idea of concolic testing to hybrid system based
on a probabilistic abstraction of the hybrid model and achieves faster detection
of counterexamples [15]. SLAR is different as it is fully automatic without relying
on a user-provided model. SMC is another line of work which does not require
a model beforehand [7]. However, it requires sampling the system many times.
This is unrealistic for our setting since shutting down and restarting SWaT yield
significant cost. Besides, SMC does not provide insight on how the system works
but only provides the verification result. Our learned models however can be
used for other system analysis tasks.

Several case studies are related to our case study in some way. In [17], the
authors applied integrated simulation of the physical part and the cyber part to
an intelligent water distribution system. In [8], the authors use model learning

90 J. Wang et al.

to infer models of different software components for TCP implementation and
apply model checking to explore the interaction of different components. In [14],
a case study on self-driving car is conducted for the analysis of parallel scheduling
for CPS. In [21], automata learning is applied in different levels of a smart grid
system to improve the power management. As far as we know, our work is the
first on applying probabilistic model learning for verifying a real-world CPS
probabilistically.

Acknowledgement. The work was supported in part by Singapore NRF Award
No. NRF2014NCR-NCRO001-40, NSFC projects 61772347, 61502308, STFSC project
JCYJ20170302153712968.

References

1. Abeel, T., Van de Peer, Y., Saeys, Y.: Java-ml: a machine learning library. J. Mach.
Learn. Res. 10, 931-934 (2009)

2. Bass, R.F.: Stochastic Processes, vol. 33. Cambridge University Press, Cambridge
(2011)

3. Brézdil, T., et al.: Verification of Markov decision processes using learning algo-
rithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 83837, pp. 98—
114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_8

4. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS,
vol. 862, pp. 139-152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58473-0-144

5. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

6. Chen, Y., et al.: Learning Markov models for stationary system behaviors. In:
Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 216-230.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3_22

7. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1-12. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1_1

8. Fiterau-Brostean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454-471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6_25

9. Gao, S., Kong, S., Chen, W., Clarke, E.: Delta-complete analysis for bounded
reachability of hybrid systems. arXiv preprint arXiv:1404.7171 (2014)

10. Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in
the design of secure water treatment systems. In: Havarneanu, G., Setola, R.,
Nassopoulos, H., Wolthusen, S. (eds.) CRITIS 2016. LNCS, vol. 10242, pp. 88—
99. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71368-7_8

11. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series (Series F: Com-
puter and Systems Sciences), vol. 170, pp. 265-292. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-642-59615-5_13

https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/978-3-642-28891-3_22
https://doi.org/10.1007/978-3-642-24372-1_1
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
http://arxiv.org/abs/1404.7171
https://doi.org/10.1007/978-3-319-71368-7_8
https://doi.org/10.1007/978-3-642-59615-5_13

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

Towards ‘Verifying’ a Water Treatment System 91

Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162-175. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70545-1_16

Jegourel, C.; Sun, J., Dong, J.S.: Sequential schemes for frequentist estimation
of properties in statistical model checking. In: Bertrand, N., Bortolussi, L. (eds.)
QEST 2017. LNCS, vol. 10503, pp. 333-350. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66335-7_23

Kim, J., Kim, H., Lakshmanan, K., Rajkumar, R.R.: Parallel scheduling for cyber-
physical systems: analysis and case study on a self-driving car. In: Proceedings
of the ACM/IEEE 4th International Conference on Cyber-Physical Systems, pp.
31-40. ACM (2013)

Kong, P., Li, Y., Chen, X., Sun, J., Sun, M., Wang, J.: Towards concolic testing for
hybrid systems. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 460-478. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6_28

Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. RV
10, 122-135 (2010)

Lin, J., Sedigh, S., Miller, A.: Towards integrated simulation of cyber-physical sys-
tems: a case study on intelligent water distribution. In: 2009 Eighth IEEE Interna-
tional Conference on Dependable, Autonomic and Secure Computing, DASC 2009,
pp. 690-695. IEEE (2009)

Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learn-
ing Markov decision processes for model checking. arXiv preprint arXiv:1212.3873
(2012)

Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
deterministic probabilistic automata from a model checking perspective. Mach.
Learn. 105(2), 255-299 (2016)

Mathur, A.P., Tippenhauer, N.O.: SWaT: a water treatment testbed for research
and training on ICS security. In: 2016 International Workshop on Cyber-Physical
Systems for Smart Water Networks (CySWater), pp. 31-36. IEEE (2016)

Misra, S., Krishna, P.V., Saritha, V., Obaidat, M.S.: Learning automata as a utility
for power management in smart grids. IEEE Commun. Mag. 51(1), 98-104 (2013)
Niggemann, O., Stein, B., Vodencarevic, A., Maier, A., Biining, H.K.: Learning
behavior models for hybrid timed systems. AAAT 2, 1083-1090 (2012)

Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14509-4

Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning probabilistic
automata with variable memory length. Mach. Learn. 25(2-3), 117-149 (1996)
Sen, K., Viswanathan, M., Agha, G.: Learning continuous time Markov chains from
sample executions. In: Proceedings of the 2004 First International Conference on
the Quantitative Evaluation of Systems, QEST 2004, pp. 146-155. IEEE (2004)
Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box
probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol.
3114, pp. 202-215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27813-9_16

SUTD: Swat dataset website. https://itrust.sutd.edu.sg/dataset/

SUTD: Swat website. http://itrust.sutd.edu.sg/research/testbeds/secure-water-
treatment-swat/

https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-319-66335-7_23
https://doi.org/10.1007/978-3-319-66335-7_23
https://doi.org/10.1007/978-3-319-48989-6_28
https://doi.org/10.1007/978-3-319-48989-6_28
http://arxiv.org/abs/1212.3873
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://itrust.sutd.edu.sg/dataset/
http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/
http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/

92

29.

30.
31.

32.

33.

34.

35.

J. Wang et al.

Wachter, B., Zhang, L., Hermanns, H.: Probabilistic model checking modulo the-
ories. In: Fourth International Conference on the Quantitative Evaluation of Sys-
tems, pp. 129-140. IEEE (2007)

Wang, J.: Zigian website. https://github.com/wang-jingyi/Zigian

Wang, J., Chen, X., Sun, J., Qin, S.: Improving probability estimation through
active probabilistic model learning. In: Duan, Z., Ong, L. (eds.) ICFEM 2017.
LNCS, vol. 10610, pp. 379-395. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68690-5_23

Wang, J., Sun, J., Qin, S.: Verifying complex systems probabilistically through
learning, abstraction and refinement. CoRR, abs/1610.06371 (2016)

Wang, J., Sun, J., Yuan, Q., Pang, J.: Should we learn probabilistic models for
model checking? A new approach and an empirical study. In: Huisman, M., Rubin,
J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 3-21. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54494-5_1

Wang, J., Sun, J., Yuan, Q., Pang, J.: Learning probabilistic models for model
checking: an evolutionary approach and an empirical study. In: Int. J. Softw. Tools
Technol. Transf., 1-16 (2018). https://doi.org/10.1007/s10009-018-0492-7
Younes, H.L.S.: Verification and planning for stochastic processes with asyn-
chronous events. Ph.D. thesis, Carnegie Mellon (2005)

https://github.com/wang-jingyi/Ziqian
https://doi.org/10.1007/978-3-319-68690-5_23
https://doi.org/10.1007/978-3-319-68690-5_23
https://doi.org/10.1007/978-3-662-54494-5_1
https://doi.org/10.1007/s10009-018-0492-7

®

Check for
updates

FSM Inference from Long Traces

Florent Avellaneda™ and Alexandre Petrenko™)

CRIM, Montreal, Canada
{florent.avellaneda,alexandre.petrenko}@crim.ca

Abstract. Inferring a minimal finite state machine (FSM) from a given
set of traces is a fundamental problem in computer science. Although
the problem is known to be NP-complete, it can be solved efficiently
with SAT solvers when the given set of traces is relatively small. On the
other hand, to infer an FSM equivalent to a machine which generates
traces, the set of traces should be sufficiently representative and hence
large. However, the existing SAT-based inference techniques do not scale
well when the length and number of traces increase. In this paper, we
propose a novel approach which processes lengthy traces incrementally.
The experimental results indicate that it scales sufficiently well and time
it takes grows slowly with the size of traces.

Keywords: Machine inference -+ Machine identification + SAT solver

1 Introduction

Occam’s razor is a problem-solving principle attributed to William of Ockham.
Also known as the law of parsimony, this principle states that among competing
hypotheses, the one with the fewest assumptions should be selected. This simple
and natural principle is the base of a lot of work in various areas.

A typical area where this principle is used is the model inference problem.
Model inference is the process of building a model consistent with a given set of
observations. Since there exists generally an infinite number of consistent models,
we choose the simplest following the law of parsimony. When the model to infer
is a finite states machine (FSM), we generally use the number of states as the
unit of measurement for the complexity. So, the inference in this context consists
in finding a minimal FSM consistent with a given set of observation.

Model inference problem has several useful applications such as model-based
testing when a model inferred from traces produced by a system executing tests
is used to assess the test quality, generate additional tests and model check
properties confirmed by the executed tests. The FSM inference from a set of
traces is a very active research domain which can be divided into two categories:
passive learning (learning from examples) [12,13] and active learning (learning
with queries) [4]. In the first category, we have only a set of examples and use
it to infer an FSM consistent with this set. Passive FSM inference problem is
stated by Kella in 1971 [16] as sequential machine identification. In the second

© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 93-109, 2018.
https://doi.org/10.1007/978-3-319-95582-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_6&domain=pdf

94 F. Avellaneda and A. Petrenko

category, we use an oracle to ask queries and infer FSM incrementally. The work
by Walkinshaw et al. [22] has shown how passive inference algorithms can be
used to perform active inference. Based on these results, Smetsers et al. [19]
employ SMT solvers to infer DFAs, Mealy machines and register automata.

This paper belongs to the first category: “Given a sample 7 and n € IN, does
an FSM with n states consistent with 7 exist?”. Bierman and Feldman address
this question [7] by proposing to use a CSP (constraint satisfaction problem)
formulation. Later Gold [13] proves that the problem is NP-complete. More than
20 years later Oliveira and Silva [17] develop an algorithm using generic CSP or
SMT solvers. Then Grinchtein et al. [14] present a SAT formulation which allows
to solve the problem more efficiently, later enhanced by Heule and Verwer [15]
by adding auxiliary variables. The method of Grinchtein et al. is less efficient
than that of Heule and Verwer, but their incremental approach is interesting, as
the time it takes to find a solution grows slowly with the length of a given trace.

It combines the algorithms of Angluin [4] and Biermann and Feldman [7].
As a result, SAT clauses need to be completely rewritten each time new tables
as proposed by Angluin are modified. The approach can hardly scale on lengthy
traces.

The problem of dealing with long traces is that to infer an adequate model
of a component from a set of its execution traces, this set must cover numerous
use cases. Intuitively, the more and longer traces are collected from a component
under observation the higher the confidence that it is sufficiently representative.
Note that in the context of passive inference, we are not controlling the compo-
nent, as opposed to query learning, aka active inference of FSMs. Unfortunately,
multiple lengthy traces pose a problem for the model inference because they
significantly increase the time necessary to build a model.

Differently from the existing approaches, our approach does not use the
Angluin’s tables and builds clauses incrementally, just adding them when a new
trace is considered. This allows to use SAT solvers in an incremental way [9]. In
incremental SAT solving, the solver processes only newly added formulas, as its
state is memorized to accelerate solving.

To process a set of traces incrementally we consider one trace at a time,
generate an FSM and verify that it is consistent with the remaining traces. If it
is not, choose a trace which is not in the FSM, i.e., a counterexample, and use
it to refine the model.

Our incremental inference approach includes in fact two methods for refining
conjectures. One is using a prefix and another a suffix instead of processing the
whole counterexample trace.

The paper is organized as follows. Section2 contains definitions. Section 3
provides an overview of passive inference of an FSM from a set of traces based on
SAT-solving. In Sect.4 we present our incremental inference approach together
with preliminary experimental results. Section 5 briefly reports on our experience
in applying inference in industrial context and Sect. 6 concludes.

FSM Inference from Long Traces 95

2 Definitions

A Finite State Machine (FSM) M is a 5-tuple (S, so, I, O,T'), where S is a finite
set of states with initial state sg; I and O are finite non-empty disjoint sets of
inputs and outputs, respectively; T is a transition relation T C S x I x O x .S,
(s,a,0,8") is a transition.

M is completely specified if for each tuple (s,a) € S x I there exists a tran-
sition (s, a,0,s’) € T, otherwise M is incompletely specified. We use A(s,a) to
denote s" and A(s, a) to denote 0. M is deterministic if for each (s,a) € SxT there
exists at most one transition (s,a,o,s’) € T, otherwise it is nondeterministic.
We consider in this paper only deterministic FSMs.

An ezxecution of M from state s is a sequence of transitions forming a path
from s in the state transition diagram of M. The machine M is strongly con-
nected, if the state transition diagram of M is a strongly connected graph.

A trace of M in state s is a string of input-output pairs which label an
execution from s. Let T'r(s) denote the set of all traces of M in state s and Ty,
denote the set of traces of M in the initial state. Let 7 be a set of traces, we say
that M is consistent with 7 if 7 C Trp;. We also say that M is a conjecture for
7. If all FSMs with fewer states than M are not consistent with 7', then we say
that M is a minimal FSM consistent with 7.

We say that two states s1, s} € S are incompatible, if for every two transitions
(s1,a,0,82),(s],a,0',s5) € T it holds that: 0 # o or s2 and s, are incompatible,
denoted s; 2 s|. If s; and s| are not incompatible, then they are compatible,
denoted s; & 5.

3 Passive Inference

Two types of methods solving the problem of learning an automaton from a set
of sample traces can be distinguished.

One group constitutes heuristic methods derived from the algorithm of Gold
[13] which try to merge states in polynomial time. They are often used in practice
because of their efficiency, however, they provide no guarantee for the optimality,
since there may exist another way of state merging which provides a resulting
machine with a fewer states. Numerous existing heuristic methods allow to infer
Mealy machines [21], Moore machines [11] as well as DFA [18].

Another group includes exact algorithms to determine an FSM model with
a minimal number of states. This is a much more complicated problem, as it is
NP-complete [13], but the minimality may prove to be essential in certain cases.
Among existing algorithms for finding a minimal solution, we could mention the
algorithm of Heule and Verwer [15] which in our opinion, can be considered as
the most efficient currently existing method.

In this paper, we elaborate an approach for the exact FSM inference in an
incremental way. It is SAT-solving based and has the advantage of having a low
sensibility to the length and number of sample traces.

We rely on the SAT encoding of Heule and Verwer, which we overview in this
section, though any other SAT formulation could also be used in our approach.

96 F. Avellaneda and A. Petrenko

3.1 Problem Statement

Given a set of traces 7 generated by an unknown deterministic FSM, we want
to find a minimal FSM M consistent with 7, i.e., 7 C Tryy.

Given 7, let W = (X, z0,1,0,T) be a deterministic acyclic FSM such that
Tryw = 7. Clearly, W is incompletely specified because the FSM is acyclic. To
find an FSM with at most n states consistent with 7 amounts to determine a
partition 7 on the set of states X into compatible states such that the number
of blocks does not exceed n. Clearly, n should be smaller than | X|.

This problem can be cast as a constraint satisfaction problem (CSP) [7]. The
set of states X is represented by integer variables xo, ..., | x|—1, such that

Vo, x; € X ¢ if o 2 o then o; # x5
if da € I: A(z;,a) = AN(zj,a) then (1)
(i = 2;) = (Alwi,a) = Az, a))

Let B ={0,...,n—1} be a set of integers where each integer represents a block of
a partition 7. Assuming that the value of z; isin B for all ¢ € {0, ...,|X| —1}, we
need to find a solution, i.e., an assignment of values of variables in {0, ..., z|x|-1}
such that (1) is satisfied. Each assignment implies a partition of n blocks and
thus an FSM with n states consistent with 7.

3.2 Encoding as a SAT Problem

The previous CSP formulas can be translated to SAT using unary coding
for each integer variable x € X: z is represented by n Boolean variables

Vg0, Vz,1y -5 Vzn—1-
To identify the initial state we have the clause:

V0,0 (2)

It means that the state xg should be in the first block.
For each state z € X, we have the clause:

Vg0 VUg1 V.o VU1 (3)

These clauses mean that each state should be in at least one block.
For each state z and Vi, j € B such that i # j, we have the clauses:

e i \Y _‘Um,j (4)

These clauses mean that each state should be in at most one block.

The clauses (3) and (4) encode the fact that each state should be in exactly
one block.

For every incompatible states z, 2’ € X and Vi € B, we have the clauses:

Wi V Wy (5)

FSM Inference from Long Traces 97

These clauses mean that two incompatible states should not be in the same
block.

For every states z,2’ € X such that A(z,a) = A(a/,a), and Vi,j € B, we
have a Boolean formula (which can be translated trivially into clauses):

(Va,i AVari) = (VA(z,0),5 = VA a),5) (6)

These clauses enforce determinism.

Note that the clauses (5) encode the first line of the CSP constraint (1) and
the clauses (6) encode the second line. An existing SAT solver [5,6,10,20] can
be used to check satisfiability of the obtained formula.

3.3 Auxiliary Variables

Heule and Verwer [15] propose to use auxiliary variables, replacing formula (6)
and add some additional clauses. They provide experimental results which
indicate that their encoding is sufficiently efficient. Namely, for a € I and
0 < 4,5 < n, variable y,; ; is introduced for True value means that for any
state in block 7, the next state reached with input a is in the block j. These
variables are used to form the following clauses.

For each transition (z,a,0,2’) € T and for every i,j € B:

Yaij V "Wz V Vg (7)

This means that blocks ¢ and j are related for input a if state x is in the block
1 and its successor =’ on input a is in the block j.
For each input symbol a € I, for every i, h € B and for each j € {h+1,n—1}:

Waih V "Yayi,j (8)

This means that each block relation can include at most one pair of blocks for
each input to enforce determinism.
For each input symbol a € X and each ¢ € B:

Ya,i,0 VY Yail VooV Yain—1 (9)

This means that each block relation must include at least one pair of blocks for
each input to enforce determinism.
For each transition (z,a,0,2’) € T and for every i,j € B:

“Ya,i,j V Wai V Varj (10)

This means that once blocks i and j are related for input a and state x is in the
block ¢ then its successor ' on input ¢ must be in the block j.

Among these clauses, some are redundant. Nevertheless, their use improves
the performance of FSM inference as work in [15] suggests.

98 F. Avellaneda and A. Petrenko

3.4 Symmetry Breaking

It is possible that for certain formulations of a SAT formula, some assignments
are equivalent, i.e., represent a same solution. In this case, we say that we have
a symmetry. A good practice is to break this symmetry [2,3,8] by adding con-
straints such that different assignments satisfying the formula represent different
solutions.

The above formulation can result in a significant amount of symmetry
because any permutation of the blocks is allowed. This fact has already been
noticed in the literature and the strategy adopted in [1,15] consists in placing
each state in a certain subset to a fixed distinct block. To this end, we can use the
state incompatibility graph which has |X| nodes and two nodes are connected iff
the corresponding states of W are incompatible. Clearly, each state of a clique
(maximal or smaller) must be placed in a distinct block. Hence, we can add to
the SAT formula clauses for assigning initially each state from the clique to a
separate block.

Table 1. Summary for encoding passive inference from ISFSM W = (X, zo,1,0,T)
into SAT. n is the maximal number of states in an FSM to infer, B = {0, ...,n — 1}.

Ref | Clauses Range

(2) | vzg,0

3) | (va,0 VUz1 V..o VUgn_1) zeX

(4) | (7vai V 70a5) TeX;0<i<j<n
(5) | (Vi V g ;) x22';i€B

(7) | Wayiyj V Ve Ve) (z,a,0,2') € T;i,5 € B
(8) | (“Ya,in V "Wa,i) a€l;hyi,j € Bih<j
9) | Wa,io V¥Yayit Ve VYajin-1)|a€l;i€B

(10) | (mYayij V =0z, V vgr) (z,a,0,2') € T;i,5 € B

4 Incremental Inference

To alleviate the complexity associated with large sets containing lengthy traces,
we propose an approach which, instead of attempting to process all the given
traces in the set 7 at once, iteratively infers an FSM from their subset (initially
it is an empty set) and uses active inference to refine it when it is not consistent
with one of the given traces. While active inference usually uses a black box as
an oracle capable of judging whether or not a trace belongs to the model, we
assign the role of an oracle to a set of traces 7. Even if this oracle is restricted
since it cannot generate traces for all possible input sequences, nevertheless,
as we demonstrate, it leads to an efficient approach for passive inference from
execution traces.

FSM Inference from Long Traces 99

The proposed approach is elaborated in two methods performing different
refinements of a conjecture inconsistent with a given set of traces. Refinement
needs to be performed when the shortest prefix w of a trace in 7 which is
not a trace of the conjecture is found. The first type of refinement consists in
adding w to the conjecture’s initial state which is achieved by formulating the
corresponding constraints. We present this method in Sect.4.1. The second type
of refinement consists in adding not w but its shortest suffix w’ which is not a
trace of any state of the conjecture. The suffix w’ is added to some state of the
conjecture which is achieved by formulating the corresponding constraints. This
method is elaborated in Sect. 4.2.

We provide the results of experimental evaluation of the two methods and
discuss them in Sect. 4.3.

4.1 Prefix-Based Method

Let T be a set of traces (generated by a deterministic FSM). We want to find a
minimal FSM consistent with 7 iteratively. To do that, we search for an FSM M
with at most n states satisfying a growing set of constraints (initially we do not
have any constraints). If no solution is found, it means that the state number
n is too low. In this case we increase n and start again. If a solution is found
and M is consistent with 7, then we return this solution. Otherwise, we find the
shortest prefix of a trace w in 7 not accepted by M. Then, we use SAT encoding
described in the previous section to formulate the constraint that w has to be a
trace of the conjecture.
The approach is formalized in Algorithm 1.

Algorithm 1. Infer an FSM from a set of traces
Input: A set of traces 7 and an integer n.
Output: An FSM with at most n states consistent with 7 if it exists.
1: C:=0
2: while C is satisfiable do

Let w be the shortest trace in 7\Try

C = CAC,, where C\, is clauses encoding the fact that w € T'rys using Table 1
9: end while

10: return false

3: Let M be an FSM of a solution of C'
4. if 7 g T?"]u then

5: return M

6: end if

7:

8:

Theorem 1. Given a set of traces T, Algorithm 1 returns an FSM consistent
with T if it exists or false otherwise.

100 F. Avellaneda and A. Petrenko

Proof. If line 5 is reached, then 7 C Trp;. So M is consistent with 7. If line
10 is reached, then C' encoding the fact that all traces of 7 have to be included
in an FSM with at most n states is not satisfiable. So, there is no FSM with
at most n states consistent with 7. The termination is assured because in each
while loop, additional trace of 7 is considered. When all traces are considered
then either there is a solution and 7 C T'rp; terminates the function, or there
is no solution and the while condition is no longer respected.

Corollary 1. Let T be a set of traces. If we call Algorithm 1 incrementally by
increasing n fromn = 1 until an FSM consistent with T is obtained, then it is
a minimal FSM consistent with T .

4.1.1 Example
We illustrate Algorithm1 with a simple example of a small program, see
Algorithm 2.

Let w = ping/pong.pause/pause.ping/pause.ping/pause.pause/pong.pause/pa
use.ping/pause.pause,/pong.ping/pause.ping/pause. pause /pause.ping/pause.ping/
pause.pause/ping.ping/pong.ping/pong... be the only trace in 7 obtained by ran-
dom execution of the program.

Algorithm 2

1: while true do

2: Event msg = receive();
3 if msg == ping then
4 send(pong);

5 end if

6: if msg == pause then
7 send(pause);

8: while receive() # pause do
9: send(pause);

10: end while

11: send(pong);

12: end if

13: end while

Initially, we consider as a conjecture the trivial FSM with the empty trace.
The shortest prefix trace inconsistent with this conjecture is ping/pong, and so,
some clauses are added to ensure that the trace ping/pong is accepted. A new
conjecture is an FSM with a single state having self-looping transition labeled
ping/pong. This time, the shortest prefix inconsistent with this conjecture is
ping/pong.pause/pause. This trace yields new constraints leading to a next con-
jecture with a single state having two self-looping transitions labeled ping/pong
and pause/pause. This conjecture is consistent with the two considered traces

FSM Inference from Long Traces 101

ping/pong and ping/pong.pause/pause but still not with the whole w. The pro-
cess continues while the constraints are satisfiable. All the executed steps are
illustrated in Fig. 1. A trace beneath a conjecture is a prefix used to obtain the
conjecture.

ping/pong ping/pong
— — pause/pause
w = ping/pong ’ w = ping/pong.pause/pause ‘
ping/pong

pause/pause

M

’ w = ping/pong.pause/pause.ping/pause ‘

ping/pong ping/pause

pause/pause

’w = ping/pong.pause/pause.ping/pause.ping/pause ‘

ping/pong ping/pause

pause/pause

’ w = ping/pong.pause/pause.ping/pause.ping/pause.pause/pong ‘

Fig. 1. Inferring an FSM from trace ping/pong.pause/pause.ping/pause.ping/pause.
pause/pong.pause/pause.ping/pause.pause/pong.ping/pong.ping/pong.pause/pause.
ping/pause.ping/pause.pause/pong.ping/pong.ping/pong... with Algorithm 1.

4.1.2 Evaluation
To the best of your knowledge, the approach of Heule and Verwer [15] is currently
the most efficient encoding of the FSM inference into SAT. In this section, we
provide results of experimental comparison of their approach with ours.

We have implemented the encoding of the inference problem to SAT using
the Heule and Verwer’s formulas as described in Table1l. We use H&V and

102 F. Avellaneda and A. Petrenko

Prefix-based to refer to the method of Heule and Verwer and Algorithm 1,
respectively.

The prototype was implemented in C++ calling the SAT solver Cryptomin-
isat [20]. The experiments were carried out on a machine with 8 GB of RAM and
an i7-3537U processor.

We randomly generate FSMs with seven states, two inputs a and b, and two
outputs 0 and 1. Each state s; is linked to the state s;41 mod 8 by a transition with
input a and a random output to ensure that machines are strongly connected.
Then we complete an FSM in a random way. Figure 2 shows an example of such
a construction.

Fig. 2. Example of a random FSM.

Given an FSM, traces of various length are randomly generated. Tables 2 and
3 show time used to infer an FSM from a single trace and 100 traces, respectively.
For each length of traces, we calculate the average time used to infer a machine
over ten instances.

The results in Tables 2 and 3 indicate that the proposed approach performs
much better than that of [15]. Moreover, they show that time used by Algorithm 1
grows very slow when the size of traces increases. This is due to the fact that
the approach of [15] uses all the traces at once for inference while our approach
is incremental and requires a minimal prefix of a single trace among the given
traces in each iteration.

In Tables4 and 5, we show the results obtained when we push our algorithm
to its limits.

FSM Inference from Long Traces 103

Table 2. Seconds to infer an FSM from a trace.

Length | H&V Prefix-based
1k 2.5 0.2
2k 7.3 0.2
4k 20 0.2
8k 53 0.2
16k 190 0.3
32k Out of memory | 0.5
64k Out of memory | 1.5

Table 3. Seconds to infer an FSM from 100 traces.

Length | H&V Prefix-based
100 31 <0.1

200 140 <0.1

400 590 <0.1

1k Out of memory | 0.1

10k Out of memory | 3.8

Table 4. Inferring FSM from a single trace with length 100k by Algorithm 1.

States | Checking 7 C Tras | SAT Solving | Total
5 3.33s 0.003 s 3.46s
6 3.28s 0.02s 3.42s
7 3.28s 0.076 s 3.48s
8 3.27s 0.57s 3.98s
9 3.28s 7.23s 10.7s
10 3.28s 28.6s 32.0s

Table 5. Inferring FSM from a single trace with 10 states by Algorithm 1.

Length | Checking 7 C T'ras | Solving SAT | Total

25k 0.17s 229s 23.2s
50k 0.79s 25.1s 26.0s
75k 1.83s 26.4s 28.3s

100k | 3.28s 28.6s 32.0s

104 F. Avellaneda and A. Petrenko

In Table4, we increase the state number and set the length of generated
traces to 100k. In Table 5, we set the state number to 10 and increase the trace
length generated by this FSM.

We can see that the time (an average of 100 instances) used by the SAT
solver depends on the number of states of the machine to infer, but very little
on the length of the traces used. On the other hand, the time to test the trace
inclusion depends on the length of a trace, but not on the number of states in
the FSM to infer.

It is not surprising that overall time grows rapidly with the number of FSM
states to infer (because the problem remains NP-Complete), on the other hand,
it is interesting to notice that time grows almost linearly with the length of
traces.

4.2 Suffix-Based Method

In the prefix-based method, when a generated conjecture M is inconsistent with
T, we use the shortest prefix of a trace to refine the conjecture. Clearly, the
longer the prefix the more clauses are added to the constraints. This observation
motivates our second method which is using a different refinement.

The idea is that when we find the shortest trace w which is in 7 but not
in M, we determine a suffix w’ of w such that w’ is not a trace of any state of
the conjecture M. Then if we add the constraint that there exists a state s such
that w’ must be accepted by M in state s, thus M is refuted and will be refined.
If a refined conjecture which accepts w’ does not accept the whole w yet then
a longer suffix is considered in the next iteration until w is in Try;. When the
suffix «’ is shorter than w, the number of added clauses can be smaller compared
to the use of w.

Theorem 2. Given a set of traces T, Algorithm 8 returns an FSM consistent
with T if it exists or false otherwise.

Proof. If line 5 is reached, then 7 C Try; and so M is consistent with 7. If line
14 is reached, then all the traces of 7 cannot be represented by an FSM with n
states. The termination is assured because in each while loop, additional suffix
of a trace of 7 is considered. When all suffixes of all traces are considered then
either there is a solution and 7 C T'rps terminates the function, or there is no
solution and the while condition is no longer respected.

Corollary 2. Let T be a set of traces. If we call Algorithm 3 incrementally by
increasing n fromn = 1 until an FSM consistent with T is obtained, then it is
a minimal FSM consistent with T .

4.2.1 Example

We illustrate the suffix-based method with the example from Sect.4.1.1. We
use the same trace w = ping/pong.pause/pause.ping/pause.ping/pause.pause/
pong.pause/pause.ping/pause.pause/pong.ping/pause.ping/pause.pause [pause.

FSM Inference from Long Traces 105

Algorithm 3. Infer an FSM from a set of traces.
Input: A set of traces 7 and an integer n.
Output: An FSM with a most n states consistent with 7 if it exists.
1. C:=0
2: while C' is satisfiable do

3: Let M be an FSM of a solution of C

4: if T g T?“]w then

5: return M

6: end if

7 Let w be the shortest trace in 7\Try

8: if 3w’ the shortest suffix of w such that Vs,w’ ¢ Tr(s) then

9: C := C A C., where C, is clauses encoding the fact that 3s : w’ € Tr(s)
using Table 1 without the first constraint.

10: else

11: C := C A C,, where C,, is clauses encoding the fact that w € Tras using
Table 1.

12: end if

13: end while
14: return false

ping/pause.ping /pause.pause/ping.ping /pong.ping/pong... as the only trace in
T obtained by executing Algorithm 2. Figure 3 shows intermediate conjectures
with the suffixes added to obtain them.

4.2.2 Evaluation

Comparing the execution of the two methods on the same trace in Sects. 4.1.1
and 4.2.1, one can notice that the suffix-based method uses instead of a long trace
with an event making a conjecture inconsistent just its much shorter suffix with
that event. An example of such an event in the trace is ping/pause. Intuitively,
all things being equal, a suffix could be shorter than a prefix when an event
causing inconsistence occurs seldom.

To check this hypothesis, we decided to extend the experiments reported in
the last row of Table2, where a trace of the length 64000 belongs to an FSM
randomly generated as explained in Sect.4.1.2. This time we vary the chances
for input b to appear. Table6 contains the averages of ten instances for each
value of probability.

We can see that when all inputs are equiprobable (Line 1 of the Table6), the
second algorithm is a little slower. On the other hand, time used by the prefix-
closed method grows when an input rarely appears, but it remains constant with
the suffix-closed method, as expected in the hypothesis.

4.3 Discussion

We presented two methods for incremental inference of a minimal FSM con-
sistent with a given set of traces. As could be expected, experimental results

106 F. Avellaneda and A. Petrenko

ping/pong ping/pong ping/pong

pause/pause

M

’w = ping/pong ‘ ’w/ = pause/pause ‘ W' = ping/pause

ping/pong ping/pause ping/pong ping/pause

ause/pause

pause/pause

pause/pause

’ W' = ping/pause ping/pause ‘ ’w’ = pause/pong ‘

Fig. 3. Inferring an FSM from trace ping/pong.pause/pause.ping/pause.
ping/pause.pause/pong.pause/pause.ping/pause.pause/pong.ping/pong.ping/pong.
pause/pause.ping/pause.ping/pause.pause/pong.ping/pong.ping/pong... with
Algorithm 3

Table 6. Seconds to infer an FSM from a trace with different probabilities of input b.

Probability of b | Prefix-based Suffix-based
50% 1.5 2.4
25% 1.4 14
10% 1.4 1.4
1% 3.5 1.4
0.5% 6.0 1.5
0.3% 16 1.4
0.2% 90 1.5
0.1% Out of memory | 1.6

indicate that inference from an incrementally growing subset of traces has a big
advantage compared to the classical inference from all the given traces at once,
as in the method of Heule and Verwer [15] when the traces are rather long and
numerous. The reason for that is the proposed approach avoids as long as possi-
ble to generate constraints from the whole initial traces, and tries to find instead
their appropriate portions, prefixes, as in the prefix-based method or suffixes, as
in the suffix-based method.

Comparing the two proposed methods, we understand that their efficiency
depends on intricate properties of given traces. Preliminary experiments confirm
our hypothesis that rare key events in a trace may create favorable conditions
for the suffix-based method to perform more efficiently than its counterpart, the
prefix-based method.

FSM Inference from Long Traces 107

5 Industrial Case Study

Our industrial partner provided us with logs of a flight simulator expecting us
to produce state machine models of some components involved in the logged
executions of the simulator. Models are considered as an important part of doc-
umentation, especially for legacy components and components from the third
party. They facilitate change impact analysis, regression testing and other tasks
of simulator development and maintenance.

The logs are normally collected while executing flight scenarios defined by
experts and come in the form of time series of at least 12000 steps.

Clearly, using traditional inference methods directly on time series is out of
the question; preprocessing we performed includes their partitioning into smaller
time series caused by inputs and replacing time series which are “close” to others
such that a limited number of time series become outputs in a state machine
model. Vectors of values of input variables present in a log become inputs in the
model. In the processed traces their number reaches a dozen. The inferred FSMs
have up to ten states.

Flight simulator experts consider the resulting models sufficiently adequate
and useful. In this case study log preprocessing turns out to be more challenging
and time consuming than the model inference with the prototype we developed.
The scalability of the whole approach may, however, be an issue for processing
logs resulting from long flight scenarios. The latter need more aggressive prepro-
cessing, e.g., excluding parts where “not much happening”, this would favor our
suffix-based method which looks for turning events.

6 Conclusion

In this paper we considered the problem of inferring a minimal FSM consistent
with a set of long traces. Although this problem has extensively been studied, the
efficiency of the existing methods deteriorates quickly with the size of the given
traces. We proposed in this paper an approach aimed at dealing with long traces.
The need for it comes from the observation that the more and longer traces are
collected from a component under observation, the higher the confidence that
they are sufficiently representative and would yield an adequate model.

Addressing the scalability issue, we proposed an approach which does not
process all the given traces at once, instead it does this incrementally. The idea
of processing a set of traces incrementally is to consider one trace at a time,
generate an FSM and verify that it is consistent with the remaining traces. If it
is not, choose a trace which is not in the FSM, i.e., a counterexample, and use
it to refine the model.

Our incremental inference approach includes in fact two methods for refining
conjectures. One is using a prefix and another a suffix instead of processing
the whole counterexample trace. The approach is SAT-solving based and has
the advantage of having a lower sensibility to the length and number of sample
traces compared to the existing approaches.

108 F. Avellaneda and A. Petrenko

The experimental results indicate that the proposed approach is sufficiently
efficient especially for long traces where some inputs occur rather rarely. We plan
to perform more experiments to find other ways of improving efficiency.

Apknowledgements. This work was partially supported by MESI (Ministere de
I'Economie, Science et Innovation) of Gouvernement du Québec, NSERC of Canada
and CAE.

References

1. Abel, A., Reineke, J.: Memin: SAT-based exact minimization of incompletely spec-
ified mealy machines. In: 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 94-101. IEEE (2015)

2. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT
instances in the presence of symmetry. In: Proceedings of the 39th annual Design
Automation Conference, pp. 731-736. ACM (2002)

3. Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for boolean
satisfiability. IEEE Trans. Comput. 55(5), 549-558 (2006)

4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87-106 (1987)

5. Audemard, G., Simon, L.: The glucose SAT solver (2013)

6. Biere, A.: Picosat essentials. J. Satisfiability Boolean Model. Comput. 4, 75-97
(2008)

7. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput. 100(6), 592-597 (1972)

8. Brown, C.A., Finkelstein, L., Purdom Jr., P.W.: Backtrack searching in the pres-
ence of symmetry. In: Mora, T. (ed.) AAECC 1988. LNCS, vol. 357, pp. 99-110.
Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51083-4_51

9. Eén, N., Soérensson, N.: Temporal induction by incremental SAT solving. Electron.
Notes Theor. Comput. Sci. 89(4), 543-560 (2003)

10. Een, N., Sorensson, N.: MiniSat: a SAT solver with conflict-clause minimization.
In: 8h SAT-5 (2005)

11. Giantamidis, G., Tripakis, S.: Learning moore machines from input-output traces.
In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS,
vol. 9995, pp. 291-309. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48989-6_18

12. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447-474 (1967)

13. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control
37(3), 302-320 (1978)

14. Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automat-
ically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 483—-497. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771_40

15. Heule, M.J.H., Verwer, S.: Software model synthesis using satisfiability solvers.
Empirical Softw. Eng. 18(4), 825-856 (2013)

16. Kella, J.: Sequential machine identification. IEEE Trans. Comput. 100(3), 332-338
(1971)

17. Oliveira, A.L., Silva, J.P.M.: Efficient algorithms for the inference of minimum size
DFAS. Mach. Learn. 44(1), 93-119 (2001)

https://doi.org/10.1007/3-540-51083-4_51
https://doi.org/10.1007/978-3-319-48989-6_18
https://doi.org/10.1007/978-3-319-48989-6_18
https://doi.org/10.1007/11814771_40

18.

19.

20.
21.

22.

