
Klaus Havelund
Jan Peleska
Bill Roscoe
Erik de Vink (Eds.)

22nd International Symposium, FM 2018
Held as Part of the Federated Logic Conference, FloC 2018
Oxford, UK, July 15–17, 2018, Proceedings

Formal MethodsLN
CS

 1
09

51
Fo

rm
al

 M
et

ho
ds

 123

Lecture Notes in Computer Science 10951

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Klaus Havelund • Jan Peleska
Bill Roscoe • Erik de Vink (Eds.)

Formal Methods
22nd International Symposium, FM 2018
Held as Part of the Federated Logic Conference, FloC 2018
Oxford, UK, July 15–17, 2018
Proceedings

123

Editors
Klaus Havelund
NASA Jet Propulsion Laboratory
Pasadena, CA
USA

Jan Peleska
University of Bremen
Bremen
Germany

Bill Roscoe
University of Oxford
Oxford
UK

Erik de Vink
Eindhoven University of Technology
Eindhoven
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-95581-0 ISBN 978-3-319-95582-7 (eBook)
https://doi.org/10.1007/978-3-319-95582-7

Library of Congress Control Number: 2018947575

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG, part of Springer Nature 2018
Chapter “Formal Specification and Verification of Dynamic Parametrized Architectures” is licensed under the
terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-7079-0472
http://orcid.org/0000-0003-3667-9775

Preface

FM 2018 was held in Oxford as part of FloC during July 15–17, with additional
workshops on July 14 and during 18–19. It was a great pleasure to return to one of the
spiritual homes of Formal Methods. This was the 22nd of a series stretching back to
1987. We are delighted to present its proceedings, once again published by Springer.
FM is a core event for the formal methods community and brings together researchers
working on both more theoretical aspects and industrial practice. Once again we had an
Industry Day, or I-Day.

In all, there were 110 submitted papers for the main conference of which 35 were
accepted, an acceptance rate of 32%. Kim G. Larsen, Annabelle McIver, and Leonardo
de Moura gave invited talks. For I-Day, nine presenters were invited to share insights
about applications of formal methods in industry.

Seven workshops were associated with FM this year: F-IDE, Overture, QAPL,
AVoCS, REFINE, TLA+, and VaVas.

We offer our sincere thanks to all who helped make the conference a success and
assisted with the preparation of these proceedings. This includes the FM committee
chaired by Ana Cavalcanti, the FloC Organizing Committee led by Moshe Vardi,
Daniel Kroening, and Marta Kwiatkowska, as well as the staff and volunteers who
supported this event. Naturally, we also thank the Program Committee members and
others who put so much effort into ensuring the quality of the program, as well as all
authors who submitted papers.

FLoC had many sponsors including Oxford University Computer Science Depart-
ment, Springer, and Diffblue. We thank them all.

June 2018 Erik de Vink
Jan Peleska
Bill Roscoe

Klaus Havelund

Organization

Program Chairs

Jan Peleska University of Bremen, Germany
Bill Roscoe University of Oxford, UK

Workshop Chairs

Maurice ter Beek CNR/ISTI, Italy
Helen Treharne University of Surrey, UK

Industry Day Chairs

Klaus Havelund NASA Jet Propulsion Laboratory, USA
Jan Peleska University of Bremen, Germany
Ralf Pinger Siemens, Germany

Doctoral Symposium Chairs

Eerke Boiten De Montfort University, UK
Fatiha Zaïdi Université Paris-Sud XI, France

Organizing Committee

Erik de Vink
(General Chair)

Eindhoven University of Technology, The Netherlands

Mahmoud Talebi (Website) Eindhoven University of Technology, The Netherlands

Program Committee

Bernhard K. Aichernig TU Graz, Austria
Joerg Brauer Verified Systems International GmbH, Germany
Ana Cavalcanti University of York, UK
Frank De Boer CWI, The Netherlands
John Fitzgerald Newcastle University, UK
Martin Fraenzle Carl von Ossietzky Universität Oldenburg, Germany
Vijay Ganesh University of Waterloo, Canada
Diego Garbervetsky University of Buenos Aires, Argentina
Dimitra Giannakopoulou NASA Ames Research Center, USA
Thomas Gibson-Robinson University of Oxford, UK
Stefania Gnesi ISTI-CNR, Italy

Klaus Havelund NASA Jet Propulsion Laboratory, USA
Anne E. Haxthausen Technical University of Denmark, Denmark
Ian J. Hayes The University of Queensland, Australia
Constance Heitmeyer Naval Research Laboratory, USA
Jozef Hooman TNO-ESI and Radboud University Nijmegen,

The Netherlands
Laura Humphrey Air Force Research Laboratory, USA
Fuyuki Ishikawa National Institute of Informatics, Japan
Einar Broch Johnsen University of Oslo, Norway
Cliff Jones Newcastle University, UK
Joost-Pieter Katoen RWTH Aachen University, Germany
Gerwin Klein NICTA and The University of New South Wales,

Australia
Laura Kovacs Chalmers University of Technology, Sweden
Peter Gorm Larsen Aarhus University, Denmark
Yves Ledru Université Grenoble Alpes, France
Rustan Leino Amazon Web Services, USA
Elizabeth Leonard Naval Research Laboratory, USA
Martin Leucker University of Lübeck, Germany
Michael Leuschel University of Düsseldorf, Germany
Zhiming Liu Southwest University, China
Tiziana Margaria University of Limerick and Lero, Ireland
Mieke Massink ISTI-CNR, Italy
Annabelle McIver Macquarie University, Australia
Dominique Mery Université de Lorraine, LORIA, France
Mohammad Reza Mousavi University of Leicester, UK
Peter Müller ETH Zurich, Switzerland
Colin O’Halloran D-RisQ Software Systems, UK
Jose Oliveira University of Minho, Portugal
Olaf Owe University of Oslo, Norway
Sam Owre SRI International, USA
Jan Peleska TZI, University of Bremen, Germany
Alexandre Petrenko CRIM, Canada
Anna Philippou University of Cyprus, Cyprus
Ralf Pinger Siemens, Germany
Elvinia Riccobene University of Milan, Italy
Bill Roscoe University of Oxford, UK
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Augusto Sampaio Federal University of Pernambuco, Brazil
Gerardo Schneider Chalmers University of Technology, Sweden
Natasha Sharygina University of Lugano, Switzerland
Ana Sokolova University of Salzburg, Austria
Jun Sun Singapore University of Technology and Design,

Singapore
Stefano Tonetta FBK-irst, Italy
Farn Wang National Taiwan University, Taiwan

VIII Organization

Heike Wehrheim University of Paderborn, Germany
Michael Whalen University of Minnesota, USA
Jim Woodcock University of York, UK
Hüsnü Yenigün Sabanci University, Turkey
Fatiha Zaidi Université Paris-Sud, France
Gianluigi Zavattaro University of Bologna, Italy

Additional Reviewers

Abbyaneh, Alireza
Agogino, Adrian
Aldini, Alessandro
Antignac, Thibaud
Antonino, Pedro
Araujo, Hugo
Arcaini, Paolo
Archer, Myla
Asadi, Sepideh
Astrauskas, Vytautas
Avellaneda, Florent
Basile, Davide
Baxter, James
Berger, Philipp
Blicha, Martin
Bodeveix, Jean-Paul
Boudjadar, Jalil
Braghin, Chiara
Bugariu, Alexandra
Byun, Taejoon
Carvalho, Gustavo
Castaño, Rodrigo
Chen, Taolue
Chen, Yu-Ting
Chen, Zhenbang
Chimento, Jesus Mauricio
Ciancia, Vincenzo
Ciolek, Daniel
Colvin, Robert
de Gouw, Stijn
Dodds, Mike
Ehlers, Rüdiger
Eilers, Marco
Even-Mendoza, Karine
Fages, François

Fantechi, Alessandro
Fava, Daniel
Ferrère, Thomas
Foltzer, Adam
Foster, Simon
Gazda, Maciej
Ghasemi, Mahsa
Ghassabani, Elaheh
Gomez-Zamalloa, Miguel
Govind, Hari
Günther, Henning
Hagemann, Willem
Henrio, Ludovic
Holzer, Andreas
Hyvärinen, Antti
Höfner, Peter
Jaafar, Fehmi
Junges, Sebastian
Katis, Andreas
Khakpour, Narges
Kharraz, Karam
Kiesl, Benjamin
Kotelnikov, Evgenii
Kouzapas, Dimitrios
Krings, Sebastian
Kulik, Tomas
König, Jürgen
Laarman, Alfons
Latella, Diego
Legunsen, Owolabi
Lester, Martin Mariusz
Li, Guangyuan
Li, Ian
Liang, Jimmy
Liu, Si

Longuet, Delphine
Lucanu, Dorel
Macedo, Hugo Daniel
Macedo, Nuno
Madeira, Alexandre
Marescotti, Matteo
Markin, Grigory
Matheja, Christoph
Mathur, Umang
Mauro, Jacopo
Mazzanti, Franco
Meinicke, Larissa
Merz, Stephan
Monahan, Rosemary
Mota, Alexandre
Neubauer, Felix
Nguena-Timo, Omer
Nguyen, Huu Nghia
Noll, Thomas
Oortwijn, Wytse
Palmskog, Karl
Pardo, Raúl
Pauck, Felix
Pedro, André
Pena, Lucas
Proenca, Jose
Qu, Hongyang
Robillard, Simon
Scheffel, Torben
Schmidt, Joshua
Schmitz, Malte
Schneider, David
Schoepe, Daniel
Scott, Joe
Sewell, Thomas

Organization IX

Sharma, Arnab
Singh, Neeraj
Steffen, Martin
Stewart, Danielle
Stolz, Volker
Stumpf, Johanna Beate
Swaminathan, Mani
Syeda, Hira
Tabaei, Mitra
Taha, Safouan

Ter Beek, Maurice H.
Ter-Gabrielyan, Arshavir
Thoma, Daniel
Thorstensen, Evgenij
Thule, Casper
Toews, Manuel
Tribastone, Mirco
Tschaikowski, Max
Tveito, Lars
van Glabbeek, Rob

Voisin, Frederic
Winter, Kirsten
Yakovlev, Alex
Ye, Kangfeng
Yovine, Sergio
Zeyda, Frank
Zhao, Liang
Zoppi, Edgardo
Zulkoski, Ed

X Organization

Contents

Invited Papers

Processing Text for Privacy: An Information Flow Perspective 3
Natasha Fernandes, Mark Dras, and Annabelle McIver

20 Years of Real Real Time Model Validation . 22
Kim Guldstrand Larsen, Florian Lorber, and Brian Nielsen

FM 2018 Main Conference

Deadlock Detection for Actor-Based Coroutines . 39
Keyvan Azadbakht, Frank S. de Boer, and Erik de Vink

An Algebraic Approach for Reasoning About Information Flow 55
Arthur Américo, Mário S. Alvim, and Annabelle McIver

Towards ‘Verifying’ a Water Treatment System . 73
Jingyi Wang, Jun Sun, Yifan Jia, Shengchao Qin, and Zhiwu Xu

FSM Inference from Long Traces . 93
Florent Avellaneda and Alexandre Petrenko

A Weakness Measure for GR(1) Formulae . 110
Davide Giacomo Cavezza, Dalal Alrajeh, and András György

Producing Explanations for Rich Logics. 129
Simon Busard and Charles Pecheur

The Compound Interest in Relaxing Punctuality . 147
Thomas Ferrère

IPL: An Integration Property Language for Multi-model
Cyber-physical Systems . 165

Ivan Ruchkin, Joshua Sunshine, Grant Iraci, Bradley Schmerl,
and David Garlan

Timed Epistemic Knowledge Bases for Social Networks 185
Raúl Pardo, César Sánchez, and Gerardo Schneider

Optimal and Robust Controller Synthesis: Using Energy Timed Automata
with Uncertainty . 203

Giovanni Bacci, Patricia Bouyer, Uli Fahrenberg,
Kim Guldstrand Larsen, Nicolas Markey, and Pierre-Alain Reynier

Encoding Fairness in a Synchronous Concurrent Program Algebra 222
Ian J. Hayes and Larissa A. Meinicke

A Wide-Spectrum Language for Verification of Programs on Weak
Memory Models . 240

Robert J. Colvin and Graeme Smith

Operational Semantics of a Weak Memory Model with Channel
Synchronization . 258

Daniel Schnetzer Fava, Martin Steffen, and Volker Stolz

Stepwise Development and Model Checking of a Distributed
Interlocking System - Using RAISE . 277

Signe Geisler and Anne E. Haxthausen

Resource-Aware Design for Reliable Autonomous Applications
with Multiple Periods . 294

Rongjie Yan, Di Zhu, Fan Zhang, Yiqi Lv, Junjie Yang, and Kai Huang

Verifying Auto-generated C Code from Simulink: An Experience Report
in the Automotive Domain . 312

Philipp Berger, Joost-Pieter Katoen, Erika Ábrahám,
Md Tawhid Bin Waez, and Thomas Rambow

QFLan: A Tool for the Quantitative Analysis of Highly
Reconfigurable Systems . 329

Andrea Vandin, Maurice H. ter Beek, Axel Legay,
and Alberto Lluch Lafuente

Modular Verification of Programs with Effects and Effect Handlers in Coq . . . 338
Thomas Letan, Yann Régis-Gianas, Pierre Chifflier, and Guillaume Hiet

Combining Tools for Optimization and Analysis
of Floating-Point Computations. 355

Heiko Becker, Pavel Panchekha, Eva Darulova, and Zachary Tatlock

A Formally Verified Floating-Point Implementation of the Compact
Position Reporting Algorithm . 364

Laura Titolo, Mariano M. Moscato, César A. Muñoz, Aaron Dutle,
and François Bobot

Formal Verification of Automotive Simulink Controller Models:
Empirical Technical Challenges, Evaluation and Recommendations 382

Johanna Nellen, Thomas Rambow, Md Tawhid Bin Waez,
Erika Ábrahám, and Joost-Pieter Katoen

Multi-robot LTL Planning Under Uncertainty . 399
Claudio Menghi, Sergio Garcia, Patrizio Pelliccione, and Jana Tumova

XII Contents

Vector Barrier Certificates and Comparison Systems 418
Andrew Sogokon, Khalil Ghorbal, Yong Kiam Tan, and André Platzer

Timed Vacuity . 438
Hana Chockler, Shibashis Guha, and Orna Kupferman

Falsification of Cyber-Physical Systems Using Deep
Reinforcement Learning . 456

Takumi Akazaki, Shuang Liu, Yoriyuki Yamagata, Yihai Duan,
and Jianye Hao

Dynamic Symbolic Verification of MPI Programs . 466
Dhriti Khanna, Subodh Sharma, César Rodríguez, and Rahul Purandare

To Compose, or Not to Compose, That Is the Question: An Analysis
of Compositional State Space Generation . 485

Sander de Putter and Anton Wijs

View Abstraction for Systems with Component Identities. 505
Gavin Lowe

Compositional Reasoning for Shared-Variable Concurrent Programs 523
Fuyuan Zhang, Yongwang Zhao, David Sanán, Yang Liu, Alwen Tiu,
Shang-Wei Lin, and Jun Sun

Statistical Model Checking of LLVM Code . 542
Axel Legay, Dirk Nowotka, Danny Bøgsted Poulsen,
and Louis-Marie Tranouez

SDN-Actors: Modeling and Verification of SDN Programs. 550
Elvira Albert, Miguel Gómez-Zamalloa, Albert Rubio, Matteo Sammartino,
and Alexandra Silva

CompoSAT: Specification-Guided Coverage for Model Finding 568
Sorawee Porncharoenwase, Tim Nelson, and Shriram Krishnamurthi

Approximate Partial Order Reduction . 588
Chuchu Fan, Zhenqi Huang, and Sayan Mitra

A Lightweight Deadlock Analysis for Programs with Threads
and Reentrant Locks . 608

Cosimo Laneve

Formal Specification and Verification of Dynamic
Parametrized Architectures . 625

Alessandro Cimatti, Ivan Stojic, and Stefano Tonetta

Contents XIII

FM 2018 Industry Day

From Formal Requirements to Highly Assured Software
for Unmanned Aircraft Systems . 647

César Muñoz, Anthony Narkawicz, and Aaron Dutle

Interlocking Design Automation Using Prover Trident 653
Arne Borälv

Model-Based Testing for Avionics Systems . 657
Jörg Brauer and Uwe Schulze

On Software Safety, Security, and Abstract Interpretation. 662
Daniel Kästner, Laurent Mauborgne, and Christian Ferdinand

Variant Analysis with QL . 666
Pavel Avgustinov, Kevin Backhouse, and Man Yue Mo

Object-Oriented Security Proofs . 671
Ernie Cohen

Z3 and SMT in Industrial R&D . 675
Nikolaj Bjørner

Evidential and Continuous Integration of Software Verification Tools 679
Tewodros A. Beyene and Harald Ruess

Disruptive Innovations for the Development and the Deployment
of Fault-Free Software . 686

Thierry Lecomte

Author Index . 691

XIV Contents

Invited Papers

Processing Text for Privacy:
An Information Flow Perspective

Natasha Fernandes, Mark Dras, and Annabelle McIver(B)

Department of Computing, Macquarie University, North Ryde, Australia
annabelle.mciver@mq.edu.au

Abstract. The problem of text document obfuscation is to provide an
automated mechanism which is able to make accessible the content of a
text document without revealing the identity of its writer. This is more
challenging than it seems, because an adversary equipped with powerful
machine learning mechanisms is able to identify authorship (with good
accuracy) where, for example, the name of the author has been redacted.
Current obfuscation methods are ad hoc and have been shown to provide
weak protection against such adversaries. Differential privacy, which is
able to provide strong guarantees of privacy in some domains, has been
thought not to be applicable to text processing.

In this paper we will review obfuscation as a quantitative information
flow problem and explain how generalised differential privacy can be
applied to this problem to provide strong anonymisation guarantees in a
standard model for text processing.

Keywords: Refinement · Information flow
Privacy · Probabilistic semantics · Text processing
Author anonymity · Author obfuscation

1 Introduction

Up until the middle of the nineteenth century it was common for British authors
to publish their work anonymously. There were many reasons for the practice,
and surprisingly many well-known authors practised it including (as we now
know) Alexander Pope, Jonathan Swift, Jane Austen and Daniel Defoe. But
can a work ever be entirely anonymous, in the sense that it is not possible
to identify the author with full certainty? Authors typically develop their own
personal style, and the famous example of the “Federalist papers” showed that
the analysis of word frequencies can be used to build compelling evidence to
support the identification of authors of anonymous works [22].

Koppel et al. [14] trace the development of techniques from that of Mosteller
and Wallace [22] (and earlier) to more recent machine learning methods, which

A. McIver—We acknowledge the support of the Australian Research Council Grant
DP140101119.

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 3–21, 2018.
https://doi.org/10.1007/978-3-319-95582-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_1&domain=pdf

4 N. Fernandes et al.

have taken advantage of the observation that many aspects of style — not only
word counts — in writing can be captured by statistical methods. For the last
decade, stylometric machine learners have been able to identify authors with
accuracy better than 90% from a set of 50 candidates, and have been successfully
applied to identification tasks on sets of (anonymous) documents written by tens
of thousands of authors.

Methods related to these were employed by researchers working on the 2006
Netflix release of a “deidentified” database of movie reviews in order to allow
researchers to work on improving its recommendation systems.

Unfortunately deidentifying data (i.e. removing names) is very different from
properly anonymising it and, in this case, privacy researchers were able to demon-
strate publicly that Netflix’s data contained more information than intended
leading to a lawsuit.

There remain many legitimate reasons why an author might want to dis-
guise his or her identity. Indeed could Netflix have done a better job to protect
its contributors whilst still preserving the information contained in the reviews
well enough to be useful to researchers working on improving Netflix’s recom-
mendation systems? In response to the Netflix lawsuit, and other such breaches
of privacy, “PAN” a series of scientific events and shared tasks on digital text
forensics1 proposed a task to encourage research into creating systems which are
able to truly anonymise. The statement of the task is:

Given a document, paraphrase it so that its writing style does not match that of
its original author, anymore.

As an example, consider this extract from George Orwell’s Nineteen
Eighty-Four :

“The object of persecution is persecution. The object of torture is torture.
The object of power is power.”

It’s clear that Orwell’s intent was to evoke a sense of shock by the overwhelming
use of strong repetition. Another way of saying the same thing might be:

“The aim of persecution, abuse and power is respectively to mistreat, to
torture and to control.”

which, stripped of of its powerful stylistic ruse, has been rendered into a rather
dull opinion.

The range of approaches to “obfuscating” text documents automatically that
have been attempted up to and including the PAN task have had limited success.
Many of those approaches were inspired by k-confusability which articulates
the idea of “confusing” some secret with k other things, but turns out to be
susceptible to the well-known “linkage” and “intersection” attacks.

Methods based on differential privacy (DP) [10] — which provide some pro-
tection from these attacks — have not been attempted to date for this problem.

1 http://pan.webis.de/index.html.

http://pan.webis.de/index.html

Processing Text for Privacy: An Information Flow Perspective 5

There has been interest for some time in combining DP with machine learn-
ing in general (for example, [7]), including recent “deep learning” approaches
[1], although applications to text are challenging because of its discrete, com-
plex and unstructured nature. Moreover, a key difference with our application
of interest is that we want to conceal the authorship of an individual released
document; the goal for DP with machine learning is typically to preserve the
privacy of members of the training dataset.

In this paper we link the original goals of the PAN obfuscation task to two
theoretical areas in computer science, with the aim of providing a solid founda-
tion for the enterprise and to enable new techniques in theoretical privacy to be
applied to this problem.

We explain how this task can be viewed as a problem of Quantitative
Information Flow where we describe the result of an obfuscation process as
a “channel”. In this way we can show upper bounds on the ability of any adver-
sary to determine the real author (whether or not the adversary is using machine
learning).

Second, we describe how the novel metrics used in machine learning
algorithms for author identification can in fact be used after all to define obfus-
cators based on differential privacy. The trick is to used Generalised Differential
Privacy [6] originally used in location-based privacy and which can be used for
unstructured data.

2 Text Document Processing

Text documents are processed in many different ways depending on the objective.
For example a document might need to be classified in terms of its topic which
can be helpful for cataloging in document repositories; or documents can be
paraphrased so that domain professionals are able to determine which documents
are relevant for their research or report compilation. Statistical and machine
learning approaches are the standard way now to tackle these tasks [18]; most
recently, approaches falling within the “deep learning” paradigm, using neural
networks with many layers, have become dominant and produced state-of-the-art
results for many tasks [26].

All these approaches use very different algorithms and representations of
documents, but the basic idea is the same, even when the representations and
implementations differ: thousands of document samples are analysed to identify
important “features” depending on the specific goal of the task. This constitutes
the “learning phase” and the result is a “best possible” correlation between
categories and the discovered features. Learning algorithms (for classification
problems) are evaluated by subjecting the learned correlation to the identifica-
tion to datasets which are not part of the learning set, and typically counts of
correct identification or classification are used to rate the success of the method.

For us the aim is to determine how to obfuscate automatically according to
the following constraints:

6 N. Fernandes et al.

The result of an obfuscated document must retain as much of the original
content in such a way that the author of the obfuscated document cannot
be identified.

As a simplification, we focus on the identification of author, and (separately)
topic classification (rather than full “content”) both of which are examples of
“classification problems” in machine learning.

2.1 Representing Documents for Topic Classification and Author
Identification

In machine learning documents are transformed into representations that have
been found to enable the discovery of features which perform well on a par-
ticular classification task. A very simple representation is to choose the word
components of a document, so for example,

“The object of persecution is persecution” can be represented by the set:

{“The”, “object”, “of”, “persecution”, “is”}. (1)

This, of course has lost some useful details such as the number of times that
words appear; an alternative richer representation is a “bag of words” which, in
this case, retains the repetition of “persecution”:

{|“The”, “object”, “of”, “persecution”, “persecution”, “is”|}. (2)

Even though it still loses a lot information from the original sentence, such
as word order, it turns out that the the bag of words representation is still very
useful in topic classification, where correlations between topics and the types and
frequency of words can be used to assign a topic classification to a document. It
can also be used in some stylometric analysis where authors can be correlated
with the number of times they use a particular word — in the identification of
the authors of the Federalist papers, it was discovered that Hamilton only used
“while” whereas Madison preferred “whilst”, and used “commonly” much more
frequently than did Hamilton.

More recent, widely used author identifiers use “character n-gram” represen-
tation for documents. The n-gram representation transforms a document into a
list of each subsequence of characters of length n, including (sometimes) spaces
and punctuation. Such a character 3-gram representation of our example is:

〈“The”, “he”, “eo”, “ob”, “obj”, “bje”, “jec”, “ect”, “ct” . . . 〉. (3)

This representation seems to capture things like systematic punctuation and
common word stems, all of which can characterise an author. A particular char-
acter n-gram-based method of interest is the one developed by Koppel et al. [15].
This method uses character 4-grams (but without spaces) to classify author-
ship on a document set consisting of blog posts from thousands of authors, and
achieve in excess of 90% precision with 42% coverage for a 1000-author dataset.

Processing Text for Privacy: An Information Flow Perspective 7

On account of its strong performance and suitability for large author sets, and
the fact that it underpins the winning systems of PAN shared tasks on author
identification [13,24], this algorithm is one of the standard inference attackers
used in the PAN obfuscation task. This is therefore the authorship identification
algorithm we use in the rest of this paper.

2.2 Privacy Versus Utility

Obfuscating a document means changing the words somehow, and with the use
of machine learning as an adversary (as in author identification) or as a friend
(as in topic identification) we can see that the bag of words (2) or n-gram rep-
resentation (3) will be affected.

What we would like is to be able to show that for any adversary whether
or not they are using the n-gram representation that the obfuscation method
reduces their ability to identify authors, whereas using a state-of-the-art method
based on a bag of words representation the topic identification remains almost
as it was before obfuscation.

To deal with the former, we shall follow Alvim et al. [2] to model a pri-
vacy mechanism as an information flow channel; for the latter we will use gener-
alised differential privacy to show how to preserve topicality using an appropriate
metric for “meaning”.

3 Channels, Secrets and Information Flow

A privacy mechanism produces observations determined by secret inputs; the
elements of the channel model for information flow are inputs of type X , obser-
vations of type Y and a description of how the inputs and observations are
correlated. For any set S we write DS for the set of discrete distributions on S.

A channel between X and Y is a (stochastic) matrix whose X -indexed rows
sum to 1. We write the type of such channels/matrices as X�Y and for C: X�Y
its constituents are elements Cx,y at row x and column y that gives the condi-
tional probability of output y from input x, the x’th row Cx,− and the y’th
column C−,y. Any row Cx,− of C: X�Y can be interpreted as an element
of DY.

A secret is a distribution in DX ; initially we call such secrets priors, by which
we mean that the adversary might have some prior knowledge which means that
knows some secret values are more likely than others, however the fact that
his knowledge is represented as a distribution means that he does not know for
sure. The mechanism modelled by a channel C produces a correlation between
the inputs and the observables.

Given a channel C: X�Y and prior π: X the joint distribution J :D(X×Y) is
given by Jx,y:= πxCx,y. For each y the column J−,y, the adversary can update
his knowledge a-posteriori using Bayesian reasoning that revises the prior: i.e.
normalising J−,y

2 to give the posterior induced on π by that y. We write π〉C for
2 If several distinct y’s produce the same posterior, they are amalgamated; if there is

y with zero marginal probability, it and its (undefined) posterior are omitted.

8 N. Fernandes et al.

the joint distribution J , and
⇀

J :DY for the (right) marginal probability defined
⇀

J y :=
∑

x:X Jx,y. For each observation y we denote the corresponding posterior

Jy:=
⇀

J /
⇀

J y.
There are two operations on channels which we will use to model two attacks

on privacy.

Definition 1. Let C: X �Y1 and D: X �Y2 be channels. We define the sequen-
tial composition C;D: X � (Y1×Y2) as follows:

(C;D)x,(y1,y2) := Cx,y1 × Dx,y2 .

Sequential composition allows the adversary to amalgamate his knowledge
about the secret which is leaked from bth C and D.

The second operator models the situation where a channel leaks information
about a secret from X which has an interesting correlation wth a second secret
Z. The adversary can then use channel C: X � Y to deduce some information
about the second secret!

Definition 2. Given channel C: X � Y and joint distribution Z:D(Z×X)
expressing an interesting correlation between two secret types Z and X , we define
the Dalenius composition Z · C: Z � Y defined by “matrix multiplication”:

(Z · C)z,y :=
∑

x:X
Zz,x × Cx,y.

Dalenius composition3 can be used the model the risk posed by mechanisms
that inadvertently release information about a second secret that is known to be
correlated with secrets associated with the mechanism.

3.1 Vulnerability Induced by Gain-Functions

When a channel publishes its observables, the most important concern is to
determine whether an adversary can do anything damaging with the informa-
tion released. We can investigate an adversary’s ability to use the information
effectively using the idea of “vulnerability” [4], a generalisation of entropy, no
longer necessarily e.g. Shannon, and whose great variety allows fine-grained con-
trol of the significance of the information that might be leaked [4,5].

Given a secret-space X , vulnerability is induced by a gain function over that
space, typically g of type GWX = W→X→R, for some space of actions w: W.
When W is obvious from context, or unimportant, we will omit it and write just
g:GX . Given g and w (but not yet x) the function g.w is of type X→R

4 and

3 Named after Tore Dalenius who pointed out this risk in statistical databases [9].
4 We write dot for function application, left associative, so that function g applied to

argument w is g.w and then g.w.x is (g.w) applied to x, that is using the Currying
technique of functional programming. This convention reduces clutter of parentheses,
as we see later.

Processing Text for Privacy: An Information Flow Perspective 9

can thus be regarded as a random variable on X . As such, it has an expected
value on any distribution π over X , written Eπ g.w:=

∑
x:X g.w.x × πx.5

Once we have x, the (scalar) value g.w.x is simply of type R and represents
the gain to an adversary if he chooses action w when the secret’s actual value is
x. A particularly simple example is where the adversary tries to guess the exact
value of the secret. His set of actions is therefore equal to X , with each action a
guess of a value; we encode this scenario with gain function bv defined

bv.w.x = (1 if w = x else 0), (4)

so that the adversary gains 1 if he guesses correctly and 0 otherwise. A special
case of this is when an attacker tries to guess a property of the secret (rather
than the whole secret). For example let ∼ be an equivalence class over secrets,
and suppose that the attacker tries to guess the equivalence class. The guesses
W now correspond to equivalence classes, and:

bv∼.w.x = (1 if x ∈ w else 0). (5)

A gain function g:GX induces a g-vulnerability function Vg:DX→R so that
Vg[π] for π:DX is the maximum over all choices w: W of the expected value of
g.w on π, that is maxw(Eπ g.w). In the simple 1-or-0 case above, the vulnerability
Vbv is called the Bayes vulnerability ; it is one-minus the Bayes-Risk of Decision
Theory, and it gives the maximum probability of an adversary guessing the secret
if his prior knowledge about it is π.

We can now use g-vulnerability to determine whether the information leaked
through a channel is helpful to the adversary.

Definition 3. Given a prior π ∈ DX , a channel C: X � Y and gain function
g:GX , we define the average posterior vulnerability as

Vg[π〉C] :=
∑

y:Y

⇀

J y ×Vg[Jy] ,

where J := (π〉C).

For each observation, the posterior Jy is the adversary’s revised view of the
value of the secret; the posterior is actually more vulnerable because the adver-
sary can choose to execute a different action (compared to his choice relative
to the prior) to optimise the vulnerability Vg[Jy]. The posterior vulnerability
Vg[π〉C] is then his average increase in gain. Comparing Vg[π〉C] and Vg[π] then
gives an idea of how much information the adversary can usefully use relative to
the scenario determined by g.

In this paper we shall use the multiplicative g-leakage, defined by

Lg(C) := Vg[π〉C]/Vg[π] , (6)

5 In general we write Eπ f for the expected value of function f : X→R on distribution
π:DX.

10 N. Fernandes et al.

which gives the relative increase in gain. Moreover the leakage measure exhibits
an important robust approximation which will be relevant for privacy mecha-
nisms in text processing.

Theorem 1. [4] Let C: X �Y be a channel, and let u:DX be the uniform prior
over X . Then for all priors π and non-negative gain functions g we have that:

Vg[π〉C]/Vg[π] ≤ Vgbv
[u〉C]/Vgbv

[u] .

A final theoretical idea which will be useful for our application to privacy
is that of security refinement. If C � D (defined below) then D is more secure
than C in any scenario, because D’s posterior vulnerability relative to any gain
function is always less than C’s and therefore the information D releases is less
useable than the information released by C.

Definition 4. Let C: X � Y1, and D: X � Y2 be channels. We say that
C � D if

Vg[π〉C] ≥ Vg[π〉D] ,

for all gain functions g and priors π.

We can use security refinement to express compositionality properties.

Theorem 2. [3,19] Let C,D,E be channels and Z:D(Z×Y) be a correlation
between secret types Z and X . The following inequalities hold.

1. C � D ⇒ C;E � D;E
2. C � D ⇒ Z · C � Z · D

3.2 Privacy Mechanisms as Channels

A privacy mechanism is normally modelled as a function K which, given a value
x from a secret set X , outputs some observable value y:Y. The exact output
could be determined by a probability distribution which, in an extreme instance
such as redaction, could be a point distribution without any randomness applied.

Traditional approaches to privacy are founded on a principle we call “con-
fusablity”. Roughly speaking a mechanism imbues privacy by ensuring that the
real value of the secret could be confused amongst several other values. In this
section we examine confusability in terms of information flow to show how simple
confusability mechanisms provide weak privacy.

3.3 Attacks on Simple Confusability

Traditional approaches to privacy in text programming use the idea of k-
anonymity [25], which is related to confusability.

Definition 5. A channel C ∈ X � Y is k-confusable if for each column y
(observable), the entries Cx,y are non-zero for at least k distinct values of x.

Although k-confusable seems like a nice, straightforward property, it has some
problems when combined with prior knowledge, and k-confusable mechanisms
are susceptible to intersection and linkage attacks.

Processing Text for Privacy: An Information Flow Perspective 11

Intersection Attacks. A mechanism that is k-confusable separates the values
of the secret into two subsets (for each observation): one for secret values that
are still possible, and one for values which are not possible.

An intersection attack refers to the scenario where two different mechanisms
are used, one after another. An adversary is able to combine the information
flow from both mechanisms to deduce more about the value of the secret than
he can from either mechanism separately. For example define two channels as
follows. Let X := {x0, x1, x2, x3} and Y = {y0, y1}.

Cxi,yj
:= (i = j mod 2) (7)

Dxi,yj
:= 1 iff (j = 0 ∧ i < 2) ∨ (j = 1 ∧ i ≥ 2). (8)

Both C and D are 2-confusable since C divides the secret into two equivalence
classes: {x0, x2} and {x1, x3}, whereas D divides it into {x0, x1} and {x2, x3}.
Thus if only C or D is used then indeed the secret is somewhat private, but if
both are used one after the other then the secret is revealed entirely, since the
adversary can identify the secret by locating it simultaneously in an equivalence
class of C and of D.

We can, model such a scenario by the sequential composition of the two
mechanisms separately, i.e. the mechanism of an intersection attack is modelled
by C;D. The susceptibility of k-confusable mechanisms to intersection attacks
is summed up by a failure of compositionality for k-confusability.

Lemma 1. k-confusability is not preserved by to sequential composition.

Proof. We use the counterexample described above: C and D defined respec-
tively at (7) and (8) are 2-confusable but C;D is not 2-confusable.

Lemma 1 implies that mechanisms based on k-confusability are vulnerable
to intersection attacks, a flaw that has been pointed out elsewhere [11].

Linkage Attacks. A linkage attack can be applied when the adversary has
some prior knowledge about how some secret Z is correlated to another secret
X . When information leaks about X through a channel C: X �Y the adversary
is able to deduce something about Z. A simple example of this occurs when for
example secret z has value z0 exactly when x has value x1 or x2, and z has value
z1 otherwise. In this example z and x are linked through the correlation defined

Zzi,xj
:= (i = j mod 2) . (9)

In this case, since the mechanism C defined above at (7) leaks whether x is in
{x0, x2} or {x1, x3}, this information put together with correlation Z leaks the
value of z exactly. Even though C is 2-confusable.

Dalenius composition Z · C now models such linkage attacks, combining cor-
relations with information flows to yield a mechanism describing the leaks about
a correlated secrets. As for intersection attacks, we see that k-confusability fails
compositionality with respect to Dalenius composition.

12 N. Fernandes et al.

Lemma 2. k-confusability is not preserved by Dalenius composition.

Proof. We observe that C defined above at (7) is 2-confusable but that Z · C is
not 2-confusable (for z), where Z is defined at (9).

Lemma 2 implies that privacy that relies on k-confusability is vulnerable to
attacks that can use prior knowledge.

3.4 Universal Confusability

We can avoid intersection attacks and linkage attacks by strengthening k-
confusability to “universal confusability”.

Definition 6. We say that a channel C is universally confusable if it is k-
confusable for all k ≥ 1.

A channel is universally confusable if all its entries Cx,y are non-zero. This
means that for any posterior reasoning, the channel will maintain any extent of
confusability that was already present in the prior. In fact universal confusability
is (somewhat) robust against intersection and linkage attacks, because the strong
confusability property is compositional with respect to sequential and Delanius
composition. Universal confusability is particularly important for text processing
because all kinds of unforeseen and unexpected correlations can be learned and
used, even if they are too strange to understand.

3.5 Differential Privacy

We turn to the question of how to implement mechanisms that are universally
confusable; the answer is given by differential privacy, which not surprisingly
was defined to defend against linkage and intersection attacks.

The definition of an ε-differentially private mechanism is normally described
as a function of type X → DY, satisfying the following constraint. Let
dist: X×X → R≥0 be a distance function, then for all x, x′ ∈ X with dist(x, x′) ≤
1, and properties α, we must have:

K.x(α)/K.x′(α) ≤ eε. (10)

In fact, as has been pointed out by Alvim et al. [2] the mechanism K corresponds
to a channel in CK: X � Y where the rows are defined by CK

x,y:= K.x(Y = y).
From (10) it is clear that CK is strongly confusable because if any non-zero entry
was present, the multiplicative constraint would fail to hold.

Moreover we can also obtain an upper bound for the scenario of an attacker
trying to use the information leaked to guess the secret, in the sense that the
following leakage bound holds [4]. For any prior π,

The probability of correctly guessing the secret after applying K
≤ Vbv[π 〉 CK]
≤ Sum of the column maxima of CK × Vbv[π].

Processing Text for Privacy: An Information Flow Perspective 13

What this means is that even if the attacker uses machine learning to try to
deduce properties about the original data, its ability to do so is constrained by
this upper bound.

As an example, suppose there are three possible values a secret can take,
drawn from xa, xb, xc, each a distance 1 apart from eachother.6 A differentially
private mechanism K could release three possible results, say a, b, c, with cor-
responding channel:

CK
xij = 1/2 if i = j , else 1/4.

Here K is log 2-differentially private, since the maximum of K.x(α) is at most
maxj,i′∈a,b,c CK

xij
/CK

xi′ j ≤ 1
2/ 1

4 = 2.
Unfortunately we cannot apply the original definition of differential privacy

(10) to text documents because, unlike databases, texts are highly unstructured.
Indeed the applicability of differential privacy to text documents has been dis-
missed [8,23]. We propose instead to use a generalisation of differential privacy
that can apply to unstructured domains, suggesting that we can after all find
an obfuscation mechanism based on generalised differential privacy. The trick to
generalising differential privacy is to use a general distance function as follows.

Definition 7. [6] Let K: X → DY, and let dist: X×X → R≥0 be a distance
function on X . We say that K is ε-differentially private with respect to dist if,
for all properties α, we must have:

K.x(α)/K.x′(α) ≤ eε×dist(x,x′).

Definition 7 says that a mechanism imbues privacy by confusing the exact value
of a secret x with other values x′ with a level proportional to dist(x, x′). Thus if
x, x′ are “close” (as measured by dist) then it’s quite likely that they could be
confused, but if they are far apart, then they would be less likely, although still
possibly, be confused.

Putting this together with the channel theorem above, means if we choose ε so
that eε×d(x,x′) is as close to 1 as we can make it, then the chance of distinguishing
x from x′ becomes extremely small.

Even if we do no know the channel matrix exactly, we are still able to obtain
a bound on the information leakage.

Theorem 3. Let K be an ε- generalised differentially private mechanism wrt.
metric d. Then for any gain function g,

Lg(CK) ≤ eε×d�

,

where d�:= maxx,x′∈X d(x, x′).

6 These could, for example, correspond to different possible data values in a database.

14 N. Fernandes et al.

3.6 Privacy Versus Utility

Information leakage on its own, in the case that it is large, implies that the
probability of determining some property of the system will be high; if the upper
bound is small, then it implies the mechanism does not leak very much infor-
mation about anything. When we bring utility into the mix what we want is
that the mechanism leaks a lot of information about a property which is not
deemed sensitive, but keeps secret some other property that is deemed private.
Not surprisingly there are constraints as to how much both requirements can
be served simultaneously, however differential privacy can be used as a way to
randomise whilst preserving some modicum of utility. We first use some notions
from Quantitative Information flow to understand the trade-off between privacy
and utility.

Let ∼A and ∼T represent two equivalence classes on a set of (secret) data
S. We want to release the equivalence class ∼T but keep ∼A private using some
mechanism M . We can determine how successful we are by measuring the leakage
with respect to the two equivalence classes, where we use a specialised version
of vulnerability based on the scenario where an adversary tries to guess which
equivalence class.

Definition 8. M is ε-hiding wrt. ∼A if

Lbv∼A
(M) ≤ 1 + ε ,

where bv∼A
is defined at (5) and leakage is defined at (6).

The maximum chance of an adversary guessing which equivalence class of ∼A

the secret is for an ε-hiding mechanism is bounded above by (1 + ε) × Vbv∼A
[π],

giving a robust privacy guarantee on ∼A.

Definition 9. M is Δ-revealing wrt. ∼T if

1 + Δ ≤ Lbv∼T
(M) ,

where bv∼T
is defined at (5) and leakage is defined at (6).

The best chance of an adversary guessing which equivalence class of ∼T

the secret is for a Δ-revealing mechanism could therefore be as much as
(1+Δ) × Vbv∼T

[π].

Theorem 4. If M1 � M2 then the following applies:

– If M1 is ε-hiding of ∼A then so is M2

– If M2 is Δ-revealing of ∼T then so is M1

Note that when data is provided to the user in a different representation,
such as character n-grams, this is called “post-processing”; as noted elsewhere
[4] post-processing is an instance of refinement, thus, as Theorem 4 indicates the
action of transforming documents into either character n-grams or some other
representation provides more privacy and less accuracy for utility.

Next we can look at some constraints between privacy and utility.

Processing Text for Privacy: An Information Flow Perspective 15

Theorem 5. If ∼A⊆∼T and M is both ε hiding for ∼A and Δ revealing for ∼T

(both under a uniform prior) then Δ ≤ ε.

Proof. Note that Lbv∼T
(M) is equal to V∼T

[u〉M]/V∼T
[u]. But this is bounded

above by N × V∼A
[u〉M]/V∼T

[u], where N is the size of the maximum equiva-
lence class of ∼T . But now V∼T

[u] is equal to N/|S|, thus leakageofbv∼T
(M) is

bounded above by N × V∼A
[u〉M] × |S| which is equal to Lbv∼A

(M). The result
now follows.

In particular if ∼A=∼T then revealing any of ∼T will reveal the same about
∼A. In general if ∼A is finer than ∼T (as equivalence relations) revealing the
equivalence class for ∼T almost exactly, already reveals quite a lot about the
equivalence classes of ∼A

Consider however the following example where there are four secret values:
{a, b, c, d}. Suppose we have equivalence classes of ∼T are {{a, b}, {c, d}} and for
∼T are {{a, c}, {b, d}}. The mechanism given by

Mx,y := 1 if

(
x∈{a, b} ∧ y = 0

∨ x∈{c, d} ∧ y = 1

)

else 0 .

has maximum leakage 2, and is 1-revealing wrt. ∼T and 0-revealing wrt. ∼A;
this means that the adversary has maximum chance of 1 of guessing ∼T , but
minimal chance of 1/2 of guessing ∼A.

This suggests that where ∼A represents equivalence classes over authors, and
∼T represents equivalence classes over topics, if enough different authors write
on the same topic, there is a good chance of being able to disguise the writing
style whilst remaining in the same topic.

4 Generalised Differential Privacy and Obfuscation

We can start to bring to bear the above observations to our simplified PAN
obfuscation task. In particular we explore whether there are mechanisms whose
properties can be understood from the perspective of generalised differential
privacy. In our simplified version we imagine that we are already working with a
bag-of-words (BoW) representation and our mechanism K will produce another
(randomised) bag-of-words representation, i.e.

K : BoW → DBoW.

Unlike our example above, we can no longer work with clear, a priori equiva-
lence relations for authorship (∼A) and topic (∼T). Instead we use, as is done
in machine learners, similarity relationships for categorising topics and iden-
tifying authors. For topicality we use a metric based on a learned distance
between “Word2Vec word embeddings” and its lifting to documents via the
“Earth Movers distance” [16], and for authorship we use the “Ruzicka metric”.
Both have been found experimentally to provide good results in author identifi-
cation and topic classification.

16 N. Fernandes et al.

Word2Vec [21] is a representation of words as a vector of values which,
roughly speaking, captures relationships between words in terms of their mean-
ings. Since this is a learned representation its accuracy depends very much on
the quality of the documents. Remarkably the representation supports a metric7

which captures similarity in meaning between words. For example Word2Vec
embeddings put “queen” and “monarch” close together, but “monarch” and
“engineer” far apart. Using the distance between words defined on Word2Vec
representations as a base, the Earth Mover’s distance can then be defined to
compare documents for topicality. An example is given at Fig. 1.

Definition 10. Let d, d′ be documents represented as bags of words. Define
|d − d′|T to be the word mover’s distance between the movement based on the
distance between Word2Vec word embeddings.

Informally, given two documents d, d′ represented as bags of words, we let R
be a “move relation” so that Rw,w′ ∈ [0, 1] represents the proportion of w ∈ d
that corresponds to w′ ∈ d′. R is set up so that for each w′ ∈ d′, we have∑

w∈d Rw,w′ = 1, and for each w ∈ d, we have
∑

w∈d Rw′,w = 1. The cost of
the move is given by

∑
w,w′ Rw,w′ × dist(w,w′), and the word mover’s distance

is then the minimum over all such move relations.

Fig. 1. Depiction of a move relation defining the Word Mover distance [16]

Definition 11. Let d, d′ be documents and dT be its representation as a a char-
acter n-gram vector. In this representation, the vector is composed of discovered
“features” which are experimentally found to be good for grouping similar writing
styles together. With this in place, we define |d − d′|A:= (1 −

∑
i min |di−d′

i|∑
j max |dj−d′

j |).

7 There are several ways to define distance between word embeddings, but “cosine
similarity” seems to be a popular one; this isn’t a metric, but can be used to define
one.

Processing Text for Privacy: An Information Flow Perspective 17

Documents close in the | · |A metric are likely to be authored by the same
author. To obtain a mechanism K which has a privacy guarantee on obfuscation,
we would have the following:

K(d)(α)/K(d′)(α) ≤ eε×dist(d,d′),

for dist an appropriate metric. Since this has the form of a differentially pri-
vate mechanism it would be somewhat resistant to linkage and intersection
attacks. Similar to Theorem 3, among distances no more than some fixed K,
and ε ≈ 1/10K then the right-hand side shows that the entries in each column
of the channel for those documents are approximately 1.1, thus suggesting that
all such documents would be confused with eachother.

It can also be shown [20] that using the Laplace distribution combined with
a given metric dist it is possible to define a mechanism M so that the output
remains close to the input x with high probability (proportional to ε) when
measured using dist.

4.1 Experiments

Using the above observations as a guide, we designed a simple mechanism using
BoW representations based on Definition 10 designed therefore to preserve top-
icality. The idea is to use an underlying Laplace mechanism combined with the
Word2Vec distance independently applied to each word in the input bag of words.

Next we tested the results, both for privacy and for topicality; our hypothesis
was that randomising directly on words would mean that the character n-gram
representation would be changed sufficiently to hide stylistic traits. Moreover,

Fig. 2. Results for authorship attribution over the various unobfuscated and obfuscated
test sets. Uniformly randomly assigning authorship would have an accuracy of 1% over
100 possible authors for the Fan fiction dataset, and 5% over 20 authors for the Reuters
dataset.

18 N. Fernandes et al.

Fig. 3. Results for topic classification over the various unobfuscated and obfuscated
test sets. Classification accuracy is significantly lower for scale = 0.5, which corresponds
to more obfuscation. However, accuracy is still well above the ‘random’ baseline of 20%.

our theoretical approach shows only that where documents close in topicality
can be confused, so therefore can their authors. Authors that are only known
for their work on a single topic cannot be confused with authors who write on
entirely different subjects.

To test the results we needed large collections of documents written by differ-
ent authors, and representing a number of different topics. We were able to use
one standard dataset from the Natural Language Processing (NLP) literature;
a second data set was constructed by us.

1. The Reuters RCV1 dataset is a standard dataset used in language processing
tasks, and consists of over 800,000 Reuters news articles separated into various
topics [17]. Although not originally constructed for author attribution work,
it has been used previously in this domain by making use of the <byline> tags
inside articles which designate article authors [22]. The dataset was chosen
because it contains documents of reasonable length, which is required for
successful author identification. In addition, this dataset is similar to the
dataset on which the Word2Vec vectors used in this experiment were trained
on, and thus we would expect high quality outputs when using Word2Vec
with this data.

2. Our second data set consisted of “Fan fiction” samples8. This data set there-
fore consists of stories collected over the 5 most popular book-based topics.
Fan fiction has been used previously in PAN author attribution tasks, and is
suitable for this task because of the content length of the texts and the diver-
sity of authorship styles present in these texts, as stylistic writing qualities
are important in this domain.

8 https://www.fanfiction.net.

https://www.fanfiction.net

Processing Text for Privacy: An Information Flow Perspective 19

For each of the documents in the data sets we used our obfuscation mecha-
nism described above to a bag of words representation. We then used appropriate
machine learners to try to categorise the results by author and (separately) by
topic. In each case we applied the same machine learning techniques to the orig-
inal (bag of words representations) of the documents to provide a baseline with
which to compare.

In Fig. 2 we can see the result of obfuscation: with increasing randomness
(as measured by Scale) the ability to identify the author becomes harder, as
compared to the Baseline (i.e. unobfuscated documents). This is compared to
Fig. 3 which we can see preserves the topicality very well — which is to be
expected because of the use of the Laplace mechanism based on Word2Vec.

5 Conclusions and Future Work

This paper has brought two conceptual ideas together to provide some founda-
tions for privacy mechanisms in text document processing. We used generalised
differential privacy based on metrics used in machine learning as a way to cre-
ate a mechanism, and noted how to understand the privacy that it provides in
terms of generalised differential privacy cast in terms of channels for quantitative
information flow.

We also observed experimentally that the mechanism seems to preserve top-
icality well, whilst achieving good privacy. We note here that although we have
not provided a mechanism that produces human-readable documents, the mech-
anism still maintains a variety of words, which fits with the spirit of the PAN
obfuscation task.

There is, of course, a long way to go before we have a true summarisation
mechanism that is private; with this foundation we have the tools to understand
the extent of privacy in future obfuscation mechanisms as they become available.

While the approach outlined in this paper used a simple Word2Vec embed-
ding substitution mechanism over a bag of words representation, there is very
promising recent work that uses deep learning to generate paraphrased text,
taking text as input. For instance, [12] gives a method for producing syntacti-
cally controlled adversarial paraphrases for text: paraphrases that have the goal
of confounding a machine learner, which in our context would be an inference
attacker; an alternative approach based on generative adversarial networks is
described by [27]. Incorporating a DP mechanism, along the lines of the one pre-
sented in this paper, is one possible avenue to solving the original obfuscation
problem presented in Sect. 2.

References

1. Abadi, M., Chu, A., Goodfello, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang,
L.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communication Security (CCS 2016), pp.
303–318, Vienna, Austria, 24–28 October (2016)

20 N. Fernandes et al.

2. Alvim, M.S., Chatzikokolakis, K., Degano, P., Palamidessi, C.: Differential privacy
versus quantitative information flow. CoRR, abs/1012.4250 (2010)

3. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: Additive and multiplicative notions of leakage, and their capacities. In: IEEE
27th Computer Security Foundations Symposium, CSF 2014, Vienna, Austria, 19–
22 July, 2014, pp. 308–322. IEEE (2014)

4. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: Proceedings of the 25th IEEE
Computer Security Foundations Symposium (CSF 2012), pp. 265–279, June 2012

5. Alvim, M.S., Scedrov, A., Schneider, F.B.: When notall bits are equal: Worth-based
information flow. In: Proceedings of the 3rd Conference on Principles of Security
and Trust (POST 2014), pp. 120–139 (2014)

6. Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broaden-
ing the scope of differential privacy using metrics. In: De Cristofaro, E., Wright,
M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39077-7 5

7. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk
minimization. J. Mach. Learn. Res. 12, 1069–1109 (2011)

8. Cumby, C., Ghani, R.: A machine learning based system for semi-automatically
redacting documents. In: Proceedings of the Twenty-Third Conference on Innova-
tive Applications of Artificial Intelligence (IAAI) (2011)

9. Dalenius, T.: Towards a methodology for statistical disclosure control. Statistik
Tidskrift 15, 429–44 (1977)

10. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

11. Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary
information in data privacy. In: Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 265–273. ACM
(2008)

12. Iyyer, M., Wieting, J., Gimpel, K., Zettlemoyer, L.: Adversarial example generation
with syntactically controlled paraphrase networks. In: North American Association
for Computational Linguistics (to appear, 2018)

13. Khonji, M., Iraqi, Y.: A Slightly-modified GI-based Author-verifier with Lots of
Features (ASGALF). In: Working Notes for CLEF 2014 Conference (2014)

14. Koppel, M., Schler, J., Argamon, S.: Computational methods in authorship attri-
bution. JASIST 60(1), 9–26 (2009)

15. Koppel, M., Schler, J., Argamon, S.: Authorship attribution in the wild. Lang.
Resour. Eval. 45(1), 83–94 (2011)

16. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings
to document distances. In: Proceedings of the 32nd International Conference on
Machine Learning, pp. 957–966 (2015)

17. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for
text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)

18. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge, MA, USA (1999)

19. McIver, A., Meinicke, L., Morgan, C.: Compositional closure for bayes risk in prob-
abilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223–235.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1 19

https://doi.org/10.1007/978-3-642-39077-7_5
https://doi.org/10.1007/978-3-642-14162-1_19

Processing Text for Privacy: An Information Flow Perspective 21

20. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceed-
ings of the 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 94–103. IEEE (2007)

21. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Burges, C.J.C.,
Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in
Neural Information Processing Systems, vol. 26, pp. 3111–3119. Curran Associates
Inc. (2013)

22. Mosteller, F., Wallace, D.L.: Inference in an authorship problem: a comparative
study of discrimination methods applied to the authorship of the disputed federalist
papers. J. Am. Stat. Assoc. 58(302), 275–309 (1963)

23. Sánchez, D., Batet, M.: C-sanitized: a privacy model for document redaction and
sanitization. J. Assoc. Inf. Sci. Technol. 67(1), 148–163 (2016)

24. Seidman, S.: Authorship Verification Using the Imposters Method. In: Working
Notes for CLEF 2013 Conference (2013)

25. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty,
Fuzziness Knowl. Based Syst. 10(5), 557–570 (2002)

26. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning
based natural language processing. CoRR, abs/1708.02709 (2017)

27. Zhao, Z., Dua, D., Singh, S.: Generating natural adversarial examples. In: Inter-
national Conference on Learning Representations (2018)

20Years of Real Real Time Model
Validation

Kim Guldstrand Larsen(B), Florian Lorber, and Brian Nielsen

Department of Computer Science, Aalborg University, Aalborg, Denmark
{kgl,florber,bnielsen}@cs.aau.dk

Abstract. In this paper we review 20 years of significant industrial
application of the Uppaal Tool Suite for model-based validation, per-
formance evaluation and synthesis. The paper will highlight a number of
selected cases, and discuss successes and pitfalls in achieving industrial
impact as well as tool sustainability in an academic setting.

1 Introduction

In 1995 the first release of the real-time verification tool Uppaal [43] was pre-
sented – together with a number of other emerging tools such as HyTeCH and
Kronos – at the very first TACAS conference [15]. Soon after the tool was used
for off-line verification of a number of real (i.e. industrially used) protocols, where
real-time aspects were of essence. Today, in 2018, the most recent branches of
Uppaal are applied for on-line optimization of home automation and traffic
control systems. In this short note, we aim to recall some of the success stories
of Uppaal over the years in terms of industrial applications, discuss what it
takes to achieve lasting industrial take-up as well as reflect on the influence on
the development of the tool from industrial feedback.

An overview of the most important case studies which will be discussed
whithin this paper can be found in Fig. 1.

The remainder of the paper will be structured as follows: first, in Sect. 2,
we will give an overview of the Uppaal tool family. Then, in Sect. 3 we will
present our major use cases in the context of verification. Afterwards, in Sect. 4,
we present our case studies in the area of testing and in Sect. 5 we will present
cases in which we used Uppaal for scheduling and controller synthesis. Finally,
in Sect. 6, we will present the most important lessons we learned while working
on the presented case studies.

2 The Uppaal Tool Suite

This section will give an overview over the Uppaal tool family, its components
and their main purposes.

Work supported by Innovation Center DiCyPS, DFF project ASAP, and the ERC
Advanced Grant Project Lasso.

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 22–36, 2018.
https://doi.org/10.1007/978-3-319-95582-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_2&domain=pdf

20 Years of Real Real Time Model Validation 23

Usecase Tool Goal Partners Outcome

PACP Uppaal Verification Philips Significant tool
improvement

BRP Uppaal Verification Philips, Twente
University

Protocol verified

BOP Uppaal Verification Bang & Olufsen Bug found and
corrected

BOPC Uppaal Verification Bang & Olufsen Frequency limits
identified

FR Uppaal Verification FlexRay
Consortium

Improved
fault-tolerance

guarantees
FW Uppaal Verification Radboud

University
Sound timing
restrictions
identified

GC Uppaal Verification MECEL,
Uppsala

University

Several
requirements

verified
HPS Uppaal Verification Herchel &

Planck
Schedulability of

task-set
established

NMN Uppaal Verification Neocortec Energy
performance of

protocol
D Uppaal TRON Testing Danfoss Demonstration

of feasibility of
online testing

NN Uppaal
Yggdrasil

Uppaal CORA

Testing Novo Nordic Two times
industrial takeup

G Uppaal
Yggdrasil

Modelling,
Testing

Grundfos Interest
provoked - new
collaboration

S Uppaal TIGA Controller
Synthesis

Skov Synthesis of
zone-based
controller

H Uppaal TIGA Controller
Synthesis

Hydac, ULB,
ENS Cachan

Improved
controller

BPNS Uppaal
Stratego

Scheduling GomSpace Batterty life
improvement of

a satellite
HA Uppaal

Stratego
Controller
Synthesis

Seluxit Intelligent floor
heating

ICTL Uppaal
Stratego

Controller
Synthesis

Municipality of
Køge

Efficient traffic
controller

Fig. 1. Industrial use cases using Uppaal.

24 K. Guldstrand Larsen et al.

Uppaal. The underlying formalism of Uppaal is that of timed automata with
the tool providing support for model checking of hard real-time properties. Since
the introduction of the tool in 1995, significant effort have been put into devel-
opment and implementation of improved datastructures and algorithms for the
analysis of timed automata. Besides the several advances with respect to the
verification engine, significant effort has over the years been put on the graph-
ical interface of the tool (e.g. [8]), and on the modelling side the introduction
of user-defined, structured datatypes and procedures has undoubtedly made the
tool significantly more usable in modeling real control programs and communi-
cation protocols [7].

Uppaal CORA. Motivated by the need for addressing (optimal) usage of
resources, priced timed automata were introduced in 2001. [4,9] (indepen-
dently) demonstrated decidability of cost-optimal reachability. Soon after, an
efficient priced extension of the symbolic datastructures used in Uppaal was
implemented in the branch Uppaal CORA. Combined with a symbolic
A* algorithm Uppaal CORA turned into a new generic tool for cost-optimal
planning which was competitive to traditional OR methods such as Mixed-
Integer Linear Programming [39].

Uppaal TRON. In 2004 the branch Uppaal TRON was introduced offering
the possibility of performing on-line conformance testing of realistic real-time
systems with respect to timed input-output automata [41,45]. Uppaal TRON

implements a sound and (theoretically) complete randomized testing algorithm,
and uses a formally defined notion of correctness to assign verdicts: i.e. relativized
timed input/output conformance providing a timed extension of Jan Tretmans
ioco [52]. Using online testing, events are generated and simultaneously executed
on the system under test.

Uppaal Yggdrasil. is an off-line test case generator integrated into the main
Uppaal component. It aims at creating a test suite for edge coverage in a three
phase process, which includes testing according to user-specified test purposes,
random testing, and afterwards reachability analysis towards uncovered tran-
sitions. The tool enables the user to associate test code with transitions and
locations, which is integrated into the test case whenever a trace traverses them.
This enables Uppaal Yggdrasil to create test scripts in any desired language,
which can be executed directly by the chosen execution engine.

Uppaal TIGA. In 2005 - encouraged by suggestions from Tom Henzinger – the
branch Uppaal TIGA was released, allowing for control strategies to be synthe-
sized from timed games, i.e. two-player games played on timed automata [6,16].
The branch implements an efficient symbolic on-the-fly algorithm for synthesiz-
ing winning strategies for reachability, safety as well as Büchi objectives and
taking possible partial observability into account [17]. The branch marks a dis-
ruptive direction with respect to development of control programs for embedded
systems: rather than manually developing the control program with subsequent
model checking (and correction), Uppaal TIGA provides a fully automatic
method for deriving a correct-by-construction control program.

20 Years of Real Real Time Model Validation 25

Ecdar. In 2010 the branch Ecdar was introduced supporting a scalable
methodology for compositional development and stepwise refinenemet of real-
time systems [29,30]. The underlying specification theory is that of timed I/O
automata being essentially timed games (with inputs being controllable, and
outputs being uncontrollable) equipped with suitable methods for refinement
checking (in terms of an alternating simulation between two timed game speci-
fications), consistency checking, logical as well as structural composition. For a
full account of Ecdar we refer the reader to the tutorial [28].

Uppaal SMC. One of the most recent branches of the Uppaal tool suite –
Uppaal SMC introduced in 2011 – allows for performance evaluation on the
expressive formalisms of stochastic hybrid automata and games [26,27], and has
by now been widely applied to analysis of a variety of case studies ranging from
biological examples [25], schedulability for mixed-critical systems [14,22], eval-
uation of controllers for energy-aware buildings [19], social-technical attacks in
security [31], as well as performance evaluation of a variety of wireless communi-
cation protocols [53,53]. For a full account of Uppaal SMC we refer the reader
to the recent tutorial [24].

Uppaal Stratego. from 2014 [20,21] is the most recent branch of the Uppaal

tool suite that allows to generate, optimize, compare and explore consequences
and performance of strategies synthesized for stochastic priced timed games
(SPTG) in a user-friendly manner. In particular, Uppaal Stratego comes
with an extended query language, where strategies are first class objects that
may be constructed, compared, optimized and used when performing (statistical)
model checking of a game under the constraints of a given synthesized strategy.

3 Verification

The early development of Uppaal was highly driven by colleagues in the Nether-
lands using the tool for automatic verification of industrial protocols. During a
time-span of only a few years this resulted in a huge performance improvement
reducing both time- and space-consumption with over 99%.

Philips Audio Control Protocol (PACP). Before the release of UppaalBosscher,
Polak and Vaandrager had in 1994 modelled and verified a protocol developed by
Philips for the physical layer of an interface bus that connects the various devices
of some stereo equipment (tuner, CD player,...). Essentially – after a suitable
translation – the model of the protocol is a timed automata. Whereas the first
proof in [13] was manual, the first automated verification of the protocol was
done using the tool HyTech. Later, automated – and much faster – verifications
were obtained using Uppaal and Kronos. However, all these proofs were based
on a simplification on the protocol, introduced by Bosscher et. al. in 1994, that
only one sender is transmitting on the bus so that no bus collisions can occur. In
many applications the bus will have more than one sender, and the full version of
the protocol by Philips therefore handles bus collisions. Already in the autumn
of 1995 an automatic analysis of a version of the Philips Audio Control Protocol

26 K. Guldstrand Larsen et al.

with two senders and bus collision handling was achieved using Uppaal 0.96.
To make the analysis feasible a notion of committed location was introduced
(to remove unnecessary interleavings) and the analysis was carried out on a
super computer, a SGI ONYX machine [11]. The total verification time was
8.82 hrs using more 527.4 MB. It is interesting to note that using Uppaal 3.2
the same verification was reduced to only 0.5 sec using 2.5 MB of memory.
In any case, the success in 1996 was a true milestone in the development of
Uppaal as this version of the protocol was orders of magnitude larger than the
previously considered version with only one sender, e.g. the discrete state-spaces
was 103 times larger and the number of clocks and channels in the model was
also increased considerably.

Bounded Retransmission Protocol (BRP). In parallel with the collaboration with
the group of Vaandrager, a group from Twente University (D’Argenio, Katoen,
Reus and Tretmans) was also applying – and seriously testing – the first versions
of Uppaal. In particular, they successfully modelled and verified the Bounded
Retransmission Protocol, a variant of the alternating bit protocol introduced by
Philips. In [18] it is investigated to what extent real-time aspects are important to
guarantee the protocol’s correctness using Uppaal and the Spin model checker.

B&O Protocol (BOP). In 1996, we were ourselves approached by Bang & Olufsen
with a request of “analysing their proprietary IR Link protocol”. The protocol,
about 2800 lines of assembler code, was used in products from the audio/video
company Bang&Olufsen throughout more than a decade, and its purpose was
to control the transmission of messages between audio/video components over a
single bus. Such communications may collide, and one essential purpose of the
protocol was to detect such collisions. The functioning was highly dependent on
real-time considerations. Though the protocol was known to be faulty (in the
sense that messages were lost occasionally), the protocol was too complicated in
order for the company to locate the bug using normal testing. However - after 4–
5 iterations refining the model of the protocol - an error trace was automatically
generated using Uppaal and confirmed in the actual implementation of the
protocol. Moreover, the error was corrected and the correction was automatically
proven correct, again using Uppaal [36].

B&O Powerdown control (BOPC). [35] Our first collaboration with Bang &
Olufsen was very much characterized as a reverse engineering exercise of an
existing protocol: the only documentation of the protocol was the 2800 lines of
assembler code together with 3 flow-charts and a (very) knowledgeable B&O
engineer. In our second collaboration with the company, modelling and verifi-
cation in Uppaal was carried out in parallel with the actual implementation
of a new real-time system for power-down control in audio/video components.
During modeling 3 design errors were identified and corrected, and the following
verification confirmed the validity of the design but also revealed the necessity
for an upper limit of the interrupt frequency. The resulting design was later
(seamlessley) implemented and incorporated as part of a new product line.

20 Years of Real Real Time Model Validation 27

Whereas the above collaborative projects with B&O were very successful,
neither Uppaal nor model-driven development were taken-up in the company.
An obvious reason could the immaturity (and lack of GUI) of the tool back then.
However, in retrospect, an other equally likely reason is the fact that we were
spending (all) our effort in collaborating with technicians in the company and
not on marketing our tool and “disruptive” methodology to decision-makers in
the company.

Flexray (FR). As part of the German DFG project AVACS1 the FlexRay pro-
tocol was modeled and verified using Uppaal. Flexray is a standard, developed
by a cooperation of leading companies in the automotive industry, as a robust
communication protocol for distributed components in modern vehicles. Devel-
oped by the FlexRay Consortium, a cooperation of leading companies including
BMW, Bosch, Daimler, Freescale, General Motors, NXP Semiconductors, and
Volkswagen, FlexRay was first employed in 2006 in the pneumatic damping sys-
tem of BMW’s X5, and fully utilized in 2008 in the BMW 7 Series. The FlexRay
specification was completed in 2009 and is widely expected to become the future
standard for the automotive industry. In [34] a timed automata model of its
physical layer protocol is presented, and Uppaal is used to automatically prove
fault tolerance under several error models and hardware assumptions. In partic-
ular, it is shown that the communication system meets, and in fact exceeds, the
fault-tolerance guarantees claimed in the FlexRay specification.

Firewire (FW). The IEEE 1394–1995 serial bus standard defines an archi-
tecture that allows several components to communicate at very high speed.
Originally, the architecture was designed by Apple (FireWire), with more than
70 companies having been involved in the standardisation effort. In [50] a timed
automata model of the leader election protocol is presented and its correctness
is established using Uppaal. In particular, it is shown that under certain timing
restrictions the protocol behaves correctly. The timing parameters in the IEEE
1394 standard documentation obey the restrictions found in this proof.

MECEL Gear Controller (GC). In [44] an application of Uppaal to the mod-
elling and verification of a prototype gear controller was developed in a joint
project between industry and academia. In particular, the project was car-
ried out in collaboration between Mecel AB and Uppsala University. Within
the project, the (timely) correctness of the controller was formalized (and
verified) in 47 logical formulas according to the informal requirements delivered
by industry.

Herchel & Planck Schedulatilibity (HPS). In the danish project DaNES, we
collaborated with the company Terma on using timed automata model checking
as a more exact method for establishing schedulability of a number of periodic
tasks executing on a single CPU under a given scheduling policy. In particular a
fixed priority preemptive scheduler was used in a combination with two resource
sharing protocols, and in addition voluntary task suspension was considered.

1 http://www.avacs.org.

http://www.avacs.org

28 K. Guldstrand Larsen et al.

In [46] schedulability was established under the assumption of exact computa-
tion times of the tasks. In [23] non-deterministic computations times were con-
sidered; depending on the size of the computation time interval, schedulability
was either verified (using Uppaal) or refuted (using the concrete search engine
of Uppaal SMC).

4 Testing

Our research on model-based test generation for timed (event recording)
automata started with the thesis work around 1996–2000 in [47]. The approach
aimed at covering timed equivalence classes defined through the clock guards
of the timed automata. It assumed strictly deterministic systems, and its scal-
ability was limited by the analysis techniques of the time. It thus had limited
industrial applicability [48,49].

Later (2002–2004), inspired by [32,52], we developed the online testing tool
Uppaal TRON [3]. This approach could effectively handle non-determinism in
both the specification (due to abstraction) and system under test (due to uncer-
tainties in scheduling, execution times, timing, etc.), scaled to large models, and
provided response times low enough for many practical cases [5,42,51]. Online
testing generates effective randomized long tests, but coverage must be evalu-
ated post-mortem and cannot be guaranteed a priori. Moreover, it is difficult to
repeat the precise same test and inspect the set of test cases (might be required
by certification bodies).

Our first work on offline test-case generation (with Uppsala University) ap-
peared [37] in 2003. Here we showed how to interpret witness traces generated by
the Uppaal model-checker as test cases for the sub-class deterministic output
urgent timed automata. Specifically, we showed how to generate the test cases
with the minimum duration that satisfied a given test purpose formulated as
a reachability property by exploiting Uppaal’s fastest witness trace generation
feature. We furthermore formulated coverage as a reachability question, giving
the ability to generate (time optimal) tests that guarantee meeting common
coverage criteria. This work led to the Uppaal Cover tool (no longer developed)
and Uppaal Yggdrasil.

The Danfoss Case (D). We applied and evaluated Uppaal TRON on an embed-
ded controller supplied by the company Danfoss’ Refrigeration Controls Division
around year 2003–2004 [42]. The target device was a stable product of a refrig-
erator controller for industrial and large supermarket installations. As computer
scientists we did not have domain expertise, and it soon became clear that the
supplied documentation (high-level requirements and user manuals) was insuffi-
cient for us to build accurate models. Hence, we ended up formulating a hypoth-
esis model, running the test, and refining the model when the test failed. The
final model consisted of 18 concurrent components (timed automata), 14 clock
variables, and 14 discrete integer variables, and was thus quite large for the time.
When confronting the refined model with Danfoss engineers, they too were sur-
prised about certain aspects of its behavior, and needed to have that confirmed

20 Years of Real Real Time Model Validation 29

by other developers. Although we found no confirmed defects, the case showed
that our techniques were practically applicable, and effective in finding discrep-
ancies between specified and observed behavior. Encouraged by these results,
both parties continued the collaboration on automated testing. At the end, our
testing approach was not included in their new test setup that emphasized a new
test harness for automated execution of manually defined scripts. Retrospec-
tively, the gap between our method and their established development processes
and tools was too big.

The Novo Nordic Case (NN). The first version of Uppaal Yggdrasil was
developed in 2007–2009 specifically to support a collaboration with Novo Nordic
for model-based GUI testing for medical devices. This version used Uppaal

CORA as back-end, and operated in a 3 step process inspired by the company’s
needs: (1) Generating a separate test sequence for each user defined (supposedly
critical) test purpose, (2) using Uppaal’s search heuristics for optimizing model
(edge) coverage considering constraints on the maximum lengths of the test
cases, and (3) generating targeted test cases for each of the remaining uncovered
transitions. The actual test case code was generated from model-annotations
that the test engineers added to the model issuing appropriate GUI commands
and assertions. Initially, the models were made using UML state-charts (and then
translated into the Uppaal syntax) due to the engineers familiarity with this
notation. It is important to remark that the engineers had no prior experience
with formal modelling, and models were made for illustrative purposes using
Microsoft Visio. Even then, making models that now had a tangible and formal
meaning required a substantial training period. First the models were jointly
developed assisted by the tool developer, and later only by company engineers
with ordinary support.

This approach reduced the time used on test construction from upwards of
30 days to 3 days spent modelling and then a few minutes on actual test genera-
tion. At the same time, coverage was easier to establish than in the manual app-
roach, and script maintenance greatly reduced. Later again, the company started
using the Uppaal-editor directly, circumventing a heavy (and costly) UML tool.
The approach was thus successfully embedded within the company. Unfortu-
nately, that development team was dissolved as part of a company restructuring
a year later, and the competence was no longer used.

MBAT. Since the original Uppaal Yggdrasil was tailormade for this collab-
oration, and since it used the Uppaal CORA engine that is also no longer
being developed, it ended up in a non-usable state. Recently, as part of the EU
Artemis MBAT (Combined Model-based Testing and Analysis) project, we re-
architected the tool, and integrated it into — and shipped with — the main
branch of Uppaal, such that it now (1) uses the normal search engine, and (2)
uses the graphical editor to create the needed annotations, and (3) provides a
GUI widget for creating the test case configurations.

Uppaal Yggdrasil was applied to a case-study [38], and evaluated posi-
tively by a few consortium member companies. However, the collaboration did
not result in commercial exploitation, partly because the project came to an

30 K. Guldstrand Larsen et al.

end, and partly because we did not have an established company that could sell
the licenses, and required maintenance, training, and consultancy.

MBAT also facilitated further developments for tool interoperability that is
seen as crucial for large companies owning hundreds of various software devel-
opment tools. That included prototyping of Open Services for Lifecycle Collab-
oration (OSLC)2 adaptors for Uppaal, and prototyping of Functional Mock-up
Interfaces (FMI)3 co-simulation interfaces. So it is regretful that this source of
funding for Artemis/ECSEL industrial collaboration at a European scale ceased,
as the Danish government halted national co-funding.

Grundfos (G). Grundfos is a major Danish company and world renowned for
its pump products. In a recent meeting in the context of the DiCyPS project4,
we discussed different possible topics for further evaluation, including model-
based testing. Based on our positive experiences with Danfoss (whose refrigerator
controllers at an abstract level are similar to Grundfos pump controllers) we
presented all the benefits/strengths of online model-based tested. However, it was
when we presented offline testing that their interest was really triggered. They
in particular liked our idea of modelling each of their requirements, using this
(combined) model to automatically generate test scripts, and executing these on
their existing test harness. Hence, there is a strong fit with their existing testing
process and equipment. Also they believed that the (formalized) requirement
models could be a valuable documentation complementing the existing design
documentation. Hence, we decided to focus the collaboration on this approach,
and postpone online testing.

In the first phase, we (university/tool provider/academics) perform the mod-
elling and test case generation in order to prepare the tool and evaluate the
method, for this particular case. We have identified an interesting, non-trivial
subsystem of a newly developed pump controller exhibiting core functionality. If
this stage is successful we plan to train selected Grundfos engineers and evaluate
their experiences. Since the collaboration is ongoing, we cannot report on the
outcome here.

5 Planning, Scheduling and Synthesis

Within its newer branches, the Uppaal tool suite allows for the usage of prices
and stochastic elements, in order to enable various features, such as cost-optimal
reachability, optimal scheduling or synthesis of strategies. The first practical step
in this direction was made in 2002, with the initial release of Uppaal CORA.
Uppaal CORA was developed as part of the VHS and AMETIST projects, and
uses linear priced timed auomata (LPTA) for reachability problems, searching for
paths with the lowest accumulated costs. The idea behind Uppaal Stratego

2 https://open-services.net.
3 http://fmi-standard.org.
4 National Innovation Fund supported project on Data-Intensive Cyber-Physical

Systems.

https://open-services.net
http://fmi-standard.org

20 Years of Real Real Time Model Validation 31

came up in the CASSTING project. It was released in 2014, and facilitates the
generation, optimization, comparison as well as consequence and performance
exploration of strategies for stochastic priced timed games (SPTGs) in a user-
friendly manner. The tools were since applied in several case studies, such as
optimal planning of missions for battery-powered nano-satellites [12], efficient
heating in home automation [40] or traffic light scheduling [33]. Below we will
give an overview of the three mentioned case studies.

Battery-Powered Nano-Satellites (BPNS). This case study focused on the bat-
tery consumption of a GOMX-3 satellite built by the company GomSpace. It
contains several antennas, solar panels and a battery. Depending on the schedul-
ing of the different tasks of the satellite, the deterioration of the battery may
vary significantly, depending on, for instance, the depth the battery is discharged
to before reloading it. Uppaal Stratego was used to analyze different battery
usage profiles, to optimize the lifetime of the satellite. This was done via a wear
score function, which ranked the profiles according to their impact on the bat-
tery life. Additionally, the satellite was modelled as an SPTG in an abstract
way. It could choose between the four different experiment types with different
strains on the battery. Using the reinforcement learning approach implemented
in Uppaal Stratego we could near-optimize the scheduling of the experiments
with respect to both the battery life and the number of experiments performed.

Home Automation (HA). In [40] we collaborated with the Danish company
Seluxit within the European project CASSTING. Our focus was on using timed
games to synthesize a controller for a floor heating system of a single family
house. Each room of the house has its own hot-water pipe circuit, which is
controlled based on the room temperature. The original system used a simple
“Bang-Bang”-like strategy, which turned the heating on if the temperature fell
below a certain threshold, and turned it back off if it exceeded another threshold.
Our goal was to use weather forecast information to synthesize an improved con-
trol strategy. Due to the state-space explosion caused by the number of control
modes, we could not apply Uppaal Stratego directly. To cope with this, we
proposed a novel online synthesis methodology, which is periodically called and
learns an optimal controller for a limited timeframe. We further improved this
approach by applying compositional synthesis, making it scalable enough for the
study. The controller could access the weather forecast for the next 45 minutes,
and used that information to shut down or start the valves much earlier than
other controllers, resulting in substantial energy savings and increased comfort.

Intelligent Control of Trafic Light (ICTL). Within the Innovation Center
DiCyPS we used Uppaal Stratego for the synthesis of an efficient traffic
control strategy. The controller gains information about the traffic via radar
detectors and aims at optimizing the total traffic flow in a given traffic light
junction. The strategy optimizes the total delay, the queue length and the num-
ber of times the vehicles have to stop. Again the synthesis is done online, this
time in 5 second intervals, during which the next operation of the traffic light is
calculated. We investigated an existing intersection in the municipality of Køge,

32 K. Guldstrand Larsen et al.

Denmark, and simulated it with the open source tool SUMO and the commercial
tool VISSIM. The strategy computed by Uppaal Stratego could be integrated
into these tools, to analyze the behaviour based on randomly generated traffic
scenarios. We evaluated the strategies in comparison to a static controller and a
so called Loop controller, under three types of traffic szenarios with low, medium
and maximal traffic. For low traffic, all controllers performed very similar, with
the Loop controller showing the best results and for medium traffic, all performed
equally. However, for high traffic, Uppaal Stratego outperformed both other
controllers significantly, essentially halving the expected waiting time [33].

6 Lessons Learned

Based on 20 years of practical experience in using Uppaal on industrial case
studies – as illustrated by the list of case studies given in the previous sections
– we believe that a number of lessons may be learned.

It is important to have a dedicated team consisting of committed developers
and inquisitive researchers in order to develop efficient and usable tools. In addi-
tion, the tools developed must have an interface and functionality which fits the
use-case company’s tool-chain, development method, and knowledge.

Formal methods tools must fit development methodology applied by industry.

Having the tool developer applying it in close interaction with the industrial
user – e.g. through collaborative projects – gives a strong incentive for achieving
alignment with and impact on industrial methodology. The tool developer can
then strive to align the tool and the industrial verification workflow, both by
adapting the tool and by influencing the used methods.

Industrial impact requires an evolution of both their methods and our tools,
potentially in several iterations of collaboration.

The exact formal notations need not be a show-stopper, as long as the nota-
tion used is engineer friendly, and supported by a well-designed user-interface.
Using a familiar notation is helpful in reducing the entry barrier and learning
curve.

Use of engineer friendly, yet formal, notation increases chances of impact.

Sustaining use may be difficult in a dynamic industrial environment, and
requires several collaborations and/or repeated introduction. Follow-up projects
can benefit this greatly.

Sustained industrial use needs repeated committed collaboration.

Tool development needs to be continuously sustained beyond the first case-
study and paper-publication. This requires committed developers, continuous

20 Years of Real Real Time Model Validation 33

maintenance including bug fixing, making enhancements of usability, functions,
performance, and performing testing, release management, license serving,
This is obviously time consuming and requires financial support. More impor-
tantly, because formal tools often require specialized expertise knowledge, few
of these tasks can be subcontracted to a generic software engineer. Hence, also
academic recognition and rewards are needed for such developments that do not
readily result in publications.

Tool development needs to be continuously sustained. This requires increased
academic recognition to tool developers.

On the other hand, we ourselves only made few serious attempts at commer-
cializing our tools beyond selling licenses. This is likely because we are researchers
at heart.

Industrial impact could be increased by offering tools and consultancy on
commercial terms through spin-out companies.

Finally:

A successful case study is not the same as industrial impact.

References

1. Proceedings of the 18th IEEE Real-Time Systems Symposium (RTSS 1997), 3–5
December 1997. IEEE Computer Society, San Francisco (1997)

2. Third International Conference on the Quantitative Evaluation of Systems (QEST
2006), 11–14 September 2006. IEEE Computer Society, Riverside (2006)

3. Mikucionis, M., Larsen, K.G., Nielsen, B.: T-uppaal: online model-based testing
of real-time systems. In: Grunbacher, P. (ed.) 19th IEEE International Conference
on Automated Software Engineering (ASE 2004) Proceedings, pp. 396–397, United
States, IEEE Computer Society Press (2004). ISSN; 1068–3062

4. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata.
In: Benedetto and Sangiovanni-Vincentelli [10], pp. 49–62

5. Asaadi, H.R., Khosravi, R., Mousavi, M.R., Noroozi, N.: Towards model-based
testing of electronic funds transfer systems. In: Arbab, F., Sirjani, M. (eds.) FSEN
2011. LNCS, vol. 7141, pp. 253–267. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29320-7 17

6. Behrmann, G., et al.: UPPAAL-tiga: time for playing games!. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73368-3 14

7. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: Third International Conference on the Quanti-
tative Evaluation of Systems (QEST 2006) [2], 11–14 September 2006, Riverside,
California, USA, pp. 125–126

8. Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Developing
UPPAAL over 15 years. Softw. Pract. Exper. 41(2), 133–142 (2011)

https://doi.org/10.1007/978-3-642-29320-7_17
https://doi.org/10.1007/978-3-642-29320-7_17
https://doi.org/10.1007/978-3-540-73368-3_14

34 K. Guldstrand Larsen et al.

9. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In:
Benedetto and Sangiovanni-Vincentelli [10], pp. 147–161

10. Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.): HSCC 2001. LNCS, vol.
2034. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45351-2

11. Bengtsson, J., et al.: Verification of an audio protocol with bus collision using
Uppaal. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp.
244–256. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5 73

12. Bisgaard, M., et al.: Battery-aware scheduling in low orbit: the GomX–3 case.
In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS,
vol. 9995, pp. 559–576. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48989-6 34

13. Bosscher, D., Polak, I., Vaandrager, F.: Verification of an audio control protocol.
In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS,
vol. 863, pp. 170–192. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58468-4 165

14. Boudjadar, A., David, A., Kim, J.H., Larsen, K.G., Mikucionis, M., Nyman, U.,
Skou, A.: Degree of schedulability of mixed-criticality real-time systems with prob-
abilistic sporadic tasks. In: 2014 Theoretical Aspects of Software Engineering Con-
ference, TASE 2014, Changsha, China, 1–3 September 2014, pp. 126–130. IEEE
Computer Society (2014)

15. Brinksma, E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.):
TACAS 1995. LNCS, vol. 1019. Springer, Heidelberg (1995). https://doi.org/10.
1007/3-540-60630-0

16. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). https://doi.org/10.
1007/11539452 9

17. Cassez, F., David, A., Larsen, K.G., Lime, D., Raskin, J.-F.: Timed control with
observation based and stuttering invariant strategies. In: Namjoshi, K.S., Yoneda,
T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 192–206.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75596-8 15

18. D’Argenio, P.R., Katoen, J.-P., Ruys, T.C., Tretmans, J.: The bounded retrans-
mission protocol must be on time!. In: Brinksma, E. (ed.) TACAS 1997. LNCS,
vol. 1217, pp. 416–431. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0035403

19. David, A., Du, D., Larsen, K.G., Mikucionis, M., Skou, A.: An evaluation frame-
work for energy aware buildings using statistical model checking. Sci. China Inf.
Sci. 55(12), 2694–2707 (2012)

20. David, A., et al.: On time with minimal expected cost!. In: Cassez, F., Raskin,
J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11936-6 10

21. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal

Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 16

22. David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Schedulability of Herschel-
Planck revisited using statistical model checking. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2012. LNCS, vol. 7610, pp. 293–307. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34032-1 28

https://doi.org/10.1007/3-540-45351-2
https://doi.org/10.1007/3-540-61474-5_73
https://doi.org/10.1007/978-3-319-48989-6_34
https://doi.org/10.1007/978-3-319-48989-6_34
https://doi.org/10.1007/3-540-58468-4_165
https://doi.org/10.1007/3-540-58468-4_165
https://doi.org/10.1007/3-540-60630-0
https://doi.org/10.1007/3-540-60630-0
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/978-3-540-75596-8_15
https://doi.org/10.1007/BFb0035403
https://doi.org/10.1007/BFb0035403
https://doi.org/10.1007/978-3-319-11936-6_10
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-642-34032-1_28

20 Years of Real Real Time Model Validation 35

23. David, A., Larsen, K.G., Legay, A., Mikucionis, M.: Schedulability of herschel
revisited using statistical model checking. STTT 17(2), 187–199 (2015)

24. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. STTT 17(4), 397–415 (2015)

25. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sedwards, S.:
Statistical model checking for biological systems. STTT 17(3), 351–367 (2015)

26. David, A., et al.: Statistical model checking for networks of priced timed automata.
In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–
96. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24310-3 7

27. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 27

28. David, A., Larsen, K.G., Legay, A., Nyman, U., Traonouez, L., Wasowski, A.:
Real-time specifications. STTT 17(1), 17–45 (2015)

29. David, A., Larsen, K.G., Legay, A., Nyman, U., W ↪asowski, A.: ECDAR: an envi-
ronment for compositional design and analysis of real time systems. In: Bouajjani,
A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 365–370. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15643-4 29

30. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O
automata: a complete specification theory for real-time systems. In: Johansson,
K.H., Yi, W. (eds.) Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2010, Stockholm, Sweden, 12–
15 April 2010, pp. 91–100. ACM (2010)

31. David, N., David, A., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Probst,
C.W.: Modelling social-technical attacks with timed automata. In: Bertino, E.,
You, I. (eds.) Proceedings of the 7th ACM CCS International Workshop on Man-
aging Insider Security Threats, MIST 2015, Denver, Colorado, USA, 16 October
2015, pp. 21–28. ACM (2015)

32. de Vries, R.G., Tretmans, J.: On-the-fly conformance testing using SPIN. STTT
2(4), 382–393 (2000)

33. Eriksen, A.B., Huang, C., Kildebogaard, J., Lahrmann, H., Larsen, K.G., Muniz,
M., Taankvist, J.H.: Uppaal stratego for intelligent traffic lights. In: ITS European
Congress (2017)

34. Gerke, M., Ehlers, R., Finkbeiner, B., Peter, H.-J.: Model checking the flexray
physical layer protocol. In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS,
vol. 6371, pp. 132–147. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15898-8 9

35. Havelund, K., Larsen, K.G., Skou, A.: Formal verification of a power controller
using the real-time model checker Uppaal. In: Katoen, J.-P. (ed.) ARTS 1999.
LNCS, vol. 1601, pp. 277–298. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48778-6 17

36. Havelund, K., Skou, A., Larsen, K.G., Lund, K.: Formal modeling and analysis of
an audio/video protocol: an industrial case study using UPPAAL. In: Proceedings
of the 18th IEEE Real-Time Systems Symposium (RTSS 1997) [1], 3–5 December
1997, San Francisco, CA, USA, pp. 2–13 (1997)

37. Hessel, A., Larsen, K.G., Nielsen, B., Pettersson, P., Skou, A.: Time-optimal test
cases for real-time systems. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003.
LNCS, vol. 2791, pp. 234–245. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-40903-8 19

https://doi.org/10.1007/978-3-642-24310-3_7
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-15643-4_29
https://doi.org/10.1007/978-3-642-15898-8_9
https://doi.org/10.1007/978-3-642-15898-8_9
https://doi.org/10.1007/3-540-48778-6_17
https://doi.org/10.1007/3-540-48778-6_17
https://doi.org/10.1007/978-3-540-40903-8_19
https://doi.org/10.1007/978-3-540-40903-8_19

36 K. Guldstrand Larsen et al.

38. Kim, J.H., Larsen, K.G., Nielsen, B., Mikučionis, M., Olsen, P.: Formal analysis
and testing of real-time automotive systems using UPPAAL tools. In: Núñez, M.,
Güdemann, M. (eds.) FMICS 2015. LNCS, vol. 9128, pp. 47–61. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19458-5 4

39. Larsen, K., et al.: As cheap as possible: effcient cost-optimal reachability for priced
timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 493–505. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44585-4 47

40. Larsen, K.G., Mikučionis, M., Muñiz, M., Srba, J., Taankvist, J.H.: Online and
compositional learning of controllers with application to floor heating. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 244–259. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 14

41. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
79–94. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31848-4 6

42. Larsen, K.G., Mikucionis, M., Nielsen, B., Skou, A.: Testing real-time embedded
software using UPPAAL-TRON: an industrial case study. In: Wolf, W.H. (ed.)
EMSOFT 2005, 18–22 September 2005, 5th ACM International Conference on
Embedded Software, Proceedings, Jersey City, NJ, USA, pp. 299–306. ACM (2005)

43. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2), 134–
152 (1997)

44. Lindahl, M., Pettersson, P., Yi, W.: Formal design and analysis of a gear controller.
STTT 3(3), 353–368 (2001)

45. Mikucionis, M., Larsen, K.G., Nielsen, B.: T-UPPAAL: online model-based testing
of real-time systems. In: 19th IEEE International Conference on Automated Soft-
ware Engineering (ASE 2004), 20–25 September 2004, Linz, Austria, pp. 396–397.
IEEE Computer Society (2004)

46. Mikučionis, M., et al.: Schedulability analysis using uppaal: Herschel-Planck case
study. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 175–
190. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16561-0 21

47. Nielsen, B.: Specification and Test of Real-Time Systems. Ph.D thesis. Aalborg
University (2000)

48. Nielsen, B., Skou, A.: Automated test generation from timed automata. In: Mar-
garia, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 343–357. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9 24

49. Nielsen, B., Skou, A.: Test generation for time critical systems: tool and case study.
In: 13th Euromicro Conference on Real-Time Systems, Delft, The Netherlands, pp.
155–162, June 2001

50. Romijn, J.: A timed verification of the IEEE 1394 leader election protocol. Formal
Methods Syst. Des. 19(2), 165–194 (2001)

51. Rütz, C.: Timed model-based conformance testing - a case study using tron: testing
key states of automated trust anchor updating (rfc 5011) in autotrust. B.Sc. thesis
(2010)

52. Tretmans, J.: A formal approach to conformance testing C-19, 257–276 (1993)
53. van Glabbeek, R.J., Höfner, P., Portmann, M., Tan, W.L.: Modelling and verifying

the AODV routing protocol. Distrib. Comput. 29(4), 279–315 (2016)

https://doi.org/10.1007/978-3-319-19458-5_4
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1007/978-3-662-49674-9_14
https://doi.org/10.1007/978-3-540-31848-4_6
https://doi.org/10.1007/978-3-642-16561-0_21
https://doi.org/10.1007/3-540-45319-9_24

FM 2018 Main Conference

Deadlock Detection
for Actor-Based Coroutines

Keyvan Azadbakht1,2(B), Frank S. de Boer1, and Erik de Vink1,3

1 Centrum Wiskunde en Informatica, Amsterdam, The Netherlands
{k.azadbakht,f.s.de.boer}@cwi.nl

2 Leiden University, Leiden, The Netherlands
3 Eindhoven University of Technology, Eindhoven, The Netherlands

evink@win.tue.nl

Abstract. The actor-based language studied in this paper features
asynchronous method calls and supports coroutines which allow for the
cooperative scheduling of the method invocations belonging to an actor.
We model the local behavior of an actor as a well-structured transition
system by means of predicate abstraction and derive the decidability of
the occurrence of deadlocks caused by the coroutine mode of method
execution.

Keywords: Deadlock detection · Predicate abstraction · Actor
Cooperative scheduling · Transition system

1 Introduction

Actors [1,15] provide an event-driven concurrency model for the analysis and
construction of distributed, large-scale parallel systems. In actor-based modeling
languages, like Rebeca [20], Creol [17], and ABS [16], the events are generated by
asynchronous calls to methods provided by the actors. The resulting integration
with object-orientation allows for new object-oriented models of concurrency,
better suited for the analysis and construction of distributed systems than the
standard model of multi-threading in languages like Java.

The new object-oriented models of concurrency arise from the combination
of different synchronization mechanisms. By design, the basic run-to-completion
mode of execution of asynchronously called methods as for example provided
by the language Rebeca does not provide any synchronization between actors.
Consequently, the resulting concurrent systems of actors do not give rise to
undesirable consequences of synchronization like deadlock. The languages Creol
and ABS extend the basic model with synchronization on the values returned
by a method. So-called futures [8] provide a general mechanism for actors to
synchronize on return values. Creol and ABS further integrate a model of exe-
cution of methods based on and inspired by coroutines, attributed by Knuth
to Conway [6]. This model allows for controlled suspension and resumption of
the executing method invocation and so-called cooperative scheduling of another
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 39–54, 2018.
https://doi.org/10.1007/978-3-319-95582-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_3&domain=pdf

40 K. Azadbakht et al.

method invocation of the actor. In [3,4], this mechanism is used to implement
the well-established algorithms for social network simulation.

Both the synchronization mechanisms of futures and coroutines may give rise
to deadlock. Futures may give rise to global deadlock in a system of actors. Such
a global deadlock consists of a circular dependency between different method
invocations of possibly different actors which are suspended on the generation of
the return value. On the other hand, coroutines may give rise to a local deadlock
which occurs when all method invocations of a single actor are suspended on a
Boolean condition. In this paper we provide the formal foundations of a novel
method for the analysis of such local deadlocks.

To the best of our knowledge, our work provides a first method for deciding
local deadlocks in actor-based languages with coroutines. The method itself is
based on a new technique for predicate abstraction of actor-based programs
with coroutines, which aims at the construction of a well-structured transition
system. In contrast, the usual techniques of predicate abstraction [5] aim at the
construction of a finite abstraction, which allows model checking of properties
in temporal logic. In [9], a restricted class of actor-based programs is modeled as
a well-structured transition system. This class does not support coroutines and
actors do not have a global state specifying the values of the global variables.

Methods that utilize different techniques aiming at detection of global dead-
locks in various actor settings include the following. The work in [19] uses own-
ership to organize CoJava active objects into hierarchies in order to prevent
circular relationships where two or more active objects wait indefinitely for one
another. Also data-races and data-based deadlocks are avoided in CoJava by the
type system that prevents threads from sharing mutable data. In [7], a sound
technique is proposed that translates a system of asynchronously communicating
active objects into a Petri net and applies Petri net reachability analysis for dead-
lock detection. The work that is introduced in [11] and extended in [14] defines
a technique for analyzing deadlocks of stateful active objects that is based on
behavioural type systems. The context is the actor model with wait-by-necessity
synchronizations where futures are not given an explicit “Future” type. Also, a
framework is proposed in [18] to statically verify communication correctness in
a concurrency model using futures, with the aim that the type system ensures
that interactions among objects are deadlock-free.

A deadlock detection framework for ABS is proposed in [12] which mainly
focuses on deadlocks regarding future variables, i.e., await and get operations on
futures. It also proposes a naive annotation-based approach for detection of local
deadlocks (await on Boolean guards), namely, letting programmers annotate the
statement with the dependencies it creates. However, a comprehensive approach
to investigate local deadlocks is not addressed.

Our approach, and corresponding structure of the paper, consists of the fol-
lowing. First, we introduce the basic programming concepts of asynchronous
method calls, futures and coroutines in Sect. 2. In Sect. 3 we introduce a new
operational semantics for the description of the local behavior of a single actor.
The only external dependencies stem from method calls generated by other

Deadlock Detection for Actor-Based Coroutines 41

actors and the basic operations on futures corresponding to calls of meth-
ods of other actors. Both kinds of external dependencies are modeled by non-
determinism. Method calls generated by other actors are modeled by the non-
deterministic scheduling of method invocations. The basic operations on futures
are modeled by the corresponding non-deterministic evaluation of the availabil-
ity of the return value and random generation of the return value itself. Next,
we introduce in Sect. 4 a predicate abstraction [5,13] of the value assignments
to the global variables (“fields”) of an actor as well as the local variables of the
method invocations. The resulting abstraction still gives rise to an infinite tran-
sition system because of the generation of self -calls, that is, calls of methods of
the actor by the actor itself, and the corresponding generation of “fresh” names
of the local variables.

Our main contribution consists of the following technical results.

– a proof of the correctness of the predicate abstraction, in Sect. 5, and
– decidability of checking for the occurrence of a local deadlock in the abstract

transition system in Sect. 6.

Correctness of the predicate abstraction is established by a simulation rela-
tion between the concrete and the abstract transition system. Decidability is
established by showing that the abstract system is a so-called well-structured
transition system, cf. [10]. Since the concrete operational semantics of the local
behavior of a single actor is an over-approximation of the local behavior in the
context of an arbitrary system of actors, these technical results together com-
prise a general method for proving absence of local deadlock of an actor. A short
discussion follow-up in Sect. 7 concludes the paper.

2 The Programming Language

In this section we present, in the context of a class-based language, the basic
statements which describe asynchronous method invocation and cooperative
scheduling.

A class introduces its global variables, also referred to as “fields”, and meth-
ods. We use x, y, z, . . . to denote both the fields of a class and the local variables
of the methods (including the formal parameters). Method bodies are defined
as sequential control structures, including the usual conditional and iteration
constructs, over the basic statements listed below.

Dynamic Instantiation. For x a so-called future variable or a class variable of
type C, for some class name C, the assignment

x = new

creates a new future or a unique reference to a new instance of class C.

42 K. Azadbakht et al.

Side Effect-Free Assignment. In the assignment

x = e

the expression e denotes a side effect-free expression. The evaluation of such an
expression does not affect the values of any global or local variable and also does
not affect the status of the executing process. We do not detail the syntactical
structure of side effect-free expressions.

Asynchronous Method Invocation. A method is called asynchronously by an
assignment of the form

x = e0 !m(e1, . . . , en)

Here, x is a future variable which is used as a unique reference to the return value
of the invocation of method m with actual parameters e1, . . . , en. The called actor
is denoted by the expression e0. Without loss of generality we restrict the actual
parameters and the expression e0 to side effect-free expressions. Since e0 denotes
an actor, this implies that e0 is a global or local variable.

The Get Operation. The execution of an assignment

x = y.get

blocks till the future variable y holds the value that is returned by its corre-
sponding method invocation.

Awaiting a Future. The statement

await x?

releases control and schedules another process in case the future variable x does
not yet hold a value, that is to be returned by its corresponding method invoca-
tion. Otherwise, it proceeds with the execution of the remaining statements of
the executing method invocation.

Awaiting a Boolean Condition. Similarly, the statement

await e

where e denotes a side effect-free Boolean condition, releases control and sched-
ules another process in case the Boolean condition is false. Otherwise, it proceeds
with the execution of the remaining statements of the executing method invo-
cation.

We describe the possible deadlock behavior of a system of dynamically gen-
erated actors in terms of processes, where a process is a method invocation. A
process is either active (executing), blocked on a get operation, or suspended by
a future or Boolean condition. At run-time, an actor consists of an active process
and a set of suspended processes (when the active method invocation blocks on a
get operation it blocks the entire actor). Actors execute their active processes in
parallel and only interact via asynchronous method calls and futures. When an

Deadlock Detection for Actor-Based Coroutines 43

active process awaits a future or Boolean condition, the actor can cooperatively
schedule another process instead. A global deadlock involves a circular depen-
dency between processes which are awaiting a future. On the other hand, a local
deadlock appears when all the processes of an actor are awaiting a Boolean con-
dition to become true. In the following sections we present a method for showing
if an initial set of processes of an individual actor does not give rise to a local
deadlock.

3 The Concrete System

In order to formally define local deadlock we introduce a formal operational
semantics of a single actor. Throughout this paper we assume a definition of a
class C to be given. A typical element of its set of methods is denoted by m.
We assume the definition of a class C to consist of the usual declarations of
global variables and method definitions. Let Var(C) denote all the global and
local variables declared in C. Without loss of generality we assume that there
are no name clashes between the global and local variables appearing in C, and
no name clashes between the local variables of different methods. To resolve in
the semantics name clashes of the local variables of the different invocations of
a method, we assume a given infinite set Var such that Var(C) ⊆ Var . The
set Var\Var(C) is used to generate “fresh” local variables. Further, for each
method m, we introduce an infinite set Σ(m) of renamings σ such that for every
local variable x of m, σ(x) is a fresh variable in Var , i.e. not appearing in Var(C).
We assume that any two distinct σ, σ′ ∈ ⋃

m Σ(m) are disjoint (Here m ranges
over the method names introduced by class C.) Renamings σ and σ′ are disjoint
if their ranges are disjoint. Note that by the above assumption the domains of
renamings of different methods are also disjoint.

A process p arising from an invocation of a method m is described formally as
a pair (σ, S), where σ ∈ Σ(m) and S is the sequence of remaining statements to
be executed, also known as continuation. An actor configuration then is a triple
(Γ, p,Q), where Γ is an assignment of values to the variables in Var , p denotes
the active process, and Q denotes a set of suspended processes. A configuration
is consistent if for every renaming σ there exists at most one statement S such
that (σ, S) ∈ {p} ∪ Q.

A computation step of a single actor is formalized by a transition relation
between consistent actor configurations. A structural operational semantics for
the derivation of such transitions is given in Fig. 1. Here, we assume a given set
Val of values of built-in data types (like Integer and Boolean), and an infinite
set R of references or “pointers”. Further, we assume a global variable refs such
that Γ (refs) ⊆ R records locally stored references.

We proceed with the explanation of the rules of Fig. 1. The rule <ASSIGN>
describes a side effect-free assignment. Here, and in the sequel, eσ denotes the
result of replacing any local variable x in e by σ(x). By Γ (e) we denote the
extension of the variable assignment Γ to the evaluation of the expression e.
By Γ [x = v], for some value v, we denote the result of updating the value of x
in Γ by v.

44 K. Azadbakht et al.

<ASSIGN>

(Γ, (σ, x = e;S), Q) →
(Γ [xσ = Γ (eσ)], (σ, S), Q)

<NEW>

r ∈ R\Γ (refs)
(Γ, (σ, x = new;S), Q) →

(Γ [refs = Γ [refs] ∪ {r}], (σ, x = r;S), Q)

<GET-VALUE>

v ∈ Val

(Γ, (σ, x = y.get;S), Q) →
(Γ [xσ = v], (σ, S), Q)

<GET-REF>

r ∈ R

(Γ, (σ, x = y.get;S), Q) →
(Γ [refs = Γ (refs) ∪ {r}], (σ, x = r;S), Q)

<REMOTE-CALL >

Γ (yσ) �= Γ (this)
(Γ, (σ, x = y !m(ē);S), Q) →

(Γ, (σ, x = new;S), Q)

<LOCAL-CALL>

Γ (yσ) = Γ (this)
(Γ, (σ, x = y !m(ē);S), Q) →

(Γ [z̄σ′ = Γ (ēσ)], (σ, x = new;S), Q ∪ {(σ′, S′)})

<IF-THEN>

Γ (eσ) = true

(Γ, (σ, if e {S′} else {S′′};S), Q) →
(Γ, (σ, S′;S), Q)

<IF-ELSE>

Γ (eσ) = false

(Γ, (σ, if e {S′} else {S′′};S), Q) →
(Γ, (σ, S′′;S), Q)

<WHILE-TRUE>

Γ (eσ) = true

(Γ, (σ, while e {S′};S), Q) →
(Γ, (σ, S′; while e do {S′};S), Q)

<WHILE-FALSE>

Γ (eσ) = false

(Γ, (σ, while e {S′};S), Q) → (Γ, (σ, S), Q)

<AWAITB-TRUE>

Γ (eσ) = true

(Γ, (σ, await e;S), Q) →
(Γ, (σ, S), Q)

<AWAITB-FALSE>

Γ (eσ) = false (σ′, S′) ∈ Q

(Γ, (σ, await e;S), Q) →
(Γ, (σ′, S′), (Q ∪ {(σ, await e;S)})\{(σ′, S′)})

<AWAITF-SKIP>

(Γ, (σ, await x?;S), Q) →
(Γ, (σ, S), Q)

<AWAITF-SCHED>

(σ′, S′) ∈ Q

(Γ, (σ, await x?;S), Q) →
(Γ, (σ′, S′), (Q ∪ {(σ, await true;S)})\{(σ′, S′)})

<RETURN>

(σ′, S′) ∈ Q

(Γ, (σ, return e), Q) → (Γ, (σ′, S′), Q\{(σ′, S′)})

Fig. 1. Concrete transition relation

The rule <NEW> describes the non-deterministic selection of a fresh reference
not appearing in the set Γ (refs). The rule <GET-VALUE> models an assignment
involving a get operation on a future variable y which holds a value of some built-
in data type by an assignment of a random value v ∈ Val (of the appropriate

Deadlock Detection for Actor-Based Coroutines 45

type). The rule <GET-REF> models an assignment involving a get operation on a
future variable y which holds a reference by first adding a random value r ∈ R to
the set Γ (refs) and then assign it to the variable x (note that we do not exclude
that r ∈ Γ (refs)).

It should be observed that we model the local behavior of an actor. The
absence of information about the return values in the semantics of a get operation
is accounted for by a non-deterministic selection of an arbitrary return value.
Further, since we restrict to the analysis of local deadlocks, we also abstract from
the possibility that the get operation blocks and assume that the return value
is generated.

The rules regarding choice and iteration statements are standard. The rule
<REMOTE-CALL> describes an assignment involving an external call (Γ (yσ) �=
Γ (this), where yσ denotes y, if y is a global variable, otherwise it denotes the
variable σ(y)). It is modeled by the creation and storage of a new future reference
uniquely identifying the method invocation. On the other hand, according to the
rule <LOCAL-CALL> a local call (Γ (yσ) = Γ (this)) generates a new process and
future corresponding to the method invocation. Here it is implicitly assumed
that the renaming σ′ ∈ Σ(m) is different from σ and all the other renamings in
Q. Further, by Γ [z̄σ′ = Γ (ēσ)] we denote the simultaneous update of Γ which
assigns to each local variable σ′(zi) (i.e., the renamed formal parameter zi) the
value of the corresponding actual parameter ei with its local variables renamed
by σ, i.e., the local context of the calling method invocation. For technical con-
venience we omitted the initialization of the local variables that are not formal
parameters. The body of method m is denoted by S′.

The rule <AWAITB-TRUE> describes that when the Boolean condition of the
await statement is true, the active process proceeds with the continuation, and
<AWAITB-FALSE> describes that when the Boolean condition of the await state-
ment is false, a process is selected for execution. This can give rise to the acti-
vation of a disabled process, which is clearly not optimal. The transition system
can be extended to only allow the activation of enabled processes. However, this
does not affect the results of this paper and therefore is omitted for notational
convenience.

The rule <AWAITF-SKIP> formalizes the assumption that the return value
referred to by x has been generated. On the other hand, <AWAITF-SCHED> for-
malizes the assumption that the return value has not (yet) been generated. Note
that we transform the initial await statement into an await on the Boolean con-
dition “true”. Availability of the return value then is modeled by selecting the
process for execution. Finally, in the rule RETURN we assume that the return
statement is the last statement to be executed. Note that here we do not store
the generated return value (see also the discussion in Sect. 7).

In view of the above, we have the following definition of a local deadlock.

Definition 1. A local configuration (Γ, p,Q) deadlocks if

for all (σ, S) ∈ {p} ∪ Q we have that the initial statement of S is an await
statement await e such that Γ (eσ) = false.

46 K. Azadbakht et al.

In the sequel we describe a method for establishing that an initial configu-
ration does not give rise to a local deadlock configuration. Here it is worthwhile
to observe that the above description of the local behavior of a single actor pro-
vides an over-approximation of its actual local behavior as part of any system
of actors. Consequently, absence of a local deadlock of this over-approximation
implies absence of a local deadlock in any system of actors.

4 The Abstract System

Our method of deadlock detection is based on predicate abstraction. This boils
down to using predicates instead of concrete value assignments. For the class C,
the set Pred(m) includes all (the negations of) the Boolean conditions appearing
in the body of m. Further, Pred(m) includes all (negations of) equations x = y
between reference variables x and y, where both x and y are global variables of
the class C (including this) or local variables of m (a reference variable is either
a future variable or used to refer to an actor.)

An abstract configuration α is of the form (T, p,Q), where, as in the previous
section, p is the active process and Q is a set of suspended processes. The set T
provides for each invocation of a method m a logical description of the relation
between its local variables and the global variables. Formally, T is a set of pairs
(σ, u), where u ⊆ Pred(m), for some method m, is a set of predicates of m with
fresh local variables as specified by σ. We assume that for each process (σ, S) ∈
{p}∪Q there exists a corresponding pair (σ, u) ∈ T . If for some (σ, u) ∈ T there
does not exist a corresponding process (σ, S) ∈ {p} ∪ Q then the process has
terminated. Further, we assume that for any σ there is at most one (σ, u) ∈ T
and at most one (σ, S) ∈ {p} ∪ Q.

We next define a transition relation on abstract configurations in terms of a
strongest postcondition calculus. To describe this calculus, we first introduce the
following notation. Let L(T) denote the set {uσ |(σ, u) ∈ T }, where uσ = {ϕσ |
ϕ ∈ u }, and ϕσ denotes the result of replacing every local variable x in ϕ with
σ(x). Logically, we view each element of L(T) as a conjunction of its predicates.
Therefore, when we write L(T) � ϕ, i.e., ϕ is a logical consequence (in first-order
logic) of L(T), the sets of predicates in L(T) are interpreted as conjunctions. (It
is worthwhile to note that in practice the notion of logical consequence will also
involve the first-order theories of the underlying data structures.) The strongest
postcondition, defined below, describes for each basic assignment a and local
context σ ∈ Σ(m), the set spσ(L(T), a) of predicates ϕ ∈ Pred(m) such that ϕσ
holds after the assignment, assuming that all predicates in L(T) hold initially.

For an assignment x = e we define the strongest postcondition by

spσ(L(T), x = e) = {ϕ | L(T) � ϕσ[e/x], ϕ ∈ Pred(m)}
where [e/x] denotes the substitution which replaces occurrences of the variable x
by the side effect-free expression e. For an assignment x = new we define the
strongest postcondition by

spσ(L(T), x = new) = {ϕ | L(T) � ϕσ[new/x], ϕ ∈ Pred(m) }

Deadlock Detection for Actor-Based Coroutines 47

The substitution [new/x] replaces every equation x = y, with y distinct from x,
by false, x = x by true. It is worthwhile to note that for every future variable
and variable denoting an actor, these are the only possible logical contexts con-
sistent with the programming language. (Since the language does not support
de-referencing, actors encapsulate their local state.)

For an assignment x = y.get we define the strongest postcondition by

spσ(L(T), x = y.get) = {ϕ | L(T) � ∀x.ϕσ, ϕ ∈ Pred(m) }

The universal quantification of the variable x models a non-deterministic choice
for the value of x.

Figure 2 presents the structural operational semantics of the transition rela-
tion for abstract configurations. In the <ASSIGN> rule the set of predicates u for
each (σ′, u) ∈ T , is updated by the strongest postcondition spσ′(L(T), (x = e)σ).
Note that by the substitution theorem of predicate logic, we have for each pred-
icate ϕ of this strongest postcondition that ϕσ′ will hold after the assignment
(x = e)σ (i.e., xσ = eσ) because L(T) � ϕσ[e/x]. Similarly, the rules <GET>
and <NEW> update T of the initial configuration by their corresponding strongest
postcondition as defined above.

In the rule <REMOTE-CALL> we identify a remote call by checking whether
the information this �= yσ can be added consistently to L(T). By T ∪ {(σ, ϕ)}
we denote the set { (σ′, u) ∈ T | σ′ �= σ } ∪ { (σ, u ∪ {ϕ}) | (σ, u) ∈ T }. In
the rule <LOCAL-CALL> the set of predicates u of the generated invocation of
method m consists of all those predicates ϕ ∈ Pred(m) such that L(T) � ϕ[ēσ/z̄],
where z̄ denotes the formal parameters of m. By the substitution theorem of
predicate logic, the (simultaneous) substitution [ēσ/z̄] ensures that ϕ holds for
the generated invocation of method m. Note that by definition, L(T) only refers
to fresh local variables, i.e., the local variables of m do not appear in L(T)
because for any (σ, u) ∈ T we have that σ(x) is a fresh variable not appearing
in the given class C. For technical convenience we omitted the substitution of
the local variables that are not formal parameters. The renaming σ′, which
is assumed not to appear in T , introduces fresh local variable names for the
generated method invocation. The continuation S′ of the new process is the body
of method m. The generation of a new future in both the rules <REMOTE-CALL>
and <LOCAL-CALL> is simply modeled by the x = new statement.

By <IF-THEN>, the active process transforms to the “then” block, i.e. S′,
followed by S, if the predicate set L(T) is consistent with the guard e of the
if-statement. (Note that as L(T) is in general not complete, it can be consistent
with e as well as with ¬e.) The other rules regarding choice and iteration state-
ments are defined similarly. By <RETURN> the active process terminates, and is
removed from the configuration. A process is selected from Q for execution. Note
that the pair (σ, u) ∈ T is not affected by this removal.

The rules <AWAIT-TRUE> and <AWAIT-FALSE> specify transitions assuming
the predicate set L(T) is consistent with the guard e and with ¬e, respectively.
In the former case, the await statement is skipped and the active process con-
tinues, whereas in the latter, the active process releases control and a process

48 K. Azadbakht et al.

<ASSIGN>

T ′ = { (σ′, spσ′(L(T), (x = e)σ)) | (σ′, u) ∈ T }
(T, (σ, x = e;S), Q) → (T ′, (σ, S), Q)

<GET>

T ′ = { (σ′, spσ′(L(T), (x = y.get)σ)) | (σ′, u) ∈ T }
(T, (σ, x = y.get;S), Q) → (T ′, (σ, S), Q)

<NEW>

T ′ = { (σ′, spσ′(L(T), (x = new)σ)) | (σ′, u) ∈ T }
(T, (σ, x = new;S), Q) → (T ′, (σ, S), Q)

<REMOTE-CALL>

L(T) ∪ {this �= yσ ��} false

(T, (σ, x = y !m(e);S), Q) → (T ∪ {(σ, this �= y)}}, (σ, x = new;S), Q)

<LOCAL-CALL>

L(T) ∪ {this = yσ ��} false u = { ϕ | L(T) � ϕ[ēσ/z̄], ϕ ∈ Pred(m) }
(T, (σ, x = y !m(e);S), Q) →

(T ∪ {(σ′, u)} ∪ {(σ, this = y)}, (σ, x = new;S), Q ∪ {(σ′, S′)})

<IF-THEN>

L(T) ∪ {eσ ��} false

(T, (σ, if e {S′} else {S′′};S), Q)
→ (T ∪ {(σ, e)}, (σ, S′;S), Q)

<IF-ELSE>

L(T) ∪ {¬eσ ��} false

(T, (σ, if e {S′} else {S′′};S), Q)
→ (T ∪ {(σ, ¬e)}, (σ, S′′;S), Q)

<WHILE-TRUE>

L(T) ∪ {eσ ��} false

(T, (σ, while e do {S}′;S), Q)
→ (T ∪ {(σ, e)}, (σ, S′; while e do {S′};S), Q)

<WHILE-FALSE>

L(T) ∪ {¬eσ ��} false

(T, (σ, while e do {S′};S), Q)
→ (T ∪ {(σ, ¬e)}, (σ, S), Q)

<AWAIT-TRUE>

L(T) ∪ {eσ ��} false

(T, (σ, await e;S), Q) → (T ∪ {(σ, e)}, (σ, S), Q)

<AWAIT-FALSE>

L(T) ∪ {¬eσ ��} false (σ′, S′) ∈ Q

(T, (σ, await e;S), Q) → (T ∪ {(σ, ¬e)}, (σ′, S′), (Q ∪ {(σ, await e;S)})\{(σ′, S′)})

<AWAITF-SKIP>

(T, (σ, await x?;S), Q)
→ (T, (σ, S), Q)

<AWAITF-SCHED>

(σ′, S′) ∈ Q

(T, (σ, await x?;S), Q) →
(T, (σ′, S′), (Q ∪ {(σ, await true;S)})\{(σ′, S′)})

<RETURN>

(σ′, S′) ∈ Q

(T, (σ, return e), Q) → (T, (σ′, S′), Q\{(σ′, S′)})

Fig. 2. Abstract transition system

Deadlock Detection for Actor-Based Coroutines 49

from Q is activated. Similar to the concrete semantics in the previous section, in
<AWAITF-SKIP> and <AWAITF-SCHED>, the active process non-deterministically
continues or cooperatively releases the control. In the latter, a process from Q
is activated.

We conclude this section with the counterpart of Definition 1 for the abstract
setting.

Definition 2. A local configuration (T, p,Q) is a (local) deadlock if

for all (σ, S) ∈ {p} ∪ Q we have that the initial statement of S is an await
statement await e such that L(T) ∪ {¬eσ} �� false.

5 Correctness of Predicate Abstraction

In this section we prove that the concrete system is simulated by the abstract
system. To this end we introduce a simulation relation ∼ between concrete and
abstract configurations:

(Γ, p,Q) ∼ (T, p,Q), if Γ |= L(T)

where Γ |= L(T) denotes that Γ satisfies the formulas of L(T).

Theorem 1. The abstract system is a simulation of the concrete system.

Proof. Given (Γ, p,Q) ∼ (T, p,Q) and a transition (Γ, p,Q) → (Γ ′, p′, Q′), we
need to prove that there exists a transition (T, p,Q) → (T ′, p′, Q′) such that
(Γ ′, p′, Q′) ∼ (T ′, p′, Q′).

For all the rules that involve the evaluation of a guard e, it suffices to observe
that Γ |= L(T) and Γ |= e implies L(T) ∪ {e} �� false.

We treat the case x = e where e is a side effect-free expression (the others
cases are treated similarly). If p = (σ, x = e;S), where e is a side effect-free
expression, then Γ ′ = Γ [(x = e)σ]. We put T ′ = { (σ′, spσ′(L(T), (x = e)σ)) |
(σ′, u) ∈ T }. Then it follows that (T, p,Q) → (T ′, p′, Q′). To prove Γ ′ |= L(T ′)
it remains to show for (σ, u) ∈ T and ϕ ∈ spσ′(L(T), (x = e)σ) that Γ ′ |= ϕσ′:
Let (σ, u) ∈ T and ϕ ∈ spσ′(L(T), (x = e)σ). By definition of the strongest
postcondition, we have L(T) � ϕσ′[(x = e)σ]. Since Γ |= L(T), we have Γ |=
ϕσ′[(x = e)σ]. Since Γ ′ = Γ [(x = e)σ], we obtain from the substitution theorem
of predicate logic that

Γ ′ |= ϕσ′ ⇐⇒ Γ |= ϕσ′[(x = e)σ]

and hence we are done. �
We conclude this section with the following observation: if the initial abstract

configuration (T, p,Q) does not give rise to a local deadlock then also the config-
uration (Γ, p,Q) does not give rise to a local deadlock, when Γ |= L(T). To see
this, by the above theorem it suffices to note that if (Γ ′, p′, Q′) is a local dead-
lock and Γ ′ |= L(T ′) then (T ′, p′, Q′) is a also a local deadlock because for any
(σ, await e;S) ∈ {p′} ∪ Q′ we have that Γ ′ �|= eσ implies L(T ′) ∪ {¬eσ} �� false.

50 K. Azadbakht et al.

6 Decidability of Deadlock Detection

The abstract local behavior of a single actor, as defined in the previous section,
gives rise, for a given initial configuration, to an infinite transition system because
of dynamic generation of local calls and the corresponding introduction of fresh
local variables. In this section we show how we can model an abstract system for
which the transition relation is computable as well-structured transition system
and obtain the decidability of deadlock detection for such abstract systems. To
this end, we first provide a canonical representation of an abstract configuration
which abstracts from renamings of the local variables by means of multisets of
closures. A closure of a method m is a pair (u, S), where S is a continuation of
the body of m and u ⊆ Pred(m). (Here Pred(m) denotes the set of predicates
associated with m as defined in Sect. 3). The set of continuations of a statement S
is the smallest set Cont(S) such that S ∈ Cont(S) and ε ∈ Cont(S), where
the “empty” statement ε denotes termination, and which is closed under the
following conditions

– S′;S′′ ∈ Cont(S) implies S′′ ∈ Cont(S)
– if e {S1} else {S2}; S′ ∈ Cont(S) implies S1;S′ ∈ Cont(S) and S2;S′ ∈

Cont(S)
– while e {S′}; S′′ ∈ Cont(S) implies S′; while e {S′}; S′′ ∈ Cont(S).

Note that for a given method the set of all possible closures is finite. We formally
represent a multiset of closures as a function which assigns a natural number f(c)
to each closure c which indicates the number of occurrences of c. For notational
convenience we write c ∈ f in case f(c) > 0.

In preparation of the notion of canonical representation of abstract configu-
rations, we introduce for every abstract configuration α = (T, p,Q) the set ᾱ of
triples (σ, u, S) for which (σ, u) ∈ T and either (σ, S) ∈ {p} ∪ Q or S = ε.

Definition 3. An abstract configuration (T, p,Q) is canonically represented by
a multiset of closures f , if for every method m and closure (u, S) of m we have

f((u, S)) = |{σ | (σ, u, S) ∈ ᾱ }|
(where |V | denotes the cardinality of the set V).

Note that each abstract configuration has a unique multiset representation. For
any multiset f of closures, let T (f) denote the set of predicates {∃v | (v, S)n ∈
f}, where ∃v denotes the existential quantification of all the local variables
appearing in the conjunction of the predicates of v. The following lemma states
the equivalence of a set of closures and its canonical representation.

Lemma 1. Let the abstract configuration (T, p,Q) be canonically represented
by the multiset of closures f . Further, let (σ, u) ∈ T , where σ ∈ Σ(m), and
ϕ ∈ Pred(m). It holds that

L(T) � ϕσ iff {u} ∪ T (f) � ϕ

Deadlock Detection for Actor-Based Coroutines 51

Proof. Proof-theoretically we reason, in first-order logic, as follows. For nota-
tional convenience we view a set of predicates as the conjunction over its ele-
ments. By the Deduction Theorem we have

L(T) � ϕσ iff � L(T) → ϕσ

From the laws of universal quantification we obtain

� L(T) → ϕσ iff � ∀X(L(T) → ϕσ)

and
� ∀X(L(T) → ϕσ) iff � ∃XL(T) → ϕσ

where X denotes the set of local variables appearing in L(T) \{uσ}. Note that
no local variable of X appears in ϕσ or uσ.

Since any two distinct v, v′ ∈ L(T) have no local variables in common, we
can push the quantification of ∃XL(T) inside. That is,

� ∃XL(T) → ϕσ iff � {∃Xv | v ∈ L(T) } → ϕσ

No local variable of X appears in uσ, therefore we have

� {∃Xv | v ∈ L(T) } → ϕσ iff � uσ ∧ {∃Xv | v ∈ L(T) } → ϕσ

Again by the Deduction Theorem we then have

� uσ ∧ {∃Xv | v ∈ L(T) } → ϕσ iff {uσ} � { ∃Xv | v ∈ L(T) } → ϕσ

Clearly uσ � ∃u and ∃Xv is logically equivalent to ∃v, for any v ∈ L(T) \{uσ}.
So, we have

{uσ} � { ∃Xv | v ∈ L(T) } → ϕσ iff {uσ} � { ∃v | v ∈ L(T) } → ϕσ

Since f represents (T, p,Q) we have that T (f) = { ∃v | v ∈ L(T) }. Renaming
the local variables of uσ and ϕσ then finally gives us

{uσ} � { ∃v | v ∈ L(T) } → ϕσ iff {u} � T (f) → ϕ

which proves the lemma. �
We next define an ordering on multisets of closures.

Definition 4. By f � f ′ we denote that f(c) � f ′(c) and f ′(c) = 0 if f(c) = 0.

In other words, f � f ′ if all occurrences of f belong to f ′ and f ′ does not add
occurrences of closures which do not already occur in f . The following result
states that this relation is a well-quasi-ordering.

Lemma 2. The relation f � f ′ is a quasi-ordering such that for any infinite
sequence (fn)n there exist indices i < j such that fi � fj.

52 K. Azadbakht et al.

Proof. First observe that for a given class there is only a finite number of closures.
We show that the proof for the standard subset relation for multisets also holds
for this variation. Assume that for some set X of closures we have constructed an
infinite subsequence (f ′

n)n of (fn)n such that f ′
i(c) � f ′

j(c), for every c ∈ X and i <
j. Suppose that for every c /∈ X the set{ k | f ′

j(c) = k, j ∈ N } is bounded. It follows
that there exists an f ′

k which appears infinitely often in (f ′
n)n, since there exists only

a finite number of combinations of occurrences of closures in X̄ = { c | c /∈ X }.
On the other hand, if there exists a d /∈ X such that set { k | f ′

j(d) = k, j ∈ N }
has no upperbound then we can obtain a subsequence (f ′′

n)n of (f ′
n)n such that

f ′′
i (c) � f ′′

j (c) for every c ∈ X ∪ {d} and i < j. Thus, both cases lead to the
existence of indices i < j such that fi � fj . �
From the above lemma it follows immediately that the following induced ordering
on abstract configurations is also a well-quasi-ordering.

Definition 5. We put (T, (σ, S), Q) � (T ′, (σ′, S), Q′) iff f � f ′, for multisets
of closures f and f ′ (uniquely) representing (T, (σ, S), Q) and (T ′, (σ′, S), Q′),
respectively.

We can now formulate and prove the following theorem which states that this
well-quasi-ordering is preserved by the transition relation of the abstract system.

Theorem 2. For abstract configurations α, α′, and β, if α → α′ and α � β
then β → β′, for some abstract configuration β′ such that α′ � β′.

Proof. The proof proceeds by a case analysis of the transition α → α′. Crucial
in this analysis is the observation that α � β implies that α = (T, p,Q) and
β = (T ′, p,Q), for some T and T ′ such that

L(T) � ϕσ ⇐⇒ L(T ′) � ϕσ′

for renamings σ, σ′ ∈ Σ(m), where m is a method defined by the given class C,
such that (σ, u, S) ∈ ᾱ and (σ′, u, S) ∈ β̄, for some closure (u, S) and predicate
ϕ of the method m. This follows from Lemma 1 and that f � f ′ implies T (f) =
T (f ′), where f and f ′ represent α and β, respectively. Note that by definition,
f ′ does not add occurrences of closures which do not already occur in f . �
It follows that abstract systems for which the transition relation is computable
are well-structured transition systems (see [10] for an excellent explanation and
overview of well-structured transition systems). For such systems the covering
problem is decidable. That is, for any two abstract configurations α and β it is
decidable whether starting from α it is possible to cover β, meaning, whether
there exists a computation α →∗ α′ such that β � α′. To show that this implies
decidability of absence of deadlock, let α be a basic (abstract) deadlock config-
uration if α is a deadlock configuration according to Definition 2 and for any
closure (u, S) there exists at most one renaming σ such that (σ, u, S) ∈ ᾱ. Note
that thus f(c) = 1, for any closure c, where f represents α. Let Δ denote the
set of all basic deadlock configurations. Note that this is a finite set. Further, for

Deadlock Detection for Actor-Based Coroutines 53

every (abstract) deadlock configuration α there exists a basic deadlock configura-
tion α′ ∈ Δ such that f � f ′, where f and f ′ represent α and α′, respectively.
This is because the different renamings of the same closure do not affect the
definition of a deadlock. Given an initial abstract configuration α, we now can
phrase presence of deadlock as the covering problem of deciding whether there
exists a computation starting from α reaching a configuration β that covers a
deadlock configuration in Δ.

Summarizing the above, we have the following the main technical result of
this paper.

Theorem 3. Given an abstract system with a computable transition relation
and an abstract configuration α, it is decidable whether

{β | α →∗ β } ∩ {β | ∃β′ ∈ Δ : β′ � β } = ∅ (1)

Given this result and the correctness of predicate abstraction, to show that an
initial concrete configuration (Γ, p,Q) does not give rise to a local deadlock,
it suffices to construct an abstract configuration α = (T, p,Q) such that Γ |=
L(T) and for which Equation (1) holds. Note that we can construct T by the
constructing pairs (σ, u), where u = {φ ∈ Pred(m) | Γ |= φσ} (assuming that
σ ∈ Σ(m)).

7 Conclusion

For future work we first have to validate our method for detecting local deadlock
in tool-supported case studies. For this we envisage the use of the theorem-prover
KeY [2] for the construction of the abstract transition relation, and its integration
with on-the-fly reachability analysis of the abstract transition system.

Of further interest, in line with the above, is the integration of the method of
predicate abstraction in the theorem-prover KeY for reasoning compositionally
about general safety properties of actor-based programs. For reasoning about
programs in the ABS language this requires an extension of our method to
synchronous method calls and concurrent object groups.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
The MIT Press, Cambridge (1986)

2. Wasser, N., Hähnle, R., Bubel, R.: Abstract Interpretation. Deductive Software
Verification – The KeY Book. LNCS, vol. 10001, pp. 167–189. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49812-6 6

3. Azadbakht, K., Bezirgiannis, N., de Boer, F.S.: Distributed network generation
based on preferential attachment in ABS. In: Steffen, B., et al. (eds.) SOFSEM
2017. LNCS, vol. 10139, pp. 103–115. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-51963-0 9

4. Azadbakht, K., Bezirgiannis, N., de Boer, F.S., Aliakbary, S.: A high-level and scal-
able approach for generating scale-free graphs using active objects. In: Proceedings
of the 31st Annual ACM Symposium on Applied Computing, pp. 1244–1250. ACM
(2016)

https://doi.org/10.1007/978-3-319-49812-6_6
https://doi.org/10.1007/978-3-319-51963-0_9
https://doi.org/10.1007/978-3-319-51963-0_9

54 K. Azadbakht et al.

5. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: Conference on Programming Language Design and
Implementation, pp. 203–213 (2001)

6. Conway, M.E.: Design of a separable transition-diagram compiler. Commun. ACM
6(7), 396–408 (1963)

7. de Boer, F.S., et al.: A petri net based analysis of deadlocks for active objects and
futures. In: Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp.
110–127. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35861-
6 7

8. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71316-6 22

9. de Boer, F.S., Jaghoori, M.M., Laneve, C., Zavattaro, G.: Decidability problems
for actor systems. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS,
vol. 7454, pp. 562–577. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32940-1 39

10. Finkel, A., Schnoebelen, Ph.: Well-structured transition systems everywhere!. The-
oret. Comput. Sci. 256(1), 63–92 (2001)

11. Giachino, E., Henrio, L., Laneve, C., Mastandrea, V.: Actors may synchronize,
safely! In: 18th International Symposium on Principles and Practice of Declarative
Programming, pp. 118–131 (2016)

12. Giachino, E., Laneve, C., Lienhardt, M.: A framework for deadlock detection in
core ABS. Softw. Syst. Model. 15(4), 1013–1048 (2016)

13. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6 10

14. Henrio, L., Laneve, C., Mastandrea, V.: Analysis of synchronisations in stateful
active objects. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol.
10510, pp. 195–210. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66845-1 13

15. Hewitt, C.: Description and theoretical analysis (using schemata) of planner: a
language for proving theorems and manipulating models in a robot. Technical
report, Massachusetts Institute of Technology Cambridge Artificial Intelligence
Lab (1972)

16. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

17. Johnsen, E.B., Owe, O., Creol, I.C.Yu.: A type-safe object-oriented model for dis-
tributed concurrent systems. Theoret. Comput. Sci. 365(1–2), 23–66 (2006)

18. Kamburjan, E., Din, C.C., Chen, T.-C.: Session-based compositional analysis for
actor-based languages using futures. In: Ogata, K., Lawford, M., Liu, S. (eds.)
ICFEM 2016. LNCS, vol. 10009, pp. 296–312. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47846-3 19

19. Kerfoot, E., McKeever, S., Torshizi, F.: Deadlock freedom through object owner-
ship. In: 5th International Workshop on Aliasing, Confinement and Ownership in
Object-Oriented Programming (2009)

20. Sirjani, M.: Rebeca: theory, applications, and tools. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 102–126.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74792-5 5

https://doi.org/10.1007/978-3-642-35861-6_7
https://doi.org/10.1007/978-3-642-35861-6_7
https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1007/978-3-642-32940-1_39
https://doi.org/10.1007/978-3-642-32940-1_39
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-319-66845-1_13
https://doi.org/10.1007/978-3-319-66845-1_13
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-319-47846-3_19
https://doi.org/10.1007/978-3-319-47846-3_19
https://doi.org/10.1007/978-3-540-74792-5_5

An Algebraic Approach for Reasoning
About Information Flow

Arthur Américo1(B), Mário S. Alvim1, and Annabelle McIver2

1 Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
aamerico@dcc.ufmg.br

2 Macquarie University, Sydney, Australia

Abstract. This paper concerns the analysis of information leaks in secu-
rity systems. We address the problem of specifying and analyzing large
systems in the (standard) channel model used in quantitative information
flow (QIF). We propose several operators which match typical interac-
tions between system components. We explore their algebraic properties
with respect to the security-preserving refinement relation defined by
Alvim et al. and McIver et al. [1,2].

We show how the algebra can be used to simplify large system spec-
ifications in order to facilitate the computation of information leakage
bounds. We demonstrate our results on the specification and analysis
of the Crowds Protocol. Finally, we use the algebra to justify a new
algorithm to compute leakage bounds for this protocol.

1 Introduction

Protecting sensitive information from unintended disclosure is a crucial goal for
information security. There are, however, many situations in which information
leakage is unavoidable. An example is a typical password checker, which must
always reveal some information about the secret password—namely whether or
not it matches the input provided by the user when trying to log in. Another
example concerns election tallies, which reveal information about individual
votes by ruling out several configurations of votes (e.g., in the extreme case
of an unanimous election, the tally reveals every vote). The field of Quantitative
Information Flow (QIF) is concerned with quantifying the amount of sensitive
information computational systems leak, and it has been extremely active in the
past decade [3–9].

In the QIF framework, systems are described as receiving secret inputs from a
set of values X , and producing public, or observable, outputs from a set Y. Typical
secret inputs are a user’s identity, password, or current location, whereas public
outputs are anything an adversary can observe about the behavior of the system,
such as messages written on the screen, execution time, or power consumption. A
system is, then, modeled as an (information-theoretic) channel, which is a func-
tion mapping each possible pair x ∈ X , y ∈ Y to the conditional probability p(y |
x) of the system producing output y when receiving input x. Channels abstract

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 55–72, 2018.
https://doi.org/10.1007/978-3-319-95582-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_4&domain=pdf

56 A. Américo et al.

technicalities of the system, while retaining the essentials that influence informa-
tion leakage: the relation between secret input and public output values.

The QIF framework provides a robust theory for deriving security properties
from a system’s representation as a channel. However, obtaining an appropriate
channel to model a system is often a non-trivial task. Moreover, some channels
turn out to be so large as to render most security analyses unfeasible in practice.

In this paper we provide an algebra for describing (larger, more complex)
channels as compositions of other (smaller, simpler) channels. For that, we define
a set of operators, each corresponding to a different way in which components can
interact in a system—namely, parallel composition, visible choice composition,
and hidden choice composition. We prove a series of algebraic properties of
these operators, and use such properties to simplify system specifications so
that bounds on the information leakage of a compound system can be inferred
from the information leakage of its components. In this way, we allow for leakage
analyses of systems which would be intractable with traditional QIF techniques.

This compositional approach seems particularly natural for modeling secu-
rity protocols, which often involve interactions among various entities. Consider,
for instance, the well-known Dining Cryptographers anonymity protocol [10].
A group of n cryptographers has been invited for dinner by the NSA (Amer-
ican National Security Agency), who will either pay the bill, or secretly ask
one of the cryptographers to be the payer. The cryptographers want to deter-
mine whether one among them is the payer, but without revealing which one.
For that, they execute the following protocol. In a first phase all participants
form a circle, and each tosses a coin and shares the result only with the cryp-
tographer on his right. In a second phase, each cryptographer computes the
exclusive-or of the two coins tosses he observed (interpreting heads as 0 and
tails as 1), and publicly announces the result. The only exception is the pay-
ing cryptographer (if any), who announces the negation of his exclusive-or. In a
third phase, the cryptographers compute the exclusive-or of all announcements.

Fig. 1. Schematic representation of the
Dining Cryptographers protocol as: (i) a
monolithic channel (top); (ii) a composi-
tion of two channels (middle); and (iii) a
composition of eight channels (bottom).

One of them is the payer if, and only if,
the result is 1. It has been shown that,
if all coins are fair, no information is
leaked about who the paying cryptog-
rapher is [10].

Despite the Dining Cryptographers
relative simplicity, deriving its channel
can be a challenging task. Since each
of the n cryptographers can announce
either 0 or 1, the size of the output set
Y, and, consequently, of the channel,
increases exponentially with the num-
ber of cryptographers. The problem is
worsened by the fact that computing
the probabilities constituting the chan-
nel’s entries is not trivial. The algebra

An Algebraic Approach for Reasoning About Information Flow 57

we introduce in this paper allows for an intuitive and compositional way of build-
ing a protocol’s channel from each of its components. To illustrate the concept,
Fig. 1 depicts three alternative representations, using channels, for the Dining
Cryptographers with 4 cryptographers and 4 coins. In all models, the input is
the identity of the payer (one of the cryptographers or the NSA), and the out-
put are the public announcements of all cryptographers. The top model uses a
single (enormous) channel to represent the protocol; the middle one models the
protocol as the interaction between two smaller components (the coins and the
party of cryptographers); the bottom one uses interactions between even smaller
channels (one for each coin and each cryptographer).

The main contributions of this paper are the following.

– We formalize several common operators for channel composition used in the
literature, each matching a typical interaction between system components.
We prove several relevant algebraic and information-leakage properties of
these operators.

– We show that the substitution of components in a system may be subject
to unexpected, and perhaps counter-intuitive, results. In particular, we show
that overall leakage may increase even when the new component is more
secure than the one it is replacing (e.g., Theorems 5 and 6).

– We show how the proposed algebra can be used to simplify large system
specifications in order to facilitate the computation of information leakage
bounds, given in terms of the g-leakage framework [1,2,9,11].

– We demonstrate our results on the specification and analysis of the Crowds
Protocol [12]. We use the proposed algebra to justify a new algorithm to
compute leakage bounds for this protocol.

Detailed proofs of all of our technical results can be found in an accompanying
technical report [13].

Plan of the Paper. The remainder of this paper is organized as follows. In Sect. 2
we review fundamental concepts from QIF. In Sect. 3 we introduce our channel
operators, and in Sect. 4 we provide their algebraic properties. In Sect. 5 we
present our main results, concerning information leakage in channel composition.
In Sect. 6 we develop a detailed case study of the Crowds protocol. Finally, in
Sect. 7 we discuss related work, and in Sect. 8 we conclude.

2 Preliminaries

In this section we review some fundamentals from quantitative information flow.

Secrets, Gain Functions and Vulnerability. A secret is some piece of sensitive
information that one wants to protect from disclosure. Such sensitive information
may concern, for instance, a user’s password, identity, personal data, or current
location. We represent by X the set of possible secret values the secret may take.

58 A. Américo et al.

The adversary is assumed to have, before observing the system’s behaviour,
some a priori partial knowledge about the secret value. This knowledge is mod-
eled as a probability distribution π ∈ DX , where DX denotes the set of all
probability distributions on X . We call π a prior distribution, or simply a prior.

To quantify how vulnerable a secret is—i.e., how prone it is to exploitation
by the adversary—we employ a function that maps probability distributions to
the real numbers (or, more in general, to any ordered set). Many functions have
been used in the literature, such as Shannon entropy [14], guessing-entropy [15],
Bayes vulnerability [16], and Rényi min-entropy [6]. Recently, the g-leakage [1]
framework was proposed, and it proved to be very successful in capturing a
variety of different scenarios, including those in which the adversary benefits
from guessing part of secret, guessing a secret approximately, guessing the secret
within a number of tries, or gets punished for guessing wrongly. In particular,
the framework has been shown to be able to capture all functions mentioned
above [9]. In this framework, a finite set W of actions is available to the adversary,
and a gain-function g : W × X → [0, 1] is used to describe the benefit g(w, x)
an adversary obtains when he performs action w ∈ W, and the secret value is
x ∈ X . Given an appropriate gain-function g, the secret’s (prior) g-vulnerability
is defined as the expected value of the adversary’s gain if he chooses a best
possible action,

Vg[π] = max
w∈W

∑

x∈X
π(x)g(w, x),

and the greater its value, the more vulnerable, or insecure, the secret is.

Channels and Posterior Vulnerabilities. In the QIF framework, a system is usu-
ally modeled as an (information theoretic) channel taking a secret input x ∈ X ,
and producing a public, or observable, output y ∈ Y. Each element of Y rep-
resents a behaviour from the system that can be discerned by the adversary.
Formally, a channel is a function C : X × Y → R such that C(x, y) is the condi-
tional probability p(y | x) of the system producing output y ∈ Y when input is
x ∈ X .

A channel C together with a prior π induce a joint probability distribution
p on the set X × Y, given by p(x, y) = π(x)C(x, y). From this joint distribution
we can derive, for every x ∈ X and y ∈ Y, the marginal probabilities p(x) =∑

y p(x, y) and p(y) =
∑

x p(x, y), and the conditional probabilities p(x | y) =
p(x,y)/p(y) and p(y | x) = p(x,y)/p(x). Note that p(x) = π(x) and, if p(x) �= 0,
p(y | x) = C(x, y).

By observing the output produced by the system, the adversary can update
his knowledge about the secret value. More specifically, if the system outputs
y ∈ Y, an adversary can update the prior π to a revised posterior distribution
pX|y ∈ DX on X given y, defined for all x ∈ X and y ∈ Y as pX|y(x) = p(x | y).

An Algebraic Approach for Reasoning About Information Flow 59

Example 1. Let X = {x1, x2, x3} and Y = {y1, y2, y3, y4} be input and output
sets. Let π = (1/2, 1/3, 1/6) be a prior, and C be the channel below. The combi-
nation of π and C yield a joint probability p, according to the tables below.

C y1 y2 y3 y4
x1

1/6 2/3 1/6 0
x2

1/2 1/4 1/4 0
x3

1/2 1/3 0 1/6

π−→
p y1 y2 y3 y4
x1

1/12 1/3 1/12 0
x2

1/6 1/12 1/12 0
x3

1/12 1/18 0 1/36

By summing the columns of the second table, we obtain the marginal prob-
abilities p(y1) = 1/3, p(y2) = 17/36, p(y3) = 1/6 and p(y4) = 1/36. These
marginal probabilities yield the posterior distributions pX|y1 = (1/4, 1/2, 1/4),
pX|y2 = (12/17, 3/17, 2/17), pX|y3 = (1/2, 1/2, 0), and pX|y4 = (0, 0, 1). ��

The posterior g-vulnerability of a prior π and a channel C is defined as the
expected value of the secret’s g-vulnerability after the execution of the system:

Vg[π 〉C] =
∑

y∈Y
max
w∈W

∑

x∈X
C(x, y)π(x)g(x,w).

The information leakage of a prior and a channel is a measure of the increase
in secret vulnerability caused by the observation of the system’s output. Leakage
is, thus, defined as a comparison between the secret’s prior and posterior vulner-
abilities. Formally, for a gain-function g, and given prior π and channel C, the
multiplicative and the additive versions of g-leakage are defined, respectively, as

Lg[π 〉C] = Vg[π 〉 C]/Vg[π], and L+
g [π 〉C] = Vg[π 〉C] − Vg[π].

Since prior vulnerability does not depend on the channel, we have that

Lg[π 〉C1] ≥ Lg[π 〉C2] ⇔ L+
g [π 〉C1] ≥ L+

g [π 〉C2] ⇔ Vg[π 〉C1] ≥ Vg[π 〉C2],

and, hence, the posterior vulnerability of a channel is greater than that of another
if, and only if, both multiplicative and additive leakage also are.

Channel Ordering and the Coriaceous Theorem. We now define a common com-
position of channels, called cascading. This operation can be interpreted as the
result of a channel post-processing the output of another channel. Formally, given
two channels C : X × Y → R and D : Y × Z → R, their cascading is defined as

(CD)(x, z) =
∑

y∈Y
C(x, y)D(y, z),

for all x ∈ X and z ∈ Z. If we represent channels as tables, as we did in Exam-
ple 1, the cascading operation corresponds to a simple matrix multiplication.

An important question in QIF is to decide whether a channel C2 is always at
least as secure as a channel C1, meaning that C2 never leaks more information
than C1, for whatever choice of gain function g and of prior π. Let us write

60 A. Américo et al.

C1
◦ C2 (read as C2 refines C1) to denote that there exists a channel D such
that C1D = C2. We write C1 ≈ C2, and say that C1 is equivalent to C2, when
both C1
◦ C2 and C2
◦ C1 hold. The Coriaceous Theorem [1,2] states that,
C1
◦ C2 if, and only if, Vg[π 〉C1] ≥ Vg[π 〉C2] for all π, g. This result reduces
the comparison of channel security to a simple algebraic test.

The refinement relation
◦ is a preorder on the set of all channels having the
same input set. This preorder can be made into a partial order by using abstract
channels [2], an equivalence relation that equates all channels presenting same
leakage for all priors and gain functions. This partial order coincides with how
much information channels leak, being the least secure channel (i.e., the “most
leaky” one) at its bottom, and the most secure (i.e., the “least leaky”) at its top.

3 Operators on Channel Composition

We shall say that two channels are compatible if they have the same input set.
Given a set X , we denote by CX the set of all channels that have X as input set.
Two compatible channels with same output set are said to be of the same type.

In this section we introduce several binary operators—i.e., functions of type
(CX × CX) → CX —matching typical interactions between system components,
and prove relevant algebraic properties of these operators. We refer to the
result of an operator as a compound system, and we refer to its arguments as
components.

3.1 The Parallel Composition Operator ‖
The parallel composition operator ‖ models the composition of two independent
channels in which the same input is fed to both of them, and their outputs are
then observed. By independent, we mean that the output of one channel does not
interfere with that of the other. This assumption, while not universal, captures
a great variety of real-world scenarios, and is, hence, of practical interest.

For example, side-channel attacks occur when the adversary combines his
observation of the system’s output with some alternative way of inferring infor-
mation about the secret (e.g., by observing physical properties of the system
execution, such as time elapsed [17,18] or change in magnetic fields [19]). In
such attacks, the channel used by the adversary to infer information about the
secret can be modeled as the composition of a channel representing the program’s
intended behaviour in parallel with a channel modeling the relation between the
secret and the physical properties of the hardware.

Definition 1 (Parallel composition operator ‖). Given compatible channels
C1 : X × Y1 → R and C2 : X × Y2 → R, their parallel composition C1 ‖ C2 :
X × (Y1 × Y2) → R is defined as, for all x ∈ X , y1 ∈ Y1, and y2 ∈ Y2,

(C1 ‖ C2)(x, (y1, y2)) = C1(x, y1)C2(x, y2).

Notice that this definition comes from the independence property, as we have
C1(x, y1)C2(x, y2) = p(y1 | x)p(y2 | x) = p(y1, y2 | x).

An Algebraic Approach for Reasoning About Information Flow 61

3.2 The Visible Choice Operator p ·�
The visible choice operator p ·� models a scenario in which the system has a
choice among two different components to process the secret it was fed as input.
With probability p, the system feeds the secret to the first component, and, with
probability 1 − p, it feeds the secret to the second component. In the end, the
system reveals the output produced, together with the identification of which
component was used (whence, the name “visible choice”).

As an example, consider an adversary trying to gain information about a
secret processed by a website. The adversary knows that the website has two
servers, one of which will be assigned to answer the request according to a
known probability distribution. Suppose, furthermore, that the adversary can
identify which server was used by measuring its response time to the request.
This adversary’s view of the system can be modeled as the visible choice between
the two servers, since, although the adversary does not know in advance which
server will be used, he learns it when he gets the output from the system.

Before formalizing this operator, we need to define the disjoint union of sets.
Given any sets A and B, their disjoint union is A � B = (A × {1}) ∪ (B × {2}).

Definition 2 (Visible choice operator p ·�). Given compatible channels C1 :
X ×Y1 → R and C2 : X ×Y2 → R, their visible choice is the channel C1 p ·� C2 :
X × (Y1 � Y2) → R defined as, for all x ∈ X and (y, i) ∈ Y1 � Y2,

(C1 p ·� C2)(x, (y, i)) =

{
pC1(x, y), if i = 1,

(1 − p)C2(x, y), if i = 2.

3.3 The Hidden Choice Operator p⊕
Similarly to the visible choice case, the hidden choice operator p⊕ models a
scenario in which the system has a choice of feeding its secret input to one com-
ponent (with probability p), or to another component (with probability 1 − p).
In the end, the system reveals the output produced, but, unlike the visible choice
case, the component which was used is not revealed. Hence, when the same obser-
vations are randomized between the two channels, the adversary cannot identify
which channel produced the observation (whence, the name “hidden choice”).

As an example, consider statistical surveys that ask some sensitive yes/no
question, such as whether the respondent has made use of any illegal substances.
To encourage individuals to participate on the survey, it is necessary to control
leakage of their sensitive information, while preserving the accuracy of statisti-
cal information in the ensemble of their answers. A common protocol to achieve
this goal works as follows [20]. Each respondent throws a coin, without letting
the questioner know the corresponding result. If the result is heads, the respon-
dent answers the question honestly, and if the result is tails, he gives a random
response (obtained, for example, according to the result of a second coin toss).
If the coins are fair, this protocol can be modeled as the hidden choice T 1/2⊕ C

62 A. Américo et al.

between a channel T representing an honest response (revealing the secret com-
pletely), and a channel C representing a random response (revealing nothing
about the secret). The protocol is, hence, a channel that masks the result of T .

Definition 3 (Hidden choice operator p⊕). Given compatible channels C1 :
X ×Y1 → R and C2 : X ×Y2 → R, their hidden choice is the channel C1 p⊕ C2 :
X × (Y1 ∪ Y2) → R defined as, for all x ∈ X and y ∈ Y1 ∪ Y2,

(C1 p⊕ C2)(x, y) =

⎧
⎪⎨

⎪⎩

pC1(x, y) + (1 − p)C2(x, y), if y ∈ Y1 ∩ Y2,

pC1(x, y), if y ∈ Y1 \ Y2,

(1 − p)C2(x, y), if y ∈ Y2 \ Y1.

Note that when the output sets of C1 and C2 are disjoint the adversary can
always identify the channel used, and we have C1 p ·� C2≈C1 p⊕ C2.

3.4 A Compositional Description of the Dining Cryptographers

We now revisit the Dining Cryptographers protocol example from Sect. 1, show-
ing how it can be modeled using our composition operators.

We consider that there are 4 cryptographers and 4 coins, and denote the
protocol’s channel by Dining . The channel’s input set is X = {c1, c2, c3, c4, n},
in which ci represents that cryptographer i is the payer, and n represents that
the NSA is the payer. The channel’s output set is Y = {0, 1}4, i.e., all 4-tuples
representing possible announcements by all cryptographers, in order.

Following the scheme in Fig. 1 (middle), we begin by modeling the protocol
as the interaction between two channels, Coins and Announcements , represent-
ing, respectively, the coin tosses and the cryptographers’ public announcements.
Since in the protocol first the coins are tossed, and only then the corresponding
results are passed on to the party of cryptographers, Dining can be described as
the cascading of these two channels:

Dining = (Coins)(Announcements).

Fig. 2. Channel rep-
resenting toss of coin
Coini.

To specify channel Coins, we use the parallel compo-
sition of channels Coin1, Coin2, Coin3 and Coin4, each
representing one coin toss. Letting pi denote the proba-
bility of coin i landing on tails, these channels are defined
as on Table 2.

Besides the result of the tosses, Coins also needs to
pass on to Announcements the identity of the payer. We
then introduce a fifth channel, I : X × X → R, that
simply outputs the secret, i.e., I(x1, x2) = 1 if x1 = x2,
and 0 otherwise. Hence, a complete definition of channel
Coins is

Coins = Coin1 ‖ Coin2 ‖ Coin3 ‖ Coin4 ‖ I.

As we will show in Sect. 4, parallel composition is associative, allowing us to
omit parentheses in the equation above.

An Algebraic Approach for Reasoning About Information Flow 63

We now specify the channel Announcements , which takes as input a 5-tuple
with five terms whose first four elements are the results of the coin tosses, and the
fifth is the identity of the payer. For that end, we describe each cryptographer as
a channel with this 5-tuple as input, and with the set of possible announcements
{0, 1} as output set. Crypto1 below describes the first cryptographer.

Crypto1(t1, t2, t3, t4, x) =

{
1, if t4 = t1 and x = c1, or t4 �= t1 and x �= c1

0, otherwise

Channels Crypto2, Crypto3 and Crypto4 describing the remaining cryptog-
raphers are defined analogously. Channel Announcements is, hence, defined as

Announcements = Crypto1 ‖ Crypto2 ‖ Crypto3 ‖ Crypto4.

Note that our operators allow for an intuitive and succinct representation
of the channel Dining modeling the Dining Cryptographers protocol, even when
the number of cryptographers and coins is large. Moreover, the channel is easy to
compute: we need only to first calculate the parallel compositions within channels
Crypto and Announcements , and then multiply these channels’ matrices.

4 Algebraic Properties of Channel Operators

In this section we prove a series of relevant algebraic properties of our channel
operators. These properties are the key for building channels in a compositional
way, and, more importantly, for deriving information flow properties of a com-
pound system in terms of those of its components.

We begin by defining a notion of equivalence stricter than ≈, which equates
any two channels that are identical modulo a permutation of their columns.

Definition 4 (Channel equality). Let C1 : X ×Y1 → R and C2 : X ×Y2 → R

be compatible channels. We say that C1 and C2 are equal up to a permutation
, and write C1

◦= C2, if there is a bijection ψ : Y1 → Y2 such that C1(x, y) =
C2(x, ψ(y)) for all x ∈ X , y ∈ Y1.

Note that, if C1
◦= C2, then C1 ≈ C2.1

In remaining of this section, let C1 : X × Y1 → R, C2 : X × Y2 → R and
C3 : X × Y3 → R be compatible channels, and p, q ∈ [0, 1] be probability values.

4.1 Properties Regarding Channel Operators

We first establish our operators’ associativity and commutativity properties.

Proposition 1 (Commutative Properties)

C1‖C2
◦= C2‖C1, C1 p ·� C2

◦= C2 (1−p) ·� C1, and C1 p⊕ C2 = C2 (1−p)⊕ C1.

1 A complete, formal definition of such bijections can be found in an accompanying
technical report [13].

64 A. Américo et al.

Proposition 2 (Associative Properties)

(C1 ‖ C2) ‖ C3
◦= C1 ‖ (C2 ‖ C3), (C1 p ·� C2) q ·� C3

◦= C1 p′ ·� (C2 q′ ·� C3),

and (C1 p⊕ C2) q⊕ C3 = C1 p′⊕ (C2 q′⊕ C3), s.t. p′ = pq and q′ = (q−pq)/(1−pq).

We now turn our attention to two kinds of channels that will be recurrent
building blocks for more complex channels. A null channel is any channel 0 :
X × Y → R such that, for every prior π and gain-function g, Vg[π 〉 0] = Vg[π].
That is, a null channel never leaks any information. A channel 0 is null if, and
only if, 0(x, y) = 0(x′, y) for all y ∈ Y and x, x′ ∈ X . On the other hand, a
transparent channel is any channel I : X × Y → R that leaks at least as much
information as any other compatible channel, for every prior and gain-function.
A channel I is transparent if, and only if, for each y ∈ Y, there is at most one
x ∈ X such that I(x, y)>0. The following properties hold for any null channel 0
and transparent channel I compatible with C1, C2 and C3.

Proposition 3 (Null and Transparent Channel Properties)

null channel: (C1 ‖ 0) ≈ C1, C1
◦ (C1 p ·� 0), C1
◦ (C1 p⊕ 0).

transparent channel: (C1 ‖ I) ≈ I, (C1 p ·� I)
◦ C1.

Note that, in general, (C1 p⊕ I) �
◦ C1. To see why, consider the two trans-
parent channels I1 and I2, with both input and output sets equal {1, 2}, given
by I1(x, x′) = 1 if x = x′, and 0 otherwise, and I2(x, x′) = 0 if x = x′, and 1
otherwise Then, I1 p⊕ I2 is a null channel, and the property does not hold for
C1 = I1, I = I2.

We now consider idempotency.

Proposition 4 (Idempotency)

C1 ‖ C1
◦ C1, C1 p ·� C1 ≈ C1, and C1 p⊕ C1 = C1.

Note that C1‖C1 ≈ C1 holds only when C1 is deterministic or equivalent to
a deterministic channel.

Finally, we consider distributive properties. In particular, we explore inter-
esting properties when an operator is “distributed” over itself.

Proposition 5 (Distribution over the same operator)

(C1 ‖ C2) ‖ (C1 ‖ C3)
◦ C1 ‖ (C2 ‖ C3),
C1 p ·� (C2 q ·� C3) ≈ (C1 p ·� C2) q ·� (C1 p ·� C3),
C1 p⊕ (C2 q⊕ C3) = (C1 p⊕ C2) q⊕ (C1 p⊕ C3).

Proposition 6 (Distribution over different operators)

C1 ‖ (C2 p ·� C3)
◦= (C1 ‖ C2) p ·� (C1 ‖ C3),

C1 ‖ (C2 p⊕ C3) = (C1 ‖ C2) p⊕ (C1 ‖ C3),
C1 p ·� (C2 q⊕ C3) = (C1 p ·� C2) q⊕ (C1 p ·� C3).

Unfortunately, the distribution of p ·� over ‖, p⊕ over ‖, or p⊕ over p ·� is not
as well behaved. A complete discussion is available in the technical report [13].

An Algebraic Approach for Reasoning About Information Flow 65

4.2 Properties Regarding Cascading

We conclude this section by exploring how our operators behave w.r.t. cascading
(defined in Sect. 2). Cascading of channels is fundamental in QIF, as it captures
the concept of a system’s post-processing of another system’s outputs, and it is
also the key to the partial order on channels discussed in Sect. 2.

The next propositions explore whether it is possible to express a composition
of two post-processed channels by a post-processing of their composition.

Proposition 7. Let D1 : Y1 × Z1 → R, D2 : Y2 × Z2 → R be channels. Then,

(C1D1) ‖ (C2D2) = (C1 ‖ C2)D‖,

where D‖ : (Y1 × Y2) × (Z1 × Z2) → R is defined, for all y1 ∈ Y1, y2 ∈ Y2,
z1 ∈ Z1, and z2 ∈ Z2, as D‖((y1, y2), (z1, z2)) = D1(y1, z1)D2(y2, z2).

Proposition 8. Let D1 : Y1 × Z1 → R, D2 : Y2 × Z2 → R be channels. Then,

(C1D1) p ·� (C2D2) = (C1 p ·� C2)D
·�,

where D ·� : (Y1�Y2) × (Z1�Z2) → R is defined as D ·�((y, i), (z, j)) = D1(y, z)
if i = j = 1, or D2(y, z) if i = j = 2, or 0 otherwise, for all y1 ∈ Y1, y2 ∈ Y2,
z1 ∈ Z1, z2 ∈ Z2.

A similar rule, however, does not hold for hidden choice. For example, let C1

and C2 be channels with input and output sets {1, 2}, such that C1(x, x′) = 1
if x = x′, or 0 otherwise, and C2(x, x′) = 0 if x = x′, or 1 otherwise. Let
D1 and D2 be transparent channels whose output sets are disjoint. Then,
(C1D1) 1/2⊕ (C2D2) is a transparent channel, but C1 1/2⊕ C2 is a null chan-
nel. Thus, it is impossible to describe (C1D1) 1/2⊕ (C2D2) as C1 1/2⊕ C2 post-
processed by some channel. However, we can establish a less general, yet relevant,
equivalence.

Proposition 9. Let C1 : X × Y → R and C2 : X × Y → R be channels of
the same type. Let D : Y × Z → R be a channel. Then, (C1D) p⊕ (C2D) =
(C1 p⊕ C2)D.

5 Information Leakage of Channel Operators

This section presents the main contribution of our paper: a series of results
showing how, using the proposed algebra, we can facilitate the security analysis
of compound systems. Our results are given in terms of the g-leakage framework
introduced in Sect. 2, and we focus on two central problems. For the remaining
of the section, let C1 : X ×Y1 → R and C2 : X ×Y2 → R be compatible channels.

66 A. Américo et al.

5.1 The Problem of Compositional Vulnerability

The first problem consists in estimating the information leakage of a compound
system in terms of the leakage of its components. This is formalized as follows.

The Problem of Compositional Vulnerability: Given a composition oper-
ator ∗ on channels, a prior π ∈ DX , and a gain function g, how can we estimate
Vg[π 〉C1 ∗ C2] in terms of Vg[π 〉C1] and Vg[π 〉C2]?

Theorem 1 (Upper and lower bounds for Vg w.r.t. ‖). For all gain func-
tions g and π ∈ DX , let X ′ = {x ∈ X | ∃w ∈ W s.t. π(x)g(w, x) > 0}. Then

Vg[π 〉 C1‖C2] ≥ max(Vg[π 〉 C1], Vg[π 〉 C2]), and

Vg[π 〉 C1‖C2] ≤ min

(
Vg[π 〉 C1]

∑
y2

max
x∈X ′ C2(x, y2), Vg[π 〉 C2]

∑
y1

max
x∈X ′ C1(x, y1)

)
.

Theorem 2 (Linearity of Vg w.r.t. p ·�). For all gain functions g, π ∈ DX
and p ∈ [0, 1],

Vg[π 〉C1 p ·� C2] = pVg[π 〉C1] + (1 − p)Vg[π 〉C2].

Theorem 3 (Upper and lower bounds for Vg w.r.t. p⊕). For all gain
functions g, π ∈ DX and p ∈ [0, 1],

Vg[π 〉C1 p⊕ C2] ≥ max(pVg[π 〉C1], (1 − p)Vg[π 〉C2]), and
Vg[π 〉C1 p⊕ C2] ≤ pVg[π 〉C1] + (1 − p)Vg[π 〉C2].

The three theorems above yield an interesting order between the operators.

Corollary 1 (Ordering between operators). Let π ∈ DX , g be a gain func-
tion and p ∈ [0, 1]. Then Vg[π 〉C1 ‖ C2] ≥ Vg[π 〉C1 p ·� C2] ≥ Vg[π 〉C1 p⊕ C2].

5.2 The Problem of Relative Monotonicity

The second problem concerns establishing whether a component channel of a
larger system can be safely substituted with another component, i.e., whether
substituting a component with another can cause an increase in the information
leakage of the system as a whole. This is formalized as follows.

The Problem of Relative Monotonicity: Given a composition operator ∗ on
channels, a prior π ∈ DX , and a gain function g, is it the case that Vg[π 〉C1] ≤
Vg[π 〉C2] ⇔ ∀C ∈ CX . Vg[π 〉C1 ∗ C] ≤ Vg[π 〉C2 ∗ C] ?

We start by showing that relative monotonicity holds for visible choice. Note,
however, that because Vg[π 〉C1 p ·� C] ≤ Vg[π 〉C2 p ·� C] is vacuously true if
p = 0, we consider only p ∈ (0, 1].

Theorem 4 (Relative monotonicity for p ·�). For all gain functions g, π ∈
DX and p ∈ (0, 1],

Vg[π 〉C1] ≤ Vg[π 〉C2] ⇔ ∀C. Vg[π 〉C1 p ·� C] ≤ Vg[π 〉C2 p ·� C].

An Algebraic Approach for Reasoning About Information Flow 67

Interestingly, relative monotonicity does not hold for the parallel operator.
This means that the fact that a channel C1 is always more secure than a channel
C2 does not guarantee that if we replace C1 for C2 in a parallel context we neces-
sarily obtain a more secure system.2 However, when the adversary’s knowledge
(represented by the prior π) or preferences (represented by the gain-function g)
are known, we can obtain a constrained result on leakage by fixing only π or g.

Theorem 5 (Relative monotonicity for ‖). For all gain functions g and
π ∈ DX

∀π′. Vg[π′ 〉C1] ≤ Vg[π′ 〉C2] ⇔ ∀π′, C. Vg[π′ 〉C1 ‖ C] ≤ Vg[π′ 〉C2 ‖ C], and
∀g′. Vg′ [π 〉C1] ≤ Vg′ [π 〉C2] ⇔ ∀g′, C. Vg′ [π 〉C1 ‖ C] ≤ Vg′ [π 〉C2 ‖ C].

Perhaps surprisingly, hidden choice does not respect relative monotonicity,
even when we only consider channels that respect the refinement relation intro-
duced in Sect. 2.

Theorem 6 (Relative monotonicity for p⊕). For all p ∈ (0, 1), there are
C1 : X × Y → R and C2 : X × Y → R such that

∀π, g. Vg[π 〉C1] ≤ Vg[π 〉C2] and ∃π′, g′, C. Vg′ [π′ 〉C1 p⊕ C]> Vg′ [π′ 〉C2 p⊕ C],

The converse, however, is true.

Theorem 7 (Relative monotonicity for p⊕, cont.). For all gain functions
g, π ∈ DX and p ∈ (0, 1],

∀C. Vg[π 〉C1 p⊕ C] ≤ Vg[π 〉C2 p⊕ C] ⇒ Vg[π 〉C1] ≤ Vg[π 〉C2].

6 Case Study: The Crowds Protocol

In this section we apply the theoretical techniques developed in this paper to the
well-known Crowds anonymity protocol [12]. Crowds was designed to protect the
identity of a group of users who wish to anonymously send requests to a server,
and it is the basis of the widely used protocols Onion Routing [21] and Tor [22].

The protocol works as follows. When a user wants to send a request to the
server, he first randomly picks another user in the group and forwards the request
to that user. From that point on, each user, upon receiving a request from another
user, sends it to the server with probability p ∈ (0, 1], or forwards it to another
user with probability 1− p. This second phase repeats until the message reaches
the server.

2 As a counter-example, consider channels C1 =
(

1 0
1 0
0 1

)
and C2 =

(
1 0
0 1
0 1

)
. Let πu =

{1/3, 1/3, 1/3} and gid : X × X → [0, 1] s.t. gid(x1, x2) = 1 if x1 = x2 and 0 otherwise.
Then, Vgid [πu 〉 C2] ≤ Vgid [πu 〉 C1], but Vgid [πu 〉 C2 ‖ C1] > Vgid [πu 〉 C1 ‖ C1].

68 A. Américo et al.

It is assumed that the adversary controls the server and some corrupt users
among the regular, honest, ones. When a corrupt user receives a forwarded
request, he shares the forwarder’s identity with the server, and we say that
the forwarder was detected. As no information can be gained after a corrupt
user intercepts a request, we need only consider the protocol’s execution until a
detection occurs, or the message reaches the server.

In Crowds’ original description, all users have equal probability of being
forwarded a message, regardless of the forwarder. The channel modeling such
a case is easily computed, and well-known in the literature. Here we consider
the more general case in which each user may employ a different probability
distribution when choosing which user to forward a request to. Thus, we can
capture scenarios in which not all users can easily reach each other (a common
problem in, for instance, ad-hoc networks). We make the simplifying assumption
that corrupt users are evenly distributed, i.e., that all honest users have the same
probability q ∈ (0, 1] of choosing a corrupt user to forward a request to.

We model Crowds as a channel Crowds : X × Y → R. The channel’s input,
taken from set X = {u1, u2, . . . , unc

}, represents the identity ui of the honest user
(among a total of nc honest users) who initiated the request. The channel’s out-
put is either the identity of a detect user—i.e., a value from D = {d1, d2, . . . , dnc

},
where where di indicates user ui was detected—or the identity of a user who for-
warded the message to the server—i.e., a value from S = {s1, s2, . . . , snc

}, where
si indicates user ui forwarded a message to the server. Note that D and S are
disjoint, and the channel’s output set is Y = D ∪ S.

To compute the channel’s entries, we model the protocol as a time-stationary
Markov chain M = (U ,P), where the set of states is the set of honest users U ,
and its transition function is such that P (ui, uj) is the probability of uj being
the recipient of a request forwarded by ui, given that ui will not be detected.

We then define four auxiliary channels. Transparent channels Id : U ×D → R

and Is : U × S → R are defined as Id(ui, dj) = 1 if i = j, or 0 otherwise, and
Is(ui, sj) = 1 if i = j, or 0 otherwise; and two other channels Pd : D × D → R

and Ps : S × S → R, based on our Markov chain M , are defined as Pd(di, dj) =
Ps(si, sj) = P (ui, uj).

We begin by reasoning about what happens if each request can be forwarded
only once. There are two possible situations: either the initiator is detected, or
he forwards the request to an honest user, who will in turn send it to the server.
The channel corresponding to the initiator being detected is Id, since in this case
the output has to be di whenever ui is the initiator. The channel corresponding
to the latter situation is IsPs—i.e., the channel Is postprocessed by Ps. This is
because, being Ps based on the transition function of M , the entry (IsPs)(ui, sj)
gives us exactly the probability that user uj received the request originated by
user ui after it being forwarded once. Therefore, when Crowds is limited to one
forwarding, it can be modeled by the channel Id q⊕ IsPs

3, representing the fact
that: (1) with probability q the initiator is detected, and the output is generated
by Id; and (2) with probability 1 − q the output is generated by IsPs.

3 To simplify notation, we assume cascading has precedence over hidden choice, i.e.,
AB p⊕ CD = (AB) p⊕ (CD).

An Algebraic Approach for Reasoning About Information Flow 69

Let us now cap our protocol to at most two forwards. If the initiator is not
immediately detected, the first recipient will have a probability p of sending the
message to the server. If the recipient forwards the message instead, he may
be detected. Because the request was already forwarded once, the channel that
will produce the output in this case is IdPd (notice that, despite this channel
being equivalent to IsPs, it is of a different type). On the other hand, if the
first recipient forwards the message to an honest user, this second recipient will
now send the message to the server, making the protocol produce an output
according to IsPsPs (or simply IsP

2
s), since (IsP

2
s)(ui, sj) is the probability that

user uj received the request originated by user ui after it being forwarded twice.
Therefore, when Crowds is limited to two forwardings, it can be modeled by the
channel Id q⊕ (IsPs p⊕ (IdPd q⊕ IsP

2
s)). Note the disposition of the parenthesis

reflects the order in which the events occur. First, there is a probability q of the
initiator being detected, and 1 − q of the protocol continuing. Then, there is a
probability p of the first recipient sending it to the server, and so on.