FSM Inference from Long Traces 109

Oncina, J., Garcia, P.: Identifying regular languages in polynomial time. Adv.
Struct. Syntactic Pattern Recogn. 5(99-108), 15-20 (1992)

Smetsers, R., Fiterau-Brogtean, P., Vaandrager, F.: Model learning as a satisfiabil-
ity modulo theories problem. In: Klein, S.T., Martin-Vide, C., Shapira, D. (eds.)
LATA 2018. LNCS, vol. 10792, pp. 182-194. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77313-1_14

Soos, M.: Cryptominisat 2.5.0. SAT Race competitive event booklet (2010)
Veelenturf, L.P.J.: Inference of sequential machines from sample computations.
IEEE Trans. Comput. 2(C-27), 167170 (1978)

Walkinshaw, N.; Derrick, J., Guo, Q.: Iterative refinement of reverse-engineered
models by model-based testing. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009.
LNCS, vol. 5850, pp. 305-320. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-05089-3_20

https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-642-05089-3_20
https://doi.org/10.1007/978-3-642-05089-3_20

q

Check for
updates

A Weakness Measure for GR(1) Formulae

Davide Giacomo Cavezza®™), Dalal Alrajeh, and Andrds Gyorgy

Imperial College London, London, UK
{d.cavezzal5,dalal.alrajeh,a.gyorgy}@imperial.ac.uk

Abstract. In spite of the theoretical and algorithmic developments for
system synthesis in recent years, little effort has been dedicated to quan-
tifying the quality of the specifications used for synthesis. When deal-
ing with unrealizable specifications, finding the weakest environment
assumptions that would ensure realizability is typically a desirable prop-
erty; in such context the weakness of the assumptions is a major qual-
ity parameter. The question of whether one assumption is weaker than
another is commonly interpreted using implication or, equivalently, lan-
guage inclusion. However, this interpretation does not provide any fur-
ther insight into the weakness of assumptions when implication does not
hold. To our knowledge, the only measure that is capable of comparing
two formulae in this case is entropy, but even it fails to provide a suf-
ficiently refined notion of weakness in case of GR(1) formulae, a subset
of linear temporal logic formulae which is of particular interest in con-
troller synthesis. In this paper we propose a more refined measure of
weakness based on the Hausdorff dimension, a concept that captures the
notion of size of the omega-language satisfying a linear temporal logic
formula. We identify the conditions under which this measure is guar-
anteed to distinguish between weaker and stronger GR(1) formulae. We
evaluate our proposed weakness measure in the context of computing
GR(1) assumptions refinements.

1 Introduction

Specifications provide significant aid in the formal analysis of software support-
ing tasks such as their verification and implementation. However writing such
specifications is difficult and error-prone, often resulting in their incompleteness,
inconsistency and unrealizability [27]. Hence providing formal and rigorous sup-
port for ensuring their highest quality is of key importance [28]. One crucial
quality metric for specifications, which this paper focuses on, is that of weakness
in the context of reactive synthesis [2,5,15,21].

Reactive synthesis is concerned with finding a system implementation that
satisfies a given specification under all possible environments [36]. When no such
implementation exists, a specification is said to be unrealizable [19]. Though
there may be many reasons for why a specification is unrealizable, a common
cause is an incomplete set of assumptions over the environment behaviour. Sev-
eral techniques [4,5,15,30] have been proposed in order to compute refinements
© Springer International Publishing AG, part of Springer Nature 2018

K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 110-128, 2018.
https://doi.org/10.1007/978-3-319-95582-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_7&domain=pdf

A Weakness Measure for GR(1) Formulae 111

for incomplete assumptions so as to ensure the realizability of a specification.
These approaches consider specifications expressed in a subset of linear temporal
logic (LTL), namely generalized reactivity of rank 1 (GR(1)) [11-13], for which
tractable synthesis methods exist. Their aim is to find the “weakest” assumptions
amongst possible alternatives.

Assumption weakness [39] is a feature intended to capture the degree of
freedom (or permissiveness) an environment satisfying the assumptions has over
its behaviours; generally, weaker assumptions are preferred since they allow for
more general solutions to the synthesis problem [18,39]. Existing approaches
formalize the weakness relation between assumptions through logical implication
[4,39], i.e., a formula ¢, is weaker than a formula ¢ if ¢ — ¢ is valid. However,
this notion does not fully capture the weakness concept as permissiveness [14].
Consider the simple example of a bus arbiter whose environment consists of
three devices that can request for bus access. Let r; be the binary signal meaning
“device 7 requests access”. An assumption like “device 1 requests access infinitely
often” (GFry in LTL) is intuitively less constraining than “device 2 and 3 request
access infinitely often” (GF(ry A r3)). However, since the two assumptions refer
to disjoint subsets of variables, no implication relation holds between the two.

To enable comparison between weakness of specifications as in the case
above, we propose a quantitative measure for the weakness of GR(1) formu-
lae (Sect. 4)—based on their interpretation as an w-language—and a procedure
to compute it. The measure builds upon the notion of Hausdorff dimension [41],
a quantity providing an indication of the size of an w-language: the higher the
dimension, the wider the collection of distinct w-words contained in the w-lan-
guage (Sect. 5). We show that a sufficient condition for assumptions expressed
as invariants to be comparable through our measure is the strong connected-
ness of the underlying w-language (Sect. 5.1). To compare assumptions con-
taining fairness conditions, we identify and measure a language decomposition
based on fairness complements (Sect. 5.2-5.3). We finally demonstrate the use
of our proposed weakness measure on a set of assumptions refinement bench-
marks (Sect. 6). Though we focus on comparing the weakness of assumptions
refinements, the applied scope of our weakness metric can be extended to other
contexts, e.g., quantitative model checking, in the form of a measure of the set
of behaviors violating some given property (see [6]) and specification coverage
as in [8,42].

2 Related Work

The closest notion to our measure is the entropy of w-languages applied by Asarin
et al. [6,7] to quantitative model checking. This quantity measures how diverse
the w-words contained in the language of an LTL formula are. However, it is
not sufficiently fine-grained to distinguish between weaker and stronger fairness
conditions [6]. We will show that our metric based on Hausdorff dimension is
capable of making this distinction.

112 D. G. Cavezza et al.

Quality of LTL formulae has also been defined in the context of model verifi-
cation. The work by Henzinger et al. [25,26] defines a similarity measure between
models of LTL formulae so as to render the model checking output quantitative:
instead of returning a true/false response, quantitative model checking computes
the distance (stability radius) of the model from the boundary of the satisfiabil-
ity region of an LTL property. The scope of our work is different: the measure
we propose can be interpreted as the extension of such a satisfiability region,
which is independent of a specific model to check against.

An alternative way to measure behaviour sets is via probabilities. Probabilis-
tic model checking [24,29] enhances the syntax and semantics of temporal logics
(usually computation tree logic) with probabilities. This allows for the expres-
sions of properties like “the probability of satisfying a temporal logic formula
¢ by the modelled behaviours is at most p.” Further extensions of LTL and/or
automata with preference metrics alternative to probabilities have been proposed
in [3,10,17,18]. The difference between using such quantities and our proposal is
that while all of these measures are additional and depend on arbitrary param-
eters that may not reflect the true weakness of a logical formula, the measure
we propose quantifies a concept of weakness intrinsic to the LTL formula itself.

The problem of identifying weakest assumptions appears in the context of
assume-guarantee reasoning [20, 31, 35] for compositional model checking. In order
to perform model checking of large systems, those systems are generally broken
down to components that can be checked independently for correctness. In this
context, one of the challenges is to identify the most general (weakest) assump-
tions over the environment in which each component operates, such that when
they are satisfied, the correctness of the entire system is guaranteed. Assumptions
are formalized as transition systems (e.g., modal transition systems) rather than
declarative LTL specifications, which is the focus of our work.

3 Preliminaries

Languages and Automata. Let X be a finite set of symbols, which we call
alphabet. A word over X is a finite sequence of symbols in X. An w -word is an
infinite sequence of such symbols. A set of words is called a language, while a set
of w-words is called an w-language. A word w is explicitly denoted as a sequence
of its symbols wyws . .. w,, or with a parenthesis notation (wy,we, ..., w,), with
the symbols separated by commas; the same notation is used for w-words. The
notation w/ denotes the suffix of w starting with w;.

Given two words v and w, their concatenation is denoted as v - w or simply
vw. The same notation is used for the concatenation of a word v and an w-word
w; the concatenation of an w-word and a word is not defined. Given a set V'
of finite-length words and a set W of finite-length words or w-words over the
same alphabet X, the set V - W is the set of words obtained by concatenating a
word in V with a word in W. Kleene’s star operator yields the set V* of finite
words obtained by concatenating an arbitrary number of words in V. The omega
operator applied to V yields the set V* of w-words obtained by concatenating

A Weakness Measure for GR(1) Formulae 113

a (countably) infinite number of words in V. Naturally, X* and X*“ represent,
respectively, the set of all finite words and all w-words over the alphabet X'. The
star and omega operators can also be applied to single finite-length words, like
in w* and w®.

Given an w-language L C X we denote by A, (L) the set of all w € X* such
that w is a prefix of a word in L and |w| = n. We also define A(L) = {J,,cy An (L)
the set of all the prefixes of w-words in L. It is possible to define a topology on
Y. For more details, we refer the reader to [41]. In this context, we only need
the notions of closed w-languages and of their closure. An w-language L is closed
if and only if for any w-word w such that A({w}) C A(L), w € L. In other
words, L is closed if whenever a word w is arbitrarily close (up to a prefix of
arbitrary length) to some word in L, then w € L. The closure of an w-language
L, denoted by C(L), is the smallest closed w-language that contains L.

The notion of regular w-languages encompasses w-languages that allow
a finite representation through automata. Formally, we define a regular
w-language as an w-language which is accepted by a deterministic Muller automa-
ton. A deterministic Muller automaton (DMA) is defined by the quintuple
M = (Q,X,q0,6,T), where @ is a set of states, X is the alphabet of the
w-language, qo is the initial state, 6 : @ x X — @ is the transition (partial)
function and 7' C 2 is a set (a table) of accepting state sets. Given an w-word
w € X%, the run induced by w onto M is a sequence of states M(w) = qoqs - . -
such that qg is the initial state and ¢; = 6(g;—1,w;) Vi € N. Let Inf(w) C Q be
the set of states occurring infinitely many times in M(w). Then an w-word is
said to be accepted by M iff Inf(w) € T. By extension, the w-language accepted
by M is the set of w-words accepted by M.

A deterministic Biichi automaton (DBA) B is defined in the same way as a
DMA except for the acceptance condition, which is stated in terms of a subset of
states F' C . A word w is accepted by B iff Inf(w) N F # &. Given a DBA it is
always possible to obtain an equivalent DMA by replacing the Biichi acceptance
condition with the table T = {Q’' € 29 | Q' N F # @}. In Sect. 6 we also refer
to nondeterministic automata, where the transition function is replaced by a
transition relation and the initial state by a set of initial states.

Linear Temporal Logic and GR(1). Linear temporal logic (LTL) [37] is
an extension of Boolean logic with temporal operators. It allows for expressing
properties of infinite sequences of assignments to a set V of Boolean variables.
Its syntax and semantics are described in the extended version of this paper [16].

In this paper, we deal with a specific subset of LTL, called Generalized Reac-
tivity (1) (GR(1)), which is largely employed in controller synthesis [12]. This
subset makes use of the operators G (“always”), which states that its operand
formula must hold at each step of a valuation sequence, F (“eventually”), which
requires its operand formula to hold at some point in the sequence, and X
(“next”), which states that the operand formula must hold in the state following
the one on which the formula is evaluated.

114 D. G. Cavezza et al.

A GR(1) formula over a set of variables V' has the form ¢ = ¢* — ¢°, where
#% and ¢° are conjunctions of the following units: (¢) an initial condition, which
is a pure Boolean expression over variables in V, denoted by B™®(V); (ii) one
or more invariants, conditions of the form GB™ () U XV), where B () UXV)
denotes a pure Boolean expression over the set of variables in V and the set of
atoms obtained by prepending an X operator to each variable; and (4i7) one or
more fairness conditions of the form GF B/ (V).

The semantics of GR(1), as of LTL, are formalized as w-words over the alpha-
bet ¥ = 2V. The set of w-words that satisfy a formula ¢ is a regular w-language
[43] denoted by L(¢).

4 Problem Statement

In this section, we present an axiomatization of weakness of an LTL formula.
Hereafter, we denote the weakness measure of the LTL formula ¢ as d(¢): the
higher this measure, the weaker ¢ is, i.e., ¢o is weaker than ¢y if d(¢1) < d(2).

In settings such as [2,4,39], an LTL formula ¢o is weaker than ¢; if and
only if ¢1 — ¢ is valid (that is, it is true for any w-word). Semantically, this
translates to language inclusion: namely, ¢o is weaker than ¢ iff L(¢1) C L(¢2).
This gives us the first axiom of weakness.

Axiom 1. Given two LTL formulae ¢1 and ¢, if g1 — ¢2, then d(¢1) < d(¢a).

Notice that this criterion defines a partial ordering of specifications: if none
of the two formulae implies the other, those are incomparable according to this
criterion. However, even for the incomparable case it may be useful to define a
preference criterion.

Consider the simple case of two invariants over V = {a,b, ¢}, 1 = G(aAb) and
¢2 = Ge. Even if the two formulae are incomparable according to implication,
i.e., neither one implies the other, it is clear that ¢; allows in some sense fewer
behaviors than ¢o: at each time step, the former allows for 2 distinct valuations
of V while ¢, allows 4 of them.

Consider the formulae ¢35 = G(a — Xb) and ¢4 = G((a A b) — Xc) instead.
Despite neither implying the other, we note that ¢s3 is more restrictive than
¢4 asymptotically: that is, for a large enough n, the number of finite prefixes
of length n that satisfy ¢3 is less than the number of finite prefixes of length
n satisfying ¢4 (#(L(¢3)) < #(L(¢4))). This can be easily understood if one
considers that ¢3 poses a restriction to the next symbol in an w-word whenever
a is true (which holds in 4 out of 8 possible valuations of V), while ¢4 poses a
similar restriction when a A b holds (in 2 out of the 8 valuations).

This means that weakness of a formula should be formalized, in addition to
Axiom 1, in terms of the number of finite prefixes it allows. Formally:

Axiom 2. Given two LTL formulae ¢1 and ¢o, @2 is said to be weaker than ¢ if
there exists some length i such that, for every n > n, the set of prefixes of length
n in L(¢pa) contains more elements than the set of prefizes of the same length in

L(¢1), i-e., if Vn > n, #(An(L($2))) = #(An(L(¢1))), then d(d1) < d(d2).

A Weakness Measure for GR(1) Formulae 115

The final desirable property is that a weakness measure be at least as dis-
criminating as implication in case one formula strictly implies the other.

Axiom 3. Let ¢1 and ¢o be such that ¢1 — @9 is valid and ¢o — ¢1 is not.
Then d(¢1) < d(¢2).

In the next section, we prove that our proposed weakness measure satisfies
Axioms 1 and 2. We then show that, although our weakness measure is not
guaranteed to satisfy Axiom 3 in general, we are able to guarantee so for a
specific class of formulae.

5 Weakness Measure of GR(1) Formulae

Hausdorff dimension and Hausdorff measure are basic concepts in fractal geom-
etry and represent a way to define measures of extension—that is, analogous con-
cepts to length, area, volume from classical geometry—for fractals [34]. Staiger
[41] pinpointed a homeomorphism between fractals and regular w-languages and
proposed an analogous interpretation of the two quantities as extension measures
of w-languages. Intuitively, given an w-language L, its Hausdorff dimension quan-
tifies the growth rate of the number of distinct n-long prefixes of words in the
language, over the length n of those prefixes. This makes it a good candidate for
quantifying weakness: the less constrained the language is, the more prefixes of
a fixed length are contained in it, implying a higher Hausdorff dimension.

The formal definition of Hausdorff dimension is tightly related to the notion
of Hausdorff measure. The following definitions are given in [40].

Definition 1 (a-dimensional Hausdorff outer measure). Given a regular
w-language L over an alphabet X with cardinality r, and a nonnegative real value
«, the a-dimensional Hausdorff outer measure of L is defined as

me (L) = nh—>Holo Viélg rralkl (1)
"vev

where L, = {VCX*|V-XY DL and [v]| >n for allv € V} is the collection
of languages V' containing finite words of length at least n and such that every
word in L has at least a prefiz in V. O

Definition 2 (Hausdorff dimension and measure). Given an w-language
L, its Hausdorff dimension, denoted by dim (L), is the (unique) value & such
that

me(L) =00 a<a

me(L) =0 a>a

The value maim(ry(L) is called the Hausdorff measure of L. O

116 D. G. Cavezza et al.

In other words, Hausdorff measure is the limit of the process of approximating
the w-language L by a set V' of finite prefixes with length at least n, and weighing
each prefix with a quantity »—®/* that decreases as the prefix length increases.
This limit can be finite and positive for at most one value of the « parameter.
This value is called Hausdorff dimension.

A related concept appearing in the literature is entropy:

Definition 3 (Entropy [34]). Given an w-language L C X over an alphabet
of size r, the entropy of L is H(L) = limsup,,_, %logr #(An(L)) .

It has been proved [34] that the Hausdorff dimension has a close relationship
with the notion of entropy: Specifically, we have dim (L) < H(L) in general, and
dim (L) = H(L) if L is a closed w-language. Details on how entropy is computed
are given in [16].

When L is not closed, the general algorithm presented in [40,41] provides
a more refined intuition of what is actually quantified by Hausdorff dimension,
which distinguishes it from entropy. The algorithm is based on computing a
Muller automaton M, accepting L with set of accepting state sets T,. For each
accepting set S’ € Ty, and for each state s € S, consider the w-language Cgr
consisting of all the infinite paths in M, starting from s and visiting no states
outside S’. It can be shown that this language is closed and its entropy H(Cg)
is independent of the choice of s [40]. The Hausdorff dimension of L is then

dim (L) = &aﬁ H(Cs). (2)

Hausdorff dimension provides an ordering consistent with the weakness

notion defined in Sect. 4. We can interpret it as a measure of the asymptotic

degrees of freedom of an w-language: it quantifies how many different evolutions

are allowed to an w-word once its run remains in an accepting subset of the
Muller automaton. The example below shows how it differs from entropy.

Ezample 1. Consider the LTL formula ¢; = FGa over the variable set V = {a}
whose Muller automaton is shown in Fig. 1. The accepting sets to which a state
belongs are enclosed in curly braces.

Notice that for any w € L(¢1) both valuations of V are allowed until w
reaches the accepting state, and the satisfaction of Ga may be delayed arbitrarily.
Therefore, for any finite n, #(4, (L)) = 2", and thereby H(L(¢$1)) = 1.

In this simple DMA, there is only one accepting singleton {sy}. Therefore,
there is only one Csr = {{a}*} which allows only the symbol {a} € 2V. This
implies #(A,(Cs/)) = 1. The Hausdorff dimension is dim (L(¢1)) = H(Cs:) = 0.

This example demonstrates that the Hausdorff dimension isolates the asymp-
totic behaviour of L(¢1) as it depends only on the condition Ga that is eventually
satisfied by any w-word in the w-language. a

A Weakness Measure for GR(1) Formulae 117

The following theorem shows that Hausdorff dimen-
sion is consistent with implication (hence satisfying
Axiom 1).

Theorem 1. Given two LTL formulae ¢1 and ¢ such
that g1 — @9 is valid, then dim (L(¢1)) < dim (L(¢2)).

Proof. This follows from the language inclusion L(¢;) C Fig. 1. DMA of L(¢1).

L(¢2) and the monotonicity of Hausdorff dimension with
respect to language inclusion [34].

Note that Theorem 1 does not exclude the situation where one formula
strictly implies another, but the two languages have the same Hausdorff dimen-
sion, thus violating Axiom 3. We investigate under which conditions this holds
in the context of GR(1) formulae and provide a refined weakness measure that
bounds the number of cases in which it can happen.

To this end, in what follows, we introduce a new weakness measure for GR(1)
based on Hausdorff dimension. We first analyse the dimension of invariants. We
then show that under the condition of strong connectedness, it is possible to
distinguish between weaker and stronger invariants, in the implication sense
(Sect. 5.1). We show how, under the same condition, this measure fails to cap-
ture the impact of conjoining a fairness condition (Sect. 5.2). To overcome this,
we define a refined weakness measure for GR(1) formulae that comprises two
components: the Hausdorff dimension (¢) of the whole formula and (i7) of the
difference language between the invariant and the fairness conditions (Sect. 5.3).

5.1 Dimension of Invariants

Consider the formula ¢ = GB(V U XV). The w-language L(¢) is closed.
Hence, the Hausdorff dimension of L(¢"™) coincides with its)

entropy H(L(¢"™")) and can be computed as the maximum

eigenvalue of the adjacency matrix of its Biichi automa- »
ton (see [16]). From this equivalence and Definition 3, it -
is easy to see that in this case Hausdorff dimension satis- @ {stop}
fies Axiom 2. In general, Theorem 1 may hold for invariants (stop)
where one is strictly weaker than the other and both have ﬁ@
equal dimensions as demonstrated in the following.

Fig. 2. DBAs of ¢
(top) and ¢& (bot-
tom)

Ezample 2. Consider the variable set V = {stop} and
the formulae ¢{" = Gstop and ¢5* = G(stop — Xstop).
Their Biichi automata are shown in Fig. 2. Clearly ¢ —
¢4 strictly, however the two languages have the same Hausdorff dimension
dim (L((;Szl'm’)) = dim (L(3”“)) =0.

There exists, however, a subclass of invariants for which the dimension is
strictly monotonic with respect to implication. This subclass is characterized
through the concept of strong connectedness of an w-language. Hereafter, given
a word w € A(L), we denote by S,,(L) the w-language formed by the w-words v
such that wv € L (that is, the suffixes allowed in L after reading w).

118 D. G. Cavezza et al.

Definition 4 (Strongly connected w-language [34]). An w-language L is
strongly connected if for every prefic w € A(L) there exists a finite word v € X*
such that Syy(L) = L.

In other words, an w-language is strongly connected if and only if there
exists a strongly connected finite-state automaton which represents it [34], i.e.,
an automaton such that given any pair of states, each of them is reachable from
the other. Using this notion, in the next theorem we provide a sufficient condition
over invariants for Axiom 3 to be satisfied (the proof is relegated to [16]):

Theorem 2. Let ¢i™ = GB1(V UXV) and ¢5 = GB2(V U XV) be two non-
empty invariants such that ¢ — @& is valid, i — ™ is not valid and

@ is strongly connected. Then dim (L(¢{™)) < dim (L(¢5™)).

An interesting kind of invariant that falls in this class
is the one-state invariant, one that does not use the X
operator: ¢ = GB(V) whose DBA is shown in Fig. 3.
(For succinctness, the set of valuations that label a tran-
sition between the same states is denoted by the Boolean Fig.3. DBA of a
expression characterizing it.) In this case, the Hausdorff one-state invariant.
dimension has a closed form:

dim (¢7) = log, #(B(V))

where r = 2#(V) is the number of valuations of V and #(B(V)) is the num-
ber of valuations that satisfy B (V). Invariants of this type are clearly strongly
connected and satisfy Theorem 2.

Remark 1. Typical examples of GR(1) specifications manually produced, like
those of device communication protocols, make use of strongly connected envi-
ronment assumptions. It is indeed natural to allow environments to be reset to
their initial state after some steps. However, when specifications contain “until”
operators or response patterns, the procedure to convert them into GR(1) [33]
may yield assumptions which are no longer strongly connected. In those cases,
a problem similar to that of Example 2 may arise. a

5.2 Fairness and Fairness Complements

Consider the generic fairness condition ¢ " = B()
GFB(V) whose DBA is shown in Fig.4. This lan-)
guage is not closed: take a symbol x € X' that BOY)

does not satisfy B(V) and the w-word z“ consist- @}W‘L

ing of infinite repetitions of this symbol. It is clear
that A({z°}) C A(L($), but 2% ¢ L(p/"). R

We apply the algorithm in Sect. 5 (cf. Eq.2) for _

non-closed languages. A DMA for L(¢/*") can be Fig.4. DBA of L(¢/™)

cfair
obtained from the top DBA in Fig. 4: the accepting Ef)oolaozll)d DMA of L(¢™*)

A Weakness Measure for GR(1) Formulae 119

sets are S = {q1,q2} and S5 = {ga2}. It is easy to see that H(Cs/) = 1 and
H(Cg;) = log, #(B(V)) < 1. Therefore, dim (L(¢/*")) = 1, independently of
B(V). We conclude that fairness conditions are indistinguishable from the true
constant, which also has dimension 1. To allow for a distinction to be made, we
characterize the negation of such formula. We call an LTL formula of the kind
¢ = FG—=B(V) a fairness complement. The DMA of L(¢%/%") is shown in the
bottom of Fig. 4. The only accepting set is S” = {g2}. (Notice that unlike the top
one, this automaton accepts only words that stay forever in ¢o from a certain
step on.) The language Cg/ (see Sect. 5) has an entropy of log,. #(—=B(V)). Hence

dim (L(¢77)) = log, #(~B(V))

where r = 2#0V). Notice that Cg is the language of the formula G-B(V),
which is an “asymptotic” condition of %", As observed previously, Hausdorff
dimension is strictly monotonic for one-state invariants. Therefore, the weakness
of fairness complements can be ranked in terms of the Hausdorff dimension,
allowing to compare fairness conditions as follows:

Theorem 3. Let ¢'"" and ¢pi*" be two fairness conditions such that ¢I*" —

G is valid and i — $I is not. Then dim (L(ﬂ¢]1cai7')) > dim (L(—\(béa")).

In other words, the stronger a fairness formula is, the weaker its complement
and thereby the higher its dimension.

5.3 Dimension Pairs for GR(1) Formulae

Consider a generic GR(1) formula ¢ = ¢™® A ¢ A
Aty (;S{a". We show through an example that even
when ¢ is strongly connected, Hausdorff dimension
may not distinguish between weaker and stronger fair-
ness conditions in the implication sense (as also pointed
out in [6]).

Ezample 3. Consider the two formulae over the vari-
ables V = {a,b}: ¢1 = G(a — Xb) A GFa and ¢o =
G(a — Xb) A GFb. The same invariant appears in both,
and thereby have the same Hausdorff dimension, but
the fairness condition in ¢ is always satisfied when
the fairness condition of ¢, is satisfied, by virtue of the
invariant itself. However, the w-word {b}* satisfies ¢o
but not ¢1. So, ¢ implies ¢2 but not vice versa.

The language of both formulae is not closed. The
Muller automata of ¢ and ¢ are shown at the top Fig.5. DMAs of 6
and bottom, respectively, in Fig. 5. In both automata, (top) and ¢, (bottom) of
there is an accepting set that covers the entire state Example 3.
space (S5 in L(¢1) and S§ in L(¢2). It is possible to

120 D. G. Cavezza et al.

show that the maximum H(Cg/) of Eq. (2) is achieved exactly for these accepting
sets [9,34]. The w-languages Cg; in L(¢1) and Cg; in L(¢2) both coincide with
the language of the invariant alone. Therefore,

dim (¢1) = dim (¢2) = dim (L(G(a — Xb))).

To distinguish between the two formulae, we exploit the fact that the com-
plement of a fairness condition is a formula of the kind FGB(V) which can be
compared through Hausdorff dimension. Therefore, we propose a weakness mea-
sure which consists of two components: one relating to the whole formula and
one measuring the w-language excluded from the invariant by the addition of
the fairness conditions.

Definition 5 (Weakness). The weakness of a GR(1) formula ¢ = (™ A
oA, iy " denoted by d(¢), is the pair (dy(¢), d2(¢)) such that dy(¢) is the

Hausdorff dimension of L(¢); and d2(¢) is the Hausdorff dimension of L(¢¢) =
L(¢™ A G0 AT 6EIT) where ™ =~ The following partial ordering
is defined based on the weakness measure: If d* = (d},d}), with i € 1,2 are
weakness measures for two GR(1) formulae, then d* < d* if di < d? or d} = d?

and d} > d3.

We apply below this weakness measure to the formulae
in Example 3.

Ezample 4. To compute da, let us define ¢ = G(a —
Xb) A FG—a and ¢§ = G(a — Xb) A FG-b. The DMAs
of the resulting languages are shown respectively in Fig. 6.
Each of them has just one accepting singleton, so the com-
putation of the Hausdorff dimension is straightforward:
dim (¢$) = % and dim (¢$) = 0. In summary, since ¢; is
more restrictive than ¢o, the Hausdorff dimension of the
w-language cut out by GFa is higher than the Hausdorff
dimension of the behaviours excluded by GFb.

The following Theorem justifies the use of this dimen-
sion pair for weakness quantification when the formulae
have the same invariant.

{a, 0}

_ inv m air _ inw Fig.6. DMAs of gbf
Theorem 4. Let ¢ = ™ A Nioy ¢13" and d2 = ¢ A (07 1 6s (ot

/\é‘:1 ¢£?;T7 such that ¢1 — ¢o is valid. Then di(¢1) = tom) of Example 4.
di(¢2) and da(p1) > da(¢2)-

Proof. Since ¢y implies ¢2, L(¢1) € L(¢2). Furthermore, for i = 1,2, L(¢;) =
L(#™) 0 L(ATL, ¢]57). Hence, L(6™)\L(AT, 0175') 2 L6 NL(N;—y 957).
ie, L(¢5) 2 L(¢S). Then, by monotonicity, dim(¢$) > dim(¢5), finishing the
proof. O

A Weakness Measure for GR(1) Formulae 121

Therefore, given two formulae with the same invariant, we deem the formula
with lower dy weaker.

Regarding formulae with the same d; and different invariants, we justify
heuristically the same order relation. We first note that the Hausdorff dimension
of a countable union of w-languages, as noted in [41], is

dim <U Li> = supdim (L;) .

This property is known as the countable stability of Hausdorff dimension. This
implies that for any formula ¢, if da(¢) < d1(¢) then

dim (L(¢™")) = dim (L(¢) U L(¢%)) = dim (L(9)) -

So, if for two formulae, ¢1 and @2, we have dy(¢1) = di(p2) > da(d1) > da(g2),
then this can be interpreted as the two invariants having the same dimension
and the fairness condition of ¢; removing more behaviours than the fairness
condition of ¢o. In this sense, ¢o is weaker than ¢;. This justifies intuitively our
weakness definition and the associated partial ordering. In Sect. 6, we illustrate
applications of this order relation for comparing GR(1) assumptions.

The computation of da(¢) for a generic ¢ with m fairness conditions can
be reduced to the case of a single fairness condition. Based on the countable
stability of Hausdorff dimension, we have

d2(¢) = sup d2(¢init/\ qsinv/\d)icfair))

i=1,...,m

Furthermore, the case of a single fairness condition can be further reduced
to computing the Hausdorff dimension of an invariant by the following theorem.

Theorem 5. Given a formula ¢¢ = GB™(V U XV) A FG~B/4"(V) we have

Proof Sketch (full proof is presented in [16]). Since L(¢°) is not closed, the
Hausdorff dimension must be computed from a DMA. The proof (given in [16])
consists in showing that the DMA’s accepting subsets correspond to the automa-
ton of an w-language where both B and —B/%" are satisfied at every step.
This property is a generalization of the observation made in Sect. 5.2 about the
Hausdorff dimension of fairness complements. O

5.4 Initial Conditions

Consider ¢™* = B(V). An expression of this form constrains only the first
symbol of the w-words in L(¢™"). For the same reason as ¢/*" in Sect. 5.2,
L(¢™%) is closed, and therefore its dimension can be computed via its entropy.
By applying the definition of entropy, it is easy to see that, similarly to the
unconstrained language L(true), dim (L(¢™")) =1.

122 D. G. Cavezza et al.

Consider now a formula ¢ = ¢ A ¢"*¥. A DBA B for L(¢) can be computed
from a DBA By, of L(¢™") by removing all transitions starting from its initial
state whose labels do not satisfy B(V). The resulting automaton may leave out
parts of B;,, that are no longer reachable from the initial state. This does not
happen if L(¢™") is strongly connected, as in that case any non-initial state in
Biny is reachable from any other state. In this case

dim (¢) = dim (¢™) .

This implies that the initial conditions do not affect the Hausdorff dimension
and hence cannot be always ordered by our weakness measure. This is accept-
able since typically, in applications like assumptions refinement, the focus is in
assessing invariants or fairness conditions rather than initial conditions [30].

6 Evaluation

We evaluate here our proposed weakness measure through applications to bench-
marks within the assumptions refinement domain, demonstrating its usefulness
in distinguishing weakness of different formulae, and discussing the computation
time bottlenecks. In [16] we report on our evaluation within another application
domain, namely quantitative model checking.

To this aim, we implemented the weakness measure computation for GR(1)
specifications in Python 2.7 and made it publicly available in [1]. Our imple-
mentation makes use of the Spot tool [22] for LTL-to-automata conversion.
We integrated the weakness computation algorithm within two state-of-the-art
counterstrategy-guided assumptions refinement approaches [4,15] (the imple-
mentations are available in [1]). The outcome of such approaches is a refinement
tree, a tree structure where each node is associated with a GR(1) formula con-
sisting of a conjunction of environment assumptions; if we denote by ¢ a formula
associated with a node, the node’s children are of the form ¢ A ¢, where 1 is
a single initial condition, invariant, or fairness condition. Since the goal of such
procedures is identifying weakest formulae that describe an environment, our
weakness measure can be used to provide a preference ranking of the tree nodes.

We conducted experiments on two benchmarks for GR(1) assumptions refine-
ment, namely the specifications of a lift controller and of the AMBA-AHB pro-
tocol for device communications in its versions for two, four and eight master
devices [4,12,30]. The lift controller example specifies a controller for a lift with
three floors: the Boolean variable b; denotes the state of the button on floor 4;
the Boolean variable f; is true iff the lift is at floor ¢. For more details on the
initial assumptions ¢ see [4]. The AMBA-AHB protocol provides signals for
requesting access to a bus (hbusreg;), for granting access (hgrant,), for signalling
the termination of a communication (hready), and for identifying the current
owner of the bus (hmaster). Other signals are detailed in [12]. To our knowledge,
the AMBAOS specification is one of the biggest benchmarks available in the field.

A Weakness Measure for GR(1) Formulae 123

In the followings we focus on examples taken from [4,15], and discuss three
cases highlighting features of our weakness measure: (i) in the first example, we
demonstrate the relationship between weakness and implication; (i¢) second, we
consider cases when two formulae are not comparable by implication but can be
ranked with our measure; and (ii7) we discuss the case of formulae equally con-
straining the environment, which have equal ranking according to our measure.
We refer the reader to [1] for the complete results.

Relation Between Weakness and Implication. Consider the lift controller
example. Two refinements computed by the automated approach in [15] are:
¢1 = G(("bl A _|b2 A _|b3) — X(b1 V bg \Y bj)), and (]52 = GF(bl V bz V b&) The
first forces one of the buttons to be pressed at least every second step in a
behaviour. The second forces one of the buttons to be pressed infinitely often
in a behaviour. It is clear that ¢; implies ¢o. We compare the assumptions
obtained by refining the original assumptions with the first one and with the
second one: d(¢f A ¢1) = (0.7746,0) and d(¢ A ¢2) = (0.7925,0.5). Notice that
d1(¢€ A1) < di (6 A ¢2) and this is consistent with the fact that ¢ is stronger
than ¢o. Consider now the two fairness refinements: ¢ = GF(b; V b2 V b3); and
¢3 = GFb;. We have d(¢€ A ¢o) = (0.7925,0.5) and d(¢° A ¢3) = (0.7925,0.695).
Here, d; is equal for both formulae and da(¢° A ¢2) < do(¢€ A ¢3); this is
consistent with the fact that ¢o is weaker than ¢3.

Formulae Incomparable via Implication. Consider ¢3 above and
¢4 = GF(by V b3). Neither implies the other. However, it is reasonable to
argue that ¢4 is less restrictive than ¢3: while ¢3 constrains exactly one but-
ton to be pressed infinitely often, ¢4 allows the extra choice of which one (out
of two). This intuition is indeed reflected by our computed weakness metric:
d(¢f A ¢3) = (0.7925,0.695) and d(¢° A ¢4) = (0.7925,0.5975). This expresses
the notion that ¢4 removes less behaviours from ¢¢ than ¢s.

Our weakness measure can help in spotting asymmetries between assump-
tions that are syntactically equal but constrain semantically different variables.
Consider an extended version of the lift controller example given in [16], includ-
ing the input variable alarm and the output variable stop: whenever alarm is set
to high, the lift enters a stop state where it does not move from the floor it is at.
Computing the weakness of the two refinements ¢5 = G—b, and ¢g = G—alarm
yields d(¢f A ¢S A ¢s) = (0.3694, 0.3207) and d(¢€ A ¢S A dg) = (0.3746,0.3346).
This is consistent with the intuition that the former assumption excludes a part
of the desirable system behaviors (all the ones that allow it to reach floor 1), while
the latter excludes only the traces ending in the stop state, being then a weaker
restriction on the combined behaviors of the controller and the environment.

The following two assumptions refinements are computed for the AMBA-
AHB case study with two masters: 1)1 = G(—hbusreq, V X(hready V —hbusreq,));
and vy = G((—hgrant; A hready A hbusreq,) — X(—hready V —hbusreq,)). As in
the case of the lift example, neither formula implies the other. The weakness of
the resulting assumptions is: d(¢€ A1) = (0.9503,0.9068) and d(v¢ A 1hs) =
(0.9607,0.9172). The refinement 5 is weaker than ;. Such insight into their
weakness could be used to guide the refinement approach (e.g., [4,15]) in choosing

124 D. G. Cavezza et al.

to only refine those assumptions that may lead to weaker specifications, for
instance further refining 1, rather than ;.

Consistency Between Equally Constraining Formulae. Let us consider
the AMBA-AHB protocol with eight masters and the two alternative refine-
ments: 0; = GF(hmasterg V —~hbusreq,); and 02 = GF(hmaster; V —~hbusreq,).
Clearly the two alternatives express the same kind of constraint on different
masters. Since the two masters do not have priorities over each other, expect-
edly the two refinements have the same weakness: d(6° A 6;) = d(0¢ A 0y) =
(0.9396,0.9214).

Performance. In order to compare the discriminative power of the weakness
measure and implication, we perform an experiment where every pair of refine-
ments from the trees in [15] is compared via both methods. An implication check
for the pair of formulae ¢ and ¢ is performed by computing the nondetermin-
istic transition-based generalized Biichi automata (TGBA) [32] of the formulae
@1 A =2 and ¢a A —¢1, and checking whether any of them is empty [38].

We compare the proportion of formulae pairs that have different weakness
measure (and thereby can be discriminated via our proposed metric) and the pro-
portion of formulae pairs where one formula strictly implies the other (that can
be discriminated via logical implication). Table 1 shows the results: the columns
show the total number of nodes in the refinement tree (#Nodes), the corre-
sponding number of pairs (#Pairs), the percentage of pairs that can be dis-
criminated via implication (%Impl) and via weakness (%Weak). The table
shows that, despite weakness does not capture implication in all cases, it still
allows for the discrimination of a larger set of assumptions, by virtue of Axiom 2.