Proceeding this way, we can inductively construct a sequence {Ci}i∈N∗ ,

Ci = Id q⊕ (IsPs p⊕ (IdPd q⊕ (. . . p⊕ (IdP
i−1
d q⊕ IsP

i
s) . . .))),

in which each Ci represents our protocol capped at i forwards per request. We can
then obtain Crowds by taking limi→∞ Ci. From that, Theorem3 and Proposi-
tion 2, we can derive the following bounds on the information leakage of Crowds.

Theorem 8. Let {ti}i∈N be the sequence in which t2i = 1 − (1 − q)i+1(1 − p)i

and t(2i+1) = 1 − (1 − q)i+1(1 − p)i+1 for all i ∈ N.
Let Km = ((. . . (Id t0/t1 ⊕ IsPs) t1/t2 ⊕ . . .) t2m−1/t2m⊕ (IdP

m
d). Then,

∀m ∈ N
∗,

Vg[π 〉 lim
i→∞

Ci] ≥ t2mVg[π 〉Km], (1)

Vg[π 〉 lim
i→∞

Ci] ≤ t2mVg[π 〉Km] + (1 − t2m)Vg[π 〉 IsP
m+1
s], and (2)

(1 − t2m)Vg[π 〉 IsP
m+1
s] ≤ (1 − q)m+1(1 − p)m. (3)

Equations (1) and (2) provide an effective way to approximate the g-leakage
of information of the channel Crowds with arbitrary precision, whereas Equa-
tion (3) lets us estimate how many interactions are needed for that.

To obtain Km, we need to calculate m matrix multiplications, which surpass
the cost of computing the m hidden choices (which are only matrix additions).
Thus, Theorem 8 implies we can obtain a channel whose posterior vulnerability
differs from that of Crowds by at most (1−q)m+1(1−pm) in ≈ O(mn2.807

c) time
(using the Strassen algorithm for matrix multiplication [23]). Since p is typically
high, (1 − q)m+1(1 − p)m decreases very fast. For instance, for a precision of
0.001 on the leakage bound, we need m = 10 when (1 − q)(1 − p) is 0.5, m = 20
when it is 0.7, and m = 66 when it is 0.9, regardless of the number nc of honest
users.

70 A. Américo et al.

Therefore, our method has time complexity O(n2.807
c) when the number of

users is large (which is the usual case for Crowds), and reasonable values of
forward probability p, and precision. To the best of our knowledge this method is
the fastest in the literature, beating the previous O(n3.807

c) that can be achieved
by modifying the method presented in [24]—although their method does not
require our assumption of corrupt users being evenly distributed.

7 Related Work

Compositionality is a fundamental notion in computer science, and it has been
subject of growing interest in the QIF community.

Espinoza and Smith [25] derived a number of min-capacity bounds for dif-
ferent channel compositions, including cascading and parallel composition.

However, it was not until recently that compositionality results regarding
the more general metrics of g-leakage started to be explored. Kawamoto et al.
[26] defined a generalization of the parallel operator for channels with different
input sets, and gave upper bounds for the corresponding information leakage.
Our bounds for compatible channels (Theorem1) are tighter than theirs.

Recently, Engelhardt [27] defined the mix operator, another generalization
of parallel composition, and derived results similar to ours regarding the par-
allel operator. Specifically, he provided commutative and associative properties
(Propositions 1 and 2), and from his results the lower bound of Theorem1 can
be inferred. He also proved properties similar to the ones in Proposition 3, albeit
using more restrictive definitions of null and transparent channels.

Both Kawamoto et al. and Engelhardt provided results similar to Theorem5,
but ours is not restricted to when one channel is refined by the other.

Just recently, Alvim et al. investigated algebraic properties of hidden and
visible choice operators in the context of game-theoretic aspects of QIF [28], and
derived the upper bounds of Theorems 2 and 3. Here we expanded the algebra to
the interaction among operators, including parallel composition, derived more
comprehensive bounds on their leakage, and applied our results to the Crowds
protocol.

8 Conclusions and Future Work

In this paper we proposed an algebra to express numerous component composi-
tions in systems that arise from typical ways in components interact in practical
scenarios. We provided fundamental algebraic properties of these operators, and
studied several of their leakage properties. In particular, we obtained new results
regarding their monotonicity properties and stricter bounds for the parallel and
hidden choice operators. These results are of practical interest for the QIF com-
munity, as they provide helpful tools for modeling large systems and analyzing
their security properties.

The list of operators we explored in this paper, however, does not seem to
capture every possible interaction of components of real systems. As future work
we wish to find other operators and increase the expressiveness of our approach.

An Algebraic Approach for Reasoning About Information Flow 71

Acknowledgments. Arthur Américo and Mário S. Alvim are supported by CNPq,
CAPES, and FAPEMIG. Annabelle McIver is supported by ARC grant DP140101119.

References

1. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: Proceedings of CSF, pp. 265–279
(2012)

2. McIver, A., Morgan, C., Smith, G., Espinoza, B., Meinicke, L.: Abstract channels
and their robust information-leakage ordering. In: Abadi, M., Kremer, S. (eds.)
POST 2014. LNCS, vol. 8414, pp. 83–102. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54792-8 5

3. Clark, D., Hunt, S., Malacaria, P.: Quantitative information flow, relations and
polymorphic types. J. Logic Comput. 18(2), 181–199 (2005)

4. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel
attacks. In: Proceedings of CCS, pp. 286–296. ACM (2007)

5. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: On the Bayes risk in
information-hiding protocols. J. Comput. Secur. 16(5), 531–571 (2008)

6. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 21

7. McIver, A., Meinicke, L., Morgan, C.: Compositional closure for Bayes risk in
probabilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223–235.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1 19

8. Boreale, M., Pampaloni, F.: Quantitative information flow under generic leakage
functions and adaptive adversaries. Log. Methods Comput. Sci. 11(4) (2015)

9. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: Axioms for information leakage. In: Proceedings of CSF, pp. 77–92 (2016)

10. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. J. Cryptol. 1(1), 65–75 (1988)

11. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: Additive and multiplicative notions of leakage, and their capacities. In: Pro-
ceedings of CSF, pp. 308–322. IEEE (2014)

12. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans.
Inf. Syst. Secur. 1(1), 66–92 (1998)

13. Américo, A., Alvim, M.S., McIver, A.: An algebraic approach for reasoning about
information flow. CoRR abs/1801.08090 (2018)

14. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J.
27(379–423), 625–56 (1948)

15. Massey, J.L.: Guessing and entropy. In: Proceedings of the IEEE International
Symposium on Information Theory, p. 204. IEEE (1994)

16. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage
for one-try attacks. In: Proceedings of MFPS. ENTCS, vol. 249, pp. 75–91. Elsevier
(2009)

17. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

https://doi.org/10.1007/978-3-642-54792-8_5
https://doi.org/10.1007/978-3-642-54792-8_5
https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1007/978-3-642-14162-1_19
https://doi.org/10.1007/3-540-68697-5_9

72 A. Américo et al.

18. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings of
the 12th Conference on USENIX Security Symposium. SSYM 2003, vol. 12, p. 1.
USENIX Association, Berkeley (2003)

19. Nohl, K., Evans, D., Starbug, S., Plötz, H.: Reverse-engineering a cryptographic
RFID tag. In: Proceedings of the 17th Conference on Security Symposium. SS
2008, pp. 185–193. USENIX Association, Berkeley (2008)

20. Warner, S.L.: Randomized response: a survey technique for eliminating evasive
answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965). PMID: 12261830

21. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137–150. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61996-8 37

22. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium, pp. 303–320.
USENIX (2004)

23. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356
(1969)

24. Andrés, M.E., Palamidessi, C., van Rossum, P., Smith, G.: Computing the leakage
of information-hiding systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 373–389. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12002-2 32

25. Espinoza, B., Smith, G.: Min-entropy as a resource. Inf. Comput. 226, 57–75 (2013)
26. Kawamoto, Y., Chatzikokolakis, K., Palamidessi, C.: On the compositionality of

quantitative information flow. Log. Methods Comput. Sci. 13(3) (2017)
27. Engelhardt, K.: A better composition operator for quantitative information flow

analyses. In: European Symposium on Research in Computer Security, Proceed-
ings, Part I, pp. 446–463 (2017)

28. Alvim, M.S., Chatzikokolakis, K., Kawamoto, Y., Palamidessi, C.: Leakage and
protocol composition in a game-theoretic perspective. In: Bauer, L., Küsters, R.
(eds.) POST 2018. LNCS, vol. 10804, pp. 134–159. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-89722-6 6

https://doi.org/10.1007/3-540-61996-8_37
https://doi.org/10.1007/978-3-642-12002-2_32
https://doi.org/10.1007/978-3-642-12002-2_32
https://doi.org/10.1007/978-3-319-89722-6_6
https://doi.org/10.1007/978-3-319-89722-6_6

Towards ‘Verifying’ a Water
Treatment System

Jingyi Wang1,3, Jun Sun1(B), Yifan Jia1,4, Shengchao Qin2,3(B),
and Zhiwu Xu3

1 Singapore University of Technology and Design, Singapore, Singapore
sunjun@sutd.edu.sg

2 School of Computing, Media and the Arts,
Teesside University, Middlesbrough, UK

S.Qin@tees.ac.uk
3 College of Computer Science and Software Engineering,

Shenzhen University, Shenzhen, China
4 TUV-SUD Asia Pacific Pte Ltd., Singapore, Singapore

Abstract. Modeling and verifying real-world cyber-physical systems is
challenging, which is especially so for complex systems where manually
modeling is infeasible. In this work, we report our experience on combin-
ing model learning and abstraction refinement to analyze a challenging
system, i.e., a real-world Secure Water Treatment system (SWaT). Given
a set of safety requirements, the objective is to either show that the sys-
tem is safe with a high probability (so that a system shutdown is rarely
triggered due to safety violation) or not. As the system is too compli-
cated to be manually modeled, we apply latest automatic model learning
techniques to construct a set of Markov chains through abstraction and
refinement, based on two long system execution logs (one for training and
the other for testing). For each probabilistic safety property, we either
report it does not hold with a certain level of probabilistic confidence, or
report that it holds by showing the evidence in the form of an abstract
Markov chain. The Markov chains can subsequently be implemented as
runtime monitors in SWaT.

1 Introduction

Cyber-physical systems (CPS) are ever more relevant to people’s daily life.
Examples include power supply which is controlled by smart grid systems, water
supply which is processed from raw water by a water treatment system, and
health monitoring systems. CPS often have strict safety and reliability require-
ments. However, it is often challenging to formally analyze CPS since they exhibit
a tight integration of software control and physical processes. Modeling CPS
alone is a major obstacle which hinders many system analysis techniques like
model checking and model-based testing.

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 73–92, 2018.
https://doi.org/10.1007/978-3-319-95582-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_5&domain=pdf

74 J. Wang et al.

The Secure Water Treatment testbed (SWaT) built at Singapore University of
Technology and Design [28] is a scale-down version of an industry water treatment
plant in Singapore. The testbed is built to facilitate research on cyber security for
CPS, which has the potential to be adopted to Singapore’s water treatment sys-
tems. SWaT consists of a modern six-stage process. The process begins by taking in
raw water, adding necessary chemicals to it, filtering it via an Ultrafiltration (UF)
system, de-chlorinating it using UV lamps, and then feeding it to a Reverse Osmo-
sis (RO) system. A backwash stage cleans the membranes in UF using the water
produced by RO. The cyber portion of SWaT consists of a layered communica-
tions network, Programmable Logic Controllers (PLCs), Human Machine Inter-
faces (HMIs), Supervisory Control and Data Acquisition (SCADA) workstation,
and a Historian. Data from sensors is available to the SCADA system and recorded
by the Historian for subsequent analysis. There are 6 PLCs in the system, each of
which monitors one stage using a set of sensors embedded in the relevant physi-
cal plants and controls the physical plants according to predefined control logics.
SWaT has a strict set of safety requirements (e.g., the PH value of the water com-
ing out of SWaT must be within certain specific range). In order to guarantee that
the safety requirements are not violated, SWaT is equipped with safety monitor-
ing devices which trigger a pre-defined shutdown sequence. Our objective is thus
to show that the probability of a safety violation is low and thus SWaT is reliable
enough to provide its service.

One approach to achieve our objective is to develop a model of SWaT and then
apply techniques like model checking. Such a model would have a discrete part
which models the PLC control logic and a continuous part which models the phys-
ical plants (e.g., in the form of differential equations). Such an approach is chal-
lenging since SWaT has multiple chemical processes. For example, the whole pro-
cess is composed of pre-treatment, ultrafiltration and backwash, de-chlorination,
reverse osmosis and output of the processed water. The pre-treatment process
alone includes chemical dosing, hydrochloric dosing, pre-chlorination and salt dos-
ing. Due to the complexity in chemical reactions, manual modeling is infeasible.
Furthermore, even if we are able to model the system using modeling notations
like hybrid automata [11], the existing tools/methods [9,22,23] for analyzing such
complicated hybrid models are limited.

An alternative approach which does not require manual modeling is statistical
model checking (SMC) [7,16,35]. The main idea is to observe sample system
executions and apply standard techniques like hypothesis testing to estimate
the probability that a given property is satisfied. SMC however is not ideal for
two reasons. First, SMC treats the system as a black box and does not provide
insight or knowledge of the system on why a given property is satisfied. Second,
SMC requires sampling the system many times, whereas starting/restarting real-
world CPS like SWaT many times is not viable.

Recently, there have been multiple proposals on applying model learning
techniques to automatically ‘learn’ system models from system executions and
then analyze the learned model using techniques like model checking. A variety
of learning algorithms have been proposed (e.g., [4,22,24,25]), some of which

Towards ‘Verifying’ a Water Treatment System 75

require only a few system executions. These approaches offer an alternative way
of obtaining models, when having a model of such complex systems is a must.
For instance, in [6,19,32,33], it is proposed to learn a probabilistic model first
and then apply Probabilistic Model Checking (PMC) to calculate the probability
of satisfying a property based on the learned model.

It is however far from trivial to apply model learning directly on SWaT. Exist-
ing model learning approaches have only been applied to a few small benchmark
systems. It is not clear whether they are applicable or scalable to real-world sys-
tems like SWaT. In particular, there are many sensors in SWaT, many of which
generate values of type float or double. As a result, the sensor readings induce an
‘infinite’ alphabet which immediately renders many model learning approaches
infeasible. In fact, existing model learning approaches have rarely discussed the
problem of data abstraction. To the best of our knowledge, the only exception
is the LAR method [32], which proposes a method of combining model learning
and abstraction/refinement. However, LAR requires many system executions as
input, which is infeasible in SWaT. In this work, we adapt the LAR method
so that we require only two long sequences of system execution logs (one for
training and the other for testing) as input. We successfully ‘verified’ most of
the properties for SWaT this way. For each property, we either report that the
property is violated with a certain confidence, or report that the property is sat-
isfied, in which case we output a model in the form of an abstract Markov chain
as evidence, which could be further validated by more system runs or expert
review. Note that in practice these models could be implemented as runtime
monitors in SWaT.

The remainders of the paper are organized as follows. Section 2 presents back-
ground on SWaT, our objectives as well as some preliminaries. Section 3 details
our learning approach. We present the results in Sect. 4 and conclude with related
work in Sect. 5.

2 Background

In this section, we present the target SWaT system and state our motivation
and goals.

System Overview. The system under analysis is the Secure Water Treatment
(SWaT) built at the iTrust Center in Singapore University of Technology and
Design [20]. It is a testbed system which scales down but fully realized the
functions of a modern water treatment system in cities like Singapore. It enables
researchers to better understand the principles of cyber-physical Systems (CPS)
and further develop and experiment with smart algorithms to mitigate potential
threats and guarantee its safety and reliability.

SWaT takes raw water as input and executes a series of treatment and out-
put recycled water eventually. The whole process contains 6 stages as shown in
Fig. 1. The raw water is taken to the raw water tank (P1) and then pumped to
the chemical tanks. After a series of chemical dosing and a static mixer (P2),

76 J. Wang et al.

Fig. 1. Six stages of water treatment in SWaT [20].

the water is filtered by an Ultra-filtration (UF) system (P3) and UV lamps (P4).
It is then fed to a Reverse Osmosis (RO) system (P5) and a backwash process
cleans the membranes in UF using the water produced by RO (P6). For each
stage, a set of sensors are employed to monitor the system state. Meanwhile, a
set of actuators controlled by the programming logic controller (PLC) are built
in to manipulate the state of the physical process. The readings of sensors are
collected and sent periodically to the PLC, while the PLC returns a set of actu-
ators values according to the control logics and the current sensor values. For
instance, the sensor LIT101 is used to monitor the water level of the Raw Water
Tank. The PLC reads its value and decides whether to set a new value to the
actuators. For example if LIT101 is beyond a threshold, the PLC may deactivate
the valve MV 101 to stop adding water into the tank.

SWaT has many built-in safety mechanisms enforced in PLC. Each stage is
controlled by local dual PLCs with approximately hundreds of lines of code. In
case one PLC fails, the other PLC takes over. The PLC inspects the received
and cached sensor values and decides the control strategy to take. Notice that
the sensor values are accessible across all PLCs. For example, the PLC of tank 1
may decide whether to start pump P101 according to the value of LIT301, i.e.,
the water level of tank 3. In case the controller triggers potential safety violations
of the system according to the current values of the sensors, the controller may
shut down the system to ensure the safety. The system then needs to wait for
further inspection from technicians or experts. Shutting down and restarting

Towards ‘Verifying’ a Water Treatment System 77

Table 1. Safety properties.

Plant Sensor Description Operating range points

P1 FIT101 Flow Transmitter (EMF) 2.5–2.6 m3/h

LIT101 Level Transmitter (Ultrasonic) 500–1100 mm

P2 AIT201 Analyser (Conductivity) 30–260µS/cm

AIT202 Analyser (pH) 6–9

AIT203 Analyser (ORP) 200–500 mV

FIT201 Flow Transmitter (EMF) 2.4–2.5 m3/h

P3 DPIT301 DP Transmitter 0.1–0.3 Bar

FIT301 Flow Transmitter (EMF) 2.2–2.4 m3/h

LIT301 Level Transmitter (Ultrasonic) 800–1000 mm

P4 AIT401 Analyser (Hardness) 5–30 ppm

AIT402 Analyser 150–300 mV

FIT401 Flow Transmitter (EMF) 1.5–2 m3/h

LIT401 Level Transmitter (Ultrasonic) 800–1000 mm

P5 AIT501 Analyser (pH) 6–8

AIT502 Analyser (ORP) 100–250 mV

AIT503 Analyser (Cond) 200–300µS/cm

AIT504 Analyser (Cond) 5–10µS/cm

FIT501 Flow Transmitter 1–2 m3/h

FIT502 Flow Transmitter (Paddlewheel) 1.1–1.3 m3/h

FIT503 Flow Transmitter (EMF) 0.7–0.9 m3/h

FIT504 Flow Transmitter (EMF) 0.25–0.35 m3/h

PIT501 Pressure Transmitter 2–3 Bar

PIT502 Pressure Transmitter 0–0.2 Bar

PIT503 Pressure Transmitter 1–2 Bar

SWaT however is highly non-trivial, which takes significant costs in terms of
both time and resource, especially in the real-world scenario. Thus, instead of
asking whether a safety violation is possible, the question becomes: how often a
system shutdown is triggered due to potential safety violations?

In total, SWaT has 25 sensors (for monitoring the status) and 26 actuators
(for manipulating the plants). Each sensor is designed to operate in a certain safe
range. If a sensor value is out of the range, the system may take actions to adjust
the state of the actuators so that the sensor values would go back to normal.
Table 1 shows all the sensors in the 6 plants, their operation ranges. The sensors
has 3 categories distinguished by their prefixes. For instance, AITxxx stands for
Analyzer Indicator/Transmitter; DPITxxx stands for Differential Pressure Indi-
cator/Transmitter; FITxxx stands for Flow Indicator/Transmitter; LITxxx
stands for Level Indicator/Transmitter.

78 J. Wang et al.

SWaT is also equipped with a historian which records detailed system exe-
cution log, including all sensor readings and actuator status. Table 2 shows a
truncated system log with part of sensors. Each row is the sensor readings at
a time point and each row is collected every millisecond. Notice that different
sensors may have different collection period. The table is filled such that a sen-
sor keeps its old value if no new value is collected, e.g., AIT202 in Table 2. A
dataset of SWaT has been published by the iTrust lab in Singapore University
of Technology and Design [10,27]. The dataset contains the execution log of 11
consecutive days (i.e., 7 days of normal operations and another 4 days of the
system being under various kind of attacks [10,27]).

Table 2. A concrete system log with the last column being the abstract system log
after predicate abstraction with predicate LIT101 > 1100.

FIT101 LIT101 MV 101 P101 P102 AIT201 AIT202 AIT203 FIT201 LIT101 > 1100

2.470294 261.5804 2 2 1 244.3284 8.19008 306.101 2.471278 0

2.457163 261.1879 2 2 1 244.3284 8.19008 306.101 2.468587 0

2.439548 260.9131 2 2 1 244.3284 8.19008 306.101 2.467305 0

2.428338 260.285 2 2 1 244.3284 8.19008 306.101 2.466536 0

2.424815 259.8925 2 2 1 244.4245 8.19008 306.101 2.466536 0

2.425456 260.0495 2 2 1 244.5847 8.19008 306.101 2.465127 0

2.472857 260.2065 2 2 1 244.5847 8.19008 306.101 2.464742 0

Objectives. As discussed above, each sensor reading is associated with a safe
range, which constitutes a set of safety properties (i.e., reachability). We remark
that we focus on safety properties concerning the stationary behavior of the sys-
tem in this work rather than those properties concerning the system initializing
or shutting down phase. In general, a stationary safety property (refer to [6]
for details) takes the form S≤r(ϕ) (where r is the safety threshold and ϕ is an
LTL formula). In our particular setting, the property we are interested in is that
the probability that a sensor is out of range (either too high or too low) in the
long term is below a threshold. Our objective is to ‘verify’ whether a given set of
stationary properties are satisfied or not.

Manual modeling of SWaT is infeasible, with 6 water tanks interacting with
each other, plenty of chemical reactions inside the tanks and dozens of valves
controlling the flow of water. A group of experts from Singapore’s Public Utility
Board have attempted to model SWaT manually but failed after months of effort
because the system is too complicated. We remark that without a system model,
precisely verifying the system is impossible. As discussed above, while statistical
model checking (SMC) is another option to provide a statistical measure on the
probability that a safety property is satisfied, it is also infeasible in our setting.

Thus, in this work, we aim to verify the system by means of model learning.
That is, given a safety property, either we would like to show that the property is
violated with certain level of confidence or the property is satisfied with certain

Towards ‘Verifying’ a Water Treatment System 79

evidence. Ideally, the evidence is in the form of a small abstract model, at the
right level-of-abstraction, which could be easily shown to satisfy the property.
The advantage of presenting the model as the evidence is that the model could be
further validated using additional data or through expert review. Furthermore,
the models can serve other purposes. Firstly, the models could be implemented
as runtime monitors to detect potential safety violations at runtime. Secondly,
we could also prevent future safety violations by predictive analysis based on the
model and take early actions.

3 Our Approach

We surveyed existing model learning algorithms (for the purpose of system
verification through model checking) and found most existing model learning
approaches [6,19,33] are inapplicable in our setting. The reason is that the real-
typed (float or double) variables in SWaT lead to an infinite alphabet. The
only method which seems feasible is the recently proposed model learning app-
roach called LAR (short for learning, abstraction and refinement) documented
in [32], which allows us to abstract sensor readings in SWaT and automatically
learn models at a proper level of abstraction based on a counterexample guided
abstraction refinement (CEGAR) framework. However, LAR was designed to
take many independent execution logs as input whereas we have only few long
system logs of SWaT. We thus adapt LAR to sLAR which learns system models
from a single long system log instead. In the following, we briefly explain how
sLAR works. Interested readers are referred to [32] for the detailed explanation
of LAR.

Our overall approach is shown in Fig. 2. Given a training log and a safety
property, we first construct an abstract log through predicate abstraction and
use a learner to learn a model based on the abstract log. Then, the safety prop-
erty is verified against the learned model. If the verification returns true, we
report true and output the learned model as evidence. Otherwise, we test the

Fig. 2. Overall approach.

80 J. Wang et al.

property using a validator on the testing log. If the validator finds that the prop-
erty is violated, we report safety violation together with the level of confidence
we achieve. Otherwise, we use a refiner to refine the abstraction and start over
from the learner. Although sLAR is based on LAR, our goal of this case study
is to verify stationary properties of SWaT and construct a stationary proba-
bilistic model from one single long system log, which is different from LAR.
Consequently, the procedures to verify the property and validate the result of
the verifier are different. In the following, we present each part of our approach
in details.

3.1 The Model

From an abstract point of view, SWaT is a system composed of n variables
(including sensors, actuators as well as those variables in the PLC control pro-
gram) which capture the system status. A system observation σ is the valuation
of all variables at a time point t. A system log L = σt0σt1 · · · σtk is a sequence of
system observations collected from time point t0 to tk. Given a system log L, we
write L(t) = σt to denote the system observation at time t and Lp(t) to denote
the system observations before t, i.e., from t0 to t. In this case study, we use L
and Lt to denote the training log and testing log respectively. We also use T1

and T2 to denote their lasting time respectively.
Several machine learning algorithms exist to learn a stationary system model

from a single piece of system log [6,24,33]. However, applying these algorithms
directly is infeasible because of the real-typed (float or double) variables in
SWaT, since system observations at different time points are almost always
different and thus the input alphabet for the learning algorithms is ‘infinite’.
To overcome this problem, our first step is to abstract the system log through
predicate abstraction [29]. Essentially, a predicate is a Boolean expression over
a set of variables. Given a system log and a set of predicates, predicate abstrac-
tion turns the concrete variable values to a bit vector where each bit represents
whether the corresponding predicate is true or false. For example, given a pred-
icate LIT101 > 1100, the concrete system log on the left of Table 2 becomes the
abstract system log on the right.

The models we learn from the log are in the form of discrete-time Markov
Chain (DTMC), which is a widely used formalism for modeling stochastic behav-
iors of complex systems. Given a finite set of states S, a probability distribution
over S is a function μ : S → [0, 1] such that

∑
s∈S μ(s) = 1. Let Distr(S) be the

set of all distributions over S. Formally,

Definition 1. A DTMC M is a tuple 〈S, ıinit, P r〉, where S is a count-
able, nonempty set of states; ıinit : S → [0, 1] is the initial distribution
s.t.

∑
s∈S ıinit(s) = 1; and Pr : S → Distr(S) is a transition function such

that Pr(s, s′) is the probability of transiting from state s to state s′.

We denote a path starting with s0 by πs0 = 〈s0, s1, s2, · · · , sn〉, which is a
sequence of states in M, where Pr(si, si+1) > 0 for every 0 ≤ i < n. Further-
more, we write Paths

fin(M) to denote the set of finite paths of M starting with s.

Towards ‘Verifying’ a Water Treatment System 81

We say that sj ∈ πs0 if sj occurs in πs0 . In our setting, we use a special form
of DTMC, called stationary DTMC (written as sDTMC) to model the system
behaviors in the long term. Compared to a DTMC, each state in an sDTMC rep-
resents a steady state of the system and thus there is no prior initial distribution
over the states.

Definition 2. An sDTMC is irreducible if for every pair of states si, sj ∈ S,
there exists a path πsi such that sj ∈ πsi .

Intuitively, an sDTMC is irreducible if there is path between every pair of
states. For an irreducible sDTMC, there exists a unique stationary probability
distribution which describes the average time a Markov chain spends in each
state in the long run.

Definition 3. Let μj denote the long run proportion of time that the chain spends
in state sj: μj = limn→∞ 1

n

∑n
m=1 I{Xm = sj |X0 = si} with probability 1, for

all states si. If for each sj ∈ S, μj exists and is independent of the initial state si,
and

∑
sj∈S μj = 1, then the probability distribution μ = (μ0, μ1, · · ·) is called the

limiting or stationary or steady-state distribution of the Markov chain.

In this work, we ‘learn’ a stationary and irreducible sDTMC to model the
long term behavior of SWaT. By computing the steady-state distribution of the
learned sDTMC, we can obtain the probability that the system is in the states
of interests in the long run.

3.2 Learning Algorithm

After predicate abstraction, the training log becomes a sequence of bit vectors,
which is applicable for learning. We then apply an existing learning algorithm
in [24] to learn a stationary system model. The initial learned model is in the
form of a Probabilistic Suffix Automata (PSA) as shown in Fig. 3, where a system
state in the model is identified by a finite history of previous system observations.
A PSA is an sDTMC by definition. Each state in a PSA is labeled by a finite
memory of the system. The transition function between the states are defined
based on the state labels such that there is a transition s × σ → t iff l(t) is a
suffix of l(s) · σ, where l(s) is the string label of s. A walk on the underlying
graph of a PSA will always end in a state labeled by a suffix of the sequence.
Given a system log Lp(t) at t, a unique state in the PSA can be identified by
matching the state label with the suffixes of Lp(t). For example, · · · 010 is in
state labeled by 0 and if we observe 1 next, the system will go to state labeled
by 01.

To learn a PSA, we first construct an intermediate tree representation called
Probabilistic Suffix Tree (PST), namely tree(L) = (N, root, E) where N is the
set of suffixes of L; root = 〈〉; and there is an edge (π1, π2) ∈ E if and only if
π2 = 〈e〉 · π1. Based on different suffixes of the execution, different probabilistic
distributions of the next observation will be formed. The central question is how
deep should we grow the PST. A deeper tree means that a longer memory is

82 J. Wang et al.

〈〉 (0.5, 0.5)

0 (0.5, 0.5) 1 (0.5, 0.5)

00(0.25, 0.75) 10 (0.75, 0.25)

00

10 1

0:0.25

1:0.750:0.75

1:0.25

0:0.5

1:0.5

Fig. 3. An example stationary model. The left is the PST representation, where each
state is associated with a label and a distribution of the next observation. The right is
the corresponding PSA model where leaves are taken as states.

Algorithm 1. Learn PST

1: Initialize T to be a single root node representing 〈〉;
2: Let S = {σ|fre(σ, α) > ε} be the candidate suffix set;
3: while S is not empty do
4: Take any π from S; Let π′ be the longest suffix of π in T ;

5: (B) If fre(π, α) · ∑
σ∈Σ Pr(π, σ) · log Pr(π,σ)

Pr(π′,σ)
≥ ε

add π and all its suffixes which are not in T to T ;
6: (C) If fre(π, α) > ε, add 〈e〉 · π to S for every e ∈ Σ if fre(〈e〉 · π, α) > 0;
7: end while

used to predict the distribution of the next observation. The detailed algorithm
is shown in Algorithm 1. The tree keeps growing as long as adding children to a
current leaf leads to a significant change (measured by K-L divergence) in the
probability distribution of next observation (line 5). After we obtain the PST,
we transform it into a PSA by taking the leaves as states and define transitions
by suffix matching. We briefly introduce the transformation here and readers are
referred to Appendix B of [24] for more details. For a state s and next symbol
σ, the next state s′ must be a suffix of sσ. However, this is not guaranteed to
be a leaf in the learned T . Thus, the first step is to extend T to T ′ such that
for every leaf s, the longest prefix of s is either a leaf or an internal node in
T ′. The transition functions are defined as follows. For each node s in T ∩ T ′

and σ ∈ Σ, let Pr′(s, σ) = Pr(s, σ). For each new nodes s′ in T ′ − T , let
Pr′(s′, σ) = Pr(s, σ), where s is deepest ancestor of s′ in T . An example PST
and its corresponding PSA after transformation is given in Fig. 3. Readers are
referred to [24] for details.

Towards ‘Verifying’ a Water Treatment System 83

3.3 Verification

Once we learn an sDTMC model, we then check whether the learned model
satisfies the given safety property. To do so, we first compute the steady-state
distribution of the learned model. There are several methods we could use for the
calculation including power methods, solving equations or finding eigenvector [2].
The steady-state distribution tells the probability that a state occurs in the long
run. Once we obtain the steady-state distribution of the learned model, we could
then calculate the probability that the system violates the safety property in the
long run by summing up the steady-state probability of all unsafe states. Assume
μ is the steady-state distribution, Su is the set of unsafe states in the learned
model and Pu is the probability that the system is in unsafe states in the long
run. We calculate the probability of unsafe states as Pu =

∑
si∈Su

μ{si}. We
then check whether the learned model satisfies the safety property by comparing
whether Pu is beyond the safety threshold r. Take the PSA model in Fig. 3 as
example. The steady-state distribution over states [1, 00, 10] is [0.4, 0.31, 0.29].
States 1 is the unsafe state. The steady-state probability that the system is in
unsafe states is thus 0.4.

There are two kinds of results. One is that Pu is below the threshold r,
which means the learned model under current abstraction level satisfies the safety
requirement. Then, we draw the conclusion that the system is ‘safe’ and present
the learned model as evidence. The soundness of the result can be derived if the
learned abstract model simulates the actual underlying model [12]. However,
since the model is obtained through learning from limited data, it is not guaran-
teed that the result is sound. Nevertheless, the model can be further investigated
by validating it against future system logs or reviewed by experts, which we leave
to future works. The other result is that the learned model does not satisfy the
safety requirement, i.e., the probability of the system being in an unsafe state
in the steady-state is larger than the threshold. In such a case, we move to the
next step to validate whether the safety violation is introduced by inappropriate
abstraction [32] or not.

3.4 Abstraction Refinement

In case we learn a model which shows that the probability of the system being
in unsafe states in long term is beyond the safety threshold, we move on to
validate whether the system is indeed unsafe or the violation is spurious due to
over-abstraction. For spuriousness checking, we make use of a testing log which
is obtained independently and compute the probability of the system being in
unsafe states, which is denoted by P t

u. The testing log has the same format with
the training log. We estimate P t

u by calculating the frequency that the system is
in some unsafe states in the testing log. If P t

u is larger than the threshold r, we
report the safety violation together with a confidence by calculating the error
bound [26]. Otherwise, we conclude that the violation is caused by too coarse
abstraction and move to the next step to refine the abstraction.

84 J. Wang et al.

Algorithm 2. Algorithm CountST (MP , Lt)
1: Augment each transition (si, sj) in MP with a number #(si, sj) recording how many

times we observe such a transition in Lt and initialize them to 0;

2: Let t0 be the first time that suffix(Lt(t0)) matches a label of a state in MP and a time

pointer t = t0;

3: while t < T2 do

4: Refer to MP for the current state st;

5: Take Lt(t + 1) from Lt and refer to MP to get the next state st+1;

6: Add #(st, st+1) by 1, add t by 1;

7: end while

Let N be the total number of states, and n be the number of unsafe states
in the testing log. Let Y = X1 +X2 + · · ·+XN , where Xi is a Bernoulli random
variable on whether a state is unsafe. The confidence of the safety violation
report is then calculated as α = 1−P{Y = n|Pu < r}. For example, for property
LIT101 > 1000, if we observe 1009 times (n) that LIT101 is larger than 1000
and the total length of the testing log is 100000 (N), then the estimated P t

u is
1009/100000 = 0.01009.

If we conclude that the current abstraction is too coarse, we continue to refine
the abstraction by generating a new predicate following the approach in [32]. The
predicate is then added to the set of predicates to obtain a new abstract system
log based on the new abstraction. The algorithm then starts over to learn a new
model based on the new abstract log. Next, we introduce how to generate a new
predicate in our setting.

Finding Spurious Transitions. A spurious transition in the learned model is a
transition whose probability is inflated due to the abstraction. Further, a tran-
sition (si, sj) is spurious if the probability of observing si transiting to sj in
the actual system PM(si, sj) is actually smaller than PMP

(si, sj) in the learned
model [32]. Without the actual system model, we estimate the actual transition
probability based on the testing log. Given the learned model MP and the test-
ing log Lt, we count the number of times si is observed in Lt (denoted by #si)
and the number of times the transition from si to sj in is observed Lt (denoted
by #(si, sj)) using Algorithm 2. The actual transition probability P (si, sj) is
estimated by P̂M(si, sj) = #(si, sj)/#si. Afterwards, we identify the transi-
tions satisfying PMP

(si, sj) − P̂M(si, sj) > 0 as spurious transitions and order
them according to the probability deviation.

Predicate Generation. After we obtain a spurious transition (si, sj), our next
step is to generate a new predicate to eliminate the spuriousness. The generated
predicate is supposed to separate the concrete states of si which transit to sj

(positive instances) from those which do not (negative instances). We collect
the dataset for classification in a similar way to Algorithm 2 by iterating the
testing log. If si is observed, we make a decision on whether it is a positive

Towards ‘Verifying’ a Water Treatment System 85

Algorithm 3. Algorithm sLAR(L,Lt, S≤r(ϕ))

1 let P be the predicates in ϕ;
2 while true do
3 construct abstract trace LP based on training log L and P ;
4 apply Algorithm 1 to learn a stationary model MP based on LP ;
5 check MP against ϕ;
6 if MP |= ϕ then
7 report ϕ is verified, the model MP ;
8 return;

9 use the testing log Lt to validate the property violation;
10 if validated then
11 report ϕ is violated with confidence;
12 return;

13 identify the most spurious transitions 〈s, s′〉 in MP ;
14 collect labeled dataset D+(s, MP , Lt) and D−(s, MP , Lt);
15 apply SVM to identify a predicate p separating the two sets;
16 add p into P ;

or negative instance by telling whether its next state is sj . With the labeled
dataset, we then apply a supervised classification technique in machine learning,
i.e., Support Vector Machines (SVM [1,5]) to generate a new predicate. Then,
we add the predicate for abstraction and start a new round.

3.5 Overall Algorithm

The overall algorithm is shown as Algorithm3. The inputs of the algorithm
are a system log L for training, a system log Lt for testing, a property in the
form of S≤r(ϕ). During each iteration of the loop from line 2 to 16, we start
with constructing the abstract trace based on L and a set of predicates P . The
initial set of predicates for abstraction is the set of predicates in the property.
Next, an abstract sDTMC MP is learned using Algorithm1. We then verify
MP against the property. If the property is verified, the system is verified and
MP is presented as the evidence. Otherwise, we validate the verification result
using a testing log Lt at line 9. If the test passes, we report a safety violation
together with the confidence. Otherwise, at line 13, we identify the most spurious
transition and obtain a new predicate at line 15. After adding the new predicate
into P , we restart the process from line 2. If SVM fails to find a classifier for
all the spurious transitions, Algorithm 3 terminates and reports the verification
is unsuccessful. Otherwise, it either reports true with a supporting model as
evidence or a safety violation with confidence.

86 J. Wang et al.

4 Case Study Results

In the following, we present our findings on applying the method documented in
Sect. 3 to SWaT. Given the 11 day system log [10], we take the 7 day log under
normal system execution and further split it into two parts for training (4 days)
and testing (3 days) respectively. The main reason we split them into training
and testing log is to avoid over-fitting problem without the testing data. Note
that the historian makes one record every second. The training log and testing
log contains 288000 and 208800 system observations respectively. The properties
we verified are whether the steady-state probability that a sensor runs out of its
operating range is beyond or below a threshold. Let Ptrain, Plearn and Ptest be
the probability that a sensor is out of operating range in the training log, learned
models and the testing log respectively. In our study, we set the threshold r in
each property as 20 percent larger than the probability observed in the actual
system for a long time, during which the system functioned reliably. The idea
is to check whether we can establish some underlying evidence to show that the
system would satisfy the property indeed.

The experiment results of all sensors are summarized in Table 3. The detailed
implementation and models are available in [30]. The first column is the plant
number. Column 2 and 3 are the sensors and their properties to verify which are
decided by their operating ranges. The following 4 columns show the probability
that a sensor value is out of operating range in the training log, the safety
threshold, the probability in the learned model and the probability in the testing
log respectively. Column ‘result’ is the verification result of the given safety
properties. ‘SUC’ means the property is successfully verified. ‘FAL’ means the
property is not verified. ‘VIO’ means the property is violated. Column ‘model
size’ is the number of states in the learned model. Column ε is the parameter we
use in the learning parameter. The last column is the running time.

Summary of Results. In total, we managed to evaluate 47 safety properties of 24
sensors. Notice that the sensor from P6 is missing in the dataset. Among them,
19 properties are never observed to be violated in the training log. We thus could
not learn any models regarding these properties and conclude that the system is
safe from the limited data we learn from. This is reasonable as according to the
dataset, the probability violating the property is 0. For the rest 28 properties,
we successfully verified 24 properties together with a learned abstract Markov
chain each and reported 4 properties as safety violation with a confidence.

We have the following observations from the results. For those properties
we successfully verified, we managed to learn stationary abstract Markov chains
which closely approximate the steady-state probability of safety violation (evalu-
ated based on the probability computed based on the testing log). It means that
in these cases, sLAR is able to learn a model that is precise enough to capture
how the sensor values change. Examples are FIT101 > 2.6, LIT301 > 1000,
LIT301 < 800 and LIT401 > 1000. Besides, it can be observed that the learned
abstract models are reasonably small, i.e., usually with less than 100 states and
many with only a few states. This is welcomed since a smaller model is easier to

Towards ‘Verifying’ a Water Treatment System 87

Table 3. Experiment results.

Plant Sensor Property Ptrain r Plearn Ptest Result Model size ε Time

P1 FIT101 >2.6 0.2371 0.2845 0.2371 0.233 SUC 26 0.01 300

<2.5 0.5092 0.611 0.5092 0.5245 SUC 31 0.01 298

LIT101 >800 0.1279 0.1535 0.1271 0.1141 SUC 130 0.01 4

<500 0.1485 0.1782 0.147 0.0977 SUC 54 0.01 2

P2 AIT201 >260 0.6044 0.7253 0.647 1 SUC 2 0.01 31

<250 0 – – – – – – –

AIT202 >9 0 – – – – – – –

<6 0 – – – – – – –

AIT203 >500 0.0362 0.043 0.0363 0 SUC 2 0.01 27

<420 0.7654 0.9185 0.7654 1 SUC 2 0.01 32

FIT201 >2.5 0 – – – – – – –

<2.4 0.2577 0.3092 0.2567 0.2529 SUC 59 0.01 4

P3 DPIT301 >30 0 – – – – – – –

<10 0.2006 0.2407 0.1991 0.1799 SUC 119 0.01 4

FIT301 >2.4 0 – – – – – – –

<2.2 0.2217 0.266 0.2209 0.1756 SUC 42 0.01 4

LIT301 >1000 0.134 0.1608 0.135 0.1299 SUC 60 0.01 4

<800 0.0877 0.1052 0.0876 0.0609 SUC 69 0.01 2

P4 AIT401 >100 0.7156 0.8587 1 1 VIO 2 0.002 35

<5 0.2844 0.3413 0 1 SUC 2 0.01 33

AIT402 >250 0 – – – – – – –

<150 0 – – – – – – –

FIT401 >2 0 – – – – – – –

<1.5 0.0117 0.014 0 0 SUC 2 0.01 37

LIT401 >1000 0.0035 0.0042 0.0037 0.0034 SUC 208 0.002 455

<800 0.1227 0.1472 0.123 0.079 SUC 70 0.01 2

P5 AIT501 >8 0 – – – – – – –

<6 0 – – – – – – –

AIT502 >250 0 – – – – – – –

<100 0 – – – – – – –

AIT503 300 0 – – – – – – –

<200 0 – – – – – – –

AIT504 >10 0.9983 1 0.9983 1 SUC 2 0.001 37

<5 0 – – – – – – –

FIT501 >2 0 – – – – – – –

<1 0.011 0.0132 0 0 SUC 3 0.01 38

FIT502 >1.3 0.0356 0.0427 0.0361 0.3241 SUC 9 0.01 15

<1.1 0.0117 0.014 0 0 SUC 2 0.01 38

FIT503 >0.9 0 – – – – – – –

<0.7 0.0117 0.014 0 0 SUC 2 0.01 38

FIT504 >0.35 0 – – – – – – –

<0.25 0.0117 0.014 0 0 SUC 2 0.01 38

PIT501 >30 0.989 1 1 1 VIO 3 0.01 38

<20 0.011 0.0132 0 0 SUC 3 0.01 38

PIT502 >0.2 0.989 1 1 1 VIO 3 0.01 37

PIT503 >20 0.989 1 1 1 VIO 3 0.01 37

<10 0.011 0.0132 0 0 SUC 3 0.01 38

88 J. Wang et al.

comprehend and thus more meaningful for expert review or to be used as a run-
time monitor. An underlying reason (why a small model is able to explain why a
property is satisfied) is perhaps the system is built such that the system modifies
its behavior way before a safety violation is possible. Besides, we identify two
groups of states which are of special interest. One of them are FIT401 < 1.5,
FIT502 < 1.1, FIT503 < 0.7 and FIT504 < 0.25. The 4 properties have the
same probability 0.0117 of safety violation in the training log and 0 in the test-
ing log. We learn the same models for all of them and Plearn equals 0 which
is the same as the testing log. We could observe that these sensors have tight
connections with each other. Moreover, these sensors are good examples that
our learned models generalize from the training data and are able to capture
the long run behaviors of the system with Plearn equals Ptest, which is 0. The
same goes for the other group of properties, i.e., FIT501 < 1, PIT501 < 20 and
PIT503 < 10.

For those properties we reported as safety violations, i.e., AIT401 > 100,
PIT501 > 30, PIT502 > 0.2 and PIT503 > 20, a closer look reveals that
these sensors all have high probability of violation (either 0.7156 or 0.989) in the
training log. Our learned models report that the probability of violation in the
long term is 1, which equals the probability in the testing log in all cases. This
shows that our learned models are precise even though the properties are not
actually satisfied.

Discussions. (1) We give a 20% margin for the safety threshold in the above
experiments. In practice, the actual safety threshold could be derived from the
system reliability requirement. In our experiments, we observe that we could
increase the threshold to obtain a more abstract model and decrease the thresh-
old to obtain a more detailed model. For instance, we would be more likely to
verify a property with a loose threshold. (2) The parameter ε in Algorithm 1
effectively controls the size of learned model. A small ε used in the model learn-
ing algorithm leads to a learned model with more states by growing a deeper
tree. However, it is sometimes non-trivial to select a good ε [33]. In our experi-
ment, we use 0.01 as the basic parameter. If we can not learn a model (the tree
does not grow), we may choose a more strict ε. Examples are LIT401 > 1000
and AIT504 > 10. This suggests one way to improve existing model learning
algorithms. (3) Each sensor has a different collection period and most of them are
changing very slowly, thus the data is not all meaningful to us and we only take
a data point from the dataset every minute to reduce the learning cost. (4) One
possible reason for the safety violation cases is that the system has not exhibited
stationary behaviors within 7 days as the probability of safety violations is 1 in
the testing data for all these cases.

Limitation and Future Work. Model learning will correctly learn an underlying
model in the limit [18,24]. However, since our models are learned from a lim-
ited amount of data from a practical point of view, they are not guaranteed to
converge to the actual underlying models. One of our future work is how to fur-
ther validate and update the learned models from more system logs. In general,

Towards ‘Verifying’ a Water Treatment System 89

it is a challenging and interesting direction to derive a confidence for the learned
model (as a machine learning problem) or the verification results based on the
learned models (as a model checking problem) given specific training data. Or
alternatively, how can we derive a requirement on the training data to achieve a
certain confidence. Some preliminary results on the number of samples required
to achieve an error bound are discussed in [13].

5 Conclusion and Related Work

In this work, we conducted a case study to automatically model and verify a
real-world water treatment system testbed. Given a set of safety properties of
the system, we combine model learning and abstraction refinement to learn a
model which (1) describes how the system would evolve in the long run and
(2) verifies or falsifies the properties. The learned models could also be used for
further investigation or other system analysis tasks such as probabilistic model
checking, simulation or runtime monitoring.

This work is inspired by the recent trend on adopting machine learning to
automatically learn models for model checking. Various kinds of model learning
algorithms have been investigated including continuous-time Markov Chain [25],
DTMC [6,19,31,33,34] and Markov Decision Process [3,18]. In particular, this
case study is closely related to the learning approach called LAR documented
in [32], which combines model learning and abstraction refinement to automat-
ically find a proper level of abstraction to treat the problem of real-typed vari-
ables. Our algorithm is a variant of LAR, which adapts it to the setting of
stationary probabilistic models [6].

This case study aims to formally and automatically analyze a real-world
CPS by modeling and verifying the physical environment probabilistically. There
are several related approaches for this goal. One popular way is to model the
CPS as hybrid automata [11]. In [23], a theorem prover for hybrid systems is
developed. dReach is another tool to verify the δ-complete reachability analysis
of hybrid system [9]. Nevertheless, they both require users to manually write a
hybrid model using differential dynamic logic, which is highly non-trivial. In [22],
the authors propose to learn hybrid models from a sample of observations. In
addition, HyChecker borrows the idea of concolic testing to hybrid system based
on a probabilistic abstraction of the hybrid model and achieves faster detection
of counterexamples [15]. sLAR is different as it is fully automatic without relying
on a user-provided model. SMC is another line of work which does not require
a model beforehand [7]. However, it requires sampling the system many times.
This is unrealistic for our setting since shutting down and restarting SWaT yield
significant cost. Besides, SMC does not provide insight on how the system works
but only provides the verification result. Our learned models however can be
used for other system analysis tasks.

Several case studies are related to our case study in some way. In [17], the
authors applied integrated simulation of the physical part and the cyber part to
an intelligent water distribution system. In [8], the authors use model learning

90 J. Wang et al.

to infer models of different software components for TCP implementation and
apply model checking to explore the interaction of different components. In [14],
a case study on self-driving car is conducted for the analysis of parallel scheduling
for CPS. In [21], automata learning is applied in different levels of a smart grid
system to improve the power management. As far as we know, our work is the
first on applying probabilistic model learning for verifying a real-world CPS
probabilistically.

Acknowledgement. The work was supported in part by Singapore NRF Award
No. NRF2014NCR-NCR001-40, NSFC projects 61772347, 61502308, STFSC project
JCYJ20170302153712968.

References

1. Abeel, T., Van de Peer, Y., Saeys, Y.: Java-ml: a machine learning library. J. Mach.
Learn. Res. 10, 931–934 (2009)

2. Bass, R.F.: Stochastic Processes, vol. 33. Cambridge University Press, Cambridge
(2011)

3. Brázdil, T., et al.: Verification of Markov decision processes using learning algo-
rithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–
114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

4. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS,
vol. 862, pp. 139–152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58473-0 144

5. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

6. Chen, Y., et al.: Learning Markov models for stationary system behaviors. In:
Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 216–230.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3 22

7. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1–12. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1 1

8. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6 25

9. Gao, S., Kong, S., Chen, W., Clarke, E.: Delta-complete analysis for bounded
reachability of hybrid systems. arXiv preprint arXiv:1404.7171 (2014)

10. Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in
the design of secure water treatment systems. In: Havarneanu, G., Setola, R.,
Nassopoulos, H., Wolthusen, S. (eds.) CRITIS 2016. LNCS, vol. 10242, pp. 88–
99. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71368-7 8

11. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series (Series F: Com-
puter and Systems Sciences), vol. 170, pp. 265–292. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-642-59615-5 13

https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/978-3-642-28891-3_22
https://doi.org/10.1007/978-3-642-24372-1_1
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
http://arxiv.org/abs/1404.7171
https://doi.org/10.1007/978-3-319-71368-7_8
https://doi.org/10.1007/978-3-642-59615-5_13

Towards ‘Verifying’ a Water Treatment System 91

12. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70545-1 16

13. Jegourel, C., Sun, J., Dong, J.S.: Sequential schemes for frequentist estimation
of properties in statistical model checking. In: Bertrand, N., Bortolussi, L. (eds.)
QEST 2017. LNCS, vol. 10503, pp. 333–350. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66335-7 23

14. Kim, J., Kim, H., Lakshmanan, K., Rajkumar, R.R.: Parallel scheduling for cyber-
physical systems: analysis and case study on a self-driving car. In: Proceedings
of the ACM/IEEE 4th International Conference on Cyber-Physical Systems, pp.
31–40. ACM (2013)

15. Kong, P., Li, Y., Chen, X., Sun, J., Sun, M., Wang, J.: Towards concolic testing for
hybrid systems. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 460–478. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 28

16. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. RV
10, 122–135 (2010)

17. Lin, J., Sedigh, S., Miller, A.: Towards integrated simulation of cyber-physical sys-
tems: a case study on intelligent water distribution. In: 2009 Eighth IEEE Interna-
tional Conference on Dependable, Autonomic and Secure Computing, DASC 2009,
pp. 690–695. IEEE (2009)

18. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learn-
ing Markov decision processes for model checking. arXiv preprint arXiv:1212.3873
(2012)

19. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
deterministic probabilistic automata from a model checking perspective. Mach.
Learn. 105(2), 255–299 (2016)

20. Mathur, A.P., Tippenhauer, N.O.: SWaT: a water treatment testbed for research
and training on ICS security. In: 2016 International Workshop on Cyber-Physical
Systems for Smart Water Networks (CySWater), pp. 31–36. IEEE (2016)

21. Misra, S., Krishna, P.V., Saritha, V., Obaidat, M.S.: Learning automata as a utility
for power management in smart grids. IEEE Commun. Mag. 51(1), 98–104 (2013)

22. Niggemann, O., Stein, B., Vodencarevic, A., Maier, A., Büning, H.K.: Learning
behavior models for hybrid timed systems. AAAI 2, 1083–1090 (2012)

23. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14509-4

24. Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning probabilistic
automata with variable memory length. Mach. Learn. 25(2–3), 117–149 (1996)

25. Sen, K., Viswanathan, M., Agha, G.: Learning continuous time Markov chains from
sample executions. In: Proceedings of the 2004 First International Conference on
the Quantitative Evaluation of Systems, QEST 2004, pp. 146–155. IEEE (2004)

26. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box
probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol.
3114, pp. 202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27813-9 16

27. SUTD: Swat dataset website. https://itrust.sutd.edu.sg/dataset/
28. SUTD: Swat website. http://itrust.sutd.edu.sg/research/testbeds/secure-water-

treatment-swat/

https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-319-66335-7_23
https://doi.org/10.1007/978-3-319-66335-7_23
https://doi.org/10.1007/978-3-319-48989-6_28
https://doi.org/10.1007/978-3-319-48989-6_28
http://arxiv.org/abs/1212.3873
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://itrust.sutd.edu.sg/dataset/
http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/
http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/

92 J. Wang et al.

29. Wachter, B., Zhang, L., Hermanns, H.: Probabilistic model checking modulo the-
ories. In: Fourth International Conference on the Quantitative Evaluation of Sys-
tems, pp. 129–140. IEEE (2007)

30. Wang, J.: Ziqian website. https://github.com/wang-jingyi/Ziqian
31. Wang, J., Chen, X., Sun, J., Qin, S.: Improving probability estimation through

active probabilistic model learning. In: Duan, Z., Ong, L. (eds.) ICFEM 2017.
LNCS, vol. 10610, pp. 379–395. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68690-5 23

32. Wang, J., Sun, J., Qin, S.: Verifying complex systems probabilistically through
learning, abstraction and refinement. CoRR, abs/1610.06371 (2016)

33. Wang, J., Sun, J., Yuan, Q., Pang, J.: Should we learn probabilistic models for
model checking? A new approach and an empirical study. In: Huisman, M., Rubin,
J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 3–21. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54494-5 1

34. Wang, J., Sun, J., Yuan, Q., Pang, J.: Learning probabilistic models for model
checking: an evolutionary approach and an empirical study. In: Int. J. Softw. Tools
Technol. Transf., 1–16 (2018). https://doi.org/10.1007/s10009-018-0492-7

35. Younes, H.L.S.: Verification and planning for stochastic processes with asyn-
chronous events. Ph.D. thesis, Carnegie Mellon (2005)

https://github.com/wang-jingyi/Ziqian
https://doi.org/10.1007/978-3-319-68690-5_23
https://doi.org/10.1007/978-3-319-68690-5_23
https://doi.org/10.1007/978-3-662-54494-5_1
https://doi.org/10.1007/s10009-018-0492-7

FSM Inference from Long Traces

Florent Avellaneda(B) and Alexandre Petrenko(B)

CRIM, Montreal, Canada
{florent.avellaneda,alexandre.petrenko}@crim.ca

Abstract. Inferring a minimal finite state machine (FSM) from a given
set of traces is a fundamental problem in computer science. Although
the problem is known to be NP-complete, it can be solved efficiently
with SAT solvers when the given set of traces is relatively small. On the
other hand, to infer an FSM equivalent to a machine which generates
traces, the set of traces should be sufficiently representative and hence
large. However, the existing SAT-based inference techniques do not scale
well when the length and number of traces increase. In this paper, we
propose a novel approach which processes lengthy traces incrementally.
The experimental results indicate that it scales sufficiently well and time
it takes grows slowly with the size of traces.

Keywords: Machine inference · Machine identification · SAT solver

1 Introduction

Occam’s razor is a problem-solving principle attributed to William of Ockham.
Also known as the law of parsimony, this principle states that among competing
hypotheses, the one with the fewest assumptions should be selected. This simple
and natural principle is the base of a lot of work in various areas.

A typical area where this principle is used is the model inference problem.
Model inference is the process of building a model consistent with a given set of
observations. Since there exists generally an infinite number of consistent models,
we choose the simplest following the law of parsimony. When the model to infer
is a finite states machine (FSM), we generally use the number of states as the
unit of measurement for the complexity. So, the inference in this context consists
in finding a minimal FSM consistent with a given set of observation.

Model inference problem has several useful applications such as model-based
testing when a model inferred from traces produced by a system executing tests
is used to assess the test quality, generate additional tests and model check
properties confirmed by the executed tests. The FSM inference from a set of
traces is a very active research domain which can be divided into two categories:
passive learning (learning from examples) [12,13] and active learning (learning
with queries) [4]. In the first category, we have only a set of examples and use
it to infer an FSM consistent with this set. Passive FSM inference problem is
stated by Kella in 1971 [16] as sequential machine identification. In the second
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 93–109, 2018.
https://doi.org/10.1007/978-3-319-95582-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_6&domain=pdf

94 F. Avellaneda and A. Petrenko

category, we use an oracle to ask queries and infer FSM incrementally. The work
by Walkinshaw et al. [22] has shown how passive inference algorithms can be
used to perform active inference. Based on these results, Smetsers et al. [19]
employ SMT solvers to infer DFAs, Mealy machines and register automata.

This paper belongs to the first category: “Given a sample T and n ∈ N, does
an FSM with n states consistent with T exist?”. Bierman and Feldman address
this question [7] by proposing to use a CSP (constraint satisfaction problem)
formulation. Later Gold [13] proves that the problem is NP-complete. More than
20 years later Oliveira and Silva [17] develop an algorithm using generic CSP or
SMT solvers. Then Grinchtein et al. [14] present a SAT formulation which allows
to solve the problem more efficiently, later enhanced by Heule and Verwer [15]
by adding auxiliary variables. The method of Grinchtein et al. is less efficient
than that of Heule and Verwer, but their incremental approach is interesting, as
the time it takes to find a solution grows slowly with the length of a given trace.

It combines the algorithms of Angluin [4] and Biermann and Feldman [7].
As a result, SAT clauses need to be completely rewritten each time new tables
as proposed by Angluin are modified. The approach can hardly scale on lengthy
traces.

The problem of dealing with long traces is that to infer an adequate model
of a component from a set of its execution traces, this set must cover numerous
use cases. Intuitively, the more and longer traces are collected from a component
under observation the higher the confidence that it is sufficiently representative.
Note that in the context of passive inference, we are not controlling the compo-
nent, as opposed to query learning, aka active inference of FSMs. Unfortunately,
multiple lengthy traces pose a problem for the model inference because they
significantly increase the time necessary to build a model.

Differently from the existing approaches, our approach does not use the
Angluin’s tables and builds clauses incrementally, just adding them when a new
trace is considered. This allows to use SAT solvers in an incremental way [9]. In
incremental SAT solving, the solver processes only newly added formulas, as its
state is memorized to accelerate solving.

To process a set of traces incrementally we consider one trace at a time,
generate an FSM and verify that it is consistent with the remaining traces. If it
is not, choose a trace which is not in the FSM, i.e., a counterexample, and use
it to refine the model.

Our incremental inference approach includes in fact two methods for refining
conjectures. One is using a prefix and another a suffix instead of processing the
whole counterexample trace.

The paper is organized as follows. Section 2 contains definitions. Section 3
provides an overview of passive inference of an FSM from a set of traces based on
SAT-solving. In Sect. 4 we present our incremental inference approach together
with preliminary experimental results. Section 5 briefly reports on our experience
in applying inference in industrial context and Sect. 6 concludes.

FSM Inference from Long Traces 95

2 Definitions

A Finite State Machine (FSM) M is a 5-tuple (S, s0, I, O, T), where S is a finite
set of states with initial state s0; I and O are finite non-empty disjoint sets of
inputs and outputs, respectively; T is a transition relation T ⊆ S × I × O × S,
(s, a, o, s′) is a transition.

M is completely specified if for each tuple (s, a) ∈ S × I there exists a tran-
sition (s, a, o, s′) ∈ T , otherwise M is incompletely specified. We use Δ(s, a) to
denote s′ and λ(s, a) to denote o. M is deterministic if for each (s, a) ∈ S×I there
exists at most one transition (s, a, o, s′) ∈ T , otherwise it is nondeterministic.
We consider in this paper only deterministic FSMs.

An execution of M from state s is a sequence of transitions forming a path
from s in the state transition diagram of M . The machine M is strongly con-
nected, if the state transition diagram of M is a strongly connected graph.

A trace of M in state s is a string of input-output pairs which label an
execution from s. Let Tr(s) denote the set of all traces of M in state s and TrM

denote the set of traces of M in the initial state. Let T be a set of traces, we say
that M is consistent with T if T ⊆ TrM . We also say that M is a conjecture for
T . If all FSMs with fewer states than M are not consistent with T , then we say
that M is a minimal FSM consistent with T .

We say that two states s1, s
′
1 ∈ S are incompatible, if for every two transitions

(s1, a, o, s2), (s′
1, a, o′, s′

2) ∈ T it holds that: o �= o′ or s2 and s′
2 are incompatible,

denoted s1 � s′
1. If s1 and s′

1 are not incompatible, then they are compatible,
denoted s1 ∼= s′

1.

3 Passive Inference

Two types of methods solving the problem of learning an automaton from a set
of sample traces can be distinguished.

One group constitutes heuristic methods derived from the algorithm of Gold
[13] which try to merge states in polynomial time. They are often used in practice
because of their efficiency, however, they provide no guarantee for the optimality,
since there may exist another way of state merging which provides a resulting
machine with a fewer states. Numerous existing heuristic methods allow to infer
Mealy machines [21], Moore machines [11] as well as DFA [18].

Another group includes exact algorithms to determine an FSM model with
a minimal number of states. This is a much more complicated problem, as it is
NP-complete [13], but the minimality may prove to be essential in certain cases.
Among existing algorithms for finding a minimal solution, we could mention the
algorithm of Heule and Verwer [15] which in our opinion, can be considered as
the most efficient currently existing method.

In this paper, we elaborate an approach for the exact FSM inference in an
incremental way. It is SAT-solving based and has the advantage of having a low
sensibility to the length and number of sample traces.

We rely on the SAT encoding of Heule and Verwer, which we overview in this
section, though any other SAT formulation could also be used in our approach.

96 F. Avellaneda and A. Petrenko

3.1 Problem Statement

Given a set of traces T generated by an unknown deterministic FSM, we want
to find a minimal FSM M consistent with T , i.e., T ⊆ TrM .

Given T , let W = (X,x0, I, O, T) be a deterministic acyclic FSM such that
TrW = T . Clearly, W is incompletely specified because the FSM is acyclic. To
find an FSM with at most n states consistent with T amounts to determine a
partition π on the set of states X into compatible states such that the number
of blocks does not exceed n. Clearly, n should be smaller than |X|.

This problem can be cast as a constraint satisfaction problem (CSP) [7]. The
set of states X is represented by integer variables x0, ..., x|X|−1, such that

∀xi, xj ∈ X : if xi � xj then xi �= xj

if ∃a ∈ I : λ(xi, a) = λ(xj , a) then
(xi = xj) ⇒ (Δ(xi, a) = Δ(xj , a))

(1)

Let B = {0, ..., n−1} be a set of integers where each integer represents a block of
a partition π. Assuming that the value of xi is in B for all i ∈ {0, ..., |X|−1}, we
need to find a solution, i.e., an assignment of values of variables in {x0, ..., x|X|−1}
such that (1) is satisfied. Each assignment implies a partition of n blocks and
thus an FSM with n states consistent with T .

3.2 Encoding as a SAT Problem

The previous CSP formulas can be translated to SAT using unary coding
for each integer variable x ∈ X: x is represented by n Boolean variables
vx,0, vx,1, ..., vx,n−1.

To identify the initial state we have the clause:

vx0,0 (2)

It means that the state x0 should be in the first block.
For each state x ∈ X, we have the clause:

vx,0 ∨ vx,1 ∨ ... ∨ vx,n−1 (3)

These clauses mean that each state should be in at least one block.
For each state x and ∀i, j ∈ B such that i �= j, we have the clauses:

¬vx,i ∨ ¬vx,j (4)

These clauses mean that each state should be in at most one block.
The clauses (3) and (4) encode the fact that each state should be in exactly

one block.
For every incompatible states x, x′ ∈ X and ∀i ∈ B, we have the clauses:

¬vx,i ∨ ¬vx′,i (5)

FSM Inference from Long Traces 97

These clauses mean that two incompatible states should not be in the same
block.

For every states x, x′ ∈ X such that λ(x, a) = λ(x′, a), and ∀i, j ∈ B, we
have a Boolean formula (which can be translated trivially into clauses):

(vx,i ∧ vx′,i) ⇒ (vΔ(x,a),j ⇒ vΔ(x′,a),j) (6)

These clauses enforce determinism.
Note that the clauses (5) encode the first line of the CSP constraint (1) and

the clauses (6) encode the second line. An existing SAT solver [5,6,10,20] can
be used to check satisfiability of the obtained formula.

3.3 Auxiliary Variables

Heule and Verwer [15] propose to use auxiliary variables, replacing formula (6)
and add some additional clauses. They provide experimental results which
indicate that their encoding is sufficiently efficient. Namely, for a ∈ I and
0 ≤ i, j < n, variable ya,i,j is introduced for True value means that for any
state in block i, the next state reached with input a is in the block j. These
variables are used to form the following clauses.

For each transition (x, a, o, x′) ∈ T and for every i, j ∈ B:

ya,i,j ∨ ¬vx,i ∨ ¬vx′,j (7)

This means that blocks i and j are related for input a if state x is in the block
i and its successor x′ on input a is in the block j.

For each input symbol a ∈ I, for every i, h ∈ B and for each j ∈ {h+1, n−1}:

¬ya,i,h ∨ ¬ya,i,j (8)

This means that each block relation can include at most one pair of blocks for
each input to enforce determinism.

For each input symbol a ∈ Σ and each i ∈ B:

ya,i,0 ∨ ya,i,1 ∨ ... ∨ ya,i,n−1 (9)

This means that each block relation must include at least one pair of blocks for
each input to enforce determinism.

For each transition (x, a, o, x′) ∈ T and for every i, j ∈ B:

¬ya,i,j ∨ ¬vx,i ∨ vx′,j (10)

This means that once blocks i and j are related for input a and state x is in the
block i then its successor x′ on input a must be in the block j.

Among these clauses, some are redundant. Nevertheless, their use improves
the performance of FSM inference as work in [15] suggests.

98 F. Avellaneda and A. Petrenko

3.4 Symmetry Breaking

It is possible that for certain formulations of a SAT formula, some assignments
are equivalent, i.e., represent a same solution. In this case, we say that we have
a symmetry. A good practice is to break this symmetry [2,3,8] by adding con-
straints such that different assignments satisfying the formula represent different
solutions.

The above formulation can result in a significant amount of symmetry
because any permutation of the blocks is allowed. This fact has already been
noticed in the literature and the strategy adopted in [1,15] consists in placing
each state in a certain subset to a fixed distinct block. To this end, we can use the
state incompatibility graph which has |X| nodes and two nodes are connected iff
the corresponding states of W are incompatible. Clearly, each state of a clique
(maximal or smaller) must be placed in a distinct block. Hence, we can add to
the SAT formula clauses for assigning initially each state from the clique to a
separate block.

Table 1. Summary for encoding passive inference from ISFSM W = (X, x0, I, O, T)
into SAT. n is the maximal number of states in an FSM to infer, B = {0, ..., n − 1}.

Ref Clauses Range

(2) vx0,0

(3) (vx,0 ∨ vx,1 ∨ ... ∨ vx,n−1) x ∈ X

(4) (¬vx,i ∨ ¬vx,j) x ∈ X; 0 ≤ i < j < n

(5) (¬vx,i ∨ ¬vx′,i) x � x′; i ∈ B

(7) (ya,i,j ∨ ¬vx,i ∨ ¬vx′,j) (x, a, o, x′) ∈ T ; i, j ∈ B

(8) (¬ya,i,h ∨ ¬ya,i,j) a ∈ I; h, i, j ∈ B; h < j

(9) (ya,i,0 ∨ ya,i,1 ∨ ... ∨ ya,i,n−1) a ∈ I; i ∈ B

(10) (¬ya,i,j ∨ ¬vx,i ∨ vx′,j) (x, a, o, x′) ∈ T ; i, j ∈ B

4 Incremental Inference

To alleviate the complexity associated with large sets containing lengthy traces,
we propose an approach which, instead of attempting to process all the given
traces in the set T at once, iteratively infers an FSM from their subset (initially
it is an empty set) and uses active inference to refine it when it is not consistent
with one of the given traces. While active inference usually uses a black box as
an oracle capable of judging whether or not a trace belongs to the model, we
assign the role of an oracle to a set of traces T . Even if this oracle is restricted
since it cannot generate traces for all possible input sequences, nevertheless,
as we demonstrate, it leads to an efficient approach for passive inference from
execution traces.

FSM Inference from Long Traces 99

The proposed approach is elaborated in two methods performing different
refinements of a conjecture inconsistent with a given set of traces. Refinement
needs to be performed when the shortest prefix ω of a trace in T which is
not a trace of the conjecture is found. The first type of refinement consists in
adding ω to the conjecture’s initial state which is achieved by formulating the
corresponding constraints. We present this method in Sect. 4.1. The second type
of refinement consists in adding not ω but its shortest suffix ω′ which is not a
trace of any state of the conjecture. The suffix ω′ is added to some state of the
conjecture which is achieved by formulating the corresponding constraints. This
method is elaborated in Sect. 4.2.

We provide the results of experimental evaluation of the two methods and
discuss them in Sect. 4.3.

4.1 Prefix-Based Method

Let T be a set of traces (generated by a deterministic FSM). We want to find a
minimal FSM consistent with T iteratively. To do that, we search for an FSM M
with at most n states satisfying a growing set of constraints (initially we do not
have any constraints). If no solution is found, it means that the state number
n is too low. In this case we increase n and start again. If a solution is found
and M is consistent with T , then we return this solution. Otherwise, we find the
shortest prefix of a trace ω in T not accepted by M . Then, we use SAT encoding
described in the previous section to formulate the constraint that ω has to be a
trace of the conjecture.

The approach is formalized in Algorithm 1.

Algorithm 1. Infer an FSM from a set of traces
Input: A set of traces T and an integer n.
Output: An FSM with at most n states consistent with T if it exists.

1: C := ∅
2: while C is satisfiable do
3: Let M be an FSM of a solution of C
4: if T ⊆ TrM then
5: return M
6: end if
7: Let ω be the shortest trace in T \TrM

8: C := C ∧Cω, where Cω is clauses encoding the fact that ω ∈ TrM using Table 1
9: end while

10: return false

Theorem 1. Given a set of traces T , Algorithm1 returns an FSM consistent
with T if it exists or false otherwise.

100 F. Avellaneda and A. Petrenko

Proof. If line 5 is reached, then T ⊆ TrM . So M is consistent with T . If line
10 is reached, then C encoding the fact that all traces of T have to be included
in an FSM with at most n states is not satisfiable. So, there is no FSM with
at most n states consistent with T . The termination is assured because in each
while loop, additional trace of T is considered. When all traces are considered
then either there is a solution and T ⊆ TrM terminates the function, or there
is no solution and the while condition is no longer respected.

Corollary 1. Let T be a set of traces. If we call Algorithm1 incrementally by
increasing n from n = 1 until an FSM consistent with T is obtained, then it is
a minimal FSM consistent with T .

4.1.1 Example
We illustrate Algorithm 1 with a simple example of a small program, see
Algorithm 2.

Let w = ping/pong.pause/pause.ping/pause.ping/pause.pause/pong.pause/pa
use.ping/pause.pause/pong.ping/pause.ping/pause.pause/pause.ping/pause.ping/
pause.pause/ping.ping/pong.ping/pong... be the only trace in T obtained by ran-
dom execution of the program.

Algorithm 2
1: while true do
2: Event msg = receive();
3: if msg == ping then
4: send(pong);
5: end if
6: if msg == pause then
7: send(pause);
8: while receive() �= pause do
9: send(pause);

10: end while
11: send(pong);
12: end if
13: end while

Initially, we consider as a conjecture the trivial FSM with the empty trace.
The shortest prefix trace inconsistent with this conjecture is ping/pong, and so,
some clauses are added to ensure that the trace ping/pong is accepted. A new
conjecture is an FSM with a single state having self-looping transition labeled
ping/pong. This time, the shortest prefix inconsistent with this conjecture is
ping/pong.pause/pause. This trace yields new constraints leading to a next con-
jecture with a single state having two self-looping transitions labeled ping/pong
and pause/pause. This conjecture is consistent with the two considered traces

FSM Inference from Long Traces 101

ping/pong and ping/pong.pause/pause but still not with the whole w. The pro-
cess continues while the constraints are satisfiable. All the executed steps are
illustrated in Fig. 1. A trace beneath a conjecture is a prefix used to obtain the
conjecture.

ping/pong

ω = ping/pong

ping/pong

pause/pause

ω = ping/pong.pause/pause

ping/pong

pause/pause

ping/pause

ω = ping/pong.pause/pause.ping/pause

ping/pong

pause/pause

ping/pause

ω = ping/pong.pause/pause.ping/pause.ping/pause

ping/pong

pause/pause

ping/pause

pause/pong

ω = ping/pong.pause/pause.ping/pause.ping/pause.pause/pong

Fig. 1. Inferring an FSM from trace ping/pong.pause/pause.ping/pause.ping/pause.
pause/pong.pause/pause.ping/pause.pause/pong.ping/pong.ping/pong.pause/pause.
ping/pause.ping/pause.pause/pong.ping/pong.ping/pong... with Algorithm 1.

4.1.2 Evaluation
To the best of your knowledge, the approach of Heule and Verwer [15] is currently
the most efficient encoding of the FSM inference into SAT. In this section, we
provide results of experimental comparison of their approach with ours.

We have implemented the encoding of the inference problem to SAT using
the Heule and Verwer’s formulas as described in Table 1. We use H&V and

102 F. Avellaneda and A. Petrenko

Prefix-based to refer to the method of Heule and Verwer and Algorithm1,
respectively.

The prototype was implemented in C++ calling the SAT solver Cryptomin-
isat [20]. The experiments were carried out on a machine with 8 GB of RAM and
an i7-3537U processor.

We randomly generate FSMs with seven states, two inputs a and b, and two
outputs 0 and 1. Each state si is linked to the state si+1 mod 8 by a transition with
input a and a random output to ensure that machines are strongly connected.
Then we complete an FSM in a random way. Figure 2 shows an example of such
a construction.

s0

s1

s2

s3s4

s5

s6

a/0

a/1

a/1

a/0

a/1

a/0

a/0

b/1

b/1

b/0

b/0 b/1

b/1 b/0

Fig. 2. Example of a random FSM.

Given an FSM, traces of various length are randomly generated. Tables 2 and
3 show time used to infer an FSM from a single trace and 100 traces, respectively.
For each length of traces, we calculate the average time used to infer a machine
over ten instances.

The results in Tables 2 and 3 indicate that the proposed approach performs
much better than that of [15]. Moreover, they show that time used by Algorithm1
grows very slow when the size of traces increases. This is due to the fact that
the approach of [15] uses all the traces at once for inference while our approach
is incremental and requires a minimal prefix of a single trace among the given
traces in each iteration.

In Tables 4 and 5, we show the results obtained when we push our algorithm
to its limits.

FSM Inference from Long Traces 103

Table 2. Seconds to infer an FSM from a trace.

Length H&V Prefix-based

1k 2.5 0.2

2k 7.3 0.2

4k 20 0.2

8k 53 0.2

16k 190 0.3

32k Out of memory 0.5

64k Out of memory 1.5

Table 3. Seconds to infer an FSM from 100 traces.

Length H&V Prefix-based

100 31 <0.1

200 140 <0.1

400 590 <0.1

1k Out of memory 0.1

10k Out of memory 3.8

Table 4. Inferring FSM from a single trace with length 100k by Algorithm 1.

States Checking T ⊆ TrM SAT Solving Total

5 3.33 s 0.003 s 3.46 s

6 3.28 s 0.02 s 3.42 s

7 3.28 s 0.076 s 3.48 s

8 3.27 s 0.57 s 3.98 s

9 3.28 s 7.23 s 10.7 s

10 3.28 s 28.6 s 32.0 s

Table 5. Inferring FSM from a single trace with 10 states by Algorithm 1.

Length Checking T ⊆ TrM Solving SAT Total

25k 0.17 s 22.9 s 23.2 s

50k 0.79 s 25.1 s 26.0 s

75k 1.83 s 26.4 s 28.3 s

100k 3.28 s 28.6 s 32.0 s

104 F. Avellaneda and A. Petrenko

In Table 4, we increase the state number and set the length of generated
traces to 100k. In Table 5, we set the state number to 10 and increase the trace
length generated by this FSM.

We can see that the time (an average of 100 instances) used by the SAT
solver depends on the number of states of the machine to infer, but very little
on the length of the traces used. On the other hand, the time to test the trace
inclusion depends on the length of a trace, but not on the number of states in
the FSM to infer.

It is not surprising that overall time grows rapidly with the number of FSM
states to infer (because the problem remains NP-Complete), on the other hand,
it is interesting to notice that time grows almost linearly with the length of
traces.

4.2 Suffix-Based Method

In the prefix-based method, when a generated conjecture M is inconsistent with
T , we use the shortest prefix of a trace to refine the conjecture. Clearly, the
longer the prefix the more clauses are added to the constraints. This observation
motivates our second method which is using a different refinement.

The idea is that when we find the shortest trace ω which is in T but not
in M , we determine a suffix ω′ of ω such that ω′ is not a trace of any state of
the conjecture M . Then if we add the constraint that there exists a state s such
that ω′ must be accepted by M in state s, thus M is refuted and will be refined.
If a refined conjecture which accepts w′ does not accept the whole w yet then
a longer suffix is considered in the next iteration until w is in TrM . When the
suffix ω′ is shorter than ω, the number of added clauses can be smaller compared
to the use of ω.

Theorem 2. Given a set of traces T , Algorithm3 returns an FSM consistent
with T if it exists or false otherwise.

Proof. If line 5 is reached, then T ⊆ TrM and so M is consistent with T . If line
14 is reached, then all the traces of T cannot be represented by an FSM with n
states. The termination is assured because in each while loop, additional suffix
of a trace of T is considered. When all suffixes of all traces are considered then
either there is a solution and T ⊆ TrM terminates the function, or there is no
solution and the while condition is no longer respected.

Corollary 2. Let T be a set of traces. If we call Algorithm3 incrementally by
increasing n from n = 1 until an FSM consistent with T is obtained, then it is
a minimal FSM consistent with T .

4.2.1 Example
We illustrate the suffix-based method with the example from Sect. 4.1.1. We
use the same trace w = ping/pong.pause/pause.ping/pause.ping/pause.pause/
pong.pause/pause.ping/pause.pause/pong.ping/pause.ping/pause.pause/pause.

FSM Inference from Long Traces 105

Algorithm 3. Infer an FSM from a set of traces.
Input: A set of traces T and an integer n.
Output: An FSM with a most n states consistent with T if it exists.

1: C := ∅
2: while C is satisfiable do
3: Let M be an FSM of a solution of C
4: if T ⊆ TrM then
5: return M
6: end if
7: Let ω be the shortest trace in T \TrM

8: if ∃ω′ the shortest suffix of ω such that ∀s, ω′ /∈ Tr(s) then
9: C := C ∧ C′

ω, where C′
ω is clauses encoding the fact that ∃s : ω′ ∈ Tr(s)

using Table 1 without the first constraint.
10: else
11: C := C ∧ Cω, where Cω is clauses encoding the fact that ω ∈ TrM using

Table 1.
12: end if
13: end while
14: return false

ping/pause.ping/pause.pause/ping.ping/pong.ping/pong... as the only trace in
T obtained by executing Algorithm2. Figure 3 shows intermediate conjectures
with the suffixes added to obtain them.

4.2.2 Evaluation
Comparing the execution of the two methods on the same trace in Sects. 4.1.1
and 4.2.1, one can notice that the suffix-based method uses instead of a long trace
with an event making a conjecture inconsistent just its much shorter suffix with
that event. An example of such an event in the trace is ping/pause. Intuitively,
all things being equal, a suffix could be shorter than a prefix when an event
causing inconsistence occurs seldom.

To check this hypothesis, we decided to extend the experiments reported in
the last row of Table 2, where a trace of the length 64000 belongs to an FSM
randomly generated as explained in Sect. 4.1.2. This time we vary the chances
for input b to appear. Table 6 contains the averages of ten instances for each
value of probability.

We can see that when all inputs are equiprobable (Line 1 of the Table 6), the
second algorithm is a little slower. On the other hand, time used by the prefix-
closed method grows when an input rarely appears, but it remains constant with
the suffix-closed method, as expected in the hypothesis.

4.3 Discussion

We presented two methods for incremental inference of a minimal FSM con-
sistent with a given set of traces. As could be expected, experimental results

106 F. Avellaneda and A. Petrenko

ping/pong

ω = ping/pong

ping/pong

pause/pause

ω′ = pause/pause

ping/pong

pause/pause

ping/pause

ω′ = ping/pause

ping/pong

pause/pause

ping/pause

ω′ = ping/pause ping/pause

ping/pong

pause/pause

ping/pause

pause/pong

ω′ = pause/pong

Fig. 3. Inferring an FSM from trace ping/pong.pause/pause.ping/pause.
ping/pause.pause/pong.pause/pause.ping/pause.pause/pong.ping/pong.ping/pong.
pause/pause.ping/pause.ping/pause.pause/pong.ping/pong.ping/pong... with
Algorithm 3

Table 6. Seconds to infer an FSM from a trace with different probabilities of input b.

Probability of b Prefix-based Suffix-based

50% 1.5 2.4

25% 1.4 1.4

10% 1.4 1.4

1% 3.5 1.4

0.5% 6.0 1.5

0.3% 16 1.4

0.2% 90 1.5

0.1% Out of memory 1.6

indicate that inference from an incrementally growing subset of traces has a big
advantage compared to the classical inference from all the given traces at once,
as in the method of Heule and Verwer [15] when the traces are rather long and
numerous. The reason for that is the proposed approach avoids as long as possi-
ble to generate constraints from the whole initial traces, and tries to find instead
their appropriate portions, prefixes, as in the prefix-based method or suffixes, as
in the suffix-based method.

Comparing the two proposed methods, we understand that their efficiency
depends on intricate properties of given traces. Preliminary experiments confirm
our hypothesis that rare key events in a trace may create favorable conditions
for the suffix-based method to perform more efficiently than its counterpart, the
prefix-based method.

FSM Inference from Long Traces 107

5 Industrial Case Study

Our industrial partner provided us with logs of a flight simulator expecting us
to produce state machine models of some components involved in the logged
executions of the simulator. Models are considered as an important part of doc-
umentation, especially for legacy components and components from the third
party. They facilitate change impact analysis, regression testing and other tasks
of simulator development and maintenance.

The logs are normally collected while executing flight scenarios defined by
experts and come in the form of time series of at least 12000 steps.

Clearly, using traditional inference methods directly on time series is out of
the question; preprocessing we performed includes their partitioning into smaller
time series caused by inputs and replacing time series which are “close” to others
such that a limited number of time series become outputs in a state machine
model. Vectors of values of input variables present in a log become inputs in the
model. In the processed traces their number reaches a dozen. The inferred FSMs
have up to ten states.

Flight simulator experts consider the resulting models sufficiently adequate
and useful. In this case study log preprocessing turns out to be more challenging
and time consuming than the model inference with the prototype we developed.
The scalability of the whole approach may, however, be an issue for processing
logs resulting from long flight scenarios. The latter need more aggressive prepro-
cessing, e.g., excluding parts where “not much happening”, this would favor our
suffix-based method which looks for turning events.

6 Conclusion

In this paper we considered the problem of inferring a minimal FSM consistent
with a set of long traces. Although this problem has extensively been studied, the
efficiency of the existing methods deteriorates quickly with the size of the given
traces. We proposed in this paper an approach aimed at dealing with long traces.
The need for it comes from the observation that the more and longer traces are
collected from a component under observation, the higher the confidence that
they are sufficiently representative and would yield an adequate model.

Addressing the scalability issue, we proposed an approach which does not
process all the given traces at once, instead it does this incrementally. The idea
of processing a set of traces incrementally is to consider one trace at a time,
generate an FSM and verify that it is consistent with the remaining traces. If it
is not, choose a trace which is not in the FSM, i.e., a counterexample, and use
it to refine the model.

Our incremental inference approach includes in fact two methods for refining
conjectures. One is using a prefix and another a suffix instead of processing
the whole counterexample trace. The approach is SAT-solving based and has
the advantage of having a lower sensibility to the length and number of sample
traces compared to the existing approaches.

108 F. Avellaneda and A. Petrenko

The experimental results indicate that the proposed approach is sufficiently
efficient especially for long traces where some inputs occur rather rarely. We plan
to perform more experiments to find other ways of improving efficiency.

Acknowledgements. This work was partially supported by MESI (Ministère de
l’Économie, Science et Innovation) of Gouvernement du Québec, NSERC of Canada
and CAE.

References

1. Abel, A., Reineke, J.: Memin: SAT-based exact minimization of incompletely spec-
ified mealy machines. In: 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 94–101. IEEE (2015)

2. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT
instances in the presence of symmetry. In: Proceedings of the 39th annual Design
Automation Conference, pp. 731–736. ACM (2002)

3. Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for boolean
satisfiability. IEEE Trans. Comput. 55(5), 549–558 (2006)

4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

5. Audemard, G., Simon, L.: The glucose SAT solver (2013)
6. Biere, A.: Picosat essentials. J. Satisfiability Boolean Model. Comput. 4, 75–97

(2008)
7. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from

samples of their behavior. IEEE Trans. Comput. 100(6), 592–597 (1972)
8. Brown, C.A., Finkelstein, L., Purdom Jr., P.W.: Backtrack searching in the pres-

ence of symmetry. In: Mora, T. (ed.) AAECC 1988. LNCS, vol. 357, pp. 99–110.
Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51083-4 51

9. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electron.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

10. Een, N., Sörensson, N.: MiniSat: a SAT solver with conflict-clause minimization.
In: 8th SAT-5 (2005)

11. Giantamidis, G., Tripakis, S.: Learning moore machines from input-output traces.
In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS,
vol. 9995, pp. 291–309. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48989-6 18

12. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
13. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control

37(3), 302–320 (1978)
14. Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automat-

ically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 483–497. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771 40

15. Heule, M.J.H., Verwer, S.: Software model synthesis using satisfiability solvers.
Empirical Softw. Eng. 18(4), 825–856 (2013)

16. Kella, J.: Sequential machine identification. IEEE Trans. Comput. 100(3), 332–338
(1971)

17. Oliveira, A.L., Silva, J.P.M.: Efficient algorithms for the inference of minimum size
DFAS. Mach. Learn. 44(1), 93–119 (2001)

https://doi.org/10.1007/3-540-51083-4_51
https://doi.org/10.1007/978-3-319-48989-6_18
https://doi.org/10.1007/978-3-319-48989-6_18
https://doi.org/10.1007/11814771_40

FSM Inference from Long Traces 109

18. Oncina, J., Garćıa, P.: Identifying regular languages in polynomial time. Adv.
Struct. Syntactic Pattern Recogn. 5(99–108), 15–20 (1992)

19. Smetsers, R., Fiterău-Broştean, P., Vaandrager, F.: Model learning as a satisfiabil-
ity modulo theories problem. In: Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.)
LATA 2018. LNCS, vol. 10792, pp. 182–194. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77313-1 14

20. Soos, M.: Cryptominisat 2.5.0. SAT Race competitive event booklet (2010)
21. Veelenturf, L.P.J.: Inference of sequential machines from sample computations.

IEEE Trans. Comput. 2(C–27), 167–170 (1978)
22. Walkinshaw, N., Derrick, J., Guo, Q.: Iterative refinement of reverse-engineered

models by model-based testing. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009.
LNCS, vol. 5850, pp. 305–320. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-05089-3 20

https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-642-05089-3_20
https://doi.org/10.1007/978-3-642-05089-3_20

A Weakness Measure for GR(1) Formulae

Davide Giacomo Cavezza(B), Dalal Alrajeh, and András György

Imperial College London, London, UK
{d.cavezza15,dalal.alrajeh,a.gyorgy}@imperial.ac.uk

Abstract. In spite of the theoretical and algorithmic developments for
system synthesis in recent years, little effort has been dedicated to quan-
tifying the quality of the specifications used for synthesis. When deal-
ing with unrealizable specifications, finding the weakest environment
assumptions that would ensure realizability is typically a desirable prop-
erty; in such context the weakness of the assumptions is a major qual-
ity parameter. The question of whether one assumption is weaker than
another is commonly interpreted using implication or, equivalently, lan-
guage inclusion. However, this interpretation does not provide any fur-
ther insight into the weakness of assumptions when implication does not
hold. To our knowledge, the only measure that is capable of comparing
two formulae in this case is entropy, but even it fails to provide a suf-
ficiently refined notion of weakness in case of GR(1) formulae, a subset
of linear temporal logic formulae which is of particular interest in con-
troller synthesis. In this paper we propose a more refined measure of
weakness based on the Hausdorff dimension, a concept that captures the
notion of size of the omega-language satisfying a linear temporal logic
formula. We identify the conditions under which this measure is guar-
anteed to distinguish between weaker and stronger GR(1) formulae. We
evaluate our proposed weakness measure in the context of computing
GR(1) assumptions refinements.

1 Introduction

Specifications provide significant aid in the formal analysis of software support-
ing tasks such as their verification and implementation. However writing such
specifications is difficult and error-prone, often resulting in their incompleteness,
inconsistency and unrealizability [27]. Hence providing formal and rigorous sup-
port for ensuring their highest quality is of key importance [28]. One crucial
quality metric for specifications, which this paper focuses on, is that of weakness
in the context of reactive synthesis [2,5,15,21].

Reactive synthesis is concerned with finding a system implementation that
satisfies a given specification under all possible environments [36]. When no such
implementation exists, a specification is said to be unrealizable [19]. Though
there may be many reasons for why a specification is unrealizable, a common
cause is an incomplete set of assumptions over the environment behaviour. Sev-
eral techniques [4,5,15,30] have been proposed in order to compute refinements
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 110–128, 2018.
https://doi.org/10.1007/978-3-319-95582-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_7&domain=pdf

A Weakness Measure for GR(1) Formulae 111

for incomplete assumptions so as to ensure the realizability of a specification.
These approaches consider specifications expressed in a subset of linear temporal
logic (LTL), namely generalized reactivity of rank 1 (GR(1)) [11–13], for which
tractable synthesis methods exist. Their aim is to find the “weakest” assumptions
amongst possible alternatives.

Assumption weakness [39] is a feature intended to capture the degree of
freedom (or permissiveness) an environment satisfying the assumptions has over
its behaviours; generally, weaker assumptions are preferred since they allow for
more general solutions to the synthesis problem [18,39]. Existing approaches
formalize the weakness relation between assumptions through logical implication
[4,39], i.e., a formula φ1 is weaker than a formula φ2 if φ2 → φ1 is valid. However,
this notion does not fully capture the weakness concept as permissiveness [14].
Consider the simple example of a bus arbiter whose environment consists of
three devices that can request for bus access. Let ri be the binary signal meaning
“device i requests access”. An assumption like “device 1 requests access infinitely
often” (GFr1 in LTL) is intuitively less constraining than “device 2 and 3 request
access infinitely often” (GF(r2 ∧ r3)). However, since the two assumptions refer
to disjoint subsets of variables, no implication relation holds between the two.

To enable comparison between weakness of specifications as in the case
above, we propose a quantitative measure for the weakness of GR(1) formu-
lae (Sect. 4)—based on their interpretation as an ω-language—and a procedure
to compute it. The measure builds upon the notion of Hausdorff dimension [41],
a quantity providing an indication of the size of an ω-language: the higher the
dimension, the wider the collection of distinct ω-words contained in the ω-lan-
guage (Sect. 5). We show that a sufficient condition for assumptions expressed
as invariants to be comparable through our measure is the strong connected-
ness of the underlying ω-language (Sect. 5.1). To compare assumptions con-
taining fairness conditions, we identify and measure a language decomposition
based on fairness complements (Sect. 5.2–5.3). We finally demonstrate the use
of our proposed weakness measure on a set of assumptions refinement bench-
marks (Sect. 6). Though we focus on comparing the weakness of assumptions
refinements, the applied scope of our weakness metric can be extended to other
contexts, e.g., quantitative model checking, in the form of a measure of the set
of behaviors violating some given property (see [6]) and specification coverage
as in [8,42].

2 Related Work

The closest notion to our measure is the entropy of ω-languages applied by Asarin
et al. [6,7] to quantitative model checking. This quantity measures how diverse
the ω-words contained in the language of an LTL formula are. However, it is
not sufficiently fine-grained to distinguish between weaker and stronger fairness
conditions [6]. We will show that our metric based on Hausdorff dimension is
capable of making this distinction.

112 D. G. Cavezza et al.

Quality of LTL formulae has also been defined in the context of model verifi-
cation. The work by Henzinger et al. [25,26] defines a similarity measure between
models of LTL formulae so as to render the model checking output quantitative:
instead of returning a true/false response, quantitative model checking computes
the distance (stability radius) of the model from the boundary of the satisfiabil-
ity region of an LTL property. The scope of our work is different: the measure
we propose can be interpreted as the extension of such a satisfiability region,
which is independent of a specific model to check against.

An alternative way to measure behaviour sets is via probabilities. Probabilis-
tic model checking [24,29] enhances the syntax and semantics of temporal logics
(usually computation tree logic) with probabilities. This allows for the expres-
sions of properties like “the probability of satisfying a temporal logic formula
φ by the modelled behaviours is at most p.” Further extensions of LTL and/or
automata with preference metrics alternative to probabilities have been proposed
in [3,10,17,18]. The difference between using such quantities and our proposal is
that while all of these measures are additional and depend on arbitrary param-
eters that may not reflect the true weakness of a logical formula, the measure
we propose quantifies a concept of weakness intrinsic to the LTL formula itself.

The problem of identifying weakest assumptions appears in the context of
assume-guarantee reasoning [20,31,35] for compositional model checking. In order
to perform model checking of large systems, those systems are generally broken
down to components that can be checked independently for correctness. In this
context, one of the challenges is to identify the most general (weakest) assump-
tions over the environment in which each component operates, such that when
they are satisfied, the correctness of the entire system is guaranteed. Assumptions
are formalized as transition systems (e.g., modal transition systems) rather than
declarative LTL specifications, which is the focus of our work.

3 Preliminaries

Languages and Automata. Let Σ be a finite set of symbols, which we call
alphabet. A word over Σ is a finite sequence of symbols in Σ. An ω -word is an
infinite sequence of such symbols. A set of words is called a language, while a set
of ω-words is called an ω-language. A word w is explicitly denoted as a sequence
of its symbols w1w2 . . . wn, or with a parenthesis notation (w1, w2, . . . , wn), with
the symbols separated by commas; the same notation is used for ω-words. The
notation wj denotes the suffix of w starting with wj .

Given two words v and w, their concatenation is denoted as v · w or simply
vw. The same notation is used for the concatenation of a word v and an ω-word
w; the concatenation of an ω-word and a word is not defined. Given a set V
of finite-length words and a set W of finite-length words or ω-words over the
same alphabet Σ, the set V · W is the set of words obtained by concatenating a
word in V with a word in W . Kleene’s star operator yields the set V ∗ of finite
words obtained by concatenating an arbitrary number of words in V . The omega
operator applied to V yields the set V ω of ω-words obtained by concatenating

A Weakness Measure for GR(1) Formulae 113

a (countably) infinite number of words in V . Naturally, Σ∗ and Σω represent,
respectively, the set of all finite words and all ω-words over the alphabet Σ. The
star and omega operators can also be applied to single finite-length words, like
in w∗ and wω.

Given an ω-language L ⊆ Σω, we denote by An(L) the set of all w ∈ Σ∗ such
that w is a prefix of a word in L and |w| = n. We also define A(L) =

⋃
n∈N

An(L)
the set of all the prefixes of ω-words in L. It is possible to define a topology on
Σω. For more details, we refer the reader to [41]. In this context, we only need
the notions of closed ω-languages and of their closure. An ω-language L is closed
if and only if for any ω-word w such that A({w}) ⊆ A(L), w ∈ L. In other
words, L is closed if whenever a word w is arbitrarily close (up to a prefix of
arbitrary length) to some word in L, then w ∈ L. The closure of an ω-language
L, denoted by C(L), is the smallest closed ω-language that contains L.

The notion of regular ω-languages encompasses ω-languages that allow
a finite representation through automata. Formally, we define a regular
ω-language as an ω-language which is accepted by a deterministic Muller automa-
ton. A deterministic Muller automaton (DMA) is defined by the quintuple
M = 〈Q,Σ, q0, δ, T 〉, where Q is a set of states, Σ is the alphabet of the
ω-language, q0 is the initial state, δ : Q × Σ → Q is the transition (partial)
function and T ⊆ 2Q is a set (a table) of accepting state sets. Given an ω-word
w ∈ Σω, the run induced by w onto M is a sequence of states M(w) = q0q1 . . .
such that q0 is the initial state and qi = δ(qi−1, wi) ∀i ∈ N. Let Inf(w) ⊆ Q be
the set of states occurring infinitely many times in M(w). Then an ω-word is
said to be accepted by M iff Inf(w) ∈ T . By extension, the ω-language accepted
by M is the set of ω-words accepted by M.

A deterministic Büchi automaton (DBA) B is defined in the same way as a
DMA except for the acceptance condition, which is stated in terms of a subset of
states F ⊆ Q. A word w is accepted by B iff Inf(w) ∩ F
= ∅. Given a DBA it is
always possible to obtain an equivalent DMA by replacing the Büchi acceptance
condition with the table T = {Q′ ∈ 2Q | Q′ ∩ F
= ∅}. In Sect. 6 we also refer
to nondeterministic automata, where the transition function is replaced by a
transition relation and the initial state by a set of initial states.

Linear Temporal Logic and GR(1). Linear temporal logic (LTL) [37] is
an extension of Boolean logic with temporal operators. It allows for expressing
properties of infinite sequences of assignments to a set V of Boolean variables.
Its syntax and semantics are described in the extended version of this paper [16].

In this paper, we deal with a specific subset of LTL, called Generalized Reac-
tivity (1) (GR(1)), which is largely employed in controller synthesis [12]. This
subset makes use of the operators G (“always”), which states that its operand
formula must hold at each step of a valuation sequence, F (“eventually”), which
requires its operand formula to hold at some point in the sequence, and X
(“next”), which states that the operand formula must hold in the state following
the one on which the formula is evaluated.

114 D. G. Cavezza et al.

A GR(1) formula over a set of variables V has the form φ = φE → φS , where
φE and φS are conjunctions of the following units: (i) an initial condition, which
is a pure Boolean expression over variables in V, denoted by Binit(V); (ii) one
or more invariants, conditions of the form GBinv (V ∪XV), where Binv(V ∪XV)
denotes a pure Boolean expression over the set of variables in V and the set of
atoms obtained by prepending an X operator to each variable; and (iii) one or
more fairness conditions of the form GFBfair (V).

The semantics of GR(1), as of LTL, are formalized as ω-words over the alpha-
bet Σ = 2V . The set of ω-words that satisfy a formula φ is a regular ω-language
[43] denoted by L(φ).

4 Problem Statement

In this section, we present an axiomatization of weakness of an LTL formula.
Hereafter, we denote the weakness measure of the LTL formula φ as d(φ): the
higher this measure, the weaker φ is, i.e., φ2 is weaker than φ1 if d(φ1) ≤ d(φ2).

In settings such as [2,4,39], an LTL formula φ2 is weaker than φ1 if and
only if φ1 → φ2 is valid (that is, it is true for any ω-word). Semantically, this
translates to language inclusion: namely, φ2 is weaker than φ1 iff L(φ1) ⊆ L(φ2).
This gives us the first axiom of weakness.

Axiom 1. Given two LTL formulae φ1 and φ2, if φ1 → φ2, then d(φ1) ≤ d(φ2).

Notice that this criterion defines a partial ordering of specifications: if none
of the two formulae implies the other, those are incomparable according to this
criterion. However, even for the incomparable case it may be useful to define a
preference criterion.

Consider the simple case of two invariants over V = {a, b, c}, φ1 = G(a∧b) and
φ2 = Gc. Even if the two formulae are incomparable according to implication,
i.e., neither one implies the other, it is clear that φ1 allows in some sense fewer
behaviors than φ2: at each time step, the former allows for 2 distinct valuations
of V while φ2 allows 4 of them.

Consider the formulae φ3 = G(a → Xb) and φ4 = G((a ∧ b) → Xc) instead.
Despite neither implying the other, we note that φ3 is more restrictive than
φ4 asymptotically: that is, for a large enough n, the number of finite prefixes
of length n that satisfy φ3 is less than the number of finite prefixes of length
n satisfying φ4 (#(L(φ3)) < #(L(φ4))). This can be easily understood if one
considers that φ3 poses a restriction to the next symbol in an ω-word whenever
a is true (which holds in 4 out of 8 possible valuations of V), while φ4 poses a
similar restriction when a ∧ b holds (in 2 out of the 8 valuations).

This means that weakness of a formula should be formalized, in addition to
Axiom 1, in terms of the number of finite prefixes it allows. Formally:

Axiom 2. Given two LTL formulae φ1 and φ2, φ2 is said to be weaker than φ1 if
there exists some length n̄ such that, for every n > n̄, the set of prefixes of length
n in L(φ2) contains more elements than the set of prefixes of the same length in
L(φ1), i.e., if ∀n > n̄, #(An(L(φ2))) ≥ #(An(L(φ1))), then d(φ1) ≤ d(φ2).

A Weakness Measure for GR(1) Formulae 115

The final desirable property is that a weakness measure be at least as dis-
criminating as implication in case one formula strictly implies the other.

Axiom 3. Let φ1 and φ2 be such that φ1 → φ2 is valid and φ2 → φ1 is not.
Then d(φ1) < d(φ2).

In the next section, we prove that our proposed weakness measure satisfies
Axioms 1 and 2. We then show that, although our weakness measure is not
guaranteed to satisfy Axiom 3 in general, we are able to guarantee so for a
specific class of formulae.

5 Weakness Measure of GR(1) Formulae

Hausdorff dimension and Hausdorff measure are basic concepts in fractal geom-
etry and represent a way to define measures of extension—that is, analogous con-
cepts to length, area, volume from classical geometry—for fractals [34]. Staiger
[41] pinpointed a homeomorphism between fractals and regular ω-languages and
proposed an analogous interpretation of the two quantities as extension measures
of ω-languages. Intuitively, given an ω-language L, its Hausdorff dimension quan-
tifies the growth rate of the number of distinct n-long prefixes of words in the
language, over the length n of those prefixes. This makes it a good candidate for
quantifying weakness: the less constrained the language is, the more prefixes of
a fixed length are contained in it, implying a higher Hausdorff dimension.

The formal definition of Hausdorff dimension is tightly related to the notion
of Hausdorff measure. The following definitions are given in [40].

Definition 1 (α-dimensional Hausdorff outer measure). Given a regular
ω-language L over an alphabet Σ with cardinality r, and a nonnegative real value
α, the α-dimensional Hausdorff outer measure of L is defined as

mα(L) = lim
n→∞ inf

V ∈Ln

∑

v∈V

r−α|v| (1)

where Ln = {V ⊆ Σ∗ | V · Σω ⊇ L and |v| ≥ n for all v ∈ V } is the collection
of languages V containing finite words of length at least n and such that every
word in L has at least a prefix in V . ��
Definition 2 (Hausdorff dimension and measure). Given an ω-language
L, its Hausdorff dimension, denoted by dim (L), is the (unique) value ᾱ such
that

mα(L) = ∞ α < ᾱ

mα(L) = 0 α > ᾱ

The value mdim(L)(L) is called the Hausdorff measure of L. ��

116 D. G. Cavezza et al.

In other words, Hausdorff measure is the limit of the process of approximating
the ω-language L by a set V of finite prefixes with length at least n, and weighing
each prefix with a quantity r−α|v| that decreases as the prefix length increases.
This limit can be finite and positive for at most one value of the α parameter.
This value is called Hausdorff dimension.

A related concept appearing in the literature is entropy:

Definition 3 (Entropy [34]). Given an ω-language L ⊆ Σω over an alphabet
of size r, the entropy of L is H(L) = lim supn→∞

1
n logr #(An(L)) .

It has been proved [34] that the Hausdorff dimension has a close relationship
with the notion of entropy: Specifically, we have dim (L) ≤ H(L) in general, and
dim (L) = H(L) if L is a closed ω-language. Details on how entropy is computed
are given in [16].

When L is not closed, the general algorithm presented in [40,41] provides
a more refined intuition of what is actually quantified by Hausdorff dimension,
which distinguishes it from entropy. The algorithm is based on computing a
Muller automaton ML accepting L with set of accepting state sets TL. For each
accepting set S′ ∈ TL and for each state s ∈ S′, consider the ω-language CS′

consisting of all the infinite paths in ML starting from s and visiting no states
outside S′. It can be shown that this language is closed and its entropy H(CS′)
is independent of the choice of s [40]. The Hausdorff dimension of L is then

dim (L) = max
S′∈TL

H(CS′) . (2)

Hausdorff dimension provides an ordering consistent with the weakness
notion defined in Sect. 4. We can interpret it as a measure of the asymptotic
degrees of freedom of an ω-language: it quantifies how many different evolutions
are allowed to an ω-word once its run remains in an accepting subset of the
Muller automaton. The example below shows how it differs from entropy.

Example 1. Consider the LTL formula φ1 = FGa over the variable set V = {a}
whose Muller automaton is shown in Fig. 1. The accepting sets to which a state
belongs are enclosed in curly braces.

Notice that for any w ∈ L(φ1) both valuations of V are allowed until w
reaches the accepting state, and the satisfaction of Ga may be delayed arbitrarily.
Therefore, for any finite n, #(An(L)) = 2n, and thereby H(L(φ1)) = 1.

In this simple DMA, there is only one accepting singleton {s2}. Therefore,
there is only one CS′ = {{a}ω} which allows only the symbol {a} ∈ 2V . This
implies #(An(CS′)) = 1. The Hausdorff dimension is dim (L(φ1)) = H(CS′) = 0.

This example demonstrates that the Hausdorff dimension isolates the asymp-
totic behaviour of L(φ1) as it depends only on the condition Ga that is eventually
satisfied by any ω-word in the ω-language. ��

A Weakness Measure for GR(1) Formulae 117

s1
s2

{S′}

∅

{a}

{a}

∅

Fig. 1. DMA of L(φ1).

The following theorem shows that Hausdorff dimen-
sion is consistent with implication (hence satisfying
Axiom 1).

Theorem 1. Given two LTL formulae φ1 and φ2 such
that φ1 → φ2 is valid, then dim (L(φ1)) ≤ dim (L(φ2)).

Proof. This follows from the language inclusion L(φ1) ⊆
L(φ2) and the monotonicity of Hausdorff dimension with
respect to language inclusion [34].

Note that Theorem 1 does not exclude the situation where one formula
strictly implies another, but the two languages have the same Hausdorff dimen-
sion, thus violating Axiom 3. We investigate under which conditions this holds
in the context of GR(1) formulae and provide a refined weakness measure that
bounds the number of cases in which it can happen.

To this end, in what follows, we introduce a new weakness measure for GR(1)
based on Hausdorff dimension. We first analyse the dimension of invariants. We
then show that under the condition of strong connectedness, it is possible to
distinguish between weaker and stronger invariants, in the implication sense
(Sect. 5.1). We show how, under the same condition, this measure fails to cap-
ture the impact of conjoining a fairness condition (Sect. 5.2). To overcome this,
we define a refined weakness measure for GR(1) formulae that comprises two
components: the Hausdorff dimension (i) of the whole formula and (ii) of the
difference language between the invariant and the fairness conditions (Sect. 5.3).

5.1 Dimension of Invariants

Consider the formula φinv = GB(V ∪ XV). The ω-language L(φinv) is closed.

s1

{stop}

s1 s2

∅

{stop}

{stop}

Fig. 2. DBAs of φinv
1

(top) and φinv
2 (bot-

tom)

Hence, the Hausdorff dimension ofL(φinv) coincides with its
entropy H(L(φinv)) and can be computed as the maximum
eigenvalue of the adjacency matrix of its Büchi automa-
ton (see [16]). From this equivalence and Definition 3, it
is easy to see that in this case Hausdorff dimension satis-
fies Axiom 2. In general, Theorem 1 may hold for invariants
where one is strictly weaker than the other and both have
equal dimensions as demonstrated in the following.

Example 2. Consider the variable set V = {stop} and
the formulae φinv

1 = Gstop and φinv
2 = G(stop → Xstop).

Their Büchi automata are shown in Fig. 2. Clearly φinv
1 →

φinv
2 strictly, however the two languages have the same Hausdorff dimension

dim
(
L(φinv

1)
)

= dim
(
L(φinv

2)
)

= 0.

There exists, however, a subclass of invariants for which the dimension is
strictly monotonic with respect to implication. This subclass is characterized
through the concept of strong connectedness of an ω-language. Hereafter, given
a word w ∈ A(L), we denote by Sw(L) the ω-language formed by the ω-words v
such that wv ∈ L (that is, the suffixes allowed in L after reading w).

118 D. G. Cavezza et al.

Definition 4 (Strongly connected ω-language [34]). An ω-language L is
strongly connected if for every prefix w ∈ A(L) there exists a finite word v ∈ Σ∗

such that Swv(L) = L.

In other words, an ω-language is strongly connected if and only if there
exists a strongly connected finite-state automaton which represents it [34], i.e.,
an automaton such that given any pair of states, each of them is reachable from
the other. Using this notion, in the next theorem we provide a sufficient condition
over invariants for Axiom 3 to be satisfied (the proof is relegated to [16]):

Theorem 2. Let φinv
1 = GB1(V ∪ XV) and φinv

2 = GB2(V ∪ XV) be two non-
empty invariants such that φinv

1 → φinv
2 is valid, φinv

2 → φinv
1 is not valid and

φinv
2 is strongly connected. Then dim

(
L(φinv

1)
)

< dim
(
L(φinv

2)
)
.

q1

B(V)

Fig. 3. DBA of a
one-state invariant.

An interesting kind of invariant that falls in this class
is the one-state invariant, one that does not use the X
operator: φinv

s = GB(V) whose DBA is shown in Fig. 3.
(For succinctness, the set of valuations that label a tran-
sition between the same states is denoted by the Boolean
expression characterizing it.) In this case, the Hausdorff
dimension has a closed form:

dim
(
φinv

s

)
= logr #(B(V))

where r = 2#(V) is the number of valuations of V and #(B(V)) is the num-
ber of valuations that satisfy B(V). Invariants of this type are clearly strongly
connected and satisfy Theorem 2.

Remark 1. Typical examples of GR(1) specifications manually produced, like
those of device communication protocols, make use of strongly connected envi-
ronment assumptions. It is indeed natural to allow environments to be reset to
their initial state after some steps. However, when specifications contain “until”
operators or response patterns, the procedure to convert them into GR(1) [33]
may yield assumptions which are no longer strongly connected. In those cases,
a problem similar to that of Example 2 may arise. ��

5.2 Fairness and Fairness Complements
q1 q2

¬B(V)

B(V)

B(V)

¬B(V)

q1
q2

{S′}

B(V)
¬B(V)

¬B(V)

B(V)

Fig. 4. DBA of L(φfair)
(top) and DMA of L(φcfair)
(bottom).

Consider the generic fairness condition φfair =
GFB(V) whose DBA is shown in Fig. 4. This lan-
guage is not closed: take a symbol x ∈ Σ that
does not satisfy B(V) and the ω-word xω consist-
ing of infinite repetitions of this symbol. It is clear
that A({xω}) ⊆ A(L(φfair)), but xω
∈ L(φfair).
We apply the algorithm in Sect. 5 (cf. Eq. 2) for
non-closed languages. A DMA for L(φfair) can be
obtained from the top DBA in Fig. 4: the accepting

A Weakness Measure for GR(1) Formulae 119

sets are S′
1 = {q1, q2} and S′

2 = {q2}. It is easy to see that H(CS′
1
) = 1 and

H(CS′
2
) = logr #(B(V)) ≤ 1. Therefore, dim

(
L(φfair)

)
= 1, independently of

B(V). We conclude that fairness conditions are indistinguishable from the true
constant, which also has dimension 1. To allow for a distinction to be made, we
characterize the negation of such formula. We call an LTL formula of the kind
φcfair = FG¬B(V) a fairness complement. The DMA of L(φcfair) is shown in the
bottom of Fig. 4. The only accepting set is S′ = {q2}. (Notice that unlike the top
one, this automaton accepts only words that stay forever in q2 from a certain
step on.) The language CS′ (see Sect. 5) has an entropy of logr #(¬B(V)). Hence

dim
(
L(φcfair)

)
= logr #(¬B(V))

where r = 2#(V). Notice that CS′ is the language of the formula G¬B(V),
which is an “asymptotic” condition of φcfair. As observed previously, Hausdorff
dimension is strictly monotonic for one-state invariants. Therefore, the weakness
of fairness complements can be ranked in terms of the Hausdorff dimension,
allowing to compare fairness conditions as follows:

Theorem 3. Let φfair
1 and φfair

2 be two fairness conditions such that φfair
1 →

φfair
2 is valid and φfair

2 → φfair
1 is not. Then dim

(
L(¬φfair

1)
)

> dim
(
L(¬φfair

2)
)
.

In other words, the stronger a fairness formula is, the weaker its complement
and thereby the higher its dimension.

5.3 Dimension Pairs for GR(1) Formulae

q1
{S′

2}
q2

{S′
1, S

′
2}

∅, {b}

{a}, {a, b}

{a, b}

{b}

q1
{S′

1, S
′
3,

S′
4, S

′
6}

q2
{S′

2, S
′
3,

S′
5, S

′
6}

q3
{S′

4, S
′
5,

S′
6}

{b}

∅

∅

{b}

{a}, {a, b}

{a, b}

{b}

{a}, {a, b}

Fig. 5. DMAs of φ1

(top) and φ2 (bottom) of
Example 3.

Consider a generic GR(1) formula φ = φinit ∧ φinv ∧
∧m

i=1 φfair
i . We show through an example that even

when φinv is strongly connected, Hausdorff dimension
may not distinguish between weaker and stronger fair-
ness conditions in the implication sense (as also pointed
out in [6]).

Example 3. Consider the two formulae over the vari-
ables V = {a, b}: φ1 = G(a → Xb) ∧ GFa and φ2 =
G(a → Xb)∧GFb. The same invariant appears in both,
and thereby have the same Hausdorff dimension, but
the fairness condition in φ2 is always satisfied when
the fairness condition of φ1 is satisfied, by virtue of the
invariant itself. However, the ω-word {b}ω satisfies φ2

but not φ1. So, φ1 implies φ2 but not vice versa.
The language of both formulae is not closed. The

Muller automata of φ1 and φ2 are shown at the top
and bottom, respectively, in Fig. 5. In both automata,
there is an accepting set that covers the entire state
space (S′

2 in L(φ1) and S′
6 in L(φ2). It is possible to

120 D. G. Cavezza et al.

show that the maximum H(CS′) of Eq. (2) is achieved exactly for these accepting
sets [9,34]. The ω-languages CS′

2
in L(φ1) and CS′

6
in L(φ2) both coincide with

the language of the invariant alone. Therefore,

dim (φ1) = dim (φ2) = dim (L(G(a → Xb))) .

To distinguish between the two formulae, we exploit the fact that the com-
plement of a fairness condition is a formula of the kind FGB(V) which can be
compared through Hausdorff dimension. Therefore, we propose a weakness mea-
sure which consists of two components: one relating to the whole formula and
one measuring the ω-language excluded from the invariant by the addition of
the fairness conditions.

Definition 5 (Weakness). The weakness of a GR(1) formula φ = (φinit ∧
φinv

∧m
i=1 φfair

i), denoted by d(φ), is the pair (d1(φ), d2(φ)) such that d1(φ) is the
Hausdorff dimension of L(φ); and d2(φ) is the Hausdorff dimension of L(φc) =
L(φinit∧φinv∧∨m

i=1 φcfair
i), where φcfair

i = ¬φfair
i . The following partial ordering

is defined based on the weakness measure: If di = (di
1, d

i
2), with i ∈ 1, 2 are

weakness measures for two GR(1) formulae, then d1 < d2 if d11 < d21 or d11 = d21
and d12 > d22.

q1
{S′

1} q2

∅, {b}

{a}, {a, b}
{a, b}

{b}

q1
q2

{S′
1}

q3

{b}

∅

∅

{b}

{a, b}

{a, b}

{b}

Fig. 6. DMAs of φc
1

(top) and φc
2 (bot-

tom) of Example 4.

We apply below this weakness measure to the formulae
in Example 3.

Example 4. To compute d2, let us define φc
1 = G(a →

Xb) ∧ FG¬a and φc
2 = G(a → Xb) ∧ FG¬b. The DMAs

of the resulting languages are shown respectively in Fig. 6.
Each of them has just one accepting singleton, so the com-
putation of the Hausdorff dimension is straightforward:
dim (φc

1) = 1
2 and dim (φc

2) = 0. In summary, since φ1 is
more restrictive than φ2, the Hausdorff dimension of the
ω-language cut out by GFa is higher than the Hausdorff
dimension of the behaviours excluded by GFb.

The following Theorem justifies the use of this dimen-
sion pair for weakness quantification when the formulae
have the same invariant.

Theorem 4. Let φ1 = φinv ∧ ∧m
i=1 φfair

1,i and φ2 = φinv ∧
∧l

j=1 φfair
2,j , such that φ1 → φ2 is valid. Then d1(φ1) =

d1(φ2) and d2(φ1) ≥ d2(φ2).

Proof. Since φ1 implies φ2, L(φ1) ⊆ L(φ2). Furthermore, for i = 1, 2, L(φi) =
L(φinv) ∩ L(

∧m
j=1 φfair

i,j). Hence, L(φinv)\L(
∧m

j=1 φfair
1,j) ⊇ L(φinv)\L(

∧l
j=1 φfair

2,j),
i.e., L(φc

1) ⊇ L(φc
2). Then, by monotonicity, dim(φc

1) ≥ dim(φc
2), finishing the

proof. ��

A Weakness Measure for GR(1) Formulae 121

Therefore, given two formulae with the same invariant, we deem the formula
with lower d2 weaker.

Regarding formulae with the same d1 and different invariants, we justify
heuristically the same order relation. We first note that the Hausdorff dimension
of a countable union of ω-languages, as noted in [41], is

dim

(
⋃

i

Li

)

= sup
i

dim (Li) .

This property is known as the countable stability of Hausdorff dimension. This
implies that for any formula φ, if d2(φ) ≤ d1(φ) then

dim
(
L(φinv)

)
= dim (L(φ) ∪ L(φc)) = dim (L(φ)) .

So, if for two formulae, φ1 and φ2, we have d1(φ1) = d1(φ2) > d2(φ1) > d2(φ2),
then this can be interpreted as the two invariants having the same dimension
and the fairness condition of φ1 removing more behaviours than the fairness
condition of φ2. In this sense, φ2 is weaker than φ1. This justifies intuitively our
weakness definition and the associated partial ordering. In Sect. 6, we illustrate
applications of this order relation for comparing GR(1) assumptions.

The computation of d2(φ) for a generic φ with m fairness conditions can
be reduced to the case of a single fairness condition. Based on the countable
stability of Hausdorff dimension, we have

d2(φ) = sup
i=1,...,m

d2(φinit ∧ φinv ∧ φcfair
i) .

Furthermore, the case of a single fairness condition can be further reduced
to computing the Hausdorff dimension of an invariant by the following theorem.

Theorem 5. Given a formula φc = GBinv(V ∪ XV) ∧ FG¬Bfair(V) we have

dim (L(φc)) = dim
(
L(G(Binv ∧ ¬Bfair))

)
.

Proof Sketch (full proof is presented in [16]). Since L(φc) is not closed, the
Hausdorff dimension must be computed from a DMA. The proof (given in [16])
consists in showing that the DMA’s accepting subsets correspond to the automa-
ton of an ω-language where both Binv and ¬Bfair are satisfied at every step.
This property is a generalization of the observation made in Sect. 5.2 about the
Hausdorff dimension of fairness complements. ��

5.4 Initial Conditions

Consider φinit = B(V). An expression of this form constrains only the first
symbol of the ω-words in L(φinit). For the same reason as φfair in Sect. 5.2,
L(φinit) is closed, and therefore its dimension can be computed via its entropy.
By applying the definition of entropy, it is easy to see that, similarly to the
unconstrained language L(true), dim

(
L(φinit)

)
= 1 .

122 D. G. Cavezza et al.

Consider now a formula φ = φinit∧φinv. A DBA B for L(φ) can be computed
from a DBA Binv of L(φinv) by removing all transitions starting from its initial
state whose labels do not satisfy B(V). The resulting automaton may leave out
parts of Binv that are no longer reachable from the initial state. This does not
happen if L(φinv) is strongly connected, as in that case any non-initial state in
Binv is reachable from any other state. In this case

dim (φ) = dim
(
φinv

)
.

This implies that the initial conditions do not affect the Hausdorff dimension
and hence cannot be always ordered by our weakness measure. This is accept-
able since typically, in applications like assumptions refinement, the focus is in
assessing invariants or fairness conditions rather than initial conditions [30].

6 Evaluation

We evaluate here our proposed weakness measure through applications to bench-
marks within the assumptions refinement domain, demonstrating its usefulness
in distinguishing weakness of different formulae, and discussing the computation
time bottlenecks. In [16] we report on our evaluation within another application
domain, namely quantitative model checking.

To this aim, we implemented the weakness measure computation for GR(1)
specifications in Python 2.7 and made it publicly available in [1]. Our imple-
mentation makes use of the Spot tool [22] for LTL-to-automata conversion.
We integrated the weakness computation algorithm within two state-of-the-art
counterstrategy-guided assumptions refinement approaches [4,15] (the imple-
mentations are available in [1]). The outcome of such approaches is a refinement
tree, a tree structure where each node is associated with a GR(1) formula con-
sisting of a conjunction of environment assumptions; if we denote by φ a formula
associated with a node, the node’s children are of the form φ ∧ ψ, where ψ is
a single initial condition, invariant, or fairness condition. Since the goal of such
procedures is identifying weakest formulae that describe an environment, our
weakness measure can be used to provide a preference ranking of the tree nodes.

We conducted experiments on two benchmarks for GR(1) assumptions refine-
ment, namely the specifications of a lift controller and of the AMBA-AHB pro-
tocol for device communications in its versions for two, four and eight master
devices [4,12,30]. The lift controller example specifies a controller for a lift with
three floors: the Boolean variable bi denotes the state of the button on floor i;
the Boolean variable fi is true iff the lift is at floor i. For more details on the
initial assumptions φE see [4]. The AMBA-AHB protocol provides signals for
requesting access to a bus (hbusreqi), for granting access (hgranti), for signalling
the termination of a communication (hready), and for identifying the current
owner of the bus (hmaster). Other signals are detailed in [12]. To our knowledge,
the AMBA08 specification is one of the biggest benchmarks available in the field.

A Weakness Measure for GR(1) Formulae 123

In the followings we focus on examples taken from [4,15], and discuss three
cases highlighting features of our weakness measure: (i) in the first example, we
demonstrate the relationship between weakness and implication; (ii) second, we
consider cases when two formulae are not comparable by implication but can be
ranked with our measure; and (iii) we discuss the case of formulae equally con-
straining the environment, which have equal ranking according to our measure.
We refer the reader to [1] for the complete results.

Relation Between Weakness and Implication. Consider the lift controller
example. Two refinements computed by the automated approach in [15] are:
φ1 = G((¬b1 ∧ ¬b2 ∧ ¬b3) → X(b1 ∨ b2 ∨ b3)); and φ2 = GF(b1 ∨ b2 ∨ b3). The
first forces one of the buttons to be pressed at least every second step in a
behaviour. The second forces one of the buttons to be pressed infinitely often
in a behaviour. It is clear that φ1 implies φ2. We compare the assumptions
obtained by refining the original assumptions with the first one and with the
second one: d(φE ∧ φ1) = (0.7746, 0) and d(φE ∧ φ2) = (0.7925, 0.5). Notice that
d1(φE ∧φ1) < d1(φE ∧φ2) and this is consistent with the fact that φ1 is stronger
than φ2. Consider now the two fairness refinements: φ2 = GF(b1 ∨ b2 ∨ b3); and
φ3 = GFb1. We have d(φE ∧φ2) = (0.7925, 0.5) and d(φE ∧φ3) = (0.7925, 0.695).
Here, d1 is equal for both formulae and d2(φE ∧ φ2) < d2(φE ∧ φ3); this is
consistent with the fact that φ2 is weaker than φ3.

Formulae Incomparable via Implication. Consider φ3 above and
φ4 = GF(b2 ∨ b3). Neither implies the other. However, it is reasonable to
argue that φ4 is less restrictive than φ3: while φ3 constrains exactly one but-
ton to be pressed infinitely often, φ4 allows the extra choice of which one (out
of two). This intuition is indeed reflected by our computed weakness metric:
d(φE ∧ φ3) = (0.7925, 0.695) and d(φE ∧ φ4) = (0.7925, 0.5975). This expresses
the notion that φ4 removes less behaviours from φE than φ3.

Our weakness measure can help in spotting asymmetries between assump-
tions that are syntactically equal but constrain semantically different variables.
Consider an extended version of the lift controller example given in [16], includ-
ing the input variable alarm and the output variable stop: whenever alarm is set
to high, the lift enters a stop state where it does not move from the floor it is at.
Computing the weakness of the two refinements φ5 = G¬b1 and φ6 = G¬alarm
yields d(φE ∧φS ∧φ5) = (0.3694, 0.3207) and d(φE ∧φS ∧φ6) = (0.3746, 0.3346).
This is consistent with the intuition that the former assumption excludes a part
of the desirable system behaviors (all the ones that allow it to reach floor 1), while
the latter excludes only the traces ending in the stop state, being then a weaker
restriction on the combined behaviors of the controller and the environment.

The following two assumptions refinements are computed for the AMBA-
AHB case study with two masters: ψ1 = G(¬hbusreq1 ∨X(hready ∨ ¬hbusreq1));
and ψ2 = G((¬hgrant1 ∧ hready ∧ hbusreq1) → X(¬hready ∨ ¬hbusreq1)). As in
the case of the lift example, neither formula implies the other. The weakness of
the resulting assumptions is: d(ψE ∧ ψ1) = (0.9503, 0.9068) and d(ψE ∧ ψ2) =
(0.9607, 0.9172). The refinement ψ2 is weaker than ψ1. Such insight into their
weakness could be used to guide the refinement approach (e.g., [4,15]) in choosing

124 D. G. Cavezza et al.

to only refine those assumptions that may lead to weaker specifications, for
instance further refining ψ2 rather than ψ1.

Consistency Between Equally Constraining Formulae. Let us consider
the AMBA-AHB protocol with eight masters and the two alternative refine-
ments: θ1 = GF(hmaster0 ∨ ¬hbusreq1); and θ2 = GF(hmaster1 ∨ ¬hbusreq2).
Clearly the two alternatives express the same kind of constraint on different
masters. Since the two masters do not have priorities over each other, expect-
edly the two refinements have the same weakness: d(θE ∧ θ1) = d(θE ∧ θ2) =
(0.9396, 0.9214).

Performance. In order to compare the discriminative power of the weakness
measure and implication, we perform an experiment where every pair of refine-
ments from the trees in [15] is compared via both methods. An implication check
for the pair of formulae φ1 and φ2 is performed by computing the nondetermin-
istic transition-based generalized Büchi automata (TGBA) [32] of the formulae
φ1 ∧ ¬φ2 and φ2 ∧ ¬φ1, and checking whether any of them is empty [38].

We compare the proportion of formulae pairs that have different weakness
measure (and thereby can be discriminated via our proposed metric) and the pro-
portion of formulae pairs where one formula strictly implies the other (that can
be discriminated via logical implication). Table 1 shows the results: the columns
show the total number of nodes in the refinement tree (#Nodes), the corre-
sponding number of pairs (#Pairs), the percentage of pairs that can be dis-
criminated via implication (%Impl) and via weakness (%Weak). The table
shows that, despite weakness does not capture implication in all cases, it still
allows for the discrimination of a larger set of assumptions, by virtue of Axiom 2.

Table 1. Discriminative power of implication and weakness

Case study #Nodes (k) #Pairs %Impl %Weak

AMBA02 9 36 63.9 88.9

AMBA04 17 136 69.1 79.4

Fig. 7. Execution time of weakness com-
putation for AMBA08

The time taken to compute the
weakness measure for each refine-
ment (computed via the approach
in [15]) was consistently less than
1 min for the lift controller, AMBA02,
and AMBA04 case studies. The time
needed on a representative subset of
refinements from the AMBA08 exam-
ple is shown in Fig. 7 as a function of
the number of GR(1) conjuncts in the
assumptions. The subset comprises a
path from the root of the refinement

A Weakness Measure for GR(1) Formulae 125

tree (initial assumptions) to one of the
80 leaves. We observed that 79 of the 80 leaves showed similar performance as
the one reported in figure; one of them, instead, took around 5200 s. Notice that
over 99% of the time is spent on DMA computation, and the remaining time is
employed on eigenvalue computation.

In general implication checks require an O(k2) number of automata compu-
tations. On the other hand, for a set of formulae containing at most m fairness
conditions, our weakness measure requires m + 1 DMA computations, yielding
O(mk) automata for comparing k formulae. In this respect, the advantage of
our weakness measure resides in the reduced number of DMA computations
with respect to implication.

The price to pay lies in the complexity of the needed automata: while weak-
ness requires deterministic automata, implication can be checked via nonde-
terministic ones, which are typically faster to compute [23]. However, in the
AMBA08 case we observed that the quadratic growth of implication checks pre-
vailed over the lesser complexity of nondeterministic automata: the value of k
for this case study is 158; while computing all weakness values for the refinement
tree required a total time of 15 hours, in the same amount of time only a small
fraction of the 12,403 formulae pairs could be checked for implication.

7 Conclusion

In this paper we proposed a new measure for assessing the weakness of GR(1) for-
mulae quantitatively and demonstrated its application in the context of weakest
assumptions refinement for GR(1) controller synthesis. We showed that strong
connectedness of invariants is a sufficient requirement to guarantee that our
measure distinguishes between stronger and weaker formulae in the implication
sense. We introduced a component to the measure which allows one to com-
pare formulae with the same dimension based on the weakness of their fairness
conditions. The major limitation of the approach is the need for deterministic
automata to be produced, which induces high computation time because of the
determinization process [23].

As part of our future work, we plan to explore the possibility of refining the
weakness relation by including Hausdorff measure in the definition, since Haus-
dorff measure can distinguish between stronger and weaker ω-languages in case
they are not strongly connected [34]. We also intend to investigate algorithms for
computing—or approximating at a controlled accuracy—Hausdorff dimension on
nondeterministic automata.

Acknowledgments. The support of the EPSRC HiPEDS Centre for Doctoral Train-
ing (EP/L016796/1) is gratefully acknowledged. We also thank our reviewers for their
insightful comments and suggestions.

126 D. G. Cavezza et al.

References

1. https://gitlab.doc.ic.ac.uk/dgc14/WeakestAssumptions
2. Albarghouthi, A., Dillig, I., Gurfinkel, A.: Maximal specification synthesis. ACM

SIGPLAN Notices 51(1), 789–801 (2016)
3. Almagor, S., Avni, G., Kupferman, O.: Automatic generation of quality specifica-

tions. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 479–494.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 32

4. Alur, R., Moarref, S., Topcu, U.: Counter-strategy guided refinement of GR(1)
temporal logic specifications. In: Formal Methods in Computer-Aided Design, pp.
26–33 (2013)

5. Alur, R., Moarref, S., Topcu, U.: Pattern-based refinement of assume-guarantee
specifications in reactive synthesis. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 501–516. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0 49

6. Asarin, E., Blockelet, M., Degorre, A.: Entropy model checking. In: 12th Workshop
on Quantitative Aspects of Programming Languages - Joint with European Joint
Conference On Theory and Practice of Software (2014)

7. Asarin, E., Blockelet, M., Degorre, A., Dima, C., Mu, C.: Asymptotic behaviour
in temporal logic. In: Joint Meeting CSL/LICS, pp. 1–9. ACM Press (2014)

8. Barnat, J., Bauch, P., Beneš, N., Brim, L., Beran, J., Kratochv́ıla, T.: Analysing
sanity of requirements for avionics systems. Form. Asp. Comput. 28(1), 45–63
(2016)

9. Berman, A., Plemmons, R.: Nonnegative Matrices in the Mathematical Sciences.
Society for Industrial and Applied Mathematics (1994)

10. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4 14

11. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: hardware from PSL. Electron. Notes Theor. Comput. Sci.
190(4), 3–16 (2007)

12. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

13. Braberman, V., D’Ippolito, N., Piterman, N., Sykes, D., Uchitel, S.: Controller
synthesis: from modelling to enactment. In: International Conference on Software
Engineering, pp. 1347–1350. IEEE (2013)

14. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer,
New York (2008)

15. Cavezza, D.G., Alrajeh, D.: Interpolation-based GR(1) assumptions refinement.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 281–297.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 16

16. Cavezza, D.G., Alrajeh, D., György, A.: A weakness measure for GR(1) formulae.
CoRR abs/1805.03151 (2018). http://arxiv.org/abs/1805.03151

17. Chatterjee, K., De Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R.,
Stoelinga, M.: Compositional quantitative reasoning. In: International Conference
on the Quantitative Evaluation of Systems, pp. 179–188 (2006)

18. Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for
synthesis. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol.
5201, pp. 147–161. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85361-9 14

https://gitlab.doc.ic.ac.uk/dgc14/WeakestAssumptions
https://doi.org/10.1007/978-3-642-39799-8_32
https://doi.org/10.1007/978-3-662-46681-0_49
https://doi.org/10.1007/978-3-662-46681-0_49
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-662-54577-5_16
http://arxiv.org/abs/1805.03151
https://doi.org/10.1007/978-3-540-85361-9_14
https://doi.org/10.1007/978-3-540-85361-9_14

A Weakness Measure for GR(1) Formulae 127

19. Cimatti, A., Roveri, M., Schuppan, V., Tchaltsev, A.: Diagnostic information for
realizability. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS,
vol. 4905, pp. 52–67. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78163-9 9

20. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 24

21. D’Ippolito, N., Braberman, V., Sykes, D., Uchitel, S.: Robust degradation and
enhancement of robot mission behaviour in unpredictable environments. In: Pro-
ceedings of the 1st International Workshop on Control Theory for Software Engi-
neering, pp. 26–33 (2015)

22. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

23. Esparza, J., Křet́ınský, J., Sickert, S.: From LTL to deterministic automata. Formal
Methods Syst. Des. 49(3), 219–271 (2016)

24. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

25. Henzinger, T.: From Boolean to quantitative notions of correctness. ACM SIG-
PLAN Notices 45(1), 157 (2010)

26. Henzinger, T.A., Otop, J.: From model checking to model measuring. In:
D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 273–
287. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8 20

27. Konighofer, R., Hofferek, G., Bloem, R.: Debugging formal specifications using
simple counterstrategies. In: Formal Methods in Computer-Aided Design, pp. 152–
159 (2009)

28. Kupferman, O.: Recent challenges and ideas in temporal synthesis. In: Bieliková,
M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012.
LNCS, vol. 7147, pp. 88–98. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-27660-6 8

29. Kwiatkowska, M.: Quantitative verification: models, techniques and tools. In: Joint
Meeting on Foundations of Software Engineering - ESEC/FSE 2015, p. 449. ACM
Press (2007)

30. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: Interna-
tional Conference on Formal Methods and Models for Codesign, pp. 43–50 (2011)

31. Lomuscio, A., Strulo, B., Walker, N., Wu, P.: Assume-guarantee reasoning with
local specifications. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol.
6447, pp. 204–219. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16901-4 15

32. Lutz, A.D.: LTL translation improvements in Spot 1.0. Int. J. Crit. Comput.-Based
Syst. 5(1/2), 31 (2014)

33. Maoz, S., Ringert, J.O.: GR(1) synthesis for LTL specification patterns. In: Joint
Meeting on Foundations of Software Engineering - ESEC/FSE 2015, pp. 96–106.
ACM Press (2015)

34. Merzenich, W., Staiger, L.: Fractals, dimension, and formal languages. Informa-
tique théorique et applications 28(3–4), 361–386 (1994)

https://doi.org/10.1007/978-3-540-78163-9_9
https://doi.org/10.1007/978-3-540-78163-9_9
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-642-40184-8_20
https://doi.org/10.1007/978-3-642-27660-6_8
https://doi.org/10.1007/978-3-642-27660-6_8
https://doi.org/10.1007/978-3-642-16901-4_15
https://doi.org/10.1007/978-3-642-16901-4_15

128 D. G. Cavezza et al.

35. Nam, W., Alur, R.: Learning-based symbolic assume-guarantee reasoning with
automatic decomposition. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS,
vol. 4218, pp. 170–185. Springer, Heidelberg (2006). https://doi.org/10.1007/
11901914 15

36. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Principles of
Programming Languages, pp. 179–190 (1989)

37. Pnueli, A.: The temporal logic of programs. In: Annual Symposium on Foundations
of Computer Science, pp. 46–57 (1977)

38. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Three SCC-based empti-
ness checks for generalized Büchi automata. In: International Conference on Logic
for Programming Artificial Intelligence and Reasoning (LPAR), pp. 668–682 (2013)

39. Seshia, S.A.: Combining induction, deduction, and structure for verification and
synthesis. IEEE 103(11), 2036–2051 (2015)

40. Staiger, L.: The hausdorff measure of regular ω-languages is computable. Martin-
Luther-Universität, Technical report, August 1998

41. Staiger, L.: On the Hausdorff measure of regular omega-languages in Cantor space.
Technical report 1, Martin-Luther-Universität Halle-Wittenberg (2015)

42. Tan, L., Sokolsky, O., Lee, I.: Specification-based testing with linear temporal logic.
In: Proceedings of the IEEE International Conference on Information Reuse and
Integration, pp. 493–498 (2004)

43. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6 6

https://doi.org/10.1007/11901914_15
https://doi.org/10.1007/11901914_15
https://doi.org/10.1007/3-540-60915-6_6

Producing Explanations for Rich Logics

Simon Busard(B) and Charles Pecheur

Université catholique de Louvain, Louvain-la-Neuve, Belgium
{simon.busard,charles.pecheur}@uclouvain.be

Abstract. One of the claimed advantages of model checking is its
capability to provide a counter-example explaining why a property
is violated by a given system. Nevertheless, branching logics such as
Computation Tree Logic and its extensions have complex branching
counter-examples, and standard model checkers such as NuSMV do not
produce complete counter-examples—that is, counter-examples provid-
ing all information needed to understand the verification outcome—and
are limited to single executions. Many branching logics can be translated
into the µ-calculus. To solve this problem of producing complete and
complex counter-examples for branching logics, we propose a µ-calculus-
based framework with rich explanations. It integrates a µ-calculus model
checker that produces complete explanations, and several functionalities
to translate them back to the original logic. In addition to the frame-
work itself, we describe its implementation in Python and illustrate its
applicability with Alternating Temporal Logic.

1 Introduction

Model checking is a verification technique that performs an exhaustive search
among the behaviors of a system to determine if it satisfies a given property, usu-
ally expressed in a logic [2,10]. Branching logics, such as CTL, express properties
about the branching structure of the system [12]. Many extensions of CTL have
been proposed to take into account other aspects of the verified systems, such as
knowledge—with CTLK [28]—, or strategic abilities—with ATL [1]. Such logics
can be translated into the propositional µ-calculus, a logic based on fixpoint and
modal operators [22].

Producing an explanation of the verification outcome is one of the claimed
advantages of model checking. But, in the case of branching logics, the explana-
tions can be very rich as, in general, branching logics need branching counter-
examples [3]. They have to show different branches of the execution tree of the
system to fully explain the truth value of the property. However, current state-
of-the-art tools such as NuSMV only produce single executions of the model
when explaining why a property is violated [9].

The goal of this paper is to propose techniques and tools to generate, visualize
and manipulate explanations for µ-calculus-based logics such as CTL, CTLK and
ATL. Let us suppose that someone—the designer—uses some logic—the top-level
logic—to express and verify facts about some system, and wants to develop a
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 129–146, 2018.
https://doi.org/10.1007/978-3-319-95582-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_8&domain=pdf

130 S. Busard and C. Pecheur

model checker for it. She can either develop the tool from scratch, or she can
translate the models and formulas into another logic—the base logic—and use
existing tools to solve the model-checking problem.

Many logics can be translated into the µ-calculus, making it a good candidate
for a base logic. Nevertheless, when translating her model-checking problem into
µ-calculus, the designer has no help to facilitate this translation, in particular,
the counter-examples returned by the model checker (if any) are expressed in
terms of µ-calculus primitives instead of top-level logic ones. To overcome this
limitation and to help designers to quickly develop a model checker with rich
counter-examples, this paper proposes a µ-calculus-based framework with rich
explanations. The framework provides a µ-calculus model checker that generates
rich explanations and functionalities to define how top-level logic formulas are
translated into µ-calculus, to control how the µ-calculus explanations are gen-
erated, and to translate µ-calculus explanations into top-level logic ones. These
functionalities are the following:

1. Formula aliases link the formulas stored in the obligations to the top-level
logic formulas they represent.

2. The relational graph algebra of Dong et al. [15] is provided to transform
explanations into the part of the original model they represent.

3. Obligation and edge attributors add information to individual nodes and edges
of the explanation graph.

4. Local translation focuses on the small part that explains a given alias without
having to deal with the whole graph at once.

5. Choosers can be used to perform interactive or guided generation of expla-
nations. They also introduce the notion of partial explanations.

6. Formula markers are tags on formulas. Points of interest and points of deci-
sion are provided, but other markers can be defined by the designer.

All these functionalities work together to help the designer to produce useful
explanations. Figure 1 illustrates the structure of the framework.

model formula explanation

-calculus
model

-calculus
formula

enriched
-calculus

explanation

aliases

markers

attributors

local translators

choosers

relational graph algebra

model
translation

formula
translation

explanation
translation

model
checker

Fig. 1. The structure of the framework. In gray, the parts that the designer has to
define; in white, the elements provided by the framework.

Producing Explanations for Rich Logics 131

The designer first translates the original model and formula into µ-calculus.
She can decorate the translated formulas with aliases and markers, and she can
also attach attributors, local translators and choosers. The aliases and markers
will be present in the obligations in the generated enriched µ-calculus expla-
nation to help the designer with their translation. The attributors and local
translators are used by the model checker to add extra information to the gen-
erated explanations. The choosers allow the model checker to make the right
choices. Finally, the designer translates the enriched explanation back into the
top-level logic language thanks to the relational graph algebra.

The features are generic and complement each other: (1) the relational alge-
bra, attributors and local translators manipulate the explanation at different
scales; (2) points of decision and choosers work together to produce smaller par-
tial strategies and to select the explanations of interest; (3) points of interest
and aliases add information to important formulas.

The remainder of this paper is structured as follows: Sect. 2 presents the
propositional µ-calculus. Section 3 describes the framework for µ-calculus-based
logics explanations, and Sect. 4 its implementation in Python. Section 5 applies
the framework to the case of ATL model checking. Section 6 briefly compares
the framework with related work, and Sect. 7 draws conclusions.

2 The Propositional µ-Calculus

The µ-calculus is a logic based on fixpoints [22]. Its formulas follow the grammar

φ ::= true | p | v | ¬φ | φ ∨ φ | ◇i φ | μv. φ

where p ∈ AP are atomic propositions and v ∈ Var are variables. For instance,
◇i φ means that there exists a successor through the transition relation i that
satisfies φ, that is, a state satisfying φ can be reached in one step through the
transition relation i.

We write Lμ for the set of µ-calculus formulas. Other operators can be defined
in terms of the ones above, such as ◻i φ ≡ ¬◇i ¬φ and νv. φ ≡ ¬μv. ¬φ(¬v).

A variable v is bound in φ if it is enclosed in a sub-formula μv. ψ or νv. ψ;
otherwise, it is free. We sometimes note μv. ψ(v), νv. ψ(v), and ψ(v) to stress
the fact that ψ contains free occurrences of variable v. We write ψ[χ/v]—or
equivalently ψ(χ) when v is clear from the context—for the µ-calculus formula
ψ where every free occurrence of v is replaced by χ. We write ψk(χ) for k nestings
of ψ around χ, that is, ψ0(χ) = χ and ψk+1(χ) = ψ(ψk(χ)).

Any formula μv. ψ or νv. ψ, must be syntactically monotone, that is, all
occurrences of v in ψ must fall under an even number of negations. A formula
is in positive normal form if negations are only applied to atomic propositions
and variables. Any syntactically monotone formula can be transformed into an
equivalent syntactically monotone formula in positive normal form.

µ-calculus models are Kripke structures S = 〈Q, {Ri | i ∈ Σ}, V 〉 where
(1) Q is a finite set of states; (2) Ri ⊆ Q × Q are |Σ| transition relations;

132 S. Busard and C. Pecheur

(3) V : Q → 2AP labels the states with atomic propositions. We write q →i q′

for 〈q, q′〉 ∈ Ri.
µ-calculus formulas are interpreted as sets of states under a given environ-

ment. An environment is a function e : Var → 2Q associating sets of states to
variables. The set of environments is noted E . We write e[Q′/v], for Q′ ⊆ Q and
v ∈ Var, for the function e′ such that e′(v) = Q′ and e′ agrees with e for all other
variables. The semantics of formulas is given by the function �φ�Se. It takes a
formula φ and an environment e defined at least for the free variables of φ, and
returns the corresponding set of states. This function is defined as:

�true�Se = Q,

�v�Se = e(v),

�p�Se = {q ∈ Q | p ∈ V (q)},

�¬φ�Se = Q\�φ�Se,

�φ ∨ ψ�Se = �φ�Se ∪ �ψ�Se,

�μv. φ�Se =
⋂{Q′ ⊆ Q | �φ�Se[Q′/v] ⊆ Q′}.

�◇i φ�Se = {q ∈ Q | ∃q′ ∈ Q s.t. q →i q′ ∧ q′ ∈ �φ�Se},

3 A µ-Calculus-Based Framework for Rich Explanations

This section presents the µ-calculus-based framework we propose. To illustrate
the concepts, we will use the case of ATL model checking, presented in Sect. 3.1.
Section 3.2 describes µ-calculus explanations, and Sect. 3.3 presents the function-
alities to translate these explanations back to the original logic.

3.1 Translation of ATL Models and Formulas to µ-calculus

ATL formulas are built with atomic propositions and Boolean connectives, as
well as coalition modalities ⟪⟫ and ⟦⟧ reasoning about the strategies of groups of
agents to enforce temporal objectives specified with the standard X, F, G and
U temporal operators [1]. For instance, the formula ⟪Γ ⟫F p expresses the fact
that agents Γ have a strategy to reach, within a finite number of steps, some
goal p, and ⟦Γ ⟧G q that they have no strategy to maintain some other goal
q forever.

ATL formulas are interpreted over the states of concurrent game structures
(CGS) S = 〈Ag,Q,Q0, Act, e, δ, V 〉 defining the states (Q) and agents (Ag) of
the system, what they can do (e : Ag → (Q → (2Act\∅))), and how the system
evolves according to their choices (δ : Q × ActAg → Q).

Given a CGS S, a state q of S, and an ATL formula φ, we can translate S
into a Kripke structure S′, q into a state q′ of S′, and φ into a µ-calculus formula
φ′ such that q satisfies φ if and only if q′ satisfies φ′. To avoid technical details,
this section only presents the intuition of the translation and focuses on a small
subset of ATL operators. The full translation can be found in [4].

The idea of the translation from a CGS S = 〈Ag,Q,Q0, Act, e, δ, V 〉 to a
structure S′ = 〈Q′, {R′

i | i ∈ Σ}, V ′〉 is to derive, from each state q ∈ Q,

Producing Explanations for Rich Logics 133

each group of agents Γ ⊆ Ag, and each joint action aΓ of Γ , a new state qaΓ

representing the fact that Γ chose to play aΓ in q. For each group Γ ⊆ Ag, two
transition relations are derived from δ: RΓchoose links any state q ∈ Q to the
derived states qaΓ

for all possible actions aΓ of Γ ; RΓfollow links any derived
state qaΓ

to the successors of q restricted to the ones reached if Γ choose aΓ .
Intuitively, the derived structure S′ encodes in two steps (q → qaΓ

→ q′) the one-
step transitions of S (q a−→ q′). The set Σ of relations names is Σ = {Γchoose |
Γ ⊆ Ag} ∪ {Γfollow | Γ ⊆ Ag}, that is, two transition relations for each group
of agents.

Figure 2 presents the CGS of a simple one-bit transmission problem in which
a sender tries to send a value through an unreliable link. The sender can send
the value or wait, and the transmitter can transmit the message (if any), or block
the transmission. In this context, we ask whether the transmitter has a strategy
to never transmit the value, that is, if q0 satisfies ⟪transmitter⟫G ¬sent.

Fig. 2. The CGS of the bit transmission problem. The action pairs are the actions of
the sender and the transmitter, respectively. ∗ means any action of the agent.

The CGS of this bit transmission problem can be translated into a µ-calculus
Kripke structure. Figure 3 presents a part of the translation, focusing on the
states derived from q0; the part about q1 is not shown. For instance, in q0,
the sender can choose the action send to transition to q0send

. The transmitter’s
following action can either be block, which transitions back to q0, or transmit,
which transitions to q1.

Fig. 3. A part of the translation of the bit transmission CGS. sc and sf mean
sender chooses and sender follows, tc and tf mean transmitter chooses and
transmitter follows. Transition relations for the two other groups of agents (no agent,
and both agents) are not shown.

134 S. Busard and C. Pecheur

ATL formulas can also be translated into µ-calculus formulas. The formula
⟪transmitter⟫G ¬sent is translated as

φns = νv. ¬sent ∧◇trans chooses(◇trans followstrue ∧ ◻trans follows v). (1)

The main idea behind this translation is that a state satisfies the second term
◇trans chooses(◇trans follows true ∧ ◻trans follows v) if there exists an action for
transmitter that is enabled and such that all choices of the other agents lead
to v, that is, if the transmitter can enforce to reach v in one step. Then, a state
satisfies φns if the transmitter can enforce to stay in states satisfying ¬sent
forever, that is, if the transmitter has a strategy to enforce G ¬sent.

To explain why an ATL formula φ is satisfied by a state q of some CGS S,
we want to extract the part of the model starting at q that is responsible for the
satisfaction. Furthermore, as such part can be complex and difficult to under-
stand, we want to annotate each state with the sub-formulas of φ that are
true in that state. For instance, Fig. 4 gives an explanation for why q0 satis-
fies ⟪transmitter⟫G ¬sent. The explanation shows that, in q0, the block action
of the transmitter allows it to prevent the message to be sent.

Fig. 4. An explanation for why the transmitter can prevent the value to be sent.

3.2 µ-Calculus Explanations

A µ-calculus explanation is a graph where nodes are triplets—called obliga-
tions—composed of a state q of S, a µ-calculus formula φ, and an environment e.
An edge 〈〈q, φ, e〉, 〈q′, φ′, e′〉〉 encodes the fact that q ∈ �φ�Se because q′ ∈ �φ′�Se′.
In this section, all µ-calculus formulas are considered in positive normal form,
that is, all negations are applied to atomic propositions or variables only.

More formally, given a Kripke structure S = 〈Q, {Ri | i ∈ Σ}, V 〉, an expla-
nation is a graph E = 〈O, T 〉 such that the nodes O ⊆ Q × Lμ × E are triplets
of states of S, µ-formulas and environments, and the edges T ⊆ O ×O link obli-
gations together. The set of successors of o is noted succ(o) = {o′ | 〈o, o′〉 ∈ T}.

We are interested in explanations that are adequate, that is, that effectively
show why q satisfies φ in environment e. An explanation E is adequate for
explaining why q ∈ �φ�Se if it is consistent, matches S—that is, is composed of
elements of S—and 〈q, φ, e〉 ∈ O.

An explanation is consistent if it exhibits the different parts needed to explain
its elements. More formally, let E = 〈O, T 〉 be an explanation and let o =
〈q, φ, e〉 ∈ O. o is said to be locally consistent in E iff

Producing Explanations for Rich Logics 135

– φ �= false;
– if φ = true, then succ(o) = ∅;
– if φ = p or φ = ¬p, for p ∈ AP , then succ(o) = ∅;
– if φ = v or φ = ¬v, for v ∈ Var, then q ∈ e(v) (resp. q �∈ e(v)) and

succ(o) = ∅;
– if φ = φ1 ∧ φ2 then succ(o) = {〈q, φ1, e〉, 〈q, φ2, e〉};
– if φ = φ1 ∨ φ2 then succ(o) = {〈q, φj , e〉} for some j ∈ {1, 2};
– if φ = ♦iφ

′ then succ(o) = {〈q′, φ′, e〉} for some state q′;
– if φ = �iφ

′ then, for all o′ ∈ succ(o), o′ = 〈q′, φ′, e〉 for some state q′;
– if φ = μv.ψ(v), then succ(o) = {〈q, ψk(false), e〉} for some k ≥ 0;
– if φ = νv.ψ(v), then succ(o) = {〈q, ψ(φ), e〉}.

E is then consistent iff all obligations o ∈ O are locally consistent in E. Intu-
itively, if φ = μv. ψ, then q ∈ �φ�Se because q belongs to a finite number of
applications of ψ on false, that is, q ∈ �ψk(false)�Se for some k ≥ 0. On the
other hand, this idea cannot be applied for φ = νv. ψ. In this case, q ∈ �φ�Se
because it belongs to any number of applications of ψ on true. Thus, to explain
it, E simply shows that q ∈ �ψ(φ)�Se and relies on the fact that the structure
has a finite number of states to ensure that the explanation is finite as well.

Furthermore, E matches S iff

1. for all 〈q′, φ′, e′〉 ∈ O, q′ ∈ Q;
2. for all 〈q′, p, e′〉 ∈ O, p ∈ V (q′) and for all 〈q′,¬p, e′〉 ∈ O, p �∈ V (q′);
3. for all 〈〈q′, φ′, e′〉, 〈q′′, φ′′, e′′〉〉 ∈ T , either q′ = q′′, or φ′ belongs to

{♦iφ
′′,�iφ

′′} and 〈q′, q′′〉 ∈ Ri;
4. for all o′ = 〈q′,�iφ

′, e′〉 ∈ O, 〈q′, q′′〉 ∈ Ri iff ∃o′′ ∈ succ(o′) s.t. o′′ =
〈q′′, φ′′, e′′〉.

E matches S if E is part of S: (1) the states of E are states of S; (2) atomic
propositions of E are coherent with labels of S; (3) successor states in E are
successors in S; (4) the explanation for the �i operator exhibits all successors
through Ri.

For instance, Fig. 5 gives an adequate explanation for φns (of Eq. 1) holding
in state q0 of the µ-calculus structure of the bit transmission problem.

Adequate explanations are necessary and sufficient proofs for why q ∈ �φ�Se,
captured by the following property.

Property 1. Given a Kripke structure S = 〈Q, {Ri | i ∈ Σ}, V 〉, a state q ∈ Q, a
µ-calculus formula φ and an environment e, q ∈ �φ�Se if and only if there exists
an adequate explanation E for q ∈ �φ�Se.

Proof (Proof Sketch). The left-to-right direction is proved by the generating
algorithm of this paper: if q ∈ �φ�Se, then it generates an adequate explanation
for q ∈ �φ�Se. The other direction can be shown by induction over the structure of
φ. The main idea is that, if E is adequate for sub-formulas, then local consistency
and matching S are sufficient conditions for the formula to be satisfied. ��

Furthermore, we can view adequate explanations as patterns. An explanation
E defines an entire set of Kripke structures K(E) that E matches. E is thus an

136 S. Busard and C. Pecheur

Fig. 5. An explanation for why q0 ∈ �φns�
Se in the bit transmission problem. tc and

tf mean transmitter chooses and transmitter follows, respectively.

explanation for why all structures of K(E) satisfy any formula φ that E contains.
This intuition is formally captured by the following property.

Property 2. Given a consistent explanation E = 〈O, T 〉, for all 〈q, φ, e〉 ∈ O,
q ∈ �φ�Se for all S such that E matches S.

Proof. This property is directly derived from Property 1. If E is consistent, E
matches S and 〈q, φ, e〉 ∈ O, then E is adequate for q ∈ �φ�Se. By Property 1,
since there exists an adequate explanation for q ∈ �φ�Se, q ∈ �φ�Se is true. ��

Finally, we can define an algorithm to generate adequate explanations for
µ-calculus formulas, presented in Algorithm1. It takes a Kripke structure S, a
state q of S, a µ-calculus formula φ, and an environment e such that q ∈ �φ�Se,
and returns an adequate explanation for q ∈ �φ�Se. Intuitively, the algorithm
starts with an empty explanation and the 〈q, φ, e〉 obligation in the pending
set. Then it considers each obligation o′ ∈ pending, adding to O and T the
necessary obligations and edges to make o′ locally consistent and matching S,
and adding to pending the newly discovered obligations. It stops the process
when all obligations have been made locally consistent in 〈O, T 〉.

3.3 Translating µ-Calculus Explanations

The previous section proposed a structure to explain why a µ-calculus formula
is satisfied by a state of some Kripke structure. Nevertheless, as the µ-calculus
model checker and explanations are used to solve the model-checking problem
of some other top-level logic, the usefulness of such explanations is limited. This
section presents the set of functionalities the framework provides to help the
designer to translate the µ-calculus explanations back into the top-level logic.
They are generic to allow her to easily translate the explanations for logics such
as CTL, CTLK, ATL or PDL [16], as well as fair variants such as Fair CTL [13].

First, aliases allow the designer to hide µ-calculus translations behind top-
level logic formulas. Second, to ease the translation of explanations back into the

Producing Explanations for Rich Logics 137

Algorithm 1. explain(S, q, φ, e)
Data: S = 〈Q, {Ri | i ∈ Σ}, V 〉 a Kripke structure, q ∈ Q a state of S, φ a

µ-calculus formula, and e an environment such that q ∈ �φ�Se.
Result: An adequate explanation for q ∈ �φ�Se.

O = ∅; T = ∅; pending = {〈q, φ, e〉}
while pending �= ∅ do

pick o′ = 〈q′, φ′, e′〉 ∈ pending
pending = pending\{o′}
O = O ∪ {o′}
case φ′ ∈ {true, p, ¬p, v, ¬v}: O′ = ∅

case φ′ = φ1 ∧ φ2: O′ = {〈q′, φ1, e
′〉, 〈q′, φ2, e

′〉}
case φ′ = φ1 ∨ φ2

if q′ ∈ �φ1�
Se′ then O′ = {〈q′, φ1, e

′〉} else O′ = {〈q′, φ2, e
′〉}

case φ′ = ◇i φ′′

pick q′′ ∈ {q′′ ∈ Q | 〈q′, q′′〉 ∈ Ri ∧ q′′ ∈ �φ′′�Se′}
O′ = {〈q′′, φ′′, e′〉}

case φ′ = ◻i φ′′: O′ = {〈q′′, φ′′, e′〉 | 〈q′, q′′〉 ∈ Ri}
case φ′ = μv. ψ

φ′′ = false; sat = �φ′′�Se′

while q′ �∈ sat do
φ′′ = ψ(φ′′); sat = �φ′′�Se′

O′ = {〈q′, φ′′, e′〉}
case φ′ = νv. ψ: O′ = {〈q′, ψ(φ′), e′〉}
T = T ∪ {〈o′, o′′〉 | o′′ ∈ O′}
pending = pending ∪ (O′\O)

return 〈O, T 〉

original model language, the framework integrates the relational graph algebra
of Dong et al. [15]. This algebra allows the designer to translate the explanation
back into the original model language, but it treats the explanation as a whole.
To ease the addition of information to individual obligations and edges, the
framework also provides the notion of attributors. Finally, local translators are
proposed to treat small parts of the given graph.

These functionalities help the designer to translate the µ-calculus explanation
into another graph that is closer to the initial model language. Nevertheless, the
designer has no control on the initial explanation the algorithm produces. To
allow the designer to interfere into the choices the explain algorithm makes, the
framework provides choosers.

Aliases. An alias α is a syntactic function that takes a set of arguments and
returns an aliased µ-calculus formula. The alias of an aliased formula is then
used to hide the latter behind something more intelligible. For instance, the

138 S. Busard and C. Pecheur

alias ⟪⟫X(Γ, φ) = ◇Γchoose(◇Γfollowtrue ∧ ◻Γfollow φ) replaces the formula φns

with νv. ¬sent ∧ ⟪transmitter⟫X v.

Relational Graph Algebra. The relational graph algebra of Dong et al.
includes operators such as the union G1 ∪ G2 and intersection G1 ∩ G2 of two
graphs G1 and G2, the selection σfv,fe

(G) of nodes and edges satisfying a condi-
tion, the projection πdv,de

(G) of nodes and edges on sub-domains dv and de, the
grouping γdv,de

(G) of nodes and edges, etc. Thanks to this algebra, the designer
can transform explanations into other graphs.

Obligation and Edge Attributors. An attribute is data associated to expla-
nation nodes and edges, and an attributor is a function adding attributes to an
obligation or edge. They work as local decorators, in the sense that they deal
with obligations and edges one at a time. They can be given to the generating
algorithm to be run on every obligation or edge, or they can be attached to
individual aliases to be run only on the obligations with instantiations of the
aliases, or outgoing edges of these obligations. This improves the performances
of decorating the graph when only a few elements must be decorated. In the case
of ATL, we can define an attributor to attach to obligations the original CGS
state their state derives from.

Local Translation. A local translator is a function taking a relational graph
and a particular node as arguments, and updating the graph. The part of the
explanation a local translator receives is defined by the alias it is attached to. For
instance, with a local translator, we can add edges to an explanation between an
obligation labelled with a ⟪⟫X alias and all the original successors of its state.
The advantage of such a local translator is that the part of the graph it receives
is the one explaining the ⟪⟫X operator only.

Choosers and Partial Explanations. A chooser takes an obligation and a set
of possible successors of this obligation and returns a subset of these successors
depending on the operator of the formula of the given obligation:

– for ∨ and ◇i operators, at most one successor must be chosen, to ensure a
consistent explanation.

– for ∧ and ◻i operators, the full explanation shows all successors, but a subset
can be returned.

– for the other operators, there is no meaningful choice: there is no successor
for true formulas, atomic propositions or variables, and there is only one
successor for least and greatest fixpoint formulas.

Choosers can guide the explanation generation by choosing particular succes-
sors, but also limit the size of the generated explanation by only exploring parts
of it. This introduces the notion of partial explanations, that is, explanations

Producing Explanations for Rich Logics 139

where some obligations are not fully explained because they lack some succes-
sors. The advantage of partial explanations is that the complete explanation can
be too large to be generated or understood, so getting a part of it is better than
nothing. Furthermore, choosers enable interactive generation of explanations as
they can ask the user to resolve some choices.

Markers. They are attached to formulas. The framework provides two types of
markers, points of interest, and points of decision, but new types can be defined
by the designer. Points of interest are intended to mark the formulas that are
important for the designer. On the other hand, the model checker takes points
of decision into account when generating explanations: whenever an obligation
formula is marked with such a point, the model checker does not explain it. This
produces partial explanations that can be later expanded by the user by forcing
the generation of the missing parts.

Thanks to all these features, it is possible to transform the µ-calculus expla-
nation of Fig. 5 for the formula ⟪transmitter⟫G ¬sent and get the explanation
of Fig. 6. For this translation, we used:

– aliases to hide µ-calculus formulas behind their ATL counterparts,
– points of interest for marking the formulas that have an ATL counterpart,
– an obligation attributor to extend each obligation with the original state,
– a local translator to add the edge with the action of the transmitter,
– the relational graph algebra to merge nodes together and gather the formulas

that the state satisfies.

Fig. 6. A translation of the µ-calculus explanation of Fig. 5 using the translation fea-
tures of the framework.

4 Implementation

The framework has been implemented in Python using PyNuSMV for solving the
model-checking problem. PyNuSMV is a library for prototyping symbolic model-
checking algorithms based on NuSMV [6]. The implementation and examples are
available on http://lvl.info.ucl.ac.be/FM2018/FM2018.

First, to be able to use the framework, the designer has to derive, from the
original model, a µ-calculus Kripke structure S = 〈Q, {Ri | i ∈ Σ}, V 〉. Such a
structure is implemented with PyNuSMV as a standard SMV model to which
several transition relations Ri are attached.

Second, the framework provides Python classes to define µ-calculus formulas,
one for each µ-calculus operator: MTrue, MFalse, Atom, Variable, Not, And, Or,

http://lvl.info.ucl.ac.be/FM2018/FM2018

140 S. Busard and C. Pecheur

Diamond, Box, Mu, and Nu. With this implementation, µ-calculus formulas do not
have to be declared in positive normal form. Instead, the framework lazily derives
positive normal forms when needed. This allows the formulas that annotate the
obligations to stay as close to the main formula as possible.

Third, most of the features are implemented with Python decorators, that is,
function annotations that change the function behavior. For instance, aliases are
defined as Python functions returning the corresponding µ-calculus formula and
decorated with the @alias decorator. The code of Fig. 7 shows a small part of
the ATL model checker built with the framework. The CAX function returns the
translation of the �agents�X formula formula, marked with points of interest
and decision, and to which is attached the chosen action edge attributor.

@alias("[{ agents }] X {formula}")

def CAX(agents , formula):

return POD(POI(chosen_action(

Box(agents + "_choose",

Or(Box(agents + "_follow", MFalse ()),

Diamond(agents + "_follow", formula)))

)))

@edge_attributor

def chosen_action(edge):

...
return {"action": actions}

Fig. 7. A part of the implementation of the ATL model checker built with the
framework.

Relational graphs, and generated explanations in particular, are implemented
with the Graph class. Nodes and edges of these graphs are implemented with the
domaintuple class, a dictionary-like structure where domains of the elements are
identified by a name. Each operator of the relational graph algebra is imple-
mented by a method of the Graph class.

The framework allows the designer to efficiently translate an explanation back
into the top-level language. Nevertheless, these explanations remain complex
and difficult to understand. To help the user in understanding these complex
explanations, the implementation also provides a graphical visualization tool. A
snapshot of the tool is given in Fig. 8.

The top left part presents the explanation: nodes are depicted in ovals, and
edges are depicted as arrows decorated with information in a box. This graph
can be moved with the mouse or automatically re-arranged. The information
displayed in nodes and edge labels come from the explanation elements them-
selves. The tool also allows the user to select which keys of the graph elements
are displayed, through a right-click menu on the graph area. To enable interac-
tivity, the designer can specify a graphical menu that is displayed whenever the
user right-clicks on the element. This can be used, for instance, to expand partial

Producing Explanations for Rich Logics 141

Fig. 8. A snapshot of the visualization tool.

explanations. The top right part of the tool displays the complete information
of the selected element (the dashed one on Fig. 8). The bottom part of the tool
can display one particular path of the graph, selected by the user.

5 Application to ATL

The objective of this section is to show the usefulness of the framework by
applying it to the ATL logic. It describes how explanations for ATL can be
obtained, displayed and manipulated thanks to the framework implementation.

The implementation represents a CGS with a standard SMV model to which
is attached a set of agents. Each agent has a name and a set of SMV input
variables corresponding to its actions. The SMV model itself defines what the
agents can do, and how the state of the model evolves according to their actions.

The translation of the CGS acts like a dictionary of transition relations, lazily
building these relations when needed. The advantage of this mechanism is that,
even if the CGS contains a lot of agents, its implementation builds the transition
relations only for the groups of agents appearing in the checked formula. The
translation of ATL formulas simply uses the Python classes provided by the
framework to define µ-calculus formulas.

To enrich and translate explanations, one alias is declared for each ATL
operator. All top-level formulas returned by the aliases are marked as points

142 S. Busard and C. Pecheur

of interest. Furthermore, both ⟪⟫X and ⟦⟧X aliases are marked as points of
decision, to be able to generate small partial explanations and to allow the user
to expand them as she wishes.

Two attributors add information to obligations and edges of the explana-
tion. The first attributor attaches, to each obligation, the original state its state
derives from. This attributor is given to the explain algorithm to enrich all obli-
gations. The second attributor stores the actions chosen by the group in the
outgoing edge of the obligations labelled with a ⟪⟫X or ⟦⟧X aliased formula.
This way, the information is more easily accessed by local translators. Figure 7
illustrates these parts of the implementation.

Two local translators are defined, for ⟪⟫X and ⟦⟧X. They extract, from the
two steps of the µ-calculus model, the original one-step transitions of the CGS.
The relational graph algebra is used to translate µ-calculus explanations back
into ATL ones. The translation:

1. projects the explanation nodes on formulas and original states;
2. groups nodes by their original state;
3. separates unexplained formulas from explained ones;
4. selects edges that are labelled with some actions;
5. keeps the original state and the formulas in nodes, and the actions in edges.

This translation produces explanations such as the one of Figs. 6 and 8.
A chooser is defined to expand partial explanations. When dealing with a ⟪⟫X

alias, it gets the original actions of the group from the given successors and asks
the user to choose one of them through a window. Finally, the visualization tool is
used to display and manipulate the translated explanations, as shown in Fig. 8.
In particular, it provides, through a right-click menu, the list of unexplained
formulas. This menu triggers the expansion of the currently displayed partial
explanation, running through the chooser to select the action to play.

6 Related Work

Several authors already proposed solutions to explain why a CTL formula is
satisfied by some model. First, some authors proposed structures capturing the
part of the model witnessing the satisfaction [3,11,29]. These structures are
defined as hierarchies of paths, fitting the CTL semantics. Jiang and Ciardo
recently proposed a way to generate such hierarchies of paths with a minimal
number of states [19]. Other authors proposed more detailed structures, cap-
turing the part of the model, as well as sub-formulas and logical decomposition
steps [7,8,18,27,30,31,33]. These different solutions vary in terms of details they
provide about the satisfaction—by annotating or not the parts of the counter-
example with the sub-formulas they explain—, the fragments of the logic they
support—either the full logic or its universal fragment—, and the framework
they work in—explicit, game-based, proof-based, BDD-based model checking,
or Boolean Equation Systems (BES). All these solutions can be adapted to a
BDD-based framework and produced with the framework we propose.

Producing Explanations for Rich Logics 143

Some solutions have also been proposed in the context of multi-modal logics,
adapting and extending the ideas from CTL to richer logics [5,24–26,34]. In
this context, MCK, a tool for verification of temporal and knowledge properties,
provides several debugging functionalities [17], such as a debugging game inspired
by Stirling’s games [32] in which the user can try to show why the model-checking
outcome is wrong while the system shows her why it is actually right. Such a
debugging game can be implemented with adequate choosers.

Finally, several solutions have also been proposed to represent and produce
explanations for the µ-calculus [14,20,21,23]. They differ from the ones presented
in this paper either by the way they are generated—such as the explanations of
Kick [21]—or by the actual framework they rely on.

All these solutions work for particular logics such as CTL, CTLK, the
µ-calculus, or are generic solutions with some application to one use case such
as BES and their extensions, games, or proofs. But no work proposes a solution
to produce explanations and to translate them back into the original language,
as the µ-calculus framework of this paper. They either limit themselves to one
logic, or they provide generic structures without giving explicit help for applying
and translating it into something useful for the end user.

7 Conclusion

In this paper, we described a solution for µ-calculus-based logics explanations.
The proposed framework integrates a µ-calculus model checker that generates
rich explanations and provides several functionalities to translate them into
explanations for a top-level logic such as ATL. It has been implemented with
PyNuSMV, taking advantage of Python functionalities such as function decora-
tors to easily describe the different features. The implementation also integrates
a graphical tool to visualize, manipulate and explore the explanations.

One of the main advantages of the framework is that many logics can be
translated into the µ-calculus, such as CTL, Fair CTL, CTLK, ATL, and PDL.
It is thus generic enough to provide model-checking functionalities for all of
them. Furthermore, thanks to the framework, the designer does not have to
worry about designing and implementing a model checker, nor about generating
rich explanations. Nevertheless, she has to translate the top-level models and
formulas into µ-calculus. Model translation can be difficult—for instance, the
translation from an ATL CGS to a µ-calculus structure is not trivial—and the
framework gives no help to complete this task.