Table 1. Discriminative power of implication and weakness

Case study | #Nodes (k) | #Pairs | %Impl | % Weak
AMBAO02 9 36 63.9 88.9
AMBAO04 |17 136 69.1 79.4

The time taken to compute the
weakness measure for each refine-
ment (computed via the approach 50
in [15]) was consistently less than — =
1min for the lift controller, AMBAOQ2,

0 Total time
and AMBAO4 case studies. The time 200 " Goneraan o
needed on a representative subset of 10 I
‘R
29 30 31 32 33 34

Time (s)

refinements from the AMBAO8 exam-
ple is shown in Fig.7 as a function of
the number of GR(1) conjuncts in the
assumptions. The subset comprises a Fig. 7. Execution time of weakness com-
path from the root of the refinement putation for AMBAOS

0

Number of GR(1) conjuncts in assumptions

A Weakness Measure for GR(1) Formulae 125

tree (initial assumptions) to one of the
80 leaves. We observed that 79 of the 80 leaves showed similar performance as
the one reported in figure; one of them, instead, took around 5200s. Notice that
over 99% of the time is spent on DMA computation, and the remaining time is
employed on eigenvalue computation.

In general implication checks require an O(k?) number of automata compu-
tations. On the other hand, for a set of formulae containing at most m fairness
conditions, our weakness measure requires m + 1 DMA computations, yielding
O(mk) automata for comparing k formulae. In this respect, the advantage of
our weakness measure resides in the reduced number of DMA computations
with respect to implication.

The price to pay lies in the complexity of the needed automata: while weak-
ness requires deterministic automata, implication can be checked via nonde-
terministic ones, which are typically faster to compute [23]. However, in the
AMBAOS8 case we observed that the quadratic growth of implication checks pre-
vailed over the lesser complexity of nondeterministic automata: the value of k
for this case study is 158; while computing all weakness values for the refinement
tree required a total time of 15 hours, in the same amount of time only a small
fraction of the 12,403 formulae pairs could be checked for implication.

7 Conclusion

In this paper we proposed a new measure for assessing the weakness of GR(1) for-
mulae quantitatively and demonstrated its application in the context of weakest
assumptions refinement for GR(1) controller synthesis. We showed that strong
connectedness of invariants is a sufficient requirement to guarantee that our
measure distinguishes between stronger and weaker formulae in the implication
sense. We introduced a component to the measure which allows one to com-
pare formulae with the same dimension based on the weakness of their fairness
conditions. The major limitation of the approach is the need for deterministic
automata to be produced, which induces high computation time because of the
determinization process [23].

As part of our future work, we plan to explore the possibility of refining the
weakness relation by including Hausdorff measure in the definition, since Haus-
dorff measure can distinguish between stronger and weaker w-languages in case
they are not strongly connected [34]. We also intend to investigate algorithms for
computing—or approximating at a controlled accuracy—Hausdorff dimension on
nondeterministic automata.

Acknowledgments. The support of the EPSRC HiPEDS Centre for Doctoral Train-
ing (EP/L016796/1) is gratefully acknowledged. We also thank our reviewers for their
insightful comments and suggestions.

126

D. G. Cavezza et al.

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

https://gitlab.doc.ic.ac.uk/dgcl14/Weakest Assumptions

Albarghouthi, A., Dillig, I., Gurfinkel, A.: Maximal specification synthesis. ACM
SIGPLAN Notices 51(1), 789-801 (2016)

Almagor, S., Avni, G., Kupferman, O.: Automatic generation of quality specifica-
tions. In: Sharygina, N.; Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 479-494.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_32

Alur, R., Moarref, S., Topcu, U.: Counter-strategy guided refinement of GR(1)
temporal logic specifications. In: Formal Methods in Computer-Aided Design, pp.
26-33 (2013)

Alur, R., Moarref, S., Topcu, U.: Pattern-based refinement of assume-guarantee
specifications in reactive synthesis. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 501-516. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0-49

Asarin, E., Blockelet, M., Degorre, A.: Entropy model checking. In: 12th Workshop
on Quantitative Aspects of Programming Languages - Joint with European Joint
Conference On Theory and Practice of Software (2014)

Asarin, E., Blockelet, M., Degorre, A., Dima, C., Mu, C.: Asymptotic behaviour
in temporal logic. In: Joint Meeting CSL/LICS, pp. 1-9. ACM Press (2014)
Barnat, J., Bauch, P., Bene§, N., Brim, L., Beran, J., Kratochvila, T.: Analysing
sanity of requirements for avionics systems. Form. Asp. Comput. 28(1), 45-63
(2016)

Berman, A., Plemmons, R.: Nonnegative Matrices in the Mathematical Sciences.
Society for Industrial and Applied Mathematics (1994)

Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140-156. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4_14

Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: hardware from PSL. Electron. Notes Theor. Comput. Sci.
190(4), 3-16 (2007)

Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911-938 (2012)

Braberman, V., D’Ippolito, N., Piterman, N., Sykes, D., Uchitel, S.: Controller
synthesis: from modelling to enactment. In: International Conference on Software
Engineering, pp. 1347-1350. IEEE (2013)

Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer,
New York (2008)

Cavezza, D.G., Alrajeh, D.: Interpolation-based GR(1) assumptions refinement.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 281-297.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_16
Cavezza, D.G., Alrajeh, D., Gyorgy, A.: A weakness measure for GR(1) formulae.
CoRR abs/1805.03151 (2018). http://arxiv.org/abs/1805.03151

Chatterjee, K., De Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R.,
Stoelinga, M.: Compositional quantitative reasoning. In: International Conference
on the Quantitative Evaluation of Systems, pp. 179-188 (2006)

Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for
synthesis. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol.
5201, pp. 147-161. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85361-9_14

https://gitlab.doc.ic.ac.uk/dgc14/WeakestAssumptions
https://doi.org/10.1007/978-3-642-39799-8_32
https://doi.org/10.1007/978-3-662-46681-0_49
https://doi.org/10.1007/978-3-662-46681-0_49
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-662-54577-5_16
http://arxiv.org/abs/1805.03151
https://doi.org/10.1007/978-3-540-85361-9_14
https://doi.org/10.1007/978-3-540-85361-9_14

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

A Weakness Measure for GR(1) Formulae 127

Cimatti, A., Roveri, M., Schuppan, V., Tchaltsev, A.: Diagnostic information for
realizability. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS,
vol. 4905, pp. 52—67. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78163-9_9

Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331-346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X_24

D’Ippolito, N., Braberman, V., Sykes, D., Uchitel, S.: Robust degradation and
enhancement of robot mission behaviour in unpredictable environments. In: Pro-
ceedings of the 1st International Workshop on Control Theory for Software Engi-
neering, pp. 26-33 (2015)

Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 — a framework for LTL and w-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122-129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8

Esparza, J., Kfetinsky, J., Sickert, S.: From LTL to deterministic automata. Formal
Methods Syst. Des. 49(3), 219-271 (2016)

Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512-535 (1994)

Henzinger, T.: From Boolean to quantitative notions of correctness. ACM SIG-
PLAN Notices 45(1), 157 (2010)

Henzinger, T.A., Otop, J.: From model checking to model measuring. In:
D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 273—
287. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8_20
Konighofer, R., Hofferek, G., Bloem, R.: Debugging formal specifications using
simple counterstrategies. In: Formal Methods in Computer-Aided Design, pp. 152—
159 (2009)

Kupferman, O.: Recent challenges and ideas in temporal synthesis. In: Bielikov4,
M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turdn, G. (eds.) SOFSEM 2012.
LNCS, vol. 7147, pp. 88-98. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-27660-6_8

Kwiatkowska, M.: Quantitative verification: models, techniques and tools. In: Joint
Meeting on Foundations of Software Engineering - ESEC/FSE 2015, p. 449. ACM
Press (2007)

Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: Interna-
tional Conference on Formal Methods and Models for Codesign, pp. 43-50 (2011)
Lomuscio, A., Strulo, B., Walker, N., Wu, P.: Assume-guarantee reasoning with
local specifications. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol.
6447, pp. 204-219. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16901-4_15

Lutz, A.D.: LTL translation improvements in Spot 1.0. Int. J. Crit. Comput.-Based
Syst. 5(1/2), 31 (2014)

Maoz, S., Ringert, J.O.: GR(1) synthesis for LTL specification patterns. In: Joint
Meeting on Foundations of Software Engineering - ESEC/FSE 2015, pp. 96-106.
ACM Press (2015)

Merzenich, W., Staiger, L.: Fractals, dimension, and formal languages. Informa-
tique théorique et applications 28(3-4), 361-386 (1994)

https://doi.org/10.1007/978-3-540-78163-9_9
https://doi.org/10.1007/978-3-540-78163-9_9
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-642-40184-8_20
https://doi.org/10.1007/978-3-642-27660-6_8
https://doi.org/10.1007/978-3-642-27660-6_8
https://doi.org/10.1007/978-3-642-16901-4_15
https://doi.org/10.1007/978-3-642-16901-4_15

128

35.

36.

37.

38.

39.

40.

41.

42.

43.

D. G. Cavezza et al.

Nam, W., Alur, R.: Learning-based symbolic assume-guarantee reasoning with
automatic decomposition. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS,
vol. 4218, pp. 170-185. Springer, Heidelberg (2006). https://doi.org/10.1007/
1190191415

Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Principles of
Programming Languages, pp. 179-190 (1989)

Pnueli, A.: The temporal logic of programs. In: Annual Symposium on Foundations
of Computer Science, pp. 46-57 (1977)

Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Three SCC-based empti-
ness checks for generalized Biichi automata. In: International Conference on Logic
for Programming Artificial Intelligence and Reasoning (LPAR), pp. 668-682 (2013)
Seshia, S.A.: Combining induction, deduction, and structure for verification and
synthesis. IEEE 103(11), 2036-2051 (2015)

Staiger, L.: The hausdorff measure of regular w-languages is computable. Martin-
Luther-Universitdt, Technical report, August 1998

Staiger, L.: On the Hausdorff measure of regular omega-languages in Cantor space.
Technical report 1, Martin-Luther-Universitat Halle-Wittenberg (2015)

Tan, L., Sokolsky, O., Lee, I.: Specification-based testing with linear temporal logic.
In: Proceedings of the IEEE International Conference on Information Reuse and
Integration, pp. 493-498 (2004)

Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238-266.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6_6

https://doi.org/10.1007/11901914_15
https://doi.org/10.1007/11901914_15
https://doi.org/10.1007/3-540-60915-6_6

®

Check for
updates

Producing Explanations for Rich Logics

Simon Busard®™) and Charles Pecheur

Université catholique de Louvain, Louvain-la-Neuve, Belgium
{simon.busard, charles.pecheur}@uclouvain.be

Abstract. One of the claimed advantages of model checking is its
capability to provide a counter-example explaining why a property
is violated by a given system. Nevertheless, branching logics such as
Computation Tree Logic and its extensions have complex branching
counter-examples, and standard model checkers such as NuSMV do not
produce complete counter-examples—that is, counter-examples provid-
ing all information needed to understand the verification outcome—and
are limited to single executions. Many branching logics can be translated
into the p-calculus. To solve this problem of producing complete and
complex counter-examples for branching logics, we propose a p-calculus-
based framework with rich explanations. It integrates a p-calculus model
checker that produces complete explanations, and several functionalities
to translate them back to the original logic. In addition to the frame-
work itself, we describe its implementation in Python and illustrate its
applicability with Alternating Temporal Logic.

1 Introduction

Model checking is a verification technique that performs an exhaustive search
among the behaviors of a system to determine if it satisfies a given property, usu-
ally expressed in a logic [2,10]. Branching logics, such as CTL, express properties
about the branching structure of the system [12]. Many extensions of CTL have
been proposed to take into account other aspects of the verified systems, such as
knowledge—with CTLK [28]—, or strategic abilities—with ATL [1]. Such logics
can be translated into the propositional p-calculus, a logic based on fixpoint and
modal operators [22].

Producing an explanation of the verification outcome is one of the claimed
advantages of model checking. But, in the case of branching logics, the explana-
tions can be very rich as, in general, branching logics need branching counter-
examples [3]. They have to show different branches of the execution tree of the
system to fully explain the truth value of the property. However, current state-
of-the-art tools such as NuSMV only produce single executions of the model
when explaining why a property is violated [9].

The goal of this paper is to propose techniques and tools to generate, visualize
and manipulate explanations for p-calculus-based logics such as CTL, CTLK and
ATL. Let us suppose that someone—the designer—uses some logic—the top-level
logic—to express and verify facts about some system, and wants to develop a

© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 129-146, 2018.
https://doi.org/10.1007/978-3-319-95582-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_8&domain=pdf

130 S. Busard and C. Pecheur

model checker for it. She can either develop the tool from scratch, or she can
translate the models and formulas into another logic—the base logic—and use
existing tools to solve the model-checking problem.

Many logics can be translated into the p-calculus, making it a good candidate
for a base logic. Nevertheless, when translating her model-checking problem into
p-calculus, the designer has no help to facilitate this translation, in particular,
the counter-examples returned by the model checker (if any) are expressed in
terms of p-calculus primitives instead of top-level logic ones. To overcome this
limitation and to help designers to quickly develop a model checker with rich
counter-examples, this paper proposes a p-calculus-based framework with rich
explanations. The framework provides a p-calculus model checker that generates
rich explanations and functionalities to define how top-level logic formulas are
translated into p-calculus, to control how the p-calculus explanations are gen-
erated, and to translate p-calculus explanations into top-level logic ones. These
functionalities are the following:

1. Formula aliases link the formulas stored in the obligations to the top-level
logic formulas they represent.

2. The relational graph algebra of Dong et al. [15] is provided to transform
explanations into the part of the original model they represent.

3. Obligation and edge attributors add information to individual nodes and edges
of the explanation graph.

4. Local translation focuses on the small part that explains a given alias without
having to deal with the whole graph at once.

5. Choosers can be used to perform interactive or guided generation of expla-
nations. They also introduce the notion of partial explanations.

6. Formula markers are tags on formulas. Points of interest and points of deci-
sion are provided, but other markers can be defined by the designer.

All these functionalities work together to help the designer to produce useful
explanations. Figure 1 illustrates the structure of the framework.

aliases

formula
translation

model
translation

explanation
translation

markers

relational graph algebra

p-calculus
formula local translators
enriched
p-calculus model
p-calculus
model checker .
explanation

attributors choosers

Fig. 1. The structure of the framework. In gray, the parts that the designer has to
define; in white, the elements provided by the framework.

Producing Explanations for Rich Logics 131

The designer first translates the original model and formula into p-calculus.
She can decorate the translated formulas with aliases and markers, and she can
also attach attributors, local translators and choosers. The aliases and markers
will be present in the obligations in the generated enriched p-calculus expla-
nation to help the designer with their translation. The attributors and local
translators are used by the model checker to add extra information to the gen-
erated explanations. The choosers allow the model checker to make the right
choices. Finally, the designer translates the enriched explanation back into the
top-level logic language thanks to the relational graph algebra.

The features are generic and complement each other: (1) the relational alge-
bra, attributors and local translators manipulate the explanation at different
scales; (2) points of decision and choosers work together to produce smaller par-
tial strategies and to select the explanations of interest; (3) points of interest
and aliases add information to important formulas.

The remainder of this paper is structured as follows: Sect.2 presents the
propositional p-calculus. Section 3 describes the framework for p-calculus-based
logics explanations, and Sect. 4 its implementation in Python. Section 5 applies
the framework to the case of ATL model checking. Section 6 briefly compares
the framework with related work, and Sect.7 draws conclusions.

2 The Propositional p-Calculus

The p-calculus is a logic based on fixpoints [22]. Its formulas follow the grammar

¢u=true|plv]—=¢|oVo[Oid|pv. ¢

where p € AP are atomic propositions and v € Var are variables. For instance,
O, ¢ means that there exists a successor through the transition relation i that
satisfies ¢, that is, a state satisfying ¢ can be reached in one step through the
transition relation 1.

We write £,, for the set of p-calculus formulas. Other operators can be defined
in terms of the ones above, such as 0; ¢ = = O; —¢ and vv. ¢ = —pv. —~P(—w).

A variable v is bound in ¢ if it is enclosed in a sub-formula pv. ¥ or vv. ;
otherwise, it is free. We sometimes note pv. ¥ (v), vv. ¢ (v), and ¥ (v) to stress
the fact that 1 contains free occurrences of variable v. We write 9[x/v]—or
equivalently ¥ (x) when v is clear from the context—for the p-calculus formula
1) where every free occurrence of v is replaced by x. We write 1*(x) for k nestings
of 1 around , that is, 1:%(x) = y and ¥+1(x) = B(¥F(x)).

Any formula pv. ¥ or vv. ¥, must be syntactically monotone, that is, all
occurrences of v in ¢ must fall under an even number of negations. A formula
is in positive normal form if negations are only applied to atomic propositions
and variables. Any syntactically monotone formula can be transformed into an
equivalent syntactically monotone formula in positive normal form.

p-calculus models are Kripke structures S = (Q,{R; | ¢ € X}, V) where
(1) @Q is a finite set of states; (2) R; C Q x @ are |X| transition relations;

132 S. Busard and C. Pecheur

/

(3) V : Q — 247 labels the states with atomic propositions. We write ¢ —; ¢
for (¢,q’) € R;.

p-calculus formulas are interpreted as sets of states under a given environ-
ment. An environment is a function e : Var — 29 associating sets of states to
variables. The set of environments is noted £. We write e[Q’/v], for Q' C @ and
v € Var, for the function e’ such that €’(v) = Q' and €’ agrees with e for all other
variables. The semantics of formulas is given by the function [¢]°e. It takes a
formula ¢ and an environment e defined at least for the free variables of ¢, and
returns the corresponding set of states. This function is defined as:

[true]¥e = Q, [6]e = Q\[¢] e,
[v]®e = e(v), [oVy]oe = [¢]%eU [¢]%,
[Plfe={qe€Q|peV(g}, [mv. ¢]%e={Q CQ|[s]€[Q/v] € Q'}.

[0igl%e={qa€Q|3d €Qst.q—qd N € [d]%},

3 A p-Calculus-Based Framework for Rich Explanations

This section presents the p-calculus-based framework we propose. To illustrate
the concepts, we will use the case of ATL model checking, presented in Sect. 3.1.
Section 3.2 describes p-calculus explanations, and Sect. 3.3 presents the function-
alities to translate these explanations back to the original logic.

3.1 Translation of ATL Models and Formulas to p-calculus

ATL formulas are built with atomic propositions and Boolean connectives, as
well as coalition modalities ()) and [] reasoning about the strategies of groups of
agents to enforce temporal objectives specified with the standard X, F, G and
U temporal operators [1]. For instance, the formula {(I"')F p expresses the fact
that agents I' have a strategy to reach, within a finite number of steps, some
goal p, and [I"'] G ¢ that they have no strategy to maintain some other goal
q forever.

ATL formulas are interpreted over the states of concurrent game structures
(CGS) S = (Ag,Q,Qo, Act,e,0,V) defining the states (Q) and agents (Ag) of
the system, what they can do (e : Ag — (Q — (24°*\@))), and how the system
evolves according to their choices (§ : Q x Actd9 — Q).

Given a CGS S, a state g of S, and an ATL formula ¢, we can translate S
into a Kripke structure S’, g into a state ¢’ of S’, and ¢ into a p-calculus formula
¢’ such that ¢ satisfies ¢ if and only if ¢’ satisfies ¢’. To avoid technical details,
this section only presents the intuition of the translation and focuses on a small
subset of ATL operators. The full translation can be found in [4].

The idea of the translation from a CGS S = (A4g,Q, Qo, Act,e,d,V) to a
structure S = (Q',{R, | i € X},V’) is to derive, from each state ¢ € Q,

Producing Explanations for Rich Logics 133

each group of agents I' C Ag, and each joint action ap of I', a new state g,
representing the fact that I" chose to play ar in q. For each group I" C Ag, two
transition relations are derived from d: Rpcpoose links any state ¢ € @ to the
derived states gq,. for all possible actions ar of I'; Rryfolow links any derived
state g, to the successors of ¢ restricted to the ones reached if I" choose ar.
Intuitively, the derived structure S’ encodes in two steps (¢ — ¢o,, — ¢') the one-
step transitions of S (¢ = ¢'). The set X of relations names is X = {I"choose |
I' C Ag} U{I'follow | I C Ag}, that is, two transition relations for each group
of agents.

Figure 2 presents the CGS of a simple one-bit transmission problem in which
a sender tries to send a value through an unreliable link. The sender can send
the value or wait, and the transmitter can transmit the message (if any), or block
the transmission. In this context, we ask whether the transmitter has a strategy
to never transmit the value, that is, if qo satisfies {transmitter) G —sent.

(%, block) (%, %)
(send, transmit)
(wait, *) 9o q1
—sent sent

Fig. 2. The CGS of the bit transmission problem. The action pairs are the actions of
the sender and the transmitter, respectively. * means any action of the agent.

The CGS of this bit transmission problem can be translated into a p-calculus
Kripke structure. Figure3 presents a part of the translation, focusing on the
states derived from ¢g; the part about ¢; is not shown. For instance, in qq,
the sender can choose the action send to transition to qo,,,,. The transmitter’s
following action can either be block, which transitions back to qq, or transmit,
which transitions to ¢;.

Fig.3. A part of the translation of the bit transmission CGS. sc and sf mean
sender chooses and sender follows, tc and tf mean transmitter chooses and
transmitter follows. Transition relations for the two other groups of agents (no agent,
and both agents) are not shown.

134 S. Busard and C. Pecheur

ATL formulas can also be translated into p-calculus formulas. The formula
(transmitter) G —sent is translated as

¢ns =vv. msent A\ Otrans chooses(otrans followstrue/\ Otrans follows U)- (1)

The main idea behind this translation is that a state satisfies the second term
Otrans chooses(<>trans follows true A Otrans follows ’U) if there exists an action for
transmitter that is enabled and such that all choices of the other agents lead
to v, that is, if the transmitter can enforce to reach v in one step. Then, a state
satisfies ¢, if the transmitter can enforce to stay in states satisfying —sent
forever, that is, if the transmitter has a strategy to enforce G —sent.

To explain why an ATL formula ¢ is satisfied by a state ¢ of some CGS S,
we want to extract the part of the model starting at ¢ that is responsible for the
satisfaction. Furthermore, as such part can be complex and difficult to under-
stand, we want to annotate each state with the sub-formulas of ¢ that are
true in that state. For instance, Fig.4 gives an explanation for why ¢g satis-
fies (transmitter)G —sent. The explanation shows that, in g, the block action
of the transmitter allows it to prevent the message to be sent.

(, block) (transmitter)G —sent
| (transmitter)X (transmitter)G -sent

-sent

Fig. 4. An explanation for why the transmitter can prevent the value to be sent.

3.2 p-Calculus Explanations

A p-calculus explanation is a graph where nodes are triplets—called obliga-
tions—composed of a state g of S, a p-calculus formula ¢, and an environment e.
An edge ((¢q, ¢, ¢), (¢, ¢, ¢')) encodes the fact that ¢ € [¢]°e because ¢’ € [¢'] €.
In this section, all p-calculus formulas are considered in positive normal form,
that is, all negations are applied to atomic propositions or variables only.

More formally, given a Kripke structure S = (Q,{R; | i € X'}, V), an expla-
nation is a graph £ = (O, T) such that the nodes O C Q x £, x £ are triplets
of states of S, p-formulas and environments, and the edges T' C O x O link obli-
gations together. The set of successors of o is noted succ(o) = {0’ | (0,0’) € T}.

We are interested in explanations that are adequate, that is, that effectively
show why ¢ satisfies ¢ in environment e. An explanation E is adequate for
explaining why q € [¢]“e if it is consistent, matches S—that is, is composed of
elements of S—and (q, ¢,¢e) € O.

An explanation is consistent if it exhibits the different parts needed to explain
its elements. More formally, let E = (O,T) be an explanation and let o =
(q,,¢e) € O. o is said to be locally consistent in E iff

Producing Explanations for Rich Logics 135

¢ # false;

— if ¢ = true, then succ(o) = &;

— if ¢ =por ¢ =-p, for p € AP, then succ(o) = &;

—if ¢ = v or ¢ = —w, for v € Var, then ¢ € e(v) (resp. ¢ ¢ e(v)) and
succ(o) = @;

— if ¢ = ¢1 A ¢o then succ(o) = {{q, &1, ¢), {q, P2, €)};

— if ¢ = ¢1 V ¢ then succ(o) = {(g, ¢;,e)} for some j € {1,2};

— if ¢ = 03¢’ then succ(o) = {{¢’, ¢’,e)} for some state ¢';

— if ¢ = [0;¢ then, for all o’ € succ(o0), o' = (¢’, @', e) for some state ¢';

— if ¢ = p.yp(v), then succ(o) = {(gq,¥*(false),e)} for some k > 0;

— if ¢ = vv.ap(v), then succ(o) = {{g,¥(¢), e)}.

E is then consistent iff all obligations o € O are locally consistent in E. Intu-
itively, if ¢ = uv. v, then ¢ € [¢]°e because ¢ belongs to a finite number of
applications of 1 on false, that is, ¢ € [/*(false)]®e for some k& > 0. On the
other hand, this idea cannot be applied for ¢ = vv. 1. In this case, ¢ € [¢]°e
because it belongs to any number of applications of 1) on ¢rue. Thus, to explain
it, F simply shows that ¢ € [¢(¢)]°e and relies on the fact that the structure
has a finite number of states to ensure that the explanation is finite as well.
Furthermore, F matches S iff

1. for all (¢, ¢',€¢') € O, ¢’ € Q;

for all (¢',p,e’) € O, p € V(¢') and for all {¢’,—p,e’) € O, p € V(¢');

3. for all ((¢/,¢',e),(¢",¢",€e")) € T, either ¢ = ¢", or ¢ belongs to
{0:¢",0i¢"} and (¢', ¢") € Ri;

4. for all o' = (¢',0;¢',¢') € O, (¢,¢") € R; iff Fo" € succ(d') s.t. o =
)

E matches S if E is part of S: (1) the states of E are states of S; (2) atomic
propositions of E are coherent with labels of S; (3) successor states in E are
successors in S; (4) the explanation for the [J; operator exhibits all successors
through R;.

For instance, Fig. 5 gives an adequate explanation for ¢, (of Eq. 1) holding
in state qg of the p-calculus structure of the bit transmission problem.

Adequate explanations are necessary and sufficient proofs for why ¢ € [¢]°e,
captured by the following property.

N

Property 1. Given a Kripke structure S = (Q,{R; | i € X},V), astate ¢ € Q, a
p-calculus formula ¢ and an environment e, ¢ € [¢]°e if and only if there exists
an adequate explanation E for g € [¢]e.

Proof (Proof Sketch). The left-to-right direction is proved by the generating
algorithm of this paper: if ¢ € [¢]°e, then it generates an adequate explanation
for ¢ € [¢]°e. The other direction can be shown by induction over the structure of
¢. The main idea is that, if F is adequate for sub-formulas, then local consistency
and matching S are sufficient conditions for the formula to be satisfied. O

Furthermore, we can view adequate explanations as patterns. An explanation
E defines an entire set of Kripke structures (E) that F matches. E is thus an

136 S. Busard and C. Pecheur

‘qo,ﬁsentA Ote (Orf true ADes ¢ns),6‘

J
‘QO,Om (Oty true A Oy ¢>m)76‘
J

‘ QOprock s Otf true A Dy Pns, € ‘

QOprocr > Otf True, e QOyroer s Otf Pns,e

qo, true, e

Fig. 5. An explanation for why go € [¢ns]°e in the bit transmission problem. tc and
tf mean transmitter chooses and transmitter follows, respectively.

explanation for why all structures of KL(E) satisfy any formula ¢ that E contains.
This intuition is formally captured by the following property.

Property 2. Given a consistent explanation E = (O, T), for all (¢,¢,e) € O,
q € [¢]%e for all S such that E matches S.

Proof. This property is directly derived from Property 1. If E is consistent, F
matches S and (g, ¢,e) € O, then E is adequate for ¢ € [¢]°e. By Property 1,
since there exists an adequate explanation for ¢ € [¢]%e, q € [¢]%e is true. O

Finally, we can define an algorithm to generate adequate explanations for
p-calculus formulas, presented in Algorithm 1. It takes a Kripke structure S, a
state ¢ of S, a p-calculus formula ¢, and an environment e such that ¢ € [¢]°e,
and returns an adequate explanation for ¢ € [¢]%e. Intuitively, the algorithm
starts with an empty explanation and the (g, ¢,e) obligation in the pending
set. Then it considers each obligation o’ € pending, adding to O and T the
necessary obligations and edges to make o locally consistent and matching S,
and adding to pending the newly discovered obligations. It stops the process
when all obligations have been made locally consistent in (O, T).

3.3 Translating p-Calculus Explanations

The previous section proposed a structure to explain why a p-calculus formula
is satisfied by a state of some Kripke structure. Nevertheless, as the p-calculus
model checker and explanations are used to solve the model-checking problem
of some other top-level logic, the usefulness of such explanations is limited. This
section presents the set of functionalities the framework provides to help the
designer to translate the p-calculus explanations back into the top-level logic.
They are generic to allow her to easily translate the explanations for logics such
as CTL, CTLK, ATL or PDL [16], as well as fair variants such as Fair CTL [13].

First, aliases allow the designer to hide p-calculus translations behind top-
level logic formulas. Second, to ease the translation of explanations back into the

Producing Explanations for Rich Logics 137

Algorithm 1. explain(S, g, ¢, e)

Data: S = (Q,{R; | i € X'}, V) a Kripke structure, g € Q a state of S, ¢ a
p-calculus formula, and e an environment such that q € [[(zﬂ]se.
Result: An adequate explanation for g € [¢]°e.
0 =o; T = &; pending = {(q, $,€)}
while pending # @ do
pick o' = (¢, ¢, €’) € pending
pending = pending\{o’}
O=0uU{0}
case ¢’ € {true,p,~p,v,~v}: O =@
case ¢' = p1 N g2: O ={(d,¢1,¢'),(d, p2,€')}
case ¢/ = ¢1 V ¢
L if q/ € ﬂ(bl]]sel then O' = {(q/,¢1,6/>} else O’ = {<q/7¢276,>}

case ¢/ = O&; ¢

pick q// c {q// c Q ‘ <q/’q//> c Rz /\q// c |I¢,,]]S€l}
L 0" ={{d",¢",¢")}
case ¢' =0; ¢": O'={(¢",¢",¢') | (d,q") € Ri}
case ¢' = uv. ¥

@ = false; sat = [¢"']°¢

while ¢’ € sat do

L (z)// — 1/]((;5”); sat = [[(;5”]]56,

0" ={{d".¢".¢)}
case ¢' = wvv. ¥: O = {(¢',¥(¢'),€)}
T=TU{{(d,0")]0" €0}
| pending = pending U (0"\O)
return (O,T)

original model language, the framework integrates the relational graph algebra
of Dong et al. [15]. This algebra allows the designer to translate the explanation
back into the original model language, but it treats the explanation as a whole.
To ease the addition of information to individual obligations and edges, the
framework also provides the notion of attributors. Finally, local translators are
proposed to treat small parts of the given graph.

These functionalities help the designer to translate the p-calculus explanation
into another graph that is closer to the initial model language. Nevertheless, the
designer has no control on the initial explanation the algorithm produces. To
allow the designer to interfere into the choices the explain algorithm makes, the
framework provides choosers.

Aliases. An alias « is a syntactic function that takes a set of arguments and
returns an aliased p-calculus formula. The alias of an aliased formula is then
used to hide the latter behind something more intelligible. For instance, the

138 S. Busard and C. Pecheur

alias ()X (I, @) = O rehoose (O followtrue A O foliow ¢) replaces the formula ¢,
with vv. —sent A (transmitter)X v.

Relational Graph Algebra. The relational graph algebra of Dong et al.
includes operators such as the union Gy U G5 and intersection G1 N Gy of two
graphs G and G, the selection oy, 7, (G) of nodes and edges satisfying a condi-
tion, the projection 7, 4, (G) of nodes and edges on sub-domains d,, and d., the
grouping vq4, 4, (G) of nodes and edges, etc. Thanks to this algebra, the designer
can transform explanations into other graphs.

Obligation and Edge Attributors. An attribute is data associated to expla-
nation nodes and edges, and an attributor is a function adding attributes to an
obligation or edge. They work as local decorators, in the sense that they deal
with obligations and edges one at a time. They can be given to the generating
algorithm to be run on every obligation or edge, or they can be attached to
individual aliases to be run only on the obligations with instantiations of the
aliases, or outgoing edges of these obligations. This improves the performances
of decorating the graph when only a few elements must be decorated. In the case
of ATL, we can define an attributor to attach to obligations the original CGS
state their state derives from.

Local Translation. A local translator is a function taking a relational graph
and a particular node as arguments, and updating the graph. The part of the
explanation a local translator receives is defined by the alias it is attached to. For
instance, with a local translator, we can add edges to an explanation between an
obligation labelled with a ()X alias and all the original successors of its state.
The advantage of such a local translator is that the part of the graph it receives
is the one explaining the {)) X operator only.

Choosers and Partial Explanations. A chooser takes an obligation and a set
of possible successors of this obligation and returns a subset of these successors
depending on the operator of the formula of the given obligation:

— for V and <$; operators, at most one successor must be chosen, to ensure a
consistent explanation.

— for A and O; operators, the full explanation shows all successors, but a subset
can be returned.

— for the other operators, there is no meaningful choice: there is no successor
for true formulas, atomic propositions or variables, and there is only one
successor for least and greatest fixpoint formulas.

Choosers can guide the explanation generation by choosing particular succes-
sors, but also limit the size of the generated explanation by only exploring parts
of it. This introduces the notion of partial explanations, that is, explanations

Producing Explanations for Rich Logics 139

where some obligations are not fully explained because they lack some succes-
sors. The advantage of partial explanations is that the complete explanation can
be too large to be generated or understood, so getting a part of it is better than
nothing. Furthermore, choosers enable interactive generation of explanations as
they can ask the user to resolve some choices.

Markers. They are attached to formulas. The framework provides two types of
markers, points of interest, and points of decision, but new types can be defined
by the designer. Points of interest are intended to mark the formulas that are
important for the designer. On the other hand, the model checker takes points
of decision into account when generating explanations: whenever an obligation
formula is marked with such a point, the model checker does not explain it. This
produces partial explanations that can be later expanded by the user by forcing
the generation of the missing parts.

Thanks to all these features, it is possible to transform the p-calculus expla-
nation of Fig. 5 for the formula (transmitter)G —sent and get the explanation
of Fig. 6. For this translation, we used:

— aliases to hide p-calculus formulas behind their ATL counterparts,

— points of interest for marking the formulas that have an ATL counterpart,

— an obligation attributor to extend each obligation with the original state,

— a local translator to add the edge with the action of the transmitter,

— the relational graph algebra to merge nodes together and gather the formulas
that the state satisfies.

q0,
(block) C {(transmitter)G -sent, -sent,

(transmitter)X {(transmitter)G -sent}

Fig. 6. A translation of the p-calculus explanation of Fig. 5 using the translation fea-
tures of the framework.

4 Implementation

The framework has been implemented in Python using PyNuSMYV for solving the
model-checking problem. PyNuSMYV is a library for prototyping symbolic model-
checking algorithms based on NuSMV [6]. The implementation and examples are
available on http://lvl.info.ucl.ac.be/FM2018/FM2018.

First, to be able to use the framework, the designer has to derive, from the
original model, a p-calculus Kripke structure S = (Q,{R; | i € X}, V). Such a
structure is implemented with PyNuSMV as a standard SMV model to which
several transition relations R; are attached.

Second, the framework provides Python classes to define p-calculus formulas,
one for each p-calculus operator: MTrue, MFalse, Atom, Variable, Not, And, Or,

http://lvl.info.ucl.ac.be/FM2018/FM2018

140 S. Busard and C. Pecheur

Diamond, Box, Mu, and Nu. With this implementation, p-calculus formulas do not
have to be declared in positive normal form. Instead, the framework lazily derives
positive normal forms when needed. This allows the formulas that annotate the
obligations to stay as close to the main formula as possible.

Third, most of the features are implemented with Python decorators, that is,
function annotations that change the function behavior. For instance, aliases are
defined as Python functions returning the corresponding p-calculus formula and
decorated with the @alias decorator. The code of Fig.7 shows a small part of
the ATL model checker built with the framework. The CAX function returns the
translation of the [agents]X formula formula, marked with points of interest
and decision, and to which is attached the chosen_action edge attributor.

@alias (" [{agents}] X {formulal")
def CAX(agents, formula):
return POD(POI(chosen_action(

Box (agents + " _choose",
Or (Box(agents + "_follow", MFalse()),
Diamond (agents + "_follow", formula)))
)))

@edge_attributor
def chosen_action(edge):
...
return {"action": actions}

Fig.7. A part of the implementation of the ATL model checker built with the
framework.

Relational graphs, and generated explanations in particular, are implemented
with the Graph class. Nodes and edges of these graphs are implemented with the
domaintuple class, a dictionary-like structure where domains of the elements are
identified by a name. Each operator of the relational graph algebra is imple-
mented by a method of the Graph class.

The framework allows the designer to efficiently translate an explanation back
into the top-level language. Nevertheless, these explanations remain complex
and difficult to understand. To help the user in understanding these complex
explanations, the implementation also provides a graphical visualization tool. A
snapshot of the tool is given in Fig. 8.

The top left part presents the explanation: nodes are depicted in ovals, and
edges are depicted as arrows decorated with information in a box. This graph
can be moved with the mouse or automatically re-arranged. The information
displayed in nodes and edge labels come from the explanation elements them-
selves. The tool also allows the user to select which keys of the graph elements
are displayed, through a right-click menu on the graph area. To enable interac-
tivity, the designer can specify a graphical menu that is displayed whenever the
user right-clicks on the element. This can be used, for instance, to expand partial

Producing Explanations for Rich Logics 141

[JON) tk
Interactive layout Force-based layout Dot layout
state = {sent=FALSE}
|/' explained = ‘\,
% <transmitter> X <transmitter> G ~sent .
R <transmitter> G ~sent =

sender.action = wait

sender.action = send
transmitter.action = block

ransmitter.action = block

Path inspector
Key Value 1

Element inspector

Key Value
v state
sent FALSE
V¥ explained
<transmitter> X <tr.
<transmitter> G ~s

Value 2

Vv sender

action send
¥ transmitter

action block

v state
sent FALSE FALSE
¥ explained
<transmitter> X <transmitter> G ~sent
<transmitter> G ~sent

<transmitter> X <transmitter> G ~sent
<transmitter> G ~sent

Fig. 8. A snapshot of the visualization tool.

explanations. The top right part of the tool displays the complete information
of the selected element (the dashed one on Fig.8). The bottom part of the tool
can display one particular path of the graph, selected by the user.

5 Application to ATL

The objective of this section is to show the usefulness of the framework by
applying it to the ATL logic. It describes how explanations for ATL can be
obtained, displayed and manipulated thanks to the framework implementation.

The implementation represents a CGS with a standard SMV model to which
is attached a set of agents. Each agent has a name and a set of SMV input
variables corresponding to its actions. The SMV model itself defines what the
agents can do, and how the state of the model evolves according to their actions.

The translation of the CGS acts like a dictionary of transition relations, lazily
building these relations when needed. The advantage of this mechanism is that,
even if the CGS contains a lot of agents, its implementation builds the transition
relations only for the groups of agents appearing in the checked formula. The
translation of ATL formulas simply uses the Python classes provided by the
framework to define p-calculus formulas.

To enrich and translate explanations, one alias is declared for each ATL
operator. All top-level formulas returned by the aliases are marked as points

142 S. Busard and C. Pecheur

of interest. Furthermore, both {) X and []X aliases are marked as points of
decision, to be able to generate small partial explanations and to allow the user
to expand them as she wishes.

Two attributors add information to obligations and edges of the explana-
tion. The first attributor attaches, to each obligation, the original state its state
derives from. This attributor is given to the explain algorithm to enrich all obli-
gations. The second attributor stores the actions chosen by the group in the
outgoing edge of the obligations labelled with a {) X or []X aliased formula.
This way, the information is more easily accessed by local translators. Figure 7
illustrates these parts of the implementation.

Two local translators are defined, for ()X and []X. They extract, from the
two steps of the p-calculus model, the original one-step transitions of the CGS.
The relational graph algebra is used to translate p-calculus explanations back
into ATL ones. The translation:

projects the explanation nodes on formulas and original states;

groups nodes by their original state;

separates unexplained formulas from explained ones;

selects edges that are labelled with some actions;

keeps the original state and the formulas in nodes, and the actions in edges.

CU D=

This translation produces explanations such as the one of Figs. 6 and 8.

A chooser is defined to expand partial explanations. When dealing with a ()X
alias, it gets the original actions of the group from the given successors and asks
the user to choose one of them through a window. Finally, the visualization tool is
used to display and manipulate the translated explanations, as shown in Fig. 8.
In particular, it provides, through a right-click menu, the list of unexplained
formulas. This menu triggers the expansion of the currently displayed partial
explanation, running through the chooser to select the action to play.

6 Related Work

Several authors already proposed solutions to explain why a CTL formula is
satisfied by some model. First, some authors proposed structures capturing the
part of the model witnessing the satisfaction [3,11,29]. These structures are
defined as hierarchies of paths, fitting the CTL semantics. Jiang and Ciardo
recently proposed a way to generate such hierarchies of paths with a minimal
number of states [19]. Other authors proposed more detailed structures, cap-
turing the part of the model, as well as sub-formulas and logical decomposition
steps [7,8,18,27,30,31,33]. These different solutions vary in terms of details they
provide about the satisfaction—by annotating or not the parts of the counter-
example with the sub-formulas they explain—, the fragments of the logic they
support—either the full logic or its universal fragment—, and the framework
they work in—explicit, game-based, proof-based, BDD-based model checking,
or Boolean Equation Systems (BES). All these solutions can be adapted to a
BDD-based framework and produced with the framework we propose.

Producing Explanations for Rich Logics 143

Some solutions have also been proposed in the context of multi-modal logics,
adapting and extending the ideas from CTL to richer logics [5,24-26,34]. In
this context, MCK, a tool for verification of temporal and knowledge properties,
provides several debugging functionalities [17], such as a debugging game inspired
by Stirling’s games [32] in which the user can try to show why the model-checking
outcome is wrong while the system shows her why it is actually right. Such a
debugging game can be implemented with adequate choosers.

Finally, several solutions have also been proposed to represent and produce
explanations for the p-calculus [14,20,21,23]. They differ from the ones presented
in this paper either by the way they are generated—such as the explanations of
Kick [21]—or by the actual framework they rely on.

All these solutions work for particular logics such as CTL, CTLK, the
p-calculus, or are generic solutions with some application to one use case such
as BES and their extensions, games, or proofs. But no work proposes a solution
to produce explanations and to translate them back into the original language,
as the p-calculus framework of this paper. They either limit themselves to one
logic, or they provide generic structures without giving explicit help for applying
and translating it into something useful for the end user.

7 Conclusion

In this paper, we described a solution for p-calculus-based logics explanations.
The proposed framework integrates a p-calculus model checker that generates
rich explanations and provides several functionalities to translate them into
explanations for a top-level logic such as ATL. It has been implemented with
PyNuSMV, taking advantage of Python functionalities such as function decora-
tors to easily describe the different features. The implementation also integrates
a graphical tool to visualize, manipulate and explore the explanations.

One of the main advantages of the framework is that many logics can be
translated into the p-calculus, such as CTL, Fair CTL, CTLK, ATL, and PDL.
It is thus generic enough to provide model-checking functionalities for all of
them. Furthermore, thanks to the framework, the designer does not have to
worry about designing and implementing a model checker, nor about generating
rich explanations. Nevertheless, she has to translate the top-level models and
formulas into p-calculus. Model translation can be difficult—for instance, the
translation from an ATL CGS to a p-calculus structure is not trivial—and the
framework gives no help to complete this task.

The framework features allow the designer to divide the concerns into smaller
parts, first dealing with formula translations (with aliases and markers), then
with single elements (with attributors), small sub-graphs (with local translation),
and with the whole explanation (with the algebra). Furthermore, all the features
are useful, as illustrated by the ATL case. In particular, local translators are
useless for cases such as CTL, but for ATL, where the model translation is
difficult, they can help treating small parts of the explanation separately, instead
of having to deal with the whole explanation graph at once. The visualization

144 S. Busard and C. Pecheur

tool provided by the framework complements the translation features. The latter
help the designer to produce useful explanations while the former helps the user
visualize, manipulate and explore it.

Finally, the framework supports interactive and guided generation of the
explanations through choosers. This can lead to smaller manageable partial
explanations that can be interactively expanded, as illustrated by the ATL case.

One of the main drawbacks of the framework is the fact that it produces one
single explanation at a time. Representing several explanations at once could
help the user to extract the reasons for the satisfaction of the formula more
easily. As future work, it would be interesting to explore how we could represent
several explanations at once by using binary decision diagrams to represent sets
of obligations instead of single ones. Furthermore, translating a CGS and an ATL
formula into a p-calculus model and a formula is not an easy task compared to
other logics such as CTL and CTLK. One solution to make this particular trans-
lation easier is to use the alternating-time p-calculus [1] as base logic instead of
the propositional p-calculus. Finally, it would be interesting to explore solutions
to provide translation functionalities for the model itself. With such translation
functionalities, the translation of explanations back into the original language
could become automatic.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672-713 (2002)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

3. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: On ACTL formulas having linear
counterexamples. J. Comput. Syst. Sci. 62(3), 463-515 (2001)

4. Busard, S.: Symbolic model checking of multi-modal logics: uniform strategies and
rich explanations. Ph.D. thesis, Université catholique de Louvain, July 2017

5. Busard, S., Pecheur, C.: Rich counter-examples for temporal-epistemic logic model
checking. In: Proceedings Second International Workshop on Interactions, Games
and Protocols, IWIGP 2012, Tallinn, Estonia, 25th March 2012, pp. 39-53 (2012).
http://dx.doi.org/10.4204/EPTCS.78.4

6. Busard, S., Pecheur, C.: PyNuSMV: NuSMV as a python library. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 453-458. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-4_33

7. Chechik, M., Gurfinkel, A.: A framework for counterexample generation and explo-
ration. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 220-236. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31984-9_17

8. Chechik, M., Gurfinkel, A.: A framework for counterexample generation and explo-
ration. Int. J. Softw. Tools Technol. Transfer 9(5-6), 429-445 (2007)

9. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359-364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0-29

10. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

http://dx.doi.org/10.4204/EPTCS.78.4
https://doi.org/10.1007/978-3-642-38088-4_33
https://doi.org/10.1007/978-3-540-31984-9_17
https://doi.org/10.1007/3-540-45657-0_29

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Producing Explanations for Rich Logics 145

Clarke, E.M., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model check-
ing. In: Proceedings of the 17th IEEE Symposium on Logic in Computer Science
(LICS 2002), pp. 19-29 (2002)

Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52-71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

Clarke, E.M., Emerson, E.A. Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244-263 (1986). http://doi.acm.org/10.1145/5397.5399

Cranen, S., Luttik, B., Willemse, T.A.C.: Proof graphs for parameterised boolean
equation systems. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS,
vol. 8052, pp. 470-484. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40184-8-33

Dong, Y., Ramakrishnan, C.R., Smolka, S.A.: Model checking and evidence explo-
ration. In: Proceedings of the 10th IEEE International Conference on Engineering
of Computer-Based Systems (ECBS 2003), pp. 214-223 (2003)

Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194-211 (1979)

Gammie, P., van der Meyden, R.: MCK: model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479-483. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9_41

Gurfinkel, A., Chechik, M.: Proof-like counter-examples. In: Garavel, H., Hatcliff,
J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 160-175. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36577-X_12

Jiang, C., Ciardo, G.: Generation of minimum tree-like witnesses for existential
CTL. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 328—
343. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_18

Kick, A.: Generation of witnesses for global p-calculus model checking. Technical
report, Universitat Karlsruhe, Germany (1995)

Kick, A.: Tableaux and witnesses for the p-calculus. Technical report, Universitét
Karlsruhe, Germany (1995)

Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333—
354 (1983). http://dx.doi.org/10.1016/0304-3975(82)90125-6

Linssen, C.A.: Diagnostics for Model Checking. Master’s thesis, Eindhoven
University of Technology (2011)

Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the verification
of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 682-688. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02658-4_55

Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transfer 1-22
(2015). http://dx.doi.org/10.1007/s10009-015-0378-x

Lomuscio, A., Raimondi, F.: MCMAS: a model checker for multi-agent systems. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 450-454.
Springer, Heidelberg (2006). https://doi.org/10.1007/11691372_31

Mateescu, R.: Efficient diagnostic generation for boolean equation systems. In:
Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 251-265.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0_18

https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
http://doi.acm.org/10.1145/5397.5399
https://doi.org/10.1007/978-3-642-40184-8_33
https://doi.org/10.1007/978-3-642-40184-8_33
https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.1007/3-540-36577-X_12
https://doi.org/10.1007/978-3-319-89960-2_18
http://dx.doi.org/10.1016/0304-3975(82)90125--6
https://doi.org/10.1007/978-3-642-02658-4_55
https://doi.org/10.1007/978-3-642-02658-4_55
http://dx.doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/11691372_31
https://doi.org/10.1007/3-540-46419-0_18

146

28.

29.

30.

31.

32.

33.

34.

S. Busard and C. Pecheur

Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
via bounded model checking. In: Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems. AAMAS 2003, pp.
209-216. ACM, New York (2003). http://doi.acm.org/10.1145/860575.860609
Rasse, A.: Error diagnosis in finite communicating systems. In: Larsen, K.G., Skou,
A. (eds.) CAV 1991. LNCS, vol. 575, pp. 114-124. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55179-4_12

Roychoudhury, A., Ramakrishnan, C., Ramakrishnan, I.: Justifying proofs using
memo tables. In: International Conference on Principles and Practice of Declarative
Programming: Proceedings of the 2nd ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming, pp. 178-189 (2000)
Shoham, S., Grumberg, O.: A game-based framework for CTL counterexamples
and 3-valued abstraction-refinement. ACM Trans. Comput. Logic (TOCL) 9(1), 1
(2007)

Stirling, C.: Local model checking games (extended abstract). In: Lee, I., Smolka,
S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 1-11. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60218-6_1

Tan, L., Cleaveland, R.: Evidence-based model checking. In: Brinksma, E., Larsen,
K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 455-470. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45657-0_37

Weitl, F., Nakajima, S., Freitag, B.: Structured counterexamples for the tempo-
ral description logic ALCCTL. In: 2010 8th IEEE International Conference on
Software Engineering and Formal Methods, pp. 232-243. IEEE (2010)

http://doi.acm.org/10.1145/860575.860609
https://doi.org/10.1007/3-540-55179-4_12
https://doi.org/10.1007/3-540-60218-6_1
https://doi.org/10.1007/3-540-45657-0_37

®

Check for
updates

The Compound Interest in Relaxing
Punctuality

Thomas Ferrére®

IST Austria, Klosterneuburg, Austria
thomas.ferrere@ist.ac.at

Abstract. Imprecision in timing can sometimes be beneficial: Metric
interval temporal logic (MITL), disabling the expression of punctuality
constraints, was shown to translate to timed automata, yielding an ele-
mentary decision procedure. We show how this principle extends to other
forms of dense-time specification using regular expressions. By providing
a clean, automaton-based formal framework for non-punctual languages,
we are able to recover and extend several results in timed systems.
Metric interval regular expressions (MIRE) are introduced, providing
regular expressions with non-singular duration constraints. We obtain
that MIRE are expressively complete relative to a class of one-clock timed
automata, which can be determinized using additional clocks. Metric
interval dynamic logic (MIDL) is then defined using MIRE as temporal
modalities. We show that MIDL generalizes known extensions of MITL,
while translating to timed automata at comparable cost.

1 Introduction

Regular expressions (RE) [20] are a basic notion in computer science. They
provide a simple algebraic way to describe finite-state behaviors. Since their
introduction in verification and testing, alongside linear temporal logic (LTL)
[32], regular expressions have also proven to be a very practical formalism to
specify discrete systems behavior [14,36]. Yet not all applications enjoy the syn-
chronous, discrete-time style of modeling captured by finite automata. Modern
computerized systems are more asynchronous in nature, calling for a different
level of abstraction in which time may no longer be discrete.

Timed automata (TA) [2] are widely regarded as a natural extension of
finite-state theory to dense-time. This model of computation uses real-valued
variables known as clocks to control delays between events. The strength of timed
automata, beyond the simplicity of their definition, comes from their theoretical
properties: the emptiness problem is solvable in polynomial space, timed regu-
lar languages are closed under positive Boolean operations, and their untiming

This research was supported by the Austrian Science Fund (FWF) under grants
S11402-N23 (RiSE/SHINE) and Z211-N23 (Wittgenstein Award).
© Springer International Publishing AG, part of Springer Nature 2018

K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 147-164, 2018.
https://doi.org/10.1007/978-3-319-95582-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_9&domain=pdf

148 T. Ferrere

yields back regular languages. However the standard, nondeterministic model
(NTA) is not closed under complement, while the deterministic model (DTA) is
not closed under concatenation or Kleene star.

Negation is a desirable operation in any specification language. Metric tem-
poral logic (MTL) [21] is a well-studied, established dense-time specification
language. Through negation, the set of languages described in MTL is closed
under complement. However satisfiability of MTL is non-elementary under the
hypotheses of [30], and undecidable in general [3,31]. Timed regular expressions
(TRE) [6] constitute an interesting alternative to MTL, both powerful and intu-
itive. The emptiness of TRE is also decidable in polynomial space, since TRE
translate to timed automata in polynomial time [6]. But TRE do not feature a
negation operator, which would render them undecidable.

Virtually all negative results in timed systems, such as the undecidability of
language inclusion for timed automata, rely on the ability to enforce real delays
with infinite precision—some extreme form of punctuality. When no semantic
restriction is placed on the variability or duration of behaviors, a single unit of
time can hold an arbitrary amount of information, which can then be repeatedly
transfered from one time unit to the next, encoding Turing computations. A
standard way to regain decidability is to bound the variability of behaviors
[16,28]. Another, less conventional way is to bound their duration [29].

The syntactic restriction of [3] simply bounds the precision timing
constraints—in effect relaxing punctuality. Decidability of the resulting metric
interval temporal logic (MITL) [3] follows, by translation to timed automata.
Subsequently, extensions of MITL with finite automata [17,37] and thresh-
old counting [18] have then been proposed, enjoying special connections with
monadic logic [17,19,37]. In this context, our contribution consists in (a) the
definition of RE-based variants of MITL for specifying timed behaviors; (b) a
simple automaton-based framework in which several results regarding these vari-
ants can be derived (Fig. 1).

In particular, we show how to adapt the subset construction of [10] to
determinize arbitrary control structures, by introducing the notion of metric
interval automaton (MIA, Sect.3). These automata, reminiscent of [5], have
a single clock, checked against non-singular timing intervals, and reset after
every check. A simple state-elimination argument demonstrates that this model
is equivalent to the proposed metric interval reqular expressions (MIRE, Sect. 3),
which therefore translate to deterministic timed automata (Sect. 4). By treating
metric interval automata as modalities, we redefine extended MITL (EMITL,
[37]). Building on our initial results, we propose metric interval dynamic logic
(MIDL, Sect.5), equivalent in expressive power, and provide a translation to
non-deterministic timed automata (Sect.6). This translation is compositional,
in the style of [26], and does not go through intermediate formalisms such as
monadic logic [37] or event clock automata [17].

The Compound Interest in Relaxing Punctuality 149

L NTA*
MIDL' < -» EMITL'] _, DTAT
MIRE* ¢ -~ - -~ SMIA®

Fig. 1. Translations (-+) and inclusions (—) between formalisms. Closure under
Boolean operations () and under regular operations (x) are indicated in exponent.

2 Preliminaries

In this section, we introduce basic definitions and relevant results. We take the
time domain T = R> to be the non-negative reals. Given a set of times R C T,
we write ch(R) = {¢t € T | Ir,v’ € R,r <t < r'} its convex hull and t & R =
{t+r € T | r € R} its Minkowski sum with some ¢ € T. We define timed words as
sequences alternating delays in T and events in some alphabet Y. Given a timed
word w = tya; ...tha, we write w; ; its infix t;11a,41 ... t;a; between positions
0 <i < j < n. We denote by |w| = n the size of w and by |Jw| = Y7, ¢; the
duration of w. The empty word e verifies |e| = ||¢|| = 0.

Automata. Following [2], automata are equipped with a set X of clock variables.
A clock constraint is a Boolean combination of inequalities of the form x > c,
or — y ¢, where ¢ € N is a constant, <t € {<, <, >, >} is a comparison sign,
and z,y € X are clocks. The set of clock constraints over X is denoted ¢(X). A
valuation v associates any clock variable x € X with a delay v(z) € T. We write
v = ¢ when the constraint ¢ is satisfied under clock valuation v.

A timed automaton is a tuple A = (X, X, L, S, F, A) where L is a set of
locations, S C L is a set of initial locations, F' C L is a set of accepting locations,
and A C L x ¥ x &(X) x 2% x L is a set of edges. A state of A is a pair (£,v)
where ¢ is a location in L and v is a valuation over X. For delays ¢t € T and

events a € X, transitions % and % in A are defined as the following relations:

- (ﬁ,v)vt»(ﬁ’,v') if¢=¢0 and v =v+t;
~ (L,v) S (') if v = ¢ and v = v][Z « 0] for some (¢, a,¢, Z,l') € A.

Here v + ¢ stands for the valuation such that (v+t)(x) = v(z)+¢ for all x € X,
and v[Z « 0] stands for the valuation such that v[Z « 0](z) =0 if z € Z, v(x)

otherwise. A run of automaton A over the word w = tyay ...t,a, is a sequence

(Lo, v0) 4, (bo,vh) 2 ... d (bp_1,v) 1) 2 (£,,v,) of transitions labeled by

delays and events in w such that ¢y, € S, and vo(z) = 0 for all x € X. The
language L(A) is the set of words over which there exists a run of A ending in
an accepting location. We say that A is deterministic when S = {{y} for some
Ly, and @1 A @9 is unsatisfiable for all (¢,a, ¢1, Z1,01) # (L, a, 2, Za,ls) € A.

Ezxpressions. We define timed regular expressions (TRE) following [6], but
without intersection or projection. They are given by the grammar:

pu=clalpUp|p-o|e*|or

150 T. Ferrere

where a € X, and I C T is an integer-bounded interval. As customary iterating
an expression ¢ is denoted in exponent, with by convention ¢ = ¢* - ¢, and
o =eif k=0, % = o1 . p otherwise. Any TRE ¢ can be associated with a
language L(p) defined inductively as follows:

L(e) = {e} L(p1 - p2) = {wrwz | w1 € L(p1), w2 € L(p2)}
L(a) = {ta|t €T} e =, L)
L(p1 Upa) = L(p1) U L(p2) L(pr) ={w |w € L(p), |w| € I}.

The size of a TRE ¢ is the number of atomic expressions it contains. Its depth
d(¢p) is the level of nesting of timing constraints in ¢, defined by d(a) = d(e) = 0,

d(p-9) = dlp Uv) = max{d(p),d(¥)}, d(¢") = d(p), and (1) = d(¢) +1

Theorem 1 (TRE = NTA, [6]). For any TRE of size m and depth n, one
can construct an equivalent timed automaton with n clocks and m + 1 locations.

Logic. Metric temporal logic (MTL) [21] extends LTL [32] by providing the until
operator with a timing interval. MTL formulas are given by the grammar:

Yu=alpV| Uy

where a € X and [is an integer-bounded interval. Operators eventually and
always are defined by letting Oy = T U ¢ and Oy ¢ = = Oy —p. The timing
interval [0,00) is usually omitted as subscript. Metric interval temporal logic
(MITL) [3] is the fragment of MTL where intervals I are non-singular (inf I <
sup [).

The semantics = of MTL and MITL is defined over pointed words, pairs
(w,) of timed word w and position 0 < i < |w| + 1, as follows:

(w,z)I:a iff w;j_1.;=tafor someteT

(w, i) |= = it (w,i) o

(w,i) = 1111 Vi it (w,i) = 4 or (w,d) |= o

(w,3) EynUrype iff (w,j) = 1o for some j > i such that ||w; ;|| € T

7)
and (w, k) | ¢ for all i < k < j.

The language L£(1) of formula v is defined by L(¢) = {w | (w,1) = ¢}
The size of an MITL formula v is the number of temporal operators it con-
tains. Its resolution (1)) is the maximal relative interval width in 1, defined by
r(a) = 0, r(¢1 V ¢2) = max{r(¢n),r(¢2)}, r(—¢) = r(¢), and r(Y1Urip2) =

max{r(¢n),r(¢2),r(Us)}, where r(U;) = Lups‘;%J +2ifsupl < o0, 1

otherwise.

Theorem 2 (MITL = NTA, [3]). For any MITL formula of size m and reso-
lution n, one can construct an equivalent timed automaton with 2mn clocks and
28mntl ocations.

The Compound Interest in Relaxing Punctuality 151

3 Metric Interval Regular Expressions

We now introduce metric interval reqular expressions (MIRE) as TRE of depth 1
and devoid of singular timing intervals. Formally, they are given by the grammar:

pu=rle-@leUp|p"
yu=elaly-y[yUy |y

where a € X' and [is a non-singular, integer-bounded interval. Timing interval
[0,00) is usually omitted, that is, we write v in place of 7|9) in MIRE. The
resolution of a MIRE is defined similarly as for MITL.

Ezample 1. Consider the expression (a U b-(a*-b)2,3))*. It describes sequences
of events a and b in which every odd occurrence of b is followed by another (even)
occurrence of b within 2 to 3 time units.

Automaton Model. We define metric interval automata (MIA) as timed automata
with a single clock z in which every edge (¢, a, ¢, Z,¢') is such that either Z = ()
and ¢ = T, or Z = {2} and ¢ = a € [for some non-singular interval I.
Here = € I is the abbreviated notation for constraint > ¢ when I = [¢, 00),
x> cAx <dwhen I =|c,d], and similar when [is a (semi-)open interval.

Proposition 1 (MIRE < MIA). Every MIRE language is recognizable by
MIA, and every MIA language is expressible as MIRE.

Direction = is a refinement of Theorem 1, and will be proved in Sect.4.
We treat direction < in two steps. Let A be a MIA. Assume without loss of
generality that locations of A are partitioned into two sets Ly and Ly, such that
edges to L reset the clock while edges to L1 don’t, and initial and final locations
of A lie in Ly. First, we remove all locations in Lj, using the state removal
technique in finite automata [35]. This yields an equivalent MIA A" whose edges
are labeled by regular expressions instead of events. Second, we remove clock
resets and constraints from A’ by replacing every edge (¢,v,z € I,{z},¢) with
4, (v)1, T,0,¢'). We obtain a finite automaton with MIRE labels. We perform
again standard state removal to eliminate intermediate locations in Lg. The
resulting automaton has only one edge, labeled by a MIRE equivalent to A.

Comparison with MITL. Following Proposition 1, all MIRE properties can
be checked using one clock. In contrast, some MITL properties require more
than one clock, even when using nondeterminism. For instance the formula
O(a — Op1,2b) requires two clocks [25]. In the other direction MIRE feature
untimed modulo-counting languages, such as (a?)*, not expressible in MITL.
More interestingly, MIRE also feature additional timed properties.

Ezample 2. Consider the expression x = a - ((a™)}1,9)" over the alphabet {a}.
It describes words w with a subsequence of events a from the first to the last of
w such that pairs of adjacent events are separated by 1 to 2 units of time.

152 T. Ferrere

We show similarly as in [18] that the language of x in Example 2 cannot be
expressed in MITL. For this, define a family of words (w,,) as follows: wg = ¢,
and w,, = %awn_l for all n > 0. Observe that w, € L(x) iff n > 1 and n is
odd, as illustrated in Fig. 2. In contrast for every MITL formula 1 there exist
a bound k such that w, € L(¢) iff w,41 € L(¥), for all n > k. This bound is
straightforward to obtain by structural induction. Thus, £(x) # L().

0
53 53-&-1 33+2 58 ss-‘rl 53+2

Fig. 2. Timed word w13, with events a occurring at absolute times s = s1, s2, ..., S13.
Expression x = a- ((cfr)[LQ])+ entails only one possible decomposition of w13 as shown.
Events at times s; for ¢ even do not appear in this decomposition but are locally
indistinguishable from those at s; for j odd.

4 From MIRE to Deterministic Timed Automata

In this section, we show that MIRE translate to deterministic timed automata.
The first step of the procedure translates a MIRE ¢ into an equivalent MIA A,
in a standard way. The second step performs some kind of subset construction
to turn A, into a deterministic automaton A:D. Because timed automata have a
bounded number of clocks, over a given timed word automaton .A;, cannot store
the set of possible states of A, explicitly. To this effect we adapt the notion of
approximation of [10] to group in intervals possible clock values in A, that have
a similar future. We show the soundess of this approximation, and demonstrate
how it can be implemented in a deterministic automaton.

Translation to MIA. Automaton A, = (X, {x}, Ly, Sy, {{,}, Ay) equivalent to
the MIRE ¢ is obtained by structural induction. We assume that automata given
by induction hypothesis have disjoint sets of locations, but share the same clock.

— Atomic expressions: A, has its final location ¢, marked as initial, and no edge;
A, further has one edge labeled a from £, to its final location ¢,.

— Disjunction: Aguy is obtained by replacing ¢, and £y with £,y in the
component-wise union of A, and Ay.

— Concatenation: A.y is defined by letting Lo,.p = Ly, U Ly \ {€s}, Sppp = Sy
if b, ¢ Sy, Spp = S U Sy \ {€,} otherwise, and £, = €. The set Ay
is obtained from A, U Ay, by replacing every edge (¢,a, 9, Z,{,) with edges
(lya,¢,Z,0) for all ¢/ € Sy.

— Kleene star: without loss of generality, assume that ¢ is primitive and ¢*
is derived as e U pT. Define A+ by letting Ly+ = Ly, Sp+ = Sy, Lo+ =y,
and Ay+ = A, U{({,a,9,Z, €’) | (,a,¢,Z,L,) € Ay, l' € S, }.

— Duration Constramt A, is defined by L,, = L,, Sy, =S,if0€1, S, =
Sy \ {¢y} otherwise, and £,, = {,. The set A,, is obtained from A, by
replacing every edge (¢,a, T,0,¢,) with (¢,a,x € I,{z},{,).

The Compound Interest in Relaxing Punctuality 153

Ezample 2 (Continued). Consider the expression x = a - ((a™)[1,2))" previously
described. Using the above procedure, it translates into the automaton A,
depicted in Fig. 3.

x>0 1<xz<?2
(1 z <+ 0 0 <+ 0 @
1<z<2
z<+ 0

Fig. 3. Automaton A, translating x (event labels are omitted).

Parallel Runs. Fix A a metric interval automaton with clock x. We now treat
valuations of x as real values ¢ € T, and introduce the following definitions. An
interval state (¢,J) pairs a location ¢ with an interval J, representing the set
of states {({,t) | t € J}. A configuration is a set of interval states. Transition
functions «f», 2, between configurations C, D of A are such that C L D iff
D={{teJ)|(,J)eC},andC L Diff D={,J)|3¢J)eC (£J) %
(¢/,J")}. Here, by (¢,J) = (¢,J') we mean that A has an edge of the form
(¢,a,¢, 7, ¢) such that t = ¢ for at least onet € J,and J = J'if Z =0, J = {0}
otherwise. The parallel run of automaton A over some word w = t1ay ...t,a, is
a sequence of transitions Co *5 ch . L C!_, % C, labeled by w, where
the initial configuration Cj is the set of interval states (¢, [0,0]) for ¢ initial. All
intervals appearing in a parallel run are singular.

Lemma 1. There exists a run of A over w finishing in a given location € iff the
final configuration of the parallel run of A over w features £.

0.5 a 0.5 a =

Co 5 {(0r. [0.0)} Co = =5==>{(61, 0,01}
129, 01, 0,0]), M0, [0,0),
(£1,[1.3,1.3]), (£2, [0,0])} (€1,[1.3,1.3]), (£2,[0,0])}
%39, (61,10, 0)), (¢1,[0.3,0.3]), 8555 {(4,10,0.3)),
(€1,[1.6,1.6]), (¢2, [0, 0])} (¢41,[1.6,1.6]), (¢2,[0,0])}
2.9, ((61,[0,0)), (¢1,[0.2,0.2]), 825 55{(6, [0, 0.5),
(€1,10.5,0.5]), (€1, [1.8, 1.8]), (£2, [0, 0])} (£1,[1.8,1.8]), (£2, [0, 0])}
225064, 10,0]), (£1,[0.9,0.9]), (£1, [1.1,1.1]), 224 25 { (4, [0, 1.4]),
(€1,[1.4,1.4]), (¢1,[2.7,2.7]), (¢2,[0,0])} (€1,[2.7,2.7)), (£2,[0,0])}

Fig. 4. The parallel and <-parallel runs of A, over w.

Ezample 2 (Continued). Consider timed word w = 0.541.3¢0.320.200.9a and
automaton A, . The parallel run of A, over w is shown in the left part of Fig. 4.
Since {2 appears in the final configuration, we have w € L(A,).

154 T. Ferrere

Approzimation. We now define an approximation relation (to be correct, a
simulation relation) between configurations closely matching the one in [10]. Let
¢, d stand respectively for the largest b and smallest b— a across clock constraints
in A of the form x > aAz < b for some > € {>, >} and < € {<, <}. In the absence
of such constraints, take ¢ = 0 and d = co. Approximation relation < over config-
urations will be used to merge intervals either less than d apart, or extend beyond
c. It is defined by letting C' < D when C\ {(¢,I), (¢, J)} = D\ {({,ch(I U J))}
for some (¢,I) # (¢,J) € C, ({,ch(I U J)) € D such that inf J —supI < d and
inf I —supJ < d, or sup(I UJ) > c. When all clock constraints are strict (resp.
non-strict) we can use > ¢ (resp. < d) instead.

Approzimate Parallel Runs. Let us now write C 25 D when D is maximal
relative to < such that C <* D, where * denotes reflexive-transitive closure. A
<-parallel run of automaton A over some word w = t1aq ...t,a, is a sequence
of transitions Cp <& ch 2 ol R ch_, oy %5 C, labeled by w
interleaved with approximations, from the initial configuration Cj. Relation <
constitutes a faithful abstraction in the sense of the following lemma.

Lemma 2. For any word w, the set of locations that appear in final configura-
tions of the parallel, and <-parallel runs of A over w, are the same.

The approximation behaves deterministically: for any configuration C of A

there is a unique D such that C %5 D. Tt also ensures the size of configurations
also stays bounded. Let m = |L| be the number of locations of A, and let n
be the resolution of A, defined by n = Lﬂ + 2 if d < 0o, 1 otherwise. For any

configurations C' 55D of A, we have |D| < mn.

Ezample 2 (Continued). The <-parallel run of A, over w, shown in the right
part of Fig. 4, groups clock values stemming from events number 2 to 5 in w. We
check that ¢, appears in the final configuration, and w € L(A,).

Subset Construction. We translate a given MIA A = (X, {z}, L, S, F, A) to the
deterministic timed automaton A" = (X, X' L', S, F’, A’) as follows.

— Clocks: X' =Y UY' with Y ={y1,¥2, -, Ymn}, Y = {¥1, %5, - -, Yon I
— Locations: L' = 2LxYxY",
— Initial locations: S" = {Qo}, where Qo = S x {y1} x {y1}-
— Accepting locations: F/ ={Q e L' | QN (F xY xY’) # 0}.
— Edges: A’ is built as follows. For every source P € L', letter a, feasible set of
edges F C A, and potential target Q € L', we construct:
e constraint §(P, E) ensuring that E is exactly the set of edges of A that
can be taken from P;
e configuration R(P, E) reached when taking such edges;
e constraint A< (R, Q) ensuring that @) approximates R.
Edges from P to) are guarded by the conjunction of # and A<, and reset
either no clock, one clock in Y, or a pair of clocks in Y x Y”.

The Compound Interest in Relaxing Punctuality 155

Given a valuation v, clock pair yy’ € Y x Y’ represents the interval [v(y), v(y')],
location @ € L' represents the configurationv(Q) = {(¢, [v(y),v(v")]) | Lyy’ € Q}.

Edges. We now present in detail the construction of A’. For yy’ € Y x Y’ and
¢ € &({z}) let ¢[yy’] stand for the constraint ¢ in which y (resp. y’) replace z in
lower (resp. upper) bound comparisons. For any valuation v with v(y) < v(y’),
we have v = ¢[yy’] iff there exists t € [v(y),v(y’)] such that t = ¢. Now let
P € I’ and a € X. Denote by A(P,a) C A the set of edges labeled a and
whose source location appears in P. Given a subset £ C A(P,a), we define the
constraint 0(P, E) ensuring that edges fired from P upon event a are precisely
those in E:
9(P,E) = /\

ARYAN —dlyy'].

Lyy’ €P,(¢,a,0,Z,0')EE Lyy’ €P,(¢,a,6,Z,0')€EA(P,a)\E

Clock resets are temporarily handled using fresh variables yo and y(, extending
sets of clocks to Yo = Y U {yo}, Y§ = Y’ U {y;} and set of locations to Lj =
2LxYoxYy The target configuration R(P, E) € L} when firing edges in E from
P is defined by letting

R(P,E)={lyy | tyy' € P, (l,a,T,0,0') € E}YU{l'yoy, | (¢,a,0,{zx}, ') € E}.

When 6(P, E) holds, automaton A" transits to a configuration that approximates
R(P, E). Given configurations Q, R € L{,, we now define A;(R, Q) ensuring that

Q@ approximates R. We would like that v = A< (R, Q) iff v(R) BN v(@Q), for all
valuations v. But if some clocks share the same value, for a given R there may

be more than one @ such that v(R) s v(Q). Priority is given to clocks with
lowest index. Given indices ,4’,7,7 € {0,...,mn}, k € {i,j} and k' € {¢/, '},
define

piirjrrk = (i — Yy < cAy; =y <)V (yi > dNy; > d)) A
Wi >y VWi =y NP <E)A((y; >y Vyi =) Nj < k) A
Wir <y V(Yo =y NS KN AWy <y VW =y AT <E)).

For any ¢ € L, constraint p;jj ke ensures that fly;y;, and fy;y’, should
be merged to fyiy;,. The constraint As(R,Q) is defined as the conjunc-
tion of two parts: (1) the disjunction over well-formed chains of merges
i gigrkikl, . ity gnds krky, from R to @ of conjunctions of y over the chains;
(2) the conjunction of -y over all possible merges in Q. This guarantees that
one such chain is (1) correct and (2) maximal in length. We can now replace
temporary variables yo, y{, with available clocks in Y UY”. Let us define the set
of clocks Zg as follows:

— If both yo and y(, occur in Q, let Zg = {y;,y} } for i,i’ > 1 the least indices
such that y;,y}, do not occur in Q;

156 T. Ferrere

— If yo occurs in @ but not yj, let Zg = {y;} for i > 1 the least index such that
y; does not occur in Q;
— Otherwise, let Zg = 0.

We write @ € L to denote the configuration @ in which yg,y) are replaced by
clocks in Zg. The set of edges of A’ is obtained by letting

Al = {(P,a,H(P,E) /\)‘<(R(P>E)3Q)7ZQ7@) | Pe L/,CL € EaQ € L67
EC A(P,a)).

Theorem 3 (MIRE = DTA). For any MIRE of size m and resolution n, one
can czonstruct an equivalent deterministic timed automaton with 2mn clocks and
2m L Jocations.

Example 2 (Continued). Applying the above procedure to A,, we obtain
automaton A’ of Fig. 5. We use the following simplifications. In A, , any state in
location ¢; with clock value above 2 cannot reach ¢5. We remove interval states
Lyy’ from target configurations of A;(for any y € Y such that y > 2. Transi-
tions preserve the ordering of non-reset clocks, and we use this to simplify clock
constraints. Locations not (co-)reachable are also removed.

Fig. 5. Automaton A determinizing A, (event labels are omitted).

5 Metric Interval Dynamic Logic
We now introduce metric interval dynamic logic (MIDL) as the dynamic logic of
MIRE. It provides linear dynamic logic (LDL) [13,15] with timing constraints.
Syntaz. MIDL formulas 1 and expressions ¢ are given by the grammar
pu=al [PV [y
pu=arle-pleUe|e”
yua=elP? vy [yur [T

The Compound Interest in Relaxing Punctuality 157

where a € X and I is a non-singular integer-bounded interval. The size of
an MIDL formula is the total size of expressions ¢ in its modalities (p). The
resolution of MIDL formulas is defined inductively as for MITL.

The form (p)® is known as suffiz conjunction and is satisfied when 1 holds at
some future time instant such that ¢ matches the events from now to that time
instant. When ¢ is of the form ~; for simplicity we write ()% in place of (7).
Observe that (1 - 2)1 < (p1)(p2)1 and (p1 U p2)¥ < (p1)1 V (p2)9), hence
when no star is applied to a timed subexpression, formulas can be rewritten
using modalities of the form (), only. The form %7 is known as a test and
matches any time instant where 1 holds. We also write a in place of a? for any
a € Y. Using this convention, MIRE are a fragment of MIDL.

Semantics. The semantics |= of MIDL formulas is defined over pointed words,
with the same inductive definitions as MITL in the case of events a € X and
Boolean connectives —, V. The case of suffix implication () is as follows:

(w,i) E (p)¥ iff (w,i,j) E ¢ and (w,j) | o for some j > i.
The semantics £ of MIDL expressions is defined over bi-pointed words, triples
(w, 4, j) of timed word w and positions 0 < ¢ < j < |w]|, as follows.

Ee iff
=7 iff

(w,1,7) j
7 Gmi4land (wd) = ¥
(w,1,7) E v1 - p2 ifft (w,i,k) E ¢1 and (w, k,j) E @2 for some k
(w, i J) EeiUgy il (w,i,5) Eeror (w,i,)) E ¢

(w,i,§) E ¢* iff (w,i,7) E " for some k

(w,i,7) E er iff (w,i,)) E ¢ and |w; | € 1.

This semantics definition is compatible with that of MIRE and TRE in gen-
eral. The language L£(v)) of formula v is defined by L(¢) = {w | (w,1) E ¥}.

Temporal Logic. The until operator can be defined in MIDL as the abbrevia-
tion ¥y Ur o = (Y17 - T7) ;1h2. We also use operators always and eventually as
previously. In general MIDL is more expressive than MITL.

Ezample 3. Consider the formula = 0Oa — (T?* - b - T?+>(071)c) over the alpha-
bet {a,b,c,d}. It describes words in which every occurrence of a triggers in the
future within less than one time unit an occurrence of b followed by one of c.