The framework features allow the designer to divide the concerns into smaller
parts, first dealing with formula translations (with aliases and markers), then
with single elements (with attributors), small sub-graphs (with local translation),
and with the whole explanation (with the algebra). Furthermore, all the features
are useful, as illustrated by the ATL case. In particular, local translators are
useless for cases such as CTL, but for ATL, where the model translation is
difficult, they can help treating small parts of the explanation separately, instead
of having to deal with the whole explanation graph at once. The visualization

144 S. Busard and C. Pecheur

tool provided by the framework complements the translation features. The latter
help the designer to produce useful explanations while the former helps the user
visualize, manipulate and explore it.

Finally, the framework supports interactive and guided generation of the
explanations through choosers. This can lead to smaller manageable partial
explanations that can be interactively expanded, as illustrated by the ATL case.

One of the main drawbacks of the framework is the fact that it produces one
single explanation at a time. Representing several explanations at once could
help the user to extract the reasons for the satisfaction of the formula more
easily. As future work, it would be interesting to explore how we could represent
several explanations at once by using binary decision diagrams to represent sets
of obligations instead of single ones. Furthermore, translating a CGS and an ATL
formula into a µ-calculus model and a formula is not an easy task compared to
other logics such as CTL and CTLK. One solution to make this particular trans-
lation easier is to use the alternating-time µ-calculus [1] as base logic instead of
the propositional µ-calculus. Finally, it would be interesting to explore solutions
to provide translation functionalities for the model itself. With such translation
functionalities, the translation of explanations back into the original language
could become automatic.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

3. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: On ACTL formulas having linear
counterexamples. J. Comput. Syst. Sci. 62(3), 463–515 (2001)

4. Busard, S.: Symbolic model checking of multi-modal logics: uniform strategies and
rich explanations. Ph.D. thesis, Université catholique de Louvain, July 2017

5. Busard, S., Pecheur, C.: Rich counter-examples for temporal-epistemic logic model
checking. In: Proceedings Second International Workshop on Interactions, Games
and Protocols, IWIGP 2012, Tallinn, Estonia, 25th March 2012, pp. 39–53 (2012).
http://dx.doi.org/10.4204/EPTCS.78.4

6. Busard, S., Pecheur, C.: PyNuSMV: NuSMV as a python library. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 453–458. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-4 33

7. Chechik, M., Gurfinkel, A.: A framework for counterexample generation and explo-
ration. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 220–236. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31984-9 17

8. Chechik, M., Gurfinkel, A.: A framework for counterexample generation and explo-
ration. Int. J. Softw. Tools Technol. Transfer 9(5–6), 429–445 (2007)

9. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

10. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

http://dx.doi.org/10.4204/EPTCS.78.4
https://doi.org/10.1007/978-3-642-38088-4_33
https://doi.org/10.1007/978-3-540-31984-9_17
https://doi.org/10.1007/3-540-45657-0_29

Producing Explanations for Rich Logics 145

11. Clarke, E.M., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model check-
ing. In: Proceedings of the 17th IEEE Symposium on Logic in Computer Science
(LICS 2002), pp. 19–29 (2002)

12. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

13. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986). http://doi.acm.org/10.1145/5397.5399

14. Cranen, S., Luttik, B., Willemse, T.A.C.: Proof graphs for parameterised boolean
equation systems. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS,
vol. 8052, pp. 470–484. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40184-8 33

15. Dong, Y., Ramakrishnan, C.R., Smolka, S.A.: Model checking and evidence explo-
ration. In: Proceedings of the 10th IEEE International Conference on Engineering
of Computer-Based Systems (ECBS 2003), pp. 214–223 (2003)

16. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

17. Gammie, P., van der Meyden, R.: MCK: model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 41

18. Gurfinkel, A., Chechik, M.: Proof-like counter-examples. In: Garavel, H., Hatcliff,
J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 160–175. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36577-X 12

19. Jiang, C., Ciardo, G.: Generation of minimum tree-like witnesses for existential
CTL. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 328–
343. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 18

20. Kick, A.: Generation of witnesses for global μ-calculus model checking. Technical
report, Universität Karlsruhe, Germany (1995)

21. Kick, A.: Tableaux and witnesses for the μ-calculus. Technical report, Universität
Karlsruhe, Germany (1995)

22. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–
354 (1983). http://dx.doi.org/10.1016/0304-3975(82)90125–6

23. Linssen, C.A.: Diagnostics for Model Checking. Master’s thesis, Eindhoven
University of Technology (2011)

24. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the verification
of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 682–688. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02658-4 55

25. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transfer 1–22
(2015). http://dx.doi.org/10.1007/s10009-015-0378-x

26. Lomuscio, A., Raimondi, F.: mcmas: a model checker for multi-agent systems. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 450–454.
Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 31

27. Mateescu, R.: Efficient diagnostic generation for boolean equation systems. In:
Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 251–265.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0 18

https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
http://doi.acm.org/10.1145/5397.5399
https://doi.org/10.1007/978-3-642-40184-8_33
https://doi.org/10.1007/978-3-642-40184-8_33
https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.1007/3-540-36577-X_12
https://doi.org/10.1007/978-3-319-89960-2_18
http://dx.doi.org/10.1016/0304-3975(82)90125--6
https://doi.org/10.1007/978-3-642-02658-4_55
https://doi.org/10.1007/978-3-642-02658-4_55
http://dx.doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/11691372_31
https://doi.org/10.1007/3-540-46419-0_18

146 S. Busard and C. Pecheur

28. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
via bounded model checking. In: Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems. AAMAS 2003, pp.
209–216. ACM, New York (2003). http://doi.acm.org/10.1145/860575.860609

29. Rasse, A.: Error diagnosis in finite communicating systems. In: Larsen, K.G., Skou,
A. (eds.) CAV 1991. LNCS, vol. 575, pp. 114–124. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55179-4 12

30. Roychoudhury, A., Ramakrishnan, C., Ramakrishnan, I.: Justifying proofs using
memo tables. In: International Conference on Principles and Practice of Declarative
Programming: Proceedings of the 2nd ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming, pp. 178–189 (2000)

31. Shoham, S., Grumberg, O.: A game-based framework for CTL counterexamples
and 3-valued abstraction-refinement. ACM Trans. Comput. Logic (TOCL) 9(1), 1
(2007)

32. Stirling, C.: Local model checking games (extended abstract). In: Lee, I., Smolka,
S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60218-6 1

33. Tan, L., Cleaveland, R.: Evidence-based model checking. In: Brinksma, E., Larsen,
K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 455–470. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45657-0 37

34. Weitl, F., Nakajima, S., Freitag, B.: Structured counterexamples for the tempo-
ral description logic ALCCTL. In: 2010 8th IEEE International Conference on
Software Engineering and Formal Methods, pp. 232–243. IEEE (2010)

http://doi.acm.org/10.1145/860575.860609
https://doi.org/10.1007/3-540-55179-4_12
https://doi.org/10.1007/3-540-60218-6_1
https://doi.org/10.1007/3-540-45657-0_37

The Compound Interest in Relaxing
Punctuality

Thomas Ferrère(B)

IST Austria, Klosterneuburg, Austria
thomas.ferrere@ist.ac.at

Abstract. Imprecision in timing can sometimes be beneficial: Metric
interval temporal logic (MITL), disabling the expression of punctuality
constraints, was shown to translate to timed automata, yielding an ele-
mentary decision procedure. We show how this principle extends to other
forms of dense-time specification using regular expressions. By providing
a clean, automaton-based formal framework for non-punctual languages,
we are able to recover and extend several results in timed systems.
Metric interval regular expressions (MIRE) are introduced, providing
regular expressions with non-singular duration constraints. We obtain
that MIRE are expressively complete relative to a class of one-clock timed
automata, which can be determinized using additional clocks. Metric
interval dynamic logic (MIDL) is then defined using MIRE as temporal
modalities. We show that MIDL generalizes known extensions of MITL,
while translating to timed automata at comparable cost.

1 Introduction

Regular expressions (RE) [20] are a basic notion in computer science. They
provide a simple algebraic way to describe finite-state behaviors. Since their
introduction in verification and testing, alongside linear temporal logic (LTL)
[32], regular expressions have also proven to be a very practical formalism to
specify discrete systems behavior [14,36]. Yet not all applications enjoy the syn-
chronous, discrete-time style of modeling captured by finite automata. Modern
computerized systems are more asynchronous in nature, calling for a different
level of abstraction in which time may no longer be discrete.

Timed automata (TA) [2] are widely regarded as a natural extension of
finite-state theory to dense-time. This model of computation uses real-valued
variables known as clocks to control delays between events. The strength of timed
automata, beyond the simplicity of their definition, comes from their theoretical
properties: the emptiness problem is solvable in polynomial space, timed regu-
lar languages are closed under positive Boolean operations, and their untiming

This research was supported by the Austrian Science Fund (FWF) under grants
S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award).

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 147–164, 2018.
https://doi.org/10.1007/978-3-319-95582-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_9&domain=pdf

148 T. Ferrère

yields back regular languages. However the standard, nondeterministic model
(NTA) is not closed under complement, while the deterministic model (DTA) is
not closed under concatenation or Kleene star.

Negation is a desirable operation in any specification language. Metric tem-
poral logic (MTL) [21] is a well-studied, established dense-time specification
language. Through negation, the set of languages described in MTL is closed
under complement. However satisfiability of MTL is non-elementary under the
hypotheses of [30], and undecidable in general [3,31]. Timed regular expressions
(TRE) [6] constitute an interesting alternative to MTL, both powerful and intu-
itive. The emptiness of TRE is also decidable in polynomial space, since TRE
translate to timed automata in polynomial time [6]. But TRE do not feature a
negation operator, which would render them undecidable.

Virtually all negative results in timed systems, such as the undecidability of
language inclusion for timed automata, rely on the ability to enforce real delays
with infinite precision—some extreme form of punctuality. When no semantic
restriction is placed on the variability or duration of behaviors, a single unit of
time can hold an arbitrary amount of information, which can then be repeatedly
transfered from one time unit to the next, encoding Turing computations. A
standard way to regain decidability is to bound the variability of behaviors
[16,28]. Another, less conventional way is to bound their duration [29].

The syntactic restriction of [3] simply bounds the precision timing
constraints—in effect relaxing punctuality. Decidability of the resulting metric
interval temporal logic (MITL) [3] follows, by translation to timed automata.
Subsequently, extensions of MITL with finite automata [17,37] and thresh-
old counting [18] have then been proposed, enjoying special connections with
monadic logic [17,19,37]. In this context, our contribution consists in (a) the
definition of RE-based variants of MITL for specifying timed behaviors; (b) a
simple automaton-based framework in which several results regarding these vari-
ants can be derived (Fig. 1).

In particular, we show how to adapt the subset construction of [10] to
determinize arbitrary control structures, by introducing the notion of metric
interval automaton (MIA, Sect. 3). These automata, reminiscent of [5], have
a single clock, checked against non-singular timing intervals, and reset after
every check. A simple state-elimination argument demonstrates that this model
is equivalent to the proposed metric interval regular expressions (MIRE, Sect. 3),
which therefore translate to deterministic timed automata (Sect. 4). By treating
metric interval automata as modalities, we redefine extended MITL (EMITL,
[37]). Building on our initial results, we propose metric interval dynamic logic
(MIDL, Sect. 5), equivalent in expressive power, and provide a translation to
non-deterministic timed automata (Sect. 6). This translation is compositional,
in the style of [26], and does not go through intermediate formalisms such as
monadic logic [37] or event clock automata [17].

The Compound Interest in Relaxing Punctuality 149

Fig. 1. Translations () and inclusions () between formalisms. Closure under
Boolean operations (†) and under regular operations (�) are indicated in exponent.

2 Preliminaries

In this section, we introduce basic definitions and relevant results. We take the
time domain T = R≥0 to be the non-negative reals. Given a set of times R ⊆ T,
we write ch(R) = {t ∈ T | ∃r, r′ ∈ R, r ≤ t ≤ r′} its convex hull and t ⊕ R =
{t+r ∈ T | r ∈ R} its Minkowski sum with some t ∈ T. We define timed words as
sequences alternating delays in T and events in some alphabet Σ. Given a timed
word w = t1a1 . . . tnan we write wi..j its infix ti+1ai+1 . . . tjaj between positions
0 ≤ i ≤ j ≤ n. We denote by |w| = n the size of w and by ‖w‖ =

∑n
i=1 ti the

duration of w. The empty word ε verifies |ε| = ‖ε‖ = 0.

Automata. Following [2], automata are equipped with a set X of clock variables.
A clock constraint is a Boolean combination of inequalities of the form x �� c,
or x − y �� c, where c ∈ N is a constant, �� ∈ {≤, <,>,≥} is a comparison sign,
and x, y ∈ X are clocks. The set of clock constraints over X is denoted Φ(X). A
valuation v associates any clock variable x ∈ X with a delay v(x) ∈ T. We write
v |= φ when the constraint φ is satisfied under clock valuation v.

A timed automaton is a tuple A = (Σ,X,L, S, F,Δ) where L is a set of
locations, S ⊆ L is a set of initial locations, F ⊆ L is a set of accepting locations,
and Δ ⊆ L × Σ × Φ(X) × 2X × L is a set of edges. A state of A is a pair (, v)
where 	 is a location in L and v is a valuation over X. For delays t ∈ T and
events a ∈ Σ, transitions t� and a−→ in A are defined as the following relations:

– (, v) t� (′, v′) if 	 = 	′ and v′ = v + t;
– (, v) a−→ (′, v′) if v |= φ and v′ = v[Z ← 0] for some (, a, φ, Z, 	′) ∈ Δ.

Here v + t stands for the valuation such that (v + t)(x) = v(x) + t for all x ∈ X,
and v[Z ← 0] stands for the valuation such that v[Z ← 0](x) = 0 if x ∈ Z, v(x)
otherwise. A run of automaton A over the word w = t1a1 . . . tnan is a sequence
(0, v0)

t1� (0, v′
0)

a1−→ . . .
tn� (n−1, v

′
n−1)

an−−→ (n, vn) of transitions labeled by
delays and events in w such that 	0 ∈ S, and v0(x) = 0 for all x ∈ X. The
language L(A) is the set of words over which there exists a run of A ending in
an accepting location. We say that A is deterministic when S = {	0} for some
	0, and φ1 ∧ φ2 is unsatisfiable for all (, a, φ1, Z1, 	1) �= (, a, φ2, Z2, 	2) ∈ Δ.

Expressions. We define timed regular expressions (TRE) following [6], but
without intersection or projection. They are given by the grammar:

ϕ ::= ε | a | ϕ ∪ ϕ | ϕ · ϕ | ϕ∗ | ϕI

150 T. Ferrère

where a ∈ Σ, and I ⊆ T is an integer-bounded interval. As customary iterating
an expression ϕ is denoted in exponent, with by convention ϕ+ ≡ ϕ∗ · ϕ, and
ϕk ≡ ε if k = 0, ϕk ≡ ϕk−1 · ϕ otherwise. Any TRE ϕ can be associated with a
language L(ϕ) defined inductively as follows:

L(ε) = {ε} L(ϕ1 · ϕ2) = {w1w2 | w1 ∈ L(ϕ1), w2 ∈ L(ϕ2)}

L(a) = {ta | t ∈ T} L(ϕ∗) =
⋃∞

k=0
L(ϕk)

L(ϕ1 ∪ ϕ2) = L(ϕ1) ∪ L(ϕ2) L(ϕI) = {w | w ∈ L(ϕ), ‖w‖ ∈ I}.

The size of a TRE ϕ is the number of atomic expressions it contains. Its depth
d(ϕ) is the level of nesting of timing constraints in ϕ, defined by d(a) = d(ε) = 0,
d(ϕ · ψ) = d(ϕ ∪ ψ) = max{d(ϕ),d(ψ)}, d(ϕ∗) = d(ϕ), and d(ϕI) = d(ϕ) + 1.

Theorem 1 (TRE ⇒ NTA, [6]). For any TRE of size m and depth n, one
can construct an equivalent timed automaton with n clocks and m + 1 locations.

Logic. Metric temporal logic (MTL) [21] extends LTL [32] by providing the until
operator with a timing interval. MTL formulas are given by the grammar:

ψ ::= a | ψ ∨ ψ | ¬ψ | ψ UI ψ

where a ∈ Σ and I is an integer-bounded interval. Operators eventually and
always are defined by letting ♦I ϕ ≡ �UI ϕ and �I ϕ ≡ ¬♦I ¬ϕ. The timing
interval [0,∞) is usually omitted as subscript. Metric interval temporal logic
(MITL) [3] is the fragment of MTL where intervals I are non-singular (inf I <
sup I).

The semantics |= of MTL and MITL is defined over pointed words, pairs
(w, i) of timed word w and position 0 < i ≤ |w| + 1, as follows:

(w, i) |= a iff wi−1..i = ta for some t ∈ T

(w, i) |= ¬ψ iff (w, i) �|= ψ

(w, i) |= ψ1 ∨ ψ2 iff (w, i) |= ψ1 or (w, i) |= ψ2

(w, i) |= ψ1 UI ψ2 iff (w, j) |= ψ2 for some j > i such that ‖wi..j‖ ∈ I

and (w, k) |= ψ1 for all i < k < j.

The language L(ψ) of formula ψ is defined by L(ψ) = {w | (w, 1) |= ψ}.
The size of an MITL formula ψ is the number of temporal operators it con-
tains. Its resolution r(ψ) is the maximal relative interval width in ψ, defined by
r(a) = 0, r(ψ1 ∨ ψ2) = max{r(ψ1), r(ψ2)}, r(¬ψ) = r(ψ), and r(ψ1 UI ψ2) =
max{r(ψ1), r(ψ2), r(UI)}, where r(UI) =

⌊
sup I

sup I−inf I

⌋
+ 2 if sup I < ∞, 1

otherwise.

Theorem 2 (MITL ⇒ NTA, [3]). For any MITL formula of size m and reso-
lution n, one can construct an equivalent timed automaton with 2mn clocks and
28mn+1 locations.

The Compound Interest in Relaxing Punctuality 151

3 Metric Interval Regular Expressions

We now introduce metric interval regular expressions (MIRE) as TRE of depth 1
and devoid of singular timing intervals. Formally, they are given by the grammar:

ϕ ::= γI | ϕ · ϕ | ϕ ∪ ϕ | ϕ∗

γ ::= ε | a | γ · γ | γ ∪ γ | γ∗

where a ∈ Σ and I is a non-singular, integer-bounded interval. Timing interval
[0,∞) is usually omitted, that is, we write γ in place of γ[0,∞) in MIRE. The
resolution of a MIRE is defined similarly as for MITL.

Example 1. Consider the expression (a ∪ b · (a∗ · b)[2,3])∗. It describes sequences
of events a and b in which every odd occurrence of b is followed by another (even)
occurrence of b within 2 to 3 time units.

Automaton Model. We define metric interval automata (MIA) as timed automata
with a single clock x in which every edge (, a, φ, Z, 	′) is such that either Z = ∅
and φ = �, or Z = {x} and φ ≡ x ∈ I for some non-singular interval I.
Here x ∈ I is the abbreviated notation for constraint x ≥ c when I = [c,∞),
x ≥ c ∧ x ≤ d when I = [c, d], and similar when I is a (semi-)open interval.

Proposition 1 (MIRE ⇔ MIA). Every MIRE language is recognizable by
MIA, and every MIA language is expressible as MIRE.

Direction ⇒ is a refinement of Theorem 1, and will be proved in Sect. 4.
We treat direction ⇐ in two steps. Let A be a MIA. Assume without loss of
generality that locations of A are partitioned into two sets L0 and L1, such that
edges to L0 reset the clock while edges to L1 don’t, and initial and final locations
of A lie in L0. First, we remove all locations in L1, using the state removal
technique in finite automata [35]. This yields an equivalent MIA A′ whose edges
are labeled by regular expressions instead of events. Second, we remove clock
resets and constraints from A′ by replacing every edge (, γ, x ∈ I, {x}, 	′) with
(, (γ)I ,�, ∅, 	′). We obtain a finite automaton with MIRE labels. We perform
again standard state removal to eliminate intermediate locations in L0. The
resulting automaton has only one edge, labeled by a MIRE equivalent to A.

Comparison with MITL. Following Proposition 1, all MIRE properties can
be checked using one clock. In contrast, some MITL properties require more
than one clock, even when using nondeterminism. For instance the formula
�(a → ♦[1,2] b) requires two clocks [25]. In the other direction MIRE feature
untimed modulo-counting languages, such as (a2)∗, not expressible in MITL.
More interestingly, MIRE also feature additional timed properties.

Example 2. Consider the expression χ ≡ a · ((a+)[1,2])+ over the alphabet {a}.
It describes words w with a subsequence of events a from the first to the last of
w such that pairs of adjacent events are separated by 1 to 2 units of time.

152 T. Ferrère

We show similarly as in [18] that the language of χ in Example 2 cannot be
expressed in MITL. For this, define a family of words (wn) as follows: w0 = ε,
and wn = 3

4 awn−1 for all n > 0. Observe that wn ∈ L(χ) iff n > 1 and n is
odd, as illustrated in Fig. 2. In contrast for every MITL formula ψ there exist
a bound k such that wn ∈ L(ψ) iff wn+1 ∈ L(ψ), for all n ≥ k. This bound is
straightforward to obtain by structural induction. Thus, L(χ) �= L(ψ).

s
aaaaaaaaaaaaa

0 1 s3 s3 + 1 s3 + 2 s8 s8 + 1 s8 + 2

Fig. 2. Timed word w13, with events a occurring at absolute times s = s1, s2, . . . , s13.
Expression χ ≡ a ·((a+)[1,2])

+ entails only one possible decomposition of w13 as shown.
Events at times si for i even do not appear in this decomposition but are locally
indistinguishable from those at sj for j odd.

4 From MIRE to Deterministic Timed Automata

In this section, we show that MIRE translate to deterministic timed automata.
The first step of the procedure translates a MIRE ϕ into an equivalent MIA Aϕ

in a standard way. The second step performs some kind of subset construction
to turn Aϕ into a deterministic automaton A′

ϕ. Because timed automata have a
bounded number of clocks, over a given timed word automaton A′

ϕ cannot store
the set of possible states of Aϕ explicitly. To this effect we adapt the notion of
approximation of [10] to group in intervals possible clock values in Aϕ that have
a similar future. We show the soundess of this approximation, and demonstrate
how it can be implemented in a deterministic automaton.

Translation to MIA. Automaton Aϕ = (Σ, {x}, Lϕ, Sϕ, {	ϕ},Δϕ) equivalent to
the MIRE ϕ is obtained by structural induction. We assume that automata given
by induction hypothesis have disjoint sets of locations, but share the same clock.

– Atomic expressions: Aε has its final location 	ε marked as initial, and no edge;
Aa further has one edge labeled a from 	ε to its final location 	a.

– Disjunction: Aϕ∪ψ is obtained by replacing 	ϕ and 	ψ with 	ϕ∪ψ in the
component-wise union of Aϕ and Aψ.

– Concatenation: Aϕ·ψ is defined by letting Lϕ·ψ = Lϕ ∪ Lψ \ {	ϕ}, Sϕ·ψ = Sϕ

if 	ϕ /∈ Sϕ, Sϕ·ψ = Sϕ ∪ Sψ \ {	ϕ} otherwise, and 	ϕ·ψ = 	ψ. The set Δϕ·ψ
is obtained from Δϕ ∪ Δψ by replacing every edge (, a, φ, Z, 	ϕ) with edges
(, a, φ, Z, 	′) for all 	′ ∈ Sψ.

– Kleene star: without loss of generality, assume that ϕ+ is primitive and ϕ∗

is derived as ε ∪ ϕ+. Define Aϕ+ by letting Lϕ+ = Lϕ, Sϕ+ = Sϕ, 	ϕ+ = 	ϕ,
and Δϕ+ = Δϕ ∪ {(, a, φ, Z, 	′) | (, a, φ, Z, 	ϕ) ∈ Δϕ, 	′ ∈ Sϕ}.

– Duration constraint: AγI
is defined by LγI

= Lγ , SγI
= Sγ if 0 ∈ I, SγI

=
Sγ \ {	γ} otherwise, and 	γI

= 	γ . The set ΔγI
is obtained from Δγ by

replacing every edge (, a,�, ∅, 	γ) with (, a, x ∈ I, {x}, 	γ).

The Compound Interest in Relaxing Punctuality 153

Example 2 (Continued). Consider the expression χ ≡ a · ((a+)[1,2])+ previously
described. Using the above procedure, it translates into the automaton Aχ

depicted in Fig. 3.

�0 �1 �2

x ≥ 0
x 0

1 ≤ x ≤ 2
x 0

�

1 ≤ x ≤ 2
x 0

Fig. 3. Automaton Aχ translating χ (event labels are omitted).

Parallel Runs. Fix A a metric interval automaton with clock x. We now treat
valuations of x as real values t ∈ T, and introduce the following definitions. An
interval state (, J) pairs a location 	 with an interval J , representing the set
of states {(, t) | t ∈ J}. A configuration is a set of interval states. Transition
functions t�,

a−→ between configurations C,D of A are such that C
t� D iff

D = {(, t ⊕ J) | (, J) ∈ C}, and C
a−→ D iff D = {(′, J ′) | ∃(, J) ∈ C, (, J) a−→

(′, J ′)}. Here, by (, J) a−→ (′, J ′) we mean that A has an edge of the form
(, a, φ, Z, 	′) such that t |= φ for at least one t ∈ J , and J = J ′ if Z = ∅, J = {0}
otherwise. The parallel run of automaton A over some word w = t1a1 . . . tnan is
a sequence of transitions C0

t1� C ′
0

a1−→ . . .
tn� C ′

n−1
an−−→ Cn labeled by w, where

the initial configuration C0 is the set of interval states (, [0, 0]) for 	 initial. All
intervals appearing in a parallel run are singular.

Lemma 1. There exists a run of A over w finishing in a given location 	 iff the
final configuration of the parallel run of A over w features 	.

Fig. 4. The parallel and ≺-parallel runs of Aχ over w.

Example 2 (Continued). Consider timed word w = 0.5 a 1.3 a 0.3 a 0.2 a 0.9 a and
automaton Aχ. The parallel run of Aχ over w is shown in the left part of Fig. 4.
Since 	2 appears in the final configuration, we have w ∈ L(Aχ).

154 T. Ferrère

Approximation. We now define an approximation relation (to be correct, a
simulation relation) between configurations closely matching the one in [10]. Let
c, d stand respectively for the largest b and smallest b−a across clock constraints
in A of the form x � a∧x � b for some � ∈ {>,≥} and � ∈ {<,≤}. In the absence
of such constraints, take c = 0 and d = ∞. Approximation relation ≺ over config-
urations will be used to merge intervals either less than d apart, or extend beyond
c. It is defined by letting C ≺ D when C \ {(, I), (, J)} = D \ {(, ch(I ∪ J))}
for some (, I) �= (, J) ∈ C, (, ch(I ∪ J)) ∈ D such that inf J − sup I < d and
inf I − supJ < d, or sup(I ∪ J) > c. When all clock constraints are strict (resp.
non-strict) we can use ≥ c (resp. ≤ d) instead.

Approximate Parallel Runs. Let us now write C
≺��� D when D is maximal

relative to ≺ such that C ≺∗ D, where ∗ denotes reflexive-transitive closure. A
≺-parallel run of automaton A over some word w = t1a1 . . . tnan is a sequence
of transitions C0

t1� C ′
0

a1−→ C ′′
0

≺��� . . .
tn� C ′

n−1
an−−→ C ′′

n−1

≺��� Cn labeled by w
interleaved with approximations, from the initial configuration C0. Relation ≺
constitutes a faithful abstraction in the sense of the following lemma.

Lemma 2. For any word w, the set of locations that appear in final configura-
tions of the parallel, and ≺-parallel runs of A over w, are the same.

The approximation behaves deterministically: for any configuration C of A
there is a unique D such that C

≺��� D. It also ensures the size of configurations
also stays bounded. Let m = |L| be the number of locations of A, and let n
be the resolution of A, defined by n =

⌊
c
d

⌋
+ 2 if d < ∞, 1 otherwise. For any

configurations C
≺��� D of A, we have |D| ≤ mn.

Example 2 (Continued). The ≺-parallel run of Aχ over w, shown in the right
part of Fig. 4, groups clock values stemming from events number 2 to 5 in w. We
check that 	2 appears in the final configuration, and w ∈ L(Aχ).

Subset Construction. We translate a given MIA A = (Σ, {x}, L, S, F,Δ) to the
deterministic timed automaton A′ = (Σ,X ′, L′, S′, F ′,Δ′) as follows.

– Clocks: X ′ = Y ∪ Y ′ with Y = {y1, y2, . . . , ymn}, Y ′ = {y′
1, y

′
2, . . . , y

′
mn}.

– Locations: L′ = 2L×Y ×Y ′
.

– Initial locations: S′ = {Q0}, where Q0 = S × {y1} × {y′
1}.

– Accepting locations: F ′ = {Q ∈ L′ | Q ∩ (F × Y × Y ′) �= ∅}.
– Edges: Δ′ is built as follows. For every source P ∈ L′, letter a, feasible set of

edges E ⊆ Δ, and potential target Q ∈ L′, we construct:
• constraint θ(P,E) ensuring that E is exactly the set of edges of A that

can be taken from P ;
• configuration R(P,E) reached when taking such edges;
• constraint λ≺(R,Q) ensuring that Q approximates R.

Edges from P to Q are guarded by the conjunction of θ and λ≺, and reset
either no clock, one clock in Y , or a pair of clocks in Y × Y ′.

The Compound Interest in Relaxing Punctuality 155

Given a valuation v, clock pair yy′ ∈ Y × Y ′ represents the interval [v(y), v(y′)],
locationQ ∈ L′ represents the configuration v(Q) = {(, [v(y), v(y′)]) | 	yy′ ∈ Q}.

Edges. We now present in detail the construction of Δ′. For yy′ ∈ Y × Y ′ and
φ ∈ Φ({x}) let φ[yy′] stand for the constraint φ in which y (resp. y′) replace x in
lower (resp. upper) bound comparisons. For any valuation v with v(y) < v(y′),
we have v |= φ[yy′] iff there exists t ∈ [v(y), v(y′)] such that t |= φ. Now let
P ∈ L′ and a ∈ Σ. Denote by Δ(P, a) ⊆ Δ the set of edges labeled a and
whose source location appears in P . Given a subset E ⊆ Δ(P, a), we define the
constraint θ(P,E) ensuring that edges fired from P upon event a are precisely
those in E:

θ(P,E) ≡
∧

�yy′∈P,(�,a,φ,Z,�′)∈E
φ[yy′] ∧

∧

�yy′∈P,(�,a,φ,Z,�′)∈Δ(P,a)\E
¬φ[yy′].

Clock resets are temporarily handled using fresh variables y0 and y′
0, extending

sets of clocks to Y0 = Y ∪ {y0}, Y ′
0 = Y ′ ∪ {y′

0} and set of locations to L′
0 =

2L×Y0×Y ′
0 . The target configuration R(P,E) ∈ L′

0 when firing edges in E from
P is defined by letting

R(P,E) = {	′yy′ | 	yy′ ∈ P, (, a,�, ∅, 	′) ∈ E} ∪ {	′y0y′
0 | (, a, φ, {x}, 	′) ∈ E}.

When θ(P,E) holds, automaton A′ transits to a configuration that approximates
R(P,E). Given configurations Q,R ∈ L′

0, we now define λ≺(R,Q) ensuring that
Q approximates R. We would like that v |= λ≺(R,Q) iff v(R)

≺��� v(Q), for all
valuations v. But if some clocks share the same value, for a given R there may
be more than one Q such that v(R)

≺��� v(Q). Priority is given to clocks with
lowest index. Given indices i, i′, j, j′ ∈ {0, . . . , mn}, k ∈ {i, j} and k′ ∈ {i′, j′},
define

μii′jj′kk′ ≡ ((yi − y′
j′ < c ∧ yj − y′

i′ < c) ∨ (yi > d ∧ yj > d)) ∧
(yi > yk ∨ (yi = yk ∧ i ≤ k)) ∧ ((yj > yk ∨ yj = yk) ∧ j ≤ k) ∧
(y′

i′ < y′
k′ ∨ (y′

i′ = y′
k′ ∧ i′ ≤ k′)) ∧ (y′

j′ < y′
k′ ∨ (y′

j′ = y′
k′ ∧ j′ ≤ k′)).

For any 	 ∈ L, constraint μii′jj′kk′ ensures that 	yiy
′
i′ and 	yjy

′
j′ should

be merged to 	yky′
k′ . The constraint λ≺(R,Q) is defined as the conjunc-

tion of two parts: (1) the disjunction over well-formed chains of merges
i1i

′
1j1j

′
1k1k

′
1, . . . , ihi′hjhj′

hkhk′
h from R to Q of conjunctions of μ over the chains;

(2) the conjunction of ¬μ over all possible merges in Q. This guarantees that
one such chain is (1) correct and (2) maximal in length. We can now replace
temporary variables y0, y

′
0 with available clocks in Y ∪ Y ′. Let us define the set

of clocks ZQ as follows:

– If both y0 and y′
0 occur in Q, let ZQ = {yi, y

′
i′} for i, i′ ≥ 1 the least indices

such that yi, y
′
i′ do not occur in Q;

156 T. Ferrère

– If y0 occurs in Q but not y′
0, let ZQ = {yi} for i ≥ 1 the least index such that

yi does not occur in Q;
– Otherwise, let ZQ = ∅.

We write Q ∈ L to denote the configuration Q in which y0, y
′
0 are replaced by

clocks in ZQ. The set of edges of A′ is obtained by letting

Δ′ = {(P, a, θ(P,E) ∧ λ≺(R(P,E), Q), ZQ, Q) | P ∈ L′, a ∈ Σ, Q ∈ L′
0,

E ⊆ Δ(P, a)}.

Theorem 3 (MIRE ⇒ DTA). For any MIRE of size m and resolution n, one
can construct an equivalent deterministic timed automaton with 2mn clocks and
2m3n2+1 locations.

Example 2 (Continued). Applying the above procedure to Aχ, we obtain
automaton A′

χ of Fig. 5. We use the following simplifications. In Aχ, any state in
location 	1 with clock value above 2 cannot reach 	2. We remove interval states
	yy′ from target configurations of A′

χ for any y ∈ Y such that y > 2. Transi-
tions preserve the ordering of non-reset clocks, and we use this to simplify clock
constraints. Locations not (co-)reachable are also removed.

�0yy′

�1yy′

�2yy′

�1yy′

�1yy′

�1zz′

�2yy′

�1zz′

�2zz′

�1zz′

�1yy′

�1zz′

�2zz′

�
y, y′ 0

y′ < 1

y ≤ 1
∧

y′ ≥ 1
y 0

1 <
y ≤

2
z, z ′

0

y ≤ 1
y 0

1 <
y ≤ 2

z, z
′

0

y ≤ 2
z 0

1 < z ≤ 2
y, y′ 0

z′ < 1 ∧ y > 2
z 0

z ≤ 1 ∧ z′ ≥ 1
z 0

z′ < 1

z ≤ 1
∧

z′ ≥ 1
z 0

1 <
z ≤ 2

y, y
′

0

z ≤ 1
z 0

1 <
z ≤

2
y, y ′

0

z ≤ 2
y 0

1 < y ≤ 2
z, z′ 0

y′ < 1 ∧ z > 2
y 0

y ≤ 1 ∧ y′ ≥ 1
y 0

Fig. 5. Automaton A′
χ determinizing Aχ (event labels are omitted).

5 Metric Interval Dynamic Logic

We now introduce metric interval dynamic logic (MIDL) as the dynamic logic of
MIRE. It provides linear dynamic logic (LDL) [13,15] with timing constraints.

Syntax. MIDL formulas ψ and expressions ϕ are given by the grammar

ψ ::= a | ¬ψ | ψ ∨ ψ | 〈ϕ〉ψ
ϕ ::= γI | ϕ · ϕ | ϕ ∪ ϕ | ϕ∗

γ ::= ε | ψ? | γ · γ | γ ∪ γ | γ∗

The Compound Interest in Relaxing Punctuality 157

where a ∈ Σ and I is a non-singular integer-bounded interval. The size of
an MIDL formula is the total size of expressions ϕ in its modalities 〈ϕ〉. The
resolution of MIDL formulas is defined inductively as for MITL.

The form 〈ϕ〉ψ is known as suffix conjunction and is satisfied when ψ holds at
some future time instant such that ϕ matches the events from now to that time
instant. When ϕ is of the form γI for simplicity we write 〈γ〉Iψ in place of 〈γI〉ψ.
Observe that 〈ϕ1 · ϕ2〉ψ ⇔ 〈ϕ1〉〈ϕ2〉ψ and 〈ϕ1 ∪ ϕ2〉ψ ⇔ 〈ϕ1〉ψ ∨ 〈ϕ2〉ψ, hence
when no star is applied to a timed subexpression, formulas can be rewritten
using modalities of the form 〈γ〉I only. The form ψ? is known as a test and
matches any time instant where ψ holds. We also write a in place of a? for any
a ∈ Σ. Using this convention, MIRE are a fragment of MIDL.

Semantics. The semantics |= of MIDL formulas is defined over pointed words,
with the same inductive definitions as MITL in the case of events a ∈ Σ and
Boolean connectives ¬, ∨. The case of suffix implication 〈ϕ〉 is as follows:

(w, i) |= 〈ϕ〉ψ iff (w, i, j) |≡ ϕ and (w, j) |= ψ for some j ≥ i.

The semantics |≡ of MIDL expressions is defined over bi-pointed words, triples
(w, i, j) of timed word w and positions 0 ≤ i ≤ j ≤ |w|, as follows.

(w, i, j) |≡ ε iff j = i

(w, i, j) |≡ ψ? iff j = i + 1 and (w, j) |= ψ

(w, i, j) |≡ ϕ1 · ϕ2 iff (w, i, k) |≡ ϕ1 and (w, k, j) |≡ ϕ2 for some k

(w, i, j) |≡ ϕ1 ∪ ϕ2 iff (w, i, j) |≡ ϕ1 or (w, i, j) |≡ ϕ2

(w, i, j) |≡ ϕ∗ iff (w, i, j) |≡ ϕk for some k

(w, i, j) |≡ ϕI iff (w, i, j) |≡ ϕ and ‖wi..j‖ ∈ I.

This semantics definition is compatible with that of MIRE and TRE in gen-
eral. The language L(ψ) of formula ψ is defined by L(ψ) = {w | (w, 1) |= ψ}.

Temporal Logic. The until operator can be defined in MIDL as the abbrevia-
tion ψ1 UI ψ2 ≡ 〈ψ1?∗ · �?〉Iψ2. We also use operators always and eventually as
previously. In general MIDL is more expressive than MITL.

Example 3. Consider the formula ξ ≡ � a → 〈�?∗ · b · �?+〉(0,1)c) over the alpha-
bet {a, b, c, d}. It describes words in which every occurrence of a triggers in the
future within less than one time unit an occurrence of b followed by one of c.

A conjecture of [4], proved in [9], states that formulas similar to the one above
cannot be expressed in MITL. Replacing b, c by arbitrary formulas, we obtain
an instance of so-called Pnueli modality [18]. The simpler threshold counting
modalities 〈(�?∗ · ϕ?)k−1 · �?+〉Iϕ, requiring that ϕ holds k times within I time
units, already cannot be expressed in MITL for k > 1, see [18].

Automata Modalities. Let us define extended MITL (EMITL) by adding to MITL
the syntactic clause ψ ::= A(ψ1, . . . , ψm), where A is a metric interval automaton

158 T. Ferrère

over the alphabet 2{ψ1,...,ψm}. The semantics of this clause is such that (w, i) |=
A(ψ1, . . . , ψm) iff the word ti+1 Ψi+1 . . . tn Ψn is accepted by A, where each tj is
the j-th delay in w and each Ψj is the subset of formulas amongst ψ1, . . . , ψm

satisfied at position j.

Proposition 2 (MIDL ⇔ EMITL). Every MIDL translates to an equivalent
EMITL formula, and every EMITL translates to an equivalent MIDL formula.

We translate an MIDL formula into EMITL by recursively replacing every
suffix conjunction 〈ϕ〉ψ with the modality A(ψ1, . . . , ψm, ψ), such that A trans-
lates the expression ϕ · ψ? · (�?)∗ in which atomic expressions ψ1?, . . . , ψm?, ψ?
are replaced by compatible subsets of {ψ1, . . . , ψm, ψ}.

Example 3 (Continued). Formula ξ ≡ �(a → (�?∗ · b · �?+)(0,1) c) is rewritten
in EMITL as ξ′ ≡ �(a → B), where B is the MIA given in Fig. 6.

�0 �1 �2

�
b;�

�
c; 0 < x < 1

x 0

�

Fig. 6. Automaton B appearing as subformula in ξ′.

Conversely EMITL translate to MIDL replacing automata A(ψ1, . . . , ψm)
with suffix conjunctions 〈ϕ〉¬〈�?〉�, where ϕ translates A. Here the role of
subformula ¬〈�?〉� is to recognize the last position in the word.

Expressiveness. Supplementing MITL with automata modalities has been pro-
posed by [37] and [17]. The logic of [37] corresponds to the MIDL fragment where
all modalities ϕ are of the form 〈γ〉I , equivalently, where no star is applied to a
timed expression. We call this fragment basic MIDL, and show that it is strictly
less expressive. In particular, the MIRE χ ≡ a · ((a+)[1,2])+ of Example 2 cannot
be expressed as a basic MIDL formula. The family (wn) of Sect. 3 is not a wit-
ness of this fact, since it can be classified for χ using a simple modulo-2 counter.
Instead we consider timed words wk

n, with k > 0 events clustered around the
events in wn, as illustrated in Fig. 7. Formally, we let wk

0 = ε and wk
n = tkn awk

n−1

for all n > 0, with delays tkn given by tkn = 1
2 + 1

4k if n ≡ 0 (mod k), tkn = 1
4k

otherwise. We claim that for any basic formula ψ there is a k such that for large
enough n either both wk

n and wk
n+k satisfy ψ, or neither. This disagrees with χ,

which recognizes exactly one of wk
n and wk

n+k.

s
a a a a a a a a a a a a a a a a a a

0 1
s0 s0 + 1 s0 + 2 s0 + 3 s0 + 4

Fig. 7. Timed word w3
18 with events occurring at absolute times s = s0, . . . , s17. Expres-

sion χ ≡ a · ((a+)[1,2])
+ entails several decompositions of w18 as shown. Over words w3

n

the number of events per interval [si + c, si + d] for c < d fixed integers and fixed n is
either constant or periodic with period 3 as a function of i < n − 4d.

The Compound Interest in Relaxing Punctuality 159

6 From MIDL to Nondeterministic Timed Automata

In this section we present a compositional translation of MIDL based on temporal
testers [26,27,33]. The first step of the procedure turns the MIDL formula into
an EMITL formula, and we consider this step implicit. The second step builds
testers for every operator of the formula, and composes them together.

Temporal Testers. We introduce the framework of our translation. Let B be a
set of Boolean variables. Valuations u : B → {0, 1} are identified with elements
of 2B , under the convention that u(p) = 1 iff p ∈ u, for any p ∈ B. In the
interest of simplicity, we assume an alphabet of events of the form Σ = 2A.
We call timed component an automaton over an alphabet Σ′ of the form 2B for
some B ⊇ A. The projection of a timed word w = t1u1 . . . tnun over variables B
onto variables A is defined as w|A = t1(u1 ∩ A) . . . tn(un ∩ A). The synchronous
product T1 ⊗ T2 of timed components T1 and T2, defined in the expected way,
is such that a timed word w is accepted by T1 ⊗ T2 iff w is accepted by both T1

and T2 when projected onto their respective variables (see [26] for more details).
Let ψ be a formula over Σ = 2A and T a timed component over Σ′ = 2B with
output variable p ∈ B \ A. We say that T [p] is a tester of ψ when the following
conditions hold:

1. For all timed words w over Σ there exists a timed word w′ accepted by T
such that w is the projection of w′;

2. For all timed words w′ accepted by T , and all positions 0 < i ≤ |w′| it holds
(w′, i) |= p if and only if (w′, i) |= ψ.

Compositionality. The construction of a tester Tψ[p] for formula ψ is inductive
on the structure of ψ. For each subformula ψ′ of ψ, we construct a tester for its
main subformulas, and compose it with a tester associated to its main operator:

T¬ϕ[p] = T¬q[p] ⊗ Tϕ[q]
Tϕ∨ψ[p] = Tq∨r[p] ⊗ Tϕ[q] ⊗ Tψ[r]

TA(ψ1,...,ψm)[p] = TA(q1,...,qm)[p] ⊗ Tψ1 [q1] ⊗ . . . ⊗ Tψm
[qm].

Testers for atomic formulas and propositional operators are simple one-state
components, with edges labeled by matching valuations of variables. Testers for
automata modalities are presented in the rest of this section. An acceptor Aψ

of L(ψ) is obtained by product of Tψ[p] with a two-state component enforcing
that p holds at position 1 in the input word, and projection onto Σ = 2A.

Automata Modalities. For a given MIA A = (Σ,X,L, S, F,Δ), the tester TA[p]
predicts at each position whether A accepts the corresponding suffix, and outputs
the prediction in p. If TA[p] predicts that A accepts the suffix from i, then it
creates a positive obligation attached to an initial state, and nondeterministically
follows one run of A from this state. If TA[p] predicts that A rejects the suffix
from i, then it creates a negative obligation attached to all initial states, and
deterministically follows all runs of A from those states.

160 T. Ferrère

Let c and d be the maximum magnitude and minimum width of clock con-
straints in A, defined as in Sect. 4. We define � as the approximation relation that
verifies C � D when C \ {(, I), (, J)} = D \ {(, ch(I ∪ J))} for some distinct
(, I), (, J), (,K) ∈ C, (, ch(I∪J)) ∈ D such that sup I∪J∪K−inf I∪J∪K < d
and K ∩ ch(I ∪ J) = ∅, or inf K > inf J > c.

Approximation � nondeterministically merges two intervals amongst three
within the same window of length d. Assume inf J ≤ inf K ≤ inf H; after a delay
t ∈ T if t ⊕ K ⊆ I then either t ⊕ J ⊆ I or t ⊕ H ⊆ I. Similar remarks can
be made for intervals above c; this settles the correctness of the approximation
relative to positive obligations. For negative obligations we see that � is finer
than ≺ of Sect. 4. The approximation ≺ merges intervals separated by a period
less than d, while � merges intervals lying in a window less than d long.

Let m and n be the number of locations, and resolution of A. Any D such

that C
���� D for some C now has at most 2mn interval states.

+�0yy′

−�0yy′

+�2yy′

−�0zz′

+�0yy′

+�0zz′

+�1yy′

−�0zz′

. . .

. . .

. . .

p

y, y
′ 0

¬p
y, y ′

0

p ∧ y′ < 1
z, z′ 0 p

z, z
′ 0

b;¬p
z, z ′

0

a, c, d;
¬p ∧ z′ < 1

z 0

c;¬p∧
0 < y ∧ y′ < 1

z 0

Fig. 8. A few locations and edges of component TB[p] (for convenience, the value of p
is handled using additional propositional constraints p and ¬p).

Subset Construction. We transform the MIA A = (Σ,X,L, S, F,Δ) into the
tester TA[p] = (Σ′,X ′, L′, S′, F ′,Δ′) defined as follows.

– Clocks: X ′ = Y ∪ Y ′, where Y = {y1, . . . , y2mn} and Y ′ = {y′
1, . . . , y

′
2mn}.

– Locations: L′ = 2{−,+}×L×Y ×Y ′
, sets of (negative, positive) obligations.

– Initial locations: E′ = {∅}.
– Accepting locations: F ′ = 2({−}×(L\F)∪{+}×F)×Y ×Y ′

, such that all positive
(negative) obligations are attached to accepting (rejecting) states.

– Edges: we define λ�(R,Q), ZQ and Q similarly as in Sect. 4, and let

Δ′ = {(P, u, λ�(R,Q) ∧ θ(P,E), ZQ, Q) | P ∈ L′, u ∈ Σ′, E ∈ Δ(P, u ∩ Σ),
R ∈ Ru(p)(P,E), Q ∈ L′

0}

where θ(P,E), Δ(P, a) for a ∈ Σ, and Ri(P,E) for i = 0, 1 are defined below.
Given P ∈ L′ and a ∈ Σ, we denote Δ(P, a) the set of subsets E ⊆ Δ

such that for all +	xx′ ∈ P there exists δ = (, a, φ, Z, 	′) ∈ E, and for all

The Compound Interest in Relaxing Punctuality 161

−	xx′ ∈ P and δ = (, a, φ, Z, 	′), if δ ∈ Δ then δ ∈ E. The constraint θ(P,E),
defined similarly as in Sect. 4, ensures E contains all feasible edges from neg-
atively marked locations, and one feasible edge from each positively marked
location. We denote L′

0 locations of L′ with additional variables y0, y
′
0 as pre-

viously. Define the target configuration R(P,E) ∈ L′
0 when taking edges E

from P as follows: R(P,E) = {s	′yy′ | (, a,�, ∅, 	′) ∈ E, s	yy′ ∈ P} ∪ {s	′y0y′
0 |

(, a, φ, {x}, 	′) ∈ E, s	yy′ ∈ P}. When the prediction p is false the set of possible
target configurations is given by R0(P,E) = {R(P,E)}, and when the prediction
p is true, given by R1(P,E) = {(R(P,E) ∪ {+	y0y

′
0}) | 	 ∈ S}. This completes

the construction of TA[p].

Theorem 4 (MIDL ⇒ NTA). For any MIDL formula of size m and reso-
lution n one can construct an equivalent timed automaton Aϕ with 4mn clocks
and 28m3n2+1 locations.

Example 3 (Continued). Consider automaton B of Fig. 6. We illustrate the pro-
cess of constructing its tester in Fig. 8. After constructing TB[p], we obtain the
tester for ξ′ as the product Tξ′ [r] = T� q[r]⊗Ta→p[q]⊗TB[p]. To get an acceptor
for ξ, we take the product of Tξ′ [r] with some acceptor of r and project back the
result onto alphabet Σ.

7 Discussion

We extended the punctuality relaxation of [3] to timed versions of regular expres-
sions and dynamic logic, generalizing results of [17,37]. The expressions we intro-
duced have a direct connection with automata. Their expressiveness is limited
to a small class of one-clock timed automata, also related to perturbed timed
automata [5]. However in the setting of dynamic logic, such expressions yield an
expressive specification language with good decidability properties:

Corollary 1. The satisfiability of MIDL and the model checking of timed
automata against MIDL are EXPSPACE-complete.

The lower bound follows from the discrete-time case, while the upper bound is
obtained by reduction to timed automata language emptiness, see [3]. Decision
procedures for MITL have recently been gaining interest, with implementations
of [8,12] and formalization by [34]. An interesting direction for future work would
be to assess experimentally the efficiency of MIDL decision procedures derived
from Corollary 1.

Metric dynamic logic was independently proposed by [7] in the context of
monitoring. Extensions of metric temporal logic with regular expressions modal-
ities were also studied by [23]. The logic MITL+URat of [23] is equivalent to
basic MIDL discussed in the present paper. Its modalities ψ1 Uγ,I ψ2 can be
written 〈γ ∩ (ψ1?∗ · �?)〉Iψ2 (the intersection ∩ of untimed expressions γ and
ψ1?∗ ·�? can be eliminated in polynomial time) and in the other direction 〈γ〉Iψ
rewrites into �Uγ,I ψ. Both logics are equivalent (and translate in polynomial

162 T. Ferrère

time) to the EMITL of [37]. Complexity of the satisfiability problem was not
studied by [37], whose proofs can only give non-elementary upper bounds. The
present work improves on the 2EXPSPACE upper bound of [23] by providing
a tight EXPSPACE construction. The more general MITL + Rat [23] has non-
elementary complexity. The position of MIDL in the expressiveness landscape of
decidable MTL variants (see also [22]) is a topic for future research.

The family of languages considered in this paper are all recognizable by
one-clock alternating timed automata (OCATA) [24,30]. Our determinization
procedure uses a timed variant of the classical subset construction inspired from
[10]. The authors of [10,11] consider the dual problem of eliminating univer-
sal non-determinism in OCATA stemming from the translation [30] of MITL
formulas. The transition graph in an MIA has more structure than in OCATA
stemming from MITL translations, requiring additional clocks to follow states
moving to the same location using separate paths. While the emptiness prob-
lem for OCATA is decidable over finite words, its complexity is non-elementary
[24,30]. Generalizations of this model with Büchi conditions, two-wayness, or
silent transitions all lead to undecidability [1]. On the contrary our expres-
sions and logic have elementary decision procedures, which can in principle
be extended to handle ω-words, past operators, and continuous-time Boolean
signals.

Acknowledgments. I thank Eugene Asarin, Tom Henzinger, Oded Maler, Dejan
Ničković, and anonymous reviewers of multiple conferences for their helpful feedback.

References

1. Abdulla, P.A., Deneux, J., Ouaknine, J., Quaas, K., Worrell, J.: Universality anal-
ysis for one-clock timed automata. Fundam. Inform. 89(4), 419–450 (2008)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996)

4. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol.
600, pp. 74–106. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031988

5. Alur, R., La Torre, S., Madhusudan, P.: Perturbed timed automata. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 70–85. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31954-2 5

6. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002)

7. Basin, D., Krstić, S., Traytel, D.: Almost event-rate independent monitoring of
metric dynamic logic. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548,
pp. 85–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 6

8. Bersani, M.M., Rossi, M., Pietro, P.S.: A tool for deciding the satisfiability of
continuous-time metric temporal logic. Acta Informatica 53(2), 171–206 (2016)

9. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In:
Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer,
Heidelberg (2005). https://doi.org/10.1007/11590156 35

https://doi.org/10.1007/BFb0031988
https://doi.org/10.1007/978-3-540-31954-2_5
https://doi.org/10.1007/978-3-319-67531-2_6
https://doi.org/10.1007/11590156_35

The Compound Interest in Relaxing Punctuality 163

10. Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed
automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol.
8053, pp. 47–61. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40229-6 4

11. Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed
automata over infinite words. In: Legay, A., Bozga, M. (eds.) FORMATS 2014.
LNCS, vol. 8711, pp. 69–84. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-10512-3 6

12. Brihaye, T., Geeraerts, G., Ho, H.-M., Monmege, B.: MightyL: a compositional
translation from MITL to timed automata. In: Majumdar, R., Kunčak, V. (eds.)
CAV 2017. LNCS, vol. 10426, pp. 421–440. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63387-9 21

13. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. IJCAI 13, 854–860 (2013)

14. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Integrated Circuits and
Systems. Springer, Heidelberg (2006). https://doi.org/10.1007/978-0-387-36123-9

15. Fischer, M.J.: Propositional dynamic logic of regular programs. J. Comput. Syst.
Sci. 18(2), 194–211 (1979)

16. Furia, C.A., Rossi, M.: MTL with bounded variability: decidability and complexity.
In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 109–123.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85778-5 9

17. Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages.
In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
580–591. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055086

18. Hirshfeld, Y., Rabinovich, A.: An expressive temporal logic for real time. In:
Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 492–504.
Springer, Heidelberg (2006). https://doi.org/10.1007/11821069 43

19. Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous
time. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967,
pp. 211–220. Springer, Heidelberg (2006). https://doi.org/10.1007/11753728 23

20. Kleene, S.C.: Representation of events in nerve nets and finite automata. Automata
Stud., 3–42 (1956)

21. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

22. Krishna, S.N., Madnani, K., Pandya, P.K.: Metric temporal logic with counting.
In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 335–352.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49630-5 20

23. Krishna, S.N., Madnani, K., Pandya, P.K.: Making metric temporal logic rational.
In: Mathematical Foundations of Computer Science, pp. 77:1–77:14 (2017)

24. Lasota, S., Walukiewicz, I.: Alternating timed automata. In: Sassone, V. (ed.)
FoSSaCS 2005. LNCS, vol. 3441, pp. 250–265. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31982-5 16

25. Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: past, present, future.
In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16.
Springer, Heidelberg (2005). https://doi.org/10.1007/11603009 2

26. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer,
Heidelberg (2006). https://doi.org/10.1007/11867340 20

27. Michel, M.: Composition of temporal operators. Logique et Analyse 28(110/111),
137–152 (1985)

https://doi.org/10.1007/978-3-642-40229-6_4
https://doi.org/10.1007/978-3-642-40229-6_4
https://doi.org/10.1007/978-3-319-10512-3_6
https://doi.org/10.1007/978-3-319-10512-3_6
https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.1007/978-0-387-36123-9
https://doi.org/10.1007/978-3-540-85778-5_9
https://doi.org/10.1007/BFb0055086
https://doi.org/10.1007/11821069_43
https://doi.org/10.1007/11753728_23
https://doi.org/10.1007/978-3-662-49630-5_20
https://doi.org/10.1007/978-3-540-31982-5_16
https://doi.org/10.1007/978-3-540-31982-5_16
https://doi.org/10.1007/11603009_2
https://doi.org/10.1007/11867340_20

164 T. Ferrère

28. Ničković, D., Piterman, N.: From Mtl to deterministic timed automata. In: Chat-
terjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 152–167.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 13

29. Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti,
M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 496–510. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8 33

30. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: Logic
in Computer Science, pp. 188–197. IEEE (2005)

31. Ouaknine, J., Worrell, J.: On metric temporal logic and faulty turing machines. In:
Aceto, L., Ingólfsdóttir, A. (eds.) FoSSaCS 2006. LNCS, vol. 3921, pp. 217–230.
Springer, Heidelberg (2006). https://doi.org/10.1007/11690634 15

32. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,
pp. 46–57. IEEE (1977)

33. Pnueli, A., Zaks, A.: On the merits of temporal testers. In: Grumberg, O., Veith,
H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0 11

34. Roohi, N., Viswanathan, M.: Revisiting MITL to fix decision procedures. In: Ver-
ification, Model Checking, and Abstract Interpretation. LNCS, vol. 10747, pp.
474–494. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73721-8 22

35. Sipser, M.: Introduction to the Theory of Computation, vol. 2. Thomson Course
Technology, Boston (2006)

36. Vardi, M.Y.: From philosophical to industrial logics. In: Ramanujam, R., Sarukkai,
Sundar (eds.) ICLA 2009. LNCS (LNAI), vol. 5378, pp. 89–115. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-92701-3 7

37. Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed
automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994.
LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58468-4 191

https://doi.org/10.1007/978-3-642-15297-9_13
https://doi.org/10.1007/978-3-642-04081-8_33
https://doi.org/10.1007/11690634_15
https://doi.org/10.1007/978-3-540-69850-0_11
https://doi.org/10.1007/978-3-319-73721-8_22
https://doi.org/10.1007/978-3-540-92701-3_7
https://doi.org/10.1007/3-540-58468-4_191
https://doi.org/10.1007/3-540-58468-4_191

IPL: An Integration Property Language
for Multi-model Cyber-physical Systems

Ivan Ruchkin(B), Joshua Sunshine, Grant Iraci, Bradley Schmerl,
and David Garlan

Institute for Software Research, Carnegie Mellon University, Pittsburgh, PA, USA
iruchkin@cs.cmu.edu

Abstract. Design and verification of modern systems requires diverse
models, which often come from a variety of disciplines, and it is
challenging to manage their heterogeneity – especially in the case of
cyber-physical systems. To check consistency between models, recent
approaches map these models to flexible static abstractions, such as
architectural views. This model integration approach, however, comes
at a cost of reduced expressiveness because complex behaviors of the
models are abstracted away. As a result, it may be impossible to auto-
matically verify important behavioral properties across multiple models,
leaving systems vulnerable to subtle bugs. This paper introduces the
Integration Property Language (IPL) that improves integration expres-
siveness using modular verification of properties that depend on detailed
behavioral semantics while retaining the ability for static system-wide
reasoning. We prove that the verification algorithm is sound and analyze
its termination conditions. Furthermore, we perform a case study on a
mobile robot to demonstrate IPL is practically useful and evaluate its
performance.

1 Introduction

Today, complex software systems are often built by multidisciplinary teams using
diverse engineering methods [1,2]. This diversity is particularly apparent in cyber-
physical systems (CPS) where software control interacts with the physical world.
For instance, a mobile robot needs to brake in time to avoid collisions, compute
an efficient long-term plan, and use a power model of its hardware to ensure it has
sufficient energy to complete its missions. To satisfy each of these requirements,
engineers may use heterogeneous models that vary in formalisms, concepts, and
levels of abstraction. Even though these models are separate, interdependencies
naturally occur because they represent the same system.

Mismatches between such implicitly dependent models may lead to faults
and system failures. For example, the 2014 GM ignition switch recall was caused
by an unanticipated interaction between electrical and mechanical aspects of the
ignition switch [3]. This interaction led to the switch accidentally turning off mid-
drive and disabling the car’s software along with airbags, power steering, and

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 165–184, 2018.
https://doi.org/10.1007/978-3-319-95582-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_10&domain=pdf

166 I. Ruchkin et al.

power brakes. This mismatch between the electrical, mechanical, and software
designs caused dozens of deaths and large financial losses.

To prevent such issues, inconsistencies or contradictions need to be detected
by integrating the heterogeneous models. This can be done by checking properties
that involve multiple models and formalisms, which we term integration properties.
Model integration is difficult [4] and checking integration properties is often done
informally through inspection, and is limited in rigor and outcomes. One way to
improve this would be to map diverse semantics and property checks into a single
unifying model. Unfortunately, it is hard (and sometimes impossible) to do so, as
in the case of unifying stateful and stateless models [5].

A common way to integrate heterogeneous models is to create and relate
simplified abstractions. One such abstraction is architectural views — behavior-
less component models annotated with types and properties [6–8]. Since views
are easier to reason about than heterogeneous models, structural consistency
checks can be formalized and automated [9]. However, model integration through
views sacrifices behavioral expressiveness of integration properties, meaning that
sophisticated interactions become uncheckable.

We perceive a foundational gap between the limited expressiveness of integra-
tion properties and the need to discover complex inconsistencies of several mod-
els. State-of-the-art integration approaches are limited in what is exposed from
models. Exposing too little leads to insufficiently expressive analysis. Exposing
too much leads to limited flexibility and extensibility of integration methods.

To help bridge this gap, this paper introduces the Integration Property Lan-
guage (IPL) – a formal specification and verification method for integration
properties based on architectural views. IPL’s goal is to systematically express
and automatically check properties that combine system behaviors and static
abstractions, enabling end-to-end verification arguments over multiple models.

The main design principle behind IPL is to combine first-order logical reason-
ing across many views with “deep dives” into behavioral structures of individual
models as necessary. IPL syntax interleaves first-order quantification over rigid
constructs (defined by views) and temporal modalities that bind the behavior of
flexible terms (changing according to models). Built upon existing satisfiability
solvers and model checkers, IPL uses a sound reasoning algorithm to modularize
the problem into subproblems that respective tools interpret and solve.

This paper makes three contributions: (1) a formalized modular syntax and
semantics of IPL, instantiated for two modal logics; (2) an algorithm to verify
validity of IPL statements, with a soundness proof and termination conditions;
and (3) a modeling case study of a mobile robot, with several integration prop-
erties to evaluate practical applicability and performance of the IPL prototype.

The paper is organized as follows. Section 2 introduces an illustrating scenario
of integration. Section 3 describes related work. Section 4 gives an overview of
the IPL design, while Sect. 5 provides the details of the IPL syntax, semantics,
and the verification algorithm. Section 6 provides a case study and a theoretical
analysis of the algorithm. We conclude the paper with limitations and future
work.

IPL: An Integration Property Language 167

2 Motivating Integration Case

Consider an autonomous mobile robot, such as TurtleBot (http://turtlebot.
com), that navigates to a goal location through a physical environment using its
map. The environment contains charging stations for the robot to replenish its
battery. The robot has an adaptive software layer that monitors and adjusts the
execution to minimize mission time and power consumption.

In the design of this system (more detail in Sect. 6.1), we have two models:
a power prediction model and a planning model. The power prediction model
Mpo is a parameterized set of linear equations that estimates the energy required
for motion tasks, such as driving straight or turning in place. The model is a
statistical generalization of the data collected from the robot’s executions. Given
a description of a motion task, the model produces an estimate of required energy.

The planning model Mpl finds a path to a goal by representing the robot’s
non-deterministic movements on a map, along with their time and power effects,
in a Markov Decision Process (MDP) [10]. The model’s state includes the robot’s
location and battery charge. Whenever (re)planning is required, the PRISM
probabilistic model checker [11] resolves non-determinism with optimal choices,
which are fed to the robot’s motion control. Although inspired by Mpo, Mpl is not
identical to it because of various modeling choices and compromises, for example
it does not explicitly model turns.

These two models interact during execution: Mpo acts as a safeguard against
the plan of Mpl diverging from reality and leading to mission failure. Mpl only
needs to be triggered when the robot is going to miss a deadline or run out of
power. Otherwise, the robot avoids running the planner to conserve power1. If
Mpl has overly conservative energy estimates compared to Mpo, it may miss a
deadline due to excessive recharging or taking a less risky but longer route. With
overly aggressive estimates, the robot may run out of power.

Integrating these two models means ensuring that their estimates of required
energy do not diverge. One threat to integration is the difference in modeling of
turns: Mpl models turns implicitly, combining them with forward motions into
single actions to reduce the state space and planning time. In Mpo however,
turns are explicit tasks, separate from forward motion. This potential inconsis-
tency can be checked with the following integration property: “the difference
in energy estimates between the two models should not be greater than a prede-
fined constant err cons”. The purpose of this property is to enable end-to-end
safety arguments (e.g., not running out of power or arriving before a deadline).
Instead of (inaccurately) assuming equivalence of Mpo and Mpl, this property
would provide a rigorous estimate of err cons ,2 which can be used to assert that
the battery cannot run out because its charge is always greater than err cons .

It is far from straightforward to verify this property. First, the abstractions
are different: Mpl describes states and transitions (with turns embedded in them),

1 The planner’s own power consumption is not modeled, contributing to its inaccuracy.
2 As we detail later, we use overlines to mark static entities (not changing over time),

and underlines to mark behavioral entities (changing over time in model states).

http://turtlebot.com
http://turtlebot.com

168 I. Ruchkin et al.

whereas Mpo describes a stateless relation. Second, there is no single means to
express such integration properties formally: PCTL (Probabilistic Computation
Tree Logic [11]) is a property language for Mpl, but Mpo does not come with a
reasoning engine. Finally, even if these obstacles are overcome, the models are
often developed by different teams, so they need to stay separate and co-evolve.

The integration property can be checked in several ways. A direct approach is
to develop a “supermodel” containing Mpl and Mpo as sub-models. A supermodel
would query Mpo from each state of Mpl. Although accurately detecting viola-
tions, this method is not tractable for realistic models of hundreds of thousands
of states. Furthermore, the property would be hardcoded in the supermodel
implementation, which would need to be developed anew for other properties.

Another approach relies on abstraction of models through architectural views.
The views are hierarchical arrangements of discrete static instances (architec-
tural elements) with assigned types and properties (defined in Sect. 5.1). Typi-
cally, when views are used to integrate multiple models [12], the verification is
confined to the views to take advantage of their relatively simple semantics (with-
out temporal behaviors or dynamic computation). One could encode all possible
Mpl behaviors (i.e., trajectories of locations, turns, and energies) in views, also
encoding them as atomic motion tasks of Mpo. This approach, again, leads to
either intractability or approximation (e.g., only recording the number of turns
in each path), which in turn would not have soundness guarantees.

In this paper we pursue the integration approach that combines specifications
over behaviors and views as necessary. For now, we provide an informal version
of the integration property, which will be formalized in the end of Sect. 5.2.

Property 1 (Consistency of Mpo and Mpl). For any three sequential Mpo tasks
〈go straight, rotate, go straight〉that do not self-intersect and have sufficient
energy, any execution in Mpl that visits every point of that sequence in the
same order, if initialized appropriately, is a power-successful mission (modulo
err cons).

It is challenging to systematically express and verify such properties while
holding the models modular and tractable. Notice how missions in Mpo need to
correspond to missions in Mpl; e.g., the initial charge of Mpl needs to be within
err cons of the expected mission energy in Mpo. Specifications like Proposition 1
are enabled by our solution design and the language syntax (Sects. 4 and 5).

3 Related Work

Model Integration. Model-based engineering relies on a variety of formalisms,
including synchronous, timed, and hybrid models [5]. When models are similar,
it is easier to find unifying abstractions, like in the case of consistency checking
for software models [6,13,14] or model refinement [15–17]. We, however, target
a broader scope of cyber-physical models that were not intended for integration,
leading to more challenging problems [4,18].

IPL: An Integration Property Language 169

Integration approaches for CPS models can be seen along a spectrum from
structural (operating on model syntax) to semantic (operating on behavior)
ones [19]. One structural approach is to use architectural views — abstract com-
ponent models [7,20]. Views have been extended with physical descriptions for
consistency checking via graph mappings [12] and arithmetic constraints [21].
Other recent structural approaches include model transformations [22], ontolo-
gies [23], and metamodels [24]. Model transformations are typically forced to
either map models to the same semantics or abandon one or more in favor of
new meanings. This paper extends the view-based structural approach to write
formalized statements that affect many semantic universes.

On the semantic end, one approach is to relate model behaviors directly [25].
Although theoretically elegant, this approach suffers from limited automation
and creating inter-model dependencies. Other semantic approaches relate model
behaviors through proxy structures. Well-known examples include the Ptolemy II
environment [26] and the GEMOC studio [27]. In contrast to these works on
heterogeneous simulation, we focus on logical verification of multiple models.
Another example is the OpenMETA toolchain for domain-specific language inte-
gration [28]. The toolchain contains automated support for verifying individual
CPS models (e.g., bond graphs) based on their logically-defined interfaces. Open-
META’s integration language (CyPhyML), however, commits to continuous-
trajectory semantics [29], whereas IPL allows arbitrary plug-in behaviors. Our
work builds on a prototype of a FOL/LTL contract formalism [30], which we
extend by providing a full-fledged language (as opposed to a stitching of two
statements) with a sound verification algorithm and a plugin system.

Logics, Satisfiability, Model Checking. This paper is related to quantified
Computation Tree Logic (QCTL) [31] and well-researched combinations of first-
order logic (FOL) [32] and linear temporal logic (LTL) [33], going back to the
seminal work of Manna and Pnueli [34] on first-order LTL, which has been instan-
tiated in many contexts [35,36]. Typically, such work focuses classical properties
of logics and algorithms, such as decidability and complexity. We, instead, focus
on expressiveness and modularity — practical concerns for CPS. For example,
IPL differs from the trace language for object models [36] in that we do not
create a full quantification structure in each temporal state. In contrast, IPL is
modular with existing models and delegates behavioral reasoning to them.

An ambitious approach is to directly combine arbitrary logics, at the cost of
high complexity and limited automation (as in fibred semantics [37]). Even when
modular [38], combining logics merges their model structures, which may lead to
tractability challenges in practice. We opt to keep models completely separate,
thus reducing complexity and overhead.

Our algorithm relies on Satisfiability Modulo Theories (SMT) [39] and model
checking [11,40]. To guarantee termination, we limit ourselves to decidable
combinations of background theories (like uninterpreted functions and linear
real arithmetic) that admit the Nelson-Oppen combination procedure [41]. In
practice, modern SMT solvers (e.g., z3 [42]) heuristically solve instances of

170 I. Ruchkin et al.

undecidable theories. In model checking we use the usual conversion of a modal
property to an automaton (Buchi, Rabin, . . .) and its composition with mod-
els [11,43].

4 Integration Property Language: Design

The Integration Property Language (IPL) is intended for model integration,
which informally means that models do not contradict each other. We envision
the following workflow. An engineer creates or obtains system models for inte-
gration. Some of these models will be interfaced through a behavioral property
language. The other models will be accessed through static abstractions (views),
created by the engineer. Then the engineer writes and checks an integration
property over views and behavioral properties using IPL. If the verification fails,
the engineer inspects and corrects the models and/or the property. Whenever the
models change, their respective views are updated, and properties are reverified.

A primary goal of the IPL design is applicability to real-world model integra-
tions. Therefore, our design focuses on these three principles:

1. Expressiveness. To improve expressiveness over state-of-the-art static abstrac-
tions, IPL formulas must combine reasoning over views with behavioral analysis
of models (e.g., using modal logics). IPL should combine information from sev-
eral models using first-order logic (quantification, custom functions).

2. Modularity. To support diverse CPS models, IPL should neither be tied to a
particular property language or form of model behavior (discrete, continuous, or
probabilistic), require the reengineering of constituent models. Thus, IPL should
enable straightforward incorporation of new models and property languages.

3. Tractability. To enable automation in practice, verification of IPL specifica-
tions must be sound and implementable with practical scalability.

To support these principles, we make the following four design decisions.

A. Model integration by logically co-constraining models. IPL rigorously specifies
integration conditions over several models. Logical reasoning is an expressive and
modular basis for integration because it allows engineers to work with familiar
concepts and tools that are specific to their domains/systems. In this paper, we
target two modal logics common in model-based engineering: LTL and PCTL.

B. Separation of structure and behavior. IPL explicitly treats the static (rigid)
and dynamic (flexible) elements of models separately. We accomplish this using
views (defined in Sec. 5.1) that serve as projections of static aspects of behavioral
models. This separation enables tractability because static aspects can be rea-
soned about without the temporal/modal dimension. We support expressiveness
by allowing combinations of rigid and flexible elements to appear in the syntax.

C. Multi-step verification procedure. We combine reasoning over static aspects
in first-order logic with “deep dives” into behavioral models to retrieve only the

IPL: An Integration Property Language 171

necessary values. We preserve tractability by using tools only within individual
well-defined semantics, without direct dependencies between models.

D. Plugin architecture for behavioral models. To create a general framework for
integration, we specify several plugin points — APIs that each behavioral model
has to satisfy. While the model itself can stay unchanged, IPL requires a plu-
gin to use their formalism for verification. This way, IPL does not make extra
assumptions on models beyond the plugin points, hence enhancing modularity.

To support expression and verification of Proposition 1, we use PCTL withMpl

to reason about behaviors and a view Vpo for reasoning about the static/stateless
elements of Mpo. Vpo serves as a task library, containing all atomic tasks (going
straight and rotating in the motivating example) in each location/direction in the
given map. Each task is annotated with its properties, such as start/end locations,
distance, required time, and required energy. Each task inVpo is encoded as a com-
ponent and contains several properties. Thus, this view allows natural composition
of missions as constrained sequences of components.

5 Integration Property Language: Details

This section describes IPL by defining its syntax and formalizing its semantics.
After, we provide an algorithm to check whether an IPL formula is valid.

5.1 Concepts and Preliminaries

The concept of an architectural view originates in the field of software architec-
ture [44]. Recently, views have been adapted to represent non-software elements
such as sensors and transducers in CPS [9]. We use views to extract information
for IPL to analyze without needing to process all the details of models.

Definition 1 (Architectural View). An architectural view V is a hierarchical
collection of architectural elements (i.e., components and connectors). Each ele-
ment has fixed-valued properties, the set of which is determined by its type and
values set individually for each element.

IPL uses views for modeling static, behavior-free projections of models. For
example, Mpo uses a map of locations for its tasks, and it can be exposed in
a view (Vmap) as a set of interconnected components (Locs). Each component
is a location, and connectors indicate direct reachability between them. We use
views as an abstraction because of their composability, typing, and extensible
hierarchical structure. No dynamic information (e.g., the current battery charge)
is put in views so that behavioral semantics are confined to models.

Definition 2 (Formal View). A (formal) view V is a pair of a view signa-
ture (ΣV) and its semantic interpretation (I V). The signature contains a set
of architectural elements (E), their types, properties, sorts/constants, and func-
tions/predicates. The semantic interpretation gives static meaning to the ele-
ments in the view signature, independent of state or time.

172 I. Ruchkin et al.

We use formal views to define the syntax and semantics of IPL. We establish
an isomorphic relationship between the two definitions by converting architec-
tural models to SMT programs, as in prior work [30]. Both definitions of views
are used throughout the paper: Definition 1 — for applied modeling (e.g., repre-
senting views in the case study), and Definition 2 — for theory behind IPL and
verification.

Definition 3 (Model). A (behavioral) model M is a triple of an (interface)
signature, an interpretation (IM

q), and a structure on which it is interpreted. The
signature defines symbols of state variables, modal functions/predicates, and a
list of name-type pairs for initialization parameters. The parametric structure
determines the model’s set of behavior traces (M.trcs) [43,45].

Definition 4 (Model Property Language). For a class of models, a model prop-
erty language is a language for specifying expressions about a model of that class.
From these expressions IM

q produces a value of a type interpretable by views.

For the rest of this section we consider a fixed set of behavioral models M,
with some of them abstracted by a fixed set of views (V). Each view can be seen
as some (implicit) function of a model. We consider two specific model property
languages: LTL and PCTL, although in principle we are not limited to them.

Shared by models and views, background interpretation I B evaluates com-
mon sorts, constants (e.g., boolean � and ⊥), functions (e.g., addition), and
predicates (e.g., equality) from background theories (e.g., the theory of equal-
ity or linear real arithmetic). Formally, we only allow theories that are decid-
able [46] and form decidable combinations [41], but in practice it is acceptable
to use undecidable combinations for which available heuristics resolve relevant
statements.

Formulas will be described over a context of views and models. Syntactically,
IPL formulas are written over a signature (Σ) that contains symbols from V

and M. Semantically, a formula’s context is determined by a structure (Γ) that
contains interpretations IM

q , I V, and I B along with their domains.
Finally, we make additional assumptions: (i) views are pre-computed and stay

up-to-date with models; (ii) views can be translated into finite SMT programs;
(iii) once initialized, any model can check/query any statement in its property
language; and (iv) models and views share the background interpretation.

5.2 Syntax

To support modularity, we keep track of syntactic terms that cannot be inter-
preted by either views or models. So we introduce the rigid/flexible separation:
flexible terms (denoted with underlines, like loc) are interpreted by IM

q , and rigid
terms (denoted with overlines, like Tasks) are interpreted by I V. Terms of I B

are used by both models and views (no special notation; e.g., <).
To embed model property languages into IPL, the syntax allows model-

specific formulas to be defined as “plugins” in the grammar. That is, various

IPL: An Integration Property Language 173

property languages are usable inside IPL formulas. Thus, the syntax is split into
the native (related to views) and plugin (related to property languages) parts.

One challenge is that the relation between IPL and model languages is
not hierarchical: native formulas contain plugin formulas, but native terms can
also appear in plugin formulas. An IPL interpreter should evaluate the native
parts when it prepares a model property to verify. Consider Proposition 1 in
Sect. 2 where a model evaluating Pmax=? requires interpreting native IPL term
t2.startloc.

We organize the native/plugin syntax as presented in Fig. 1. We define each
syntax element (box) on top of symbols in Σ and quantified variables (V). We
build two types of subformulas: rigid atomic formulas (ratom) from rigid terms
(rterm), and flexible atomic formulas (matom). Our strategy is to keep flexible
and rigid syntax separate until they merge in formula. In this way, we preserve
modularity: compound formulas can be deconstructed into simpler ones that are
evaluated by either models or views.

Fig. 1. IPL abstract syntax. Boxes are syntax elements, arrows — syntactic expansions.

A rigid term rterm is either a variable var, a constant const, an architec-
tural element type elem, a property of a rigid term rterm.prop3, a background
function bfunc, or a view function vfunc. A rigid atom ratom is a logical
expression over rigid terms. See the full syntax rules in the online appendix [47].

Behavioral Model Plugin Points. To integrate multiple model formalisms
into IPL, the syntax defines four plugin points for model-specific constructs.
Each plugin point can be instantiated either with an extensible syntactic form
(e.g., a modal expression) or a reference to an existing form (e.g., rterm). Each
behavioral model provides its own syntactic elements for plugin instances.

At the level of flexible terms (term), two plugin points are state variables
(stvar) and model functions (mfunc). Each state variable (e.g., loc) is declared

3 Properties are only applicable to architectural elements, references to which can be
accessed in a variable or a function. We assume all expressions are well-typed.

174 I. Ruchkin et al.

as a pair (name, type) to be referenced from IPL. Each model function declares
a name, a type, and a list of arguments, each of which is name-type pair.

The third plugin point is model atom (matom), e.g., the expression Pmax=?.
It requires one or several syntactic forms with production rules. In addition to
model-specific productions (e.g., temporal modalities), matom can use elements
ratom and rterm from the grammar’s rigid side (but not vice versa). A model
can, for example, plug in an LTL modal expression and use rigid terms in it.

Behavioral models often have parameters such as initial conditions. To pro-
vide parameter values, we introduce the fourth and outermost plugin point:

Definition 5 (Model Instantiation Clause). Model instantiation clause binds
rigid terms to model parameters, wrapping matom:

mdlinst ::= matom{|rterm1 . . .rtermn|}.

The values of rtermi are passed as parameters to the behavioral model.
Finally, on top of the flexible syntax above, we can define quantification:

Definition 6 (IPL Formula). IPL formulas are logical formulas with first-order
quantification over an instantiated model formula or a rigid atom.

formula ::=∀var : rterm · formula | mdlinst | ratom |
formula ∧ formula | ¬formula.

Illustrating modularity of the syntax, we give two extensions of the grammar:
first with Linear Temporal Logic (LTL) [33], and second with Probabilistic Com-
putational Tree Logic (PCTL) [11]. Here we highlight the expansion of matom

in both plugins, while their full description is in the online appendix [47].

LTL Plugin Syntax. Linear Temporal Logic (LTL) is a logic to express tem-
poral constraints on traces [33]. We embed the usual modalities: until and next.

tatomu ::= tatom U tatom,tatomx ::= X tatom,

tatoma := tatom ∧ tatom,tatomn := ¬tatom,

matom ::= tatom ::= ratom | term | tatomu |tatomx | tatoma | tatomn.

PCTL Plugin Syntax. We use extended PCTL (its variant used in PRISM)
expresses probabilistic constraints over a computation tree, and its models are
MDPs and discrete-time Markov chains (DTMCs) [11]. Flexible terms are as in
the LTL plugin, but matom expands into several layered behavioral atoms.

pathprop ::= ratom | term | pathprop ∧ pathprop | ¬pathprop |
pathprop U≤k

pathprop | X pathprop,

pprop ::= Po∼p[pathprop], pquery ::= Po=?[pathprop],
matom ::= pprop | pquery | rwdprop | rwdquery,

where p ∈ [0, 1],∼∈ {<,≤, >,≥} , o ∈ {max,min, ∅} , k ∈ N ∪ {inf}.

IPL: An Integration Property Language 175

With the syntax defined, we encode the motivating property (Proposition 1)
in IPL below. We use quantification to bind constraints on task sequences in Vpo

(with task attributes start, end, and expected energy) and a PCTL query forMpl.

∀t1, t2, t3 : Tasks · t1.type = t3.type = STR ∧ t2.type = ROT ∧ (1)

t1.end = t2.start = t3.start ∧ t1.start �= t3.end ∧ Σ3
i=1ti.energy ≤ MaxBat →

Pmax=?[(F loc = t2.startloc) ∧ (F loc = t3.startloc) ∧
((loc = t1.start) U (loc = t2.start U (loc = t3.start U loc = t3.end)))]

{|initloc = t1.start, goal = t3.end, initbat = Σ3
i=1ti.energy + err cons|} = 1.

To summarize, IPL formulas express quantified modal constraints over sym-
bols in Σ. We use quantification outside of flexible atoms to preserve modularity.
Further, we extended the flexible part of IPL with two model property languages.

5.3 Semantics

Here we give the meaning to the IPL syntax in terms of structure Γ by reducing
a formula to either Γ’s model part (IM

q) or Γ’s the view part (I V), but not both.

Domain Transfer. Interpretation is based on semantic domains – collections
of formal objects (e.g., numbers) in terms of which syntax elements can be fully
interpreted. For IPL we define two domains: the model domain (DM) and the
view domain (DV). DM is associated with IM

q , and DV— with I V.

Definition 7 (Belonging to semantic domain). Syntactic element s belongs to
a semantic domain D if there exists an interpretation I such that I (s) ∈ D.

Table 1. Semantic domains and transfer in IPL.

View domain DV Is transferable Model domain DM

var Yes, by value
elem Yes, by reference
prop Yes, by value
vfunc Yes, by value, if all arguments

are transferable. Otherwise, no.
rterm Yes, by value
∀x : X · f No

No stvar
No mfunc
No matom
Yes, by value mdlinst

Constants and bfunc from background theories. Interpretation IB .

176 I. Ruchkin et al.

DM and DV are defined in Table 1: the first and third columns contain syntax
elements that belong to them. For example, models interpret state variables using
their structures, and views can interpret quantified statements using satisfiability
solvers. Both domains interpret symbols from background theories (I B).

The middle column of Table 1 indicates if a syntax element, once interpreted,
can be transferred to the other domain, i.e., if a bijection between its evaluations
and some set in the other domain exists. “By value” is mapping to a constant in
the other domain. “By reference” is mapping to an integer ID (e.g., for elem,
unique integer IDs are generated for referencing in the model). Notice that view
domain elements are mostly transferable to the model domain (except quantifi-
cation). To support modularity, models can only transfer values of mdlinst.

Native semantics. We interpret IPL formulas in the following context: Γ
(V, Mi with IM

q , I V, and I B), states q , potentially infinite sequences of states
ω ≡ 〈q1, q2, . . .〉, and mapping μ of variables to values. Starting from the bot-
tom of Fig. 1 with rigid terms (rterm), we gradually simplify the semantic
context (denoted as the subscript of [[]] and on the left of |=). The meaning of
standard logical operations from formula and ratom is found in the online
appendix [47].

[[const]]Γ = IB(const), [[var]]µ = μ(var), [[stvar]]Γ,q = IM
q (stvar),

[[vfunc(r1, . . . rn)]]Γ,µ = I V(vfunc)([[r1]]V,µ . . . [[rn]]V,µ) if r1 . . . rn ∈ rterm,

[[elem]]Γ,q,µ = I V(elem) = {e} ⊆ E, [[rterm.prop]]Γ,q,µ = I V(prop)([[rterm]]V,µ),

Γ, ω, μ |= ∀x : r · f iff Γ, ω, μ′ |= f, where r ∈ rterm,

f is either formula or ratom, μ′ = μ ∪ {x
→ v} for all v in [[r]]Γ,µ.

Γ, μ |= (a)[|p1 . . . pn|] iff V,M([[p1]]V,µ . . . [[pn]]V,µ), μ |= a, where a ∈ matom.

We provide a only brief summary of the plugin semantics for LTL and PCTL
due to space limitations; for the full semantics see the online appendix [47].

LTL plugin semantics. For LTL the model is a canonical transition system
Mts [40]. We evaluate tatom and formula on a sequence of states (ω). Logical
operations and quantifiers are evaluated the same as natively.

Γ, ω, μ |= f iff Γ, q , μ |= f, where q ∈ ω1,1, f ∈ term.

Γ |= formula iff ∀ω : Mts.trcs · Γ, ω, ∅ |= formula.

PCTL plugin semantics. PCTL formulas are evaluated on MDPs (Mmdp), or
a DTMC Mdtmc if we collapse non-determinism [11]. Temporal operators mean
the same as in LTL except the bounded until.

For f ∈ pprop and rwdprop, Probπ(q , f) is a probability of f holding after
q for policy π from Π:

Γ, q , μ |= Po∼p[f] iff optπ∈Π Probπ(q , [[f]]Γ,μ) ∼ p,

Γ, q , μ |= Ro∼p[f] iff optπ∈Π Expπ(q ,X[[f]]Γ,µ
) ∼ p,

IPL: An Integration Property Language 177

where f ∈ pathprop;∼∈ {<,≤, >,≥} ; optπ∈Π is supπ∈Π if o ≡ max, infπ∈Π if
o ≡ min, no-op if o ≡ ∅; Xf is a random reward variable, Expπ is its expectation.

Now the semantics of IPL has been fully defined, in a way that formalized
Eq. 1 expresses the intent of informal Proposition 1. Formulas are evaluated mod-
ularly, by their reduction to subformulas, each of which is interpreted by I V, IM

q ,
or I B.

5.4 Verification Algorithm

Suppose an engineer needs to verify an integration formula f with a signature
Σ against Γ, i.e., check if f is a sentence in the IPL theory for Γ.

Problem 1 (IPL formula validity). Given f ∈ formula in Σ and a corre-
sponding Γ, decide whether Γ |= f .

Below we step through Algorithm 1 that solves Problem 1. The algorithm
uses several transformations, all of which are formally defined in the online
appendix [47]. The first step is equivalently transforming f to its prenex nor-
mal form (PNF, i.e., all quantifiers occurring at the beginning of the formula),
denoted ToPNF (f).

Algorithm 1. IPL verification algorithm
1: procedure Verify(f,M)

2: f ← ToPNF (f) � Put the formula into the prenex normal form
3: fFA ← FuncAbst(f̂) � Replace model instances with functional abstractions
4: fCA ← ConstAbst(f̂) � Replace model instances with constant abstractions
5: f̂FA ← RemQuant(fFA) � Remove FA quantifiers
6: f̂CA ← RemQuant(fCA) � Remove CA quantifiers
7: sv ← all μ s.t. ∃I · I , μ |= f̂FA �⇔ f̂CA � Saturation: find all variable values

that satisfy non-matching abstractions
8: I F

sv(Fi(μ)) ← [[mdlinsti]]M,µ for each μ ∈ sv � Model checking: run model
instances to interpret functional abstractions on the above values

9: if ∃I · I F
sv ⊆ I ∧ I |= ¬fFA then return ⊥ � If the FA formula’s negation is

satisfiable given the constructed interpretation, return false
10: else return � � Otherwise, return true

The next step is to replace occurrences of instance terms mdlinsti (interpre-
tation of which is yet unknown to views/SMT) with two kinds of abstractions:
1. Functional abstraction (FA). FA replaces mdlinsti with uninterpreted func-
tions Fi. The arguments of these functions are the free variables that are present
in the syntactic subtree of mdlinsti. (Below, x ≡ x1 . . . xn.)

fFA ≡ FuncAbst(f) = Q1x1 : D1 . . . Qnxn : Dn · f̂(x , F1(x) . . . Fm(x)),

2. Constant abstraction (CA). CA replaces mdlinsti with uninterpreted
constants.

fCA ≡ C(f) = Q1x1 : D1 . . . Qnxn : Dn · f̂(x , C1 . . . Cm).

178 I. Ruchkin et al.

Next, we remove all quantifiers (RemQuant(fFA) = f̂FA, RemQuant(fCA)
= f̂CA), replacing all bound quantified variables with free ones.

fFA ≡ Q1x1 : D1 . . . Qnxn : Dn · f̂FA(x), fCA ≡ Q1x1 : D1 . . . Qnxn : Dn · f̂CA(x).

We look for interpretations (I F
sv) of model instances that affect validity of f .

I F
sv are characterized by valuations μ of free variables that are arguments for Fi.

These interpretations are also subsumed by I F — a full interpretation of Fi on all
possible variable assignments that coincides with semantic evaluation of model
atoms: I F (Fi(μ)) = [[mdlinsti]]M,μ for any μ ∈ D1 × . . .Dn, i ∈ [1,m].

Instead of constructing full I F (which requires exhaustive model checking),
we determine I F

sv by looking for μ for that make the values of FA and CA differ. In
other words, such valuations that it is possible to interpret the two abstractions
so that one formula is valid and the other one invalid. That is, we construct a set
sv that contains all μ satisfying the search formula for f : ∃I ·I , μ |= f̂FA �⇔ f̂CA.

In the process of saturation, the algorithm enumerates all such μ by iteratively
finding and blocking them. With a finite number of μ, it will terminate once the
sv is saturated. To terminate, it is sufficient that each Di is finite, but not
necessary: a constrained formula may have finite sv with infinite Di.

Once variable assignments sv are determined, we can construct I F
sv (a subset

of I F) by directly executing behavioral checking of mdlinsti on concrete values:

I F
sv(Fi)(μ) = [[mdlinsti]]M,μ for all μ ∈ sv and all i ∈ [1,m]. (2)

Finally, the algorithm performs a validity check by checking satisfiability of
the negation of fFA. f is valid iff the check fails to find an interpretation that
agrees with I F

sv and satisfies ¬fFA. We implemented this algorithm in an IPL IDE
based on Eclipse (https://www.eclipse.org), with its source code online (https://
github.com/bisc/IPL). More information about the IDE and an illustration of
Algorithm 1 on the running example is in the online appendix [47].

6 Evaluation

Here we evaluate IPL from a theoretical (soundness and termination of the
algorithm) and practical (checking integration for a mobile robot) standpoint.

To avoid false positives/negatives, IPL verification should produce sound
results. We prove that any answer returned by Algorithm1 is correct with respect
to the semantics (independently of the plugins). To be valuable, the algorithm
should terminate on practical problems. We hence provide the termination con-
ditions.

We show that interpretations of mdlinst over sv determine the formula’s
validity. Correctness and termination follow directly from this result in Corol-
lary 2.

Theorem 1. Absence of flexible interpretations that agree with I F
sv and satisfy

¬fFA is necessary and sufficient for validity of fFA on I F :

�I · I F
sv ⊆ I ∧ I |= ¬fFA iff I F |= fFA.

https://www.eclipse.org
https://github.com/bisc/IPL
https://github.com/bisc/IPL

IPL: An Integration Property Language 179

Proof Sketch. Soundness follows from straightforward instantiation. For com-
pleteness, we assume for contraction that I F |= fFA and instantiate a μ that
both satisfies fFA and does not, depending on the interpretation. We show that
μ ∈ sv to derive a contradiction. Full proof is in the online appendix [47].

Theorem 1 leads to two corollaries (see their proofs in the online
appendix [47]).

Corollary 1. Validity of formula f is equivalent to unsatisfiability I F
sv |= ¬fFA.

M |= f iff �I · I F
sv ⊆ I ∧ I |= ¬fFA.

Corollary 2. Algorithm1 is sound for solving Problem 1. The algorithm termi-
nates if (i) satisfiability checking is decidable, (ii) behavioral checking with M is
decidable, and (iii) search formula f̂FA �⇔ f̂CA has a finite number of satisfying
values for free variables (e.g., when quantification domains Di are finite).

6.1 Case Study: Adaptive Mobile Robot

To assess the practical applicability of IPL, we guided our case study with three
questions: 1. What is the role of integration properties in real systems? 2. Can
we specify them with IPL? 3. Is IPL verification tractable in practice?

To address these questions, we applied IPL to a system in a case study [48].
The system was chosen to meet the following criteria: it must be a running system
to ensure realism, it must be from the CPS domain to ensure fit, it must include
multiple models using different formalisms to evaluate IPL’s expressiveness, and
we had to have access to domain experts to answer questions and assess useful-
ness. A TurtleBot 2 robot (described in Sect. 2) implemented using the Robot
Operating System (ROS) [49] for sensing, localization, and navigation, and a
model-based adaptive system for planning the robot’s mission-related actions
meets all of these criteria. We conducted a historical review with the project’s
artifacts to discover relevant models and integration properties. The case study
models are available online (https://github.com/bisc/IPLProjects).

Our case study focused on a planning model Mpl and a power model Mpo

because power is a prominent concern in the system and these two models have
a complex dependency. Both models co-evolved throughout the project, and we
collected over 10 variants of these models with of varying sophistication.

Integration Properties. An example integration property between Mpl and
Mpo is that they must agree on energy spent in various missions; otherwise
the robot may run out of power. (A mission is made up of different energy-
spending motion tasks such as forward movement, rotation, and charging. A
power-successful mission can be done with a given initial power budget.)

View Modeling and Verification. To formalize the integration properties, we
chose to create a view (Vpo) for Mpo and combine it with a behavioral interface
to Mpl. There are many ways to construct an appropriate view, and we took the
route of creating a task library — enumerating all relevant atomic tasks.

https://github.com/bisc/IPLProjects

180 I. Ruchkin et al.

Vpo has to agree with Mpl on the task primitives, otherwise the integration
check will always fail. Each motion command is an architectural element with its
own id, startloc, endloc, and energy (which is computed by Mpo given a distance
and a speed, hence making Vpo a correct view for Mpo). The only requirement
for the view is that it contains all the objects of interest (here, atomic tasks).

Another view is a map view (Vmap), containing locations (as components)
and their connections. We discovered 5 maps, organized in two categories. The
first category contains 9 locations (including 1 charging station) and 9–10 edges.
The second category contains 12 locations (including 4) and 13 edges.

Both Vpo and Vmap have been created by automated transformations that
require the same map artifact. Vpo requires equations from Mpo and outputs
a library of tasks encoded in the Architecture Analysis and Design Language
(AADL) [50]. Vmap outputs a list of locations in AADL. In total, we generated
over 30 variants of views to represent relevant combinations of task primitives.

Using the above view abstractions, we specified dozens of integration prop-
erty variants (similar to Eq. 1) for various mission features and lengths. In map-
related properties, quantified variables iterate over locations. In power-related
properties, quantified variable iterate over atomic tasks. Examples of these prop-
erties are highlighted in the online appendix [47].

Outcomes. To answer our first question (see top of Sect. 6.1), we discovered that
complex integration properties appear when several models contain interrelated
data (in our case, locations, connections between them, and energy expenditures
for tasks). These properties serve as steps in safety reasoning that would oth-
erwise use oversimplified and unsupported assumptions (e.g., models agree on
energy). If these assumptions are not satisfied, the system falls short of its goals.
Thus, IPL fills in an important niche of reasoning for multi-model systems.

To answer the second question, we focused on multiple variants of power-
related integration properties for Mpo and Mpl. We were able to represent all rel-
evant point-to-point missions up to a bounded number of recharging actions. The
end-to-end power-safety argument for the robot relies on these integration prop-
erties: if Mpo has worst-case error err pow , Mpl has worst-case error err mdp,
the worst-case consistency error is err cons, then to not run out of power, the
battery has to have at least g(err pow , err mdp, err cons) charge during any exe-
cution, where g is some function (addition in simple cases). Thus, we observed
that integration properties verify bounds of consistency errors, which are inputs
to end-to-end safety arguments.

We discovered several critical inconsistencies in the models we observed: (1)
the MDP does not check whether the battery was enough for the last step (thus,
in some missions the robot would run out); (2) turn energy was inconsistent
making one turn action add energy to the battery (caused by a bug in the
model generation code); (3) Mpo and Mpl disagreed significantly in their energy
predictions for tasks with near-zero times because of the non-zero y-intersect in
Mpo (recall that it was constructed using regression). We therefore conclude that
IPL is capable of finding model inconsistencies in real-world projects.

IPL: An Integration Property Language 181

Performance. We evaluated the performance of the Eclipse-based IPL imple-
mentation using the power-related property variants. Specifically, we executed
24 verification runs by varying the number of tasks and the map and toggling the
mission features—variable length missions, charging, and rotations. IPL’s per-
formance is reasonable for practical purposes, with a remarkably low overhead.
Although larger missions with more features led to substantially longer times,
IPL finished within several hours. The details are in the online appendix [47].

7 Discussion

This paper makes a significant step towards bridging the semantic gap between
heterogeneous CPS models. The Integration Property Language enables systems
engineers to specify expressive properties over behavioral and static semantics of
multiple models in a way that is both modular and extensible. IPL specifications
are soundly checkable with a combination of SMT solving and model checking.
The case study showed that IPL can encode relevant real-world integration prop-
erties and verify them in reasonable times.

IPL relies on existing views, models, and analysis tools for reasoning. It
also shares their limitations on automation and performance. In practice, extra
automation or manual effort is required for views to remain up-to-date with
models. IPL performance is limited by satisfiability solving for many constraints
and quantified variables. Improvements in the state-of-the-art satisfiability and
model checking should lead to comparable improvements in the IPL performance.

IPL allows behavioral checking to be carried out independently of where its
inputs come from, thereby supporting custom workflows in diverse engineering
disciplines. This freedom, however, comes at a cost of expressiveness: we could
not allow complete transfer of view functions to DM (Table 1 allows it only for
transferable arguments), which would need callbacks from model checking to
views to evaluate a view function. This feedback loop would create a dependency
from models to views and negatively impact modularity and extensibility of IPL.

Future work will focus on three areas: (1) incorporating other property lan-
guages into IPL and conducting more case studies, (2) handling models (such as
Simulink) that are widely used in CPS but do not have a rigorous property lan-
guage, and (3) an analysis of scalability and effectiveness with respect to other
integration methods (e.g., the “supermodel” approach).

Acknowledgments. This material is based on research sponsored by AFRL and
DARPA under agreement number FA8750-16-2-0042. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the AFRL, DARPA or the
U.S. Government.

182 I. Ruchkin et al.

References

1. Mosterman, P.J., Zander, J.: Cyber-physical systems challenges: a needs analy-
sis for collaborating embedded software systems. Softw. Syst. Model. 15(1), 5–16
(2016)

2. Fitzgerald, J., Larsen, P.G., Pierce, K., Verhoef, M., Wolff, S.: Collaborative mod-
elling and co-simulation in the development of dependable embedded systems.
In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 12–26. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16265-7 2

3. Valukas, A.: Report to board of directors of general motors company regarding
ignition switch recalls. Jenner & Block, Technical report (2014)

4. Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis, P., Gupta,
V., Goodwine, B., Baras, J., Wang, S.: Toward a science of cyber-physical system
integration. In: Proceedings of the IEEE (2011)

5. Alur, R.: Principles of Cyber-Physical Systems. The MIT Press, Cambridge (2015)
6. Dijkman, R.M.: Consistency in multi-viewpoint architectural design. Ph.D. thesis,

Telematica Instituut, Enschede, The Netherlands (2006)
7. Maoz, S., Ringert, J.O., Rumpe, B.: Synthesis of component and connector models

from crosscutting structural views. In: Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2013, New York, NY, USA,
pp. 444–454. ACM (2013)

8. Reineke, J., Tripakis, S.: Basic problems in multi-view modeling. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 217–232. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 15

9. Bhave, A.: Multi-view consistency in architectures for cyber-physical systems.
Ph.D. thesis, Carnegie Mellon University, December 2011

10. Howard, R.A.: Dynamic Programming and Markov Processes. Technology Press of
the Massachusetts Institute of Technology, Cambridge (1960)

11. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

12. Bhave, A., Krogh, B., Garlan, D., Schmerl, B.: View consistency in architectures
for cyber-physical systems. In: IEEE/ACM International Conference on Cyber-
Physical Systems (ICCPS) (2011)

13. Nuseibeh, B., Kramer, J., Finkelstein, A.: A framework for expressing the rela-
tionships between multiple views in requirements specification. IEEE Trans. Softw.
Eng. 20(10), 760–773 (1994)

14. Egyed, A.F.: Heterogeneous view integration and its automation. Ph.D. thesis,
University of Southern California (2000)

15. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

16. Smith, G.: The Object-Z Specification Language. Advances in Formal Methods,
vol. 1. Springer, New York (2000). https://doi.org/10.1007/978-1-4615-5265-9

17. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

18. Karsai, G., Sztipanovits, J.: Model-integrated development of cyber-physical sys-
tems. In: Brinkschulte, U., Givargis, T., Russo, S. (eds.) SEUS 2008. LNCS, vol.
5287, pp. 46–54. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
87785-1 5

https://doi.org/10.1007/978-3-642-16265-7_2
https://doi.org/10.1007/978-3-642-54862-8_15
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-1-4615-5265-9
https://doi.org/10.1007/978-3-540-87785-1_5
https://doi.org/10.1007/978-3-540-87785-1_5

IPL: An Integration Property Language 183

19. Ruchkin, I.: Integration beyond components and models: research challenges and
directions. In: Proceedings of the Third Workshop on Architecture Centric Virtual
Integration (ACVI), Venice, Italy, pp. 8–11 (2016)

20. Kruchten, P.: The 4+1 view model of architecture. IEEE Softw. 12, 42–50 (1995)
21. Rajhans, A., Bhave, A., Loos, S., Krogh, B., Platzer, A., Garlan, D.: Using param-

eters in architectural views to support heterogeneous design and verification. In:
Proceedings of the 50th IEEE Conference on Decision and Control and European
Control Conference (CDC) (2011)

22. Marinescu, R.: Model-driven analysis and verification of automotive embedded
systems. Ph.D. thesis, Maladaren University (2016)

23. Vanherpen, K., Denil, J., David, I., De Meulenaere, P., Mosterman, P.J., Torngren,
M., Qamar, A., Vangheluwe, H.: Ontological reasoning for consistency in the design
of cyber-physical systems, pp. 1–8. IEEE, April 2016

24. Torngren, M., Qamar, A., Biehl, M., Loiret, F., El-khoury, J.: Integrating view-
points in the development of mechatronic products. Mechatronics 24, 745–762
(2013)

25. Rajhans, A., Krogh, B.H.: Heterogeneous verification of cyber-physical systems
using behavior relations. In: Proceedings of the 15th ACM Conference on Hybrid
Systems: Computation and Control (HSCC), New York, NY, USA, pp. 35–44.
ACM (2012)

26. Lee, E.A., Neuendorffer, S., Zhou, G.: System Design, Modeling, and Simulation
using Ptolemy II. Ptolemy.org, Berkeley (2014)

27. Combemale, B., Deantoni, J., Baudry, B., France, R., Jezequel, J.M., Gray, J.:
Globalizing modeling languages. Computer 47(6), 68–71 (2014)

28. Sztipanovits, J., Bapty, T., Neema, S., Howard, L., Jackson, E.: OpenMETA: a
model- and component-based design tool chain for cyber-physical systems. In:
Bensalem, S., Lakhneck, Y., Legay, A. (eds.) ETAPS 2014. LNCS, vol. 8415, pp.
235–248. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54848-
2 16

29. Simko, G., Lindecker, D., Levendovszky, T., Neema, S., Sztipanovits, J.: Specifica-
tion of cyber-physical components with formal semantics – integration and compo-
sition. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MOD-
ELS 2013. LNCS, vol. 8107, pp. 471–487. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41533-3 29

30. Ruchkin, I., de Niz, D., Chaki, S., Garlan, D.: Contract-based integration of cyber-
physical analyses. In: Proceedings of the International Conference on Embedded
Software (EMSOFT), New York, NY, USA, pp. 23:1–23:10. ACM (2014)

31. Da Costa, A., Laroussinie, F., Markey, N.: Quantified CTL: expressiveness and
model checking. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol.
7454, pp. 177–192. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32940-1 14

32. Borger, E., Gradel, E., Gurevich, Y.: The Classical Decision Problem. Springer,
Heidelberg (2001)

33. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57, October 1977

34. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, Heidelberg (1992). https://doi.org/10.1007/978-1-4612-0931-7

35. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Combination methods for satis-
fiability and model-checking of infinite-state systems. In: Pfenning, F. (ed.) CADE
2007. LNCS (LNAI), vol. 4603, pp. 362–378. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73595-3 25

https://doi.org/10.1007/978-3-642-54848-2_16
https://doi.org/10.1007/978-3-642-54848-2_16
https://doi.org/10.1007/978-3-642-41533-3_29
https://doi.org/10.1007/978-3-642-41533-3_29
https://doi.org/10.1007/978-3-642-32940-1_14
https://doi.org/10.1007/978-3-642-32940-1_14
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-3-540-73595-3_25
https://doi.org/10.1007/978-3-540-73595-3_25

184 I. Ruchkin et al.

36. Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: Formalizing requirements with object
models and temporal constraints. Softw. Syst. Model. 10(2), 147–160 (2009)

37. Gabbay, D.M.: Fibred semantics and the weaving of logics part 1: modal and
intuitionistic logics. J. Symb. Log. 61(4), 1057–1120 (1996)

38. Konur, S., Fisher, M., Schewe, S.: Combined model checking for temporal, proba-
bilistic, and real-time logics. Theor. Comput. Sci. 503, 61–88 (2013)

39. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

40. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986)

41. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

42. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

43. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

44. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P.,
Nord, R., Stafford, J.: Documenting Software Architectures: Views and Beyond,
2nd edn. Addison-Wesley Professional, Boston (2010)

45. Gurfinkel, A., Shoham, S., Meshman, Y.: SMT-based Verification of Parameterized
Systems. In: Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, FSE 2016, New York, NY, USA, pp.
338–348. ACM (2016)

46. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View.
Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-74105-3

47. Ruchkin, I., Sunshine, J., Iraci, G., Schmerl, B., Garlan, D.: Appendix for IPL:
an integration property language for multi-model cyber-physical systems (2018).
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/fm2018-appendix.pdf

48. Yin, R.K.: Case Study Research: Design and Methods, 4th edn. Sage Publications
Inc., Thousand Oaks (2008)

49. Quigley, M., Gerkey, B., Smart, W.D.: Programming Robots with ROS: A Practical
Introduction to the Robot Operating System, 1st edn. O’Reilly Media, Sebastopol
(2015)

50. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis & design lan-
guage (AADL): an introduction. Technical report CMU/SEI-2006-TN-011, Soft-
ware Engineering Institute, Carnegie Mellon University (2006)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-74105-3
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/fm2018-appendix.pdf

Timed Epistemic Knowledge Bases
for Social Networks

Raúl Pardo1(B), César Sánchez2(B), and Gerardo Schneider1(B)

1 Department of Computer Science and Engineering,
Chalmers | University of Gothenburg, Gothenburg, Sweden

{pardo,gersch}@chalmers.se
2 IMDEA Software Institute, Madrid, Spain

cesar.sanchez@imdea.org

Abstract. We present an epistemic logic equipped with time-stamps
in atoms and epistemic operators, which enables reasoning about the
moments at which events happen and knowledge is acquired or deduced.
Our logic includes both an epistemic operator K and a belief operator B,
to capture the disclosure of inaccurate information. Our main motivation
is to describe rich privacy policies in online social networks (OSNs). Most
of today’s privacy policy mechanisms in existing OSNs allow only static
policies. In our logic it is possible to express rich dynamic policies in terms
of the knowledge available to the different users and the precise time of
actions and deductions. Our framework can be instantiated for different
OSNs by specifying the effect of the actions in the evolution of the social
network and in the knowledge disclosed to each user. We present an
algorithm for deducing knowledge and propagating beliefs, which can also
be instantiated with different variants of how the epistemic information
is preserved through time. Policies are modelled as formulae in the logic,
which are interpreted over timed traces. Finally, we show that the model
checking problem for this logic, and in consequence policy conformance,
is decidable.

1 Introduction

Online Social Networks (OSNs) like Facebook, Twitter and Snapchat have
exploded in popularity in recent years. According to a recent survey [1]
nearly 70% of the Internet users are active on social networks. Some concerns,
including privacy, have arisen alongside this staggering increase in usage. Even
though several studies [2–5] report that privacy breaches are growing in number,
the most popular OSNs do not provide effective mechanisms to express privacy

This research has been partially supported by: the Swedish funding agency SSF under
the grant Data Driven Secure Business Intelligence, the Swedish Research Coun-
cil (Vetenskapsr̊adet) under grant Nr. 2015-04154 (PolUser: Rich User-Controlled
Privacy Policies), the EU H2020 project Elastest (num. 731535), by the Spanish
MINECO Project “RISCO (TIN2015-71819-P)” and by the EU ICT COST Action
IC1402 ARVI (Runtime Verification beyond Monitoring).

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 185–202, 2018.
https://doi.org/10.1007/978-3-319-95582-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_11&domain=pdf

186 R. Pardo et al.

policies; virtually all privacy policies are static and cannot express timing pref-
erences, such as referring to points in time or how policies evolve.

In [6] we presented a framework to express a limited version of dynamic
privacy policies, based on an epistemic logic to characterise what users know.
Formulae are interpreted over social network models which faithfully represent
the social graph of OSNs. The policy language in [6] allows to describe, for
example, the following policy “During the weekend only my friends can see my
pictures”. However, the previous policy simply activates the static policy “only
my friends can see my pictures” during weekends. Two restrictions of the logic
in [6] are the lack of explicit time, and that only a knowledge modality is avail-
able, thus implicitly assuming that the information that users are told is true.
This assumption is not realistic in social networks as users may also receive
and disclose information that is false or inaccurate, which has raised a growing
interest in the detection of fake news [7–9]. To address these issues we introduce
here a logic that: (1) is tailored for social networks and allows to express prop-
erties based on the social connections between users; (2) combines knowledge
and belief to differentiate true knowledge and information that may be false; (3)
has time-stamps in modalities and atoms, which allows to refer to the timing of
events and when information is learnt. Based on this logic, we introduce a novel
privacy policy language that addresses the limitations mentioned above.

Some existing logics include these elements separately. For example, [10]
includes time-stamps in atoms and in a belief modality, but it lacks a knowl-
edge modality, and it is not suitable for OSNs (their aim was to reason about
AGM belief revision). The logic proposed in [11] can reason about how beliefs
spread in Twitter, but it does not include time-stamps. Finally, [12] proposes
an axiomatisation of an epistemic logic with knowledge and belief, but without
time-stamps in modalities or atoms. Section 4 includes a more detailed compar-
ison of related work.

Contributions: In this paper we introduce a novel logic that combines knowledge,
belief and time (Sect. 2), tailored to define dynamic privacy policies (Sect. 3).
More concretely: (1) We extend [6] by equipping atoms and epistemic opera-
tors with time instants which allows to derive learning and forget operators. (2)
We equip the logic with belief operators, with the restriction that agents cannot
believe in something that they know is false, and we define a belief propagation
algorithm which guarantees that agents’ beliefs are always consistent. This allows
us to model OSNs that permit gossiping in which potentially false information
can be spread. Analogously, we derive the accept and reject operators which
capture the moment in which an agent starts or stops believing in something.
(3) We introduce the notion of extended knowledge bases (EKBs), which allow to
answer queries of temporal epistemic formulas against the knowledge acquired
during a sequence of events, via timed derivations labelled with time-windows.
This idea allows to instantiate our framework for different OSNs, for example
those with eternal memory like Facebook and for ephemeral ones like Snapchat.
(4) We prove that the model checking problem for this logic is decidable by pro-
viding a model checking algorithm that is also used to check policy conformance.

Timed Epistemic Knowledge Bases for Social Networks 187

As a result, policy conformance is also decidable. The purpose of this paper is to
present an expressive foundation for developing algorithms for detecting privacy
violations and for privacy enforcement. We leave the discussion of specialized
efficient algorihtms for future work.

2 A Timed Knowledge Based Logic

We introduce here KBLRT a knowledge-based first-order logic that includes
time-stamped knowledge and belief modalities, and quantification over time-
stamps.

2.1 Syntax

Let T be a vocabulary consisting of a set of predicate and function symbols,
with some implicit arity, and constant symbols. We assume an infinite supply
of variables x, y, . . . Terms can be built as s:: = c | x | f(#»s) where #»s is a tuple
of terms respecting the arity of f . Let T denote a set of time-stamps, which is
required to be a non-Zeno totally ordered set, i.e., there is a finite number of
instants between any two given instants. We use time-stamps to mark pieces of
information or to query the knowledge of the agents at specific instants. Consider
also a set of agents Ag , a set of domains D, and a set of events EVT (e.g., share
a post or upload a picture). Similarly, we use C and Σ to denote special sets of
predicate symbols that denote connections (between agents) and permissions.

Definition 1 (Syntax of KBLRT). Given agents i, j ∈ Ag a time-stamp
t ∈ T, an event e ∈ EVT, a variable x, a domain D ∈ D, predicate sym-
bols ct(i, j), at(i, j), pt(#»s) where c ∈ C and a ∈ Σ, the syntax of the real-time
knowledge-based logic KBLRT is inductively defined as:

ϕ:: = ρ | ϕ ∧ ϕ | ¬ϕ | ∀t · ϕ | ∀x : D · ϕ | Kt
iϕ | Bt

iϕ

ρ:: = ct(i, j) | at(i, j) | pt(#»s) | occurred t(e)

The epistemic modalities stand for: Kt
iϕ, agent i knows ϕ at time t; Bt

iϕ, agent
i believes ϕ at time t. We use the following notation as syntactic sugar P j

i at �
at(i, j), meaning that “agent i is permitted to execute action a to agent j at time
t”. For example, PAlice

Bob friendRequest5 means that Bob is allowed to send a friend
request to Alice at time 5. We use FKBLRT to denote the set of all well-formed
KBLRT formulae. Our logic introduces the following novel notions that have not
been considered in other formal privacy policies languages such as [6,13–15].

– Time-stamped Predicates. Time-stamps are explicit in each predicate, includ-
ing connections and actions. For instance, if Alice and Bob were friends in
a certain time period, then the predicate friend t(Alice,Bob) is true for all t
falling into the period, and false for all t outside. This can be seen as the valid
time in temporal databases [16].

188 R. Pardo et al.

– Separating Knowledge and Belief. Not all the information that users see in
a social network is true. For instance, Alice may tell Bob that she will be
working until late, whereas she will actually go with her colleagues to have
some beers. In this example, Bob has the (false) belief that Alice is working.
Traditionally, in epistemic logic, the knowledge of agents consists on true
facts, while beliefs represent plausible information that may be false [17]. For
KBLRT we combine both modalities in one logic. In the following section we
describe how to combine these two.

– Time-stamped Epistemic Modalities. Time-stamps are also part of the epis-
temic modalities K and B . Using time-stamps we can refer to the knowl-
edge and beliefs of the agents at different points in time. For example,
B20:00

Bob loc19:00(Alice,work) means that Bob beliefs at 20:00 that Alice’s loca-
tion at 19:00 is work.

– Occurrence of Events. Being able to determine when an event has occurred
allows users to define policies that are activated whenever someone performs
an undesired event. Examples of these policies are: “if Alice unfriends Bob, she
is not allowed to send Bob a friend request” or “if Alice declines an invitation
to Bob’s party, then she cannot see any of the pictures uploaded during the
party.” We introduce occurred t(e) to syntactically capture the moment when
a specific event e occurred.

2.2 Semantics

Real-Time Social Network Models. We introduce formal models to rea-
son about the states and evolution of social networks. These models leverage
the information in the social graph [18] —the core data model in most social
networks [19–21]. We extend social graphs, which include agents (or users) and
the relationships between them, by adding for each agent a knowledge base, and
the set of privacy policies that the agent has activated. We build upon a previ-
ous version of this framework [6], increasing substantially the expressiveness of
privacy policies (see Sect. 3).

Definition 2 (Social Network Models). Given a set of formulae F ⊆
FKBLRT , a set of privacy policies Π, and a finite set of agents Ag ⊆ AU from a
universe AU , a social network model (SNM) is a tuple 〈Ag ,A,KB , π〉, where

– Ag is a nonempty finite set of nodes representing the agents in the social
network;

– A is a first-order structure over the SNM, consisting of a set of domains, a
set of relations, a set of functions and a set of constants interpreted over their
corresponding domain.

– KB : Ag → 2F is a function retrieving a set of (time-stamped) basic facts of
an agent, which are stored in the agent’s knowledge base; we write KB i for
KB(i);

– π : Ag → 2Π which returns the privacy policies of an agent; we write πi for
π(i).

Timed Epistemic Knowledge Bases for Social Networks 189

In Definition 2, the shape of the relational structure A depends on the social
network. We represent the connections—edges of the social graph—and the per-
mission actions between social network agents as families of binary relations,
respectively {Ci}i∈C ⊆ Ag × Ag and {Ai}i∈Σ ⊆ Ag × Ag over the domain of
agents. We use D to denote the set of domains. The set of agents Ag is always
included in the set of domains. We use SNRT to denote the universe of all
possible social network models.

Evolution of Social Network Models. The state of a social network changes
by means of the execution of events from the set EVT . For instance, in Facebook,
users can share posts, upload pictures, like comments, etc. We use traces to
capture the evolution of the social network. A trace is a finite sequence σ =
〈(SN 0, E0, t0), (SN 1, E1, t1), . . . , (SN k, Ek, tk)〉 such that, for all 0 ≤ i ≤ k,
SN i ∈ SNRT , Ei ⊆ EVT , and ti ∈ T. We use Tσ = {t | (SN , E, t) ∈ σ}
for the set of time-stamps of σ. We impose some conditions to traces so that
they accurately model the evolution of social networks. We say that a trace is
well-formed if it satisfies the following conditions:

1. Time-stamps are strictly ordered from smallest to largest, that is, for any i, j
with 0 ≤ i < j ≤ k it follows that ti < tj .

2. Successor states are the result of events. We use −→ for the transition relation
defined as −→ ⊆ SNRT × 2EVT ×T× SNRT (−→ can be specified using small
step operational semantics as we show in [15] for an untimed version of this

framework). We write SN 1
E,t−−→ SN 2 if SN 2 is the result of the set of events

E ∈ EVT happening in SN 1 at time t. We allow E to be empty, in which
case SN 1 = SN 2.

3. For each
E,t−−→ the set of events E must only contain independent events. Two

events are independent if, when executed sequentially, their execution order
does not change their resulting state. Formally, e and e′ are independent
whenever for every state SN 0 and time t, the state SN 2 and SN ′

2 obtained

as SN 0
{e},t−−−→ SN 1

{e′},t−−−→ SN 2 and SN 0
{e′},t−−−→ SN ′

1

{e},t−−−→ SN ′
2 satisfy that

SN 2 = SN ′
2. This definition can be easily extended to sets of events in the

expected way.

We use WFT to refer to the set of well-formed traces. We assume that there
is a function predecessor pred : T → T that takes a time-stamp and returns the
previous time-stamp in the trace. Analogously, next : T → T returns the next
time-stamp in the trace. Since the set of time-stamps is non-Zeno it is always
possible to compute these functions.1

KBLRT formulae are very similar to Ln from epistemic logic [17]. There are
two standard ways to define semantics of epistemic logics. First, one can define
for every agent an undistinguishability relation between the worlds that the
agent considers possible [17]. When considering traces of events, the framework
1 We can assume that the predecessor of the initial time-stamp is the intial state itself,

and similarly the next of the end of the trace returns the equal to itself.

190 R. Pardo et al.

typically used is interpreted systems. An alternative encoding, proposed by Fagin
et al. [17, Sect. 7.3] consists in encoding the answer of epistemic queries from
knowledge bases of accumulated facts. We follow this way of modelling knowledge
here by equipping each agent with a knowledge base and defining the semantics
of KBLRT formulae based on answers by these knowledge bases.

Extended Knowledge Bases. An Extended Knowledge Base consists of a
collection of KBLRT formulae, which represents the basic knowledge of the agent
at a point in time. Epistemic derivations allow to answer whether a formula
follows from the information stored in a knowledge base.

Derivations in EKBs. The EKB of an agent contains the explicit knowl-
edge she acquired previously. Additional knowledge can be derived from
the explicit pieces of information stored in these EKBs. Derivations can
use formulae at a given point in time and at older times. We intro-
duce the notion of time window (or simply, window) to determine how
knowledge from the past can be used in a derivation. We write Γ

(ϕ,w) to denote that ϕ can be derived from Γ given a window w.

Γ
 (ϕ,w′)
Γ
 (ψ,w)

We provide a set of deduction rules, DR, of the form given on the
right meaning that, given the set of premises Γ, ψ can be derived
with a window w from ϕ with a window w′.

Definition 3. A timed derivation of a formula ϕ with a window w, is a finite
sequence of pairs (ϕ1, w1), (ϕ2, w2), . . . , (ϕn, wn) = (ϕ,w) such that each ϕi, for
1 ≤ i ≤ n, ϕi follows by an application of a deduction rule of DR whose premises
ϕj, with j < i, have already been derived, and wj ≤ wi.

We now present the concrete derivation rules that allow to derive knowledge
from the facts stored in EKBs. These rules extend axiomatizations of knowledge
and belief with rules to deal with knowledge propagation through time.

Knowledge and Belief in EKBs. In our EKBs knowledge and belief can coexist.
The common axiomatization of knowledge is S5. In [17], Fagin et al. provided an
axiomatization for belief known as KD45, which includes the same set of axioms
as S5 —replacing Ki by Bi—except for the axiom Kiϕ =⇒ ϕ (A3). The reason
is that beliefs do not need to be true—as required by A3 for knowledge. The
requirement for beliefs is that an agent must have consistent beliefs, which is
captured by ¬Bi⊥ (axiom D). To derive new knowledge, axioms from S5 can
be applied to formulas of the form Kiϕ and axioms from KD45 for formulas of
the form Biϕ. Additionally, derivations can also relate knowledge and beliefs, for
which we use two axioms proposed by Halpern et al. in [12]: (L1) Kiϕ =⇒ Biϕ
and (L2) Biϕ =⇒ KiBiϕ. L1 states that when agents know a fact they also
believe it, which is sound with respect to the definition of both modalities, since
knowledge is required to be true (A3). Axiom L1 provides a way to convert
knowledge to belief. L2 encodes that when agents believe a fact ϕ they know
that they believe ϕ.

Timed Epistemic Knowledge Bases for Social Networks 191

Table 1. EKB axioms for a trace σ for each t ∈ Tσ.

The previous axiomatizations are restricted to reasoning about a concrete
time (or to timeless information), but we are interested in reasoning about the
dynamic acquisition of knowledge in the changing world of online social networks.
Consequently, we decorate all modalities with a time-stamp t, to explicitly cap-
ture the time at which an agent knows something and the time of occurrence
of events and relations. Table 1 shows the complete list of axioms for a given
t ∈ Tσ.

To use these axioms in timed derivations we express them as deduction rules
in Table 2. Note that all derivations that use these axioms use the same t and w.
We add an explicit Kt

i to every formula in a user’s EKB so that we can syntacti-
cally determine when some knowledge enters an EKB. Formally, we say that users
in a trace σ are self-aware whenever for all t ∈ Tσ if ϕ ∈ EKBσ[t]

i then ϕ = Kt
iϕ

′.
In what follows, we always assume that agents are self-aware.

Example 1. Consider the following EKB from a trace σ of an agent i at time t.

EKBσ[t]
i

Kt
i (∀t′ · ∀j : Agt′

· event t′
(j, pub) =⇒ loct′

(j, pub))
Kt

i event
t(Alice, pub)

In this EKB i can derive, using the axioms in Table 1, that Alice’s location at
time t is a pub, i.e., loct(Alice, pub). Here we show the steps to derive this piece
of information. We recall that quantifiers are unfolded when added to the knowl-
edge base. For example, given formula ϕ(x) : Kt

i∀j : Agx · eventx(j, pub) =⇒
locx(j, pub) and Tσ = {t0, t1, . . . , t}, the EKB contains ϕ(t0)∧ϕ(t1)∧ . . . ∧ϕ(t).
The predicate event t(j, pub) means that j attended an event at time t in a pub.
The predicate loct(j, pub) means that j’s location is a pub. Thus, the implication
above encodes that: if i knows at t that an agent is attending an event in a pub
at time t′, then her location will be a pub. In this example, i knows at time
t that Alice is attending an event at the pub, event t(Alice, pub). Since knowl-
edge is required to be true, event t(Alice, pub) must be a true predicate. Hence,
Kt

i event
t(Alice, pub) =⇒ loct(Alice, pub) must also be present in EKBσ[t]

i .
Applying A2 to Kt

i event
t(Alice, pub) and the previous implication we can derive

Kt
i loc

t(Alice, pub). �

192 R. Pardo et al.

Table 2. EKB deduction rules for a trace σ for each t ∈ Tσ.

Handling Time-Stamps. Users can also use EKBs to reason about time. For
instance, if Alice learns Bob’s birthday she will remember this piece of infor-
mation, possibly forever. Some other times information is transient and changes
over time. Consider Alice, who shares with Bob a post including her location.
Right after posting, Bob will know Alice’s location—assuming she said the truth.
However, after a few hours, Bob will not be certain about whether Alice remains
in the same location. We denote the period of time in which some piece of infor-
mation remains true as its duration.

Different pieces of information might have different durations. Duration also
depends on the OSN, which can be designed in such a way that the effect of
events disappears after some time. For example, in Snapchat messages last 10
s; in Whatsapp status messages last 24 h; and in Facebook posts remain forever
unless a user removes them. We introduce the parameter w (see Sect. 1) to model
the duration of the information. Using w we define the following deduction rule,
which encodes a notion of duration-aware propagation of knowledge. Given t, t′ ∈
Tσ where t < t′, the axiom (KR1) is shown on the right. The intuition behind
KR1 is that some time in w is consumed every time knowledge is propagated.
Consider that Alice knows at time 1 the formula ϕ, that is, K1

Aliceϕ. Using KR1
in a derivation allows to derive that she knows ϕ at a later time, e.g., K5

Aliceϕ.

Γ
 (Kt
i ϕ,w − (t′ − t))

Γ
 (Kt′
i ϕ,w)

(KR1)

Note that this derivation requires w to be at
least 4. The following example explains why.

Timed Epistemic Knowledge Bases for Social Networks 193

Example 2. Consider the following sequence of EKBs of an agent i from a trace
σ where Tσ = {0, . . . , 4}.

K0
i ∀t′ · ∀j : Agt′ · event t′

(j, pub) =⇒ loct′
(j, pub)

EKB
σ[0]
i

∅

EKB
σ[1]
i

∅

EKB
σ[2]
i

K3
i event

3(Alice, pub)

EKB
σ[3]
i

∅

EKB
σ[4]
i

Note that deriving Alice’s location requires to combine knowledge from different
knowledge bases at different times. This derivations use the knowledge recall rule
KR1 with a large enough window. In the figure, the inner (red) rectangle marks
the accessible knowledge for w = 2 and the outer (blue) rectangle for w = 3.
In order for i to derive loc3(Alice, pub) she needs to combine knowledge from
EKBσ[0]

i and EKBσ[3]
i . Let EKBσ

i =
⋃

t∈Tσ
EKBσ[t]

i . We first show how to con-
struct a proof forwards, starting from the premises and a window of 0, and move
forward increasing w until the inference can be performed. In particular, we show
that EKBσ

i
 (K3
i loc

3(Alice, pub), w) for w ∈ N. Applying the rule PREMISE
with w = 0, we derive EKBσ

i
 (K0
i event

3(Alice, pub) =⇒ loc3(Alice, pub), 0).
Now we use KR1 to combine this knowledge with knowledge at time 3:

(KR1)

EKBσ
i
 (K0

i event
3(Alice, pub) =⇒ loc3(Alice, pub), 0)

EKBσ
i
 (K3

i event
3(Alice, pub) =⇒ loc3(Alice, pub), 3)

This inference requires the window to be increased to 3. We apply PREMISE
again to obtain (EKBσ

i
 K3
i event

3(Alice, pub), 3), which allows A2 to derive
(EKBσ

i
 K3
i loc

3(Alice, pub), 3). This proof shows that i knows Alice’s location
provided that agents remember information for at least 3 units of time.

A window smaller than 3 makes this derivation impossible. We now construct
the proof backwards, considering w = 2 to show that the derivation is impossible.
We try to show that EKBσ

i
 (K3
i loc

3(Alice, pub), 2), which requires:

(A2)

(EKBσ
i
 K3

i event
3(Alice, pub), 2)

EKBσ
i
 (K3

i event
3(Alice, pub) =⇒ loc3(Alice, pub), 2)

EKBσ
i
 (K3

i loc
3(Alice, pub), 2)

The first premise, (EKBσ
i
 K3

i event
3(Alice, pub), 2), trivally follows by

PREMISE. To prove the second premise we first try move one step back using
KR1: EKBσ

i
 (K2
i event

3(Alice, pub) =⇒ loc3(Alice, pub), 1), but since there
is no knowledge at time 2, the previous statement cannot be proven. We apply
again KR1 obtaining EKBσ

i
 (K1
i event

3(Alice, pub) =⇒ loc3(Alice, pub), 0),
which cannot be proven. Since the remaining window is 0, we have already
accessed all knowledge that i remembers, and older EKBs cannot be accessed.
This closes the proof. �

Belief Propagation. Beliefs cannot be propagated as easily as knowledge because
new beliefs may contradict current knowledge or beliefs of an agent. Instead
of using timed derivations, we model agents that try to propagate beliefs if
these beliefs are consistent, and discard them otherwise. We describe two kinds

194 R. Pardo et al.

of agents: conservative and susceptible, but other criteria for choosing between
incompatible beliefs are possible. We use the parameter β in the framework
to denote the kind of agent. Conservative agents reject any new belief that
contradicts their current set of beliefs, while susceptible agents always accept
new beliefs that replace old believes if necessary to guarantee a consistent set
of beliefs. Here we present a belief propagation algorithm which describes how
agents behave when faced with a new belief.

Consider a trace σ with Tσ = {t0, . . . , tn−1, tn}. We use the following nota-
tion EKBσ[tj ,tk]

i =
⋃

t∈{tj ,...,tk} EKBσ[t]
i . Also, we introduce the event enter(Bt

iϕ)
meaning that belief ϕ enters i’s knowledge base at time t. The moment at which
this event occurs identifies the moment when a belief is inserted in an agent’s
knowledge base, which is crucial to propagate beliefs. Given a belief Btn

i ϕ that

is about to enter EKBσ[tn]
i , i.e., SN tn−1

enter(Btn
i ϕ),tn−−−−−−−−−→ SN tn

, Algorithm 1 prop-
agates the accumulated set of beliefs as long as they are inside the window w,
and resolves conflicts according to β.

Lines 2–3 of Algorithm 1 construct a set Ψ of candidate beliefs to be
propagated—according to w—together with the new belief that tries to enter
i’s EKB. The if block (lines 4–6) sorts Ψ according to β. In the foreach block
(lines 7–11), we iterate over the sorted list of beliefs and add them to EKBσ[tn]

i

if they are consistent with the rest of knowledge and beliefs. It is easy to see
that traversing beliefs from newest to oldest gives preference to newer beliefs
in entering EKBσ[tn]

i , which corresponds to susceptible agents. In particular,
Btn

i ϕ—the newest belief—will always enter the EKBσ[tn]
i unless this belief con-

tradicts actual knowledge. On the contrary, when sorting from oldest to newest,
the older beliefs will have preference to enter EKBσ[tn]

i , thus, preventing new
inconsistent beliefs to enter EKBσ[tn]

i , as required for conservative agents. In
particular, Btn

i ϕ will not be added to EKBσ[tn]
i unless it is consistent with all

the previous beliefs and knowledge. Finally, we always include the predicate
occurred tn(enter(Btn

i ϕ)) (line 12) so that the agent remembers that she was told
Btn

i ϕ —independently on whether she started to believe it. Note that consis-
tency of EKBσ[tn]

i in both cases is directly guaranteed by the inclusion condition
in line 8.

Example 3. At 20:00 Alice sends a message to Bob indicating that she is at
work, so EKBσ[20:00]

Bob contains occurred20:00 (enter(B20:00
Bob loc20:00(Alice,work)))

and alsoK20:00
Bob B20:00

Bob loc20:00(Alice,work).At 22:00Bob checks his Facebook time-
line, and he sees a post of Charlie—who is a coworker of Alice—at 20:00 say-
ing that he is with all his coworkers in a pub having a beer. Assuming that
at 22:00 Bob still remembers his belief from 20:00 this new information cre-
ates a conflict with Bob’s beliefs. Note that information from Charlie’s post is
also taken as a belief since there is no way for Bob to validate it. If Bob is a
conservative agent, then EKBσ[22:00]

Bob = {K22:00
Bob B22:00

Bob loc20:00(Alice,work)} ∪
{occurred22:00(enter(B22:00

Bob loc20:00(Alice, pub)))}, meaning that the new belief

Timed Epistemic Knowledge Bases for Social Networks 195

Algorithm 1. Belief propagation

1: procedure Belief-Propagation(EKB
σ[tn]
i , Btn

i ϕ, w, β)

2: Ψ ← {Ktn
i Btn

i ψ|occurred t(enter(Bt
iϕ)) ∈ EKB

σ[tn−w,tn]
i where t ∈ [tn −w, tn]}

3: Ψ ← Ψ ∪ {Ktn
i Btn

i ϕ}
4: if β = susceptible then [b0, b1, . . . , bn] ← sortNewestOldest(Ψ)
5: else if β = conservative then [b0, b1, . . . , bn] ← sortOldestNewest(Ψ)
6: end if
7: foreach b in [b0, b1, . . . , bn] do

8: if EKB
σ[t0,tn]
i ∪ {b} �� Btn

i ⊥ then

9: EKB
σ[tn]
i ← EKB

σ[tn]
i ∪ {b}

10: end if
11: end foreach
12: EKB

σ[tn]
i ← EKB

σ[tn]
i ∪ {occurred tn(enter(Btn

i ϕ))}
13: return EKB

σ[tn]
i

14: end procedure

is rejected. If Bob is a susceptible agent: EKBσ[22:00]
Bob = {K22:00

Bob B22:00
Bob loc20:00

(Alice, pub)} ∪ {occurred22:00(enter(B22:00
Bob loc20:00(Alice, pub)))}. Bob believes

that Alice’s location at time t (20:00 ≤ t < 22:00) is work—due to belief prop-
agation. After 22:00, this belief does not propagate to avoid contradictions with
the new belief B22:00

Bob loc20:00(Alice, pub). �

Semantics of KBLRT . The semantics of KBLRT formulae is given by the
satisfaction relation |=. Given a well-formed trace σ ∈ WFT , a window w ∈ N,
a time-stamp t ∈ Tσ, agents i, j ∈ Ag , a finite set of agents G ⊆ Ag , formulae
ϕ,ψ ∈ FKBLRT , predicate symbols ct(i, j), at(i, j), pt(#»s) where c ∈ C and a ∈ Σ,
a domain D ∈ D, an event e ∈ EVT , and a variable x, the satisfaction relation
|= ⊆ WFT × FKBLRT is defined as follows:

σ |= occurred t(e) iff (SN , E, t) ∈ σ such that e ∈ E
σ |= ¬ϕ iff σ ��|= ϕ
σ |= ϕ ∧ ψ iff σ |= ϕ and σ |= ψ
σ |= ∀t · ϕ iff for all v ∈ Tσ, σ |= ϕ[v/t]
σ |= ∀x : Dt · ϕ iff for all v ∈ Dσ[t], σ |= ϕ[v/x]
σ |= ct(i, j) iff (i, j) ∈ C

σ[t]
c

σ |= at(i, j) iff (i, j) ∈ A
σ[t]
a

σ |= pt(#»s) iff pt(#»s) ∈ KBσ[t]
e

σ |= Kt
i ϕ iff

⋃
{t′|t′<t,t′∈Tσ} KBσ[t′]

i
 (ϕ,w)

σ |= Bt
iϕ iff

⋃
{t′|t′<t,t′∈Tσ} KBσ[t′]

i
 (Bt
iϕ,w)

Predicates of type occurred t(e) are true if the event e is part of the events that
occurred at time t in the trace. ∀t quantifies over all the time-stamps in the trace
Tσ, which is a finite set. For the remaining domains, ∀x : Dt, the substitution is
carried out over the elements of the domain at a concrete time t. Remember that
each individual domain Dt always contains a finite set of elements. However, the

196 R. Pardo et al.

same domain at different points in time, e.g., Dt and Dt′
, for any t �= t′ might

contain different number of elements. When checking connections ct(i, j) and
actions at(i, j) at time t, we check whether the corresponding relation— C

σ[t]
c and

A
σ[t]
a , respectively—of the SNM at time t contains the pair of users in question.

Checking whether a predicate of type pt(#»s) holds is equivalent to looking into
the knowledge base of the environment at time t. The environment’s knowledge
base contains all predicates that are true in the real world at a given moment in
time. For example, “it is raining in Gothenburg at 19:00” rain19:00(Gothenburg)
or “Alice’s location at 20:00 is Madrid” loc20:00(Alice,Madrid). Determining
whether an agent knows or believes a fact at a certain moment in time—i.e.,
Kt

iϕ or Bt
iϕ—boils down to derivability from the union of all her EKBs for the

given window w. This way of defining belief is based on the fact that agents are
aware of their beliefs, recall axiom (L2) in Table 1.

K0
Alipicture

0(Bob, pub)
K0

AliB
0
Ali loc

0(Bob, pub)Ali

Bob

Cha

SN 0

K7
Ali friendRequest

7(Ali ,Cha)
Ali

Bob

K7
Cha friendRequest

7(Ali ,Cha)Cha

SN 7

K15
Alipicture

15(Bob,work)
K15

AliB
15
Ali loc

15(Bob,work) Ali

K15
Bobpicture

15(Bob,work)
K15

Bob loc
15(Bob,work) Bob

Cha

SN 15

Friends

FriendRequest

Friends

FriendRequest

Friends

Friends

{fr
ie
nd

R
eq
ue
st
(A

li
,C
ha

)},
7

{a
cc
ep
tF
ol
lo
w
R
eq
(A

li
,C

ha
)

sh
ar
e(
pi
ct
ur
e,
B
ob
,w

or
k)
},
15

Fig. 1. Example of a Snapchat trace

Example 4 (Snapchat). In Snapchat users can perform two main events: (1) Con-
nect through a friend relation; (2) share timed messages, which last up to 10 sec-
onds with their friends. Figure 1 shows an example trace for Snapchat with three
agents Ag = {Alice,Bob,Charlie}. Since Ag does not change we avoid using the
superindex indicating the time-stamp of the domain. The trace consists of three
SNMs SN 0, SN 7 and SN 15, where the subindex indicates the time-stamp.

At time 0, Alice and Bob are friends, friends0(Alice,Bob), which is repre-
sented by including the pair (Alice,Bob) in the relation Friendsσ[0] in SN 0.
Alice and Bob’s friendship does not change along σ. Also, Alice is permitted to
send a friend request to Charlie—depicted as an outgoing dashed arrow. Thus,
σ |= PCharlie

Alice friendRequest0 holds. Finally, Alice knows that there is a picture
of Bob at the pub, picture0(Bob, pub), and she believes that Bob is at the pub,
loc0(Bob, pub). This is a belief because she cannot verify that the picture has
not been modified or she cannot precisely identify the location. However, the
existence of picture0(Bob, pub) can be verified since it is a picture that Alice can
see in the OSN. At time 7, Alice sends a friend request to Charlie. After the exe-
cution of the event both agents know friendRequest7(Alice,Charlie). Note that

Timed Epistemic Knowledge Bases for Social Networks 197

this event produces knowledge, because the agents can verify that the friend
request has occurred. Finally, at time 15, Charlie accepts Alice’s request and
Bob shares a picture at work. Note that these two events are independent.
After Bob accepts Alice’s request (Alice,Charlie) �∈ FriendRequestσ[15], and
(Alice,Charlie) ∈ Friendsσ[15]. That is, Alice cannot send more friend requests
to Charlie, and now they have become friends. Furthermore, both, Alice and
Bob know that Bob shared a picture at work. In this case, Bob also knows that
his location is work, but Alice only believes it.2 The reason is that, unlikely Bob,
Alice cannot confirm that Bob’s location is work.

As on Snapchat messages last for up to 10 seconds, we can assume
w.l.o.g. that all messages last 10 seconds, i.e., w = 10. Consequently, in
σ, Alice remembers Bob picture from 0 to 10: σ |= ∀t · 0 ≤ t ≤
10 =⇒ Kt

Alicepicture
0(Bob, pub). Similarly, her belief about Bob location,

picture0(Bob, pub), vanishes at time 10. Note also that, when Charlie accepts
Alice’s friend request, he still knows (or remembers) that Alice sent it. In
Snapchat friend requests are permanent, but in our framework we can choose
whether friend requests disappear after a few seconds. This can be done by
requiring that the agent knows that a friend request occurred in order to accept
it. In such a case, in σ, after time 18 Charlie would not be able to accept Alice’s
request. �

2.3 Model Checking KBLRT

In this section, we show that the model checking problem for KBLRT is
decidable.

Theorem 1. The model checking problem for KBLRT is decidable.

Proof. Let σ be a trace, ϕ a formula and w a window. Since all domains are
finite, we unfold universal quantifiers ∀x : D · ϕ′ and ∀t · ϕ′ into a conjunction
of formulas ϕ′[v/x] for each element v in the domain D or in Tσ. The resulting
formula is quantifier free and has size O(|ϕ|×dq) where d is a bound on the size
of the domain and q is the maximum nested stack of quantifiers. Let ϕ1, . . . , ϕm

be the subformulas of the resulting formula, ordered respecting the subformula
relation. An easy induction on k < m shows that we can label every agent and
at every step of the trace with either ϕk or ¬ϕk. The labelling proceeds from
the earliest time-stamp on. We show only the epistemic operators here (see [22]
for the complete proof):

– Checking ψk = ¬ψj and ψk = ψj ∧ ψi can be done in constant time for each
instant t and agent i, using the induction hypothesis.

– First, we construct a set Δ where we instantiate all the axioms in Table 1
for each t ∈ Tσ. The resulting set has size |Δ| = |Tσ| × 11 (number of
axioms in Table 1). Secondly, we instantiate KR1 (cf. Table 1), for w and for

2 For readability we omit occurred15(enter(B15
Alice loc

15(Bob,work))) in Fig. 1 which is

included in EKB
σ[15]
Alice .

198 R. Pardo et al.

all t, t′ ∈ Tσ such that t > t′ and t−t′ < w. The resulting set of axioms has size
O(

∑|Tσ|−1
n=1 n×w). That is, all legal combinations of timestamps (n) times the

window size (w). These axioms are also included in Δ, which, consequently,
contains a finite set of axioms. Finally, checking Kt

iψj and Bt
iψj requires one

query to the epistemic engine for Δ,
⋃

{t′|t′<t∈Tσ} EKBσ[t]
i
 ψj . The previous

query is equivalent to model checking a Kripke structure where relations are
labelled with triples (i, t, w). Solving this problem is known to be decidable
in PSPACE [17].

It is easy to see that the semantics of KBLRT is captured by this algorithm. �

2.4 Properties of the Framework

Here we present a set of novel derived operators not present in traditional epis-
temic logics and we prove some properties of the framework (see [22] for the
proofs).

To learn or not to learn — To believe or not to believe. In [6] we introduced
a primitive modality Liϕ, to capture that i learns ϕ at the first moment at
which Kiϕ becomes true. Here Lt

iϕ becomes a derived operator defined formally
as: Lt

iϕ � ¬K
pred(t)
i ϕ ∧ Kt

iϕ. We can also model when users start to believe
something, or accept a belief, as follows, At

iϕ � ¬B
pred(t)
i ϕ ∧ Bt

iϕ. Analogously
we can express when users forget some knowledge or when they reject a belief.
Intuitively, an agent forgets ϕ at time t if she knew it in the previous timestamp
and in t she does not know ϕ, and, analogously, for reject. Formally, F t

i ϕ �
K

pred(t)
i ϕ ∧ ¬Kt

iϕ, and Rt
iϕ � B

pred(t)
i ϕ ∧ ¬Bt

iϕ.

Temporal modalities. The traditional temporal modalities � and � can easily
be defined using quantification over timestamps as follows: �ϕ(t) � ∀t · ϕ(t),
and �ϕ(t) � ∃t · ϕ(t), where ϕ(t) is a formula ϕ which depends on t.

How long do agents remember? Agents remember according to the length of the
parameter w, which can be seen as the size of their memory. Increasing agents
memory could only increase their knowledge as stated in the following lemma.

Lemma 1 (Increasing window and Knowledge). Given σ, t ∈ Tσ and
w,w′ ∈ N where w ≤ w′, we have that: If EKBσ[t]

i
 (Kt
iϕ,w), then EKBσ[t]

i

(Kt

i ϕ,w′).

We can characterise how long agents remember information depending on w
and β.

Lemma 2 (w knowledge monotonicity). Given σ and t ∈ Tσ. If Kt
iϕ ∈

EKBσ[t]
i then for all t′ ∈ Tσ such that t ≤ t′ ≤ t + w it holds σ |= Kt′

i ϕ.

Timed Epistemic Knowledge Bases for Social Networks 199

Perfect recall is obtained by choosing w = ∞ so agents never forget. Dualy,
w = 0 models agents who do not remember anything. The parameter β also influ-
ences how beliefs are preserved in time. When β = conservative, memories about
beliefs behave in the same way as knowledge. Similarly monotonicity results can
be proven for beliefs as the lemmas above. For example, if β = conservative
then beliefs are preserved until these beliefs are forgotten—due to w—or con-
tradict knowledge. Similarly, an agent with β = susceptible rejects a belief when
exposed to new contradictory beliefs. Therefore, the duration of their beliefs
can be limited by an event introducing new beliefs in the EKBs. Other versions
of β are possible, for example based on the reputation of the agent that emits
the information. It is also possible to consider different w for different pieces of
information. However, these extensions are out of the scope of this paper.

3 Writing Privacy Policies

We introduce here the language PPLRT for writing privacy polices: a restricted
version of KBLRT wrapped with � �s

i (i is the owner of the policy, and s its
starting time).

Definition 4 (Syntax of PPLRT). Given agents i, j ∈ Ag, a nonempty set
of agents G ⊆ Ag, timestamps s, t ∈ T, a domain D ∈ D, a variable x, pred-
icate symbols ct(i, j), at(i, j), pt(#»s) where c ∈ C and a ∈ Σ, and a formula
ϕ ∈ FKBLRT , the syntax of the real-time privacy policy language PPLRT is
inductively defined as:

δ ::= δ ∧ δ | ∀x · δ | �¬α�s
i | �ϕ =⇒ ¬α�s

i γ′ ::= Kt
i γ | Bt

iγ
α ::= α ∧ α | ∀x : D · α | ∃x : D · α | ψ | γ′ ψ ::= ct(i, j) | at(i, j) | occurred t(e)
γ ::= γ ∧ γ | ¬γ | pt(#»s) | γ′ | ψ | ∀x · γ

We use FPPLRT to denote the set of all privacy policies according to δ,
and FR

PPLRT the set positive formulae according to α, which we refer to as
restrictions. As we show below restrictions appear always preceded by ¬. To
determine whether a policy is violated in an evolving social network, we formalise
the notion of conformance.

Definition 5 (Conformance Relation). Given a trace σ ∈ WFT , time-
stamp s ∈ Tσ, formulae δ ∈ FPPLRT and α ∈ FR

PPLRT , agent i ∈ Ag, domain
D ∈ D, and variable x, the conformance relation |=C is defined as follows:

σ |=C ∀x · δ iff for all v ∈ D, σ |=C δ[v/x]
σ |=C �¬α�s

i iff σ |= ¬α
σ |=C �ϕ =⇒ ¬α�s

i iff sσ |= (ϕ =⇒ ¬α)

The definition is quite simple, especially compared to that of conformance of
PPLT [6]. If the policy is quantified, we substitute in the usual way. The main
body of the policy in double brackets is dealt with by simply delegating to the
satisfaction relation.

200 R. Pardo et al.

Example 5. Alice decides to hide all her weekend locations from her supervisor
Bob. She has a number of options how to achieve this using PPLRT . If she wants
to restrict Bob learning her weekend location directly when she posts it, she can
define a policy stating that “if x is a time instant during a weekend, then Bob is
not allowed to learn at x Alice’s location from time x”: δ1 = ∀t ·�weekend(t) =⇒
¬Kt

Bob loc
t(Alice)�2017-10-20Alice , where weekend is true if t represents a time during

a weekend. This, however, is a very specialized scenario that captures only a
small number of situations. Bob is, for example, free to learn Alice’s location
at any point not during the weekend, or at any point during the weekend when
Alice’s location is no longer up-to-date. We can consider a more precise policy
concerning the learning of one’s location: δ2 = ∀t · �weekend(t) =⇒ ¬∃t′ ·
(Kt′

Bob loc
t(Alice))�2017-10-20Alice . Here, Bob is not allowed to learn Alice’s location

from a weekend, no matter when this information is learnt. �

Since checking conformance of PPLRT privacy policies reduces to model
checking the given trace the following corollary follows directly from Theorem 1.

Corollary 1. Checking conformance of PPLRT policies is decidable.

4 Related Work and Concluding Remarks

Related Work. Combining epistemic and timed reasoning has been previously
studied. For example, [10] presents a logic for reasoning about actions and time.
The logic includes a belief modality, actions, as well as time-stamps for atoms,
modalities and actions. In our work we do not focus on reasoning about action
and time but on defining dynamic privacy policies for OSNs. Also, [10] cannot
reason about knowledge. Moses et al. [17] extends interpreted systems to reason
about past and future knowledge. In [23] they extend K with a time-stamp Ki,t

allowing for reasoning about knowledge at different times, also having a similar
predicate to our occurred t(e). However, our logic (unlike [23]) includes beliefs
and associates time-stamps with both modalities and predicates, whereas [17]
only uses time-stamps for knowledge. Additionally, [23] aims at modeling delays
in protocols, whereas we want to express dynamic privacy policies for OSNs.
Recently, Xiong et al. [11] presented a logic to reason about belief propagation
in Twitter. The logic includes an (untimed) belief modality and actions, which
are used in a dynamic logic fashion. Their models are similar to our untimed
SNMs [15,24]. Even though we do not include actions, we use time-stamps and
knowledge modalities. Also, one of the main contributions of our paper is solving
inconsistent beliefs.

Concluding Remarks. We have presented a novel privacy policy framework based
on a logic with time-stamps in events and epistemic operators. This framework
extends [15,24], which did not offer any support for time, and [6] which only had
limited support due to the implicit treatment of time. A query in our framework
starts by instantiating a number of epistemic axioms that handle knowledge,

Timed Epistemic Knowledge Bases for Social Networks 201

belief and time. Our proof system gives an algorithm to deduce the knowledge
of agents acquired at each instant, and a model checking algorithm which can
be used to check violations of privacy policies. The explicit time-stamps allow
to derive learning and forget operators for knowledge, and accept and reject
operators for beliefs. In our new framework we can define eternal OSNs like
Facebook and ephemeral OSNs like Snapchat.

Two important avenues for future research are the following. First, the algo-
rithm presented in this paper is not efficient enough for practical purposes, but
serves as a formal foundation to develop provably correct efficient privacy vio-
lation detectors and enforcers, which can exploit specific details of each social
network about how actions affect the knowledge of the agents involved. For
instance, once the effect of the actions is fixed one can develop distributed algo-
rithms that guarantee the same outcome as the direct algorithm proposed here.
For example, tweets can only affect the knowledge of subscribers so all other users
are unaffected. Second, once an effective system to check policy violations is in
place, there are different possibilities that the OSN can offer. One is to enforce
the policy by forbidding the action that the last agent executed (the action that
leads to the violation). Another can be the analysis of the trace to assign blame
(and affect the reputation) to the agents involved in the chain of actions. For
example, the creator of a gossip or fake news may be held more responsible than
users forwarding the gossip. A finer analysis of controllability allow more power-
ful algorithms that detecting which agents could have prevented the information
flow that lead to the violation. Yet another possibility is to remove past events
from the history trace of the OSN creating a pruned trace with no violation.

References

1. Lenhart, A., Purcell, K., Smith, A., Zickuhr, K.: Social media & mobile internet
use among teens and young adults. Millennials. Pew Internet & American Life
Project (2010)

2. Madejski, M., Johnson, M., Bellovin, S.: A study of privacy settings errors in an
online social network. In: PERCOM Workshops 2012, pp. 340–345. IEEE (2012)

3. Johnson, M., Egelman, S., Bellovin, S.M.: Facebook and privacy: it’s complicated.
In: SOUPS 2012, pp. 9:1–9:15. ACM (2012)

4. Liu, Y., Gummadi, K.P., Krishnamurthy, B., Mislove, A.: Analyzing facebook pri-
vacy settings: user expectations vs. reality. In: IMC 2011, pp. 61–70. ACM (2011)

5. Madejski, M., Johnson, M.L., Bellovin, S.M.: The failure of online social network
privacy settings. Technical report, Columbia University (2011)

6. Pardo, R., Kellyérová, I., Sánchez, C., Schneider, G.: Specification of evolving
privacy policies for online social networks. In: TIME 2016, pp. 70–79. IEEE (2016)

7. The Guardian: As fake news takes over Facebook feeds, many are taking
satire as fact. www.theguardian.com/media/2016/nov/17/facebook-fake-news-
satire. Accessed 20 Oct 2017

8. The Guardian: How to solve Facebook’s fake news problem: experts pitch
their ideas. www.theguardian.com/technology/2016/nov/29/facebook-fake-news-
problem-experts-pitch-ideas-algorithms. Accessed 20 Oct 2017

www.theguardian.com/media/2016/nov/17/facebook-fake-news-satire
www.theguardian.com/media/2016/nov/17/facebook-fake-news-satire
www.theguardian.com/technology/2016/nov/29/facebook-fake-news-problem-experts-pitch-ideas-algorithms
www.theguardian.com/technology/2016/nov/29/facebook-fake-news-problem-experts-pitch-ideas-algorithms

202 R. Pardo et al.

9. The Guardian: Obama is worried about fake news on social media-and we should
be too. www.theguardian.com/media/2016/nov/20/barack-obama-facebook-fake-
news-problem. Accessed 20 Oct 2017

10. van Zee, M., Doder, D., Dastani, M., van der Torre, L.W.N.: AGM revision of
beliefs about action and time. In: IJCAI 2015, pp. 3250–3256. AAAI Press (2015)

11. Xiong, Z., Ågotnes, T., Seligman, J., Zhu, R.: Towards a logic of tweeting. In:
Baltag, A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS, vol. 10455, pp.
49–64. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55665-8 4

12. Halpern, J.Y., Samet, D., Segev, E.: Defining knowledge in terms of belief: the
modal logic perspective. Rev. Symbolic Logic 2, 469–487 (2009)

13. Fong, P.W.: Relationship-based access control: Protection model and policy lan-
guage. In: CODASPY 2011, pp. 191–202. ACM (2011)

14. Bruns, G., Fong, P.W., Siahaan, I., Huth, M.: Relationship-based access control:
its expression and enforcement through hybrid logic. In: CODASPY 2012, pp.
117–124. ACM (2012)

15. Pardo, R., Balliu, M., Schneider, G.: Formalising privacy policies in social networks.
J. Logical Algebraic Methods Program. 90, 125–157 (2017)

16. Snodgrass, R., Ahn, I.: Temporal databases. Computer 19(9), 35–42 (1986)
17. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge,

vol. 4. MIT press Cambridge, Cambridge (2003)
18. Erciyes, K.: Complex Networks: An Algorithmic Perspective, 1st edn. CRC Press

Inc., Boca Raton (2014)
19. FlockDB: A distributed fault-tolerant graph database. github.com/twitter/flockdb.

Accessed 20 Oct 2017
20. Bronson, N., Amsden, Z., Cabrera, G., Chakka, P., Dimov, P., Ding, H., Ferris, J.,

Giardullo, A., Kulkarni, S., Li, H., Marchukov, M., Petrov, D., Puzar, L., Song,
Y.J., Venkataramani, V.: Tao: Facebook’s distributed data store for the social
graph. In: ATC 2013, pp. 49–60 (2013)

21. Neo4j decreases development time-to-market for LinkedIn’s Chitu App.
neo4j.com/case-studies/linkedin-china/. Accessed 20 Oct 2017

22. Pardo, R., Sánchez, C., Schneider, G.: Timed Epistemic Knowledge Bases for Social
Networks (Extended Version). ArXiv e-prints (2017)

23. Ben-Zvi, I., Moses, Y.: Agent-time epistemics and coordination. In: Lodaya, K.
(ed.) ICLA 2013. LNCS, vol. 7750, pp. 97–108. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36039-8 9

24. Pardo, R., Schneider, G.: A formal privacy policy framework for social networks. In:
Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 378–392.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10431-7 30

www.theguardian.com/media/2016/nov/20/barack-obama-facebook-fake-news-problem
www.theguardian.com/media/2016/nov/20/barack-obama-facebook-fake-news-problem
https://doi.org/10.1007/978-3-662-55665-8_4
http://www.github.com/twitter/flockdb
http://www.neo4j.com/case-studies/linkedin-china/
https://doi.org/10.1007/978-3-642-36039-8_9
https://doi.org/10.1007/978-3-319-10431-7_30

Optimal and Robust Controller Synthesis

Using Energy Timed Automata with Uncertainty

Giovanni Bacci1(B), Patricia Bouyer2, Uli Fahrenberg3,
Kim Guldstrand Larsen1, Nicolas Markey4, and Pierre-Alain Reynier5

1 Department of Computer Science, Aalborg University, Aalborg, Denmark
giovbacci@cs.aau.dk

2 LSV, CNRS & ENS Cachan, Université Paris-Saclay, Cachan, France
3 École Polytechnique, Palaiseau, France

4 Univ. Rennes, IRISA, CNRS & INRIA, Rennes, France
5 Aix Marseille Univ., Université de Toulon, CNRS, LIS, Marseille, France

Abstract. In this paper, we propose a novel framework for the syn-
thesis of robust and optimal energy-aware controllers. The framework is
based on energy timed automata, allowing for easy expression of tim-
ing constraints and variable energy rates. We prove decidability of the
energy-constrained infinite-run problem in settings with both certainty
and uncertainty of the energy rates. We also consider the optimization
problem of identifying the minimal upper bound that will permit exis-
tence of energy-constrained infinite runs. Our algorithms are based on
quantifier elimination for linear real arithmetic. Using Mathematica and
Mjollnir, we illustrate our framework through a real industrial example
of a hydraulic oil pump. Compared with previous approaches our method
is completely automated and provides improved results.

1 Introduction

Design of controllers for embedded systems is a difficult engineering task. Con-
trollers must ensure a variety of safety properties as well as optimality with
respect to given perprocessformance properties. Also, for several systems, e.g.
[8,25,27], the properties involve non-functional aspects such as time and energy.

We provide a novel framework for automatic synthesis of safe and optimal con-
trollers for resource-aware systems based on energy timed automata. Synthesis of
controllers is obtained by solving time- and energy-constrained infinite run prob-
lems. Energy timed automata [12] extend timed automata [2] with a continuous
energy variable that evolves with varying rates and discrete updates during the
behaviour of the model. Closing an open problem from [12], we prove decidabil-
ity of the infinite run problem in settings, where rates and updates may be both
positive and negative and possibly subject to uncertainty. Additionally, the accu-
mulated energy may be subject to lower and upper bounds reflecting constraints
on capacity. Also we consider the optimization problems of identifying minimal

Work supported by ERC projects Lasso and EQualIS.

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 203–221, 2018.
https://doi.org/10.1007/978-3-319-95582-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_12&domain=pdf

204 G. Bacci et al.

upper bounds that will permit the existence of infinite energy-constrained runs.
Our decision and optimization algorithms for the energy-constrained infinite run
problems are based on reductions to quantifier elimination (QE) for linear real
arithmetic, for which we combine Mathematica [28] and Mjollnir [24] into a tool
chain.

Pump

Machine

2.2 l/s

Vmax

Vmin

Accumulator

(a) System Components

0 2 4 6 8 10 12 14 16 18 20
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

Time (second)

1.2 1.2

2.5

1.7

0.5

M
ac

h
in

e
R

at
e

 (l
it

re
/s

ec
o

n
d

)

(b) Cycle of the Machine

Fig. 1. Overview of the HYDAC system

To demonstrate the applicability of our framework, we revisit an industrial
case study provided by the HYDAC company in the context of the European
project Quasimodo [26]. It consists in an on/off control system (see Fig. 1a)
composed of (i) a machine that consumes oil according to a cyclic pattern of
20 s (see Fig. 1b), (ii) an accumulator containing oil and a fixed amount of gas in
order to put the oil under pressure, and (iii) a controllable pump which can pump
oil into the accumulator with rate 2.2 l/s. The control objective for switching the
pump on and off is twofold: first the level of oil in the accumulator (and so the
gas pressure) shall be maintained within a safe interval; second, the controller
should try to minimize the (maximum and average) level of oil such that the
pressure in the system is kept minimal. We show how to model this system, with
varying constraints on pump operation, as energy timed automata. Thus our
tool chain may automatically synthesize guaranteed safe and optimal control
strategies.

The HYDAC case was first considered in [16] as a timed game using the tool
Uppaal-Tiga [5,15] for synthesis. Discretization of oil-level (and time) was
used to make synthesis feasible. Besides limiting the opportunity of optimality,
the discretization also necessitated posterior verification using PHAVER [20] to
rule out possible resulting incorrectness. Also, identification of safety and min-
imal oil levels were done by manual and laborious search. In [23] the timed
game models of [16] (rephrased as Timed Discrete Event Systems) are reused,
but BDDs are applied for compact representation of the discrete oil-levels and
time-points encountered during synthesis. [21] provides a framework for learning
optimal switching strategies by a combination of off-the-shelf numerical opti-
mization and generalization by learning. The HYDAC case is one of the con-
sidered cases. The method offers no absolute guarantees of hard constraints on

Optimal and Robust Controller Synthesis 205

energy-level, but rather attempts to enforce these through the use of high penal-
ties. [29] focuses exclusively on the HYDAC case using a direct encoding of
the safety- and optimality-constraints as QE problems. This gives—like in our
case—absolute guarantees. However, we are additionally offering a complete and
decidable framework based on energy timed automata, which extends to several
other systems. Moreover, the controllers we obtain perform significantly better
than those of [16] and [29] (respectively up to 22% and 16% better) and are
obtained automatically by our tool chain combining Mjollnir and Mathematica.
This combination permits quantifier elimination and formula simplification to be
done in a compositional manner, resulting in performance surpassing each tool
individually. We believe that this shows that our framework has a level of matu-
rity that meets the complexity of several relevant industrial control problems.

Our work is related to controllability of (constrained) piecewise
affine (PWA) [7] and hybrid systems [1]. In particular, the energy-constrained
infinite-run problem is related to the so called stability problem for PWAs.
Blondel and Tsitsiklis [10] have shown that verifying stability of autonomous
piecewise-linear (PWL) systems is NP-hard, even in the simple case of two-
component subsystems; several global properties (e.g. global convergence, asymp-
totic stability and mortality) of PWA systems have been shown undecidable
in [9].

2 Energy Timed Automata

Definitions. Given a finite set X of clocks, the set of closed clock constraints
over X, denoted C(X), is the set of formulas built using g ::= x ∼ n | g∧g, where
x ranges over X, ∼ ranges over {≤,≥} and n ranges over Q≥0. That a clock
valuation v : X → R≥0 satisfies a clock constraint g, denoted v |= g, is defined
in the natural way. For a clock valuation v, a real t ∈ R≥0, and a subset R ⊆ X,
we write v + t for the valuation mapping each clock x ∈ X to v(x) + t, and
v[R → 0] for the valuation mapping clocks in R to zero and clocks not in R
to their value in v. Finally we write 0X (or simply 0) for the clock valuation
assigning 0 to every x ∈ X.

For E ⊆ R, we let I(E) be the set of closed intervals of R with bounds
in E ∩ Q. Notice that any interval in I(E) is bounded, for any E ⊆ R.

Definition 1. An energy timed automaton (ETA for short; a.k.a. priced or
weighted timed automaton [3,6]) is a tuple A = (S, S0,X, I, r, T) where S is a
finite set of states, S0 ⊆ S is the set of initial states, X is a finite set of clocks,
I : S → C(X) assigns invariants to states, r : S → Q assigns rates to states, and
T ⊆ S × C(X) × Q × 2X × S is a finite set of transitions.

An energy timed path (ETP, a.k.a. linear energy timed automaton) is an
energy timed automaton for which S can be written as {si | 0 ≤ i ≤ n} in such a
way that S0 = {s0}, and T = {(si, gi, ui, zi, si+1) | 0 ≤ i < n}. We additionally
require that all clocks are reset on the last transition, i.e., zn−1 = X.

206 G. Bacci et al.

Let A = (S, S0,X, I, r, T) be an ETA. A configuration of A is a triple
(�, v, w) ∈ S×(R≥0)X ×R, where v is a clock valuation, and w is the energy level.
Let τ = (ti)0≤i<n be a finite sequence of transitions, with ti = (si, gi, ui, zi, si+1)
for every i. A finite run in A on τ is a sequence of configurations ρ =
(�j , vj , wj)0≤j≤2n such that there exists a sequence of delays (di)0≤i<n for which
the following requirements hold:

– for all 0 ≤ j < n, �2j = �2j+1 = sj , and �2n = sn;
– for all 0 ≤ j < n, v2j+1 = v2j + dj and v2j+2 = v2j+1[zj → 0];
– for all 0 ≤ j < n, v2j |= I(sj) and v2j+1 |= I(sj) ∧ gj ;
– for all 0 ≤ j < n, w2j+1 = w2j + dj · r(sj) and w2j+2 = w2j+1 + uj .

We will by extension speak of runs read on ETPs (those runs will then end with
clock valuation 0). The notion of infinite run is defined similarly. Given E ∈ I(Q),
such a run is said to satisfy energy constraint E if wj ∈ E for all j.

Example 1. Figure 2 displays an example of an ETP P and one of its runs ρ.
Since no time will be spent in s2, we did not indicate the invariant and rate of
that state. The sequence ρ is a run of P. Spending 0.6 time units in s0, the value
of clock x reaches 0.6, and the energy level grows to 3 + 0.6 × 2 = 4.2; it equals
4.2 − 3 = 1.2 when entering s1. Then ρ satisfies energy constraint [0; 5]. �

s0

y ≤ 1
r : +2

P: s1

y ≤ 1
r : +4

s2
y ≥ 1

4 u : −3
y := 0

x = 1
x := 0, y := 0

u : 0
w

t
10

s0

s0

s1

s1
s2

ρ

Fig. 2. An energy timed path P, and a run ρ of P with initial energy level 3.

Definition 2. A segmented energy timed automaton (SETA for short) is a
tuple A = (S, T, P) where (S, T) is a finite graph (whose states and transitions
are called macro-states and macro-transitions), S0 is a set of initial macro-
states, and P associates with each macro-transition t = (s, s′) of A an ETP with
initial state s and final state s′. We require that for any two different transitions t
and t′ of A, the state spaces of P (t) and P (t′) are disjoint and contain no macro-
states, except (for both conditions) for their first and last states.

A SETA is flat if the underlying graph (S, T) is (i.e., for any s ∈ S, there
is at most one non-empty path in the graph (S, T) from s to itself [14,17]). It is
called depth-1 whenever the graph (S, T) is tree-like, with only loops at leaves.

Optimal and Robust Controller Synthesis 207

A (finite or infinite) execution of a SETA is a (finite or infinite) sequence of
runs ρ = (ρi)i such that for all i, writing ρi = (�i

j , v
i
j , w

i
j)0≤j≤2ni

, it holds:

– �i
0 and �i

2ni
are macro-states of A, and ρi is a run of the ETP P (�i

0, �
i
2ni

);
– �i+1

0 = �i
2ni

and wi+1
0 = wi

2ni
.

Hence a run in a SETA should be seen as the concatenation of paths ρi between
macro-states. Notice also that each ρi starts and ends with all clock values zero,
since all clocks are reset at the end of each ETP, when a main state is entered.
Finally, given an interval E ∈ I(Q), an execution (ρi)i satisfies energy con-
straint E whenever all individual runs ρi do.

Remark 1. In contrast with ETAs, the class of SETAs is not closed under parallel
composition. Intuitively, the ETA resulting from the parallel composition of two
SETAs may not be “segmented” into a graph of energy timed-paths because the
requirement that all clocks are reset on the last transition may not be satisfied.
Furthermore, parallel composition does not preserve flatness because it may
introduce nested loops.

Example 2. Figure 3 displays a SETA A with two macro-states s0 and s2, and
two macro-transitions. The macro-self-loop on s2 is associated with the energy
timed path of Fig. 2. The execution ρ = ρ1 · (ρ2 · ρ3)ω is an ultimately-periodic
execution of A. This infinite execution satisfies the energy constraint E = [0; 5]
(as well as the (tight) energy constraint [1; 4.6]). �

In this paper, we consider the following energy-constrained infinite-run prob-
lem [12]: given an energy timed automaton A and a designated state s0, an
energy constraint E ∈ I(Q) and an initial energy level w0 ∈ E, does there exist
an infinite execution in A starting from (s0,0, w0) that satisfies E?

s0(S, T) : s2

P0,2 =

P2,2 =

s0

r:0

s2s1

r:−1

y:=0

u:+1

x:=0
y:=0

x≥1

s2

r:+2

s3

r:+4

s2
y≥0.25 u:−3

y:=0

x=1

x:=0
y:=0

w

t
1 2 30

s0
s0

s1 s1
s2

ρ1

s2

s3

s3
s2

ρ2

s2

s3

s3
s2

ρ3

Fig. 3. A SETA A = (S, T, P) with implicit global invariant y ≤ 1; omitted discrete
updates are assumed to be zero. The map P associates with each (si, sj) ∈ T the ETP
Pi,j . The infinite sequence ρ1 · (ρ2 ·ρ3)ω is an infinite execution of A with initial energy
level 3 satisfying the energy constraint E = [0; 5].

208 G. Bacci et al.

In the general case, the energy-constrained infinite-run problem is unde-
cidable, even when considering ETA with only two clocks [22]. In this paper,
we prove:

Theorem 3. The energy-constrained infinite-run problem is decidable for flat
SETA.

Theorem 4. Given a fixed lower bound L, the existence of an upper bound U ,
such that there is a solution to the energy-constrained infinite-run problem for
energy constraint E = [L;U], is decidable for flat SETA. If such a U exists, then
for depth-1 flat SETA, we can compute the least one.

We only sketch a proof of the former result, and refer to [4] for the full proof.