A conjecture of [4], proved in [9], states that formulas similar to the one above
cannot be expressed in MITL. Replacing b, ¢ by arbitrary formulas, we obtain
an instance of so-called Pnueli modality [18]. The simpler threshold counting
modalities ((T?* - ¢?)k=1. T?%) ¢, requiring that ¢ holds k times within I time
units, already cannot be expressed in MITL for k& > 1, see [18].

Automata Modalities. Let us define extended MITL (EMITL) by adding to MITL
the syntactic clause ¢ ::= A(t1, . .., ¥y,), where A is a metric interval automaton

158 T. Ferrere

over the alphabet 2{%1:%m} The semantics of this clause is such that (w,i) =
A1, ...,) iff the word t,41 iy ... t, ¥, is accepted by A, where each t; is
the j-th delay in w and each ¥; is the subset of formulas amongst ¥y, ..., 9y,
satisfied at position j.

Proposition 2 (MIDL < EMITL). Every MIDL translates to an equivalent
EMITL formula, and every EMITL translates to an equivalent MIDL formula.

We translate an MIDL formula into EMITL by recursively replacing every
suffix conjunction (p)1 with the modality A(t)1, ..., %m,¥), such that A trans-
lates the expression ¢ - 9?7 - (T?)* in which atomic expressions ¥17?,...,1¥,7, 10?7
are replaced by compatible subsets of {11,...,¥m, ¥}

Ezample 3 (Continued). Formula £ = O(a — (T?* -b- T?%) o1y ¢) is rewritten
in EMITL as £’ = O(a — B), where B is the MIA given in Fig. 6.

T T T
b <z <1
; 0

Fig. 6. Automaton B appearing as subformula in &’

Conversely EMITL translate to MIDL replacing automata A(w1,...,%Un,)
with suffix conjunctions (©)—(T?)T, where ¢ translates 4. Here the role of
subformula —~(T?)T is to recognize the last position in the word.

Ezxpressiveness. Supplementing MITL with automata modalities has been pro-
posed by [37] and [17]. The logic of [37] corresponds to the MIDL fragment where
all modalities ¢ are of the form (v);, equivalently, where no star is applied to a
timed expression. We call this fragment basic MIDL, and show that it is strictly
less expressive. In particular, the MIRE x = a- ((a™)[1,9))" of Example 2 cannot
be expressed as a basic MIDL formula. The family (w,,) of Sect. 3 is not a wit-
ness of this fact, since it can be classified for x using a simple modulo-2 counter.
Instead we consider timed words w¥, with k > 0 events clustered around the
events in w,, as illustrated in Fig. 7. Formally, we let w§ = e and w® =tk awk_,
for all n > 0, with delays t& given by t* = 1+ L if n =0 (mod k), tk = L
otherwise. We claim that for any basic formula ¢ there is a k such that for large
enough n either both w* and wk 4 satisfy ¥, or neither. This disagrees with x,

which recognizes exactly one of w¥ and w¥ e

1: : : :
S0 so+ 1 so + 2 so + 3 so + 4

Fig. 7. Timed word w?s with events occurring at absolute times s = so, . . ., s17. Expres-
sion x = a-((a™)[1,9))" entails several decompositions of wis as shown. Over words w?,
the number of events per interval [s; + ¢, s; + d] for ¢ < d fixed integers and fixed n is
either constant or periodic with period 3 as a function of i < n — 4d.

The Compound Interest in Relaxing Punctuality 159

6 From MIDL to Nondeterministic Timed Automata

In this section we present a compositional translation of MIDL based on temporal
testers [26,27,33]. The first step of the procedure turns the MIDL formula into
an EMITL formula, and we consider this step implicit. The second step builds
testers for every operator of the formula, and composes them together.

Temporal Testers. We introduce the framework of our translation. Let B be a
set of Boolean variables. Valuations u : B — {0, 1} are identified with elements
of 2B, under the convention that u(p) = 1 iff p € u, for any p € B. In the
interest of simplicity, we assume an alphabet of events of the form ¥ = 24.
We call timed component an automaton over an alphabet X’ of the form 27 for
some B DO A. The projection of a timed word w = tyuy . ..t,u, over variables B
onto variables A is defined as w|4 = t1(ug N A)...t,(u, N A). The synchronous
product 77 ® 75 of timed components 7; and 75, defined in the expected way,
is such that a timed word w is accepted by 77 ® 75 iff w is accepted by both 77
and 73 when projected onto their respective variables (see [26] for more details).
Let 1) be a formula over X' = 24 and 7 a timed component over X’ = 28 with
output variable p € B\ A. We say that 7 [p] is a tester of ¢ when the following
conditions hold:

1. For all timed words w over X there exists a timed word w’ accepted by T
such that w is the projection of w’;
2. For all timed words w’ accepted by 7, and all positions 0 < 7 < |w’| it holds

(w',i) = pif and only if (w',i) E .

Compositionality. The construction of a tester Zy[p] for formula 1 is inductive
on the structure of 1. For each subformula 1)’ of 1), we construct a tester for its
main subformulas, and compose it with a tester associated to its main operator:

T [p] = T-4lp] ® T5[q]
Tovplp] = Tovep] © To[q] © Tyr]
Tar o) P) = Tatgrosqm) [P) @ Ty (1] ® - @ Ty, [gim]-

Testers for atomic formulas and propositional operators are simple one-state
components, with edges labeled by matching valuations of variables. Testers for
automata modalities are presented in the rest of this section. An acceptor Ay
of L(1) is obtained by product of 7[p] with a two-state component enforcing
that p holds at position 1 in the input word, and projection onto X = 24.

Automata Modalities. For a given MIA A = (X, X, L, S, F, A), the tester 74[p]
predicts at each position whether A accepts the corresponding suffix, and outputs
the prediction in p. If T4[p] predicts that A accepts the suffix from 4, then it
creates a positive obligation attached to an initial state, and nondeterministically
follows one run of A from this state. If 74[p] predicts that A rejects the suffix
from 4, then it creates a negative obligation attached to all initial states, and
deterministically follows all runs of A from those states.

160 T. Ferrere

Let ¢ and d be the maximum magnitude and minimum width of clock con-
straints in A, defined as in Sect. 4. We define < as the approximation relation that
verifies C' < D when C'\ {((,1),(¢,J)} = D\ {({,ch(I U J))} for some distinct
0, 1),,J),¢ K) eC,(¢ch(IUJ)) € Dsuch that sup JUJUK —inf JUJUK < d
and KNch(TUJ) =10, or inf K > infJ > c.

Approximation < nondeterministically merges two intervals amongst three
within the same window of length d. Assume inf J < inf K < inf H; after a delay
teTifted K C I then either t & J C I or t & H C I. Similar remarks can
be made for intervals above c; this settles the correctness of the approximation
relative to positive obligations. For negative obligations we see that < is finer
than < of Sect.4. The approximation < merges intervals separated by a period
less than d, while < merges intervals lying in a window less than d long.

Let m and n be the number of locations, and resolution of A. Any D such

< .
that C --» D for some C now has at most 2mn interval states.

pAy <1

5 Tp
2,27 0 —Lozz

vy e oYy

!
Z,Z(io ,p</0
Zy % +lozz
P ; ¢ —pA
wit <0 D<yny <1
—lozz’

a,c,d;
-pAZ <1
z++ 0

Fig. 8. A few locations and edges of component 73[p] (for convenience, the value of p
is handled using additional propositional constraints p and —p).

Subset Construction. We transform the MIA A = (X, X, L, S, F, A) into the
tester Talp] = (X', X', L', 58", F', A") defined as follows.

= Clocks: X' =Y UY’, where Y = {y1,...,92mn} and Y = {9, ..., Yo }-

— Locations: L' = 2{=HIXLxXY XY’ ‘getg of (negative, positive) obligations.

— Initial locations: E’ = {(}.

— Accepting locations: F/ = 2U}x(IAF)U{HIxE) XYY" " gyeh that all positive
(negative) obligations are attached to accepting (rejecting) states.

— Edges: we define Ax(R,Q), Zo and Q similarly as in Sect.4, and let

A ={(Pu, x(R,Q) NO(P,E), Zg,Q) | Pe L' ,ue ¥',E € A(P,un X),
Re Ru(p)(P? E)aQ € L6}
where (P, E), A(P,a) for a € X, and R;(P, E) for i = 0,1 are defined below.

Given P € L' and a € X, we denote A(P,a) the set of subsets E C A
such that for all +¢za’ € P there exists 6 = (¢,a,¢,Z,¢') € E, and for all

The Compound Interest in Relaxing Punctuality 161

—lxx’ € Pand 6 = ({,a,¢9,Z,0'), if § € A then 6 € E. The constraint §(P, E),
defined similarly as in Sect.4, ensures E contains all feasible edges from neg-
atively marked locations, and one feasible edge from each positively marked
location. We denote L{ locations of L’ with additional variables yo, y{, as pre-
viously. Define the target configuration R(P, E) € Lj when taking edges E
from P as follows: R(P,E) = {sl'yy’ | (¢,a, T,0,0') € E, styy’ € P} U {sl'yoy; |
(l,a,0,{x},0') € E, styy’ € P}. When the prediction p is false the set of possible
target configurations is given by Ro(P, E) = {R(P, E)}, and when the prediction
p is true, given by R1(P,E) = {(R(P, E) U {+£Lyoy,}) | £ € S}. This completes
the construction of T4[p].

Theorem 4 (MIDL = NTA). For any MIDL formula of size m and reso-
lution n one can construct an equivalent timed automaton A, with 4mn clocks
and 28™°7*+1 Jocations.

Ezample 8 (Continued). Consider automaton B of Fig. 6. We illustrate the pro-
cess of constructing its tester in Fig. 8. After constructing 7z[p], we obtain the
tester for £’ as the product T¢ [r] = T 4[r] ® Ta—plq] ® T5[p]. To get an acceptor
for £, we take the product of 7¢ [r] with some acceptor of r and project back the
result onto alphabet 3.

7 Discussion

We extended the punctuality relaxation of [3] to timed versions of regular expres-
sions and dynamic logic, generalizing results of [17,37]. The expressions we intro-
duced have a direct connection with automata. Their expressiveness is limited
to a small class of one-clock timed automata, also related to perturbed timed
automata [5]. However in the setting of dynamic logic, such expressions yield an
expressive specification language with good decidability properties:

Corollary 1. The satisfiability of MIDL and the model checking of timed
automata against MIDL are EXPSPACE-complete.

The lower bound follows from the discrete-time case, while the upper bound is
obtained by reduction to timed automata language emptiness, see [3]. Decision
procedures for MITL have recently been gaining interest, with implementations
of [8,12] and formalization by [34]. An interesting direction for future work would
be to assess experimentally the efficiency of MIDL decision procedures derived
from Corollary 1.

Metric dynamic logic was independently proposed by [7] in the context of
monitoring. Extensions of metric temporal logic with regular expressions modal-
ities were also studied by [23]. The logic MITL+URat of [23] is equivalent to
basic MIDL discussed in the present paper. Its modalities ¢, U, 192 can be
written (y N (¢17* - T7?)),;92 (the intersection N of untimed expressions v and
¥ 7*-T7 can be eliminated in polynomial time) and in the other direction (v) ;%
rewrites into T U, ;1. Both logics are equivalent (and translate in polynomial

162 T. Ferrere

time) to the EMITL of [37]. Complexity of the satisfiability problem was not
studied by [37], whose proofs can only give non-elementary upper bounds. The
present work improves on the 2EXPSPACE upper bound of [23] by providing
a tight EXPSPACE construction. The more general MITL + Rat [23] has non-
elementary complexity. The position of MIDL in the expressiveness landscape of
decidable MTL variants (see also [22]) is a topic for future research.

The family of languages considered in this paper are all recognizable by
one-clock alternating timed automata (OCATA) [24,30]. Our determinization
procedure uses a timed variant of the classical subset construction inspired from
[10]. The authors of [10,11] consider the dual problem of eliminating univer-
sal non-determinism in OCATA stemming from the translation [30] of MITL
formulas. The transition graph in an MIA has more structure than in OCATA
stemming from MITL translations, requiring additional clocks to follow states
moving to the same location using separate paths. While the emptiness prob-
lem for OCATA is decidable over finite words, its complexity is non-elementary
[24,30]. Generalizations of this model with Biichi conditions, two-wayness, or
silent transitions all lead to undecidability [1]. On the contrary our expres-
sions and logic have elementary decision procedures, which can in principle
be extended to handle w-words, past operators, and continuous-time Boolean
signals.

Acknowledgments. I thank Eugene Asarin, Tom Henzinger, Oded Maler, Dejan
Nickovié, and anonymous reviewers of multiple conferences for their helpful feedback.

References

1. Abdulla, P.A., Deneux, J., Ouaknine, J., Quaas, K., Worrell, J.: Universality anal-
ysis for one-clock timed automata. Fundam. Inform. 89(4), 419-450 (2008)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183-235 (1994)

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116-146 (1996)

4. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol.
600, pp. 74-106. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031988

5. Alur, R., La Torre, S., Madhusudan, P.: Perturbed timed automata. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 70-85. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31954-2_5

6. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172-206
(2002)

7. Basin, D., Krstié¢, S., Traytel, D.: Almost event-rate independent monitoring of
metric dynamic logic. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548,
pp. 85-102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2_6

8. Bersani, M.M., Rossi, M., Pietro, P.S.: A tool for deciding the satisfiability of
continuous-time metric temporal logic. Acta Informatica 53(2), 171-206 (2016)

9. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In:
Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432-443. Springer,
Heidelberg (2005). https://doi.org/10.1007/11590156_35

https://doi.org/10.1007/BFb0031988
https://doi.org/10.1007/978-3-540-31954-2_5
https://doi.org/10.1007/978-3-319-67531-2_6
https://doi.org/10.1007/11590156_35

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

The Compound Interest in Relaxing Punctuality 163

Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed
automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol.
8053, pp. 47-61. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40229-6_4

Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed
automata over infinite words. In: Legay, A., Bozga, M. (eds.) FORMATS 2014.
LNCS, vol. 8711, pp. 69-84. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-10512-3_6

Brihaye, T., Geeraerts, G., Ho, H.-M., Monmege, B.: MIGHTYL: a compositional
translation from MITL to timed automata. In: Majumdar, R., Kuncak, V. (eds.)
CAV 2017. LNCS, vol. 10426, pp. 421-440. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63387-9_21

De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. IJCAI 13, 854-860 (2013)

Eisner, C., Fisman, D.: A Practical Introduction to PSL. Integrated Circuits and
Systems. Springer, Heidelberg (2006). https://doi.org/10.1007/978-0-387-36123-9
Fischer, M.J.: Propositional dynamic logic of regular programs. J. Comput. Syst.
Sci. 18(2), 194-211 (1979)

Furia, C.A., Rossi, M.: MTL with bounded variability: decidability and complexity.
In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 109-123.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85778-5_9
Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages.
In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
580-591. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055086
Hirshfeld, Y., Rabinovich, A.: An expressive temporal logic for real time. In:
Kralovi¢, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 492-504.
Springer, Heidelberg (2006). https://doi.org/10.1007,/11821069-43

Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous
time. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967,
pp- 211-220. Springer, Heidelberg (2006). https://doi.org/10.1007/11753728_23
Kleene, S.C.: Representation of events in nerve nets and finite automata. Automata
Stud., 3-42 (1956)

Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255-299 (1990)

Krishna, S.N., Madnani, K., Pandya, P.K.: Metric temporal logic with counting.
In: Jacobs, B., Loding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 335-352.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49630-5-20
Krishna, S.N., Madnani, K., Pandya, P.K.: Making metric temporal logic rational.
In: Mathematical Foundations of Computer Science, pp. 77:1-77:14 (2017)
Lasota, S., Walukiewicz, 1.: Alternating timed automata. In: Sassone, V. (ed.)
FoSSaCS 2005. LNCS, vol. 3441, pp. 250-265. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31982-5_16

Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: past, present, future.
In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2-16.
Springer, Heidelberg (2005). https://doi.org/10.1007/11603009-2

Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274-289. Springer,
Heidelberg (2006). https://doi.org/10.1007/11867340-20

Michel, M.: Composition of temporal operators. Logique et Analyse 28(110/111),
137-152 (1985)

https://doi.org/10.1007/978-3-642-40229-6_4
https://doi.org/10.1007/978-3-642-40229-6_4
https://doi.org/10.1007/978-3-319-10512-3_6
https://doi.org/10.1007/978-3-319-10512-3_6
https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.1007/978-0-387-36123-9
https://doi.org/10.1007/978-3-540-85778-5_9
https://doi.org/10.1007/BFb0055086
https://doi.org/10.1007/11821069_43
https://doi.org/10.1007/11753728_23
https://doi.org/10.1007/978-3-662-49630-5_20
https://doi.org/10.1007/978-3-540-31982-5_16
https://doi.org/10.1007/978-3-540-31982-5_16
https://doi.org/10.1007/11603009_2
https://doi.org/10.1007/11867340_20

164

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

T. Ferrere

Nickovié, D., Piterman, N.: From MTL to deterministic timed automata. In: Chat-
terjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 152—-167.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_13
Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti,
M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 496-510. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8_33

Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: Logic
in Computer Science, pp. 188-197. IEEE (2005)

Ouaknine, J., Worrell, J.: On metric temporal logic and faulty turing machines. In:
Aceto, L., Ingdlfsddttir, A. (eds.) FoSSaCS 2006. LNCS, vol. 3921, pp. 217-230.
Springer, Heidelberg (2006). https://doi.org/10.1007/11690634-15

Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,
pp. 46-57. IEEE (1977)

Pnueli, A., Zaks, A.: On the merits of temporal testers. In: Grumberg, O., Veith,
H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 172-195. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0_11

Roohi, N., Viswanathan, M.: Revisiting MITL to fix decision procedures. In: Ver-
ification, Model Checking, and Abstract Interpretation. LNCS, vol. 10747, pp.
474-494. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73721-8_22
Sipser, M.: Introduction to the Theory of Computation, vol. 2. Thomson Course
Technology, Boston (2006)

Vardi, M.Y.: From philosophical to industrial logics. In: Ramanujam, R., Sarukkai,
Sundar (eds.) ICLA 2009. LNCS (LNAI), vol. 5378, pp. 89-115. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-92701-3_7

Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed
automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994.
LNCS, vol. 863, pp. 694-715. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58468-4_191

https://doi.org/10.1007/978-3-642-15297-9_13
https://doi.org/10.1007/978-3-642-04081-8_33
https://doi.org/10.1007/11690634_15
https://doi.org/10.1007/978-3-540-69850-0_11
https://doi.org/10.1007/978-3-319-73721-8_22
https://doi.org/10.1007/978-3-540-92701-3_7
https://doi.org/10.1007/3-540-58468-4_191
https://doi.org/10.1007/3-540-58468-4_191

®

Check for
updates

IPL: An Integration Property Language
for Multi-model Cyber-physical Systems

Ivan Ruchkin®, Joshua Sunshine, Grant Iraci, Bradley Schmerl,
and David Garlan

Institute for Software Research, Carnegie Mellon University, Pittsburgh, PA, USA
iruchkin@cs.cmu.edu

Abstract. Design and verification of modern systems requires diverse
models, which often come from a variety of disciplines, and it is
challenging to manage their heterogeneity — especially in the case of
cyber-physical systems. To check consistency between models, recent
approaches map these models to flexible static abstractions, such as
architectural views. This model integration approach, however, comes
at a cost of reduced expressiveness because complex behaviors of the
models are abstracted away. As a result, it may be impossible to auto-
matically verify important behavioral properties across multiple models,
leaving systems vulnerable to subtle bugs. This paper introduces the
Integration Property Language (IPL) that improves integration expres-
siveness using modular verification of properties that depend on detailed
behavioral semantics while retaining the ability for static system-wide
reasoning. We prove that the verification algorithm is sound and analyze
its termination conditions. Furthermore, we perform a case study on a
mobile robot to demonstrate IPL is practically useful and evaluate its
performance.

1 Introduction

Today, complex software systems are often built by multidisciplinary teams using
diverse engineering methods [1,2]. This diversity is particularly apparent in cyber-
physical systems (CPS) where software control interacts with the physical world.
For instance, a mobile robot needs to brake in time to avoid collisions, compute
an efficient long-term plan, and use a power model of its hardware to ensure it has
sufficient energy to complete its missions. To satisfy each of these requirements,
engineers may use heterogeneous models that vary in formalisms, concepts, and
levels of abstraction. Even though these models are separate, interdependencies
naturally occur because they represent the same system.

Mismatches between such implicitly dependent models may lead to faults
and system failures. For example, the 2014 GM ignition switch recall was caused
by an unanticipated interaction between electrical and mechanical aspects of the
ignition switch [3]. This interaction led to the switch accidentally turning off mid-
drive and disabling the car’s software along with airbags, power steering, and

© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 165-184, 2018.
https://doi.org/10.1007/978-3-319-95582-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_10&domain=pdf

166 I. Ruchkin et al.

power brakes. This mismatch between the electrical, mechanical, and software
designs caused dozens of deaths and large financial losses.

To prevent such issues, inconsistencies or contradictions need to be detected
by integrating the heterogeneous models. This can be done by checking properties
that involve multiple models and formalisms, which we term integration properties.
Model integration is difficult [4] and checking integration properties is often done
informally through inspection, and is limited in rigor and outcomes. One way to
improve this would be to map diverse semantics and property checks into a single
unifying model. Unfortunately, it is hard (and sometimes impossible) to do so, as
in the case of unifying stateful and stateless models [5].

A common way to integrate heterogeneous models is to create and relate
simplified abstractions. One such abstraction is architectural views — behavior-
less component models annotated with types and properties [6-8]. Since views
are easier to reason about than heterogeneous models, structural consistency
checks can be formalized and automated [9]. However, model integration through
views sacrifices behavioral expressiveness of integration properties, meaning that
sophisticated interactions become uncheckable.

We perceive a foundational gap between the limited expressiveness of integra-
tion properties and the need to discover complex inconsistencies of several mod-
els. State-of-the-art integration approaches are limited in what is exposed from
models. Exposing too little leads to insufficiently expressive analysis. Exposing
too much leads to limited flexibility and extensibility of integration methods.

To help bridge this gap, this paper introduces the Integration Property Lan-
guage (IPL) — a formal specification and verification method for integration
properties based on architectural views. IPL’s goal is to systematically express
and automatically check properties that combine system behaviors and static
abstractions, enabling end-to-end verification arguments over multiple models.

The main design principle behind IPL is to combine first-order logical reason-
ing across many views with “deep dives” into behavioral structures of individual
models as necessary. IPL syntax interleaves first-order quantification over rigid
constructs (defined by views) and temporal modalities that bind the behavior of
flexible terms (changing according to models). Built upon existing satisfiability
solvers and model checkers, IPL uses a sound reasoning algorithm to modularize
the problem into subproblems that respective tools interpret and solve.

This paper makes three contributions: (1) a formalized modular syntax and
semantics of IPL, instantiated for two modal logics; (2) an algorithm to verify
validity of IPL statements, with a soundness proof and termination conditions;
and (3) a modeling case study of a mobile robot, with several integration prop-
erties to evaluate practical applicability and performance of the IPL prototype.

The paper is organized as follows. Section 2 introduces an illustrating scenario
of integration. Section 3 describes related work. Section4 gives an overview of
the IPL design, while Sect.5 provides the details of the IPL syntax, semantics,
and the verification algorithm. Section 6 provides a case study and a theoretical
analysis of the algorithm. We conclude the paper with limitations and future
work.

IPL: An Integration Property Language 167

2 Motivating Integration Case

Consider an autonomous mobile robot, such as TurtleBot (http://turtlebot.
com), that navigates to a goal location through a physical environment using its
map. The environment contains charging stations for the robot to replenish its
battery. The robot has an adaptive software layer that monitors and adjusts the
execution to minimize mission time and power consumption.

In the design of this system (more detail in Sect.6.1), we have two models:
a power prediction model and a planning model. The power prediction model
My, is a parameterized set of linear equations that estimates the energy required
for motion tasks, such as driving straight or turning in place. The model is a
statistical generalization of the data collected from the robot’s executions. Given
a description of a motion task, the model produces an estimate of required energy.

The planning model M,; finds a path to a goal by representing the robot’s
non-deterministic movements on a map, along with their time and power effects,
in a Markov Decision Process (MDP) [10]. The model’s state includes the robot’s
location and battery charge. Whenever (re)planning is required, the PRISM
probabilistic model checker [11] resolves non-determinism with optimal choices,
which are fed to the robot’s motion control. Although inspired by M,,, My, is not
identical to it because of various modeling choices and compromises, for example
it does not explicitly model turns.

These two models interact during execution: M,,, acts as a safeguard against
the plan of M,; diverging from reality and leading to mission failure. M;; only
needs to be triggered when the robot is going to miss a deadline or run out of
power. Otherwise, the robot avoids running the planner to conserve power!. If
M, has overly conservative energy estimates compared to My, it may miss a
deadline due to excessive recharging or taking a less risky but longer route. With
overly aggressive estimates, the robot may run out of power.

Integrating these two models means ensuring that their estimates of required
energy do not diverge. One threat to integration is the difference in modeling of
turns: M,; models turns implicitly, combining them with forward motions into
single actions to reduce the state space and planning time. In M,, however,
turns are explicit tasks, separate from forward motion. This potential inconsis-
tency can be checked with the following integration property: “the difference
i energy estimates between the two models should not be greater than a prede-
fined constant err_cons”. The purpose of this property is to enable end-to-end
safety arguments (e.g., not running out of power or arriving before a deadline).
Instead of (inaccurately) assuming equivalence of M, and My, this property
would provide a rigorous estimate of €rr_cons,? which can be used to assert that
the battery cannot run out because its charge is always greater than err_cons.

It is far from straightforward to verify this property. First, the abstractions
are different: M,,; describes states and transitions (with turns embedded in them),

! The planner’s own power consumption is not modeled, contributing to its inaccuracy.
2 As we detail later, we use overlines to mark static entities (not changing over time),
and underlines to mark behavioral entities (changing over time in model states).

http://turtlebot.com
http://turtlebot.com

168 I. Ruchkin et al.

whereas M,,, describes a stateless relation. Second, there is no single means to
express such integration properties formally: PCTL (Probabilistic Computation
Tree Logic [11]) is a property language for M, but M, does not come with a
reasoning engine. Finally, even if these obstacles are overcome, the models are
often developed by different teams, so they need to stay separate and co-evolve.

The integration property can be checked in several ways. A direct approach is
to develop a “supermodel” containing M,; and My, as sub-models. A supermodel
would query My, from each state of My,;. Although accurately detecting viola-
tions, this method is not tractable for realistic models of hundreds of thousands
of states. Furthermore, the property would be hardcoded in the supermodel
implementation, which would need to be developed anew for other properties.

Another approach relies on abstraction of models through architectural views.
The views are hierarchical arrangements of discrete static instances (architec-
tural elements) with assigned types and properties (defined in Sect.5.1). Typi-
cally, when views are used to integrate multiple models [12], the verification is
confined to the views to take advantage of their relatively simple semantics (with-
out temporal behaviors or dynamic computation). One could encode all possible
M,; behaviors (i.e., trajectories of locations, turns, and energies) in views, also
encoding them as atomic motion tasks of M,,. This approach, again, leads to
either intractability or approximation (e.g., only recording the number of turns
in each path), which in turn would not have soundness guarantees.

In this paper we pursue the integration approach that combines specifications
over behaviors and views as necessary. For now, we provide an informal version
of the integration property, which will be formalized in the end of Sect.5.2.

Property 1 (Consistency of M, and My;). For any three sequential My, tasks
(go straight, rotate, go straight)that do not self-intersect and have sufficient
energy, any execution in My that visits every point of that sequence in the
same order, if initialized appropriately, is a power-successful mission (modulo
EFT_Cons).

It is challenging to systematically express and verify such properties while
holding the models modular and tractable. Notice how missions in M,, need to
correspond to missions in My;; e.g., the initial charge of My, needs to be within
err_cons of the expected mission energy in M,,. Specifications like Proposition 1
are enabled by our solution design and the language syntax (Sects.4 and 5).

3 Related Work

Model Integration. Model-based engineering relies on a variety of formalisms,
including synchronous, timed, and hybrid models [5]. When models are similar,
it is easier to find unifying abstractions, like in the case of consistency checking
for software models [6,13,14] or model refinement [15-17]. We, however, target
a broader scope of cyber-physical models that were not intended for integration,
leading to more challenging problems [4,18].

IPL: An Integration Property Language 169

Integration approaches for CPS models can be seen along a spectrum from
structural (operating on model syntax) to semantic (operating on behavior)
ones [19]. One structural approach is to use architectural views — abstract com-
ponent models [7,20]. Views have been extended with physical descriptions for
consistency checking via graph mappings [12] and arithmetic constraints [21].
Other recent structural approaches include model transformations [22], ontolo-
gies [23], and metamodels [24]. Model transformations are typically forced to
either map models to the same semantics or abandon one or more in favor of
new meanings. This paper extends the view-based structural approach to write
formalized statements that affect many semantic universes.

On the semantic end, one approach is to relate model behaviors directly [25].
Although theoretically elegant, this approach suffers from limited automation
and creating inter-model dependencies. Other semantic approaches relate model
behaviors through proxy structures. Well-known examples include the Ptolemy IT
environment [26] and the GEMOC studio [27]. In contrast to these works on
heterogeneous simulation, we focus on logical verification of multiple models.
Another example is the OpenMETA toolchain for domain-specific language inte-
gration [28]. The toolchain contains automated support for verifying individual
CPS models (e.g., bond graphs) based on their logically-defined interfaces. Open-
META’s integration language (CyPhyML), however, commits to continuous-
trajectory semantics [29], whereas IPL allows arbitrary plug-in behaviors. Our
work builds on a prototype of a FOL/LTL contract formalism [30], which we
extend by providing a full-fledged language (as opposed to a stitching of two
statements) with a sound verification algorithm and a plugin system.

Logics, Satisfiability, Model Checking. This paper is related to quantified
Computation Tree Logic (QCTL) [31] and well-researched combinations of first-
order logic (FOL) [32] and linear temporal logic (LTL) [33], going back to the
seminal work of Manna and Pnueli [34] on first-order LTL, which has been instan-
tiated in many contexts [35,36]. Typically, such work focuses classical properties
of logics and algorithms, such as decidability and complexity. We, instead, focus
on expressiveness and modularity — practical concerns for CPS. For example,
IPL differs from the trace language for object models [36] in that we do not
create a full quantification structure in each temporal state. In contrast, IPL is
modular with existing models and delegates behavioral reasoning to them.

An ambitious approach is to directly combine arbitrary logics, at the cost of
high complexity and limited automation (as in fibred semantics [37]). Even when
modular [38], combining logics merges their model structures, which may lead to
tractability challenges in practice. We opt to keep models completely separate,
thus reducing complexity and overhead.

Our algorithm relies on Satisfiability Modulo Theories (SMT) [39] and model
checking [11,40]. To guarantee termination, we limit ourselves to decidable
combinations of background theories (like uninterpreted functions and linear
real arithmetic) that admit the Nelson-Oppen combination procedure [41]. In
practice, modern SMT solvers (e.g., z3 [42]) heuristically solve instances of

170 I. Ruchkin et al.

undecidable theories. In model checking we use the usual conversion of a modal
property to an automaton (Buchi, Rabin, ...) and its composition with mod-
els [11,43].

4 Integration Property Language: Design

The Integration Property Language (IPL) is intended for model integration,
which informally means that models do not contradict each other. We envision
the following workflow. An engineer creates or obtains system models for inte-
gration. Some of these models will be interfaced through a behavioral property
language. The other models will be accessed through static abstractions (views),
created by the engineer. Then the engineer writes and checks an integration
property over views and behavioral properties using IPL. If the verification fails,
the engineer inspects and corrects the models and/or the property. Whenever the
models change, their respective views are updated, and properties are reverified.

A primary goal of the IPL design is applicability to real-world model integra-
tions. Therefore, our design focuses on these three principles:

1. Expressiveness. To improve expressiveness over state-of-the-art static abstrac-
tions, IPL formulas must combine reasoning over views with behavioral analysis
of models (e.g., using modal logics). IPL should combine information from sev-
eral models using first-order logic (quantification, custom functions).

2. Modularity. To support diverse CPS models, IPL should neither be tied to a
particular property language or form of model behavior (discrete, continuous, or
probabilistic), require the reengineering of constituent models. Thus, IPL should
enable straightforward incorporation of new models and property languages.

8. Tractability. To enable automation in practice, verification of IPL specifica-
tions must be sound and implementable with practical scalability.
To support these principles, we make the following four design decisions.

A. Model integration by logically co-constraining models. IPL rigorously specifies
integration conditions over several models. Logical reasoning is an expressive and
modular basis for integration because it allows engineers to work with familiar
concepts and tools that are specific to their domains/systems. In this paper, we
target two modal logics common in model-based engineering: LTL and PCTL.

B. Separation of structure and behavior. IPL explicitly treats the static (rigid)
and dynamic (flexible) elements of models separately. We accomplish this using
views (defined in Sec. 5.1) that serve as projections of static aspects of behavioral
models. This separation enables tractability because static aspects can be rea-
soned about without the temporal/modal dimension. We support expressiveness
by allowing combinations of rigid and flexible elements to appear in the syntax.

C. Multi-step verification procedure. We combine reasoning over static aspects
in first-order logic with “deep dives” into behavioral models to retrieve only the

IPL: An Integration Property Language 171

necessary values. We preserve tractability by using tools only within individual
well-defined semantics, without direct dependencies between models.

D. Plugin architecture for behavioral models. To create a general framework for
integration, we specify several plugin points — APIs that each behavioral model
has to satisfy. While the model itself can stay unchanged, IPL requires a plu-
gin to use their formalism for verification. This way, IPL does not make extra
assumptions on models beyond the plugin points, hence enhancing modularity.

To support expression and verification of Proposition 1, we use PCTL with M,
to reason about behaviors and a view V,, for reasoning about the static/stateless
elements of My,. V,,, serves as a task library, containing all atomic tasks (going
straight and rotating in the motivating example) in each location/direction in the
given map. Each task is annotated with its properties, such as start/end locations,
distance, required time, and required energy. Each task in V,,, is encoded as a com-
ponent and contains several properties. Thus, this view allows natural composition
of missions as constrained sequences of components.

5 Integration Property Language: Details

This section describes IPL by defining its syntax and formalizing its semantics.
After, we provide an algorithm to check whether an IPL formula is valid.

5.1 Concepts and Preliminaries

The concept of an architectural view originates in the field of software architec-
ture [44]. Recently, views have been adapted to represent non-software elements
such as sensors and transducers in CPS [9]. We use views to extract information
for IPL to analyze without needing to process all the details of models.

Definition 1 (Architectural View). An architectural view V is a hierarchical
collection of architectural elements (i.e., components and connectors). Each ele-
ment has fixed-valued properties, the set of which is determined by its type and
values set individually for each element.

IPL uses views for modeling static, behavior-free projections of models. For
example, My, uses a map of locations for its tasks, and it can be exposed in
a view (Vimap) as a set of interconnected components (Locs). Each component
is a location, and connectors indicate direct reachability between them. We use
views as an abstraction because of their composability, typing, and extensible
hierarchical structure. No dynamic information (e.g., the current battery charge)
is put in views so that behavioral semantics are confined to models.

Definition 2 (Formal View). A (formal) view V is a pair of a view signa-
ture (Xv) and its semantic interpretation (IV). The signature contains a set
of architectural elements (E), their types, properties, sorts/constants, and func-
tions/predicates. The semantic interpretation gives static meaning to the ele-
ments in the view signature, independent of state or time.

172 I. Ruchkin et al.

We use formal views to define the syntax and semantics of IPL. We establish
an isomorphic relationship between the two definitions by converting architec-
tural models to SMT programs, as in prior work [30]. Both definitions of views
are used throughout the paper: Definition 1 — for applied modeling (e.g., repre-
senting views in the case study), and Definition 2 — for theory behind IPL and
verification.

Definition 3 (Model). A (behavioral) model M is a triple of an (interface)
signature, an interpretation (IqM), and a structure on which it is interpreted. The
signature defines symbols of state variables, modal functions/predicates, and a
list of name-type pairs for initialization parameters. The parametric structure
determines the model’s set of behavior traces (M.tres) [43,45].

Definition 4 (Model Property Language). For a class of models, a model prop-
erty language is a language for specifying expressions about a model of that class.
From these expressions I(;\" produces a value of a type interpretable by views.

For the rest of this section we consider a fixed set of behavioral models M,
with some of them abstracted by a fixed set of views (V). Each view can be seen
as some (implicit) function of a model. We consider two specific model property
languages: LTL and PCTL, although in principle we are not limited to them.

Shared by models and views, background interpretation I? evaluates com-
mon sorts, constants (e.g., boolean T and L), functions (e.g., addition), and
predicates (e.g., equality) from background theories (e.g., the theory of equal-
ity or linear real arithmetic). Formally, we only allow theories that are decid-
able [46] and form decidable combinations [41], but in practice it is acceptable
to use undecidable combinations for which available heuristics resolve relevant
statements.

Formulas will be described over a context of views and models. Syntactically,
IPL formulas are written over a signature (X) that contains symbols from V
and M. Semantically, a formula’s context is determined by a structure (I') that
contains interpretations I(;V', IV, and I® along with their domains.

Finally, we make additional assumptions: (i) views are pre-computed and stay
up-to-date with models; (ii) views can be translated into finite SMT programs;
(iii) once initialized, any model can check/query any statement in its property
language; and (iv) models and views share the background interpretation.

5.2 Syntax

To support modularity, we keep track of syntactic terms that cannot be inter-
preted by either views or models. So we introduce the rigid/flexible separation:
flexible terms (denoted with underlines, like loc) are interpreted by I, [;v', and rigid
terms (denoted with overlines, like Tasks) are interpreted by IV. Terms of 7
are used by both models and views (no special notation; e.g., <).

To embed model property languages into IPL, the syntax allows model-
specific formulas to be defined as “plugins” in the grammar. That is, various

IPL: An Integration Property Language 173

property languages are usable inside IPL formulas. Thus, the syntax is split into
the native (related to views) and plugin (related to property languages) parts.

One challenge is that the relation between IPL and model languages is
not hierarchical: native formulas contain plugin formulas, but native terms can
also appear in plugin formulas. An IPL interpreter should evaluate the native
parts when it prepares a model property to verify. Consider Proposition1 in
Sect. 2 where a model evaluating P,,,,—» requires interpreting native IPL term
to.startloc.

We organize the native/plugin syntax as presented in Fig. 1. We define each
syntax element (box) on top of symbols in 3 and quantified variables (V). We
build two types of subformulas: rigid atomic formulas (RATOM) from rigid terms
(RTERM), and flexible atomic formulas (MATOM). Our strategy is to keep flexible
and rigid syntax separate until they merge in FORMULA. In this way, we preserve
modularity: compound formulas can be deconstructed into simpler ones that are
evaluated by either models or views.

1
FORMULA | Legend
a

MDLINST (RTERM, ... RTERM) —
{puomso
Model/Flexible
MATOM
‘ (plugin pt H RATOM |

STVAR
(plugin pt)

MFUNC(MATOM...MATOM)
(plugin pt)

BFUNC(RTERM...RTERM)

RTERM.PROP |

‘ BFUNC(MATOM...MATOM)

Fig. 1. IPL abstract syntax. Boxes are syntax elements, arrows — syntactic expansions.