Binary Energy Relations. Let P = ({si | 0 ≤ i ≤ n}, {s0},X, I, r, T) be an
ETP from s0 to sn. Let E ⊆ I(Q) be an energy constraint. The binary energy
relation RE

P ⊆ E × E for P under energy constraint E relates all pairs (w0, w1)
for which there is a finite run of P from (s0,0, w0) to (sn,0, w1) satisfying energy
constraint E. This relation is characterized by the following first-order formula:

RE
P(w0, w1) ⇐⇒ ∃(di)0≤i<n.Φtiming ∧ Φenergy ∧ w1 = w0 +

n−1∑

k=0

(dk · r(sk) + uk)

where Φtiming encodes all the timing constraints that the sequence (di)0≤i<n

has to fulfill (derived from guards and invariants, by expressing the values of
the clocks in terms of (di)0≤i<n), while Φenergy encodes the energy constraints
(in each state, the accumulated energy must be in E).

w0

w1

0
0

1

1

2

2

3

3

4

4

5

5

It is easily shown that RE
P is a closed, convex

subset of E × E (remember that we consider closed
clock constraints); thus it can be described as a con-
junction of a finite set of linear constraints over w0

and w1 (with non-strict inequalities), using quanti-
fier elimination of variables (di)0≤i<n.

Example 3. We illustrate this computation on the
ETP of Fig. 2. For energy constraint [0; 5], the
energy relation (after removing redundant con-
straints) reads as

RE
P(w0, w1) ⇐⇒ ∃d0, d1.d0 ∈ [0.25; 1] ∧ d1 ∈ [0; 1] ∧ d0 + d1 = 1 ∧

w0 ∈ [0; 5] ∧ w0 + 2d0 ∈ [0; 5] ∧ w0 + 2d0 − 3 ∈ [0; 5] ∧
w1 = w0 + 2d0 + 4d1 − 3 ∧ w1 ∈ [0; 5].

This simplifies to (w1 + 2 ≤ 2w0 ≤ w1 + 4) ∧ (w1 − 0.5 ≤ w0 ≤ w1 + 1).
The corresponding polyhedron is depicted above. �

Optimal and Robust Controller Synthesis 209

Energy Functions. We now focus on properties of energy relations. First notice
that for any interval E ∈ I(Q), the partially-ordered set (I(E),⊇) is ω-complete,
meaning that for any chain (Ij)j∈N, with Ij ⊇ Ij+1 for all j, the limit

⋂
j∈N

Ij

also belongs to I(E). By Cantor’s Intersection Theorem, if additionally each
interval Ij is non-empty, then so is the limit

⋂
j∈N

Ij .
With an energy relation RE

P , we associate an energy function (also denoted
with RE

P , or simply R, as long as no ambiguity may arise), defined for any closed
sub-interval I ∈ I(E) as R(I) = {w1 ∈ E | ∃w0 ∈ I. R(w0, w1)}. Symmetrically:

R−1(I) = {w0 ∈ E | ∃w1 ∈ I. R(w0, w1)}.

Observe that R(I) and R−1(I) also belong to I(E) (because the relation R
is closed and convex). Moreover, R and R−1 are non-decreasing: for any two
intervals I and J in I(E) such that I ⊆ J , it holds R(I) ⊆ R(J) and R−1(I) ⊆
R−1(J). Energy function R−1 also satisfies the following continuity property:

Lemma 5. Let (Ij)j∈N be a chain of intervals of I(E), such that Ij ⊇ Ij+1 for
all j ∈ N. Then R−1(

⋂
j∈N

Ij) =
⋂

j∈N
R−1(Ij).

Composition and Fixpoints of Energy Functions. Consider a finite
sequence of paths (Pi)1≤i≤k. Clearly, the energy relation for this sequence can
be obtained as the composition of the individual energy relations RE

Pk
◦· · ·◦RE

P1
;

the resulting energy relation still is a closed convex subset of E × E that can be
described as the conjunction of finitely many linear constraints over w0 and w1.
As a special case, we write (RE

P)k for the composition of k copies of the same
relations RE

P .
Now, using Lemma 5, we easily prove that the greatest fixpoint νR−1 of R−1

in the complete lattice (I(E),⊇) exists and equals:

νR−1 =
⋂

i∈N

(R−1)i(E).

Moreover νR−1 is a closed (possibly empty) interval. Note that νR−1 is the
maximum subset SR of E such that, starting with any w0 ∈ SR, it is possible to
iterate R infinitely many times (that is, for any w0 ∈ SR, there exists w1 ∈ SR
such that R(w0, w1)—any such set S is a post-fixpoint of R−1, i.e. S ⊆ R−1(S)).

If R is the energy relation of a cycle C in the flat SETA, then νR−1 precisely
describes the set of initial energy levels allowing infinite runs through C satisfying
the energy constraint E. If R is described as the conjunction φC of a finite set
of linear constraints, then we can characterize those intervals [a, b] ⊆ E that
constitute a post-fixpoint for R−1 by the following first-order formula:

a ≤ b ∧ a ∈ E ∧ b ∈ E ∧ ∀w0 ∈ [a; b]. ∃w1 ∈ [a; b]. φC(w0, w1). (1)

Applying quantifier elimination (to w0 and w1), the above formula may be
transformed into a direct constraint on a and b, characterizing all post-fixpoints
of R−1. We get a characterization of νR−1 by computing the values of a and b
that satisfy these constraint and maximize b − a.

210 G. Bacci et al.

Example 4. We again consider the flat SETA of Fig. 3, and consider the energy
constraint E = [0; 5]. We first focus on the cycle C on the macro-state s2: using
the energy relation computed in Example 3, our first-order formula for the fix-
point then reads as follows:

0 ≤ a ≤ b ≤ 5 ∧ ∀w0 ∈ [a; b]. ∃w1 ∈ [a; b].
(
(w1 + 2 ≤ 2w0 ≤ w1 + 4) ∧ (w1 − 0.5 ≤ w0 ≤ w1 + 1)

)
.

Applying quantifier elimination, we end up with 2 ≤ a ≤ b ≤ 4. The maximal
fixpoint then is [2; 4]. Similarly, for the path P from s0 to s2:

RE
P(w0, w1) ⇐⇒ ∃d0, d1. 0 ≤ d0 ≤ 1 ∧ 0 ≤ d1 ≤ 1 ∧ d0 + d1 ≥ 1 ∧

0 ≤ w0 ≤ 5 ∧ 0 ≤ w0 + 1 ≤ 5 ∧ w1 = w1 + 1 − d1 ∧ 0 ≤ w1 ≤ 5

which reduces to 0 ≤ w0 ≤ 4 ∧ w0 ≤ w1 ≤ w0 + 1. Finally, the initial energy
levels w0 for which there is an infinite-run in the whole SETA are characterized
by ∃w1. (0 ≤ w0 ≤ 4 ∧ w0 ≤ w1 ≤ w0 + 1) ∧ (2 ≤ w1 ≤ 4), which reduces to
1 ≤ w0 ≤ 4.

Algorithm for Flat Segmented Energy Timed Automata. Following
Example 4, we now prove that we can solve the energy-constrained infinite-run
problem for any flat SETA. The next theorem is crucial for our algorithm:

Theorem 6. Let R be the energy relation of an ETP P with energy constraint E,
and let I ∈ I(E). Then either I ∩ νR−1 �= ∅ or Rn(I) = ∅ for some n.

It follows that the energy-constrained infinite-run problem is decidable for
flat SETAs. The decision procedure traverses the underlying graph of A, forward
propagating an initial energy interval I0 ⊆ E looking for a simple cycle C such
that νR−1

C ∩ I �= ∅, where I ⊆ E is the energy interval forward-propagated
until reaching the cycle. Algorithm 1 gives a detailed description of the decision
procedure. It traverses the underlying graph (S, T) of the flat SETA A, using a
waiting list W to keep track of the macro-states that need to be further explored.
The list W contains tasks of the form (m, I, flag) where m ∈ S is the current
macro-state, I ∈ I(E) is the current energy interval, and flag ∈ {c, c̄} is a flag
indicating if m shall be explored by following a cycle it belongs to (flag = c),
or proceed by exiting that cycle (flag = c̄). Theorem 6 ensures termination
of the while loop of lines 17–21, whereas flatness ensures the correctness of
Algorithm 1.

It is worth noting that the flatness assumption for the SETA A implies that
the graph (S, T) has finitely many cycles (each macro-state belongs to at most
one simple cycle of (S, T), therefore the number of cycles is bounded by the
number of macro-states). As a consequence, Algorithm 1 performs in the worst
case an exhaustive search of all cycles in A. The technique does not trivially
extend to SETAs with nested cycles, because they may have infinitely many
cycles.

Optimal and Robust Controller Synthesis 211

Input: A flat SETA A = (S, T, P); initial state m0 ∈ S; energy interval I0
1. W ← {(m0, I0, c)} � initialize the waiting list
2. while W �= ∅ do
3. pick (m, I, flag) ∈ W � pick an element from the waiting list
4. W ← W \ (m, I, flag) � remove the element from the waiting list
5. if flag = c̄ then � the node m shall be explored without following a cycle
6. for each (m, m′) ∈ T that is not part of a simple cycle of (S, T) do
7. W ← W ∪ {(m′, RE

P (m,m′)(I), c)} � add this new task to the waiting list
8. else � the node m shall be explored by following a cycle
9. if m belongs to a cycle of (S, T) then

10. let C = (m1, m2) · · · (mk, mk+1) be the simple cycle s.t. m = m1 = mk+1

11. let RC = RP (mk,mk+1) ◦ · · · ◦ RP (m1,m2) � energy relation of the cycle

12. if I ∩ νR−1
C �= ∅ then � check if there is an infinite run via the cycle C

13. return tt

14. else � the cycle can be executed only finitely many times
15. W ← W ∪ {(m, I, c̄)} � add a new task to the waiting list
16. i ← 0 � initialize the number of cycle executions
17. while Ri

C(I) �= ∅ do � while i-th energy relation is satisfied
18. for 1 ≤ j < k do
19. let RPj = RP (mj ,mj+1) ◦ · · · ◦ RP (m1,m2) � unfold C up to mj+1

20. W ← W ∪ {(mj+1, RPj (Ri
C(I)), c̄)} � add a task to the waiting list

21. i ← i + 1 � increment the number of cycle executions
22. else � m doesn’t belong to a cycle
23. W ← W ∪ {(m, I, c̄)} � add a new task to the waiting list
24. return ff � no infinite run could be found

Algorithm 1: Existence of energy-constrained infinite runs in flat SETA

3 Energy Timed Automata with Uncertainties

The assumptions of perfect knowledge of energy-rates and energy-updates are
often unrealistic, as is the case in the HYDAC oil-pump control problem
(see Sect. 4). Rather, the knowledge of energy-rates and energy-updates comes
with a certain imprecision, and the existence of energy-constrained infinite runs
must take these into account in order to be robust. In this section, we revisit the
energy-constrained infinite-run problem in the setting of imprecisions, by viewing
it as a two-player game problem.

Adding Uncertainty to ETA. An energy timed automaton with uncer-
tainty (ETAu for short) is a tuple A = (S, S0,X, I, r, T, ε,Δ), where
(S, S0,X, I, r, T) is an energy timed automaton, with ε : S → Q>0 assigning
imprecisions to rates of states and Δ : T → Q>0 assigning imprecisions to
updates of transitions. This notion of uncertainty extends to energy timed path
with uncertainty (ETPu) and to segmented energy timed automaton with uncer-
tainty (SETAu).

Let A = (S, S0,X, I, r, T, ε,Δ) be an ETAu, and let τ = (ti)0≤i<n be a finite
sequence of transitions, with ti = (si, gi, ui, zi, si+1) for every i. A finite run in A

212 G. Bacci et al.

on τ is a sequence of configurations ρ = (�j , vj , wj)0≤j≤2n such that there exist
a sequence of delays d = (di)0≤i<n for which the following requirements hold:

– for all 0 ≤ j < n, �2j = �2j+1 = sj , and �2n = sn;
– for all 0 ≤ j < n, v2j+1 = v2j + dj and v2j+2 = v2j+1[zj → 0];
– for all 0 ≤ j < n, v2j |= I(sj) and v2j+1 |= I(sj) ∧ gj ;
– for all 0 ≤ j < n, it holds that w2j+1 = w2j + dj ·αj and w2j+2 = w2j+1 +βj ,

where αj ∈ [r(sj) − ε(sj), r(sj) + ε(sj)] and βj ∈ [uj − Δ(tj), uj + Δ(tj)].

We say that ρ is a possible outcome of d along τ , and that w2n is a possible
final energy level for d along τ , given initial energy level w0. Note that due to
uncertainty, a given delay sequence d may have several possible outcomes (and
corresponding energy levels) along a given transition sequence τ . In particular,
we say that τ together with d and initial energy level w0 satisfy an energy
constraint E ∈ I(Q) if any possible outcome run ρ for t and d starting with w0

satisfies E. All these notions are formally extended to ETPu.
Given an ETPu P, and a delay sequence d for P satisfying a given energy

constraint E from initial level w0, we denote by EE
P,d(w0) the set of possible final

energy levels. It may be seen that EE
P,d(w0) is a closed subset of E.

Example 5. Figure 4 is the energy timed path P of Fig. 2 extended with uncer-
tainties of ±0.1 on all rates and updates. The runs associated with path P,
delay sequence d = (0.6, 0.4) and initial energy level w0 = 3 satisfy the energy
constraint E = [0; 5]. The set EE

P,d(w0) then is [2.5; 3.1].

s0

y ≤ 1
r : +2 ± 0.1

P: s1

y ≤ 1
r : +4 ± 0.1

s2
y ≥ 1

4

u : −3 ± 0.1

y := 0
x = 1
x := 0
y := 0

u : 0 ± 0.1

w

t
10

s0

s0

s1

s1

s2

Fig. 4. An energy timed path P with uncertainty, and a representation of the runs
corresponding to the delay sequence (0.6, 0.4) with initial energy level 3.

Now let A = (S, T, P) be an SETAu and let E be an energy constraint.
A (memoryless1) strategy σ returns for any macro-configuration (s, w) (s ∈ S
and w ∈ E) a pair (t, d), where t = (s, s′) is a successor edge in T and d ∈ R

n
≥0

is a delay sequence for the corresponding energy timed path, i.e. n = |P (t)|.
A (finite or infinite) execution of (ρi)i writing ρi = (�i

j , x
i
j , w

i
j)0≤j≤2ni

, is an
outcome of σ if the following conditions hold:

1 For the infinite-run problem, it can be shown that memoryless strategies suffice.

Optimal and Robust Controller Synthesis 213

– si
0 and si

2ni
are macro-states of A, and ρi is a possible outcome of P (si

0, s
i
2ni

)
for d where σ(si

0, w
i
0) =

(
(si

0, s
i
2ni

), d
)
;

– si+1
0 = si

2ni
and wi+1

0 = wi
2ni

.

Now we may formulate the infinite-run problem in the setting of uncertainty:
for a SETAu A, an energy constraint E ∈ I(Q), and a macro-state s0 and an
initial energy level w0 the energy-constrained infinite-run problem is to decide
the existence of a strategy σ for A such that all runs (ρi)i that are outcome of
σ starting from configuration (s0, w0) satisfy E?

Ternary Energy Relations. Let P = ({si | 0 ≤ i ≤ n}, {s0},X, I, r, T, ε,Δ)
be an ETPu and let E ∈ I(Q) be an energy constraint. The ternary energy
relation UE

P ⊆ E×E×E relates all triples (w0, a, b) for which there is a strategy σ
such that any outcome of ρ from (s0,0, w0) satisfies E and ends in a configuration
(sn,0, w1) where w1 ∈ [a; b]. This relation can be characterized by the following
first-order formula:

UE
P (w0, a, b) ⇐⇒ ∃(di)0≤i<n. Φtiming ∧ Φi

energy ∧

w0 +
n−1∑

k=0

(r(sk) · dk + uk) +
n−1∑

k=0

([−ε(sk); ε(sk)] · dk + [−Δ(tk);Δ(tk)]) ⊆ [a; b]

where Φi
energy encodes the energy constraints as the inclusion of the interval

of reachable energy levels in the energy constraint (in the same way as we do
on the second line of the formula). Interval inclusion can then be expressed as
constraints on the bounds of the intervals. It is clear that UE

P is a closed, convex
subset of E × E × E and can be described as a finite conjunction of linear
constraints over w0, a and b using quantifier elimination.

Example 6. We illustrate the above translation on the ETPu of Fig. 4. For energy
constraint [0; 5], the energy relation can be written as:

UE
P (w0, a, b) ⇐⇒ ∃d0, d1. d0 ∈ [0.25; 1] ∧ d1 ∈ [0; 1] ∧ d0 + d1 = 1 ∧ w0 ∈ [0; 5] ∧
w0 + [1.9; 2.1] · d0 ⊆ [0; 5] ∧
w0 + [1.9; 2.1] · d0 + [−3.1;−2.9] ⊆ [0; 5] ∧
w0 + [1.9; 2.1] · d0 + [−3.1;−2.9] + [3.9; 4.1] · d1 ⊆ [0; 5] ∧
w0 + [1.9; 2.1] · d0 + [−3.1;−2.9] + [3.9; 4.1] · d1 + [−0.1; 0.1] ⊆ [a; b] ⊆ [0; 5]]

Applying quantifier elimination, we end up with:

UE
P (w0, a, b) ⇐⇒ 0 ≤ a ≤ b ≤ 5 ∧ b ≥ a + 0.6 ∧ a − 0.2 ≤ w0 ≤ b + 0.7 ∧

(4.87 + 1.9 · a)/3.9 ≤ w0 ≤ (7.27 + 2.1 · b)/4.1

We can use this relation in order to compute the set of initial energy levels from
which there is a strategy to end up in [2.5; 3.1] (which was the set of possible
final energy levels in the example of Fig. 4). We get w0 ∈ [37/15; 689/205], which
is (under-)approximately w0 ∈ [2.467; 3.360]. �

214 G. Bacci et al.

Algorithm for SETAu. Let A = (S, T, P) be a SETAu and let E ∈ I(Q)
be an energy constraint. Let W ⊆ S × E be the maximal set of configurations
satisfying the following:

(s, w) ∈ W ⇒∃t = (s, s′) ∈ T.∃a, b ∈ E.

UE
P (t)(w, a, b) ∧ ∀w′ ∈ [a; b].(s′, w′) ∈ W (2)

Now W is easily shown to characterize the set of configurations (s, w) that satisfy
the energy-constrained infinite-run problem. Unfortunately this characterization
does not readily provide an algorithm. We thus make the following restriction and
show that it leads to decidability of the energy-constrained infinite-run problem:

(R) in any of the ETPu P (t) of A, on at least one of its transitions, some clock
x is compared with a positive lower bound. Thus, there is an (overall minimal)
positive time-duration D to complete any P (t) of A.

Theorem 7. The energy-constrained infinite-run problem is decidable for
SETAu satisfying (R).

It is worth noticing that we do not assume flatness of the model for proving
the above theorem. Instead, the minimal-delay assumption (R) has to be made:
it entails that any stable set is made of intervals whose size is bounded below,
which provides an upper bound on the number of such intervals. We can then
rewrite the right-hand-size expression of (2) as:

∧

s∈S

∧

1≤j≤N

[as,j ; bs,j] ⊆ E ∧ w0 ∈
∨

1≤j≤N

[as0,j ; bs0,j] ∧ ∀w ∈ [as,j ; bs,j].

∨

(s,s′)∈T

[∃a, b ∈ E. UE
P (s,s′)(w, a, b) ∧

∨

1≤k≤N

([a; b] ⊆ [as′,k; bs′,k])
]

(3)

Example 7. We pursue on Example 6. If ETPu P is iterated (as on the loop
on state s2 of Fig. 3, but now with uncertainty), the set W (there is a single
macro-state) can be captured with a single interval [a, b]. We characterize the
set of energy levels from which the path P can be iterated infinitely often while
satisfying the energy constraint E = [0; 5] using Eq. (3), as follows:

0 ≤ a ≤ b ≤ 5 ∧ ∀w0 ∈ [a; b]. UE
P (w0, a, b).

We end up with 2.435 ≤ a ∧ b ≤ 3.635 ∧ b ≥ a + 0.6, so that the largest interval
is [2.435; 3.635] (which can be compared to the maximal fixpoint [2; 4] that we
obtained in Example 4 for the same cycle without uncertainty).

As in the setting without uncertainties, we can also synthesize an (optimal)
upper-bound for the energy constraint:

Theorem 8. Let A = (S, T, P) be a depth-1 flat SETAu satisfying (R). Let L ∈
Q be an energy lower bound, and let (s0, w0) be an initial macro-configuration.
Then the existence of an upper energy bound U , such that the energy-constrained
infinite-run problem is satisfied for the energy constraint [L;U] is decidable. Fur-
thermore, one can compute the least upper bound, if there is one.

Optimal and Robust Controller Synthesis 215

4 Case Study

Modelling the Oil Pump System. In this section we describe the character-
istics of each component of the HYDAC case, which we then model as a SETA.
The Machine. The oil consumption of the machine is cyclic. One cycle of con-
sumptions, as given by HYDAC, consists of 10 periods of consumption, each
having a duration of two seconds, as depicted in Fig. 1b. Each period is described
by a rate of consumption mr (expressed in litres per second). The consumption
rate is subject to noise: if the mean consumption for a period is c l/s (with c ≥ 0)
its actual value lies within [max(0, c − ε); c + ε], where ε is fixed to 0.1 l/s.

The Pump. The pump is either On or Off, and we assume it is initially Off at
the beginning of a cycle. While it is On, it pumps oil into the accumulator with a
rate pr = 2.2 l/s. The pump is also subject to timing constraints, which prevent
switching it on and off too often.

The Accumulator. The volume of oil within the accumulator will be modelled by
means of an energy variable v. Its evolution is given by the differential inclusion
dv/dt−u ·pr ∈ −[mr + ε;mr − ε] (or −[mr + ε; 0] if mr − ε < 0), where u ∈ {0, 1}
is the state of the pump.

The controller must operate the pump (switch it on and off) to ensure the
following requirements: (R1) the level of oil in the accumulator must always stay
within the safety bounds E = [Vmin;Vmax] = [4.9; 25.1] l (R2) the average level
of oil in the accumulator is kept as low as possible.

By modelling the oil pump system as a SETA H, the above control problem
can be reduced to finding a deterministic schedule that results in a safe infinite
run in H. Furthermore, we are also interested in determining the minimal safety
interval E, i.e., finding interval bounds that minimize Vmax−Vmin, while ensuring
the existence of a valid controller for H.

0

x≤2

−1.2

x≤2

0

x≤2

0

x≤2

−1.2

x≤2

−2.5

x≤2

0

x≤2

−1.7

x≤2

−0.5

x≤2

0

x≤2

x=2

x:=0

x=2

x:=0

x=2

x:=0

x=2

x:=0

x=2

x:=0

x=2

x:=0

x=2

x:=0

x=2

x:=0

x=2

x:=0

Fig. 5. The ETP representing the oil consumption of the machine.

−m

x≤2

p−m

x≤2

−m

x≤2

−m′

x≤2

x=2

x:=0

Fig. 6. An ETP for modelling the pump

As a first step in the definition of H, we build an ETP representing the
behaviour of the machine, depicted on Fig. 5. In order to fully model the
behaviour of our oil-pump system, one would require the parallel composition of

216 G. Bacci et al.

this ETP with another ETP representing the pump. The resulting ETA would
not be a flat SETA, and is too large to be handled by our algorithm with uncer-
tainty. Since it still provides interesting results, we develop this (incomplete)
approach in the long version of this article [4].

Instead, we consider an alternative model of the pump, which only allows to
switch it on and off once during each 2-second slot. This is modelled by inserting,
between any two states of the model of Fig. 5, a copy of the ETP depicted on
Fig. 6. In that ETP, the state with rate p − m models the situation when the
pump is on. Keeping the pump off for the whole slot can be achieved by spending
delay zero in that state. We name H1 = (M,T, P1) the SETA made of a single
macro-state equipped with a self-loop labelled with the ETP above.

In order to represent the timing constraints of the pump switches, we also
consider a second SETA model H2 = (M,T, P2) where the pump can be operated
only during every other time slot. This amounts to inserting the ETP of Fig. 6
only after the first, third, fifth, seventh and ninth states of the ETP of Fig. 5.

We also consider extensions of both models with uncertainty ε = 0.1 l/s
(changing any negative rate −m into rate interval [−m−ε;−m+ε], but changing
rate 0 into [−ε; 0]). We write H1(ε) and H2(ε) for the corresponding models.

Synthesizing Controllers. For each model, we synthesize minimal upper
bounds U (within the interval [Vmin;Vmax]) that admit a solution to the energy-
constrained infinite-run problem for the energy constraint E = [Vmin;U]. Then,
we compute the greatest stable interval [a; b] ⊆ [L;U] of the cycle witnessing the
existence of an E-constrained infinite-run. This is done by following the meth-
ods described in Sects. 2 and 3 where quantifier elimination is performed using
Mjollnir [24].

Finally for each model we synthesise optimal strategies that, given an initial
volume w0 ∈ [a, b] of the accumulator, return a sequence of pump activation
times toni and toffi to be performed during the cycle. This is performed in two
steps: first we encode the set of safe permissive strategies as a quantifier-free
first-order linear formula having as free variables w0, and the times toni and toffi .
The formula is obtained by relating w0, and the times toni and toffi with the
intervals [L;U] and [a; b] and delays di as prescribed by the energy relations
presented in Sects. 2 and 3. We use Mjollnir [24] to eliminate the existential
quantifiers on the delays di. Then, given an energy value w0 we determine an
optimal safe strategy for it (i.e., some timing values when the pump is turned
on and off) as the solution of the optimization problem that minimizes the
average oil volume in the tank during one consumption cycle subject to the
permissive strategies constraints. To this end, we use the function FindMinimum
of Mathematica [28] to minimize the non-linear cost function expressing the
average oil volume subject to the linear constraints obtained above. Figure 7
shows the resulting strategies: there, each horizontal line at a given initial oil
level indicates the delays (green intervals) where the pump will be running.

Table 1 summarizes the results obtained for our models. It gives the opti-
mal volume constraints, the greatest stable intervals, and the values of the

Optimal and Robust Controller Synthesis 217

Fig. 7. Local strategies for H1(ε) (left) and H2(ε) (right) for a single cycle of the
HYDAC system.

Table 1. Characteristics of the synthesized strategies, compared with the strategies
proposed in [16,29].

Controller [L; U] [a; b] Mean vol. (l)

H1 [4.9; 5.84] [4.9; 5.84] 5.43

H1(ε) [4.9; 7.16] [5.1; 7.16] 6.15

H2 [4.9; 7.9] [4.9; 7.9] 6.12

H2(ε) [4.9; 9.1] [5.1; 9.1] 7.24

G1M1 [16] [4.9; 25.1]a [5.1; 9.4] 8.2

G2M1 [16] [4.9; 25.1]a [5.1; 8.3] 7.95

[29] [4.9; 25.1]a [5.2; 8.1] 7.35
aSafety interval given by the HYDAC company.

worst-case (over all initial oil levels in [a; b]) mean volume. It is worth noting
that the models without uncertainty outperform the respective version with
uncertainty. Moreover, the worst-case mean volume obtained both for H1(ε)
and H2(ε) are significantly better than the optimal strategies synthesized both
in [16,29].

The reason for this may be that (i) our models relax the latency requirement
for the pump, (ii) the strategies of [16] are obtained using a discretization of the
dynamics within the system, and (iii) the strategies of [16,29] were allowed to
activate the pump respectively two and three times during each cycle.

We proceed by comparing the performances of our strategies in terms of accu-
mulated oil volume. Figure 8 shows the result of simulating our strategies for a
duration of 100 s. The plots illustrate in blue (resp. red) the dynamics of the
mean (resp. min/max) oil level in the accumulator as well as the state of the
pump. The initial volume used for the simulations is 8.3 l, as done in [16] for eval-
uating respectively the Bang-Bang controller, the Smart Controller developed by
HYDAC, and the controllers G1M1 and G2M1 synthesized with uppaal-tiga.

Table 2 presents, for each of the strategies, the resulting accumulated volume
of oil, and the corresponding mean volume. There is a clear evidence that the
strategies for H1 and H2 outperform all the other strategies. Clearly, this is
due to the fact that they assume full precision in the rates, and allow for more

218 G. Bacci et al.

Fig. 8. Simulations of 5 consecutive machine cycles for H1(ε) and H2(ε).

Table 2. Performance based on simulations of 200 s starting with 8.3 l.

Controller Acc. vol. (l) Mean vol. (l) Controller Acc. vol. (l) Mean vol. (l)

H1 1081.77 5.41 Bang-Bang 2689 13.45

H2 1158.90 5.79 hydac 2232 11.60

H1(ε) 1200.21 6.00 G1M1 1518 7.59

H2(ε) 1323.42 6.62 G2M1 1489 7.44

switches of the pump. However, these results shall be read as what one could
achieve by investing in more precise equipment. The results also confirm that
both our strategies outperform those presented in [16]. In particular the strategy
for H1(ε) provides an improvement of 55%, 46%, 20%, and 19% respectively
for the Bang-Bang controller, the Smart Controller of HYDAC, and the two
strategies synthesized with uppaal-tiga.

Tool Chain2. Our results have been obtained using Mathematica and Mjoll-
nir. Specifically, Mathematica was used to construct the formulas modelling the
post-fixpoint of the energy functions, calling Mjollnir for performing quantifier
elimination on them. The combination of both tools allowed us to solve one of our
formulas with 27 variables in a compositional manner in ca. 20 ms, while Mjoll-
nir alone would take more than 20 min. Mjollnir was preferred to Mathematica’s
built-in support for quantifier elimination because the latter does not scale.

5 Conclusion

We developed a novel framework allowing for the synthesis of safe and opti-
mal controllers, based on energy timed automata. Our approach consists in
a translation to first-order linear arithmetic expressions representing our con-
trol problem, and solving these using quantifier elimination and simplification.
2 More details on our scripts are available at http://people.cs.aau.dk/∼giovbacci/tools.

html, together with the models we used for our examples and case study.

http://people.cs.aau.dk/~giovbacci/tools.html
http://people.cs.aau.dk/~giovbacci/tools.html

Optimal and Robust Controller Synthesis 219

We demonstrated the applicability and performance of our approach by revisiting
the HYDAC case study and improving its best-known solutions.

Future works include extending our results to non-flat and non-segmented
energy timed automata. However, existing results [22] indicate that we are close
to the boundary of decidability. Another interesting continuation of this work
would be to add Uppaal Stratego [18,19] to our tool chain. This would allow
to optimize the permissive strategies that we compute with quantifier elimination
in the setting of probabilistic uncertainty, thus obtaining controllers that are
optimal with respect to expected accumulated oil volume.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57318-6 30

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49–62. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45351-2 8

4. Bacci, G., Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Reynier, P.-A.:
Optimal and robust controller synthesis: using energy timed automata with uncer-
tainty (2018). arXiv:1805.00847 [cs.FL]

5. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: time for playing games!. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73368-3 14

6. Behrmann, G., et al.: Minimum-cost reachability for priced time automata. In: Di
Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034,
pp. 147–161. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45351-
2 15

7. Bemporad, A., Ferrari-Trecate, G., Morari, M.: Observability and controllability
of piecewise affine and hybrid systems. IEEE Trans. Autom. Control 45(10), 1864–
1876 (2000)

8. Bisgaard, M.: Battery-aware scheduling in low orbit: the GomX–3 case. In: Fitzger-
ald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp.
559–576. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6 34

9. Blondel, V.D., Bournez, O., Koiran, P., Tsitsiklis, J.N.: The stability of saturated
linear dynamical systems is undecidable. J. Comput. Syst. Sci. 62(3), 442–462
(2001)

10. Blondel, V.D., Tsitsiklis, J.N.: Complexity of stability and controllability of ele-
mentary hybrid systems. Automatica 35(3), 479–489 (1999)

https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-45351-2_8
https://doi.org/10.1007/3-540-45351-2_8
http://arxiv.org/abs/1805.00847
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1007/978-3-319-48989-6_34

220 G. Bacci et al.

11. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with
observers under energy constraints. In: Johansson, K.H., Yi, W. (eds.) Proceed-
ings of the 13th International Workshop on Hybrid Systems: Computation and
Control (HSCC 2010), pp. 61–70. ACM Press, April 2010

12. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in
weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85778-5 4

13. Bouyer, P., Larsen, K.G., Markey, N.: Lower-bound constrained runs in weighted
timed automata. Perform. Eval. 73, 91–109 (2014)

14. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp.
577–588. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006 49

15. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). https://doi.org/10.
1007/11539452 9

16. Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.-F., Reynier, P.-A.: Automatic
synthesis of robust and optimal controllers – an industrial case study. In: Majum-
dar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 90–104. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00602-9 7

17. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger
arithmetic. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 268–
279. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028751

18. David, A., et al.: On time with minimal expected cost!. In: Cassez, F., Raskin, J.-F.
(eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11936-6 10

19. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal

stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–
211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 16

20. Frehse, G.: Phaver: algorithmic verification of hybrid systems past hytech. STTT
10(3), 263–279 (2008)

21. Jha, S., Seshia, S.A., Tiwari, A.: Synthesis of optimal switching logic for hybrid
systems. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S. (eds.) Pro-
ceedings of the 11th International Conference on Embedded Software, EMSOFT
2011, Part of the Seventh Embedded Systems Week, ESWeek 2011, Taipei, Taiwan,
9–14 October 2011, pp. 107–116. ACM (2011)

22. Markey, N.: Verification of Embedded Systems - Algorithms and Complexity.
Mémoire d’habilitation, École Normale Supérieure de Cachan, France (2011)

23. Miremadi, S., Fei, Z., Åkesson, K., Lennartson, B.: Symbolic supervisory control
of timed discrete event systems. IEEE Trans. Contr. Syst. Technol. 23(2), 584–597
(2015)

24. Monniaux, D.: Quantifier elimination by lazy model enumeration. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 585–599. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 51

25. Phan, A.-D., Hansen, M.R., Madsen, J.: EHRA: specification and analysis of
energy-harvesting wireless sensor networks. In: Iida, S., Meseguer, J., Ogata, K.
(eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 520–540. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54624-2 26

26. Quasimodo: Quantitative system properties in model-driven design of embedded
systems. http://www.quasimodo.aau.dk/

https://doi.org/10.1007/978-3-540-85778-5_4
https://doi.org/10.1007/978-3-540-85778-5_4
https://doi.org/10.1007/11787006_49
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/978-3-642-00602-9_7
https://doi.org/10.1007/BFb0028751
https://doi.org/10.1007/978-3-319-11936-6_10
https://doi.org/10.1007/978-3-319-11936-6_10
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-642-14295-6_51
https://doi.org/10.1007/978-3-642-54624-2_26
http://www.quasimodo.aau.dk/

Optimal and Robust Controller Synthesis 221

27. von Bochmann, G., Hilscher, M., Linker, S., Olderog, E.: Synthesizing and verifying
controllers for multi-lane traffic maneuvers. Formal Asp. Comput. 29(4), 583–600
(2017)

28. Wolfram Research, Inc.: Mathematica, Version 11.2. Champaign (2017)
29. Zhao, H., Zhan, N., Kapur, D., Larsen, K.G.: A “hybrid” approach for synthesizing

optimal controllers of hybrid systems: a case study of the oil pump industrial exam-
ple. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 471–
485. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 38

https://doi.org/10.1007/978-3-642-32759-9_38

Encoding Fairness in a Synchronous
Concurrent Program Algebra

Ian J. Hayes(B) and Larissa A. Meinicke

The University of Queensland, Brisbane, Queensland, Australia
ian.hayes@itee.uq.edu.au

Abstract. Concurrent program refinement algebra provides a suitable
basis for supporting mechanised reasoning about shared-memory con-
current programs in a compositional manner, for example, it supports
the rely/guarantee approach of Jones. The algebra makes use of a syn-
chronous parallel operator motivated by Aczel’s trace model of concur-
rency and with similarities to Milner’s SCCS. This paper looks at defining
a form of fairness within the program algebra. The encoding allows one
to reason about the fair execution of a single process in isolation as well
as define fair-parallel in terms of a base parallel operator, of which no
fairness properties are assumed. An algebraic theory to support fairness
and fair-parallel is developed.

1 Introduction

In shared memory concurrency, standard approaches to handling fairness [13,16]
focus on defining a fair parallel operator, c ‖f d, that ensures each process gets its
fair share of processor cycles. That complicates reasoning about a single process
running as part of a parallel composition because its progress is determined in
part by the fair parallel operator. In this paper we first focus on a single process
that is run fairly with respect to its environment. That allows one to reason about
its progress properties in relative isolation, although one does need to rely on its
environment (i.e. all processes running in parallel with it) satisfying assumptions
the single process makes about its environment. Fair parallel composition of pro-
cesses can then be formulated as (unfair) parallel composition of fair executions
of each of the individual processes (i.e. fair-execution(c) ‖ fair-execution(d)),
where fair-execution of a command is defined below.

Unfair Parallel. For a parallel composition, c ‖ d, the execution of c may be pre-
empted forever by the execution of d, or vice versa. For example, execution of

x := 1 ‖ dox �= 1 → y := y + 1 od (1)

with x initially zero may not terminate if the right side loop pre-empts the left
side assignment forever [17]. A minimal fairness assumption is that neither pro-
cess of a parallel composition can be pre-empted by the other process indefinitely.

This work was supported by Australian Research Council (ARC) Discovery Project
DP130102901.

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 222–239, 2018.
https://doi.org/10.1007/978-3-319-95582-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_13&domain=pdf

Encoding Fairness in a Synchronous Concurrent Program Algebra 223

Aczel Traces. The denotational semantics that we use for concurrency [3] is
based on Aczel’s model [2,4,5], in which the possible behaviours of a process,
specified by Aczel traces, describe both the steps taken by the process itself
as well as the steps taken by its environment. An Aczel trace is a sequence
of atomic steps from one state σ to the next σ′, in which each atomic step is
either a program step of the form Π(σ, σ′) or an environment step of the form
E(σ, σ′). Parallel composition has an interleaving interpretation and so program
and environment steps are disjoint. Infinite atomic-step sequences denote non-
terminating executions, and finite sequences are labeled to differentiate those
that (i) terminate, (ii) abort or (iii) become infeasible after the last atomic step
in the sequence. Abortion represents failure (e.g. failure caused by a violation
of environment assumptions), that may be refined (i.e. implemented) by any
subsequent behaviour. Infeasibility may arise due to conflicting constraints in
specifications, and is a refinement of any subsequent behaviours. Because each
Aczel trace of a process defines both its behaviour as well as the behaviour of
its environment, it is possible to include assumptions and constraints (including
fairness) on the environment of a process in its denotation – the set of Aczel
traces that it (or any valid implementation of it) may perform.

When two processes are combined in parallel, each must respect the envi-
ronmental constraints placed upon it by the other process – unless either fails,
in which case the parallel composition also fails. For example, assuming neither
process has failed, one process may only take a program step Π(σ, σ′) if its
parallel process may perform a step E(σ, σ′), which permits its environment to
take that program step at that point of execution. This is achieved by requiring
parallel processes to synchronise on every atomic step they take: a program step
Π(σ, σ′) of one process matches the corresponding environment step E(σ, σ′) of
the other to give a program step Π(σ, σ′) of the parallel composition, and iden-
tical environment steps of both processes match to give that environment step
for the parallel composition. Attempting to synchronise other steps is infeasible.

Let π specify the nondeterministic command that executes a single atomic
program step and then terminates, but does not constrain the state-transition
made by that step, that is, π could take Π(σ, σ′) for any possible states σ and
σ′. Similarly, let ε represent the non-deterministic command that executes any
single atomic environment step and then terminates [3,8,9]. Neither π nor ε is
allowed to fail: they do not contain aborting behaviour.

The command c� represents finite iteration of command c, zero or more
times, and cω represents finite or infinite iteration of c, zero of more times. The
command c∞ is the infinite iteration of c. Note that cω splits into finite and
infinite iteration of c, where � represents (demonic) nondeterministic choice.

cω = c� � c∞ (2)

Imposing Fairness. If a process is pre-empted forever its behaviour becomes an
infinite execution of any environment steps, i.e. ε∞. The process fair that allows
any behaviour, except abortion and pre-emption by its environment forever, can
be defined by

224 I. J. Hayes and L. A. Meinicke

fair =̂ ε� (π ε�)ω (3)

where juxtaposition represents sequential composition. The process fair requires
all contiguous subsequences of environment steps to be finite. A process repre-
senting fair execution of a process c is represented by

c � fair

where the weak conjunction, c�d, of c and d behaves as both c and d unless one
of them aborts, in which case c � d aborts [3,6]. Because fair never aborts, any
aborting behaviour of c� fair arises solely from c. In this way, c is constrained to
be fair until it fails, if ever. Weak conjunction is associative, commutative and
idempotent; it has identity chaos defined in terms of iteration of any number
of atomic steps, where α represents a single atomic step, either program or
environment.

α = π � ε (4)
chaos =̂ αω (5)

Because program and environment steps are disjoint, the conjunction of these
commands is the infeasible command �, i.e. π � ε = �.

Our interpretation of the execution of the process,

do true → y := y + 1 od, (6)

from an initial state in which y is zero allows the loop to be pre-empted forever
by its environment and thus does not guarantee that y is ever set to, say, 7. In
contrast, the fair execution of (6),

do true → y := y + 1 od � fair, (7)

rules out pre-emption by its environment forever and hence ensures that even-
tually y becomes 7 (or any other natural number).

Fair Termination. The command term allows only a finite number of program
steps but does not rule out infinite pre-emption by its environment. It is defined
as follows [3,6], recalling that α = π � ε.

term =̂ α� εω (8)

If term is combined with fair, pre-emption by the environment forever is elim-
inated giving a stronger termination property that allows only a finite number
of both program and environment steps, see Lemma 14 (term-fair).

term � fair = α�

The notation c � d means c is refined (or implemented) by d and is defined by,

c � d =̂ ((c � d) = c). (9)

Hence if term � c, then term � fair � c � fair, i.e. fair execution of c gives
strong termination, meaning that there are only a finite number of steps overall,
both program and environment.

Encoding Fairness in a Synchronous Concurrent Program Algebra 225

Fairness and Concurrency. Consider the following variation of example (1).

((x := 1) � fair) ‖ (dox �= 1 → y := y + 1 od � fair) (10)

The fair execution of x := 1 rules out infinite pre-emption by the right side and
hence x is eventually set to one, and hence the right side also terminates thus
ensuring termination of the parallel composition. Note that

(c ‖ d) � fair � (c � fair) ‖ (d � fair)

but the reverse refinement does not hold in general because (c ‖ d) � fair does
not rule out c being pre-empted forever by d (or vice versa) within the parallel;
it only rules out the whole of the parallel composition from being preempted by
its environment forever.

Parallel with Synchronised Termination. The parallel operator ‖ is interpreted
as synchronous parallel for which every step of the parallel (until failure of either
process) must be a synchronisation of steps of its component processes: a pro-
gram and environment step synchronise to give a program step, π ‖ ε = π, two
environment steps synchronise to give an environment step, ε ‖ ε = ε and both
the processes must terminate together, nil ‖ nil = nil. This is in contrast to the
early-termination interpretation of parallel in which, if one process terminates
the parallel composition reduces to the other process. The command εω, referred
to as skip,

skip =̂ εω (11)

is the identity of parallel composition, meaning that it permits any possible
environment behaviour when executed in parallel with any other command, e.g.
c ‖ skip = c. A command c for which

c = c skip (12)

is said to be unconstrained after program termination. When it is executed in
parallel with another command, then after termination of c, the parallel com-
position c ‖ d does reduce to the other command, d. If d is also unconstrained
after program termination, then c ‖ d corresponds to the early-termination inter-
pretation of parallel. Moreover, c ‖ d is then also unconstrained after program
termination, e.g. c ‖ d = (c ‖ d) skip, see Lemma 8 (par-skip). In this way
(12) can be perceived as a healthiness condition, that is preserved by parallel
composition of healthy commands.

The fair execution of any process c constrains the environment, even after
the termination of the program steps in c, so that it cannot execute an infinite
number of steps in a row, e.g. term�fair = α�. This means that it is not healthy
(12), and so for parallel with synchronised termination, simply conjoining fair
to both sides of a synchronous parallel can lead to infeasibility. Consider another
of Van Glabbeek’s examples [17]:

(x := 1 � fair) ‖ (do true → y := y + 1 od � fair). (13)

226 I. J. Hayes and L. A. Meinicke

The fair execution of x := 1 rules out infinite pre-emption by the right side loop,
ensuring x is assigned one, but fair execution of x := 1 forces termination of the
left side, including environment steps, which as the right side is non-terminating
leads to an infeasible parallel composition. To remedy this one needs to allow
infinite pre-emption of a branch in a fair parallel once the command in the branch
has terminated. For a command c satisfying (12) we have that

(c � fair) skip (14)

represents fair execution of c until program termination. Like the original com-
mand c, it remains unconstrained after program termination (i.e. healthy). For
the example above, we have implicitly that x := 1 and the loop (do true → y :=
y + 1 od) are unconstrained after program termination, and so only requiring
both branches to execute fairly until program termination we get

(x := 1 � fair) skip ‖ (do true → y := y + 1 od � fair) skip (15)

which is no longer infeasible, since the second process is allowed to execute
forever after termination of the program steps in the first.

That leads to the following definition for fair parallel,

c ‖
f

d =̂ (c � fair) skip ‖ (d � fair) skip (16)

which imposes fairness on c until it terminates, and similarly for d.
Our theory of fairness is based on the synchronous concurrent refinement

algebra, which is summarised in Sect. 2, and Sect. 3 gives a set of lemmas about
iterations in the algebra. Section 4 gives basic properties of the command fair,
while Sect. 5 gives properties of fair combined with (unfair) concurrency and
Sect. 6 uses these to derive properties of the fair-parallel operator which is defined
in terms of (unfair) parallel (16).

2 Synchronous Concurrent Refinement Algebra

The synchronous concurrent refinement algebra is defined in [8,9]. In this section
we introduce the aspects that are used to define and reason about fairness in
this paper. A model for the algebra based on Aczel traces, as discussed in the
introduction, can be found in [3].

A concurrent refinement algebra with atomic steps (A), and synchronisation
operators parallel (‖) and weak conjunction (�) is a two-sorted algebra

(C,A,
�

,
⊔

, ;, ‖,�, ! ,nil, α, skip, chaos, ε)

where the carrier set C is interpreted as the set of commands and forms a com-
plete distributive lattice with meet (

�
), referred to as choice, and join (

⊔

),
referred to as conjunction, and refinement ordering given by (9), where we use
c � d =̂

�{c, d}, and c � d =̂
⊔{c, d} to represent the meet and join over pairs of

Encoding Fairness in a Synchronous Concurrent Program Algebra 227

elements. The least and greatest elements in the lattice are the aborting com-
mand ⊥ =̂

� C, and the infeasible command � =̂
⊔ C, respectively. The binary

operator “;”, with identity element nil, represents sequential composition (and
satisfies the axioms listed in Fig. 1), however we abbreviate c ;d to c d throughout
this paper.

For i ∈ N, we use ci to represent the fixed-iteration of the command c, i times.
It is inductively defined by c0 =̂ nil, ci+1 =̂ c ci. More generally, fixed-point
operators finite iteration (�), finite or infinite iteration (ω), and infinite iteration
(∞) are defined using the least (μ) and greatest (ν) fixed-point operators of the
complete distributive lattice of commands,

c� =̂ (νx.nil � c x) (17)
cω =̂ (μx.nil � c x) (18)

c∞ =̂ cω � (19)

and satisfy the properties outlined in Sect. 3.
The second carrier set A ⊆ C is a sub-algebra of atomic step commands,

defined so that (A,�,�, ! ,�, α) forms a Boolean algebra with greatest element
� (also the greatest command), which can be thought of the atomic step that
is disabled from all initial states, the least element α, the command that can
perform any possible atomic step. The negation of an atomic step a ∈ A, written
! a, represents all of the atomic steps that are not in a. Distinguished atomic step
ε ∈ A is used to stand for any possible environment step, and its complement,
π =̂ ! ε, is then the set of all possible program steps, giving us that α = π � ε.

Both parallel composition (‖) andweak conjunction (�) are instances of the syn-
chronisation operator (⊗), in which parallel has command identity skip= εω, and
atomic-step identity ε; and weak conjunction has command identity chaos=αω,
and atomic-step identity α. As well as satisfying the synchronisation axioms from
Fig. 1, a number of additional axioms, also listed in the figure, are assumed. These
include, for example, that both operators are abort-strict, (36) and (37), weak con-
junction is idempotent (38), and they include assumptions about the synchronisa-
tion of atomic steps, e.g. (39) and (40).

We follow the convention that c and d stands for arbitrary commands, and
a and b for atomic step commands. Further, subscripted versions of these stand
for entities of the same kind. We also assume that choice (�) has the lowest
precedence, and sequential composition has the highest; and we use parentheses
to disambiguate other cases.

3 Properties of Iterations

In this section we outline the iteration properties required in this paper. Omitted
or abbreviated proofs can be found in [7].

First, from [8,9], we have that the iteration operators satisfy the basic prop-
erties listed in Fig. 2. The following lemma (also from [8]), captures that prefixes
of finite iterations of atomic steps a� c and b� d combine in parallel until either
a� or b� or both complete. If both a� and b� complete together, the remaining
commands after the prefixes run in parallel: c ‖ d. If the first completes before

228 I. J. Hayes and L. A. Meinicke

the second, c runs in parallel with at least one b followed by d, and symmetrically
if the second completes before the first.

Lemma 1 (finite-finite-prefix)

a� c ‖ b� d = (a ‖ b)� ((c ‖ d) � (c ‖ b b� d) � (a a� c ‖ d)).

The next lemma is similar to Lemma 1, except one of the prefixes is finite
and the other is possibly infinite.

Fig. 1. Axioms for the synchronous concurrent refinement algebra. We let c, d ∈ C be
commands, C, D ∈ P C be sets of commands, a, b ∈ A be atomic steps, and i ∈ N be a
natural number.

Encoding Fairness in a Synchronous Concurrent Program Algebra 229

Fig. 2. Basic properties of iteration operators for commands c, d, x ∈ C.

Lemma 2 (finite-omega-prefix)

a� c ‖ bω d = (a ‖ b)� ((c ‖ d) � (c ‖ b bω d) � (a a� c ‖ d)).

The following lemma uses the fact that program steps do not synchronise
with other program steps in parallel (39), to simplify the parallel composition
of two iterations.

Lemma 3 (iterate-pi-par-pi). (π c)ω ‖ (π d)ω = nil.

Proof. The proof uses (47), distribution and then (30), (31) twice, (33),
and (39). ��
Lemma 4 (iterate-pi-sync-atomic). For either synchronisation operator, ‖
or �, and atomic step command a,

(π c)ω ⊗ a d = (π ⊗ a) (c (π c)ω ⊗ d).

Proof. The proof uses (47), distribution and then (31) and (33). ��
Lemma 5 (distribute-infeasible-suffix). For any synchronisation operator
(⊗) that is abort strict, i.e. (c ⊗ ⊥) = ⊥ for all c, then we have that for any
commands c, d,

c ⊗ d � = (c ⊗ d) �.

Lemma 6 (infinite-annihilates). (c � α∞) d1 = (c � α∞) d2.

Proof. The result follows straightforwardly from the fact that weak conjunction
is abort strict (37), α∞ = α∞ � from (19) and Lemma 5 (distribute-infeasible-
suffix), together with the fact that � d1 = � = � d2 from (23) by taking C in
(23) to be empty. ��
Taking d2 to be nil in the above lemma gives (c � α∞) d = c � α∞, for any d.

Lemma 7 (sync-termination). For commands c and d such that c = c � α�

and d = d � α�,

(c a� ‖ d b�) (aω ‖ bω) = c aω ‖ d bω

230 I. J. Hayes and L. A. Meinicke

The following lemma gives us that parallel composition preserves the health-
iness property (12).

Lemma 8 (par-skip). (c skip ‖ d skip) skip = c skip ‖ d skip

Proof. Refinement from left to right is straightforward because skip � nil:

(c skip ‖ d skip) skip � (c skip ‖ d skip) nil = c skip ‖ d skip.

Refinement from right to left can be shown as follows.

c skip ‖ d skip
= as skip = skip skip

c skip skip ‖ d skip skip
� by sync-interchange-seq (35)

(c skip ‖ d skip) (skip ‖ skip)
= skip is the identity of parallel composition

(c skip ‖ d skip) skip
��

4 Properties of fair

This section provides a set of properties of the command fair culminating with
Theorem 1 (fair-termination), which allows termination arguments to be decou-
pled from fairness. The command chaos allows any non-aborting behaviour. If a
command refines chaos, that command is therefore non-aborting. The command
fair is non-aborting.

Lemma 9 (chaos-fair). chaos � fair

Proof. The proof uses the definition of chaos (5), (54), the property that cω � c�,
for any command c, and the definition of fair (3).

chaos = (ε � π)ω = εω (π εω)ω � ε� (π ε�)ω = fair ��
Fair execution of a command is always a refinement of the command.

Lemma 10 (introduce-fair). c � c � fair

Proof. The lemma holds because chaos is the identity of � and Lemma 9 (chaos-
fair):

c = c � chaos � c � fair. ��
Fair execution followed by fair execution is equivalent to fair execution.

Encoding Fairness in a Synchronous Concurrent Program Algebra 231

Lemma 11 (fair-fair). fair fair = fair

Proof

fair fair
= by definition of fair (3)

ε� (π ε�)ω ε� (π ε�)ω

= by (53)
(ε� π)ω ε� ε� (π ε�)ω

= as c� c� = c�, for any c
(ε� π)ω ε� (π ε�)ω

= by (53)
ε� (π ε�)ω (π ε�)ω

= as cω cω = cω, for any c
ε� (π ε�)ω

= by definition of fair (3)
fair ��

Fair execution of a sequential composition is implemented by fair execution
of each command in sequence.

Lemma 12 (fair-distrib-seq). (c d) � fair � (c � fair) (d � fair)

Proof. The proof uses Lemma 11 (fair-fair) and then interchanges weak conjunc-
tion with sequential (35).

(c d) � fair = (c d) � (fair fair) � (c � fair) (d � fair)

��
The command skip (= εω) is the identity of parallel composition. It allows

any sequence of environment steps, including ε∞, but fair execution of skip
excludes ε∞, leaving only a finite sequence of environment steps: ε�.

Lemma 13 (skip-fair). skip � fair = ε�

Proof. Expanding the definitions of skip (11) and fair (3) in the left side to
start.

εω � ε� (π ε�)ω

= by Lemma 2 (finite-omega-prefix)
ε� ((nil � (π ε�)ω) � (nil � ε ε� (π ε�)ω) � (ε εω � (π ε�)ω))

= by (31) and Lemma 4 (iterate-pi-sync-atomic) and (40)
ε� (nil � � � �)

= ε� ��
The command term (8) allows only a finite number of program steps but

does not exclude an infinite sequence of environment steps, whereas fair excludes
an infinite sequence of environment steps. When term and fair are conjoined,
only a finite number of steps is allowed overall.

232 I. J. Hayes and L. A. Meinicke

Lemma 14 (term-fair). term � fair = α�

Proof. Note that α� = α� α� � α� ε� � α� nil = α�, and hence α� = α� ε�.

term � fair = α�

⇔ by the definition of term (8) and α� = α� ε�

α� εω � fair = α� ε�

The fixed point fusion theorem [1] is applied with F =̂ λx·x�fair, G =̂ λx·εω�α x
and H =̂ λx · ε� � α x. The lemma corresponds to F (νG) = νH, which holds by
the fusion theorem if F ◦G = H ◦F and F distributes arbitrary nondeterministic
choices.

(F ◦ G)(x)
= by the definitions of F and G

(εω � α x) � fair
= distributing

(εω � fair) � (α x � fair)
= by Lemma 13 (skip-fair) and expanding the definition of fair (3)

ε� � (α x � ε� (π ε�)ω)
= by unfolding (46) on ε� and distribute

ε� � (α x � (π ε�)ω) � (α x � ε ε� (π ε�)ω)
= by Lemma 4 (iterate-pi-sync-atomic) and α � π = π and (33)

ε� � π (x � ε� (π ε�)ω) � ε (x � ε� (π ε�)ω)
= distribute and use definition of fair (3)

ε� � α (x � fair)
= by the definitions of H and F

(H ◦ F)(x)

Finally F distributes arbitrary nondeterministic choices because for nonempty C,

F (
�

C) = (
�

C) � fair =
�

c∈C

(c � fair) =
�

c∈C

F (c),

and for C empty, F (
� ∅) = � � fair = � =

�
c∈∅(c � fair) =

�
c∈∅ F (c) because

chaos � fair. ��
We do not build fairness into our definitions of standard sequential pro-

gramming constructs such as assignment, conditionals and loops [3], rather their
definitions allow preemption by their environment forever. Hence any executable
sequential program code may be preempted forever. The command term allows
only a finite number of program steps but also allows preemption by the environ-
ment forever. If a command c refines term it will terminate in a finite number
of steps provided it is not preempted by its environment forever, and hence fair
execution of c only allows a finite number of steps because preemption by the
environment forever is precluded by fair execution. That allows one to show ter-
mination by showing the simpler property, term � c, which does not need to
consider fairness. Existing methods for proving termination can then be used in
the context of fair parallel.

Encoding Fairness in a Synchronous Concurrent Program Algebra 233

Theorem 1 (fair-termination). If term � c, then α� � c � fair.

Proof. If term � c, by Lemma 14 (term-fair) α� = term � fair � c � fair. ��

5 Properties of Fair and Concurrency

This section provides a set of properties for combining fair with (unfair) concur-
rency, in particular it provides lemmas for distributing fairness over a parallel
composition. Details of abbreviated proofs can be found in [7]. The following is
a helper lemma for Lemma 16 (fair-par-fair).

Lemma 15 (fair-par-fair-expand). fair ‖ fair = ε� (nil � π (fair ‖ fair))

Proof. The proof begins by expanding the definition of fair (3), then
uses Lemma 1 (finite-finite-prefix) and (29), then Lemma 3 (iterate-pi-par-pi),
Lemma 4 (iterate-pi-sync-atomic) and (29) and finally the definition of fair once
more. ��

Fair execution is implemented by fair execution of two parallel processes.

Lemma 16 (fair-par-fair). fair � fair ‖ fair

Proof

fair � fair ‖ fair
⇔ by the definition of fair (3) and (53)

(ε� π)ω ε� � fair ‖ fair
⇐ by (50)

ε� � ε� π (fair ‖ fair) � fair ‖ fair

The above follows by Lemma 15 (fair-par-fair-expand) by distributing. ��
Fair execution of c ‖ d can be implemented by fair execution of each of c and

d but the reverse does not hold in general.

Lemma 17 (fair-distrib-par-both). (c ‖ d) � fair � (c � fair) ‖ (d � fair)

Proof. The proof uses Lemma 16 (fair-par-fair) and then interchanges weak con-
junction and parallel (45).

(c ‖ d) � fair � (c ‖ d) � (fair ‖ fair) � (c � fair) ‖ (d � fair) ��
The following is a helper lemma for Lemma 19 (fair-par-chaos).

Lemma 18 (fair-par-chaos-expand). fair‖chaos= ε�(nil�π (fair‖chaos))

Proof. The proof uses the definitions of fair (3) and chaos (5) and (54), then
Lemma 2 (finite-omega-prefix) and (29), then Lemma 3 (iterate-pi-par-pi) and
Lemma 4 (iterate-pi-sync-atomic) and (29), and finally (54) and definitions (3)
and (5). ��

234 I. J. Hayes and L. A. Meinicke

Fair execution in parallel with chaos gives a fair execution because chaos
never aborts.

Lemma 19 (fair-par-chaos). fair ‖ chaos = fair

Proof. The refinement from left to right is straightforward as chaos � skip
and skip is the identity of parallel: fair ‖ chaos � fair ‖ skip = fair. The
refinement from right to left uses the definition of fair.

fair � fair ‖ chaos
⇔ by the definition of fair (3) and (53)

(ε� π)ω ε� � fair ‖ chaos
⇐ by (50)

ε� � ε� π (fair ‖ chaos) � fair ‖ chaos

The above follows by Lemma 18 (fair-par-chaos-expand) and distributing. ��
Fair execution of one process of a parallel composition eliminates behaviour

ε∞ for that process and hence because parallel compositions synchronise on ε
(29), that eliminates behaviour ε∞ from the parallel composition as a whole,
provided the parallel process does not abort. Aborting behaviour of one process
of a parallel aborts the whole parallel (36) and aborting behaviour allows any
behaviour, including ε∞. Fair execution of c ‖ d can be implemented by fair
execution of c (or by symmetry d).

Lemma 20 (fair-distrib-par-one). (c ‖ d) � fair � (c � fair) ‖ d

Proof. The proof uses Lemma 19 (fair-par-chaos), then interchanges weak con-
junction and parallel (45) and finally uses the fact that chaos is the identity of
weak conjunction.

(c ‖ d) � (fair ‖ chaos) � (c � fair) ‖ (d � chaos) = (c � fair) ‖ d ��

6 Properties of Fair Parallel

This section examines the properties of the fair-parallel operator (16), such as
commutativity, distribution over nondeterministic choice and associativity. The
first three results derive readily from the equivalent properties for parallel.

Theorem 2 (fair-parallel-commutes). c ‖f d = d ‖f c

Proof. The proof is straightforward from definition (16) of fair-parallel because
(unfair) parallel is commutative. ��
Theorem 3 (fair-parallel-distrib). D �= ∅ ⇒ c ‖f (

�
D) =

�
d∈D(c ‖f d)

Encoding Fairness in a Synchronous Concurrent Program Algebra 235

Proof. Let D be non-empty.

c ‖f (
�

D)
= by the definition of ‖f (16)

(c � fair) skip ‖ ((
�

D) � fair) skip
= as non-empty choice distributes over �, sequential composition and ‖�

d∈D(c � fair) skip ‖ (d � fair) skip
= by the definition of ‖f (16)�

d∈D(c ‖f d) ��
Theorem 4 (fair-par-monotonic). If d1 � d2, then c ‖f d1 � c ‖f d2.

Proof. The refinement d1 � d2 holds if and only if d1 � d2 = d1 and hence, by
Theorem 3 (fair-parallel-distrib),

c ‖f d1 � c ‖f d2
⇔ c ‖f d1 � c ‖f d2 = c ‖f d1
⇔ c ‖f (d1 � d2) = c ‖f d1

because d1 � d2 = d1 follows from the assumption. ��
Fair-parallel retains fairness for its component processes with respect to the

overall environment even when one component process terminates.

Theorem 5 (fair-parallel-nil). c ‖f nil = (c � fair) skip

Proof. The proof uses the definition of fair parallel (16), the facts that skip is
the identity of parallel composition and nil � fair = nil.

(c � fair) skip ‖ (nil � fair) skip = (c � fair) skip ‖ skip = (c � fair) skip ��
While properties such as commutativity and distributivity are relatively

straightforward to verify, associativity of fair-parallel is more involved. A prop-
erty that is essential to the associativity proof is that fair-parallel execution
of two commands not only ensures that each of its commands are executed
fairly until program termination, but also that the whole parallel composition
is executed fairly until program termination; this is encapsulated in Theorem6
(absorb-fair-skip), but first we show the easy direction of this proof in Lemma21
(introduce-fair-skip) and then give lemmas for the finite and infinite cases for
Theorem 6 (absorb-fair-skip).

Lemma 21 (introduce-fair-skip). c ‖f d � ((c ‖f d) � fair) skip

Proof

c ‖f d

= by Lemma 8 (par-skip) using the definition of fair parallel (16)
(c ‖f d) skip

� by Lemma 10 (introduce-fair)
((c ‖f d) � fair) skip ��

236 I. J. Hayes and L. A. Meinicke

Lemma 22 (finite-absorb-fair-skip)

(((c � α�) ‖f (d � α�)) � fair) skip = (c � α�) ‖f (d � α�)

Proof. The refinement from right to left follows by Lemma21 (introduce-fair-
skip). The refinement from left to right follows.

(((c � α�) ‖f (d � α�)) � fair) skip
= by the definition of ‖f (16)

(((c � α� � fair) skip ‖ (d � α� � fair) skip) � fair) skip
� by Lemma 17 (fair-distrib-par-both)

((((c � α� � fair) skip) � fair) ‖ (((d � α� � fair) skip) � fair)) skip
� by Lemma 12 (fair-distrib-seq) and � idempotent (38)

((c � α� � fair) (skip � fair) ‖ (d � α� � fair) (skip � fair)) skip
� as skip � fair = ε� by Lemma 13 (skip-fair)

((c � α� � fair) ε� ‖ (d � α� � fair) ε�) skip
� by Lemma 7 (sync-termination) as skip ‖ skip = skip and skip = εω

(c � α� � fair) skip ‖ (d � α� � fair) skip
= by the definition of ‖f (16)

(c � α�) ‖f (d � α�) ��
Lemma 23 (infinite-absorb-fair-skip).

(((c � α∞) ‖f d) � fair) skip = (c � α∞) ‖f d

Proof. The refinement from right to left follows by Lemma 21 (introduce-fair-
skip). The refinement from left to right follows.

(((c � α∞) ‖f d) � fair) skip
= by the definition of ‖f (16)

(((c � α∞ � fair) skip ‖ (d � fair) skip) � fair) skip
= by Lemma 6 (infinite-annihilates)

(((c � α∞ � fair) ‖ (d � fair) skip) � fair) skip
� by Lemma 20 (fair-distrib-par-one) and � is idempotent (38)

((c � α∞ � fair) ‖ (d � fair) skip) skip
= by Lemma 6 (infinite-annihilates)

((c � α∞ � fair) skip ‖ (d � fair) skip) skip
= by Lemma 8 (par-skip)

(c � α∞ � fair) skip ‖ (d � fair) skip
= by the definition of ‖f (16)

(c � α∞) ‖f d ��

Encoding Fairness in a Synchronous Concurrent Program Algebra 237

Theorem 6 (absorb-fair-skip). ((c ‖f d) � fair) skip = c ‖f d

Proof. The proof decomposes c and d into their finite and infinite components
based on the observation that the identity of “�” is chaos, which equals α��α∞.

((c ‖f d) � fair) skip

= combine α� � α∞ with each of c and d and distribute
((((c � α�) � (c � α∞)) ‖f ((d � α�) � (d � α∞))) � fair) skip

= by repeated application of Theorem 3 (fair-parallel-distrib)
(((c � α�) ‖f (d � α�)) � fair) skip � (((c � α�) ‖f (d � α∞)) � fair) skip �
(((c � α∞) ‖f (d � α�)) � fair) skip � (((c � α∞) ‖f (d � α∞)) � fair) skip

= by Lemma 22 (finite-absorb-fair-skip) and Lemma 23 (infinite-absorb-fair-skip)
(c � α�) ‖f (d � α�) � (c � α�) ‖f (d � α∞) �
(c � α∞) ‖f (d � α�) � (c � α∞) ‖f (d � α∞)

= by Theorem 3 (fair-parallel-distrib)
((c � α�) � (c � α∞)) ‖f ((d � α�) � (d � α∞))

= distributing
(c � (α� � α∞)) ‖f (d � (α� � α∞))

= as α� � α∞ = chaos, the identity of �
c ‖f d ��
With these results we can now verify associativity of fair parallel.

Theorem 7 (fair-parallel-associative). (c ‖f d) ‖f e = c ‖f (d ‖f e)

Proof

(c ‖f d) ‖f e

= by definition of ‖f (16)
((c ‖f d) � fair) skip ‖ (e � fair) skip

= by Theorem 6 (absorb-fair-skip)
(c ‖f d) ‖ (e � fair) skip

= by definition of ‖f (16)
((c � fair) skip ‖ (d � fair) skip) ‖ (e � fair) skip

= by associativity of parallel
(c � fair) skip ‖ ((d � fair) skip ‖ (e � fair) skip)

= by definition of ‖f (16)
(c � fair) skip ‖ (d ‖f e)

= by Theorem 6 (absorb-fair-skip)
(c � fair) skip ‖ ((d ‖f e) � fair) skip

= by definition of ‖f (16)
c ‖f (d ‖f e) ��

Other properties of fair parallel can be proven in a similar manner, for exam-
ple, the equivalent of the interchange law (45) with parallel replaced by fair
parallel.

238 I. J. Hayes and L. A. Meinicke

7 Conclusions

Earlier work on fairness [13,16] focused on defining fairness as part of a fair-
parallel operator. The main contribution of this paper is to separate the concerns
of fairness and the parallel operator. That allows us to (i) reason about the fair
execution of a single process in isolation, for example, via Theorem 1 (fair-
termination); (ii) start from a basis of the (unfair) parallel operator, which has
simpler algebraic properties; and (iii) define the fair-parallel operator in terms
of the more basic (unfair) parallel operator and hence prove properties of the
fair-parallel operator in terms of its definition.

The first point is important for devising a compositional approach to reason-
ing about the fairness properties of concurrent systems in terms of the fairness
properties of their components. The second point allows us to utilise the syn-
chronous concurrent refinement algebra [3,8,9] (which has similarities to Mil-
ner’s SCCS [14,15]) to encode fairness in an existing theory with no built-in
fair-parallel operator. The third point shows that no expressive power is lost
compared to starting with a fair-parallel operator, in fact, there is a gain in
expressiveness as one can define a parallel composition which imposes fairness
on only one of its components: ((c � fair) skip) ‖ d.

Overall, these results indicate that a suitable foundation of handling concur-
rency and fairness can start from a theory in which the parallel operator has no
built-in fairness assumptions. The ability to do this derives from the use of a syn-
chronous parallel operator motivated by the rely/guarantee approach of Jones
[10–12] and Aczel’s trace model for that approach [2–5], in which environment
steps are made explicit.

Acknowledgements. This research was supported Australian Research Council Dis-
covery Grant DP130102901. Thanks are due to Robert Colvin, Rob Van Glabbeek,
Peter Höfner, Cliff Jones, and Kirsten Winter, for feedback on ideas presented here.
This research has benefited greatly from feedback members of IFIP Working Group
2.3 on Programming Methodology, in particular, at the meeting in Villebrumier.

References

1. Aarts, C., Backhouse, R., Boiten, E., Doombos, H., van Gasteren, N., van Geldrop,
R., Hoogendijk, P., Voermans, E., van der Woude, J.: Fixed-point calculus. Inf.
Process. Lett. 53, 131–136 (1995)

2. Aczel, P.H.G.: On an inference rule for parallel composition (1983). Private com-
munication to Cliff Jones. http://homepages.cs.ncl.ac.uk/cliff.jones/publications/
MSs/PHGA-traces.pdf

3. Colvin, R.J., Hayes, I.J., Meinicke, L.A.: Designing a semantic model for a wide-
spectrum language with concurrency. Formal Aspects Comput. 29, 853–875 (2016)

4. de Boer, F.S., Hannemann, U., de Roever, W.-P.: Formal justification of the rely-
guarantee paradigm for shared-variable concurrency: a semantic approach. In:
Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1245–
1265. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48118-4 16

http://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf
http://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf
https://doi.org/10.1007/3-540-48118-4_16

Encoding Fairness in a Synchronous Concurrent Program Algebra 239

5. de Roever, W.-P.: Concurrency Verification: Introduction to Compositional and
Noncompositional Methods. Cambridge University Press, Cambridge (2001)

6. Hayes, I.J.: Generalised rely-guarantee concurrency: an algebraic foundation. For-
mal Aspects Comput. 28(6), 1057–1078 (2016)

7. Hayes, I.J., Meinicke, L.A.: Encoding fairness in a synchronous concurrent program
algebra: extended version with proofs. arXiv:1805.01681 [cs.LO] (2018)

8. Hayes, I.J., Colvin, R.J., Meinicke, L.A., Winter, K., Velykis, A.: An algebra of
synchronous atomic steps. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou,
A. (eds.) FM 2016. LNCS, vol. 9995, pp. 352–369. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-48989-6 22

9. Hayes, I.J., Meinicke, L.A., Winter, K., Colvin, R.J.: A synchronous program
algebra: a basis for reasoning about shared-memory and event-based concurrency.
Accepted for publication in Formal Aspects of Computing (2018)

10. Jones, C.B.: Development methods for computer programs including a notion of
interference. Ph.D. thesis, Oxford University, June 1981. Available as: Oxford
University Computing Laboratory (now Computer Science) Technical Monograph
PRG-25

11. Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings of
IFIP 1983, pp. 321–332. North-Holland (1983)

12. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM ToPLaS 5(4), 596–619 (1983)

13. Lehmann, D., Pnueli, A., Stavi, J.: Impartiality, justice and fairness: the ethics
of concurrent termination. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS,
vol. 115, pp. 264–277. Springer, Heidelberg (1981). https://doi.org/10.1007/3-540-
10843-2 22

14. Milner, A.J.R.G.: Communication and Concurrency. Prentice-Hall, Upper Saddle
River (1989)

15. Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25(3), 267–
310 (1983)

16. Park, D.: On the semantics of fair parallelism. In: Bjøorner, D. (ed.) Abstract
Software Specifications. LNCS, vol. 86, pp. 504–526. Springer, Heidelberg (1980).
https://doi.org/10.1007/3-540-10007-5 47

17. van Glabbeek, R.J.: Ensuring liveness properties of distributed systems (a research
agenda). Technical report, NICTA, March 2016. Position paper

http://arxiv.org/abs/1805.01681
https://doi.org/10.1007/978-3-319-48989-6_22
https://doi.org/10.1007/978-3-319-48989-6_22
https://doi.org/10.1007/3-540-10843-2_22
https://doi.org/10.1007/3-540-10843-2_22
https://doi.org/10.1007/3-540-10007-5_47

A Wide-Spectrum Language
for Verification of Programs on Weak

Memory Models

Robert J. Colvin and Graeme Smith(B)

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

r.colvin@uq.edu.au, smith@itee.uq.edu.au

Abstract. Modern processors deploy a variety of weak memory models,
which for efficiency reasons may (appear to) execute instructions in an
order different to that specified by the program text. The consequences
of instruction reordering can be complex and subtle, and can impact
on ensuring correctness. Previous work on the semantics of weak mem-
ory models has focussed on the behaviour of assembler-level programs.
In this paper we utilise that work to extract some general principles
underlying instruction reordering, and apply those principles to a wide-
spectrum language encompassing abstract data types as well as low-level
assembler code. The goal is to support reasoning about implementations
of data structures for modern processors with respect to an abstract
specification.

Specifically, we encode a weak memory model in a pair-wise reordering
relation on instructions. Some architectures require an additional defini-
tion of the behaviour of the global storage system if it does not provide
multi-copy atomicity. In this paper we use the reordering relation in an
operational semantics. We derive some properties of program refinement
under weak memory models, and encode the semantics in the rewriting
engine Maude as a model-checking tool. The tool is used to validate the
semantics against the behaviour of a set of litmus tests (small assembler
programs) run on hardware, and also to model check implementations of
data structures from the literature against their abstract specifications.

1 Introduction

Modern processor architectures provide a challenge for developing efficient and
correct software. Performance can be improved by parallelising computation to
utilise multiple cores, but communication between threads is notoriously error-
prone. Weak memory models go further and improve overall system efficiency
through sophisticated techniques for batching reads and writes to the same vari-
ables and to and from the same processors. However, code that is run on such
memory models is not guaranteed to take effect in the order specified in the
program code, creating unexpected behaviours for those who are not forewarned
[1]. For instance, the instructions x := 1; y := 1 may, from the perspective of
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 240–257, 2018.
https://doi.org/10.1007/978-3-319-95582-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_14&domain=pdf

A Wide-Spectrum Language for Verification of Programs 241

another process, taken effect in the order y := 1; x := 1. Architectures typi-
cally provide memory barrier/fence instructions which can enforce ordering –
so that x := 1; fence; y := 1 can not be reordered – but reduce performance
improvements (and so should not be overused).

Previous work on formalising weak memory models has resulted in abstract
formalisations which were developed incrementally through communication with
processor vendors and rigorous testing on real machines [2–4]. A large collection
of “litmus tests” have been developed [5,6] which demonstrate the sometimes
confusing behaviour of hardware. We utilise this existing work to provide a wide-
spectrum programming language and semantics that runs on the same relaxed
principles that apply to assembler instructions. When these principles are spe-
cialised to the assembler of ARM and POWER processors our semantics gives
behaviour consistent with existing litmus tests. Our language and semantics,
therefore, connect instruction reordering to higher-level notions of correctness.
This enables verification of low-level code targeting specific processors against
abstract specifications.

We begin in Sect. 2 with the basis of an operational semantics that allows
reordering of instructions according to pair-wise relationships between instruc-
tions. In Sect. 3 we describe the semantics in more detail, focussing on its instan-
tiation for the widely used ARM and POWER processors. In Sect. 4 we give a
summary of the encoding of the semantics in Maude and its application to model-
checking concurrent data structures. We discuss related work in Sect. 5 before
concluding in Sect. 6.

2 Instruction Reordering in Weak Memory Models

2.1 Thread-Local Reorderings

It is typically assumed processes are executed in a fixed sequential order (as given
by sequential composition – the “program order”). However program order may
be inefficient, e.g., when retrieving the value of a variable from main memory
after setting its value, as in x := 1; r := x, and hence weak memory models some-
times allow execution out of program order to improve overall system efficiency.
While many reorderings can seem surprising, there are basic principles at play
which limit the number of possible permutations, the key being that the new
ordering of instructions preserves the original sequential intention.

A classic example of weak memory models producing unexpected behaviour
is the “store buffer” pattern below [5]. Assume that all variables are initially 0,
and that thread-local variables (registers) are named r , r1, r2, etc., and that x
and y are shared variables.

(x := 1; r1 := y) ‖ (y := 1; r2 := x) (1)

It is possible to reach a final state in which r1 = r2 = 0 in several weak memory
models: the two assignments in each process are independent (they reference
different variables), and hence can be reordered. From a sequential semantics

242 R. J. Colvin and G. Smith

perspective, reordering the assignments in process 1, for example, preserves the
final values for r1 and x .

Assume that c and c′ are programs represented as sequences of atomic actions
α; β; . . ., as in a sequence of instructions in a processor or more abstractly a
semantic trace. Program c may be reordered to c′, written c � c′, if the following
holds:

1. c′ is a permutation of the actions of c, possibly with some modifications due
to forwarding (see below).

2. c′ preserves the sequential semantics of c. For example, in a weakest precon-
ditions semantics [7], for all predicates P , wp(c,P) ⇒ wp(c′,P).

3. c′ preserves coherence-per-location with respect to c (cf. po-loc in [3]). This
means that the order of updates and accesses of each shared variable, consid-
ered individually, is maintained.

We formalise these constraints in the context of pair-wise reordering of instruc-
tions below. The key challenge for reasoning about programs executed on a weak
memory model is that the behaviour of c ‖ d is in general quite different to the
behaviour of c′ ‖ d , even if c � c′. We focus in this paper on the principles
for ARM and POWER processors; for space reasons we do not address TSO
[8], which has fewer relevant instruction types (e.g., only one type of fence) and
stricter conditions on reordering.

2.2 Reordering and Forwarding Instructions

We write α
r⇐ β if instruction β may be reordered before instruction α. It is rela-

tively straightforward to define when two assignment instructions (encompassing
stores, loads, and register operations at the assembler level) may be reordered.
Below let x nfi f mean that x does not appear free in the expression f , and say
expressions e and f are load-distinct if they do not reference any common shared
variables.

x := e
r⇐ y := f if

(1) x , y are distinct; (2) x nfi f ; (3) y nfi e; and
(4) e, f are load-distinct;

(2)

Note that r⇐ as defined above is symmetric, however when calculated after the
effect of forwarding is applied (as described below) there are instructions that
may be reordered in one direction but not the other. The relation is neither
reflexive nor transitive. In TSO processors a load may be reordered before a
store, but not vice versa [8], and hence the general condition for TSO is stronger
and not reflexive.

Provisos (1), (2) and (3) ensure executing the two assignments in either order
results in the same final values for x and y , and proviso (4) maintains order on
accesses of the shared state. If two updates do not refer to any common variables
they may be reordered. The provisos allow some reordering when they share
common variables. Proviso (1) eliminates reorderings such as (x := 1; x := 2) �

(x := 2; x := 1) which would violate the sequential semantics (the final value of

A Wide-Spectrum Language for Verification of Programs 243

x). Proviso (2) eliminates reorderings such as (x := 1; r := x) � (r := x ; x := 1)
which again would violate the sequential semantics (the final value of r). Proviso
(3) eliminates reorderings such as (r := y ; y := 1) � (y := 1; r := y) which
again would violate the sequential semantics (the final value of r). Proviso (4),
requiring the update expressions to be load-distinct, preserves coherence-per-
location, eliminating reorderings such as (r1 := x ; r2 := x) � (r2 := x ; r1 := x),
where r2 may receive an earlier value of x than r1 in an environment which
modifies x .

The instructions used in the above examples, where each instruction refer-
ences at most one global variable and uses simple integer values, correspond to
the basic load and store instruction types of ARM and POWER processors. We
may instantiate (2) to such instructions, giving reordering rules such as the fol-
lowing, which states that a store may be reordered before a load if they are to
different locations (r1 := y r⇐ x := r2). We use ARM syntax to emphasise the
application to a real architecture.

LDR r1, y
r⇐ STR r2, x (3)

In practice, proviso (2) may be circumvented by forwarding1. This refers to
taking into account the effect of the earlier update on the expression of the latter.
We write β[α] to represent the effect of forwarding the (assignment) instruction
α to the instruction β. For assignments we define

(y := f)[x := e] = y := (f[x\e]) if e does not refer to global variables (4)

where the term f[x\e] stands for the syntactic replacement in expression f of
references to x with e. The proviso of (4) prevents additional loads of globals
being introduced by forwarding.

We specify the reordering and forwarding relationships with other instruc-
tions such as branches and fences in Sect. 3.3.

2.3 General Operational Rules for Reordering

The key operational principle allowing reordering is given by the following tran-
sition rules for a program (α; c), i.e., a program with initial instruction α.

(α; c) α−→ c (a)
c

β−→ c′ α
r⇐ β[α]

(α; c)
β[α]−→(α; c′)

(b) (5)

Rule (5a) is the straightforward promotion of the first instruction into a step in
a trace, similar to the basic prefixing rules of CCS [9] and CSP [10]. Rule (5b),
however, states that, unique to weak memory models, an instruction of c, say
β, can happen before α, provided that β[α] can be reordered before α according

1 We adopt the term “forwarding” from ARM and POWER [3]. The equivalent effect
is referred to as bypassing on TSO [8].

244 R. J. Colvin and G. Smith

to the rules of the architecture. Note that we forward the effect of α to β before
deciding if the reordering is possible.

Applying Rule (5b) then (5a) gives the following reordered behaviour of two
assignments.

(r := 1; x := r ; nil) x := 1−−−→ (r := 1; nil) r := 1−−−→ nil (6)

We use the command nil to denote termination. The first transition above is
possible because we calculate the effect of r := 1 on the update of x before
executing that update, i.e., x := r [r := 1] = x := 1.

The definitions of instruction reordering, α
r⇐ β, and instruction forwarding,

β[α] are architecture-specific, and are the only definitions required to specify an
architecture’s instruction ordering.2 The instantiations for sequentially consistent
processors (i.e., those which do not have a weak memory model) are trivial: α �r⇐ β
for all α, β, and there is no forwarding. Since reordering is not possible Rule (5b)
never applies and hence the standard prefixing semantics is maintained. TSO
is relatively straightforward: loads may be reordered before stores (provided
they reference different shared variables). In our framework there is no need to
explicitly model local buffers, as the forwarding (bypassing) mechanism ensures
that only the most recently stored value for a global x is used locally (or x ’s value
is retrieved from the storage system). In this paper we focus on the more complex
ARM and POWER memory models. These memory models are very similar,
the notable difference being the inclusion of the lightweight fence instruction in
POWER. Due to space limitations, we omit lightweight fences in this paper but
see the appendix of [11] for a full definition.

2.4 Reasoning About Reorderings

The operational rules allow a standard trace model of correctness to be adopted,
that is, we say program c refines to program d , written c � d , iff every trace of
d is a trace of c. Let the program α � c have the standard semantics of prefixing,
that is, the action α always occurs before any action in c (Rule (5a)). Then
we can derive the following laws that show the interplay of reordering and true
prefixing.

α; c � α � c (7)

α; (β � c) � β[α] � (α; c) if α
r⇐ β[α] (8)

Note that in Law (8) α may be further reordered with instructions in c. A
typical interleaving law is the following.

(α � c) ‖ d � α � (c ‖ d) (9)

2 Different architectures may have different storage subsystems, however, and these
need to be separately defined (see Sect. 3.2).

A Wide-Spectrum Language for Verification of Programs 245

We may use these laws to show how the “surprise” behaviour of the store buffer
pattern above arises.3 In derivations such as the following, to save space, we
abbreviate a thread α; nil or α � nil to α, that is, we omit the trailing nil.

(x := 1; r1 := y) ‖ (y := 1; r2 := x)
� From Law (8) (twice), since x := 1 r⇐ r1 := y from (2).

(r1 := y � x := 1) ‖ (r2 := x � y := 1)
� Law (9) (four times) and commutativity of ‖.

r1 := y � r2 := x � x := 1 � y := 1

If initially x = y = 0, a standard sequential semantics shows that r1 = r2 = 0 is
a possible final state in this behaviour.

3 Semantics

3.1 Formal Language

The elements of our wide-spectrum language are actions (instructions) α, com-
mands (programs) c, processes (local state and a command) p, and the top level
system s, encompassing a shared state and all processes. Below x is a variable
(shared or local) and e an expression.

α ::= x := e | [e] | fence | cfence | α∗

c ::= nil | α; c | c1 � c2 | while b do c
p ::= (lcl σ • c) | (tidn p) | p1 ‖ p2
s ::= (glb σ • p) | (stg W • p)

(10)

An action may be an update x := e, a guard [e], a (full) fence, a control fence
(see Sect. 3.3), or a finite sequence of actions, α∗, executed atomically. Through-
out the paper we denote an empty sequence by 〈〉, and construct a non-empty
sequence as 〈α1 , α2 . . .〉.

A command may be the empty command nil, which is already terminated,
a command prefixed by some action α, a choice between two commands, or an
iteration (for brevity we consider only one type of iteration, the while loop).
Conditionals are modelled using guards and choice.

if b then c1 else c2 =̂ ([b]; c1) � ([¬b]; c2) (11)

A well-formed process is structured as a process id n ∈ PID encompassing a
(possibly empty) local state σ and command c, i.e., a term (tidn lcl σ • c). We
assume that all local variables referenced in c are contained in the domain of σ.

A system is structured as the parallel composition of processes within the
global storage system, which may be either a typical global state, σ, that maps
all global variables to their values (modelling the storage systems of TSO, the
3 To focus on instruction reorderings we leave local variable declarations and process

ids implicit, and assume a multi-copy atomic storage system (see Sect. 3.2).

246 R. J. Colvin and G. Smith

(glb σ • (tid1 lcl σ1 • c1) ‖ (tid2 lcl σ2 • c2) ‖ . . .)
(stg W • (tid1 lcl σ1 • c1) ‖ (tid2 lcl σ2 • c2) ‖ . . .)

(12)

(α ; c) α−→ c (a)
c

β−→ c′ α
r⇐ β[α]

(α ; c)
β[α]−−−→ (α ; c′)

(b) (13)
c � d τ−→ c

c � d τ−→ d
(14)

while b do c τ−→ ([b] ; c ; while b do c) � ([¬b] ; nil) (15)

c r := v−−−→ c′

(lcl σ • c) τ−→ (lcl σ[r := v] • c′)
(16)

c x := r−−−→ c′ σ(r) = v

(lcl σ • c) x := v−−−→ (lcl σ • c′)
(17)

c r := x−−−→ c′

(lcl σ • c)
[x=v]−−−→ (lcl σ[r := v] • c′)

(18)
c

[e]−−→ c′

(lcl σ • c)
[eσ]−−→ (lcl σ • c′)

(19)

p α−→ p′

(tidn p) n:α−−→ (tidn p′)
(20)

p1
α−→ p′

1

p1 ‖ p2
α−→ p′

1 ‖ p2

p2
α−→ p′

2

p1 ‖ p2
α−→ p1 ‖ p′

2

(21)

p n:x := e−−−−−→ p′

(glb σ • p) τ−→ (glb σ[x := eσ] • p′)
(22) p

n:[e]−−−→ p′ eσ ≡ true

(glb σ • p) τ−→ (glb σ • p′)
(23)

Fig. 1. Semantics of the language

most recent version of ARM, and abstract specifications), or a storage system,
W , formed from a list of “writes” to the global variables (modelling the storage
systems of older versions of ARM and POWER). The storage W injects more
nondeterminism into the system than the typical global state approach. A top-
level system is in one of the two following forms.

3.2 Operational Semantics

The meaning of our language is formalised using an operational semantics, sum-
marised in Fig. 1. Given a program c the operational semantics generates a trace,

i.e., a possibly infinite sequence of steps c0
α1−→ c1

α2−→ . . . where the labels in
the trace are actions, or a special label τ representing a silent or internal step
that has no observable effect.

The terminated command nil has no behaviour; a trace that ends with this
command is assumed to have completed. The effect of instruction prefixing in
Rule (13) is discussed in Sect. 2.3. Note that actions become part of the trace.
We describe an instantiation for reordering and forwarding corresponding to the
semantics of ARM and POWER in Sect. 3.3.

A Wide-Spectrum Language for Verification of Programs 247

A nondeterministic choice (the internal choice of CSP [10]) can choose either
branch, as given by Rule (14). The semantics of loops is given by unfolding, e.g.,
Rule (15) for a ‘while’ loop. Note that speculative execution, i.e., early execution
of instructions which occur after a branch point [12], is theoretically unbounded,
and loads from inside later iterations of the loop could occur in earlier iterations.

For ease of presentation in defining the semantics for local states, we give
rules for specific forms of actions, i.e., assuming that r is a local variable in the
domain of σ, and that x is a global (not in the domain of σ). The more general
version can be straightforwardly constructed from the principles below.

Rule (16) states that an action updating variable r to value v results in a
change to the local state (denoted σ[r := v]). Since this is a purely local operation
there is no interaction with the storage subsystem and hence the transition is
promoted as a silent step τ . Rule (17) states that a store of the value in variable
r to global x is promoted as an instruction x := v where v is the local value for
r . Rule (18) covers the case of a load of x into r . The value of x is not known
locally. The promoted label is a guard requiring that the value read for x is
v . This transition is possible for any value of v , but the correct value will be
resolved when the label is promoted to the storage level. Rule (19) states that a
guard is partially evaluated with respect to the local state before it is promoted
to the global level. The notation eσ replaces x with v in e for all (x �→ v) ∈ σ.

Rule (20) simply tags the process id to an instruction, to assist in the inter-
action with the storage system, and otherwise has no effect. Instructions of
concurrent processes are interleaved in the usual way as described by Rule (21).

Other straightforward rules which we have omitted above include the pro-
motion of fences through a local state, and that atomic sequences of actions are
handled inductively by the above rules.

Multi-copy Atomic Storage Subsystem. Traditionally, changes to shared
variables occur on a shared global state, and when written to the global state are
seen instantaneously by all processes in the system. This is referred to as multi-
copy atomicity and is a feature of TSO and the most recent version of ARM [13].
Older versions of ARM and POWER, however, lack such multi-copy atomicity
and require a more complex semantics. We give the simpler case (covered in
Fig. 1) first.4

Recall that at the global level the process id n has been tagged to the actions
by Rule (20). Rule (22) covers a store of some expression e to x . Since all local
variable references have been replaced by their values at the process level due
to Rules (16)–(19), expression e must refer only to shared variables in σ. The
value of x is updated to the fully evaluated value, eσ.

Rule (23) states that a guard transition [e] is possible exactly when e eval-
uates to true in the global state. If it does not, no transition is possible; this
is how incorrect branches are eliminated from the traces. If a guard does not
evaluate to true, execution stops in the sense that no transition is possible.
4 In this straightforward model of shared state there is no global effect of fences, and

we omit the straightforward promotion rule.

248 R. J. Colvin and G. Smith

This corresponds to a false guard, i.e., magic [14,15], and such behaviours do
not terminate and are ignored for the purposes of determining behaviour of a
real system. Interestingly, this straightforward concept from standard refinement
theory allows us to handle speculative execution straightforwardly. In existing
approaches, the semantics is complicated by needing to restart reads if specu-
lation proceeds down the wrong path. Treating branch points as guards works
because speculation should have no effect if the wrong branch was chosen.

To understand how this approach to speculative execution works, consider
the following derivation. Assume that (a) loads may be reordered before guards
if they reference independent variables, and (b) loads may be reordered if they
reference different variables. Recall that we omit trailing nil commands to save
space.

r1 := x ; (if r1 = 0 then r2 := y)
= Definition of if (11)

r1 := x ; (([r1 = 0]; r2 := y) � [r1 �= 0])
� Resolve to the first branch, since (c � d) � c

r1 := x ; [r1 = 0]; r2 := y
� From Law (8) and assumption (a)

r1 := x ; r2 := y � [r1 = 0]
� From Law (8) and assumption (b)

r2 := y � r1 := x ; [r1 = 0]

This shows that the inner load (underlined) may be reordered before the branch
point, and subsequently before an earlier load. Note that this behaviour results
in a terminating trace only if r1 = 0 holds when the guard is evaluated, and
otherwise becomes magic (speculation down an incorrect path). On ARM pro-
cessors, placing a control fence (cfence) instruction inside the branch, before
the inner load, prevents this reordering (see Sect. 3.3).

Non-multi-copy Atomic Storage Subsystem. Some versions of ARM and
POWER allow processes to communicate values to each other without accessing
the heap. That is, if process p1 is storing v to x , and process p2 wants to load
x into r , p2 may preemptively load the value v into r , before p1’s store hits the
global shared storage. Therefore different processes may have different views of
the values of global variables; see litmus tests such as the WRC family [3].

Our approach to modelling this is based on that of the operational model of
[2]. However, that model maintains several partial orders on operations reflecting
the nondeterminism in the system, whereas we let the nondeterminism be rep-
resented by choices in the operational rules. This means we maintain a simpler
data structure, a single global list of writes. The shared state from the perspec-
tive of a given process is a particular view of this list. There is no single definitive
shared state. In addition, viewing a value in the list causes the list to be updated
and this affects later views. To obtain the value of a variable this list is searched
starting with the most recent write first. A process p1 that has already seen the
latter of two updates to a variable x may not subsequently then see the earlier

A Wide-Spectrum Language for Verification of Programs 249

p
n:[x=v]−−−−−→ p′

∀w ∈ ran(W1) • x = w .var ⇒ n
∈ w .seen

(stg W1
� (x �→ v)mS � W2 • p)

n:[x=v]−−−−−→ (stg W1
� (x �→ v)mS∪{n}

� W2 • p′)

(24)

p n:x := v−−−−−→ p′

∀w ∈ ran(W1) • n
= w .thread ∧ (x = w .var ⇒ n
∈ w .seen)

(stg W1
� W2 • p) n:x := v−−−−−→ (stg W1

� (x �→ v)n{n}
� W2 • p′)

(25)

p n:fence−−−−−→ p′

(stg W • p) n:fence−−−−−→ (stg flushn(W) • p′)
(26)

where

flushn(〈〉) = 〈〉 flushn(w � W) =

{
w[seen :=PID]

� flushn(W) if n ∈ w .seen
w � flushn(W) otherwise

Fig. 2. Rules for the non-multi-copy atomic subsystem of ARM and POWER

update. Hence the list keeps track of which processes have seen which stores.
Accesses of the storage subsystem are also influenced by fences.

A write w has the syntactic form (x �→ v)nS , where x is a global variable
being updated to value v , n is the process id of the process from which the
store originated, and S is the set of process ids that have “seen” the write.
For such a w , we let w .var = x , w .thread = n and w .seen = S. For a write
(x �→ v)nS it is always the case that n ∈ S. The storage W is a list of writes,
initially populated with writes for the initial values of global variables, which all
processes have “seen”.

We give two specialised rules (for a load and store) in Fig. 2.5 Rule (24) states
that a previous write to x may be seen by process n if there are no more recent
writes to x that it has already seen. Its id is added to the set of processes that
have seen that write. Rule (25) states that a write to x may be added to the
system by process n, appearing earlier than existing writes in the system, if the
following two conditions hold for each of those existing writes w : they are not
by n (n �= w .thread , local coherence), and x = w .var ⇒ n �∈ w .seen, i.e., writes
to the same variable are seen in a consistent order (although not all writes need
be seen). A fence action by process n ‘flushes’ all previous writes by and seen
by n. The flush function modifies W so that all processes can see all writes by
n, effectively overwriting earlier writes. This is achieved by updating the write
so that all processes have seen it, written as w[seen :=PID].

5 To handle the general case of an assignment x := e, where e may contain more than
one shared variable, the antecedents of the rules are combined, retrieving the value
of each variable referenced in e individually and accumulating the changes to W .

250 R. J. Colvin and G. Smith

α
 r⇐ fence (27)

fence
 r⇐ α (28)

[b]
 r⇐ cfence (29)

cfence
 r⇐ r := e (30)

[b1]
r⇐ [b2] (31)

[b]
 r⇐ ϕ := e (32)

[b] r⇐ r := e iff r nfi b (33)

x := e r⇐ [b] iff x nfi b (34)

α
r⇐ β in all other cases

x := e r⇐ y := f iff (35)

x
= y , x nfi f , y nfi e, and

e, f are load-distinct

x := e [y := f] = x := e[y\f] if (36)

e has no shared variables

[e][y := f] = [e[y\f]] if (37)

e has no shared variables

β[α] = β otherwise

Fig. 3. Reordering and forwarding following ARM assembler semantics. Let x , y denote
any variable, r a local variable, and ϕ a global variable.

3.3 Reordering and Forwarding for ARM and POWER

Our general semantics is instantiated for ARM and POWER processors in Fig. 3
which provides particular definitions for the reordering relation and forwarding
that are generalised from the orderings on stores and loads in these processors.6

Fences prevent all reorderings (27, 28). Control fences prevent speculative
loads when placed between a guard and a load (29, 30). Guards may be reordered
with other guards (31), but stores to shared variables may not come before a
guard evaluation (32). This prevents speculative execution from modifying the
global state, in the event that the speculation was down the wrong branch. An
update of a local variable may be reordered before a guard provided it does
not affect the guard expression (33). Guards may be reordered before updates if
those updates do not affect the guard expression (34).

Assignments may be reordered as shown in (35) and discussed in Sect. 2.2.
Forwarding is defined straightforwardly so that an earlier update modifies the
expression of a later update or guard (36, 37), provided it references no shared
variables.

4 Model Checking Concurrent Data Structures

Our semantics has been encoded in the Maude rewriting system [16]. We have
used the resulting prototype tool to validate the semantics against litmus tests
which have been used in other work on ARM (348 tests) [4] and POWER (758
tests) [2]. As that research was developed through testing on hardware and in
consultation with the processor vendors themselves we consider compliance with

6 We have excluded address shifting, which creates address dependencies [3], as this
does not affect the majority of high-level algorithms in which we are interested.
However, address dependencies are accounted for in our tool as discussed in [11].

A Wide-Spectrum Language for Verification of Programs 251

those litmus tests to be sufficient validation. With two exceptions, as discussed
in Sect. 5, our semantics agrees with those results.

We have employed Maude as a model checker to verify that a (test-and-set)
lock provides mutual exclusion on ARM and POWER, and that a lock-free stack
algorithm, and a deque (double-ended queue) algorithm, satisfy their abstract
specifications on ARM and POWER. We describe the verification of the deque
below, in which we found a bug in the published algorithm.

4.1 Chase-Lev Deque

Lê et. al [17] present a version of the Chase-Lev deque [18] adapted for ARM
and POWER. The deque is implemented as an array, where elements may be
put on or taken from the tail, and additionally, processes may steal an element
from the head of the deque. The put and take operations may be executed by a
single process only, hence there is no interference between these two operations
(although instruction reordering could cause consecutive invocations to overlap).
The steal operation can be executed by multiple processes concurrently.

The code we tested is given in Fig. 4 where L is the maximum size of the
deque which is implemented as a cyclic array, with all elements initialised to
some irrelevant value. The original code includes handling array resizing, but
here we focus on the insert/delete logic. For brevity we omit trailing nils. We
have used a local variable return to model the return value, and correspondingly
have refactored the algorithm to eliminate returns from within a branch. A
CAS (x , r , e) (compare-and-swap) instruction atomically compares the value of
global x with the value r and if the same updates x to e. We model a conditional
statement with a CAS as follows.

if CAS (x , r , e) then c1 else c2 =̂ (〈[x = r] , x := e〉; c1) � ([x �= r]; c2) (38)

The put operation straightforwardly adds an element to the end of the deque,
incrementing the tail index. It includes a full fence so that the tail pointer is
not incremented before the element is placed in the array. The take operation
uses a CAS operation to atomically increment the head index. Interference can
occur if there is a concurrent steal operation in progress, which also uses CAS
to increment head to remove an element from the head of the deque. The take
and steal operation return empty if they observe an empty deque. In addition
the steal operation may return the special value fail if interference on head
occurs. Complexity arises if the deque has one element and there are concurrent
processes trying to both take and steal that element at the same time.

Operations take and steal use a fence operation to ensure they have con-
sistent readings for the head and tail indexes, and later use CAS to atomically
update the head pointer (only if necessary, in the case of take). Additionally, the
steal operation contains two cfence barriers (ctrl isync in ARM).

Verification. We use an abstract model of the deque and its operations to
specify the allowed final values of the deque and return values. The function

252 R. J. Colvin and G. Smith

put(v) =̂ q := q � 〈v〉
take =̂ lcl return := none •

〈[q = 〈〉] , return := empty〉 �
〈[q �= 〈〉] , return := last(q) , q := front(q)〉

Initial state: {head �→ 0, tail �→ 0, tasks 〈→� , , . . .〉}

put(v) =̂
lcl t �→ •
t := tail ;
tasks[t mod L] := v ;
fence;
tail := t + 1

take =̂
lcl h �→ , t �→ , return �→ •
t := tail − 1 ;
tail := t ;
fence ;
h := head ;
if h ≤ t then

return := tasks[t mod L] ;
if h = t then

if ¬CAS(head , h, h + 1) then
return := empty

tail := t + 1
else

return := empty ;
tail := t + 1

steal =̂
lcl h �→ , t �→ , return �→ •
h := head ;
fence ;
t := tail ;
cfence ; // unnecessary
if h < t then

return := tasks[h mod L] ;
cfence ; // incorrectly placed
if ¬CAS(head , h, h + 1) then

return := fail
else

return := empty

Fig. 4. A version of Lê et. al’s work-stealing deque algorithm for ARM [17]

last(q) returns the last element in q and front(q) returns q excluding its last
element.

steal =̂ lcl return := none
〈[q = 〈〉] , return := empty〉 �
〈[q �= 〈〉] , return := head(q) , q := tail(q)〉

For simplicity the abstract specification for steal does not attempt to detect
interference and return fail , and as such we exclude corresponding behaviours
of the concrete code from the analysis. We could encode this special failure case
for steal , requiring additional data to track which processes are active.

A Wide-Spectrum Language for Verification of Programs 253

We ran several contextual programs calling the abstract model alongside the
same programs calling the concrete model, comparing final states after applying
a straightforward simulation relation between abstract and concrete states. The
contextual programs were combinations of concurrent processes – 1, 2 or 3 –
each sequentially making one or two calls to the three operations. This exposed
a bug in the code which may occur when a put and steal operation execute in
parallel on an empty deque. The load return :=tasks[hmodL] can be speculatively
executed before the guard h < t is evaluated, and hence also before the load of
tail . Thus the steal process may load head , load an irrelevant return value, at
which point a put operation may complete, storing a value and incrementing
tail . The steal operation resumes, loading the new value for tail and observing
a non-empty deque, succeeding with its CAS and returning the irrelevant value,
which was loaded before the put operation had begun.

Swapping the order of the second cfence with the load of tasks[h mod L]
eliminates this bug, and our analysis did not reveal any other problems. In
addition, eliminating the first cfence does not change the possible outcomes.

5 Related Work

This work makes use of an extensive suite of tests elucidating the behaviour of
weak memory models in ARM and POWER via both operational and axiomatic
semantics [2–4,19]. Those semantics were developed and validated through test-
ing on real hardware and in consultation with processor vendors themselves.
Our model is validated against their results, in the form of the results of lit-
mus tests. The hardware vendor does not provide a formal specification of the
assembler language, and hence the results of the litmus tests and their abstrac-
tion to axiomatic relations in the above work is the most reliable validation
benchmark. However, as identified by Alglave et al. [3], some chips have differ-
ent behaviour to others, contain bugs, and do not implement certain features;
in addition given that instructions sets and definitions may change over time it
is difficult to achieve a single canonical specification.

Excluding two tests involving “shadow registers”, which appear to be
processor-specific facilities which are not intended to conform to sequential
semantics (they do not correspond to higher-level code), all of the 348 ARM
litmus tests run on our model agreed with the results in [4], and all of the 758
POWER litmus tests run on our model agreed with the results in [2], which the
exception of litmus test PPO015, which we give below, translated into our formal
language.7

7 We simplified some of the syntax for clarity, in particular introducing a higher-level
if statement to model a jump command and implicit register (referenced by the com-
pare (CMP) and branch-not-equal (BNE) instructions). We have also combined some
commands, retaining dependencies, in a way that is not possible in the assembler
language. The xor operator is exclusive-or; its use here artificially creates a data
dependency [3] between the updates to r0 and z .

254 R. J. Colvin and G. Smith

x := 1; fence; y := 1 ‖
r0 := y ; z := (r0 xor r0) + 1; z := 2; r3 := z ;

(if r3 = r3 then nil else nil) ; cfence; r4 := x
(39)

The tested condition is z = 2 ∧ r0 = 1 ∧ r4 = 0, which asks whether it is
possible to load x (the last statement of process 2) before loading y (the first
statement of process 2). At a first glance the control fence prevents the load
of x happening before the branch. However, as indicated by litmus tests such
as MP+dmb.sy+fri-rfi-ctrisb, [4, Sect. 3,Out of order execution], under some
circumstances the branch condition can be evaluated early, as discussed in the
speculative execution example. We expand on this below by manipulating the
second process, taking the case where the success branch of the if statement
is chosen. To aid clarity we underline the instruction that is the target of the
(next) refinement step.

r0 := y ; z := (r0 xor r0) + 1; z := 2; r3 := z ; [r3 = r3]; cfence; r4 := x
� Promote load with forwarding (from z := 2), from Laws (7) and (8)

r3 := 2 � r0 := y ; z := (r0 xor r0) + 1; z := 2; [r3 = r3]; cfence; r4 := x
� Promote guard by Laws (7) and (8) (from (34))

r3 := 2 � [r3 = r3] � r0 := y ; z := (r0 xor r0) + 1; z := 2; cfence; r4 := x
� Promote control fence by Laws (7) and (8) ((29) does not now apply)

r3 := 2 � [r3 = r3] � cfence � r0 := y ; z := (r0 xor r0) + 1; z := 2; r4 := x
� Promote load by Laws (7) and (8)

r3 := 2 � [r3 = r3] � cfence � r4 := x � r0 := y ; z := (r0 xor r0) + 1; z := 2

The load r4 :=x has been reordered before the load r0 :=y , and hence when inter-
leaved with the first process from (39) it is straightforward that the condition
may be satisfied.

In the Flowing/POP model of [4], this behaviour is forbidden because there
is a data dependency from the load of y into r0 to r3, via z . This appears to
be because of the consecutive stores to z , one of which depends on r0. In the
testing of real processors reported in [4], the behaviour that we allow was never
observed, but is allowed by the model in [3]. As such we deem this discrepancy
to be a minor issue in Flowing/POP (preservation of transitive dependencies)
rather than a fault in our model.

Our model of the storage subsystem is similar to that of the operational mod-
els of [2,4]. However our thread model is quite different, being defined in terms
of relationships between actions. The key difference is how we handle branching
and the effects of speculative execution. The earlier models are complicated in
the sense that they are closer to the real execution of instructions, involving
restarting reads if an earlier read invalidates the choice taken at a branch point.

The axiomatic models, as exemplified by Alglave et al. [3], define relationships
between instructions in a whole-system way, including relationships between
instructions in concurrent processes. This gives a global view of how an archi-
tecture’s reordering rules (and storage system) interact to reorder instructions in
a system. Such global orderings are not immediately obvious from our pair-wise
orderings on instructions. On the other hand, those globals orderings become

A Wide-Spectrum Language for Verification of Programs 255

quite complex and obscure some details, and it is unclear how to extract some
of the generic principles such as (2).

6 Conclusion

We have utilised earlier work to devise a wide-spectrum language and semantics
for weak memory models which is relatively straightforward to define and extend,
and which lends itself to verifying low-level code against abstract specifications.
While abstracting away from the details of the architecture, we believe it provides
a complementary insight into why some reorderings are allowed, requiring a pair-
wise relationship between instructions rather than one that is system-wide.

A model-checking approach based on our semantics exposed a bug in an
algorithm in [17] in relation to the placement of a control fence. The original
paper includes a hand-written proof of the correctness of the algorithm based
on the axiomatic model of [19]. The possible traces of the code were enumerated
and validated against a set of conditions on adding and removing elements from
the deque (rather than with respect to an abstract specification of the deque).
The conditions being checked are non-trivial to express using final state analysis
only. An advantage of having a semantics that can apply straightforwardly to
abstract specifications, rather than a proof technique that analyses behaviours
of the concrete code only, is that we may reason at a more abstract level.

We have described the ordering condition as syntactic constraints on atomic
actions, which fits with the low level decisions of hardware processors. However
our main reordering principle (2) is based on semantic concerns, and as such
may be applicable as a basis for understanding the interplay of software memory
models, compiler optimisations and hardware memory models [20].

Future Work. A feature of our framework is that we can potentially reason about
reordering of abstract instructions (i.e., those working with abstract data types),
and not only low-level assembler instructions. This allows the potential for step-
wise verification techniques to be applied, in particular potentially capturing the
complex interaction of the environment using rely-guarantee reasoning [21–24].
In this paper we consider assignments as the fundamental command, which is
sufficient for specifying many concurrent programs. However we hope to extend
the language to encompass more general constructs such as the specification
command [25], which may modify and access multiple global variables. Refine-
ment laws for decomposing a (non-atomic) rely-guarantee specification into a
sequence of atomic steps will have proof obligations referencing the reordering
relation to ensure that any reordering of the actions does not affect the guar-
antee; alternatively, where reordering would affect the guarantee, the law could
specify one or more fences in the implementation sequence.

Acknowledgements. We thank Kirsten Winter, Ian Hayes, and the anonymous
reviewers for feedback on this work. It was supported by Australian Research Council
Discovery Grant DP160102457.

256 R. J. Colvin and G. Smith

References

1. Adve, S.V., Boehm, H.J.: Memory models: a case for rethinking parallel languages
and hardware. Commun. ACM 53(8), 90–101 (2010)

2. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. SIGPLAN Not. 46(6), 175–186 (2011)

3. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 701–774 (2014)

4. Flur, S., Gray, K.E., Pulte, C., Sarkar, S., Sezgin, A., Maranget, L., Deacon, W.,
Sewell, P.: Modelling the ARMv8 architecture, operationally: concurrency and ISA.
In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2016, pp. 608–621. ACM, New York
(2016)

5. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Litmus: running tests against hard-
ware. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp.
41–44. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 5

6. Mador-Haim, S., Alur, R., Martin, M.M.K.: Generating litmus tests for contrasting
memory consistency models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 273–287. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 26

7. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

8. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: X86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

9. Milner, R.: A Calculus of Communicating Systems. Springer, New York (1982).
https://doi.org/10.1007/3-540-10235-3

10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc., Upper
Saddle River (1985)

11. Colvin, R.J., Smith, G.: A wide-spectrum language for verification of programs on
weak memory models. CoRR abs/1802.04406 (2018)

12. Sorin, D.J., Hill, M.D., Wood, D.A.: A Primer on Memory Consistency and Cache
Coherence, 1st edn. Morgan & Claypool Publishers, San Francisco (2011)

13. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8. In:
Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL). ACM Press (2018, to appear)

14. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, New York
(1994)

15. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer, New York (1998). https://doi.org/10.1007/978-1-4612-1674-2

16. Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Quesada,
J.F.: Maude: specification and programming in rewriting logic. Theor. Comput. Sci.
285(2), 187–243 (2002)

17. Lê, N.M., Pop, A., Cohen, A., Nardelli, F.Z.: Correct and efficient work-stealing for
weak memory models. In: Proceedings of the 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2013, pp. 69–80. ACM,
New York (2013)

https://doi.org/10.1007/978-3-642-19835-9_5
https://doi.org/10.1007/978-3-642-14295-6_26
https://doi.org/10.1007/978-3-642-14295-6_26
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-1-4612-1674-2

A Wide-Spectrum Language for Verification of Programs 257

18. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: SPAA 2005: Pro-
ceedings of the 17th Annual ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 21–28. ACM Press, New York (2005)

19. Mador-Haim, S., et al.: An axiomatic memory model for POWER multiprocessors.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 495–512.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 36

20. Kang, J., Hur, C.K., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising seman-
tics for relaxed-memory concurrency. In: Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, pp. 175–189.
ACM, New York (2017)

21. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress,
pp. 321–332 (1983)

22. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5, 596–619 (1983)

23. Hayes, I.J., Colvin, R.J., Meinicke, L.A., Winter, K., Velykis, A.: An algebra of
synchronous atomic steps. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou,
A. (eds.) FM 2016. LNCS, vol. 9995, pp. 352–369. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-48989-6 22

24. Colvin, R.J., Hayes, I.J., Meinicke, L.A.: Designing a semantic model for a wide-
spectrum language with concurrency. Formal Aspects Comput. 29(5), 853–875
(2017)

25. Morgan, C.: The specification statement. ACM Trans. Program. Lang. Syst. 10,
403–419 (1988)

https://doi.org/10.1007/978-3-642-31424-7_36
https://doi.org/10.1007/978-3-319-48989-6_22
https://doi.org/10.1007/978-3-319-48989-6_22

Operational Semantics of a Weak Memory
Model with Channel Synchronization

Daniel Schnetzer Fava1(B), Martin Steffen1(B), and Volker Stolz1,2

1 Department of Informatics, University of Oslo, Oslo, Norway
{danielsf,msteffen}@ifi.uio.no

2 Western Norway University of Applied Sciences, Bergen, Norway

Abstract. A multitude of weak memory models exists supporting vari-
ous types of relaxations and different synchronization primitives. On one
hand, such models must be lax enough to account for hardware and com-
piler optimizations; on the other, the more lax the model, the harder it
is to understand and program for. Though the right balance is up for
debate, a memory model should provide what is known as the SC-DRF
guarantee, meaning that data-race free programs behave in a sequentially
consistent manner.

We present a weak memory model for a calculus inspired by the Go
programming language. Thus, different from previous approaches, we
focus on a memory model with buffered channel communication as the
sole synchronization primitive. We formalize our model via an opera-
tional semantics, which allows us to prove the SC-DRF guarantee using a
standard simulation technique. Contrasting against an axiomatic seman-
tics, where the notion of a program is abstracted away as a graph with
memory events as nodes, we believe our semantics and simulation proof
can be clearer and easier to understand. Finally, we provide a concrete
implementation in K, a rewrite-based executable semantic framework,
and derive an interpreter for the proposed language.

1 Introduction

A memory model dictates which values may be observed when reading from
memory, thereby affecting how concurrent processes communicate through
shared memory. One of the simplest memory models, called sequentially con-
sistent, stipulates that operations must appear to execute one at a time and
in program order [25]. SC was one of the first formalizations to be proposed
and, to this day, constitutes a baseline for well-behaved memory. However, for
efficiency reasons, modern hardware architectures do not guarantee sequential
consistency. SC is also considered much too strong to serve as the underlying
memory semantics of programming languages; the reason being that sequential
consistency prevents many established compiler optimizations and robs from the
compiler writer the chance to exploit the underlying hardware for efficient par-
allel execution. The research community, however, has not been able to agree on
exactly what a proper memory model should offer. Consequently, a bewildering
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 258–276, 2018.
https://doi.org/10.1007/978-3-319-95582-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_15&domain=pdf

Operational Semantics of a Weak Memory Model 259

array of weak or relaxed memory models have been proposed, investigated, and
implemented. Different taxonomies and catalogs of so-called litmus tests, which
highlight specific aspects of memory models, have also been researched [1].

Memory models are often defined axiomatically, meaning via a set of rules
that constrain the order in which memory events are allowed to occur. The can-
didate execution approach falls in this category [6]. These formalizations are not
without controversy. For example, despite many attempts, there does not exist
an well-accepted comprehensive specification of the C++11 [7,8] or Java memory
models [5,27,34]. Luckily, more recently, one fundamental principle of relaxed
memory has emerged, namely: no matter how much relaxation is permitted by a
memory model, if a program is data-race free or properly synchronized, then the
program must behave in a sequentially consistent manner [2,27]. This is known
as the SC-DRF guarantee.

We present an operational semantics for a weak memory. Similar to Boudol
and Petri [10], we favor an operational semantics because it allows us to prove
the SC-DRF guarantee using a standard simulation technique. Compared to
axiomatic semantics in which the notion of a program is abstracted away (often
in the form of a graph with nodes as memory events), we think that our formalism
leads to an easier to understand proof of the SC-DRF guarantee. The lemmas we
build up in the process of constructing the proof highlight meaningful invariants
and give insight into the workings of the memory model.

Our calculus is inspired by the Go programming language: similar to Go, our
model focuses on channel communication as the main synchronization primitive.
Go’s memory model, however, is described, albeit succinctly and precisely, in
prose [18]. we provide a formal semantics instead.

The main contributions of our work are:

– There are few studies on channel communication as synchronization primitive
for weak memory. We give an operational theory for a weak memory with
bounded channel communication by leveraging thread-local happens-before
information.

– We prove that the proposed memory upholds the sequential consistency guar-
antee for data-race free programs using a standard conditional simulation
proof.

– We implement the operational semantics in the K executable semantics frame-
work [22,35] and make the source code publicly available via a git-repository
[14].

The remaining of the paper is organized as follows. Section 2 presents back-
ground information directly related to the formalization of our memory model.
Sections 3 and 4 provide the syntax and the semantics of the calculus with relaxed
memory and channel communication. Section 6 establishes the SC-DRF guaran-
tee. Sections 7 and 8 conclude with related and future work.

https://github.com/dfava/mmgo

260 D. S. Fava et al.

2 Background

Go’s Memory Model. The Go language [13,17] recently gained traction in net-
working applications, web servers, distributed software and the like. It promi-
nently features goroutines, that is, asynchronous execution of function calls
resembling lightweight threads, and buffered channel communication in the tra-
dition of CSP [20] (resp. the π-calculus [30]) or Occam [21]. While encouraging
message passing as the prime mechanism for communication and synchroniza-
tion, threads can still exchange data via shared variables. Consequently, Go’s
specification includes a memory model which spells out, in precise but informal
English, the few rules governing memory interaction at the language level [18].

Concerning synchronization primitives, the model covers goroutine creation
and destruction, channel communication, locks, and the once-statement. Our
semantics will concentrate on thread creation and channel communication
because lock-handling and the once statement are not language primitives but
part of the sync-library. Thread destruction, i.e. termination, comes with no
guarantees concerning visibility: it involves no synchronization and thus the
semantics does not treat thread termination in any special way. In that sense, our
semantics treats all of the primitives covered by Go’s memory model specifica-
tion. As will become clear in the next sections, our semantics does not, however,
relax read events. Therefore, our memory model is stronger than Go’s. On the
plus side, this prevents a class of undesirable behavior called out-of-thin-air [9].
On the negative, the absence of relaxed reads comes at the expense of some
forms of compiler optimizations.

Languages like Java and C++ go to great lengths not only to offer the crucial
SC-DRF guarantee for well-synchronized programs, but beyond that, strive to
clarify the resulting non-SC behavior when the program is ill -synchronized. This
involves ruling out definitely unwelcome behavior. Doing this precisely, however,
is far from trivial. One class of unwanted behavior that is particularly trou-
blesome is the so called out-of-thin-air behavior [9]. In contrast, Go’s memory
model is rather “laid back.” Its specification [18] does not even mention “out-
of-thin-air” behavior.

Happens-Before Relation and Observability. Like Java’s [27,34], C++11’s [7,8],
and many other memory models, ours centers around the definition of a happens-
before relation. The concept dates back to 1978 [24] and was introduced in a pure
message-passing setting, i.e., without shared variables. The relation is a techni-
cal vehicle for defining the semantics of memory models. It is important to note
that just because an instruction or event is in a happens-before relation with a
second one, it does not necessarily mean that the first instruction actually “hap-
pens” before the second in the operational semantics. Consider the sequence of
assignments x := 1; y := 2 as an example. The first assignment “happens-before”
the second as they are in program order, but it does not mean the first instruc-
tion is actually “done” before the second,1 and especially, it does not mean that
1 Assuming that x and y are not aliases in the sense that they refer to the same or

“overlapping” memory locations.

Operational Semantics of a Weak Memory Model 261

the effect of the two writes become observable in the given order. For example,
a compiler might choose to change the order of the two instructions. Alterna-
tively, a processor may rearrange memory instructions so that their effect may
not be visible in program order. Conversely, the fact that two events happen to
occur one after the other in a particular schedule does not imply that they are
in happens-before relationship, as the order may be coincidental. To avoid con-
fusion between the technical happens-before relation and our understanding of
what happens when the programs runs, we speak of event e1 “happens-before”
e2 in reference to the technical definition (also abbreviated as e1 →hb e2 in this
section) as opposed to its natural language interpretation. Also, when speaking
about steps and events in the operational semantics, we avoid talking about
something happening before something else, and rather say that a step or tran-
sition “occurs” in a particular order.

The happens-before relation regulates observability, and it does so very lib-
erally. It allows a read r from a shared variable to possibly observe a particular
write w to said variable unless one of the following two conditions hold:

r →hb w or (1)
w →hb w′ →hb r for some other write w′ to the same variable. (2)

For the sake of discussion, let’s concentrate on the following two constituents
for the happens-before relation: (1) program order and (2) the order stemming
from channel communication. According to the Go memory model [18], we have
the following constraints related to a channel c with capacity k:

A send on c happens-before the corresponding receive from c completes. (3)
The ith receive from c happens-before the (i + k)th send on c. (4)

To illustrate, consider the example on Listing 1.1. The main function spawns
an asynchronous execution of setup, at which point main and setup can run
concurrently. In the thread or goroutine executing setup, the write to variable
a happens-before the write to done, as they are in program order. For the same
reason, the read(s) of done happen-before the read of a in the main thread.
Without synchronization, the variable accesses are ordered locally per thread
but not across threads. Since neither condition (1) or (2) applies, the main
procedure may or may not observe writes performed by setup; it is possible
for main to observe the initial value of a instead. This makes the writes to a
and done performed by setup to potentially appear out-of-order from the main
thread’s perspective.

Replacing the use of done by channel synchronization properly synchronizes
the two functions (cf. Listing 1.2). As the receive happens-after the send, an
order is established between events belonging to the two threads. One can think
of the main thread as receiving not only a value but also the knowledge that the
write event to a in setup has taken place. With condition (3), channels implicitly
communicate the happens-before relation from the sender to the receiver. Then,
with condition (2), we can conclude that once main receives a message from
setup, the initial value of a is no longer observable from main’s perspective.

262 D. S. Fava et al.

Fig. 1. Synchronization via channel communication [18]

Condition (4) is not shown in the example. This condition accounts for
the boundedness of channels by transmitting happens-before information in the
backward direction for some receiver to some sender. For synchronous channels,
where k = 0, the two threads participating in the rendezvous symmetrically
exchange their happens-before information.

In summary, the operational semantics captures the following principles:

Immediate positive information: a write is globally observable instanta-
neously.

Delayed negative information: in contrast, negative information overwriting
previously observable writes is not immediately effective. Referring back to
the example of Fig. 1, the fact that setup has overwritten the initial value of
variable a is not immediately available to other threads. Instead, the infor-
mation is spread via message passing in the following way:
Causality: information regarding condition (3) travels with data through

channels.
Channel capacity: backward channels are used to account for condition (4).

Local view: Each thread maintains a local view on the happens-before rela-
tionship of past write events, i.e. which events are unobservable. Thus, the
semantics does not offer multi-copy atomicity.

3 Abstract Syntax

The abstract syntax of the calculus is given in Table 1. Values v can be of two
forms: r is used to denote the value of local variables or registers, while n in used
to denote references or names in general and, in specific, c for channel names.
We do not explicitly list values such as the unit value, booleans, integers, etc. We
also omit compound local expressions like r1 + r2. Shared variables are denoted
by x, z etc., load z represents the reading the shared variable z into the thread,
and z := v denotes writing to z.

References are dynamically created and are, therefore, part of the run-time
syntax. Run-time syntax is highlighted with an underline as n in the grammar.

Operational Semantics of a Weak Memory Model 263

Table 1. Abstract syntax

A new channel is created by make (chan T, v) where T represents the type
of values carried by the channel and v a non-negative integer specifying the
channel’s capacity. Sending a value over a channel and receiving a value as input
from a channel are written respectively as v1 ← v2 and ← v. After the operation
close, no further values can be sent on the specified channel. Attempting to
send values on a closed channel leads to a panic.

Starting a new asynchronous activity, called goroutine in Go, is done using
the go-keyword. In Go, the go-statement is applied to function calls only. We
omit function calls, asynchronous or otherwise, since they are orthogonal to the
memory model’s formalization. See Steffen [36] for an operational semantics deal-
ing with goroutines and closures in a purely functional setting, that is, without
shared memory.

The select-statement, here written using the
∑

-symbol, consists of a finite set
of branches which are called communication clauses by the Go specification [17].
These branches act as guarded threads. General expressions in Go can serve as
guards. Our calculus, however, imposes the restriction that only communication
statements (i.e., channel sending and receiving) and the default-keyword can
serve as guards. This restriction is in line with the A-normal form representation
and does not impose any actual reduction in expressivity. Both in Go and in our
formalization, there is at most one branch guarded by default in each select-
statement. The same channel can be mentioned in more than one guard. “Mixed
choices” [31,32] are also allowed, meaning that sending and receiving guards can
both be used in the same select-statement. We use stop as syntactic sugar for
the empty select statement; it represents a permanently blocked thread. The
stop-thread is also the only way to syntactically “terminate” a thread, meaning
that it is the only element of t without syntactic sub-terms.

The let-construct let r = e in t combines sequential composition and the
use of scopes for local variables r: after evaluating e, the rest t is evaluated where
the resulting value of e is handed over using r. The let-construct is seen as a
binder for variable r in t. When r does not occur free in t, let then boils down
to sequential composition and, therefore, is replaced by a semicolon.

4 Operational Semantics

In this section we define the operational semantics of the calculus. We fix the run-
time configurations of a program before giving the operational rules in Sect. 4.2.

264 D. S. Fava et al.

4.1 Local States, Events, and Configurations

Let X represent a set of shared variables such as x, z . . . and let N represent an
infinite set of names or identifiers with typical elements n, n′

2 . . . As mentioned
earlier, for readability, we will use names like c, c1, . . . for channels, and p, p′

1

. . . for goroutines or processes. A run-time configuration is then given by the
following syntax:

P ::= n〈σ, t〉 | n(|z:=v|) | n[q] | • | P ‖ P | νn P. (5)

Configurations consist of the parallel composition of goroutines p〈σ, t〉, write
events n(|z:=v|), and channels c[q]; • represents the empty configuration. The
ν-binder, known from the π-calculus, indicates dynamic scoping [30]. Goroutines
or processes p〈σ, t〉 contain, besides the code t to be executed, a local view
σ = (Ehb , Es) detailing the observability of write events from the perspective of
p. Local observability is formulated “negatively,” meaning that all write events
are observable by default. It is possible for an event to no longer be visible from
a thread’s perspective; such events are called shadowed and are tracked in σ,
specifically in Es . Note that, in order to properly update the list of shadowed
events, σ must also contain thread-local information about the “happens-before”
relationship between write events. This information is kept in Ehb .

Definition 1 (Local state). A local state σ is a tuple of type 2(N×X)×2N . We
use the notation (Ehb , Es) to refer to the tuples and abbreviate their type by Σ.
Let’s furthermore denote by Ehb(z) the set {n | (n, z) ∈ Ehb}. We write σ⊥ for
the local state (∅, ∅) containing neither happens-before nor shadow information.

4.2 Reduction Steps

The operational semantics is given in several stages. We start with local steps,
that is, steps not involving shared variables.

4.2.1 Local Steps
The reduction steps are given modulo structural congruence ≡ on configurations.
The congruence rules are standard and thus omitted here (see the report [15] for
details). Local steps � (cf. Table 2) reduce a thread t without touching shared
variables, and t1 � t2 implies 〈σ, t1〉 −→ 〈σ, t2〉.

4.2.2 Global Steps
Writing a value records the corresponding event n(|z:=v|) in the global configura-
tion, with n freshly generated (cf. rule R-Write). The write events are remem-
bered without keeping track of the order of their issuance. Therefore, as far as
the global configuration is concerned, no write event ever invalidates an “ear-
lier” write event or overwrites a previous value in a shared variable. Instead, the

Operational Semantics of a Weak Memory Model 265

Table 2. Operational semantics: local steps

global configuration accumulates the “positive” information about all available
write events which potentially can be observed by reading from shared memory.

The local state σ of a goroutine captures which events are actually observable
from a thread-local perspective. Its primary function is to contain “negative”
information: A read can observe all write events except for those shadowed,
that is, write events whose identifiers are contained in Es (see rule R-Read). In
addition, the local state keeps track of write events that are thread-locally known
to have happened-before. These are stored in Ehb . So, issuing a write command
(rule R-Write on Table 3) with a write event labeled n updates the local Ehb

by adding (n, z). Additionally, it marks all previous writes to the variable z as
shadowed, thus enlarging Es .

Channels in Go are the primary mechanism for communication and synchro-
nization. They are typed and assure FIFO communication from a sender to a
receiver sharing a channel. Channels can be dynamically created and closed.
Channels are bounded, i.e., each channel has a finite capacity fixed upon cre-
ation. Channels of capacity 0 are called synchronous. Our semantics largely
ignores that channel values are typed and that only values of an appropriate
type can be communicated over a given channel.

Definition 2 (Channels). A channel is of the form c[q1, q2], where c is a name
and (q1, q2) a pair of queues. The first queue, q1, contains elements of type
(Val × Σ) + ({⊥} × Σ), where ⊥ is a distinct, separate value representing the
“end-of-transmission”; the second queue, q2, contains elements of type Σ. We
write (v, σ), (⊥, σ) resp. (σ) for the respective queue values. The queues are also
referred to as forward resp. backward queue. Furthermore, we use the following
notational convention: We write cf [q] to refer to the forward queue of the channel
and cb[q] to the backward queue. We also speak of the forward channel and the
backward channel. We write [] for an empty queue, e :: q for a queue with e as
the element most recently added into q, and q :: e for the queue where e is the
element to be dequeued next. We denote with |q| the number of elements in q. A
channel is closed, written closed(c[q]), if q is of the form ⊥ :: q′. Note that it is
possible for a non-empty queue to be closed.

When creating a channel (cf. rule R-Make) the forward direction is ini-
tially empty but the backward is not: it is initialized to a queue of length v
corresponding to the channel’s capacity. The backward queue contains empty
happens-before and shadow information, represented by the elements σ⊥. The

266 D. S. Fava et al.

Table 3. Operational semantics: global steps

rule R-Make covers both synchronous and asynchronous channels. An asyn-
chronous channel is created with empty forward cf [] and backward queue cb[].

Channels can be closed, after which no new values can be sent Values “on
transit” in a channel when it is being closed are not discarded and can be received
as normal. The special value ⊥ indicates the end-of-transmission. Note that there
is a difference between an empty open channel c[] and an empty closed one c[⊥].
The value ⊥ is relevant to the forward channel only. Rules R-Send and R-Rec

govern asynchronous channel communication while R-Send-Rec implements
synchronous communication. In an asynchronous send, a process places a value
on the forward channel along with its local state (provided the channel is not full,
i.e., the backward queue is non-empty). In the process of sending, the sender’s
local state is updated with the knowledge that the previous kth receive has

Operational Semantics of a Weak Memory Model 267

completed; this is captured by σ′ = σ+σ′′ in the R-Send rule. To receive a value
from a (non-empty) asynchronous channel (cf. rule R-Rec), the communicated
value v is stored locally (in the rule, ultimately in variable r). Additionally, the
local state of the receiver is updated by adding the previously sent local-state
information. Furthermore, the state of the receiver before the update is sent back
via the backward channel. In synchronous communication, the receiver obtains
a value from the sender and together they exchange local state information. The
R-Close rule closes both sync and async channels. Executing a receive on a
closed channel results in receiving the end-of-transmission marker ⊥ (cf. rule
R-Rec⊥) and updating the local state σ in the same way as when receiving a
properly sent value. The “value” ⊥ is not removed from the queue, so that all
clients attempting to receive from the closed channel obtain the communicated
happens-before synchronization information. Furthermore, there is no need to
communicate happens-before constraints from the receiver to a potential future
sender on the closed channel: after all, the channel is closed. Closing a channel
resembles sending the special end-of-transmission value ⊥ (cf. rule R-Close).
An already closed channel cannot be closed again. In Go, such an attempt would
raise a panic. Here, this is captured by the absence of enabled transitions.

Thread creation leads to a form of a synchronization where the spawned
goroutine inherits the local state of the parent (cf. rule R-Go). Finally, rules
dealing with the select statement are given in the accompanying report [15].

Starting from an initial weak configuration, as far as the sizes of the queues of
a channel in connection with the channel’s capacity are concerned, the semantics
assures the following invariant.

Definition 3 (Initial weak configuration). An initial weak configuration is
of the form νn (〈σ0, t0〉 ‖ n0(|z0:=v1|) ‖ . . . ‖ nk(|zk:=vk|)) where z0, . . . zk are
all shared variables of the program, n represents n0, . . . , nk, and σ0 = (E0

hb , E
0
s)

where E0
hb = {(n0, z0), . . . , (nk, zk)} and E0

s = ∅.
Lemma 4 (Invariant for channel queues). The following global invariant
holds for a channel c created with capacity k: |qf | + |qb| − p = k.

��

5 Strong Semantics

The strong semantics can be seen as a simpler version of the weak one. It repre-
sents a standard interleaving semantics, i.e., write and reads immediately interact
with a shared global state. Therefore, there is no need for local thread informa-
tion σ.

S ::= p〈t〉 | (|z:=v|) | • | S ‖ S | n[q] | νn P. (6)

Structural congruence ≡ and the local transition steps � remain unchanged
(cf. Table 2). Apart from leaving out the events and other information, the only

268 D. S. Fava et al.

Table 4. Strong operational semantics: read and write steps

rules that conceptually change are the ones for read and write. These are included
on Table 4.

Definition 5 (Initial configuration). Initially, a strong configuration is of
the form p〈t0〉 ‖ (|z0:=v1|) ‖ . . . ‖ (|zk:=vk|), where z0, . . . zk are all shared vari-
ables of the program and t0 contains no run-time syntax.

Cf. also the “weak” version from Definition 3.

Definition 6 (Well-formed strong configuration). An strong configuration
S is well-formed if, for every variable z ∈ Vs, there exists exactly one write event
(|z:=v|) in S. We write s S : ok for such well-formed configurations.

6 Relating the Strong and the Weak Semantics

Let’s recall the definition of simulation [29] relating states of labeled transition
systems. The set of transition labels and the information carried by the labels
may depend on the specific steps or transitions done by a program and/or the
observations one wishes to attach to those steps. This leads to a distinction
between internally and externally visible steps. Let’s write α for arbitrary tran-
sition labels. Later we will use a for visible labels and τ as the label of invisible
or internal steps.

Definition 7 (Simulation). Assume two labeled transition systems over the
same set of labels and with state sets S and T . A binary relation R ⊆ S × T is
a simulation relation between the two transition systems if s1

α−→ s2 and s1Rt1
implies t1

α−→ t2 for some state t2. A state t simulates s, written t � s, if there
exists a simulation relation R such that sRt.

We use formulations like “s is simulated by t” interchangeably, and � as
the corresponding symbol. Also, we subscript the operational rules for disam-
biguation; for example, R-Reads refers to the strong version of the read while
R-Writew to the weak version of the write operation. The rules of the strong
semantics are simplifications of the weak rules given in Sect. 4.

The operational semantics is given as unlabeled global transitions −→. To
establish the relationship between the strong and the weak semantics, we make
the steps of the operational semantics more “informative” by labeling them

Operational Semantics of a Weak Memory Model 269

appropriately: For read steps by rule R-Reads and R-Readw, when reading a

value v from a variable z, the corresponding step takes the form
(z?v)−−−→. All other

steps, −→ as well as � steps, are treated as invisible and noted as τ−→ in the
simulation proofs. We make use of the following “alternative” labeling for the
purpose of defining races and for some of the technical lemmas: we label write
and read steps with the identity of the goroutine responsible for the action and

the affected shared variable, i.e.
p2(z!)−−−−→ and

p2(z?)−−−−→. Note that the identity of the
write event is omitted as well as the value exchanged; they will not be needed
in the proofs. We often use subscripts when distinguishing the strong from the
weak semantics; e.g. p(z!)−−−→w and p(z!)−−−→s.

6.1 The Strong Semantics Conditionally Simulates the Weak One

That the weak semantics “contains” the sequentially consistent strong one as
special case, i.e., the weak semantics simulates the strong one, should be intu-
itively clear and expected. Equally clear is that the opposite direction —the
strong semantics simulates the weak— does not hold in general. If a simulation
relation would hold in both directions, the two semantics would be equivalent,
thus obviating the whole point of a weak or relaxed memory model.

Simulation of the weak semantics by the strong one can only be guar-
anteed “conditionally.” The standard condition is that the program is “well-
synchronized.” We take that notion to represent the absence of data races, where
a data race is a situation in which two different threads have access to the same
shared variable “simultaneously,” with at least one of the accesses being a write.

Definition 8 (Data race). A well-formed configuration Si contains a manifest
data race if Si

p1(z!)−−−→s and Si
p2(z!)−−−→s for some p1 �= p2 (a manifest write-write

race on z), or if Si
p1(z?)−−−→s and Si

p2(z!)−−−→s (a manifest read-write race on z). We
say a program S has a data race if a manifest data race is reachable from the
initial configuration S0.

Definition 9 (Data race). A well-formed configuration Si contains a mani-
fest data race if either hold:

Si
p1(z!)−−−→s and Si

p2(z!)−−−→s for some p1 �= p2 (manifest write − write race on z)

Si
p1(z?)−−−−→s and Si

p2(z!)−−−→s (manifest read − write race on z)

We say a program S has a data race if a manifest data race is reachable from
the initial configuration S0.

The definition is used analogously for the weak semantics. We also say a program
is data-race free or properly synchronized if it does not have a data race.

Definition 10 (Observable and concurrent writes). Let WP stand for the
set of all write events n(|z:=v|) in a weak configuration P and let WP (z) stand
for the set of identifiers of writes events to the variable z, i.e. WP (z) = {n |

270 D. S. Fava et al.

n(|z:=v|) ∈ WP }. Given a well-formed configuration P , the sets of writes that
happens-before, that are concurrent, and that are observable by process p for a
variable z are defined as follows:

W hb
P (z@p) = Ehb(z@p) (7)

W
�
P (z@p) = WP (z) \ Ehb(z@p) (8)

W o
P (z@p) = WP (z) \ Es(z@p). (9)

We also use notations like W o
P (@p) to denote the set of observable write events

in P for any shared variable.

6.1.1 General Invariant Properties
Lemma 11 (Invariants about write events). The weak semantics has the
following invariants.

1. For all local states (Ehb , Es) of all processes, Es ⊂ Ehb(z).
2. W

�
P (z@p) ⊆ W o

P (z@p).
3. W

�
P (z@p) �= W o

P (z@p).
4. W hb

P (z@p) ∩ W o
P (z@p) �= ∅.

As W o
P (z@p) is a proper superset of W

�
P (z@p) (by part (2) and (3)), each

thread can observe at least one value held by a variable. This means, unsurpris-
ingly, that no thread will encounter an “undefined” variable. More interesting
is the following generalization, namely that at each point and for each variable,
some value is jointly observable by all processes. The property holds for arbi-
trary programs, race-free or not. Under the assumption of race-freedom, we will
later obtain a stronger “consensus” result: not only is a consensus possible, but
there is exactly one possible observable write, not more.

Lemma 12 (Consensus possible). Weak configurations obey the following
invariant ⋂

p∈P W o
P (z@p) �= ∅. (10)

6.1.2 Race-Free Reductions
Next, we present invariants that hold specifically for race-free programs but not
generally. They will be needed to define the relationship between the strong
and weak semantics via a bisimulation relation. More concretely, the following
properties are ultimately needed to establish that the relationship connecting
the strong and the weak behavior of a program is well-defined.

Lemma 13 (No concurrent writes when it counts). Assume P0 −→∗
w P

where P0 is the initial configuration derived from program P .

1. Assume P has no read-write race. If P
p(z?)−−−→w, then W

�
P (z@p) = ∅.

2. Assume P has no write-write race. If P
p(z!)−−−→w, then W

�
P (z@p) = ∅.

Operational Semantics of a Weak Memory Model 271

Lemma 14 (Race-free consensus when it counts). Assume P0 −→∗
w P with

P0 race-free. If P
p(z?)−−−→w or P

p(z!)−−−→w, then
⋂

pi
W o

P (z@pi) = {n}, (11)

where the intersection ranges over an arbitrary set of processes which includes p.

Lemma 15 (Race-free consensus). Weak configurations for race-free pro-
grams obey the following invariant

⋂
pi∈P W o

P (z@pi) = {n}. (12)

Definition 16 (Well-formedness for race-free programs). A weak con-
figuration P is well-formed if

1. write-event references and channel references are unique, and
2. equation (12) from Lemma 15 holds.

We write rf
w P : ok for well-formed configurations P .

We need to relate the weak and strong configurations via a simulation relation
in order to establish the connection between the race-free behaviors of the weak
and strong semantics. We will do so by the means of an erasure function from
the weak to the strong semantics.

Definition 17 (Erasure). The erasure of a well-formed weak configuration P ,
written �P �, is defined as �P �∅ where �P �R is given on Table 5 and R is a set
of write event identifiers. On the queues q1 and q2 in the last case, the function
simply jettisons the σ-component in the queue elements.

Table 5. Definition of the erasure function �P �R

�•�R = • (13)

�p〈σ, t〉�R = 〈t〉 (14)

�n(|z:=v|)�R =

{
• if n ∈ R

(|z:=v|) otherwise
(15)

�P1 ‖ P2�R = �P1�R ‖ �P2�R (16)

�νn P �R =

{
�P �R if ∀p ∈ P. n ∈ W o

P (@p)

�P �R∪{n} otherwise
(17)

�c[q1, q2]�R = c[�q1�R, �q2�R] (18)

Note that �P � is not necessarily a well-formed strong configuration. In par-
ticular, �P � may contain two different write events (|z:=v1|) and (|z:=v2|) for
the same variable. Besides, it is not a priori clear whether �P � could remove
all write events for a given variable (thus leaving its value undefined) and the
configuration ill-formed.

272 D. S. Fava et al.

Lemma 18 (Erasure and congruence). P1 ≡ P2 implies �P1� ≡ �P2�.
Lemma 19 (Erasure preserves well-formedness). Let P be a race-free
reachable weak configuration. If w P : ok then s �P � : ok.

Theorem 20 (Race-free simulation). Let S0 and P0 be a strong, resp. a
weak initial configuration for the same thread t and representing the same values
for the global variables. If S0 is data-race free, then S0 � P0.

Proof. Assume two initial race-free configurations P0 and S0 from the same
program and the same initial values for the shared variables. To prove the �-
relationship between the respective initial configurations we need to establish a
simulation relation, say R, between well-formed strong and weak configurations
such that P0 and S0 are in that relation.

Let P and S be well-formed configurations reachable (race-free) from P0 resp.
S0. Define R as relation between race-free reachable configurations as

P RS if S ≡ �P � (19)

using the erasure from Definition 17. Note that by Lemma 18, P1 RS and P1 ≡
P2 implies P2 RS.

Case: R-Writew: p〈σ, z := v; t〉 −→w νn (p〈σ′, t〉 ‖ n(|z:=v|)), where σ =
(Ehb , Es) and σ′ = (E′

hb , E
′
s) = (Ehb + (n, z), Es + Ehb(z)). By the concurrent-

writes Lemma 13(2), W
�
P (z@p) = ∅, i.e., there are no concurrent write events

from the perspective of p. This implies that for all write events n′(|z:=v′|) in P ,
we have n′ ∈ Ehb . If n′ ∈ Es , then n ∈ E′

s as well. If n′ ∈ Ehb \Es , then n′ ∈ E′
s

as well. Either way, all write events to z contained in P prior to the step are
shadowed in p after the step.

Now for the new write event n in P ′: clearly n ∈ W o
P ′(z@pi), i.e., the event

is observable for all threads. By the race-free consensus Lemma 15, we have that
this is the only event that is observable by all threads, i.e.

⋂

pi

W o
P ′(z@pi) = {n}. (20)

That means for the erasure of P ′ that �P ′� ≡ . . . ‖ p〈t〉 ‖ (|z:=v|) where (|z:=v|)
is the result of applying � � to the write event n(|z:=v|) of P . In particular,
equation (20) shows that the write event n is not “filtered out” (cf. the cases
of equation (15) and (17) in Definition 17) and furthermore that all other write
events for z in P ′ are filtered out.2 It is then easy to see that by R-Writes,
�P � −→s �P ′�.
The remaining cases are similar. ��

2 The latter is indirectly clear already as we have established that �� preserves well-
formedness under the assumption of race-freedom (Lemma 19).

Operational Semantics of a Weak Memory Model 273

7 Related Work

There are numerous proposals for and investigations of weak and relaxed mem-
ory models [1,3,28]. One widely followed approach, called axiomatic, specifies
allowed behavior by defining various ordering relations on memory accesses and
synchronizing events. Go’s memory model [18] gives an informal impression of
that style of specification. Less frequent are operational formalizations.

Boudol and Petri [10] investigate a relaxed memory model for a calculus with
locks relying on concepts of rewriting theory. Unlike the presentation here, writes
are buffered in a hierarchy of fifo-buffers reflecting the syntactic tree structure
of configurations: immediately neighboring processors share one write buffer,
neighbors syntactically further apart share a write buffer closer to the shared
global memory located at the root. The position of a redex in the configuration is
used as thread identifier and determines which buffers are shared. Consequently,
parallel composition cannot be commutative and, therefore, terms cannot be
interpreted up-to congruence ≡ as in our case.

Flanagan and Freund [16] give an operational semantics of a weak memory
model (“adversarial” memory) used as the basis for a race checker. The model is
not as weak as the official JMM but weaker than standard JVM implementations.

Zhang and Feng [37] use an abstract machine to operationally describe a
happens-before memory model. Different from us, they make use of event buffers.
Similar to us, they keep “older” write events to account for more than one observ-
able variable value. The paper does not, however, deal with channel communi-
cation. Another operational semantics that uses histories of time-stamped, past
read/write events is given by Kang et al. [23]. In this semantics, threads can
promise future writes, and a reader acquires information on the writer’s view of
memory. Fences then synchronize global time-stamps on memory with thread-
local information. Bi-simulation proofs mechanized in Coq show correctness of
compilation to various architectures.

Demange et al. [12] formalize a weak semantics for Java using buffers. The
semantics is quite less relaxed than the official JMM specification, the goal being
to avoid the intricacies of the happens-before JMM and offer a firmer ground
for reasoning. The model is defined axiomatically and operationally and the
equivalence of the two formalizations is established.

Pichon-Pharabod and Sewell [33] investigate an operational representation of
a weak memory model that avoids problems of the axiomatic candidate-execution
approach in addressing out-of-thin-air behavior. The semantics is studied in
a calculus featuring locks as well as relaxed atomic and non-atomic memory
accesses.

Guerraoui et al. [19] introduce a “relaxed memory language” with an oper-
ational semantics to enable reasoning about various relaxed memory models.
Their aim is to allow correctness arguments for software transactional memories
implemented on weak-memory hardware.

274 D. S. Fava et al.

Alrahman et al. [4] formalize a relaxed total-store order memory model
with fence and wait operations. They provide an implementation in Maude,
a rewriting-based executable framework that precedes K, and explore ways to
mitigate state-space explosion.

Lange et al. [26] define a small calculus, dubbed MiGo or mini-Go, featuring
channels and thread creation. The formalization does not cover weak memory.
Instead, the paper uses a behavioral effect type system to analyze channel com-
munication.

8 Conclusion

We present an operational specification for a weak memory model with chan-
nel communication as the prime means of synchronization. We prove a central
guarantee, namely that race-free programs behave sequentially consistently. The
our semantics is accompanied by an implementation in the K framework and by
several examples and test cases [14]. We plan to use the implementation towards
the verification of program properties such as data-race freedom.

The current weak semantics remembers past write events as part of the run-
time configuration, but does not remember read events. We are working on
further relaxing the model by treating read events similar to the representation
of writes. This will allow us to accommodate load buffering behavior common
to relaxed memory models, including that of Go.

References

1. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
Research Report 95/7, Digital WRL (1995)

2. Adve, S.V., Hill, M.D.: Weak ordering—a new definition. SIGARCH Comput.
Archit. News 18(3a), 2–14 (1990)

3. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data-mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7 (2014)

4. Abd Alrahman, Y., Andric, M., Beggiato, A., Lafuente, A.L.: Can we efficiently
check concurrent programs under relaxed memory models in Maude? In: Escobar,
S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 21–41. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-12904-4 2

5. Aspinall, D., Ševč́ık, J.: Java memory model examples: good, bad and ugly. In:
Proceedings of VAMP, vol. 7 (2007)

6. Batty, M., Memarian, K., Nienhuis, K., Pichon-Pharabod, J., Sewell, P.: The prob-
lem of programming language concurrency semantics. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 283–307. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46669-8 12

7. Becker: Programming languages — C++. ISO/IEC 14882:2001 (2011)
8. Boehm, H.-J., Adve, S.V.: Foundations of the C++ concurrency memory model.

In: ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI). ACM (2008)

https://doi.org/10.1007/978-3-319-12904-4_2
https://doi.org/10.1007/978-3-319-12904-4_2
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-662-46669-8_12

Operational Semantics of a Weak Memory Model 275

9. Boehm, H.-J., Demsky, B.: Outlawing ghosts: avoiding out-of-thin-air results. In:
Proceedings of the Workshop on Memory Systems Performance and Correctness,
MSPC 2014, pp. 7:1–7:6. ACM, New York (2014)

10. Boudol, G., Petri, G.: Relaxed memory models: an operational approach. In: Pro-
ceedings of POPL 2009, pp. 392–403. ACM (2009)

11. Castagna, G., Gordon, A.D. (eds.): 44th Symposium on Principles of Programming
Languages (POPL). ACM (2017)

12. Demange, D., Laporte, V., Zhao, L., Jagannathan, S., Pichardie, D., Vitek, J.:
Plan B: a buffered memory model for Java. In: Proceedings of POPL 2013, pp.
329–342. ACM (2013)

13. Donovan, A.A.A., Kernighan, B.W.: The Go Programming Language. Addison-
Wesley, Boston (2015)

14. Fava, D.: Operational semantics of a weak memory model with channel synchro-
nization (2017). https://github.com/dfava/mmgo

15. Fava, D., Steffen, M., Stolz, V.: Operational semantics of a weak memory model
with channel synchronization: proof of sequential consistency for race-free pro-
grams. Technical report 477, University of Oslo, Faculty of Mathematics and Nat-
ural Sciences, Department of Informatics (2018). http://www.ifi.uio.no/∼msteffen/
download/18/oswmm-chan-rep.pdf

16. Flanagan, C., Freund, S.N.: Adversarial memory for detecting destructive races. In:
Zorn, B., Aiken, A. (eds.) ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). ACM (2010)

17. The Go programming language specification (2016). https://golang.org/ref/spec
18. The Go memory model (2014). https://golang.org/ref/mem. Version of 31 May

2014, covering Go version 1.9.1
19. Guerraoui, R., Henzinger, T.A., Singh, V.: Software transactional memory on

relaxed memory models. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 321–336. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 26

20. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

21. Jones, G., Goldsmith, M.: Programming in Occam2. Prentice-Hall International,
Hemel Hampstead (1988)

22. The K framework (2017). http://www.kframework.org/
23. Kang, J., Hur, C., Lahav, O., Vafeiadis, V., and Dreyer, D.: A promising semantics

for relaxed-memory concurrency. In: [11], pp. 175–189 (2017)
24. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.

Commun. ACM 21(7), 558–565 (1978)
25. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-

tiprocess programs. IEEE Trans. Comput. C–28(9), 690–691 (1979)
26. Lange, J., Ng, N., Toninho, B., and Yoshida, N.: Fencing off Go: liveness and safety

for channel-based programming. In: [11] (2017)
27. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Proceedings of

POPL 2005. ACM (2005)
28. Maranget, L., Sarkar, S., Sewell, P.: A tutorial introduction to the ARM and

POWER relaxed memory models (version 120) (2012)
29. Milner, R.: An algebraic definition of simulation between programs. In: Proceedings

of the Second International Joint Conference on Artificial Intelligence, pp. 481–489.
William Kaufmann, London (1971)

30. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I/II. Inf.
Comput. 100, 1–77 (1992)

https://github.com/dfava/mmgo
http://www.ifi.uio.no/~msteffen/download/18/oswmm-chan-rep.pdf
http://www.ifi.uio.no/~msteffen/download/18/oswmm-chan-rep.pdf
https://golang.org/ref/spec
https://golang.org/ref/mem
https://doi.org/10.1007/978-3-642-02658-4_26
https://doi.org/10.1007/978-3-642-02658-4_26
http://www.kframework.org/

276 D. S. Fava et al.

31. Palamidessi, C.: Comparing the expressive power of the synchronous and the asyn-
chronous π-calculus. In: Proceedings of POPL 1997, pp. 256–265. ACM (1997)

32. Peters, K., Nestmann, U.: Is it a “good” encoding of mixed choice? In: Birkedal, L.
(ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 210–224. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28729-9 14

33. Pichon-Pharabod, J., Sewell, P.: A concurrency-semantics for relaxed atomics
that permits optimisation and avoids out-of-thin-air executions. In: Proceedings
of POPL 2016. ACM (2016)

34. Pugh, W.: Fixing the Java memory model. In: Proceedings of the ACM Java
Grande Conference (1999)

35. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Methods Program. 79(6), 397–434 (2010)

36. Steffen, M.: A small-step semantics of a concurrent calculus with goroutines and
deferred functions. In: Ábrahám, E., Bonsangue, M., Johnsen, E.B. (eds.) Theory
and Practice of Formal Methods. LNCS, vol. 9660, pp. 393–406. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30734-3 26

37. Zhang, Y., Feng, X.: An operational happens-before memory model. Front. Com-
put. Sci. 10(1), 54–81 (2016)

https://doi.org/10.1007/978-3-642-28729-9_14
https://doi.org/10.1007/978-3-319-30734-3_26

Stepwise Development and Model
Checking of a Distributed Interlocking

System - Using RAISE

Signe Geisler(B) and Anne E. Haxthausen

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
signe.geisler@gmail.com, aeha@dtu.dk

Abstract. This paper considers the challenge of designing and verifying
control protocols for geographically distributed railway interlocking sys-
tems. It describes for a real-world case study how this can be tackled by
stepwise development and model checking of state transition models in
an extension of the RAISE Specification Language (RSL). This method
also allows different variants of the control protocols to be explored.

Keywords: Stepwise development · Model checking
RAISE · Railway interlocking systems · Distributed systems

1 Introduction

This paper considers the challenge of formally modelling and verifying the real-
world geographically distributed railway interlocking system presented in [8].
The engineering concept of this was originally developed by INSY GmbH Berlin
for their railway control system RELIS 2000 designed for local railway networks.

1.1 Background

A railway interlocking system is a safety-critical system controlling the track side
equipment and movement of trains in a railway network such that train colli-
sions and derailments are avoided. Current computer-based interlocking systems
usually have a centralised design, but in a few cases, as for instance described in
[8], the control has been geographically distributed to processors deployed at the
sensors and actuators (e.g. points) along the track layout and to onboard train
control computers. One of the motivating factors for this is the lower cost, mak-
ing it available as a solution for small, local railway networks, cf. the discussion
in [3,8].

To verify the safety of distributed railway interlocking systems is even more
challenging than for centralised systems. For centralised interlocking systems,
there is a global notion of the state of the system, which can be observed by
the control computer to make interlocking decisions. In contrast to this, in the

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 277–293, 2018.
https://doi.org/10.1007/978-3-319-95582-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_16&domain=pdf

278 S. Geisler and A. E. Haxthausen

geographically distributed approach, where each train is equipped with a train
control computer, and additional control components are distributed through-
out the railway network, the interlocking data must be distributed (but also
duplicated to some extent) in the different control components. Furthermore,
the control components must collaborate in order to take safe decisions, so com-
munication between the control computers must be introduced. This adds addi-
tional threads which would not be present in a centralised system. Hence, the
distribution of control gives new challenges for the safety verification.

Using formal methods for the verification of distributed interlocking systems
is a natural choice, as formal methods are strongly recommended by the CEN-
ELEC standard EN 50128 [2] for safety-critical railway control components and
have proved useful for many applications. For instance, Haxthausen and Peleska
demonstrated this in [8], where they modelled and verified the distributed inter-
locking system considered in this paper. For this they used the RAISE Specifi-
cation Language, RSL [11], and the RAISE theorem prover, respectively.

Theorem proving, as used in [8], handles complex systems very well, but
the proof derivation process is very time consuming, as it must be directed
by a human. Furthermore, theorem provers are often unable to give counter-
examples when a proof fails. With model checking, the verification process is
fully automated, and if some asserted property is not satisfied in some state
of the system, the model checking tool will produce a counter-example, usually
showing the path to that state. The path can then be investigated in order to
discover the unintended behaviour. Therefore, in this paper, we will investigate
the use of model checking for verifying the considered interlocking system.

1.2 Contribution

The main contribution of the paper is a method for modelling and verifying a
distributed system by stepwise specification and model checking, and the appli-
cation of this method to a distributed railway interlocking system.

For the system specification the method uses an extension of RSL, called
RSL-SAL [10], which allows to specify systems by state transition system models.
In contrast to this, the work in [8] used the RSL process algebra to specify the
final model of the system. The formal verification is now performed using the
SAL symbolic model checker which is a backend to RSL-SAL. The challenge
of capturing the system behaviour in appropriate detail was tackled by using
stepwise development of state transition system models. This approach is novel
in the context of RAISE.

1.3 Related Work

Formal verification of interlocking systems via model checking is an active
research topic, investigated by several research groups, see e.g., [5,9,13,14]
mostly focusing on centralised interlocking. In [6,7] RSL-SAL and SAL was

Stepwise Development and Model Checking 279

also used for modelling and verifying an interlocking system, but this was a cen-
tralised (relay) interlocking system, and in that work no stepwise development
was used.

In [4], a geographically distributed railway interlocking system was formally
modelled and verified using UMC instead of RSL-SAL and SAL. The control
protocol presented in [4] radically differs from the one considered in our case
study: in [4], full train routes are allocated before trains start moving. This is
done using a two-phase commit protocol for determining agreement between
the control components. The control protocol in our case study allows trains to
allocate each section of their routes separately, which allows for greater flexibility,
since train routes can be interleaved to a greater extent.

1.4 Paper Overview

First Sect. 2 gives a brief introduction to the case study: the engineering concept
of the considered distributed interlocking system and an overview of the formal
development. Then, the following sections (Sects. 3, 4 and 5) give an overview
of the generic model specifications and the development steps between them.
The verification of model instances is described in Sect. 6. Finally, Sect. 7 gives
a conclusion and states ideas for future work.

2 Case Study

2.1 Engineering Concept

The control strategy of the system must ensure the safety of the system by
preventing the derailment and collision of trains. In this engineering concept,
safety is achieved by only allowing one train on each track segment at the same
time and ensuring that points are locked in correct position while trains are
passing them. To this end, trains must reserve track segments before entering
them and lock points in correct position before passing them.

The control components of the system are responsible for implementing the
control strategy. Each train is equipped with a train control computer. In the
railway network, several switchboxes are distributed, each controlling a single
point or an end point of the network. These components communicate with each
other in order to collaboratively control the system. Each control component has
its own, local state space for keeping track of the relevant information. As can be
seen from Fig. 1, each of the train control computers has information about the
train’s route (a list of track segments) with its switch boxes, the train position,
and the reservations and locks it has achieved. Each switchbox has information
about its associated sensor (used to detect whether a train is passing the critical
area close to the point), which segments are connected at its associated point (if
any), for which train the point is locked (if any), and for which train each of the
associated segments is reserved (if any).

280 S. Geisler and A. E. Haxthausen

Fig. 1. An example system.

The basic idea of the control strategy is as follows:

1. Permisson to enter a segment: For a train control computer (TCC) to decide
whether it is legal to enter the next segment of its route, the TCC must
observe its local state space and check whether it has the needed reservations
and locks. More precisely, the following must hold:

– the next segment must have been reserved for the train at the two upcom-
ing switchboxes, and

– the point must have been switched in the direction for the train route
and locked for the train at the next switchbox.

In the scenario shown in Fig. 1, for the train T1, this means that it must have
reservations for segment s2 at both the switchboxes SB1 and SB2, and a
lock for the point at SB1, before it can be allowed to enter s2.

2. Making reservations and locks: Reservations and locks are made by the trains
by issuing requests to the relevant switchboxes. Depending on its local state, a
switchbox may or may not comply with a request from a train. The switchbox
can only fulfil a segment reservation request if the segment is not already
reserved at the switchbox. Similarly, a switchbox can only lock a point (after
potentially having switched the point in the direction for the train route), if
the point is not already locked. Additionally, a request for locking a point can
only be made if the train has reservations for the two segments in its route
on either side of the point to be locked. In the scenario shown in Fig. 1, for
the train T1, this means that it must have a reservation for segments s1 and
s2 at the switchbox SB1, before it can request to lock the point at SB1.

If a switchbox can meet a request, it will update its state space accordingly.
In any case, the switchbox will send a response to the train, based on which the
train can determine whether the request has been met and, thereby, whether
the train should update its state space as well.

Stepwise Development and Model Checking 281

3. Release of reservations and locks: When a train has passed the critical area of
a switchbox, both the lock and reservations for that train at that switchbox
are released in the state space of the train as well as in the state space of the
switchbox.

2.2 Overview of Formal Development

The modelling process follows a stepwise development paradigm, where several
different models are developed, going from a very abstract view of the real-world
system to a more concrete view. In this way, three specifications of generic state
transition system models were developed.

The first is an abstract model capturing the system behaviour, but abstract-
ing away from the explicit communication between the control components.
Hence, e.g. a reservation event is treated as an atomic event, abstracting away
from the intermediate steps issuing requests and acknowledgements. However, it
was known from the start that these intermediate steps should later be explicitly
modelled. The starting point is thus a stage where there is already an idea of
needing event decomposition. This affects the specification of the first model,
where the auxiliary functions for checking and updating the state spaces of the
control components are divided into functionality for train control computers
and switchboxes, respectively.

The second model is developed using event decomposition for collaborative
events (i.e. events involving communication between control components) of the
first model in order to model the steps of the communication protocols for such
events. At this modelling level, the transition rules are specified in a property-
oriented manner, resulting in the least restrictive possible behaviour of the sys-
tem. This allows for several different legal orders of events.

The third model is an example of restricting the second model to a more
specific control protocol for each collaborative event inducing a specific order of
events. This is achieved by restricting the guards of relevant transition rules, such
that the corresponding transitions can only be executed in fewer cases. Thus the
set of paths of the state transition system of the third model is a subset of that
of the second model.

The specified system models are generic, i.e. without any configuration data
describing the railway network and the control components with their data. To
verify the models by model checking, they must be instantiated with configura-
tion data. The instantiation and verification will be described in Sect. 6, while
the generic models will be explained in Sects. 3, 4, and 5.

3 First Model

The specification of the first (generic) model can be divided into several different
parts:

– Types and values for the static configuration data and dynamic data.
– Functions describing wellformedness and consistency of configuration data.

282 S. Geisler and A. E. Haxthausen

– Functions describing the safety of the system.
– Guard and state updater functions.
– State variables.
– Transition system rules.

Static Configuration Data. The static configuration data consist of the data
for the railway network, which includes information about which segments and
switchboxes are in the network, and data about which trains are in the network.

Unique identifiers for segments, switchboxes, and trains of the system are
given by types. These are not further specified in the generic model, but are
intended to be defined by variant types enumerating the concrete identifiers
when the model is instantiated. Train identifiers must at least include the special
value t none.

type
Segment,
TrainID == t none | ,
SwitchboxID

The network layout describing how the segments of the system are connected
is given by a value network of an explicitly defined type Network. The network
value is not specified further in the generic model, but is intended to be explicitly
defined by a constant when the model is instantiated.

type Network = ...
value

network : Network

Types for Dynamic Data. Besides configuring the system with static configura-
tion data, the system must also be configured with initial values for dynamic
data which changes e.g. when trains move. The types specified are the ones
needed for each of the fields in the state spaces of the control components. For
example, the type for the reservations of a switchbox is called SbResMap and is
a mapping from segment identifiers to train identifiers:

type SbResMap = Segment →m TrainID

There is a similar map for reservations stored in a train:

type TResMap = SwitchboxID →m Segment-set

For modelling the state spaces of each control component, types of the form
TrainID →m [value type] and SwitchboxID →m [value type] have been defined.
For example, the reservations for each of the switchboxes are saved in a variable
of the type

type SbResState = SwitchboxID →m SbResMap,

and the reservations for the trains are saved in a variable of the type

type TResState = TrainID →m TResMap

Stepwise Development and Model Checking 283

Using maps from component identifiers to state values allows for the specification
of the local state of each component.1

Wellformedness, Consistency and Safety Functions. The functions describing
wellformedness and consistency of configuration data and the functions describ-
ing the safety of the system are used when formulating the transition system
assertions, i.e. the properties which the instantiations of the models are checked
against.

Guard and State Updater Functions. The guard and state updater functions are
also used when formulating the transition system. They are used in the transition
system rules, where each rule consists of a guard and a collection of effects, i.e.
state updates. An example of a guard function is the following, sb can reserve,
which is used to determine, from the point of view of a switchbox, whether a
reservation can be made. This should be the case if the switchbox is associated
with the segment to be reserved and the segment is not reserved already by any
train at the switchbox.

sb can reserve : SbResMap × Segment → Bool
sb can reserve(res ,seg) ≡ seg ∈ dom(res) ∧ res(seg) = t none

The parameters of the guard function are the segment which should be
reserved (seg) and the reservations of the switchbox itself (res).

An example of an updater function is the following sb res, which updates the
reservations of a switchbox:

sb res : SbResMap × TrainID × Segment → SbResMap
sb res(res , tid ,seg) ≡ res † [seg �→ tid]

The parameters for the updater function consist of the data component, i.e.
the reservations of the switchbox, (res) to which changes should be made, and
the data necessary for the change, i.e. the train (tid) for which the segment (seg)
should be reserved.

For the reservation event, there is a similar guard function t can reserve
which is used to determine, from the point of view of a train control computer,
whether a reservation can be made and there is an updater function t res to be
used to update the train state.

For other events e there are similar guard functions and updater functions.

State Variables. Several local variables are declared in the transition system.
The initial values of these determine the initial state of the transition system. In
the generic model, the variables are uninitialised, so they must be given values
when the model is instantiated for model checking.

The variables are specified using the types for dynamic data mentioned ear-
lier. There is a variable for each field of the control component state spaces. For
1 As the model is generic, the number of components is not yet known, so we can’t

specify a variable for each component holding its local state. Instead we use maps
as shown above.

284 S. Geisler and A. E. Haxthausen

example, the variables for the switchbox reservations and for the train reserva-
tions are specified as follows:

local sbRes : SbResState, tRes : TResState

Transition System Rules. The rules of the transition system define the possible
events (state transitions) of the system. A transition rule consists of a guard and
an effect, where the guard is a predicate over the state variables determining for
which states the effect of the rule can be applied, and the effect of the rule is a
collection of state variable updates. In the state variable updates, primed versions
of the variables refer to the variables in the resulting post state. Transition
rules can be combined by non-deterministic choice (����). Furthermore, a non-
deterministic choice over a set of rules of the same form, only differing by a
parameter x of finite type T , can be expressed as (���� x : T • rule), where x
occurs in the rule rule. It is a shorthand for writing a non-deterministic choice
between all rules that can be obtained by substituting a value v : T for x in rule.

In this first model, for each event e, there is a rule of the following form:

(��	
 sbid : SwitchboxID, tid : TrainID, ... •

[rule name]
t can e (...) ∧ sb can e (...) ==>

tData′(tid) = t e (...), sbData′(sbid) = sb e (...))

the ellipsis in the first line represents any extra values needed for that particu-
lar event; tData and sbData are place-holders for variables in the train control
computer state space and the switchbox state space, respectively, changed by
the transition (multiple variables from each state space may be changed by one
transition); t e and sb e are place-holders for updater functions returning the
new value for the variables.

In case an event is not collaborative, but e.g. a pure train event like move,
the format of the rule is reduced by removing the quantification over tid or
sbid, respectively, and the guard and updates for the tid or sbid component,
respectively.

As an example of a transition system rule, the rule for the reservation event
is specified as follows:

(��	
 sbid : SwitchboxID, tid : TrainID, seg : Segment •

[res]
t can reserve (tSboxes(tid), sbid,seg,tRoute(tid),tRes(tid)) ∧
sb can reserve(sbRes(sbid),seg) ==>

tRes′(tid) = t res(tRes(tid), sbid,seg),
sbRes′(sbid) = sb res(sbRes(sbid),tid ,seg))

where tRoute(tid) and tSboxes(tid) give the segments and switchboxes of the
route of train tid, respectively, and tRes(tid) and sbRes(sbid) give the reserva-
tions of train tid and switchbox sbid, respectively.

As can be seen, two guard functions are used to determine whether the
reservation can be made: only if both the train and the switchbox agree, the event
can take place. The effect of the rule is specified using two updater functions to
update the reservations of both the train and the switchbox in question.

Stepwise Development and Model Checking 285

4 Second Model

In the second step, the model has been refined to explicitly model a communi-
cation scheme between the control components of the system. The collaborative
events of the system are decomposed into multiple sub-events, such that a sim-
ple request-acknowledge protocol scheme is modelled. The event refinement has
been chosen to be atomic (i.e. all the sub-events of an event have to be com-
pleted before a new event can happen) in order to keep the state space as small
as possible. It can be shown that removing the atomicity requirements from the
resulting model M2 leads to a model M

′
2 which is behaviourally equivalent to

M2 with respect to the externally (physical) observable state, i.e. train positions
and point positions. This is because the internal protocol states of different com-
munication events are disjoint, so that every set of interleaved communication
transactions has an outcome which is equivalent to that of a serialised execution
of the same transactions in some specific order. Hence, any safety conditions
proved for M2 will also hold for M

′
2.

In the communication protocols, the train control computers are the initiating
party, issuing requests to the switchboxes. When a switchbox receives a request,
it decides whether it is able to comply with the request and, depending on this,
sends either a positive or negative acknowledgement to the train. If the switchbox
can comply with the request, it will also update its state space accordingly.
Similarly, when a train control computer receives a positive acknowledgement,
it will update its state space accordingly. If the switchbox cannot comply with
the request, neither the state space of the switchbox nor of the train control
computer will be updated.

To model the communication between the control components, the collabo-
rative events of the system have been decomposed in the following manner. For
each collaborative event e, the single transition rule in the first model is now
replaced with several separate sub-rules:

– req e, which is the initiation of the event. This corresponds to a train control
computer issuing a request to a specific switchbox with any relevant informa-
tion for the event in question.

– ack e, which is the positive acknowledgement rule for the switchbox. This
corresponds to the switchbox accepting the request, changing its own state
space accordingly and issuing the positive acknowledgement to the train con-
trol computer in question.

– end e, which concludes the event. This corresponds to the train control com-
puter receiving the positive acknowledgement signal from the switchbox and
updating its own state space accordingly.

– nack e, which is the negative acknowledgement rule for the switchbox. This
corresponds to the switchbox not being able to comply with the request, and
therefore issuing a negative acknowledgement to the train control computer
in question.

286 S. Geisler and A. E. Haxthausen

– end nack e is an auxiliary action for “consuming” the negative acknowledge-
ment from a switchbox and not changing the state space of the train control
computer.

To keep track of the messages sent between the control components, several
variables have been added to the model:

Interface variables are used to record whether a message is a request, an acknowl-
edgement or a negative acknowledgement, and to record who the sender and
receiver are:

req : TrainID →m SwitchboxID, −− request variable
ack : SwitchboxID →m TrainID, −− positive acknowledge variable
nack : SwitchboxID →m TrainID, −− negative acknowledge variable

For instance, ack(sb) = t models a positive acknowlegment from a switchbox sb
to a train t.

Data variables are used for storing data sent as part of a request. For example,
for a reservation request, the following variable2 is used to store the segment to
be reserved:

tmpSeg : Segment

Event variables are used to keep track of which type of the collaborative events
is currently ongoing (if any). There is a Boolean variable for each kind of col-
laborative event. For example, for the reservation event, the following variable
is used:3

resEvent : Bool

The variable is set to true whenever a train control computer requests a reser-
vation of a segment at some switchbox, and set to false when the train control
computer has received an acknowledgement (either positive or negative).