A rigid term RTERM is either a variable VAR, a constant CONST, an architec-
tural element type ELEM, a property of a rigid term RTERM.PROP?, a background
function BFUNC, or a view function VFUNC. A rigid atom RATOM is a logical
expression over rigid terms. See the full syntax rules in the online appendix [47].

Behavioral Model Plugin Points. To integrate multiple model formalisms
into IPL, the syntax defines four plugin points for model-specific constructs.
Each plugin point can be instantiated either with an extensible syntactic form
(e.g., a modal expression) or a reference to an existing form (e.g., RTERM). Each
behavioral model provides its own syntactic elements for plugin instances.

At the level of flexible terms (TERM), two plugin points are state variables
(sTVAR) and model functions (MFUNC). Each state variable (e.g., loc) is declared

3 Properties are only applicable to architectural elements, references to which can be
accessed in a variable or a function. We assume all expressions are well-typed.

174 I. Ruchkin et al.

as a pair (name, type) to be referenced from IPL. Each model function declares
a name, a type, and a list of arguments, each of which is name-type pair.

The third plugin point is model atom (MATOM), e.g., the expression Py,q.—7.
It requires one or several syntactic forms with production rules. In addition to
model-specific productions (e.g., temporal modalities), MATOM can use elements
RATOM and RTERM from the grammar’s rigid side (but not vice versa). A model
can, for example, plug in an LTL modal expression and use rigid terms in it.

Behavioral models often have parameters such as initial conditions. To pro-
vide parameter values, we introduce the fourth and outermost plugin point:

Definition 5 (Model Instantiation Clause). Model instantiation clause binds
rigid terms to model parameters, wrapping MATOM:

MDLINST ::= MATOM{|RTERMj ... RTERM,|}.

The values of RTERM; are passed as parameters to the behavioral model.
Finally, on top of the flexible syntax above, we can define quantification:

Definition 6 (IPL Formula). IPL formulas are logical formulas with first-order
quantification over an instantiated model formula or a rigid atom.

FORMULA ::=VYVAR : RTERM - FORMULA | MDLINST | RATOM |
FORMULA A FORMULA | "FORMULA.

Mlustrating modularity of the syntax, we give two extensions of the grammar:
first with Linear Temporal Logic (LTL) [33], and second with Probabilistic Com-
putational Tree Logic (PCTL) [11]. Here we highlight the expansion of MATOM
in both plugins, while their full description is in the online appendix [47].

LTL Plugin Syntax. Linear Temporal Logic (LTL) is a logic to express tem-
poral constraints on traces [33]. We embed the usual modalities: until and next.
TATOM,, ::= TATOM U TATOM, TATOM;, ::= X TATOM,
TATOM, := TATOM A TATOM, TATOM,, := —TATOM,
MATOM ::= TATOM ::= RATOM | TERM | TATOM,, |TATOMg | TATOM, | TATOM,,.

PCTL Plugin Syntax. We use extended PCTL (its variant used in PRISM)
expresses probabilistic constraints over a computation tree, and its models are
MDPs and discrete-time Markov chains (DTMCs) [11]. Flexible terms are as in
the LTL plugin, but MATOM expands into several layered behavioral atoms.

PATHPROP ::= RATOM | TERM | PATHPROP A PATHPROP | “PATHPROP |

PATHPROP USK PATHPROP | X PATHPROP,
PPROP ::= P,.,[PATHPROP|, PQUERY ::= P,_»[PATHPROP),
MATOM ::= PPROP | PQUERY | RWDPROP | RWDQUERY,

where p € [0,1],~€ {<,<,>,>},0 € {maz, min,0} ,k € NU {inf}.

IPL: An Integration Property Language 175

With the syntax defined, we encode the motivating property (Proposition 1)
in IPL below. We use quantification to bind constraints on task sequences in V,
(with task attributes start, end, and expected energy) and a PCTL query for M.

Vi1, ta, ts : Tasks - t1.type = ts.type = STR A ta.type = ROT A (1)
ti.end = to.start = tz.start Ati.start # tz.end A Z?thi.energy < MazBat —
Prae=2[(F loc = ta.startloc) A (F loc = ts.startloc) A
((loc = ti1.start) U (loc = ta.start U (loc = ts.start U loc = tz.end)))]

{|initloc = t,.start, goal = t3.end, initbat = L;_,t;.energy + err—cons|} = 1.

To summarize, IPL formulas express quantified modal constraints over sym-
bols in . We use quantification outside of flexible atoms to preserve modularity.
Further, we extended the flexible part of IPL with two model property languages.

5.3 Semantics

Here we give the meaning to the IPL syntax in terms of structure I' by reducing
a formula to either I'’s model part (I(LV') or I's the view part (IV), but not both.

Domain Transfer. Interpretation is based on semantic domains — collections
of formal objects (e.g., numbers) in terms of which syntax elements can be fully
interpreted. For IPL we define two domains: the model domain (Dy) and the
view domain (Dy). Dy is associated with I(;V', and Dy— with IV.

Definition 7 (Belonging to semantic domain). Syntactic element s belongs to
a semantic domain D if there exists an interpretation I such that I(s) € D.

Table 1. Semantic domains and transfer in IPL.

View domain Dy Is transferable Model domain Dy
VAR Yes, by value

ELEM | Yes, by reference |
PrROP | Yes, by value |
vrUNC | Yes, by value, if all arguments|

are transferable. Otherwise, no.

RTERM | Yes, by value |
Ve:X-f | No
777777777777 No lstvaR
777777777777 No |mFone
777777777777 No |maToM
777777777777 Yes, by value ~ |MDLINST
[Constants and BFUNC from background theories. Interpretation /7. |

176 I. Ruchkin et al.

Dm and Dy are defined in Table 1: the first and third columns contain syntax
elements that belong to them. For example, models interpret state variables using
their structures, and views can interpret quantified statements using satisfiability
solvers. Both domains interpret symbols from background theories (I17).

The middle column of Table 1 indicates if a syntax element, once interpreted,
can be transferred to the other domain, i.e., if a bijection between its evaluations
and some set in the other domain exists. “By value” is mapping to a constant in
the other domain. “By reference” is mapping to an integer ID (e.g., for ELEM,
unique integer IDs are generated for referencing in the model). Notice that view
domain elements are mostly transferable to the model domain (except quantifi-
cation). To support modularity, models can only transfer values of MDLINST.

Native semantics. We interpret IPL formulas in the following context: T'
(V, M; with I(;V', IV, and IB), states ¢, potentially infinite sequences of states
w = {q, g2, .), and mapping p of variables to values. Starting from the bot-
tom of Fig.1 with rigid terms (RTERM), we gradually simplify the semantic
context (denoted as the subscript of [] and on the left of |=). The meaning of
standard logical operations from FORMULA and RATOM is found in the online
appendix [47].

[consT]r = I”(consT), [VAR],, = p1(VAR), [STVAR]r,, = I (STVAR),
[vEuNc(ri,...r)]r. = IV (VFUNC)([r1]v,pe - - - [Fn]v,e) 4f 71...7n € RTERM,
[ELEM]r,,., = IV (ELEM) = {e} C E, [RTERM.PROP]r 4., = I" (PROP)([RTERM]v 1),
Tyw,pulEYr:r-f iff T,w,u' = f, where r € RTERM,

f is either FORMULA or RATOM, p' = p U {x + v} for all v in [r]r ..
DopkE=(@)pr---pal]l f V,M([pi]v,u---[pnlv,n), it |E @, where a € MATOM.

We provide a only brief summary of the plugin semantics for LTL and PCTL
due to space limitations; for the full semantics see the online appendix [47].

LTL plugin semantics. For LTL the model is a canonical transition system
M;s [40]. We evaluate TATOM and FORMULA on a sequence of states (w). Logical
operations and quantifiers are evaluated the same as natively.

T,w,pul=f iff T,q,u = f, where ¢ € w™!, f € TERM.
I' E FORMULA iff Vw : Mys.tres - T w,) = FORMULA.

PCTL plugin semantics. PCTL formulas are evaluated on MDPs (M,4p), or
a DTMC Mg if we collapse non-determinism [11]. Temporal operators mean
the same as in LTL except the bounded until.

For f € PPROP and RWDPROP, Prob™(q, f) is a probability of f holding after
q for policy 7 from II:

L, q, 1 | Poplf] iff optren Prob™(q,[flru) ~ p,
L, q,pu | Ronplf] iff oDtren Exp™ (¢, Xisyr,) ~ P

IPL: An Integration Property Language 177

where f € PATHPROP; ~€ {<, <, >, >} opt cpp is sup,epp if 0 = max, infcpy if
0 = min, no-op if 0 = (); X is a random reward variable, Exp” is its expectation.

Now the semantics of IPL has been fully defined, in a way that formalized
Eq. 1 expresses the intent of informal Proposition 1. Formulas are evaluated mod-
ularly, by their reduction to subformulas, each of which is interpreted by IV, I (;V',
or IB.

5.4 Verification Algorithm

Suppose an engineer needs to verify an integration formula f with a signature
Y against I, i.e., check if f is a sentence in the IPL theory for T'.

Problem 1 (IPL formula validity). Given f € FORMULA in ¥ and a corre-
sponding T, decide whether T |= f.

Below we step through Algorithm1 that solves Problem 1. The algorithm
uses several transformations, all of which are formally defined in the online
appendix [47]. The first step is equivalently transforming f to its prenex nor-
mal form (PNF, i.e., all quantifiers occurring at the beginning of the formula),
denoted ToPNF'(f).

Algorithm 1. IPL verification algorithm

1: procedure VERIFY(f, M)
2: f—ToPNF(f) > Put the formula into the prenex normal form

3: fEA — FuncAbst(f) > Replace model instances with functional abstractions
4: €4 — ConstAbst(f) > Replace model instances with constant abstractions
5: fFA — RemQuant(fFA) > Remove FA quantifiers
6: fCA — RemQuant(fCA) > Remove CA quantifiers
T

sv—allpst. - IuE fFA & fCA > Saturation: find all variable values
that satisfy non-matching abstractions
I5(Fi(p)) < [MDLINST;]wm,, for each p € sv > Model checking: run model
instances to interpret functional abstractions on the above values
9: if3r- 15 CInI = —fF4 then return L > If the FA formula’s negation is
satisfiable given the constructed interpretation, return false
10: else return T > Otherwise, return true

®

The next step is to replace occurrences of instance terms MDLINST; (interpre-
tation of which is yet unknown to views/SMT) with two kinds of abstractions:
1. Functional abstraction (FA). FA replaces MDLINST; with uninterpreted func-
tions F;. The arguments of these functions are the free variables that are present
in the syntactic subtree of MDLINST;. (Below, z = x; ... 2,.)

A = PuncAbst(f) = Qa1 : Dy ... Quitn : Dy - f(z, Fi() ... Fp()),

2. Constant abstraction (CA). CA replaces MDLINST; with uninterpreted
constants.

fCA=C(f) = Qi1 :Dyi...Quy : Dy - f(x,Cr...Ch).

178 I. Ruchkin et al.

Next, we remove all quantifiers (RemQuant(ff4) = fra RemQuant(f€4)

= f €4 replacing all bound quantified variables with free ones.
fFA =Qiz1:D1...Qnrn : Dy - fFA(sc),fCA =Qiz1:D1...Qnxyn : Dy - fCA(a:)‘

We look for interpretations (1) of model instances that affect validity of f.
IE are characterized by valuations p of free variables that are arguments for F;.
These interpretations are also subsumed by I¥— a full interpretation of F; on all
possible variable assignments that coincides with semantic evaluation of model
atoms: I (F;(n)) = [MDLINST;]m,,, for any u € Dy x ...D,,i € [1,m].

Instead of constructing full It" (which requires exhaustive model checking),
we determine I by looking for g for that make the values of FA and CA differ. In
other words, such valuations that it is possible to interpret the two abstractions
so that one formula is valid and the other one invalid. That is, we construct a set
sv that contains all p satisfying the search formula for f: 31-1,p = fFA & fCA.

In the process of saturation, the algorithm enumerates all such u by iteratively
finding and blocking them. With a finite number of p, it will terminate once the
sv is saturated. To terminate, it is sufficient that each D; is finite, but not
necessary: a constrained formula may have finite sv with infinite D,.

Once variable assignments sv are determined, we can construct IZ (a subset
of I'") by directly executing behavioral checking of MDLINST; on concrete values:

IE (Fy) () = [MDLINST;]m . for all 4 € sv and all i € [1,m]. (2)

Finally, the algorithm performs a validity check by checking satisfiability of
the negation of f¥4. f is valid iff the check fails to find an interpretation that
agrees with IZ and satisfies = fF4. We implemented this algorithm in an IPL IDE
based on Eclipse (https://www.eclipse.org), with its source code online (https://
github.com/bisc/IPL). More information about the IDE and an illustration of
Algorithm 1 on the running example is in the online appendix [47].

6 Evaluation

Here we evaluate IPL from a theoretical (soundness and termination of the
algorithm) and practical (checking integration for a mobile robot) standpoint.

To avoid false positives/negatives, IPL verification should produce sound
results. We prove that any answer returned by Algorithm 1 is correct with respect
to the semantics (independently of the plugins). To be valuable, the algorithm
should terminate on practical problems. We hence provide the termination con-
ditions.

We show that interpretations of MDLINST over sv determine the formula’s
validity. Correctness and termination follow directly from this result in Corol-
lary 2.

Theorem 1. Absence of flexible interpretations that agree with IE, and satisfy
—fFA is necessary and sufficient for validity of f¥4 on I*:

Pr-IE CIAT =P 17 | fFA

https://www.eclipse.org
https://github.com/bisc/IPL
https://github.com/bisc/IPL

IPL: An Integration Property Language 179

Proof Sketch. Soundness follows from straightforward instantiation. For com-
pleteness, we assume for contraction that I |= fF4 and instantiate a u that
both satisfies f74 and does not, depending on the interpretation. We show that
1 € sv to derive a contradiction. Full proof is in the online appendix [47].

Theorem 1 leads to two corollaries (see their proofs in the online
appendix [47]).

Corollary 1. Validity of formula f is equivalent to unsatisfiability I = —fF4.
MEfiff il -1E CIAT | —fFA

Corollary 2. Algorithm 1 is sound for solving Problem 1. The algorithm termi-
nates if (i) satisfiability checking is decidable, (ii) behavioral checking with M is
decidable, and (i1i) search formula fFA 23 fCA has a finite number of satisfying
values for free variables (e.g., when quantification domains D; are finite).

6.1 Case Study: Adaptive Mobile Robot

To assess the practical applicability of IPL, we guided our case study with three
questions: 1. What is the role of integration properties in real systems? 2. Can
we specify them with IPL? 3. Is IPL verification tractable in practice?

To address these questions, we applied IPL to a system in a case study [48].
The system was chosen to meet the following criteria: it must be a running system
to ensure realism, it must be from the CPS domain to ensure fit, it must include
multiple models using different formalisms to evaluate IPL’s expressiveness, and
we had to have access to domain experts to answer questions and assess useful-
ness. A TurtleBot 2 robot (described in Sect.2) implemented using the Robot
Operating System (ROS) [49] for sensing, localization, and navigation, and a
model-based adaptive system for planning the robot’s mission-related actions
meets all of these criteria. We conducted a historical review with the project’s
artifacts to discover relevant models and integration properties. The case study
models are available online (https://github.com/bisc/IPLProjects).

Our case study focused on a planning model My; and a power model M,
because power is a prominent concern in the system and these two models have
a complex dependency. Both models co-evolved throughout the project, and we
collected over 10 variants of these models with of varying sophistication.

Integration Properties. An example integration property between M, and
Mo, is that they must agree on energy spent in various missions; otherwise
the robot may run out of power. (A mission is made up of different energy-
spending motion tasks such as forward movement, rotation, and charging. A
power-successful mission can be done with a given initial power budget.)

View Modeling and Verification. To formalize the integration properties, we
chose to create a view (Vp,) for My, and combine it with a behavioral interface
to My,;. There are many ways to construct an appropriate view, and we took the
route of creating a task library — enumerating all relevant atomic tasks.

https://github.com/bisc/IPLProjects

180 I. Ruchkin et al.

Vpo has to agree with M,; on the task primitives, otherwise the integration
check will always fail. Each motion command is an architectural element with its
own id, startloc, endloc, and energy (which is computed by M,, given a distance
and a speed, hence making V,, a correct view for M,,). The only requirement
for the view is that it contains all the objects of interest (here, atomic tasks).

Another view is a map view (V,4p), containing locations (as components)
and their connections. We discovered 5 maps, organized in two categories. The
first category contains 9 locations (including 1 charging station) and 9-10 edges.
The second category contains 12 locations (including 4) and 13 edges.

Both V,, and V,,q, have been created by automated transformations that
require the same map artifact. Vp, requires equations from M,, and outputs
a library of tasks encoded in the Architecture Analysis and Design Language
(AADL) [50]. Vinqp outputs a list of locations in AADL. In total, we generated
over 30 variants of views to represent relevant combinations of task primitives.

Using the above view abstractions, we specified dozens of integration prop-
erty variants (similar to Eq. 1) for various mission features and lengths. In map-
related properties, quantified variables iterate over locations. In power-related
properties, quantified variable iterate over atomic tasks. Examples of these prop-
erties are highlighted in the online appendix [47].

Outcomes. To answer our first question (see top of Sect. 6.1), we discovered that
complex integration properties appear when several models contain interrelated
data (in our case, locations, connections between them, and energy expenditures
for tasks). These properties serve as steps in safety reasoning that would oth-
erwise use oversimplified and unsupported assumptions (e.g., models agree on
energy). If these assumptions are not satisfied, the system falls short of its goals.
Thus, IPL fills in an important niche of reasoning for multi-model systems.

To answer the second question, we focused on multiple variants of power-
related integration properties for M, and My,;. We were able to represent all rel-
evant point-to-point missions up to a bounded number of recharging actions. The
end-to-end power-safety argument for the robot relies on these integration prop-
erties: if M, has worst-case error err_pow, M;; has worst-case error err_mdp,
the worst-case consistency error is err_cons, then to not run out of power, the
battery has to have at least g(err_pow, err_mdp, err_cons) charge during any exe-
cution, where g is some function (addition in simple cases). Thus, we observed
that integration properties verify bounds of consistency errors, which are inputs
to end-to-end safety arguments.

We discovered several critical inconsistencies in the models we observed: (1)
the MDP does not check whether the battery was enough for the last step (thus,
in some missions the robot would run out); (2) turn energy was inconsistent
making one turn action add energy to the battery (caused by a bug in the
model generation code); (3) My, and M,,; disagreed significantly in their energy
predictions for tasks with near-zero times because of the non-zero y-intersect in
M, (recall that it was constructed using regression). We therefore conclude that
IPL is capable of finding model inconsistencies in real-world projects.

IPL: An Integration Property Language 181

Performance. We evaluated the performance of the Eclipse-based IPL imple-
mentation using the power-related property variants. Specifically, we executed
24 verification runs by varying the number of tasks and the map and toggling the
mission features—variable length missions, charging, and rotations. IPL’s per-
formance is reasonable for practical purposes, with a remarkably low overhead.
Although larger missions with more features led to substantially longer times,
IPL finished within several hours. The details are in the online appendix [47].

7 Discussion

This paper makes a significant step towards bridging the semantic gap between
heterogeneous CPS models. The Integration Property Language enables systems
engineers to specify expressive properties over behavioral and static semantics of
multiple models in a way that is both modular and extensible. IPL specifications
are soundly checkable with a combination of SMT solving and model checking.
The case study showed that IPL can encode relevant real-world integration prop-
erties and verify them in reasonable times.

IPL relies on existing views, models, and analysis tools for reasoning. It
also shares their limitations on automation and performance. In practice, extra
automation or manual effort is required for views to remain up-to-date with
models. IPL performance is limited by satisfiability solving for many constraints
and quantified variables. Improvements in the state-of-the-art satisfiability and
model checking should lead to comparable improvements in the IPL performance.

IPL allows behavioral checking to be carried out independently of where its
inputs come from, thereby supporting custom workflows in diverse engineering
disciplines. This freedom, however, comes at a cost of expressiveness: we could
not allow complete transfer of view functions to Dy (Table1 allows it only for
transferable arguments), which would need callbacks from model checking to
views to evaluate a view function. This feedback loop would create a dependency
from models to views and negatively impact modularity and extensibility of IPL.

Future work will focus on three areas: (1) incorporating other property lan-
guages into IPL and conducting more case studies, (2) handling models (such as
Simulink) that are widely used in CPS but do not have a rigorous property lan-
guage, and (3) an analysis of scalability and effectiveness with respect to other
integration methods (e.g., the “supermodel” approach).

Acknowledgments. This material is based on research sponsored by AFRL and
DARPA under agreement number FA8750-16-2-0042. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the AFRL, DARPA or the
U.S. Government.

182 I. Ruchkin et al.
References
1. Mosterman, P.J., Zander, J.: Cyber-physical systems challenges: a needs analy-

10.

11.

12.

13.

14.

15.

16.

17.

18.

sis for collaborating embedded software systems. Softw. Syst. Model. 15(1), 5-16
(2016)

Fitzgerald, J., Larsen, P.G., Pierce, K., Verhoef, M., Wolff, S.: Collaborative mod-
elling and co-simulation in the development of dependable embedded systems.
In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 12-26. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16265-7_2

Valukas, A.: Report to board of directors of general motors company regarding
ignition switch recalls. Jenner & Block, Technical report (2014)

Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis, P., Gupta,
V., Goodwine, B., Baras, J., Wang, S.: Toward a science of cyber-physical system
integration. In: Proceedings of the IEEE (2011)

Alur, R.: Principles of Cyber-Physical Systems. The MIT Press, Cambridge (2015)
Dijkman, R.M.: Consistency in multi-viewpoint architectural design. Ph.D. thesis,
Telematica Instituut, Enschede, The Netherlands (2006)

. Maoz, S., Ringert, J.O., Rumpe, B.: Synthesis of component and connector models

from crosscutting structural views. In: Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2013, New York, NY, USA,
pp. 444-454. ACM (2013)

Reineke, J., Tripakis, S.: Basic problems in multi-view modeling. In: Abrahém,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 217-232. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_15

Bhave, A.: Multi-view consistency in architectures for cyber-physical systems.
Ph.D. thesis, Carnegie Mellon University, December 2011

Howard, R.A.: Dynamic Programming and Markov Processes. Technology Press of
the Massachusetts Institute of Technology, Cambridge (1960)

Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SEM 2007. LNCS, vol. 4486, pp. 220-270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0_6

Bhave, A., Krogh, B., Garlan, D., Schmerl, B.: View consistency in architectures
for cyber-physical systems. In: IEEE/ACM International Conference on Cyber-
Physical Systems (ICCPS) (2011)

Nuseibeh, B., Kramer, J., Finkelstein, A.: A framework for expressing the rela-
tionships between multiple views in requirements specification. IEEE Trans. Softw.
Eng. 20(10), 760-773 (1994)

Egyed, A.F.: Heterogeneous view integration and its automation. Ph.D. thesis,
University of Southern California (2000)

Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666—
677 (1978)

Smith, G.: The Object-Z Specification Language. Advances in Formal Methods,
vol. 1. Springer, New York (2000). https://doi.org/10.1007/978-1-4615-5265-9
Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

Karsai, G., Sztipanovits, J.: Model-integrated development of cyber-physical sys-
tems. In: Brinkschulte, U., Givargis, T., Russo, S. (eds.) SEUS 2008. LNCS, vol.
5287, pp. 46-54. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
87785-1.5

https://doi.org/10.1007/978-3-642-16265-7_2
https://doi.org/10.1007/978-3-642-54862-8_15
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-1-4615-5265-9
https://doi.org/10.1007/978-3-540-87785-1_5
https://doi.org/10.1007/978-3-540-87785-1_5

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

IPL: An Integration Property Language 183

Ruchkin, I.: Integration beyond components and models: research challenges and
directions. In: Proceedings of the Third Workshop on Architecture Centric Virtual
Integration (ACVI), Venice, Italy, pp. 8-11 (2016)

Kruchten, P.: The 441 view model of architecture. IEEE Softw. 12, 42-50 (1995)
Rajhans, A., Bhave, A., Loos, S., Krogh, B., Platzer, A., Garlan, D.: Using param-
eters in architectural views to support heterogeneous design and verification. In:
Proceedings of the 50th IEEE Conference on Decision and Control and European
Control Conference (CDC) (2011)

Marinescu, R.: Model-driven analysis and verification of automotive embedded
systems. Ph.D. thesis, Maladaren University (2016)

Vanherpen, K., Denil, J., David, I., De Meulenaere, P., Mosterman, P.J., Torngren,
M., Qamar, A., Vangheluwe, H.: Ontological reasoning for consistency in the design
of cyber-physical systems, pp. 1-8. IEEE, April 2016

Torngren, M., Qamar, A., Biehl, M., Loiret, F., El-khoury, J.: Integrating view-
points in the development of mechatronic products. Mechatronics 24, 745-762
2013

%ajhzzns, A., Krogh, B.H.: Heterogeneous verification of cyber-physical systems
using behavior relations. In: Proceedings of the 15th ACM Conference on Hybrid
Systems: Computation and Control (HSCC), New York, NY, USA, pp. 35-44.
ACM (2012)

Lee, E.A., Neuendorffer, S., Zhou, G.: System Design, Modeling, and Simulation
using Ptolemy II. Ptolemy.org, Berkeley (2014)

Combemale, B., Deantoni, J., Baudry, B., France, R., Jezequel, J.M., Gray, J.:
Globalizing modeling languages. Computer 47(6), 68-71 (2014)

Sztipanovits, J., Bapty, T., Neema, S., Howard, L., Jackson, E.: OpenMETA: a
model- and component-based design tool chain for cyber-physical systems. In:
Bensalem, S., Lakhneck, Y., Legay, A. (eds.) ETAPS 2014. LNCS, vol. 8415, pp.
235-248. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54848-
216

Simko, G., Lindecker, D., Levendovszky, T., Neema, S., Sztipanovits, J.: Specifica-
tion of cyber-physical components with formal semantics — integration and compo-
sition. In: Moreira, A., Schétz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MOD-
ELS 2013. LNCS, vol. 8107, pp. 471-487. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41533-3_29

Ruchkin, I., de Niz, D., Chaki, S., Garlan, D.: Contract-based integration of cyber-
physical analyses. In: Proceedings of the International Conference on Embedded
Software (EMSOFT), New York, NY, USA, pp. 23:1-23:10. ACM (2014)

Da Costa, A., Laroussinie, F., Markey, N.: Quantified CTL: expressiveness and
model checking. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol.
7454, pp. 177-192. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32940-1_14

Borger, E., Gradel, E., Gurevich, Y.: The Classical Decision Problem. Springer,
Heidelberg (2001)

Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46-57, October 1977

Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, Heidelberg (1992). https://doi.org/10.1007/978-1-4612-0931-7
Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Combination methods for satis-
fiability and model-checking of infinite-state systems. In: Pfenning, F. (ed.) CADE
2007. LNCS (LNAI), vol. 4603, pp. 362—-378. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73595-3_25

https://doi.org/10.1007/978-3-642-54848-2_16
https://doi.org/10.1007/978-3-642-54848-2_16
https://doi.org/10.1007/978-3-642-41533-3_29
https://doi.org/10.1007/978-3-642-41533-3_29
https://doi.org/10.1007/978-3-642-32940-1_14
https://doi.org/10.1007/978-3-642-32940-1_14
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-3-540-73595-3_25
https://doi.org/10.1007/978-3-540-73595-3_25

184

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

I. Ruchkin et al.

Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: Formalizing requirements with object
models and temporal constraints. Softw. Syst. Model. 10(2), 147-160 (2009)
Gabbay, D.M.: Fibred semantics and the weaving of logics part 1: modal and
intuitionistic logics. J. Symb. Log. 61(4), 1057-1120 (1996)

Konur, S., Fisher, M., Schewe, S.: Combined model checking for temporal, proba-
bilistic, and real-time logics. Theor. Comput. Sci. 503, 61-88 (2013)
Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937-977 (2006)

Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244-263 (1986)

Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245-257 (1979)

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3-24

Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P.,
Nord, R., Stafford, J.: Documenting Software Architectures: Views and Beyond,
2nd edn. Addison-Wesley Professional, Boston (2010)

Gurfinkel, A., Shoham, S., Meshman, Y.: SMT-based Verification of Parameterized
Systems. In: Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, FSE 2016, New York, NY, USA, pp.
338-348. ACM (2016)

Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View.
Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-74105-3

Ruchkin, I., Sunshine, J., Iraci, G., Schmerl, B., Garlan, D.: Appendix for IPL:
an integration property language for multi-model cyber-physical systems (2018).
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/fm2018-appendix.pdf

Yin, R.K.: Case Study Research: Design and Methods, 4th edn. Sage Publications
Inc., Thousand Oaks (2008)

Quigley, M., Gerkey, B., Smart, W.D.: Programming Robots with ROS: A Practical
Introduction to the Robot Operating System, 1st edn. O’Reilly Media, Sebastopol
(2015)

Feiler, P.H., Gluch, D.P.;, Hudak, J.J.: The architecture analysis & design lan-
guage (AADL): an introduction. Technical report CMU/SEI-2006-TN-011, Soft-
ware Engineering Institute, Carnegie Mellon University (2006)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-74105-3
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/fm2018-appendix.pdf

®

Check for
updates

Timed Epistemic Knowledge Bases
for Social Networks

Ratl Pardo'®) | César Sanchez?®™) | and Gerardo Schneider!®™)

! Department of Computer Science and Engineering,
Chalmers | University of Gothenburg, Gothenburg, Sweden
{pardo,gersch}@chalmers.se
2 IMDEA Software Institute, Madrid, Spain
cesar.sanchez@imdea.org

Abstract. We present an epistemic logic equipped with time-stamps
in atoms and epistemic operators, which enables reasoning about the
moments at which events happen and knowledge is acquired or deduced.
Our logic includes both an epistemic operator K and a belief operator B,
to capture the disclosure of inaccurate information. Our main motivation
is to describe rich privacy policies in online social networks (OSNs). Most
of today’s privacy policy mechanisms in existing OSNs allow only static
policies. In our logic it is possible to express rich dynamic policies in terms
of the knowledge available to the different users and the precise time of
actions and deductions. Our framework can be instantiated for different
OSNs by specifying the effect of the actions in the evolution of the social
network and in the knowledge disclosed to each user. We present an
algorithm for deducing knowledge and propagating beliefs, which can also
be instantiated with different variants of how the epistemic information
is preserved through time. Policies are modelled as formulae in the logic,
which are interpreted over timed traces. Finally, we show that the model
checking problem for this logic, and in consequence policy conformance,
is decidable.

1 Introduction

Online Social Networks (OSNs) like Facebook, Twitter and Snapchat have
exploded in popularity in recent years. According to a recent survey [1]
nearly 70% of the Internet users are active on social networks. Some concerns,
including privacy, have arisen alongside this staggering increase in usage. Even
though several studies [2-5] report that privacy breaches are growing in number,
the most popular OSNs do not provide effective mechanisms to express privacy

This research has been partially supported by: the Swedish funding agency SSF under
the grant Data Driven Secure Business Intelligence, the Swedish Research Coun-
cil (Vetenskapsradet) under grant Nr. 2015-04154 (PolUser: Rich User-Controlled
Privacy Policies), the EU H2020 project Elastest (num. 731535), by the Spanish
MINECO Project “RISCO (TIN2015-71819-P)” and by the EU ICT COST Action
1C1402 ARVI (Runtime Verification beyond Monitoring).

© Springer International Publishing AG, part of Springer Nature 2018

K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 185-202, 2018.
https://doi.org/10.1007/978-3-319-95582-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_11&domain=pdf

186 R. Pardo et al.

policies; virtually all privacy policies are static and cannot express timing pref-
erences, such as referring to points in time or how policies evolve.

In [6] we presented a framework to express a limited version of dynamic
privacy policies, based on an epistemic logic to characterise what users know.
Formulae are interpreted over social network models which faithfully represent
the social graph of OSNs. The policy language in [6] allows to describe, for
example, the following policy “During the weekend only my friends can see my
pictures”. However, the previous policy simply activates the static policy “only
my friends can see my pictures” during weekends. Two restrictions of the logic
in [6] are the lack of explicit time, and that only a knowledge modality is avail-
able, thus implicitly assuming that the information that users are told is true.
This assumption is not realistic in social networks as users may also receive
and disclose information that is false or inaccurate, which has raised a growing
interest in the detection of fake news [7-9]. To address these issues we introduce
here a logic that: (1) is tailored for social networks and allows to express prop-
erties based on the social connections between users; (2) combines knowledge
and belief to differentiate true knowledge and information that may be false; (3)
has time-stamps in modalities and atoms, which allows to refer to the timing of
events and when information is learnt. Based on this logic, we introduce a novel
privacy policy language that addresses the limitations mentioned above.

Some existing logics include these elements separately. For example, [10]
includes time-stamps in atoms and in a belief modality, but it lacks a knowl-
edge modality, and it is not suitable for OSNs (their aim was to reason about
AGM belief revision). The logic proposed in [11] can reason about how beliefs
spread in Twitter, but it does not include time-stamps. Finally, [12] proposes
an axiomatisation of an epistemic logic with knowledge and belief, but without
time-stamps in modalities or atoms. Section 4 includes a more detailed compar-
ison of related work.

Contributions: In this paper we introduce a novel logic that combines knowledge,
belief and time (Sect.?2), tailored to define dynamic privacy policies (Sect.3).
More concretely: (1) We extend [6] by equipping atoms and epistemic opera-
tors with time instants which allows to derive learning and forget operators. (2)
We equip the logic with belief operators, with the restriction that agents cannot
believe in something that they know is false, and we define a belief propagation
algorithm which guarantees that agents’ beliefs are always consistent. This allows
us to model OSNs that permit gossiping in which potentially false information
can be spread. Analogously, we derive the accept and reject operators which
capture the moment in which an agent starts or stops believing in something.
(3) We introduce the notion of extended knowledge bases (EKBs), which allow to
answer queries of temporal epistemic formulas against the knowledge acquired
during a sequence of events, via timed derivations labelled with time-windows.
This idea allows to instantiate our framework for different OSNs, for example
those with eternal memory like Facebook and for ephemeral ones like Snapchat.
(4) We prove that the model checking problem for this logic is decidable by pro-
viding a model checking algorithm that is also used to check policy conformance.

Timed Epistemic Knowledge Bases for Social Networks 187

As a result, policy conformance is also decidable. The purpose of this paper is to
present an expressive foundation for developing algorithms for detecting privacy
violations and for privacy enforcement. We leave the discussion of specialized
efficient algorihtms for future work.

2 A Timed Knowledge Based Logic

We introduce here KBLr7 a knowledge-based first-order logic that includes
time-stamped knowledge and belief modalities, and quantification over time-
stamps.

2.1 Syntax

Let 7 be a vocabulary consisting of a set of predicate and function symbols,
with some implicit arity, and constant symbols. We assume an infinite supply
of variables x,y, ... Terms can be built as s:: = ¢ | z | f(3) where ¥ is a tuple
of terms respecting the arity of f. Let T denote a set of time-stamps, which is
required to be a non-Zeno totally ordered set, i.e., there is a finite number of
instants between any two given instants. We use time-stamps to mark pieces of
information or to query the knowledge of the agents at specific instants. Consider
also a set of agents Ag, a set of domains D, and a set of events EVT (e.g., share
a post or upload a picture). Similarly, we use C and ¥ to denote special sets of
predicate symbols that denote connections (between agents) and permissions.

Definition 1 (Syntax of KBLgr7). Given agents i,j € Ag a time-stamp
t € T, an event e € EVT, a variable x, a domain D € D, predicate sym-
bols ct(i,j),at(i,5),pt(3) where ¢ € C and a € 3, the syntax of the real-time
knowledge-based logic KBLRr T is inductively defined as:

pr=plone|-p|Vt-p|Ve:D-p| Kig| Bl

pi=c'(i,§) | a* (i, 5) | p'(F) | occurred’ (e)
The epistemic modalities stand for: K}, agent i knows ¢ at time ¢; Bly, agent
i believes ¢ at time ¢. We use the following notation as syntactic sugar P/a’ =
at(i, j), meaning that “agent i is permitted to execute action a to agent j at time
t”. For example, P§lce friendRequest® means that Bob is allowed to send a friend
request to Alice at time 5. We use Fxprr, to denote the set of all well-formed
KBLr T formulae. Our logic introduces the following novel notions that have not
been considered in other formal privacy policies languages such as [6,13-15].

— Time-stamped Predicates. Time-stamps are explicit in each predicate, includ-
ing connections and actions. For instance, if Alice and Bob were friends in
a certain time period, then the predicate friend'(Alice, Bob) is true for all ¢
falling into the period, and false for all ¢ outside. This can be seen as the valid
time in temporal databases [16].

188 R. Pardo et al.

— Separating Knowledge and Belief. Not all the information that users see in
a social network is true. For instance, Alice may tell Bob that she will be
working until late, whereas she will actually go with her colleagues to have
some beers. In this example, Bob has the (false) belief that Alice is working.
Traditionally, in epistemic logic, the knowledge of agents consists on true
facts, while beliefs represent plausible information that may be false [17]. For
KBLrT we combine both modalities in one logic. In the following section we
describe how to combine these two.

— Time-stamped Epistemic Modalities. Time-stamps are also part of the epis-
temic modalities K and B. Using time-stamps we can refer to the knowl-
edge and beliefs of the agents at different points in time. For example,
B:9010c' %0 (Alice, work) means that Bob beliefs at 20:00 that Alice’s loca-
tion at 19:00 is work.

— Occurrence of Events. Being able to determine when an event has occurred
allows users to define policies that are activated whenever someone performs
an undesired event. Examples of these policies are: “if Alice unfriends Bob, she
is not allowed to send Bob a friend request” or “if Alice declines an invitation
to Bob’s party, then she cannot see any of the pictures uploaded during the
party.” We introduce occurr’edt(e) to syntactically capture the moment when
a specific event e occurred.

2.2 Semantics

Real-Time Social Network Models. We introduce formal models to rea-
son about the states and evolution of social networks. These models leverage
the information in the social graph [18] —the core data model in most social
networks [19-21]. We extend social graphs, which include agents (or users) and
the relationships between them, by adding for each agent a knowledge base, and
the set of privacy policies that the agent has activated. We build upon a previ-
ous version of this framework [6], increasing substantially the expressiveness of
privacy policies (see Sect. 3).

Definition 2 (Social Network Models). Given a set of formulae F C
FrBrLrrs @ set of privacy policies 11, and a finite set of agents Ag C AU from a
universe AU, a social network model (SNM) is a tuple (Ag, A, KB, m), where

— Ag is a nonempty finite set of nodes representing the agents in the social
network;

— A is a first-order structure over the SNM, consisting of a set of domains, a
set of relations, a set of functions and a set of constants interpreted over their
corresponding domain.

~ KB : Ag — 27 is a function retrieving a set of (time-stamped) basic facts of
an agent, which are stored in the agent’s knowledge base; we write KB; for
KB(i);

— 7 Ag — 21 which returns the privacy policies of an agent; we write 7; for

(7).

Timed Epistemic Knowledge Bases for Social Networks 189

In Definition 2, the shape of the relational structure A depends on the social
network. We represent the connections—edges of the social graph—and the per-
mission actions between social network agents as families of binary relations,
respectively {C;}icc € Ag X Ag and {A;}iex € Ag x Ag over the domain of
agents. We use D to denote the set of domains. The set of agents Ag is always
included in the set of domains. We use SNz7 to denote the universe of all
possible social network models.

Evolution of Social Network Models. The state of a social network changes
by means of the execution of events from the set EVT'. For instance, in Facebook,
users can share posts, upload pictures, like comments, etc. We use traces to
capture the evolution of the social network. A trace is a finite sequence o =
((SNo, Eo,t0), (SN1,E1,t1),...,(SNy, Eg,tx)) such that, for all 0 < ¢ < k,
SN; € SNrT, E; C EVT,and t; € T. We use T, = {t | (SN,E,t) € o}
for the set of time-stamps of 0. We impose some conditions to traces so that
they accurately model the evolution of social networks. We say that a trace is
well-formed if it satisfies the following conditions:

1. Time-stamps are strictly ordered from smallest to largest, that is, for any 4, j
with 0 <7 < j <k it follows that ¢; < t;.

2. Successor states are the result of events. We use — for the transition relation
defined as — C SNrT x 2EVT x T x SNRrT (— can be specified using small
step operational semantics as we show in [15] for an untimed version of this

framework). We write SN B, SN, if SN, is the result of the set of events
E € EVT happening in SN; at time t. We allow E to be empty, in which
case SN1 = SN,.

3. For each 2% the set of events F must only contain independent events. Two
events are independent if, when executed sequentially, their execution order
does not change their resulting state. Formally, e and ¢’ are independent
whenever for every state SNo and time ¢, the state SNy and SN obtained

as SNy~ o, 2 any and SN 25 ant 2 SN satisfy that
SNy = SN). This definition can be easily extended to sets of events in the
expected way.

We use WFT to refer to the set of well-formed traces. We assume that there
is a function predecessor pred : T — T that takes a time-stamp and returns the
previous time-stamp in the trace. Analogously, next : T — T returns the next
time-stamp in the trace. Since the set of time-stamps is non-Zeno it is always
possible to compute these functions.’

KBLg 7 formulae are very similar to £,, from epistemic logic [17]. There are
two standard ways to define semantics of epistemic logics. First, one can define
for every agent an undistinguishability relation between the worlds that the
agent considers possible [17]. When considering traces of events, the framework

! We can assume that the predecessor of the initial time-stamp is the intial state itself,
and similarly the next of the end of the trace returns the equal to itself.

190 R. Pardo et al.

typically used is interpreted systems. An alternative encoding, proposed by Fagin
et al. [17, Sect.7.3] consists in encoding the answer of epistemic queries from
knowledge bases of accumulated facts. We follow this way of modelling knowledge
here by equipping each agent with a knowledge base and defining the semantics
of BLRr7 formulae based on answers by these knowledge bases.

Extended Knowledge Bases. An FExtended Knowledge Base consists of a
collection of JCBL g7 formulae, which represents the basic knowledge of the agent
at a point in time. Epistemic derivations allow to answer whether a formula
follows from the information stored in a knowledge base.

Derivations in EKBs. The EKB of an agent contains the explicit knowl-
edge she acquired previously. Additional knowledge can be derived from
the explicit pieces of information stored in these EKBs. Derivations can
use formulae at a given point in time and at older times. We intro-
duce the notion of time window (or simply, window) to determine how
knowledge from the past can be used in a derivation. We write I'
(p,w) to denote that ¢ can be derived from I' given a window w.
We provide a set of deduction rules, DR, of the form given on the Tk (o)

right meaning that, given the set of premises I', 1 can be derived ~———"—=

with a window w from ¢ with a window w’. I (4, w)

Definition 3. A timed derivation of a formula ¢ with a window w, is a finite
sequence of pairs (o1, w1), (P2, w2),. .., (@n, ws) = (p,w) such that each v;, for
1 < i < n, g; follows by an application of a deduction rule of DR whose premises
i, with j < i, have already been derived, and w; < w;.

We now present the concrete derivation rules that allow to derive knowledge
from the facts stored in EKBs. These rules extend axiomatizations of knowledge
and belief with rules to deal with knowledge propagation through time.

Knowledge and Belief in EKBs. In our EKBs knowledge and belief can coexist.
The common axiomatization of knowledge is S5. In [17], Fagin et al. provided an
axiomatization for belief known as KID45, which includes the same set of axioms
as S5 —replacing K, by B,—except for the axiom K;o = ¢ (A3). The reason
is that beliefs do not need to be true—as required by A3 for knowledge. The
requirement for beliefs is that an agent must have consistent beliefs, which is
captured by =B, L (axiom D). To derive new knowledge, axioms from S5 can
be applied to formulas of the form K¢ and axioms from KD45 for formulas of
the form B,¢. Additionally, derivations can also relate knowledge and beliefs, for
which we use two axioms proposed by Halpern et al. in [12]: (L1) K,;p = B¢
and (L2) B;y == K,;B,p. L1 states that when agents know a fact they also
believe it, which is sound with respect to the definition of both modalities, since
knowledge is required to be true (A3). Axiom L1 provides a way to convert
knowledge to belief. L2 encodes that when agents believe a fact ¢ they know
that they believe .

Timed Epistemic Knowledge Bases for Social Networks 191

Table 1. EKB axioms for a trace o for each t € T,.

Knowledge axioms Belief axioms Knowledge-Belief axioms
A1]All tautologies of first-order logic| K [(Bip A Bi(p =))|LI|Kl¢ = Bly
A2|(Kip AKi(p = ¢)) = By L2|Biy = K{Bip
= Kl D |-B!L
A3|Klp = ¢ B4|Bfy = BIBly
A4|Klp = KiKlp B5|-Bl¢y = B!-Bly
AS|-Klp = K=Ky

The previous axiomatizations are restricted to reasoning about a concrete
time (or to timeless information), but we are interested in reasoning about the
dynamic acquisition of knowledge in the changing world of online social networks.
Consequently, we decorate all modalities with a time-stamp ¢, to explicitly cap-
ture the time at which an agent knows something and the time of occurrence
of events and relations. Table1 shows the complete list of axioms for a given
teT,.

To use these axioms in timed derivations we express them as deduction rules
in Table 2. Note that all derivations that use these axioms use the same ¢t and w.
We add an explicit K} to every formula in a user’s EKB so that we can syntacti-
cally determine when some knowledge enters an EKB. Formally, we say that users
in a trace o are self-aware whenever for allt € T, if ¢ € EKB‘ZM then o = K!¢'.
In what follows, we always assume that agents are self-aware.

Ezample 1. Consider the following EKB from a trace o of an agent ¢ at time ¢.

picgel) | KL ¥ A" - event” (j, pub) = loc” (j, pub))
: K!event!(Alice, pub)

In this EKB ¢ can derive, using the axioms in Table1, that Alice’s location at
time t is a pub, i.e., loc'(Alice, pub). Here we show the steps to derive this piece
of information. We recall that quantifiers are unfolded when added to the knowl-
edge base. For example, given formula ¢(z) : KIVj: Ag” - event®(j, pub) —
loc”(j, pub) and T, = {to,t1,...,t}, the EKB contains ¢(tg) A p(t1) A... Ap(t).
The predicate event®(j, pub) means that j attended an event at time ¢ in a pub.
The predicate loc’ (4, pub) means that j’s location is a pub. Thus, the implication
above encodes that: if ¢ knows at ¢ that an agent is attending an event in a pub
at time #', then her location will be a pub. In this example, 7 knows at time
t that Alice is attending an event at the pub, event!(Alice, pub). Since knowl-
edge is required to be true, event’(Alice, pub) must be a true predicate. Hence,

Kleventt(Alice,pub) == loc'(Alice, pub) must also be present in EKB7MY

Applying A2 to K!event!(Alice, pub) and the previous implication we can derive
Ktloc' (Alice, pub). O

192 R. Pardo et al.

Table 2. EKB deduction rules for a trace o for each t € T,.

Knowledge deduction rules axioms
¢ is a first-order tautology (A I (Klp,w) IH(Ki(p =), w) (A2)
L'k (p,w) I'F (K, w)
' (Klp,w ' (Ko, w) T+ (=Klp,w)
LEEipw) s o) (agy R (4
'k (o, w) 'k (K Kip,w) L' (Ki~Kip,w)
Belief deduction rules
'k (Bip,w)
' (Bl = ¥),w I'+ (Blp,w) '+ (-Blp,w
(Bi(—) (K) 7 (D) (t 7 (B4) % (B5)
't (B, w) 't (=B;Ll,w) I'E (BiBip,w) '+ (B;i—=Bip,w)
Premise deduction rule Knowledge-Belief deduction rules
er L'+ (Kip,w '+ (Bip,w
_res (PREMISE) # (L1) # (L2)
I'E (p,w) 'k (Bip,w) I'F (KiBip,w)

Handling Time-Stamps. Users can also use EKBs to reason about time. For
instance, if Alice learns Bob’s birthday she will remember this piece of infor-
mation, possibly forever. Some other times information is transient and changes
over time. Consider Alice, who shares with Bob a post including her location.
Right after posting, Bob will know Alice’s location—assuming she said the truth.
However, after a few hours, Bob will not be certain about whether Alice remains
in the same location. We denote the period of time in which some piece of infor-
mation remains true as its duration.

Different pieces of information might have different durations. Duration also
depends on the OSN, which can be designed in such a way that the effect of
events disappears after some time. For example, in Snapchat messages last 10
s; in Whatsapp status messages last 24 h; and in Facebook posts remain forever
unless a user removes them. We introduce the parameter w (see Sect. 1) to model
the duration of the information. Using w we define the following deduction rule,
which encodes a notion of duration-aware propagation of knowledge. Given t,t’ €
T, where t < t, the axiom (KR1) is shown on the right. The intuition behind
KRI1 is that some time in w is consumed every time knowledge is propagated.
Consider that Alice knows at time 1 the formula ¢, that is, K }4 lice®- Using KR1
in a derivation allows to derive that she knows ¢ at a later time, e.g., K9,,..¢-
Note that this delTivation requires w to be at TF (Kf(p,w - (t’ —1)
least 4. The following example explains why.

5 (KR1)

Timed Epistemic Knowledge Bases for Social Networks 193

Ezample 2. Consider the following sequence of EKBs of an agent i from a trace
o where T, = {0,...,4}.

(K?Vt/ -Vj: Ag' - event! (7, pub) = loc"' (7, pub))— “ “ K2 event®(Alice, pub) -

KB kB EKBIP EKB7H EKB]™

Note that deriving Alice’s location requires to combine knowledge from different
knowledge bases at different times. This derivations use the knowledge recall rule
KR1 with a large enough window. In the figure, the inner (red) rectangle marks
the accessible knowledge for w = 2 and the outer (blue) rectangle for w = 3.
In order for ¢ to derive locg(Alice, pub) she needs to combine knowledge from
EKB{"" and EKB{"). Let EKBY = J,c.. EKB?". We first show how to con-
struct a proof forwards, starting from the premises and a window of 0, and move
forward increasing w until the inference can be performed. In particular, we show
that EKBY + (K2loc®(Alice, pub),w) for w € N. Applying the rule PREMISE
with w = 0, we derive EKBY - (K?event®(Alice, pub) = loc*(Alice, pub),0).
Now we use KR1 to combine this knowledge with knowledge at time 3:
KBS + (K event®(Alice, pub) = loc®(Alice, pub),0)

E K2
(KR1) - 3 YT YT
EKB] + (K; event®(Alice, pub) = loc”(Alice, pub), 3)

This inference requires the window to be increased to 3. We apply PREMISE
again to obtain (EKB{ + K3 event3(Alice, pub),3), which allows A2 to derive
(EKBS + K3loc*(Alice, pub), 3). This proof shows that i knows Alice’s location
provided that agents remember information for at least 3 units of time.

A window smaller than 3 makes this derivation impossible. We now construct
the proof backwards, considering w = 2 to show that the derivation is impossible.
We try to show that EKBY + (K3 loc®(Alice, pub),2), which requires:

(EKBY + K} event®(Alice, pub), 2)
EKBY F (K} event®(Alice, pub) = loc®(Alice, pub),2)
EKBY & (K}loc®(Alice, pub), 2)

(A2)

The first premise, (EKBY + K3event3(Alice,pub),?2), trivally follows by
PREMISE. To prove the second premise we first try move one step back using
KR1: EKBY + (K?event®(Alice, pub) = loc®(Alice, pub),1), but since there
is no knowledge at time 2, the previous statement cannot be proven. We apply
again KR1 obtaining EKB? + (K} event®(Alice, pub) = loc*(Alice, pub),0),
which cannot be proven. Since the remaining window is 0, we have already
accessed all knowledge that i remembers, and older EKBs cannot be accessed.
This closes the proof. O

Belief Propagation. Beliefs cannot be propagated as easily as knowledge because
new beliefs may contradict current knowledge or beliefs of an agent. Instead
of using timed derivations, we model agents that try to propagate beliefs if
these beliefs are consistent, and discard them otherwise. We describe two kinds

194 R. Pardo et al.

of agents: conservative and susceptible, but other criteria for choosing between
incompatible beliefs are possible. We use the parameter § in the framework
to denote the kind of agent. Conservative agents reject any new belief that
contradicts their current set of beliefs, while susceptible agents always accept
new beliefs that replace old believes if necessary to guarantee a consistent set
of beliefs. Here we present a belief propagation algorithm which describes how
agents behave when faced with a new belief.

Consider a trace o with T, = {to,...,tn—1,t,}. We use the following nota-

tion EKB] [£3:4] = Useqs,..), EKBU[t] Also, we introduce the event enter(Bl)
meaning that belief ¢ enters i’s knowledge base at time t. The moment at which
this event occurs identifies the moment when a belief is inserted in an agent’s
knowledge base, which is crucial to propagate beliefs Given a belief Bt"ga that

o . enter B
is about to enter FKB; [t”], ie., SNy, | ter(B:"), = SN, , Algorithm 1 prop-

agates the accumulated set of beliefs as long as they are inside the window w,
and resolves conflicts according to f3.

Lines 2-3 of Algorithm 1 construct a set ¥ of candidate beliefs to be
propagated—according to w—together with the new belief that tries to enter
i’s EKB. The if block (lines 4-6) sorts ¥ according to (. In the foreach block

(lines 7-11), we iterate over the sorted list of beliefs and add them to EKBf[t"]
if they are consistent with the rest of knowledge and beliefs. It is easy to see

that traversing beliefs from newest to oldest gives preference to newer beliefs

U[tn]

in entering EKB, "™, which corresponds to susceptible agents. In particular,

B!"—the newest belief—will always enter the EKB?[t"] unless this belief con-
tradicts actual knowledge. On the contrary, when sorting from oldest to newest,

the older beliefs will have preference to enter EKB;T[t”]

[tn]

, thus, preventing new

inconsistent beliefs to enter EKB; "™, as required for conservative agents. In

particular, Bf"qa will not be added to EKB?[t"] unless it is consistent with all
the previous beliefs and knowledge. Finally, we always include the predicate
occurred' (enter(B}")) (line 12) so that the agent remembers that she was told
Bf"ap —independently on whether she started to believe it. Note that consis-

tency of EKBf[t"] in both cases is directly guaranteed by the inclusion condition
in line 8.

Ezxample 3. At 20:00 Alice sends a message to Bob indicating that she is at
work, so EKBU[Q;J 000 contains occurred*:*° (enter(BX:P10c*" % (Alice, work)))
and also K 20:90 B29:0016c2090 (Aljce | work). At 22:00 Bob checks his Facebook time-
line, and he sees a post of Charlie—who is a coworker of Alice—at 20:00 say-
ing that he is with all his coworkers in a pub having a beer. Assuming that
at 22:00 Bob still remembers his belief from 20:00 this new information cre-
ates a conflict with Bob’s beliefs. Note that information from Charlie’s post is

also taken as a belief since there is no way for Bob to validate it. If Bob is a

conservative agent, then EKB%[EEZOO] { K390 B22:0010c299 (Alice, work)} U

{occurred®® (enter(B22901oc** % (Alice, pub)))}, meaning that the new belief

Timed Epistemic Knowledge Bases for Social Networks 195

Algorithm 1. Belief propagation

1: procedure BELIEF—PROPAGATION(EKB?[t"’], Bi"p, w, B)
20 W {K!"B"y|occurred’ (enter(Bly)) € EKBI!" ') where t € [t, — w, tn]}

30 U VU{K"B!"p}

4: if B = susceptible then [bo,b1,...,bs] < sortNewestOldest(¥)
5: else if 8 = conservative then [by, b1, ..., by] < sortOldestNewest (V)
6: end if

7: foreach b in [bo, b1,...,bs] do

8: it EKB?"" U {b} ¥ B! L then

9: EKBI!" — EKBII U (b}

10: end if

11: end foreach

12: EKBJ!" — EKB?" U {occurred's (enter(B!" ©))}
13: return EKB;.’[t”]
14: end procedure

is rejected. If Bob is a susceptible agent: EKBZ?[gg:OO] = {K3300 B22:005020:00
(Alice, pub)} U {occurred®*™ (enter(BZ:loc*" " (Alice, pub)))}. Bob believes
that Alice’s location at time ¢ (20:00 < ¢ < 22:00) is work—due to belief prop-

agation. After 22:00, this belief does not propagate to avoid contradictions with
the new belief B2 loc*%° (Alice, pub). O

Semantics of KBLyr7. The semantics of KBLzr7 formulae is given by the
satisfaction relation =. Given a well-formed trace o € WFT, a window w € N,
a time-stamp t € T,, agents i,j € Ag, a finite set of agents G C Ag, formulae
©,% € FBrrr, predicate symbols ¢t (4, §), a' (i, 7),p'(3) wherec € Cand a € &,
a domain D € D, an event e € EVT, and a variable x, the satisfaction relation

E CWFT X Fxprn, is defined as follows:

o |= occurred®(e) iff (SN, FE,t) € o such that e € E
oE -y iff Ulyégo
cEQANY iff o =pando =y

oEVYt-e iff for allv e T,, o0 = plv/t]
okE=Vr: Dt iff forallv € DM o = plv/x]

o k= ct(i, §) iff (i, 5) € o7

o k= at(i, j) iff (i, 5) € AJ

cEp() it p(F) € KBIU

o= Ky iff U{t'\t'<t,t'e’£ra} KB?M = (o, w)

o = By iff U{t’\t/<t,t’€TU} KBZM = (Bfp,w)

Predicates of type occurredt(e) are true if the event e is part of the events that
occurred at time ¢ in the trace. V¢ quantifies over all the time-stamps in the trace
T,, which is a finite set. For the remaining domains, Vz : D?, the substitution is
carried out over the elements of the domain at a concrete time ¢. Remember that
each individual domain D! always contains a finite set of elements. However, the

196 R. Pardo et al.

same domain at different points in time, e.g., D' and D', for any ¢ # ' might
contain different number of elements. When checking connections ¢! (i, j) and

actions a®(i, j) at time ¢, we check whether the corresponding relation— Ce ® and

Ag[t], respectively—of the SNM at time ¢ contains the pair of users in question.
Checking whether a predicate of type pt(s) holds is equivalent to looking into
the knowledge base of the environment at time ¢. The environment’s knowledge
base contains all predicates that are true in the real world at a given moment in
time. For example, “it is raining in Gothenburg at 19:00” rain'®%°(Gothenburg)
or “Alice’s location at 20:00 is Madrid” loc**"(Alice, Madrid). Determining
whether an agent knows or believes a fact at a certain moment in time—i.e.,
K!p or Blp—boils down to derivability from the union of all her EKBs for the
given window w. This way of defining belief is based on the fact that agents are
aware of their beliefs, recall axiom (L2) in Table 1.

< S
SNo N SN7 & ;‘S SNis
g 58
N Y,
J) . NS
Cha 5‘ Cha | K{y,, friendRequest” (Ali, Cha) \§ P Cha
S SE
Ly QS A NN
| FriendRequest § \ FriendRequest §” ‘§‘ I Friends
i N ' § §
K, picture®(Bob, pub) 8 All =3 K3 picture'® (Bob k)
. Anprcture 0b, pub -7 7 . - K anpicture”” (Bob, work .
EEE—— riendRequest t, Chi —_—> 15 5 5
Ali K9, B, loc®(Bob, pub) K}y friendRequest” (Ali, Cha) K, B loc"(Bob, work) Ali
I Friends I Friends I Friends
K12, picture'® (Bob, work)
Bob Bob ‘ K5, loc*® (Bob, work) Bob

Fig. 1. Example of a Snapchat trace

Ezxample 4 (Snapchat). In Snapchat users can perform two main events: (1) Con-
nect through a friend relation; (2) share timed messages, which last up to 10 sec-
onds with their friends. Figure 1 shows an example trace for Snapchat with three
agents Ag = {Alice, Bob, Charlie}. Since Ag does not change we avoid using the
superindex indicating the time-stamp of the domain. The trace consists of three
SNMs SN, SN and SN 15, where the subindex indicates the time-stamp.

At time 0, Alice and Bob are friends, friends’(Alice, Bob), which is repre-
sented by including the pair (Alice, Bob) in the relation Friends®® in SN,.
Alice and Bob’s friendship does not change along o. Also, Alice is permitted to
send a friend request to Charlie—depicted as an outgoing dashed arrow. Thus,
o [P§hartie friendRequest’ holds. Finally, Alice knows that there is a picture
of Bob at the pub, picture®(Bob, pub), and she believes that Bob is at the pub,
loc’(Bob, pub). This is a belief because she cannot verify that the picture has
not been modified or she cannot precisely identify the location. However, the
existence of pictureO(Bob, pub) can be verified since it is a picture that Alice can
see in the OSN. At time 7, Alice sends a friend request to Charlie. After the exe-
cution of the event both agents know friendRequest’ (Alice, Charlie). Note that

Timed Epistemic Knowledge Bases for Social Networks 197

this event produces knowledge, because the agents can verify that the friend
request has occurred. Finally, at time 15, Charlie accepts Alice’s request and
Bob shares a picture at work. Note that these two events are independent.
After Bob accepts Alice’s request (Alice, Charlie) ¢ FriendRequest"[w], and
(Alice, Charlie) € Friends®™®). That is, Alice cannot send more friend requests
to Charlie, and now they have become friends. Furthermore, both, Alice and
Bob know that Bob shared a picture at work. In this case, Bob also knows that
his location is work, but Alice only believes it.? The reason is that, unlikely Bob,
Alice cannot confirm that Bob’s location is work.

As on Snapchat messages last for up to 10 seconds, we can assume
w.l.o.g. that all messages last 10 seconds, i.e., w = 10. Consequently, in
o, Alice remembers Bob picture from 0 to 10: ¢ = Vt-0 < t <
10 = KY,,picture®(Bob, pub). Similarly, her belief about Bob location,
picture’(Bob, pub), vanishes at time 10. Note also that, when Charlie accepts
Alice’s friend request, he still knows (or remembers) that Alice sent it. In
Snapchat friend requests are permanent, but in our framework we can choose
whether friend requests disappear after a few seconds. This can be done by
requiring that the agent knows that a friend request occurred in order to accept
it. In such a case, in o, after time 18 Charlie would not be able to accept Alice’s
request. O

2.3 Model Checking KBLrT

In this section, we show that the model checking problem for KBLzrr is
decidable.

Theorem 1. The model checking problem for KBLgrt is decidable.

Proof. Let o be a trace, ¢ a formula and w a window. Since all domains are
finite, we unfold universal quantifiers Vz: D - ¢’ and V¢ - ¢’ into a conjunction
of formulas ¢'[v/z] for each element v in the domain D or in T,. The resulting
formula is quantifier free and has size O(|p| x d?) where d is a bound on the size
of the domain and ¢ is the maximum nested stack of quantifiers. Let 1,..., o
be the subformulas of the resulting formula, ordered respecting the subformula
relation. An easy induction on k < m shows that we can label every agent and
at every step of the trace with either) or —pg. The labelling proceeds from
the earliest time-stamp on. We show only the epistemic operators here (see [22]
for the complete proof):

— Checking ¥, = =0; and 9, = 1; A ¢; can be done in constant time for each
instant ¢t and agent 7, using the induction hypothesis.

— First, we construct a set A where we instantiate all the axioms in Table 1
for each ¢t € T,. The resulting set has size |A|] = |T,| x 11 (number of
axioms in Table 1). Secondly, we instantiate KR1 (cf. Table 1), for w and for

2 For readability we omit occurred'® (enter(BL5,.. loc'®(Bob, work))) in Fig.1 which is
included in EKBL?).

198 R. Pardo et al.

allt,t' € T, such that ¢t > ' and t—t' < w. The resulting set of axioms has size
O(erjr;l_l nxw). That is, all legal combinations of timestamps (n) times the
window size (w). These axioms are also included in A, which, consequently,
contains a finite set of axioms. Finally, checking K!v; and Blv; requires one
query to the epistemic engine for A, U{t’lt’<t€'ﬂ‘g} EKB?M F 4;. The previous
query is equivalent to model checking a Kripke structure where relations are

labelled with triples (i,¢,w). Solving this problem is known to be decidable
in PSPACE [17].

It is easy to see that the semantics of KBLz 7 is captured by this algorithm. O

2.4 Properties of the Framework

Here we present a set of novel derived operators not present in traditional epis-
temic logics and we prove some properties of the framework (see [22] for the
proofs).

To learn or not to learn — To believe or not to believe. In [6] we introduced
a primitive modality L;p, to capture that i learns ¢ at the first moment at

which K;¢ becomes true. Here Ly becomes a derived operator defined formally

as: Ltp £ —J(fmd(t)cp A Klp. We can also model when users start to believe

something, or accept a belief, as follows, Aty = ﬁBfred(t)go A Blp. Analogously
we can express when users forget some knowledge or when they reject a belief.
Intuitively, an agent forgets ¢ at time t if she knew it in the previous timestamp
and in t she does not know ¢, and, analogously, for reject. Formally, Ffp =
Kipred(t)gp A=K, and Rip £ Bipmd(t)gp A =Blep.

Temporal modalities. The traditional temporal modalities O and < can easily
be defined using quantification over timestamps as follows: Op(t) = V¢ - ¢(t),
and Op(t) 2 3t - p(t), where ¢(t) is a formula ¢ which depends on ¢.

How long do agents remember? Agents remember according to the length of the
parameter w, which can be seen as the size of their memory. Increasing agents
memory could only increase their knowledge as stated in the following lemma.

Lemma 1 (Increasing window and Knowledge). Given o, t € T, and
w,w € N where w < w', we have that: If EKB?M F (Klp,w), then EKB‘ZM F
(Ko, w').

We can characterise how long agents remember information depending on w

and .

Lemma 2 (w knowledge monotonicity). Given o and t € T,. If Klp €
EKB?M then for allt' € Ty such that t <t <t+w it holds o = K! ¢.

Timed Epistemic Knowledge Bases for Social Networks 199

Perfect recall is obtained by choosing w = oo so agents never forget. Dualy,
w = 0 models agents who do not remember anything. The parameter 3 also influ-
ences how beliefs are preserved in time. When = conservative, memories about
beliefs behave in the same way as knowledge. Similarly monotonicity results can
be proven for beliefs as the lemmas above. For example, if § = conservative
then beliefs are preserved until these beliefs are forgotten—due to w—or con-
tradict knowledge. Similarly, an agent with 8 = susceptible rejects a belief when
exposed to new contradictory beliefs. Therefore, the duration of their beliefs
can be limited by an event introducing new beliefs in the EKBs. Other versions
of 8 are possible, for example based on the reputation of the agent that emits
the information. It is also possible to consider different w for different pieces of
information. However, these extensions are out of the scope of this paper.

3 Writing Privacy Policies

We introduce here the language PP Lz for writing privacy polices: a restricted
version of KBLr7 wrapped with [] (i is the owner of the policy, and s its
starting time).

Definition 4 (Syntax of PPLgr7). Given agents i,j € Ag, a nonempty set
of agents G C Ag, timestamps s,t € T, a domain D € D, a variable x, pred-
icate symbols c'(i,j),a'(i,7), p'(¥) where ¢ € C and a € X, and a formula
¢ € FxBrrys the syntax of the real-time privacy policy language PPLrT is
inductively defined as:

§u=0A8 Ve -§|[-a]i [[p = -ali 4 w=Kjv|Biy

as=aAa|Ve:D-a|3x:D-aly|y u=c(i,5) | a(i,5) | occurred(e)

Y=y Ay [[P E) [Y | Ve -y

We use Fpprr, to denote the set of all privacy policies according to 4,

and }'%,ER , the set positive formulae according to «, which we refer to as
restrictions. As we show below restrictions appear always preceded by —. To
determine whether a policy is violated in an evolving social network, we formalise
the notion of conformance.

Definition 5 (Conformance Relation). Given a trace o € WFT, time-
stamp s € T, formulae § € Fpprn, and a € .7-"77327%7”, agent i € Ag, domain
D € D, and variable x, the conformance relation |=¢ is defined as follows:

okEcVr-d ift for allv e D, o ¢ d[v/x]
oo [-a]i iff 0=«
ofFcly = —off iff sol=(p = —a)

The definition is quite simple, especially compared to that of conformance of
PPLy [6]. If the policy is quantified, we substitute in the usual way. The main
body of the policy in double brackets is dealt with by simply delegating to the
satisfaction relation.

200 R. Pardo et al.

Example 5. Alice decides to hide all her weekend locations from her supervisor
Bob. She has a number of options how to achieve this using PPLr 7. If she wants
to restrict Bob learning her weekend location directly when she posts it, she can
define a policy stating that “if x is a time instant during a weekend, then Bob is
not allowed to learn at 2 Alice’s location from time z7: §; = Vi [weekend(t) =
— Kb, loct (Alice)]2917-10-20 where weekend is true if ¢ represents a time during
a weekend. This, however, is a very specialized scenario that captures only a
small number of situations. Bob is, for example, free to learn Alice’s location
at any point not during the weekend, or at any point during the weekend when
Alice’s location is no longer up-to-date. We can consider a more precise policy
concerning the learning of one’s location: dy = V¢ - [weekend(t) — -3t -
(K%, loc(Alice))]20L7-10-20 Here, Bob is not allowed to learn Alice’s location
from a weekend, no matter when this information is learnt. a

Since checking conformance of PPLgrs privacy policies reduces to model
checking the given trace the following corollary follows directly from Theorem 1.

Corollary 1. Checking conformance of PPLgrT policies is decidable.

4 Related Work and Concluding Remarks

Related Work. Combining epistemic and timed reasoning has been previously
studied. For example, [10] presents a logic for reasoning about actions and time.
The logic includes a belief modality, actions, as well as time-stamps for atoms,
modalities and actions. In our work we do not focus on reasoning about action
and time but on defining dynamic privacy policies for OSNs. Also, [10] cannot
reason about knowledge. Moses et al. [17] extends interpreted systems to reason
about past and future knowledge. In [23] they extend K with a time-stamp K ;
allowing for reasoning about knowledge at different times, also having a similar
predicate to our occurred(e). However, our logic (unlike [23]) includes beliefs
and associates time-stamps with both modalities and predicates, whereas [17]
only uses time-stamps for knowledge. Additionally, [23] aims at modeling delays
in protocols, whereas we want to express dynamic privacy policies for OSNs.
Recently, Xiong et al. [11] presented a logic to reason about belief propagation
in Twitter. The logic includes an (untimed) belief modality and actions, which
are used in a dynamic logic fashion. Their models are similar to our untimed
SNMs [15,24]. Even though we do not include actions, we use time-stamps and
knowledge modalities. Also, one of the main contributions of our paper is solving
inconsistent beliefs.

Concluding Remarks. We have presented a novel privacy policy framework based
on a logic with time-stamps in events and epistemic operators. This framework
extends [15,24], which did not offer any support for time, and [6] which only had
limited support due to the implicit treatment of time. A query in our framework
starts by instantiating a number of epistemic axioms that handle knowledge,

Timed Epistemic Knowledge Bases for Social Networks 201

belief and time. Our proof system gives an algorithm to deduce the knowledge
of agents acquired at each instant, and a model checking algorithm which can
be used to check violations of privacy policies. The explicit time-stamps allow
to derive learning and forget operators for knowledge, and accept and reject
operators for beliefs. In our new framework we can define eternal OSNs like
Facebook and ephemeral OSNs like Snapchat.

Two important avenues for future research are the following. First, the algo-
rithm presented in this paper is not efficient enough for practical purposes, but
serves as a formal foundation to develop provably correct efficient privacy vio-
lation detectors and enforcers, which can exploit specific details of each social
network about how actions affect the knowledge of the agents involved. For
instance, once the effect of the actions is fixed one can develop distributed algo-
rithms that guarantee the same outcome as the direct algorithm proposed here.
For example, tweets can only affect the knowledge of subscribers so all other users
are unaffected. Second, once an effective system to check policy violations is in
place, there are different possibilities that the OSN can offer. One is to enforce
the policy by forbidding the action that the last agent executed (the action that
leads to the violation). Another can be the analysis of the trace to assign blame
(and affect the reputation) to the agents involved in the chain of actions. For
example, the creator of a gossip or fake news may be held more responsible than
users forwarding the gossip. A finer analysis of controllability allow more power-
ful algorithms that detecting which agents could have prevented the information
flow that lead to the violation. Yet another possibility is to remove past events
from the history trace of the OSN creating a pruned trace with no violation.

References

1. Lenhart, A., Purcell, K., Smith, A., Zickuhr, K.: Social media & mobile internet
use among teens and young adults. Millennials. Pew Internet & American Life
Project (2010)

2. Madejski, M., Johnson, M., Bellovin, S.: A study of privacy settings errors in an
online social network. In: PERCOM Workshops 2012, pp. 340-345. IEEE (2012)

3. Johnson, M., Egelman, S., Bellovin, S.M.: Facebook and privacy: it’s complicated.
In: SOUPS 2012, pp. 9:1-9:15. ACM (2012)

4. Liu, Y., Gummadi, K.P., Krishnamurthy, B., Mislove, A.: Analyzing facebook pri-
vacy settings: user expectations vs. reality. In: IMC 2011, pp. 61-70. ACM (2011)

5. Madejski, M., Johnson, M.L., Bellovin, S.M.: The failure of online social network
privacy settings. Technical report, Columbia University (2011)

6. Pardo, R., Kellyérova, 1., Sdnchez, C., Schneider, G.: Specification of evolving
privacy policies for online social networks. In: TIME 2016, pp. 70-79. IEEE (2016)

7. The Guardian: As fake news takes over Facebook feeds, many are taking
satire as fact. www.theguardian.com/media/2016/nov/17/facebook-fake-news-
satire. Accessed 20 Oct 2017

8. The Guardian: How to solve Facebook’s fake news problem: experts pitch
their ideas. www.theguardian.com/technology/2016/nov/29/facebook-fake-news-
problem-experts-pitch-ideas-algorithms. Accessed 20 Oct 2017

www.theguardian.com/media/2016/nov/17/facebook-fake-news-satire
www.theguardian.com/media/2016/nov/17/facebook-fake-news-satire
www.theguardian.com/technology/2016/nov/29/facebook-fake-news-problem-experts-pitch-ideas-algorithms
www.theguardian.com/technology/2016/nov/29/facebook-fake-news-problem-experts-pitch-ideas-algorithms

202

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

R. Pardo et al.

The Guardian: Obama is worried about fake news on social media-and we should
be too. www.theguardian.com/media/2016 /nov/20/barack-obama-facebook-fake-
news-problem. Accessed 20 Oct 2017

van Zee, M., Doder, D., Dastani, M., van der Torre, L.W.N.: AGM revision of
beliefs about action and time. In: IJCAI 2015, pp. 3250-3256. AAAI Press (2015)
Xiong, Z., Agotnes, T., Seligman, J., Zhu, R.: Towards a logic of tweeting. In:
Baltag, A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS, vol. 10455, pp.
49-64. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55665-8_4
Halpern, J.Y., Samet, D., Segev, E.: Defining knowledge in terms of belief: the
modal logic perspective. Rev. Symbolic Logic 2, 469-487 (2009)

Fong, P.W.: Relationship-based access control: Protection model and policy lan-
guage. In: CODASPY 2011, pp. 191-202. ACM (2011)

Bruns, G., Fong, P.W., Siahaan, 1., Huth, M.: Relationship-based access control:
its expression and enforcement through hybrid logic. In: CODASPY 2012, pp.
117-124. ACM (2012)

Pardo, R., Balliu, M., Schneider, G.: Formalising privacy policies in social networks.
J. Logical Algebraic Methods Program. 90, 125-157 (2017)

Snodgrass, R., Ahn, I.: Temporal databases. Computer 19(9), 35-42 (1986)
Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge,
vol. 4. MIT press Cambridge, Cambridge (2003)

Erciyes, K.: Complex Networks: An Algorithmic Perspective, 1st edn. CRC Press
Inc., Boca Raton (2014)

FlockDB: A distributed fault-tolerant graph database. github.com/twitter /flockdb.
Accessed 20 Oct 2017

Bronson, N., Amsden, Z., Cabrera, G., Chakka, P., Dimov, P., Ding, H., Ferris, J.,
Giardullo, A., Kulkarni, S., Li, H., Marchukov, M., Petrov, D., Puzar, L., Song,
Y.J., Venkataramani, V.: Tao: Facebook’s distributed data store for the social
graph. In: ATC 2013, pp. 49-60 (2013)

Neo4j decreases development time-to-market for LinkedIn’s Chitu App.
neodj.com/case-studies/linkedin-china/. Accessed 20 Oct 2017

Pardo, R., Sanchez, C., Schneider, G.: Timed Epistemic Knowledge Bases for Social
Networks (Extended Version). ArXiv e-prints (2017)

Ben-Zvi, 1., Moses, Y.: Agent-time epistemics and coordination. In: Lodaya, K.
(ed.) ICLA 2013. LNCS, vol. 7750, pp. 97-108. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36039-8_9

Pardo, R., Schneider, G.: A formal privacy policy framework for social networks. In:
Giannakopoulou, D., Salaiin, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 378-392.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10431-7_30

www.theguardian.com/media/2016/nov/20/barack-obama-facebook-fake-news-problem
www.theguardian.com/media/2016/nov/20/barack-obama-facebook-fake-news-problem
https://doi.org/10.1007/978-3-662-55665-8_4
http://www.github.com/twitter/flockdb
http://www.neo4j.com/case-studies/linkedin-china/
https://doi.org/10.1007/978-3-642-36039-8_9
https://doi.org/10.1007/978-3-319-10431-7_30

®

Check for
updates

Optimal and Robust Controller Synthesis
Using Energy Timed Automata with Uncertainty

Giovanni Bacci'(®)| Patricia Bouyer?, Uli Fahrenberg?,
Kim Guldstrand Larsen', Nicolas Markey*, and Pierre-Alain Reynier®

! Department of Computer Science, Aalborg University, Aalborg, Denmark
giovbacci@cs.aau.dk
2 LSV, CNRS & ENS Cachan, Université Paris-Saclay, Cachan, France
3 Ecole Polytechnique, Palaiseau, France
4 Univ. Rennes, IRISA, CNRS & INRIA, Rennes, France
Aix Marseille Univ., Université de Toulon, CNRS, LIS, Marseille, France

ut

Abstract. In this paper, we propose a novel framework for the syn-
thesis of robust and optimal energy-aware controllers. The framework is
based on energy timed automata, allowing for easy expression of tim-
ing constraints and variable energy rates. We prove decidability of the
energy-constrained infinite-run problem in settings with both certainty
and uncertainty of the energy rates. We also consider the optimization
problem of identifying the minimal upper bound that will permit exis-
tence of energy-constrained infinite runs. Our algorithms are based on
quantifier elimination for linear real arithmetic. Using Mathematica and
Mjollnir, we illustrate our framework through a real industrial example
of a hydraulic oil pump. Compared with previous approaches our method
is completely automated and provides improved results.