As an example of how the new rules of the transition system are specified and
how the additional variables are used, consider the rules for requesting, (positive)
acknowledging and concluding the reservation event:

(��	
 sbid : SwitchboxID, tid : TrainID, seg : Segment •

[req res]
¬resEvent ∧ ¬switchLockEvent ∧
t can reserve (tSboxes(tid), sbid,seg,tRoute(tid),tRes(tid)) ∧
tid /∈ dom(req) ==>

req ′ = req † [tid �→ sbid],
resEvent′ = true,

2 Since only one event should be allowed at the same time in this model, it is sufficient
to store a segment rather than a map from trains to segments, where for each train
t, tmpSeg(t) could hold data sent by t.

3 For this variable there is a similar comment as for tmpSeg.

Stepwise Development and Model Checking 287

tmpSeg′ = seg)
��	

(��	
 sbid : SwitchboxID, tid : TrainID •

[ack res]
tid ∈ dom(req) ∧ req(tid) = sbid ∧ resEvent ∧
sb can reserve(sbRes(sbid),tmpSeg) ==>

req ′ = req \ {tid},
ack′ = ack † [sbid �→ tid],
sbRes′(sbid) = sb res(sbRes(sbid),tid ,tmpSeg))

��	

(��	
 sbid : SwitchboxID, tid : TrainID •

[end res]
sbid ∈ dom(ack) ∧ ack(sbid) = tid ∧ resEvent ==>

tRes′(tid) = t res(tRes(tid), sbid,tmpSeg),
ack′ = ack \ {sbid},
resEvent′ = false)

The req res rule can be applied when the system is idle, i.e. when no events
are ongoing4, when the reservation is legal from the train control computer’s
point of view and the train control computer has not already sent a request. As
its effect, the rule sets the request variable for the train identifier and switchbox
identifier in question, enables the reservation event variable and sets a data
variable to the segment to be reserved.

The ack res rule can be applied when a request has been issued, the reserva-
tion event variable is enabled and the reservation event is legal from the point
of view of the switchbox. As its effect, the rule removes the issued request, issues
a positive acknowledgement and updates the state space of the switchbox with
the reservation (here, the segment data variable from before is used).

Finally, the end res rule can be applied when a positive acknowledgement has
been received and the reservation event variable is enabled. As its effect, the rule
updates the state space of the train control computer (and again uses the segment
data variable), removes the acknowledgement and disables the reservation event
variable.

There are two additional rules (not shown here) for expressing the sending
of a negative acknowledgement from a switchbox to a train and for the train
receiving it, respectively.

Relation to the First Model. Instances of this model are clearly able to
simulate all possible events of the corresponding instances of the first generic
model, which was the intention with this step in which no behaviour should be
lost. Furthermore, instances of the first model are able to simulate all atomic
events of the corresponding instances of this second generic model.

4 It is this condition which enforces the atomic event refinement.

288 S. Geisler and A. E. Haxthausen

5 Third Model

The third model has been restricted to model a just-in-time allocation principle.
In the previous models, any order of legal events was possible. This means, for
example, that nothing was preventing a train from reserving the last segment
of its route as the first event (other than if the segment was already reserved,
of course). This third model should now specify a control strategy, stating that
a train must only make reservations of the next upcoming segment in its route
(at the two upcoming switchboxes of its route), and must only lock the point at
the next upcoming switchbox. This strategy is just one of many choices, and is
used to demonstrate the possibility and technique of restricting the protocol of
the second model to enforce events to happen in a more specific order.

As mentioned, the train control computers are the initiating party for collabo-
rative events. Therefore, the desired restriction can be achieved by strengthening
the guard functions used by the train control computers. This limits the amount
of possible events such that they match the steps of the control strategy.

The restriction of the guard functions is accomplished by using the following
pattern. If the guard function was previously of the form

t can e : ... → Bool
t can e (...) ≡ ...

then the new, restricted guard function is of the form

restricted t can e : ... → Bool
restricted t can e (...) ≡

t can e (...) ∧ new restriction 1 ∧ ... ∧ new restriction n

The extra conjunct(s) can, in some cases, lead to the possibility of the prop-
erties of t can e to be reduced. This is the case when one of the new restrictions
implies (parts of) the properties found in the can e guard function.

For the reservation event, the restrictions to be included in the updated
guard function consist of only allowing a train t to reserve a segment seg at a
switchbox sb, if (1) sb is one of the two upcoming switchboxes of the route of t
and (2) the segment seg is the next segment with respect to the train’s position
and route.

Hence, the restricted guard function is specified as follows:

restricted t can reserve : SboxMap × SwitchboxID × SwitchboxID × Segment ×
Route × Position × ResMap → Bool

restricted t can reserve (sboxes,sbid,nextsb,segment,route,pos,res) ≡
t can reserve (sboxes,sbid,segment,route,res) ∧
(sbid = nextsb ∨ (nextsb ∈ dom(sboxes) ∧ sbid = sboxes(nextsb))) ∧
is single pos (pos) ∧ seg(pos) ∈ dom(route) ∧ segment = route(seg(pos))

In this case it turned out that some of the added sub-properties imply some
of the sub-properties in t can reserve(sboxes,sbid,segment,route,res), so we sim-
plified the conjunction.

Stepwise Development and Model Checking 289

The transition rule for req res is obtained from the second model by replacing
t can reserve(tSboxes(tid),sbid,seg,tRoute(tid),tRes(tid)) with restricted t can
reserve(tSboxes(tid),sbid,tNextsb(tid),seg,tRoute(tid), tPos(tid),tRes(tid)).

Relation to Second Model. Instances of the second model can clearly simu-
late all possible behaviours of the corresponding instances of this third generic
model.

6 Verification

At each of the three specification steps, model instances of the generic model at
that level have been verified and tested in several different ways, as explained
below, in order to get confidence in the correctness of the generic models. Later,
if new network and train configurations are considered, the idea is that the final
generic model should be instantiated with that data and model checked.

Note that we have not formally verified a formal refinement/simulation rela-
tion between the models, which would require considerably higher verification
effort, but only discussed this informally in the previous sections.

6.1 Model Checking

Each of the three generic models have been instantiated with several typical
network layouts and a collection of trains. The network layouts and train routes
should be chosen such that they include cases where trains need access to the
same shared resources (e.g. track segments). In this paper we consider the con-
figuration shown in Fig. 2. In this network two trains are shown in their initial
position and the coloured lines show their routes. As it can be seen, the two
trains have routes passing the same station in opposite direction. Another typ-
ical case we have considered is one, where two trains have routes passing the
same line between two stations in opposite direction.

Fig. 2. An example system configuration with two trains and their routes.

After having instantiated the three generic models with configuration data
for our example, the three resulting model instances were model checked against
several assertions expressed in Linear Temporal Logic (LTL) using the symbolic
model checking tool of Symbolic Analysis Laboratory (SAL) [1]. The properties
asserted were as follows.

290 S. Geisler and A. E. Haxthausen

– Safety properties, stating the absence of derailments and collisions of trains
in all reachable states. The absence of collisions is stated as follows, using an
auxiliary function named no collide:

[no collide] TS � (∀tid1,tid2 : TrainID •

G(tid1 �= tid2 ∧ tid1 �= t none ∧ tid2 �= t none ⇒ no collide(tid1,tid2,tPos)))

where no collide(tid1, tid2, tPos) expresses that the intersection of the seg-
ments of the positions of tid1 and tid2 is empty, i.e. the trains are not both
occupying the same section. tPos is a state variable storing the positions of
all the trains. Similarly, the absence of derailments is stated as follows:

[no derail] TS � (∀tid : TrainID •

G(¬is single pos(tPos(tid)) ⇒ no derail(tPos(tid),sbConn))),

where ¬ is single pos(tPos(tid)) expresses that the train is passing a point
(is not on a single segment) and no derail(tPos(tid), sbConn) expresses that
the train’s position tPos(tid) fits the position of the point. sbConn is a state
variable storing the point positions at all the switchboxes.

– Consistency properties, stating the consistency of distributed data, e.g. that
reservations saved in the train control computer state spaces are in agreement
with those from the switchbox state spaces, in all reachable states.

– Wellformedness properties, stating the wellformedness of configuration data
wrt. the static configuration data in all reachable states.

– Liveness properties, stating that events are always completed. This only
applies to the second and third model. For example, the fact that the reser-
vation event is always completed is stated as follows:

[finish res] TS � G(resEvent ⇒ F(¬resEvent))

Note that the result for such properties is only sound if there are no deadlocks.
– Reachability properties, expressing that there is at least one possible schedule

where all trains reach their destination. These have been verified by contradic-
tion: by model checking properties stating that the trains do not all eventually
arrive at their destination:

[not all trains arrive] TS � G(¬(∀tid : TrainID •tPos(tid) = dest(tid)))

where dest(tid) is the destination position of train tid. This property is
expected to be false and should generate a counter example showing a trace
where all trains arrive at their destination.

All the desired properties were successfully verified for the three model
instances. (In particular, the property [not all trains arrive] gave in each case,
as desired, rise to a counter example demonstrating that there exists at least one
schedule, where all trains arrive at their destination.)

Furthermore, we applied successfully the SAL deadlock checker to the three
model instances to ensure absence of deadlocks.

Note that even if invariant properties for a model instance of the first generic
model has been model checked, we need to model check them again for the

Stepwise Development and Model Checking 291

corresponding instance of the second generic model as there are new intermediate
states we want to be sure are safe.

Note also that in principle, the model checking of invariant properties for a
model instance of the third generic model should not be necessary when they
have been model checked for the corresponding instance of the second generic
model (as all behaviours of the third model are simulated by behaviours in the
second model), but since we made some simplifications of the guards in the third
generic model, we also model checked the properties for the model instance of
the third model.

6.2 Other Verification Activities

Before beginning the process of symbolic model checking different model
instances against the desired properties, other tools were used to gain confidence
in the correctness of the function and transition system rule specifications.

– Testing of functions: Important functions (e.g. for expressing safety and con-
sistency properties, which are used in the transition system assertions) were
tested using the RSL test case construct. The functions were validated to
ensure that the assertions to be verified in the model checking process are
correct. This testing activity was only needed in the first specification step,
as no new functions were used in the later steps.

– Bounded model checking: The transition rules of the model instances were
tested using the SAL bounded model checker, which only explores the paths
in the transition system to a certain, given depth. Therefore, attempting to
verify the properties stated above with the bounded model checker reveals
bugs much faster.

7 Conclusion and Future Work

In this paper we have shown a method to stepwise develop a generic state tran-
sition system model of a real-world distributed railway interlocking system and
verify safety and consistency properties of instances of these models by model
checking. This method could also carry over to other, similar applications.

The models are expressed in an extension to RSL: RSL-SAL [10]. Although
stepwise development of state transition systems is well known from other lan-
guages, it is novel for RSL. The stepwise development has shown to be very
useful: Firstly, it allows the initial specification to abstract away from details
and complexity which can be added later in a development step. This means
that a simpler model expressing essential system behaviour can be developed
first without worrying about concrete details. This eases the modelling process.
It also has the advantage that essential system behaviour can be verified already
at this stage, allowing the developer to gain confidence in the specification, before
adding details that would most likely increase the time and memory usage of
the verification. Secondly, the idea of letting the second model be so general

292 S. Geisler and A. E. Haxthausen

(e.g. without having a restriction on the ordering of reservations that a train
should send) that it can be refined to several different concrete behaviours (e.g.
with specific orderings of reservations) by restricting the guards is useful as the
invariant properties which are shown to be satisfied by the general model will
also be satisfied by any restrictions. In this way one can create a library of differ-
ent families of models, and variants of different control protocols can be explored
and compared.

For the model checking, the SAL symbolic model checker was used, just for
a proof of concept of our method, but other back-ends can be used as well.

In future work we plan to experiment with other model checking techniques,
e.g. SAT-based k -induction, and other back-ends, e.g. RT-Tester [12], in order
to find the most efficient verification technique and apply these also to larger
networks. In another case study [13], RT-Tester was used to perform k -induction
in order to prove a centralised interlocking system and turned out to be very
efficient and scale up to big networks. We also plan to extend the models with
additional operations for cancelling reservations and for changing the direction
of a train.

Acknowledgements. The authors would like to express their gratitude to Jan Peleska
from whom the case study originates and together with whom the second author had
the great pleasure to verify the same case study by theorem proving [8]. We would also
like to thank him and the reviewers for very useful comments to drafts of this paper.

References

1. Symbolic Analysis Laboratory, SAL (2001). http://sal.csl.sri.com
2. CENELEC European Committee for Electrotechnical Standardization. EN

50128:2011 - Railway applications - Communications, signalling and processing
systems - Software for railway control and protection systems (2011)

3. Fantechi, A., Gnesi, S., Haxthausen, A., van de Pol, J., Roveri, M., Treharne, H.:
SaRDIn - a safe reconfigurable distributed interlocking. In: Proceedings 11th World
Congress on Railway Research (WCRR 2016). Ferrovie dello Stato Italiane, Milano
(2016)

4. Fantechi, A., Haxthausen, A.E., Nielsen, M.B.R.: Model checking geographically
distributed interlocking systems using UMC. In: 2017 25th Euromicro International
Conference on Parallel, Distributed and Network-based Processing (PDP), pp. 278–
286 (2017)

5. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2010, pp.
107–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14261-
1 11

6. Haxthausen, A.E., Automated generation of formal safety conditions from railway
interlocking tables. Int. J. Softw. Tools Technol. Transf. (STTT) 16(6), 713–726
(2014). Special Issue on Formal Methods for Railway Control Systems

7. Haxthausen, A.E., Le Bliguet, M., Kjær, A.A.: Modelling and verification of relay
interlocking systems. In: Choppy, C., Sokolsky, O. (eds.) Monterey Workshop 2008.
LNCS, vol. 6028, pp. 141–153. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12566-9 8

http://sal.csl.sri.com
https://doi.org/10.1007/978-3-642-14261-1_11
https://doi.org/10.1007/978-3-642-14261-1_11
https://doi.org/10.1007/978-3-642-12566-9_8
https://doi.org/10.1007/978-3-642-12566-9_8

Stepwise Development and Model Checking 293

8. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. Softw. Eng. 26, 687–701 (2000)

9. James, P., et al.: Verification of scheme plans using CSP||B. In: Counsell, Steve,
Núñez, Manuel (eds.) SEFM 2013. LNCS, vol. 8368, pp. 189–204. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-05032-4 15

10. Perna, J.I., George, C.: Model checking RAISE applicative specifications. In: Pro-
ceedings of the Fifth IEEE International Conference on Software Engineering and
Formal Methods, pp. 257–268. IEEE Computer Society Press (2007)

11. The RAISE Language Group: George, C., Haff, P., Havelund, K., Haxthausen,
A.E., Milne, R., Nielsen, C.B., Prehn, S., Wagner, K.R.: The RAISE Specifica-
tion Language. The BCS Practitioners Series. Prentice Hall Int., Englewood Cliffs
(1992)

12. Verified Systems International GmbH. RT-Tester Model-Based Test Case and Test
Data Generator - RTT-MBT - User Manual (2013). http://www.verified.de

13. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of inter-
locking systems featuring sequential release. Sci. Comput. Programm. 133(2), 91–
115 (2017). https://doi.org/10.1016/j.scico.2016.05.010

14. Winter, K.: Model checking railway interlocking systems. In: Proceedings of
Twenty-Fifth Australasian Computer Science Conference (ACSC 2002), pp. 303–
310 (2002)

https://doi.org/10.1007/978-3-319-05032-4_15
http://www.verified.de
https://doi.org/10.1016/j.scico.2016.05.010

Resource-Aware Design
for Reliable Autonomous Applications

with Multiple Periods

Rongjie Yan1, Di Zhu3,4, Fan Zhang1,2, Yiqi Lv1,2, Junjie Yang3,4,
and Kai Huang3,4(B)

1 State Key Laboratory of Computer Science, ISCAS, Beijing, China
{yrj,zhangf,lvyq}@ios.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China
3 Key Laboratory of Machine Intelligence and Advanced Computing,

Sun Yat-sen University, Ministry of Education, Guangzhou, China
{zhud5,yangjj27}@mail2.sysu.edu.cn, huangk36@mail.sysu.edu.cn

4 School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China

Abstract. Reliability is the most important design issue for current
autonomous vehicles. How to guarantee reliability and reduce hardware
cost is key for the design of such complex control systems intertwined
with scenario-related multi-period timing behaviors. The paper presents
a reliability and resource-aware design framework for embedded imple-
mentation of such autonomous applications, where each scenario may
have its own timing constraints. The constraints are formalized with the
consideration of different redundancy based fault-tolerant techniques and
software to hardware allocation choices, which capture the static and var-
ious causality relations of such systems. Both exact and heuristic-based
methods have been implemented to derive the lower bound of hardware
usage, in terms of processor, for the given reliability requirement. The
case study on a realistic autonomous vehicle controller demonstrates the
effectiveness and feasibility of the framework.

1 Introduction

As the automotive industry is striving for autonomous vehicles through inten-
sive sensing, computation, and communication, a larger number of more com-
plex control applications with guaranteed performances are expected to be on
board. Such complex control applications are usually composed of a set of func-
tions that are characterized by various timing behaviors, e.g., environment con-
straints, sensing/acting frequencies, or various worst case execution times of

This work has been partly funded by the National Key Basic Research (973) Program
of China under Grant No. 2014CB340701, Key Research Program of Frontier Sci-
ences, CAS, under Grant No. QYZDJ-SSW-JSC036, the CAS-INRIA major project
under No. GJHZ1844, the National Science Foundation of China under Grant No.
U1435220, No. U1711265, and the Fundamental Research Funds for the Central
Universities under grant No. 17lgjc40.

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 294–311, 2018.
https://doi.org/10.1007/978-3-319-95582-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_17&domain=pdf

Resource-Aware Design for Reliable Autonomous Applications 295

Fig. 1. Functionality of an autonomous controller

software components. For these kinds of on-board control applications, reliabil-
ity is the most critical design issue, as any failure will incur catastrophes. Since
algorithm development for these control applications is well-established, system-
level mechanisms are mandatory to mitigate the impact of transient faults to
ensure system reliability, even though hardware becomes more reliable.

Reliability, however, comes with costs. In principle, system-level mechanisms
always adopt active or passive redundancy based fault-tolerant techniques [10].
We consider active redundancy as the major technique to guarantee system
reliability, which replicates software tasks into multiple copies. Those copies can
be executed on the same processor (temporal redundancy), or distributed to
multiple processors (spatial redundancy). In the case of temporal redundancy,
additional latency will be introduced which may hamper the response time of the
applications. In the case of spatial redundancy techniques, additional hardware is
needed to accommodate the replicas. The additionally imposed hardware has to
be minimal as automotive industry is particularly sensitive in terms of hardware
costs [13]. Therefore, safety-critical control components in automobiles have to
be carefully designed, to deploy control components and their redundancy into
a given hardware architecture by considering all the constraints.

To motivate our work, let us consider an autonomous automobile controller
shown in Fig. 1, whose role is to extract the target path derived from motion
planning according to collected information from physical devices, and to control
low level actuators to track the path. The frequency of path tracking is usu-
ally higher to follow environment updating. Meanwhile, the frequencies of every
functionality in different scenarios, such as going straight and making u-turns,
are also different. Since, for example, making a u-turn is generally harder than
going straight, a higher frequency is required to minimize the tracking error. We
expect to adopt minimal number of homogeneous processors for its embedded
implementation, to meet reliability guarantees and all timing constraints.

To guarantee reliability and reduce hardware cost at the same time is not easy
for such complex control systems intertwined with scenario-related multi-period
timing behaviors as well as fault-tolerant mechanisms. The reason is multi-
fold. First, scenario-related multi-period timing behaviors incur more design
and implementation considerations: (1) timing constraints are scenario-related,
and the implementation should accommodate all scenarios; (2) various data

296 R. Yan et al.

dependencies exist, due to the communication between tasks with different
periods. Second, hardware optimization for such design is not straightforward:
(1) different scenario-related constraints lead to different optimization results;
(2) the goal of processor minimization cannot be formatted as an expression that
can be calculated with a set of variables and constraints, because it is regarded
as a fixed parameter to encode the constraints in the embedded implementation.

To deal with the first challenge, we adopt hyper period (the least common
multiple of all periods) [14] to unify the scheduling length (makespan) for soft-
ware to hardware deployment consideration. Meanwhile, we adopt data refresh-
ing technique for communication between tasks with different periods to avoid
accessing to empty buffer, where buffered data will not be removed until new
data comes and overwrites the old. For the second challenge, to reduce the cost
for hardware and the latency for fault tolerance, as well as guaranteeing reli-
ability, we introduce both spatial and temporal redundancy of tasks. Majority
fault-free voters are applied to choose the result in majority from multiple repli-
cas, to simplify the implementation. To calculate the least number of required
processors, the hardware optimization problem is translated into a satisfiability
problem [3], i.e., whether a scheduler satisfying all the constraints exists, with
the given number of processors. Then we could provide the result by repeat-
edly checking the satisfiability problem with various numbers of processors. The
method can be employed in various scenarios, and we take the maximum number
among the minimized number of processors in various scenarios, such that the
implementation is capable of serving all scenarios.

The contributions of the paper are as follows. First, we provide a frame-
work for reliable and resource-aware design of autonomous applications with
scenario-related multi-period behaviors, where reducing processor usage is the
basis of other resource optimization. Second, we propose an effective method for
processor optimization to derive the solution for scenario-related applications.
Meanwhile, we present a rule to infer processor usage among various scenarios.
We also employ various techniques for solution calculation, such as model check-
ing, constraint solving and heuristic-based methods. The case study on realistic
autonomous automobile control systems has demonstrated the feasibility and
the effectiveness of our method.

The organization of paper is as follows. Section 2 discusses the related work.
Section 3 concretizes the motivating example. We present the related concepts
in Sect. 4. Section 5 formalizes the constraints for scenario-related multi-period
behaviors and fault-tolerant techniques, and proposes the detailed implementa-
tion. Section 6 provides the experimental results on the case study, and Sect. 7
concludes.

2 Related Work

Automotives are classical instances of mixed-critical systems [5]. We concentrate
on reliability and resource-aware design for safety-critical parts of these mixed-
critical systems.

Resource-Aware Design for Reliable Autonomous Applications 297

Fig. 2. Task graph of the autonomous controller.

Reliability-aware design is widely acknowledged for safety-critical systems
[2,8,9], which is always regarded as an optimization goal in design space explo-
ration. For example, the work in [9] applies temporal and spatial redundancy and
optimize the amount of redundancy with genetic algorithms. For automotive sys-
tems, a model based strategy is introduced for soft error tolerance techniques
under real-time constraints [16]. The work in [12] analyzes transient errors for
automotive safety-critical applications. We consider transient faults caused by
hardware and regard reliability as the fundamental requirement. Once the relia-
bility can be guaranteed, we try to minimize hardware resources, which is a hot
topic for embedded systems [6,15]. The work in [6] considers the optimization of
hardware resources for multi-rate automotive control systems on single-processor
platforms. Zhao et al. concentrates on stack usage minimization for AUTOSAR
models [15]. Our concern is the minimization of processors, which is also the
basis of other resource optimizations.

To deal with data communication in multi-period systems, various tech-
niques, such as communication protocols [11] and lossless buffering [14], have
been introduced. In [14], base period (the greatest common divisor of all task
periods) is adopted as the length of the scheduling. We apply hyper period of all
tasks, and the communication is implemented with data refreshing technique.

3 The Motivating Example
We present in Fig. 2 the structure of the controller1 mentioned in Sect. 1, whose
role is to receive a target path and control low level actuators to track the path. It
consists of two components: (1) Path tracking (PT), to track the path according
to the input from IMU (Inertial Measurement Unit); (2) Path extraction (PE),
to process the target path calculated from a motion planning module.

PT consists of three processes: location acquisition, preprocessing and control
instruction output. Once data from IMU is available (t1), tracking error will be
calculated in the preprocessing step (t2). This step also considers the output from
the buffer switch task (t7) in PE when it is available. Next, lateral control (t3)
and longitudinal control (t4) run in parallel. In the former, steering angle is cal-
culated by a structure with both feedforward controller and feedback controller,

1 To ease the description, periods, computation costs (labelled on tasks) presented
here are simplified.

298 R. Yan et al.

and supplemented by yaw damping. The latter includes two PID controllers for
throttle and brake, respectively.

PE involves three steps: path acquisition (t5), extraction (t6) and buffer
switch (t7). Once a path is acquired in the first step, it will be delivered to
the extraction step. The extraction step mainly targets for spline interpolation,
radius calculation and other relevant computations. After the extraction, the
double buffer implemented for parallel writing and reading will be updated.

Difference in sampling rates makes the periods of PT and PE different. And
the periods of PT (or PE) are different in various scenarios, such as making a
u-turn, or going straight, though the worst case execution time (WCET) of every
task in all scenarios is the same.

4 Preliminaries

To globally consider multi-period timing behaviors among various subsystems
in a scenario and optimize hardware resources, we first propose the concept of
atypical task graph. Then we present the communication model for multi-period
behaviors. Finally, the fault-tolerant techniques applied here are recapped.

4.1 Atypical Task Graph

Every task can be encoded as a tuple with t = (id, δ, w), where id is the identity
of the task, δ indicates the cost of worst case execution, and w shows the degree
of importance. A subsystem can be described with an acyclic directed graph
Gi = 〈Ti, Ei〉 and period of occurrence Pi, where Ti is a finite set of tasks, and
Ei ⊆ Ti × Ti is a set of precedence relations with ce : Ei → N to indicate the
cost of data transferred between each pair of tasks. A system is composed of a
set of subsystems and the connection maintained by data transfer between these
subsystems. Due to the difference in periods, a task in a subsystem may ignore
the unavailable resource from another subsystem. Consequently, we introduce
strong and weak dependency for the relations of tasks in a global system and
formalize them in the model of atypical task graph.

Definition 1. An atypical task graph is a tuple G = 〈T,E〉, where T =
⋃n

i=1 Ti,
and E ⊆ {Ti × Tj |1 ≤ i, j ≤ n}, with Gi = 〈Ti, Ei〉 ∈ G. For ti, tj ∈ T , we have
– strong dependency: if ti → tj ∈ Ei, tj has to wait for the output of ti,
– weak dependency: if ti � tj ∈ E \ (

⋃n
i=1 Ei), tj can ignore the output of ti.

In the model of Fig. 2, we have t7 � t2 (which is connected with dashed line).
Other precedence relations are strong.

4.2 Communication Model

Communication for weak dependency relation is implemented with buffer refresh
semantics, i.e., the sink task reads the old data in the buffer until it is refreshed.

Resource-Aware Design for Reliable Autonomous Applications 299

Given two tasks ti and tj from two subsystems with periods Pi and Pj , respec-
tively, if tj � ti, their communication scenario can be described as the case in
Fig. 3, where the arrow shows the direction of data transfer for the weak depen-
dency relation. In the scheduling of Fig. 3, though tj finishes its execution at
time point σ1, ti has to wait for additional σ2 time units to use the refreshed
data. Intuitively, the number of iterations for ti to obtain the refreshed data is
in the range of [�σ1/Pi	, �Pj/Pi	 + 1], where in the worst case tj is scheduled in
the end of its subsystem.

Fig. 3. Communication model for weak dependency relation.

For safety-critical systems, we may expect to reduce the time that one has to
wait for the other, i.e., minimize σ1 in the scheduling of Fig. 3. The optimization
is a local scheduling for the corresponding subsystem.

4.3 Active Redundancy Based Fault Tolerance

We consider spatial redundancy, and spatial and temporal mixed redundancy in
the paper. Intuitively, temporal redundancy will prolong the execution of tasks,
and spatial redundancy will require more hardware resources. The mixture of
the two may reduce these disadvantages. Consider the model given in Fig. 2.
When three replicas exist for t2 and t6, respectively, we present two schedulers in
Fig. 4 with two redundancy strategies, where applying pure temporal redundancy
violates timing constraints and is ignored. In the case of spatial redundancy
shown in Fig. 4(a), four processors are required to satisfy timing requirements.
However, the case of mixed redundancy in Fig. 4(b) only needs three processors,
though data update for t2 from t7 is delayed by one period of PT.

Fig. 4. Two schedulers for the model in Fig. 2.

300 R. Yan et al.

5 Reliable and Resource-Aware Design

Two design objectives, i.e., reliability guarantee and processor minimization,
introduce two optimization steps: (1) calculate the redundancy degree of every
task for system reliability, by assuming that communication between tasks is reli-
able; (2) find the minimal number of processors such that all the constraints can
be satisfied. We first present restrictions on satisfying reliability requirements,
and constraints on adopting various fault-tolerant techniques with multi-period
timing behaviors. Then we discuss the implementation for optimizing two goals.

5.1 Redundancy Optimization

We adopt the Poisson fault model [2] to compute the success/failure probability
of tasks. Given task ti and processor p with failure rate λp, the probability for
ti executing correctly on processor p is Pi = e−λpδi . Then the probability of ti
encountering a transient fault is 1 − Pi. We employ Pi as the reliability of ti.

Given a system depicted with an atypical task graph G, we first evaluate the
reliability of its subsystems. For the task graph Gk of a subsystem, if one of the
tasks fails, it is not reliable. Therefore, for the task graph with |Tk| tasks, where
the reliability of every task is Pi, the reliability of its subsystem is

Rk =
|Tk|∏

i=1

Pi. (1)

If a task contains r replicas, its reliability becomes 1 − (1 − Pi)r, which is
greater or equal to Pi. As redundancy can increase reliability, the subsystem
reliability can be enhanced with replicas of its tasks. Let ri be the number of
replicas for task ti with reliability Pi, we have

Rk =
|Tk|∏

i=1

(1 − (1 − Pi)ri). (2)

Given a requirement that the system reliability should be at least R, we can
calculate the minimal number of replicas for all the tasks in a system, such that
all the subsystems satisfy the reliability requirement, i.e.,

minimize(
∑

Tk⊆T

∑|Tk|
i=1 ri · wi)

subject to:
forall k,

∏|Tk|
i=1 (1 − (1 − Pi)ri) ≥ R

(3)

where wi is the weight of task ti, and |Tk| is the number of tasks in Tk.
We consider a majority voter, to generate an output if and only if more than

half of the inputs have the same value. And the reliability of a voter is assumed
to be 1. A voter can be regarded as a task by inserting it into the task graph,
according to the dependency relation of its predecessor.

Resource-Aware Design for Reliable Autonomous Applications 301

5.2 Constraint Formalization and Resource Optimization

To formalize the mapping and scheduling constraints for the corresponding
embedded implementation, we assume that the number of replicas for every
task has been calculated, and all the necessary voters are converted into tasks.
The necessary notations for constants and variables are listed in Table 1. For
multiple periods, we first compute the least common multiple M of these peri-
ods. Then the number of iterations of every task in a hyper period is Ni = M/Pi.
We introduce dij to record the precedence relation between pairs of tasks, where
dij = 0 stands for the non-existence of dependency relation, dij = 1 is for the
strong dependency relation, and dij = −1 is for the weak dependency relation.

Table 1. Constraints and variables

Const. Explanation Var. Explanation

Ni The number of
iterations for task ti

oij Indicating the existence of communication

ri The number of
replicas for task ti

mu
ijk The jth replica of task ti is mapped to pk in

iteration u

Pi The period of task ti suil Start time of executing the lth replica of ti
in iteration u

δi The cost of
executing task ti

fu
il End time of executing the lth replica of ti in

iteration u

dij Dependency relation
for ti and tj

seuij Time for starting data transfer from ti to tj
in iteration u

cij Cost of data transfer
from ti to tj

feuij Time for finishing data transfer from ti to tj
in iteration u

αu
i Arrival time for ti in iteration u

Mapping and Scheduling Constraints. The constraints presented here
mainly involve the mapping of tasks and replicas, the behaviors between strong
and weak dependent tasks, and the causality between various actions. For the
type of redundancy, we consider the cases of spatial, spatial and temporal mixed
redundancy. For the mapping relation between tasks and processors, it can be
fixed (the mapping will not change in various iterations) or flexible (the mapping
can change among various iterations).

The constraints in Table 2 depict the mapping restriction in various cases. For
spatial redundancy, every processor p ∈ P can only accommodate one replica of
a task. However, in the mixed case, such limitation does not exist. If the mapping
is fixed, the allocation relations of tasks to processors keep the same in all the
iterations, and we ignore the iteration index.

302 R. Yan et al.

Table 2. Case-specified mapping constraints

Equation 8 requires that in spatial redundancy, all replicas of a task should
be executed at the same time, which is not involved in mixed redundancy.

∀1 ≤ l, l′ ≤ ri, s
u
il = su

il′ (8)

The general causality constraints on scheduling are depicted in Table 3.

Table 3. General constraints

Objectives. The reliability requirement demands sufficient number of proces-
sors to accommodate redundancy and to satisfy the timing requirements. Mean-
while, we also expect to reduce the adopted hardware resources for cost consid-
eration. Therefore, we expect to minimize the number of allocated processors
without sacrificing system reliability.

Let T be a set of tasks with |T | = n, S be a set of scenarios of a system with
|S| = m, and Pij be the period of task ti in scenario sj . The minimum number
of processors we need is

max{minimize(|Pj |) | 1 ≤ j ≤ m} (14)

where minimize(|Pj |) is the minimum number of processors used in scenario sj

to satisfy time constraints in the hyper period by considering the set of periods

Resource-Aware Design for Reliable Autonomous Applications 303

Fig. 5. Optimization steps

{Pij}1≤i≤n. To satisfying the constraints of all the scenarios, we need to select
the maximum among all the results.

Theorem 1. Given a system with a set of tasks T and a set of applied scenarios
S, where Pij is the period of task ti ∈ T in scenario sj ∈ S, let Mj be the least
common multiple of all tasks T in scenario sj, and |Pj | be the minimal number
of required processors for a satisfiable scheduler in scenario sj. If there exists
sj′ ∈ S such that

(Mj ≤ Mj′) ∧
|T |∧

i=1

(
Mj

Pij
≥ Mj′

Pij′
),

the tasks in s′
j is schedulable with |Pj | processors.

Proof. If |Pj | is the number of required processors for scenario sj , we have

|T |∑

i=1

Mj

Pij
· δi ≤ Mj · |Pj |.

Then we have

|T |∑

i=1

Mj′

Pij′
· δi ≤

|T |∑

i=1

Mj

Pij
· δi ≤ Mj · |Pj | ≤ Mj′ · |Pj |.

Therefore, the tasks in sj′ is schedulable with |Pj | processors.

Informally speaking, with Theorem 1, we could save the effort of optimization
by ignoring the scenarios that the hardware resource usage can be inferred. The
reason is that we need to satisfy the requirements of all scenarios.

5.3 Implementation

We adopt a stepwise strategy for the optimization of the goals, as shown
in Fig. 5. First, we introduce a greedy algorithm to calculate the allocation

304 R. Yan et al.

of replicas, where every subsystem should satisfy the reliability requirement.
Then, the optimization for the minimal number of processors is translated into
a satisfiability problem, such that the existence of a deployment strategy satis-
fying all the constraints can be checked.

Replica Calculation. Increasing the number of replicas for tasks with lower
reliabilities is more effective in enhancing system reliability. Therefore, the greedy
algorithm tends to assign more replicas to such tasks. Meanwhile, the number of
replicas is set to be odd for majority voting. If all the tasks have the same weight,
the calculated configuration of replicas is the optimized solution. However, when
the weights are different, there may exist many solutions for a given expected
system reliability. The algorithm just outputs one replica configuration.

Hardware Resource Minimization. It is difficult to directly apply
constraint-based or meta-heuristic based optimization techniques to minimize
the number of adopted processors. The reason is that an optimization objective
is usually encoded as an expression that can be calculated with a set of variables
and constraints. However, the number of processors is regarded as a fixed param-
eter to encode the constraints in the design for an embedded implementation.
The intuition of the problem is to find a minimal number of processors, such
that the system is schedulable with the constraints. When the number is given,
checking whether there exists a scheduler meeting the constraints is a satisfi-
ability problem. Then we can use various techniques, such as model checking,
constraint solving or heuristic-based methods, for satisfiability analysis. There-
fore, we could keep on checking the satisfiability of the constraints mentioned in
Sect. 5.2 with various numbers of processors, until we reach the minimum such
that all the constraints in a certain scenario are satisfied.

We have encoded the constraints in various cases (the product between
mapping and redundancy choices) with model checking, constraint solving and
heuristic-based methods. As illustrated in the right-side of Fig. 5, the method
implemented with model checking works as follows:
1. we build a formal model to depict the constraints for tasks (replicas) being

executed on processors, such that the minimal number of required processors
to satisfy the constraints in the model can be checked.

2. the property we check is whether all the tasks can be done within a specified
deadline (hyper period) of scenario sj .

3. for a given number of processors nj ,
– if the property is satisfied, reduce nj by one and check the satisfiability of

the property until it is not satisfied. Then nj + 1 is the result in sj .
– if the property is not satisfied, increase nj by one and check the satisfia-

bility of the property until it is satisfied. Then nj is the result.
The condition marked with in Fig. 5 must be explored at least once. Steps
2 and 3 are repeated until all necessary scenarios have been checked. Then the
maximal number among all the scenarios is the expected result.

Resource-Aware Design for Reliable Autonomous Applications 305

The model mainly contains templates for tasks and processors, which are
formalized with timed automata [1]. The execution of tasks on processors is
encoded as the coordination between the corresponding components.

Fig. 6. Models in timed automata

We provide the templates for flexible mapping and mixed redundancy in
Fig. 6(a) and (b) with two timed automata for tasks (replicas) and processors,
respectively, where the nodes with double cycles are initial locations. The con-
dition labelled on edges between two locations describes the constraints for the
transition. There is a clock variable x in the processor model. When a task starts
execution on a processor, x is reset to zero to record time elapse. When x reaches L,
the task can release the occupation of the processor. The constraint x ≤ U requires
that the execution of a task should not exceed U (the WCET of a task). The two
timed automata coordinate via the message marked with ! and ?. The compo-
sition of task and processor via message synchronization is shown in Fig. 6(c).
Additional to the constraint of deadline, we could also encode the timing require-
ments between weak dependent tasks that the scheduler should satisfy. The tem-
plates can be instantiated with multiple tasks and processors. Then we can check
whether a scheduler satisfying all the timing constraints exists.

We employ model checker UPPAAL [4] to deal with the checking process.
Once we fix the minimal number of processors, a counter-example showing the
configuration and scheduling strategy can be given. If the given number of pro-
cessors cannot guarantee to satisfy all the constraints, the whole state space will
be explored by using model checking techniques. Then the model checker may
not present an answer due to state space explosion for large scale systems. With
this consideration, we also apply SMT solver Yices [7] to encode and solve the
constraints. Additionally, a heuristic-based method is implemented with some
greedy strategies, which is sound but not complete. That is, if the algorithm can
find a scheduler, adopting the given number of processors can satisfy the con-
straints. However, if the algorithm fails to find a scheduler within finite number
of iterations, we cannot say that the system is not schedulable with the given
number of processors.

6 Case Study

We conduct experiments on the autonomous vehicle controller depicted in
Fig. 1. The autonomous vehicle is modified from Dongfeng Fengshen AX7 SUV

306 R. Yan et al.

(Fig. 7(a)) with drive-by-wire ability. The vehicle is equipped with a variety of sen-
sors and low-level actuators. The actuators, e.g., electronic power steering motor,
brake motor, and throttle by-wire, receive and actuate commands from the con-
troller. Vehicle data such as current steering angle is sensed by on-board sensors
and obtained through a CAN bus. The IMU used for localization is an Inertial
Navigation System (INS) aided by external Differential Global Positioning Sys-
tem (DGPS). Other sensors, e.g., LiDAR, Radar and camera, provide data for
the centre computer. Then the centre computer delivers environment perception
and generates a target path that is a sequence of position points with maximum
speed information. Next, the controller keeps the vehicle tracking this path.

(a) Dongfeng Fengshen AX7 (b) Autonomous control systems

Fig. 7. Our autonomous vehicle

In the autonomous control system (Fig. 7(b)), the controller is a real-time
application running under a Linux kernel with PREEMPT RT patch. The type
of processors for controller execution is Raspberry Pi 3, namely a 1.2 GHz quad-
core ARM Cortex A53 cluster. The communication between various processors
is via Ethernet. We conduct real urban road tests as well as simulation tests
with scenarios covering straight, curve, lane change, and u-turns. The frequen-
cies of PE and PT among various scenarios of the vehicle are listed in Table 4,
where “NA” means not available. The execution times of the tasks are recorded
when the controller runs on one processor. Their worst case execution times are
analyzed based on the collected data, as presented in Table 5.

Table 4. Various frequencies (Hz) of PE and PT in different scenarios

Speed Path tracking (PT) Path extraction (PE)

Straight Turn U-turn Straight Turn U-turn

10 km/h 100 100 120 10 10 12

20 km/h 100 100 181 10 10 19

30 km/h 100 107 NA 10 11 NA

40 km/h 120 NA NA 12 NA NA

60 km/h 197 NA NA 20 NA NA

Resource-Aware Design for Reliable Autonomous Applications 307

Table 5. Worst case execution time of the tasks

Type Path tracking (PT) Path extraction (PE)

Tasks t1 t2 t3 t4 t5 t6 t7

WCET(ms) 0.2842 0.0820 0.6674 0.5932 0.1306 6.7042 0.0868

6.1 Redundancy Degree for Various Reliability Requirements

The numbers of required replicas with respect to various system reliabilities,
the reliabilities of tasks and the weights of the tasks are listed in Table 6.
Totally, we consider four tasks in PT and present two groups of weights
w1 = (0.25, 0.25, 0.25, 0.25), and w2 = (0.33, 0.01, 0.33, 0.33)2, and four groups
of task reliabilities, to compare the number of required replicas with various
system reliability requirements. The four groups of task reliability distributions
in ascending order are:

D1 = (0.96, 0.99, 0.94, 0.94), D2 = (0.996, 0.999, 0.994, 0.994)
D3 = (0.9996, 0.9999, 0.9994, 0.9994), D4 = (0.99996, 0.99999, 0.99994, 0.99994)

The legends in Table 6 are as follows. The first column lists various reliability
requirements. The second column presents different weights explained above.
The other four columns provide the number of required replicas for the four
tasks in PT, respectively, with respect to various distributions of reliabilities
and weights of the tasks.

Table 6. The number of replicas for various reliability requirements

Reliability Weight D1 D2 D3 D4

1 − 10−6 w1 (5,5,7,5) (3,3,3,3) (3,3,3,3) (3,3,3,3)

w2 (5,5,7,5) (3,3,3,3) (3,3,3,3) (3,3,3,3)

1 − 10−9 w1 (7,5,9,9) (5,5,5,5) (3,3,3,3) (3,3,3,3)

w2 (7,7,9,9) (5,5,5,5) (3,3,3,3) (3,3,3,3)

1 − 10−12 w1 (9,7,11,11) (7,5,7,7) (5,5,5,5) (3,3,3,3)

w2 (9,7,11,11) (7,5,7,7) (5,5,5,5) (3,3,3,3)

According to the results presented in Table 6, when the reliabilities of tasks
are lower, more replicas are required to meet system reliability requirements.
However, the allocation of replicas is less sensitive to weights, except for the
case with the lowest task reliabilities.

The total numbers of replicas in various reliability requirements and weights
with respect to more distributions of task reliabilities are illustrated in Fig. 8
2 The smaller the value is, the more important the task is.

308 R. Yan et al.

(i in Di stands for the degree of reliabilities, i.e., the bigger the number is, the
more reliable the tasks are). In every reliability requirement, the numbers of
required replicas in two sets of weights are similar, except for the case already
shown in Table 6. When task reliabilities are higher, the change in the number
of required replicas is not so obvious as the change in reliability requirements.

D1 D2 D3 D4 D5 D6 D7 D8 D96

9

12
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40

R
ep

lic
a

nu
m

be
r

w1
w2

Distributions
-lg(Reliability)

R
ep

lic
a

nu
m

be
r

 0
 5
 10
 15
 20
 25
 30
 35
 40

Fig. 8. Replicas distribution.

 1

 2

 3

 1 2 3

N
um

be
r

of
 it

er
at

io
ns

Number of processors

(100,10)
(197,20)

Fig. 9. PT’s iteration for fresh data.

6.2 Resource Optimization Within Various Scenarios

Hardware resource is sensitive to the number of replicas and the correspond-
ing timing requirements. We take two sets of experimentation to compare the
usage of hardware resource with respect to various scenarios, and different
fault-tolerant strategies, i.e., spatial redundancy, spatial and temporal mixed
redundancy, respectively. The experiments are conducted with the three meth-
ods mentioned in Sect. 5.3, to compare the performance of various techniques in
the satisfiability-based optimization.

In Table 7, we present the number of required processors by considering spa-
tial redundancy, with different mapping strategies and various numbers of task
replicas in various scenarios. In the table, the first column presents the frequen-
cies of various scenarios. The second lists the number of replicas for various
tasks, where ti × r stands for the existence of r replicas for all the tasks. The
third presents the number of used processors. Then the rest of columns provide
the satisfiability of the problem (the existence of a scheduler), and the cost of
the computation in seconds, with constraint solving, model checking and greedy
algorithm.

Experimental results show that the performance of constraint solving is bet-
ter than the other two methods. When the total number of replicas is small,
the method of model checking may find a solution very quickly. However, with
the increasing scalability, the performance of model checking degrades rapidly.
For the case of heuristic-based method, the heuristic used here is not always
effective, which may fail to find a solution, though it exists. Among the results
of fixed mapping and flexible mapping, the model checking cost of the latter is

Resource-Aware Design for Reliable Autonomous Applications 309

Table 7. Optimization with spatial redundancy

Frequency

(Hz)

Replica |P | Constraint solving Model checking Greedy algorithm

Fixed

map.

Flexible

map.

Fixed

map.

Flexible

map.

Fixed

map.

Flexible

map.

sat. cost sat. cost sat. cost sat. cost sat. cost sat. cost

(100, 10) ti × 1 1 Y 0.041 Y 0.037 Y 0.010 Y 0.010 Y 0.003 Y 0.003

ti × 3 3 Y 0.161 Y 0.189 Y 7148.820 Y 7218.180 Y 0.003 Y 0.004

(120, 12) ti × 1 1 Y 0.036 Y 0.035 Y 0.010 Y 0.010 Y 0.003 Y 0.003

ti × 3 3 Y 0.095 Y 0.090 Y 5464.940 Y 6714.620 Y 0.003 Y 0.004

(107, 11) ti × 1 1 Y 0.040 Y 0.039 Y 0.010 Y 0.010 Y 3.579 Y 3.073

ti × 3 3 Y 0.098 Y 0.103 Y 7083.540 Y 8520.740 N 32.574 N 32.251

(197, 20) ti × 1 1 Y 0.070 Y 0.073 Y 0.020 Y 0.010 Y 0.003 Y 0.004

ti × 3 3 Y 0.198 Y 0.189 Y 7183.370 Y 8494.460 N 30.043 N 30.681

almost always higher than that of the former, due to the increased complexity
for the allowed flexibility. For these scenarios, it is enough to use three processors
to accommodate the spatial redundancy of three replicas for each task to satisfy
reliability requirements.

We present the experimental results with spatial and temporal mixed redun-
dancy in Table 8. In the table, “-” means out of memory. The underlined results
in model checking are obtained by applying under approximation to relieve state
space explosion, which is sound for satisfiability problem if the result is positive3.
Intuitively, the delay of mixed redundancy is larger than the case with only spa-
tial redundancy, which is a trade-off between time and space. However, for the
first three scenarios, only one processor is enough to accommodate three replicas
for all the tasks, which is benefited from the small portion of task execution with
respect to the periods of the two subsystems. When we allow two processors (the

Table 8. Optimization with spatial and temporal mixed redundancy

Frequency

(Hz)

Replica |P | Constraint solving Model checking Greedy algorithm

Fixed

map.

Flexible

map.

Fixed

map.

Flexible

map.

Fixed

map.

Flexible

map.

sat. cost sat. cost sat. cost sat. cost sat. cost sat. cost

(100, 10) ti × 3 1 Y 189.207 Y 228.648 Y 4.790 Y 2.650 N 106.903 N 110.818

2 Y 0.472 Y 1.127 Y 0.012 Y 0.013 Y 0.003 Y 0.006

(120, 12) ti × 3 1 Y 152.501 Y 150.642 Y 3.510 Y 2.540 N 132.833 N 117.347

2 Y 1.140 Y 1.235 Y 0.014 Y 0.013 Y 0.004 Y 0.004

(107, 11) ti × 3 1 Y 102.439 Y 101.999 Y 3.500 Y 2.560 N 119.581 N 142.081

2 Y 1.167 Y 1.088 Y 0.011 Y 0.012 Y 0.004 Y 0.004

(197, 20) ti × 3 1 N 5708.326 N 4232.964 N 3.180 N 2.370 N 75.561 N 75.964

2 Y 4.506 Y 3.564 Y 0.014 - - Y 0.004 Y 0.003

3 We can also run the method to check the results in Table 7.

310 R. Yan et al.

number of solutions is larger), these methods can find a solution more quickly,
except for the fourth scenario with the model checking method.

According to the results presented in Tables 7 and 8, in fact we could just
calculate the number of required processors for the last scenario, where others
can be inferred according to Theorem1.

6.3 Timing Constraint on Weak Dependency

For the weak dependency between two tasks, we have presented the upper and
lower bounds of iterations that the successor should wait in Sect. 4.2. In our
case study, we expect that data can be refreshed as early as possible in every
hyper period. Therefore, we have encoded the constraints such that the property
can be checked. Experimental results show that in the first iteration of PT,
data from PE cannot be refreshed with the existing scenarios, for the mixed
redundancy with one or two processors. Only using three processors can meet
such constraint. In Fig. 9, we present the number of minimal iterations for PT
to acquire the updated data from PE with various numbers of processors and
various scenarios4, where the horizontal shows the number of processors, and
the vertical stands for the number of iterations. It is obvious that data can be
refreshed earlier for PT with more processors. And when the frequencies are
lower, it takes fewer iterations to be refreshed.

Concluded from the experimental results, we could adopt three processors in
the implementation to accommodate various design considerations.

7 Conclusion

The paper presents an embedded design framework for safety-critical systems
with scenario-related multi-period timing behaviors in autonomous vehicles. The
main technical challenge is to guarantee system reliability and minimize proces-
sor usage, with various timing constraints and design choices. We have formalized
the constraints and employed both exact (model checking and constraint solv-
ing) and heuristic-based (greedy algorithm) methods for solution calculation.
The realistic case study for the controller of an autonomous vehicle has demon-
strated the applicability and flexibility of our framework. As the future work,
we are interested in considering the reliability issues in mixed-critical systems of
autonomous vehicles.

Acknowledgments. The authors would like to thank Jian Zhang and Feifei Ma for
their assistance with the work and valuable comments on this paper.

4 As the cases of (120,12) and (107,11) coincidence with the case of (100,10), we ignore
them in the figure.

Resource-Aware Design for Reliable Autonomous Applications 311

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Axer, P., Sebastian, M., Ernst, R.: Reliability analysis for MPSoCs with
mixed-critical, hard real-time constraints. In: CODES+ISSS, pp. 149–158.
IEEE/ACM/IFIP (2011)

3. Baier, C., Katoen, J.-P., Larsen, K.G.: Principles of Model Checking. MIT Press,
Cambridge (2008)

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Formal Meth-
odsfor the Design of Real-Time Systems, pp. 33–35 (2004)

5. Burns, A., Davis, R.: Mixed criticality systems-a review. Department of Computer
Science, University of York, Technical report (2013)

6. Chang, W., Chakraborty, S., et al.: Resource-aware automotive control systems
design: a cyber-physical systems approach. Found. Trends R© Electr. Des. Autom.
10(4), 249–369 (2016)

7. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

8. Glaß, M., Lukasiewycz, M., Streichert, T., Haubelt, C., Teich, J.: Reliability-aware
system synthesis. In: DATE, pp. 1–6 (2007)

9. Huang, J., Barner, S., Raabe, A., Buckl, C., Knoll, A.: A framework for
reliability-aware embedded system design on multiprocessor platforms. Micropro-
cess. Microsyst. 38(6), 539–551 (2014)

10. Jiang, J., Yu, X.: Fault-tolerant control systems: a comparative study between
active and passive approaches. Ann. Rev. Control 36(1), 60–72 (2012)

11. Pagetti, C., Forget, J., Boniol, F., Cordovilla, M., Lesens, D.: Multi-task implemen-
tation of multi-periodic synchronous programs. Discrete Event Dyn. Syst. 21(3),
307–338 (2011)

12. Pandey, S., Vermeulen, B.: Transient errors resiliency analysis technique for auto-
motive safety critical applications. In: DATE, p. 9 (2014)

13. Sangiovanni-Vincentelli, A., Di Natale, M.: Embedded system design for automo-
tive applications. Computer 40(10), 42–51 (2007)

14. Yip, E., Kuo, M.M., Roop, P.S., Broman, D.: Relaxing the synchronous approach
for mixed-criticality systems. In: RTAS, pp. 89–100. IEEE (2014)

15. Zhao, Q., Gu, Z., Zeng, H.: Design optimization for AUTOSAR models with pre-
emption thresholds and mixed-criticality scheduling. J. Syst. Architect. 72, 61–68
(2017)

16. Zheng, B., Liang, H., Zhu, Q., Yu, H., Lin, C.-W.: Next generation automotive
architecture modeling and exploration for autonomous driving. In: VLSI (ISVLSI),
pp. 53–58. IEEE (2016)

https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49

Verifying Auto-generated C Code
from Simulink

An Experience Report in the Automotive Domain

Philipp Berger1(B), Joost-Pieter Katoen1, Erika Ábrahám1,
Md Tawhid Bin Waez2, and Thomas Rambow3

1 RWTH Aachen University, Aachen, Germany
{berger,katoen,abraham}@cs.rwth-aachen.de

2 Ford Motor Company, Dearborn, USA
mwaez@ford.com

3 Ford Werke GmbH, Cologne, Germany
trambow@ford.com

Abstract. This paper presents our experience with formal verification
of C code that is automatically generated from Simulink open-loop con-
troller models. We apply the state-of-the-art commercial model checker
BTC EmbeddedPlatform to two Ford R&D prototype case studies: a
next-gen Driveline State Request and a next-gen E-Clutch Control.
These case studies contain various features (decision logic, floating-point
arithmetic, rate limiters and state-flow systems) implemented in discrete-
time logic. The diverse features and the extensive use of floating-point
variables make the formal code verification highly challenging. The paper
reports our findings, identifies shortcomings and strengths of formal
verification when adopted in an automotive setting. We also provide
recommendations to tool developers and requirement engineers so as
to integrate formal code verification into the automotive mass product
development.

1 Introduction

The Need for Formal Verification in Automotive. In the automotive industry
an increasing number of features are implemented in software. As a result the
complexity and dependence on produced artefacts is on the rise. Additionally,
customers demand more flexibility in selecting features leading to an ever increas-
ing number of feature flags and build configurations. The automotive functional
safety standard ISO 26262 defines a ASIL (Automotive Safety Integrity Level)
classification scheme and recommends appropriate verification techniques for
each ASIL level such as testing and formal verification. Testing focuses on show-
ing the presence of bugs, whereas the rigorous state exploration provided by
formal verification aims to show the absence of bugs. Although testing nowa-
days is commonplace, the application of formal verification to software artefacts
in the industry is in its infancy.

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 312–328, 2018.
https://doi.org/10.1007/978-3-319-95582-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_18&domain=pdf

Verifying Auto-generated C Code from Simulink 313

Verifying Simulink Models. This paper considers the use of formal verification
in a model-based system development process in the automotive domain. We
concentrate on Simulink, a popular model-based software development tool that
is widely used in the automotive industry. Simulink is developed by MathWorks
and provides a graphical environment for modeling, simulating and analyzing
dynamical systems. Formal verification of Simulink so far has primarily con-
centrated on the model level verification, which has been done with the first
generation of model checkers, i.e., verification tools that focus on verifying mod-
els of real artefacts. Experiences using the commercial Simulink Design Verifier
(SLDV) [1] as well as using model checkers such as NuSMV, SPIN and Uppaal
[2–4] have been reported.

Verifying C Code. In contrast, this paper considers the formal verification of
C code that is automatically generated from Simulink models. More precisely,
we aim at checking whether the requirements imposed on Simulink models are
satisfied by the C code that is obtained by push-button technology from these
models. Formal verification of auto-generated code is of interest as automo-
tive companies such as Ford Motor Company have been deploying more and
more auto-generated code to reduce development time and lower the risk of
introducing errors by manual coding. The auto-generated C code may differ
from the behavior of the Simulink model due to the lack of formal seman-
tics, or potential bugs in the translation procedure. Program code verification
is supported by second-generation model checkers such as CBMC [5], Ultimate
Automizer [6], and CPA Checker [7], to mention a few. As our aim is to integrate
formal code verification into Ford’s mass product development, we focus on a
commercial verification tool for code verification. We selected the BTC Embed-
dedPlatform1 (BTC, for short) as developed by BTC Embedded Systems AG.
This tool includes amongst others CBMC. It has been developed for industrial
use and a dedicated support team is available.

Approach. This paper reports on our findings by applying BTC on two R&D
prototype case studies: a next-gen Driveline State Request and a next-gen
E-Clutch Control. Their Simulink models consist of a few thousand blocks, and
their C code is about 2,000 and 5,000 lines of code, respectively. The formal ver-
ification of industrial-scale open-loop2 controller models is challenging especially
due to the diverse feature-set and the extensive use of floating-point variables, see
also [8]. We checked these models against 42 and 70 requirements, respectively,
which were made available to us in textual form as Microsoft Word documents.

Our Findings. The formal verification—including the formalization of the
requirements and running the verification tool—was carried out by researchers
having knowledge in model checking. Issues were found in 43% of the 112 require-
ments. 35 requirements were either ambiguous, incomplete or inconsistent, nine

1 https://www.btc-es.de/en/products/btc-embeddedplatform/.
2 Open-loop means that the model does not include the controlled environment.

https://www.btc-es.de/en/products/btc-embeddedplatform/

314 P. Berger et al.

requirements could not be taken into account due to restrictions of the verifier
while four requirements were missing details about the exact algorithm to be
implemented. The formal verification revealed 20 code implementations that are
inconsistent with the requirements of the prototype features. These errors could
all be traced back to the Simulink models. All detected issues were communicated
with Ford Motor Company and subsequently resolved. For 29 requirements, only
a bounded proof of correctness could be derived. These findings stress the impor-
tance of formal verification for automotive software.

Our Recommendations. This paper reports on our findings, identifies shortcom-
ings and strengths of formal verification when adopted in an automotive setting.
Our focus points were automation, scalability and usability, that are necessary
for an integration into a large-scale automotive development process. Though
the verification of both models was successful, we encountered different techni-
cal challenges with respect to requirement formalization, tool usage and model
structures. Integrating formal verification into mass automotive product devel-
opment is not easy: engineers are not familiar with formal methods, and are
not trained in writing formal requirements. We provide a detailed set of rec-
ommendations to ease the requirement formalization, most notably by using
specification patterns and the use of pre-defined requirement blocks. We also
present some ideas for new features in verification tools that can further support
the integration of formal verification into C code targeted development in the
automotive sector: The mitigation of spurious counterexamples, enabling batch
processing, and support for automated “continuous” verification, i.e., when parts
of the Simulink model, the requirement or the tools change.

Main Contributions. To summarize, our main contributions are:

– a detailed report on experiences with using a modern commercial verification
tool to formally verify C code automatically generated from Simulink models,

– a detailed set of recommendations for engineers in the automotive domain to
enable the use of formal code verification in the design process, and

– a detailed list of recommendations for verification tool builders to integrate
their tools into the automotive mass product development.

Organization of the Paper. Section 2 introduces the two R&D prototype case
studies. Section 3 briefly introduces the BTC verification tool and its features.
Section 4 presents our findings concerning requirement formalization and formal
code verification. Section 5 presents our observations and recommendations for
enabling and integrating formal verification into the automotive development
process. Section 6 concludes the paper.

2 The Case Studies

The aim of this joint project between Ford Motor Company and RWTH Aachen
University is the feasibility analysis of discrete-time verification of industrial-
scale C code controllers for mass production. The aim includes assessing the

Verifying Auto-generated C Code from Simulink 315

current state of requirement specification within Ford, check the quality of
generated C code from Simulink models by a commercial verification tool and
identify possible solutions for a highly-automated verification tool-chain that can
be integrated into an automotive development process. This section presents the
two R&D prototype case studies from Ford. Due to confidentiality reasons, we
cannot provide access to model files, source code or requirements.

Table 1. The variables and calibration parameters of the Simulink models.

Scalar Array/Matrix

bool int float bool int float

DSR I/O Vars 7 16 8 0 1 (1×10) 1 (1×10)

Calibration Pars 15 3 24 1 (1×12) 1 (1×32) 9 (1×6 . . . 12)

ECC I/O Vars 3 4 29 0 0 0

Calibration Pars 7 1 71 0 0 72 (1×2 . . . 11×11)

R&D Prototype Features. Our case study was conducted using the auto-
generated code of two R&D prototype Simulink models: a model of the next-gen
Driveline State Request (DSR) feature and of the next-gen E-Clutch Control
(ECC) feature. None of these features are safety-critical. Let us describe the role
and importance of these two features. Energy saving, exhaust emission reduction,
and exhaust noise reduction are among the main objectives in the development
of modern vehicles. On flat roads, the engine drag torque typically slows down
the vehicle when the driver takes his foot from the accelerator pedal. A vehicle
with a combustion engine can be operated in Sailing Mode when the vehicle is
rolling without engine drag torque in order to maintain its speed and to save
fuel in certain driving situations and where the driver is not actively accelerating
or braking the vehicle. In Sailing Mode, the driveline3 is opened automatically
when the driver releases the accelerator pedal. When the driveline is open, the
engine can be shut off or run at idle speed without introducing drag torque in
order to reduce fuel consumption. Different system- or driver-interactions, such
as pressing the brake or accelerator pedal, will result in closing the driveline
again. The DSR feature implements the decision logic to open or close the driv-
eline. This feature takes driver interactions and vehicle status information to
decide in which situations the driveline should be opened and closed again. The
ECC feature calculates the desired clutch torque capacity and corresponding
engine control torques or speeds for opening and closing the driveline.

Model Characteristics. The aim of this study is to investigate how C code formal
verification performs when applied to the auto-generated code of Simulink mod-
els having decision logic, state-charts, filters, rate limiters, look-up tables and
3 A motor vehicle’s driveline consists of the parts of the powertrain excluding the

engine. It is the portion of a vehicle, after the prime mover, that changes depending
on whether a vehicle is front-wheel, rear-wheel, or four-wheel drive.

316 P. Berger et al.

feedback control. Therefore, we selected two features that contain mixtures of
these different kinds of functionalities. The Simulink model for the DSR feature
has 42 functional requirements, 28 inputs, six outputs, 53 calibration parame-
ters and 1149 blocks. Calibratable parameters remain constant during software
execution but can be adjusted before the execution for tuning or selecting the
possible functionalities. Calibration is the adjustment of calibratable parameters
of software functions realizing the control functionalities. This model contains
several variables as summarized in the first two rows of Table 1. The C code
comprises about 2100 lines. The next-gen DSR feature has several calibration
parameters, amongst others 42 scalar parameters and nine array parameters
of six to 12 single-precision floating-point elements, one Boolean array with 12
elements and one unsigned 8-bit integer array with 32 elements.

The Simulink model for the next-gen ECC feature has 70 functional require-
ments, 27 inputs, nine outputs, 151 calibration parameters and 2098 blocks. In
total, it comprises about 4900 lines of C code. This model contains Boolean,
integer and a huge number of floating-point variables, see Table 1. The calibra-
tion parameters include 79 scalar parameters and 13 arrays of single-precision
floats.

Requirement Characteristics. For the DSR case study, from 42 functional
requirements we extracted 54 properties, consisting of 50 invariants and four
bounded-response properties. Invariant properties are assertions that are sup-
posed to hold for all reachable states. Bounded-response properties request that
a certain assertion holds within a given number of computational steps when-
ever a given, second assertion holds. For the ECC case study, from 70 functional
requirements we extracted 82 invariants and two bounded-response properties.

3 The BTC Tool

We exploited BTC, a commercial tool for formal specification and verification.

3.1 The BTC EmbeddedPlatform

BTC is an integrated development environment featuring requirements-based
testing, back-to-back testing and a formal verification suite with an integrated
graphical user interface aiding the formal specification. The user interface aims to
support industry software engineers without much knowledge in formal methods.
An overview of the formal verification portion is illustrated in Fig. 1.

The initial architectural set-up of a new BTC project requires in-depth knowl-
edge of the C code to be verified, its structure and variables.

A BTC Project Setup. Our imported C code defines the architecture of a project,
including available functions, variables, entry points and initialization routines.
Auto-generated C code for automotive controllers usually consists of an initial-
ization and a step routine. After selecting a (sub-)set of available functions to

Verifying Auto-generated C Code from Simulink 317

instrument, global and local variables are collected and categorized as “input”,
“output”, “local”, “parameter” or “ignore” through manual user input and sim-
ple heuristics. The range of input variables and parameters can be restricted by
specifying minimal and maximal values. The execution time per step, i.e., the
amount of time that passes between two consecutive executions of the main step
method, can be configured as a constant when creating the project. The user
interface is divided into views, each focusing on different aspects of testing and
formal verification. Here, we only consider the latter view.

Textual
Requirements

Formal
Specification

C code

Bounds
In/Out/Parameter

Variable Information:

Formal
Verification

CBMC VIS

AutoFXP SMIBMC

Valid

Undecided

Invalid with
Counterexample

Architecture

BTC
EmbeddedPlatform

Fig. 1. Overview of the ins and outs of the BTC.

Formal Specification. The requirements of the two case studies are textual,
i.e., use natural language (English) for describing functional feature behavior.
BTC supports importing textual requirements from various sources, such as
Microsoft Excel, allowing engineers to develop the formal (requirement) specifi-
cation directly on the requirement text.

Pattern-Based Specification. Whereas most model checkers use some form of
temporal logic for the property specification, BTC supports safety as well as
liveness properties through pattern-based specification [9]. These patterns are a
kind of template and are based on an intuitive and graphical representation of the
formal semantics. The patterns enable the usage of BTC without being an expert
in temporal logic. In its most basic form, a BTC pattern-based specification rep-
resents an invariant together with start-up delays, or models Trigger/Action con-
ditions with timing information. The BTC user goes through the textual require-
ment (template), selects and maps parts of the text to macros, place-holders for
logical formulas. Take e.g., the expression “When in reverse, [...]”, containing
a high-level description of an external input state condition, namely the gear
selection. By creating a macro mapping the term in reverse to a formal defini-
tion in terms of variables and values like “selectedGear == −1”, the textual
requirement is enriched with the information necessary for formalization. Macros
can be shared between multiple requirements in the same project/architecture
and may contain other macros, but do not support parameters.

318 P. Berger et al.

Operators. The specification language used for defining triggers, actions and
invariant conditions contains all basic boolean operators (NOT, logical OR and
AND, ⇒, =, �=), bitwise operators (�, &, |, ⊕) as well as basic math operators
(+, −, ·, /, < and >). Additionally, floating-point operators (fabs, feq, min,
max) and temporal operators for step-based timing information are available.

Verification. After formalizing the requirements, the Formal Verification view
allows for creating a proof for the requirements. For model-checking purposes,
BTC uses four back-end verification engines: CBMC [5], SMIBMC, VIS [10] and
AUTOFXP. These can be turned on and off—the default, used by us, is to use
all four. We treat the verification engine and its back-ends as black box as no
further information is available. A time limit, a maximum search depth, the
number of loop unrolling iterations and a memory limit can be set. Currently,
batch execution of proofs is only possible using a non-standard plugin which
is available upon request from BTC. This plugin executes all proofs; selecting
a subset is not possible. If a counterexample is found, the analysis terminates
and the counterexample is automatically simulated on the C code to account for
errors between the internal data representation and the C semantics.

4 Experience Report

This section reports our experiences with the formal verification (using BTC) of
the two R&D prototype case studies focusing on verifying the auto-generated C
code of a few thousand lines from Simulink models.

4.1 Formalizing the Requirements

For a formal verification, formally specified requirements are indispensable. At
the start of this work, the requirements were available in the form of textual
phrases formulated in natural language. This section reports the issues that were
encountered when formalizing these requirements for subsequent use by the C
code verification by BTC. These issues range from incomprehensibility of some
of the requirements to incomplete requirements, ambiguities and inconsistencies.

Requirement Formalization. We incrementally formalized the Ford requirements
given to us in textual form and turned them into BTC formal requirements.
Unclarities or other issues were discussed with the Ford engineers. Small issues
involving missing domain knowledge were often solved by looking at the cor-
responding code implementation. The process of requirement formalization took
most of the total project time of about 900 man hours and involved frequent meet-
ings between the researchers conducting the verification and the Ford engineers.

While reviewing and formalizing the 112 requirements, we identified 35 issues
that can be categorized into ambiguous wording, inconsistencies and underspeci-
fication. Without a background in automotive engineering, the learning curve for

Verifying Auto-generated C Code from Simulink 319

formalization, especially regarding domain knowledge, was steep, further indi-
cating issues of underspecification.

Each formalized requirement resulted in one or more Formal Requirements
for BTC. If a requirement contains multiple cases or can be easily split into dis-
tinct logical blocks, we did so. Splitting eases verification by the model checker.
Nine requirements could not be formalized due to the fact that BTC does not
support the use of array access with variables as index nor the use of lookup
tables with pointers in the formal specification. Four requirements have not been
considered as they use underspecified complex operators such as rate limiters and
filters.

Table 2. Identified requirement issues.

Case study Incomplete Ambiguous Inconsistent

DSR 12 5 1

ECC 11 3 3

If varA is set to [TRUE] and varB is above a threshold with hysteresis (calVarBThres,
calVarBHyst), OR (varA is set to false and varC is above a threshold with hysteresis
(calVarCThres, calVarCHyst) AND (varC - varD) is above a threshold with hysteresis
(calVarCThres, calVarCHyst)), then varE shall be set to true, and to false otherwise.

Fig. 2. Example of an incomplete requirement involving hysteresis.

Incomplete Requirements. We encountered 23 incomplete requirements (Table 2).
Typical examples of incompleteness are preconditions like “when no preprocessing
feature is active” where no information on signals related to the status of prepro-
cessing features is given, and declarations like “variable A shall be input B with
hysteresis (lower threshold calibratable C and upper threshold calibratable D)”;
see also Fig. 2. Hysteresis is often used to prevent rapid toggling when observing
an input signal against some threshold and can be implemented using a set-reset
flip-flop.

Other encountered issues are whether the thresholds are strict (e.g., <10)
or non-strict (e.g., ≤10), and what the initial output state should be. The
analyzed requirements include several such abstract high-level descriptions of
functionality. In these complex cases, e.g., when using hysteresis, saturation
or rate limiting, the requirements are often lacking necessary information for
accurately specifying function behavior. Several of these issues could not be
resolved without consulting the code. Typical omitted information in the require-
ments includes the initial configuration, exact (formal) state change conditions
including a priority ordering of the signals, and complete documentation of state
variables.

320 P. Berger et al.

For the successful verification of a stateful system, access to all state vari-
ables is required. These are usually not visible in the global interface as they
are unnecessary for using and embedding the system. Therefore, we manually
adapted the Simulink model by adding necessary variables to the global interfaces.

Ambiguous Requirements. We identified eight cases of ambiguity in the prototype
features, mostly related to cases of missing parentheses. We identified cases where
in chains of AND- and OR-conditions either applying the mathematical operator
precedence did not make sense when considering the condition content or where
there were an uneven number of opening and closing parentheses present.

Inconsistencies. Another group of issues focuses on inconsistencies between
requirements. We found four issues in the prototype features where a common-
ality shared between several requirements is invalidated by another one. Take,
e.g., n requirements of the form “When in state X, do...” among which a single
requirement specifying similar behavior, is missing the “When in state X” scope.
It is unclear whether this omission is intentional or not. While this inconsistency
is not a problem of the formalization per se, these discrepancies are often closely
related to incompleteness issues in requirements, e.g., when “boilerplate” infor-
mation is omitted because preconditions like being in a specific state are made
implicit by a chapter heading or a requirement name. While implicit precondi-
tions may be acceptable for textual requirements, it hampers formal verification.

Table 3. Verification results on the case studies using BTC.

Case study Calibration type Valid Unknown Invalid

DSR Fixed 24 (Bounded: 7) 8 10

Varying 23 (Bounded: 8) 12 7

ECC Fixed 44 (Bounded: 22) 16 10

Varying 36 (Bounded: 24) 20 14

4.2 Formal Verification of Auto-generated Code

We now report our findings when applying BTC to the C code of the two R&D
prototype features. All verification experiments were carried out on a Intel Core
i7-6700HQ machine with 16 GB RAM, running Windows 7 (64-bit), BTC v2.0.34

and Matlab R2015b. The maximal verification time was set to 7200 s.

Verification Results. Each formalized requirement was formally verified on the
C code of the entire respective feature with fixed calibration parameters. To ease
the verification, we fixed the time bounds in the Ford requirements to five simula-
tion steps (50 ms). Typical time bounds in the model vary between 50 ms and 5 s.

4 The most recent version of BTC as of submission is v2.1.0.

Verifying Auto-generated C Code from Simulink 321

For three requirements involving direct lookup tables (i.e., no interpolation)—not
natively supported by BTC—we embedded their data directly into the formal
specification. Table 3 summarizes our verification results. We consider the fixed
calibration parameters unless stated otherwise; we will discuss the varying cali-
bration parameters later on. In our experience, model checking is performed by
BTC in three phases:

1. CBMC runs for a number of iterations, in many cases returning counterex-
amples (if any) in a matter of seconds.

2. If CBMC is not able to refute the property, a combination of AUTOFXP and
SMIBMC is used.

3. If the combination is not successful, i.e., results in an unbounded proof, the
tool switches back to CBMC, providing a bounded result.

Most of our results seem to be mostly a result of CBMC as we did not observe
termination during the AutoFXP/SMIBMC phase. Runtime data like memory
consumption or CPU time is only shown while the tools are actively running
and can unfortunately not be obtained once model checking has terminated.

Implementation Flaws. In total, BTC found 20 cases of invalid code imple-
mentations against the formal requirement specification with fixed calibration
parameters of the R&D prototype features. These include:

– Four instances of incorrect relational operators (e.g., < instead of ≤).
– Four instances of incorrect variables used in comparisons. As inputs are pro-

cessed, for many there are secondary variables available containing derived
versions of the input, for example with rate-limiting applied. When comparing
inputs, it is important to select the right variant.

– 12 cases where variables were named differently than in the specification.
– One instance where the implementation contained a fix for a logical error in

the specification which was not passed back and reflected in the requirements.
– One instance where an output signal was unexpectedly delayed by one time

step even though the delay was not apparent from the requirement
specification.

– Two instances of incorrect use of negations.
– Various instances of the incorrect use of chained if-statements. When a

requirement contains several consecutive if-statements followed by a final
else-statement, the activation condition for the else section is comprised
of the negation of the disjunction over all preceding if-conditions. When
changing the else if blocks, correcting all dependents is easily forgotten.

– One instance where an initialization step was not implemented . This omis-
sion leads to minor initial differences.

– Two instances where part of a comparison was omitted .
– An offset mentioned in a requirement that was not used in the code.
– One case where an activation/deactivation was unintentionally implemented

using a state toggle such that no signal has precedence over the other.

All detected issues are also present in the respective Simulink models and thus
not the result of incorrect C code generation.

322 P. Berger et al.

Undecided. A total of 24 requirements of the R&D prototype features are
undecided, i.e., we were unable to determine whether the implementation and
specification match. More precisely:

– Nine requirements contain properties unsupported (lookup tables containing
pointers, array access with variables as index) by BTC.

– For three requirements we encountered spurious counterexamples which were
automatically detected as spurious by BTC. Whenever a counterexample for
a property is detected, there is a chance that this counterexample exists only
due to imprecision introduced by abstraction, for example when approximat-
ing floating-point numbers. Thus, each counterexample is simulated on the C
code to ensure it is a valid counterexample under the C semantics. Currently,
spurious counterexamples prevent further analysis with this combination of
formal specification and C code in BTC.

– For two requirements, the tool reported that the verification unexpectedly
terminated . We are working with BTC to fix these issues.

– For six requirements, structural properties of the implementation prevent
formal verification as necessary outputs are overridden before they can be
captured . Note that in these cases while formalization was seemingly success-
ful, we discovered during the analysis of counterexamples that because of how
outputs are stored or combined formalization does not work.

– Four requirements were not formalized, mainly due to the mixture of
underspecification and the use of complex operators (low-pass filter, first-
order lead filter, second-order notch filter and rate-limiting) made the
formalization process too time-consuming .

Fixed and Varying Calibration Parameters. We also analyzed the features
with varying calibrations. Where model checking with fixed calibrations only
checks conformance to the specification in one specific calibration setting,
with varying calibrations conformance is checked for all possible calibration
valuations allowed by the configured calibration bounds. With 53 calibration
parameters in the DSR feature and 151 in the ECC feature, we expected the
number of undecided results to go up significantly, but out of 42 requirements
(DSR) and 70 requirements (ECC) only the result of five (DSR) and nine (ECC)
requirements changed . We are unable to fully explain the overall lack of impact.
We did notice a significant change of depth reached in bounded model check-
ing, with differences being as high as depth 151 in fixed calibration versus a
depth of 8 in varying calibration within the same time bound. With DSR, for
one requirement the result changed from unbounded satisfied to bounded sat-
isfied, two requirements changed to undecided because of a detected spurious
counterexample and two more resulted in time-outs during preprocessing (also
now undecided). With ECC, for five requirements the result changed from valid
to invalid, three requirements changed from valid to undecided, one require-
ment changed from invalid to undecided and two requirements changed from
unbounded satisfied to bounded satisfied. We found no cases where a require-
ment was inconsistent with its implementation while analyzing with fixed calibra-
tions but satisfied with varying calibrations. During this analysis we uncovered

Verifying Auto-generated C Code from Simulink 323

several issues in the implementation that were not visible during analysis with
fixed calibrations.

Bounded and Unbounded Results. BTC was not able to derive an unbounded
proof of correctness for a total of 29 requirements. Whereas a bounded proof
for depth n only guarantees a safety property to hold for the first n steps, an
unbounded proof (if successful) proves such a property for any depth. In the
bounded case [11], correctness is up to depth n and no guarantees are given for
depths beyond n. An unbounded proof of correctness usually includes deriving
loop invariants for all included loops in the C code, a hard problem that is
undecidable in general. Heuristics for generating these loop invariants often only
work on small and simple (e.g., linear) loops with few variables and even fewer
floating-point operations [12].

Subsystem Verification. With subsystem verification the goal is to reduce model
checking complexity by reducing C code size. When a formalized property is
handled entirely within some distinct part of the C code, all surrounding and
unrelated code can be removed, replacing the original interface with one only
containing inputs, parameters and outputs relevant to the selected property. We
picked a set of ten requirements from the DSR case study specifying the behavior
of a stateflow chart to compare formal verification on controller level with that on
subsystem level. We extracted the subsystem from the Simulink model by hand
and generated code from the reduced model. While BTC supports subsystem
verification using a hierarchical architecture representation, the auto-generated
C code in our use case was not in suitable form, making manual preparation
necessary. Using the subsystem significantly shrunk the overall complexity of
the analyzed model (≈ 350 lines of code) and reduced the number of variables
and calibration parameters. The reduced system has six inputs (four Boolean,
one (1 × 16) array of Boolean, one unsigned 8-bit integer), two outputs and one
parameter (one (1 × 32) array of unsigned 8-bit integer). However, the input vari-
able domains might grow since values are no longer restricted by other upstream
parts of the model. In the full feature, the inputs of this subsystem are derived
from external inputs and may be between tight bounds that are not apparent
nor documented explicitly because of implemented behavior. Therefore, subsys-
tem verification over-approximates correctness with respect to the correctness
within the entire system. A specific input valuation leading to a property vio-
lation might be caught and avoided beforehand in the upstream components
of the entire system, but this input restriction is not apparent anymore in the
subsystem. While BTC was not able to produce unbounded correctness proofs
for the ten requirements when verifying the code of the complete feature, using
subsystem verification it was able to do so.

Invalid Verification Results. While investigating issues with NaN (not a num-
ber) values on some floating-point variables, we discovered conflicting results for
properties with comparisons involving floating-point variables that can become

324 P. Berger et al.

NaN where an incorrect simplification step potentially leads to invalid results.
The issue has been fixed in a new version of BTC.

5 Reflections and Recommendations

This section reflects on our findings and presents our recommendations towards
requirement engineers, verification tool developers as well as tool users.

5.1 Requirements

Requirement Completeness. A big hurdle during this work was domain knowl-
edge implicitly required to understand the textual requirements of Ford. This
domain knowledge ranges from simple things such as unknown abbreviations to
structural details like how the data flow influences delays on certain variables
(breaking circular dependencies requires using one-step delays). Certain infor-
mation is ubiquitous in the Ford development process and not re-iterating every
detail makes requirements short and concise. For the same reason, some require-
ments do not state their full preconditions but instead rely on their positioning
inside the requirement catalogue, e.g., in a chapter containing all requirements
related to being in a certain state, the subsidiary requirements do not state
explicitly that being in that state is a precondition. Four of the requirement
violations were due to unexpected delays introduced to break circular depen-
dencies in the model. In practice, certain bounded and small deviations like one-
or two-step delays are acceptable while basic behavior is correctly implemented,
it highlights the conflict between the ease-of-use of textual requirements and the
degree of precision which is required for formal verification.

Requirement Interdependencies and Priorities. We found several instances
where two requirements could apply simultaneously to the same out-
put variable. In these cases, a priority chain needs to be in place for
defining precedence. It is also advisable to reorder requirements such that
conditions are grouped per output variable so that analyzing a single require-
ment should be sufficient to determine all pre- and postconditions for any given
output variable.

Environmental Assumptions. While performing verification with varying cali-
brations, we encountered situations where the upper bound of a hysteresis block
was calibrated below its lower bound. Calibration parameters should therefore be
clearly documented including side conditions and interdependencies, such that
appropriate assertions can be added for verification.

Specification Patterns. For effectively applying formal verification, we recom-
mend engineers switching from textual requirement specifications to an app-
roach that guarantees unambiguous requirements like a pattern-based approach
[13]. These use specification patterns—templates phrased in natural language

Verifying Auto-generated C Code from Simulink 325

with holes that need to be completed by the verification engineers with condi-
tions on code variables. Tools tailored to the knowledge of the engineers should
be provided in order to help and enforce writing clear, unambiguous and com-
plete specifications in a format that is agnostic of verification tools and can be
automatically transformed for any chosen tool. Specification patterns have been
used in automotive [14], aerospace [15] and service-oriented computing [16].

Tool Support and Automation. We believe that while enforcing completeness,
verification tools need to provide the engineers with the ability of building a
library of more complex pre-defined formal requirement specification blocks. Spec-
ification blocks enable more consistent requirements presented at a high level of
abstraction while still supporting a formal semantics. We found several instances
of complex behavior requiring large and equally complex formalizations that are
ideal for attracting small mistakes during formalization.

5.2 Code Verification

Code Complexity and Subsystem Verification. We found that BTC
works extremely well on invariant properties with no or very few floating-point
variables involved . Counterexamples are typically found within seconds
and even unbounded proofs are mostly found in less than a minute.
Floating-point numbers are ubiquitous in the automotive domain and
pose a challenge to most, if not all, verification tools, see also a dis-
cussion on the results in the latest software verification competition [8].
While BTC scales well with the number of parameters, we found that
subsystem verification is a necessity for tackling more complex properties. In a
proof-of-concept of subsystem verification, we achieved unbounded (rather than
bounded) verification results for all requirements.

Requirement Robustness. While experimenting with scalability we discovered
that even small changes to the requirements can have great impact on the ver-
ification times. Take, e.g., a requirement describing that event A implies that
event B occurs exactly one time step later. This requirement can be modeled
using a Trigger/Action (response) pattern or using an Invariant pattern. While
these specifications are semantically equivalent, the corresponding verification
times are not. In some instances, the Invariant approach took seconds to ver-
ify whereas the Trigger/Response variant took several hours. We recommend
tool vendors to adapt internal optimization routines such that, by default, the
simplest requirement representation is used.

Counterexample Verification. During verification, we encountered several
instances where BTC concluded after internal simulations that a dis-
covered counterexample was in fact spurious, i.e., the counterexample
was introduced due to used approximations. Verification tools should
automatically mitigate spurious counterexamples whenever possible.

326 P. Berger et al.

Verification Times. In our experiments, we noticed that generally an unbounded
result is obtained within the first minute or no such result is obtained at all.
Outliers are obtained for temporal properties that usually include a timer that
has to expire. We encoded these properties using a Trigger/Action pattern where
the delay between the two is given by a calibration parameter. As BTC does not
offer access to verification timing data, a more detailed analysis of verification
times is not possible. In academia, CPU time and memory consumption are
common practice [8] and the means to compare verification algorithms and tools.
This comparison is useful for industrial applications too as it enables comparing
different verification engines (even within a single tool) and provides a means to
study scalability.

Tool Automation. Repetitive verification tasks are prone to human errors. Hence
we envision a fully automated continuous integration pipeline for mass prod-
uct development where model checking is performed whenever the specification,
the code or the tools change. Similar approaches—referred to as continuous
verification—have been advocated for adaptive software [17]. Therefore, verifica-
tion tools should support batch processing of verification tasks, provide a better
automation interface and a structured output of all relevant result data. A new
version of BTC released after conducting our study comes with an automation
API and Jenkins integration, enabling continuous verification.

Bug Reporting. Because source code, models and requirement documents usu-
ally are confidential, reporting bugs and spurious counterexamples is difficult
and time consuming, usually involving an engineer shrinking and anonymiz-
ing the code by hand. Automated tools for this purpose such as CReduce
[18] require an adequate automation interface. We recommend to include the
automated generation of minimal anonymized examples of bug triggers in verifi-
cation tools.

Counterexample Representation. Currently counterexamples can be either
viewed as charts showing variable values in each time step or by export-
ing a stimulation vector containing the generated sequence of input val-
ues as a Microsoft Visual Studio C code project. It would be very helpful
to see what part of a requirement is inconsistent with its implementation, espe-
cially when dealing with large conjunctions. Going through a huge number of
variables, comparing them to other variables or constants and evaluating the
boolean expressions one by one on a sheet of paper is very time consuming and
error prone. A graphical tree representation of the formal specification could be
beneficial.

6 Conclusion

In this paper, we reported our experiences and presented our recommendations
concerning applying formal verification with BTC on two case studies provided

Verifying Auto-generated C Code from Simulink 327

by Ford Motor Company. We performed formal verification of 7000 lines of code
generated from two Simulink models implementing 112 textual requirements.
We identified 35 requirements of the R&D prototype features which are either
ambiguous, incomplete or inconsistent; nine cannot be verified due to restrictions
of the verifier; while four could not be formalized. Formal verification revealed
20 code implementations that were inconsistent with the requirements.

We spent more than 70% of the project time on requirement analysis and
formalization. The overhead should be much larger if performed by automo-
tive engineers whom do not have experience in formal methods. In the automo-
tive industry, both the software-requirements and their implementations change
rapidly within strict deadlines. Natural languages, hence, are preferred over for-
mal notations to write requirements in the practice although natural languages
often lead to ambiguity, incompleteness and inconsistency. Moreover, we experi-
enced that not all open-loop requirements can be formalized and are supported
by the formal verification tools. We also observed spurious counterexamples and
unexpected terminations. Recently formal verification tools matured a lot but
have yet to provide unbounded and decisive results for most industrial cases.

Our case studies show the benefits that formal verification can add into the
automotive development process. We, therefore, believe the use of formal ver-
ification will increase slowly but surely in this domain. For this progress, we
recommend to develop a technique—such as automated conversion of textual
requirements into formal requirements—that will allow engineers to use formal
specifications for a fast pace industry without introducing much overhead. Tool
vendors need to increase the percentages of unbounded and conclusive results.
Additionally, to enable an easier integration of verification tools into the (auto-
motive) industrial design process, we also recommend improving the usability
of these tools such as automated mitigation of spurious counterexamples and
better diagnostic feedback for the refuted properties.

Acknowledgments. We thank BTC Embedded Systems AG for their continuing sup-
port and helpful advice. We are grateful to Johanna Nellen, William Milam and Cem
Mengi for fruitful discussions on formal verification and Simulink.

References

1. Nellen, J., Rambow, T., Waez, M.T.B., Ábrahám, E., Katoen, J.P.: Formal veri-
fication of automotive Simulink controller models: empirical technical challenges,
evaluation and recommendations. In: Havelund, K., Peleska, J., Roscoe, B., de
Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 382–398. Springer, Cham (2018)

2. Meenakshi, B., Bhatnagar, A., Roy, S.: Tool for translating simulink models
into input language of a model checker. In: Liu, Z., He, J. (eds.) ICFEM 2006.
LNCS, vol. 4260, pp. 606–620. Springer, Heidelberg (2006). https://doi.org/10.
1007/11901433 33

3. Barnat, J., Beran, J., Brim, L., Kratochv́ıla, T., Ročkai, P.: Tool chain to sup-
port automated formal verification of avionics simulink designs. In: Stoelinga, M.,
Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 78–92. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32469-7 6

https://doi.org/10.1007/11901433_33
https://doi.org/10.1007/11901433_33
https://doi.org/10.1007/978-3-642-32469-7_6

328 P. Berger et al.

4. Filipovikj, P., Mahmud, N., Marinescu, R., Seceleanu, C., Ljungkrantz, O., Lönn,
H.: Simulink to UPPAAL statistical model checker: analyzing automotive industrial
systems. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016.
LNCS, vol. 9995, pp. 748–756. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48989-6 46

5. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

6. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 2

7. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

8. Beyer, D.: Software verification with validation of results. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 331–349. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 20

9. Bienmüller, T., Teige, T., Eggers, A., Stasch, M.: Modeling requirements for quan-
titative consistency analysis and automatic test case generation

10. Brayton, R.K., et al.: VIS: a system for verification and synthesis. In: Alur, R.,
Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-61474-5 95

11. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003)

12. Bagnara, R., Mesnard, F., Pescetti, A., Zaffanella, E.: The automatic synthesis of
linear ranking functions: the complete unabridged version. CoRR abs/1004.0944
(2010)

13. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualita-
tive, real-time, and probabilistic property specification patterns using a structured
english grammar. IEEE Trans. Softw. Eng. 41(7), 620–638 (2015)

14. Filipovikj, P., Nyberg, M., Rodŕıguez-Navas, G.: Reassessing the pattern-based
approach for formalizing requirements in the automotive domain. In: RE, pp. 444–
450. IEEE Computer Society (2014)

15. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. Comput. J.
54(5), 754–775 (2011)

16. Bianculli, D., Ghezzi, C., Pautasso, C., Senti, P.: Specification patterns from
research to industry: a case study in service-based applications. In: Software Engi-
neering. LNI, vol. 227, pp. 51–52. GI (2014)

17. Calinescu, R., Ghezzi, C., Kwiatkowska, M.Z., Mirandola, R.: Self-adaptive soft-
ware needs quantitative verification at runtime. Commun. ACM 55(9), 69–77
(2012)

18. Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., Yang, X.: Test-case reduction
for C compiler bugs. In: PLDI, pp. 335–346. ACM (2012)

https://doi.org/10.1007/978-3-319-48989-6_46
https://doi.org/10.1007/978-3-319-48989-6_46
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/3-540-61474-5_95

QFLan: A Tool for the Quantitative
Analysis of Highly Reconfigurable

Systems

Andrea Vandin1(B), Maurice H. ter Beek2, Axel Legay3,
and Alberto Lluch Lafuente1

1 DTU, Lyngby, Denmark
{anvan,albl}@dtu.dk

2 ISTI–CNR, Pisa, Italy
maurice.terbeek@isti.cnr.it

3 Inria, Rennes, France
axel.legay@inria.fr

Abstract. QFLan offers modeling and analysis of highly reconfigurable
systems, like product lines, which are characterized by combinatorially
many system variants (or products) that can be obtained via different com-
binations of installed features. The tool offers a modern integrated devel-
opment environment for the homonym probabilistic feature-oriented lan-
guage. QFLan allows the specification of a family of products in terms
of a feature model with quantitative attributes, which defines the valid
feature combinations, and probabilistic behavior subject to quantitative
constraints. The language’s behavioral part enables dynamic installation,
removal and replacement of features. QFLan has a discrete-time Markov
chain semantics, permitting quantitative analyses. Thanks to a seamless
integration with the statistical model checker MultiVeStA, it allows for
analyses like the likelihood of specific behavior or the expected average
value of non-functional aspects related to feature attributes.

1 Introduction

Product line engineering is a methodology that aims to develop and manage, in a
cost-effective and time-efficient manner, a family of products or (re)configurable
system variants, to allow the mass customization of individual variants. Their
variability is captured by feature models, whose features represent stakeholder-
relevant functionalities or system aspects [1]. The challenge when lifting success-
ful modeling and analysis techniques for single systems to families of products
or configurable systems, is to handle their variability, due to which the num-
ber of possible variants may be exponential in the number of features. This led
to so-called family-based analyses [32]: analyse properties on an entire product
line and use variability knowledge about valid feature configurations to deduce
results for individual products. This is applied in, e.g., [8,10,11,15,19–23,28,30].

In [2–4], we presented various facets of the probabilistic modeling language
QFLan, capable of describing a wide spectrum of aspects of (software) product
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 329–337, 2018.
https://doi.org/10.1007/978-3-319-95582-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_19&domain=pdf

330 A. Vandin et al.

lines (SPL).The type of quantitative constraints that are supported byQFLan are
significantly more complex than those commonly associated to attributed feature
models [9,18,26]. This paper presents the QFLan tool, a multi-platform tool for
the specification and analysis of QFLan models, which has been implemented in
the Eclipse environment using XTEXT technology, thus obtaining a state-of-the-
art integrateddevelopment environment (IDE).The tool is available, togetherwith
installation and usage instructions, from http://github.com/qflanTeam/QFLan.

Related Work. The QFLan prototypes from [2,3] were the first tools that
offered statistical model checking tailored for SPL, generating approximately cor-
rect results via sampling, which is particularly useful on very large models when
exact model checking is infeasible [25]. Next to dedicated exact model checkers
such as VMC [6] and the tool suite ProVeLines [17], which offers the best known
SPL-specific model checker, SNIP [12], also popular model checkers like mCRL2
and SPIN have been made amenable to SPL model checking [7,8,19–21]. Further-
more, the tool ProFeat [11] extends the probabilistic model checker PRISM [24]
with feature-oriented concepts to be able to model families of stochastic systems
and to analyze them through probabilistic model checking. QFLan scales to
larger models with respect to precise probabilistic analysis techniques. In fact,
we can handle (cf. http://github.com/qflanTeam/QFLan and [5]) significantly
larger instances of the Elevator case study. Originally introduced in [29], this
case study is now a benchmark for SPL analysis known to be very demanding
in terms of scalability when large sizes of Elevator systems are considered (cf.,
e.g., [5,10,11,13,14,18,19]).

Outline. Section 2 describes the tool’s architecture, while Sect. 3 applies the
tool to a simple family of coffee vending machines. Section 4 concludes the paper.

2 QFLan Architecture

The architecture of QFLan is sketched in Fig. 1. It consists of a GUI layer and
a core layer, devoted to modeling and analysis tasks, respectively.

Fig. 1. QFLan’s architecture

GUI Layer. The components of the GUI
layer are depicted in Fig. 2. The QFLan
editor provides state-of-the-art editing
support, including auto-completion, syn-
tax and error highlighting, and fix sugges-
tions. This was obtained using XTEXT
technology. For instance, the editor does
on-the-fly error-detection on the structure
of the feature model. The editor also offers
support for MultiQuaTEx, the query language of the statistical model checker
MultiVeStA [31] integrated in the tool. In particular, the user can specify prop-
erties to be analyzed with a high-level language consisting of QFLan ingredients
only, from which MultiQuaTEx queries are automatically generated. In addition,
the GUI layer offers a number of views, including the project explorer to navigate
across different QFLan models, the tree-like outline to navigate in the elements

http://github.com/qflanTeam/QFLan
http://github.com/qflanTeam/QFLan

QFLan: Quantitative Analysis of Highly Reconfigurable Systems 331

Fig. 2. A screenshot of the QFLan tool

of QFLan model, the console view to display diagnostic information, and the
plot view to display analysis results.

Core Layer. The main component of the core layer is a probabilistic simula-
tor. According to QFLan’s semantics, each state can have a set of outgoing
admissible transitions, each labeled with a weight to compute the probability
distribution of the transitions outgoing from each state. This leads to a discrete-
time Markov chain semantics. Starting from the initial configuration specified by
the modeler, the simulator iteratively computes all one-step transitions allowed
in the state, and probabilistically selects one according to the probability distri-
bution that results from normalizing the rates of the generated transitions. In
particular, to check whether a transition is admissible the tool uses an ad-hoc
constraint solver to guarantee that the transition does not violate any of the
constraints specified by the modeler.

In [3,4], we presented a prototypical implementation of a QFLan simulator
based on the Maude toolkit [16] and Microsoft’s SMT solver Z3 [27], integrated
with MultiVeStA. The mature QFLan tool presented in this paper has been
redeveloped from scratch using Java-based technologies in order to obtain a
multi-platform modern IDE for QFLan instead of a command-line prototype.
Furthermore, this led to an analysis speedup of several orders of magnitude.

3 QFLan at Work: Coffee Vending Machine

We consider a family of vending machines inspired by examples from the liter-
ature (e.g., [2,6–8,15,28]). For illustration purposes, we consider a simple ver-
sion. Larger case studies can be found at http://github.com/qflanTeam/QFLan,

http://github.com/qflanTeam/QFLan

332 A. Vandin et al.

including the bike-sharing case study used as running example in [2–4], the above
mentioned SPL benchmark Elevator case study used in [5] to evaluate QFLan’s
scalability, and a case study concerning risk analysis of a safe lock system with
variability used in [5] to illustrate QFLan’s applicability in a non-SPL setting.

This family of vending machines sells either tea, or the coffee-based beverages
coffee, cappuccino, and cappuccino with cocoa (chocaccino). Its feature model is
depicted in Fig. 3. Listing 1 shows its QFLan specification in 1:1 correspondence.

Fig. 3. Feature model of vending machine product line

1begin abstract features
2Machine Beverage Coffee -based

3end abstract features
4
5begin concrete features
6Cocoa Tea Cappuccino Coffee

7end concrete features
8
9begin feature diagram
10Machine -> {?Cocoa ,Beverage}

11Beverage -XOR-> {CoffeeBased ,Tea}

12CoffeeBased -OR-> {Cappuccino ,Coffee}

13end feature diagram
14
15begin cross-tree constraints
16Cappuccino requires Coffee

17Tea excludes Cocoa

18end cross-tree constraints
19
20begin feature predicates
21price = {Cocoa=2,Tea=5, Cappuccino =7,

Coffee =5}

22end feature predicates
23
24begin quantitative constraints
25price(Machine) <= 10

26end quantitative constraints

Listing 1. QFLan encoding of
feature model displayed in Fig. 3

Each node is a feature, while edges
denote constraints defining admissible com-
binations of installed features. As is com-
mon in feature models, we distinguish
between concrete and abstract features.
The former are the tree’s leaves, and can
be explicitly (un)installed, whereas the lat-
ter are internal nodes, used mainly to group
features. The root denotes a product, i.e. a
specific vending machine. To instantiate a
machine, one may install the optional fea-
ture Cocoa (its optionality is denoted by a
circle in Fig. 3 and with a ? in Listing 1),
while it must contain the mandatory fea-
ture Beverage (as denoted by a filled circle
in Fig. 3 and by the absence of a ? in List-
ing 1). Finer constraints on the presence of
features other than mandatory or optional also can be imposed. The machine
may come equipped with either a Tea dispenser or with one for CoffeeBased
beverages. This is specified by the XOR edges connecting Beverage to Tea and
to CoffeeBased. The CoffeeBased dispenser can be used to pour Coffee,
Cappuccino, or both, as denoted by the OR edges.

Features can also be subject to cross-tree constraints. The arrow from
Cappuccino to Coffee denotes that the former requires the latter, the ratio-
nale being that coffee is a prerequisite for preparing cappuccino. Instead, the
double-headed arrow connecting Cocoa and Tea denotes that they exclude each
other, since cocoa only serves to prepare chocaccino. Such constraints are spec-
ified in QFLan as shown in Lines 15–18 of Listing 1. Finally, features can have
quantitative predicates as attributes. In the example, all concrete features have

QFLan: Quantitative Analysis of Highly Reconfigurable Systems 333

price as attribute (Lines 20–22 of Listing 1). Abstract features implicitly inherit
all predicates from concrete ones, with the cumulative value of all descendant
concrete features actually installed.

Lines 24–26 of Listing 1 show that QFLan supports another family of con-
straints regarding feature predicates, the quantitative constraints, used in this
case study to exclude machines with a cumulative price that is superior to 10.

Fig. 4. Sketch of vending machine behavior

1 begin variables
2 sold = 0 deploys = 0

3 end variables
4
5 begin actions
6 sell deploy reconfigure chocaccino serveTea

7 serveCoffee serveCappuccino serveChocaccino

8 end actions
9

10 begin action constraints
11 do(chocaccino) -> (has(cappuccino) and has(cocoa))
12 end action constraints
13
14 begin process dynamics

15 states = factory ,deposit ,operation ,prepareCoffee ,

prepareCappuccino ,prepareTea ,prepareChocaccino

16 transitions =

17 // Factory

18 factory -(replace(coffee ,tea) ,20)-> factory ,

19 factory -(install(cocoa) ,10)-> factory ,

20 factory -(install(cappuccino) ,10)-> factory ,

21 factory -(sell ,1,{sold =1}) -> deposit ,

23// Deposit

24deposit -(install(cappuccino) ,2)->
deposit ,

25deposit -(uninstall(cappuccino) ,2)->
deposit ,

26deposit -(install(cocoa) ,2)->
deposit ,

27deposit -(uninstall(cocoa) ,2)->
deposit ,

28deposit -(deploy ,2,{ deploys +=1}) ->

operation ,

29// Operation

30operation -(coffee ,3) ->

prepareCoffee ,

31prepareCoffee -(serveCoffee ,1) ->

operation ,

32//Tea , Cappuccino & Chocaccino are

similar ...

33operation -(reconfigure ,1) -> deposit

34end process
35
36begin init
37installedFeatures = { coffee }

38initialProcesses = dynamics

39end init

Listing 2. QFLan encoding of
vending machine behavior
sketched in Fig. 4

The dynamics of our example family is sketched in Fig. 4, while Listing 2
shows a textual QFLan specification in close correspondence. The machine,
initialized with a Coffee dispenser only, is pre-configured in the factory by
possibly installing any admissible feature configuration. After this, one can sell
the machine to a company, in whose deposit minor customizations can be
done before deployment. Once in operation, the machine can serve customer
requests, depending on the installed features, or be reconfigured in the deposit.

In QFLan, one first specifies real-valued variables (Lines 1–3 of Listing 2)
that can be used in the guards of constraints or to facilitate the analysis phase.
Variables can be updated as side effects of the execution of actions, defined in the
actions block (Lines 5–8). In addition, also installed concrete features can be
executed as actions, meaning a user is using them. Note that Chocaccino is not

334 A. Vandin et al.

a feature (like Cappuccino or Coffee) but an action. The rationale is that any
machine provided with Cappuccino and Cocoa dispensers can serve Chocaccino.
This is expressed in QFLan using yet another family of constraints, the action
constraints (Lines 10–12). Finally, Lines 14–32 specify the actual behavior in
terms of a process named dynamics with sets of states (Line 15) and transitions
(Lines 16–31), corresponding to the nodes and edges, respectively, of Fig. 4. Each
transition is labeled with an action, including the (un)installation or replacement
of features, and its weight, used to calculate the probability that it is executed.

The model is completed by specifying an initial configuration (Lines 34–37).
Note that, as side-effect of executing an action (sell), the transition in

Line 20 sets the variable sold to 1 when a machine is sold. Pinpointing this
precise moment allows to study, e.g., the average price of sold machines, or the
probability that they have dispensers for Coffee, Tea, Cappuccino, and Cocoa.

1begin analysis
2query = eval when {sold == 1 } :

3{ price(Machine) [delta = 0.5],

4Coffee ,Tea ,Cappuccino ,Cocoa }

5default delta = 0.05 alpha = 0.05

6parallelism = 1

7end analysis

Listing 3. QFLan properties

These five properties (average price and four
distinct probabilities) can be expressed as in
Listing 3. The query specifies the properties to
evaluate in the first state that satisfies sold
== 1. The expected value x of each property is
estimated by MultiVeStA as the mean value x
of n samples (obtained from n independent simulations), with n large enough
such that with probability (1−α) we have x ∈ [x− δ/2, x+ δ/2]. Default values of
α and δ are provided by the user via the keywords alpha and delta (these can
be overruled for a specific property by providing its new value in square brackets,
cf. Line 3). Finally, keyword parallelism = p allows to distribute simulations
across p processes to be allocated on different cores. The analysis of the five
properties in Listing 3 with QFLan required ± 2000 simulations, for which it
ran in under a second on a laptop with a 2.4 GHz Intel Core i5 processor and
4 GB of RAM.

The probability of having Cappuccino dispensers in machines sold is zero:
any machine always has at least either a Tea or Coffee dispenser, with price 5,
so installing Cappuccino would violate the constraint price(Machine) <= 10
because Cappuccino has price 7. For the same reason, the probability to
have Coffee installed is 0.33, which is roughly 1+10

1+10+20 , since in Lines 18–
20 of Listing 2 we see that 1, 10, and 20 are the weights assigned to
sell, install(Cocoa), and replace(Coffee,Tea), respectively (the weight
of installing Cappuccino is ignored as it is not allowed). Note that Coffee
is installed in machines sold if replace(Coffee,Tea) is not executed, which
happens if sell is executed first, or if Cocoa gets installed, which prevents
the execution of replace(Coffee,Tea) due to constraint Tea excludes Cocoa.
The probability of installing Cappuccino becomes 0.46 if we use the more per-
missive constraint price(Machine) <= 15.

QFLan also allows to study parametric properties as time progresses. For
example, by replacing “when {sold == 1.0}” with “from 0 to 100 by 1” in
Listing 3, we study the five properties at each of the first 100 simulation steps, for

QFLan: Quantitative Analysis of Highly Reconfigurable Systems 335

a total of 500 properties. Analysis results of parametric properties are visualized
in interactive plots, in this case the one in Fig. 2, computed in a few seconds.

4 Outlook

We presented QFLan, a quantitative modeling and verification environment for
highly (re)configurable systems, like SPL, including Eclipse-based tool support.
QFLan offers an IDE for specifying system configurations and their probabilistic
behavior in a high-level language as well as advanced statistical analyses of non-
functional properties based on a discrete-time Markov chain semantics.

In the future, we envision a stochastic semantics based on continuous-time
Markov chains for the analysis of time-related properties and a semantics based
on featured transition systems to interface with the ProVeLines tool suite [17].

References

1. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37521-7

2. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Quantitative analysis
of probabilistic models of software product lines with statistical model checking.
In: FMSPLE 2015. EPTCS, vol. 182, pp. 56–70 (2015). https://doi.org/10.4204/
EPTCS.182.5

3. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Statistical analysis of
probabilistic models of software product lines with quantitative constraints. In:
SPLC 2015, pp. 11–15. ACM (2015). https://doi.org/10.1145/2791060.2791087

4. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Statistical model check-
ing for product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9952, pp. 114–133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47166-2 8

5. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: A framework for quanti-
tative modeling and analysis of highly (re)configurable systems. IEEE Transactions
in Software Engineering (2018). http://arxiv.org/abs/1707.08411

6. ter Beek, M.H., Mazzanti, F., Sulova, A.: VMC: a tool for product variability
analysis. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp.
450–454. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-
9 36

7. ter Beek, M.H., de Vink, E.P.: Using mCRL2 for the analysis of software prod-
uct lines. In: FormaliSE 2014, pp. 31–37. ACM (2014). https://doi.org/10.1145/
2593489.2593493

8. ter Beek, M.H., de Vink, E.P., Willemse, T.A.C.: Family-based model checking with
mCRL2. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 387–
405. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 23

9. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010). https://doi.
org/10.1016/j.is.2010.01.001

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.4204/EPTCS.182.5
https://doi.org/10.4204/EPTCS.182.5
https://doi.org/10.1145/2791060.2791087
https://doi.org/10.1007/978-3-319-47166-2_8
https://doi.org/10.1007/978-3-319-47166-2_8
http://arxiv.org/abs/1707.08411
https://doi.org/10.1007/978-3-642-32759-9_36
https://doi.org/10.1007/978-3-642-32759-9_36
https://doi.org/10.1145/2593489.2593493
https://doi.org/10.1145/2593489.2593493
https://doi.org/10.1007/978-3-662-54494-5_23
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.is.2010.01.001

336 A. Vandin et al.

10. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: Family-based modeling and
analysis for probabilistic systems – featuring ProFeat. In: Stevens, P., W ↪asowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 287–304. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49665-7 17

11. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: ProFeat: feature-oriented
engineering for family-based probabilistic model checking. Formal Asp. Comput.
30(1), 45–75 (2018). https://doi.org/10.1007/s00165-017-0432-4

12. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Model checking
software product lines with SNIP. Int. J. Softw. Tools Technol. Transf. 14(5), 589–
612 (2012). https://doi.org/10.1007/s10009-012-0234-1

13. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Formal seman-
tics, modular specification, and symbolic verification of product-line behaviour.
Sci. Comput. Program. 80(B), 416–439 (2014). https://doi.org/10.1145/2499777.
2499781

14. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking of
software product lines. In: ICSE 2011, pp. 321–330. ACM (2011). https://doi.org/
10.1145/1985793.1985838

15. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking
lots of systems: efficient verification of temporal properties in software product
lines. In: ICSE 2010, pp. 335–344. ACM (2010). https://doi.org/10.1145/1806799.
1806850

16. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

17. Cordy, M., Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: ProVeLines: a
product line of verifiers for software product lines. In: SPLC 2013, pp. 141–146.
ACM (2013). https://doi.org/10.1145/2499777.2499781

18. Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A.: Beyond Boolean product-line
model checking: dealing with feature attributes and multi-features. In: ICSE 2013,
pp. 472–481. IEEE (2013). https://doi.org/10.1109/ICSE.2013.6606593

19. Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., W ↪asowski, A.: Efficient family-based
model checking via variability abstractions. Int. J. Softw. Tools Technol. Transf.
19(5), 585–603 (2017). https://doi.org/10.1007/s10009-016-0425-2

20. Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., W ↪asowski, A.: Family-based model
checking without a family-based model checker. In: Fischer, B., Geldenhuys, J.
(eds.) SPIN 2015. LNCS, vol. 9232, pp. 282–299. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23404-5 18

21. Dimovski, A.S., W ↪asowski, A.: Variability-specific abstraction refinement for
family-based model checking. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS,
vol. 10202, pp. 406–423. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54494-5 24

22. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol.
5051, pp. 113–131. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-68863-1 8

23. Kowal, M., Schaefer, I., Tribastone, M.: Family-based performance analysis of
variant-rich software systems. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS,
vol. 8411, pp. 94–108. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54804-8 7

https://doi.org/10.1007/978-3-662-49665-7_17
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/s10009-012-0234-1
https://doi.org/10.1145/2499777.2499781
https://doi.org/10.1145/2499777.2499781
https://doi.org/10.1145/1985793.1985838
https://doi.org/10.1145/1985793.1985838
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1145/2499777.2499781
https://doi.org/10.1109/ICSE.2013.6606593
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/978-3-319-23404-5_18
https://doi.org/10.1007/978-3-319-23404-5_18
https://doi.org/10.1007/978-3-662-54494-5_24
https://doi.org/10.1007/978-3-662-54494-5_24
https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1007/978-3-642-54804-8_7
https://doi.org/10.1007/978-3-642-54804-8_7

QFLan: Quantitative Analysis of Highly Reconfigurable Systems 337

24. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

25. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 11

26. Mauro, J., Nieke, M., Seidl, C., Yu, I.C.: Context aware reconfiguration in software
product lines. In: VaMoS 2016, pp. 41–48. ACM (2016). https://doi.org/10.1145/
2866614.2866620

27. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

28. Muschevici, R., Proença, J., Clarke, D.: Feature nets: behavioural modelling of
software product lines. Softw. Syst. Model. 15(4), 1181–1206 (2016). https://doi.
org/10.1007/s10270-015-0475-z

29. Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput.
Program. 41(1), 53–84 (2001). https://doi.org/10.1016/S0167-6423(00)00018-6

30. Salay, R., Famelis, M., Rubin, J., Sandro, A.D., Chechik, M.: Lifting model trans-
formations to product lines. In: ICSE 2014, pp. 117–128. ACM (2014). https://
doi.org/10.1145/2568225.2568267

31. Sebastio, S., Vandin, A.: MultiVeStA: statistical model checking for discrete event
simulators. In: ValueTools 2013, pp. 310–315. ACM (2013) https://doi.org/10.
4108/icst.valuetools.2013.254377

32. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6:1–
6:45 (2014). https://doi.org/10.1145/2580950

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1145/2866614.2866620
https://doi.org/10.1145/2866614.2866620
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10270-015-0475-z
https://doi.org/10.1007/s10270-015-0475-z
https://doi.org/10.1016/S0167-6423(00)00018-6
https://doi.org/10.1145/2568225.2568267
https://doi.org/10.1145/2568225.2568267
https://doi.org/10.4108/icst.valuetools.2013.254377
https://doi.org/10.4108/icst.valuetools.2013.254377
https://doi.org/10.1145/2580950

Modular Verification of Programs
with Effects and Effect Handlers in Coq

Thomas Letan1,2(B), Yann Régis-Gianas3,4, Pierre Chifflier1,
and Guillaume Hiet2

1 French Network Information Security Agency (ANSSI), Paris, France
thomas.letan@ssi.gouv.fr

2 CentraleSupélec, Inria Rennes – Bretagne Atlantique, IRISA-D1, Rennes, France
3 Univ Paris Diderot, Sorbonne Paris Cité, IRIF/PPS,

UMR 8243 CNRS, Paris, France
4 PiR2, Inria Paris-Rocquencourt, Paris, France

Abstract. Modern computing systems have grown in complexity, and
the attack surface has increased accordingly. Even though system com-
ponents are generally carefully designed and even verified by different
groups of people, the composition of these components is often regarded
with less attention. This paves the way for “architectural attacks”, a
class of security vulnerabilities where the attacker is able to threaten the
security of the system even if each of its components continues to act as
expected. In this article, we introduce FreeSpec, a formalism built upon
the key idea that components can be modelled as programs with alge-
braic effects to be realized by other components. FreeSpec allows for the
modular modelling of a complex system, by defining idealized compo-
nents connected together, and the modular verification of the properties
of their composition. In addition, we have implemented a framework for
the Coq proof assistant based on FreeSpec.

1 Introduction

A typical computing platform is made of dozens of hardware components, and
some of them execute complex software stacks. In this context, building a secure
computing system with respect to a given security policy remains challenging,
because attackers will leverage any vulnerability they can find. Both local com-
ponent flaws and components composition inconsistencies, that is, a mismatch
between requirements assumed by some client components and the actual guar-
antees provided by others, can be used by attackers.

The latter scenario may lead to a situation where every component seems
to be working as expected, but their composition creates an attack path. We
name this class of security vulnerabilities “architectural attacks” [1]. Over the
past decade, many critical vulnerabilities affecting computing systems, in par-
ticular those relying on the x86 architecture, have raised awareness about the
threat posed by architectural attacks. Figure 1 summarizes several significant

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 338–354, 2018.
https://doi.org/10.1007/978-3-319-95582-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_20&domain=pdf

Modular Verification of Programs with Effects and Effect Handlers 339

attacks [2–7] inside an idealized view of an x86 computing platform. In all cases,
the vulnerability was rooted in an inconsistency in the components’ composition.

Fig. 1. Idealized x86 computing platform

The isolation of the System Management Mode (SMM) code by the hard-
ware architecture is a good example to illustrate the threat posed by architec-
tural attacks. The SMM is the most privileged execution mode of x86 CPU. Its
purpose is to provide an “isolated processor environment that operates trans-
parently to the operating system” [8] to execute so-called SMM code provided
by the computer manufacturer. Since the SMM code is the most privileged soft-
ware component executed by an x86 CPU, it is a desirable target for an attacker.
The SMM code is stored in a dedicated memory region within the system mem-
ory, called the SMRAM; it is expected that only a CPU in SMM can access
the SMRAM. In particular, the Memory Controller Hub (MCH) [9] provides a
security mechanism to that end. In 2009, Duflot et al. [3] and Wojtczuk et al. [2]
have independently shown that the cache could be used to circumvent this pro-
tection. The countermeasure required adding a new security mechanism to the
CPU, meaning only computers produced after 2009 are protected against this
particular vulnerability.

For many years, industrial manufacturers [10,11] and researchers [12,13] have
aimed to formally specify and verify hardware architectures. However, verifying
properties of existing computing platforms poses significant challenges, because
they tend to be both complex and under-specified; we are not aware of any
model of an existing and broadly used computing system that is comprehensive
in terms of its hardware and software components. Unfortunately, such a model
is a prerequisite to verify a computing platform in terms of architectural attacks.

340 T. Letan et al.

The Coq proof assistant [14] has proven to be effective to model specific hard-
ware components [13,15–17]. It provides a rich specification language, tools to
write machine-checked proofs and a mechanism to derive executable programs
to experimentally validate models. The scale of the task dictates several require-
ments regarding the formalism to adopt in this particular case. It must allow
for considering independently each component of our system, before composing
them to conclude about the properties of the system as a whole.

This objective is reminiscent of the programming language problematic to
model and verify large programs with side effects. Reasoning about side effects
in purely functional languages such as Gallina, the Coq specification language,
is difficult, firstly because they require somehow taking into account an outer
stateful environment and secondly, because the composition of stateful computa-
tions is not well-handled by traditional (monadic) approaches. Algebraic effects
and handlers [18] are a generic approach overcoming this double challenge. They
allow modelling large classes of effects (e.g., exception, state, non-determinism)
and to compose effects within purely functional programs, while deferring the
realizations of these effects to dedicated handlers.

In this paper, we aim to show how a variant of algebraic effects based on
Free monads can be used to reason about large systems, by modelling their
components as effect handlers. Our contribution is threefold:

– We propose an approach which leverages the key concepts of algebraic effects
and handlers to model and to verify each component of a computing system
independently, while providing the necessary abstractions to compose these
components in order to verify the properties of the resulting system.

– We have implemented FreeSpec1, a framework for the Coq proof assistant to
modularly verify programs with effects and effects handlers with our approach.

– We have modelled and verified a simplified MCH with FreeSpec, in a first
step towards illustrating how our formalism can be leveraged to tackle our
initial objective, that is modelling and verifying computing platforms.

The rest of the paper proceeds as follows. We describe how we model com-
ponents in terms of programs with effects and effect handlers (Sect. 2) and we
introduce so-called abstract specifications to verify their respective properties
(Sect. 3). We also discuss the current limitations of our approach in terms of com-
ponents connection; FreeSpec works well with tree of components, when more
complex connection patterns require more investigation. To illustrate our defini-
tions, we use a running example in the form of the specification and verification
of a simplified MCH. Then, we discuss how the different levels of composition of
FreeSpec can be leveraged to scale the modelling and verification work for larger
systems (Sect. 4). Finally, we detail how FreeSpec is in line with an ongoing effort
to modularly verify both large systems and programs with effects (Sect. 5).

1 FreeSpec has been released as a free software, under the terms of the GPLv3. https://
github.com/ANSSI-FR/FreeSpec.

https://github.com/ANSSI-FR/FreeSpec
https://github.com/ANSSI-FR/FreeSpec

Modular Verification of Programs with Effects and Effect Handlers 341

2 Modelling Programs with Effects

The first objective of FreeSpec is to incrementally model a complex system, one
component at a time. To do so, we use the key concepts of algebraic effects
and effect handlers, implemented with a variant of the Free monad called the
Program monad as defined in the operational package of Haskell [19].

This section and the one afterwards proceed through a running example: a
minimalist Memory Controller Hub (MCH) of the x86 hardware architecture.
The MCH acts as a dispatcher for the CPU memory accesses; in our case, to the
VGA controller or the DRAM controller. The MCH takes part in the isolation
of the SMRAM, that is the special-purpose memory region inside the system
memory which contains the SMM code. If correctly configured, the MCH will
reroute any memory access which targets the SMRAM to the VGA controller,
if this access is done by a CPU in another execution mode than SMM.

2.1 Interface of Effects

Within a computing system, interconnected components communicate through
interfaces. A component which exhibits an interface receives computational
requests from other components; it handles these requests by computing their
results and sending the latter back to the client component. In FreeSpec, a com-
putational request is modelled with an effect, that is a symbolic value which
represents the request and its potential result.

Thereafter, we often define sets of values, and interfaces in particular, in terms
of functions to construct these values. These functions are called “constructors”2,
and they have mutually exclusive images, i.e. it is not possible to construct the
same value with two different constructors. For I an interface, we denote by
I|A ⊆ I the subset of effects whose results belong to a set A.

Example 1 (MCH Interfaces). The VGA and the DRAM controllers exhibit
a similar interface which allows reading and writing into a memory region. Their
interfaces are denoted by IVGA and IDRAM respectively. Let Loc be the set of
memory locations and Val the set of values stored inside the memory region.
We use the value () to model effects without results (similarly to the void key-
word in an imperative language). We define IDRAM (respectively IVGA) with two
constructors:

– ReadDRAM : Loc → IDRAM|Val
– WriteDRAM : Loc → Val → IDRAM|{()}

Then, IDRAM = IDRAM|{()} ∪ IDRAM|Val , and ReadDRAM(l) ∈ IDRAM|Val
is an effect that describes a memory access to read the value v ∈ Val stored at
the location l ∈ Loc.

The MCH interface is similar, but it distinguishes between privileged and
unprivileged accesses. It also provides one effect to lock the SMRAM protection
2 In this article, functions are written in bold. In addition, constructors begin with a

capital letter.

342 T. Letan et al.

mechanism, i.e. it enables the SMRAM isolation until the next hardware reset.
We define the set Priv � { smm, unprivileged } to distinguish between privileged
memory accesses made by a CPU in SMM and unprivileged accesses made the
rest of the time. The MCH interface, denoted by IMCH, is defined with three
constructors:

– ReadMCH : Loc → Priv → IMCH|Val
– WriteMCH : Loc → Val → Priv → IMCH|{()}
– Lock : IMCH|{()}

2.2 Operational Semantics for Effects

An effect corresponds to a computational request made to an implementation
of a given interface. For a given computational request, we define its opera-
tional semantics to compute its result. Ultimately, we will model a component
as an operational semantics for all the effects of its interface. Since operational
semantics are defined using a purely functional language, they always compute
the same result for a given effect, which is inconsistent with the stateful aspect
of hardware components. Thus, an operational semantics produces not only a
result, but also a new operational semantics, which encapsulates the new state
of the component.

Definition 1 (Operational Semantics). We write ΣI for the set of opera-
tional semantics for a given interface I, defined co-inductively as

ΣI � {σ |σ : ∀A, I|A → A × ΣI}.

An operational semantics σ ∈ ΣI is a function which, given any effect of I,
produces both a result which belongs to the expected set and a new operational
semantics to use afterwards.

A component may use more than one interface. For instance, the MCH of our
running example can access the system memory and the memory shared by the
VGA controller. But an operational semantics is defined for only one interface.
In FreeSpec, we solve this issue by composing interfaces together to create new
ones.

Definition 2 (Interfaces Composition). Let I and J be two interfaces. ⊕ is
the interface composition operator, defined with two constructors:

– InL : ∀A, I|A → (I ⊕ J)|A
– InR : ∀A,J |A → (I ⊕ J)|A

The resulting interface I ⊕ J contains the effects of both I and J , wrapped
into either InL or InR constructors, defined to preserve the effects results sets.

Example 2 (VGA and DRAM Composition). We consider IDRAM⊕IVGA.
Then, InL(ReadDRAM(l)) ∈ (IDRAM ⊕ IVGA)|Val is an effect that describes
a read access targeting the DRAM controller, whereas InR(WriteVGA(l, c)) ∈
(IDRAM ⊕IVGA)|{()} is an effect that describes a write access targeting the VGA
controller.

Modular Verification of Programs with Effects and Effect Handlers 343

Using ⊕, we can compose several interfaces together. We then need another
composition operator, this time for operational semantics. We compose opera-
tional semantics together to construct a new operational semantics for the com-
posed interface.

Definition 3 (Operational Semantics Composition). Let I and J be two
interfaces, σi ∈ ΣI and σj ∈ ΣJ be two operational semantics dedicated to
these interfaces. In this article, we use the λ-calculus abstraction notation for
functions. ⊗ is the composition operator for operational semantics, defined as

σi ⊗ σj � λe.

{
(x, σ′

i ⊗ σj) when e = InL(ei)andσi(ei) = (x, σ′
i)

(x, σi ⊗ σ′
j) when e = InR(ej)andσj(ej) = (x, σ′

j)

The definition of ⊗ has an important impact over what we can specify in
FreeSpec. Handling an effect of I (respectively J) does not interfere with σj

(respectively σi). As a consequence, we can only specify as-is trees of components,
while graphs with, for instance, cycles or forward edges are still out of scope. This
is the main limitation of FreeSpec, but its incidence is abated because computing
platforms are often designed as a hierarchical succession of layers.

2.3 The Program Monad

Modelling programs with side effects in purely functional languages such as Gal-

lina (the Coq specification language) or Haskell is usually achieved thanks to
monads [20]. FreeSpec leverages a variant of the Free monad called the Program
monad [19] to model programs with effects. Operational semantics play the role
of operational [19] interpreters. We write PI(A) for the set of programs with
effects which belongs to I, modelled thanks to the Program monad, and whose
result belongs to a set A.

Definition 4 (Program Monad). PI(A) is defined with three constructors:

– Pure : A → PI(A)
– Bind : ∀B, PI(B) → (B → PI(A)) → PI(A)
– Request : I|A → PI(A)

These constructors allow for the construction of values which act similarly to
abstract syntax trees to model programs with effects. On the one hand, Pure
and Request are comparable to the leaves of a syntax tree and model atomic
computations; Pure models local computations, whereas Request models defer-
ring a computational request to a handler and waiting for its result. On the other
hand, Bind (denoted by the infix operator >>= afterwards) models the control
flow of a program with effects, like the abstract syntax tree nodes would. It
defines how the result of one computation determines the following ones.

Example 3 (Copy). We define copy : Loc → Loc → PIDRAM({()}) such that
copy(l, l′) models a program with effects that returns no result, but copies the
value v stored at the memory location l inside the memory location l′.

copy(l, l′) � Request(ReadDRAM(l)) >>= λv.Request(WriteDRAM(l′, v))

344 T. Letan et al.

Given l ∈ Loc and l′ ∈ Loc, copy(l, l′) symbolically models a program with
effects. To assign an interpretation of this program, it must be completed with
an operational semantics which realizes the interface IDRAM.

Definition 5 (Program with Effects Realization). Let I be an interface,
σ ∈ ΣI an operational semantics for this interface and ρ ∈ PI(A) a program
with effects which belong to this interface. σ[ρ] ∈ A × ΣI denotes the realization
of this program by σ, defined as:

σ[ρ] �

⎧⎨
⎩

(x, σ) if ρ = Pure(x)
σ(e) if ρ = Request(e)
σ′[f(y)] if ρ = q >>= f and (y, σ′) = σ[q]

2.4 Components as Programs with Effects

With the interfaces, their operational semantics, the ⊕ and ⊗ operators to com-
pose them and the Program monad to model programs with effects which belong
to these interfaces, we now have all we need to model a given component which
exposes an interface I and uses another interface J . We proceed with the fol-
lowing steps: modelling the component in terms of programs with effects, then
deriving one operational semantics for I from these programs, assuming provided
an operational semantics for J .

The behaviour of a component is often determined by a local, mutable state.
When it computes the result of a computational request, not only a component
may read its current state; but it can also modify it, for instance to handle the
next computational request differently. This means we have to model the state of
a component with a set S of symbolic state representations. We map the current
state of the component and effects of I to a program with effects of J . These
programs must compute the effect result and the new state of the component.

Definition 6 (Component). Let I be the interface exhibited by a component
and J the interface it uses. Let S be the set of its states. The component C,
defined in terms of programs with effects of J , is of the form

∀A, I|A → S → PJ (A × S)

Hence, C specifies how the component handles computational requests, both
in terms of computation results and state changes.

Example 4 (Minimal MCH Model). Let CMCH be the MCH defined in terms
of programs with effects of IDRAM ⊕ IVGA, then CMCH is of the form

∀A, IMCH|A → SMCH → PIDRAM⊕IVGA(A × SMCH)

where SMCH � {on, off} means the SMRAM protection is either activated (on)
or deactivated (off).

One the one hand, the Lock effect will activate the isolation mechanism of
the MCH, setting its state to on. On the other hand, the effects constructed with

Modular Verification of Programs with Effects and Effect Handlers 345

ReadMCH and WriteMCH will use the current state of the MCH, the privileged
parameter of the effect and the memory location to lookup to determine if it
uses the DRAM or the VGA controller. By default, it fetches the memory of the
DRAM controller, except if the isolation mechanism is activated, the access is
unprivileged and the targeted memory location belongs to the SMRAM. In such
a case, it reroutes access to the VGA controller.

A component C defined in terms of programs with effects cannot be used
as-is to compute the result of a given effect. To do that, we need to derive an
operational semantics for I from C.

Definition 7 (Deriving Operational Semantics). Let C be a component
which exhibits an interface I, uses an interface J and whose states belong to S.
Let s ∈ S be the current state of the component and σj ∈ ΣJ be an operational
semantics for J . We can derive an operational semantics for I, denoted by
〈C, s, σj〉, defined as

〈C, s, σj〉 � λi.(x, 〈C, s′, σ′
j〉) where ((x, s′), σ′

j) = σj [C(i, s)]

The resulting operational semantics models a system made of interconnected
components, and can then be used to derive another component model into
an operational semantics which models a larger system. For instance, we can
proceed with the following steps to comprehensively model our running example:
(i) defining the operational semantics for the DRAM and VGA controllers; (ii)
using these operational semantics to derive an operational semantics from CMCH.
The resulting operational semantics can take part in the derivation of a cache
defined in terms of programs with effects of IMCH, to model a larger part of the
system pictured in the Fig. 1.

3 Modular Verification of Programs with Effects

The first objective of FreeSpec is to provide the required tools to model each
component of a system independently, and to compose these components to
model the whole system. Its second objective is to verify that the composition
of several components satisfies a set of properties. To achieve that, we introduce
the so-called abstract specifications, which allows for specifying, for each inter-
face, expected properties for the effect results, independently of any underlying
handler. Abstract specifications can be used to emphasize the responsibility of
each component of a system regarding the enforcement of a given security policy.
Verifying a component is done against abstract specifications of the interfaces it
directly uses, even if it relies on a security property enforced by a deeper compo-
nent in the components graph. In this case, we have to verify that every single
component which separate them preserve this property. This procedure can help
to prevent or uncover architectural attacks.

In this section, we proceed with our running example by verifying that the
MCH correctly isolates the SMRAM. In order to do that, we define an abstract

346 T. Letan et al.

specification which states that privileged reads targeting the SMRAM returns
the value which has previously been stored by a privileged write. It models the
SMRAM isolation: unprivileged writes cannot tamper with the content of the
SMRAM, as read by a privileged CPU.

3.1 Definition

In FreeSpec, an abstract specification dedicated to an interface I is twofold. It
defines a precondition over the effects that a caller must satisfy; and, in return,
it specifies a postcondition over the effects results that an operational semantics
must enforce. Since both the precondition and the postcondition may vary in
time, we parameterize an abstraction specification with an abstract state and a
step function to update this state after each effect realization.

Definition 8 (Abstract Specification). We write A for an abstract specifi-
cation dedicated to an interface I, defined as a tuple 〈Ω, step,pre,post〉 where

– Ω is a set of abstract states
– step : ∀A, I|A → A → Ω → Ω is a transition function for the abstract state.
– pre ⊆ I × Ω is the precondition over effects, such that (e, ω) ∈ pre if and

only if the effect e satisfies the precondition parameterized with the abstract
state ω (denoted by pre(e, ω)).

– post ⊆ ⋃
A(I|A × A × Ω) is the postcondition over effects results, such that

(e, x, ω) ∈ post if and only if the results x computed for the effects e sat-
isfies the postcondition parameterized with the abstract state ω (denoted by
post(e, x, ω)).

By defining an abstract specification of an interface I, it becomes possible
to abstract away the effect handler, i.e. the underlying component. As a con-
sequence, reasoning about a program with effects can be achieved without the
need to look at the effect handlers. An abstract specification is dedicated to one
verification problem (in our context, one security property), and it is possible to
define as many abstraction specifications as required.

We write runstep : ∀A, ΣI → PI(A) → Ω → (A × ΣI × Ω) for the function
which, in addition to realize a program with effects, updates an abstract state
after each effect. Using runstep, we can determine both the precondition over
effects and the postcondition over effects results while an operational semantics
realizes a program with effects.

Example 5 (MCH Abstract Specification). Let AMCH be the abstract speci-
fication such that AMCH = 〈ΩMCH, stepMCH,preMCH,postMCH〉. AMCH models
the following property: “ privileged reads targeting the SMRAM return the value
which has been previously stored by a privileged write”:

– Let Smram ⊆ Loc be the set of memory locations which belong to the SMRAM.
We define ΩMCH � Smram → Val , such that ω ∈ ΩMCH models a view of the
SMRAM as exposed by the MCH for privileged reads.

Modular Verification of Programs with Effects and Effect Handlers 347

– We define stepMCH which updates the view of the MCH (modelled as a func-
tion) after each privileged write access targeting any SMRAM location l, that
is

stepMCH(e, x, ω) �

⎧⎨
⎩

λl′. (if l = l′ then v else ω(l′))
if e = WriteMCH(l, v, smm) and l ∈ Smram

ω otherwise

– There is no precondition to the use of the MCH effects, so

∀e ∈ I,∀ω ∈ ΩMCH,preMCH(e, ω)

– The postcondition enforces that the result x of a privileged read targeting
the SMRAM (Read(l, smm)) has to match the value stored in AMCH abstract
state, i.e. the expected content for this memory location ω(l).

postMCH(e, x, ω) � ∀l ∈ Loc, e = ReadMCH(l, smm) ∧ l ∈ Smram ⇒ x = ω(l)

3.2 Compliance and Correctness

The verification of a component C, which exhibits I and uses J , consists in
proving we can derive an operational semantics σi for I from an operational
semantics σj for J . This semantics σi enforces the postcondition of an abstract
specification AI dedicated to I (compliance). As C is defined in terms of pro-
grams with effects of J , the latter needs to make a legitimate usage of J with
respect to an abstract specification AJ dedicated to J (correctness).

First, σi complies with AI if, (1) given any effect which satisfies AI precon-
dition, σi produces a result which satisfies its postcondition, and if (2) the new
operational semantics σ′

i also complies with AI . The precondition and the post-
condition are parameterized by an abstract state, so is the compliance property.

Definition 9 (Operational Semantics Compliance). Let A be an abstract
specification for an interface I, defined as 〈Ω, step,pre,post〉, ω ∈ Ω, then
σ ∈ ΣI complies with A in accordance with ω (denoted by σ |= A[ω]) iff.

∀e ∈ I,pre(e, ω) ⇒ post(e, x, ω) ∧ σ′ |= A[step(e, x, ω)] where (x, σ′) = σ(e)

Secondly, programs with effects of C make a legitimate usage of an oper-
ational semantics σj ∈ ΣJ which complies with AJ if they only use effects
which satisfy AJ precondition. As for the compliance property, correctness is
parameterized with an abstract state.

Definition 10 (Program with Effects Correctness). Let A be an abstract
specification for an interface I, defined as 〈Ω, step,pre,post〉, ω ∈ Ω, and
ρ ∈ PI(A), then ρ is correct with respect to A in accordance with ω (denoted by
A[ω] |=ρ), iff.

348 T. Letan et al.

A[ω] |=ρ �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

True if ρ = Pure(x)
pre(e, ω) if ρ = Request(e)
∀σ ∈ ΣI such that σ |= A[ω],

A[ω] |=q ∧ A[ω′] |=f(x) if ρ = q >>= f
where (x, , ω′) = runstepJ (σ, q, ω)

Every local computation (Pure) is correct with respect to A in accordance
with ω. A computation which uses an effect e ∈ I (Request) is correct with
respect to A in accordance with ω if and only if e satisfies the precondition of
A for the abstract state ω. Finally, the chaining of two programs with effects
(Bind) is correct with A in accordance with ω if the first program is correct
with A in accordance with ω, and the second program is correct in accordance
with the abstract state reached after the realization of the first program.

Properties, inferred from an abstract specification, of a correct program with
effects only hold if it is realized by a compliant operational semantics. Besides,
we prove that correct programs preserve operational semantics compliance.

Theorem 1 (Compliance Preservation). Let A be an abstract specification
dedicated to an interface I. σ a compliant operational semantics for I produces
a compliant operational semantics σ′ if it realizes a correct program ρ, that is

σ |= A[ω] ∧ A[ω] |=ρ ⇒ σ′ |= A[ω′] where runstep(σ, ρ, ω) = (x, σ′, ω′)

As for interfaces (with ⊕) and operational semantics (with ⊗), we have
also defined an abstract specification composition operator . We do not detail
its definition in this article, but it has the significant property of allowing for
reasoning about the composition of interfaces and composition of operational
semantics.

Theorem 2 (Congruent Composition). Let I (respectively J) be an inter-
face. Let AI (respectively AJ) be an abstract specification and σi ∈ ΣI (respec-
tively σj ∈ ΣJ) be an operational semantics for this interface.

σi |= AI [ωi] ∧ σj |= AJ [ωj] ⇒ σi ⊗ σj |= (AI AJ)[ωi, ωj]

With the Compliance Preservation, we know that as long as we follow the
abstract specification precondition related to the effects we use, compliant opera-
tional semantics keep enforcing the postcondition. With the Compliance Preser-
vation and Congruent Composition, we know we can reason locally, that is com-
ponent by component.

3.3 Proofs Techniques to Show Compliance for Components

We have dived into the mechanisms which allow for composing together com-
pliant operational semantics, but little has been said about how to prove the
compliance property to begin with. In a typical FreeSpec use case, operational
semantics are not built as-is, but rather derived from a component model (Def-
inition 7). How to prove the resulting operational semantics complies with an

Modular Verification of Programs with Effects and Effect Handlers 349

abstract specification depends on how the component is connected to the rest
of the system. We have already discussed the consequences of the operational
semantics composition operator ⊗ (Definition 3). Notably, a graph of components
which connects two nodes with more than one path cannot be easily modelled
and verified in FreeSpec. In its current state, FreeSpec provides some theorems to
verify the properties of a component model in terms of an abstract specification,
depending on the composition pattern.

The most composition connection pattern consists of one component which
uses many components, and is only used by one other component. Let I and
J be two interfaces and let C, a component with a set of possible states S,
which exhibits I and uses J . Let AI be an abstract specification dedicated to I.
Deriving an operational semantics from C which complies with AI in accordance
with ωi ∈ ΩI requires to show the existence of s ∈ S and σj ∈ ΣJ such that

〈C, s, σj〉 |= AI [ωi].

However, proving this statement would not be very satisfying, as it ties our
verification results to one specific operational semantics σj , and by extension
one specific component. As a consequence, we define an abstract specification
AJ to generalize our statement and abstracting away σj . We now need to prove
it exists ωj ∈ ΩJ such that given an operational semantics σj which complies
with AJ in accordance with ωj , the operational semantics derived from C, s and
σj complies with AI in accordance with ωi, that is

∀σj ∈ ΣJ , σj |= AJ [ωj] ⇒ 〈C, s, σj〉 |= AI [ωi]

The combinatorial explosion of cases introduced by ωi, s and ωj , modified
as the component handles effects, makes inductive reasoning challenging. The
FreeSpec framework provides a useful theorem to address these challenges, which
leverages a so-called predicate of synchronization. The latter is defined by the
user on a case-by-case basis, to act as an invariant for the induction, and a
sufficient condition to enforce compliance.

Theorem 3 (Derivation Compliance). Let sync, a relation between abstract
states of ΩI and ΩJ , states of S, be a predicate of synchronization. Then, it is
expected that, ∀ωi ∈ ΩI , s ∈ S and ωj ∈ ΩJ such that sync(ωi, s, ωj) holds,
then ∀σj ∈ ΣJ such that σj |= AJ [ωj] and ∀e ∈ I such that preI(e, ωi),

1. C preserves the synchronization of states, that is sync(ω′
i, s

′, ω′
j)

2. C is defined in terms of programs with effects which are correct with respect
to AJ in accordance with ωj, that is AJ [ωj] |=C(e, s)

3. C computes a result for e which satisfies AI postcondition, that is
postI(e, x, ωi)

where ((x, s′), σ′
j , ω

′
j) = runstepJ (σj , C(e, s), ωj) and ω′

i = stepI(e, x, ωi).
Should these three properties be verified, then we show that

sync(ωi, s, ωj) ∧ σj |= AJ [ωj] ⇒ 〈C, s, σj〉 |= AI [ωi].

350 T. Letan et al.

Example 6 (MCH Compliance). We want to prove we can derive an
operational semantics from CMCH (Example 4) which complies with AMCH

(Example 5).
We define ADRAM � 〈ΩDRAM, stepDRAM,preDRAM,postDRAM〉 an abstract

specification dedicated to IDRAM to express the following property: “ a read
access to a memory location which belongs to the SMRAM return the value
which have been previously written at this memory location.” In particular,
ΩDRAM = ΩMCH, i.e. they are two views of the SMRAM, as exposed by the
DRAM controller or by the MCH. In this context, the behaviour of VGA is not
relevant. Let � be the abstract specification which has no state and such that its
precondition and postcondition are always satisfied (meaning every operational
semantics always complies with it). Therefore, the abstract specifications dedi-
cated to the interface used by CMCH, that is IDRAM⊕IVGA, is ADRAM� whose
abstract state is ΩDRAM.

We define the predicate of synchronization syncMCH such that

syncMCH(ωi, s, ωj) � s = on ∧ ∀l ∈ Smram , ωi(l) = ωj(l)

Hence, we start our reasoning from a situation where the SMRAM isolation is
already activated and the states of the two abstract specifications are the same,
meaning the two views of the SMRAM (as stored in the DRAM, and as exposed
by the MCH) coincide. We prove syncMCH satisfies the three premises of the
Theorem 3. We conclude we can derive an operational semantics from CMCH

which complies with AMCH.

Another common composition pattern consists of a component which is used
by more than one other component. FreeSpec provides a theorem which allows
for extending the result obtained with the Theorem 3, in the specific case where
concurrent accesses do not lead to any change of the abstract state.

4 Discussion

For two sections, we have introduced the FreeSpec key definitions and theorems
so that we could model a minimal MCH component and verify its properties in
the presence of a well-behaving DRAM controller. This example has been driven
by a real mechanism commonly found inside x86-based computing platforms. We
now discuss how FreeSpec can be leveraged to model and verify larger systems.

4.1 FreeSpec as a Methodology

The typical workflow of FreeSpec can be summarized as follows: specifying the
interfaces of a system; modelling the components of the system in terms of
programs with effects of these interfaces; identifying the abstract specifications
which express the requirements over each interface; verifying each component in
terms of compliance with these abstract specifications.

Modular Verification of Programs with Effects and Effect Handlers 351

Independent groups of people can use FreeSpec to modularly model and verify
a system, as long as they agree on the interfaces and abstract specifications. If,
during the verification process, one group finds out a given interface or abstract
specification needs to be updated, the required modifications may impact its
neighbours. For instance, modelling a x86-based computing system, as pictured
in Fig. 1, using FreeSpec requires to take into account the CPU cache, and to
verify it complies with an abstract specification similar to the one defined in
Example 5. Thus, FreeSpec could have helped uncover the attack mentioned in
Sect. 1 [2,3], and other similar architectural attacks.

The abstract specifications are defined in terms of interfaces, i.e. indepen-
dently from components. It has two advantages. First, for a given verification
problem modelled with a set of abstract specifications, two components which
exhibit the same interface can be proven to comply with the same abstract spec-
ification. In such a case, we can freely interchange these components, and the
verification results remain true. This is useful to consider the challenge posed
by components versioning, i.e. a new version of a component brings new fea-
tures which could be leveraged by an attacker. Then, it is possible to verify a
given component in terms of several abstract specifications. This means we can
independently conduct several verification works against the same component.

4.2 FreeSpec as a Framework

FreeSpec includes about 8,000 lines of code: 6,000 for its core, 2,000 for the exper-
iments. It has been built upon three objectives: readability of models, automation
of proofs, opportunity to extract these models for experimental validation.

To achieve readability, FreeSpec borrows several popular concepts to modern
functional programming language, such as Haskell. We have used the Notation
feature of Coq to add the do-notation of Haskell to Gallina. This allows for
writing monadic functions that can be read as if it were pseudo-code. The readers
familiar with the monad transformers mechanism [21] may also have recognized
the definition of the transformer variant of the State monad in the Definition 6.
FreeSpec takes advantage of the State monad mechanism to seamlessly handle
the local state of the component.

To achieve automation of proofs, we have developed specific Coq tactics.
Some definitions of FreeSpec can be pretty verbose, and the proofs quickly
become difficult to manage as the program grows in complexity. FreeSpec pro-
vides two tactics to explore the control flow of programs with effects.

Finally, to achieve model extraction, we have defined the key concepts of
FreeSpec so that they remain compatible with the extraction mechanism of
Coq. As a consequence, component models can be derived into executable pro-
grams. For a hardware component, it means we could, for instance, compare its
behaviour with its concrete counterpart. For a software component, it means we
can fill the gap between the model and the implementation.

352 T. Letan et al.

5 Related Work

FreeSpec falls within two domains of research: the verification of large systems
made of components, and the modular verification of programs with effects.

FreeSpec follows our previous work named SpecCert [1], whose lack of mod-
ularity complexified scalability. Kami [13] shares many concepts with FreeSpec,
but implements them in a totally different manner: components are defined as
labelled transition systems and can be extracted into FPGA bitstreams. Kami is
hardware-specific, thus is not suitable to reason about systems which also include
software components. However, it allows for expressing more composition pat-
tern than FreeSpec (e.g. components cycle). Thomas Heyman et al. [22] have
proposed a component-based modelling technique for Alloy [23], where compo-
nents are primarily defined as semantics for a set of operations; a component is
connected to another when it leverages its operations. Alloy leverages a model
finder to verify a composition of these components against known security pat-
terns, and to assume or verify facts about operations semantics; however, it lacks
an extraction mechanism, which makes it harder to validate the model.

Algebraic effects and effect handlers led to a lot of research about verifica-
tion of programs with side effects [18,24], but to our surprise, we did not find any
approach to write and verify programs with effects and effect handlers written
for Gallina. However, other approaches exist. Ynot [25] is a framework for the
Coq proof assistant to write, reason with and extract Gallina programs with
side effects. Ynot side effects are specified in terms of Hoare preconditions and
postconditions parameterized by the program heap, and does not dissociate the
definition of an effect and properties over its realization. To that extent, FreeSpec
abstract specification is more expressive (thanks to the abstract state) and flex-
ible (we can define more than one abstract specification for a given interface).
Claret et al. have proposed Coq.io, a framework to specify and verify interactive
programs in terms of use cases [26]. The proofs rely on scenarios which deter-
mine how an environment would react to the program requests. These scenarios
are less generic and expressive than FreeSpec abstract specifications, but they
are declarative and match a widely adopted software development process. As a
consequence, they may be easier to read and understand for software developers.

Previous approaches from the Haskell community to model programs with
effects using Free monads [19,27] are the main source of inspiration for FreeSpec.
In comparison, we provide a novel method to verify these programs, inspired by
the interface refinement of the B-method [28]. It also had some similiraties with
FoCaLiZe [29], a proof environment where proofs are attached to components.

6 Conclusion and Future Work

We have proposed an approach to model and verify each component of a com-
puting system independently, while providing the necessary abstractions to com-
pose these components together in order to verify the properties of the resulting
system. We have implemented FreeSpec, an open-source framework for the Coq

Modular Verification of Programs with Effects and Effect Handlers 353

proof assistant which implements our approach. Finally, we applied our approach
to a simplified x86-based computing platform in terms of programs.

We would like to consider more composition patterns. We also anticipate
abstract specifications may become harder to understand as their complexity
grows. We want to make them more declarative, so they could be more easily
understood by software developers who are less familiar with functional pro-
gramming and formal verification.

References

1. Letan, T., Chifflier, P., Hiet, G., Néron, P., Morin, B.: SpecCert: specifying and
verifying hardware-based security enforcement. In: Fitzgerald, J., Heitmeyer, C.,
Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 496–512. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-48989-6 30

2. Wojtczuk, R., Rutkowska, J.: Attacking SMM memory via Intel CPU cache poi-
soning. Invisible Things Lab (2009)

3. Duflot, L., Levillain, O., Morin, B., Grumelard, O.: Getting into the SMRAM:
SMM Reloaded. CanSecWest, Vancouver (2009)

4. Domas, C.: The memory sinkhole. In: BlackHat USA, July 2015
5. Kallenberg, C., Wojtczuk, R.: Speed racer: exploiting an intel flash protection race

condition. Bromium Labs, January 2015
6. Kovah, X., Kallenberg, C., Butterworth, J., Cornwell, S.: SENTER Sandman: using

Intel TXT to attack BIOSes. Hack in the Box (2015)
7. Stewin, P., Bystrov, I.: Understanding DMA malware. In: Flegel, U., Markatos,

E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 21–41. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37300-8 2

8. Manual I.P.: Intel IA-64 Architecture Software Developer’s Manual. Itanium Pro-
cessor Microarchitecture Reference for Software Optimization, August 2000

9. Intel: Intel 5100 Memory Controller Hub Chipset
10. Reid, A.: Who guards the guards? Formal validation of the Arm v8-M architec-

ture specification. In: Proceedings of the ACM on Programming Languages, vol.
1(OOPSLA), p. 88 (2017)

11. Leslie-Hurd, R., Caspi, D., Fernandez, M.: Verifying linearizability of IntelR© soft-
ware guard extensions. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9207, pp. 144–160. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21668-3 9

12. Chong, S., Guttman, J., Datta, A., Myers, A., Pierce, B., Schaumont, P., Sherwood,
T., Zeldovich, N.: Report on the NSF Workshop on Formal Methods for Security.
ArXiv preprint arXiv:1608.00678 (2016)

13. Choi, J., Vijayaraghavan, M., Sherman, B., Chlipala, A., et al.: Kami: a platform
for high-level parametric hardware specification and its modular verification. In:
Proceedings of the ACM on Programming Languages, vol. 1(ICFP), p. 24 (2017)

14. Inria: The Coq Proof Assistant. https://coq.inria.fr/
15. Braibant, T.: Coquet: a coq library for verifying hardware. In: Jouannaud, J.-P.,

Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 330–345. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25379-9 24

16. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.B., Gan, E.: RockSalt: better,
faster, stronger SFI for the x86. In: ACM SIGPLAN Notices, vol. 47, pp. 395–404.
ACM (2012)

https://doi.org/10.1007/978-3-319-48989-6_30
https://doi.org/10.1007/978-3-642-37300-8_2
https://doi.org/10.1007/978-3-319-21668-3_9
https://doi.org/10.1007/978-3-319-21668-3_9
http://arxiv.org/abs/1608.00678
https://coq.inria.fr/
https://doi.org/10.1007/978-3-642-25379-9_24

354 T. Letan et al.

17. Jomaa, N., Nowak, D., Grimaud, G., Hym, S.: Formal proof of dynamic memory
isolation based on MMU. In: 2016 10th International Symposium on Theoretical
Aspects of Software Engineering (TASE), pp. 73–80. IEEE (2016)

18. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. J. Log.
Algebraic Methods Program. 84(1), 108–123 (2015)

19. Apfelmus, H.: The operational package. https://hackage.haskell.org/package/
operational

20. Hoareetal, C.: Tackling the awkward squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell. Engineering Theories of Software
Construction (2001)

21. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters.
In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 333–343. ACM (1995)

22. Heyman, T., Scandariato, R., Joosen, W.: Reusable formal models for secure soft-
ware architectures. In: 2012 Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software Architecture, WICSA/ECSA
2012, Helsinki, Finland, 20–24 August 2012, pp. 41–50 (2012)

23. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press,
Cambridge (2012)

24. Brady, E.: Resource-dependent algebraic effects. In: Hage, J., McCarthy, J. (eds.)
TFP 2014. LNCS, vol. 8843, pp. 18–33. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-14675-1 2

25. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: depen-
dent types for imperative programs. In: ACM Sigplan Notices, vol. 43, pp. 229–240.
ACM (2008)

26. Claret, G., Régis-Gianas, Y.: Mechanical verification of interactive programs speci-
fied by use cases. In: Proceedings of the Third FME Workshop on Formal Methods
in Software Engineering, pp. 61–67. IEEE Press (2015)

27. Kiselyov, O., Ishii, H.: Freer monads, more extensible effects. In: ACM SIGPLAN
Notices, vol. 50, pp. 94–105. ACM (2015)

28. Abrial, J.R., Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, Cambridge (2005)

29. Pessaux, F.: FoCaLiZe: inside an F-IDE. ArXiv preprint arXiv:1404.6607 (2014)

https://hackage.haskell.org/package/operational
https://hackage.haskell.org/package/operational
https://doi.org/10.1007/978-3-319-14675-1_2
https://doi.org/10.1007/978-3-319-14675-1_2
http://arxiv.org/abs/1404.6607

Combining Tools for Optimization
and Analysis of Floating-Point

Computations

Heiko Becker1, Pavel Panchekha2, Eva Darulova1(B), and Zachary Tatlock2

1 MPI-SWS, Saarbrücken, Germany
{hbecker,eva}@mpi-sws.org

2 University of Washington, Seattle, USA
{pavpan,ztatlock}@cs.washington.edu

Abstract. Recent renewed interest in optimizing and analyzing
floating-point programs has lead to a diverse array of new tools for
numerical programs. These tools are often complementary, each focusing
on a distinct aspect of numerical programming. Building reliable floating
point applications typically requires addressing several of these aspects,
which makes easy composition essential. This paper describes the com-
position of two recent floating-point tools: Herbie, which performs accu-
racy optimization, and Daisy, which performs accuracy verification. We
find that the combination provides numerous benefits to users, such as
being able to use Daisy to check whether Herbie’s unsound optimiza-
tions improved the worst-case roundoff error, as well as benefits to tool
authors, including uncovering a number of bugs in both tools. The com-
bination also allowed us to compare the different program rewriting tech-
niques implemented by these tools for the first time. The paper lays out
a road map for combining other floating-point tools and for surmounting
common challenges.

1 Introduction

Across many domains, numerical computations specified over the reals are actu-
ally implemented using floating-point arithmetic. Due to their finite nature, oper-
ations on floating-point numbers cannot be calculated exactly and accumulate
roundoff errors. In addition, real-valued identities such as associativity no longer
hold, making manual reasoning and optimization challenging. To address these
challenges, new automated tools have recently been developed which build on
advances in program rewriting and verification techniques to enable even non-
experts to analyze and optimize their floating point code.

Some of these tools use sound techniques to statically bound roundoff errors
of straight-line floating-point programs [8,9,12,15,16,22] and partially automate
complex analysis tasks [10,18]. Other such tools use dynamic techniques to
find inputs that suffer from large rounding errors [4,23]. Yet other tools per-
form rewriting-based optimization [5,8,17,20] and mixed-precision tuning [3,7]
to improve the accuracy and performance of floating-point programs.
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 355–363, 2018.
https://doi.org/10.1007/978-3-319-95582-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_21&domain=pdf

356 H. Becker et al.

Since these tools are typically complementary, each focusing on a distinct
aspect of numerical reliability, users will need to compose several to meet their
development needs. This makes ease of composition essential, and some first
steps in this regard have been taken by the FPBench project [6], which provides a
common specification language for inputs to floating-point analysis tools similar
to the one provided by the SMT-LIB standard [1]. However, no literature yet
exists on the actual use of FPBench to compose tools and on the challenges that
stand in the way of combining different floating-point tools, such as differing
notions of error and different sets of supported functions.

In this paper we report on our experience implementing the first com-
bination of two complementary floating-point analysis tools using FPBench:
Herbie [17] and Daisy [8]. Herbie optimizes the accuracy of straight-line floating-
point expressions, but employs a dynamic roundoff error analysis and thus cannot
provide sound guarantees on the results. In contrast, Daisy performs static anal-
ysis of straight-line expressions, which is sound w.r.t. IEEE754 floating-point
semantics [13]. Our combination of the tools is implemented as a script in the
FPBench repository (https://github.com/FPBench/FPBench).

We see this combination of a heuristic and a sound technique as particularly
interesting; Daisy can act as a backend for validating Herbie’s optimizations.
Daisy computes improved worst-case roundoff error bounds for many (but not
all) expressions optimized by Herbie. On others it raises an alarm, discovering
division-by-zero errors introduced by Herbie. We also improved the precision of
Daisy’s analysis of special functions as we found that some were sound but not
accurate enough. Thus, the combination was also useful in uncovering limitations
of both tools.

Daisy additionally implements a sound genetic programming-based accuracy
optimization procedure. Our combination of Daisy and Herbie allows us to com-
pare it to Herbie’s unsound procedure based on greedy search. We discover
important differences between the two procedures, suggesting that the techniques
are not competitive but in fact complementary and best used in combination.

Some of the challenges we encountered, such as differing supported functions
and different error measures, are likely to be encountered by other researchers
or even end users combining floating-point tools, and our experience shows how
these challenges can be surmounted. Our evaluation on benchmarks from the
FPBench suite also shows that tool composition can provide end-to-end results
not achievable by either tool in isolation and suggests that further connections
with other tools should be investigated.

2 Implementation

The high-level goal of our combination is to use Daisy as a verification backend
to Herbie to obtain a sound upper bound on the roundoff error of the expression
returned by Herbie. By also evaluating the roundoff error of Herbie’s output and
of the input expression, we can obtain additional validation of the improvement.
It should be noted, however, that Daisy cannot verify whether the actual worst-
case or average roundoff error has decreased—a decrease in the computed upper

https://github.com/FPBench/FPBench

Combining Tools for Optimization and Analysis 357

bound can be due to an actual decrease or simply due to a stronger static bound.
In many cases, however, such as in safety-critical systems, just proving a smaller
static bound is already useful.

We have implemented the combination in a script, which we sketch in Fig. 1.
For each straight-line input program fsrc, we first run Herbie to compute an
optimized version fres. Both the optimized and unoptimized version are trans-
lated into Daisy’s input format (using FPCore2Scala), and Daisy is run on both
versions to compute error bounds.

Fig. 1. Pseudocode of the script used to compose Herbie and Daisy into a single tool;
AnalysisTypes contains different modes Daisy can be run in.

Daisy supports several different types of error analysis, and we run Daisy in
a portfolio style, where the tightest bound computed by any of the analyses is
used. In particular, we use the interval analysis with subdivisions mode and the
SMT solver mode (with Z3 [11] as the solver).1 Since each analysis is sound, this
provides the tightest error bound that Daisy can prove.

When implementing the script that runs Herbie and Daisy together we had
to address two major differences between the two tools: Herbie and Daisy use
different input (and output) formats, and Daisy requires domain bounds on
all input variables, whereas Herbie allows unbounded inputs. While the imple-
mented script is simple, it took several iterations to implement. The most time
consuming part was the improvements that only became apparent after run-
ning the tools together. We will first explain how we solved the two differences
between Daisy and Herbie and then give an overview on the improvements in
both tools.

Formats. To avoid having to add new frontends, we implemented a translator
from FPBench’s FPCore format to Daisy’s Scala-based input language. As Her-
bie produces optimized expressions in FPCore, this translator allows us to run
Daisy on both the benchmarks and on Herbie’s optimized expressions. This
translator is now part of the FPBench toolchain and can be used by other
researchers and by users to integrate Daisy with other tools developed as part
of the FPBench project.

Preconditions. Both Daisy and Herbie allow preconditions for restricting the
valid inputs to a floating-point computation. For Herbie, these preconditions
are optional. In contrast, Daisy requires input ranges for performing a forward
dataflow analysis to compute sound absolute roundoff error bounds. Several of

1 We found that neither interval analysis without subdivision nor alternate SMT
solvers provided tighter bounds.

358 H. Becker et al.

the benchmarks in FPBench did not have a specified precondition. For our exper-
iments, we manually added a meaningful precondition to these programs, with
preconditions chosen to focus on input values with significant rounding errors.
To avoid biasing the results, the preconditions were simple order-of magnitude
ranges for each variable, with the endpoints of these ranges chosen from 1, 1010,
or 1020 and their inverses and negations.

Improvements in Daisy and Herbie. Connecting Daisy and Herbie and running
each on several previously unseen benchmarks uncovered numerous possibilities
for improvements in Herbie and Daisy.

In Herbie, several bugs were discovered by our efforts: an incorrect type-
checking rule for let statements (which would reject some valid programs); incor-
rect handling of duplicate fields (which allowed one field to improperly override
another); and an infinite loop in the sampling code (triggered by some precondi-
tions). Real users running older versions of Herbie have since also reported these
bugs, suggesting that issues addressed during tool composition helped improve
user experience generally.

In Daisy, we discovered that the analysis of elementary functions was unnec-
essarily conservative and improved the rational approximations used. Error han-
dling in both tools was also improved such that issues like (potential) divisions
by zero or timeouts are now accurately reported. This more precise feedback
significantly improves user friendliness and reduces debugging time.

3 Experimental Results

We perform two evaluations of our combination of Daisy and Herbie: we first
use Daisy as a verification backend for Herbie and then we compare Daisy’s and
Herbie’s rewriting algorithms. Both experiments use all supported benchmarks
from the FPBench suite. We give the full table with all the evaluation data in our
technical report [2]. The experiments were run on a machine with an i7-4790K
CPU and 32 GB of memory. For each benchmark we give both Daisy and Herbie
a timeout of 10 min.

Composing Daisy and Herbie. Our first experiment considers Daisy solely as a
tool for computing floating-point error bounds. Herbie is then used to attempt
to improve the benchmark’s accuracy.

Of the 103 benchmarks, Herbie times out on 31 of them. Of the remaining 72
benchmarks, Daisy raises an alarm2 on 24 and can prove a bound on 48. Of the
48 benchmarks where Daisy can prove an error bound, Daisy’s roundoff error
analysis can prove a tighter worst-case error bound for 22 of Herbie’s outputs,
an equal bound for 18, and a looser bound for 8. These results are summarized
in the left-most graph in Fig. 2.

2 Indicating that it could not prove the absence of invalid operations, such as divisions
by zero.

Combining Tools for Optimization and Analysis 359

F
ig
.
2
.

T
h
e

o
rd

er
s

o
f

m
a
g
n
it

u
d
e

ch
a
n
g
e

in
D

a
is

y
’s

w
o
rs

t
ca

se
er

ro
r

es
ti

m
a
te

a
ft

er
re

w
ri

ti
n
g

w
it

h
H

er
b
ie

,
D

a
is

y,
a
n
d

b
o
th

H
er

b
ie

a
n
d

D
a
is

y
(l

ef
t

to
ri

g
h
t)

.
N

o
te

th
a
t

co
m

b
in

in
g

b
o
th

re
w

ri
ti

n
g

a
lg

o
ri

th
m

s
k
ee

p
s

th
e

la
rg

e
b
en

efi
ci

a
l
ch

a
n
g
es

in
tr

o
d
u
ce

d
b
y

H
er

b
ie

b
u
t

av
o
id

s
it

s
d
et

ri
m

en
ta

l
ch

a
n
g
es

.

360 H. Becker et al.

Of the 24 benchmarks where Daisy raises an alarm, for 13 Daisy raises an
alarm on the original input program and for 16 the alarm is raised on the output
program Herbie produced. Some of these alarms are true positives while others
are spurious. For example, in some benchmarks Herbie had introduced a possible
division by 0, which Daisy was able to detect. In others, the output contained
expressions like 1/(x(1 + x)), with 1010 < x < 1020, where Daisy is unable to
prove that no division by zero occurs.

We see this as good evidence that Daisy can be used as a verification back-
end for Herbie. One challenge is that Daisy’s error analysis can only show that
Herbie’s output has a smaller error bound, not that it is more accurate at any
particular point on the original program. Additionally, it is difficult to determine
which of Daisy’s alarms are spurious. Despite these challenges, the combination
of Daisy and Herbie was able to produce large, verified improvements in rounding
error in many benchmarks.

Comparing Daisy’s and Herbie’s Error Measures. One topic of particular interest
in combining Daisy and Herbie is their different measures of floating-point error.
Herbie measures the error in terms units in the last place, or ULPs. To compute
this error, Herbie randomly samples input values and takes the average of error
across those inputs. It thus provides a dynamic, unsound measure of average
ULPs of error. Daisy, meanwhile, uses a mathematical abstraction based on
the definition of rounding and IEEE754 operator semantics to provide static,
sound bounds on the maximum absolute error. The relationship between these
two measures of error is central to using Herbie and Daisy together.

Despite these stark differences between Herbie’s and Daisy’s error measures,
our evaluation data shows that Daisy and Herbie can be fruitfully used together:
Daisy verifies that Herbie’s improved program is no less accurate for 40/48 of
the benchmarks. This suggests that, though Daisy and Herbie use very different
means to measure error, both are successfully measuring the same underlying
notion of error. The fact that Daisy’s and Herbie’s error measures are suited to
their particular approaches (static analysis and program search) suggests that
future tools should focus not on measuring error “correctly” but on finding an
error measure well suited to their technical approach.

Comparing Daisy and Herbie. Our second experiment compares Daisy’s and
Herbie’s rewriting algorithms. Daisy uses genetic programming to search for
a program with a tighter bound. Herbie, by contrast, uses a greedy search
over a suite of different rewriting steps. We compare Herbie’s rewriting algo-
rithm, Daisy’s rewriting algorithm, and Daisy’s rewriting algorithm applied to
the results of Herbie’s rewriting algorithm. Figure 2 summarizes the accuracy
improvements.

Of the 103 benchmarks, at least one of the rewriting algorithms succeeds
on 71. Of the 71, Daisy’s rewriting algorithm tightens the worst-case bound for
42 benchmarks; Herbie’s for 22 benchmarks; and the combination for 34 bench-
marks. Furthermore, Herbie’s rewriting algorithm loosens the worst-case bound
for 8 benchmarks, a consequence of its unsound error measurement technique or
differing notion of error, while the combination does so for only 2.

Combining Tools for Optimization and Analysis 361

Not only the number but also size of the error improvement matters. Daisy’s
rewriting algorithm was able to reduce the error bound by a factor of 1.39 (0.14
orders of magnitude) on average; Herbie’s by a factor of 13.07 (1.12 orders of
magnitude); and the combination by a factor of 15.3 (1.18 orders of magni-
tude). The combination clearly provided the greatest reduction in error bounds;
furthermore, Daisy’s algorithm provides larger benefits when applied to Herbie’s
optimized program than when applied to the benchmark directly.

It seems that Daisy’s rewriting algorithm provides a fairly consistent but
small tightening of error bounds, while Herbie’s algorithm can suggest dramatic
and unexpected changes in the expression. However, these large changes some-
times have significantly looser error bounds. In those cases, combining Herbie’s
and Daisy’s rewriting algorithms provides a tighter error bound, reaping the ben-
efits of Herbie’s rewriting algorithm without the large increases in error bounds
that it sometimes causes.

4 Discussion

This paper reports on the combination of Daisy and Herbie and illustrates
the benefits of composing complementary floating-point tools to achieve results
neither tool provides in isolation. This case study serves as a representative
example: similar combinations could be constructed for other tools using this
paper’s approach. Combinations of Gappa [10], Fluctuat [12], FPTaylor [22], or
other verification tools [9,15,16] with Herbie could also allow validating Herbie’s
optimizations. Verification tools could also be used to validate the output of
other unsound tools, such as Precimonious [19] and STOKE [21]. Comparisons
with sound optimization tools such as Salsa [5] and FPTuner [3] could also be
explored.

Ultimately, we envision using the combination of Daisy and Herbie within
larger developments such as VCFloat [18]. VCFloat provides partial automation
for reasoning about floating-point computations in CompCert C-light [14] pro-
grams. In this context, our toolchain could provide an optimization tactic, that
could be applied to (provably) increase accuracy for floating-point segments of
C-light programs.

References

1. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In: Gupta,
A., Kroening, D. (eds.) International Workshop on Satisfiability Modulo Theories,
Edinburgh, UK (2010)

2. Becker, H., Panchekha, P., Darulova, E., Tatlock, Z.: Combining tools for optimiza-
tion and analysis of floating-point computations. arXiv preprint arXiv:1805.02436
(2018)

3. Chiang, W.F., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G.,
Rakamarić, Z.: Rigorous floating-point mixed-precision tuning. In: Symposium on
Principles of Programming Languages (POPL), pp. 300–315. ACM (2017)

http://arxiv.org/abs/1805.02436

362 H. Becker et al.

4. Chiang, W.F., Gopalakrishnan, G., Rakamaric, Z., Solovyev, A.: Efficient search
for inputs causing high floating-point errors. In: Symposium on Principles and
Practice of Parallel Programming (PPoPP), vol. 49, pp. 43–52. ACM (2014)

5. Damouche, N., Martel, M., Chapoutot, A.: Intra-procedural optimization of the
numerical accuracy of programs. In: Núñez, M., Güdemann, M. (eds.) FMICS 2015.
LNCS, vol. 9128, pp. 31–46. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-19458-5 3

6. Damouche, N., et al.: Toward a standard benchmark format and suite for floating-
point analysis. In: Bogomolov, S., Martel, M., Prabhakar, P. (eds.) NSV 2016.
LNCS, vol. 10152, pp. 63–77. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-54292-8 6

7. Darulova, E., Horn, E., Sharma, S.: Sound mixed-precision optimization with
rewriting. In: International Conference on Cyber-Physical Systems (ICCPS) (2018)

8. Darulova, E., et al.: Daisy - framework for analysis and optimization of numerical
programs (tool paper). In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10805, pp. 270–287. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89960-2 15

9. Darulova, E., Kuncak, V.: Towards a compiler for reals. ACM Trans. Program.
Lang. Syst. (TOPLAS) 39(2), 8 (2017)

10. De Dinechin, F., Lauter, C.Q., Melquiond, G.: Assisted verification of elementary
functions using Gappa. In: ACM Symposium on Applied Computing, pp. 1318–
1322. ACM (2006)

11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrish-
nan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–
340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3 24.
http://dl.acm.org/citation.cfm?id=1792734.1792766

12. Goubault, E., Putot, S.: Robustness analysis of finite precision implementations.
In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 50–57. Springer, Cham
(2013). https://doi.org/10.1007/978-3-319-03542-0 4

13. IEEE Computer Society: IEEE standard for floating-point arithmetic. IEEE Std
754–2008 (2008)

14. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

15. Magron, V., Constantinides, G., Donaldson, A.: Certified roundoff error bounds
using semidefinite programming. ACM Trans. Math. Softw. 43(4), 1–34 (2017)

16. Moscato, M., Titolo, L., Dutle, A., Muñoz, C.A.: Automatic estimation of verified
floating-point round-off errors via static analysis. In: Tonetta, S., Schoitsch, E.,
Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 213–229. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66266-4 14

17. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically improv-
ing accuracy for floating point expressions. In: Conference on Programming Lan-
guage Design and Implementation (PLDI) (2015)

18. Ramananandro, T., Mountcastle, P., Meister, B., Lethin, R.: A unified Coq frame-
work for verifying C programs with floating-point computations. In: Certified Pro-
grams and Proofs (CPP), pp. 15–26. ACM (2016)

19. Rubio-González, C., Nguyen, C., Nguyen, H.D., Demmel, J., Kahan, W., Sen, K.,
Bailey, D.H., Iancu, C., Hough, D.: Precimonious: tuning assistant for floating-
point precision. In: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2013, pp. 27:1–27:12.
ACM (2013)

https://doi.org/10.1007/978-3-319-19458-5_3
https://doi.org/10.1007/978-3-319-19458-5_3
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1007/978-3-540-78800-3_24
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1007/978-3-319-03542-0_4
https://doi.org/10.1007/978-3-319-66266-4_14

Combining Tools for Optimization and Analysis 363

20. Sanchez-Stern, A., Panchekha, P., Lerner, S., Tatlock, Z.: Finding root causes of
floating point error with herbgrind. arXiv preprint arXiv:1705.10416 (2017)

21. Schkufza, E., Sharma, R., Aiken, A.: Stochastic optimization of floating-point pro-
grams with tunable precision. In: Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2014, pp.
53–64. ACM (2014)

22. Solovyev, A., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous estima-
tion of floating-point round-off errors with symbolic Taylor expansions. In: Bjørner,
N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 532–550. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19249-9 33

23. Zou, D., Wang, R., Xiong, Y., Zhang, L., Su, Z., Mei, H.: A genetic algorithm for
detecting significant floating-point inaccuracies. In: IEEE International Conference
on Software Engineering (ICSE), vol. 1, pp. 529–539. IEEE (2015)

http://arxiv.org/abs/1705.10416
https://doi.org/10.1007/978-3-319-19249-9_33

A Formally Verified Floating-Point
Implementation of the Compact Position

Reporting Algorithm

Laura Titolo1(B), Mariano M. Moscato1(B), César A. Muñoz2(B),
Aaron Dutle2, and François Bobot3

1 National Institute of Aerospace, Hampton, VA, USA
{laura.titolo,mariano.moscato}@nianet.org

2 NASA, Hampton, VA, USA
{cesar.a.munoz,aaron.dutle}@nasa.gov

3 CEA LIST, Software Security Lab, Gif-sur-Yvette, France
francois.bobot@cea.fr

Abstract. The Automatic Dependent Surveillance-Broadcast (ADS-B)
system allows aircraft to communicate their current state, including posi-
tion and velocity information, to other aircraft in their vicinity and to
ground stations. The Compact Position Reporting (CPR) algorithm is
the ADS-B module responsible for the encoding and decoding of aircraft
positions. CPR is highly sensitive to computer arithmetic since it heav-
ily relies on functions that are intrinsically unstable such as floor and
modulo. In this paper, a formally-verified double-precision floating-point
implementation of the CPR algorithm is presented. The verification pro-
ceeds in three steps. First, an alternative version of CPR, which reduces
the floating-point rounding error is proposed. Then, the Prototype Verifi-
cation System (PVS) is used to formally prove that the ideal real-number
counterpart of the improved algorithm is mathematically equivalent to
the standard CPR definition. Finally, the static analyzer Frama-C is
used to verify that the double-precision implementation of the improved
algorithm is correct with respect to its operational requirement. The
alternative algorithm is currently being considered for inclusion in the
revised version of the ADS-B standards document as the reference imple-
mentation of the CPR algorithm.