1 Introduction

Design of controllers for embedded systems is a difficult engineering task. Con-
trollers must ensure a variety of safety properties as well as optimality with
respect to given perprocessformance properties. Also, for several systems, e.g.
[8,25,27], the properties involve non-functional aspects such as time and energy.

We provide a novel framework for automatic synthesis of safe and optimal con-
trollers for resource-aware systems based on energy timed automata. Synthesis of
controllers is obtained by solving time- and energy-constrained infinite run prob-
lems. Energy timed automata [12] extend timed automata [2] with a continuous
energy variable that evolves with varying rates and discrete updates during the
behaviour of the model. Closing an open problem from [12], we prove decidabil-
ity of the infinite run problem in settings, where rates and updates may be both
positive and negative and possibly subject to uncertainty. Additionally, the accu-
mulated energy may be subject to lower and upper bounds reflecting constraints
on capacity. Also we consider the optimization problems of identifying minimal

Work supported by ERC projects Lasso and EQuallS.

© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 203-221, 2018.
https://doi.org/10.1007/978-3-319-95582-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_12&domain=pdf

204 G. Bacci et al.

upper bounds that will permit the existence of infinite energy-constrained runs.
Our decision and optimization algorithms for the energy-constrained infinite run
problems are based on reductions to quantifier elimination (QE) for linear real
arithmetic, for which we combine Mathematica [28] and Mjollnir [24] into a tool
chain.

3.0 T T T T T T T T T T
) S:: : 25
Accumulator 8§ sk
2.21/s 8 2l
Pump =— , é f-g: :
”””” FVinaw o 16
T 14 : :
& or i3 i2
& 1ot
£ o8t
— [T B Vm,in 2 g'g:
Machine |=——— o2l
2% 2 4 6 s 10 1z 14 16 18 20
Time (second)
(a) System Components (b) Cycle of the Machine

Fig. 1. Overview of the HYDAC system

To demonstrate the applicability of our framework, we revisit an industrial
case study provided by the HYDAC company in the context of the European
project Quasimodo [26]. It consists in an on/off control system (see Fig.1la)
composed of (i) a machine that consumes oil according to a cyclic pattern of
20 s (see Fig. 1b), (ii) an accumulator containing oil and a fixed amount of gas in
order to put the oil under pressure, and (iii) a controllable pump which can pump
oil into the accumulator with rate 2.2 1/s. The control objective for switching the
pump on and off is twofold: first the level of oil in the accumulator (and so the
gas pressure) shall be maintained within a safe interval; second, the controller
should try to minimize the (maximum and average) level of oil such that the
pressure in the system is kept minimal. We show how to model this system, with
varying constraints on pump operation, as energy timed automata. Thus our
tool chain may automatically synthesize guaranteed safe and optimal control
strategies.

The HYDAC case was first considered in [16] as a timed game using the tool
UPPAAL-TIGA [5,15] for synthesis. Discretization of oil-level (and time) was
used to make synthesis feasible. Besides limiting the opportunity of optimality,
the discretization also necessitated posterior verification using PHAVER [20] to
rule out possible resulting incorrectness. Also, identification of safety and min-
imal oil levels were done by manual and laborious search. In [23] the timed
game models of [16] (rephrased as Timed Discrete Event Systems) are reused,
but BDDs are applied for compact representation of the discrete oil-levels and
time-points encountered during synthesis. [21] provides a framework for learning
optimal switching strategies by a combination of off-the-shelf numerical opti-
mization and generalization by learning. The HYDAC case is one of the con-
sidered cases. The method offers no absolute guarantees of hard constraints on

Optimal and Robust Controller Synthesis 205

energy-level, but rather attempts to enforce these through the use of high penal-
ties. [29] focuses exclusively on the HYDAC case using a direct encoding of
the safety- and optimality-constraints as QE problems. This gives—like in our
case—absolute guarantees. However, we are additionally offering a complete and
decidable framework based on energy timed automata, which extends to several
other systems. Moreover, the controllers we obtain perform significantly better
than those of [16] and [29] (respectively up to 22% and 16% better) and are
obtained automatically by our tool chain combining Mjollnir and Mathematica.
This combination permits quantifier elimination and formula simplification to be
done in a compositional manner, resulting in performance surpassing each tool
individually. We believe that this shows that our framework has a level of matu-
rity that meets the complexity of several relevant industrial control problems.

Our work is related to controllability of (constrained) piecewise
affine (PWA) [7] and hybrid systems [1]. In particular, the energy-constrained
infinite-run problem is related to the so called stability problem for PWAs.
Blondel and Tsitsiklis [10] have shown that verifying stability of autonomous
piecewise-linear (PWL) systems is NP-hard, even in the simple case of two-
component subsystems; several global properties (e.g. global convergence, asymp-
totic stability and mortality) of PWA systems have been shown undecidable
in [9].

2 Energy Timed Automata

Definitions. Given a finite set X of clocks, the set of closed clock constraints
over X, denoted C(X), is the set of formulas built using g ::= x ~ n | gAg, where
x ranges over X, ~ ranges over {<,>} and n ranges over Q>¢. That a clock
valuation v: X — Rxq satisfies a clock constraint g, denoted v |= g, is defined
in the natural way. For a clock valuation v, a real t € R>(, and a subset R C X,
we write v 4+ ¢ for the valuation mapping each clock z € X to v(z) + ¢, and
v[R — 0] for the valuation mapping clocks in R to zero and clocks not in R
to their value in v. Finally we write Ox (or simply 0) for the clock valuation
assigning 0 to every z € X.

For E C R, we let Z(E) be the set of closed intervals of R with bounds
in FNQ. Notice that any interval in Z(F) is bounded, for any E C R.

Definition 1. An energy timed automaton (ETA for short; a.k.a. priced or
weighted timed automaton [3,6]) is a tuple A = (S, So, X, I,r,T) where S is a
finite set of states, So C S is the set of initial states, X is a finite set of clocks,
I: S5 — C(X) assigns invariants to states, r: S — Q assigns rates to states, and
T CSxC(X)xQx2X xS is a finite set of transitions.

An energy timed path (ETP, a.k.a. linear energy timed automaton) is an
energy timed automaton for which S can be written as {s; | 0 < i < n} in such a
way that So = {so}, and T = {(s4, gi, i, zi, Siv1) | 0 < i < n}. We additionally
require that all clocks are reset on the last transition, i.e., z,_1 = X.

206 G. Bacci et al.

Let A = (5,50, X,I,7,T) be an ETA. A configuration of A is a triple
(0,v,w) € Sx (Rx>0)* xR, where v is a clock valuation, and w is the energy level.
Let 7 = (t;)o<i<n be a finite sequence of transitions, with ¢; = (s;, g;, ws, 2, Si+1)
for every i. A finite run in A on 7 is a sequence of configurations p =
(¢;,v;,w;)o<j<2n such that there exists a sequence of delays (d;)o<i<n for which
the following requirements hold:

— for all 0 < j<n, fzj = €2j+1 = S;, and {s,, = Sn;

— forall 0 S j <n, V2j+1 = V25 + dj and V2j42 = Ugj_H[Zj — 0],

— for all 0 < j < n, vg; |=1I(s;) and vo;41 = I(s;) A g5;

— for all 0 S j <n, W2j41 = W2y + dj . ’I"(Sj) and W2j42 = W2j+1 + Uyj.

We will by extension speak of runs read on ETPs (those runs will then end with
clock valuation 0). The notion of infinite run is defined similarly. Given E € Z(Q),
such a run is said to satisfy energy constraint E if w; € E for all j.

Example 1. Figure?2 displays an example of an ETP P and one of its runs p.
Since no time will be spent in so, we did not indicate the invariant and rate of
that state. The sequence p is a run of P. Spending 0.6 time units in sq, the value
of clock x reaches 0.6, and the energy level grows to 3+ 0.6 x 2 = 4.2; it equals

4.2 — 3 = 1.2 when entering s;. Then p satisfies energy constraint [0; 5]. <
1 w
Y23 w:-— = p s
P: (o E— 3@ =1 u:0 S2 T Cs

y;:O U aZ:IO,yZIO So ! ED)
y<1 y<1 S1.0
r 42 r:+4 t

0 1

Fig. 2. An energy timed path P, and a run p of P with initial energy level 3.

Definition 2. A segmented energy timed automaton (SETA for short) is a
tuple A = (S, T, P) where (S,T) is a finite graph (whose states and transitions
are called macro-states and macro-transitions), Sy is a set of initial macro-
states, and P associates with each macro-transition t = (s,s') of A an ETP with
initial state s and final state s'. We require that for any two different transitions t
and t' of A, the state spaces of P(t) and P(t") are disjoint and contain no macro-
states, except (for both conditions) for their first and last states.

A SETA is flat if the underlying graph (S,T) is (i.e., for any s € S, there
is at most one non-empty path in the graph (S,T) from s to itself [14,17]). It is
called depth-1 whenever the graph (S,T) is tree-like, with only loops at leaves.

Optimal and Robust Controller Synthesis 207

A (finite or infinite) execution of a SETA is a (finite or infinite) sequence of

runs p = (p'); such that for all 4, writing p’ = (¢%, v}, w?)o<j<2n,, it holds:
— 0} and (4, are macro-states of A, and p’ is a run of the ETP P(¢}, 5,);

i+l _ i i+l _ i
= by =40, and wy T = wh, .

Hence a run in a SETA should be seen as the concatenation of paths p’ between
macro-states. Notice also that each p’ starts and ends with all clock values zero,
since all clocks are reset at the end of each ETP, when a main state is entered.
Finally, given an interval E € Z(Q), an execution (p'); satisfies energy con-
straint £ whenever all individual runs p’ do.

Remark 1. In contrast with ETAs, the class of SETASs is not closed under parallel
composition. Intuitively, the ETA resulting from the parallel composition of two
SETAs may not be “segmented” into a graph of energy timed-paths because the
requirement that all clocks are reset on the last transition may not be satisfied.
Furthermore, parallel composition does not preserve flatness because it may
introduce nested loops.

Example 2. Figure 3 displays a SETA A with two macro-states sg and sa, and
two macro-transitions. The macro-self-loop on ss is associated with the energy
timed path of Fig.2. The execution p = p* - (p? - p?)¥ is an ultimately-periodic
execution of \A. This infinite execution satisfies the energy constraint F = [0; 5]
(as well as the (tight) energy constraint [1;4.6]). <

In this paper, we consider the following energy-constrained infinite-run prob-
lem [12]: given an energy timed automaton A and a designated state sp, an
energy constraint £ € Z(Q) and an initial energy level wy € E, does there exist
an infinite execution in A starting from (sg, 0, wg) that satisfies E?

u:+1 z>1
Poo= (So 5 S1 5 S2
Y= =

r:0 ri—1 y:=0
(S,T): —> S0 —{ S2 D
QyZOQS u:—3 r=1 Q
52 83 52
Py = y:=0 2:=0
ri42 r:i+4 y:=0
w
¢ 52
S S .
1 S 952 530 “ S3
b sp "4 ! s o
| 2 1
S0 52 | | 52
: [
I 53
S3
1 2 3
P P P
t
0 1 2 3

Fig.3. A SETA A = (5,7, P) with implicit global invariant y < 1; omitted discrete
updates are assumed to be zero. The map P associates with each (s, s;) € T the ETP
P, ;. The infinite sequence p' - (p? - p*) is an infinite execution of A with initial energy
level 3 satisfying the energy constraint E = [0; 5].

208 G. Bacci et al.

In the general case, the energy-constrained infinite-run problem is unde-
cidable, even when considering ETA with only two clocks [22]. In this paper,
we prove:

Theorem 3. The energy-constrained infinite-run problem is decidable for flat
SETA.

Theorem 4. Given a fized lower bound L, the existence of an upper bound U,
such that there is a solution to the energy-constrained infinite-run problem for
energy constraint E = [L; U], is decidable for flat SETA. If such a U exists, then
for depth-1 flat SETA, we can compute the least one.

We only sketch a proof of the former result, and refer to [4] for the full proof.

Binary Energy Relations. Let P = ({s; | 0 < i < n},{so}, X,I,7,T) be an
ETP from sg to s,. Let E C Z(Q) be an energy constraint. The binary energy
relation R7E, C E x E for P under energy constraint F relates all pairs (wp, wy)
for which there is a finite run of P from (sg, 0, wq) to (s, 0, w1) satisfying energy
constraint F. This relation is characterized by the following first-order formula:

n—1

R’]EDJ(wm wl) — 3(di)0§2'<n~§15timing A éenergy ANwy = woy + Z(dk . T(Sk) + uk)
k=0

where @giming encodes all the timing constraints that the sequence (di)o<i<n
has to fulfill (derived from guards and invariants, by expressing the values of
the clocks in terms of (d;)o<i<n), While Pepergy encodes the energy constraints
(in each state, the accumulated energy must be in E).

It is easily shown that RE is a closed, convex
subset of F x E (remember that we consider closed
clock constraints); thus it can be described as a con-
junction of a finite set of linear constraints over wy
and wy (with non-strict inequalities), using quanti-
fier elimination of variables (d;)o<i<n.

N W O’lg

—
\

Ezample 3. We illustrate this computation on the
ETP of Fig.2. For energy constraint [0;5], the 00
energy relation (after removing redundant con-
straints) reads as

RE(wo,w1) <= Ido,dy.do € [0.25;1] Ady € [0;1] Adg +dy =1 A
wp € [0;5] A wg + 2dy € [0;5] Awg + 2dy — 3 € [0; 5] A
w1, = wo + 2dg +4d1 —3Nwq € [0,5]

This simplifies to (w1 +2 < 2wy < wy +4) A (w; — 05 < wy < wy + 1).
The corresponding polyhedron is depicted above. <

Optimal and Robust Controller Synthesis 209

Energy Functions. We now focus on properties of energy relations. First notice
that for any interval E € Z(Q), the partially-ordered set (Z(E), D) is w-complete,
meaning that for any chain (I;),en, with I; D I;44 for all j, the limit ﬂjeN I
also belongs to Z(E). By Cantor’s Intersection Theorem, if additionally each
interval I; is non-empty, then so is the limit [jen 45

With an energy relation R%, we associate an energy function (also denoted
with R7E,, or simply R, as long as no ambiguity may arise), defined for any closed
sub-interval I € Z(E) as R(I) = {wy € E | Jwg € I. R(wop,w1)}. Symmetrically:

R™I) = {wy € E | Jwy € I. R(wg,w1)}.

Observe that R(I) and R~1(I) also belong to Z(E) (because the relation R
is closed and convex). Moreover, R and R~! are non-decreasing: for any two
intervals I and J in Z(E) such that I C J, it holds R(/) C R(J) and R~(I) C
R~1(J). Energy function R! also satisfies the following continuity property:

Lemma 5. Let (I;)jen be a chain of intervals of Z(E), such that I; O Ij4q for
all j € N. Then R~ (e Ij) = Njen R (I))-

Composition and Fixpoints of Energy Functions. Consider a finite
sequence of paths (P;)1<i<k. Clearly, the energy relation for this sequence can
be obtained as the composition of the individual energy relations ng o -oRgl;
the resulting energy relation still is a closed convex subset of F x E that can be
described as the conjunction of finitely many linear constraints over wg and w;.
As a special case, we write (Rg)k for the composition of k copies of the same
relations Rg.

Now, using Lemma 5, we easily prove that the greatest fixpoint ¥R ! of R~}
in the complete lattice (Z(F), D) exists and equals:

VR = ((R7Y(E).

ieN

Moreover vR~! is a closed (possibly empty) interval. Note that vR~1 is the
maximum subset Sg of E such that, starting with any wy € Sg, it is possible to
iterate R infinitely many times (that is, for any wy € S, there exists w; € Sg
such that R(wq,w;)—any such set S is a post-fixpoint of R™1, i.e. S € R™(S)).
If R is the energy relation of a cycle C in the flat SETA, then ¥R ™! precisely
describes the set of initial energy levels allowing infinite runs through C satisfying
the energy constraint F. If R is described as the conjunction ¢¢ of a finite set
of linear constraints, then we can characterize those intervals [a,b] C FE that
constitute a post-fixpoint for R~! by the following first-order formula:

a<bAhae€EANbe EAYwy € [a;b]. Fw;y € [a;b]. ¢pc(wo,wr). (1)

Applying quantifier elimination (to wy and wy), the above formula may be
transformed into a direct constraint on a and b, characterizing all post-fixpoints
of R~!. We get a characterization of ¥R~ by computing the values of a and b
that satisfy these constraint and maximize b — a.

210 G. Bacci et al.

Ezample 4. We again consider the flat SETA of Fig. 3, and consider the energy
constraint E = [0; 5]. We first focus on the cycle C on the macro-state so: using
the energy relation computed in Example 3, our first-order formula for the fix-
point then reads as follows:

0<a<b<5AVw € [a;b]. Jw € [a;b].
((w1+2§2w0§w1+4)/\(w170.5§w0§w1+1)).

Applying quantifier elimination, we end up with 2 < a < b < 4. The maximal
fixpoint then is [2;4]. Similarly, for the path P from sg to sa:

Rg(wo,wl) < ddp,d1. 0<dyg <1AN0<di <1Ady+d; >1A
0<wyg<HA0<wyg+1<bAwi=w1+1-diAN0<w; <5

which reduces to 0 < wp < 4 Awy < wy; < wo + 1. Finally, the initial energy
levels wq for which there is an infinite-run in the whole SETA are characterized
by Jwi. (0 < wp < 4Awy <wy <wy~+1)A (2 <wy <4), which reduces to

Algorithm for Flat Segmented Energy Timed Automata. Following
Example 4, we now prove that we can solve the energy-constrained infinite-run
problem for any flat SETA. The next theorem is crucial for our algorithm:

Theorem 6. Let R be the energy relation of an ETP P with energy constraint E,
and let I € Z(E). Then either INVvR ™Y # 0 or R™(I) = () for some n.

It follows that the energy-constrained infinite-run problem is decidable for
flat SETAs. The decision procedure traverses the underlying graph of A, forward
propagating an initial energy interval Iy C E looking for a simple cycle C' such
that VREl NI # (), where I C E is the energy interval forward-propagated
until reaching the cycle. Algorithm 1 gives a detailed description of the decision
procedure. It traverses the underlying graph (S,T') of the flat SETA A, using a
waiting list W to keep track of the macro-states that need to be further explored.
The list W contains tasks of the form (m, I, flag) where m € S is the current
macro-state, I € Z(E) is the current energy interval, and flag € {c,c} is a flag
indicating if m shall be explored by following a cycle it belongs to (flag = ¢),
or proceed by exiting that cycle (flag = ¢). Theorem 6 ensures termination
of the while loop of lines 17-21, whereas flatness ensures the correctness of
Algorithm 1.

It is worth noting that the flatness assumption for the SETA A implies that
the graph (S,T) has finitely many cycles (each macro-state belongs to at most
one simple cycle of (S,T), therefore the number of cycles is bounded by the
number of macro-states). As a consequence, Algorithm 1 performs in the worst
case an exhaustive search of all cycles in A. The technique does not trivially
extend to SETAs with nested cycles, because they may have infinitely many
cycles.

Optimal and Robust Controller Synthesis 211

Input: A flat SETA A = (S,T, P); initial state mo € S; energy interval I

1. W — {(mo, lo,c)} < initialize the waiting list
2. while W # () do

3. pick (m,I, flag) € W < pick an element from the waiting list
4 W — W\ (m, I, flag) < remove the element from the waiting list
5. if flag = ¢ then < the node m shall be explored without following a cycle
6. for each (m,m’) € T that is not part of a simple cycle of (S,T) do

7 W — W u{(m, ”Rg(m’m,)(l), ¢)} < add this new task to the waiting list
8. else < the node m shall be explored by following a cycle
9. if m belongs to a cycle of (S,T) then

10. let C = (m1,m2) - - (mr, mr+1) be the simple cycle s.t. m = mi1 = me41
11. let Re = Rp(my, myi1) ©* © Re(my,ma) < energy relation of the cycle
12. if In I/RC_1 # (then < check if there is an infinite run via the cycle C
13. return tt

14. else < the cycle can be executed only finitely many times
15. W —Wu{(m,I,¢)} < add a new task to the waiting list
16. i+—0 < initialize the number of cycle executions
17. while R:(1) # 0 do < while i-th energy relation is satisfied
18. for 1 <j<kdo

19. let Rp; = Rp(mrmjﬂ) 00 Rp(mi,me) < unfold C up to m;y1
20. W — WU{(mj11,Rp,;(R&(I)),¢)} < add a task to the waiting list
21. t—i+1 < increment the number of cycle executions
22. else < m doesn’t belong to a cycle
23. W —Wu{(m,I,c)} < add a new task to the waiting list
24. return ff < no infinite run could be found

Algorithm 1: Existence of energy-constrained infinite runs in flat SETA

3 Energy Timed Automata with Uncertainties

The assumptions of perfect knowledge of energy-rates and energy-updates are
often unrealistic, as is the case in the HYDAC oil-pump control problem
(see Sect.4). Rather, the knowledge of energy-rates and energy-updates comes
with a certain imprecision, and the existence of energy-constrained infinite runs
must take these into account in order to be robust. In this section, we revisit the
energy-constrained infinite-run problem in the setting of imprecisions, by viewing
it as a two-player game problem.

Adding Uncertainty to ETA. An energy timed automaton with uncer-
tainty (ETAu for short) is a tuple A = (5,80, X,I,r,T, e, A), where
(S, S0, X,I,r,T) is an energy timed automaton, with e: S — Q¢ assigning
imprecisions to rates of states and A: T — Qs assigning imprecisions to
updates of transitions. This notion of uncertainty extends to energy timed path
with uncertainty (ETPu) and to segmented energy timed automaton with uncer-
tainty (SETAu).

Let A= (5,50, X,I,7,T, ¢, A) be an ETAu, and let 7 = (¢;)o<i<n be a finite
sequence of transitions, with t; = (s, gi, u;, 2;, Si+1) for every i. A finite run in A

212 G. Bacci et al.

on 7 is a sequence of configurations p = (¢;,v;,w;)o<j<2n such that there exist
a sequence of delays d = (d;)o<;<n for which the following requirements hold:

— for all 0 < j<mn, sz = €2j+1 = Sj, and {s,, = Sn;

— for all 0 § j <n, V2541 = V25 + dj and V2542 = ’UQj+1[Zj — O],

— for all 0 < j < n, vy |=I(s;) and voj41 = I(s5) A g53

— for all 0 < j < n, it holds that woj11 = waj +d; - o and wajio = wojt1 + Gj,
where a; € [r(s;) — €(s;),r(s;) + €(s;)] and 3; € [u; — A(t;), u; + A(t;)]-

We say that p is a possible outcome of d along 7, and that ws, is a possible
final energy level for d along 7, given initial energy level wy. Note that due to
uncertainty, a given delay sequence d may have several possible outcomes (and
corresponding energy levels) along a given transition sequence 7. In particular,
we say that 7 together with d and initial energy level wq satisfy an energy
constraint E € Z(Q) if any possible outcome run p for ¢ and d starting with wy
satisfies F. All these notions are formally extended to ETPu.

Given an ETPu P, and a delay sequence d for P satisfying a given energy
constraint F from initial level wy, we denote by 57’;37 4(wo) the set of possible final

energy levels. It may be seen that 57‘;37 4(wo) is a closed subset of E.

Example 5. Figure4 is the energy timed path P of Fig. 2 extended with uncer-
tainties of +0.1 on all rates and updates. The runs associated with path P,
delay sequence d = (0.6,0.4) and initial energy level wy = 3 satisfy the energy
constraint F = [0;5]. The set Sg’d(wo) then is [2.5;3.1].

w
u:—3=+0.1 w:04+0.1 ..§.50
y> g @M z=1 S0 ! Sl:
P @ y:=0 @ z:=0 2 ‘ 52
y<1 y<1 y:=0 518
r:4+2+0.1 r:+4+0.1 t
0 1

Fig.4. An energy timed path P with uncertainty, and a representation of the runs
corresponding to the delay sequence (0.6,0.4) with initial energy level 3.

Now let A = (S,T,P) be an SETAu and let E be an energy constraint.
A (memoryless!) strategy o returns for any macro-configuration (s,w) (s € S
and w € E) a pair (¢,d), where t = (s,s’) is a successor edge in T' and d € R%,
is a delay sequence for the corresponding energy timed path, i.e. n = |P(t)|.
A (finite or infinite) execution of (p'); writing p' = (¢%, %, wh)o<j<an,, is an
outcome of ¢ if the following conditions hold:

! For the infinite-run problem, it can be shown that memoryless strategies suffice.

Optimal and Robust Controller Synthesis 213

~ s and b, are macro-states of A, and p" is a possible outcome of P(s, s5,)
for d where o(sf, wh) = ((sh, shy,), d);
sgtt = sb, and wit = wi,
Now we may formulate the infinite-run problem in the setting of uncertainty:
for a SETAu A, an energy constraint £ € Z(Q), and a macro-state sp and an
initial energy level wq the energy-constrained infinite-run problem is to decide
the existence of a strategy o for A such that all runs (p*); that are outcome of
o starting from configuration (sg,wq) satisfy E?

Ternary Energy Relations. Let P = ({s; | 0 < i < n},{so}, X,I,r,T ¢, A)
be an ETPu and let E € Z(Q) be an energy constraint. The ternary energy
relation U5 C Ex E x E relates all triples (wy, a, b) for which there is a strategy o
such that any outcome of p from (sg, 0, w) satisfies E and ends in a configuration
(Sn,0,w1) where wy € [a;b]. This relation can be characterized by the following
first-order formula:

U»g (wo, a, b) — El(d)O<z<n Qstlmmg A gpenergy A
wo + Y (r(si) - dy, +ur) +Z([—6(Sk); €(sk)] - di + [=A(tk); Atr)]) < [as b]

where &7, encodes the energy constraints as the inclusion of the interval
of reachable energy levels in the energy constraint (in the same way as we do
on the second line of the formula). Interval inclusion can then be expressed as
constraints on the bounds of the intervals. It is clear that Z/{g is a closed, convex
subset of £ x E x E and can be described as a finite conjunction of linear

constraints over wop, a and b using quantifier elimination.

Example 6. We illustrate the above translation on the ETPu of Fig. 4. For energy

constraint [0; 5], the energy relation can be written as:

Ug(wo,a,b) <~ Edo,dl. do € [025, 1] ANdy € [O, 1] ANdo+di=1ANwg € [0,5] A
wo + [1.9;2.1] - do € [035] A

wo + [1.9;2.1] - do + [—3.1;—2.9] C [0;5] A
wo + [1.9;2.1] - do + [—3.1; —2.9] + [3.9;4.1] - & C [0;5] A
wo + [1.9;2.1] - dg + [—3.1; —2.9] + [3.9;4.1] - dy + [-0.1;0.1] C [a;b] C [0;5]]

Applying quantifier elimination, we end up with:

UE (wo,a,0) <= 0<a<b<5Ab>a+06Aa—0.2<wy<b+0.7TA
(4.87+1.9-a)/3.9 < wo < (7.27 +2.1-b)/4.1

We can use this relation in order to compute the set of initial energy levels from
which there is a strategy to end up in [2.5;3.1] (which was the set of possible
final energy levels in the example of Fig. 4). We get wy € [37/15; 689/205], which
is (under-)approximately wq € [2.467; 3.360]. <

214 G. Bacci et al.

Algorithm for SETAu. Let A = (S,T,P) be a SETAu and let E € Z(Q)
be an energy constraint. Let YW C S x E be the maximal set of configurations
satisfying the following:

(s,w)eW =3It =(s,s) €T Ja,be E.
L{g(t)(w, a,b) AVw' € [a;b].(s',w") € W (2)

Now W is easily shown to characterize the set of configurations (s, w) that satisfy
the energy-constrained infinite-run problem. Unfortunately this characterization
does not readily provide an algorithm. We thus make the following restriction and
show that it leads to decidability of the energy-constrained infinite-run problem:

(R) in any of the ETPu P(t) of A, on at least one of its transitions, some clock
2 is compared with a positive lower bound. Thus, there is an (overall minimal)
positive time-duration D to complete any P(t) of A.

Theorem 7. The energy-constrained infinite-run problem is decidable for
SETAu satisfying (R).

It is worth noticing that we do not assume flatness of the model for proving
the above theorem. Instead, the minimal-delay assumption (R) has to be made:
it entails that any stable set is made of intervals whose size is bounded below,
which provides an upper bound on the number of such intervals. We can then
rewrite the right-hand-size expression of (2) as:

A N [0aiib] CEAwg €\ [asgj3bs i) A VW € [as 5 bs ;-
s€S 1<j<N 1<j<N

\/ [Ja,b € E. Mg(s,s,)(w,a,b) A \/ (la;b] C [as k3 bsr.])] (3)
(s,8")€T 1<k<N

Ezample 7. We pursue on Example 6. If ETPu P is iterated (as on the loop
on state so of Fig.3, but now with uncertainty), the set W (there is a single
macro-state) can be captured with a single interval [a,b]. We characterize the
set of energy levels from which the path P can be iterated infinitely often while
satisfying the energy constraint E = [0;5] using Eq. (3), as follows:

0<a<b<5AYug € [a;b].l/{g(wo,a,b).

We end up with 2.435 < aAb<3.635Ab > a+ 0.6, so that the largest interval
is [2.435;3.635] (which can be compared to the maximal fixpoint [2;4] that we
obtained in Example 4 for the same cycle without uncertainty).

As in the setting without uncertainties, we can also synthesize an (optimal)
upper-bound for the energy constraint:

Theorem 8. Let A= (S,T, P) be a depth-1 flat SETAu satisfying (R). Let L €
Q be an energy lower bound, and let (sg,wo) be an initial macro-configuration.
Then the existence of an upper energy bound U, such that the energy-constrained
infinite-run problem is satisfied for the energy constraint [L; U] is decidable. Fur-
thermore, one can compute the least upper bound, if there is one.

Optimal and Robust Controller Synthesis 215

4 Case Study

Modelling the Oil Pump System. In this section we describe the character-
istics of each component of the HYDAC case, which we then model as a SETA.
The Machine. The oil consumption of the machine is cyclic. One cycle of con-
sumptions, as given by HYDAC, consists of 10 periods of consumption, each
having a duration of two seconds, as depicted in Fig. 1b. Each period is described
by a rate of consumption m, (expressed in litres per second). The consumption
rate is subject to noise: if the mean consumption for a period is ¢1/s (with ¢ > 0)
its actual value lies within [max(0,c — €); ¢ + €], where € is fixed to 0.11/s.

The Pump. The pump is either On or 0ff, and we assume it is initially Off at
the beginning of a cycle. While it is On, it pumps oil into the accumulator with a
rate p, = 2.21/s. The pump is also subject to timing constraints, which prevent
switching it on and off too often.

The Accumulator. The volume of oil within the accumulator will be modelled by
means of an energy variable v. Its evolution is given by the differential inclusion
dv/dt —u-p, € —[m, +¢€;m, —¢| (or —[m,. +¢€;0] if m,, —e < 0), where u € {0,1}
is the state of the pump.

The controller must operate the pump (switch it on and off) to ensure the
following requirements: (R1) the level of oil in the accumulator must always stay
within the safety bounds E = [Vinin; Vinax] = [4.9;25.1]1 (R2) the average level
of oil in the accumulator is kept as low as possible.

By modelling the oil pump system as a SETA H, the above control problem
can be reduced to finding a deterministic schedule that results in a safe infinite
run in H. Furthermore, we are also interested in determining the minimal safety
interval F | i.e., finding interval bounds that minimize Vi,ax — Vinin, while ensuring
the existence of a valid controller for H.

=2 =2 r=2 =2 r=2 =2 =2 =2 =2
1. 0 0 ilg 2.5 sl

Fig. 5. The ETP representing the oil consumption of the machine.

o =2
—m p—m —m —m
S o x:=0
<2 <2 z<2 z<2

Fig. 6. An ETP for modelling the pump

As a first step in the definition of H, we build an ETP representing the
behaviour of the machine, depicted on Fig.5. In order to fully model the
behaviour of our oil-pump system, one would require the parallel composition of

216 G. Bacci et al.

this ETP with another ETP representing the pump. The resulting ETA would
not be a flat SETA, and is too large to be handled by our algorithm with uncer-
tainty. Since it still provides interesting results, we develop this (incomplete)
approach in the long version of this article [4].

Instead, we consider an alternative model of the pump, which only allows to
switch it on and off once during each 2-second slot. This is modelled by inserting,
between any two states of the model of Fig.5, a copy of the ETP depicted on
Fig. 6. In that ETP, the state with rate p — m models the situation when the
pump is on. Keeping the pump off for the whole slot can be achieved by spending
delay zero in that state. We name H; = (M, T, P;) the SETA made of a single
macro-state equipped with a self-loop labelled with the ETP above.

In order to represent the timing constraints of the pump switches, we also
consider a second SETA model Hy = (M, T, P») where the pump can be operated
only during every other time slot. This amounts to inserting the ETP of Fig.6
only after the first, third, fifth, seventh and ninth states of the ETP of Fig. 5.

We also consider extensions of both models with uncertainty e = 0.11/s
(changing any negative rate —m into rate interval [—m —e; —m+¢], but changing
rate 0 into [—¢; 0]). We write H;(e) and Ha(e) for the corresponding models.

Synthesizing Controllers. For each model, we synthesize minimal upper
bounds U (within the interval [Viin; Vinax]) that admit a solution to the energy-
constrained infinite-run problem for the energy constraint E = [Viyin; U]. Then,
we compute the greatest stable interval [a; b] C [L; U] of the cycle witnessing the
existence of an FE-constrained infinite-run. This is done by following the meth-
ods described in Sects. 2 and 3 where quantifier elimination is performed using
Mjollnir [24].

Finally for each model we synthesise optimal strategies that, given an initial
volume wy € [a,b] of the accumulator, return a sequence of pump activation
times ¢ and t?ff to be performed during the cycle. This is performed in two
steps: first we encode the set of safe permissive strategies as a quantifier-free
first-order linear formula having as free variables wy, and the times 9™ and 9.
The formula is obtained by relating wg, and the times " and 2 with the
intervals [L; U] and [a;b] and delays d; as prescribed by the energy relations
presented in Sects.2 and 3. We use Mjollnir [24] to eliminate the existential
quantifiers on the delays d;. Then, given an energy value wy we determine an
optimal safe strategy for it (i.e., some timing values when the pump is turned
on and off) as the solution of the optimization problem that minimizes the
average oil volume in the tank during one consumption cycle subject to the
permissive strategies constraints. To this end, we use the function FindMinimum
of Mathematica [28] to minimize the non-linear cost function expressing the
average oil volume subject to the linear constraints obtained above. Figure7
shows the resulting strategies: there, each horizontal line at a given initial oil
level indicates the delays (green intervals) where the pump will be running.

Table 1 summarizes the results obtained for our models. It gives the opti-
mal volume constraints, the greatest stable intervals, and the values of the

Optimal and Robust Controller Synthesis 217

8
85
81
i
7
3 65
T o6
57
53
48
3 3 O 9 12 15 18

time (seconds) time (seconds)

I volume (decilire)

- IO

Fig. 7. Local strategies for Hi(e) (left) and Ha(e) (right) for a single cycle of the
HYDAC system.

Table 1. Characteristics of the synthesized strategies, compared with the strategies
proposed in [16,29].

Controller | [L; U] [a; b] Mean vol. (1)
H 4.9;5.84] | [4.9;5.84] | 5.43
Hi(e) 4.9,7.16] |[5.1;7.16] 6.15

[
[
[
Ha (4.9;7.9] |[4.9;7.9] |6.12
[
[
[

Ha(e) 4.9;9.1 | [5.1;9.1] | 7.24
GIM1 [16] | [4.9;25.1]% | [5.1;9.4] 8.2
G2M1 [16] | [4.9;25.1]% | [5.1;8.3] |7.95

[29] [4.9;25.1]* | [5.2;8.1] | 7.35
“Safety interval given by the HYDAC company.

worst-case (over all initial oil levels in [a;b]) mean volume. It is worth noting
that the models without uncertainty outperform the respective version with
uncertainty. Moreover, the worst-case mean volume obtained both for H;(e)
and Ha(€) are significantly better than the optimal strategies synthesized both
in [16,29].

The reason for this may be that (i) our models relax the latency requirement
for the pump, (ii) the strategies of [16] are obtained using a discretization of the
dynamics within the system, and (iii) the strategies of [16,29] were allowed to
activate the pump respectively two and three times during each cycle.

We proceed by comparing the performances of our strategies in terms of accu-
mulated oil volume. Figure 8 shows the result of simulating our strategies for a
duration of 100 s. The plots illustrate in blue (resp. red) the dynamics of the
mean (resp. min/max) oil level in the accumulator as well as the state of the
pump. The initial volume used for the simulations is 8.3 1, as done in [16] for eval-
uating respectively the Bang-Bang controller, the Smart Controller developed by
HYDAC, and the controllers GIM1 and G2M1 synthesized with UPPAAL-TIGA.

Table 2 presents, for each of the strategies, the resulting accumulated volume
of oil, and the corresponding mean volume. There is a clear evidence that the
strategies for H; and Ho outperform all the other strategies. Clearly, this is
due to the fact that they assume full precision in the rates, and allow for more

218 G. Bacci et al.

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
time (seconds) time (seconds)

Fig. 8. Simulations of 5 consecutive machine cycles for H1(e) and Ha(e).

Table 2. Performance based on simulations of 200 s starting with 8.3 1.

Controller | Acc. vol. (1) | Mean vol. (1) | Controller | Acc. vol. (1) | Mean vol. (1)
Ha 1081.77 5.41 Bang-Bang | 2689 13.45
Ho 1158.90 5.79 HYDAC 2232 11.60
Hi(e) 1200.21 6.00 G1M1 1518 7.59
Ha(e) 1323.42 6.62 G2M1 1489 7.44

switches of the pump. However, these results shall be read as what one could
achieve by investing in more precise equipment. The results also confirm that
both our strategies outperform those presented in [16]. In particular the strategy
for H;(e) provides an improvement of 55%, 46%, 20%, and 19% respectively
for the Bang-Bang controller, the Smart Controller of HYDAC, and the two
strategies synthesized with UPPAAL-TIGA.

Tool Chain?. Our results have been obtained using Mathematica and Mjoll-
nir. Specifically, Mathematica was used to construct the formulas modelling the
post-fixpoint of the energy functions, calling Mjollnir for performing quantifier
elimination on them. The combination of both tools allowed us to solve one of our
formulas with 27 variables in a compositional manner in ca. 20 ms, while Mjoll-
nir alone would take more than 20 min. Mjollnir was p