The authors are thankful to Guillaume Melquiond for his help and useful insights
on the tool Gappa.
Research by the first two authors was supported by the National Aeronautics and
Space Administration under NASA/NIA Cooperative Agreement NNL09AA00A.
The work by the fifth author was partially funded by the National Aeronautics and
Space Administration under NASA/NIA Cooperative Agreement NNL09AA00A and
the grant ANR-14-CE28-0020.

U.S. Government, as represented by the Administrator of the National Aeronautics

and Space Administration. No copyright is claimed in the United States under Title 17,

U.S. Code. All Other Rights Reserved. 2018

K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 364–381, 2018.

https://doi.org/10.1007/978-3-319-95582-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_22&domain=pdf

A Formally Verified Floating-Point Implementation of CPR 365

1 Introduction

The Automatic Dependent Surveillance-Broadcast (ADS-B) protocol [27] is a
fundamental component of the next generation of air transportation systems.
It is intended to augment or replace ground-based surveillance systems such as
radar by providing real-time accurate surveillance information based on global
positioning systems. Aircraft equipped with ADS-B services broadcast a vari-
ety of information related to the current state of the aircraft, such as posi-
tion and velocity, to other traffic aircraft and to ground stations. The use of
ADS-B transponders is required to fly in some regions and, by 2020, it will
become mandatory for most commercial aircraft in the US [11] and Europe [17].
Thousands of aircraft are currently equipped with ADS-B.1

The ADS-B broadcast message is defined to be 112 bits long. Its data frame
takes 56 bits, while the rest is used to transmit aircraft identification, message
type, and parity check information. When the data frame contains a position, 21
bits are devoted to the status information and altitude, leaving 35 bits in total
for latitude and longitude. If raw latitude and longitude data were expressed as
numbers of 17 bits each, the resulting position accuracy would be worse than 300
m, which is inadequate for safe navigation. For this reason, the ADS-B protocol
uses an algorithm called Compact Position Reporting (CPR) to encode/decode
the aircraft position in 35 bits in a way that, for airborne applications, is intended
to guarantee a position accuracy of approximately 5 meters. Unfortunately, pilots
and manufacturers have reported errors in the positions obtained by encoding
and decoding with the CPR algorithm.

In [16], it was formally proven that the original operational requirements of
the CPR algorithm are not enough to guarantee the intended precision, even
when computations are assumed to be performed using exact arithmetic. Addi-
tionally, the ideal real number implementation of CPR has been formally proven
correct for a slightly tightened set of requirements [16]. Nevertheless, even assum-
ing these more restrictive requirements, a straight-forward floating-point imple-
mentation of the CPR algorithm may still be unsound and produce incorrect
results due to round-off error. For instance, using a standard single-precision
floating-point implementation of CPR on a position whose latitude is −77.368◦

and longitude is 180◦, the recovered position differs from the original one by
approximately 1500 nautical miles.

In this paper, an alternative implementation of the CPR algorithm is pre-
sented. This version includes simplifications that decrease the numerical com-
plexity of the expressions with respect to the original version presented in the
ADS-B standard. In this way, the accumulated round-off error is reduced. Frama-
C [21] is used to prove that the double-precision floating-point implementation
of the proposed CPR algorithm is correct in the sense that the encoding has
no rounding error and the decoded position satisfies the required operational
accuracy of the algorithm. The Frama-C WP (Weakest Precondition) plug-in

1 https://generalaviationnews.com/2017/09/18/more-than-40000-aircraft-now-
equipped-with-ads-b/.

https://generalaviationnews.com/2017/09/18/more-than-40000-aircraft-now-equipped-with-ads-b/
https://generalaviationnews.com/2017/09/18/more-than-40000-aircraft-now-equipped-with-ads-b/

366 L. Titolo et al.

is used to generate verification conditions ultimately discharged with the aid of
the automatic solvers Gappa [15] and Alt-Ergo [12]. In addition, the interactive
theorem prover PVS [26] is used to formally prove that the real counterpart of
the proposed alternative CPR algorithm is mathematically equivalent to the one
defined in the standard [27]. It follows that the correctness results presented in
[16] also hold for the proposed version of CPR. The PVS formalization of this
equivalence is available at https://shemesh.larc.nasa.gov/fm/CPR/.

The remainder of the paper is organized as follows. In Sect. 2, the original
definition of the CPR algorithm and the correctness of its real-valued version [16]
are summarized. The alternative version of CPR is presented in Sect. 3 along with
the results ensuring its mathematical equivalence with respect to the original
algorithm. In Sect. 4, the verification approach used to prove the correctness of
the double-precision implementation of the alternative algorithm is explained.
Related work is discussed in Sect. 5. Finally, Sect. 6 concludes the paper.

2 The Compact Position Reporting Algorithm

In this section, the CPR algorithm is introduced, summarizing its definition in
the ADS-B standard [27]. The CPR goal is to encode latitude and longitude in
17 bits while keeping a position resolution of approximately 5 meters. CPR is
based on the fact that transmitting the entire latitude and longitude at each
broadcasted message is inefficient since the higher order bits are very unlikely to
change over a short period of time. In order to overcome this inefficiency, only
an encoding of the least significant bits of the position is transmitted and two
different techniques are used to recover the higher order bits.

CPR uses a special coordinate system where each direction (latitude and lon-
gitude) is divided into zones of approximately 360 nautical miles. There are two
different subdivisions of the space in zones, based on the format of the message,
either even or odd. The number of zones depends on the format and, in the case
of the longitude, also on the current latitude of the target. Each zone is itself
divided into 217 parts, called bins. Figure 1 shows how the latitude is divided into
60 zones (for the even subdivision) or into 59 zones (for the odd subdivision) and
how each zone is then divided into 217 bins. The CPR encoding procedure trans-
forms degree coordinates into CPR coordinates and is parametric with respect
to the chosen subdivision (even or odd). The decoding procedure recovers the
position of the aircraft from the CPR coordinates. A CPR message coordinate
is exactly the number corresponding to the bin where the target is located. The
correct zone can be recovered from either a previously known position (for local
decoding) or from a matched pair of even and odd messages (for global decod-
ing). The decoding procedures return a coordinate which corresponds to the
centerline of the bin where the target is located (see Fig. 1). In a latitude zone
(respectively longitude zone), all the latitudes (respectively longitudes) inside a
bin have the same encoding. This means that the recovered latitude (respectively
longitude) corresponds to the bin centerline. Therefore, the difference between
a given position and the result of encoding and decoding should be less than or
equal to the size of half of a bin.

https://shemesh.larc.nasa.gov/fm/CPR/

A Formally Verified Floating-Point Implementation of CPR 367

Fig. 1. CPR latitude coordinate system.

The modulo function is assumed to be computed as mod (x, y) = x− y �x/y�.
In this section, all computations are assumed to be performed in real arithmetic.
Therefore, no rounding error occurs. All the results presented in this section
have been formally proven in a previous work [16].

2.1 Encoding

The CPR encoding translates latitude and longitude coordinates, expressed in
degrees, into a pair of CPR coordinates, i.e., bin indices. Each CPR message is
transmitted inside the data frame of an ADS-B message. The 35 bits composing
the CPR message are grouped into three parts. One bit determines the format
(0 for even and 1 for odd), 17 bits are devoted to the bin number for the latitude,
and the other 17 bits to the bin number for the longitude.

Let i ∈ {0, 1} be the format of the message to be sent, the size of a latitude
zone is defined as dlat i = 360/(60−i). Given a latitude in degrees lat ∈ [−90, 90],
the latitude encoding is defined as follows:

latEnc(i, lat) = mod

(⌊
217

mod (lat , dlat i)
dlat i

+
1
2

⌋
, 217

)
. (2.1)

In (2.1), mod (lat , dlat i) is the distance between lat and the bottom of a zone
edge. Thus, mod(lat,dlati)

dlati
is the zone fraction of lat . Multiplying by 217 gives

a value between 0 and 217, while
⌊
x + 1

2

⌋
rounds a number x to the nearest

integer. The external modulo ensures that the encoded latitude fits in 17 bits.
It may appear that this final truncation can discard some useful information.
However, it only affects half of a bin at the top of a zone, which is accounted for
by the adjacent zone. For longitude, the CPR coordinate system keeps the size
of zones approximately constant by reducing the number of longitude zones as
the latitude increases. As a consequence, the number of longitude zones circling
the globe is a function of the latitude. The function that determines the number
of longitude zones is called NL. While its value can be calculated directly from a

368 L. Titolo et al.

given latitude, in practice, it is determined from a pre-calculated lookup table.
Since the construction of this table occurs off-line it can be computed with
enough precision to ensure its correctness during the encoding stage. Note that
the latitude used to compute NL for encoding is actually the recovered latitude,
which is the centerline of the bin containing the location. This ensures that the
broadcaster and receiver can calculate the same value of NL for use in longitude
decoding.

Given a latitude value lat ∈ [−90, 90], the NL value is used to compute the
longitude zone size as follows.

dloni(lat) = 360/max{1,NL(rlat(lat)) − i}. (2.2)

Note that the denominator in the above expression uses the max operator when
NL is 1, which occurs for latitudes beyond ±87 degrees. In this case, there is
only one longitude zone and even and odd longitude encodings coincide.

Given a longitude value lon ∈ [0, 360] and a latitude value lat ∈ [−90, 90],
the longitude encoding is defined similarly to latitude encoding:

lonEnc(i, lat , lon) = mod

(⌊
217

mod (lon, dloni(lat))
dloni(lat)

+
1
2

⌋
, 217

)
. (2.3)

Let BN denote the domain of bin numbers which is composed by the integers
in the interval [0, 217 − 1]. The following lemma ensures the message is of the
proper length.

Lemma 1. Given i ∈ {0, 1}, lat ∈ [−90, 90], and lon ∈ [0, 360], then
latEnc(i, lat) ∈ BN and lonEnc(i, lat , lon) ∈ BN .

2.2 Local Decoding

Each encoded coordinate broadcast in a CPR message identifies exactly one bin
inside each zone. In order to unambiguously compute the decoded position, it suf-
fices to determine the zone. To this end, the CPR local decoding uses a reference
position that is known to be near the broadcast one. This reference position can
be a previously decoded position or can be obtained by other means. The idea
behind local decoding is simple. Observe that a one zone wide interval centered
around a given reference position does not contain more than one occurrence
of the same bin number. Therefore, as long as the target is close enough to the
reference position (slightly less than half a zone), decoding can be performed
correctly.

Given a format i ∈ {0, 1}, the encoded latitude YZ i ∈ BN , and a refer-
ence latitude latref ∈ [−90, 90], the local decoding uses the following formula to
calculate the zone index number (zin).

latZinL(i,YZ i, latref) =
⌊
latref
dlat i

⌋
+

⌊
1
2

+
mod (latref , dlat i)

dlat i
− YZ i

217

⌋
. (2.4)

The first term in this sum calculates which zone the reference latitude lies in,
while the second term adjusts it by −1, 0, or 1 based on the difference between

A Formally Verified Floating-Point Implementation of CPR 369

the reference latitude and the received encoded latitude. The zone index number
is then used to compute the recovered latitude using the following function.

rlatL(i,YZ i, latref) = dlat i

(
latZinL(i,YZ i, latref) +

YZ i

217

)
. (2.5)

This recovered latitude is used to determine the NL value for computing the
value of dloni by Formula (2.2). Given a reference longitude lonref ∈ [0, 360],
the recovered latitude rlat ∈ [−90, 90], and the encoded longitude XZ i ∈ BN ,
the longitude zone index and recovered longitude are computed similarly to the
case of the latitude. In the following formulas, dloni is used as an abbreviation
for dloni(rlatL(i,YZ i, latref)).

lonZinL(i,XZ i, lonref , rlat) =
⌊
lonref

dloni

⌋
+

⌊
1
2

+
mod (lonref , dloni)

dloni
− XZ i

217

⌋
.

(2.6)

rlonL(i,XZ i, lonref , rlat) = dloni

(
lonZinL(i,XZ i, lonref , rlat) +

XZ i

217

)
. (2.7)

When the difference between original and reference latitude (respectively
longitude) is less than half zone size minus half bin size, local decoding is cor-
rect. This means that the difference between the original and recovered latitude
(respectively longitude) is at most half of a bin size.

Theorem 1 (Local Decoding Correctness). Given a format i ∈ {0, 1}, a
latitude lat ∈ [−90, 90], and a reference latitude latref ∈ [−90, 90] such that
|lat − latref | < dlati

2 − dlati
218 ,

|lat − rlatL(i, latEnc(i, lat), latref)| ≤ dlat i
218

.

Furthermore, given a recovered latitude rlat ∈ [−90, 90], a longitude lon ∈
[0, 360], and a reference longitude lonref ∈ [0, 360] such that |lon − lonref | <
dloni(rlat)

2 − dloni(rlat)
218 ,

|lon − rlonL(i, lonEnc(i, rlat , lon), lonref , rlat)| ≤ dloni(rlat)
218

.

2.3 Global Decoding

Global decoding is used when a valid reference position is unknown. This can
occur when a target is first encountered, or when messages have not been received
for a significant amount of time. Similarly to the local decoding case, the correct
zone in which the encoded position lies has to be determined. To accomplish this,
the global decoding uses a pair of messages of different formats, one even and one
odd. The algorithm computes the number of zone offsets (the difference between
an odd zone length and an even zone length) from the origin (either equator or
prime meridian) to the encoded position. This can be used to establish the zone
for either message type, and hence used to decode the position.

370 L. Titolo et al.

The first step in global decoding is to determine the number of zone offsets
between the southern boundaries of the two encoded latitudes. Given two inte-
gers YZ 0,YZ 1 ∈ BN , the zone index number for the latitude is computed as
follows.

latZinG(YZ 0,YZ 1) =
⌊

59YZ 0 − 60YZ 1

217
+

1
2

⌋
. (2.8)

Note that YZ 0/217 is the fraction into the even zone that the encoded latitude
lies in. Since exactly 59 zone offsets fit into each even zone, 59YZ 0/217 is the
number of zone offsets from the southern boundary of an even zone. Similarly,
60YZ 1/217 is the number of zone offsets from the southern boundary of an odd
zone. The difference between these gives the number of zone offsets between
southern boundaries of the respective zones, which corresponds to the correct
zone. For example, if both are in zone 0, the southern boundaries coincide. If
both are in zone 1, the southern boundaries differ by 1 zone offset. The case
when encoding zones differ is accounted for by the modulo operation.

Given i ∈ {0, 1}, the recovered latitude is calculated as shown below.

rlatG(i,YZ 0,YZ 1) = dlat i

(
mod (latZinG(YZ 0,YZ 1), 60 − i) +

YZ i

217

)
. (2.9)

For the global decoding of a longitude, it is essential to check that the even
and odd messages being used were calculated with the same NL value. To this
end, both even and odd latitude messages are decoded, and their NL values
are calculated. If they differ, the messages are discarded, otherwise, the longi-
tude decoding can proceed using the common NL value. Given i ∈ {0, 1} and
XZ 0,XZ 1 ∈ BN , if NL(rlatG(0,YZ 0,YZ 1)) = NL(rlatG(1,YZ 0,YZ 1)) the zone
index number is computed as follows, where NL denotes NL(rlatG(i,YZ 0,YZ 1))
for i = 0, 1.

lonZinG(XZ 0,XZ 1) =
⌊

(NL − 1)XZ 0 − (NL)XZ 1

217
+

1
2

⌋
. (2.10)

Using rlatG(i,YZ 0,YZ 1) to compute dloni and NL, and letting nli stand for
max(NL − i, 1), the recovered longitude is computed as follows.

rlonG(i,XZ 0,XZ 1) = dloni

(
mod (latZinG(XZ 0,XZ 1), nli) +

XZ i

217

)
. (2.11)

The zone offset represents the difference between an even and an odd zone.
For the latitude it is defined as ZO lat = dlat1 − dlat0, while for the longitude,
given a latitude rlat , is defined as ZO lon = dlon1(rlat) − dlon0(rlat). When the
difference between the original coordinates is less than half zone offset minus the
size of one odd bin, global decoding is correct. This means that the difference
between the original and recovered latitude and longitude is at most the size of
half bin.

A Formally Verified Floating-Point Implementation of CPR 371

Theorem 2 (Global Decoding Correctness). Given i ∈ {0, 1}, for all lat0,
lat1 ∈ [−90, 90] such that |lat0 − lat1| < ZOlat

2 − dlat1
217 ,

|lat i − rlatG(i, latEnc(0, lat0), latEnc(1, lat1))| ≤ dlat i
218

.

Furthermore, let rlat0 = rlatG(0, latEnc(0, lat0), latEnc(1, lat1)) and rlat1 =
rlatG(1, latEnc(0, lat0), latEnc(1, lat1)) be even and odd recovered latitudes,
respectively. If NL(rlat0) = NL(rlat1), then for all lon0, lon1 ∈ [0, 360] such
that |lon0 − lon1| < ZOlon

2 − dlon1(rlati)
217 ,

|loni − rlonG(i, lonEnc(0, rlat0, lon0), lonEnc(1, rlat1, lon1))| ≤ dloni(rlat i)
218

3 An Alternative Implementation of CPR

In this section, an alternative implementation of CPR is presented. This version
uses mathematical simplifications that decrease the numerical complexity of the
expressions with respect to the original implementation presented in the ADS-B
standard. The alternative version is designed to be more numerically stable and
to minimize the accumulated floating-point round-off error. Whenever possible,
the formulas are transformed in order to perform multiplications and divisions
by a power of 2, which are known to produce no round-off error as long as no over
or under-flow occurs. Other simplifications are applied to reduce the number of
operations, especially the modulo and floor. These operations are particularly
problematic because a small difference in the arguments can lead to a significant
difference in the result. For instance, consider a variable x that has an ideal
real value of 1, while its floating-point version x̃ has value 0.999999. The round-
off error associated to x is |x − x̃| = 0.000001, but the error associated to the
application of the floor operation is | �x� − �x̃� | = 1.

Assuming real arithmetic, the proposed implementation is shown to be equiv-
alent to the original one. All the results presented in this section have been
formally verified using the PVS theorem prover. The input coordinates for this
CPR algorithm are assumed to be given in a format called 32 bit angular weighted
binary (AWB), a standard format for expressing geographical positions used by
GPS manufacturers and many others. An AWB coordinate is a 32 bit integer in
the interval [0, 232 − 1], where the value x corresponds to 360x

232 degrees (negative
latitudes are identified with their value modulo 360). In the following, AWB
denotes the domain of AWB numbers and a hat is used to emphasize that a
given variable denotes an AWB value.

3.1 Alternative Encoding

Given a latitude l̂at ∈ AWB, Algorithm 1 encodes it in a bin index number. The
encoding is slightly different for AWB latitudes greater than 230 because the
input latitude range for the original encoding is [−90, 90] and the AWB interval

372 L. Titolo et al.

from 230 to 232 corresponds to the range [90, 360]. Therefore, a shift must be
performed to put the range [270, 360] in the expected input format [−90, 0].

Algorithm 2 implements the longitude encoding similarly to Algorithm 1.
In this case, no shift is needed since the input longitude range is [0, 360]. The
variable nz denotes the number of longitude zones, which is 1 when NL = 1
and NL−i otherwise. This is equivalent to taking the maximum between 1 and
NL−i as done in the original version of the algorithm (see Formula (2.2)). The
following theorem states the mathematical equivalence of the proposed alterna-
tive encoding with respect to the one described in Subsect. 2.1 assuming ideal
real-valued arithmetic.

Algorithm 1. latEnc′(i, l̂at)
nz ← 60 − i
if ̂lat ≤ 230 then

tmp1 = (̂lat ∗ nz + 214) ∗ 2−15

tmp2 = (̂lat ∗ nz + 214) ∗ 2−32

else
tmp1 = ((̂lat − 232) ∗ nz + 214) ∗ 2−15

tmp2 = ((̂lat − 232) ∗ nz + 214) ∗ 2−32

end if
return �tmp1� − 217 ∗ �tmp2�

Algorithm 2. lonEnc′(i,NL, l̂on)
if NL = 1 then

nz ← 1
else

nz ← NL−i
end if
tmp1 = (̂lon ∗ nz + 214) ∗ 2−15

tmp2 = (̂lon ∗ nz + 214) ∗ 2−32

return �tmp1� − 217 ∗ �tmp2�

Theorem 3. Let lat ∈ [−90, 90], lon ∈ [0, 360], l̂at , l̂on ∈ AWB, and i ∈ {0, 1},
if lat = 360̂lat

232 , lon = 360̂lon
232 , and NL = NL(rlat′(lat)), then

latEnc′(i, l̂at) = latEnc(i, lat)

lonEnc′(i,NL, l̂on) = lonEnc(i, lat , lon).

To prove this lemma, it is necessary to use the following intermediate results.
First, the following alternative formula for encoding is used, which avoids the
external modulo of 217 used in Equations (2.1) and (2.3).

Lemma 2. Let lat ∈ [−90, 90], lon ∈ [0, 360], and i ∈ {0, 1},

latEnc(i, lat) =

⌊
217

mod
(
lat + 2−18dlat i, dlat i

)
dlat i

⌋

lonEnc(i, lat , lon) =

⌊
217

mod
(
lon + 2−18dloni(lat), dloni(lat)

)
dloni(lat)

⌋
.

The following two results, which have been formally proven correct in [16], are
also used. When the modulo operator is divided by its second argument, the
following simplification can be applied.

mod (a, b)
b

=
a

b
−

⌊a
b

⌋
. (3.1)

A Formally Verified Floating-Point Implementation of CPR 373

Additionally, given any number x and any integer n, the floor function and the
addition of integers is commutative.

�x + n� = �x� + n. (3.2)

Given l denoting either a latitude or a longitude and dl representing dlat or dlon
respectively, the following equality holds.

⌊
217

mod
(
l + 2−18dl , dl

)
dl

⌋
=

⌊
217

l

dl
+

1
2

⌋
− 217

⌊
l

dl
+

1
218

⌋
. (3.3)

Since the input coordinate l is assumed to correspond to an AWB, there exists
l̂ ∈ AWB such that l = 360l̂

232 . By replacing l, after some basic arithmetic simpli-
fications, the formula used in Algorithms 1 and 2 is obtained as follows.
⌊
217

l

dl
+

1
2

⌋
−217

⌊
l

dl
+

1
218

⌋
=

⌊
(̂l · nz + 214)2−15

⌋
−217

⌊
(̂l · nz + 214)2−32

⌋
.

(3.4)

3.2 Alternative Local Decoding

Given an encoded latitude YZ and a reference latitude in AWB format, Algo-
rithm 3 recovers the latitude corresponding to the centerline of the bin where the
original latitude was located. Similarly to the encoding algorithm, it is necessary
to shift the AWB to correctly represent the latitudes between −90 and 0 degrees.
Correspondingly, Algorithm 4 recovers the longitude centerline bin. Note that
the two algorithms differ only in the computation of the zone index number
(zin). Let ref be the reference latitude (respectively longitude) in degrees, dl
be the zone size, and enc the 17-bit encoding. By applying Equations (3.1) and
(3.2), the latitude (respectively longitude) zone index number Formulas (2.4)
and (2.6) can be rewritten in the form

⌊
1
2

+
ref
dl

− enc
217

⌋
.

Algorithm 3. rlat ′
L(i, l̂at ,YZ)

nz ← 60 − i
dlat ← 360/nz

if ̂lat ≤ 230 then

zin ←
⌊

(̂lat ∗ nz − (YZ − 216) ∗ 215) ∗ 2−32
⌋

else
zin ←

⌊

((̂lat − 232) ∗ nz − (YZ − 216) ∗ 215) ∗ 2−32
⌋

end if
return dlat ∗ (YZ ∗ 2−17 + zin)

374 L. Titolo et al.

Algorithm 4. rlon ′
L(i,NL, l̂on,XZ)

if NL = 1 then
nz ← 1

else
nz ← NL−i

end if
dlon ← 360/nz

zin ←
⌊

(̂lon ∗ nz − (XZ − 216) ∗ 215) ∗ 2−32
⌋

return dlon ∗ (XZ ∗ 2−17 + zin)

Since the reference coordinate ref is assumed to represent an AWB, there exists
r̂ef ∈ AWB such that ref = 360 ̂ref

232 . After some simple algebraic simplification,
Theorem 4 directly follows.

Theorem 4. Let i ∈ {0, 1}, YZ i,XZ i ∈ BN , if latref = 360̂latref
232 and lonref =

360̂lonref

232 , then

rlatL(i,YZ i, latref) = rlat ′
L(i,YZ i, l̂atref)

rlonL(i,XZ i, lonref , latref) = rlon ′
L(i,NL(rlat ′

L(i,YZ i, l̂atref)), l̂onref ,XZ i).

3.3 Alternative Global Decoding

Algorithms 5 and 6 perform the global decoding for latitude and longitude,
respectively. Variable i represents the format of the most recent message received,
which is used to determine the aircraft position. In Algorithm 6, NL is the
common value computed using both latitudes recovered by Algorithm 5. When
NL = 1, the computation is significantly simplified due to having only one zone.
Otherwise, the recovered longitude is computed similarly to the latitude. Theo-
rem 5 directly follows from simple algebraic manipulations. The sum of the two
fractions inside the floor in Formula (2.8) is explicitly calculated and the modulo
in Formulas (2.9) and (2.11) is expanded.

Algorithm 5. rlat ′
G(i,YZ 0,YZ 1)

dlat ← 360/(60 − i)
zin =

⌊

(59 ∗ YZ 0 − 60 ∗ YZ 1 + 216) ∗ 2−17
⌋

if i = 0 then
return dlat ∗ ((zin − 60 ∗ �zin/60�) + YZ 0 ∗ 2−17)

else
return dlat ∗ ((zin − 59 ∗ �zin/59�) + YZ 1 ∗ 2−17)

end if

A Formally Verified Floating-Point Implementation of CPR 375

Algorithm 6. rlon ′
G(i,NL,XZ 0,XZ 1)

if NL = 1 then
if i = 0 then

return 360 ∗ XZ 0 ∗ 2−17

else
return 360 ∗ XZ 1 ∗ 2−17

end if
else

dlon ← 360/(NL−i)
zin ← ⌊

((NL−1) ∗ XZ 0 − NL ∗XZ 1 + 216) ∗ 2−17
⌋

zin ′ ← zin/(NL−i)
if i = 0 then

return dlon ∗ ((zin − (NL−i) ∗ �zin ′�) + XZ 0 ∗ 2−17)
else

return dlon ∗ ((zin − (NL−i) ∗ �zin ′�) + XZ 1 ∗ 2−17)
end if

end if

Theorem 5. Let i ∈ {0, 1}, YZ i,XZ i ∈ BN , and
NL = NL(rlat ′

G(i,YZ 0,YZ 1)),

rlatG(i,YZ 0,YZ 1) = rlat ′
G(i,YZ 0,YZ 1)

rlonG(i,XZ 0,XZ 1) = rlon ′
G(i,NL,XZ 0,XZ 1).

4 Verification Approach

This section presents the verification approach used to prove that double pre-
cision floating-point arithmetic is enough to obtain a correct implementation of
the CPR algorithm. In the following, the double-precision floating-point coun-
terpart of a real-valued function f will be represented with a tilde, as f̃ . In the
floating-point version, every mathematical operator on real numbers is replaced
by the corresponding double-precision floating-point operator.

The floating-point encoding of CPR is considered correct if it returns exactly
the same value of the real number implementation. This means that no round-off
error affects the final outcome. The double precision implementation of encoding
achieves this, as indicated by the following theorem.

Theorem 6 (Correctness Double-precision Encoding). Let l̂at ∈ AWB,
l̂on ∈ AWB, NL be an integer in the range [1, 59], and i ∈ {0, 1},

latEnc′(i, l̂at) = ˜latEnc′(i, l̂at)

lonEnc′(i,NL, l̂on) = ˜lonEnc′(i,NL, l̂on).

For decoding, note that Theorems 1 and 2 state that the original coordinate
and the bin centerline differs by at most half the size of a bin. If the recovered

376 L. Titolo et al.

coordinate computed with floating-point decoding differs from the bin-centerline
computed with real numbers by at most half the size of a bin, then the original
coordinate, the bin-centerline, and the recovered coordinate are all located in the
same bin. Hence, a floating-point decoding function can be considered correct
when the recovered coordinate differs from the bin-centerline by at most half the
size of a bin. From the previous observation, it follows that a new table ÑL, which
takes as input the floating-point latitude resulting from ˜rlat ′

L, can be computed
off-line with sufficient precision. For each transition latitude l in the original NL
table the floating-point representation of the closest bin centerlines enclosing l
are used to decide the corresponding NL value. Recall from Sect. 2 that the bin
size for the even configuration is approximatively 4.578 × 10−5 degrees, and for
the odd one is 4.655 × 10−5 degrees. In the following theorems, the lower bound
for half the bin size of 2.2888 × 10−5 degrees is used.

Theorem 7 (Correctness Double-precision Local Decoding). Let i ∈
{0, 1}, YZ i,XZ i ∈ BN , and l̂atref , l̂onref ∈ AWB,

|rlat ′
L(i, l̂atref ,YZ i) − ˜rlatL

′
(i, l̂atref ,YZ i)| ≤ 2.2888 × 10−5

|rlon ′
L(i,NL, l̂onref ,XZ i) − ˜rlonL

′
(i, ÑL, l̂onref ,XZ i)| ≤ 2.2888 × 10−5

where NL = NL(rlat ′
L(i,YZ i, l̂atref)) and ÑL = ÑL(˜rlatL

′
(i,YZ i, l̂atref)).

Theorem 8 (Correctness Double-precision Global Decoding). Let i ∈
{0, 1} and YZ i,XZ i ∈ BN , if NL(rlat ′

G(0,YZ 0, yz1)) = NL(rlatG′(1, Y Z0,
Y Z1)),

|rlat ′
G(i,YZ 0,YZ 1) − ˜rlatG

′
(i,YZ 0,YZ 1)| ≤ 2.2888 × 10−5

|rlon ′
G(i,NL,YZ 0,YZ 1) − ˜rlonG

′
(i,NL,YZ 0,YZ 1)| ≤ 2.2888 × 10−5

where NL = NL(rlat ′
G(j,YZ 0,YZ 1)) and ÑL = ÑL(˜rlatG

′
(j,YZ 0,YZ 1)) for

j = 0, 1.

Figure 2 depicts the verification approach followed in this work. Frama-C
was used to formally verify that Theorems 6, 7, and 8 hold. Frama-C is a tool
suite that collects several static analyzers for the C language. C programs can be
annotated with ACSL [2] annotations that state function contracts, pre and post
conditions, assertions, and invariants. The Frama-C WP plug-in implements a
weakest precondition calculus for ACSL annotations through C programs. For
each ACSL annotation, this plug-in generates a set of verification conditions
(VCs) that can be discharged by external provers. In the analysis presented in
this paper, the SMT solver Alt-Ergo and the prover Gappa are used.

Gappa [15] is a tool able to formally verify properties on finite precision com-
putations and to bound the associated round-off error. Additionally, it generates
a formal proof of the results that can be checked independently by an exter-
nal proof assistant. This feature provides a higher degree of confidence in the

A Formally Verified Floating-Point Implementation of CPR 377

analysis of the numerical code. Gappa models the propagation of the round-off
error by using interval arithmetic and a battery of theorems on real and floating-
point numbers. The main drawback of interval arithmetic is that it does not keep
track of the correlation between expressions sharing subterms, which may lead to
imprecise over-approximations. To improve precision, Gappa accepts hints from
the user. These hints can be used to perform a bisection on the domain of an
expression, or to propose rewriting rules that appear as hypotheses in the gener-
ated formal proof. Gappa is very efficient and precise for checking enclosures for
floating-point rounding errors, but it is not always suited to tackle other types of
verification conditions generated by Frama-C. For this reason, the SMT solver
Alt-Ergo is used in combination with Gappa.

Fig. 2. Verification approach.

The real counterpart of each C function implementing the alternative version
of CPR is expressed as an ACSL logic function. As mentioned in Sect. 3, PVS
is used to formally verify the mathematical equivalence of these logic functions
with respect to the PVS formalization of the original CPR definition. Pre and
post-conditions are added to relate logic real-valued functions with the corre-
sponding C double-precision floating-point implementation and to model Theo-
rems 6, 7, and 8. Also, additional intermediate assertions are added after specific
instructions to help the WP reasoning.

Algorithms 1 and 2 are annotated with assertions stating that tmp1 and tmp2

do not introduce rounding error. This generates VCs that are easily proved by
Gappa because the computation just involves operations between integers and
multiplications by powers of 2. Since the floor operation is applied to expressions
that do not carry a round-off error, the computation of the floor is also exact
and, therefore, Theorem 6 holds.

Algorithms 3 and 4 are annotated with assertions stating that the computa-
tion of the zone index number zin has no round-off error. This holds and can
be easily discharged in Gappa since the computation of zin involves just integer
sums and multiplications, and multiplications by powers of 2. The only calcu-
lation that carries a round-off error different from 0 is the one of the zone size
(dlat and dlon) that involves a division. However, Gappa is able to prove that the
propagation of this error in the result is bounded by half bin size (Theorem 7).

378 L. Titolo et al.

The verification of the global decoding procedures involves more complex
reasoning. Similarly to the local decoding case, the code is annotated to explicitly
state that the zone index number is not subject to rounding errors, and that its
value is between −59 and 60. These two assertions are easily proved by Gappa.
With nz denoting the number of zones (60 or 59 for latitude, and the maximum
of NL−1 and 1 for longitude), an annotation is added to assert that the real-
valued and double-precision computation of �zin/nz� coincide. In order to prove
the verification conditions generated by this assertion, Gappa was provided with
a hint on how to perform the bisection. It is important to remark that this hint
does not add any hypothesis to the verification process. Given these intermediate
assertions, Gappa is able to verify Theorem 8 as well.

5 Related Work

Besides Frama-C, other tools are available to formally verify and analyze numer-
ical properties of C code. Fluctuat [20] is a commercial static analyzer that, given
a C program with annotations about input bounds and uncertainties on its argu-
ments, produces bounds for the round-off error of the program decomposed with
respect to its provenance. Caduceus [18] produces verification conditions from
annotated C code and discharges them in an independent theorem prover. In [7],
the Caduceus tool is extended to reason about floating-point arithmetics. Here,
Why [5] is used to generate verification conditions that are manually proven in
the Coq proof assistant [3]. The static analyzer Astrée [13] detects the presence
of run-time exceptions such as division by zero and under and over-flows by
means of sound floating-point abstract domains [10,24].

The verification approach used in this work is similar to the analysis of numer-
ical programs described in [8], where a chain of tools composed of Frama-C, the
Jessie plug-in [23], and Why is used. The verification conditions obtained from
the ACSL annotated C programs are checked by several external provers includ-
ing Coq, Gappa, Z3 [25], CVC3 [1], and Alt-Ergo.

Recently, much work has been done on the verification of numerical proper-
ties for industrial and safety-critical C code, including aerospace software. The
approach presented in [8] was applied to the formal verification of wave propaga-
tion differential equations [6] and to the verification of numerical properties of a
pairwise state-based conflict detection algorithm [19]. A similar verification app-
roach was employed to verify numerical properties of industrial software related
to inertial navigation [22]. Astrée has been successfully applied to automatically
check the absence of runtime errors associated with floating-point computations
in aerospace control software [4]. More specifically, in [14] the fly-by-wire primary
software of commercial airplanes is verified. Additionally, Astrée and Fluctuat
were combined to analyze on-board software acting in the Monitoring and Safing
Unit of the Automated Transfer Vehicle (ATV) [9].

A Formally Verified Floating-Point Implementation of CPR 379

6 Conclusion

In this paper, an alternative version of the CPR algorithm is proposed. This
algorithm is an essential component of the ADS-B protocol which will soon be
required in nearly all commercial aircraft in Europe and the USA. This alter-
native algorithm includes several simplifications aimed to reduce its numerical
complexity. The equivalence between this version and the original algorithm in
the ADS-B standard is formally proven in PVS. Additionally, it is shown that
double-precision floating-point computation guarantees the correct operation of
the alternative algorithm when implemented in C.

The verification approach applied in this work requires some level of
expertise. A background in floating-point arithmetic is needed to express the
properties to be verified and to properly annotate for the weakest precondition
deductive reasoning. Deep understanding of the features of each tool is essential
for the analysis. Careful choice of types in the C implementation leads to fewer
and simpler verification conditions. Also, Gappa requires user input to identify
critical subexpressions when performing bisection.

The work presented here relies on several tools: the PVS interactive prover,
the Frama-C analyzer, and the automatic provers AltErgo and Gappa. These
tools are based on rigorous mathematical foundations and have been used in the
verification of several industrial and safety-critical systems. In addition, proof
certificates for significant parts of the analysis were generated (PVS and Gappa).
However, the overall proof chain must be trusted. For instance, AltErgo does
not generate any proof certificate that can be checked externally. Furthermore,
though some effort has been made to formalize and verify the Frama-C WP
plug-in, this endeavor is still incomplete. Nevertheless, the CPR algorithm is
relatively simple, containing no complex features such as pointers or loops, and
so the generation of verification conditions for CPR can be allegedly trusted.

References

1. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73368-3 34

2. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C Specification Language, version 1.12 (2016)

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

4. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.:
Static analysis and verification of aerospace software by abstract interpretation.
Found. Trends Program. Lang. 2(2–3), 71–190 (2015)

5. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Let’s verify this with Why3.
Int. J. Softw. Tools Technol. Transfer 17(6), 709–727 (2015)

https://doi.org/10.1007/978-3-540-73368-3_34
https://doi.org/10.1007/978-3-540-73368-3_34
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5

380 L. Titolo et al.

6. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
equation numerical resolution: a comprehensive mechanized proof of a C program.
J. Autom. Reasoning 50(4), 423–456 (2013)

7. Boldo, S., Filliâtre, J.C.: Formal verification of floating-point programs. In: Pro-
ceedings of ARITH18 2007, pp. 187–194. IEEE Computer Society (2007)

8. Boldo, S., Marché, C.: Formal verification of numerical programs: from C annotated
programs to mechanical proofs. Math. Comput. Sci. 5(4), 377–393 (2011)

9. Bouissou, O., Conquet, E., Cousot, P., Cousot, R., Feret, J., Goubault, E.,
Ghorbal, K., Lesens, D., Mauborgne, L., Miné, A., Putot, S., Rival, X., Turin,
M.: Space software validation using abstract interpretation. In: Proceedings of the
International Space System Engineering Conference, Data Systems in Aerospace
(DASIA 2009), pp. 1–7. ESA publications (2009)

10. Chen, L., Miné, A., Cousot, P.: A sound floating-point polyhedra abstract domain.
In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89330-1 2

11. Code of Federal Regulations: Automatic Dependent Surveillance-Broadcast (ADS-
B) Out, 91 c.f.r., section 225 (2015)

12. Conchon, S., Contejean, E., Kanig, J., Lescuyer, S.: CC(X): semantic combination
of congruence closure with solvable theories. Electron. Notes Theor. Comput. Sci.
198(2), 51–69 (2008)

13. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0 3

14. Delmas, D., Souyris, J.: Astrée: from research to industry. In: Nielson, H.R., Filé,
G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 437–451. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74061-2 27

15. de Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point imple-
mentation of an elementary function using Gappa. IEEE Trans. Comput. 60(2),
242–253 (2011)

16. Dutle, A., Moscato, M., Titolo, L., Muñoz, C.: A formal analysis of the com-
pact position reporting algorithm. In: Paskevich, A., Wies, T. (eds.) VSTTE 2017.
LNCS, vol. 10712, pp. 19–34. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-72308-2 2

17. European Commission: Commission Implementing Regulation (EU) 2017/386 of 6
March 2017 amending Implementing Regulation (EU) No 1207/2011, C/2017/1426
(2017)

18. Filliâtre, J.-C., Marché, C.: Multi-prover verification of C programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30482-1 10

19. Goodloe, A.E., Muñoz, C., Kirchner, F., Correnson, L.: Verification of numerical
programs: from real numbers to floating point numbers. In: Brat, G., Rungta, N.,
Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 441–446. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38088-4 31

20. Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006). https://doi.
org/10.1007/11823230 3

21. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)

22. Marché, C.: Verification of the functional behavior of a floating-point program: an
industrial case study. Sci. Comput. Program. 96, 279–296 (2014)

https://doi.org/10.1007/978-3-540-89330-1_2
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-74061-2_27
https://doi.org/10.1007/978-3-319-72308-2_2
https://doi.org/10.1007/978-3-319-72308-2_2
https://doi.org/10.1007/978-3-540-30482-1_10
https://doi.org/10.1007/978-3-642-38088-4_31
https://doi.org/10.1007/11823230_3
https://doi.org/10.1007/11823230_3

A Formally Verified Floating-Point Implementation of CPR 381

23. Marché, C., Moy, Y.: The Jessie Plugin for Deductive Verification in Frama-C
(2017)

24. Miné, A.: Relational abstract domains for the detection of floating-point run-time
errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24725-8 2

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

26. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

27. RTCA SC-186: Minimum Operational Performance Standards for 1090 MHz
extended squitter Automatic Dependent Surveillance - Broadcast (ADS-B) and
Traffic Information Services - Broadcast (TIS-B) (2009)

https://doi.org/10.1007/978-3-540-24725-8_2
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-55602-8_217

Formal Verification of Automotive
Simulink Controller Models: Empirical

Technical Challenges, Evaluation
and Recommendations

Johanna Nellen1(B), Thomas Rambow2, Md Tawhid Bin Waez3,
Erika Ábrahám1, and Joost-Pieter Katoen1

1 RWTH Aachen University, Aachen, Germany
{johanna.nellen,abraham,katoen}@cs.rwth-aachen.de

2 Ford Werke GmbH, Cologne, Germany
3 Ford Motor Company, Dearborn, USA

{trambow,mwaez}@ford.com

Abstract. The automotive industry makes increasing usage of
Simulink-based software development. Typically, automotive Simulink
designs are analyzed using non-formal test methods, which do not guar-
antee the absence of errors. In contrast, formal verification techniques
aim at providing formal guarantees or counterexamples that the analyzed
designs fulfill their requirements for all possible inputs and parameters.
Therefore, the automotive safety standard ISO 26262 recommends the
usage of formal methods in safety-critical software development.

In this paper, we report on the application of formal verification to
check discrete-time properties of a Simulink model for a park assistant
R&D prototype feature using the commercial Simulink Design Verifier
tool. During our evaluation, we experienced a gap between the offered
functionalities and typical industrial needs, which hindered the successful
application of this tool in the context of model-based development. We
discuss these issues and propose solutions related to system development,
requirements specification and verification tools, in order to prepare the
ground for the effective integration of computer-assisted formal verifica-
tion in automotive Simulink-based development.

1 Introduction

In modern cars a huge number of embedded software components support the
vehicle control. These software components are usually developed in a model-
based approach with a graphical modeling language like Simulink/Stateflow that
allows automatic code generation for the deployment of the controller. Though
the safe operation of a software component is rigorously tested in offline simula-
tions, the absence of errors cannot be guaranteed by testing.

The automotive safety standard ISO 26262 recommends to integrate —
besides other approaches — also formal verification in the development pro-
cess of safety-critical software. Formal verification either guarantees that the
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 382–398, 2018.
https://doi.org/10.1007/978-3-319-95582-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_23&domain=pdf

Formal Verification of Automotive Simulink Controller Models 383

property holds for all possible input and parameter combinations, or it provides
a counterexample (i.e., a system run that violates the property) which can be
used to identify the error and to re-design the controller.

In this paper we present an industrial case study from the automotive sector
with the aim to empirically identify and solve technical problems that might arise
during the integration of discrete-time formal verification in Simulink-based mass
production of safety-critical systems by engineers who are not formal methods
experts. These problems might not be obvious or seem pressing but they become
prominent and relevant for large-scale development, a development process with
much legacy, or a development without a strong dedicated formal methods team.

We decided to rely on the commercial verification tool Simulink Design Ver-
ifier (SLDV) [1], which is developed by the vendors of Simulink and backed by
a dedicated support team. We applied SLDV to analyze a Simulink controller
model for a park assistant R&D prototype feature against 41 functional require-
ments, which were given informally in textual form as a Microsoft Word doc-
ument. The model is open-loop, as the controlled environment is not included,
and contains no continuous-time blocks, such that we could use SLDV’s discrete-
time verification functionalities. Using formal verification we detected inconsis-
tencies between requirements and their implementations in our model, which
demonstrates the importance of formal verification for safety-critical software
components.

Besides the verification results, we report on the strengths of SLDV, identify
its limitations and collect important general observations.

Though the verification of our model was successful, we encountered different
technical challenges. Introducing formal verification into fast pace mass automo-
tive product development by engineers who are not familiar with formal meth-
ods is not at all straightforward and needs a high level of automation. We give
recommendations to support requirement engineers to build complete, unam-
biguous and consistent requirements and to help system engineers to develop
“verification-friendlier” models. We also give some ideas for new features in
verification tools that can support the integration of formal verification into
Simulink-based development in the utomotive sector.

Related Work. Techniques and tools for formal discrete-time verification of
Simulink models has been widely studied. Regarding applications, a medical
case study using SLDV is presented in [2]. In [3] the authors apply the SMT-
based static verification tool VerSAA to a Simulink model and also provide
a comparison to SLDV. In [4] an SMT-based approach for explicit LTL model
checking of Simulink models is presented. A tool chain for the formal verification
of Simulink models in the avionics industry using the LTL model checker DiVinE
and a proprietary verification tool HiLiTE is presented in [5,6].

Some other approaches transform Simulink models into the input modeling
language of different verification tools. The authors of [7] transformed Simulink
models into the modeling language Boogie and compare the performance of the
Boogie verification framework with SLDV on an automotive case study. The
work [8] translates Simulink to UCLID and applies SMT-based bounded model

384 J. Nellen et al.

checking to an automotive case study. The works [9,10] and the Simulink toolbox
cocoSim [11] offer translations of Simulink resp. SCADE models to the interme-
diate language Lustre in order to enable the application of different verification
tools. Additionally, [9,10] report on the experiences with the integration of for-
mal verification in an avionics model-based development process. The RCRS
project [12,13] formalizes Simulink models in Isabelle and uses the Isabelle the-
orem prover for formal analysis. SLDV and UPPAAL were used for the formal
verification of an automotive case study in [14].

A project to establish formal verification in the development process in auto-
motive industry is presented in [15]. The work [16] presents a study that explores
the extent to which model checking can be performed usefully in an industrial
environment, where usefully means that model checking is cheaper, faster, more
thorough than conventional testing or review or able to find more subtle errors.

A complementary automotive case study on C code verification using BTC
is presented in [17].

Contributions. Although a lot of research has been done on the verification
of Simulink models, we are not aware of an exhaustive analysis of SLDV where
different verification approaches and the scalability are evaluated. Moreover, our
aim is to investigate the gap that still exists to integrate formal verification into
Simulink-based development, even if a verification tool like SLDV is used, that
is tightly integrated into Simulink. We present our observations and ideas to
improve the level of automation for the preprocessing of the model, the formal-
ization of a specification, and the feature set of a verification tool.

Outline. In Sect. 2 we describe our case study, the SLDV verification tool and
specify the project goals. The verification process and the results are presented in
Sect. 3. In Sect. 4 we list our observations and formalize some recommendations
for computer-assisted solutions to integrate formal verification into Simulink-
based development. We conclude the paper in Sect. 5.

2 The Case Study

First, we present our case study, the SLDV verification tool and our project
goals. Due to confidentiality reasons, we cannot provide access to the concrete
model and requirements, but we provide high-level insight into issues that are
relevant for understanding the aims and results of this work.

2.1 Controller Model

Simulink. Simulink is an extension of Matlab which allows to build and simulate
complex system models. Simulink (SL) models are block diagrams. Stateflow
(SF) charts, that are based on finite-state machines and flow diagrams, can
be embedded into Simulink models. Blocks and charts can be nested to create
a hierarchical structure. For Simulink models which might contain Stateflow
charts, in the following we use the abbreviation SLSF model.

Formal Verification of Automotive Simulink Controller Models 385

Besides internal variables, Simulink models define a set of signals, (calibra-
tion) parameters and constants whose properties are fixed by attributes like, e.g.
the data type, the dimensions, lower and/or upper bounds and initial values. Sig-
nals can take any value from their data type domain during a simulation while
constants have a fixed value. Calibration parameters allow to define abstract
models and specifications, which can be concretized by assigning concrete val-
ues to the parameters. E.g. a specification x = c · y parameterized in c can be
concretized to x = 2 · y by fixing c = 2.

Controller Model. Our case study models the R&D prototype feature Low
Speed Control for a next-gen Park Assist. The Park Assist allows the vehi-
cle to park automatically and operates at relatively low speeds compared to
other driving situations. During assisted parking maneuvers, the vehicle speed
has to be controlled at low vehicle speed targets and scenarios like climbing on a
curb during parking have to be supported. The selected R&D prototype feature
Low Speed Control takes the vehicle speed set point from Park Assist and
controls the combustion engine speed and the brakes during automated parking.

We want to investigate how well Simulink formal verification performs for
decision logic, state charts, filters, rate limiters, look-up tables and feedback
control. Therefore, we selected our case study such that it contains a mixture of
these different kinds of functionalities. The model has 41 open-loop functional
requirements, 26 inputs, 5 outputs, 69 calibration parameters and 1095 blocks
(≈ 1500 lines of C code). The model contains Boolean, integer and floating-
point variables: All input and output signals are scalar with the following data
type distribution: 5 Boolean, 12 unsigned 8-bit integer and 14 single-precision
floating point. Among the calibration parameters we have 52 scalar parameters
(2 Boolean and 50 single-precision floating-point) and 17 parameters are arrays
with 7 to 14 single-precision floating-point elements.

Requirements. The 41 textual requirements of the R&D prototype feature Low
Speed Control describe the functional behavior of the controller and are used
to develop the Simulink model. A single requirement typically describes only a
part of the model that is implemented in a subsystem.

We classified 39 requirements as safety properties which follow the pattern
“Always P”. In 30 of these safety requirements P is an invariant without any tem-
poral operators. For the remaining 9 safety properties, P describes time-bounded
temporal properties. The two remaining requirements are liveness properties
which claim that something good eventually happens. They follow the pattern
“The value of x is eventually equal to c” and express unbounded temporal prop-
erties.

Since 30 of the 41 requirements contain floating-point variables, the state
space is relatively large in most cases. Only 11 requirements are restricted to
Boolean and integer data types, which reduces the verification effort.

Most of the requirements can be specified using the following common oper-
ators: +,−, ∗, /, min, max, if, abs. Twelve requirements make use of special oper-
ators such as saturation, rate limiters, filters, PID controllers, or lookup tables.

386 J. Nellen et al.

2.2 Simulink Design Verifier

For our case study we used the commercial verification tool Simulink Design
Verifier (SLDV) [1,18]. Due to the tight integration into Simulink, the sup-
port team and detailed documentation we expect to minimize problems with
embedding formal verification in an automotive development process. SLDV is a
toolbox that offers the following analysis methods for SLSF models: Automatic
test case generation, static analysis and discrete-time formal verification.

The SLDV tool uses software from Polyspace [19] and Prover Technology AB
[20]. The latter offers (un)bounded model checking and test case generation.
Unfortunately, the translation of the SLSF model and the specification into the
formal input language of the verification engine, the verification engine itself and
the generation of counterexamples remains a black box to the user. For Property
Proving (formal verification) SLDV offers the following options: FindViolation
checks if a property can be violated within a bounded number of steps, while
Prove performs an unbounded analysis. ProveWithViolationDetection is a
combination of FindViolation and Prove and performs a bounded analysis.

Properties that describe a subsystem of the model, i.e. properties that are
restricted to the input and output signals of a subsystem, can be verified either
on the complete model or on a subsystem (bottom-up approach). Subsystem
verification is over-approximative because it considers arbitrary input for the
subsystem instead of the values which it might receive as input signals in the
complete model. As a consequence, properties that could be verified with sub-
system verification hold also at the complete model level, but counterexamples
on subsystem level might be spurious, i.e. not realizable in the complete model.

If the model includes calibration parameters, the verification can be per-
formed either for a fixed model and specification (a concrete calibration parame-
ter valuation is considered) or in one shot for all model and specification instances
(all possible calibration parameter values are considered). For historic reasons,
we speak of fixed or varying calibration parameters.

SLDV does not use a formal specification language with a formal semantics.
Instead, an SLDV specification is an SLSF model which forms a verification
subsystem (cf. Fig. 1). This specification language allows the flexibility to use
complex operators and it is easy to use for engineers, but there is no formal
semantics for Simulink blocks.

Each verification subsystem should contain at least one proof objective that
outputs true as long as its input is constantly true. The input of a proof
objective is typically the result of an implication or a comparison between the
specification and an output of the model. SLDV is shipped with a library that
contains — among others — verification subsystems, proof objectives and tem-
poral operators.

The verification result of a requirement is valid if the corresponding proof
objective returns true for all possible input combinations of the model. Other-
wise, the verification tool cannot decide if the requirement is valid in the model
or not and returns undecided or the requirement is violated and a counterexam-
ple is generated. The counterexample is given on the level of the SLSF model in

Formal Verification of Automotive Simulink Controller Models 387

in1

in1

in2

out1

in1

in2

0

in3

const1

|u|
<

==
AND

out1

A ==> B P

Fig. 1. A verification subsystem (left) and the specification (right) of the requirement:
“If all of the following conditions are true: in1 is TRUE; in2 is zero; the absolute value
of in3 is below a threshold (const1); then out1 shall be set.”

form of a harness model. This harness model can be used to simulate the execu-
tion path that violates the specification. An HTML or PDF report can be generated
that contains the verification results, the analysis options and approximations
SLDV applied to the model. An example for an approximation is floating-point
arithmetic that is approximated by rational arithmetic.

In this paper, we primarily use the Property Proving feature of SLDV with
the Prove option for an unbounded analysis.

2.3 Goals

Our project goal is to evaluate formal verification of Simulink controller models
using SLDV, to identify empirical technical challenges for a tight integration of
formal verification into Simulink-based development in the automotive industry
and to propose solutions for a higher level of automation and a better support
of engineers without expert knowledge in formal methods. We are especially
interested in a clear separation of the controller model from the specification,
the speed and scalability of the verification tool, the usefulness, generality and
reliability of the analysis results and automated batch processing.

We assume that problems with the specification of complex operators like
filters, feedback control and lookup tables might occur. Expected challenges for
the verification tool are temporal requirements, the high proportion of floating-
point variables and the complexity of the model.

3 Feasibility Analysis

In this section, we report on our experiences with formal verification of our
SLSF model using SLDV and present the verification results. We performed our
experiments using Matlab R2014b on a 2.5 GHz Intel Core i5 machine with 8 GB
RAM running Windows 7 (64-bit).

388 J. Nellen et al.

3.1 Preparation

Requirement Issues. We were not surprised to find incomplete, ambiguous
and inconsistent formulations in 20 of the 41 textual requirements. Incomplete
specifications have been found in 15 requirements, eight ambiguity issues have
been detected, and two requirement pairs were inconsistent with each other.
Causes for incompleteness were missing declaration of values for discrete signals
(e.g., certain gear lever positions), missing information for complex operators
like filters or hysteresis functions, or no mentioning of the output signal whose
computation is described in the requirement. Reasons for the detected ambiguity
in the requirements are imprecise formulations (e.g. to distinguish between the
status or the event of status change), formulations that need further explanations
and different textual descriptions for the same signal name. An example for
inconsistency is two requirements that allow activation and deactivation of a
signal to occur simultaneously.

Discussions with the requirement and feature engineers and reviewing the
model implementation helped to resolve the issues.

SLDV Specification. Finally, we could manually transform all textual require-
ments to an SLDV specification in form of new verification subsystems.

For each requirement a separate verification subsystem was created and
added to the model to have the flexibility to add/remove certain blocks and
to copy them for verification on model- or subsystem-level. Some requirements
have been easy to handle while for roughly half of the requirements discussions
with the requirement and control engineers and/or information from the con-
troller model were needed to clarify all issues. Finally, all 41 requirements could
be specified for SLDV, although twelve requirements make use of complex oper-
ators like feedback control, rate limiters, filters and lookup tables, which might
be difficult to express in a common specification language like formal logics.

Block Replacement. A compatibility check of SLDV on our model revealed a
set of custom blocks that are not supported by SLDV. These blocks include addi-
tional functionality for code generation but can be replaced by blocks from the
standard library with equivalent functionality. We used the block replacement
feature of SLDV to automate the replacement. This feature allows to continue
the iterative development with the original model but to generate a model with
replaced blocks for formal verification.

3.2 Verification

We analyzed each of the 41 requirements, specified as 41 independent verifica-
tion subsystems, separately on model- and subsystem-level using either fixed or
varying calibration parameters. To do so, we temporarily removed the other 40
verification subsystems that contain the specification of the other requirements.
To analyze the impact of bounded temporal operators in the specification on the
running time of the verification, we use fixed time bounds (five simulation steps)
as an upper limit. This reduces the number of calibration parameters in our

Formal Verification of Automotive Simulink Controller Models 389

model. We also fix the lookup-table data for the verification. Thus, for our anal-
ysis we consider only 47 out of 69 varying calibration parameters. An overview of
the verification results is given in Table 1. For a majority of requirements we got
conclusive results. However, the analysis revealed inconclusive results for up to
31% (resp. 12%) of the requirements on model- (resp. subsystem-)level. Rea-
sons for inconclusive results are nonlinear behavior in the model and timeouts
(running times > 7200s) for temporal requirements.

Table 1. Verification results and accumulated running times for model and subsystem
verification using varying and fixed calibration parameters.

Model verification Subsystem verification

Varying Fixed Varying Fixed

Valid 24 26 25 26

Unknown 13 10 5 4

Invalid 4 5 11 11

Running time > 300s 7 7 2 2

Running time > 7200s (TO) 1 1 1 1

Acc. running times [s] 22062 21465 7672 7783

Invalid Verification Results. Simulink Design Verifier detected eleven
instances of invalid implementation against the specifications. Most of them were
implementation flaws like missing or wrong operators. In other cases, implemen-
tation details were omitted in the textual requirements, parameters have been
incorrectly calibrated, or the initialization causes requirement violations.

Analysis Time. We did not notice a significant difference in the analysis time
for valid, unknown and invalid verification results on subsystem-level: 39 verifi-
cation results were delivered within four seconds. An exception are two temporal
properties for which we observed running times above 300 s. On model level,
22 verification results are available within four seconds, 12 results have run-
ning times between 11 and 133 s and the running times of the remaining 7
requirements are above 300 s. Further investigations revealed that all running
times above 300 s can be explained by temporal behavior either in the analyzed
requirement or in a subsystem that delivers an input for the analyzed subsystem.

Model- vs. Subsystem-level. We compare the results for verification on model-
and subsystem-level: The number of inconclusive verification results can be
reduced from 10 for fixed (respectively, 13 for varying) calibration parameters
on model-level to 4 for fixed (resp. 5 for varying) calibration parameters on
subsystem-level. Also the analysis time can be reduced by almost four hours if
the verification is applied on subsystem-level. An explanation for both observa-
tions can be that on model-level nonlinear and/or temporal behavior in other
parts of the model is propagated.

390 J. Nellen et al.

On subsystem-level we revealed two requirement violations for requirements
that were proven valid on model-level. A missing minimum operator and time
delays in the implementation that are not reflected in the textual requirement are
the reasons for the invalid results on subsystem-level. These conflicting results
were either caused by considering arbitrary inputs on subsystem-level, leading
to spurious counterexamples in which some subsystem inputs are not realizable
at the model-level. An alternative explanation can be a bug that produces false
valid verification results in the verification on model-level.

Varying vs. Fixed Calibration Parameters. Using subsystem verification,
the running time could be decreased if we defined fixed (instead of varying)
values for 47 calibration parameters, while for model verification the running
time increased, both differences being within 3%.

Based on the experience with our model, we believe SLDV to scale well
with increasing state space size. Although on subsystem-level only a few of the
calibration parameters influence the verification, on model-level the effect on the
state space is much stronger. Thus, we have the impression that SLDV can handle
a large number of input signals and parameters with large data type domains
quite well. To our surprise, the number of inconclusive verification results does
not change much with increasing state space: For verification on model-level three
and on subsystem-level one additional requirements could be decided using fixed
calibration parameters.

Simultaneous Execution on Model-Level. We found a serious tool issue
in SLDV (R2014b – R2017a): When running the formal verification on model-
level simultaneously for all 41 requirements, we detected conflicting analysis
results, i.e. a valid and an invalid result for the same requirement. We observed
a conflict for two different verification runs using simultaneous execution of all
requirements. Another conflict occurred between a verification run using simul-
taneous execution (valid) and a verification run analyzing only the respective
requirement either on model- or subsystem-level (invalid). We could confirm the
requirement violations, i.e. the valid results are caused by a bug. Another finding
using R2016b were verification runs using simultaneous execution of all require-
ments where all requirements were reported as violated and no counterexamples
were generated. However, MathWorks assured that these problems are resolved
in release R2017b. Note that these bugs in SLDV can also be an explanation for
the conflicting results of a single requirement on model- and subsystem-level.

We also detected nondeterminism in the results (the order and number of
counterexamples changes). This results from the fact that SLDV implements a
portfolio solution where different counterexample search strategies are applied.

3.3 Scalability

For a better understanding of the scalability of SLDV with respect to temporal
requirements on our model we analyzed the following property from the set of
requirements for an increasing time duration d and fixed calibration parameter
values on both model- and subsystem-level: “If a Boolean signal in1 is true for

Formal Verification of Automotive Simulink Controller Models 391

longer than a time duration d then the Boolean output signal out1 shall be set;
it shall be cleared otherwise.” The Boolean signal in1 is computed using four
floating-point signals in2, in3, in4 and in5 with single precision: “The Boolean
signal in1 is true if any of the following conditions is true: The signal in2
is above 4000.0 with offset −100.0, (the signal in3 is above 2000.0 with offset
−30.0 and the absolute value of the signal in5 is below 0.2,), or the signal in3
is not increasing and the signal in4 is below the signal in3 with offset −30.0”.

We considered time durations d between 0.05 and 1 s and a fixed simulation
step size of 0.01 s. Note that the temporal operators of SLDV only support
simulation steps as the unit for time bounds, we converted the time durations.
The results are presented in Fig. 2.

Fig. 2. The analysis time needed to prove a temporal property with increasing time
duration d on model- and subsystem-level with fixed calibration parameters.

The running time grows exponentially in the time duration d. The results
show that on subsystem-level up to 80 simulation steps can be handled with a
time out of 7200 s. More than four hours are needed to complete the analysis for
100 simulation steps. The results for model verification are much worse due to
the complexity of the model. Already for 20 simulation steps more than seven
hours were needed for the analysis.

For a more general result on the scalability of SLDV, a more rigorous analysis
on a larger benchmark set would be needed.

4 Lessons Learned

In this section, we report our observations and recommendations for formal
verification of SLSF models using SLDV.

392 J. Nellen et al.

4.1 Specification

Interferences. We encountered several examples with different requirements
for the same output signal. These interferences may lead to inconsistencies.
Proper specification of priorities can be applied to solve this kind of incon-
sistency. Requirement engineers may also follow the defensive approach to use
exactly one requirement for each disjunctive part of the model.

Specification Language. The Simulink Design Verifier uses Simulink as specifi-
cation language. On the one hand, Simulink offers a rich set of operators that are
often not available in other specification languages. To speed up the specification
work, a custom library with efficient implementations of commonly used opera-
tors might be helpful. For example, a hysteresis function and customized lookup
tables can be provided. This approach also ensures that the same block parame-
ters (e.g. interpolation and extrapolation methods) are used for each occurrence
of an operator. On the other hand, we are not aware of a formal semantics for
Simulink, and using the same language for modeling and specification can eas-
ily lead to false-positive verification results. A formal specification language may
assist the requirement engineers to avoid incompleteness and ambiguity [21]. This
language should be easy to understand for engineers without expert knowledge
in formal methods. We propose a pattern-based textual language as in [22,23].
This formal specification language would also help to separate the formalization
of a property from its Simulink implementation.

Compositional Reasoning. All 41 requirements have been formulated on sub-
system level. Thus, verification on subsystem-level and bottom-up compositional
reasoning can be applied to verify the complete model. The main benefits of this
approach are shorter analysis time and stronger verification results.

4.2 Model

Floating-Point Numbers. A big challenge for the formal verification are the
floating-point numbers, which are approximated by SLDV. Although it is not
possible to eliminate all floating-point signals, we encourage to search for integer
implementations with equivalent functionality. The R&D prototype Low Speed
Control contains timers with floating-point arithmetic, which often leads to
undecided results or to spurious counterexamples, the latter because floating-
point approximation leads to property violation but the provided counterexam-
ple cannot be confirmed by simulation, where the approximation is not applied.

Consider a timer using floating-point arithmetic and a counter using integer
arithmetic, that are both initialized with 0. In each simulation step, the timer is
updated according to timer := timer+timestep while the counter is increased
by one: counter := counter + 1. The timer is reset if the upper bound ub is
reached (timer ≥ ub). The counter restarts if an upper limit c := � ub

timeStep
�

is reached (counter ≥ c). Because controller models use fixed-step solvers, the
bound c can always be computed. Using such transformations, we recommend to
replace floating-point timers by equivalent integer counters in Simulink models.

Formal Verification of Automotive Simulink Controller Models 393

We also found another example in the model where the number of operations
on floating-point variables could be reduced by an alternative implementation.

Value Domains. To keep the state space as small as possible and the analysis
time low, a system engineer should specify lower and upper bounds for all input,
output and calibration parameters reducing the admissible valuations as much
as possible. E.g., the data type domain of a floating-point signal representing
the vehicle speed can be restricted to values between 0 and 320 km/h.

Stateflow Models. Special attention is needed for Stateflow implementations.
We observed time delays, that are not reflected in the textual requirements. For
example, moving from one state to another takes a simulation step, and outgoing
transitions of the new state are not evaluated immediately. The engineer should
be aware of the time delays he/she introduces in the model and the textual
requirements should be updated. To facilitate the specification for a Stateflow
chart, a variable storing the active state of the chart should be introduced.

Calibration Parameters. A special class of calibration parameters are time
bounds. Our case study includes such a calibration parameter whose value should
be set to the simulation step size before each simulation run. To verify such mod-
els for all possible step sizes, we propose to automatically replace all occurrences
of such calibration parameters by Weighted Sample Time blocks or to add an
assertion stating the equality between the calibration parameter and the output
of a Weighted Sample Time block, before formal verification is started.

4.3 Verification Tool

Usability. Simulink Design Verifier is intuitive to use and easy to integrate in
Simulink. Although no expert knowledge is necessary to apply formal verification
on a Simulink model, finding explanations for certain verification results and the
development of workarounds are hardly possible without special expertise. The
black box implementation of SLDV hinders even experts to exploit the strengths
of the underlying verification techniques and to avoid their weaknesses.

Inconclusive Results. We encountered a lot of inconclusive verification results.
Most of them occurred due to nonlinear behavior in the model. Often the issues
could be resolved by verification on subsystem level, which indicates that the
nonlinear behavior on model-level is propagated from other parts of the model.
However, it is hard to identify the block causing the nonlinear behavior. It would
be very helpful to have tool support. We also suspect that sometimes issues with
floating-point arithmetic are reported as inconclusive due to nonlinear behavior
in the model.

Floating-Point Variables. SLDV approximates floating-point arithmetic by
rational arithmetic. This approximation often results in inconclusive verifica-
tion results or spurious counterexamples, which cannot be confirmed by simula-
tion where the approximation is not applied. Even more dangerous are results
reporting correctness, because they are not reliable: the generated C-code of a

394 J. Nellen et al.

successfully verified Simulink model might violate its requirements. We would
appreciate to get more information how the approximation is done, how it affects
the verification outcome, whether the analysis tool uses exact or inexact com-
putations and an explanation for non-expert users that counterexamples might
not be reproducible via simulation.

Specification Implementation. To analyze whether the model is initialized
correctly, we compared two different implementations of a correct-initialization
requirement for an unsigned integer variable: the first one uses an Extender
block (a temporal operator provided by SLDV) and the second one a Delay
and an Implication block. To our surprise, the running times were quite differ-
ent: while the verification result was available in less than a second for the first
approach, the analysis time was 23 s for the second one. This example demon-
strates once more that for an efficient implementation sometimes knowledge of
the verification techniques or even implementation details are necessary.

Model- vs. Subsystem-level Verification. The strengths of model-level ver-
ification are the clear separation between specification and implementation and
the possibility to analyze all enabled proof objectives simultaneously. Drawbacks
are longer analysis times and more inconclusive results. Verification on subsystem
level is faster and independent of other parts of the model, yielding conclusive
results in more cases. Verification results on subsystem-level can be reused if a
subsystem is embedded into another model, while results on model-level cannot
be transferred. However, the user needs to know the model well to be able to
identify a subsystem that assures the validity of a requirement, independently
of its context. Moreover, for subsystem-verification the chosen subsystem must
be modified to be an atomic unit. Though this modification does not change the
behavior of the subsystem, it affects the processing order of blocks in the model.
Therefore, these modifications must be undone after verification. An automated
solution would be helpful that temporarily treats the subsystem as atomic during
verification while the original model remains unaffected.

Recommended Tool-Chain. A first verification run should be performed on
model-level using varying calibration with all proof objectives enabled and with
a short running time e.g., 100 s. If verification on model-level yields inconclusive
results, the analysis of the corresponding requirement should be repeated on
subsystem-level with a larger running time for temporal requirements. Since the
analysis time of SLDV for temporal requirements can increase exponentially in
the number of simulation steps, we recommend to start with a small number
of time steps (e.g. 5), which can slowly be increased to more realistic values
as long as the analysis time remains acceptable. It might also be possible to
include a different verification tool that scales better for temporal properties in
the tool chain. Note that if any parameter value or data type domain is changed
in the model, e.g. if lookup table data is replaced, former verification results
cannot be trusted anymore for all analyses on model-level and for those task on
subsystem-level, where the changed parameter is used in the subsystem.

Formal Verification of Automotive Simulink Controller Models 395

Counterexamples. If verification on model-level verification reports a coun-
terexample we recommend to simulate it to strengthen its reliability. Subsystem
verification assumes arbitrary subsystem-inputs and may therefore produce spu-
rious counterexamples, but these subsystem-counterexamples cannot be easily
simulated at model level because the inputs for the subsystem’s environment are
not fixed. If the user can argue that the inputs in the subsystem-counterexample
are not possible in the full model, we recommend to limit the domains for the
subsystem’s inputs by adding assumptions and re-check the limited subsystem.
Otherwise, if a subsystem-counterexample seems plausible, we propose to add
assumptions to restrict the subsystem’s behavior to the counterexample and
apply model-level verification to this restricted model to search for an extension
at the model level. Restricting the subsystem’s behavior to the counterexample
is doable, however, it is a non-trivial and tedious task. Furthermore, we observed
one case where subsystem verification returned a counterexample but at model-
level the requirement could be proven, indicating the spuriousness of the sub-
system counterexample. However, we found strong indications that instead a
software bug produced a false valid verification result on model-level.

Batch Verification. For large-scale applications, formal verification with a
higher level of automation is needed that offers one-click solutions for the sequen-
tial verification of a set of requirements both on model- and on subsystem-level.
Currently, the simultaneous verification of a set of requirements is possible on
model level, but we have the impression that this mode does not process the
requirements sequentially one after the other, but it rather uses an incremen-
tal verification technique (possibly incremental SMT-solving) that considers all
requirements simultaneously. Although we are aware that using the provided
API, it is possible to develop a custom solution for batch processing on model-
and subsystem-level, a built-in solution would be appreciated.

Temporal Requirements. One weakness of SLDV is the verification of tem-
poral requirements. In some cases, checking temporal requirements over just 5
simulation steps took more than two hours. For the temporal operators pro-
vided by SLDV, numerical values are needed to specify upper bounds for the
time steps. The support of constants or calibration parameters would offer much
more flexibility, e.g. if different bounds need to be checked. We also noticed that
the upper bounds are restricted to values of ≈ 128 simulation steps (depending
on the temporal operator), while in practice larger time bounds might be needed.

Calibration Parameters. We like the automated solution to verify models for
all calibration parameter values from some user-defined intervals, which is of
high relevance in the automotive sector. However, it is not clear what such an
interval domain means for, e.g., lookup tables data. We encountered a bug in
R2014b where calibration parameters of data type Boolean were not supported.
An available bug-fix for R2015b could be adapted to R2014b. Furthermore, cal-
ibration parameter values can be restricted to intervals but we have found no
ways to restrict such hyperrectangle-domains further by putting restrictions on
the relation of different parameters, e.g. assuming that the value of one param-

396 J. Nellen et al.

eter is not larger than the value of another one. As some blocks work correctly
only for certain calibration parameter combinations, it was sometimes necessary
to add assumptions to such blocks when verifying over calibration parameter
domains. For example, a saturation block expects an upper-bound value to be
larger or equal to a lower-bound value; if the definition of these bounds involve
some calibration parameters then we need to add such assertions to the model.

Reliability. During our experiments we detected (and reported) some bugs in
SLDV. We are aware that software for formal verification is quite complex and
that bugs in the code are likely. Thus, our recommendation is to use more than
one analysis tool for a better reliability on the verification results (though, for
Simulink unfortunately the number of available tools is quite small). It would also
be helpful to have open-source tools, which offer the possibility for temporary
patches by the user, such that he/she can proceed and does not need to wait
for the next release. Furthermore, we strongly recommend to use the latest tool
release if possible to avoid resolved bugs.

Verification Report. SLDV generates a report containing information like
verification results, analysis times and applied approximations. Counterexamples
can be simulated which is very helpful for the detection of property violations.
Unfortunately, the time that is needed for translation and compilation of the
model to create the input for the verification engine is not listed in the report.

5 Conclusions and Discussion

In this paper, we shared our experiences with the application of formal ver-
ification to an automotive controller model using the commercial verification
tool SLDV. Despite the mixture of different functionalities in the model and all
requirement issues, we achieved verification results for all 41 functional require-
ments of the R&D prototype feature Low Speed Control.

SLDV is easy to use, well integrated into Simulink and provides features for
a high degree of automation like block replacement and support for calibration
parameters. Still, the level of automation could be further improved, e.g. by
one-click solutions for batch processing. All in all, we experienced SLDV to be
scalable for open-loop controller models, especially using subsystem-level veri-
fication, but temporal properties bring SLDV to its limits. Closed-loop models
that contain plant models with continuous time and varying-step solvers are
currently not supported. A serious concern is the missing formal semantics for
Simulink and the black box implementation of the verification tool. We further
discovered a serious tool issue that leads to contradicting verification results. We
recommend to use SLDV release R2017b, where the bug is supposedly resolved.

We strongly suggest to not only apply verification on the Simulink model
where counterexamples can be analyzed relatively easy and comfortable in the
high-level, hierarchical, graphical simulation environment. Additionally, verifi-
cation on generated C code [17] can be beneficial since data types like floating-
points and data type domains can be handled exactly.

Formal Verification of Automotive Simulink Controller Models 397

Although SLDV is quite comfortable to use, there is still a gap which needs
to be closed for a smooth integration in the industrial Simulink-based develop-
ment. For future work, we want to put further effort into closing this gap and
developing computer-assisted methods for complete, unambiguous and consis-
tent requirement writing and for verification into Simulink-based development.

Acknowledgments. The authors want to thank Petter Nilsson, Philipp Berger,
William Milam and Cem Mengi for numerous fruitful discussions on Simulink veri-
fication. We also express our appreciation to the MathWorks support team for their
fast response and helpful advice.

References

1. MathWorks: Simulink Design Verifier. https://de.mathworks.com/products/
sldesignverifier.html

2. Gholami, M.-R., Boucheneb, H.: Applying formal methods into safety-critical
health applications. In: Ortmeier, F., Rauzy, A. (eds.) IMBSA 2014. LNCS, vol.
8822, pp. 195–208. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12214-4 15

3. Boström, P., Heikkilä, M., Huova, M., Waldén, M., Linjama, M.: Verification and
validation of a pressure control unit for hydraulic systems. In: Majzik, I., Vieira,
M. (eds.) SERENE 2014. LNCS, vol. 8785, pp. 101–115. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-12241-0 8

4. Barnat, J., Bauch, P., Havel, V.: Temporal verification of Simulink diagrams. In:
Proceedings of HASE 2014, pp. 81–88. IEEE (2014)

5. Barnat, J., Beran, J., Brim, L., Kratochv́ıla, T., Ročkai, P.: Tool chain to sup-
port automated formal verification of avionics simulink designs. In: Stoelinga, M.,
Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 78–92. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32469-7 6

6. Barnat, J., Brim, L., Beran, J.: Executing model checking counterexamples in
Simulink. In: Proceedings of TASE 2012, pp. 245–248. IEEE (2012)

7. Reicherdt, R., Glesner, S.: Formal verification of discrete-time MATLAB/simulink
models using boogie. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS,
vol. 8702, pp. 190–204. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10431-7 14

8. Herber, P., Reicherdt, R., Bittner, P.: Bit-precise formal verification of discrete-
time MATLAB/Simulink models using SMT solving. In: Proceedings of EMSOFT
2013, pp. 1–10. IEEE (2013)

9. Cofer, D.: Model checking: cleared for take off. In: van de Pol, J., Weber, M. (eds.)
SPIN 2010. LNCS, vol. 6349, pp. 76–87. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-16164-3 6

10. Whalen, M., Cofer, D., Miller, S., Krogh, B.H., Storm, W.: Integration of formal
analysis into a model-based software development process. In: Leue, S., Merino,
P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 68–84. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-79707-4 7

11. Bourbouh, H., Garoche, P.L., Garion, C., Gurfinkel, A., Kahsai, T., Thirioux, X.:
Automated analysis of Stateflow models. In: Proceedings of LPAR 2017. EPiC
Series in Computing, vol. 46, pp. 144–161. EasyChair (2017)

https://de.mathworks.com/products/sldesignverifier.html
https://de.mathworks.com/products/sldesignverifier.html
https://doi.org/10.1007/978-3-319-12214-4_15
https://doi.org/10.1007/978-3-319-12214-4_15
https://doi.org/10.1007/978-3-319-12241-0_8
https://doi.org/10.1007/978-3-642-32469-7_6
https://doi.org/10.1007/978-3-319-10431-7_14
https://doi.org/10.1007/978-3-319-10431-7_14
https://doi.org/10.1007/978-3-642-16164-3_6
https://doi.org/10.1007/978-3-642-16164-3_6
https://doi.org/10.1007/978-3-540-79707-4_7

398 J. Nellen et al.

12. Dragomir, I., Preoteasa, V., Tripakis, S.: Compositional semantics and analysis of
hierarchical block diagrams. In: Bošnački, D., Wijs, A. (eds.) SPIN 2016. LNCS,
vol. 9641, pp. 38–56. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
32582-8 3

13. Preoteasa, V., Dragomir, I., Tripakis, S.: Type inference of simulink hierarchical
block diagrams in Isabelle. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS,
vol. 10321, pp. 194–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-60225-7 14

14. Ali, S., Sulyman, M.: Applying model checking for verifying the functional require-
ments of a Scania’s vehicle control system. Master’s thesis, Mälardalen University
(2012)

15. Botham, J., Dhadyalla, G., Powell, A., Miller, P., Haas, O., McGeoch, D., Rao,
A.C., O’Halloran, C., Kiec, J., Farooq, A., Poushpas, S., Tudor, N.: PICASSOS -
Practical applications of automated formal methods to safety related automotive
systems. In: SAE Technical Paper, SAE International (2017)

16. Bennion, M., Habli, I.: A candid industrial evaluation of formal software verification
using model checking. In: Proceedings of ICSE Companion 2014, pp. 175–184. ACM
(2014)

17. Berger, P., Katoen, J.P., Ábrahám, E., Waez, M.T.B., Rambow, T.: Verifiying
auto-generated C code from Simulink – an experience report in the automotive
domain. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018.
LNCS, vol. 10951, pp. 312–328. Springer, Cham (2018)

18. MathWorks: Simulink Design Verifier - User’s guide. https://de.mathworks.com/
help/pdf doc/sldv/sldv ug.pdf

19. MathWorks: Polyspace. http://www.mathworks.com/products/polyspace/
20. Prover Technology AB: Prover Plug-In. http://www.prover.com
21. Bozzano, M., Bruintjes, H., Cimatti, A., Katoen, J.P., Noll, T., Tonetta, S.: The

compass 3.0 toolset (short paper). In: Proceedings of IMBSA 2017 (2017)
22. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for

finite-state verification. In: Proceedings of ICSE 1999, pp. 411–420. ACM (1999)
23. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualita-

tive, real-time, and probabilistic property specification patterns using a structured
english grammar. IEEE Trans. Softw. Eng. 41(7), 620–638 (2015)

https://doi.org/10.1007/978-3-319-32582-8_3
https://doi.org/10.1007/978-3-319-32582-8_3
https://doi.org/10.1007/978-3-319-60225-7_14
https://doi.org/10.1007/978-3-319-60225-7_14
https://de.mathworks.com/help/pdf_doc/sldv/sldv_ug.pdf
https://de.mathworks.com/help/pdf_doc/sldv/sldv_ug.pdf
http://www.mathworks.com/products/polyspace/
http://www.prover.com

Multi-robot LTL Planning Under
Uncertainty

Claudio Menghi1(B) , Sergio Garcia1 , Patrizio Pelliccione1 ,
and Jana Tumova2

1 Chalmers – University of Gothenburg, Gothenburg, Sweden
{claudio.menghi,sergio.garcia,patrizio.pelliccione}@gu.se

2 Royal Institute of Technology (KTH), Stockholm, Sweden
tumova@kth.se

Abstract. Robot applications are increasingly based on teams of robots
that collaborate to perform a desired mission. Such applications ask for
decentralized techniques that allow for tractable automated planning.
Another aspect that current robot applications must consider is partial
knowledge about the environment in which the robots are operating and
the uncertainty associated with the outcome of the robots’ actions.

Current planning techniques used for teams of robots that perform
complex missions do not systematically address these challenges: (1) they
are either based on centralized solutions and hence not scalable, (2) they
consider rather simple missions, such as A-to-B travel, (3) they do not
work in partially known environments. We present a planning solution
that decomposes the team of robots into subclasses, considers missions
given in temporal logic, and at the same time works when only partial
knowledge of the environment is available. We prove the correctness of
the solution and evaluate its effectiveness on a set of realistic examples.

1 Introduction

A planner is a software component that receives as input a model of the robotic
application and computes a plan that, if performed, allows the achievement of
a desired mission [26]. As done in some recent works in robotics (e.g., [3,4]),
we assume that a robot application is defined using finite transition systems
and each robot has to achieve a mission, indicated as local mission, specified as
an LTL property. As opposed to more traditional specification means, such as
consensus or trajectory tracking in robot control, A-to-B travel in robot motion
planning, or STRIPS or PDDL in robot task planning, LTL allows the speci-
fication of a rich class of temporal goals that include surveillance, sequencing,
safety, or reachability [8]. LTL has also been recently considered as a reference
logic for the specification of patterns for robotic mission, in which LTL template
solutions are provided to recurrent specification problems [33].

Several works studied centralized planners that are able to manage teams of
robots that collaborate to achieve a global mission (e.g., [20,28,34]), and how

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 399–417, 2018.
https://doi.org/10.1007/978-3-319-95582-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_24&domain=pdf
http://orcid.org/0000-0001-5303-8481
http://orcid.org/0000-0001-7369-2480
http://orcid.org/0000-0002-5438-2281
http://orcid.org/0000-0003-4173-2593

400 C. Menghi et al.

to decompose a global mission into a set of local missions (e.g., [16,16,36,38]).
Local missions have been recently exploited by decentralized planners [38], which
avoid the expensive centralized planning by analyzing the satisfaction of local
missions inside subsets of the robots.

Another aspect that current planners must consider is partial knowledge
about the environment in which the robots operate. Partial knowledge has been
strongly studied by the software engineering and formal methods communi-
ties. Partial models have been used to support requirement analysis and elic-
itation [27,31,32], to help designers in producing a model of the system that
satisfies a set of desired properties [29,39,40], and to verify whether already
designed models possess some properties of interest [2,5,7,30]. However, most
of the existing planners assume that the environment in which the robots are
deployed is known [9]. Literature considering planners that work in partially
specified environments is more limited and usually rely on techniques based on
probabilistic models (e.g., [10,12,35]). Furthermore, decentralized planners are
rarely applied when partial knowledge about the robot application is present [16].

Contribution. This work presents MAPmAKER (Multi-robot plAnner for PAr-
tially Known EnviRonments), a novel decentralized planner for partially known
robotic applications. Given a team of robots and a local mission for each robot,
MAPmAKER partitions the set of robots into classes based on dependencies
dictated by the local missions of each robot. For each of these classes, it explores
the state space of the environment and the models of the robot searching for
definitive and possible plans. Definitive plans ensure the satisfaction of the local
mission for each robot. Possible plans may satisfy the local mission due to some
unknown information in the robotic application. MAPmAKER chooses the plan
to be executed among definitive and possible plans that allow the achievement
of the mission.

Specific Novel Contributions. The specific contributions are:

(1) We define the concept of partial robot model. This definition customizes par-
tial models (e.g., PKS [5] and MTS [24]) in a robotic domain context [38]
allowing the description of the robots and their environments when par-
tial information is available. A partial robot model allows considering three
types of partial information: partial knowledge about the execution of tran-
sitions (possibility of changing the robot location), the service provision
(whether the execution of an action succeed in providing a service) and the
meeting capabilities (whether a robot can meet with another).

(2) We define the concept of local mission satisfaction for partial robot mod-
els and the thorough LTL word semantics. This semantics extends the well
known thorough LTL semantics [6] for partial models and allows the thor-
ough evaluation of an LTL formula over words. This definition is needed to
define when an LTL formula is satisfied or possibly satisfied on a given plan.

(3) We define the distributed planning problem for partially specified robots.
(4) We prove that under certain assumptions the planning problem can be

solved by relying on two calls of a “classical” planner.

Multi-robot LTL Planning Under Uncertainty 401

(5) We propose a distributed planning algorithm and we prove its correctness.
The distributed algorithm enables a tractable planning.

(6) We evaluate the proposed algorithm on a robot application obtained from
the RoboCup Logistics League competition [18] and on a robotic application
working in an apartment which is part of a large residential facility for senior
citizens [1]. The results show the effectiveness of MAPmAKER.

Organization. Section 2 presents our running example. Section 3 describes
the problem and Sect. 4 describes how MAPmAKER supports partial models.
Section 5 presents the proposed planning algorithm. Section 6 evaluates the app-
roach. Section 7 presents related work. Section 8 concludes with final remarks
and future research directions.

2 Running Example

Robots r1, r2, and r3 are deployed in the environment graphically described in
Fig. 1. This environment represents a building made up of rooms l1, l2, l3, and
l4. The environment is partitioned in cells, each labeled with an identifier in
c1, c2, . . . , c30. Robots r1, r2, and r3 are placed in their initial locations. Each
robot is able to move from one cell to another, by performing action mov. The
robots are also able to perform the following actions. Robot r1 is able to load
debris of the building by performing action ld. Given a robot r and a generic
action α, in Fig. 1 the cells in which r can perform α are marked with the label
r(α). Robot r2 can wait until another robot loads debris on it by performing
action rd and can unload debris by performing one of the two actions ud1 and
ud2. Actions ud1 and ud2 use different actuators. Specifically, action ud1 uses a
gripper while action ud2 exploits a dump mechanism. Robot r3 is able to take
pictures by performing action tp and send them using a communication network
through the execution of action sp. Symbols r1(ld), r2(rd), r2(ud1), r2(ud2),
r3(tp), and r3(sp) mark the regions where actions can be executed by the robots,
while movement actions are not reported for graphical reasons. Actions ld, rd, tp,
and sp are associated with the services load carrier, detect load, take snapshot,
and send info, respectively, which are high-level functionalities provided by the
robot when actions are performed. Actions ud1 and ud2 are associated with
service unload. The labels L(π, α) = � below Fig. 1 are used to indicate that
a service π is associated with action α. Robots must meet and synchronously
execute actions. Robots r1 and r2 must meet in cell c7 and synchronously execute
actions ld and rd, respectively. Rotating arrows marked with robots identifiers,
are used to indicate where robots must meet.

The global mission the team of robots has to achieve is to check whether toxic
chemicals have been released by the container located in l4. We assume that the
mission is specified through a set of local missions assigned to each robot of the
team and described in LTL as in Fig. 2. Informally, while r3 continuously takes
pictures and sends them using the communication network, r1 and r2 remove
debris to allow r3 having a better view on the container. The pictures allow
verifying whether toxic chemicals have been released.

402 C. Menghi et al.

Fig. 1. An example showing the model of the
robots and their environment. Plans are rep-
resented by trajectories marked with arrows.

Fig. 2. The local missions assigned
to each robot.

Partial Knowledge About the Actions Execution. The robots can move
between cells separated by grey lines, while they cannot cross black bold lines.
It is unknown whether it is possible to move between cells c14 and c20 since the
structure may have been affected by collapses. This is indicated using a dashed
black bold line. It is also unknown whether robot r3 can send pictures using a
communication network, performing action sp in location l3 and specifically in
cell c18. Locations of the environment where it is unknown if an action can be
executed are marked with the name of the action preceded by symbol ?.

Unknown Service Provisioning. There are cases in which actions can be
executed but there is uncertainty about service provisions. For example, actions
ud1 and ud2 of robot r2 unload the robot. Action ud1 will always be able to
provide the unload service, while it is unknown whether ud2 provides this service
since its effectiveness depends on the size of the collected debris. In Fig. 1, the
label L(ud2, unload) =? indicates that there is partial knowledge about the
provision of the unload service when action ud2 is performed.

Unknown Meeting Capabilities. It is unknown whether robots r1 and r2 can
meet in one cell of the environment. For example, a collapse in the roof of the
building may forbid the two robots to concurrently execute actions ld and rd,
e.g., there is not enough space for r1 to load r2. Unknown meeting capabilities
are indicated with rotating arrows labeled with the symbol ?. For example, in
Fig. 1, it is unknown whether robots r1 and r2 are able to meet in cell c9.

Multi-robot LTL Planning Under Uncertainty 403

3 Modeling Partial Knowledge in a Robotic Application

We extend the model of a robotic application [38] with partial knowledge.

Definition 1. Consider a set of robots R. A partial robot model of a single
robot r ∈ R is a tuple r = (S, init, A, Π, T, Tp, Meet, Meetp, L), where S is
a finite set of states; init ∈ S is the initial state; A is a finite set of actions;
Π is a set of services; T, Tp : S × A → S are partial deterministic transition
functions such that for all s, s′ ∈ S and α ∈ A, if T (s, α) = s′ then Tp(s, α) = s′;
L : A × Π → {�,⊥, ?} is the service labeling; Meet,Meetp : S → (℘(R) ∪ {#})
are functions ensuring:

(1) for all s ∈ S either Meet(s) ⊆ ℘(R) or Meet(s) = {#};
(2) for all s ∈ S such that Meet(s) �= ∅, Meetp(s) = Meet(s).

A partial robot model has three sources of partial knowledge:

Partial knowledge about the action execution. A transition Tp(s, α) = s′ is called
possible transition and is indicated as s

α��� s′. Given two states s and s′ and an
action α, if Tp(s, α) = s′ and T (s, α) �= s′ (i.e., it is undefined) it is uncertain
whether the robot moves from s to s′ by performing α. A transition Tp(s, α) = s′,
such that T (s, α) �= s′ is called maybe transition. A transition Tp(s, α) = s′, such
that T (s, α) = s′, is a definitive transition and is indicated as s

α−→ s′.

Partial knowledge about the service provisioning. The service labeling specifies
whether a service π ∈ Π is provided when an action α ∈ A is performed. If
L(α, π) = �, then the service π is provided by the action α, if L(α, π) = ⊥,
then the service π is not provided by the action α, and, finally, if L(α, π) =?,
then it is uncertain whether service π is provided when the action α is executed.

Partial knowledge about robot meeting capabilities. Function Meetp labels a state
s with a set of robots that must meet with r in s. If Meet(s) = ∅ and Meetp(s) �=
∅, it is uncertain whether the robots in Meetp(s) can meet. Otherwise Meet(s) =
Meetp(s), i.e., the meeting capabilities are definitive. When Meet(s) = {#} =
Meetp(s) the meeting is not possible.

A definitive robot model is a partial robot model that does not contain
partial information about the action execution, the service provisioning, and the
meeting capabilities.

Variations of finite state machines are strongly used by planning algorithms
in the robotic community (e.g. [16,17,38]). They can be directly computed by
abstracting maps of real environments (e.g. [21]) or generated for other types
of specifications such as Ambient Calculus (e.g., [37]). Within the context of
this work we assume the model of the robotic application is given. Note that
the notion of partial robot model does not extends PKS [5] and MTS [24] in
terms of expressive power, but allows handling explicitly partial knowledge about
the execution of transitions, the service provision, and the meeting capabilities,
which are key aspects to be considered in robotic applications [38].

A plan describes the states and actions a robot has to traverse and perform.

404 C. Menghi et al.

Definition 2. Given a partial robot model r = (S, init, A, Π, T, Tp, Meet,
Meetp, L), a definitive plan of r is an infinite alternating sequence of states
and actions β = s1, α1, s2, α2, . . ., such that s1 = init, for all i ≥ 1 and π ∈
Π, si

αi−→ si+1, Meet(si) = Meetp(si), Meet(si) �= {#} �= Meetp(si) and
L(αi, π) �=?. A possible plan of r is infinite alternating sequence of states and
actions β = s1, α1, s2, α2, . . ., such that s1 = init, and for all i ≥ 1, si

αi��� si+1

and Meet(si) �= {#} �= Meetp(si).

The plan c17,mov, c23,mov, c29,mov, c30, (sp, c30)ω is a definitive plan for
robot r3 since all the transitions, service provisioning and meeting capabilities are
definitive. The plan c26,mov, c20,mov, c14, (mov, c14)ω for robot r1 is a possible
plan since the transition from cell c20 to c14 executed by performing action mov
is a maybe transition.

Definition 3. A partial robot application H is a set of partial robot models {r1,
r2, . . ., rN} such that for every couple of partial robot models rn, rm ∈ H, where
rn=(Sn, initn, An, Πn, Tn, Tp,n, Meetn,Meetp,n, Ln) and rm=(Sm, initm, Am,
Πm, Tm, Tp,m, Meetm,Meetp,m, Lm), the following is satisfied Πn ∩ Πm = ∅
and An ∩ Am = ∅.

In Definition 3 and in the rest of the paper we will assume that the sets of services
and actions of different robots are disjoint. This is not a strong limitation for
usage in real applications, where an action α (resp. service π) shared among two
robots r1 and r2 can be mapped in two actions α1 and α2 (resp. π1 and π2) to be
used in robots r1 and r2. The local mission should then be changed accordingly,
i.e., occurrences of service π must be replaced with the formula π1 ∨ π2.

Let us consider a partial robot application H. We use Bd to indicate a set
{βd

1 , βd
2 , . . . , βd

N} of definitive plans, where βd
n is a definitive plan for the partial

robot rn in H. We use Bp to indicate a set {βp
1 , βp

2 , . . . , βp
N} of possible plans,

where βp
n is the possible plan for the partial robot rn in H.

The notion of plan should reflect the meeting scheme, meaning that robots
should enter and leave locations of the environment depending on the func-
tions Meet and Meetp. Consider a partial robot application H and a set
B = {β1, β2, . . . , βN} of definitive or possible plans, where βn is the plan for
the robot rn in H. We indicate as compatible plans the plans in B that ensure a
meeting scheme.

Definition 4. Given a set of definitive (possible) plans Bd (Bp), the set Bd (Bp)
is compatible if the following holds for all rn ∈ H, and j ≥ 1. For each plan
βn = sn,1, αn,1, sn,2, αn,2, . . . of each robot rn if sn,j−1 �= sn,j and Meet(sn,j) �= ∅
then

(1) sn,j = sn,j+1;
(2) for all rm ∈ Meetn(sn,j), it holds that sm,j = sn,j and sn,j = sm,j+1.

The condition enforces the constraint dictated by the Meet function when
state sn,j is entered. Specifically, (1) ensures that after a robot rn meets another
in a state sn,j , it proceeds with the execution of a transition that has state sn,j

Multi-robot LTL Planning Under Uncertainty 405

as a source and destination and (2) ensures that each robot rm that belongs to
Meetn(sn,j) reaches state sn,j at step j and remains in sn,j at step j + 1. Note
that, compatible plans force the robots rn and rm to synchronously perform and
action among steps j and j + 1.

A plan is executed by a robot, by performing the actions and transitions
specified in the plan. Executing plans allows discovering information about action
execution, service provisioning, and meeting capabilities. Every time a transition
that is associated with partial information about its action is executed, an action
associated with uncertainty in the service provisioning is performed and a state
with unknown meeting capabilities is reached, new information is detected. If a
transition is detected to be executable, a service to be provided, or a meeting to
be possible, we say that a true evidence about the partial information is detected.
In the opposite case, we say that false evidence is detected.

Given a robot application H= {r1, r2, . . ., rN}, such that rn=(Sn, initn,
An, Πn, Tn, Tp,n, Meetn,Meetp,n, Ln) we define Π = Π1 ∪ Π2 ∪ . . . ∪ ΠN .
We assume that the mission assigned to the team of robots is made by a set
Φ = {φ1, φ2, . . . , φN} of local missions such that each mission φn ∈ Φ is assigned
to the robot rn of H. Each local mission φn is specified as an LTL formula
defined over the set of atomic propositions Πφ,n ⊆ Π, i.e., the mission can also
involve services that are not provided by robot rn, but are provided by other
robots of H.

A dependency class dpn = r1, r2, . . . , rn is a subset of robots that depends
on each other for achieving their missions. Two robots rn=(Sn, initn, An,
Πn, Tn, Tp,n, Meetn,Meetp,n, Ln) and rm=(Sm, initm, Am, Πm, Tm, Tp,m,
Meetm,Meetp,m, Lm) with missions defined over Πφ,n and Πφ,m, are in dpn

if Πφ,n ∩ Πm �= ∅, or there exists a state s of rn such that rm ∈ Meetn(s) ∪
Meetp,n(s). In the first case, one of the services of the mission of robot rn is
provided by robot rm; in the second, robot rm must meet robot rn.

The definitions of a definitive robot model, refinement and completion of par-
tial robot models and execution of possible and definitive plans are in Appendix
A1, available at goo.gl/Hp33j2.

4 Planning with Partial Knowledge

Solving the planning problem requires defining what it means that a plan satisfies
a mission. This section provides two different definitions of this concept through
the three-valued and the thorough LTL semantics. The first allows implementing
an efficient procedure to check whether a plan satisfies a mission. However, the
obtained result does not always reflect the natural intuition. The second allows
returning a precise result but requires implementing a checking procedure that
is more computationally expensive.

Consider for a moment a definitive (possible) plan β = s1α1s2α2 The
definitive (possible) word associated with β is wτ = 	1	2 . . ., such that for
each i > 1 and π ∈ Π, 	i(π) = Ln(αi, π). Intuitively, each element 	i of wτ

maps a service π with the value of function Ln(αi, π). Note that definitive words

http://goo.gl/Hp33j2

406 C. Menghi et al.

associate services with values in the set {�,⊥}, while possible words wτ associate
services with values in the set {�, ?,⊥}.

The three-valued LTL semantics 3= allows efficiently checking a property φ
and a word wτ . This can be done at the same computational cost as regular
two-valued semantics [5]. While a formula is evaluated as � and ⊥ reflecting the
natural intuition, it has been shown [6] that the three-valued semantics returns
a ? value more often than expected. Specifically, it is desirable that a property φ
is evaluated to ? when there are two words w′

τ and w′′
τ that can be obtained by

replacing ? values of wτ with � and ⊥, such that w′
τ satisfies φ and w′′

τ does not
satisfy φ. For this reason, the thorough LTL semantics has been proposed [6].

The thorough LTL semantics is usually defined considering partial models [6].
Given a partial model M and a formula φ, the thorough LTL semantics assigns
the value ? if there exist two completions M ′ and M ′′ of M , obtained by assigning
� and ⊥ to proposition with value ?, such that M ′ satisfies φ and M ′′ violates
φ. However, since our goal is to evaluate the satisfaction of a formula on plans
we define a notion of thorough LTL semantics based on words. Given a word
wτ a completion w′

τ of wτ is obtained from wτ by assigning � and ⊥ values to
	i(π) for each i > 1 and π such that 	i(π) =?

Definition 5. Given a word wτ and a property φ, the thorough LTL semantics
T= associates the word wτ with a value in the set {�, ?,⊥} as follows

(1) [wτ |= φ] T= � iff all the completions w′
τ of wτ are such that [w′

τ |= φ] = �;
(2) [wτ |= φ] T= ⊥ iff all the completions w′

τ of wτ are such that [w′
τ |= φ] = ⊥;

(3) [wτ |= φ] T=? otherwise.

Since a word is a simple linear model (a sequence of states connected by
transitions), the properties that hold for the thorough LTL semantics for partial
models also hold for the thorough LTL word semantics.

Lemma 1. Given two words wτ and w′
τ , such that wτ w′

τ , and an LTL
formula φ the following are satisfied: (1) [wτ |= φ] 3= � ⇒ [w′

τ |= φ] T= �; (2)
[wτ |= φ] 3= ⊥ ⇒ [w′

τ |= φ] T= ⊥.

Checking whether a word wτ and a property φ in the sense of the thorough
LTL word semantics levies performance penalties: it can be done in polynomial
time in the length of wτ and double exponential time in the size of φ [15].

There exists a subset of LTL formulae, known in literature as self-minimizing
formulae, such that the three valued and the thorough semantics coincide [14].
This result can also be applied on words. Given a word wτ and a self-minimizing
LTL property φ, then [wτ |= φ] T= x

3= [wτ |= φ] where x ∈ {⊥,�, ?}. It has been
observed that most practically useful LTL formulae, such as absence, univer-
sality, existence, response and response chain, are self-minimizing [14]. Further-
more, since for this set the two semantics coincide, the more efficient procedure
for checking a property w.r.t. the three-valued semantics can be used [6].

Local definitive and possible LTL satisfaction can be then defined as follows.

Multi-robot LTL Planning Under Uncertainty 407

Definition 6. Let X= be a semantics in { 3=,
T=}. Let rn and D be a robot and

a set of robots, such that {rn} ⊆ D ⊆ H. Let us consider a set of compat-
ible plans B such that each word wm of robot rm is infinite and defined as
wm = 	m,1	m,2 The word produced by a set of definitive (resp. possible)
compatible plans B = {βm | rm ∈ D} is wB = ω1ω2 . . ., where for all j ≥ 1 and
for all π ∈ Π, ωj(π) = max{	m,j(π) | rm ∈ D}. The set of definitive (resp.
possible) compatible plans B locally definitively (resp. possibly) satisfies φn for
the agent n, i.e., B |= φn, iff B is valid and [wB |= φn] X= � ([wB |= φn] X=?).

The thorough semantics ensures that when the word associated with the plan
possibly satisfies a mission φ, there exists a way to assign � and ⊥ to ? such
that it is possible to obtain a word that satisfies φ and another that does not
satisfy φ. Thus, there is a chance that, if executed, the plan satisfies a mission
φ. This is not true for the three-valued semantics since it can be the case that
a plan possibly satisfies a mission φ, but the mission is trivially unsatisfiable.
Note that since a plan wB is such that wB |= φn, it can be rewritten using
an ω-word notation as wB = ω1ω2 . . . ωn−1(ωnωn+1 . . . ωm)ω [41], where m is
the length of the plan. We use the notation L(wB) to indicate length m of the
ω-word associated with plan wB with minimum length.

In this work we assume local missions are given. We also assume that all the
local missions must be satisfied for achieving the global mission. Formally, given
a global mission φ, the corresponding set of the local missions {φ1, φ2, . . . , φN}
(one for each robot in H) and the word B produced by a set of definitive (resp.
possible) compatible plans, [B |= φ] X= � if for all 1 ≤ n ≤ N , [B |= φn] X= �;

[B |= φ] X=? if for all 1 ≤ n ≤ N , [B |= φn]
X
> ⊥, where ≥ is defined such as

� >? > ⊥; [B |= φ] X= ⊥ otherwise.

Based on these definitions, the planning problem is formulated as follows:

Problem 1 (Planning). Consider a partial robot application H defined over the
set of partial robot models {r′

1, r′
2, . . ., r′

N} and a semantics X= in { 3=,
T=}. Given

a set of local missions {φ1, φ2, . . . , φn}, one for each robot rn ∈ H find a set of
plans B = {β1, β2, . . . , βN} that

(1) are compatible and
(2) B locally definitively (resp. possibly) satisfies each φn w.r.t. the given seman-

tics.

Appendix A2, available at goo.gl/Hp33j2, contains the proof of Lemma 1 and
additional theorems and proofs.

5 Algorithms

MAPmAKER solves Problem 1 by implementing a decentralized planning with
partial knowledge. First, we discuss how robots are partitioned into dependency
classes; then, we discuss how planning is performed within each of these classes.

http://goo.gl/Hp33j2

408 C. Menghi et al.

Compute the Dependency Classes. To compute dependency classes the
following rule [16] is iteratively applied: a robot rn assigned to a local mission
φn defined over the services Πφ,n is in the same dependency class Di of rm if
and only if (1) the local mission predicates on a service π provided by robot rm,
i.e., π ∈ Πφ,n ∩ Πm, or (2) rn and rm must meet.

In the running example, one dependency class contains robots r1 and r2 since
these robots must meet in cell c7, the other contains robot r3.

Planning with Partial Knowledge. Algorithm 1 receives a partial robot
application and a set of local missions and computes a set of definitive (or
possible) plans that ensures the mission satisfaction. We discuss how the dif-
ferent types of partial information are handled by Algorithm 1 by incrementally
enabling Algorithm 1 to handle types of partial information. Identifiers A1, A2,
and A3 mark lines that enable handling different types of partial information.
Managing Partial Information in the Transition Relation. Let us first assume
that we have a partial robot application H= {r1, r2, . . ., rN} where each robot
rn is such that Meetn = Meetp,n and for each service π ∈ Πn and action α ∈ An,
Ln(α, π) ∈ {�,⊥}. In this case, partial information only refers to the presence
of maybe transitions, i.e., transitions sn

α��� s′
n such that sn

α−→ s′
n �∈ Tn. Lines

marked with the identifier A1 allow Algorithm 1 to handle this case.
The algorithm works in three steps.

Step 1. For each robot rn ∈ H it removes the transitions sn
α��� s′

n such that
sn

α−→ s′
n �∈ Tn (Line 3) and applies a classical decentralized planning algo-

rithm (Line 8). Variable pd contains whether the planner had found a plan,
{pd1, pd2, . . . , pdN} contains the plans if they are found. If a plan is found, pd
is assigned to true and the definitive plans for each of the robots are stored in
variables {pd1, pd2, . . . , pdN}. Otherwise, pd is assigned to false.

Step 2. It considers the original partial robot application (Line 9) and it applies
the decentralized planning algorithm (Line 12). If a set of possible plans is found,
pp is equal to true and the possible plans (one for each robot) are stored in
{pp1, pp2, . . . , ppN}.

Step 3. It analyzes the results contained in pd and pp. If both pd and pp are
equal to false then no plans are synthesizable (Line 13). If pd is false while
pp is not, only possible plans are available and they are returned as output
(Line 14). Otherwise, a policy is used to choose between {pd1, pd2, . . . , pdN} and
{pp1, pp2, . . . , ppN} (Line 15).

If no meeting primitives are specified in cell c9, actions ld and rd cannot be
performed by robots r1 and r2 in c9 and ud2 does not provide service unload,
plans p1, p2, and p3 are returned from robots r1, r2, and r3. Plan p2 is possible
since it is not known whether robot r1 can move from cell c8 to c14. Plan p3 is
possible since it is unknown whether robot r3 can perform action sp in cell c18.

Managing Uncertainties in the Service Provision. Let us assume that we have a
partial robot application H where each robot rn is such that Meetn = Meetp,n,
i.e., there is no partial information about meeting capabilities. We designed an
algorithm similar to [5], specified by Lines marked with the identifier A2.

Multi-robot LTL Planning Under Uncertainty 409

Algorithm 1. The PARTIAL PLAN function.
1: Input a partial robot application H and a set of missions Φ
2: Output a definitive or a possible plan (if they exist)

3: For each robot rn ∈ H remove transitions sn
α��� s′

n s.t. sn
α−→ s′

n �∈ Tn (A1)
4: Put each formula φn ∈ Φ in its negation normal form and rename the negated

propositions as in [5] (A2)
5: Compute the complement closed model r′

n of each rn ∈ H (A2)
6: For each r′

n and s ∈ Sn if Meetn,p(s) �= Meetn(s) then Meetn,p(s) = {#}(A3)
7: For each model r′

n construct the pessimistic approximation r′
p,n (A2)

8: [pd, {pd1, pd2, . . . , pdN}]=DEC PLANNER ({r′
p,1, r′

p,2, . . . , r′
p,N}, Φ)

9: For each robot rn insert the transitions sn
α��� s′

n s.t. sn
α−→ s′

n �∈ Tn (A1)
10: For each model r′

n construct the optimistic approximation r′
o,n (A2)

11: For each r′
n insert all the meeting requests in Meetn,p (A3)

12: [pp, {pp1, pp2, . . . , ppN}]=DEC PLANNER ({r′
o,1, r′

o,2 . . . , r′
o,N}, Φ)

13: if pd = false and pp = false then return NO PLAN AVAILABLE
14: if pd = false then return {pp1, pp2, . . . , ppN};
15: else return choose({pd1, pd2, . . . , pdN}, {pp1, pp2, . . . , ppN})

Step 1. For each rn, remove all the transitions sn
α��� s′

n such that sn
α−→ s′

n �∈ Tn

(Line 3).
Step 2. Put each formula φn ∈ Φ in its negation normal form (Line 4).
Step 3. For each rn, construct a model r′

n called complement-closed, in which
for action α ∈ A and service π ∈ AP , there exists a new service π, called
complement-closed service, such that Ln(α, π) = comp(Ln(α, π)) (Line 5).
Step 4. Substitute function Ln of each r′

n with its pessimistic approximation
Ln,pes. Specifically, Ln,pes is constructed as follows: for each action α and π such
that Ln(α, π) =?, Ln,pes(α, π) = ⊥ otherwise Ln,pes(α, π) = Ln(α, π) (Line 7).
Step 5. Apply the decentralized planning algorithm (Line 8). If a set of plans
is found they are definitive plans and stored in {pd1, pd2, . . . , pdN} otherwise a
false value is associated to pd.
Step 6. For each rn insert all the transitions sn

α��� s′
n such that sn

α−→ s′
n �∈ Tn

(Line 9).
Step 7. Construct the optimistic approximation function Ln,opt by associating
the value � to each atomic proposition of the complement-closure of r′ with
value ? (Line 10).
Step 8. Apply the decentralized planning algorithm (Line 12). If a set of plans
are found they are possible plans and stored in {pp1, pp2, . . . , ppN} otherwise a
false value is associated to pp.
Step 9. Analyzes the results. If both pd and pp are assigned with the false value
(Line 13), neither a possible nor a definitive plan can be synthesized. If pd is
false while pp is not (Line 14), then no definitive plans are available while a
possible plan has been found. Otherwise (Line 15), an appropriate policy is used
to choose between {pp1, pp2, . . . , ppN} and {pd1, pd2, . . . , pdN}.

410 C. Menghi et al.

If no meeting is required in cell c9, actions ld and rd cannot be performed by
robots r1 and r2 in c9 and it is not known whether ud2 provides service unload,
plans p1, p′

2, and p3 are returned for r1, r2, and r3. Plan p′
2 is possible since it

is unknown whether the execution of action ud2 provides the service unload.

Managing Uncertainties in the Meeting Capabilities. Partial knowledge in the
meeting capabilities is handled considering lines marked with A3. These lines
ensure that before searching for a definitive plan, the meeting requests that are
possible in the partial model of each robot of the robot application are removed
(Line 6). These requests are added (Line 11) before searching for possible plans.

If meeting in cell c21 is considered, and actions ld and rd can be performed
by robots r1 and r2 in c9, plans p′′

1 , p′′
2 , and p3 are returned from robot r1, r2,

and r3, respectively. Plans p′′
1 and p′′

2 are shorter plans than p′
2 and p1.

Algorithm 1 calls a classical decentralized planning algorithm twice. This
algorithm is also re-executed every time during that the plan execution a false
evidence about partial information is detected.

Theorem 1. Consider a partial robot application H, a set of missions Φ (one
for each robot) and the three-valued LTL semantics (3=). A set of plans B that
(1) are compatible and (2) B locally definitively (resp. possibly) satisfies each
φn w.r.t. the three-valued semantics. is returned from Algorithm 1 if and only if
they exist in H. If formulae are self-minimizing this theorem also applies to the
thorough LTL semantics (T=).

Proof of Theorem 1 and additional details of the algorithm are in Appendix A3,
available at goo.gl/Hp33j2.

6 Evaluation

This section reports on our experience evaluating MAPmAKER. We considered
the following research questions: RQ1: How does MAPmAKER help planning
in partially known environments? RQ2: How does the employed decentralized
algorithm help in planning computation?

Implementation. As a proof of concepts we implemented MAPmAKER as a
Matlab application, based on the planner proposed in [38]. The source code, a
complete replication package and a set of videos showing MAPmAKER in action
can be found at https://github.com/claudiomenghi/MAPmAKER/.

RQ1. We analyzed MAPmAKER on a set of simulated models.

Methodology. We considered two existing examples proposed in literature.

Example 1. The model of the robot application of the RoboCup Logistics League
competition [18] which has a map made by 169 cells and 4 rooms.

http://goo.gl/Hp33j2
https://github.com/claudiomenghi/MAPmAKER/

Multi-robot LTL Planning Under Uncertainty 411

Example 2. The model of a robot application deployed in an apartment of about
80 m2, which is part of a large residential facility for senior citizens [1]. The map
had originally been used to evaluate a planning algorithm for a single robot
based on information contained in RFID tags present in the environment [19].

In both the examples, we considered a team of 2 robots (r1 and r2), which
is the same number of robots used in the RoboCup competition. However, we
considered a higher number of services. Specifically, we considered 5 services:
services s1, s2, and s3 for robot r1 and services s4 and s5 for robot r2.

We simulated the presence of partial knowledge about the robot application
to evaluated the impact of partial information about the execution of transi-
tions (Exp 1), services provisioning (Exp 2) and meeting capabilities (Exp 3)
on the planning procedure. To simulate the presence of partial information we
constructed a partial robot application that conforms with Definition 1. To ana-
lyze partial information in the execution of transitions (Exp 1) we considered 2
rooms (that had multiple exits) and for each of these we added two unknown
transitions. Both of these transitions allow leaving the room and are placed in
correspondence with an exit and a wall. Thus, they will turn into a true and
false evidence about the partial information when reached by the robot, respec-
tively. To simulate partial information about the service provisioning (Exp 2) we
assumed that service s2 is associated with actions a1 and a2. However, there is
partial information on whether the execution of a1 and a2 actually provides ser-
vice s2. In one case, when action a1 is executed a true evidence on the provision
of s2 is returned. Contrariwise, when action a2 is executed, a false evidence is
returned by the dynamic discovering procedure. To simulate partial information
about the meeting capabilities (Exp 3) we assumed that it is unknown whether
robots r1 and r2 can meet in two cells when service s1 is provided. In one of the
cells, when meeting is performed, a true evidence is returned while in the other
case false evidence is returned.

We consider different missions since in the RoboCup competition each mis-
sion was supposed to be performed in isolation by a single robot, while we aim to
evaluate the behavior of the overall team. Our missions were inspired by the one
used in the RoboCup competition and formalized as self-minimizing LTL proper-
ties and based on well known properties patterns [21,43]. The following missions
were considered: (1) robot r1 must achieve the mission F(s1∧(F(s2∨s3))). It had
to reach a predefined destination where service s1 is provided, and then perform
either service s2 or service s3. (2) robot r2 must achieve the following mission
G(F(s4 ∨ s5)). Furthermore, it aims at helping r1 in providing service s1, i.e.,
robots r1 and r2 must meet in cells where service s1 is provided.

Our simulation scenarios were obtained by considering different initial condi-
tions (indicated as I1, I2, and I3), where robots were initially located in different
cells, and models of the partial robot application (indicated as C1, C2, and C3),
obtained by making different choices about partial information. Each simulation
scenario is associated with an identifier (ID) and is obtained by considering a
model of the partial robot application in one of the initial conditions.

Then, we performed the two following steps.

412 C. Menghi et al.

Step 1. We run MAPmAKER by considering the partial model of the robot
application. The algorithm iteratively computes possible plans that are executed
by the robots. As the robots explore their environment, true or false evidence
about partial information is detected meaning that a transition, service, and
meeting capability is detected to be firable, provided, and possible, respectively.
If a false evidence about a partial information is detected, e.g., a transition of the
plan is not executable, MAPmAKER is re-executed to recompute a new possible
plan. As all the partial information needed to achieve the mission is turned into
a true or a false evidence, the produced plan is actually definitive.

Step 2. We run MAPmAKER on a model of the robotic application obtained by
assuming that unknown transitions, services, and meeting capabilities are not
executable, not provided, and not possible, respectively. Thus, MAPmAKER
returns a definitive plan (if present). This model is not the real model of the
robot application since some transitions, services, and meeting capabilities may
be turned into not firable, not provided and not possible, when they can actually
be fired, are provided, and are possible in the real model, respectively.

We measured (1) the time T1 and T2 spent by MAPmAKER in Steps 1
and 2 in computing possible and definitive plans. For Step 1 it also includes
the time necessary for synthesizing new plans where a false evidence about a
partial information is detected. For Step 2 it only includes the time spent by
MAPmAKER in computing the definitive plan. (2) the length L1 and L2 of the
plans computed by MAPmAKER, in Steps 1 and 2. For Step 1 it is obtained by
computing the sum of the length of the portions of the possible plans performed
before a false evidence about a partial information is detected and the length of
the final definitive plan (more details are provided in Appendix A4, available at
goo.gl/Hp33j2). For Step 2 it corresponds to the length of the definitive plan.
We compared the time spent by MAPmAKER in Steps 1 and 2 and the length
of the computed plans.

Table 1. Results of Experiments 1, 2, and 3 for Examples 1 and 2.

Example 1 Example 2

Exp 1 Exp 2 Exp 3 Exp 1 Exp 2 Exp 3

ID I C F T Tr Lr F T Tr Lr F T Tr Lr F T Tr Lr F T Tr Lr F T Tr Lr

1 I1 C1 1 1 4.9 1.3 0 1 1.4 0.6 0 0 2.3 1.0 0 1 - - 1 1 3.2 1.1 1 0 3.5 1.4

2 I1 C2 0 1 3.6 0.9 0 0 2.1 1.0 0 1 2.3 0.7 0 0 3.4 1.0 0 0 2.0 1.0 0 0 2.0 1.0

3 I1 C3 1 1 5.2 1.3 1 1 3.3 1.1 1 0 4.0 1.4 1 0 6.3 1.9 0 1 1.2 0.6 0 0 2.1 1.0

4 I2 C2 1 1 5.2 1.4 0 1 2.0 0.9 0 0 2.1 1.0 0 2 - - 0 1 1.8 0.8 1 0 3.0 1.0

5 I2 C2 1 2 - - 0 1 1.5 0.6 0 1 1.8 0.9 0 1 - - 0 0 2.0 1.0 0 0 2.0 1.0

6 I2 C2 1 2 7.6 1.1 0 1 1.9 0.9 1 1 3.1 0.8 1 0 3.0 1.2 1 1 3.8 1.3 0 0 2.0 1.0

7 I3 C3 0 0 3.9 1.0 0 0 2.0 1.0 0 0 2.0 1.0 0 1 - - 1 0 3.6 1.6 0 0 2.0 1.0

8 I3 C3 0 1 - - 1 0 2.1 1.0 0 1 1.8 0.8 0 2 - - 0 1 1.8 0.8 0 1 1.5 0.8

9 I3 C3 0 0 3.5 1.0 0 0 1.9 1.0 1 1 3.4 0.9 0 1 1.9 0.8 0 1 1.9 0.9 0 1 1.5 0.8

http://goo.gl/Hp33j2

Multi-robot LTL Planning Under Uncertainty 413

Results. Table 1 shows the obtained results. Column Tr contains the ratio
between T1 and T2, column Lr contains the ratio between L1 and L2. Columns
F and T contain the number of times true or false evidence about partial infor-
mation about a transition, service and meeting capability was detected while the
plans were executed.

Example 1. Four cases are identified. In ID 2 for Exp 1, IDs 1, 4, 5, 6 for Exp 2
and IDs 2, 5, 6, 8, 9 for Exp 3 the plans computed in Step 1 were shorter than the
one computed in Step 2 (Case 1). In IDs 1, 3, 4, 6 for Exp 1, IDs 3 for Exp 2 and
ID 3 for Exp 3 the plans computed in Step 1 were longer than the one computed
in Step 2 (Case 2). In IDs 7, 9 for Exp 1, IDs 2, 7, 8 for Exp 2 and IDs 1, 4, 7, 9
for Exp 3 the plans computed in Step 1 correspond with the one computed in
Step 2 (Case 3). In IDs 5, 8 for Exp 1 plans were found in Step 1, while no plans
were obtained in Step 2 (Case 4). Thus, they are marked with a − since no
comparison was possible.

Example 2. In ID 9 for Exp 1, IDs 3, 4, 8, 9 for Exp 2 and IDs 8, 9 for Exp 3
the plans computed in Step 1 were shorter than the one computed in Step 2
(Case 1). In IDs 3, 6 for Exp 1, IDs 1, 6, 7 for Exp 2 and IDs 1 for Exp 3 the
plans computed in Step 1 were longer than the one computed in Step 2 (Case 2).
In ID 2 for Exp 1, IDs 2, 5 for Exp 2 and IDs 2, 3, 4, 5, 6, 7 for Exp 3 the plans
computed in Step 1 correspond with the one computed in Step 2 (Case 3). In IDs
1, 4, 5, 7, 8 for Exp 1 plans were found in Step 1, while no plans were obtained
in Step 2 (Case 4).

Discussion. MAPmAKER is effective whenever it computes a possible plan,
and during its execution a true evidence about partial information is detected
(Case 1). When no partial information was involved in the plans computed by
MAPmAKER, the generated plans had the same length than a classical plan-
ner (Case 3). In several configurations MAPmAKER allows the achievement of
the mission while a classical procedure is not able to do so (Case 4). Indeed,
MAPmAKER computes a possible plan when no definitive plan is available and
true evidence about partial information is detected during the plan execution.
Finally, the detection of a false evidence decreases the effectiveness of MAP-
mAKER (Case 2). It happens due to the need of recomputing the plans to be
followed by the robots.

MAPmAKER introduced an overhead in plan computation since it runs two
times the decentralized planner. The average, median, minimum, and maximum
time required to compute the plans for Step 1 considering all the examples of
the previous experiments are 1982.28, 2371.38, 990.76, and 2972.64 s respec-
tively; while for Step 2 are 400.24, 387.34, 277.85 and 533,8 s respectively. The
high computation time is due to the planner on top of which MAPmAKER is
developed, which uses an explicit representation of the state space of the robotic
application. However, MAPmAKER simply relies on two invocations of a general
planner to compute plans, thus more efficient planners can be used.

RQ2. We analyzed the behavior of the decentralized procedure.

414 C. Menghi et al.

Methodology. We considered the set of partial models previously described.
We added an additional robot r3 which must achieve the mission G(F(s6 ∨ s7))
and does not meet neither with robot r1 nor with robot r2. We then perform
the following steps: Step 1 we run MAPmAKER with the decentralized proce-
dure enabled; Step 2 we run MAPmAKER without the decentralized procedure
enabled. For each of the steps, we set a timeout of 1 hour. We recorded the time
T1 and T2 required in Steps 1 and 2.

Results and Discussion. In Step 1 MAPmAKER computes two dependency
classes; one containing robots r1 and r2 and one containing robot r3. In Step 2
the team containing robots r1, r2, and r3 is analyzed. For all the configura-
tions and experiments, MAPmAKER ends within the timeout for Step 1, while
MAPmAKER was not able to find a solution for Step 2.

Threats to Validity. The random identification of elements that are considered
uncertain is a threat to construct validity since it may generate not realistic mod-
els. To mitigate this threat we ensured that partial information about transitions
is added in correspondence with an exit and a wall. This ensures that both true
and false evidence for transition executions can occur while the computed plans
are executed. Biases in the creation of models is a threat to internal validity and
is mitigated by considering real models. The limited number of examples is a
threat to external validity. To mitigate this threat, we verified that as possible
plans were executed, both true and false evidence about partial information were
detected.

7 Related Work

Decentralized Solutions. The decentralized planning problem has been studied
for known environments [16,36,38]. However, planners for partially known envi-
ronments do not usually employ decentralized solutions [10,12,35].

Dealing with Partial Knowledge in Planning. Most of the works proposed in
literature to plan in partially known environments (see for example [11,13,22,
42]) treat partial information by modeling the robotic application using some
form of Markov decision processes (MDP). In MDPs, transitions are associated
with probabilities indicating the likelihood of reaching the destination state when
an action is performed [13]. The planning problem usually requires the actions
the robots must perform to reach a set of goal states. In our work, the planning
goal is specified in a richer language, i.e., LTL. Planning with LTL specifications
has been considered in MDPs (e.g., [11,23,25]). However, in MDPs the developer
knows the probabilities associated with transitions, while in the formulation
proposed in this work this information is not available. Encoding a partial robot
model into a MDP by associating a probability of 0.5 to maybe transitions is
not correct. Indeed, the obtained MDP would not correctly represent the current
scenario in which the probability of firing transitions is unknown.

Multi-robot LTL Planning Under Uncertainty 415

8 Conclusions

This work presented MAPmAKER, a novel decentralized planner for partially
known environments. MAPmAKER solves the decentralized planning problem
when partial robot applications made by multiple robots are analyzed and mis-
sions are provided through a set of LTL specifications that are assigned to the
different robots. The results showed that MAPmAKER was effective in dealing
with partially known environments. They evidenced that the number of actions
performed by the robots was lower when the computed possible plans were actu-
ally executable in the real model of the robotic application. Furthermore, they
highlight that MAPmAKER outperformed classical planners by achieving the
desired mission when only possible plans were available. Finally, the show that
decentralization allows considering partial models of the robotic applications
that can not be handled with a classical centralized approaches.

Future work and research directions include (1) studying techniques to sup-
port developers in the automatic or manual development of the (partial) model
of a robotic application; (2) evaluation of the proposed procedure using robots
deployed in real environments; (3) the study of appropriate policies to select
between definitive and possible plans; (4) the use of more efficient planners to speed
up plan computation. These may be based for example on symbolic techniques.

References

1. The Angen Research and Innovation Apartment (2014). http://angeninnovation.se
2. Bernasconi, A., Menghi, C., Spoletini, P., Zuck, L.D., Ghezzi, C.: From model

checking to a temporal proof for partial models. In: Cimatti, A., Sirjani, M. (eds.)
SEFM 2017. LNCS, vol. 10469, pp. 54–69. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66197-1 4

3. Bhatia, A., Kavraki, L.E., Vardi, M.Y.: Motion planning with hybrid dynamics
and temporal goals. In: Conference on Decision and Control (CDC), pp. 1108–
1115. IEEE (2010)

4. Bhatia, A., Kavraki, L.E., Vardi, M.Y.: Sampling-based motion planning with tem-
poral goals. In: International Conference on Robotics and Automation (ICRA), pp.
2689–2696. IEEE (2010)

5. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 25

6. Bruns, G., Godefroid, P.: Generalized model checking: reasoning about partial state
spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–182.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4 14

7. Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-valued symbolic
model-checking. ACM Trans. Softw. Eng. Methodol. 12(4), 1–38 (2004)

8. Chen, Y., Tůmová, J., Ulusoy, A., Belta, C.: Temporal logic robot control based on
automata learning of environmental dynamics. Int. J. Robot. Res. 32(5), 547–565
(2013)

9. Cunningham, A.G., Galceran, E., Eustice, R.M., Olson, E.: MPDM: multipolicy
decision-making in dynamic, uncertain environments for autonomous driving. In:
International Conference on Robotics and Automation (ICRA), pp. 1670–1677
(2015)

http://angeninnovation.~se
https://doi.org/10.1007/978-3-319-66197-1_4
https://doi.org/10.1007/978-3-319-66197-1_4
https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1007/3-540-44618-4_14

416 C. Menghi et al.

10. Diaz, J.F., Stoytchev, A., Arkin, R.C.: Exploring unknown structured environ-
ments. In: FLAIRS Conference, pp. 145–149. AAAI Press (2001)

11. Ding, X.C.D., Smith, S.L., Belta, C., Rus, D.: LTL control in uncertain environ-
ments with probabilistic satisfaction guarantees*. IFAC Proc. Vol. 44(1), 3515–
3520 (2011)

12. Du Toit, N.E., Burdick, J.W.: Robot motion planning in dynamic, uncertain envi-
ronments. IEEE Trans. Robot. 28(1), 101–115 (2012)

13. Ghallab, M., Nau, D., Traverso, P.: Automated Planning and Acting, 1st edn.
Cambridge University Press, New York (2016)

14. Godefroid, P., Huth, M.: Model checking vs. generalized model checking: semantic
minimizations for temporal logics. In: Logic in Computer Science, pp. 158–167.
IEEE Computer Society (2005)

15. Godefroid, P., Piterman, N.: LTL generalized model checking revisited. Int. J.
Softw. Tools Technol. Transf. 13(6), 571–584 (2011)

16. Guo, M., Dimarogonas, D.V.: Multi-agent plan reconfiguration under local LTL
specifications. Int. J. Robot. Res. 34(2), 218–235 (2015)

17. Guo, M., Johansson, K.H., Dimarogonas, D.V.: Revising motion planning under
linear temporal logic specifications in partially known workspaces. In: International
Conference on Robotics and Automation (ICRA), pp. 5025–5032. IEEE (2013)

18. Karras, C.D.U., Neumann, T., Rohr, T.N.A., Uemura, W., Ewert, D., Harder, N.,
Jentzsch, S., Meier, N., Reuter, S.: RoboCup logistics league rules and regulations
(2016)

19. Khaliq, A.A., Saffiotti, A.: Stigmergy at work: planning and navigation for a service
robot on an RFID floor. In: International Conference on Robotics and Automation
(ICRA), pp. 1085–1092. IEEE (2015)

20. Kloetzer, M., Ding, X.C., Belta, C.: Multi-robot deployment from LTL specifica-
tions with reduced communication. In: Conference on Decision and Control and
European Control Conference (CDC-ECC), pp. 4867–4872. IEEE (2011)

21. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009)

22. Kurniawati, H., Du, Y., Hsu, D., Lee, W.S.: Motion planning under uncertainty for
robotic tasks with long time horizons. Int. J. Robot. Res. 30(3), 308–323 (2011)

23. Lacerda, B., Parker, D., Hawes, N.: Optimal and dynamic planning for Markov
decision processes with co-safe LTL specifications. In: 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 1511–1516 (2014)

24. Larsen, K.G., Thomsen, B.: A modal process logic. In: Logic in Computer Science,
pp. 203–210. IEEE (1988)

25. Lassaigne, R., Peyronnet, S.: Approximate planning and verification for large
markov decision processes. Int. J. Softw. Tools Technol. Transf. 17(4), 457–467
(2015)

26. Latombe, J.C.: Robot Motion Planning, vol. 124. Springer, New York (2012).
https://doi.org/10.1007/978-1-4615-4022-9

27. Letier, E., Kramer, J., Magee, J., Uchitel, S.: Deriving event-based transition sys-
tems from goal-oriented requirements models. Autom. Softw. Eng. 15, 175–206
(2008)

28. Loizou, S.G., Kyriakopoulos, K.J.: Automated planning of motion tasks for multi-
robot systems. In: Conference on Decision and Control and European Control
Conference (CDC-ECC), pp. 78–83. IEEE (2005)

https://doi.org/10.1007/978-1-4615-4022-9

Multi-robot LTL Planning Under Uncertainty 417

29. Menghi, C., Spoletini, P., Chechik, M., Ghezzi, C.: Supporting verification-driven
incremental distributed design of components. In: Russo, A., Schürr, A. (eds.)
FASE 2018. LNCS, vol. 10802, pp. 169–188. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89363-1 10

30. Menghi, C., Spoletini, P., Ghezzi, C.: Dealing with incompleteness in automata-
based model checking. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A.
(eds.) FM 2016. LNCS, vol. 9995, pp. 531–550. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-48989-6 32

31. Menghi, C., Spoletini, P., Ghezzi, C.: COVER: Change-based goal verifier and rea-
soner. In: Knauss, E., et al. (eds.) Proceedings of the 22nd International Conference
on Requirements Engineering: Foundation for Software Quality: Companion Pro-
ceeedings, REFSQ 2017, Essen, Germany, February 27, 2017, pp. 434–435, vol.
1796. CEUR-WS.org (2017). http://ceur-ws.org/Vol-1796

32. Menghi, C., Spoletini, P., Ghezzi, C.: Integrating goal model analysis with iterative
design. In: Grünbacher, P., Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp.
112–128. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54045-0 9

33. Menghi, C., Tsigkanos, C., Berger, T., Pelliccione, P., Ghezzi, C.: Property specifi-
cation patterns for robotic missions. In: Proceedings of the 40th International Con-
ference on Software Engineering: Companion Proceeedings, ICSE 2018, Gothen-
burg, Sweden, May 27–June 03, pp. 434–435. ACM (2018). https://doi.org/10.
1145/3183440.3195044

34. Quottrup, M.M., Bak, T., Zamanabadi, R.: Multi-robot planning: a timed
automata approach. In: International Conference on Robotics and Automation,
vol. 5, pp. 4417–4422. IEEE (2004)

35. Roy, N., Gordon, G., Thrun, S.: Planning under uncertainty for reliable health care
robotics. In: Yuta, S., Asama, H., Prassler, E., Tsubouchi, T., Thrun, S. (eds.) Field
and Service Robotics, pp. 417–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/10991459 40

36. Schillinger, P., Bürger, M., Dimarogonas, D.: Decomposition of finite LTL spec-
ifications for efficient multi-agent planning. In: International Symposium on Dis-
tributed Autonomous Robotic Systems (2016)

37. Tsigkanos, C., Pasquale, L., Menghi, C., Ghezzi, C., Nuseibeh, B.: Engineering
topology aware adaptive security: preventing requirements violations at runtime.
In: International Requirements Engineering Conference (RE), pp. 203–212 (2014)

38. Tumova, J., Dimarogonas, D.V.: Multi-agent planning under local LTL specifica-
tions and event-based synchronization. Automatica 70, 239–248 (2016)

39. Uchitel, S., Alrajeh, D., Ben-David, S., Braberman, V., Chechik, M., De Caso,
G., D’Ippolito, N., Fischbein, D., Garbervetsky, D., Kramer, J., et al.: Supporting
incremental behaviour model elaboration. Comput. Sci. Res. Dev. 28(4), 279–293
(2013)

40. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from
properties and scenarios. IEEE Trans. Softw. Eng. 35(3), 384–406 (2009)

41. Vardi, M., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

42. Wolff, E.M., Topcu, U., Murray, R.M.: Robust control of uncertain markov decision
processes with temporal logic specifications. In: Annual Conference on Decision and
Control (CDC), pp. 3372–3379. IEEE (2012)

43. Yoo, C., Fitch, R., Sukkarieh, S.: Online task planning and control for fuel-
constrained aerial robots in wind fields. Int. J. Robot. Res. 35(5), 438–453 (2016)

https://doi.org/10.1007/978-3-319-89363-1_10
https://doi.org/10.1007/978-3-319-89363-1_10
https://doi.org/10.1007/978-3-319-48989-6_32
https://doi.org/10.1007/978-3-319-48989-6_32
http://ceur-ws.org/Vol-1796
https://doi.org/10.1007/978-3-319-54045-0_9
https://doi.org/10.1145/3183440.3195044
https://doi.org/10.1145/3183440.3195044
https://doi.org/10.1007/10991459_40
https://doi.org/10.1007/10991459_40

Vector Barrier Certificates
and Comparison Systems

Andrew Sogokon1(B) , Khalil Ghorbal2(B) , Yong Kiam Tan1 ,
and André Platzer1

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
{asogokon,yongkiat,aplatzer}@cs.cmu.edu

2 Inria, Rennes, France
khalil.ghorbal@inria.fr

Abstract. Vector Lyapunov functions are a multi-dimensional exten-
sion of the more familiar (scalar) Lyapunov functions, commonly used
to prove stability properties in systems of non-linear ordinary differen-
tial equations (ODEs). This paper explores an analogous vector extension
for so-called barrier certificates used in safety verification. As with vec-
tor Lyapunov functions, the approach hinges on constructing appropriate
comparison systems, i.e., related differential equation systems from which
properties of the original system may be inferred. The paper presents an
accessible development of the approach, demonstrates that most previ-
ous notions of barrier certificate are special cases of comparison systems,
and discusses the potential applications of vector barrier certificates in
safety verification and invariant synthesis.

Keywords: Ordinary differential equations · Safety verification
Vector barrier certificates · Comparison systems

1 Introduction

Over the past decade, barrier certificates have emerged as a rather popular
Lyapunov-like technique for proving safety properties of continuous systems gov-
erned by ODEs, as well as hybrid dynamical systems, which combine continuous
and discrete dynamics and provide models for modern control and embedded
systems. Since the original formulation of barrier certificates [37], significant
efforts have been directed at the problem of generalizing and relaxing the con-
ditions that are required under this approach, so as to broaden its scope and
applicability. A number of generalizations have been reported in the verifica-
tion community (e.g. [11,22]). We demonstrate in this paper how comparison
systems (a well-established concept in the theory of ODEs) fundamentally under-
lie these developments and provide a clean conceptual basis for understanding

This work was supported by the National Science Foundation under NSF CPS Award
CNS-1739629 and by the AFOSR under grant number FA9550-16-1-0288; the third
author was supported by the National Science Scholarship from A*STAR, Singapore.

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 418–437, 2018.
https://doi.org/10.1007/978-3-319-95582-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_25&domain=pdf
http://orcid.org/0000-0002-5849-7991
http://orcid.org/0000-0003-4941-6632
http://orcid.org/0000-0001-7033-2463
http://orcid.org/0000-0001-7238-5710

Vector Barrier Certificates and Comparison Systems 419

and further developing the method of barrier certificates. Following the seminal
work of R. E. Bellman, who first introduced vector Lyapunov functions [2] as a
way of relaxing the standard (scalar) Lyapunov conditions for proving stability
in ODEs, we will explore an extension of barrier certificates based on multi-
dimensional (i.e. vector) comparison systems.

Structure of this Paper. Mathematical preliminaries are reviewed in Sect. 2.
Thereafter, the paper consists of two technical parts. The first part, in Sect. 3,
reviews the method of barrier certificates and demonstrates how convex [37],
exponential-type [22] and the more recent general barrier certificates [11] effec-
tively amount to a straightforward application of the comparison principle and
can be interpreted as special cases of this more general framework. The second
part, in Sect. 4, uses multi-dimensional comparison systems to extend existing
(scalar) notions of barrier certificates to what we term vector barrier certificates,
analogously to vector Lyapunov functions known from control theory. Section 6
discusses related work and Sect. 7 concludes with a short summary.

2 Fundamental Definitions

We begin with an overview of some important concepts and definitions. In this
paper we are concerned with studying systems of polynomial ODEs and will work
under the assumption that functions are polynomials, unless stated otherwise.

2.1 Systems of Ordinary Differential Equations

An autonomous n-dimensional system of ODEs is of the form:

x′
1 = f1(x1, x2, . . . , xn),
...

x′
n = fn(x1, x2, . . . , xn),

where fi : R
n → R is a real-valued (typically continuous) function for each

i ∈ {1, . . . , n}, and x′
i denotes the time derivative of xi, i.e. dxi

dt . In appli-
cations, constraints are often used to specify the states where the system is
allowed to evolve, i.e. the system may only be allowed to evolve inside some
given set Q ⊆ R

n, which is known as the evolution constraint (or a mode invari-
ant of some mode q in the context of hybrid automata). We can write down
systems of constrained ODEs concisely by using vector notation, i.e. by writing
x′ = f(x), x ∈ Q. Here we have x′ = (x′

1, . . . , x
′
n) and f : Rn → R

n is a vector
field generated by the system, i.e. f(x) = (f1(x), . . . , fn(x)) for all x ∈ R

n. If
no evolution constraint is given, Q is assumed to be the Euclidean space R

n.
The Lie derivative of a differentiable scalar function g : Rn → R in the state
variables of such a system is denoted by g′ and given by

∑n
i=1

∂g
∂xi

fi.
A solution to the initial value problem (IVP) for the system of ODEs

x′ = f(x) with initial value x0 ∈ R
n is a (differentiable) function x : (a, b) → R

n

420 A. Sogokon et al.

defined for all t in some open interval including zero, i.e. t ∈ (a, b), where
a, b ∈ R ∪ {∞,−∞}, a < 0 < b, and such that x(0) = x0 and d

dtx(t) = f(x(t))
for all t ∈ (a, b). At time t, for solutions to IVPs with initial value x0, we shall
write x(x0, t), or simply x(t) if the initial condition is understood from con-
text. If the solution x(x0, t) is available in closed-form,1 then one can study
properties such as safety and liveness by analysing the closed-form expression.
However, in non-linear ODEs it is in practice highly uncommon for solutions to
exist explicitly in closed-form [3,20], and even if closed-form solutions can be
found, transcendental functions in these expressions lead to undecidable arith-
metic [41].

Remark 1. In this paper we employ a slight abuse of notation for sets and
formulas characterizing those sets, i.e. Q denotes both a set Q ⊆ R

n and a
formula Q of real arithmetic with free variables x1, . . . , xn which characterizes
this set. In the case of sub-level sets, i.e. sets characterized by predicates of
the form B ≤ 0 where B is a real valued function in the (dependent) variables
x1, . . . , xn, we will write B(x) ≤ 0 to mean B ≤ 0 is true in state x ∈ R

n, and
will explicitly use the independent time variable t to write B(x(t)) ≤ 0 when we
are interested in evaluating the predicate along a solution x(t) of a differential
equation.

2.2 Safety Verification and Direct Methods

In continuous systems governed by ODEs, a common verification challenge lies
in establishing safety in a given system, which requires showing that no state in
some designated set of unsafe states is reachable by following the solutions to
the system from some given set of initial configurations. More precisely:

Definition 1 (Safety in ODEs). Given a system of ODEs x′ = f(x) with
evolution constraint Q ⊆ R

n, and the sets Init ⊆ R
n, Unsafe ⊆ R

n of initial and
unsafe states, respectively, the system is said to be safe if and only if: ∀x0 ∈
Init. ∀t ≥ 0.

(
(∀τ ∈ [0, t]. x(x0, τ) ∈ Q) ⇒ x(x0, t) �∈ Unsafe

)
.

The above is a semantic definition, since it explicitly involves the solutions x(t)
of the system. The fact that exact solutions to non-linear ODEs are rarely avail-
able is a significant limitation, and was historically the principal driving force
behind the development of the so-called qualitative theory of differential equa-
tions, which is concerned with proving properties about differential equations
directly, i.e. without explicitly computing their solutions. Powerful methods, such
as Lyapunov’s direct method [26] for proving stability in ODEs, emerged out of
this theory and have become standard tools in the field of dynamical systems and
control (see e.g. [19,42,51]). The next section will give a comprehensive review of
direct methods for solving the safety verification problem for continuous systems
using existing notions of barrier certificates.
1 i.e. As a finite expression in terms of polynomials and elementary functions that can

be constructed using the usual arithmetic operations +, −, ×, ÷, from exp, sin, cos,
and their inverses; this includes natural logarithms, nth roots, etc. (see [3, Chap. 4]).

Vector Barrier Certificates and Comparison Systems 421

3 Barrier Certificates

First introduced by Prajna and Jadbabaie [37], the method of barrier certificates
works by exhibiting a real-valued barrier function B which serves to partition
the state space into two disjoint regions, respectively containing the initial and
the unsafe states of the system, and such that the trajectories of the system
cannot leave the initial states into the region containing unsafe states. The most
general principle was not elaborated explicitly in the original work [37], but is
stated, e.g., in [11, Sect. 3] as the principle of barrier certificates. The semantic
statement of this principle (reproduced below) is not in itself useful for verifying
safety properties because it explicitly involves the solutions to the system of
ODEs.

Lemma 1 (Safety with semantic barrier certificates). Given a system of
ODEs x′ = f(x), possibly with an evolution constraint Q ⊆ R

n, a set of initial
states Init ⊆ R

n, and a set of unsafe states Unsafe ⊆ R
n, if a differentiable

(barrier) function B : Rn → R satisfies the following conditions, then safety of
the system in the sense of Definition 1 follows trivially:

1. ∀x ∈ Unsafe. B(x) > 0,
2. ∀x0 ∈ Init. ∀ t ≥ 0.

(
(∀ τ ∈ [0, t]. x(x0, τ) ∈ Q) ⇒ B(x(x0, t)) ≤ 0

)
.

Fortunately, there are a number of ways in which one can establish whether
or not a given function B has the properties required by the semantic principle
stated in Lemma 1 without having to compute solutions. There are at present a
number of different kinds of barrier certificates in the literature, which differ in
the kinds of conditions they employ for ensuring the second requirement of the
general principle in Lemma 1. We can broadly separate these into two classes:
(i) those which essentially reduce to an application of the so-called comparison
principle, and (ii) those explicitly based on reasoning about (positive) invariant
sets 2. In what follows, it is important to recall that semi-definite programming
(SDP) and sum-of-squares (SOS) decomposition techniques (whose use to search
for Lyapunov functions was pioneered by Parrilo [31]) provide a tractable search
procedure only for certain kinds of barrier certificates.

3.1 Comparison System-Based Barrier Certificates

Convex/Weak. The original formulation in [37] is known as a convex [36,38]
(also weak [45]) barrier certificate and imposes the following three formal require-
ments, which are sufficient to satisfy the conditions in Lemma 1 (we elide the
x-dependency in Unsafe, Init, Q, and B):

CBC 1. ∀x ∈ R
n. (Unsafe → B > 0),

CBC 2. ∀x ∈ R
n. (Init → B ≤ 0),

CBC 3. ∀x ∈ R
n. (Q → B′ ≤ 0).

2 i.e. Sets of states that remain invariant under the flow of the system as time advances.

422 A. Sogokon et al.

The above conditions ensure that the sub-level set B ≤ 0 is a sound
over-approximation of the set of states reachable from Init. If the evolution
constraint Q, as well as Init and Unsafe, are all given by conjunctions of poly-
nomial inequalities, one can formulate a search for polynomial B ∈ R[x] as a
semi-definite program by fixing some maximum degree for a symbolic polynomial
template of B and using an SDP solver to obtain its monomial coefficients [37].
The convexity in the name refers to the set of functions B, since for any two
functions B, B̃ that satisfy the requirements CBC 1–3, any convex combination
αB + (1 − α)B̃, where α ∈ [0, 1], will also be a convex/weak barrier certificate
satisfying the same requirements. It is precisely this convexity property which
enables the use of SDP from convex optimization and makes barrier certificates
of this kind interesting from a practical standpoint.

Exponential-Type. So-called exponential-type barrier certificates [22] extend
weak barrier certificates by generalizing the condition on the derivative of B in
a way that maintains the convexity of the search space. These conditions are:

ETBC 1. ∀x ∈ R
n. (Unsafe → B > 0),

ETBC 2. ∀x ∈ R
n. (Init → B ≤ 0),

ETBC 3. ∀x ∈ R
n. (Q → B′ ≤ λB), for some fixed λ ∈ R.

Since these conditions also define a convex set, one can search for barrier certifi-
cates of this kind using semi-definite programming for fixed λ ∈ R and bounded
degree polynomial templates of B, analogously to the weak/convex barrier cer-
tificates. To use this method, one is required to supply a value for λ: with λ = 0
one recovers the conditions for convex barrier certificates; the choice of λ > 0 or
λ < 0 was observed to have significant practical impact on the barrier functions
that one can generate using semi-definite programming [22, Sect. 3.1].

General. More recently, so-called general barrier certificates were reported
in [11] and generalize the condition used in exponential-type barrier certificates
yet further by allowing the right-hand side of the differential inequality to be
a (potentially non-linear) univariate function of the barrier function itself. The
conditions are as follows:

GBC 1. ∀x ∈ R
n. (Unsafe → B > 0),

GBC 2. ∀x ∈ R
n. (Init → B ≤ 0),

GBC 3. ∀x ∈ R
n. (Q → B′ ≤ ω(B)),

GBC 4. ∀ t ≥ 0. b(x(t)) ≤ 0, where b(x(t)) : R → R is some continuously
differentiable function such that: (i) b(x(0)) ≤ 0, and (ii) b′ = ω(b).

Barrier certificates satisfying the above requirements will not form a convex set.
To use this method of verification in practice, one is first required to supply
some fixed univariate function ω, e.g. one could take ω(b) = −b + b2, and make
sure that the solutions b(t) to the differential equation b′ = ω(b) exist and
remain non-positive for all time, i.e. ∀ t ≥ 0. b(t) ≤ 0, from the initial conditions

Vector Barrier Certificates and Comparison Systems 423

(at which b is required to be non-positive). One may be forgiven for thinking
these conditions obscure and unmotivated at first; in the next section we will
elucidate how these conditions in fact amount to a simple exercise in applying
the comparison principle in the theory of ODEs to safety verification.

3.2 Comparison Systems

Informally, one may think of a comparison system for a given system of ODEs as
being another system of ODEs that (i) is in some sense simpler to analyse and
(ii) enables one to establish properties of the original system of ODEs. The idea
behind the comparison principle is that by establishing some desired property of
the comparison system (which is hopefully not as difficult), one is able to draw
the conclusion that this property also holds in the original system.

Remark 2. A comparison system may be described as a certain abstraction of a
system of ODEs by another system.

The comparison principle emerged as a coherent technique in the theory of
ODEs and applied mathematics in the middle of the twentieth century. It was
employed by numerous authors, e.g. by Conti [10] to study existence of solutions
of ODEs, and by Brauer [6] to study stability using comparison systems as a
way of generalizing the classic requirement V ′ ≤ 0 on the derivative of Lyapunov
functions V . For demonstrating stability of some n-dimensional system of ODEs
x′ = f(x), if one has a positive definite function V : Rn → R that satisfies a
more general differential inequality

V ′ ≤ ω(V) ,

where ω : R → R is an appropriately chosen scalar function, one can construct
a (scalar) comparison system by introducing a fresh variable (e.g. v; really a
function of time v(t)) and replacing the inequality by an equality, thus obtaining
a one-dimensional first order system of ODEs, i.e. the differential equation

v′ = ω(v) .

The comparison principle relates properties of the solutions v(t) of this
one-dimensional system to properties of the solutions x(t) of the original
n-dimensional system x′ = f(x) by using solutions V (t), i.e. V (x(t)), to the
differential inequality. For example, one use of the comparison principle in the
theory of ODEs is to infer stability of the original system by establishing sta-
bility of the one-dimensional comparison system (see e.g. Brauer [7], Habets
and Peiffer [18, Sect. 2]).3 The comparison principle hinges on an appropriate
comparison theorem, which establishes the relationship between the solutions of
the one-dimensional system to the solutions of the differential inequality. Below
we state a particularly useful comparison theorem (a corollary to the comparison
theorem in Walter [49, Chap. II, Sect. IX]) which we shall use in later sections.
3 The comparison principle is described in some detail in [48], and also in a number of

textbooks, e.g. in [42, Chap. II Sect. 3, Chap. IX], [51, Sect. 1.4], [19, Theorem 4.16].

424 A. Sogokon et al.

Theorem 1 (Scalar comparison theorem). Let B(t) and b(t) be real val-
ued functions differentiable on some real interval [0, T]. If B′ ≤ ω(B) and
b′ = ω(b) holds on [0, T] for some locally Lipschitz continuous function ω and if
B(0) = b(0), then for all t ∈ [0, T] one has B(t) ≤ b(t).

The comparison theorem above ensures that the solutions b(t) to the
comparison system of ODEs act as upper bounds on the solutions B(t) to the
corresponding system of differential inequalities. We note in passing that the
above theorem also holds more generally for ω with explicit time-dependence,
i.e. ω(t, B).

3.3 Comparison Principle Interpretation of Barrier Certificates

The original formulation of convex barrier certificates in [37] can be interpreted
using the comparison principle viewpoint as the trivial case in which the dif-
ferential inequality B′ ≤ 0 (i.e. ω being the constant function 0) leads to the
comparison system given by b′ = 0, in which there is no motion. The initial states
in the comparison system are defined as bInit = {k ∈ R | B(x) = k,x ∈ Init};
analogously, the unsafe states are bUnsafe = {k ∈ R | B(x) = k,x ∈ Unsafe}.
Since the value of B at unsafe states is required to be greater than its values at
initial states by conditions CBC 1–2, the safety property follows because the
solutions of the comparison system b(t) bound the solutions B(t) from above
and cannot increase. Figure 1a illustrates this comparison system. Since every
point is an equilibrium and b(0) ≤ 0 is required for all initial states in bInit, and
b(t) = b(0) ≤ 0 will hold for all t ≥ 0, the comparison system cannot evolve
into a potentially unsafe state b(τ) > 0 (i.e. b(τ) ∈ bUnsafe) for any τ > 0. As a
consequence, B(x(t)) ≤ 0 will hold for all x(0) ∈ Init for as long as solutions
are defined in the original system, by Theorem 1, satisfying the requirements in
Lemma 1.

B

ω(B)

0

b0

(a) Constant (zero)

B

ω(B) λB

b0

(b) Linear

B

ω(B)

r1 r2

ω(B)

br1 r2

(c) Non-linear

Fig. 1. Right-hand sides of differential inequalities B′ ≤ ω(B) shown above. Their
corresponding scalar comparison systems b′ = ω(b) are shown below as vector fields
on the real line. The motion in these comparison systems is directed “to the right”
whenever ω is above zero, and “to the left” when it is below; equilibria are those points
where ω evaluates to zero, i.e. the real roots of ω.

Vector Barrier Certificates and Comparison Systems 425

The exponential-type [22] and general [11] barrier certificates can also be eas-
ily understood as special instances of applying the comparison principle. With
the former, one has a linear differential inequality B′ ≤ λB, for some λ ∈ R,
which leads to the simple linear comparison system b′ = λb (i.e. ω(b) = λb)
defined on the real line (illustrated in Fig. 1b). As before, by showing unreach-
ability of unsafe states bUnsafe from the initial states bInit in the comparison
system, Theorem 1 allows one to soundly conclude the safety property in the
original system provided that B(x) ≤ 0 for all initial states and B(x) > 0 for
all unsafe states, as required by ETBC 1–2 (cf. Sect. 3.1). We note also that
the solutions b(t) in the comparison system are defined for all t ≥ 0, since the
system is linear, and the bounding property stated in the comparison theorem
will hold for as long as solutions are defined in the original system.

The general barrier certificates reported in [11] simply allow for a non-linear
function ω of B in the right-hand side of the differential inequality, i.e. B′ ≤
ω(B). This leads to a non-linear scalar comparison system b′ = ω(b) which
can exhibit more interesting flows on the real line (as shown in Fig. 1c). The
principle, however, is exactly the same: the unreachability of the unsafe states
from the initial states in the comparison system (e.g. the one-dimensional flow
shown in Fig. 1c) implies the safety property in the original system. However,
since ω can be non-linear, it also becomes important to ensure that solutions
from the initial states in the comparison systems do not escape to infinity before
they do in the original system. Thus, the last requirement of general barrier
certificates GBC 4 is essentially requiring one to explicitly supply an appropriate
comparison system.4

3.4 Invariant Set-Based Barrier Certificates

An alternative way of ensuring condition (2.) in Lemma 1 is by directly requiring
the continuous invariance property of the entire sub-level set of the barrier
function, i.e. B ≤ 0, and explicitly requiring that all initial states lie inside
this sub-level set, i.e. ∀x ∈ Init. B(x) ≤ 0. The set {x ∈ R

n | B(x) ≤ 0} is
a continuous invariant under constraint Q if the system cannot continuously
evolve from a state x ∈ R

n satisfying B(x) ≤ 0 into a state x(t) satisfying
B(x(t)) > 0, while respecting the constraint Q. Semantically, this amounts to
showing that the following holds:

∀x0 ∈ R
n. (B(x0) ≤ 0 ⇒ (∀t ≥ 0. (∀ τ ∈ [0, t].x(x0, τ) ∈ Q) ⇒ B(x(x0, t)) ≤ 0))

Notice the subtle difference of this requirement to that in Lemma 1, which
does not require the sub-level set B ≤ 0 to be a continuous invariant.
4 For the interested reader, we note that in [11, Theorem 1], the barrier function B

is denoted by ϕ, the function ω is denoted ψ, and the variable b of the comparison
system denoted by θ. Indeed, the final condition (5) in [11, Theorem 1] simply
requires that the solution of the comparison system b′ = ω(b) (i.e. θ′ = ψ(θ) using
notation employed in the article) does not become positive as time (denoted by ξ)
advances. No reference to the comparison principle is made in that work.

426 A. Sogokon et al.

Remark 3. Continuous invariance is a generalization of the notion of positive
invariance used in control (e.g. see [4]); its greater generality is due to an appro-
priate handling of evolution constraints. We note that the problem of checking
whether a given semi-algebraic set (i.e. a set described by a finite Boolean com-
bination of polynomial equations and inequalities) defines a continuous invariant
under the flow of a polynomial first-order system of ODEs is decidable (a remark-
able result due to Liu, Zhan and Zhao [25]).

However, searching for continuous invariants – even those of restricted form,
such as sub-level sets of polynomial functions – using tools such as real quantifier
elimination is impractical due to the time complexity of existing algorithms
(e.g. partial CAD [9]).

An example of barrier certificate conditions based on continuous invariance
is the so-called strict [45] (also known as non-convex [36,38]) barrier certificate,
which imposes the following formal requirements:

SBC 1. ∀x ∈ R
n. (Unsafe → B > 0),

SBC 2. ∀x ∈ R
n. (Init → B ≤ 0),

SBC 3. ∀x ∈ R
n. (Q ∧ B = 0 → B′ < 0).

In the last condition, the strict inequality B′(x) < 0 is only required to hold at
the roots of the function B, i.e. for all x ∈ Q such that B(x) = 0. This condition5

is in practice less conservative than that used in convex barrier certificates, since
it does not impose a requirement on the derivative everywhere in the evolution
constraint Q. However, the set of functions B satisfying this condition is no
longer convex and as a result one may no longer directly apply semi-definite
programming to search for this type of barrier functions. An alternative iterative
search method for strict barrier certificates was explored in [36,37] and was also
used to search for (likewise non-convex) general barrier certificates [11, Sect. 4].

We note that continuous invariance is the main principle underlying safety
verification problems. In fact, scalar comparison systems are essentially means
of generating sufficient continuous invariants to solve the problem at hand. For
example, in a one-dimensional comparison system b′ = ω(b), obtained from the
differential inequality B′ ≤ ω(B), for any k ∈ R such that ω(k) < 0 it is
guaranteed that B′(x) < 0 holds at all states x satisfying B(x) = k.6 This
property is sufficient to conclude that the sub-level set B ≤ k is a continuous
invariant in the original n-dimensional system. For example, in the non-linear
system b′ = ω(b) illustrated in Fig. 1c, any k ∈ (r1, r2) can be used to extract
such an invariant; for the linear example in Fig. 1b one may take any k < 0.

5 Note that the inequality needs to be strict ; the original formulation of non-convex
barrier certificates in [37] featured a non-strict inequality B′ ≤ 0, which leads to
unsoundness in certain degenerate cases. A finite number of inequalities involving
higher-order derivatives of B can be used instead to soundly establish continuous
invariance of the sub-level set B ≤ 0, following the result reported in [25].

6 Each point k on the real line in a scalar comparison system b′ = ω(b) corresponds
to {x ∈ R

n | B(x) = k} in the original state space.

Vector Barrier Certificates and Comparison Systems 427

4 From Scalar to Vector Comparison Systems

A multi-dimensional version of Lyapunov functions, known as vector Lyapunov
functions, was first introduced in 1962 by Bellman [2], using the more general
vector comparison principle. 7 Below we briefly review this development.

4.1 Vector Lyapunov Functions

The main idea behind vector Lyapunov functions is as follows: instead of search-
ing for a single Lyapunov function V : Rn → R, one searches for a vector function
V : Rn → R

m, where V (x) is a vector (V1(x), . . . , Vm(x)) and V1, . . . , Vm are
scalar functions, such that for each i = 1, . . . , m one has V ′

i ≤ ωi(V1, . . . , Vm),
where ωi : R

m → R. In the classic (scalar) Lyapunov case, i.e. the special
case where m = 1, if one had V ′ ≤ ω(V), with positive definite V and some
appropriate scalar function ω, one could use the comparison principle to infer
stability by showing this property in the scalar comparison system v′ = ω(v)
(e.g. see Brauer [7]). With vector Lyapunov functions one is instead interested
in analysing the vector comparison system v′ = ω(v), obtained from a system
of differential inequalities V ′ ≤ ω(V), where ω : Rm → R

m. There is, however,
an (unpleasant) extra requirement: in order to conclude stability of the original
system from the stability of the vector comparison system, the vector function
ω needs to be quasi-monotone increasing.

Definition 2. A function ω : Rm → R
m is said to be quasi-monotone increasing

on a set U ⊆ R
m if ωi(x) ≤ ωi(y) for all i = 1, . . . , m and all x,y ∈ U such

that xi = yi, and xk ≤ yk for all k �= i.

In particular, univariate functions (case m = 1) are always quasi-monotone
increasing by definition since the required inequality holds trivially (x = y
implies ω(x) ≤ ω(y)). In the vector case, a linear multivariate function ω(x) =
Ax is quasi-monotone increasing if and only if all the off-diagonal entries of the
m × m real matrix A are non-negative (e.g. see [48]). Such a matrix is said to
be essentially non-negative, quasi-positive, or a Metzler matrix.

Remark 4. Clearly, vector comparison systems are only interesting in practice
insofar as they are easier to analyse than the original system. For stability
analysis with vector Lyapunov functions, linear vector comparison systems of
the form v′ = ω(v) = Av, where A is an appropriate essentially non-negative
m × m real matrix, are easier to work with than non-linear vector comparison
systems. One may easily create linear quasi-monotone increasing vector compar-
ison systems v′ = Av that are stable a priori and then search for vector Lya-
punov functions that satisfy the corresponding system of differential inequalities
V ′ ≤ AV ; see [17]. Indeed, Bellman’s approach [2] only focused on linear vector
comparison systems. The general method of vector Lyapunov functions has been
applied extensively to study stability of non-linear systems; the interested reader
is invited to consult [24,28], and [19, Sect. 4.11] for a more thorough overview.
7 The technique itself was also independently developed by Matrosov [27], who also

published his research in 1962, shortly after Bellman.

428 A. Sogokon et al.

4.2 Vector Comparison Principle

Quasi-monotonicity of the right-hand side in the comparison system b′ = ω(b)
ensures that its solutions b(t) majorize (bound above component-by-component)
the solutions B(t) to the system of differential inequalities B′ ≤ ω(B), anal-
ogously to the scalar comparison case in Theorem 1. Following [2], we state
(in Theorem 2) a vector comparison theorem which enables one to employ the
vector comparison principle for the practically interesting case where ω is linear
(for a proof, see e.g. [1, Chap. 4, Sect. 6, Theorem 4]).

Theorem 2 (Linear vector comparison theorem). For a given system
of ODEs x′ = f(x) and an essentially non-negative matrix, A ∈ R

m×m, if
B = (B1, B2, . . . , Bm) satisfies the system of differential inequalities B′ ≤ AB,
then for all t ≥ 0 the inequality B(t) ≤ b(t) holds component-wise, where b(t)
is the solution to the comparison system b′ = Ab, B(t) is any solution to the
system of differential inequalities, and b(0) = B(0).

The above vector comparison theorem can be generalized to the non-linear
case where B′ ≤ ω(B) and b′ = ω(b), provided that the non-linear vector
function ω : Rm → R

m is quasi-monotone increasing. For a precise statement
and proof see e.g. [19, Sect. 4.13], [49, Chap. III, Sect. XII], [23, Sect. 4.1].

4.3 Safety with Vector Barrier Certificates

The main interest in pursuing the vector comparison approach is to relax the
conditions on each individual function component of the vector. The hope is
that it is easier to search for functions that satisfy less rigid criteria. It is natural
to ask whether one might profitably apply vector comparison systems to safety
verification. We begin by stating a useful lemma.

Lemma 2. If A ∈ R
m×m is an essentially non-negative matrix, then for any

initial value b0 ≤ 0, the solution b(t) to the linear system b′ = Ab is such that
b(t) ≤ 0 for all t ≥ 0.

Proof. This follows from the fact that solutions to the linear system b′ = Ab
from an initial value b0 ≤ 0 are given by b(t) = eAtb0, and all the elements
of the matrix exponential eAt are non-negative for all t ≥ 0 if and only if A is
essentially non-negative (e.g. see proof of Theorem 4 in [1, Chap. 4, Sect. 6]). �
Theorem 3. Given x′ = f(x), Q, Init, and Unsafe as before, an m-vector of
continuously differentiable functions B = (B1, B2, . . . , Bm) and some essentially
non-negative m × m matrix A, if the following conditions hold, then the safety
property of the system is guaranteed:

VBC∧1. ∀x ∈ R
n. (Init → ∧m

i=1 Bi ≤ 0),
VBC∧2. ∀x ∈ R

n. (Unsafe → ∨m
i=1 Bi > 0),

VBC∧3. ∀x ∈ R
n.

(
Q → B′ ≤ AB

)
.

Vector Barrier Certificates and Comparison Systems 429

Proof. Elementary, since the states satisfying
∧m

i=1 Bi(x) ≤ 0 include all the
initial states, no unsafe states, and majorizing solutions b(t) of the comparison
system b′ = Ab cannot take on positive values in any component for any time
t ≥ 0 (by Lemma 2). Thus, B(t) ≤ 0 for all t ≥ 0 (by Theorem 2). �
For any given matrix A ∈ R

m×m if the m-vectors B = (B1, B2, . . . , Bm) and
B̃ = (B̃1, B̃2, . . . , B̃m) satisfy conditions VBC∧1 and VBC∧3, then so does
their convex combination B̂ = αB + (1 − α)B̃, where α ∈ [0, 1]. The latter
holds since B̂

′
= αB′ + (1 − α)B̃

′ ≤ αAB + (1 − α)AB̃ = AB̂. Unfortunately,
the condition VBC∧2, while intuitive and desirable, leads to non-convexity. To
recover convexity one may write down a stronger condition as follows.8

Corollary 1. Given x′ = f(x), Q, Init, Unsafe, B and A as before, if for some
i∗ ∈ {1, . . . , m} the following conditions hold, then the safety property of the
system is guaranteed:

VBC 1. ∀x ∈ R
n. (Init → ∧m

i=1 Bi ≤ 0),
VBC 2. ∀x ∈ R

n. (Unsafe → Bi∗ > 0),
VBC 3. ∀x ∈ R

n.
(
Q → B′ ≤ AB

)
.

Notice that a barrier function Bi∗ satisfying the conditions VBC 1–3 satis-
fies the requirement of the semantic principle in Lemma 1, but its sub-level set
Bi∗ ≤ 0 need not be a continuous invariant (unlike in scalar barrier certificates).

Remark 5. Vector barrier certificates can also be defined using a non-linear
vector differential inequality B′ ≤ ω(B), where ω is some non-linear
quasi-monotone increasing function. This, however, would lead to the convex-
ity property being lost and would also require the solutions to the comparison
system to be of sufficient duration in order to ensure soundness. This approach
does not appear to be at all promising from a practical standpoint, but provides
the most general notion for vector barrier certificates.

Theorem 4 (Deductive power). Every polynomial convex or ‘exponential-
type’ barrier certificate is (trivially) a vector barrier certificate satisfying the
conditions VBC∧1–3 (or VBC 1–3). The converse is false, i.e. there exist
polynomial vector barrier certificates sufficient for proving certain safety proper-
ties where a scalar barrier certificate does not exist.

Proof. For the non-trivial part, consider the system x′
1 = x2, x′

2 = x1. Sup-
pose that the initial states in this system satisfy the formula x1 ≤ 0 ∧ x2 ≤ 0
and the unsafe states satisfy x1 > 0. If we take B1 = x1 and B2 = x2 then,
since B′

1 = x′
1 and B′

2 = x′
2, the following system of differential inequalities

is satisfied: B′
1 ≤ B2, B′

2 ≤ B1, which is equivalently written down as a lin-
ear system of differential inequalities with an essentially non-negative matrix:

8 Naturally, for the vectorial formulation to be interesting, none of the functions
B1, . . . , Bm should be (scalar) barrier certificates in their own right.

430 A. Sogokon et al.

(
B′

1
B′

2

)
≤

(
0 1
1 0

)(
B1
B2

)
. The vector (B1, B2) satisfies all the conditions in Theo-

rem 3 and Corollary 1 with i∗ = 1 (note that the comparison system is in this case
equivalent to the original essentially non-negative system in the new variables
b1, b2). However, there is no polynomial function B that can act as a scalar bar-
rier certificate. For contradiction, assume there is such a (continuous) B. The ver-
ification problem requires that B(x1, x2) evaluates to 0 whenever x1 = 0∧x2 ≤ 0
holds, therefore the univariate polynomial B(0, x2) has infinitely many real roots
and is therefore the zero polynomial, from which we conclude that B(x1, x2) has
real roots on the entire line x1 = 0. The set B(x1, x2) ≤ 0 thus cannot be a
continuous invariant (and B is therefore not a convex or an ‘exponential-type’
barrier certificate) because any trajectory initialized from x1 = 0∧x2 > 0 enters
the unsafe set where the function B is required to be positive. �

Fig. 2. Vector barrier certificate
(B1, B2) = (x1, x2). (Colour figure
online)

Vector barrier certificates can also exist
with lower polynomial degrees than is
possible with scalar barrier certificates. To
take an example, consider the verification
problem (with x′

1 = x2, x
′
2 = x1, as that

in the above proof) illustrated in Fig. 2,
where the initial states are represented by the
green rectangle [−7,− 1

2] × [−4,− 3
2] and the

unsafe states by the red circle of radius
√

2
centred at (−3, 2). The vector barrier cer-
tificate (B1, B2) = (x1, x2) is linear in each
component (i.e. has polynomial degree 1)
and satisfies all the conditions required by
Theorem 3 and Corollary 1. However, there
is no linear/affine function that is a scalar
barrier certificate for this problem because
there is no half-plane that includes all the initial states, no unsafe states, and
is invariant under the dynamics (i.e. such that trajectories cannot escape). This
holds because any line separating the two sets cannot have slope 1 or −1, which
are the only possible values for slope of a linear function defining an invariant
half-plane in this system.

As with barrier certificates based on scalar comparison systems, one is able to
extract invariant sets from the vector generalization; the class of invariants one
can extract is, in fact, richer. For example, given a vector differential inequality
B′ ≤ AB, where A is essentially non-negative, one may extract a conjunctive
invariant

∧m
i=1 Bi ≤ 0. Furthermore, the constituent conjuncts Bi ≤ 0 of such a

conjunction need not define invariant sets in their own right.

4.4 Generating Vector Barrier Certificates Using SDP

Generation of vector barrier certificates based on Corollary 1 using sum-of-
squares optimization can be performed with a straightforward generalization

Vector Barrier Certificates and Comparison Systems 431

of corresponding techniques for scalar barrier certificates [37]. Let us assume
that the sets Init,Unsafe, Q are characterized by the conjunctions:

∧a
i=1 Ii ≥ 0,

∧b
i=1 Ui ≥ 0, and

∧c
i=1 Qi ≥ 0 respectively, where Ii, Ui, Qi are polynomials. Fix

a small, positive constant ε > 0, and fix an essentially non-negative m×m matrix
A. Let Bi be template polynomials, and σIi,j , σUj

, σQi,j
be sum-of-squares tem-

plate polynomials.9 The following is a sum-of-squares optimization problem for
size m vector barrier certificates B1, B2, . . . , Bm, with i∗ ∈ {1, . . . , m}:

−Bi − Σa
j=1σIi,jIj ≥ 0 for all i = 1, 2, . . . ,m (VBC 1)

Bi∗ − Σb
j=1σUj

Uj − ε ≥ 0 (VBC 2)

Σm
j=1AijBj − B′

i − Σc
j=1σQi,j

Qj ≥ 0 for all i = 1, 2, . . . ,m (VBC 3)

The three optimization constraints ensure that the corresponding VBC condi-
tion holds for the resulting Bi. We show an example of barrier certificates that
can be generated by this method.

Example 1 (Linear barriers). Consider the following 3-dimensional system:

x′
1 = 2x1 + x2 + 2x3 − x2

1 + x1x3 − x2
3,

x′
2 = −2 + x1 − x2 − x2

2,

x′
3 = −2 − x2 − x3 + x2

1 − x1x3,

where Init is defined by
∧3

i=1 −xi ≥ 0, Unsafe by x1 + x2 + x3 ≥ 1, and there

is no evolution constraint. Using the matrix A =
(

0 1 2
1 −1 0
1 0 1

)
, i∗ = 1, and the

sum-of-squares solver SOSTOOLS [30], we obtain the following true vector bar-
rier certificate by manually tweaking the floating-point coefficients returned by
the solver.10 Observe that neither B1 ≤ 0 nor B2 ≤ 0 define invariant sets.

B1 = (365x1 + 365x2 + 365x3 − 60)/100,

B2 = (175x1 + 180x2 + 100x3 − 160)/100,

B3 = (460x1 + 155x2 + 270x3 − 250)/100.

Alternatives to SDP. There exist a number of alternatives to semi-definite
programming which can be employed to generate vector barrier certificates.
For example, constraint programming techniques for solving inequality con-
straints over the reals were studied by Ratschan [39] and applied to search for
Lyapunov-like functions [40]. Computation of strict barrier certificates
using interval constraint satisfaction techniques was later investigated by
9 Template polynomials are polynomials of fixed degree, but with symbolic coefficients.

Sum-of-squares optimization searches for appropriate values for these coefficients.
10 Numerical inaccuracies plague SOS-based approaches to generating all types of

barrier certificates and render most generated barrier certificates subtly incorrect.
Mitigating this issue is an important, but orthogonal, question that has been inves-
tigated elsewhere [32,43].

432 A. Sogokon et al.

Bouissou [5], Djaballah et al. [12]. Another intriguing alternative studied by
Sankaranarayanan et al. [44] (and later Yang et al. [50]) is the linear relaxation
approach based on so-called Handelman representations [21] (which allow the use
of linear programming to establish the positive semi-definite property of a poly-
nomial over a compact convex polyhedron); this technique was observed to be
much less prone to numerical errors than methods based on interior-point solvers.
These approaches, however, are limited to problems with bounded domains.

5 Limitations and Outlook

The trade-off in employing the vector comparison principle comes down to the
following: the relaxation of requirements on each individual component of the
vector function comes at the price of increased complexity (due to increased
dimension) of the comparison system. Already in the scalar (m = 1) special
case corresponding to the ‘exponential-type’ barrier certificate, the choice of
the single coefficient λ in the comparison system b′ = λb was observed to
impact the results [22]. Our approach provides more flexibility but also requires
more choices in the essentially non-negative matrix A. While we do not yet
have general heuristics, a possible strategy for picking alternative matrices A
when the initial choice fails is to change the values of the matrix in a way that
changes the qualitative behaviour of the trajectories of the comparison system
b′ = Ab (i.e. changes the structure of the phase portrait ; see e.g. [3, Chap. 5,
pp. 147–149]). It is clear that in practice one should always attempt to find a
scalar barrier certificate (m = 1) first and proceed to increase the dimension
m of the comparison system if the search was unsuccessful (for example due
to numerical inaccuracies when polynomials of high degree are involved [11]).
Vector barrier certificates could alleviate some of these problems because they
allow us to reduce the polynomial degree of the barriers. An empirical study of
this trade-off (and indeed of existing scalar notions of barrier certificates) falls
outside of the scope of this work and would require a large set of verification
benchmarks to be objective, but presents an interesting direction for further
investigation.

We remark, however, that scalar comparison systems, even when they are
insufficient to prove the safety property at hand, may reveal structure in the
dynamics which could help in constructing an appropriate comparison system
for vector barrier certificates. The proposition below is a direct consequence of
a property of essentially non-negative (Metzler) matrices, akin to the Perron-
Frobenius theorem for non-negative matrices which establishes the existence of
an eigenvector in the non-negative orthant (e.g. see [46, Proposition 1]).

Proposition 1. For a given system of ODEs x′ = f(x) and an essentially
non-negative matrix, A ∈ R

m×m, if B = (B1, B2, . . . , Bm) satisfies the system
of differential inequalities B′ ≤ AB, then there exists a scalar function g and a
scalar μ such that g′ ≤ μg.

Vector Barrier Certificates and Comparison Systems 433

Proof. Since A is Metzler, then its transpose, AT , is also a Metzler matrix. Let
u be an eigenvector of AT in the non-negative orthant with eigenvalue μ, i.e.
AT u = μu. Then, the scalar product g := u · B satisfies the scalar comparison
inequality: g′ = u · B′ ≤ u · (AB) = (AT u) · B = (μu) · B = μg. The inequality
is justified since all the components of the vector u are non-negative. �
The (real) eigenvalue μ is in fact the dominant eigenvalue (also called the spectral
abscissa) of A: it is the maximum of the real parts of all the eigenvalues of
A which coincides with the Perron-Frobenius root of A if A is non-negative.
As a consequence, if a linear scalar comparison system cannot be found for
a given scalar λ, one can rule out Metzler matrices with dominant eigenvalue
below λ.

6 Related Work

In [11], Dai et al. explored an approach for combining more than one barrier
certificate in order to prove safety in examples where a single barrier certifi-
cate could not be found (see [11, Lemmas 3 and 4]). However, these so-called
combined barrier certificates only use the scalar variant of the comparison prin-
ciple, i.e. for each barrier function Bi, a differential inequality of the form
B′

i ≤ ωi(Bi) is considered, where ωi : R → R is a univariate analytic func-
tion, rather than a multivariate quasi-monotone increasing function, as we do in
the vector barrier certificate framework. The way combined barrier certificates
are constructed in [11] is closely related to the principle of differential cuts (DC),
which was explored previously [15,33]. Platzer and Clarke [34] investigated ways
of automatically generating differential invariants, which lift convex/weak bar-
rier certificates from defining invariant sub-level sets of differentiable functions to
formulas which can feature Boolean combinations of equalities and inequalities
and thus describe a richer class of continuous invariants. In this paper we pur-
sued a fundamentally different generalization; however, we remark that purely
conjunctive differential invariants (of the form

∧m
i=1 Bi ≤ 0) in [34] reduce to the

special case of vector barrier certificates where the matrix A is the zero matrix.
Besides the method of barrier certificates, a number of other complementary
methods are available for safety verification of continuous and hybrid systems,
e.g. [8,13,14,29,35,47] (an overview of some techniques may be found in [16]).11

7 Conclusion

The comparison principle used in control theory and applied mathematics offers
a powerful mechanism for creating abstractions of ODEs. In the domain of safety
verification this principle can – in a very natural way – provide a theoretically

11 Note, however, that the article [16] reproduces the unsound version of non-convex
barrier certificates from [37], i.e. using the condition ∀x ∈ R

n.(Q∧B = 0 → B′ ≤ 0).

434 A. Sogokon et al.

satisfying foundation for understanding existing (scalar) notions of barrier cer-
tificates reported in [11,22,37]. Adopting the comparison principle viewpoint
leads naturally to consider existing generalizations of this principle. In this
vein, a multi-dimensional generalization of the method of barrier certificates
(vector barrier certificates) has been formulated, in which the conditions on the
derivative of barrier functions are relaxed in a way analogous to vector Lya-
punov functions [2]. In the linear special case of this multidimensional extension
(Corollary 1), the convexity of the search space can be preserved, allowing the
use of tractable semi-definite programming techniques to search for more general
classes of barrier certificates satisfying the semantic principle (Lemma 1) than
was previously possible.

Acknowledgements. The authors would like to thank the FM 2018 reviewers for
their feedback, constructive criticisms and suggestions, and extend special thanks to
Dr. Stefan Mitsch and Brandon Bohrer at Carnegie Mellon University for their detailed
comments and scrutiny.

References

1. Beckenbach, E.F.: Inequalities. Ergebnisse der Mathematik und ihrer Grenzgebiete,
vol. 30. Springer, New York (1961). https://doi.org/10.1007/978-3-642-64971-4

2. Bellman, R.: Vector Lyapunov functions. SIAM J. Control Optim. 1(1), 32–34
(1962)

3. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Wiley, New York (1989)
4. Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999)
5. Bouissou, O., Chapoutot, A., Djaballah, A., Kieffer, M.: Computation of paramet-

ric barrier functions for dynamical systems using interval analysis. In: 53rd IEEE
Conference on Decision and Control, CDC 2014, Los Angeles, CA, USA, 15–17
December 2014, pp. 753–758. IEEE (2014)

6. Brauer, F.: Global behavior of solutions of ordinary differential equations. J. Math.
Anal. Appl. 2(1), 145–158 (1961)

7. Brauer, F.: Some refinements of Lyapunov’s second method. Canad. J. Math. 17,
811–819 (1965)

8. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: Proceedings of the 33rd IEEE Real-Time Systems
Symposium, RTSS 2012, San Juan, PR, USA, 4–7 December 2012, pp. 183–192.
IEEE Computer Society (2012)

9. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput. 12(3), 299–328 (1991)

10. Conti, R.: Sulla prolungabilità delle soluzioni di un sistema di equazioni differenziali
ordinarie. Bollettino dell’Unione Matematica Italiana 11(4), 510–514 (1956)

11. Dai, L., Gan, T., Xia, B., Zhan, N.: Barrier certificates revisited. J. Symb. Comput.
80(1), 62–86 (2017)

12. Djaballah, A., Chapoutot, A., Kieffer, M., Bouissou, O.: Construction of parametric
barrier functions for dynamical systems using interval analysis. Automatica 78,
287–296 (2017)

https://doi.org/10.1007/978-3-642-64971-4

Vector Barrier Certificates and Comparison Systems 435

13. Fan, C., Kapinski, J., Jin, X., Mitra, S.: Locally optimal reach set over-
approximation for nonlinear systems. In: 2016 International Conference on Embed-
ded Software, EMSOFT 2016, Pittsburgh, Pennsylvania, USA, 1–7 October 2016,
pp. 6:1–6:10. ACM (2016)

14. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopala-
krishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

15. Ghorbal, K., Sogokon, A., Platzer, A.: A hierarchy of proof rules for checking pos-
itive invariance of algebraic and semi-algebraic sets. Comput. Lang. Syst. Struct.
47, 19–43 (2017)

16. Guéguen, H., Lefebvre, M., Zaytoon, J., Nasri, O.: Safety verification and reacha-
bility analysis for hybrid systems. Ann. Rev. Control 33(1), 25–36 (2009)

17. Gunderson, R.W.: A stability condition for linear comparison systems. Quart.
Appl. Math. 29(2), 327–328 (1971)

18. Habets, P., Peiffer, K.: Classification of stability-like concepts and their study using
vector Lyapunov functions. J. Math. Anal. Appl. 43(2), 537–570 (1973)

19. Haddad, W.M., Chellaboina, V.: Nonlinear Dynamical Systems and Control, A
Lyapunov-Based Approach. Princeton University Press, Princeton (2008)

20. Hale, J.K., LaSalle, J.P.: Differential equations: linearity vs. nonlinearity. SIAM
Rev. 5(3), 249–272 (1963)

21. Handelman, D.: Representing polynomials by positive linear functions on compact
convex polyhedra. Pac. J. Math. 132(1), 35–62 (1988)

22. Kong, H., He, F., Song, X., Hung, W.N.N., Gu, M.: Exponential-condition-based
barrier certificate generation for safety verification of hybrid systems. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 242–257. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 17

23. Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities: Theory and
Applications. Volume I: Ordinary Differential Equations. Academic Press, New
York (1969)

24. Lakshmikantham, V., Matrosov, V.M., Sivasundaram, S.: Vector Lyapunov Func-
tions and Stability Analysis of Nonlinear Systems. Mathematics and Its Appli-
cations, vol. 63. Springer, Dordrecht (1991). https://doi.org/10.1007/978-94-015-
7939-1

25. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S.
(eds.) Proceedings of Ninth ACM International Conference on Embedded Software,
EMSOFT 2011, 9–14 October 2011, pp. 97–106. ACM (2011)

26. Lyapunov, A.M.: The general problem of stability of motion. Int. J. Control 55,
531–773 (1992). Comm. Math. Soc. Kharkov (1892), English translation

27. Matrosov, V.M.: On the theory of stability of motion. Prikl. Mat. Mekh. 26(6),
1506–1522 (1962). English translation (1962)

28. Michel, A.N., Miller, R.K.: Qualitative Analysis of Large Scale Dynamical Systems.
Mathematics in Science and Engineering, vol. 134. Academic Press, New York
(1977)

29. Mitchell, I., Tomlin, C.J.: Level set methods for computation in hybrid systems. In:
Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 310–323. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-46430-1 27

30. Papachristodoulou, A., Anderson, J., Valmorbida, G., Prajna, S., Seiler, P., Parrilo,
P.A.: SOSTOOLS version 3.00 sum of squares optimization toolbox for MATLAB.
CoRR abs/1310.4716 (2013)

https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-39799-8_17
https://doi.org/10.1007/978-94-015-7939-1
https://doi.org/10.1007/978-94-015-7939-1
https://doi.org/10.1007/3-540-46430-1_27

436 A. Sogokon et al.

31. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry meth-
ods in robustness and optimization. Ph.D. thesis, California Institute of Technol-
ogy, May 2000

32. Peyrl, H., Parrilo, P.A.: Computing sum of squares decompositions with rational
coefficients. Theor. Comput. Sci. 409(2), 269–281 (2008)

33. Platzer, A.: The structure of differential invariants and differential cut elimination.
Log. Meth. Comput. Sci. 8(4), 1–38 (2012)

34. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as
fixedpoints. Formal Meth. Syst. Des. 35(1), 98–120 (2009)

35. Platzer, A., Tan, Y.K.: Differential equation axiomatization: the impressive power
of differential ghosts. In: Dawar, A., Grädel, E. (eds.) LICS. ACM, New York
(2018)

36. Prajna, S.: Optimization-based methods for nonlinear and hybrid systems verifi-
cation. Ph.D. thesis, California Institute of Technology, January 2005

37. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 32

38. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic
safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8),
1415–1428 (2007)

39. Ratschan, S.: Efficient solving of quantified inequality constraints over the real
numbers. ACM Trans. Comput. Log. 7(4), 723–748 (2006)

40. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polyno-
mial systems by computation of Lyapunov-like functions. SIAM J. Control Optim.
48(7), 4377–4394 (2010)

41. Richardson, D.: Some undecidable problems involving elementary functions of a
real variable. J. Symb. Log. 33(4), 514–520 (1968)

42. Rouche, N., Habets, P., Laloy, M.: Stability Theory by Liapunov’s Direct Method.
Applied Mathematical Sciences, vol. 22. Springer, New York (1977). https://doi.
org/10.1007/978-1-4684-9362-7

43. Roux, P., Voronin, Y.-L., Sankaranarayanan, S.: Validating numerical semidefinite
programming solvers for polynomial invariants. In: Rival, X. (ed.) SAS 2016. LNCS,
vol. 9837, pp. 424–446. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53413-7 21

44. Sankaranarayanan, S., Chen, X., Ábrahám, E.: Lyapunov function synthesis using
Handelman representations. In: Tarbouriech, S., Krstic, M. (eds.) 9th IFAC Sympo-
sium on Nonlinear Control Systems, NOLCOS 2013, Toulouse, France, 4–6 Septem-
ber 2013, pp. 576–581. International Federation of Automatic Control (2013)

45. Sloth, C., Pappas, G.J., Wísniewski, R.: Compositional safety analysis using barrier
certificates. In: Dang, T., Mitchell, I.M. (eds.) Proceedings of Hybrid Systems:
Computation and Control, HSCC 2012, 17–19 April 2012, pp. 15–24. ACM (2012)

46. Son, N.K., Hinrichsen, D.: Robust stability of positive continuous time systems.
Numer. Funct. Anal. Optim. 17(5–6), 649–659 (1996)

47. Tiwari, A.: Abstractions for hybrid systems. Formal Meth. Syst. Des. 32(1), 57–83
(2008)

48. Walter, W.: Differential inequalities and maximum principles: theory, new methods
and applications. Nonlinear Anal. Theor. Meth. Appl. 30(8), 4695–4711 (1997).
Proceedings of the Second World Congress of Nonlinear Analysts

49. Walter, W.: Ordinary Differential Equations. Undergraduate Texts in Mathemat-
ics. Springer, New York (1998)

https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1007/978-1-4684-9362-7
https://doi.org/10.1007/978-1-4684-9362-7
https://doi.org/10.1007/978-3-662-53413-7_21
https://doi.org/10.1007/978-3-662-53413-7_21

Vector Barrier Certificates and Comparison Systems 437

50. Yang, Z., Huang, C., Chen, X., Lin, W., Liu, Z.: A linear programming relaxation
based approach for generating barrier certificates of hybrid systems. In: Fitzgerald,
J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp.
721–738. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6 44

51. Yoshizawa, T.: Stability Theory by Liapunov’s Second Method. Publications of the
Mathematical Society of Japan, vol. 9. The Mathematical Society of Japan, Tokyo
(1966)

https://doi.org/10.1007/978-3-319-48989-6_44

Timed Vacuity

Hana Chockler1, Shibashis Guha2(B), and Orna Kupferman3

1 King’s College London, London, UK
2 Université Libre de Bruxelles, Brussels, Belgium

shibashis.guha@ulb.ac.be
3 The Hebrew University, Jerusalem, Israel

Abstract. Vacuity is a leading sanity check in model-checking, applied
when the system is found to satisfy the specification. The check detects
situations where the specification passes in a trivial way, say when a
specification that requires every request to be followed by a grant is
satisfied in a system with no requests. Such situations typically reveal
problems in the modelling of the system or the specification, and indeed
vacuity detection is a part of most industrial model-checking tools.

Existing research and tools for vacuity concern discrete-time systems
and specification formalisms. We introduce real-time vacuity, which aims
to detect problems with real-time modelling. Real-time logics are used
for the specification and verification of systems with a continuous-time
behavior. We study vacuity for the branching real-time logic TCTL, and
focus on vacuity with respect to the time constraints in the specification.
Specifically, the logic TCTL includes the temporal operator UJ , which
specifies real-time eventualities in real-time systems: the parameter J ⊆
IR≥0 is an interval with integral boundaries that bounds the time in
which the eventuality should hold. We define several tightenings for the
UJ operator. These tightenings require the eventuality to hold within a
strict subset of J . We prove that vacuity detection for TCTL is PSPACE-
complete, thus it does not increase the complexity of model-checking
of TCTL. Our contribution involves an extension, termed TCTL+, of
TCTL, which allows the interval J not to be continuous, and for which
model checking stays in PSPACE. Finally, we describe a method for
ranking vacuity results according to their significance.

1 Introduction

In temporal logic model-checking, we verify the correctness of a system with
respect to a desired behavior by checking whether a mathematical model of the
system satisfies a temporal-logic formula that specifies this behavior [12]. When
the formula fails to hold in the model, the model checker returns a counterex-
ample — some erroneous execution of the system [13]. In the last years there
has been a growing awareness of the need of suspecting positive results of the
model-checking process, as errors may hide in the modelling of the system or the
behavior [22]. As an example, consider the property G(req → F grant) (“every
request is eventually granted”). This property is clearly satisfied in a system in
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 438–455, 2018.
https://doi.org/10.1007/978-3-319-95582-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_26&domain=pdf

Timed Vacuity 439

which requests are never sent. It does so, however, in a vacuous (non-interesting)
way, suggesting a suspicious behavior of the system.

In [6], Beer et al. suggested a first formal treatment of vacuity. As described
there, vacuity is a serious problem: “our experience has shown that typically
20% of specifications pass vacuously during the first formal-verification runs of
a new hardware design, and that vacuous passes always point to a real problem
in either the design or its specification or environment” [6]. In the last decade,
the challenge of detecting vacuous satisfaction has attracted significant attention
(c.f., [5,7–9,11,18–20,23,25–27]).

Different definitions for vacuity exist in the literature and are used in prac-
tice. The most commonly used ones are based on the “mutation approach” of
[6] and its generalization, as defined in [24]. Consider a model M satisfying
a specification Φ. A subformula ψ of Φ does not affect (the satisfaction of) Φ
in M if M satisfies also the (stronger) formula Φ[ψ ← ⊥], obtained from Φ by
changing ψ in the most challenging way. Thus, if ψ appears positively in Φ, the
symbol ⊥ stands for false, and if ψ is negative, then ⊥ is true1. We say that M
satisfies Φ vacuously if Φ has a subformula that does not affect Φ in M . Con-
sider for example the formula Φ = G(req → F grant) described above. In order
to check whether the subformula grant affects the satisfaction of Φ, we model
check Φ[grant ← false], which is equivalent to G¬req . That is, a model with
no requests satisfies Φ vacuously. In order to check whether the subformula req
affects the satisfaction of Φ, we model check Φ[req ← true]. This is equivalent to
GF grant , thus a model with infinitely many grant signals satisfies Φ vacuously.

So far, research on vacuity has been chiefly limited to systems with a discrete-
time behavior, modeled by means of labeled finite state-transition graphs. More
and more systems nowadays have a continuous-time behavior. This includes
embedded systems, mixed-signal circuits, general software-controlled physical
systems, and cyber-physical systems. Such systems are modeled by timed tran-
sition systems [2], and their behaviors are specified by real-time logics [4]. Some
preliminary study of vacuity for the linear real-time logic MITL [3] has been done
in [16]. The framework there, however, considers only mutations that change lit-
erals in the formula to true or false. Thus, it adapts the propositional approach
of [6,24] and does not involve mutations applied to the real-time aspects of the
specifications.

In this paper, we extend the general notion of vacuity to the satisfaction of
real-time properties. We focus on the temporal logic Timed Computation Tree
Logic (TCTL, for short) [1]. The logic TCTL has a single temporal operator UJ ,
where J ⊆ IR≥0 is an interval with integer bounds. The semantics of TCTL is
defined over Timed Transition Systems (TTSs, for short). A TTS is typically
generated by a timed automaton (TA) [2], which is an automaton equipped with
a finite set of clocks, and whose transitions are guarded by clock constraints.

1 The above definition assumes that ψ appears once in Φ, or at least that all its occur-
rences are of the same polarity; a definition that is independent of this assumption
replaces ψ by a universally quantified proposition [5]. Alternatively, one could focus
on a single occurrence of ψ.

440 H. Chockler et al.

The mutations we apply to TCTL formulas in order to examine real-time
vacuity concern the UJ operator. Unlike the approach in [6,16,24], our mutations
are applied to the real-time parameter, namely the interval J . The semantics of
timed eventualities suggests two conceptually different types of strengthening
for the UJ operator. First, we may tighten the upper bound for the satisfaction
of the eventuality; that is, reduce the right boundary of J . Such a mutation
corresponds to a check whether the specification could have actually required
the eventuality to be satisfied more quickly. Second, we may reduce the span
of J , namely replace it by a strict subset. Such a mutation corresponds to a
check whether the specification could have been more precise about the time
in which the eventuality has to be satisfied. From a technical point of view,
when replacing the interval J by a strict subset J ′ (that is, J ′ ⊂ J ⊆ IR≥0),
we distinguish between cases where J ′ is continuous (that is, J ′ is an interval
of the form [m1,m2], (m1,m2], [m1,m2), or (m1,m2), for m1,m2 ∈ IN), and
cases where J ′ is not continuous; that is, J ′ is a union of intervals. Dually, a
specification may be weakened, again by two types of mutations, which replace
J by an interval or a union of intervals J ′ such that J ⊂ J ′.

Given a TTS M and a TCTL formula Φ, we say that a subformula ψ with a
UJ operator (that is, ψ is AΦ1U

JΦ2 or EΦ1U
JΦ2) is not tight in Φ with respect

to M if J can be strengthened to J ′ and still M satisfies Φ with the tighter
eventuality. For example, if ψ = AΦ1U

JΦ2, then M satisfies Φ[ψ ← AΦ1U
J ′

Φ2].
We say that Φ is timed-vacuous in M if M |= Φ and has a subformula ψ that
is not tight in Φ. Note that timed vacuity is interesting only in cases ψ affects
the satisfaction of Φ in M in the untimed case. In other words, if we could
have mutated ψ to true or false without affecting the satisfaction of Φ in M ,
then clearly mutating J is not interesting. Thus, while we focus in this paper
on timed vacuity, it is important to combine it with traditional vacuity checks.
Consider for example the formula Φ = G(req → F [0,4]grant), asking each request
to be satisfied within 4 time units. In order to check whether the subformula
F [0,4]grant is tight, we can model check Φ[F [0,4]grant ← F [0,1]grant], where
requests are asked to be satisfied within 1 time unit. A model that satisfies the
stronger specification then satisfies Φ timed vacuously.

The need to consider mutations in which J ′ is not continuous results in for-
mulas that are not in TCTL. Indeed, in the UJ operator in TCTL, the interval
J is continuous, and we would like to examine mutations that replace, for exam-
ple, the interval [0, 4] by the union of the intervals [0, 1] ∪ [3, 4]. We introduce
an extension TCTL+ of TCTL that allows to express eventualities that occurs
in a union of a constant number of intervals with integral boundaries. We prove
that the complexity of TCTL+ model-checking is PSPACE-complete, thus it is
not more complex than TCTL model checking. The PSPACE model-checking
procedure for TCTL+ leads to a PSPACE algorithm for timed vacuity, and we
provide a matching lower bound.

In the case of traditional vacuity, it has been recognized that vacuity results
differ in their significance. While in many cases vacuity results are valued as
highly informative, there are also cases in which the results are viewed as

Timed Vacuity 441

meaningless by users. Typically, a user gets a long list of mutations that are
satisfied, each pointing to a different cause for vacuous satisfaction. In [15], the
authors suggest a framework for ranking of vacuity results for LTL formulas.
The framework is based on the probability of the mutated specification to hold
in a random computation: the lower the probability of the mutation to hold is,
the more alarming the vacuity information is. For example, the probability of
G¬req to hold in a random computation is low, hence if the system satisfies it,
this probably needs to be examined. We suggest an extension of the framework
to TCTL. The extension involves two technical challenges. First, moving to a
branching-time setting requires the development of a probabilistic space for trees
(rather than computations). Second, the timed setting requires the probabilistic
space to capture continuous time. We argue that once we move to an approxi-
mated reasoning about the probability of the mutations, the framework in [15]
can be easily extended to TCTL, thus vacuity results can be ranked efficiently.

2 Preliminaries

2.1 TCTL, Timed Automata, and Timed Transition Systems

We assume that the reader is familiar with the branching time temporal logic
CTL. We consider the logic Timed CTL (TCTL) [1], which is a real time exten-
sion of CTL. Formulas in TCTL are defined over a set AP of atomic propo-
sitions and use two path quantifiers A (for all paths) and E (exists a path),
and one temporal operator UJ . A TCTL path formula is defined by the syntax
ϕ ::= Φ1U

JΦ2, where J ⊆ IR≥0 is an interval whose bounds are natural numbers.
Thus, the interval J is of the form [m1,m2], (m1,m2], [m1,m2), or (m1,m2), for
m1,m2 ∈ IN and m1 ≤ m2. For right-open intervals, we have m2 = ∞. We refer
to the quantity m2 − m1 as the span of J . Note that the next-step X operator
of CTL is absent in TCTL, as time is considered to be continuous.

A timed automaton (TA, for short) is a non-deterministic finite state automa-
ton that allows modelling of actions or events to take place at specific time
instants or within a time interval. A TA expresses timed behaviours using a
finite number of clock variables. All the clocks increase at the same rate. We
use lower case letters x, y, z to denote clock variables and C to denote the set of
clock variables. Clock variables take non-negative real values.

A guard is a conjunction of assertions of the form x ∼ k where x ∈ C, k ∈ IN
and ∼ ∈ {≤, <,=, >,≥}. We use B(C) to denote the set of guards. A clock
valuation or a valuation for short is a point v ∈ IRC

≥0. For a clock x ∈ C, we use
v(x) to denote the value of clock x in v. We use v(x)� to denote the integer part
of v(x) while frac(v(x)) is used to denote the fractional part of v(x). We define
�v(x)� as v(x)� + 1 if frac(v(x)) �= 0, else �v(x)� = v(x)�. Along with other
propositions, we will also use propositions of the form v(x) ∈ J , where v(x) is
the valuation of clock x and J is an interval with integer boundaries.

For a clock valuation v and d ∈ IR≥0, we use v + d to denote the clock
valuation where every clock is being increased by d. Formally, for each d ∈ IR≥0,
the valuation v + d is such that for every x ∈ C, we have (v + d)(x) = v(x) + d.

442 H. Chockler et al.

For a clock valuation v and a set R ⊆ C, we use v[R←0] to denote the clock
valuation in which every clock in R is set to zero, while the value of the clocks in
C\R remains the same as in v. Formally, for each R ⊆ C, the valuation v[R←0]

is such that for every x ∈ C, we have

v[R←0](x) =
{

0 if x ∈ R
v(x) otherwise

A timed automaton is defined by the tuple 〈AP,L, l0, C,E, L〉, where AP is a set
of atomic propositions, L is a finite set of locations, l0 ∈ L is an initial location,
C is a finite set of clocks, E ⊆ L × B(C) × 2C × L is a finite set of edges, and
L : L �→ 2AP is a labeling function.

A timed transition system, (TTS for short) [21], is S = 〈AP,Q, q0,→, ↪→, L〉,
where AP is a set of atomic propositions, Q is a set of states, q0 ∈ Q is an
initial state, → ⊆ Q × IR≥0 × Q is a set of delay transitions, ↪→ ⊆ Q × Q is a set

of discrete transitions, and L : Q �→ 2AP is a labelling function. We write q
d−→ q′

if (q, d, q′) ∈ → and write q ↪→ q′ if (q, q′) ∈ ↪→.
Let A = 〈AP,L, l0, C,E, L〉 be a timed automaton. The semantics of a timed

automaton is described by a TTS. The timed transition system T (A) generated
by A is defined as T (A) = (AP,Q, q0,→, ↪→, L), where

– Q = {(l, v) | l ∈ L, v ∈ IR≥0
C}. Intuitively, a state (l, v) corresponds to A

being in location l and the clock valuation is v. Note that due to the real
nature of time, this set is generally uncountable.

– Let vinit denote the valuation such that vinit(x) = 0 for all x ∈ C. Then
q0 = (l0, vinit).

– → = ∪l∈L ∪
v∈IRC

≥0
∪d∈IR≥0

{(l, v), d, (l, v + d)}.

– ↪→= {((l, v), (l′, v′)) |(l, v), (l′, v′) ∈ Q and there is an edge e = (l, g, R, l′) ∈ E
and v |= g and v′ = v[R←0]}. That is, if there exists a discrete transition from
l that is guarded by g and leads to l′ while resetting the clocks in R, then if
v |= g, the TTS can move from (l, v) to (l, v[R←0]).

A run of a timed automaton is a sequence of the form π = (l0, v0), (l0, v′
0), (l1, v1),

(l1, v′
1), (l2, v2), . . . where for all i ≥ 0, we have (li, vi)

di−→ (li, v′
i), i.e., v′

i = vi+di

and ((li, v′
i), (li, vi+1)) ∈↪→. Note that π is a continuous run in the sense that for

a delay transition (li, vi)
di−→ (li, v′

i), the run also includes all states (li, vi + d)
for all 0 ≤ d ≤ di, where v′

i = vi +di. For a time t≥0, we denote by π[t] the state
in π that is reached after elapsing time t.

Given a state s ∈ Q of a TTS, we denote by Paths(s), the set of all runs
starting at s. Let AP be a set of action propositions. The satisfaction relation
for TCTL formulas is as follows.

– s |= p, for p ∈ AP , iff p ∈ L(s).
– s |= ¬Φ iff s �|= Φ.
– s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2.

Timed Vacuity 443

– s |= AΦ1U
JΦ2 iff for all paths π ∈ Paths(s), there exists a time t ∈ J such

that π[t] |= Φ2 and for all t′ < t, we have π[t′] |= Φ1.
– s |= EΦ1U

JΦ2 iff there exists a path π ∈ Paths(s) and a time t ∈ J
such that π[t] |= Φ2 and for all t′ < t, we have π[t′] |= Φ1.

We say that a timed automaton A satisfies a TCTL formula Φ if the initial
state (l0, v0) of T (A) satisfies Φ.

Consider a timed automaton A = 〈AP,L, l0, C,E, L〉. For each clock x ∈ C,
let Mx be the maximum constant that appears in A. We say that two valuations,
v and v′, are region equivalent with respect to A, denoted v ≡ v′, iff the following
conditions are satisfied.

1. ∀x ∈ C, we have that v(x) > Mx iff v′(x) > Mx, and
2. ∀x ∈ C, if v(x) ≤ Mx, then v(x)� = v′(x)� and �v(x)� = �v′(x)�, and
3. for each pair of clocks x, y ∈ C, if v(x) ≤ Mx and v(y) ≤ My, we have

v(x) < v(y) iff v′(x) < v′(y).

For a given valuation v, let [v] = {v′|v′ ≡ v}. Note that the region equivalence is
actually an equivalence relation. Every such equivalence class is called a region.
Note that the number of regions is exponential in the number of clocks of a
timed automaton. A tuple of the form 〈l, [v]〉, where l ∈ L is a location and [v]
is a region is called a symbolic state of A. Two valuations v and v′ of a symbolic
state 〈l, [v]〉 satisfy the same set of TCTL formulas [1].

A region graph is defined using the transition relation � between symbolic
states which is as follows:

– (l, [v]) � (l, [v′]) if there exists a d ∈ IR≥0 such that (l, v) d−→ (l, v′) and
– (l, [v]) � (l′, [v′]) if (l, v) ↪→ (l′, v′).

We note that the transition relation is finite since there are finitely many sym-
bolic states. The size of a region graph equals the sum of the number of regions
and the number of transitions in it. The region equivalence relation partitions
the uncountably many states into a finite number of symbolic states.

2.2 Timed Vacuity

Consider a TCTL formulas Φ. Let ψ be a subformula of Φ, and let ξ be a
TCTL formula. We use Φ[ψ ← ξ] to denote the TCTL formula obtained from
Φ by replacing ψ by ξ.2. Consider a TA A such that A satisfies Φ. We say
that a subformula ψ of Φ does not affect the satisfaction of Φ in A (ψ does not
affect Φ in A, for short) if A satisfies Φ[ψ ← ξ] for every formula ξ. The above
definition adapts the propositional approach of [6,24] to TCTL, and as we show
in Lemma 2, checking this type of vacuity is easy and does not add challenges
that are unique to the real-time setting. We thus focus on mutations applied to
the real-time operator of TCTL.
2 As discussed on Sect. 1, we assumes that ψ appears once in Φ or focus on a single

occurrence of ψ in Φ.

444 H. Chockler et al.

Consider two intervals J, J ′ ⊆ IR≥0 such that J ′ ⊂ J . Clearly, the TCTL
formula QΦ1U

JΦ2, for Q ∈ {A,E}, is weaker than the formula QΦ1U
J ′

Φ2. In
timed vacuity, we are interested in formulas of the form QΦ1U

JΦ2 in which the
interval J can be mutated. Rather than considering all subsets of J , we restrict
attention to subsets that are intervals or the union of two intervals where the
interval boundaries are integers. Formally, we say that J ′ is a strengthening of
J if J ′ ⊂ J and either J ′ is an interval or J ′ = J1 ∪ J2 for intervals J1 and J2.
For example, (2, 5] and [2, 3) ∪ (4, 5] are both strengthenings of [2, 6). Dually, J ′

is a weakening of J if J ⊂ J ′ and either J ′ is an interval or J ′ = J1 ∪ J2 for
continuous J1 and J2. We note here that dividing J into more than two intervals
might not capture the user’s intent.

A subformula ψ of Φ may have either positive polarity in Φ, namely be in
the scope of an even number of negations, or a negative polarity in Φ, namely
be in the scope of an odd number of negations (note that an antecedent of an
implication is considered to be under negation).

Consider a TA A and a TCTL formula Φ such that A |= Φ. Let ψ = QΦ1U
JΦ2

be a subformula of Φ. We say that the ψ is not tight in Φ with respect to A if
ψ is in a positive polarity and J can be strengthened to J ′ or ψ is in a negative
polarity and J can be weakened to J ′ and we have that A |= Φ[ψ ← QΦ1U

J ′
Φ2].

We say that Φ is timed-vacuous in A if A |= Φ and has a subformula ψ that is
not tight in Φ.

3 TCTL+ and Its Model Checking

Recall that in the definition of strengthening and weakening, we allowed the
replacement of an interval J by the union of intervals. In order to handle such
tightenings, we introduce an extension of TCTL, called TCTL+, where path
formulas may be a disjunction of formulas of the form Φ1U

JΦ2. The semantics
is extended in the expected way. That is, s |= A

∨
1≤i≤k Φi

1U
JiΦi

2 iff for all
paths π ∈ Paths(s) and for every 1 ≤ i ≤ k, there exists a time ti ∈ Ji such
that π[ti] |= Φi

2 and for all t′i < ti, we have π[t′i] |= Φi
1. The definition for the

existential case is similar.

Remark 1. In CTL, allowing Boolean operations within the path formulas does
not extend the expressive power [17]. In particular, the formula A(Fp ∨ Fq),
for p, q ∈ AP , is equivalent to the CTL formula AF (p ∨ q). We conjecture that
in the timed setting, Boolean operations within the path formulas do extend
the expressive power. In particular, we conjecture that the TCTL+ formula
A(F [1,2]p ∨ F [3,4]q), does not have an equivalent TCTL formula. We also think
that a technical proof for the above statement is highly non-trivial.

In this section we show that model-checking of TCTL+ formulas is PSPACE-
complete. First, recall that TCTL model-checking is PSPACE-complete [1].
TCTL model-checking is done by reducing it to CTL model-checking over region
graph. Let A = 〈AP,L, l0, C,E, L〉 be a TA and Φ be a TCTL formula and we
want to check if A |= Φ. Let z be a clock that is not in the set C of clocks of the

Timed Vacuity 445

TA A. Consider the TTS T (A) generated by A. For a state s = (l, v) in T (A),
we denote by s[z = 0], the state (l, v′) such that v′ ∈ IRC∪{z}

≥0 and v′(z) = 0 and
for all clocks x ∈ C, we have v′(x) = v(x). We construct the region graph of A
with this additional clock z such that z is never reset. Now for every state s in
the TTS, we say that s |= E(Φ1U

JΦ2) iff s[z = 0] |= E(Φ1U(z ∈ J ∧ Φ2)) and
s |= A(Φ1U

JΦ2) iff s[z = 0] |= A(Φ1U(z ∈ J ∧ Φ2)).

Algorithm 1. Computation of satisfaction set of TCTL+ formula Φ =
A(Φ1U

J1Φ2 ∨ Φ3U
J2Φ4)

Require: Region graph RA of TA A extended with a fresh clock z that is never reset
and a TCTL+ formula Φ

Ensure: Compute Sat(Φ)
1: T1 ← Sat(z ∈ J1) ∩ Sat(Φ2) � T1 is the set of vertices (regions) all whose
2: successors are in Φ1U

J1Φ2

3: T2 ← Sat(z ∈ J2) ∩ Sat(Φ4) � T2 is the set of vertices (regions) all whose
4: successors are in Φ3U

J2Φ4

5: T3 ← ∅ � T3 is the set of vertices (regions) from which some paths satisfy
6: Φ1U

J1Φ2 while the other paths satisfy Φ3U
J2Φ4

7: T ← T1 ∪ T2 � The satisfaction set of Φ, finally also includes T3

8: T4 ← ∅ � T4 is the set of regions r for which all successor regions
9: are in T but r itself is not in the satisfaction set T

10: while {r ∈ Sat(Φ1) ∪ Sat(Φ3) − (T ∪ T4) | Post(r) ⊆ T} �= ∅ do
11: Let r ∈ Sat(Φ1) ∪ Sat(Φ3) − (T ∪ T4) | Post(r) ⊆ T
12: if r ∈ Sat(Φ1) − T then
13: if Post(r) ⊆ T1 then
14: T1 ← T1 ∪ {r}
15: T ← T ∪ {r}
16: end if
17: end if
18: if r ∈ Sat(Φ2) − T then
19: if Post(r) ⊆ T2 then
20: T2 ← T2 ∪ {r}
21: T ← T ∪ {r}
22: end if
23: end if
24: if r ∈ Sat(Φ1) ∩ Sat(Φ3) − T and Post(r) ⊆ T then
25: if there exist two distinct successors r1 and r2 of r such that r1 ∈ T1 − T2

and r2 ∈ T2 − T1 or there exists a successor r′ of r such that r′ ∈ T3 then
26: T3 ← T3 ∪ {r}
27: T ← T ∪ {r}
28: end if
29: end if
30: if r /∈ T then T4 = T4 ∪ {r}
31: end if
32: end while
33: return T

446 H. Chockler et al.

Let RA be the region graph of TA A. The model-checking procedure involves
CTL model-checking (l0, vinit)[z = 0] |= Φ′, over a region graph over the set
C ∪ {z} of clocks such that clock z is never reset. The formula Φ′ is obtained
from Φ by modifying the path formulas by introducing subformulas of the form
z ∈ J as mentioned above.

For a TCTL+ formula Φ, the set of regions in the region graph of A that
satisfy Φ is denoted by Sat(Φ). In Algorithm 1, we give a method to compute
the satisfaction set for the TCTL+ formula Φ = A(Φ1U

J1Φ2 ∨ Φ3U
J2Φ4). Given

a region r in a region graph, we denote by Post(r), the set of regions that can
be reached from r in a single step, i.e. using the transition � once.

The running time of Algorithm 1 is proportional to the size of the region
graph and the size of the TCTL+ formula. It is easy to see that it runs in
PSPACE. We note here that given a TA and a TCTL formula, model-checking
of TCTL also takes time that is proportional to the size of the region graph of
the TA and the size of the TCTL formula.

Lemma 1. Algorithm 1 runs in PSPACE.

In a TCTL+ formula Φ, if we have arbitrary number of disjunctions of the form
Φ11U

JΦ12 , Φ21U
JΦ22 , . . . , Φn1U

JΦn2 , then we need to maintain different subsets
of the set I = {J1, . . . , Jn} of intervals. For each subset I of I, we have the set
of vertices (regions) from which for every member J ∈ I, there exists a path
satisfying the disjunct Φ1U

JΦ2. Hence with arbitrary number of intervals, the
algorithm is also exponential in the size of the formula, but is still in PSPACE.

Showing PSPACE-hardness for TCTL+ model-checking follows directly from
the complexity of TCTL model-checking, since the syntax of TCTL is a proper
subset of the syntax of TCTL+. Thus we have the following theorem.

Theorem 1. The model-checking problem for TCTL+ is PSPACE-complete.

4 Satisfying a TCTL Formula Timed Vacuously

In this section, we study the complexity of checking vacuity and timed vacuity
in TCTL. We describe algorithms for strengthening an interval J in formulas of
the form QΦ1U

JΦ2 and algorithms for checking timed vacuity.

4.1 Complexity Results

We start with the propositional approach, where a subformula ψ of Φ does not
affect the satisfaction of Φ in a TA A iff A satisfies Φ[ψ ← ξ] for all formulas ξ.
This definition is not effective, as it requires evaluating Φ[ψ ← ξ] for all formulas
ξ. We first prove that as in the case of CTL [24], also in TCTL it is possible to
check only the replacements of ψ by true and false.

Lemma 2. For every subformula ψ of a TCTL formula Φ and for every TA
A such that A |= Φ, if A |= Φ[ψ ← ⊥], then for every formula ξ, we have
A |= Φ[ψ ← ξ].

Timed Vacuity 447

Proof. We prove that for every formula ξ, the implications A |= Φ[ψ ← ⊥] →
A |= Φ[ψ ← ξ]. This can be shown by proving Φ[ψ ← ⊥] → Φ[ψ ← ξ]. The proof
is by structural induction on the syntax of TCTL formulas.

We only need to prove the induction step for the subformulas with a timed
component, as the other cases are proved in [24].

Let Φ = E(Φ1U
JΦ2). Thus we want to prove that for every formula ξ, we

have E(Φ1[ψ ← ⊥]UJΦ2[ψ ← ⊥]) → E(Φ1[ψ ← ξ]UJΦ2[ψ ← ξ]).
By induction hypothesis, we have that E(Φ1[ψ ← ⊥]) → E(Φ1[ψ ← ξ]) and

E(Φ2[ψ ← ⊥]) → E(Φ2[ψ ← ξ]).
Suppose A |= E(Φ[ψ ← ⊥]). Hence we have a time t ∈ J and a run

ρ = (l0, v0)
d0−→ (l0, v0 + d) τ−→ (l1, v1)

d1−→ . . .
di−→ (li, vi) . . . such that

t =
∑i

j=0 dj , and si = (li, vi) |= E(Φ2[ψ ← ⊥]). By the induction hypothe-
sis, (li, vi) |= E(Φ2[ψ ← ξ]). Also since A |= E(Φ[ψ ← ⊥]), we have that over all
the intermediate (possibly uncountably many) states s in ρ from (l0, v0) to si and
possibly excluding si, we have s |= E(Φ1[ψ ← ⊥]). Again, from the induction
hypothesis, we have that s |= E(Φ1[ψ ← ξ]). Hence A |= E(Φ1[ψ ← ξ]UJΦ2[ψ ←
ξ]), i.e., A |= Φ[ψ ← ξ].

The proof for A(Φ1U
JΦ2) is similar. ��

Theorem 2. Given a TA A, a TCTL formula Φ and a subformula ψ of Φ
such that A |= Φ, the problem of checking whether ψ does not affect Φ in A is
PSPACE-complete.

Proof. We prove that the complementary problem, of deciding whether ψ affects
Φ in A is PSPACE-complete. Since PSPACE is closed under complementation,
the result follows. The membership follows from the fact that whether ψ affects
the satisfaction of Φ in A can be decided by checking whether A |= Φ[ψ ← ⊥]
and that TCTL model-checking is PSPACE-complete [1].

We prove PSPACE-hardness using a reduction from TCTL model checking.
We construct a formula ¬Φ′, a subformula ψ of ¬Φ′ and a TA A′ such that
A |= Φ iff ψ affects the satisfaction of ¬Φ′ in A′. Let A = 〈AP,L, l0, E,C, L〉.
We define A′ = 〈AP ′,L, l0, E,C, L′〉, such that AP ′ = AP ∪{q, r} and q, r /∈ AP
and L′(l0) = L(l0) ∪ {r} and L′(l) = L(l) for l �= l0 ∈ L. Let Φ′ = q ∧ Φ. Clearly
A′ �|= Φ′ and hence A′ |= ¬Φ′. If A |= Φ, then considering ψ = q and ξ = r,
we have that A′ |= Φ′[ψ ← ξ], and hence A′ �|= ¬Φ′[ψ ← ξ], i.e., q affects the
satisfaction of Φ′ in A′. Now consider the case A �|= Φ. Then also A′ |= Φ and
hence A′ �|= q ∧ Φ = Φ′. Thus if A �|= Φ, we still have A′ |= ¬Φ. For all ξ, we
have A′ �|= Φ′[ψ ← ξ], and hence A′ |= ¬Φ′[ψ ← ξ], i.e. q does not affect the
satisfaction of Φ′ in A′. ��

We now proceed to timed vacuity. In Theorem 3 below, we use a reduction
from the set consisting of the true quantified boolean formulas (TQBF) which
is a canonical PSPACE-complete problem.

Theorem 3. Given a TA A, a formula Φ such that A |= Φ and a subformula
ψ = QΦ1U

JΦ2 of Φ (where Q stands for a path quantifier A or E), the problem
of checking whether ψ is not tight in Φ with respect to A is PSPACE-complete.

448 H. Chockler et al.

Fig. 1. Timed Automata encoding QBF in the proof of Theorem 3

Proof. We show that the complementary problem, of deciding whether ψ is tight
in Φ with respect to A is PSPACE-complete. Since PSPACE is closed under
complementation, the result follows. The membership follows from the fact that
whether ψ is tight in Φ with respect to A can be decided by checking whether
A |= Φ[ψ ← QΦ1U

J ′
Φ2] where J ′ is a largest proper subset of J when ψ has

a positive polarity and J ′ is a smallest proper superset of J when ψ has a
negative polarity and this can be done in PSPACE. For example, if J is of the
form [m1,m2] and ψ has a positive polarity, then we consider replacing J with
both (m1,m2] and [m1,m2), while if ψ has a negative polarity, then we consider
replacing J with both (m1 − 1,m2] and [m1,m2 + 1).

For the lower bound, we show a reduction from TQBF3, which is known
to be PSPACE-complete [28]. Let α = Q1p1.Q2p2 . . . Qnpn.β(p1, . . . , pn) be a
quantified boolean formula (QBF), such that β is a propositional formula over
the propositions p1, . . . , pn, and each Qi ∈ {∃,∀} is an existential or a universal
quantifier.

Consider the timed automaton A = 〈{p}, {l0, . . . , ln}, l0, C,E, L〉 shown in
Fig. 1. The set of clocks C is {x, x1, . . . , xn}, i.e., we have a clock x and for each
proposition pi, with 1 ≤ i ≤ n, we have a clock xi. The guard g is obtained
from β by replacing each pi in β with the atomic formula xi = n + 1. For
example, considering n = 3, if β(p1, p2, p3) = (p1 ∨ ¬p2) ∧ (¬p1 ∨ p3), then
g = (x1 = 4 ∨ x2 �= 4) ∧ (x1 �= 4 ∨ x3 = 4). We have L(ln+1) = {p}, and for all
0 ≤ i ≤ n, we have L(li) = ∅.

For every run of A, for every 1 ≤ i ≤ n, the location li is reached at time
i. Let v be the clock valuation at time n when location ln is reached. Note that
v(x) = n, and for every 1 ≤ i ≤ n, we have that v(xi) equals n if at location li−1,
the edge (li−1, l

′
i) is taken and equals n − i, if at location li−1, the edge (li−1, li)

is taken. There are 2n different paths from l0 to ln, and each can be viewed as
encoding a different truth assignment for the n propositions p1, . . . , pn. Location
ln+1 is reached at time n + 1 with clock valuation v + 1. Let Φ be the TCTL
formula Q′

1F
[0,1)(Q′

2F
[1,1](Q′

3F
[1,1] . . . Q′

nF [1,1](EF [1,1]p)) . . .) with Q′
i = A if

Qi = ∀ and Q′
i = E if Qi = ∃ for all 1 ≤ i ≤ n. Note that A �|= Φ since

location l1 is reached only after 1 unit of time elapses and we have Q′
1F

[0,1).
Thus A |= ¬Φ. We claim that if α is satisfiable, then the subformula ψ = Φ of
¬Φ is tight in Φ with respect to A. Note that ψ has a negative polarity in ¬Φ,

3 A similar construction has been used in [1] for showing the lower bound of model-
checking TCTL formulas, but the proof we have here is different and more involved.

Timed Vacuity 449

and hence we consider weakening the interval [0, 1) in Q′
1F

[0,1). We consider the
minimum possible weakening of [0, 1) which gives us the interval [0, 1]. Let Φ′

be the formula obtained from Φ by replacing Q′
1F

[0,1) with Q′
1F

[0,1]. Note that
A |= Φ′ and hence A �|= ¬Φ′. Thus the formula ψ = Φ is tight in ¬Φ w.r.t. A.

On the other hand, if α is not satisfiable, then also A �|= Φ and hence A |= ¬Φ,
and no matter how we weaken the interval F [0,1) in Q′

1F
[0,1) in ¬Φ, we have that

A satisfies the resultant formula. Thus if α is not satisfiable, then ψ is not tight
in Φ with respect to A, and we are done. ��
Theorem 4. Given a TA A and a TCTL formula Φ, checking whether Φ is
timed vacuous in A is in PSPACE.

Proof. By Theorem 3, for a given ψ, the problem of checking whether ψ is not
tight is in PSPACE. Since there are there are |Φ| subformulas, we are done. ��

4.2 Algorithms for Tightening TCTL Formulas

In this section we propose some algorithms for tightening TCTL formulas of the
form QΦ1U

JΦ2, for Q ∈ {A,E}. We consider two types of tightening that are
the most interesting ones from a user’s perspective: One in which the interval
J is strengthened to an interval that ends at the earliest possible time, and the
other one in which J is strengthened to the smallest possible span.

Given a TA A, a TCTL formula Φ and a subformula ψ of Φ, we propose an
algorithm that strengthens J so that it ends at the earliest possible time. The
algorithm proceeds as follows. Consider a path formula ψ = Φ≺l,r

1 Φ2, where
≺ l ∈ {[l, (l} and r �∈ {r), r]}, and assume that ψ appears in a positive polarity.
Then, ψ is tightened to ψ′ = Φ1U

≺l′,r′
Φ2 if there is no ψ′′ = Φ1U
≺l′′,r′′
Φ2

such that A |= Φ[ψ ← ψ′′] and one of the following holds:

1. r′′ < r′.
2. r′′ = r′, ψ′′ = Φ1U

≺l′′,r′)Φ2, and ψ′ = Φ1U
≺l′,r′]Φ2.

3. r′′ �= r′ � and l′ < l′′.
4. r′′ �= r′ �, l′ = l′′, ψ′′ = Φ1U

(l′,r′
Φ2, and ψ′ = Φ1U
[l′′,r′
Φ2.

Given a TA A, a TCTL formula Φ such that A |= Φ, and a subformula ψ =
Φ1U

≺l,r
Φ2 of Φ, we first fix the right boundary, i.e. change r � to r′ �′ and get
a formula ψ′ = Φ1U

≺l,r′
′
Φ2. The bound is found by a binary search on the right

boundary, while keeping ≺ l fixed and each time dividing the current interval
in two. Once the right boundary is fixed in the subformula, the left boundary is
tightened in a similar way.

The algorithm makes O(log(n)) calls to TCTL model-checking procedure
where n = r − l.

With inputs from a user, we can further tighten TCTL formulas is to split
the interval, resulting in a TCTL+ formula. As the split might result in a pair
of intervals such that their union is smaller than the original interval, the user
might choose this tightening option. The split and tightening algorithm proceeds
as follows. For a formula ψ = Φ1U

JΦ2, let J =≺ l, r �. The user can specify

450 H. Chockler et al.

how to split the J , i.e. remove an interval I from J and check if A satisfies the
formula Φ[ψ ← (Φ1U

≺l,inf(I)]Φ2)∨ (Φ1U
[sup(I),r
]Φ2)]. If A satisfies the formula,

then the intervals in each of the disjunct can be strengthened subsequently. A
user can actually use the algorithm to strengthen an interval J to J ′ and then
split J ′ leading to a TCTL+ formula.

The second interesting algorithm tightens a subformula Φ1U
JΦ2 by strength-

ening J to the smallest possible single interval J ′ ⊆ J . This algorithm performs
a binary search on the length of J ′ and makes O(n log(n)) calls to TCTL model-
checking procedure (compared with the naive approach that tries all possibilities,
hence making O(n2) calls).

If ψ has a negative polarity then we weaken J to get the largest possible
interval. We argue below that the weakening too can be done in PSPACE. If
ψ = Φ1U

JΦ2 has a negative polarity then we weaken J to J ′. Suppose J =≺
m1,m2 �, where ≺ m1 ∈ {[, (} and m2 �∈ {],)}. We reduce the left boundary of
the interval, i.e. replace ≺ m1 with [0, (0, [1, (1, . . . , [m1 one after another when
≺ m1 = (m1 and replace ≺ m1 with [0, (0, [1, (1, . . . , (m1 − 1 when ≺ m1 = [m1

one after another and for each replacement check whether A still satisfies the
formula obtained after the replacement.

Once we fix the left boundary to ≺ l, we check how far the right boundary can
be increased. Finding this maximum right boundary is tricky. We first replace
m2 � with ∞) and check if the formula obtained by replacing J with J ′ =≺ l,∞)
in ψ is satisfied by A. If A satisfies the formula obtained by replacing J with
J ′, we are done. Otherwise, Let R be the number of regions in the region graph
of A. All valuations of a region satisfy the same set of TCTL formulas [1] and
the amount by which the right boundary of J can be increased is related to the
number of regions in the region graph of A. We note that from any region r,
a given region r′ can be reached within a maximum time of R time units. If
A does not satisfy the formula obtained by replacing J with J ′, then we find
the maximal weakening of the right interval by replacing m2 � with m2 + R],
m2 + R), m2 + R − 1], . . . , m2] one after another when m2 � is m2) and by
replacing m2 � with m2 + R], m2 + R), m2 + R − 1], . . . , m2 + 1) one after
another when m2 � is m2] and checking if A satisfies the formula obtained after
the replacement.

5 Ranking Vacuity Results

In [15], the authors suggest to rank vacuity results for LTL according to their
significance, where significance is defined using probability. The probabilistic
model in [15] is that for each atomic proposition p and for each state in a random
computation π, the probability of p to hold in the state is 1

2 . Then, pr(Ψ), namely
the probability of an LTL formula Ψ , is defined as the probability of Ψ to hold in a
random infinite computation. To see the idea behind the framework, consider the
LTL specification G(req → F grant) and its mutations G(¬req) and GF grant .
It not hard to see that in the probabilistic model above, the probability of
G(¬req) to hold in a random infinite computation is 0, whereas the probability

Timed Vacuity 451

of GF grant to hold is 1. It is argued in [15] that the lower is the probability
of the mutation to hold in a random computation, the higher the vacuity rank
should be. In particular, vacuities in which the probability of the mutation is 0,
as is the case with G(¬req), should get the highest rank and vacuities in which
the probability is 1, as is the case with GF (grant), should get the lowest rank.
Intuitively, when a mutation with a low probability holds, essentially against all
chances, then the user should be more alarmed than when a mutation with a
high probability holds, essentially as expected.

Since the problem of calculating pr(Ψ) is PSPACE-complete [14,15], an effi-
cient way to obtain an estimated probability of satisfaction in random computa-
tions has been proposed in [15]. Rather than a probability in [0, 1], the estimation
is three valued, returning 0, 1, or 1

2 , with 1
2 indicating that the estimated prob-

ability is in (0, 1). Extending the framework to TCTL involves two technical
challenges: a transition to a branching-time setting, and a transition to a timed
setting. As we show below, once we compensate on an estimated reasoning, the
transitions do not require new techniques.

Let us start with the transition to the branching setting. Recall that the
probabilistic model in [15] defines pr(Ψ) as the probability of Ψ to hold in a
random infinite computation. Thus, [15] ignores the structure of the analyzed
system, in particular the fact that infinite computations are generated by finitely
many states. This makes a difference, as, for example, the probability of Gp to
hold in a computation generated by n states is 1

2n , whereas pr(Gp) = 0. In the
branching setting, ignoring the structure of the analyzed system plays an addi-
tional role, as it abstracts the branching degree. For example, the probability of a
CTL formula AXp to hold in a state with n successors is 1

2n (see also [10]). Note,
however, that once we move to a three-valued approximation, the approximated
probability of AXΦ to hold in a state agrees with the approximated probability
of Φ to hold in a state, and is independent of the number of successors! Moreover,
the same holds for existential path quantification: the approximation probability
of EXΦ agrees with that of Φ. It follows that the calculation of the estimated
probability of a CTL formula can ignore path quantification and proceeds as the
one for LTL described in [15].

We continue to the timed setting and TCTL formulas. Our probabilistic
model is based on random region graphs. Indeed, as the truth value of a TCTL
formula in a TTS is defined with respect to the induced region graph, we define
the probability of a TCTL formula as its probability to hold in a random region
graph. It is easy to see that for TCTL formulas of the form true, false, p, ¬Φ,
and Φ∨Ψ , the estimated probability defined for CTL is valid also for TCTL. We
continue to formulas of the form AΦUJΨ and EΦUJΨ . Here too, we can ignore
path quantification and observe that if the estimated probability of Ψ is 0, then
so is the estimated probability of ΦUJΨ , and similarly for 1. Another way for
ΦUJΨ to have estimated probability 1 is when the estimated probabilities of
Φ is 1, that of Ψ is in (0, 1), and J = [0,∞). In all other cases, the estimated
probability of ΦUJΨ is in (0, 1).

452 H. Chockler et al.

By the above, the three-valued estimated probability of a TCTL formula
Φ, denoted Epr(Φ), is defined by induction on the structure of the formula as
follows (with Q ∈ {A,E}).

– Epr(false) = 0.
– Epr(true) = 1.
– Epr(p) = 1

2 .
– Epr(¬Φ) = 1 − Epr(Φ).

– Epr(Φ ∧ Ψ) =

⎧⎨
⎩

1 if Epr(Φ) = 1 and Epr(Ψ) = 1
04 if Epr(Φ) = 0 or Epr(Ψ) = 0
1
2 otherwise.

– Epr(QΦUJΨ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if Epr(Ψ) = 0
1 if (Epr(Ψ) = 1) or

(Epr(Φ) = 1, Epr(Ψ) = 1
2 , and J = [0,∞))

1
2 otherwise.

Recall that we calculate the three-valued estimated probability for the muta-
tions of a given TCTL specification. Thus, the calculation may also be applied
for TCTL+ formulas. Fortunately, the estimated probability of a disjunction∨

1≤i≤k ΦiUJiΨ i follows the same lines as these in which k = 1. In particular,
for the purpose of calculating the estimated probability of mutations, we know
that the formula at hand is obtained by strengthening QΦUJΨ by splitting J to
intervals that form a strict subset of it. Hence, we can assume that the formula
is of the form Q

∨
1≤i≤k ΦUJiΨ (that is, same Φi and Ψ i in all disjuncts), and

the union of the intervals Ji is a strict subset of [0,∞). Accordingly, we have the
following.

– Epr(Q
∨

1≤i≤k ΦUJiΨ) =

⎧⎨
⎩

0 if Epr(Ψ) = 0
1 if Epr(Ψ) = 1
1
2 otherwise.

Note that the estimation not only loses preciseness when the probability is
in (0, 1) but also ignores semantic relations among subformulas. For example,
Epr(p∧¬p) = 1

2 , whereas pr(p∧¬p) = 0. Such relations, however, are the reasons
to the PSPACE-hardness of calculating pr(ϕ) precisely, and the estimation in
Epr is satisfactory, in the following sense:

Theorem 5. For every TCTL+ formula Φ, the following hold.

– If pr(Φ) = 1, then Epr(Φ) ∈ {1, 1
2}, if pr(Φ) = 0, then Epr(Φ) ∈ {0, 1

2}, and
if pr(Φ) ∈ (0, 1), then Epr(Φ) = 1

2 .
– Epr(Φ) be calculated in linear time.

By Theorem 5, ranking of mutations for TCTL formulas by estimated prob-
ability of their mutations can be done in linear time. Now, one can ask how
helpful the estimation is. As demonstrated in [15], the estimation agrees with
the intuition of designers about the importance of vacuity information. In fact,
when Epr(Φ) does not agree with pr(Φ), the reason is often inherent vacuity
in the specification [18], as in the example of p ∧ ¬p above, where we want the
formula to be ranked as alarming.

Timed Vacuity 453

6 Conclusions

Vacuity detection is a widely researched problem, with most commercial model-
checking tools including an automated vacuity check. In this paper, we extended
the definition of vacuity to the timed logic TCTL and demonstrated that vacuous
satisfaction can indicate problems in the timing aspects of the modelling or the
specification. We considered strengthening of TCTL properties resulting from
tightening the interval J in the operator UJ . While we can tighten the interval
in many different ways, we considered only the tightenings that preserve the
user’s intent: tightening the right bound (forcing the eventuality to happen as
early as possible), shortening the interval (forcing it to be tighter), and replacing
the interval J with a strictly smaller union of its two sub-intervals J1 and J2

(allowing the tightening be more precise). We note that, in principle, it is possible
to examine a replacement of J by a union of a larger number of sub-intervals,
incurring only a polynomial increase in runtime. Replacing an interval J with J1∪
J2 results in a formula that is not in TCTL. We introduced an extension TCTL+

of TCTL, which includes eventualities occurring in a union of a constant number
of intervals and proved that TCTL+ model-checking is PSPACE-complete, thus
it is not higher than that of TCTL. We also proved that the vacuity problem
for TCTL is in PSPACE, hence it is not harder than model checking. Finally,
as extending vacuity to consider real-time leads to a high number of vacuity
results, we observed that the framework for ranking of LTL vacuity results by
their approximated importance can be applied to TCTL as well.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Com-
put. 104(1), 2–34 (1993)

2. Alur, R., Dill, D.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–236 (1994)

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996)

4. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol.
600, pp. 74–106. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031988

5. Armoni, R., et al.: Enhanced vacuity detection in linear temporal logic. In: Hunt,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 368–380. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6 35

6. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in
ACTL formulas. Formal Methods Syst. Des. 18(2), 141–162 (2001)

7. Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular
vacuity. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp.
191–206. Springer, Heidelberg (2005). https://doi.org/10.1007/11560548 16

8. Chechik, M., Gheorghiu, M., Gurfinkel, A.: Finding environment guarantees. In:
Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 352–367. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71289-3 27

https://doi.org/10.1007/BFb0031988
https://doi.org/10.1007/978-3-540-45069-6_35
https://doi.org/10.1007/11560548_16
https://doi.org/10.1007/978-3-540-71289-3_27

454 H. Chockler et al.

9. Chockler, H., Gurfinkel, A., Strichman, O.: Beyond vacuity: towards the strongest
passing formula. In: Proceedings of the 8th International Conference on Formal
Methods in Computer-Aided Design, pp. 1–8 (2008)

10. Chockler, H., Halpern, J.Y.: Responsibility and blame: a structural-model app-
roach. In: Proceedings of the 19th International Joint Conference on Artificial
Intelligence, pp. 147–153 (2003)

11. Chockler, H., Strichman, O.: Before and after vacuity. Formal Methods Syst. Des.
34(1), 37–58 (2009)

12. Clarke, E., Grumberg, O., Long, D.: Verification tools for finite-state concurrent
systems. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993.
LNCS, vol. 803, pp. 124–175. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58043-3 19

13. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of
counterexamples and witnesses in symbolic model checking. In: Proceedings of the
32st Design Automation Conference, pp. 427–432. IEEE Computer Society (1995)

14. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42, 857–907 (1995)

15. Ben-David, S., Kupferman, O.: A framework for ranking vacuity results. In: Van
Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 148–162. Springer,
Cham (2013). https://doi.org/10.1007/978-3-319-02444-8 12

16. Dokhanchi, A., Hoxha, B., Fainekos, G.E.: Formal requirement elicitation
and debugging for testing and verification of cyber-physical systems. CoRR,
abs/1607.02549 (2016)

17. Emerson, E.A., Halpern, J.Y.: Sometimes and not never revisited: on branching
versus linear time. J. ACM 33(1), 151–178 (1986)

18. Fisman, D., Kupferman, O., Sheinvald-Faragy, S., Vardi, M.Y.: A framework for
inherent vacuity. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp.
7–22. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01702-5 7

19. Gurfinkel, A., Chechik, M.: Extending extended vacuity. In: Hu, A.J., Martin, A.K.
(eds.) FMCAD 2004. LNCS, vol. 3312, pp. 306–321. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30494-4 22

20. Gurfinkel, A., Chechik, M.: How vacuous is vacuous? In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 451–466. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24730-2 34

21. Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In: de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS,
vol. 600, pp. 226–251. Springer, Heidelberg (1992). https://doi.org/10.1007/
BFb0031995

22. Kupferman, O.: Sanity checks in formal verification. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 37–51. Springer, Heidelberg (2006).
https://doi.org/10.1007/11817949 3

23. Kupferman, O., Li, W., Seshia, S.A.: A theory of mutations with applications to
vacuity, coverage, and fault tolerance. In: Proceedings of the 8th International
Conference on Formal Methods in Computer-Aided Design, pp. 1–9 (2008)

24. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Softw.
Tools Technol. Transf. 4(2), 224–233 (2003)

25. Namjoshi, K.S.: An efficiently checkable, proof-based formulation of vacuity in
model checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
57–69. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 5

https://doi.org/10.1007/3-540-58043-3_19
https://doi.org/10.1007/3-540-58043-3_19
https://doi.org/10.1007/978-3-319-02444-8_12
https://doi.org/10.1007/978-3-642-01702-5_7
https://doi.org/10.1007/978-3-540-30494-4_22
https://doi.org/10.1007/978-3-540-24730-2_34
https://doi.org/10.1007/BFb0031995
https://doi.org/10.1007/BFb0031995
https://doi.org/10.1007/11817949_3
https://doi.org/10.1007/978-3-540-27813-9_5

Timed Vacuity 455

26. Purandare, M., Somenzi, F.: Vacuum cleaning CTL formulae. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 485–499. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45657-0 39

27. Purandare, M., Wahl, T., Kroening, D.: Strengthening properties using abstraction
refinement. In: Proceedings of Design, Automation and Test in Europe (DATE),
pp. 1692–1697. IEEE (2009)

28. Stockmeyer, L.J.: On the combinational complexity of certain symmetric boolean
functions. Math. Syst. Theory 10, 323–336 (1977)

https://doi.org/10.1007/3-540-45657-0_39

Falsification of Cyber-Physical Systems
Using Deep Reinforcement Learning

Takumi Akazaki1,2(B), Shuang Liu3, Yoriyuki Yamagata4, Yihai Duan3,
and Jianye Hao3

1 The University of Tokyo, Tokyo, Japan
akazaki@ms.k.u-tokyo.ac.jp

2 Japan Society for the Promotion of Science, Tokyo, Japan
3 School of Software, Tianjin University, Tianjin, China

4 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

Abstract. With the rapid development of software and distributed com-
puting, Cyber-Physical Systems (CPS) are widely adopted in many appli-
cation areas, e.g., smart grid, autonomous automobile. It is difficult to
detect defects in CPS models due to the complexities involved in the
software and physical systems. To find defects in CPS models efficiently,
robustness guided falsification of CPS is introduced. Existing methods
use several optimization techniques to generate counterexamples, which
falsify the given properties of a CPS. However those methods may require
a large number of simulation runs to find the counterexample and are far
from practical. In this work, we explore state-of-the-art Deep Reinforce-
ment Learning (DRL) techniques to reduce the number of simulation
runs required to find such counterexamples. We report our method and
the preliminary evaluation results.

1 Introduction

Cyber-Physical Systems (CPS) are more and more widely adopted in safety-
critical domains, which makes it extremely important to guarantee the correct-
ness of CPS systems. Testing and verification on models of CPS are common
methods to guarantee the correctness. However, it is hard for testing to achieve
a high coverage; verification techniques are usually expensive and undecidable [3]
due to the infinite state space of CPS models. Therefore, robustness guided fal-
sification [2,5] method is introduced to detect defects efficiently. In robustness
guided falsification, Signal Temporal Logic (STL) [9] formulas are usually used
to specify properties which must be satisfied by a CPS model. Robustness of an
STL formula, which is a numeric measure of how “robust” a property holds in the
given CPS model, is defined. The state space of the CPS model is explored and a
trajectory which minimizes the robustness value is identified as a good candidate
for testing. In this way, robustness guided falsification aids to generate defect-
leading inputs (counterexamples), which enables more efficient, yet automatic
detection of defects. Although non-termination of robustness guided falsification
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 456–465, 2018.
https://doi.org/10.1007/978-3-319-95582-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_27&domain=pdf

Falsification of Cyber-Physical Systems Using Deep Reinforcement Learning 457

does not mean the absence of counterexamples, it suggests the correctness of the
CPS model to some extent.

Existing approaches adopt various kinds of stochastic global optimization
algorithms e.g., simulated annealing [3] and cross-entropy [27], to minimize
robustness. These methods take a full trajectory (a sequence of actions) as
input, and adjusting input during the simulation is not supported. As a result, a
large number of simulation runs are required in the falsification process. Existing
methods cannot guarantee finding a counterexample of practical CPS models in
a limited time window because the simulation would then be tremendous.

In this paper, we adopt deep reinforcement learning (DRL) [25] algorithms
to solve the problem of falsification of STL properties for CPS models. Rein-
forcement learning techniques can observe feedbacks from the environment, and
adjust the input action immediately. In this way, we are able to converge faster
towards minimum robustness value. In particular, we adopt two state-of-the-art
DRL techniques, i.e., Asynchronous Advanced Actor Critic (A3C) and Double
Deep-Q Network (DDQN). Our contributions are two folds: (1) we show how to
transform the problem of falsifying CPS models into a reinforcement learning
problem; and (2) we implement our method and conduct preliminary evaluations
to show DRL technology can help reduce the number of simulation runs required
to find a falsifying input for CPS models. Reducing the number of simulation
runs is important because during falsification, the majority of execution time is
spent for simulation runs if CPS models are complex.

Related Work. There are two kinds of works, i.e., robustness guided falsifica-
tion and controller synthesis, which are most related to our approach.

In robustness guided falsification methods, quantitative semantics over Met-
ric Interval Temporal Logic (MITL) and its variants STL [16,23] are employed.
Then the fault detection problem is translated into the numerical minimization
problem. Several tools e.g., S-TaLiRo [5,19] and Breach [15] are developed to
realize this approach. Moreover, various kind of numerical optimization tech-
niques, e.g., simulated annealing [3], cross-entropy [27], and Gaussian process
optimization [4,7,8,28], are studied to solve the falsification problem efficiently.
All these methods optimize the whole output trajectory of a CPS by changing
the whole input trajectory. As stated above, we use reinforcement learning which
can observe feedbacks from a CPS and adjust the input immediately. Thus, our
method can be expected to arrive the falsifying input faster.

In contrast to robustness guided falsification, controller synthesis techniques
enable choosing the input signal at a certain step based on observations of
output signals. There are works that synthesize the controller to enforce the
Markov decision process to satisfy a given LTL formula [13,14,22,26,29]. The
most closely related works [20,21] apply reinforcement learning techniques to
enforce the small robotic system to satisfy the given LTL formula. Our work is
different from those works in two aspects: (1) we falsify the properties while the
control synthesis methods try to satisfy the properties; and (2) with DRL, we

458 T. Akazaki et al.

could employ complex non-linear functions to learn and model the environment,
which is suitable to analyze the complex dynamics of CPS.

2 Preliminary

Robustness Guided Falsification. In this paper, we employ a variant of
Signal Temporal Logic (STL) defined in [9]. The syntax is defined in the Eq. (1),

ϕ : := v ∼ c | p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 UI ϕ2 | ϕ1 SI ϕ2 (1)

where v is real variable, c is a rational number, p is atomic formula, ∼∈ {<,≤}
and I is an interval over non-negative real numbers. If I is [0,∞], I is omitted.
We also use other common abbreviations, e.g., �Iϕ ≡ TrueUI ϕ and �Iϕ ≡
TrueSI ϕ.

For a given formula ϕ, an output signal x and time t, we adopt the notation
of work [9] and denote the robustness degree of output signal x satisfying ϕ at
time t by ρ(ϕ,x, t). It takes a real value such that (1) its sign stands for the
formula ϕ is satisfied or not by x at t (positive is true), and (2) its absolute
value stands for how “robustly” the formula is satisfied or not.

We also adopt the notion of future-reach fr(ϕ) and past-reach pr(ϕ) fol-
lowing [18]. Intuitively, fr(ϕ) is the time in future which is required to deter-
mine the truth value of formula ϕ, and pr(ϕ) is the time in past. For example,
fr(p) = 0, fr(�[0,3]p) = 3 and fr(�[0,3]p) = 0. Similarly, for past-reach, pr(p) = 0,
pr(�[0,3]p) = 0, pr(�[0,3]p) = 3.

In this paper, we focus on a specific class of the formula called life-long
property.

Definition 1 (life-long property). A life-long property is an STL formula
ψ ≡ �ϕ where fr(ϕ), pr(ϕ) are finite. If fr(ϕ) = 0, we call ψ past-dependent
life-long property.

Let us consider the life-long property ψ ≡ �ϕ. Intuitive meaning of this
formula is that whenever the property ϕ must hold. In falsification scenario, to
observe the violation of ϕ, output signals obtained by simulations should be long
enough with respect to both pr(ϕ) and fr(ϕ). If the output signal is infinitely long
to past and future directions, ψ is logically equivalent to a past-dependent life-
long property ��[fr(ϕ),fr(ϕ)] ϕ. In general, the output signal is not infinitely long
but using this conversion we convert all life-long properties to past-dependent
life-long properties. Our evaluation in Sect. 4 suggests that this approximation
does not adversely affect the performance.

Reinforcement Learning. Reinforcement learning is one of machine learn-
ing techniques in which an agent learns the structure of the environment based
on observations, and maximizes the rewards by acting according to the learnt
knowledge. The standard setting of a reinforcement learning problem consists of
an agent and an environment. The agent observes the current state and reward

Falsification of Cyber-Physical Systems Using Deep Reinforcement Learning 459

from the environment, and returns the next action to the environment. The goal
of reinforcement learning is for each step n, given the sequence of previous states
x0, . . . , xn−1, rewards r1, . . . , rn and actions a0, . . . , an−1, generate an action an,
which maximizes expected value of the sum of rewards: r =

∑∞
k=n γkrk+1, where

0 < γ ≤ 1 is a discount factor. Deep reinforcement learning is a reinforcement
learning technique which uses a deep neural network for learning. In this work,
we particularly adopted two state-of-the-art deep reinforcement learning algo-
rithms, i.e., Asynchronous Advantage Actor-Critic (A3C) [24] and Double Deep
Q Network (DDQN) [17].

3 Our Approach

3.1 Overview of Our Algorithm

Let us consider the falsification problem to find a counterexample of the life-long
property ψ ≡ �ϕ. As we mentioned in Sect. 2, we can assume that ψ is past-
dependent. Our mission is to generate an input signal u for system M, such that
the corresponding output signal M(u) does not satisfy ψ.

In our algorithm, we fix the simulation time to be Tend and call one simula-
tion until time Tend an episode in conformance with the reinforcement learn-
ing terminology. We fix the discretization of time to a positive real num-
ber ΔT . The agent A generates the piecewise-constant input signal u =[
(0, u0), (ΔT , u1), (2ΔT , u2), . . .

]
by iterating the following steps:

(1) At time iΔT (i = 0, 1, . . .), the agent A chooses the next input value ui. The
generated input signal is extended to u =

[
(0, u0), . . . , (iΔT , ui)

]
.

(2) Our algorithm obtains the corresponding output signal x = M(u) by step-
ping forward one simulation on the model M from time iΔT to (i + 1)ΔT

with input ui.
(3) Let xi+1 = x((i + 1)ΔT) be the new state (i.e., output) of the system.
(4) We compute reward ri+1 by reward(ϕ,x) (defined in Sect. 3.2).
(5) The agent A updates its action based on the new state xi+1 and reward ri+1.

At the end of each episode, we obtain the output signal trajectory x, and check
whether it satisfies the property ψ = �ϕ or not. If it is falsified, return the
current input signal u as a counterexample. Otherwise, we discard the current
generated signal input and restart the episode from the beginning.

The complete algorithm of our approach is shown in Algorithm 1. The
method call A.step(x, r) represents the agent A push the current state reward
pair (x, r) into its memory and returns the next action u (the input signal in
the next step). The method call A.reset(x, r) notifies the agent that the cur-
rent episode is completed, and returns the current state and reward. Function
reward(x, ψ) calculates the reward based on Definition 2.

460 T. Akazaki et al.

Algorithm 1. Falsification for ψ = �ϕ by reinforcement learning
input: A past-dependent life-long property ψ = �ϕ, a system M, an agent A
output: A counterexample input signal u if exists
parameters: A step time ΔT , the end time Tend, the maximum number of the episode N
1: for numEpisode ← 1 to N do
2: i ← 0, r ← 0, x be the initial (output) state of M
3: u be the empty input signal sequence
4: while iΔT < Tend do
5: u ← A.step(x, r), u ← append(u, (iΔT , u)) � choose the next input by the agent
6: x ← M(u), x ← x((i + 1)ΔT) � simulate, observe the new output state
7: r ← reward(x, ψ)
8: i ← i + 1 � calculate the reward by following eq. (2)
9: end while
10: if x �|= ψ then return u as a falsifying input
11: end if
12: A.reset(x, r)
13: end for

3.2 Reward Definition for Life-Long Property Falsification

Our goal is to find the input signal u to the system M which minimizes
ρ(ψ,M(u), 0) where ψ = �ϕ and ρ is a robustness. We determine u0, u1, . . .
in a greedy way.

Assume that u0, . . . , ui are determined. ui+1 can be determined by

ui+1 = arg min
ui+1

min
ui+2,...

ρ(�ϕ, M([(0, u0), (ΔT , u1), . . .]), 0) (2)

= arg min
ui+1

min
ui+2,...

min
t∈R

ρ(ϕ, M([(0, u0), (ΔT , u1), . . .]), t) (3)

∼ arg min
ui+1

min
ui+2,...

min
k=i+1,i+2,...

ρ(ϕ, M([(0, u0), . . . , (kΔT , uk)]), kΔT) (4)

∼ arg min
ui+1

min
ui+2,...

[
− log

{
1 +

∞∑
k=i+1

{e− ρ(ϕ,M([(0,u0),...,(kΔT ,uk)]),kΔT) − 1}
}]

(5)

= arg max
ui+1

max
ui+2,...

∞∑
k=i+1

{e− ρ(ϕ,M([(0,u0),...,(kΔT ,uk)]),kΔT) − 1} . (6)

Here the Eq. (4) uses the fact ϕ is past-dependent and (5) uses an approximation
of minimum by the log-sum-exp function [11].

In our reinforcement learning base approach, we use discounting factor γ = 1
and reward ri = e− ρ(ϕ,M([(0,u0),...,(iΔT ,ui)]),iΔT) − 1 to approximately compute
action ui+1, from u0, . . . , ui, M([(0, u0), . . . , (iΔT , ui)]) and r1, . . . , ri.

Definition 2 (reward). Let ψ ≡ �ϕ be a past-dependent formula and x =
M(u) be a finite length signal until the time t. We define the reward reward(ψ,x)
as

reward(ψ,x) = exp(− ρ(ϕ,x, t)) − 1 (7)

Falsification of Cyber-Physical Systems Using Deep Reinforcement Learning 461

4 Preliminary Results

Implementation. The overall architecture of our system is shown in Fig. 1.
Our implementation consists of three components, i.e., input generation, output
handling and simulation. The input generation component adopts reinforcement
learning techniques and is implemented based on the ChainerRL library [1].
We use default hyper-parameters in the library or sample programs without
change. The output handling component conducts reward calculation using dp-
TaliRo [5]. The simulation is conducted with Matlab/Simulink models, which
are encapsulated by the openAI gym library [10].

Environment [OpenAI Gym]

Simulate CPS Model [Matlab/Simulink] Output handling [dp-taliro]
AutoTran PTC ... Reward Calculation

Agent (A3C,DDQN)
 Input Generation [ChainerRL]

System outputs

 State

Action (System Inputs) Reward

Fig. 1. Architecture of our system

Evaluation Settings. We use a widely adopted CPS model, automatic trans-
mission control system (AT) [6], to evaluate our method. AT has throttle and
brake as input ports, and the output ports are the vehicle velocity v, the engine
rotation speed ω and the current gear state g. We conduct our evaluation with
the formulas in Table 1. Formulas ϕ1–ϕ6 are rewriting of ϕAT

1 –ϕAT
6 in bench-

mark [6] into life-long properties in our approach. In addition, we propose three
new formulas ϕ7–ϕ9. For each formula ϕ1–ϕ9, we compare the performance
of our approaches (A3C, DDQN), with the baseline algorithms, i.e., simulated
annealing (SA) and cross entropy (CE). For each property, we run the falsifica-
tion procedure 20 times. For each falsification procedure, we execute simulation
episodes up to 200 times and measure the number of simulation episodes required
to falsify the property. If the property cannot be falsified within 200 episodes,
the procedure fails. We observe that ΔT may strongly affect the performance of
each algorithm. Therefore, we vary ΔT (among {1, 5, 10} except for the cases of
A3C and DDQN for ϕ7–ϕ9 among we use {5, 10}1) and report the setting (of
ΔT) which leads to the best performance (the least episode number and highest
success rate) for each algorithm.

Evaluation Results. The preliminary results are presented in Table 2. The
ΔT columns indicate the best performing ΔT for each algorithm. The “Success
rate” columns indicate the percentage that the falsification procedure could find
a counterexample within the maximum allowed simulation episodes (200). The
1 These methods with ΔT = 1 for ϕ7–ϕ9 shows bad performance and did not terminate

in 5 days.

462 T. Akazaki et al.

Table 1. The list of the evaluated properties on AT.

id Formula
ϕ1 �ω ≤ ω
ϕ2 �(v ≤ v ∧ ω ≤ ω)
ϕ3 �((g2 ∧ �[0,0.1]g1) → �[0.1,1.0]¬g2)
ϕ4 �((¬g1 ∧ �[0,0.1]g1) → �[0.1,1.0]g1)
ϕ5 � ∧4

i=1((¬gi ∧ �[0,0.1]gi) → �[0.1,1.0]gi)

id Formula
ϕ6 �(�[0,t1]ω ≤ ω → �[t1,t2]v ≤ v)
ϕ7 �v ≤ v
ϕ8 � �[0,25] ¬(v ≤ v ≤ v)
ϕ9 �¬�[0,20](¬g4 ∧ ω ≥ ω)

Table 2. The experimental result on AT.

id ΔT Success rate numEpisode

A3C DDQN SA CE A3C DDQN SA CE A3C DDQN SA CE

ϕ1 5 1 10 5 100%∗ 100%∗ 65.0% 10.0% 16.5∗∗ 24.5 118.5 200.0

ϕ2 5 1 10 5 100%∗ 100%∗ 65.0% 10.0% 11.5∗∗ 27.5 118.5 200.0

ϕ3 1 1 1 1 75.0 5.0% 20.0% 85.0% 44.0 200.0 200.0 26.5

ϕ4 1 1 1 1 75.0 10.0% 20.0% 85.0% 67.5 200.0 200.0 26.5∗

ϕ5 1 1 1 1 100% 100% 100% 100% 1.0 2.0 1.0 1.0

ϕ6 10 10 10 10 100%∗ 100%∗ 70.0% 50.0% 3.5∗∗ 3.5∗∗ 160.5 119.0

ϕ7 5 5 1 1 65.0% 100%∗∗ 0.0% 0.0% 125.0 63.0∗∗ 200.0 200.0

ϕ8 10 10 10 1 80.0% 95.0% 90.0% 75.0% 72.0 52.0 83.0 21.0

ϕ9 10 10 10 10 95.0% 100%∗∗ 15.0% 5.0% 46.0 12.0∗∗ 200.0 200.0

“numEpisode” columns show the median (among the 20 procedures) of the num-
ber of simulation episodes required to falsify the formula. We use median since
the distribution of the number of simulation episodes tends to be skewed.

The best results (success rate and numEpisode) of each formula are high-
lighted in bold. If the difference between the best entry of our methods and the
best entry of the baseline methods is statistically significant by Fisher’s exact
test and the Mann Whitney U-test [12], we mark the best entry with ∗ (p < 0.05)
or ∗∗ (p < 0.001), respectively.

As shown in Table 2, RL based methods almost always outperforms baseline
methods on success rate, which means RL based methods are more likely to
find the falsified inputs with a limited number of episodes. This is because RL
based methods learn knowledge from the environment and generate input signals
adaptively during the simulations. Among the statistically significant results of
numEpisode, our methods are best for five cases (ϕ1, ϕ2, ϕ6, ϕ7, ϕ9), while the
baseline methods are best for one case (ϕ4). For the case of ϕ4, it is likely because
that all variables in this formula take discrete values, thus, reinforcement learning
is less effective. Further, DDQN tends to return extreme values as actions, which
are not solutions to falsify ϕ3 and ϕ4. This explains poor performance of DDQN
for the case of ϕ3 and ϕ4.

Unfortunately, our current implementation has a disadvantage of large com-
putational time due to the overhead caused by wrapping a simulation in openAI
gym API. We believe that the performance for time would be much better with
proper implementation.

Falsification of Cyber-Physical Systems Using Deep Reinforcement Learning 463

5 Conclusion and Future Work

In this paper, we report an approach which adopts reinforcement learning algo-
rithms to solve the problem of robustness-guided falsification of CPS systems.
We implement our approach in a prototype tool and conduct preliminary eval-
uations with a widely adopted CPS system. The evaluation results show that
our method can reduce the number of episodes to find the falsifying input. As a
future work, we plan to extend the current work to explore more reinforcement
learning algorithms and evaluate our methods on more CPS benchmarks.

References

1. The ChainerRL Library. https://github.com/chainer/chainerrl
2. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Proba-

bilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed.
Comput. Syst. 12(2s), 95:1–95:30 (2013)

3. Abbas, H., Fainekos, G.E.: Convergence proofs for simulated annealing falsification
of safety properties. In: 50th Annual Allerton Conference on Communication, Con-
trol, and Computing, Allerton 2012, Allerton Park & Retreat Center, Monticello,
IL, USA, 1–5 October 2012, pp. 1594–1601. IEEE (2012)

4. Akazaki, T.: Falsification of conditional safety properties for cyber-physical systems
with gaussian process regression. In: Falcone, Y., Sánchez, C. (eds.) RV 2016.
LNCS, vol. 10012, pp. 439–446. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46982-9 27

5. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

6. Bardh Hoxha, H.A., Fainekos, G.: Benchmarks for temporal logic requirements for
automotive systems. In: Proceedings of Applied Verification for Continuous and
Hybrid Systems (2014)

7. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of tem-
poral properties for stochastic models. In: Dang, T., Piazza, C. (eds.) Proceed-
ings Second International Workshop on Hybrid Systems and Biology, HSB 2013.
EPTCS, Taormina, Italy, 2nd September 2013, vol. 125, pp. 3–19 (2013)

8. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic
models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25
(2015)

9. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

10. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAI gym (2016)

11. Cook, J.D.: Basic properties of the soft maximum (2011)
12. Corder, G.W., Foreman, D.I.: Nonparametric Statistics: A Step-by-Step Approach.

Wiley, Hoboken (2014)

https://github.com/chainer/chainerrl
https://doi.org/10.1007/978-3-319-46982-9_27
https://doi.org/10.1007/978-3-319-46982-9_27
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-319-75632-5_5

464 T. Akazaki et al.

13. Ding, X.C., Smith, S.L., Belta, C., Rus, D.: MDP optimal control under temporal
logic constraints. In: Proceedings of the 50th IEEE Conference on Decision and
Control and European Control Conference, CDC-ECC 2011, Orlando, FL, USA,
12–15 December 2011, pp. 532–538. IEEE (2011)

14. Ding, X.C., Smith, S.L., Belta, C., Rus, D.: Optimal control of markov decision pro-
cesses with linear temporal logic constraints. IEEE Trans. Autom. Control 59(5),
1244–1257 (2014)

15. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

16. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

17. Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous deep q-learning with
model-based acceleration. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of
The 33rd International Conference on Machine Learning, Proceedings of Machine
Learning Research, PMLR, New York, USA, 20–22 June 2016, vol. 48, pp. 2829–
2838 (2016)

18. Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3 15

19. Hoxha, B., Abbas, H., Fainekos, G.E.: Using S-TaLiRo on industrial size auimm-
lertomotive models. In: Frehse, G., Althoff, M. (eds.) 1st and 2nd Interna-
tional Workshop on Applied Verification for Continuous and Hybrid Systems,
ARCH@CPSWeek 2014.EPiC Series in Computing, Berlin, Germany, 14 April
2014/ARCH@CPSWeek 2015, Seattle, WA, USA, 13 April 2015, vol. 34, pp. 113–
119. EasyChair (2014)

20. Li, X., Ma, Y., Belta, C.: A policy search method for temporal logic specified
reinforcement learning tasks. CoRR, abs/1709.09611 (2017)

21. Li, X., Vasile, C.I., Belta, C.: Reinforcement learning with temporal logic rewards.
In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2017, Vancouver, BC, Canada, 24–28 September 2017, pp. 3834–3839. IEEE
(2017)

22. Luna, R., Lahijanian, M., Moll, M., Kavraki, L.E.: Asymptotically optimal stochas-
tic motion planning with temporal goals. In: Akin, H.L., Amato, N.M., Isler, V.,
van der Stappen, A.F. (eds.) Algorithmic Foundations of Robotics XI. STAR,
vol. 107, pp. 335–352. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
16595-0 20

23. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

24. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver,
D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning, vol.
48 (2016)

25. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1007/978-3-319-16595-0_20
https://doi.org/10.1007/978-3-319-16595-0_20
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12

Falsification of Cyber-Physical Systems Using Deep Reinforcement Learning 465

26. Sadigh, D., Kim, E.S., Coogan, S., Sastry, S.S., Seshia, S.A.: A learning based
approach to control synthesis of Markov decision processes for linear temporal logic
specifications. In: 53rd IEEE Conference on Decision and Control, CDC 2014, Los
Angeles, CA, USA, 15–17 December 2014, pp. 1091–1096. IEEE (2014)

27. Sankaranarayanan, S., Fainekos, G.E.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: Dang, T., Mitchell, I.M. (eds.) Hybrid
Systems: Computation and Control (part of CPS Week 2012), HSCC 2012, Beijing,
China, 17–19 April 2012, pp. 125–134. ACM (2012)

28. Silvetti, S., Policriti, A., Bortolussi, L.: An active learning approach to the fal-
sification of black box cyber-physical systems. In: Polikarpova, N., Schneider, S.
(eds.) IFM 2017. LNCS, vol. 10510, pp. 3–17. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66845-1 1

29. Soudjani, S.E.Z., Majumdar, R.: Controller synthesis for reward collecting Markov
processes in continuous space. In: Frehse, G., Mitra, S. (eds.) Proceedings of
the 20th International Conference on Hybrid Systems: Computation and Control,
HSCC 2017, Pittsburgh, PA, USA, 18–20 April 2017, pp. 45–54. ACM (2017)

https://doi.org/10.1007/978-3-319-66845-1_1
https://doi.org/10.1007/978-3-319-66845-1_1

Dynamic Symbolic Verification of MPI
Programs

Dhriti Khanna1, Subodh Sharma2(B), César Rodŕıguez3,
and Rahul Purandare1

1 IIIT Delhi, New Delhi, India
dhritik@iiitd.ac.in

2 IIT Delhi, New Delhi, India
svs@cse.iitd.ac.in

3 Université Paris 13, Sorbonne-Paris-Cité, LIPN, CNRS, Villetaneuse, France

Abstract. The success of dynamic verification techniques for Message
Passing Interface (MPI) programs rests on their ability to address com-
munication nondeterminism. As the number of processes in the program
grows, the dynamic verification techniques suffer from the problem of
exponential growth in the size of the reachable state space. In this work,
we provide a hybrid verification technique for message passing programs
that combines explicit-state dynamic verification with symbolic analysis.
The dynamic verification component deterministically replays the exe-
cution runs of the program, while the symbolic component encodes a
set of interleavings of the observed run of the program in a quantifier-
free first order logic formula and verifies it for communication deadlocks.
In the absence of property violations, it performs analysis to generate
a different run of the program that does not fall in the set of already
verified runs. We demonstrate the effectiveness of our approach, which is
sound and complete, using our prototype tool Hermes. Our evaluation
indicates that Hermes performs significantly better than the state-of-
the-art verification tools for multi-path MPI programs.

Keywords: Dynamic verification · Message passing interface
Deadlock detection · Symbolic analysis

1 Introduction

Message passing (MP) is a prominent paradigm via which nodes of the dis-
tributed systems can communicate. Typically, the MP programs are run on large
computer clusters and are developed not only by career computer professionals
but also by unconventional programmers affiliated to other disciplines of sci-
ence. However, designing MP programs is known to be a challenging exercise.
Programmers have to anticipate the messaging patterns, perform data marshal-
ing and compute the locations for coordination in order to design correct and
efficient programs. Unsurprisingly, this design complexity lends itself to the veri-
fication complexity of MP programs. The problem of communication races, which
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 466–484, 2018.
https://doi.org/10.1007/978-3-319-95582-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_28&domain=pdf

Dynamic Symbolic Verification of MPI Programs 467

leads to data corruption or communication deadlocks, plays a central role in the
verification complexity of MP programs.

In the context of discovering communication deadlocks, the problem has been
studied extensively over the years [2,11,14,17,19,20,23,25,28]. However, a scal-
able solution remains elusive; this is primarily due to the nondeterminism in
the semantics of MP primitives. For instance, in MPI (Message Passing Inter-
face [21], a popular standard for writing parallel programs in C/Fortran) use
of the wildcard receive call can lead to nondeterministic matching with poten-
tial senders at runtime [30]. Presence (or absence) of buffering in MPI nodes
can also contribute to nondeterminism; for instance, standard blocking sends
semantics are dependent on the presence of system buffering – under no system
buffering the send calls behave as synchronous calls while under infinite buffer-
ing the same send calls complete immediately without even requiring a matching
receive call. MPI implementations allow nodes to provide buffering in order to
improve the performance, however, the nondeterminism resulting from buffering
can potentially introduce additional deadlocks [31].

It is worthwhile to note that nondeterministic communication of data can
affect the control-flow of the program (e.g., when the communicated data to
a wildcard receive is used in a subsequent branch instruction of the program).
Programs with the pattern mentioned above are termed as multi-path programs
[9], and they significantly affect the scalability of existing verification techniques.
Correspondingly, single-path programs are those (paraphrasing from [9]) where
the program executes irrespective of the data communicated to a receive call,
the same sequence of instructions, i.e., the control-flow of the program remains
unaffected by the communication actions in the program.

Explicit-state runtime model checkers of MPI programs, such as ISP [30]
and DAMPI [33], can analyse multi-path (and single-path) MPI programs for
the absence of communication deadlocks and assertion violations. However, they
require the programs to be repeatedly run such that in each run a distinct com-
munication pattern (such as a send-receive match) is explored. Though the said
model checkers are exhaustive in their exploration under a fixed input and a
buffering mode (viz. zero and infinite [31]), they suffer from a possible require-
ment of a considerable number of program re-runs. It is often the case that
much of the time is spent in verifying the loops of the program containing only
computation code that is of little relevance to establish the correctness of the
communication structure of the program.

Recently, symbolic analysis techniques for MP program executions have been
proposed. Although they do address the problem of program re-runs by symbol-
ically encoding the interleavings to explore, they can only be applied to single-
path programs [10,15,22]. These techniques are classified as trace verification
techniques and the tools as trace verifiers.

Techniques which perform full-blown symbolic execution of a program can
discover deadlocks and other assertion violations in multi-path programs [3,11,
28]. While they cover both the input space and communication nondeterminism,

468 D. Khanna et al.

they are known to not scale beyond a relatively small size of the program and a
few processes.

We present a sound and complete technique to verify multi-path MPI that is
complementary to the above-mentioned techniques. Our technique combines the
strengths of trace verification and symbolic execution techniques, which, respec-
tively, provide scalability and multi-path coverage. Furthermore, our technique
is able to verify programs with not only zero- or inifinite-buffering, but also with
nondeterministic buffering decisions up to a bound k. While we present the tech-
nique in the context of verifying MPI programs for the absence of deadlocks, it
can be applied to other properties, such as assertion violations. We demonstrate
the effectiveness of the technique by implementing it as a prototype tool Hermes
and comparing it with state-of-the-art tools.

2 Overview

In this section, we present an overview of our hybrid method which discovers
deadlocks in multi-path MPI programs. The technique exhaustively explores
the executions of the program under a fixed input as follows: (i) it obtains
a concrete run ρ of the program via dynamic analysis (via a scheduler that
orchestrates a run); (ii) encodes symbolically the set of feasible runs obtained
from the same set of events as observed in ρ such that each process triggers the
same control-flow decisions and executes the same sequence of communication
calls as in ρ (note that the encoding captures the entire set of runtime matches of
communication events from ρ); (iii) check for violations of any property (in our
case, communication deadlocks); and (iv) if no property is violated, then alter
the symbolic encoding to explore the feasibility of taking an alternate control
flow behavior which is different from ρ. In case of such a feasibility, initiate a
different concrete run.

Consider the program shown in Fig. 1(a). It is a nondeterministic, multi-path,
and deadlock-free program. The non-colored lines illustrate the pseudo-code of
the program. It is worthy to note that trace verifiers will fail to verify the
program since the program has multiple control flow branches and the nonde-
terministic matching choice of R1 governs the execution of these branches.

Our approach statically discovers the code locations where the received data
or message tags (a field in MPI send and receive calls that serve as a unique
marker for messages) are used to branch at conditional statements. At these
locations, we instrument certain calls to a scheduler. The scheduler schedules the
MPI calls of the program according to the MPI semantics and drives the execu-
tion. The scheduler is also responsible for building a partially ordered happens-
before relation between these calls (refer Sect. 3). At runtime, the instrumented
code communicates the predicate expression in the branching instruction to the
scheduler. The instrumented code is shown in blue color in Fig. 1(a).

Based on a trace ρ the symbolic encoding is generated from the execution
of the program with instrumented code. The communication events and the
branching decisions made in this trace are modeled as an SMT formula. This

Dynamic Symbolic Verification of MPI Programs 469

formula encodes all the semantically possible schedules of events observed in ρ,
which follow the same control-flow decisions as made in ρ.

Process 0 Process 1
Recv(*, x); //R1 Send(P0, 10); //S1

if (x==10) Process 2
Recv(*, y); //R2 Send(P0, 10); //S2

toScheduler(‘x==10’); Process 3
else if (x==20) Send(P0, 30); //S3

Recv(*, y); //R3
toScheduler(‘x==20’);

else if (x==30)
Recv(*, y); //R4
toScheduler(‘x==30’);

Recv(*, z); //R5

(a) Instrumented non single-path program.

R1

R4

R5

schedule6

S1-R5

R5

schedule5

S2-R5

S1-R4 S2-R4

R3

R5

schedule4

S1-R5

R5

schedule3

S3-R5

S1-R3 S3-R3

R2

R5

schedule2

S2-R5

R5

schedule1

S3-R5

S2-R2 S3-R2

S1-R1
S2-R1

S3-R1

(b) All possible interleavings.

Fig. 1. Multi-path program and its interleavings. (Color figure online)

In the example shown in Fig. 1(a), Process 0 executes the first control flow
branch if R1 matches with either S1 or S2. If R1 matches S1, the SMT formula
will encode the interleavings 1 and 2 as shown in Fig. 1(b). An SMT solver is
used to solve this formula, which checks for the violation of the safety property.
This verifies two interleavings. If there is no property violation, we verify another
control flow path that may have been taken if R1 had matched with some other
send. To this effect, we want to change the path condition obtained from the
trace to reschedule another execution through an unvisited control-flow. Hence,
we alter the path condition (in a typical symbolic execution style) and execute
the program again, so that it follows the path corresponding to the altered path
condition. To force the scheduler to follow a different control-flow branch, we
may also have to force a wildcard receive call to match with a send call that
sends data different from the send call that matched before. We repeat this
process until all the paths in the program are exhausted. In the context of the
above example, in the second execution, R1 must match S3, and it must avoid
matching S2 because S2 is sending the same data as S1 (S1 had already matched
with R1 in the first execution). The encoding resulting from this run will cover
schedules 3 to 6.

The example program has six possible interleavings across multiple control
flow paths. Our technique executes the program only twice to cover all of them
and thus shows the contrasting difference from trace verification which does not
provide full path coverage and from dynamic verification which executes the
program as many times as there are possible interleavings.

3 MPI Model and Execution Semantics

In this section we formalize the execution of an MPI program. The MPI run-
time often provides buffers to store the data of issued but unfinished calls. The

470 D. Khanna et al.

presence of buffers can introduce subtle behaviors in a program [26,31]. Due to
space limitations we present a zero-buffer semantics, but our results hold for
zero-, infinite-, and κ-buffer modes, with κ ∈ N.

We consider MPI programs consisting of n ∈ N processes P1, · · · , Pn in a
single communication group. Each process Pi manipulates a set of process-local
variables Vari. Let Var =

⋃
i Vari. We model the execution of the program as

a sequence of events, one for each executed MPI call. An event of process Pi

is a tuple e := 〈c, a, d〉, where c is a path constraint over Vari (describing the
conditional branches taken by Pi to produce the event, the constraint language
is left unspecified), a is an MPI call, and d ∈ N is a depth which increments
monotonically with the events of Pi. We let E denote the set of all possible
events, p(e) := Pi the process of e, and l(e) := a the MPI call of e.

Without loss of generality, we only model nonblocking MPI operations and
MPI Wait. Nonblocking calls return immediately with a handle that can later
be passed to MPI Wait for the process to block until the operation completes.
An MPI call is either a nonblocking send (resp. receive) issued by process Pi

to send data to (resp. receive from) process Pj with tag t, denoted by Si,j,t

(resp. Ri,j,t); or a nonblocking barrier issued by process Pi, denoted by Bi;
or a (blocking) wait issued by process Pi in order to wait for the completion
of the so-called corresponding event at depth h, denoted by Wi,h. For a wait
event e := 〈c,Wi,h, d〉 the corresponding event, corr(e), is the only event of Pi

whose depth is h.
The MPI runtime matches send and receive operations (among others) using

the well-defined semantics. Given events e := 〈c, a, d〉 and e′ := 〈c′, b, d′〉, we say
that e matches before e′, denoted by e1 ≺mo e2, iff p(e) = p(e′), and d ≤ d′, and
one of the following is satisfied: (i) a and b are send calls (resp. receive calls) to
the same destination (resp. from the same source) with the same tags; (ii) a is
a wildcard receive call and b is a receive call sourcing from the same process, or
a wildcard receive and the tags of calls a and b are the same, or the tag of call a
is a wildcard; (iii) a is a nonblocking call and b is an associated wait call.

We view the execution of an MPI program as a sequence of events in E∗, but
not all sequences correspond to executions. We now define a Labeled Transition
System (LTS) 〈Q,→, q0〉 whose runs capture the valid executions. The states
in Q are tuples of the form 〈I,M, z〉 where I ⊆ E is the set of issued events,
M ⊆ E is the set of matched events, and z : N → N maps every process to
the depth of the next event expected from that process. The initial state q0 is
〈∅, ∅, zo〉, where z0 maps all processes to 0.

The ≺mo order captures matching constraints that exclusively depend on
the types of the calls involved in the check. However, matching Ri,∗,t calls
requires information about the state. Given a state s := 〈I,M, z〉 and events
e := 〈c,Ri,j,t, d〉 and e′ := 〈c′, Ri,∗,t, d

′〉, we say that e conditionally matches
before e′, denoted by e ≺co e′, iff d ≤ d′ and ∃ê ∈ I such that l(ê) = Sj,i,t.

The transitions in → ∈ Q× 2E ×Q are labeled by sets of events representing
either the issuing or completion of MPI calls to the runtime or the matching of

Dynamic Symbolic Verification of MPI Programs 471

communication calls by the runtime. Thus, we have three classes of transitions:
Issue, Match, and Complete transitions.

Issue transitions capture the call to a nonblocking MPI primitive represented
by event e := 〈c, a, d〉. Formally, 〈I,M, z〉 {e}−−→ 〈I ∪ {e},M, z′〉 iff d = z(p(e)),
and z′ is equal to z except for z′(p(e)) which is z(p(e)) + 1, and I does not
contain any event whose action is a wait from process p(e).

Match transitions correspond to the MPI runtime matching a set of issued
events (e.g., a send with a receive). Formally, 〈I,M, z〉 m−→ 〈I \ m,M ∪ m, z〉
exactly when there is some m ⊆ I such that either of the three conditions hold:
(i) m := {e, e′} with l(〈e, e′〉) = 〈Si,j,t, Rj,i,t′〉 and �ê ∈ I, (ê ≺mo e ∨ ê ≺mo e′),
and t′ ∈ {t, ∗}; or (ii) m := {e, e′} with l(〈e, e′〉) = 〈Si,j,t, Rj,∗,t′〉 and �ê ∈
I, (ê ≺mo e ∨ ê ≺mo e′ ∨ ê ≺co e′), and t′ ∈ {t, ∗}; or (iii) m := {e1, . . . , en} with
l(ei) = Bi for all i ∈ {1, . . . , n} and �ê ∈ I, (ê ≺mo e1 ∨ . . . ∨ ê ≺mo en).

Finally, complete transitions correspond to calls to MPI wait returning the
control to the process because the corresponding event has already been matched.
Formally, 〈I,M, z〉 {e}−−→ 〈I\{e},M\{corr(e)}, z〉 iff l(e) := Wi,d and corr(e) ∈ M .

An execution trace (or just trace) ρ ∈ E∗ is any sequence formed by the
events contained in the singletons that label a run of the LTS which only uses
issue transitions. An MPI program P has a deadlock if it can generate a trace ρ
that ends in a deadlocking state, i.e., one with no successors in the LTS. Deciding
whether a single-path program has a deadlock is an NP-complete problem [10],
under finite and infinite system buffering. Note that our events are guarded MPI
calls and thus each trace of P is essentially a single-path program. Since, P has
a finite number of single-path programs, it follows that the deadlock detection
problem under κ-buffering for P is also NP-complete.

4 Encoding Rules

In this section we define SMT encoding rules such that for a deadlocking execu-
tion trace ρ, the variables of the encoding get satisfied and the generated model
provides information about the calls that remained unmatched in ρ. The first
step is defining an (over-approximated) set of sets of events, M

+ ∈ 2E , consisting
of all possible sets that the LTS could make using the match transition using
the same events as in ρ but possibly issued in a different order.

Definition 1. M
+: The M

+ set is an over-approximate set of the matching calls
in a trace [10]:

M
+ = {{a, b} ⊆ E | a = 〈−, Si,j,−,−〉, b = 〈−, Rj,i/∗,−,−〉,

∀a′ ≺mo a ∃ b′ ��mo b : { a′, b′} ∈ M
+,

∀b′ ≺mo b ∃ a′ ��mo a : { a′, b′} ∈ M
+}

∪ {{a} ⊆ E | a = 〈−,Wi,h,−〉}
∪ {{a1, · · · , aN} ⊆ E | ∀i ∈ {1, . . . , n}, ai = 〈−, Bi,−〉} .

472 D. Khanna et al.

Let M
+(a) =

⋃{b|∃α ∈ M
+ : a, b ∈ α} be the set of all potential matching

calls for the operation a. Let Imm(a) be the set of all immediate ancestors of
event a. We define it by Imm(a) = {x|x ≺ a,∀z : x � z � a =⇒ z ∈ {x, a}}.
Note that ≺= (≺mo ∪ ≺co) (resp. for �).

Following [10], we restrict our presentation to problems without barriers with-
out introducing spurious models. In Fig. 2, we provide the list of rules that encode
all feasible interleavings of a given ρ. First, we explain the meaning and purpose
of each variable used in the encoding. We use tag, src (resp. dest), and val as
integer variables to encode MPI call operands such as message tag, sender’s
(resp. receiver’s) identity, and the data payload, respectively. Note that for sim-
plicity we assume the data payload to be of primitive types (such as Integer). In
order to model an interleaved run, we use an integer variable clk for each call in
ρ. Variables m and r are boolean variables which signify the matching and the
readiness (all ≺mo ancestors of the event are matched) of an event, respectively.
A boolean variable bufferUsed is used when an event uses the buffer provided by
the MPI runtime. We refer the above mentioned variables corresponding to an
event a by the variable name sub-scripted with event symbol, for instance, clock
variable for event a is denoted by clka.

Corresponding to every α ∈ M
+ we have a boolean variable sα which we set

to true when the events in α occur as a match in ρ. We further define I ⊆ Eρ to
be the set of event pairs (a, b) such that a and b are consecutive sends from one
process but with different destinations. Buffering a can potentially impact the
≺mo relation with respect to call b. When both a and b are send calls targeting
the same destination, then, despite buffering, the ≺mo relation between a and b
stands unmodified. This is because the FIFO matching guarantee provided by
the MPI standard is impervious to the underlying system buffering.

In Fig. 2, most SMT rules are similar to the propositional rules from [10],
except Rules 2, 5, 10, 11 and 14. Rule 1 encodes the ≺mo relation with an
exception – the order between a pair of send calls (a, b) ∈ I is encoded in
Rule 10. Rule 5 encodes the semantics of ≺co ordering. We start with an over-
approximate set E that has pairs of receive calls (deterministic receive call, a,
followed by a wildcard receive call b). An order is established between such a
pair only when there is a ready send call that can match a but no send call that
can match b. To record the notion of time at which calls become ready, we use
the variable rclk. Rules 12 and 13 encode the deadlock detection constraints.

Encoding for κ-Buffer Mode Semantics: Rules 10 and 11 encode the behav-
ior of a program with κ-buffer semantics. The maximum number of buffer slots,
κ, available with the program is provided by the user. If a buffer slot is avail-
able, the partial order relation between some of the send calls can be relaxed (as
explained before).

Encoding for Path Condition: Rule 14 encodes the guards of each event
in Eρ. The guards are the path constraints obtained from the expressions of
conditional statements encountered along the program execution.

Dynamic Symbolic Verification of MPI Programs 473

1. Partial Order:
∧

b∈Eρ

∧

a∈Imm(b):(a,b) I∈�
clka < clkb

2. Match Pair:
∧

a:(s,r)∈M+
sa → (clks = clkr) ∧ (datas = datar) ∧ (tags = tagr)

3. Unique Match for Send:
∧

(a,b)∈M+

∧

(a,c)∈M+
sab →!sac

4. Unique Match for Receive:
∧

(a,b)∈M+

∧

(c,b)∈M+
sab →!scb

5. Conditional Partial Order:
(a)

∧

a∈Eρ

ra → r clka = clkImm(a) + 1

(b)
∧

(a,b)∈E

∧

c∈M+(b)
(r clkc > r clka ∧ ∧

d∈M+(a)
r clkc > r clkd) → clka < clkb

6. Match Correct:
∧

a∈r

(ma → ∨

(b,a)∈M+
(sba)) ∧ ∧

a∈s

(ma → ∨

(a,b)∈M+
(sab))

7. Matched only:
∧

a:(a1,a2,...,an)∈M+
sa → ∧

ai∈a

mai

8. All Ancestors Matched:
∧

b∈Eρ

(rb ↔ ∧

a=Imm(b)
ma)

9. Match Only Issued:
∧

a∈Eρ

(ma → ra)

10. Use Buffer:
∧

(a,b)∈I
(ra∧k > 0 → (bufferUseda∧dec(k)))∧(k = 0 →!bufferUseda∧

clka < clkb)
11. Free buffer:

∧

a∈Eρ

k = ite(ma ∧ bufferUseda, inc(k), k)

12. No Match Possible:
∧

a∈M+(
∨

t∈a(mt∨!rt))
13. Not All Matched:

∨
a∈Eρ

!ma

14. Path Condition: πρ

Fig. 2. SMT rules.

Theorem 1. Given a trace ρ of program P , ρ ends in a deadlocking state iff
there is a satisfying assignment of the variables to values in the SMT encoding
of the deadlock detection problem.

The proof of this theorem is similar to the one used in [10]. It suffices to
show that (i) for every deadlocking trace of the program, the encoding rules are
satisfied, and (ii) whenever the rules are satisfied, the trace deadlocks. For this,
we construct a trace corresponding to the model generated by the solver (which
conforms to the MPI semantics) and prove that it is deadlocking. Theorem 1
formally establishes the correctness of our SMT encoding.

5 Design

Hermes comprises of three components: program instrumenter, constraint gen-
erator and solver, and instruction rescheduler. In this section, we describe the
functionality of these components and present the algorithm that Hermes imple-
ments. Figure 3 gives an architectural overview of Hermes.

474 D. Khanna et al.

5.1 Components

Program Instrumenter: The instrumenter is developed using Clang [5]. Clang is
the front-end for the LLVM compiler and provides features to analyse, optimize,
and instrument C/C++ source code. It targets the locations in the code where
the data or the tag received in a wildcard receive is decoded in the predicate
expression of a conditional construct, the body of which issues an MPI call. It
instruments these locations with TCP calls to the scheduler which is responsible
for driving the execution of the program. The instrumented calls are used to
communicate the predicate expressions to the scheduler at runtime. We use ISP’s
dynamic verification engine as the scheduler.

Constraint Generator and Solver: The instrumented program is input to the
ISP scheduler which executes it. The execution of the program drives the instru-
mentation to generate a path condition π which corresponds to the expressions
of the conditional constructs encountered at target locations during the run. We
also generate a set of potential matches, M

+, and a sequence of MPI events, ρ,
from the run. M

+, π, and ρ are used to encode the trace of the program in the
form of SMT rules given in Sect. 4, which conform to the MPI semantics. The
satisfiability of the rules signifies the presence of a deadlock. Please note that
the technique presented in this paper is a general verification technique to cover
all possible schedules for a given input. The encoding rules provided in Sect. 4,
however, are targeted for deadlock detection.

Fig. 3. Architecture of the approach.

Instruction Rescheduler: If the
SMT solver cannot generate a
model (UNSAT query), we modify π
in a way similar to the concolic exe-
cution to try and infer the existence
of another executable control flow
path. In a non-chronological order,
we perform a depth-first search over
a tree of control flow paths where
the branching points in the tree map
to the conditional constructs in the
target program. The resulting for-
mula is denoted by φ. Although we

modify the path condition in a fashion similar to concolic execution, we do not
inherit its legacy problem of path complexity. This is because (i) unlike con-
colic execution, we do not symbolically interpret the entire program, and (ii)
in our experience, the conditional expressions in multi-path MPI programs are
simple equality checks (we have not come across benchmark programs where the
relevant conditional expressions were complex).

Dynamic Symbolic Verification of MPI Programs 475

Algorithm 1. Deadlock Detection.
Data: Instrumented Program: P
Result:
1. Guarantee that a deadlock does not occur
2. Model of the MPI calls if a deadlock is present

1 <Path Condition: π; Trace: ρ; Potential Matches: M
+ > = execute P

2 while true do
3 φen = encode(M+, ρ)
4 res = solver(φen ∪ φπ)
5 if res == SAT then
6 report ‘Deadlock’; exit
7 else
8 φ = SearchDifferentPath(ρ, π, M

+)
9 if φ = ∅ then

10 report ‘No Deadlock’; exit
11 else
12 < π, ρ, M

+ > = execute P conforming to φ

5.2 Deadlock Detection

Algorithm 1 formally presents the functionality of the components described in
Sect. 5.1. The input to the algorithm is an instrumented MPI program. Execution
of the program at line 1 generates a program trace: ρ, a path condition: π, and
the potential send-receive match set generated from ρ: M

+. The while loop at
line 2 executes the program repeatedly until either all of the possible control
flow paths are explored or a deadlock is reported. In every iteration of the loop,
we encode the trace ρ into a set of SMT rules and check their satisfiability. If
we get a model from the SMT solver, then we report the deadlock as the output
and exit as shown in lines 3–7. Otherwise, we search for a different control flow
path by calling the procedure SearchDifferentPath at line 9. If that procedure
is unable to find any other feasible path, we report an absence of the deadlock
at line 11 and exit. Otherwise, we repeat the entire process.

We describe in Algorithm 2 the procedure SearchDifferentPath, to change
the path condition and to generate constraints φ. The input to the algorithm is
π, ρ, M

+. Incrementally, we start negating the expressions in π from last to first
in the loop starting at line 2. In line 3, we remove the expressions in the path
condition from (i+1)th position until the end and invert the ith last conditional in
π to get the altered conditional expression c at line 5. This c is clubbed with the
already present constraints in a maintained constraint stack to get φ at line 7.

We check if it is possible to drive the execution through the altered path in
lines 8–11. For this, we issue a query to the solver with constraints formed from
the rules given in Sect. 4 (φ′

en) and the constraints accumulated in the constraint
stack (φ).

In order to compute φ′
en, we require (i) a subset of M

+ which we denote by
M

+
clip, and (ii) a subsequence of the execution trace which is denoted by ρclip.

476 D. Khanna et al.

Algorithm 2. Searching different control flow path.
Data: ρ, π, M

+

Result: φ
1 size = length(π)-1
2 forall i ∈ size : 0 do
3 remove(π[i + 1] : π[size])
4 π′ = negate(π[i])
5 c = π′[i]
6 add c in constraintStack

7 φ =
j=top⋃

j=1

constraintStack[j]

8 φ′
en = encode(M+

clip, σclip) - φsafety

9 res = solver(φ′
en ∪ φ)

10 if res == SAT then
11 return φ

12 return ∅

Both M
+
clip and ρclip, are formed over the set of ordered MPI calls until the point

of the conditional block whose predicate is negated in π′(c). For brevity, we have
only shown the details for chronological backtracking without any optimizations.
An optimization strategy is presented in Sect. 6.1.

5.3 Correctness and Termination

The encoding presented in [10] is shown to be sound and complete. The encod-
ing in Algorithm1 is similar to the encoding from [10], hence the proof of
soundness and completeness is also similar. We omit the proof here due to
space consideration, but it can be found at Hermes’s site.1 The procedure
SearchDifferentPath (shown in Algorithm2) is sound and complete since we
assume the traces are of finite length and the number of distinct control-flow
paths in a program is bounded. Thus, by composition, Hermes is sound and
complete for a single input.

Algorithm 2 returns ∅ and terminates at line 12 when it finishes its exhaus-
tive search corresponding to the complete tree of possible control-flow execu-
tion paths. Note that the tree of possible control-flow paths is of finite height
and width. Algorithm1’s termination is either contingent on the termination of
Algorithm 2 or when a deadlock is found at line 6. We conclude that the analysis
performed by Hermes terminates.

6 Implementation

We have implemented the proposed technique in a prototype tool called Hermes.
We used Clang [5] to instrument the program, ISP [30] as the execution engine or
1 https://github.com/DhritiKhanna/Hermes.

https://github.com/DhritiKhanna/Hermes

Dynamic Symbolic Verification of MPI Programs 477

the scheduler, and Z3 [6] as the constraint solver. In the following subsections, we
describe the optimizations that we have implemented to limit infeasible control
flow paths. These optimizations are conservative and do not affect the soundness
and completeness of the approach.

6.1 Non-chronological Backtracking

Pi Pj

Ri,1(from ∗, x) Rj,1(from ∗, y)
if(x == 10) if(y == 5)
Ri,2(from Pk) Sj,2(to Pi, 10)

Performing chronological backtracking to alter
the path condition π may result in generating
queries that cannot be satisfied by the solver.
Consider the call Ri,1 in the adjoining example
matches with Sj,2. π will contain the constraint

assume(x == 10) which, at some point during backtracking, will be inverted.
However, inverting this condition alone will generate no new feasible control-
flow path unless Ri,1 matches with a send other than Sj,2. Thus, inverting the
constraint assume(x == 10) will require the inversion of assume(y == 5). These
two conditions can be a part of a chain of dependencies that form an unsat-core
of the unsatisfied formula. Hence, instead of chronological backtracking, we find
the culpable conflict and backjump directly to the root of this dependency chain
and negate the expression of the root node. The static analysis component of
the program instrumentation block identifies the conditional expressions which
introduce these dependencies.

In a tree of control flow paths, let there be a dependency chain of size d
on path p. After verifying p, the number of SAT queries required (in the worst
case) to find another feasible control-flow path in chronological backtracking
is d. However, with non-chronological backtracking, only one SAT query should
suffice.

6.2 Terminated Interleavings

Discovering a new control-flow path in Algorithm2 requires a change of received
data of the wildcard receive corresponding to the negated assume expression. In
order to ascertain whether such an execution exists SMT solver is invoked with
the modified path condition along with the other constraints. The constraints of
the modified path condition depend on the over-approximate match-set M

+, but
the program actually runs with ISP’s scheduler which makes the matches based
on the ample-set. Since |ample-set| ≤ |M+|, there may be cases when the SMT
solver returns a model from line 10 in Algorithm2, but an actual run satisfying
φ may not be possible. We handle these scenarios in our implementation by
terminating such runs and restoring the state of the previous correct run. We
provide an example of a terminated interleaving at our tool’s site.2

2 https://github.com/DhritiKhanna/Hermes.

https://github.com/DhritiKhanna/Hermes

478 D. Khanna et al.

7 Evaluation

The purpose of evaluating Hermes is to assess its efficiency and effectiveness
in verifying message passing programs. We set this evaluation in the context
of C/C++ MPI programs (see footnote 2) and compare Hermes against the
state-of-the-art verification tools. To guide the evaluation, we ask the following
research questions: [RQ1] How well does the proposed approach fair against
state-of-the-art techniques for single-path and multi-path programs? [RQ2] Is
the proposed approach effective in discovering deadlocks exposed under finite
buffer mode?

Artifacts and Runtime Environment: We used the FEVS test-suite [27] and
benchmarks from prior research papers [2,13,29,36]. The multi-path benchmarks
include Matrix Multiply, Integrate, Workers, and Monte Carlo for pi calculation.
A majority of the benchmarks are based on the client-server architecture. The
experiments were performed on a 64 bit, Intel quad-core machine with 1.7 GHz
processors, 4 GB of RAM, and Ubuntu version 14.04. We used ISP version 3.1
and Z3 version 4.4.2. All timings reported are in seconds and are averaged over 20
runs. TO signifies the time-out after 30 min. Note that the number of executions
of Hermes also include the runs which were terminated.
[RQ1] We compared Hermes against the state-of-the-art tools - Mopper (a
trace verifier), Aislinn and ISP (dynamic verifiers), and CIVL (a stateful sym-
bolic model checker). We summarize the results in Table 1. On most single-path

Table 1. Performance comparison for single-path MPI programs.

B’mark #P B D ISP Mopper Aislinn CIVL Hermes

Detect Runs Time Detect Time Detect Time Detect Time Detect Time

DTG 5 0 ✔ Yes 3 2.135 Yes 0.007 Yes 0.830 Yes 8.72 Yes 0.0365

5 ∞ 3 2.257 0.043 0.815 0.077

8 0 ✔ Yes 3 2.220 Yes 0.011 Yes 1.135 Yes 8.78 Yes 0.040

8 ∞ 3 2.307 0.044 1.139 0.080

Gauss Elim 4 0 1 0.529 0.210 8.936 TO 0.300

8 0 1 0.371 0.295 14.322 TO 0.423

16 0 1 2.041 0.408 TO TO 0.659

32 0 1 5.457 0.856 TO TO 1.163

Heat 4 0 ✔ Yes 7 8.572 Yes 0.365 � � Yes 0.389

8 0 ✔ - >1K TO Yes 0.593 � � Yes 0.660

16 0 ✔ - >1K TO Yes 0.927 � � Yes 1.063

32 0 ✔ - >1K TO Yes 1.709 � � Yes 2.036

2D Diffusion 4 0 ✔ Yes 1 0.008 NI Yes 8.523 NI

4 ∞ 90 123.733 0.388 0.908 0.451

8 0 ✔ Yes 1 0.05 NI Yes 12.461 NI

8 ∞ >1.1K TO TO 16.020 TO

Floyd (5) 4 0 1 0.005 0.020 0.640 TO 0.078

8 0 >1.6K TO 0.116 1.391 TO 0.218

16 0 >1.6K TO 0.128 2.998 TO 0.540

32 0 >1.6K TO 3.836 6.424 TO 2.829

B’mark: Benchmark; #P: Number of Processes, B: Buffering Mode; D: Deadlock Exists

�: Benchmark not supported; NI: Not Invoked

Dynamic Symbolic Verification of MPI Programs 479

Table 2. Performance comparison for multi-path MPI programs.

B’mark #P B D ISP Aislinn CIVL Hermes

Runs Time Time Time Runs Time

Monte (0.15) 4 0 6 6.025 0.971 � 3 2.326

5 0 24 28.346 1.668 � 4 3.472

6 0 120 151.598 5.028 � 5 4.819

8 0 >1.2K TO 10.173 � 7 7.434

MatrixMul (2 × 2 matrices) 4 ∞ 36 39.669 0.866 17.93 1 7.252

5 ∞ 144 163.277 1.101 25.307 1 9.993

6 ∞ 720 837.633 1.334 48.068 1 12.925

8 ∞ ∼1.5K TO 2.206 258.86 1 19.670

Integrate 4 0 27 32.755 0.858 910.36� 1 0.206

5 0 256 332.362 3.030 156.82� 1 0.302

6 0 3125 TO 27.839 157.63� 1 0.497

8 0 >1.5K TO TO 173.27� 1 0.852

Workers (8 jobs; size of job = 2) 4 0 18 20.975 1.549 37.76 1 0.360

5 0 24 28.433 1.368 72.333 1 0.384

6 0 120 151.525 2.286 1027.31 1 0.510

8 0 ∼1.3K TO 9.113 TO 1 1.021

B’mark: Benchmark; #P: Number of Processes, B: Buffer Mode; D: Deadlock Exists
�: Benchmark not supported; �: Result = null (probably an internal CIVL error: the theorem
prover has not said anything)

benchmarks the performance of Hermes is comparable to Mopper and con-
siderably better than the other state-of-the-art explicit-state model checkers
without compromising on error-reporting. Benchmark 2D Diffusion exhibits
a complex communication pattern and a high degree of nondeterminism which
leads to a huge M+. Hence, symbolic analysis tools do not perform well for such
benchmarks. We use --potential-deadlock option of CIVL which verifies the
program irrespective of the buffering mode.

Evaluation with multi-path programs required us to compare Hermes with
all tools except Mopper, since Mopper is constrained to work with only single-
path programs. The basis for comparing against ISP is the number of times a
program is executed while the basis for comparing with other tools is the time
taken to complete the verification. The results of our comparison are summa-
rized in Table 2. On all benchmarks ISP times out for as few as 8 processes.
Aislinn on most benchmarks (barring MatrixMul) either takes longer execution
time in comparison with Hermes or times out. The results indicate that when
the number of processes increases, the growth in execution time is relatively
reasonable in Hermes in comparison with ISP and Aislinn. The scalability of
Hermes regarding number of processes comes from the fact that it prunes out
the redundant paths and explores only the feasible ones. CIVL is a powerful
and a heavy stateful model checker that can backtrack as soon as it witnesses
a visited state. An advantage of CIVL over the other tools is that it can verify

480 D. Khanna et al.

programs on complex correctness properties over a wide range of inputs. How-
ever, CIVL was consistently slower than Hermes on all benchmarks barring
Heat. The Heat benchmark contained MPI calls that are not supported by CIVL
yet.
[RQ2] MPI standard allows flexibility in the ways send calls are buffered. Aislinn
buffers send calls if the size of the sent message is not greater than a parameter
provided by the user. On the other hand, we follow the approach taken by Siegel
et al. [26] and model the buffer as a limited resource. In other words, send calls
use the buffer if it is available. Due to these differences, we cannot compare
Hermes with Aislinn in the context of κ-buffer mode.

To demonstrate the importance of κ-buffer mode, we ran Hermes on the
benchmarks used in [2,31]. Hermes detected the deadlocks when a buffer of size
one was provided. The deadlock in the program disappears under zero-buffer
and infinite-buffer modes.

8 Related Work

Deadlock detection in message passing programs is an active research domain
with a rich body of literature. There are numerous popular debuggers or program
correctness checkers which provide features such as monitoring the program run
[16,18,32]. However, they fall short to verify the space of communication non-
determinism.

Predictive trace analysis for multi-threaded C programs is another popular
area of work. The central idea in these techniques is to encode the thread inter-
leavings of a program execution [34,35]. These techniques rely on the computa-
tion of a symbolic causal relation in the form of a partial order. The work in [34]
motivated the predictive trace analysis work for MPI, MCAPI, and CSP/CCS
programs [7,9,14,15,22]. The encoding presented by Forejt et al. [9] is similar
to the encoding for a static bounded model checking approach to analyse shared
memory programs [1] but is restricted to single-path programs.

Hermes’s contribution on selective program instrumentation is motivated
by the work in [12], which identified, using taint analysis, the relevant input
sources and shared accesses that influence control-flow decisions. The use of
taint analysis to extract input sources and shared accesses is an important step
for covering relevant program behaviors.

Marques et al. developed a type-based strategy to statically verify MPI pro-
grams [17,20]. They verify the annotated MPI program against the protocol
specifications capturing the behavior of the program using session types. Unlike
model checking, their approach is not influenced by the number of processes
and problem size and is insensitive to scalability issues. But they consider only
deterministic and loop-free programs.

Concolic Testing (Dynamic Symbolic Execution) combines concrete execu-
tion and symbolic execution [4,24] to overcome the limitation of SAT/SMT
solvers when faced with nonlinear constraints. Sherlock [8] is a deadlock detector
for Java concurrent programs which combines concolic execution with constraint

Dynamic Symbolic Verification of MPI Programs 481

solving. While we use SMT encoding to scan through all permissible schedules of
a path, Sherlock instead permutes the instructions of one schedule to get another
schedule. A fair comparison of Hermes with concolic execution techniques can-
not be performed since Hermes does not consider every conditional statement
to be included in the path condition.

CIVL [19] is an intermediate language to capture concurrency semantics of
a set of concurrency dialects such as OpenMP, Pthreads, CUDA, and MPI. The
back-end verifier can statically check properties such as functional correctness,
deadlocks, and adherence to the rules of the MPI standard. CIVL creates a
model of the program using symbolic execution and then uses model checking.
Hermes creates a model of a single path of the program and uses symbolic
encoding to verify that path of the program. It also uses data-aware analysis
to prune irrelevant control-flow branches of the program. CIVL does not handle
non-blocking MPI operations.

Vakkalanka et al. proposed POEMSE algorithm [31] to dynamically verify
MPI programs under a varying buffer capacity of MPI nodes. To this effect they
employ an enumerative strategy to find a minimal set of culprit sends which, if
buffered, can cause deadlocks. Siegel had proposed a model checking approach
where the availability of buffers is encoded in the states of model itself [26].

Aislinn [2] is an explicit-state model checker which verifies MPI programs
with arbitrary-sized system buffers and uses POR to prune the redundant state
space. Aislinn models the buffer as an unlimited entity and the send calls use
the buffers when their message size is bigger than a user provided value.

9 Conclusion and Future Work

We combined constraint solving with dynamic verification to discover communi-
cation deadlocks in multi-path MPI programs. For C/C++ MPI programs, the
technique is concretized in a tool Hermes. It formulates an SMT query from
the program’s trace by conforming to the MPI runtime semantics and the non-
deterministic buffer modes provided by MPI implementations. By capturing the
flow of data values through communication calls, Hermes restricts the dynamic
scheduler to explore a significantly fewer number of traces as compared to the
explorations performed by a dynamic verifier. We tested our proposed technique
on FEVS test suite and other benchmarks used in past research and found that
our technique compares favorably with the state-of-the-art dynamic verification
tools.

In the future, we plan to focus on ensuring the correctness of MPI programs
with collective operations. Currently, we have implemented our tool with the
assumption that the data which is received in a wildcard receive call and used
in a conditional statement is only an integer variable or tag. This is a limitation
of the implementation, which we plan to address in future work. However, a
more subtle limitation that we impose is that the received data is not modified
between the point from where it is received to the point where it is used (in
the conditional statement). The constraint was motivated by analysing a large

482 D. Khanna et al.

number of benchmarks. We, in our experience, did not find that the received data
underwent a transformation before it was decoded in a control statement. Note,
however, that this limitation can be relaxed by allowing assignment statement in
the trace language that we defined in Sect. 3. Extending the technique on these
lines will possibly allow us to analyse a larger and more complex set of MPI
programs.

Acknowledgements. This work is partly supported by the Tata Consultancy Ser-
vices grant and Infosys Centre for Artificial Intelligence at IIIT Delhi. The authors
thank the anonymous reviewers for their valuable feedback.

References

1. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 9

2. Böhm, S., Meca, O., Jančar, P.: State-space reduction of non-deterministically
synchronizing systems applicable to deadlock detection in MPI. In: Fitzgerald,
J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp.
102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6 7

3. Bucur, S., Ureche, V., Zamfir, C., Candea, G.: Parallel symbolic execution for
automated real-world software testing. In: Proceedings of the Sixth Conference on
Computer Systems. EuroSys 2011, pp. 183–198. ACM (2011)

4. Cadar, C., Dunbar, D., Engler, D.: Klee: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation. OSDI
2008, pp. 209–224. USENIX Association (2008)

5. Clang: A C language family frontend for LLVM. http://clang.llvm.org/
6. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

7. Elwakil, Mohamed, Yang, Zijiang, Wang, Liqiang: CRI: symbolic debugger for
MCAPI applications. In: Bouajjani, Ahmed, Chin, Wei-Ngan (eds.) ATVA 2010.
LNCS, vol. 6252, pp. 353–358. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15643-4 27

8. Eslamimehr, M., Palsberg, J.: Sherlock: scalable deadlock detection for concurrent
programs. In: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. FSE 2014, pp. 353–365. ACM (2014)

9. Forejt, V., Joshi, S., Kroening, D., Narayanaswamy, G., Sharma, S.: Precise pre-
dictive analysis for discovering communication deadlocks in MPI programs. ACM
Trans. Program. Lang. Syst. 39(4), 15:1–15:27 (2017)

10. Forejt, V., Kroening, D., Narayanaswamy, G., Sharma, S.: Precise predictive anal-
ysis for discovering communication deadlocks in MPI programs. In: Jones, C.,
Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 263–278. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 19

11. Fu, X., Chen, Z., Yu, H., Huang, C., Dong, W., Wang, J.: Symbolic execution of
MPI programs. In: Proceedings of the 37th International Conference on Software
Engineering, vol. 2. ICSE 2015, pp. 809–810. IEEE Press (2015)

https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-319-48989-6_7
http://clang.llvm.org/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-15643-4_27
https://doi.org/10.1007/978-3-642-15643-4_27
https://doi.org/10.1007/978-3-319-06410-9_19

Dynamic Symbolic Verification of MPI Programs 483

12. Ganai, M., Lee, D., Gupta, A.: DTAM: dynamic taint analysis of multi-threaded
programs for relevancy. In: Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering. FSE 2012, pp. 46:1–46:11
(2012)

13. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message-passing Interface, 2nd edn. MIT Press, Cambridge (1999)

14. Huang, Y., Mercer, E.: Detecting MPI zero buffer incompatibility by SMT encod-
ing. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058,
pp. 219–233. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-
9 16

15. Huang, Y., Mercer, E., McCarthy, J.: Proving MCAPI executions are correct using
SMT. In: Proceedings of the 28th IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 26–36. IEEE (2013)

16. Krammer, B., Bidmon, K., Müller, M.S., Resch, M.M.: MARMOT: an MPI analysis
and checking tool. In: PARCO. Advances in Parallel Computing. Elsevier (2003)

17. López, H.A., Marques, E.R.B., Martins, F., Ng, N., Santos, C., Vasconcelos, V.T.,
Yoshida, N.: Protocol-based verification of message-passing parallel programs. In:
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications. OOPSLA 2015,
pp. 280–298. ACM (2015)

18. Luecke, G.R., Zou, Y., Coyle, J., Hoekstra, J., Kraeva, M.: Deadlock detection in
MPI programs. Concurrency Comput. Pract. Experience 14(11), 911–932 (2002)

19. Luo, Z., Zheng, M., Siegel, S.F.: Verification of MPI programs using CIVL. In:
Proceedings of the 24th European MPI Users’ Group Meeting. EuroMPI 2017, pp.
6:1–6:11. ACM (2017)

20. Marques, E.R.B., Martins, F., Vasconcelos, V.T., Ng, N., Martins, N.: Towards
deductive verification of MPI programs against session types. In: Proceed-
ings 6th Workshop on Programming Language Approaches to Concurrency and
Communication-cEntric Software. PLACES 2013, pp. 103–113 (2013)

21. MPI: A message-passing interface standard version 3.1. http://mpi-forum.org/
docs/mpi-3.1/

22. Narayanaswamy, G.: When truth is efficient: analysing concurrency. In: Proceed-
ings of the 2015 International Symposium on Software Testing and Analysis. ISSTA
2015, pp. 141–152. ACM (2015)

23. Sato, K., Ahn, D.H., Laguna, I., Lee, G.L., Schulz, M., Chambreau, C.M.: Noise
injection techniques to expose subtle and unintended message races. In: Proceed-
ings of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. PPoPP 2017, pp. 89–101 (2017)

24. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for c. In:
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ESEC/FSE 2013, pp. 263–272 (2005)

25. Sharma, S.V., Gopalakrishnan, G., Kirby, R.M.: A survey of MPI related debuggers
and tools. Technical Report UUCS-07-015, University of Utah, School of Comput-
ing (2007). http://www.cs.utah.edu/research/techreports.shtml

26. Siegel, S.F.: Efficient verification of halting properties for MPI programs with wild-
card receives. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 413–429.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30579-8 27

27. Siegel, S.F., Zirkel, T.K.: Fevs: a functional equivalence verification suite for high-
performance scientific computing. Math. Comput. Sci. 5, 427–435 (2011)

https://doi.org/10.1007/978-3-319-17524-9_16
https://doi.org/10.1007/978-3-319-17524-9_16
http://mpi-forum.org/docs/mpi-3.1/
http://mpi-forum.org/docs/mpi-3.1/
http://www.cs.utah.edu/research/techreports.shtml
https://doi.org/10.1007/978-3-540-30579-8_27

484 D. Khanna et al.

28. Siegel, S.F., Zirkel, T.K.: TASS: the toolkit for accurate scientific software. Math.
Comput. Sci. 5(4), 395–426 (2011)

29. Vakkalanka, S.: Efficient Dynamic Verification Algorithms for MPI Applications.
Ph.D thesis (2010)

30. Vakkalanka, S., Gopalakrishnan, G., Kirby, R.M.: Dynamic verification of MPI
programs with reductions in presence of split operations and relaxed orderings.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 66–79. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 9

31. Vakkalanka, S., Vo, A., Gopalakrishnan, G., Kirby, R.M.: Precise dynamic analysis
for slack elasticity: adding buffering without adding bugs. In: Keller, R., Gabriel,
E., Resch, M., Dongarra, J. (eds.) EuroMPI 2010. LNCS, vol. 6305, pp. 152–159.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15646-5 16

32. Vetter, J.S., de Supinski, B.R.: Dynamic software testing of MPI applications with
umpire. In: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing.
SC 2000. IEEE Computer Society (2000)

33. Vo, A., Aananthakrishnan, S., Gopalakrishnan, G., Supinski, B.R.D., Schulz, M.,
Bronevetsky, G.: A scalable and distributed dynamic formal verifier for MPI pro-
grams. In: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. SC 2010, pp. 1–10.
IEEE Computer Society (2010)

34. Wang, C., Kundu, S., Ganai, M., Gupta, A.: Symbolic predictive analysis for con-
current programs. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol.
5850, pp. 256–272. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-05089-3 17

35. Wang, C., Limaye, R., Ganai, M., Gupta, A.: Trace-based symbolic analysis for
atomicity violations. In: Proceedings of the 16th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. TACAS 2010, pp.
328–342 (2010)

36. Xue, R., Liu, X., Wu, M., Guo, Z., Chen, W., Zheng, W., Zhang, Z., Voelker,
G.: Mpiwiz: subgroup reproducible replay of mpi applications. In: Proceedings
of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. PPoPP 2009, pp. 251–260 (2009)

https://doi.org/10.1007/978-3-540-70545-1_9
https://doi.org/10.1007/978-3-642-15646-5_16
https://doi.org/10.1007/978-3-642-05089-3_17
https://doi.org/10.1007/978-3-642-05089-3_17

To Compose, or Not to Compose,
That Is the Question: An Analysis

of Compositional State Space Generation

Sander de Putter(B) and Anton Wijs(B)

Eindhoven University of Technology,
PO Box 513, 5600 MB Eindhoven, The Netherlands

{s.m.j.d.putter,a.j.wijs}@tue.nl

Abstract. To combat state space explosion several compositional
verification approaches have been proposed. One such approach is com-
positional aggregation, where a given system consisting of a number of
parallel components is iteratively composed and minimised. Composi-
tional aggregation has shown to perform better (in the size of the largest
state space in memory at one time) than classical monolithic composition
in a number of cases. However, there are also cases in which composi-
tional aggregation performs much worse.

It is unclear when one should apply compositional aggregation in favor
of other techniques and how it is affected by action hiding and the scale
of the model.

This paper presents a descriptive analysis following the quantitiative
experimental approach. The experiments were conducted in a controlled
test bed setup in a computer laboratory environment. A total of eight
scalable models with different network topologies considering a number
of varying properties were investigated comprising 119 subjects. This
makes it the most comprehensive study done so far on the topic. We
investigate whether there is any systematic difference in the success of
compositional aggregation based on the model, scaling, and action hid-
ing. Our results indicate that both scaling up the model and hiding more
behaviour has a positive influence on compositional aggregation.

1 Introduction

Although model checking [5] is one of the most successful approaches for the
analysis and verification of the behaviour of concurrent systems, it is plagued
with the so-called state space explosion problem: the state space of a concur-
rent system tends to increase exponentially as the number of parallel processes
increases linearly.

To combat state space explosion several compositional approaches have
been proposed such as assume-guarantee reasoning [19,29] and par-
tial model checking [2]. An evaluation of assume-guarantee reasoning was recently

S. de Putter—This work is supported by ARTEMIS Joint Undertaking project
EMC2 (grant nr. 621429).

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 485–504, 2018.
https://doi.org/10.1007/978-3-319-95582-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_29&domain=pdf
http://orcid.org/0000-0002-6819-4011
http://orcid.org/0000-0002-2071-9624

486 S. de Putter and A. Wijs

conducted [7]. The study raises doubt whether it is an effective alternative to
classical, monolithic model checking.

A prominent alternative approach is compositional aggregation [9,10] (also
known as compositional state space generation [36], incremental composition
and reduction [33], incremental reachability analysis [34,35], and inductive com-
pression [32]). Given a system consisting of a number of parallel components the
compositional aggregation approach iteratively composes the components and
minimises the result. Action abstraction or hiding [24] may be applied to abstract
away all actions irrelevant for the property being verified such that minimisa-
tion is more effective. The idea of compositional aggregation is that incremental
minimisation should warrant a lower maximum memory use than composing the
system monolithicly. Compositional aggregation has shown to perform better
(in the size of the largest state space in memory) than monolithic composition in
a number of cases [8,9,11,30,34]. However, sometimes the former is not effective,
even producing a (much) larger state space than the monolithic approach [11].

The aggregation order of a composition can be understood as a tree, where
leaves are the parallel components and the nodes represent an operation that con-
structs a composite Labelled Transition System (LTS) from the children nodes
and minimises the result. As such the number of possible aggregation orders is
exponential in the number of parallel components. The selection of an efficient
order, i.e., that results in compositional aggregation being as memory efficient
as possible is still an unsolved issue [9].

To automate the selection of the aggregation order several heuristics have
been proposed [8,9,34]. However, it is unpredictable whether aggregation orders
selected by the heuristics are an improvement over the monolithic approach.
Insights in the conditions in which compositional aggregation is expected to per-
form well are vital for successful application of the techniques, but these insights
are currently limited. Evaluation of compositional aggregation and heuristics is,
to the best of our knowledge, only limited to small benchmarks with no control
on aggregation order, model scale, and action hiding. To gain understanding on
how these variables influence the effectiveness of compositional aggregation, this
paper presents a characterisation of the compositional aggregation method. The
objective of this study is as follows:

Analyse compositional aggregation for the purpose of characterisation of
the maximum memory use of the generated state space in the context
of aggregation orderings of concurrent models with different scaling and
action hiding.

The goal is to find guidelines that help deciding whether to apply compositional
aggregation. To this end we address the following main research question.

RQ main: When can compositional aggregation be expected to be more
(memory) efficient than monolithic minimisation?

To Compose, or Not to Compose, That Is the Question 487

To answer this question we first answer a number of smaller questions. First,
we investigate the effect of three specific aspects of the application of compo-
sitional aggregation: the aggregation order, the amount of action hiding, and
the number of parallel processes in the model that compositional aggregation is
applied on.

RQ 1: How do action hiding, number of parallel processes, and aggregation
order affect the memory consumption of compositional aggregation?

As stated earlier, some aggregation orders are better than others.
Heuristics are employed in an attempt to find the well performing aggregation
orders. Therefore, to determine whether or not it is wise to apply compositional
aggregation the performance of the heuristics must be kept in mind.

RQ 2: How effective are the aggregation orders chosen by current
heuristics?

Having established what minimisation approach is most efficient on which
variants of the models, we finally investigate the relation between subjects
within these two groups (compositional aggregation and monolithic minimisa-
tion). Answering this research question provides insights into which structural
properties of models are indicative for the success or failure of compositional
aggregation.

RQ 3: How can the success or failure of compositional aggregation be
explained?

In terms of scaling, due to the exponential growth of aggregation orders, we
limit the number of analysed aggregation orders to 2,647, this is precisely the
number of aggregation orders for a model consisting of six parallel components,
hence, an optimum can be found for subjects up to a scale of six. The action
hiding sets are derived from properties formulated for the corresponding mod-
els using the maximal hiding technique [24]. Finally, for minimisation we use
branching bisimulation with explicit divergence [15] as it supports a broad range
of safety and liveness properties.

Contributions. We present our findings after having conducted a thorough
experiment to study the effectiveness of compositional aggregation when applied
on models with varying network topologies. Having exhaustively analysed a sig-
nificant number of possible aggregation orders, we are able to compare several
heuristics proposed in the literature with the optimal composition results. In
total, we have selected 119 subjects for the analysis, making this the most com-
prehensive study performed on the topic so far. Our main conclusion is that
the amount of internal behaviour of individual processes in the model, and the
amount of synchronisation between those processes, seem to be the two main
factors influencing the success of compositional aggregation. Furthermore, our
results suggest that there is real potential to construct better heuristics in the
near future.

Note that the study was conducted on networks of LTSs and, therefore, the
results are possibly limited to models represented as networks of LTSs.

488 S. de Putter and A. Wijs

Structure of the Paper. In Sect. 2, we discuss related work. Preliminaries are
given in Sect. 3. The methodology used in our experiment is discussed in Sect. 4.
Section 5 presents our results, and finally, conclusions and future work are
discussed in Sect. 6.

2 Related Work

Compositional Aggregation. In the past, compositional aggregation has been
applied in a number of experiments [8,11,35]. In [35], the experiments do not
involve the optimal aggregation order for each considered case, and they target a
set of models mostly consisting of randomly generated models and variations of
only one or two real use cases. Not involving the optimal order means that it is
impossible to indicate the quality of the considered heuristics, i.e., how well they
perform compared to how well they could potentially perform. The usefulness of
insights gained by analysing randomly generated models heavily depends on how
similar the models are to real models, in terms of their structural characteristics.

In [8], two of the three heuristics proposed in [35] are further developed and
combined into what the authors call smart reduction. They consider a benchmark
set of 28 models that are variants of 13 models. This is a relatively high number
of subjects, but unfortunately, discussion of the results is very limited, and the
differences between subjects based on the same model are not explained. Due to
this, the effect of these differences between the subjects cannot be correlated to
the presented performance.

In [11] the combined heuristic is subjected to another experiment to show
the effect of action hiding, i.e., abstraction of behaviour irrelevant for the consid-
ered functional property. The experiment measures the largest number of states
generated during aggregation with and without action hiding. The experiment
considers 90 subjects; a single (industrial) use case consisting of 5 scenarios, each
considering a subset of 25 properties. They report that action hiding improves
the performance of the heuristic. It is not reported whether there is a correlation
between the amount of reduction and the properties.

Other Compositional Approaches. A method for automatically generating con-
text constraints for compositional aggregation methods is proposed in [6]. It con-
sists of generating an interface LTS representing the communicating behaviour
of a set of components, and then composing this interface with the remainder of
the components. The resulting state space is observably equivalent to the mono-
lithicly generated state space. To evaluate the approach the authors perform
several experiments with client/server models that are scaled by adding clients
to the model. In each experiment the aggregation order was fixed. In contrast,
we both scale the models and vary the aggregation orders to see how they affect
the effectiveness of the technique.

An evaluation of automated assume-guarantee reasoning was conducted
in [7]. The authors study whether assume-guarantee reasoning provides an
advantage over monolithic verification. They conclude by raising doubts whether

To Compose, or Not to Compose, That Is the Question 489

assume-guarantee reasoning is an effective compositional verification approach.
However, no attempts were made to investigate the effects of combining multiple
components in one step, i.e., n-way decomposition, and action hiding. Assume-
guarantee reasoning may be more effective when these approaches are involved.

Assume-guarantee reasoning by abstraction refinement [14] improves upon
the approach. The technique is inspired by the experience that small interfaces
between components positively affect compositional reasoning. The study con-
siders four cases with a total of twelve subjects. The improved approach uses
less memory than the original one in seven of the twelve subjects. However, it
is not reported how the memory consumption is measured (i.e., of what the
memory consumption is measured exactly), and furthermore, the results are not
compared to monolithic verification.

An n-way decomposition with alphabet refinement is proposed in [1]. A
benchmark consisting of three cases with a total of fifteen subjects is performed,
but memory consumption is not reported. In eight of the fifteen subjects, the
approach turned out to be faster than monolithic verification.

Other contributions to assume-guarantee reasoning [16,26] present similarly
small benchmarks with the number of cases not exceeding four and the number
of subjects not exceeding seventeen. In [16] memory consumption is reported as
the number of states in an assumption LTS, however, no correlation with actual
memory consumption is discussed. In [26] the memory consumption of the tools
used is reported. Still, all these benchmarks suffer from the problem of repeated
measures.

Concluding, compared to our study, none of the related studies consider
(non-random) models of varying network topologies, and take those topologies
explicitly into account. We also study in detail the effect of action hiding. Fur-
thermore, in none of the studies the results are corrected for repeated measures,
which occur when you obtain results from variations of test cases. Finally, it
should be noted that most studies consider to few cases and subjects to extract
general conclusions.

3 Background

Our experiments are performed using the Cadp toolbox [11]. In this section, we
explain the computational model behind compositional aggregation as offered
by Cadp.

Vectors. A vector v̄ of size n contains n elements indexed from 1 to n. We write
1..n for the set of integers ranging from 1 to n. For all i ∈ 1..n, v̄i represents the
ith element of v̄. Given a vector of indices I ⊆ 1..n, the projection of a vector v̄
on to I is defined as the vector v̄I = 〈v̄I1 , . . . , v̄I|I|〉 of length |I|.
Labelled Transition System (LTS). The semantics of a process, or a composi-
tion of several processes, can be formally expressed by an LTS as presented in
Definition 1.

490 S. de Putter and A. Wijs

Definition 1 (Labelled Transition System). An LTS G is a tuple (SG ,AG ,
TG , IG), with

– SG a finite set of states;
– AG a set of action labels;
– TG ⊆ SG × AG × SG a transition relation;
– IG ⊆ SG a (non-empty) set of initial states.

Internal, or hidden, system steps are represented by the special action label
τ ∈ AG . A transition (s, a, s′) ∈ TG , or s

a−→G s′ for short, denotes that LTS
G can move from state s to state s′ by performing the a-action. A sequence
consisting of at least one τ -transition is denoted by τ−→+

G .
An equivalence relation between two LTSs relates states that have equiva-

lent behaviour. We use divergence-preserving branching Bisimulation, also called
branching bisimulation with explicit divergence [15]. It supports action hiding and
preserves both safety and liveness properties, due to the fact that it is sensitive
to cycles of τ -transitions, i.e., inifinite internal behaviour. The smallest infinite
ordinal is denoted by ω.

Definition 2 (Divergence-Preserving Branching bisimulation).A binary
relation B between two LTSs G1 and G2 is a divergence-preserving branching
bisimulation iff it is symmetric and for all s ∈ SG1 and t ∈ SG2 , s B t implies:

1. if s
a−→G1 s′ then

(a) either a = τ with s′ B t;
(b) or t

τ−→∗
G2

t̂
a−→G2 t′ with s B t̂ and s′ B t′.

2. if there is an infinite sequence of states (sk)k∈ω such that s = s0, sk τ−→G1 sk+1

and sk B t for all k ∈ ω, then there exists a state t′ such that t
τ−→+

G2
t′ and

sk B t′ for some k ∈ ω.

The minimisation of an LTS consists of the merging of all states that are
related by a divergence-preserving branching bisimulation relation. To maximise
the potential for minimisation, maximal hiding [24] can be applied, which iden-
tifies exactly which actions are essential to correctly determine whether an LTS
satisfies a given functional property or not. This roughly corresponds to hiding
all actions except those occurring in the formula. For this to work correctly, the
property needs to be specified in a fragment of the modal μ-calculus, which is
expressive enough to express most properties. When combined with composi-
tional model checking, actions of one process that require synchronisation with
those of another cannot be abstracted away prematurely.

LTS Network. An LTS network M is a tuple (Π,V), with Π a vector of
process LTSs and V a set of synchronisation laws that define by means of vec-
tors of actions which actions of the corresponding LTSs can synchronise with
each other. For example, a law (〈a, b〉, c) defines that in a network consisting of
two LTSs, a transition labelled a of LTS Π1 can synchronise with a b-transition
of LTS Π2, resulting in a c-transition in the resulting LTS, called the system

To Compose, or Not to Compose, That Is the Question 491

LTS. This system LTS is the result of first combining the initial states of the
individual process LTSs into state vectors, together defining the set of initial
states, and then repeatedly combining process transitions according to the laws,
and combining the target states of those transitions into vectors of process LTS
states. This LTS can by obtained through monolithic state space construction.

In line with the notion of projection for vectors, an LTS network M can
be projected onto a vector of indices, by projecting both Π and V onto I. The
result is an LTS network that can be considered as a subsystem or compo-
nent of M consisting of the processes originally indexed in Π at the positions
indicated by I.

Minimisation of processes in an LTS network (such as in compositional aggre-
gation) is possible if the used equivalence relation is a congruence for LTS
networks. Branching bisimulation, branching bisimulation with explicit diver-
gence, observational equivalence, safety equivalence and weak trace equivalence,
are congruences for admissible LTS networks [11,30]. An LTS network is called
admissible if the synchronisation laws of the network do not synchronise, rename,
or cut τ -transitions [22]. The intuition behind this is that internal behaviour,
i.e., τ -transitions. should not be restricted by any operation.

Compositional order. The compositional aggregation of an LTS network
M = (Π,V) is the incremental composition and minimisation of subsets of
processes in Π. More specifically, the composition of a set of LTSs followed by
a minimisation of the result is called an aggregation. The compositional aggre-
gation modulo R of an LTS network M is the incremental aggregation of the
processes in Π subject to V such that the result LTS is R-equivalent to the
system LTS. Before we formally define compositional aggregation, we must first
introduce aggregation orders.

The aggregation order organises the processes of an LTS network in a
tree-structure as presented in Definition 3. The leaves represent the individual
process LTSs in Π, and the nodes represent subsets of Π. The root represents
all the processes in Π. For the sake of simplicity, the processes are represented
by their index in the process vector Π. An example of an aggregation order is
presented in Fig. 1.

{4, 5, 6}{1, 2, 3}

{1, 2, 3, 4, 5, 6}

{1} {3}

{1, 3} {2} {4} {5} {6}

Fig. 1. Aggregation order; leaves are minimised first, then the tree is aggregated
following an post-order walk of the tree

492 S. de Putter and A. Wijs

Definition 3 (Aggregation Order). Given an LTS network M = (Π,V) of
size n, an aggregation order of M is a tree TM = (V,E) where ∅ ⊂ V ⊂ 21..n

such that

– 1..n is the root of the tree,
– The singleton sets {i} ∈ V with i ∈ 1..n are the leaves of the tree, and
– For every non-leaf node t ∈ V , the children of t must form a partition of t.

The compositional aggregation of a network M proceeds as follows. Let t be
the root of aggregation order tree T . Compositional aggregation decomposes M
by projecting M on the sets of the nodes in T and by pre-order walk of the aggre-
gation order. That is, each component represented by a child of t is aggregated,
i.e., the LTSs of its children are combined after which the result is minimised,
before finally constructing and minimising the state space corresponding to t.
Minimisation starts at the leaves. Aggregation is performed in a post-order walk
of the aggregation tree (i.e., children are processed before their parents). At
each non-leaf node t the state space of component t is constructed by concate-
nating the process vectors of the child networks and restoring synchronisations
according to the sychronisation laws of the complete model M.

The Cadp toolbox offers several minimisation generation strategies.

– The monolithic approach, referred to as root reduction, directly computes the
system LTS of an LTS network and then applies minimisation.

– Root leaf reduction applies minimisation on the process LTSs of a network
and then applies root reduction on the resulting network.

– Smart reduction [8] is a heuristic that attempts to find an efficient aggregation
order. First, all the process LTSs are minimised. Then, recursively, a set I of
process LTSs is selected and the LTS in I are replaced by their aggregation.

4 Methodology

Setup. Our experiments were conducted in a controlled test bed comprising a set
of homogeneous machines from the DAS-4 [4] cluster. Each machine has a dual
quad-core Intel Xeon E5620 2.4 GHz CPU, 24 GB memory, and runs CentOS

Linux 6. We used Cadp version 2017-e “Sophia Antipolis” as implementation
for the monolithic and compositional aggregation approaches.

The monolithic approach has been used as the control group. For com-
positional aggregation, all possible aggregation orders were computed using
Refiner [37] in combination with the decomposition.brute force plugin. The
minimisation strategies were coded in the Script Verification Language (Svl) [13]
of Cadp. Given a property the hiding set was calculated using the maximal hid-
ing technique [24]. This technique produces a set of property relevant actions
that may not be hidden in the system. All other actions can be safely hidden
without affecting the verification result.

As cases we consider LTS network models in Cadp’s EXP format. As
subjects we consider case instances with a particular scale and hiding set. We
use minimisation strategy to refer to both aggregation according to some order,
and monolithic minimisation.

To Compose, or Not to Compose, That Is the Question 493

Research Questions. The variable of interest, i.e., the response variable, is the
maximum memory cost of the state spaces produced by compositional aggrega-
tion. However, Cadp reports the disk space cost of their LTS storage format,
i.e., Binary Code Graphs (BCG), rather than the internal memory cost. As an
alternative we use the maximum number of transitions generated as a measure
for memory cost. The maximum number of transitions of an LTS has a strong
and highly significant correlation with the disk space cost reported by Cadp,
i.e., they have a Kendall’s τb coefficient [21] of 0.91 with a p-value of 2.2 · 10−16.
An additional advantage is that the metric is tool agnostic.

To answer RQ 1 (see Sect. 1) we measured the maximum number of
transitions among the state spaces produced by compositional aggregation for
all possible aggregation orders on a set of subjects. The effect of scaling and
action hiding were investigating by controlling, respectively, the number of
parallel processes and the property.

Next, the performance of current heuristics are compared to that of other
aggregation orders in RQ 2. The smart reduction and root leaf reduction
heuristics were applied on the subjects. Both heuristics are supported by Cadp

and have shown to be competitive w.r.t. other heuristics [8]. Again we mea-
sured the maximum number of transitions among the state spaces processed by
compositional aggregation.

The intention of RQ 3 is to explain the success or failure of composition
aggregation. Observed difference in performance between the subjects of the
cases were investigated closer by inspecting the effect of action hiding, num-
ber of parallel processes, and aggregation order. Findings were verified with
adjusted models fixing one or more aspects, therefore, obtaining more controlled
measurements.

There are numerous variables that may affect the performance of compo-
sitional aggregation w.r.t. monolithic minimisation. Variables of interest are
typically related to the size of a process LTS, or the reduction or interleaving
that a process LTS or the composition of process LTSs may introduce.

Case and Subject Selection. The cases were sampled using quota sampling [25],
i.e., cases with various characteristics were selected. To avoid source bias the
cases were selected from four different sources, and where needed, converted to
LTS networks.

Source 1. The BEnchmark for Explicit Model checkers (BEEM) database [27].
The benchmark includes 57 parameterised models with corresponding prop-
erties.1

Source 2. The demos of the Cadp distribution. The Cadp distribution contains
a set of 42 demos. Many of the demos were extracted from the numerous real
world verification case studies performed with Cadp.

Source 3. The cases considered in an evaluation of automated assume-guarantee
reasoning [7]. This set contains 6 scalable cases with corresponding properties.2

1 paradise.fi.muni.cz/beem.
2 http://laser.cs.umass.edu/breakingup-examples.

http://paradise.fi.muni.cz/beem
http://laser.cs.umass.edu/breakingup-examples

494 S. de Putter and A. Wijs

Source 4. The cases considered in our previous work [31]. In previous work we
experimented with a set of 10 cases of which some are scalable.3

As mentioned by Cobleigh et al. [7] the generality of their work is threatened
by the limited variety in network topology. To avoid this, we selected cases with
a variety of network topologies. In addition, we took the following considerations
into account:

1. The effect of action hiding was considered by selecting for each case various
relevant safety and liveness properties.

2. To investigate the effect of the number of parallel LTSs on compositional
aggregation we selected scalable cases. Each scalable case has one or more
repeatable LTSs with which the model was scaled up; e.g., a model consisting
of single server LTS and two client LTSs was scaled up by adding copies of
the client LTSs.

3. The number of possible aggregation orders and the time required to construct
state spaces grow exponentially with scale. Due to time considerations we lim-
ited each compositional aggregation to two hours. In addition, we prematurely
terminated a compositional aggregation procedure as soon as it required more
than the available (physical) memory, i.e., 24 GB. Any subjects violating the
time or memory criteria were discarded from the experiment.

4. It is infeasible to calculate all 34,588 possible aggregation orders at seven
parallel LTSs within reasonable time. For six parallel LTSs, this number is
2,647. To still find best and worst aggregation orders for up to six parallel
LTS we limit the number of considered aggregation orders to 2,647.

Initially the sources above provided 115 models. We selected a number of
scalable cases with a variety of network topologies. We discarded the cases for
which it was infeasible to compute 2,647 aggregation orders for less than two
scaled up version of the case. Finally, eight cases were selected covering five
different network topologies. Six out of the eight cases were able scale to a size
of six parallel LTSs while satisfying the time and memory criteria. The other
two cases were scaled to four and seven parallel LTSs, respectively.

Next, we selected a range of properties relevant for the cases and modeled
several scaled-up LTS networks. This finally resulted in a total of 129 subjects.
The experiments were run on these 129 subjects. In total 117,879 decompositions
were considered costing a total of 2.5 CPU-years. Finally, for 119 subjects all
the run aggregation orders satisfied the time and memory criteria.

5 Results

5.1 Case and Subject Descriptions

Network Topologies. The selected cases are characterised by the network topolo-
gies depicted in Fig. 2. Dots indicate parallel processes and lines indicate syn-
chronisation relations. Dashed lines show the synchronisation relations that are
introduced by adding a repeatable process p.
3 http://www.win.tue.nl/mdse/property preservation/FAC2017 experiments.zip.

http://www.win.tue.nl/mdse/property_preservation/FAC2017_experiments.zip

To Compose, or Not to Compose, That Is the Question 495

Table 1. Selected cases and their characteristics; with p ≥ 1 the # of repeated LTSs

Case

ID

Case description Topology Scaling Source

1 The gas station problem [17] a (3 servers) 3 + p ≥ 4 1,3

2 Chiron user interface (single dispatcher) [20] a (2 servers) 3 + p ≥ 4 3

3 Eratosthenes’ Sieve (distributed calculation of primes) b 1 + p ≥ 3 2

4 Le Lann leader election protocol [23] c 2 · p ≥ 4 1

5 A simple token ring c 1 + p ≥ 3 4

6 Peterson’s mutual exclusion protocol [28] d 2 · p ≥ 4 1,2,3

7 Anderson’s mutual exclusion protocol [3] d 1 + 2 · p ≥ 5 1

8 Open Distributed Processing trader (ODP) [12] e 1 + p ≥ 3 2

s

p2p1 pn

(a) Clients pi (i ∈ 1..n) and
server s

p1 p2 pn

(b) Pipes and filters with pro-
cessing nodes pi (i ∈ 1..n)

p1

p2 pn

(c) Ring with processing no-
des pi (i ∈ 1..n)

v1 v2 vn

p1 p2 pn

(d) Processes pi sharing vari-
ables vi (i ∈ 1..n)

p1 p2

pn

s

(e) Peer-to-peer network with
peers pi (i ∈ 1..n) and
tracker-server s

Fig. 2. Network topologies

Figure 2a shows a client-server topology. Such
a network contains one or more servers and one or
more clients.

In Fig. 2b a pipes and filter topology is pre-
sented. The first process p1 produces data and each
process pi (i ∈ 1..n) in the sequence processes the
data and filters before forwarding the filtered data
to the next process pi+1.

A ring network topology is shown in Fig. 2c.
Communication between processes is organised as
a ring structure. Often a token is passed along the
edges that grants special privileges to the process
holding the token.

Figure 2d depicts communication via a num-
ber of shared variables. In the selected cases, for
each repeatable process pi there is a repeatable
variable vi.

In Fig. 2e a peer-to-peer network topology
is shown. Addresses and services of the peers
pi (i ∈ 1..n) are published via the tracker-server
s after which the offered services can be employed
on a peer-to-peer basis.

Case Descriptions. We have selected eight scalable
models as cases. An overview of these cases is given
in Table 1. We identify the cases by their case num-
ber indicated in the Case ID column. The Scaling
column shows the scaling of the cases in the num-
ber of repeated LTSs p and, on the right-hand side
of the inequality, the minimum number of parallel
LTSs; e.g., ODP’s scaling 1 + p ≥ 3 states that there is one non-repeated LTSs
(the trader) and one repeated LTS (the client), but the number of processes

496 S. de Putter and A. Wijs

must be at least 3. Finally, in the Source column the sources of the cases are
given, these correspond to the list of sources (Sect. 4).4

Subject Descriptions. Subjects correspond to instances of cases with a particular
scale and hiding set, i.e., property. Subjects are identified by three alphanumeric
characters: the first indicating the number of the case ID, the second indicating
the letter of a corresponding case property, and the third indicating the scale of
the case model. With “ ”, we denote the absence of a property, i.e., no hiding
is applied. For instance, 1e5 is the case 1 model where actions not relevant to
property e (of case 1) have been hidden and the subject has a total of 5 parallel
LTSs. For each model, we identified between two and eight relevant properties.

The selected scaling is from the minimum scale of the case up to the possible
scale nearest to six; e.g., for case 1 with property a the set of subjects is 1a4,
1a5, 1a6 and for case 6 with no property the set of subjects is 6 4, 6 6.

5.2 Analysis

Figure 3 shows the distribution of the normalised maximum number of transi-
tions of the generated state spaces for all possible aggregation orders of each
subject, in the form of violin plots [18].5 The black horizontal lines within each
plot connected by a black vertical line indicate the first, second, and third quar-
tiles. On the x-axis the subjects are displayed, grouped by case ID and scale.
The y-axis displays the largest number of transitions the state space contained
during compositioning on a log10-scale. Furthermore, the dashed horizontal line
indicates the performance of monolithic construction. Finally, the normalised
maximum number of transitions in memory during smart reduction and root leaf
reduction are indicated by a red dot and blue diamond, respectively. It should be
noted that the repeating of LTSs have a noticeable effect on the distribution of
aggregation orders. Some peaks arise due to accumulation of sets of symmetric
aggregation orders measuring the same normalized maximum number of tran-
sitions. However, as can be seen in the plots, in most cases this effect does not
change significantly as more repeated LTSs are added.

RQ 1. How do action hiding, number of parallel processes, and
aggregation order affect the memory consumption of compositional
aggregation? We answer this research question using Fig. 3. The chosen
aggregation order has a major impact on the maximum number of transitions
residing in memory. Two aggregation orders may differ up to several orders of
magnitude depending on the subject.

In general we observe that the range covered by the distribution of aggrega-
tion orders increases as the number of parallel processes increases. In all cases
scaling up results in a better performance of the best aggregation orders w.r.t.
4 The models are available at http://www.win.tue.nl/mdse/composition/test cases.

zip.
5 All generated data is available at http://www.win.tue.nl/mdse/composition/test

cases data.zip.

http://www.win.tue.nl/mdse/composition/test_cases.zip
http://www.win.tue.nl/mdse/composition/test_cases.zip
http://www.win.tue.nl/mdse/composition/test_cases_data.zip
http://www.win.tue.nl/mdse/composition/test_cases_data.zip

To Compose, or Not to Compose, That Is the Question 497

0.5

1.0

10.0

50.0

1_4
1a4
1b4
1c4
1d4
1e4
1f4

1g4
1_5
1a5
1b5
1c5
1d5
1e5
1f5

1g5
1_6
1a6
1b6
1c6
1d6
1e6
1f6

1g6

subject ID

N
or

m
al

iz
ed

 m
ax

im
um

 n
um

be
r o

f t
ra

ns
iti

on
s

(a) case 1

0.1

1.0

5.0

2_4
2a4
2b4
2c4
2d4
2e4
2f4
2g4
2h4
2_5
2a5
2b5
2c5
2d5
2e5
2f5

2g5
2h5
2_6
2a6
2b6
2c6
2d6
2e6
2f6

2g6
2h6

subject ID

N
or

m
al

iz
ed

 m
ax

im
um

 n
um

be
r o

f t
ra

ns
iti

on
s

(b) case 2

5e−01
1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

5e+05

3_3

3a3

3b3

3c3

3d3

3_4

3a4

3b4

3c4

3d4

subject ID

N
or

m
al

iz
ed

 m
ax

im
um

 n
um

be
r o

f t
ra

ns
iti

on
s

(c) case 3

0.01

0.10

1.00

5.00
4_4

4a4

4b4

4c4

4d4

4_6

4a6

4b6

4c6

4d6

subject ID

N
or

m
al

iz
ed

 m
ax

im
um

 n
um

be
r o

f t
ra

ns
iti

on
s

(d) case 4

0.001

0.010

0.100

1.000

5.000

5_3

5a3

5_4

5a4

5_5

5a5

5_6

5a6

subject ID

N
or

m
al

iz
ed

 m
ax

im
um

 n
um

be
r o

f t
ra

ns
iti

on
s

(e) case 5

0.01

0.10

1.00

5.00

6_4

6a4

6b4

6c4

6d4

6_6

6a6

6b6

6c6

6d6

subject ID

N
or

m
al

iz
ed

 m
ax

im
um

 n
um

be
r o

f t
ra

ns
iti

on
s

(f) case 6

0.01

0.10

1.00

5.00

7_5

7a5

7b5

7c5

7d5

7_7

7a7

7b7

7c7

7d7

subject ID

N
or

m
al

iz
ed

 m
ax

im
um

 n
um

be
r o

f t
ra

ns
iti

on
s

(g) case 7

5e−03

1e−02

1e−01

1e+00

1e+01

8_3

8a3

8b3

8c3

8d3

8_4

8a4

8b4

8c4

8d4

8_5

8a5

8b5

8c5

8d5

8_6

8a6

8b6

8c6

8d6

subject ID

N
or

m
al

iz
ed

 m
ax

im
um

 n
um

be
r o

f t
ra

ns
iti

on
s

(h) case 8

Fig. 3. Distribution of the normalised maximum number of transitions generated by
the aggregation orders per subject (violin plots) and case (sub-figures). (Color figure
online)

498 S. de Putter and A. Wijs

monolithic verification, i.e., as the subjects increase in size, compositional aggre-
gation becomes increasingly viable. In cases 1, 3, and 8 the range extends both
upwards and downwards as the scale is increased; compared to the smaller
subjects (in scale) the bad aggregation orders become worse and the good aggre-
gation orders better. In the remaining cases the whole range shifts downwards
as the number of parallel processes increases.

The shape of the distributions tends to change as the number of parallel
processes increases. One of the factors contributing to this phenomenon is the
increasing number of data points in the distributions as the scale increases; there
are 4, 26, 236, and 2,647 distinct aggregation orders at 3, 4, 5, and 6 parallel
processes, respectively. At larger scales a sample of 2,647 orders was taken. This
effect is particularly visible in case 3, where the model at scales 3 and 4 are
compared. However, most likely the changes are due to the number of repeated
processes. Due to this the balance of constituents of the model changes causing
the high density areas to change accordingly.

Applying action hiding practically always results in an improvement, the only
exception being subjects 5a3 and 8a3 to 8d3. In cases 1 and 2 practically no
distinction in performance is observed between the applied hiding sets. Cases 3,
4, 6, 7, and 8 show moderate to significant variation in performance depending on
the applied hiding set. For those subjects where the hiding sets have a noticeable
impact, also the shape of the distribution is affected. For instance, subject 7c5
has a higher density around the optimal, forming a vase shape between the
minimum and the first quartile, than 7d5, which has a short tail in the same
area.

RQ 2. How effective are the aggregation orders chosen by current
heuristics? Fig. 3 shows how smart reduction (indicated by a red dot) and root
leaf reduction (indicated by a blue diamond) relate to the other orders. Both
action hiding and the scaling can have a significant effect on their performance.
However, there is no clear relation between these variables and the performance,
which is particularly visible for case 3.

Smart reduction requires fewer transitions in memory than the monolithic
approach in 80 out of 119 subjects. Root leaf reduction performs better than
monolithic minimisation in 94 out of 119 subjects. Furthermore, smart reduction
and root leaf reduction find an optimal aggregation order for, respectively, 29
and 40 of the subjects.

Since our data is obtained from repeated measurements over eight cases, to
make a fair and meaningful comparison we select cases under related conditions.
We select the “smallest” and “largest” subjects in the number of parallel pro-
cesses from the subjects in Fig. 3. From the properties we select the only two
property IDs that all cases have in common; “ ” (no property) and “a” (no
deadlock). The intersection of these two pairs of selections yields four sets of
subjects within which a comparison is made. First a comparison between the
performance of the smart reduction and root leaf reduction is made, after which
their performances are compared with the performance of optimal aggregation
orders.

To Compose, or Not to Compose, That Is the Question 499

Table 2. Normalised (w.r.t. monolithic) max. transitions descriptive statistics; with
“Smallest” and “Largest” indicating, respectively, the smallest and largest number of
parallel processes of subjects shown in Fig. 3

Size Prop. ID Mean Median # cases < monolithic # cases < other heuristic

smart root

leaf

smart root

leaf

smart root leaf smart root leaf

Smallest 3.12 3.10 0.74 0.77 5 5 3 1

Smallest a 2.89 2.91 0.41 0.51 5 5 2 1

Largest 54.65 1.53 0.32 0.32 6 6 4 2

Largest a 1.68 1.36 0.05 0.22 6 7 6 1

Table 2 compares the normalised maximum number of transitions of smart
reduction and root leaf reduction. The first two columns indicate the selection
criteria for the number of parallel processes. A comparison is made between
smart reduction and root leaf reduction indicated by the smart and root leaf
columns. The Mean, Median columns show the mean and median normalised
maximum transitions. The final two columns, # cases < monolithic and # cases
< other heuristic, indicate in how many cases the heuristics perform better than
monolithic and the other heuristics, respectively.

In the groups of “smallest” subjects there is little difference between the
means of smart reduction and root leaf reduction. For both heuristics the mean
performance is around 3 times that of the monolithic approach. On a positive
note, the median is much lower than the mean for both heuristics. Smart reduc-
tion has a slightly better median performance. Both heuristics perform better
than the monolithic approach in 5 out of 8 cases in both property ID groups.
The remaining three cases being 1, 3, and 8 for both heuristics and property ID
groups.

In the groups of “largest” subjects there is signification difference between
the means of smart reduction and root leaf reduction in group “ ”. In group “a”
this difference is only 0.32 in favor of root leaf reduction. The high mean value
for smart reduction is caused by its poor performance at cases 1 and 3. Again
the median performance is much better than the mean performance for both
heuristics. The median performance of root leaf reduction is over four times that
of smart reduction. Both heuristics perform better than the monolithic approach
in 6 out of 8 cases in property ID group “ ”, while root leaf reduction performs
better in one additional case in group “a”. The two remaining cases being 1 and
3, excluding case 1 in group “a” for root leaf reduction.

Table 3 compares the maximum number of transitions of the smart reduction
and root leaf reduction heuristics normalised w.r.t. the optimum performance of
compositional aggregation. The final columns, # opt. found, indicate how many
times an optimal aggregation order was found.

If we compare the groups “smallest” and “largest” both the means and medi-
ans increase, and the number of optimums found decrease. This may indicate that
it becomes harder for the heuristics to find (near-)optimal aggregation orders as

500 S. de Putter and A. Wijs

Table 3. Normalised (w.r.t opt. aggregation order) max. transitions descriptive
statistics

Size Prop. ID Mean Median # opt. found

smart root leaf smart root leaf smart root leaf

Smallest 1.02 1.02 1.00 1.00 5 5

Smallest a 1.31 1.44 1.18 1.00 4 5

Largest 8.14 1.24 1.07 1.01 2 4

Largest a 2.43 6.78 1.90 1.89 2 1

the number of parallel processes increases, however, this should be confirmed by
further experiments.

RQ 3. How can the success or failure of compositional aggregation be
explained? Although our experiment involves a large number of subjects, the
number of different cases per topology is still rather limited. However, based on
this data, we make the following observations, backed up by results obtained
for additional models with the same topology that we constructed to focus on
specific key aspects of the cases.

Two factors seem to be most influential regarding the effectiveness of com-
positional aggregation: the amount of internal behaviour within single process
LTSs, and the amount of synchronisation among the process LTSs. In the lat-
ter case, the involvement of data has a noticeable effect, in particular the size
of the data domain; for instance, when synchronisation on a Boolean value is
specified, the receiver only needs to be able to synchronise on true and false,
while the synchronisation on a Byte value already requires 256 transitions, many
of which may be unnecessary in the complete model, since they handle values
on which synchronisation actually never happens. However, if in an aggregation
order, this receiver is selected before the corresponding sender, then in each step
before selecting the sender, all 256 transitions of the receiver will remain, and
interleave with the transitions of all LTSs that are added to the composition.

Among the subjects, case 3 demonstrates best that the involvement of a lot
of (to be synchronised) data has a negative effect on compositional aggrega-
tion. Additional experiments with a simple pipes and filters model, one with a
data domain ranging from 1 to 2 and the other from 1 to 100, underline this
observation, the latter performing an order of magnitude worse than the former.
Furthermore, the former performs very well compared to monolithic verifica-
tion, demonstrating that the bad performance of compositional aggregation is
not inherent to the pipes and filters topology.

The positive effect of involving a property to be checked, and therefore action
hiding, demonstrates the importance of internal behaviour in the process LTSs,
as action hiding adds internal behaviour. It seems of little importance which
property is actually added, i.e., whether it allows abstraction from all actions
in the case of deadlock detection, or only a subset. This is best demonstrated
by the token ring cases, i.e., cases 4 and 5. We manipulated case 5 in two

To Compose, or Not to Compose, That Is the Question 501

different ways: increasing the amount of synchronisation, and increasing the
amount of process-local (but not hidden) behaviour. The results clearly show
that the former has a negative impact on performance, while the latter results in
much better performance (by two orders of magnitude) iff a property is involved
that allows the additional behaviour to be abstracted away, such as deadlock
freedom.

The mutual exclusion algorithms, i.e., cases 6 and 7, have exactly the same
set of properties. Those results demonstrate that the effect of adding a property
is not always the same for all models of the same topology; adding a property
seems to have a bigger effect on case 7 than case 6, resulting in a bigger range
between the worst and best performing aggregation orders.

In a follow-up experiment, we will extend the number of cases and/or sub-
jects per topology, to achieve conclusive evidence that could generalise these
observations.

5.3 Threats to Validity

When interpreting the results of this study consider the following threats to
validity:

– Only one tool has been involved to conduct the experiment, hence the results
may be implementation specific. On the other hand, involving multiple tools
introduces the problem that differences in implementations may affect the
outcome.

– The scope of this study is limited to models that are represented as networks
of LTSs. Therefore, the results of this study are possibly only applicable to
models represented as networks of LTSs. As the compositional aggregation
method is limited to these kind of models we have not considered alternative
model representations.

– The study only considers the DPBB equivalence as aggregation relation.
Results may vary depending on the chosen equivalence relation. The DPBB
equivalence is the strongest aggregation order offered by Cadp that still
allows abstraction. Hence, other relations are expected to show better perfor-
mance improvements.

– The scaled up models make use of a repeatable LTSs. It may be possible that
the results are skewed due to lack of heterogeneous components. However,
the used compositional aggregation methods do not take advantage of the
symmetry in the model.
The repeating of LTSs is noticeable in the violin plots (Fig. 3) as accumula-
tion of sets of symmetric aggregation orders measuring the same normalized
maximum number of transitions. Nevertheless, in most cases this effect does
not change significantly as more repeated LTSs are added.

– A relatively small set of different cases has been studied, even though this
experiment is the most comprehensive one performed thus far. In the future,
we plan to extend this set considerably, but obtaining such a large set is very

502 S. de Putter and A. Wijs

time-consuming. The lack of a (publicly available) set of nicely scalable mod-
els is a problem in general when analysing and designing formal verification
techniques.

– Models with a relatively small number of parallel processes were considered.
Beyond models with six parallel LTSs the experiments quickly become unfea-
sible. Extrapolation of the results presented in this work to models with more
parallel LTSs should be done with caution. In the future, we plan to extend
our analysis to subjects with more processes.

6 Conclusions

Our thorough analysis of compositional aggregation when applied on 119 sub-
jects with varying topology, scale, and hiding set provides the following insights:

1. The amount of internal behaviour in process LTSs and the amount of synchro-
nisation between process LTSs have the biggest impact on the performance,
in terms of the largest number of generated transitions in memory.

2. The involvement of a functional property, and therefore a hiding set, is signif-
icant. The size of this hiding set is of less importance. For typical properties,
maximal hiding already allows the hiding of a relatively large amount of
behaviour.

3. Among the five network topologies we considered, none of them fundamentally
rule out compositional aggregation as an effective technique.

4. As the number of processes in a model is increased, the effectiveness of com-
positional aggregation tends to increase as well.

It should be noted that we only considered a few cases per topology. To
generalise our conclusions, we will have to work on extending our benchmark
set. The first two conclusions underline observations made in earlier work [8].
Since they worked with a set of subjects of less variety, we can make these
observations with more confidence.

Future Work. In the near future, we will extend the current analysis to further
explain the success and failure of compositional aggregation for the different
subjects, and based on this, work on the construction of a new heuristic. For this
to be successful, we will have to involve many more cases. As scalable models have
now been thoroughly investigated, we can next focus on non-scalable models, of
which many are publicly available.

Acknowledgements. The authors would like to thank Vrije Universiteit Amsterdam
for their generosity in supplying the computing resources for the experiments.

References

1. Abd Elkader, K., Grumberg, O., Păsăreanu, C.S., Shoham, S.: Automated circular
assume-guarantee reasoning with N-way decomposition and alphabet refinement.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 329–351.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 18

https://doi.org/10.1007/978-3-319-41528-4_18

To Compose, or Not to Compose, That Is the Question 503

2. Andersen, H.: Partial model checking. In: LICS, pp. 398–407. IEEE Computer
Society Press (1995)

3. Anderson, J.H., Kim, Y.J., Herman, T.: Shared-memory mutual exclusion: major
research trends since 1986. Distrib. Comput. 16(2–3), 75–110 (2003)

4. ASCI: The Distributed ASCI Supercomputer DAS4. http://www.cs.vu.nl/das4/.
Accessed 09-08-2017

5. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

6. Cheung, S.C., Kramer, J.: Context constraints for compositional reachability anal-
ysis. ACM Trans. Softw. Eng. Methodol. 5(4), 334–377 (1996)

7. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: an evalua-
tion of automated assume-guarantee reasoning. ACM Trans. Softw. Eng. Methodol.
17(2), 7:1–7:52 (2008)

8. Crouzen, P., Lang, F.: Smart reduction. In: Giannakopoulou, D., Orejas, F. (eds.)
FASE 2011. LNCS, vol. 6603, pp. 111–126. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19811-3 9

9. Crouzen, P., Hermanns, H.: Aggregation ordering for massively compositional mod-
els. In: 10th International Conference on Application of Concurrency to System
Design, pp. 171–180. IEEE (2010)

10. Fernandez, J.: ALDEBARAN: un système de vérification par réduction de pro-
cessus communicants. (Aldebaran : a system of verification of communicating
processes by using reduction). Ph.D. thesis, Joseph Fourier University, Grenoble,
France (1988)

11. Garavel, H., Lang, F., Mateescu, R.: Compositional Verification of Asynchronous
Concurrent Systems using CADP (extended version). Research Report RR-8708,
INRIA Grenoble - Rhône-Alpes, Apr 2015. https://hal.inria.fr/hal-01138749

12. Garavel, H., Sighireanu, M.: A graphical parallel composition operator for process
algebras. In: FORTE/PSTV 1999. IFIP Conference Proceedings, vol. 156, pp. 185–
202. Kluwer (1999)

13. Garavel, H., Lang, F.: SVL: a scripting language for compositional verification. In:
21st International Conference on Formal Techniques for Networked and Distributed
Systems, pp. 377–392. Kluwer, Boston, MA (2002)

14. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70545-1 14

15. Glabbeek, R.V., Luttik, S., Trčka, N.: Branching bisimilarity with explicit diver-
gence. Fundam. Inform. 93(4), 371–392 (2009)

16. Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for com-
positional verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 420–432. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73368-3 45

17. Heimbold, D., Luckham, D.: Debugging ada tasking programs. IEEE Softw. 2,
47–57 (1985)

18. Hintze, J., Nelson, R.: Violin plots: a box plot-density trace synergism. Am. Stat.
52(2), 181–184 (1998)

19. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress,
vol. 83, pp. 321–332 (1983)

20. Keller, R.K., Cameron, M., Taylor, R.N., Troup, D.B.: User interface development
and software environments: the Chiron-1 system. In: Proceedings of the 13th Inter-
national Conference on Software Engineering, pp. 208–218. IEEE (1991)

http://www.cs.vu.nl/das4/
https://doi.org/10.1007/978-3-642-19811-3_9
https://doi.org/10.1007/978-3-642-19811-3_9
https://hal.inria.fr/hal-01138749
https://doi.org/10.1007/978-3-540-70545-1_14
https://doi.org/10.1007/978-3-540-70545-1_14
https://doi.org/10.1007/978-3-540-73368-3_45
https://doi.org/10.1007/978-3-540-73368-3_45

504 S. de Putter and A. Wijs

21. Kendall, M., Gibbons, J.: Rank correlation methods, chap. 3, 5th edn. Oxford
University Press, Oxford (1990)

22. Lang, F.: Refined interfaces for compositional verification. In: Najm, E., Pradat-
Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 159–
174. Springer, Heidelberg (2006). https://doi.org/10.1007/11888116 13

23. Le Lann, G.: Distributed systems - towards a formal approach. In: IFIP Congress,
pp. 155–160 (1977)

24. Mateescu, R., Wijs, A.: Property-dependent reductions adequate with divergence-
sensitive branching bisimilarity. Sci. Comput. Program. 96(3), 354–376 (2014)

25. O’Leary, Z.: The Essential Guide to Doing Research. SAGE Publications, Thou-
sand Oaks (2004)

26. Păsăreanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the l* algorithm to automate assume-
guarantee reasoning. Form. Methods Syst. Des. 32(3), 175–205 (2008)

27. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73370-6 17

28. Peterson, G.L.: Myths about the mutual exclusion problem. IPL 12, 115–116 (1981)
29. Pnueli, A.: In transition from global to modular temporal reasoning about pro-

grams. Logics and Models of Concurrent Systems. NATO ASI, vol. 13, pp. 123–144.
Springer, Berlin (1985). https://doi.org/10.1007/978-3-642-82453-1 5

30. de Putter, S., Wijs, A.: Compositional model checking is lively. In: Proença, J.,
Lumpe, M. (eds.) FACS 2017. LNCS, vol. 10487, pp. 117–136. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68034-7 7

31. de Putter, S., Wijs, A.: A formal verification technique for behavioural model-to-
model transformations. Form. Asp. Comput. 30, 3–43 (2017). https://doi.org/10.
1007/s00165-017-0437-z

32. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR, Upper
Saddle River (1997)

33. Sabnani, K.K., Lapone, A.M., Uyar, M.U.: An algorithmic procedure for checking
safety properties of protocols. IEEE Trans. Commun. 37(9), 940–948 (1989)

34. Tai, K.C., Koppol, P.V.: Hierarchy-based incremental analysis of communication
protocols. In: 1993 International Conference on Network Protocols, pp. 318–325.
IEEE (1993)

35. Tai, K.C., Koppol, P.V.: An incremental approach to reachability analysis of dis-
tributed programs. In: Proceedings of the 7th International Workshop on Software
Specification and Design, pp. 141–150. IEEE Computer Society Press (1993)

36. Valmari, A.: Compositional state space generation. In: Rozenberg, G. (ed.)
ICATPN 1991. LNCS, vol. 674, pp. 427–457. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-56689-9 54

37. Wijs, A., Engelen, L.: REFINER: towards formal verification of model transfor-
mations. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp.
258–263. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06200-6 21

https://doi.org/10.1007/11888116_13
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/978-3-319-68034-7_7
https://doi.org/10.1007/s00165-017-0437-z
https://doi.org/10.1007/s00165-017-0437-z
https://doi.org/10.1007/3-540-56689-9_54
https://doi.org/10.1007/3-540-56689-9_54
https://doi.org/10.1007/978-3-319-06200-6_21

View Abstraction for Systems
with Component Identities

Gavin Lowe(B)

Department of Computer Science, University of Oxford, Oxford, UK
gavin.lowe@cs.ox.ac.uk

Abstract. The parameterised verification problem seeks to verify all
members of some family of systems. We consider the following instance:
each system is composed of an arbitrary number of similar component
processes, together with a fixed number of server processes; processes
communicate via synchronous message passing; in particular, each com-
ponent process has an identity, which may be included in messages, and
passed to third parties. We extend Abdulla et al.’s technique of view
abstraction, together with techniques based on symmetry reduction, to
this setting. We give an algorithm and implementation that allows such
systems to be verified for an arbitrary number of components. We show
how this technique can be applied to a concurrent datatype built from
reference-linked nodes, such as a linked list. Further, we show how to
capture the specification of a queue or of a stack.

1 Introduction

The parameterised verification problem considers a family of systems P (x) where
the parameter x ranges over a potentially infinite set, and asks whether such
systems are correct for all values of x. In this paper we consider the following
instance of the parameterised verification problem. Each system is built from
some number of similar replicated component processes, together with a fixed
number of server processes; the parameter is the number of component pro-
cesses. The components and servers communicate via (CSP-style) synchronous
message passing; we call each message an event. In particular each component
has an identity, drawn from some potentially infinite set. These identities can
be included in events; thus a process can obtain the identity of a component
process, and possibly pass it on to a third process. This means that each process
has a potentially infinite state space (a finite control state combined with data
from a potentially infinite set). We describe the setting for our work more for-
mally in the next section. The problem is undecidable in general [5,23]; however,
verification techniques prove effective on a number of specific problems.

We adapt the technique of view abstraction of Abdulla et al. [1] to this setting.
The idea of view abstraction is that we abstract each system state to its views of
some size k, recording the states of just k of the replicated component processes.
We can (with a finite amount of work) calculate an over-estimate of all views of
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 505–522, 2018.
https://doi.org/10.1007/978-3-319-95582-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_30&domain=pdf

506 G. Lowe

size k of the system; this gives us an over-estimate of the states of the system. We
then check that all states of this over-estimate satisfy our correctness condition:
if so, we can deduce that all systems of size k or larger are correct (systems of
smaller sizes can be checked directly). We present our use of view abstraction in
Sects. 3 and 4.

Our setting is made more complicated by the presence of the identities of
the components. These mean that the set of views (for some fixed k) is poten-
tially infinite. However, in Sect. 5 we use techniques from symmetry reduction
[8–10,14,17,19,28] to reduce the views that need to be considered to a finite set.

We present the main algorithm in Sect. 6, and prove its correctness. We then
present our prototype implementation: this is based upon the process algebra
CSP [26], and builds on the model checker FDR [16], so as to support all of
machine-readable CSP. We stress, though, that the main ideas of this paper
are not CSP-specific: they apply to any formalism with a similar computational
model, and, we believe, could be adapted to other computational models.

A major advantage of this use of identities is that it allows us to model and
analyse reference-linked data structures, such as linked lists. Each node in the
data structure is modelled by a replicated component process; such a process
can hold the identity of another such process, modelling a reference to that
node. We illustrate this technique in Sect. 7 by modelling and analysing a simple
lock-based concurrent queue and stack, each based on a linked list; in particular,
we show how to capture the specifications of these datatypes in a finite-state
way, using techniques from data independence [30]. Our longer-term aim is to
extend these techniques to more interesting, lock-free concurrent datatypes.

We see our main contributions as follows.

– An adaptation of view abstraction to synchronous message passing (this is
mostly a straightforward adaptation of the techniques of [1]);

– An extension of view abstraction to include systems where components have
identities, and these identities can be passed around, using techniques based
on symmetry reduction to produce a finite-state abstraction;

– The implementation of these ideas, using FDR so as to support all of machine-
readable CSP;

– The application to reference-linked concurrent datatypes;
– The finite-state specification of a queue and a stack.

1.1 Related Work

There have been many approaches to the parameterised model checking problem.
Much recent work has been based on regular model checking, e.g. [7,12,20,31].

Here, the state of each individual process is from some finite set, and each system
state is considered as a word over this finite set; the set of initial states is a
regular set; and the transition relation is a regular relation, normally defined
by a transducer. An excellent survey is in [3]. Techniques include widening [29],
acceleration [2] and abstraction [6].

View Abstraction for Systems with Component Identities 507

The work [1] that the current paper builds on falls within this class. However,
our setting is outside this class: the presence of component identities means that
each individual process has a potentially infinite state space.

Other approaches include induction [13,15,27], network invariants [32], and
counter abstraction [11,22,23,25]. In particular, [23] applied counter abstraction
to systems, like in the current paper, where components had identities which
could be passed from one process to another: some number B of the identities
were treated faithfully, and the remainder were abstracted; the approach of the
current paper seems better able to capture relationships between components,
as required for the analysis of reference-linked data structures.

The work [4] tackles a similar problem to this paper. It captures the speci-
fication of a queue or a stack using an automaton that, informally, guesses the
data value that will be treated incorrectly. The authors use shape analysis to
finitely analyse data structures built on linked lists. They are able to prove lin-
earizability of concurrent datatypes assuming explicit linearization points are
given.

Most approaches to symmetry reduction in model checking [8,10,14,17,19]
work by identifying symmetric states, and, during exploration, replace each state
encountered with a representative member of its symmetry-equivalence class: if
several states map to the same representative, this reduces the work to be done.
This representative might not be unique, since finding unique representatives is
hard, in general; however, such approaches work well in most cases. Our approach
is closer to that of [28]: we test whether a state encountered during exploration is
equivalent to a state previously encountered, and if so do not explore it further.

2 The Framework

In this section, we introduce more formally the class of systems that we consider,
and our framework.

We introduce a toy example to illustrate the ideas. The replicated compo-
nents run a simple token-based mutual exclusion protocol. Component j can
receive the token from component i via a transition with event pass.i.j; it can
then enter and leave the critical section, before passing the token to another
component. In the initial state, a single component holds the token.

A watchdog server process observes components entering and leaving the
critical section, and signals with event error if mutual exclusion is violated.
Our correctness condition will be that the event error does not occur. (In larger
examples, we might have additional servers, playing some part in the protocol, in
addition to a watchdog that checks the correctness condition.) Fig. 1 illustrates
state machines for these processes.

Each process’s state can be thought of as the combination of a control state
and a vector of zero or more parameters, each of which is a component identity,
either its own identity or that of another component. In more interesting exam-
ples, these parameters can be passed on to a third party. Processes synchronise

508 G. Lowe

on some common events, with at most two components synchronising on each
event. We want to verify such systems for an arbitrary number of replicated
components.

Formally, each process is represented by a parameterised state machine.

Fig. 1. Illustration of the state machines for the toy example. The diagrams are sym-
bolic, and parameterised by the set of component identities. For example, the latter
state diagram has a state wd1(id) for each identity id; there is a transition labelled
enter.id from wd0 to wd1(id) for each identity id.

Definition 1. A state machine is a tuple (Q,Σ, δ), where: Q is a set of states;
Σ is a set of visible events with τ /∈ Σ (τ represents an internal event); and
δ ⊆ Q × (Σ ∪ {τ}) × Q is a transition relation.

A parameterised state machine is a state machine where: (1) the states Q are
a subset of S × T ∗, for some finite set S of control states and some potentially
infinite set T of component identities; and (2) the events Σ are a subset of
Chan × T ∗, for some finite set Chan of channels.

We sometimes write a state (s,x) as s(x): s is a control state, and x records
the values of its parameters (cf. Fig. 1). Similarly, we write an event (c,y) as c.y,
and write s(x)

c.y−→ s′(z) to denote ((s,x), (c,y), (s′, z)) ∈ δ.
We assume that the component identities are treated polymorphically: they

can be received, stored, sent, and tested for equality; but no other operations,
such as arithmetic operations, can be performed on them. Processes defined
in this way are naturally symmetric. Let π be a permutation on T ; we write
Sym(T) for the set of all such permutations. We lift π to vectors from T ∗ by
point-wise application; we then lift it to states and events by π(s(x)) = s(π(x))
and π(c.x) = c.π(x). We require each state s(π(x)) to be equivalent to s(x) but
with all events renamed by π: formally the states are π-bisimilar.

Definition 2. Let M = (Q,Σ, δ) be a state machine, and let π ∈ Sym(T). We
say that ∼ ⊆ Q×Q is a π-bisimulation iff whenever (q1, q2) ∈ ∼ and a ∈ Σ∪{τ}:

– If q1
a→ q′

1 then ∃ q′
2 ∈ Q · q2

π(a)−→ q′
2 ∧ q′

1 ∼ q′
2;

– If q2
a→ q′

2 then ∃ q′
1 ∈ Q · q1

π−1(a)−−→ q′
1 ∧ q′

1 ∼ q′
2.

View Abstraction for Systems with Component Identities 509

Definition 3. A parameterised state machine (Q,Σ, δ) is symmetric if for every
π ∈ Sym(T), {(s(x), s(π(x))) | s(x) ∈ Q} is a π-bisimulation.

This is a natural condition. In [17], we proved that under rather mild syntactic
conditions, an arbitrary process defined using machine-readable CSP will be
symmetric in this sense. The conditions are that the definition of the process
contains no constant from the type T , and that it does not use certain FDR
built-in functions over sets and maps, or certain compression functions.

2.1 Systems

Each system will contain a server and some number of replicated components.
We assume a single server here, for simplicity: a system with multiple servers
can be modelled by considering the parallel composition of the servers as a single
server.

Each system state contains a state for the server, and a finite multiset con-
taining the state for each component.1 For example, one state of the toy example
is (wd1(T0), {s2(T0), s0(T1), s0(T2)}), where {T0, T1, T2} ⊆ T .

Definition 4. A system is a tuple (Server, Cpts, Sync, Init) where

1. Server = (Qs, Σs, δs) is a symmetric parameterised state machine represent-
ing the server;

2. Cpts = (Qc, Σc, δc) is a symmetric parameterised state machine representing
each replicated component;

3. Sync ⊆ Σc is a set of events that require the synchronisation of two replicated
components; we require π(Sync) = Sync for each π ∈ Sym(T);

4. Init ⊆ SS is a set of initial states, where SS = Qs × M(Qc) denotes all
possible system states.

Given such a system, a system state is a pair (qs,m) ∈ SS, where
qs ∈ Qs gives the state of the server, and m ∈ M(Qc) gives the states of the
components.

A system defines a state machine (SS, Σs ∪ Σc, δ), where δ is defined by the
following five rules (where →s and →c correspond to δs and δc, respectively).
The rules represent, respectively: events of just the server; events of just one
component; synchronisations between the server and a single component; syn-
chronisations between two components; and synchronisations between the server
and two components.

1 We write M for a finite multiset type constructor. We mostly use set notation for
multisets, but write “�” for a multiset union.

510 G. Lowe

qs
a→s q′

s a ∈ (Σs − Σc) ∪ {τ}
(qs,m) a→ (q′

s,m)
qc

a→c q′
c a ∈ (Σc − Sync − Σs) ∪ {τ}

(qs,m 	 {qc}) a→ (qs,m 	 {q′
c})

qs
a→s q′

s qc
a→c q′

c a ∈ (Σc − Sync) ∩ Σs

(qs,m 	 {qc}) a→ (q′
s,m 	 {q′

c})

qc,1
a→c q′

c,1 qc,2
a→c q′

c,2 a ∈ Sync − Σs

(qs,m 	 {qc,1, qc,2}) a→ (qs,m 	 {q′
c,1, q

′
c,2})

qs
a→s q′

s qc,1
a→c q′

c,1 qc,2
a→c q′

c,2 a ∈ Sync ∩ Σs

(qs,m 	 {qc,1, qc,2}) a→ (q′
s,m 	 {q′

c,1, q
′
c,2})

For example, in the toy example, we can take Cpts and Server to be the
state machines illustrated in Fig. 1; Sync is the set of all events on channel pass;
Init is all states with the watchdog in state wd0, a single replicated component
in state s1, and the remaining components in state s0 (and with components
having distinct identities).

Definition 5. We define the reachable states R of a system to be those system
states reachable from an initial state by zero or more transitions.

Our normal correctness condition will be that the distinguished event error
cannot occur.

Definition 6. A system is error-free if there are no reachable states ss and ss′

such that ss
error−−→ ss′.

Our normal style will be to include a watchdog server, that observes (some)
events by other processes, and performs the event error after an erroneous trace.
In [18] it is shown that an arbitrary CSP traces refinement can be encoded in this
way. Hence this technique can capture an arbitrary finite-state safety property.

3 Using View Abstraction

In this section we describe our application of view abstraction, adapting the
techniques from [1] to our synchronous message-passing setting. Fix a system
(Server, Cpts, Sync, Init), and let Qs and Qc be the states of Server and Cpts,
respectively. Let k ∈ Z

+.
A view of size k over Qc is a multiset v ∈ M(Qc) of size k. A system view of

size k is a pair (q, v) with q ∈ Qs and v a view of size k. We write SVk for the
set of all system views of size k. Note that system states and systems views have
the same type: however, the latter record only part of the full system state.

Let SS≥k be all system states with at least k replicated components. We
define the following abstraction relation, for (q,m) ∈ SS≥k and (q, v) ∈ SVk:

(q, v) �k (q,m) iff v ⊆ m.

The system view (q, v) records the states of just k of the components of (q,m).

View Abstraction for Systems with Component Identities 511

The abstraction function αk : SS≥k → P(SVk) abstracts a system state by
its system views of size k:

αk(q,m) = {(q, v) ∈ SVk | (q, v) �k (q,m)}.

We lift αk to sets of system states by pointwise application.
The concretization function γk : P(SVk) → SS≥k takes a set SV of system

views, and produces those system states that are consistent with SV , i.e. such
that all views of the state of size k are in SV .

γk(SV) = {(q,m) ∈ SS≥k | αk(q,m) ⊆ SV }.

The following lemma is proved as in [1].

Lemma 7. (αk, γk) forms a Galois connection: if A ⊆ SS≥k and B ⊆ SVk,
then αk(A) ⊆ B ⇔ A ⊆ γk(B).

We define an abstract transition relation. If SV ⊆ SVk and sv′ ∈ SVk then
define

SV
a→k sv′ ⇔ ∃ ss ∈ γk(SV) ; ss′ ∈ SS � ss

a→ ss′ ∧ sv′ �k ss′.

For example, in the running example we have the transition

{ (wd0, {s3(T0), s0(T1)}), (wd0, {s3(T0), s0(T2)}), (wd0, {s0(T1), s0(T2)}) }
pass.T0,T1−−−−−→2 (wd0, {s0(T0), s1(T1)})

corresponding to the concrete transition

(wd0, {s3(T0), s0(T1), s0(T2)})
pass.T0,T1−−−−−→ (wd0, {s0(T0), s1(T1), s0(T2)}).

We then define the abstract post-image of a set of system views SV ⊆ SVk by

aPostk(SV) = {sv′ | ∃ a � SV
a→k sv′} = αk(post(γk(SV))),

where post gives the concrete post-image of a set X ⊆ SS:

post(X) = {(s′,m′) | ∃ a, (s,m) ∈ X � (s,m) a→ (s′,m′)}.

The following lemma relates abstract and concrete post-images; it is easily
proved using Lemma 7.

Lemma 8. If SV ⊆ SVk and X ⊆ γk(SV), then post(X) ⊆ γk(aPostk(SV)).

Let Init≥k and R≥k be, respectively, those initial states from Init, and those
reachable states from R, with at least k replicated components. The following
theorem shows how R≥k can be over-approximated by iterating the abstract
post-image. We write f∗(X) for

⋃∞
i=0 f i(X).

512 G. Lowe

Theorem 9. If AInit ⊆ SVk is such that αk(Init≥k) ⊆ AInit then

R≥k ⊆ γk(aPost∗k(AInit)).

Proof: The assumption implies Init≥k ⊆ γk(AInit), from Lemma 7. Then
Lemma 8 implies postn(Init≥k) ⊆ γk(aPostn(AInit)) via a trivial induction.
The result then follows from the fact that R≥k = post∗(Init≥k). �

Hence, if we can show that all states in γk(aPost∗k(AInit)) are error-free,
then we will be able to deduce that all systems with k or more components are
error-free; systems with fewer than k components can be checked directly (for a
fixed set of parameters, and appealing to symmetry).

In the running example, we can take AInit to contain all system views of
size k with the watchdog in state wd0, zero or one components in state s1, and
the remaining components in state s0 (and with components having distinct
identities). Then, for k ≥ 2, γk(aPost∗k(AInit)) contains all system views as
follows: (1) at most one component is in state s1, s2 or s3, and the remainder
are in s0; and (2) if component id is in s2 then the watchdog is in wd1(id); if
every component is in s0 then the watchdog is in either wd0 or wd1(id) where
component id is not in the view; and otherwise the watchdog is in wd0. This
approximates the invariant that a single component holds the token, and the
watchdog records the component in the critical region. In particular, the event
error is not available from any such state. The above theorem then shows that
all systems of size at least two are error-free.

However, the above theorem does not immediately give an algorithm. The
application of γk within aPost can produce an infinite set, for two reasons:

– It can give system states with an arbitrary number of components;
– The parameters of type T within system states can range over a potentially

infinite set.

We tackle the former problem in Sect. 4, by showing that it is enough to build
concretizations of size at most k + 2. We tackle the latter problem in Sect. 5,
using symmetry.

4 Bounding the Number of Components

We now show that, when calculating aPostk, it is enough to consider concretiza-
tions with at most two additional component states.

For k ≤ l and SV ⊆ SVk, define

γl
k(SV) = {(q,mc) ∈ SS | αk(q,mc) ⊆ SV ∧ k ≤ #mc ≤ l},

i.e., those concretizations with between k and l component states. For k ≤ l,
SV ⊆ SVk and sv′ ∈ SVk, define the abstract transitions involving such con-
cretizations as follows:

SV
a−→l

k sv′ ⇔ ∃ ss ∈ γl
k(SV) ; ss′ ∈ SS � ss

a→ ss′ ∧ sv′ �k ss′.

View Abstraction for Systems with Component Identities 513

Lemma 10. Suppose SV ⊆ SVk, sv′ ∈ SVk, k ≥ 1, and SV
a−→k sv′. Then

SV
a−→k+2

k sv′.

Proof: If SV
a−→k sv′ = (q′

s, v
′) then for some (qs,m) ∈ γk(SV) and some

(q′
s,m

′) we have (qs,m) a→ (q′
s,m

′) and sv′ �k (q′
s,m

′). Let m̂′ be the smallest
subset of m′ that includes v′ and each of the (at most two) replicated components
that change state in the transition; and let m̂ ⊆ m be the pre-transition states
of the components in m̂′. For example, suppose the transition corresponds to
the fourth rule in Definition 4, so, for some m0, m = m0 	 {qc,1, qc,2} and
m′ = m0 	 {q′

c,1, q
′
c,2}; and suppose v′ contains q′

c,1 but not q′
c,2; then m̂′ =

v′ 	 {q′
c,2} ⊆ m′; and m̂ ⊆ m is the same as m̂′ but with qc,1 and qc,2 in place

of q′
c,1 and q′

c,2.
In each case, it is easy to see that (qs, m̂) a→ (q′

s, m̂
′), via the same transition

rule that produced the original transition. Also sv′ = (q′
s, v

′) �k (q′
s, m̂

′). And
k ≤ #m̂ = #m̂′ ≤ k + 2, since we have added at most two components to v′.
Finally, m̂ ⊆ m, so αk(qs, m̂) ⊆ αk(qs,m) ⊆ SV , so (qs, m̂) ∈ γk+2

k (SV). Hence

SV
a−→k+2

k sv′. �
Abdulla et al. [1] prove a similar result in their setting, although using con-

cretizations of size at most k + 1. We require concretizations of size k + 2,
essentially because of the possibility of a three-way synchronisation between the
server and two component states (corresponding to the fifth transition rule in
Definition 4). The following lemma shows that when we remove the possibility
of such synchronisations, we also obtain a limit of k + 1. However, the result is
weakened to include the possibility that the system view produced was in the
initial set of system views.

Lemma 11. Suppose Sync ∩ Σs = {}. Suppose further that SV ⊆ SVk, sv′ ∈
SVk, k ≥ 1, and SV

a→k sv′. Then either sv′ ∈ SV or SV
a→k+1

k sv′.

Proof: The only cases in the proof of Lemma 10 where concretizations of size
k + 2 were required were transitions involving two replicated components—so
via the fourth and fifth transition rules—where neither component state was
included in sv′. The case of the fifth rule is prevented by the assumption of
this lemma. In the remaining case, we have (using identifiers as in the proof of
Lemma 10): a ∈ Sync, qs = q′

s, m = m0 	 {qc,1, qc,2}, m′ = m0 	 {q′
c,1, q

′
c,2},

v′ ⊆ m0, qc,1
a→c q′

c,1, and qc,2
a→c q′

c,2. But then sv′ = (qs, v
′) �k (qs,m) so

sv′ ∈ SV . �
The above lemmas show that, in order to calculate aPostk (as required for

Theorem 9) it is enough to calculate either aPostk+2
k or (if Sync ∩ Σs = {})

aPostIdk+1
k where

aPostlk(SV) = αk(post(γl
k(SV))),

aPostIdl
k(SV) = αk(post(γl

k(SV))) ∪ SV.

The result below follows easily from Lemmas 10 and 11.

514 G. Lowe

Corollary 12. Let SV ⊆ SVk and k ≥ 1. Then

1. aPost∗k(SV) = (aPostk+2
k)∗(SV);

2. If Sync ∩ Σs = {} then aPost∗k(SV) ⊆ (aPostIdk+1
k)∗(SV).

5 Using Symmetry

The abstract transition relation from the previous section still produces a
potentially infinite state space, because of the potentially unbounded set of com-
ponent identities. In this section, we use techniques based on symmetry reduction
to reduce this to a finite state space. We fix a system, as in Definition 4.

Recall (Definitions 3 and 4) that we assume that the server and each repli-
cated component is symmetric. We show that this implies that the system
as a whole is symmetric. We lift permutations to system states by point-wise
application: π(q,m) = (π(q), {π(qc) | qc ∈ m}).

Lemma 13. The state machine defined by a system is symmetric: if (q,m) ∈ SS
and π ∈ Sym(T), then (q,m) ∼π π(q,m).

Proof: We show that the relation {((q,m), π(q,m)) | (q,m) ∈ SS} is a

π-bisimulation. Suppose (q,m) a→ (q′,m′). We show that π(q,m)
π(a)→ π(q′,m′)

by a case analysis on the rule used to produce the former transition. For example,
suppose the transition is produced by the third rule, so is of the form

(q,m1 	 {qc}) a→ (q′,m1 	 {q′
c}),

such that q
a→s q′, qc

a→c q′
c and a ∈ (Σc−Sync)∩Σs. Then since Server and Cpts

are symmetric, and π(Sync) = Sync, we have π(q)
π(a)−→s π(q′), π(qc)

π(a)−→c π(q′
c)

and π(a) ∈ (Σc − Sync) ∩ Σs. But then

π(q,m1 	 {qc})
π(a)−→ π(q′,m1 	 {q′

c}),

using the same rule. The cases for other rules are similar. And conversely, we
can check that each transition of π(q,m) is matched by a transition of (q,m). �

We now show a similar result for the abstract transition relation. We lift π to
system views and sets of system views by point-wise application. The following
lemma shows that abstract transitions from π-related sets are related in the
obvious way; it is proven using Lemma 13 and straightforward properties of
permutations.

Lemma 14. If SV
a−→l

k sv′ then π(SV)
π(a)−−→

l

k π(sv′).

Our approach will be to treat symmetric system views as equivalent, requiring
the exploration of only one system view in each equivalence class. We will need
the following definition and lemma.

View Abstraction for Systems with Component Identities 515

Definition 15. Let sv1, sv2 ∈ SVk. We write sv1 ≈ sv2 if sv1 = π(sv2) for some
π ∈ Sym(T). Note that this is an equivalence relation. We say that sv1 and sv2
are equivalent in this case.

Let SV1, SV2 ⊆ SVk. We write SV1 ⊂∼ SV2 if

∀ sv1 ∈ SV1
� ∃ sv2 ∈ SV2

� sv1 ≈ sv2.

We write SV1 ≈ SV2, and say that SV1 and SV2 are equivalent, if SV1 ⊂∼ SV2

and SV2 ⊂∼ SV1. This is again an equivalence relation.

Lemma 16. Suppose SV1, SV2 ⊆ SVk with SV1 ≈ SV2. Then aPostlk(SV1) ≈
aPostlk(SV2).

Proof: This follows directly from Lemma 14. �

6 The Algorithm and Implementation

We now present our algorithm, and prove its correctness. The algorithm takes
as inputs a system, a positive integer k, and a set AInit of initial system views
such that αk(Init≥k) ⊂∼ AInit. If Sync ∩ Σs = {} then let l = k + 1; otherwise
let l = k+2. The algorithm iterates aPostlk, maintaining a set SV ⊆ SVk, which
stores the system views encountered so far, up to equivalence.

SV := AInit

while(true){
if SV

error−−→l

k then return failure

for(sv′ ∈ aPostlk(SV)) if � ∃ sv ∈ SV � sv ≈ sv′ then SV := SV ∪ {sv′}
if no new view was added to SV then return success

}

When this algorithm is run on the toy example with k = 2, it encounters just
five system views:

(wd0, {s1(T0), s0(T1)}), (wd0, {s0(T0), s0(T1)}),
(wd1(T0), {s2(T0), s0(T1)}), (wd1(T0), {s0(T1), s0(T2)}), (wd0, {s3(T0), s0(T2)})

(or equivalent system views), the former two being the initial system views.

Lemma 17. If the algorithm does not return failure then the final value of SV
is such that R≥k ⊂∼ γk(SV).

Proof: We show that after n iterations, SV ≈ (aPostIdl
k)n(AInit), by induc-

tion on n. The base case is trivial. For the inductive case, suppose, at the start
of an iteration, SV ≈ (aPostIdl

k)n(AInit). Each element sv′ of aPostlk(SV) is
added to SV , unless SV already contains an equivalent system view. Hence the

516 G. Lowe

subsequent value of SV is equivalent to the value of SV ∪ aPostlk(SV) at the
beginning of the iteration. But

SV ∪ aPostlk(SV) ≈ (aPostIdl
k)n(AInit) ∪ aPostlk((aPostIdl

k)n(AInit))
= (aPostIdl

k)n+1(AInit),

using the inductive hypothesis and Lemma 16, as required.
SVk contains a finite number of equivalence classes. Hence the iteration

must reach a fixed point such that SV is equivalent to (aPostIdl
k)∗(AInit) =⋃∞

n=0(aPostIdl
k)n(AInit). By Corollary 12, this contains aPost∗k(AInit). And

by Theorem 9, R≥k ⊆ γk(aPost∗k(AInit)). �
Theorem 18. If the algorithm returns success, then the system is error-free for
systems of size at least k.

Proof: We prove the contra-positive: suppose there is some system state
ss ∈ R≥k such that ss

error−−→; we show that the algorithm returns failure.
From Lemma 17, for the fixed point of SV , we have ss ∈ γk(SV), and so

SV
error−−→k. Then by Lemmas 10 and 11, SV

error−−→l

k. Hence the algorithm returns
failure. �

Of course, the algorithm may sometimes return failure when, in fact, all
systems are error-free: a spurious counterexample. This might just mean that it
is necessary to re-run the algorithm with a larger value of k: the current value
of k is not large enough to capture relevant properties of the system. Or it might
be that the algorithm would fail for all values of k. This should not be surprising,
since the problem is undecidable in general.

6.1 Prototype Implementation

We have created a prototype implementation, in Scala, following the above
algorithm2. Unlike the model in earlier sections, the implementation allows mul-
tiple servers: the parallel composition of these can be considered as a single
server, for compatibility with the model. The current implementation supports
only the conditions of Lemma 11, corresponding to l = k + 1; in practice, nearly
all examples fit within this setting.

The implementation takes as input a value for k, and a description of the
system modelled in machine-readable CSP (CSPM): more precisely, it takes a
standard CSPM script, suitable for model checking using FDR [16], augmented
with annotations to identify the processes representing the replicated compo-
nents and the servers (with their initial states), their alphabets, and the type T
of components’ identities. CSPM is a very expressive language, which makes it
convenient for defining systems. The script must contain a concrete definition
for T that is big enough, in a sense that we make clear below.

2 The implementation and the scripts for the examples in the next section are available
from www.cs.ox.ac.uk/people/gavin.lowe/ViewAbstraction/index.html.

www.cs.ox.ac.uk/people/gavin.lowe/ViewAbstraction/index.html

View Abstraction for Systems with Component Identities 517

The initial state aInit of the components and servers should be such that
αk(Init≥k) ⊂∼ {aInit}. A common case is that each initial state in Init≥k con-
tains some small number n of components in distinguished states (in the toy
example, a single component in state s1, holding the token), and all other compo-
nents in some default state (in the toy example, state s0, not holding the token),
possibly with servers holding the identities of components in distinguished states.
In this case, it is enough for the initial state to include the n components in
distinguished states (with servers holding their identities, if appropriate), plus
k components in the default state.

The program interrogates FDR to obtain state machines for the servers and
components (based upon the concrete definition for T), and to check that they
are symmetric in T . Using the implementation of symmetry reduction from [17],
each state is represented by a control state (an integer) and a list of parame-
ters (each an integer). From these, the program can calculate transitions from
concrete system states.

The program then follows the algorithm from Sect. 6 quite closely. When a
concretization of size l is produced, it is possible that the concretization contains
more identities than were included in the concrete definition of T ; in this case,
the program gives an error, and the user must provide a larger type.

Internally, a view (a multiset of states) is represented by a list; a system
view is then represented by a list of the states of the servers (in some standard
order) and this view. Hence testing whether two system views are equivalent
corresponds to testing whether there is some way of permuting the view list and
uniformly replacing component identities so as to make the system views equal.
To make this efficient, each system view is replaced by an equivalent system
view where the control states of components are in non-decreasing order, the
identities are an initial segment of the natural numbers, and their first occur-
rences in the representation are in increasing order. The set of system views
(the set SV of Sect. 6) is then stored as a mapping, with each system view
keyed against its control states; to test whether a particular system view is
equivalent to an existing one, it is enough to compare against those with the
same key.

7 Analysing Reference-Linked Data Structures

We now show how our technique can be used to analyse a reference-linked data
structure, such as a linked list. We illustrate our technique be verifying a lock-
based concurrent queue, that uses an unbounded linked list, and that is used by
two threads. We outline possible extensions to this setting in the conclusions.
The queue contains data taken from the set {A,B,C}; we justify this choice
below.

518 G. Lowe

Each node in the linked list is modelled by a component process, and can be
defined using CSP notation as follows.

FreeNode(me) = initNode?t!me?d → Noded(me, null),
Noded(me, next) = getDatum?t!me!d → Noded(me, next)

� getNext?t!me!next → Noded(me, next)
� setNext?t!me?newNext → Noded(me, newNext)
� freeNode?t!me → FreeNode(me).

The state FreeNode(me) represents a free node with identity me: it can be
initialised by any thread t to store datum d and to have next reference to a
distinguished value null. The state Noded(me, next) represents a node with
identity me holding datum d and with next reference next (we write d as a
subscript, since this is not from the type of node identities, so not a parameter
in the sense of the model). In this state, a thread t may: get the datum d; get
the next reference next; set the next reference to a new value newNext; or free
the node. Thus, nodes may be joined together to form a linked list.

In the initial state, a single node is initialised as a dummy header node in the
state NodeA(N0, null), and the remaining nodes are initialised in the FreeNode
state.

The system contains three server processes representing part of the datatype:
a lock process, that allows a thread to lock the queue; and two processes repre-
senting shared variables referencing the dummy header node, and the last node
in the list, respectively, each initially holding N0. Further, the system contains
two server processes representing threads operating on the queue, enqueueing
and dequeueing values (a dequeue on an empty queue returns a special value).
These processes are defined as expected.

In order to verify that the system forms a queue, we adapt ideas from
Wolper [30]. A process is data independent in a particular type D if the only
operations it can perform on values of that type are to input them, store them,
and output them. This means that for each trace tr of the process, uniformly
replacing values from D within tr will give another trace of the process.

Lemma 19. Suppose a process is data independent in a type D. Suppose further
that whenever a sequence of data values from the language A∗BC∗ is enqueued,
then a sequence from A∗BC∗ + A∗ is dequeued, and no dequeue operation finds
the queue empty between the enqueue and dequeue of B. Then it is a queue.

Proof (sketch). Consider a behaviour of such a process that violates the prop-
erty of being a queue, by either losing, duplicating or reordering a particular
piece of data. Then, by data independence, a similar behaviour would occur
on an input from A∗BC∗, losing, duplicating or reordering B. But this would
produce an output not from this language, or a dequeue would find the queue
empty between the enqueue and dequeue of B. �

View Abstraction for Systems with Component Identities 519

We add two servers so as to exploit this idea:

– A regulator process, that synchronises with the threads, to force them to
enqueue a sequence from A∗BC∗;

– A watchdog process, that observes the values dequeued, and performs error
if the sequence is not from A∗BC∗+A∗, or if a dequeue finds the queue empty
between the enqueue and dequeue of B.

The prototype implementation can be used to explore this system: the test
succeeds in the case k = 2, and completes in about 12 s. Hence, by Theorem 18,
all systems with at least two nodes implement a queue (for two threads). It is
necessary to include at least nine values in the type of node identities: when
considering transitions from states of size k + 1 = 3 (cf. Lemma 11), system
states are encountered with three nodes, each holding their own identity and
one other; the Header and Tail processes can each hold one other identity; and
the thread holding the lock can hold one of these and one other identity.

We have used similar ideas to analyse a lock-based stack that uses a linked
list. The modelling is very similar to as for the queue. For verification, we ensure
that the values pushed onto the stack form a sequence from A∗BC∗; we then
check (using a watchdog) that (1) before B is pushed, only A can be popped;
(2) after B is pushed, the sequence of values popped is from C∗B(A + C)∗;
and (3) a pop does not find the stack empty between the B being pushed and
popped. An argument similar to Lemma 19 justifies the correctness of this test.
The analysis, with k = 2, takes about 10 s in this case.

8 Conclusions

In this paper we have tackled a particular instance of the parameterised model
checking problem, where replicated component processes have identities that
may be passed between processes. We have adapted the technique of view
abstraction, which records, for each system state, the states of just some small
number k of replicated components. We have used techniques from symmetry
reduction, to bound the number of identities of components that are stored. We
have provided an implementation based on systems defined in CSP (although
the underlying ideas are not CSP-specific). We have shown that the framework
allows us to analyse unbounded reference-linked datatypes.

Roughly speaking, our technique, with a particular value of k, succeeds for
systems whose invariant can be described in terms of the states of servers and
at most k replicated components. For example, with the queue of Sect. 7, when
a sequence from A∗BC∗ is enqueued, each pair of adjacent nodes in the linked
list hold data values (A,A), (A,B), (B,C) or (C,C), which implies that the
sequence held is from A∗ +A∗BC∗ +C∗: this invariant talks about the states of
just two components, so taking k = 2 succeeds.

Wolper [30] uses a technique similar to ours for characterising queues, but
based on enqueueing a sequence from A∗BA∗CA∗. Curiously, our approach will
not work with such a sequence, and gives a spurious error. This is because the

520 G. Lowe

corresponding invariant cannot be described in terms of the states of a bounded
number of components, because a node holding A can be followed by a node
holding any datum. This suggests that when trying to characterise a particular
datatype based on chosen input sequences, those sequences should not contain
the same data value in two different “chunks”.

In this paper we have assumed a single family of replicated components. We
intend to extend this to multiple such families. For example, in Sect. 7, we could
have considered a family of processes representing the threads that interact with
the queue, to allow us to verify that the datatype is correct when used by an
arbitrary number of threads.

Our main motivating domain for this work is the study of concurrent
datatypes, particularly lock-free datatypes. In [21] we used CSP and FDR to
analyse a lock-free queue based on a linked list [24] for a fixed number of nodes
and threads. We would like to use the techniques from this paper to consider an
arbitrary number of nodes and threads. The main challenge here is capturing
the correctness condition of linearizability: we believe this will be straightforward
when explicit linearization points are given, but harder otherwise.

We have assumed a fully connected topology, where each replicated compo-
nent can communicate with each other. We intend to also consider more restric-
tive topologies, such as a ring, following [1, Sect. 3.4].

In this paper we have considered only safety properties, corresponding to
traces of the system. We would like to be able to consider also liveness properties,
such as deadlock-freedom. One can adapt the algorithm from Sect. 6 to test
whether any concretization of the set of system views deadlocks; one can then
prove a variant of Theorem 18 that shows that if no such deadlock is found, then
no system of size at least k deadlocks. However, this does not work in practice,
since the abstraction introduces too many spurious deadlocks that do not occur
in the unabstracted system. We intend to investigate whether other abstractions
work better for this purpose.

Acknowledgements. I would like to thank Tom Gibson-Robinson for useful discus-
sions concerning this work, and for extending the FDR4 API to support various func-
tions necessary for the implementation from Sect. 6.1.

References

1. Abdulla, P., Haziza, F., Hoĺık, L.: Parameterized verification through view abstrac-
tion. Int. J. Softw. Tools Technol. Transf. 18, 495–516 (2016)

2. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular model checking
made simple and effcient∗. In: Brim, L., Křet́ınský, M., Kučera, A., Jančar, P.
(eds.) CONCUR 2002. LNCS, vol. 2421, pp. 116–131. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45694-5 9

3. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
35–48. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 3

https://doi.org/10.1007/3-540-45694-5_9
https://doi.org/10.1007/978-3-540-28644-8_3

View Abstraction for Systems with Component Identities 521

4. Abdullah, P., Haziza, F., Hoĺık, L., Jonsson, B., Rezine, A.: An integrated spec-
ification and verification technique for highly concurrent data structures. Int. J.
Softw. Tools Technol. Transf. 19, 549–563 (2017)

5. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

6. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 29

7. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 31

8. Bošnački, D., Dams, D., Holenderski, L.: Symmetric spin. Int. J. Softw. Tools
Technol. Transf. 4, 92–106 (2002)

9. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model
checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 147–158.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028741

10. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Formal Methods Syst. Des. 9, 77–104 (1996)

11. Clarke, E.M., Grumberg, O.: Avoiding the state explosion problem in temporal
logic model checking. In: Proceedings of the 6th Annual Association for Computing
Machinery Symposium on Principles of Distributed Computing, pp. 294–303 (1987)

12. Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. J. Logic Algebraic
Program. 52–53, 109–127 (2002)

13. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: Proceedings of the
Symposium on Principles of Programming Languages (POPL 1995) (1995)

14. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods Syst.
Des. 9, 105–131 (1996)

15. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

16. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3: a paral-
lel refinement checker for CSP. Int. J. Softw. Tools Technol. Transf. 18(2), 149–167
(2015)

17. Gibson-Robinson, T., Lowe, G.: Symmetry Reduction in CSP Model Check-
ing (2017, Submitted for publication). http://www.cs.ox.ac.uk/people/gavin.lowe/
SymmetryReduction/

18. Goldsmith, M., Moffat, N., Roscoe, B., Whitworth, T., Zakiuddin, I.: Watchdog
transformations for property-oriented model-checking. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 600–616. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 33

19. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods Syst.
Des. 9, 41–75 (1996)

20. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking
with rich assertional languages. Theoret. Comput. Sci. 256, 93–112 (2001)

21. Lowe, G.: Analysing lock-free linearizable datatypes using CSP. In: Gibson-
Robinson, T., Hopcroft, P., Lazić, R. (eds.) Concurrency, Security, and Puzzles.
LNCS, vol. 10160, pp. 162–184. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-51046-0 9

22. Lubachevsky, B.: An approach to automating the verification of compact parallel
coordination programs. Acta Inform. 21(2), 125–169 (1984)

23. Mazur, T., Lowe, G.: CSP-based counter abstraction for systems with node iden-
tifiers. Sci. Comput. Program. 81, 3–52 (2014)

https://doi.org/10.1007/978-3-540-27813-9_29
https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/BFb0028741
http://www.cs.ox.ac.uk/people/gavin.lowe/SymmetryReduction/
http://www.cs.ox.ac.uk/people/gavin.lowe/SymmetryReduction/
https://doi.org/10.1007/978-3-540-45236-2_33
https://doi.org/10.1007/978-3-319-51046-0_9
https://doi.org/10.1007/978-3-319-51046-0_9

522 G. Lowe

24. Michael, M., Scott, M.: Simple, fast, and practical non-blocking and blocking con-
current queue algorithms. In: Proceedings of the Fifteenth Annual ACM Sympo-
sium on Principles of Distributed Computing, pp. 267–275 (1996)

25. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0, 1,∞)-counter abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 9

26. Roscoe, A.W.: Understanding Concurrent Systems. Springer, London (2010).
https://doi.org/10.1007/978-1-84882-258-0

27. Roscoe, A.W., Creese, S.: Data independent induction over structured networks.
In: Proceedings of PDPTA 2000 (2000)

28. Sistla, A.P., Gyuris, V., Emerson, E.A.: SMC: a symmetry-based model checker for
verification of safety and linveness properties. ACM Trans. Softw. Eng. Methodol.
9(2), 133–166 (2000)

29. Touili, T.: Regular model checking using widening techniques. Electr. Notes The-
oret. Comput. Sci. 50(4), 342–356 (2001). Proceedings of VEPAS 2001

30. Wolper, P.: Expressing interesting properties of programs in propositional tempo-
ral logic. In: Thirteenth Annual ACM Symposium on Principles of Programming
Languages, pp. 184–193 (1986)

31. Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces.
In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0028736

32. Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with
network invariants. In: Sifakis, J. (ed.) Automatic Verification Methods for Finite
State Systems. LNCS, vol. 407, pp. 68–80. Springer, Heidelberg (1989). https://
doi.org/10.1007/3-540-52148-8

https://doi.org/10.1007/3-540-45657-0_9
https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.1007/BFb0028736
https://doi.org/10.1007/3-540-52148-8
https://doi.org/10.1007/3-540-52148-8

Compositional Reasoning
for Shared-Variable Concurrent Programs

Fuyuan Zhang1(B), Yongwang Zhao3, David Sanán1, Yang Liu1, Alwen Tiu2,
Shang-Wei Lin1, and Jun Sun4

1 School of Computer Science and Engineering,
Nanyang Technological University, Singapore, Singapore

fuyuanzhang@163.com
2 Research School of Computer Science,

Australian National University, Canberra, Australia
3 School of Computer Science and Engineering, Beihang University, Beijing, China

4 Singapore University of Technology and Design, Singapore, Singapore

Abstract. Scalable and automatic formal verification for concurrent
systems is always demanding. In this paper, we propose a verification
framework to support automated compositional reasoning for concur-
rent programs with shared variables. Our framework models concur-
rent programs as succinct automata and supports the verification of
multiple important properties. Safety verification and simulations of suc-
cinct automata are parallel compositional, and safety properties of suc-
cinct automata are preserved under refinements. We generate succinct
automata from infinite state concurrent programs in an automated man-
ner. Furthermore, we propose the first automated approach to checking
rely-guarantee based simulations between infinite state concurrent pro-
grams. We have prototyped our algorithms and applied our tool to the
verification of multiple refinements.

1 Introduction

Automatic verification of concurrent programs is a challenging task. Due to
interleaving, the state space of a concurrent program could grow exponentially,
which makes it infeasible to directly reason about the global state space. A
promising way of conquering the state explosion problem is compositional rea-
soning [18,25,26,33,36], which aims at breaking the global verification problems
into small localized problems. Extensive research [10,14,15,19,22,23] has been
conducted on developing rely-guarantee based automatic verification techniques
for safety properties of concurrent programs. However, to ensure that safety
properties of concurrent programs are preserved after compilation, it is also nec-
essary to show that the checked programs are refined correctly. To the best of our
knowledge, all existing approaches to checking rely-guarantee based simulations
of concurrent programs [28] are manual.

In this paper, we propose a framework of automated compositional reasoning
for shared-variable concurrent programs, which supports both safety verification
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 523–541, 2018.
https://doi.org/10.1007/978-3-319-95582-7_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_31&domain=pdf

524 F. Zhang et al.

and refinement checking. In our framework, concurrent programs are modelled as
succinct automata, which can be viewed as an extension of program graphs [2].
A succinct automaton consists of both component transitions, specifying behav-
iors of a local program, and environment transitions, which overapproximate
behaviors of other programs in the environment. The idea of integrating these
two types of transitions is the key to ensure parallel compositionality. The devel-
opment of our framework proceeds in the following two directions.

The first direction focuses on parallel compositionalities of safety and sim-
ulations of succinct automata, which are very useful in developing composi-
tional proof of global properties. For example, our definition of weak simulations
between succinct automata allows compositional reasoning through establishing
a local refinement relationship. Let SA1 (resp. ̂SA1) and SA2 (resp. ̂SA2) be
two succinct automata and SA1||SA2 (resp. ̂SA1|| ̂SA2) be their parallel compo-
sition. Since our notion of weak simulation is compositional, we can prove that
SA1||SA2 weakly refines ̂SA1|| ̂SA2 by proving that SA1 (resp. SA2) weakly
refines ̂SA1 (resp. ̂SA2). As safety properties of succinct automata are preserved
under refinements, parallel compositionalities of safety and simulations allow
us to extend safety properties of high level concurrent programs to low level
concurrent programs in compositional ways.

The second direction aims at automating our compositional reasoning tech-
niques. One difficulty of modelling concurrent programs as succinct automata is
to find appropriate environment transitions that overapproximate the interleav-
ings between concurrent programs. We show that such environment transitions
can be inferred automatically for succinct automata with infinite domains. More-
over, we have developed an SMT-based approach to checking weak simulations
between infinite state succinct automata. To the best of our knowledge, we are
the first to propose automatic verification of rely-guarantee based simulations
for infinite state shared-variable concurrent programs. We have prototyped our
tool in F# and verified multiple refinements in automated manner.

Our contributions are fourfold. First, we propose a new formalism, suc-
cinct automata, that facilitates automatic verification of multiple properties of
shared-variable concurrent programs. Second, we show compositionality results
on safety properties and simulations in our framework. Third, we show that suc-
cinct automata can be generated automatically from infinite state concurrent
programs. Fourth, we provide an SMT-based approach to verifying simulations
for infinite state succinct automata.

2 Related Work

Extensive research has been conducted on the verification of concurrent
programs. Basic approaches to conquering the state explosion problem of con-
current systems include (but not limited to) symbolic model checking [4],
partial order reduction [16,32,35], abstraction [8,9,11,17], compositional reason-
ing [18,25,26,31,33] and symmetry reduction [7,13,24]. The formalism of suc-
cinct automata is inspired by rely-guarantee style reasoning [25,26]. We mainly

Compositional Reasoning for Shared-Variable Concurrent Programs 525

discuss related work on the compositional reasoning of properties considered in
this paper.

Safety Verification. Our approach to safety verification is closest to thread-
modular verification [15], where safety properties are characterized by a set of
unsafe states and a global system is safe iff unsafe states are not reachable. In this
paper, we focus on invariance properties of succinct automata. Checking strong
invariants of succinct automata is dual to verifying whether corresponding sets
of unsafe states are reachable. Hence, the approach in [15] can be applied to ver-
ify strong invariants of (parallel) succinct automata with finite domains. Work
in [10,19,22,23] combined compositional reasoning with abstraction refinement
[8]. Moreover, [10,19] allow local variables of different threads to be correlated,
which makes their proof rules complete.

Simulations. Our work on checking weak simulations is related to previous
approaches [3,5,28,29] on compositional reasoning of concurrent programs
refinement. In [3,5,29], parallel compositionality is achieved by allowing the envi-
ronments to have arbitrary behaviors, which is considered too strong in general.
Our definition of weak simulations for succinct automata is closely related to
and inspired by [28], where a rely-guarantee based simulation, called RGSim, for
concurrent programs is proposed. Their compositionality rules for RGSim form
the basis of a relational proof method for concurrent programs transformations.
Our work differs with theirs mainly in that we aim at developing automatic veri-
fication of weak simulations between succinct automata. Also, instead of treating
all variables as global variables, we distinguish between local variables and global
variables. This greatly reduces the state space of local succinct automata. Com-
pared to [21], which has proposed the first automated proof system for refine-
ment verification of concurrent programs, our approach to refinement checking
is more general and is not limited to any specific rules of refinement. Work
in [27] proposed an automated refinement checking technique for infinite state
CSP programs. Their approach is not developed for shared-variable concurrent
programs.

3 Succinct Automata

Succinct automata aim to model both local behaviors of a program and its envi-
ronment in a unified way, and to provide a convenient way to specify useful
properties of programs and to support compositional reasoning over them. We
distinguish between global variables and local variables when modeling concur-
rent programs.

3.1 Syntax and Semantics

Let Dom be a finite or infinite (numeric) domain and V = {v1, ..., vn} be a finite
set of variables ranging over Dom. An atomic predicate over V is of the form
f(v1, ..., vn) ∼ b, where f : Domn → Dom is a function, ∼∈ {=, <,≤, >,≥} and

526 F. Zhang et al.

b ∈ Dom. A predicate over V is a Boolean combination of atomic predicates over
V . We write V ′ for {v′

1, ..., v
′
n} that refers to variables in V after transitions. Let

F(V) (resp. F(V ∪ V ′)) denote the set of predicates over V (resp. V ∪ V ′). A
valuation is a function from variables to a domain. Given a valuation v : V →
Dom, we define n(v) : V ′ → Dom as n(v)(v′

i) = v(vi) for vi ∈ V . Given a
predicate ψ ∈ F(V1) and a valuation v : V2 → Dom, where V1 ⊆ V2, we write
ψ(v) to denote that ψ evaluates to true under the valuation v. We write ValV
to denote the set of all valuations for variables in V .

Definition 1. A Succinct Automaton is a tuple SA = (Q, q0, V, Init, Inv,
Env,Σ,Edge), where

– Q is a finite set of locations and q0 ∈ Q is an initial location.
– V = VG ∪ VL and VG (resp. VL) is a finite set of global (resp. local) variables

ranging over Dom, where VG ∩ VL = ∅.
– Init ∈ F(V) defines initial values of variables at q0.
– Inv : Q → F(V) constrains the values of variables at each location.
– Env : Q → ValVG

×ValVG
specifies environment transitions at each location.

– Σ is a finite set of action labels which includes the silent action τ .
– Edge ⊆ Q × Σ × F(V ∪ V ′) × Q is a finite set of edges specifying component

transitions.

For each location q ∈ Q, transitions specified by Env(q) are made by the
environment when SA stays at q. In the rest of the paper, we also use pred-
icates or first order formulas to specify Env(q) for convenience. For example,
when using φ ∈ F(VG ∪ V ′

G) to specify Env(q), Env(q) is defined by Env(q) =
{(vG,v′

G) | φ(vG, n(v′
G)) holds}. An edge is of the form e = (q, σ, μ, q′), where μ

defines the transition condition and is of the form μ := G(V)∧∧

v′
i∈V ′ v′

i = fi(V),
where G(V) is a guard for e and fi is a function fi : Domn → Dom for
1 ≤ i ≤ n. Action labels in Σ are used when we check weak simulations of
succinct automata. The main purpose of Inv is to overapproximate reachable
states at each control location of a concurrent program. This also facilitates the
formalization of the compatibility condition on succinct automata (introduced
later). A succinct automaton is closed if its environment cannot modify its global
variables.

The semantics of succinct automata is defined as a labeled transition system.
A state of a succinct automaton is a pair s = (q,v) of location q and valuation
v : V → Dom. We denote with SSA the state space of SA. A state (q,v) is an
initial state iff q = q0 and Init(v) holds. We say that a predicate ψ is satisfied
on (q,v) iff ψ(v) holds.

Let v1 : V1 → Dom and v2 : V2 → Dom be two valuations such that V1∩V2 =
∅. We define v1 ⊕ v2 : V1 ∪ V2 → Dom by v1 ⊕ v2(v) = v1(v) for v ∈ V1 and
v1 ⊕ v2(v) = v2(v) for v ∈ V2. Let vG : VG → Dom (resp. vL : VL → Dom) be
valuations over global (resp. local) variables. In the rest of the paper, we also
use (q,vG ⊕ vL) to represent a state for convenience.

We define two types of transitions, namely component transitions and envi-
ronment transitions, for succinct automata. There is a component transition

Compositional Reasoning for Shared-Variable Concurrent Programs 527

between two states (q,v) σ→ (q′,v′) iff there exists an edge of the form
(q, σ, μ, q′) ∈ Edge and Inv(q)(v) ∧ μ(v ⊕ n(v′)) ∧ Inv(q′)(v′) holds. There
is an environment transition between two states (q,v) env−→ (q′,v′) iff q = q′,
Inv(q)(v) ∧ Inv(q)(v′) holds, (vG,v′

G) ∈ Env(q) and vL = v′
L, where v =

vG ⊕ vL and v′ = v′
G ⊕ v′

L. Notice that in an environment transition, only
values of global variables can be modified and values of local variables remain
unchanged.

A run of SA is a finite or infinite sequence of environment and component
transitions starting from an initial state (q0,v0):

(q0,v0)
env−→ (q0,v′

0)
σ1→ (q1,v1)

env−→ (q1,v′
1)

σ2→ (q2,v2) · · ·
We say that a predicate ψ is satisfied on a run iff it is satisfied on all states on
that run.

A finite local path of SA is a sequence of edges π = e1, ..., en, where ei =
(qi, σi, μi, q

′
i), en = (qn, σn, μn, q′

n) and q′
i = qi+1 for 1 ≤ i < n.

We write (q,v) →∗ (q′,v′) if there exists a finite run of SA, (consisting of zero
or more transitions), from (q,v) to (q′,v′) and say that (q′,v′) is reachable from
(q,v). The set of reachable states of SA is the set of states reachable from initial

states of SA. Regarding environment transitions, we write (q,v) env∗
−→ (q,v′) to

denote a finite sequence of environment transitions of SA starting from (q,v)

to (q,v′). For component transitions, we write (q,v) τ∗στ∗
−→ (q′,v′) to mean that

SA has first taken a finite number of silent actions τ , followed by a component
transition labelled by an action σ, and then made another finite number of silent
actions.

Example 1. We model a simplified Peterson’s algorithm using succinct automata
as an example. The pseudo code in Fig. 1 shows a simplified version of Peterson’s
algorithm with two processes P1 and P2.

Fig. 1. A simplified Peterson’s algorithm

In Fig. 2, we model the above two processes as SA1=(Q1, q0,
V, Init1, Inv1, Env1, Σ1, Edge1) and SA2 = (Q2, p0, V, Init2, Inv2, Env2,
Σ2, Edge2) respectively, where V = {flag1, f lag2, critical1, critical2, turn},

528 F. Zhang et al.

Fig. 2. Succinct automata for the simplified Peterson’s algorithm

Σ1 = {τ, c1} and Σ2 = {τ, c2}. Here, we treat all variables as global variables.
The automaton SA1 (resp. SA2) starts at location q0 (resp. p0), where each
variable has an initial value of 0, and has five locations q0, q1, q2, q3 and q4 (resp.
p0, p1, p2, p3 and p4). Invariants for locations are presented in ovals. Compo-
nent transitions are represented by solid line arrows, together with the action
labels and predicates on them. We omitted the predicates specifying the vari-
ables whose values remain unchanged in component transitions. Environment
transitions are represented by dashed line arrows and predicates on these arrows
specify the binary relations that define environment transitions.

We now briefly explain SA1. At location q0, the environment transition is
specified by ϕ1 = (flag′

1 = flag1 ∧ critical′1 = critical1) ∧ (critical′2 = 1 ⇒
flag′

2 = 1), meaning that SA2 never modifies the values of flag1 and critical1
and that if SA2 enters the critical section after the transition, denoted by
critical′2 = 1, we have flag′

2 = 1. Then, SA1 takes a silent action to set flag1 to
1, meaning that it wants to enter the critical section, and enters q1. At location
q1, the environment transition is specified by ϕ2 = (flag′

1 = flag1 ∧ critical′1 =
critical1) ∧ (critical′2 = 1 ⇒ (flag′

2 = 1 ∧ turn′ = 2)). Compared with ϕ1, we
see that if SA2 enters the critical section when SA1 is at q1, flag′

2 (resp. turn′)
must be 1 (resp. 2). This is because SA2 must wait until its turn, denoted by
turn = 2, to enter the critical section once SA1 has set flag1 to 1. After taking
another silent action, SA1 arrives at q2. At location q2, if flag2 = 0 ∨ turn = 1,
SA1 takes the action c1 and enters the critical section. By entering q4, SA1

leaves the critical section. Finally, SA1 resets flag1 to 0 and comes back to q0.
The environment transitions of SA2 are defined by ψ1 = (flag′

2 = flag2 ∧
critical′2 = critical2) ∧ (critical′1 = 1 ⇒ flag′

1 = 1) and ψ2 = (flag′
2 = flag2 ∧

critical′2 = critical2) ∧ (critical′1 = 1 ⇒ (flag′
1 = 1 ∧ turn′ = 1)).

Compositional Reasoning for Shared-Variable Concurrent Programs 529

3.2 Parallel Composition

In rely-guarantee reasoning, the guarantee of one thread should imply the rely
conditions of other threads. Similarly, we impose a compatibility condition on
succinct automata running in parallel. Let q1 (resp. q2) be an arbitrary location
in SA1 (resp. SA2). Informally, the compatibility condition guarantees that if
SA1 (resp. SA2) makes a component transition from q1 (resp. q2) to q′

1 (resp.
q′
2), SA2 (resp. SA1) can mimic this transition by its environment transitions at

q2 (resp. q1). We formalize the compatibility condition as follows.

Definition 2. SA1 and SA2 are compatible iff for all (q1, vG ⊕ vL1) ∈
SSA1 , (q2, vG⊕vL2) ∈ SSA2 such that Inv1(q1)(vG⊕vL1) and Inv2(q2)(vG⊕vL2),
we have

1. If (q1, vG ⊕ vL1)
σ1→ (q′

1, v
′
G ⊕ v′

L1
), then (q2, vG ⊕ vL2)

env−→ (q2, v′
G ⊕ vL2).

2. If (q2, vG ⊕ vL2)
σ2→ (q′

2, v
′
G ⊕ v′

L2
), then (q1, vG ⊕ vL1)

env−→ (q1, v′
G ⊕ vL1).

Succinct automata running in parallel execute their component transitions
in an interleaved manner. The formal definition of parallel composition of com-
patible succinct automata is defined as follows.

Definition 3. Let SA1 = (Q1, q
1
0 , VG ∪ VL1 , Init1, Inv1, Env1, Σ1, Edge1) and

SA2 = (Q2, q
2
0 , VG ∪ VL2 , Init2, Inv2, Env2, Σ2, Edge2) be two compatible suc-

cinct automata. The parallel composition of SA1 and SA2 is a succinct automa-
ton SA1 ‖ SA2 = (Q, q0, VG ∪ VL, Init, Inv,Env,Σ,Edge), where

– Q = Q1 × Q2, q0 = (q10 , q
2
0), VL = VL1 ∪ VL2 and Σ = Σ1 ∪ Σ2.

– Init = Init1 ∧ Init2.
– Inv((q1, q2)) = Inv1(q1) ∧ Inv2(q2) for each q1 ∈ Q1 and q2 ∈ Q2.
– Env((q1, q2)) = Env1(q1) ∩ Env2(q2) for each q1 ∈ Q1 and q2 ∈ Q2.
– ((q1, q2), σ, μ, (q′

1, q
′
2)) ∈ Edge iff either:

1. there exists an edge (q1, σ, μ, q′
1) ∈ Edge1 and q2 = q′

2, or
2. there exists an edge (q2, σ, μ, q′

2) ∈ Edge2 and q1 = q′
1.

After parallel composition, SA1 and SA2 share a common environment. The
environment of SA1 ‖ SA2 for location (q1, q2) is the intersection of the environ-
ments of SA1 and SA2 for location q1 and q2 respectively. Intuitively, for each
finite run of the parallel composition of two compatible succinct automata, there
is a corresponding finite run in each of its components.

4 Compositional Reasoning for Succinct Automata

4.1 Safety Verification of Succinct Automata

Safety properties require that bad things should not happen. Invariants are a
particular kind of safety properties that are useful in specifications. For example,
the mutual exclusion property is an invariant which specifies that no more than
one thread is in its critical section at any time. We introduce compositional

530 F. Zhang et al.

reasoning methods for invariant verification of succinct automata and checking
other safety properties can be reduced to invariant verification.

Recall that a predicate λ ∈ F(V) is an invariant of a transition system TS
if λ is satisfied on all reachable states of TS. Unlike in a transition system, we
have two kinds of transitions, local and environment. The way we treat them
leads us to define two types of invariants of succinct automata, strong and weak.
When treating both kinds of transitions equally, we reach the notion of strong
invariants.

Definition 4. A predicate λ ∈ F(V) is a strong invariant of SA if λ is satisfied
on all reachable states of SA.

When focusing on runs of succinct automata where environment transitions
preserve λ, we reach the notion of weak invariants. Here, we say that an envi-
ronment (resp. a component) transition (q,v) env−→ (q,v′) (resp. (q,v) σ→ (q′,v′))
preserves λ if λ(v) implies λ(v′). The intention of weak invariants is as follows:
For a program T modelled as SA, if λ is a weak invariant of SA, then, running
in any environment that preserves λ, T can guarantee that λ is preserved in all
its local transitions.

Definition 5. A predicate λ ∈ F(V) is a weak invariant of SA if λ is satisfied
on all runs of SA where environment transitions preserve λ.

The notion of weak invariants is more general than strong invariants. In
the following, we focus on compositionality of weak invariants. We first impose a
noninterference condition on local weak invariants. This condition is to guarantee
that local transitions of any component that preserve its own local weak invariant
cannot invalidate local weak invariants of other components. Let λ1 (resp. λ2) be
a weak invariant of SA1 (resp. SA2). Formally, we use noninterfere(λ1, λ2) to
mean the following condition: ((λ1 ∧ λ2 ∧ λ′

1) ⇒ λ2[V ′
G/VG]) ∧ ((λ1 ∧ λ2 ∧ λ′

2) ⇒
λ1[V ′

G/VG]), where λ′
i is derived from λi by substituting all its variables with

corresponding primed variables and λi[V ′
G/VG] is derived by substituting all

global variables in VG with corresponding primed variables in V ′
G for i = 1, 2. The

parallel compositionality of weak invariants of succinct automata are formalized
in the following theorem, which says that local weak invariants satisfied by all the
components of the parallel composition of succinct automata guarantee a global
weak invariant satisfied by the entire system as long as local weak invariants
satisfy the noninterference condition.

Theorem 1. Let SA1 and SA2 be compatible. Assume that noninterfere(λ1,
λ2) and λ1 (resp. λ2) is a weak invariant of SA1 (resp. SA2). We have that
λ1 ∧ λ2 is a weak invariant of SA1||SA2.

Example 2. To show that the simplified Peterson’s algorithm in Fig. 1 guarantees
mutual exclusion, we check whether critical1 = 0 ∨ critical2 = 0 is a weak
invariant of SA1||SA2 in Fig. 2. We define λ1 and λ2 by λ1 = λ2 = (critical1 =
0 ∨ critical2 = 0). It is easy to verify that λ1 (resp. λ2) is a weak invariant of
SA1 (resp. SA2). Also, it is easy to see that noninterfere(λ1, λ2) holds trivially

Compositional Reasoning for Shared-Variable Concurrent Programs 531

as λ1 = λ2. According to Theorem 1, we know that critical1 = 0 ∨ critical2 = 0
is a weak invariant of SA1||SA2, which implies that P1 and P2 in Fig. 1 cannot
be in the critical section at the same time.

Example 3. We show the correctness of the abstract concurrent GCD programs
(T1 and T2) in Fig. 3(a). (The code is taken from [28].) To check that T1||T2

really compute the greatest common divisor (gcd) of variables a and b, we first
model T1 (resp. T2) as SA1 (resp. SA2). The construction of SA1 is shown in
Fig. 4 (left), where ϕ = (a′ = a) ∧ (a < b ∨ b′ = b). We omit the construction of
SA2 due to space limitation.

For convenience, we introduce two auxiliary variables A and B to SA1 and
SA2. The value of A (resp. B) equals to the initial value of the input variable
a (resp. b) and remain unchanged. Let λ1 = λ2 = (gcd(a, b) = gcd(A,B)),
where gcd is a function that returns the gcd of its input. It is easy to verify
that λ1 (resp. λ2) is a weak invariant of SA1 (resp. SA2). Also, it is easy to
see that noninterfere(λ1, λ2) holds. According to Theorem1, we know that
gcd(a, b) = gcd(A,B) is a weak invariant of SA1||SA2, which implies that
T1||T2 really compute the gcd of the input values of a and b.

4.2 Simulations of Succinct Automata

We define weak simulations between succinct automata as follows.

Definition 6. A binary relation θ ⊆ SSA1 × SSA2 is a weak simulation for
(SA1, SA2) w.r.t. a precondition κ ∈ F(V1∪V2) and an invariant ι ∈ F(V1∪V2),
denoted by SA1 �(κ,ι)

θ SA2, iff we have the following:

1. κ(v1, v2) implies ((q1, v1), (q2, v2)) ∈ θ, where both q1 and q2 are initial.
2. ((q1, v1), (q2, v2)) ∈ θ implies ι(v1, v2), Inv1(q1)(v1), Inv2(q2)(v2) and the

following:
a. if (q1, v1)

env−→ (q1, v′
1) and (q2, v2)

env∗
−→ (q2, v′

2) and ι(v′
1, v

′
2), then we have

that ((q1, v′
1), (q2, v

′
2)) ∈ θ.

b. if (q1, v1)
σ1→ (q′

1, v
′
1) and σ1 �= τ , then there exist (q′

2, v
′
2) ∈ SSA2 and σ2 ∈

Σ2 such that σ2 = σ1, (q2, v2)
τ∗σ2τ∗
−→ (q′

2, v
′
2) and ((q′

1, v
′
1), (q

′
2, v

′
2)) ∈ θ.

c. if (q1, v1)
τ→ (q′

1, v
′
1), then there exists (q′

2, v
′
2) ∈ SSA2 such that (q2, v2)

τ∗
→

(q′
2, v

′
2) and ((q′

1, v
′
1), (q

′
2, v

′
2)) ∈ θ.

Conditions 2.b and 2.c constrain local behaviors of SA1 and SA2 and are
similar to standard notions of weak simulations [30]. Condition 2.a constrains
the environments of the two succinct automata and requires that the weak sim-
ulation should not be affected by the environments as long as the valuations of
variables in V1 and V2 are related by ι. Note that if merely we were to require
that an environment transition from q1 is simulated by zero or more environment
transitions from q2, the resulting simulation relation would not be compositional
under parallel composition. Our way of dealing with environments in defining
simulation or bi-simulation relations is not without precedent. For example, in

532 F. Zhang et al.

process calculi, e.g., higher-order calculi [34] or cryptographic calculi [1], envi-
ronments are treated separately from local transitions, and one typically requires
certain relations to hold between the environments, e.g., as in the relation ι we
have above. Condition 2.a is the key for compositionality in our notion of weak
simulation.

Fig. 3. Concurrent GCD programs

Given κ and ι, we say that SA1 is weakly simulated by SA2 (or SA1 weakly
refines SA2) with respect to κ and ι, denoted by SA1 �(κ,ι) SA2, if there exists
a weak simulation θ such that SA1 �(κ,ι)

θ SA2. We say that SA1 is weakly
simulated by SA2, denoted by SA1 � SA2, if there exist κ and ι such that
SA1 �(κ,ι) SA2. The relation � on succinct automata is reflexive but not tran-
sitive. However, the relation � on closed succinct automata is transitive. This
allows us to chain together two refinement steps when reasoning about simula-
tions between closed succinct automata.

Theorem 2. The relation � on closed succinct automata forms a pre-order.

For succinct automata that are not closed, we can still chain together succes-
sive refinement steps if the environment transitions of related succinct automata
satisfy a certain condition. We formalize this in the following theorem.

Theorem 3. Assume that SA1 �(κ1,ι1)
θ1

SA2 and SA2 �(κ2,ι2)
θ2

SA3. Let κ, ι ∈
F(V1 ∪V3) be predicates such that κ(v1, v3) (resp. ι(v1, v3)) holds iff there exists
v2 such that κ1(v1, v2) ∧ κ2(v2, v3) (resp. ι1(v1, v2) ∧ ι2(v2, v3)) holds. We have
that SA1 �(κ,ι)

θ2◦θ1
SA3 if the following holds: Assume that (q1, v1)

env−→ (q1, v′
1),

(q3, v3)
env∗
−→ (q3, v′

3), ι(v1, v3) and ι(v′
1, v

′
3). For any v2 such that ι1(v1, v2) ∧

ι2(v2, v3) and for all q2 ∈ Q2, there exists v′
2 such that (q2, v2)

env−→ (q2, v′
2) and

ι1(v′
1, v

′
2) ∧ ι2(v′

2, v
′
3).

Given θ1 ⊆ SSA1 × S
̂SA1

and θ2 ⊆ SSA2 × S
̂SA2

, we define θ1 ⊗ θ2 ⊆
SSA1||SA2 ×S

̂SA1|| ̂SA2
as follows: (((q1, q2),v), ((q̂1, q̂2), v̂)) ∈ θ1⊗θ2 iff ((q1,vG⊕

Compositional Reasoning for Shared-Variable Concurrent Programs 533

Fig. 4. Succinct automata for concurrent GCD

vL1), (q̂1, v̂G ⊕ v̂L1)) ∈ θ1 and ((q2,vG ⊕ vL2), (q̂2, v̂G ⊕ v̂L2)) ∈ θ2, where
v = vG ⊕ vL1 ⊕ vL2 and v̂ = v̂G ⊕ v̂L1 ⊕ v̂L2 .

To ensure compositionality of weak simulations, we also impose a noninter-
ference condition on ι1 and ι2 here. We reuse noninterfere(ι1, ι2) to denote the
following condition: ((ι1 ∧ ι2 ∧ ι′1) ⇒ ι2[V ′

G/VG][̂VG

′
/̂VG]) ∧ ((ι1 ∧ ι2 ∧ ι′2) ⇒

ι1[V ′
G/VG][̂VG

′
/̂VG]). The following theorem shows that weak simulations of suc-

cinct automata are preserved under parallel composition.

Theorem 4. Assume that SA1 (resp. ̂SA1) and SA2 (resp. ̂SA2) are compatible
and that noninterfere(ι1, ι2). We have that SA1 �(κ1,ι1)

θ1
̂SA1 and SA2 �(κ2,ι2)

θ2

̂SA2 implies SA1||SA2 �(κ1∧κ2,ι1∧ι2)
θ1⊗θ2

̂SA1|| ̂SA2.

Example 4. We show that the abstract concurrent GCD programs (T1 and T2)
in Fig. 3(a) are refined by the concrete GCD programs (T ′

1 and T ′
2) in Fig. 3(b).

The bodies of the while loops in T1 and T2 are executed atomically and are
refined to corresponding code in T ′

1 and T ′
2 to allow interleaving.

In Fig. 4, we model thread T1 (resp. T ′
1) as SA1 (resp. SA′

1), where ϕ = (a′ =
a)∧ (a < b∨ b′ = b) and ψ = (a′ = a)∧ (a < b∨ b′ = b). Let κ1 and ι1 be defined
by κ1 = (a = a ∧ b = b ∧ m = m) and ι1 = (a = a ∧ b = b ∧ m = m). In our
experiment, using the verification tool we have implemented, we have verified
that SA′

1 �(κ1,ι1)
θ1

SA1 holds for some θ1. Similarly, we have modeled T2 (resp. T ′
2)

as SA2 (resp. SA′
2) and checked in our experiment that SA′

2 �(κ2,ι2)
θ2

SA2 holds

for some θ2. By Theorem 4, we have that SA′
1||SA′

2 �(κ1∧κ2,ι1∧ι2)
θ1⊗θ2

SA1||SA2.

4.3 Safety Property Preservation Under Refinement

It is obvious that strong invariants are preserved under refinements. We show in
the following that weak invariants of succinct automata are also preserved under
refinements.

534 F. Zhang et al.

We write WS(θ,Env1, Env2) to mean that: if ((q1,v1), (q2,v2)) ∈ θ and

(q1,v1)
env−→ (q1,v′

1), there exists (q2,v′
2) ∈ SSA2 such that (q2,v2)

env∗
−→ (q2,v′

2)
and ((q1,v′

1), (q2,v
′
2)) ∈ θ. If WS(θ,Env1, Env2) holds, for each run in SA1, we

can construct a corresponding run in SA2 such that the two runs are related by θ.
Thus, we have the following lemma that links reachability and weak simulations.

Lemma 1. Assume that SA1 �(κ,ι)
θ SA2 holds for some θ, κ and ι, where

WS(θ,Env1, Env2) holds. For all states (q1, v1) ∈ SSA1 and (q2, v2) ∈ SSA2 such
that ((q1, v1), (q2, v2)) ∈ θ, if (q1, v1) →∗ (q′

1, v
′
1) for some (q′

1, v
′
1) ∈ SSA1 , there

exists (q′
2, v

′
2) ∈ SSA2 such that (q2, v2) →∗ (q′

2, v
′
2) and ((q′

1, v
′
1), (q

′
2, v

′
2)) ∈ θ.

As invariants verification can be reduced to reachability problems, we can
prove by contradiction that the following theorem holds.

Theorem 5. Assume that SA1 �(κ,ι)
θ SA2 holds for some θ, κ and ι, where

WS(θ,Env1, Env2) holds, and for each initial state (q1, v1) ∈ SSA1 , there exists
an initial state (q2, v2) ∈ SSA2 such that κ(v1, v2). Let λ1 ∈ F(V1) and λ2 ∈
F(V2) be two predicates such that ¬λ1(v1) ∧ ι(v1, v2) implies ¬λ2(v2). If λ2 is a
weak invariant of SA2, then λ1 is a weak invariant of SA1.

Example 5. We give a short example to show that gcd(a, b) = gcd(A,B) is a
weak invariant of the concrete GCD programs, which implies that the concrete
GCD programs also compute the gcd of the input variables. First, we know from
Example 3 that gcd(a, b) = gcd(A,B) is a weak invariant of the abstract GCD
programs. Second, we know from Example 4 that the concrete GCD programs
refine the abstract GCD programs. Hence, from Theorem 5, we can prove that
gcd(a, b) = gcd(A,B) is also a weak invariant of the concrete GCD programs.

5 Automatic Verification of Succinct Automata

We focus on two aspects of automated verification of succinct automata: gener-
ation of succinct automata from infinite state concurrent programs and refine-
ment checking between infinite state succinct automata. We prototyped our tool
in the functional programming language F# in over 3700 lines of code and used
Z3 [12] in our implementation. We applied our tool to check multiple weak sim-
ulations between concurrent C programs. Experimental results are included in
the appendix of [37].

5.1 Generation of Succinct Automata

The hardest part of generating succinct automata from infinite state concur-
rent programs is to construct their invariant components and environment com-
ponents. Intuitively, invariant components overapproximate reachable states at
control locations of concurrent programs and environment components abstract
the transitions of other programs in the environment. To construct these com-
ponents, we perform separate forward reachability analysis for each concurrent

Compositional Reasoning for Shared-Variable Concurrent Programs 535

program on abstract domains, and for component transitions of a concurrent
program that modify global variables, corresponding environment transitions
are generated for other concurrent programs in the environment. We present our
algorithm for generating succinct automata in Algorithm1.

The main function in Algorithm 1 is Generate-SAs. Given two concurrent
programs T1 and T2, it first constructs two intermediate automata SA1 and SA2,
where Inv1, Env1, Inv2 and Env2 are not specified. At this step, SA1 and SA2

are essentially the program graphs of T1 and T2. Then, it initializes Invi and
EnvSeti. Here, EnvSeti is used to keep track of changes of global variables made
by SAj , where i �= j and i, j = 1, 2. After that, it starts fixed-point iterations
(Line 21–26) to overapproximate reachable states at each location by calling
function Reach and generate corresponding environment transitions by calling
function GenEnvTrans. After the least fixed points are reached, it constructs
Envi from EnvSeti. If the relation specified by EnvSeti is not reflexive, we
explicitly add VG = V ′

G to make Envi reflexive.
Function Reach performs the forward reachability analysis for SAi,

where EnvSeti specifies the environment transitions of SAi. Function
PostComp(Invi(q), μ) (Line 4) calculates a predicate that overapproximates
states reachable from Invi(q) by executing a component transition whose tran-
sition condition is μ. Function PostEnv(Invi(q), EnvSeti) (Line 6) calculates
a predicate that overapproximates states reachable from Invi(q) by executing
environment transitions specified by EnvSeti.

Function GenEnvTrans takes Invi and Edgei of SAi and generates envi-
ronment transitions for SAj , where i �= j and i, j = 1, 2. For each edge
(q, σ, μ, q′) ∈ Edgei that modifies global variables, we generate a correspond-
ing pair (Invi(q), μ) (Line 14) to be used to specify environment transitions of
SAj . Function GenEnvTrans is the key to guarantee the compatibility of SA1

and SA2.
We have the following theorem that guarantees the compatibility of SA1 and

SA2.

Theorem 6. SA1 and SA2 generated by Algorithm1 are compatible.

From Theorem 6, it’s easy to prove by contradiction that SA1||SA2 overap-
proximates T1||T2, which means for each execution trace of T1||T2, there is a
corresponding run of SA1||SA2.

In our prototype, the abstract domain we use is Boxes [20] and an element
on the Boxes domain is implemented as a corresponding Linear Decision Dia-
gram (LDD) [6]. To guarantee the termination of the iteration in Reach, we used
widening techniques [11] for the Boxes domain, which is not listed in Algorithm1
due to space limitation. On the other hand, we point out here that Algorithm1
is a general algorithm that can be implemented on top of other abstract domains
and the correctness of Theorem 6 is independent of the abstract domains under-
lying Algorithm 1.

536 F. Zhang et al.

Algorithm 1. Generating Succinct Automata from Concurrent Programs
Input: Concurrent programs T1 and T2.
Output: Compatible SA1 and SA2 that models T1 and T2.

1 Function Reach(SAi, EnvSeti)is
2 repeat
3 foreach (q, σ, μ, q′) ∈ Edgei do
4 Invi(q

′) := Invi(q
′) ∨ PostComp(Invi(q), μ)

5 foreach q ∈ Qi do
6 Invi(q) := Invi(q) ∨ PostEnv(Invi(q), EnvSeti)

7 until No more reachable states are added to Invi(q) for all q ∈ Qi

8 return Invi

9

10 Function GenEnvTrans(Invi, Edgei, j)is
11 EnvSetj := ∅
12 foreach (q, σ, μ, q′) ∈ Edgei do
13 if μ modifies global variables then
14 EnvSetj := EnvSetj ∪ (Invi(q), μ)

15 return EnvSetj

16

17 Function Generate-SAs(T1, T2)is
18 Construct intermediate succinct automata SA1 and SA2

19 Invi(q) := false for all q ∈ Qi and i = 1, 2
20 EnvSeti = ∅ for i = 1, 2
21 repeat
22 Inv1 := Reach(SA1, EnvSet1)
23 Inv2 := Reach(SA2, EnvSet2)
24 EnvSet1 := GenEnvTrans(Inv2, Edge2, 1)
25 EnvSet2 := GenEnvTrans(Inv1, Edge1, 2)

26 until Least Fixed Points are Reached
27 Construct Envi from EnvSeti and make Envi reflexive for i = 1, 2
28 return SA1 and SA2

5.2 Refinement Checking Between Succinct Automata

We propose an SMT-based approach (Algorithm 2) to checking weak simula-
tions between infinite state succinct automata. One difficulty in developing an
SMT-based approach here comes from Condition 2.a in Definition 6, because
environment transitions of the abstract succinct automata can be executed arbi-
trary finite number of times. However, we have noticed in practice that the length
of local paths of succinct automata whose action labels are of the form τ∗στ∗

or τ∗ are usually bounded. Hence, in Algorithm2, we only specify the execution
of environment transitions of the abstract succinct automata up to a bound k,
which is precalculated by our prototyped tool.

Compositional Reasoning for Shared-Variable Concurrent Programs 537

Algorithm 2. An Algorithm to Check Weak Simulations of Succinct
Automata

Input: SA1 and SA2 and parameters κ and ι.

Output: If the algorithm return Yes, SA1 �(κ,ι) SA2 holds. If the algorithm returns No,

SA1 �(κ,ι) SA2 does not hold.

1 Function GenConstraints(SA1, SA2, Θ, ι)is

2 foreach (q1, q2) ∈ Θ do

3 C1 := Ψ(q1,q2) ⇒ ((ΦEnv1(q1) ∧ ι[V ′
1/V1]) ⇒ Ψ(q1,q2)[V

′
1/V1])

4 constraints := constraints ∪ {¬C1}
5 foreach 1 ≤ j ≤ k do

6 C
j
2 := Ψ(q1,q2) ⇒ ((ΦEnv1(q1) ∧ Φ

Env2(q2)j ∧
7 ι[V ′

1/V1][V
j
2 /V2]) ⇒ Ψ(q1,q2)[V

′
1/V1][V

j
2 /V2])

8 constraints := constraints ∪ {¬C
j
2}

9 foreach e = (q1, σ, μ, q′
1) ∈ Edge1 do

10 C3 := Ψ(q1,q2) ⇒ (G ⇒ (WP (e′,
∨

π∈Πσ(q2) WP (π, Ψ(q′
1,q′

2)))))

11 where G is the guard of e, e′ is derived from e by substituting its guard

12 with True, and π ends at location q′
2

13 constraints := constraints ∪ {¬C3}

14 return constraints

15

16 Function UpdatePsi(constraints, V1, V2, Θ)is

17 foreach (q1, q2) ∈ Θ do

18 Ψ ′
(q1,q2) := Ψ(q1,q2)

19 foreach ¬(Ψ(q1,q2) ⇒ Φ) ∈ constraints do

20 if ¬(Ψ(q1,q2) ⇒ Φ) is satisfiable then

21 if ¬(Ψ(q1,q2) ⇒ Φ) is a type 1 constraint then

22 Ψ ′
(q1,q2) := Ψ ′

(q1,q2) ∧ ∀V Φ

23 where V = FreeV ar(Φ)\(V1 ∪ V2)

24 if ¬(Ψ(q1,q2) ⇒ Φ) is a type 2 constraint then

25 Ψ ′
(q1,q2) := Ψ ′

(q1,q2) ∧ Φ

26 foreach (q1, q2) ∈ Θ do

27 Ψ(q1,q2) := Ψ ′
(q1,q2)

28 if none of the constraints are satisfiable then

29 return Fixed Point Reached

30 else

31 return Continue Iteration

32

33 Function Check-Weak-Simulation(SA1, SA2, κ, ι)is

34 Θ := GenPairs({(qinit1 , qinit2)})
35 foreach (q1, q2) ∈ Θ do

36 Ψ(q1,q2) := ι ∧ Inv1(q1) ∧ Inv2(q2)

37 constraints := ∅
38 repeat

39 constraints := GenConstraints(SA1, SA2, Θ, ι)

40 result := UpdatePsi(constraints, V1, V2, Θ)

41 until result = Fixed Point Reached

42 if κ ⇒ Ψ(qinit1,qinit2) is valid then

43 return Yes

44 else

45 return No

538 F. Zhang et al.

Proving SA1 �(κ,ι) SA2 amounts to showing the existence of a simu-
lation relation θ such that SA1 �(κ,ι)

θ SA2. We define first order formulas
Ψ(q1,q2) over V1 ∪ V2 for a set of pairs of locations (q1, q2) ∈ Q1 × Q2. The
intention is that when our algorithm terminates, we can construct a relation
θ = {((q1,v1), (q2,v2)) | Ψ(q1,q2)(v1,v2) holds} such that θ satisfies Condition 2
in Definition 6.

Our algorithm follows the basic fixed point iteration method. The main func-
tion in Algorithm2 is Check-Weak-Simulation. It first computes a set Θ that
contains all the pairs (q1, q2) for which we need to define constraints. Then, it
defines the initial value of Ψ(q1,q2) for each (q1, q2) ∈ Θ. In each fixed point itera-
tion (Line 38-41), we first generate constraints for each (q1, q2) ∈ Θ that specify
Condition 2 of Definition 6 by calling function GenConstraints. Then, we refine
the value of Ψ(q1,q2) through function UpdatePsi according to the satisfiability of
the constraints generated for (q1, q2). When the greatest fixed point is reached,
it is guaranteed that Condition 2 of Definition 6 is satisfied. Finally, we check
whether Condition 1 of Definition 6 is also satisfied (Line 42).

Due to space limitation, we omit the pseudo code for the function GenPairs
(called in Line 34) and explain it briefly as follows. Let Πσ(q) denote the set of
finite local paths π such that π starts from q and the action labels along π are
of the form τ∗στ∗ (resp. τ∗), when σ �= τ (resp. σ = τ). GenPairs is a recursive
function which takes a set Θ of pairs of locations as input and returns another
set of pairs of locations. Let Θ′ be an empty set. First, for each (q1, q2) ∈ Θ,
it adds to Θ′ the set of (q′

1, q
′
2) such that there exists an edge (q1, σ, μ, q′

1) and
a path π ∈ Πσ(q2) that ends in q′

2. Then, GenPairs makes a recursive call
GenPairs(Θ′\Θ) and returns Θ ∪ GenPairs(Θ′\Θ).

Function GenConstraints generates following constraints ¬C1,¬C1
2 , ...,¬Ck

2

and ¬C3 for each (q1, q2) ∈ Θ. Formulas C1 and Cj
2 (Line 3 and 6–7) are used

to specify Condition 2.a in Definition 6, where ΦEnv1(q1) is a predicate that
specifies the execution of environment transitions Env1(q1) once and ΦEnv2(q2)j

is a predicate specifying the execution of environment transitions Env2(q2) for j
steps. In Line 7, we write V j

2 to mean {vj
1, ..., v

j
n} for V2 = {v1, ..., vn}. Formula

C3 (Line 10) specifies Condition 2.b and 2.c. We use WP (e, Ψ) (resp. WP (π, Ψ))
to denote the weakest precondition such that Ψ holds after taking a component
transition (resp. a sequence of component transitions) by executing e (resp. π).

Function UpdatePsi checks the satisfiability of all the constraints generated
by GenConstraints. If a constraint ¬(Ψ(q1,q2) ⇒ Φ) is satisfiable, Ψ(q1,q2) fails
to satisfy Condition 2 in Definition 6. In this case, we strengthen Ψ(q1,q2) in
Line 21–25 depending on the type of the constraint. Here, type 1 (resp. type 2)
constraints refer to those of the form ¬C1 and ¬Cj

2 (resp. ¬C3) generated by
GenConstraints.

6 Conclusions and Future Work

In this paper, we have laid the theoretical underpinning for succinct automata,
which is a formalism for formal verification of shared-variable concurrent pro-
grams. In our framework, safety verification and simulations of concurrent

Compositional Reasoning for Shared-Variable Concurrent Programs 539

programs are parallel compositional and algorithmic. Succinct automata-based
approaches can be applied to extend safety verification of concurrent programs
from the source code level down to the binary level in a compositional way.

At the current stage, our prototype is able to verify refinements between
concurrent C programs. Compared with manual proofs, our automated verifica-
tion technique saves considerable time. In our future work, we will study how
to generate succinct automata from assembly code and further develop our tool
so that it can verify refinements between concurrent C programs and assembly
code.

Acknowledgement. This research is supported (in part) by the National Research
Foundation, Prime Ministers Office, Singapore under its National Cybersecurity R&D
Program (Award No. NRF2014NCR-NCR001-30) and administered by the National
Cybersecurity R&D Directorate.

References

1. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the spi calculus.
Inf. Comput. 148(1), 1–70 (1999)

2. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, New York (2008)
3. Brookes, S.D.: Full abstraction for a shared variable parallel language. In: Proceed-

ings of the 8th Annual Symposium on Logic in Computer Science (LICS 1993),
Montreal, Canada, pp. 98–109 (1993)

4. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 10̂ 20 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

5. Burckhardt, S., Musuvathi, M., Singh, V.: Verifying local transformations on
relaxed memory models. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp. 104–
123. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11970-5 7

6. Chaki, S., Gurfinkel, A., Strichman, O.: Decision diagrams for linear arithmetic. In:
Proceedings of the 9th International Conference on Formal Methods in Computer-
Aided Design (FMCAD 2009), Austin, Texas, USA, pp. 53–60 (2009)

7. Clarke, E.M., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model
checking. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 450–462.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56922-7 37

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

9. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

10. Cohen, A., Namjoshi, K.S.: Local proofs for global safety properties. Formal Meth-
ods Syst. Des. 34(2), 104–125 (2009)

11. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th Symposium on Principles of Programming Languages (POPL 1977), Los
Angeles, California, USA, pp. 238–252 (1977)

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

https://doi.org/10.1007/978-3-642-11970-5_7
https://doi.org/10.1007/3-540-56922-7_37
https://doi.org/10.1007/978-3-540-78800-3_24

540 F. Zhang et al.

13. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. In: Courcoubetis, C.
(ed.) CAV 1993. LNCS, vol. 697, pp. 463–478. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-56922-7 38

14. Flanagan, C., Freund, S.N., Qadeer, S.: Thread-modular verification for shared-
memory programs. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp.
262–277. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45927-8 19

15. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-44829-2 14

16. Godefroid, P.: Using partial orders to improve automatic verification methods.
In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023731

17. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In:
Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63166-6 10

18. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans.
Program. Lang. Syst. 16(3), 843–871 (1994)

19. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement
for verifying multi-threaded programs. In: Proceedings of the 38th Symposium on
Principles of Programming Languages (POPL 2011), Austin, TX, USA, pp. 331–
344 (2011)

20. Gurfinkel, A., Chaki, S.: Boxes: a symbolic abstract domain of boxes. In: Cousot,
R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 287–303. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1 18

21. Hawblitzel, C., Petrank, E., Qadeer, S., Tasiran, S.: Automated and modular refine-
ment reasoning for concurrent programs. In: Kroening, D., Păsăreanu, C.S. (eds.)
CAV 2015. LNCS, vol. 9207, pp. 449–465. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-21668-3 26

22. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference.
In: Proceedings of the 2004 Conference on Programming Language Design and
Implementation (PLDI 2004), Washington, DC, USA, pp. 1–13 (2004)

23. Henzinger, T.A., Jhala, R., Majumdar, R., Qadeer, S.: Thread-modular abstraction
refinement. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
262–274. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-
6 27

24. Ip, C.N., Dill, D.L.: Better verification through symmetry. In: Proceedings of the
11th International Conference on Computer Hardware Description Languages and
their Applications (CHDL 1993), Ontario, Canada, pp. 97–111 (1993)

25. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress,
pp. 321–332 (1983)

26. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

27. Kundu, S., Lerner, S., Gupta, R.: Automated refinement checking of concurrent
systems. In: Proceedings of the 2007 International Conference on Computer-Aided
Design (ICCAD 2007), San Jose, CA, USA, pp. 318–325 (2007)

28. Liang, H., Feng, X., Fu, M.: Rely-guarantee-based simulation for compositional
verification of concurrent program transformations. ACM Trans. Program. Lang.
Syst. 36(1), 3 (2014)

29. Lochbihler, A.: Verifying a compiler for Java threads. In: Gordon, A.D. (ed.) ESOP
2010. LNCS, vol. 6012, pp. 427–447. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-11957-6 23

https://doi.org/10.1007/3-540-56922-7_38
https://doi.org/10.1007/3-540-56922-7_38
https://doi.org/10.1007/3-540-45927-8_19
https://doi.org/10.1007/3-540-44829-2_14
https://doi.org/10.1007/BFb0023731
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/978-3-319-21668-3_26
https://doi.org/10.1007/978-3-319-21668-3_26
https://doi.org/10.1007/978-3-540-45069-6_27
https://doi.org/10.1007/978-3-540-45069-6_27
https://doi.org/10.1007/978-3-642-11957-6_23
https://doi.org/10.1007/978-3-642-11957-6_23

Compositional Reasoning for Shared-Variable Concurrent Programs 541

30. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.
Prentice Hall, Upper Saddle River (1989)

31. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans. Softw. Eng.
7(4), 417–426 (1981)

32. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58179-0 69

33. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems, pp. 123–144.
Springer, New York (1985). https://doi.org/10.1007/978-3-642-82453-1 5

34. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-
order languages. In: Proceedings of the 22nd IEEE Symposium on Logic in Com-
puter Science (LICS 2007), Wroclaw, Poland, pp. 293–302 (2007)

35. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E.M., Kurshan,
R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991).
https://doi.org/10.1007/BFb0023729

36. Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying shared
variable concurrent programs. Formal Asp. Comput. 9(2), 149–174 (1997)

37. Zhang, F., Zhao, Y., Sanán, D., Liu, Y., Tiu, A., Lin, S.-W., Sun, J.: Compositional
Reasoning for Shared-Variable Concurrent Programs. CoRR arXiv:1611.00574v2
(2018)

https://doi.org/10.1007/3-540-58179-0_69
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/BFb0023729
http://arxiv.org/abs/1611.00574v2

Statistical Model Checking of LLVM Code

Axel Legay1, Dirk Nowotka2, Danny Bøgsted Poulsen2(B),
and Louis-Marie Tranouez1

1 Inria, Rennes, France
2 Kiel University, Kiel, Germany
dbp@informatik.uni-kiel.de

Abstract. We present the new tool Lodin for statistical model check-
ing of LLVM-bitcode. Lodin implements a simulation engine for LLVM-
bitcode and implements classic statistical model checking algorithms on
top of it. The simulation engine implements only the core of LLVM but
supports extending this core through a plugin-architecture. Besides the
statistical model checking algorithms Lodin also provides an interac-
tive simulation front-end. The simulator front-end was integral for our
second contribution - an integration of Lodin into Plasma-Lab. The
integration with Plasma-Lab is integral to allow reasoning about rare
properties of programs.

1 Introduction

Statistical Model Checking (SMC) [17] is an approximate verification tech-
nique that has attained a high interest from the formal methods community
in recent years - evidenced by statistical model checking tools being devel-
oped [1,2,13,15,16] and by classical model checking tools implementing statis-
tical methods [6,11]. The reason for this interest is two-fold: firstly SMC is
simulation-based and can therefore be applied to models for which the model
checking problem [7] is undecidable, secondly SMC scales better with increased
state spaces. Another interest of the formal verification community is applying
formal methods to the analysis of real-life code [3,4,18]. These works are mainly
focused on applying an exhaustive state space exploration of the source language.
In this paper we present a tool, Lodin, that permits applying SMC-based tech-
niques to programs. Lodin relies on a pre-compilation of the program with clang

to produce a LLVM-bitcode [12] file used as the input model of Lodin. Functions
defined externally of the program itself (e.g. system calls) are given semantics
in Lodin through platform plugins. In this way Lodin is configurable to anal-
yse embedded programs for various execution environments. Simulation-based
techniques have the major downfall of rare properties requiring an infeasible
number of samples to locate one with the property. To manage this, we seam-
lessly integrate Lodin with Plasma-Lab and get access to their implementation

This work has been partially supported by the BMBF through the ARAMiS2
(01IS160253) project.

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 542–549, 2018.
https://doi.org/10.1007/978-3-319-95582-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_32&domain=pdf

Statistical Model Checking of LLVM Code 543

of importance splitting. Importance splitting is an efficient rare event simulation
technique where a property is decomposed into several sub-properties that must
be satisfied before the main property is satisfied.

2 Lodin

Lodin1 is a fairly new software analysis tool with the goal of analysing programs
without modelling the program in an analysis-specific modelling language. Lodin
achieves this ability by using LLVM bitcode [12] as its model language - thereby
making Lodin available to any source language translatable to LLVM. The
analysis techniques available in Lodin is currently explicit-state model checking
and statistical model checking [17]. In this paper we focus on the latter.

Fig. 1. Architecture of
Lodin

Architecture. Lodin consists of a user interface, algo-
rithms or a simulator, state generators and a system
model (Fig. 1). The system model is a state and tran-
sition representation of the program under analysis.
The system exposes a successor generation interface
for higher architectural levels. During the generation
of successor states, the system calls an interpreter
module responsible for implementing the semantics
of LLVM instructions. In between the algorithms and
system level is a state generator level. This is mostly
relevant for the explicit-state model checking part of
Lodin. It allows for selecting various techniques to
reduce the searched state space. For statistical model checking there is only a
probabilistic state generator that selects what transition to perform according to
probabilities obtained from the system. Real-life programs are developed to run
under some execution environment providing core functionality to the program.
To make Lodin as oblivious to the specific execution environment as possible,
the core interpreter of Lodin has no built-in semantics for these. Instead it is
possible to extend Lodin with platform plugins providing support for an exe-
cution environment. A platform plugin registers all the functions implemented
by it when loaded by Lodin and the interpreter lets the plugin handle calls
to one of these functions. In addition to implementing these external functions,
platform plugins also have an interface to do their own transitions. This is useful
for mimicking an interrupt system / signalling system.

Preparing Files. Lodin requires input in LLVM bitcode. We achieve this by com-
piling the program with clang -emit-llvm -S -c file.c -o file.ll. This is sufficient for
programs without external dependencies. Properties are specified as expressions
over LLVM registers thus we run opt -instnamer file.ll -S -o fileN.ll to generate
the file fileN.ll in which registers have been given names. When a program has
external dependencies and verification therefore requires the use of a platform
1 available at https://spark.informatik.uni-kiel.de/data/lodin/FM18/Lodin-FM.zip.

https://spark.informatik.uni-kiel.de/data/lodin/FM18/Lodin-FM.zip

544 A. Legay et al.

plugin, the program must be compiled with headers specific for that plugin. If
the header files are located in /path/to/includes then programs should be compiled
with the command
1 clang -nodefaultlibs -ffreestanding -fno -builtin -emit -llvm -S -c -I/path/

to/includes file.c -o file.ll

ensuring clang compiles the program without using any of its built-in libraries
and only rely on the header files included on the command line.

How to Use. Lodin is a command line tool and is invoked by
1 ./ Lodin [options] file.ll query.q

where [options] includes options for selecting a platform plugin, setting a random
seed and so on. The query.q file contains a one line query. The possible statistical
model checking-based queries are generated by the below EBNF:

where <arith> is an arithmetic expression over LLVM registers. Lodin also has
limited support for using source variables in arithmetic expressions - this is how-
ever dependent on the debugging symbols contained in the input file. An expres-
sion [0.func] is true if the zeroth process can call the function func. The expression
Exists (p)(<bool>) is true if for some process the Boolean expression is true. Any
occurrence of p is replaced by an actual process during the evaluation. On the
query side, Pr[<=500] (<> <bool>) estimates the probability of the Boolean expres-
sion being true within 500 steps. The number of samples needed is automatically
adjusted using the Clopper-Pearson interval [8]. A query Estimate [<=500,5000] {max <

arith>} generates 5000 runs each of 500 steps and estimates the expected maximal
value of the expression. Finally, EnumStatesSMC <=500 5000 generates 5000 runs each
of 500 steps and counts the number of different states encountered during those
simulations.

Listing 1.1. Calculating the Fibonacci
Numbers. A main function initialising t1
and t2 is omitted.

1 #include <pthread.h >
2
3 int i=1, j=1;
4
5 #define NUM 16
6 #define NULL 0
7

8
9 void *

10 t1(void* arg)
11 {
12 int k = 0;
13
14 for (k = 0; k < NUM; k++)
15 i+=j;
16
17 pthread_exit(NULL);

Statistical Model Checking of LLVM Code 545

18 }
19
20 void *
21 t2(void* arg)
22 {
23 int k = 0;
24

25 for (k = 0; k < NUM; k++)
26 j+=i;
27
28 pthread_exit(NULL);
29 }

Example 1. Consider the program in Listing 1.1 where two threads cooper-
atively attempt to calculate the 32nd Fibonacci number. With Lodin we
estimate the expected number of i at termination of the program with

, where is a register in the com-
piled LLVM containing the value of the i variable. The result of this query is
438037. In addition to estimating the value, the query also outputs the values of
the runs to a file. That file can the be used to generate a histogram.

Example 2. The Fibonacci program considered in Example 1 is only correct if
it at termination has found the 32nd Fibonacci number (2178309). Using Lodin
we estimate the probability of having either i = 2178309 or j = 2178309 using Pr

[<=5000] (<> [0.VERIFIERError]) which asks for the probability that a state is reached
where the 0th process can call VERIFIERError - a call the main function does if
either i = 2178309 or j = 2178309. Verifying the query with Lodin results in
the probability being in the range [0, 0.01] with confidence 0.95 and no satisfying
traces found.

In Table 1 we show results for a range of programs we have applied Lodin
to. For space limitations we omit descriptions of the programs and instead refer

Table 1. Lodin results. The Runs columns is total number of generated runs, Satisfying
is the number of satisfying runs while the CI column is a 95% confidence interval.

Program Runs Satisfying CI Time (s)
fib/fib_4.ll 19242 2789 [0.14, 0.15] 3.80
fib/fib_8.ll 7453 370 [0.04, 0.05] 2.26
fib/fib_16.ll 299 0 [0.00, 0.01] 0.16
fib/fib_32.ll 299 0 [0.00, 0.01] 0.28
ptrace/ptrace.ll 33249 10412 [0.31, 0.32] 22.82
gossip/gossip_2.ll 34470 11575 [0.33, 0.34] 219.68
gossip/gossip_3.ll 13187 1229 [0.09, 0.10] 94.41
gossip/gossip_4.ll 8450 481 [0.05, 0.06] 66.30
petersons/petersonsBug.ll 10870 816 [0.07, 0.08] 1.64
petersons/petersons.ll 299 0 [0.00, 0.01] 0.05
robot/robot.ll 2507 38 [0.01, 0.02] 109.65
stack/stack.ll 299 0 [0.00, 0.01] 7.16

546 A. Legay et al.

the reader to [14] which contains both the source code and descriptions of the
programs. We will note though, that the verification queries are all of the form
Pr[<=N] (<> ...).

3 Plasma-Lab

In Example 2 we saw that simulation-based techniques may fail to find traces
satisfying rare events - in the particular example the event is rare because it
requires a very specific interleaving of the two threads. In the following we inte-
grate Lodin with Plasma-Lab and see how importance splitting can help guid-
ing the simulation to one of these rare interleavings.

Plasma-Lab [5] is a modular platform for statistical model-checking2. The
tool offers a series of SMC algorithms, including advanced techniques for rare
event simulation, distributed SMC, non-determinism, and optimization. They
are used with several modeling formalisms and simulators. The main difference
between Plasma-Lab and other SMC tools is that Plasma-Lab proposes an
API abstraction of the concepts of stochastic model simulator, property checker
(monitoring) and SMC algorithm. In other words, the tool has been designed to
use external simulators, input languages, or SMC algorithms. This also allows
us to create direct plug-in interfaces with external specification tools, without
using extra compilers.

Fig. 2. Plasma-Lab architecture.

Plasma-Lab architecture is
illustrated in Fig. 2. The core of
Plasma-Lab is a light-weight con-
troller managing the experiments
and the distribution mechanism. It
implements an API that allows
controlling the experiments either
through user interfaces or through
external tools. It loads three types
of plugins: 1. algorithms, 2. check-
ers, and 3. simulators. These plugins
communicate with each other and with the controller through the API.

In Plasma-Lab rare properties are decomposed into intermediate proper-
ties using a notion of score function over the model-property product automa-
ton. Intuitively, a score function discriminates good paths from bad, assigning
higher scores to paths that are “closer” to satisfy the overall property. The
model-property product automaton is usually hidden in the implementation of
the checker plugin. Therefore Plasma Lab includes a specific checker plugin for
importance splitting that facilitates the construction of score functions. The plu-
gin allows writing small observer automata checking properties over traces and
compute the score function. These observers implement a subset of the Bounded
Linear Temporal Logic presented in [10].

2 Available for download at https://project.inria.fr/plasma-lab/.

https://project.inria.fr/plasma-lab/

Statistical Model Checking of LLVM Code 547

Plasma-Lab implements two rare event algorithms based on the importance
splitting technique, a fixed level algorithm and an adaptive level algorithm [9].
The fixed level algorithm requires the user to define a monotonically increasing
sequence of score values whose last value corresponds to satisfying the property.
The adaptive algorithm finds optimal levels automatically and requires only the
maximum score to be specified. Both algorithms estimate the probability of
passing from one level to the next by the proportion of a constant number of
simulations reaching the upper level from the lower. New simulations to replace
those that failed to reach the upper level are started from states chosen uniformly
from the terminal states of successful simulations. The overall estimate is the
product of the estimates of going from one level to the next.

LLVM Simulator Plugin. We have developed a simulator plugin for Plasma-
Lab that interfaces with Lodin. This plugin is a pure wrapper around the
simulator interface of Lodin. It communicates with the Lodin simulator via
standard input and standard output. Lodin exposes the registers of all functions
of the program to Plasma-Lab, and exposes Boolean variables corresponding
to the [0.func] style propositions of Lodin. The registers are named in the style
Pn_funcname_registerName where Pn designates a variable belonging to the nth process.
If the program has been compiled with debug symbols and without optimisations,
Lodin also exposes the original C-source primitive type variables to Plasma-
Lab. For supporting the importance splitting algorithm of Plasma-Lab, Lodin
provides a State-Tag that Plasma-Lab uses to restart a simulation from that
given state. In Table 2 we have applied the Lodin Plasma-Lab integration to
the models for which Lodin previously failed in finding a satisfying trace for.

Table 2. Plasma-Lab Importance Splitting
Results. The algorithm was run with a budget
of 1000 runs per level.

Program Levels Probability Time (s)

fib/fib_16.ll 7 1.5e−3 18.20
fib/fib_32.ll 14 4.0e−6 51.66
stack/stack.ll 13 3.86e−15 530.58

Example 3. Consider again Exam-
ple 2 and recall we want to reach
a state where the 0th process can
call VERIFIERError. In order to reach
a state where the 32nd Fibonacci
number is found, all previous
Fibonacci numbers must be found
first. In Listing 1.2 we show an
excerpt of the observer we use.
First the score variable is defined
as required by Plasma-Lab. Plasma-Lab also requires a decided variable. The
observer should set this to true if it is no longer possible to satisfy a trace. An
auxilliary variable, steps, is used by the observer to count the steps in the trace.
After these variable declarations follows a series of update transitions in the style
of reactive modules. Basically these transitions state that, if the sum of i and j

is equal to a given Fibonacci number, and t1 and t2 are in the same iteration of
their loop then update the score variable to a given value (t1_tmp9, t1_tmp9 and
ti_tmp4 correspond to i, j and k respectively). The last two rules update the steps

variable and terminate the trace when exceeding 5000 steps.

548 A. Legay et al.

Listing 1.2. The observer used by Plasma-Lab for Fibonacci example.
1 observer rareObserver
2 score : int init 0;
3 decided : bool init false;
4 steps : int init 0;
5 [] (P1_t1_tmp9 + P2_t2_tmp9 = 5)& (P1_t1_tmp4=P2_t2_tmp4)-> (score

’= 1);
6 [] P1_t1_tmp9 + P2_t2_tmp9 = 13 & (P1_t1_tmp4=P2_t2_tmp4) -> (

score ’= 2);
7 ...
8 [] P0_Call_VERIFIERError=1 -> (score ’=14);
9 [] steps <5000 ->(steps ’= steps +1);

10 [] steps >=5000 ->(decided ’=true);
11 endobserver

4 Conclusion

In this paper we presented Lodin a tool implementing SMC of LLVM code.
The tool provides a plugin-architecture making it extendable to many execution
environments. The tool also includes a simulation-component that is used to con-
nect Lodin to Plasma-Lab and thereby provide the first importance splitting
implementation for LLVM.

References

1. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22944-2_28

2. Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: COSMOS: a sta-
tistical model checker for the hybrid automata stochastic logic. In: QEST, pp.
143–144. IEEE Computer Society (2011). https://doi.org/10.1109/QEST.2011.24.
ISBN 978-1-4577-0973-9

3. Barnat, J., Brim, L., Rockai, P.: Towards LTL model checking of unmodified thread-
based C & C++ programs. In: Goodloe, A., Person, S. (eds.) NFM 2012. LNCS,
vol. 7226, pp. 252–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28891-3_25

4. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_16

5. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible, dis-
tributable statistical model checking library. In: Joshi, K., Siegle, M., D’Argenio,
P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer, Heidelberg (2013)

6. Bulychev, P.E., David, A., Larsen, K.G., Mikucionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: UPPAAL-SMC: statistical model checking for priced timed automata. In:
Wiklicky, H., Massink, M. (eds.) QAPL. EPTCS, vol. 85, pp. 1–16 (2012). https://
doi.org/10.4204/EPTCS.85.1

7. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1109/QEST.2011.24
https://doi.org/10.1007/978-3-642-28891-3_25
https://doi.org/10.1007/978-3-642-28891-3_25
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.4204/EPTCS.85.1
https://doi.org/10.4204/EPTCS.85.1

Statistical Model Checking of LLVM Code 549

8. Clopper, C.J., Pearson, E.S.: The use of confidence or fiducial limits illustrated in
the case of the binomial. Biometrika 26(4), 404–413 (1934)

9. Jegourel, C., Legay, A., Sedwards, S.: An effective heuristic for adaptive importance
splitting in statistical model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2014. LNCS, vol. 8803, pp. 143–159. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45231-8_11

10. Jegourel, C., Legay, A., Sedwards, S., Traonouez, L.-M.: Distributed verification of
rare properties using importance splitting observers. In: ECEASST, vol. 72 (2015)

11. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: verification of probabilis-
tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

12. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO 2004), Palo Alto, California, March
2004

13. Legay, A., Sedwards, S., Traonouez, L.M.: Plasma lab: a modular statistical model
checking platform. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952,
pp. 77–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_6

14. Legay, A., Nowotka, D., Tranoues, L.-M., Poulsen, D.B.: Lodin and Plasma-
Lab examples (2018). https://spark.informatik.uni-kiel.de/data/lodin/FM18/
LodinExamples.zip. Accessed 08 May 2018

15. Sen, K., Viswanathan, M., Agha, G.A.: VESTA: a statistical model-checker and
analyzer for probabilistic systems. In: QEST, pp. 251–252. IEEE Computer Society
(2005). https://doi.org/10.1109/QEST.2005.42. ISBN 0-7695-2427-3

16. Younes, H.L.S.: Ymer: a statistical model checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005).
https://doi.org/10.1007/11513988_43

17. Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. statis-
tical probabilistic model checking. STTT 8(3), 216–228 (2006)

18. Zaks, A., Joshi, R.: Verifying multi-threaded C programs with SPIN. In: Havelund,
K., Majumdar, R., Palsberg, J. (eds.) Model Checking Software SPIN 2008. LNCS,
vol. 5156, pp. 325–342. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85114-1_22

https://doi.org/10.1007/978-3-662-45231-8_11
https://doi.org/10.1007/978-3-662-45231-8_11
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-47166-2_6
https://spark.informatik.uni-kiel.de/data/lodin/FM18/LodinExamples.zip
https://spark.informatik.uni-kiel.de/data/lodin/FM18/LodinExamples.zip
https://doi.org/10.1109/QEST.2005.42
https://doi.org/10.1007/11513988_43
https://doi.org/10.1007/978-3-540-85114-1_22
https://doi.org/10.1007/978-3-540-85114-1_22

SDN-Actors: Modeling and Verification
of SDN Programs

Elvira Albert1, Miguel Gómez-Zamalloa1(B), Albert Rubio2,
Matteo Sammartino3, and Alexandra Silva3

1 Complutense University of Madrid, Madrid, Spain
mzamalloa@fdi.ucm.es

2 Universitat Politècnica de Catalunya, Barcelona, Spain
3 University College London, London, UK

Abstract. Software-Defined Networking (SDN) is a recent networking
paradigm that has become increasingly popular in the last decade. It
gives unprecedented control over the global behavior of the network and
provides a new opportunity for formal methods. Much work has appeared
in the last few years on providing bridges between SDN and verification.
This paper advances this research line and provides a link between SDN
and traditional work on formal methods for verification of distributed
software—actor-based modelling. We show how SDN programs can be
seamlessly modelled using actors, and thus existing advanced model
checking techniques developed for actors can be directly applied to ver-
ify a range of properties of SDN networks, including consistency of flow
tables, violation of safety policies, and forwarding loops.

1 Introduction

SDN is a novel networking architecture which is now widely used in industry,
with many companies –such as Google and Facebook– using SDN to control their
backbone networks and datacenters. The core principle in SDN is the separation
of the control and data planes –there is a centralized controller which operates a
collection of distributed interconnected switches. The controller can dynamically
update switches’ policies depending on the observed flow of packets, which is a
simple but powerful way to react to unexpected events in the network. Network
verification has become increasingly popular since SDN was introduced, because
in this new paradigm the amount of detailed information available about network
events is rich enough and can be centrally gathered to check for properties, both
statically and dynamically, of the network behavior. Moreover, the controller
itself is a program which can be analyzed. The distributed and concurrent nature

This work was partially funded by the Spanish MECD Salvador de Madariaga
Mobility Grants PRX17/00297 and PRX17/00303, the Spanish MINECO projects
TIN2015–69175-C4-2-R, TIN2015-69175-C4-3-R, and he CM project S2013/ICE-
3006, the ERC starting grant Profoundnet (679127) and a Leverhulme Prize (PLP-
2016-129).

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 550–567, 2018.
https://doi.org/10.1007/978-3-319-95582-7_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_33&domain=pdf

SDN-Actors: Modeling and Verification of SDN Programs 551

of network behavior makes the verification tasks challenging and has inspired
much research in the verification and formal methods communities.

This paper provides a new bridge between SDN and a strand of formal meth-
ods –actor-based modeling [2], which is a framework that was developed to ana-
lyze concurrent systems. Actors form the basic unit of computation in such
framework, are equipped with a private memory, and can interact with oth-
ers through asynchronous messages. This setup enables reasoning about local
properties without knowledge of the whole program, which gives rise to more
compositional and thus scalable methods. Actors provide the foundations for
the concurrency model of languages used in industry, e.g., Erlang and Scala,
and libraries used in mainstream languages, e.g., Akka.

Contributions. The main contributions of this paper are:

1. SDN-Actors: An encoding of all components of a SDN network into the actor-
based language ABS [14]. One of the most challenging aspects to encode were
the OpenFlow barrier messages, special instructions that the controller can
use to force switches to execute all their queued tasks.

2. A soundness proof of the encoding (and implementation) of barriers
(Theorem 2).

3. Application of (context-sensitive) dynamic partial-order reduction (DPOR)
techniques to model check SDN programs. We have implemented this model
checker on top of the SYCO tool [4] for actors.

4. Several case studies of SDN and properties to illustrate the versatility and
potential of the approach. We were able to find bugs related to programming
errors in the controller, forwarding loops, and violation of safety policies.

Though we did not explore it in this paper, the encoding we provide opens the
door to apply a range of techniques other than model checking. For instance,
static analysis, runtime monitoring or simulation of network behavior can be
done now using the ABS toolsuite [1]. Other tools and methods for verification of
message-passing and concurrent-object systems could be also easily adapted [7,
9,16,17]. In addition, because the encoding is not very far from the original flow
tables, both model extraction from existing network code and code generation
from an actor model should be achievable with a small extension of the tool.

2 Overview

This section provides an overview of the contents of the paper through an extended
example, that we also use to introduce some basic concepts and notations.

2.1 Concurrency Errors in SDN Networks

SDN is a networking architecture where a central software controller can dynam-
ically change how network switches forward packets by monitoring the traffic.
Switches can be connected to hosts and to other switches via bidirectional chan-
nels that may reorder packets. Each switch has a flow table, that is a collection of

552 E. Albert et al.

Fig. 1. Example SDN load-balancer. On the left: structure of the SDN. On the right:
messages exchanged in a possible execution of a naive controller program. Coloured
arrows stand for control messages to switches, indicating which flow rule to install
(colours specify the link to be used for the forwarding). Grey boxes and arrows among
them represent packet forwardings. Dashed arrows indicate messages to the controller.
(Color figure online)

guarded forwarding rules to determine the route of incoming packets. Whenever
a switch receives a packet, it checks if one of the flow table rules applies. If no
rule applies, the switch sends a message to the controller via a dedicated link,
and the packet is buffered until instructions arrive. Depending on its policy, the
controller instructs the switch, and possibly other switches in the network, on
how to update their flow tables. Such control messages between the controller
and the switches can be processed in arbitrary order.

We now show how a simple load-balancer can be implemented in SDN (exam-
ple taken from [12]) and how potential bugs can easily arise due to the concurrent
behavior and asynchrony of message passing. Suppose we want to balance the
traffic to a server by using two replicas R1 and R2 to which the controller alter-
nates the traffic in a round-robin fashion. The structure of the SDN is shown in
Fig. 1, on the left: H0 is any host that wants to communicate with the server and
S1, S2 and S3 are switches (numbers on endpoints stand for port numbers).

Even in this simple network, an incorrect implementation of the controller
can lead to serious problems. In Fig. 1, on the right, we show an execution of
a naive controller, which simply instructs switches to forward packets along the
shortest path to the chosen replica. This implementation ignores the potential
concurrency in actions taken by switches and controller, leading to a forwarding
loop between S1 and S2. In the first round, when S1 queries the controller, R1 is
chosen. The figure shows S1 forwarding the packet to S2 before the end of the first
round, i.e., before a rule is installed on S2 (green arrow). This causes S2 to query
the controller, which triggers the second round in which the controller chooses
R2. Thus, it sends instructions to install rules on S2, S1 and S3 to forward the
packet to S1, S3 and R2, resp. When the controller rules arrive at S1, it will have

SDN-Actors: Modeling and Verification of SDN Programs 553

two contradictory instructions, telling to forward the packet either to S2 or to
S3. In the former, the loop at the bottom of the figure occurs. This issue can be
avoided if the implementation uses barriers –the controller will then guarantee
that S2 receives and processes control messages before taking any other action.

2.2 Actor-Based Modeling of SDN Networks

We now explain how we can automatically detect the above problem using actors
and model checking. We use the object-oriented actor language ABS [1,14],
where each actor type is specified as a class, consisting of a set of fields and
methods. Actors are instances of actor classes. For instance, the instructions:
Controller ctrl = new Controller(); Switch s1 = new Switch(”S1”,ctrl); Host h0
= new Host(”H0”,s1,0); create three actors: a controller ctrl; a switch s1 with
name "S1" and a reference to ctrl; a host h0, with name "H0", connected to the
switch s1 via the port 0. The SDN in Fig. 1 can be modeled using one actor per
component (additional data structures for network links will be shown later).

The execution model of actors is asynchronous. Each actor can be thought
of as a processor, with a queue of pending tasks and a local memory. Actors are
executed in parallel and, at each actor, one task is nondeterministically selected
among all the pending ones and executed. The syntax Fut<type> f=a!m(x)
spawns an asynchronous task m(x), that is added to the queue of pending tasks
of a, type is the type of the data returned by m or Unit if no data is returned. This
task consists in executing the method m of a with arguments x. The variable f is
a future variable [10] that will allow us to check if such task has been completed.
Synchronous calls are written a.m(x), we omit a if the target actor is this.

A partial trace of execution of our SDN actor model computed by the model
checker is (the code that the tasks below execute will be given in Sect. 3):

1: h0!sendIn
1−→ 2: s1!switchHandlePacket

2−→ 3: ctrl!controlHandleMessage

3−→ 4: s1!switchHandleMessage(s2), 5: s1!sendOut, 6: s2!switchHandleMessage(r1)

Intuitively, a packet sending (sendIn) is executed on h0 (label 1), which causes
the packet to be forwarded to the switch s1 (2), then s1 sends a control message
to the controller (3). Finally, the controller spawns the three tasks in the last
state (parameters tell where to forward the packet). When executed, these tasks
will produce the messages in Fig. 1 with the same numbers. Their execution
order is arbitrary: if it is the one shown in Fig. 1, the execution trace may lead
to a state exhibiting a forwarding cycle between s1 and s2. As we will show later,
this situation can be easily detected by our model checker via an exploration of
a reduced execution tree, which avoids equivalent executions (Sect. 4).

The ABS language provides a convenient await primitive that will be used
to model barriers and to rule out the behavior described above. The instruc-
tion await f? can be used to synchronize with the termination of the task asso-
ciated to the future variable f, by releasing the processor (so that another task
can be scheduled) if the task is not finished. Once the awaited task is finished,

554 E. Albert et al.

the suspended task can resume. The await can be used also with boolean condi-
tions await b? to suspend the execution of the current active task until condition b
holds. The formal semantics of the language can be found in the appendix of [5].

3 SDN-Actors: An Actor Based Encoding of SDN
Programs

We present the concept of SDN-Actor in four steps: Sect. 3.1 describes the cre-
ation and initialization of the actors according to the topology. Section 3.2 pro-
vides the encoding of the operations and communication for Switch and Host

actors. Section 3.3 proposes the encoding of the controller, and Sect. 3.4 the
extension to implement barriers. Altogether, our encoding provides an actor-
based semantics foundation of SDN networks that follow the OpenFlow specifi-
cation [19].

3.1 Network Topology

The topology can be given as a relation with two types of links:

– SHlink(s,h,o): switch s is connected to host h through the port o
– SSlink(s1,i1,s2,i2): switch s1 is connected via port i1 to port i2 of switch s2

from which we automatically generate the initial configuration as follows.

Definition 1 (initial configuration). Let S and H be, respectively, the set of
different switch and host identifiers available in the link relations that define the
network topology. The initial configuration (method main) is defined as:

– We create a controller actor Controller ctrl=new Controller()

– For each sid∈S, we create an actor Switch s=new Switch(sid,ctrl)

– For each hid∈H, we create an actor Host h=new Host(hid,s,o) where s is the
reference to the switch actor, o the port identifier, that hid is connected to.

– The data structures srefs and hrefs store, resp., the relations between identifier
in the topology and reference in the program, for all switches in S and hosts
in H.

– The data structure ntw contains the link relations in the network topology.
– The synchronous call ctrl.addConfig(srefs,hrefs,ntw) initializes in the controller

the topology relations and the references to switches and hosts s.t. the con-
troller can send control messages to redirect the traffic to the involved links.

Example 1. By applying Definition 1 to the topology in Fig. 1, given as the rela-
tion: SHlink(S1,H0, 0), SHlink(S2, R1, 0), SHlink(S3, R2, 0), SSlink(S1, 1, S2, 1),

SSlink(S1, 2, S3, 1), we obtain the following initial configuration which consti-
tutes the main method from which the execution starts:

SDN-Actors: Modeling and Verification of SDN Programs 555

1 main() { Controller ctrl = new Controller(); Switch s1 = new Switch("S1",ctrl);
2 Switch s2 = new Switch("S2",ctrl); Switch s3 = new Switch("S3",ctrl);
3 Host h0 = new Host("H0",s1,0); Host r1 = new Host("R1",s2,0);
4 Host r2 = new Host("R2",s3,0);
5 Map<SwitchId,Switch> srefs = {"S1":s1, "S2":s2, "S3":s3};
6 Map<HostId,Host> hrefs = {"H0":h0, "R1":r1, "R2":r2};
7 List<Link> ntw = [SHLink("S1","H0",0), SSLink("S1",1,"S2",1),..];
8 ctrl.addConfig(srefs,hrefs,ntw); }

The data structures srefs and hrefs are implemented using maps, and the network
ntw as a heterogeneous list. The use of data structures is nevertheless orthogonal
to the encoding as actors. We just assume standard functions to create, initialize,
access them (like getters, put, lookup, etc.) that will appear in italics in the code.

Fig. 2. Type declarations (top) and actor-based host and switch classes (bottom)

556 E. Albert et al.

3.2 The Switch and Host Classes

Figure 2 presents the actor-based Switch and Host classes. We include at the top
some type declarations that are assumed and must be implemented (such as iden-
tifiers, packets and their headers, etc.). There are two main data structures that
are implemented in more detail to make explicit the information they contain:

– the buffer at Line 18 (L18 for short) is a map that must contain pairs of packet
and input port indexed by their PacketId.

– the flow table flowT (L17) is implemented as a map indexed by the so-called
match field [19] represented by type MatchF in Fig. 2. The match field is com-
posed by information stored in the header of a Packet (retrieved by function
getHeader) and the input port. For a given matching, the flow table contains
the Action the switch has to perform upon the reception of the Packet. An
action l can be of three types: (i) send the packet to a host h, (ii) send the
packet to the port o of a switch s, (iii) drop the packet. Given an action l,
function isSwitch resp. isHost succeeds if the action is of type (ii) resp. (i),
and functions getSwitch, getHost and getPort return the s, h and o resp.
The full implementation must allow duplicate entries (non-deterministically
selected), and the use of wildcards in the match fields, but these aspects are
unrelated to the encoding of SDN actors, and skipped for simplicity.

Upon creation, hosts receive their identifier and a reference to the switch and
the port identifier they are connected to (defined as class parameters that are
initialized at the actor creation). Their method sendIn is used to send a packet
to the switch, and method hostHandlePacket to receive a packet from the switch.
Switches receive upon creation their identifier and a reference to the controller.
They have as additional fields: (a) the flow table flowT (as described above) in
which they store the actions to take upon receiving each kind of package, and
(b) a buffer in which they store packets that are waiting for a response from the
controller. Switches can perform three operations: (1) switchHandlePacket receives
a packet, looks up in the flow table the action to be made L20, and, if there is
an entry for the packet in the table, it asynchronously makes the corresponding
action (either send it to a host L22 or to a switch L21). Otherwise, it sends
a controlHandleMessage request and puts the packet and input port in the buffer
(L23 and L24) until it can be handled later upon receipt of a sendOut; (2) sendOut

receives a packet identifier that corresponds to a waiting packet, retrieves it
from the buffer (L26), looks up the action l to be performed in the flow table,
and makes the corresponding asynchronous call (as in switchHandlePacket); (3)
switchHandleMessage corresponds to a message received from the controller with
an instruction to update the flow table. Other switch operations like forward
packet, that is similar to sendOut but directly tells the switch the action to be
performed, or flood, that sends a packet through all ports except the input port,
can be encoded similarly and are used in the experiments in Sect. 5.

SDN-Actors: Modeling and Verification of SDN Programs 557

Example 2. In main, after L8, we add h0!sendIn(p), where p is a packet to be sent
to the IP address of the replica servers (the information on the destination is
part of the packet header). This is the only asynchronous task that main spawns.
Its execution in turn spawns a new task s1!switchHandlePacket(p,0) at L13, that
does not find an entry in flowT at L20 and spawns a controlHandleMessage task on
the controller at L24, whose code is presented in the next section.

3.3 The Controller

After creating the controller actor, the method addConfig is invoked syn-
chronously to initialize the references to switches and hosts and set up the initial
network topology (see L8). A simple controller is presented in Fig. 3, removing
the blue lines 35, 36, 41, 44, 46, 48, 49 which provide the implementation of bar-
riers. When a switch asynchronously invokes controlHandleMessage, the controller
applies the current policy—applyPolicy must be implemented for each different
type of controller. The implementation of the policy typically requires the def-
inition of new data structures in the controller to store additional information
(see Sect. 5). When applying the policy, we obtain a list of switch identifiers
and corresponding actions to be applied to them. The while loop at L42 in
controlHandleMessage asynchronously invokes switchHandleMessage at L45 on each

Fig. 3. Controller class w/o barriers in black (w/barriers extended in blue) (Color
figure online)

558 E. Albert et al.

of the switches in the list, and passes as parameter the corresponding action to
be applied for the given match entry. Finally, it notifies at L50 the switch from
which the packet came that the packet can already be sent out. More sophisti-
cated controllers that build upon this encoding are described in Sect. 5.

Example 3. In the example, applyPolicy corresponds to the load-balancer
described in Sect. 2, which directs external requests to a chosen replica in a
round-robin fashion. For the call applyPolicy(s1,0,h), it chooses r1 and thus, it
returns in L40 two actions: (s1→s2), (s2→r1), i.e., one action to install in s1

the rule to send the packet to s2, and the second to install in s2 the rule
to send it to r1. For simplicity, we assume that the Action just contains the
location to which the packet has to be sent (without including the port). The
while loop thus spawns two asynchronous calls, s1!switchHandleMessage(m1,s2) and
s2!switchHandleMessage(m1,r1). Besides, it sends a s1!sendOut(p) in L50. Several
problems may arise in this implementation. One problem, as explained in Sect. 2,
is that the packet is sent from s1 to s2 before the control message is processed
by s2. Then, s2 gets the packet and it does not find any matching rule, thus
it sends a controlHandleMessage to the controller. Applying the above policy, the
controller chooses now as replica r2 and returns the actions: (s2→s1), (s1→s3),
(s3→r2), i.e., the packet should be sent to r2 by first sending from s2 to s1 (first
action), and so on. This might create the circularity depicted in Fig. 1.

The following theorem ensures the soundness of our modeling. Essentially we
guarantee that, for a given SDN network that follows the OpenFlow specification,
any execution in the network has an equivalent execution in the SDN-Actor
model. An execution in the network is characterized by the messages in the
queues of the switches, hosts, and controller and the state of their data structures.
An equivalent execution in the model will thus ensure the same messages in the
actors queues and the same state in actors data structures.

Fig. 4. Implementation of barriers (part of class Controller)

SDN-Actors: Modeling and Verification of SDN Programs 559

Theorem 1 (soundness). Given a SDN network N , consider its SDN-Actor
model Na with an initial configuration main obtained by Definition 1, and the
Switch, Host and Controller classes in Figs. 2 and 3. Then, for each execution in
N , there exists an equivalent execution trace in Na using the semantics in the
appendix of [5].

3.4 Barriers

Barriers [19] have been designed to force a switch to handle previous control
messages, and thus avoid problems such as the one described above.

Definition 2 (OF barrier). Following OpenFlow [19], upon receipt of a bar-
rier message, the switch must finish processing all previously-received controller
messages, before executing any messages beyond the barrier message.

Figures 3 and 4 show our modeling that intuitively consists in the controller
not sending further messages to any switch on which a barrier has been acti-
vated, until this switch acknowledges that all previous control messages have
been already processed. The main points in the implementation are: (1) the
controller creates a future variable at L45 for every asynchronous task that it
posts on all switches; (2) it keeps in barrierMap the list of future variables (not
yet acknowledged) for each of the switches (putAdd in L46 adds the future vari-
able to the list indexed by s1 in the map); (3) it keeps in barrierOn the set of
switches with an active barrier; (4) a barrier on a switch consists in the con-
troller awaiting on the list of future variables that the switch needs to acknowl-
edge to ensure that its control messages have already been processed (method
barrierRequest); (5) all control messages must be now preceded by an invoca-
tion to barrierWait that checks if the corresponding switch has an active barrier,
L56. This is because while suspended in a barrier, the controller can start to
process another controlHandleMessage unrelated to the previous one, but which
affects (some of) the same switches for which a barrier was set. So, we cannot
send messages to them until their barriers are set to off. Note that this is not
a restriction on the type of controllers we model, but rather an effective way to
encode barriers using actors and await instructions that ensures the behaviour
of OpenFlow barriers.

Theorem 2 (soundness of barriers). Methods barrierRequest and barrierWait

provide a sound encoding of the OF barrier messages in Definition 2.

4 DPOR-Based Model Checking of SDN-Actors

Model checking tools deal with a combinatorial blow-up of the state space (a.k.a.
the state space problem) that must be faced to solve real-world problems. As for
model checking SDN programs, the problem is exacerbated because of the concur-
rent and distributed nature of networks: all network components (switches, hosts,
controllers) are distributed nodes that run in parallel and whose concurrent tasks

560 E. Albert et al.

can interact. As we have seen, a controller message sent from a switch can change
the state of another switch, and affect the route of an incoming packet. Thus, a
model checker needs to explore all possible reorderings of dependent tasks (i.e.,
those whose execution might interfere with each other) leading to a huge number
of possible executions even for networks with few nodes and few packets. Besides,
the space is unbounded because hosts may generate unboundedly many packets
that could be simultaneously traversing the network.

There are two incomplete approaches to handle unbounded inputs: one is to
impose a bound k on the number of packets of each type (as e.g. in [8]) and
the other one is to use abstraction (as e.g. in [18]). In the former, the search
space is exhausted for the considered input, but there could be bugs that only
show up when more packets are considered. In the latter, abstraction requires
to lose information and bugs may only show up when the omitted information
is considered. Therefore, the sources of incompleteness are different, and the
approaches can complement each other. Our implementation uses the former,
e.g., in Example 2 we have considered one packet (limit k = 1). The rest of the
section presents the key features of our approach assuming such a k bound.

4.1 DPOR-Based Model Checking in Actors

DPOR [13] is able to dynamically identify and avoid the exploration of redun-
dant executions and prune the search space exponentially. It is based on the idea
of initially exploring an arbitrary interleaving of the various concurrent tasks,
and dynamically tracking dependent interactions between them to identify back-
tracking points where alternative paths in the state space need to be explored.
Two tasks are independent when changing their order of execution will not affect
their combined effect. When DPOR is applied to actor systems, there are inher-
ent reductions [23] because: (i) we can atomically execute each task (without
re-orderings) until a return or an await instruction are found, because concur-
rency is non-preemptive and the active task cannot be interrupted. This avoids
having to consider the reorderings at the level of instructions (as one must do
in thread-based concurrency), and allows us to work at the level of tasks. (ii)
Besides that, two tasks can have a dependency only if they belong to the same
actor. This is because only the actor itself can modify its private memory.

Example 4. Figure 5 shows the search tree computed by DPOR for our SDN-
Actor program without barriers. It has no redundancy, i.e., each execution corre-
sponds to a different behavior on the packet arrival and/or the actions installed
in the flow tables (see top right descriptions). At each node (i.e., state), we
show the available tasks. A task is given an identifier the first time it appears,
and afterwards only its identifier is shown. Method names are abbreviated as
shown in the top left, and parameters are omitted except in tasks executing
switchHandleMessage, for which we only include the switch identifier that is part
of the Action to be installed. For instance, 4:s1!shm(s2) is a task with identifier
4, that will execute method switchHandleMessage on s1 and will add to its flow
table the information that the packet must be sent to s2. Labels on the edges

SDN-Actors: Modeling and Verification of SDN Programs 561

Fig. 5. Search tree for running example w/o barriers (rightmost branch w/barriers)

show the task(s) that have been executed. At each state, we underline the tasks
which have an interacting dependency. The execution starts by executing the
main method in Example 1 with the instruction sendIn added in Example 2 which
appears in the root. The next two steps have one task available, but in the fourth
state we have tasks 4 and 5, belonging to the same actor, whose reordering needs
to be considered (leading to branching), while 6 is independent of them. Out of
the 8 branches of the tree, only the rightmost execution h corresponds to the
correct behavior in which the packet is actually sent to r1 and the actions are
installed in the flow tables in the expected order. In execution a the packet does
not arrive at the destination because the sendOut is executed before the action
has been installed. Executions d and g correspond to the cycle described in
Sect. 2, each of them with different installations of actions.

Importantly, we do not need specific optimizations to use the DPOR algorithm
in [3] to model check SDN-Actors. The use of await (is already covered by DPOR
and) does not require any change either and, as expected, the search tree for the
implementation with barriers only contains branch h . The difference arises from
task 3 in the tree: in the presence of barriers, this leads to a state in which we
have the asynchronous calls 4 and 6 and task 3 suspended at the await in L63

562 E. Albert et al.

(awaiting first the termination of 4 and then that of 6). Therefore, the dependent
tasks 4 and 5 will not coexist because 5 is not spawned until 4 and 6 terminate.

4.2 Entry-Level and Context-Sensitive Independence

When two tasks that belong to the same actor are found, in the context of
DPOR techniques independence is commonly over-approximated by requiring
that actor fields accessed by one task are not modified by the other. In our
model, all tasks posted on a given switch access its flow table, namely sendOut and
switchHandlePacket read it and switchHandleMessage writes it. Thus, in principle,
any task executing switchHandleMessage is considered dependent on the other two.
This explains the tasks underlinings in the figure and the branching in the tree.
When there are multiple packets traversing the network it is usually the case
that the different packets access distinct entries in the flow table. This results
in the inaccurate detection of many dependencies hence producing redundant
executions. Using Context-sensitive DPOR [3], we alleviate this state explosion:

1. Entry-level independence. We adopt a finer-grained notion of entry-level inde-
pendence for which an access to entry i is independent from an access to j
if i �= j. This aspect is not visible when considering a single packet as in
the example, as all accesses to the flow table refer to the same entry. How-
ever, by simply adding another packet to the erroneous program, the state
explosion is huge and the system times out if entry-level independence is not
implemented, while it computes 92 executions (exploring 761 states) with
entry-level independence.

2. Context-sensitiveness. Even when two tasks t and p access the same entry,
Context-sensitive DPOR introduces some further checks that execute the
considered tasks from the current state S in the two orders t · p and p · t.
If they lead to the same state, one of the derivations is pruned and further
exploration from it is thus avoided. For instance, executing two consecutive
switchHandleMessage on the same entry might lead to the same state if the flow
table may contain duplicate entries, as our implementation allows.

4.3 Comparison of DPOR Reductions with Related Work

Other model checkers for SDN programs have used DPOR-based algorithms
before [8,18]. According to the experiments in the NICE tool, DPOR only
achieves a 20% reduction of the search space because even the finest granular-
ity does not distinguish independent flows. The reason for this modest reduction
might be that it does not take advantage of the inherent independence of the code
executed by the distributed elements of the network (switches, host, clients), nor
to the fact that barriers allow removing dependencies, as our actor-based SDN
model does. In Kuai [18], a number of optimizations are defined to take advan-
tage of these aspects. Such optimizations must be (1) identified and formalized
in the semantics, (2) proven correct and, (3) implemented in the model checker.
Instead, due to our formalization using actors, the optimizations are already

SDN-Actors: Modeling and Verification of SDN Programs 563

implicit in the model and handled by the model checker without requiring any
extension. Another main difference with Kuai is that they make two important
simplifications to the kind of SDNs they can handle: (i) they assume a simpli-
fied model of switches in which a switch gets suspended (i.e., does not process
further packets nor controller messages) while awaiting a controller request. The
error showed in Example 1 would thus not be captured. We do not make any
simplification and thus a switch can start to process a new packet while awaiting
the controller and can also receive other controller actions (triggered by other
switches). (ii) It works on a class of SDNs in which the size of the controller
queue is one. Therefore, it will not capture potential errors that arise due to the
reordering of messages by the controller. In contrast, our model checker works
on the general model of SDN networks.

5 Checking SDN Properties in Case Studies

We have built the extension for property checking on top of SYCO [4], a system
that implements context-sensitive DPOR exploration. To evaluate our approach,
we have implemented a series of standard SDN benchmarks used in previous
work [6,12,18]. In order to check property P we add to the controller a new
method called error message and encode P as a Boolean function Fp using
the programming language itself. Then, in all places where the property has to
hold, we add an if statement checking the negation of Fp and if it holds we call
asynchronously to error message on the controller. Then property holds for
the given input if and only if there is no trace in the execution tree including a
call to error message.

Our goal is on the one hand to show the versatility of our approach to check
properties that are handled using different approaches in the literature (e.g., pro-
gramming errors in the controller as in [6], safety policy violations as in [6,18],
or loop detection as in [12]). And, on the other hand, to show that we are able
to handle networks at least as large as (and sometimes larger than) in related
systems [18], but without requiring simplifications to the SDN models, nor exten-
sions for DPOR reduction, and in spite of using a non-distributed model checker.
We should note that a precise comparison of figures is not possible due to the
differences described in Sect. 4.3 and the use of different implementations of con-
trollers. Our system can be used online at http://costa.ls.fi.upm.es/syco using the
POR algorithm CDPOR and disabling the automatic generation of independence
constraints. The benchmarks can be found in the folder FM18.

Table 1 shows a summary of the experimental results. Times are obtained
on an Intel Core i7 at 3.4 Ghz with 8 GB of RAM (Linux Kernel 3.2). For each
benchmark, we show in the second column the number of switches, hosts and
packets, Execs corresponds to the number of different executions (i.e., branches
in the search tree), States to the number of nodes in the search tree, and Time
is the time taken by the analysis in ms. Although entry-level independence can
be proved automatically, this is not yet implemented in SYCO and we have used
annotations to declare it. As an example, in method switchHandleMsg, the annota-
tion: [indep(switchHandlePacket(pin,pkt),!matchHeaderAndPort(getHeader(pkt),pin,m))]

http://costa.ls.fi.upm.es/syco

564 E. Albert et al.

states that tasks executing switchHandleMessage(m,a) are independent of those
executing switchHandlePacket(pin,pkt) if the match field of the message does not
match the header and the input port of the packet (the condition is checked by
the auxiliary function matchHeaderAndPort).

Table 1. Experimental evaluation

Name Switch x Host x Packet Execs States Time
LB 3x3x1/3x4x2 8/92 64/761 15/263
LBB 3x4x2/3x7x5/3x10x8/3x12x10 3/21/171/683 48/482/3996/16028 13/212/3542/22941
SSHE 2x2x(1ssh/1oth/2each/2cor) 9/21/2648/1201 56/135/24116/9406 14/37/12308/3276
SSHB 2x2x2/2x2x3 27/2013 318/23643 119/13261
MI 1x5x(8/10/11) 122/753/1506 2710/17613/35870 1003/11800/34894
MIB 1x5x(8/10/11) 138/831/1653 3215/20640/41512 1668/18591/53349
LE 3x3x(2/5)/6x3x2 10/46/40 178/1269/1239 59/467/649

6x3x5/9x2x2 132/944 5765/12339 3798/12230

Controller with Load Balancer [12] (LB/LBB). This corresponds to the
controller of [12], similar to our running example. It performs stateless load
balancing among a set of replica identified by a virtual IP (VIP) address. When
receiving packets destined to a VIP, the controller selects a particular host and
installs flow rules along the entire path. For a buggy controller without barriers
(LB) and a network with 3 switches and 3 hosts, we detect that there is a
forwarding loop (i.e., that a packet reaches a switch more than once) in 15 ms.
For this, we have added to the switches a field to store the packet identifiers
that they have already received, and when the same packet reaches it, it sends
an error message, which is observable from the final state. When we add a
second packet with the same header and another host, as expected, the number
of dependencies increases and, many reorderings need to be tried, leading to
92 different executions and 761 states. Once we check the correct version with
barriers (LBB), we are able to scale up to 12 hosts and 10 packets. As it can
be observed, for the largest network, 16028 states are explored and in all cases
we verify that the traffic is balanced. The experiments in [12] do not specify
the time to detect the bug for this controller (they only mentioned that their
analysis finishes in less than 32s in the vast majority of cases). Nevertheless, the
underlying techniques to find the bugs are unrelated (see Sect. 6), and thus time
comparison is not meaningful.

SSH Controller [18] (SSHE/SSHB). This is based on a controller that
dynamically modifies the behaviors of the switches as follows: it can update the
switches with a rule that states that no SSH packets are forwarded, and another
that states that all non-SSH packets are forwarded. We have two versions of the
SSH controller. In the row SSHE, the first three evaluations correspond to an
erroneous SSH controller that installs the rule to forward packets and the rule
to drop SSH packets with the same priority, and thus the safety policy can be
violated. As in [18], we evaluate a network with 2 switches and 2 hosts. As for
packets, we write 1ssh, 1other, and 2each to indicate that we send one SSH packet,

SDN-Actors: Modeling and Verification of SDN Programs 565

one non-SSH packet and one of each type. We detect the error by checking in the
switch if two contradictory drop and forward packet actions are received for the
same entry. The results that we obtain for 1 packet are in the same order of mag-
nitude as [18]: they produce 13 executions, while we produce 9 or 21, depending
on the type of packet. Analysis times are also similar: 0.1 s in their case ver-
sus 0.014 s or 0.037 s in our case. This is as expected because there is almost
no redundancy using plain DPOR, thus no need for our entry-independence or
context-sensitiveness. When we add more packets, the number of dependencies
grows exponentially. This is because the controller receives 2 requests from the
2 messages, and sends dependent control messages to all switches. Therefore, all
reorderings must be tried and the state explosion is huge. The last evaluation
2cor corresponds to the correct SSH controller for which we achieve a notable
improvement as we have now less tasks that match the same entry (as prior-
ity is different). The row SSHB is a correct implementation with barriers that
reduces the number of executions for 2 packets notably because it guarantees
that forward rules are installed and thus switches will not send further requests.

Firewall with Migration [6] (MI/MIB). MI is the implementation of a fire-
wall that supports migration of trusted hosts. A host is trusted if it either sent/re-
ceived (on some switch) a message through/from port 1. Thus, when a trusted
host migrates to a new switch, the controller will remember it was trusted before
and will allow communication from either port. For the same network 1× 5 as
[6], we can scale the number of packets up to 11 packets that actually modify
the data base for trusted hosts. We can keep on adding more packets if those
do not affect the shared data base. In MIB, we introduce the same bug in the
controller as [6], which forgets to check if trusted on events from port 2. We
detect the error by checking in the final state of the derivations that a packet
arrives to a host that is not in the trusted data base. The scalability of MI and
MIB are rather similar. Both [6] and us find the bug in a negligible time.

Network Authentication with Learning [6,18] (LE). This implements a
composition of a learning switch with authentication in [6]. Also, [18] evaluates
a MAC learning controller but using a different implementation. LE implements
a controller with barriers for which we can verify that the packet flows satisfy
the intended policy and that the flow tables are consistent. We have considered
configurations of 3× 3, 6× 3 and 9× 2. When compared to [18], we handle similar
sizes for networks but we explore less States in less Time. We note that this
might be due to different implementations of the controller and the differences
pointed out in Sect. 4.3.

6 Conclusions and Related Work

We have proposed an actor-based framework to model and verify SDN pro-
grams. A unique feature of our approach is that we can use existing advanced
verification algorithms without requiring any specific extension to handle SDN
features. The last years have witnessed the development of many static and

566 E. Albert et al.

dynamic techniques for verification that are closely related to our approach.
Using static approaches, one has the main advantage that, when the property
can be proved, it is ensured for any possible execution, while using dynamic anal-
ysis only guarantees the property for the considered inputs. As a counterpart, in
order to cover all possible behaviors, static analysis needs to perform abstrac-
tion, that can give a don’t-know answer, and, possibly, false positives. In [6], the
work on Horn-based verification is lifted to the SDN programming paradigm, but
excluding barriers. Using this kind of verification, one can prove safety invari-
ants on the program. Using our framework, we can furthermore check liveness
invariants (e.g., loop detection) by inspecting the traces computed by the model
checker. In [20], a particular type of attacks in the context of SDN networks has
been modeled in Maude using the so-called hierachically structured composite
actor systems described in [11]. This work does not provide a general model for
SDN networks and, besides, barriers are not considered. On the other hand, it
applies a statistical model checker, which requires to have a given scheduler for
the messages. Such scheduler determines the exact order in which messages are
handled while our framework captures all possible behaviours. Hence, both their
aim and their SDN model are radically different from ours. As regards dynamic
techniques, our work is mostly related to the model checkers NICE and Kuai for
SDN programs, which have been compared in detail in Sect. 4.3. Our approach
could be adapted to apply abstractions that bound the size of buffers [18] and to
consider environment messages [22]. The approach of [12,15] is fundamentally
different from ours because it is based on analyzing dynamically given snapshots
of the network from real executions. Instead, our approach tries to find program-
ming errors by inspecting only the SDN program and considering all possible
execution traces, thus enabling verification at system design time.

References

1. The ABS tool suite. http://abs-models.org
2. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge (1986)
3. Albert, E., Arenas, P., de la Banda, M.G., Gómez-Zamalloa, M., Stuckey, P.J.:

Context-sensitive dynamic partial order reduction. In: Majumdar, R., Kunčak, V.
(eds.) CAV 2017. LNCS, vol. 10426, pp. 526–543. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 26

4. Albert, E., Gómez-Zamalloa, M., Isabel, M.: SYCO: a systematic testing tool for
concurrent objects. In: CC, pp. 269–270 (2016)

5. Albert, E., Gómez-Zamalloa, M., Rubio, A., Sammartino, M., Silva, A.: SDN-
Actors: Modeling and Verification of SDN Programs. Technical report (2018).
http://costa.ls.fi.upm.es/papers/costa/AlbertGRSS18TR.pdf

6. Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira,
M., Valadarsky, A.: VeriCon: towards verifying controller programs in software-
defined networks. In: PLDI, pp. 282–293 (2014)

7. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Tractable refinement checking for
concurrent objects. In: POPL, pp. 651–662 (2015)

http://abs-models.org
https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/978-3-319-63387-9_26
http://costa.ls.fi.upm.es/papers/costa/AlbertGRSS18TR.pdf

SDN-Actors: Modeling and Verification of SDN Programs 567

8. Canini, M., Venzano, D., Pereśıni, P., Kostic, D., Rexford, J.: A NICE way to test
OpenFlow applications. In: NSDI, pp. 127–140 (2012)

9. Christakis, M., Gotovos, A., Sagonas, K.F.: Systematic testing for detecting con-
currency errors in Erlang programs. In: ICST, pp. 154–163 (2013)

10. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71316-6 22

11. Eckhardt, J., Mühlbauer, T., Meseguer, J., Wirsing, M.: Statistical model checking
for composite actor systems. In: Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012.
LNCS, vol. 7841, pp. 143–160. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37635-1 9

12. El-Hassany, A., Miserez, J., Bielik, P., Vanbever, L., Vechev, M.T.: SDNRacer:
concurrency analysis for software-defined networks. In: POPL, pp. 402–415 (2016)

13. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: POPL, pp. 110–121 (2005)

14. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

15. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: static checking
for networks. In: NSDI, pp. 113–126 (2012)

16. Lauterburg, S., Karmani, R.K., Marinov, D., Agha, G.: Basset: a tool for systematic
testing of actor programs. In: SIGSOFT FSE, pp. 363–364 (2010)

17. Liang, H., Feng, X.: A program logic for concurrent objects under fair scheduling.
In: POPL, pp. 385–399 (2016)

18. Majumdar, R., Tetali, S.D., Wang, Z.: Kuai: a model checker for software-defined
networks. In: FMCAD, pp. 163–170 (2014)

19. Openflow switch specification, October 2013. Version 1.4.0. http://www.
opennetworking.org/software-defined-standards/specifications

20. Pascoal, T.A., Dantas, Y.G., Fonseca, I.E., Nigam, V.: Slow TCAM exhaustion
DDoS attack. In: De Capitani di Vimercati, S., Martinelli, F. (eds.) SEC 2017.
IAICT, vol. 502, pp. 17–31. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-58469-0 2

21. Sen, K., Agha, G.: Automated systematic testing of open distributed programs. In:
Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 339–356. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693017 25

22. Sethi, D., Narayana, S., Malik, S.: Abstractions for model checking SDN controllers.
In: FMCAD, pp. 145–148 (2013)

23. Tasharofi, S., et al.: TransDPOR: a novel dynamic partial-order reduction tech-
nique for testing actor programs. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE
-2012. LNCS, vol. 7273, pp. 219–234. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30793-5 14

https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1007/978-3-642-37635-1_9
https://doi.org/10.1007/978-3-642-37635-1_9
https://doi.org/10.1007/978-3-642-25271-6_8
http://www.opennetworking.org/software-defined-standards/specifications
http://www.opennetworking.org/software-defined-standards/specifications
https://doi.org/10.1007/978-3-319-58469-0_2
https://doi.org/10.1007/978-3-319-58469-0_2
https://doi.org/10.1007/11693017_25
https://doi.org/10.1007/978-3-642-30793-5_14
https://doi.org/10.1007/978-3-642-30793-5_14

CompoSAT: Specification-Guided
Coverage for Model Finding

Sorawee Porncharoenwase(B), Tim Nelson, and Shriram Krishnamurthi

Brown University, Providence, USA
tn@cs.brown.edu

Abstract. Model-finding tools like the Alloy Analyzer produce concrete
examples of how a declarative specification can be satisfied. These for-
mal tools are useful in a wide range of domains: software design, security,
networking, and more. By producing concrete examples, they assist in
exploring system behavior and can help find surprising faults.

Specifications usually have many potential candidate solutions, but
model-finders tend to leave the choice of which examples to present
entirely to the underlying solver. This paper closes that gap by explor-
ing notions of coverage for the model-finding domain, yielding a novel,
rigorous metric for output quality. These ideas are realized in the tool
CompoSAT, which interposes itself between Alloy’s constraint-solving
and presentation stages to produce ensembles of examples that maxi-
mize coverage.

We show that high-coverage ensembles like CompoSAT produces are
useful for, among other things, detecting overconstraint—a particularly
insidious form of specification error. We detail the underlying theory
and implementation of CompoSAT and evaluate it on numerous specifi-
cations.

1 Introduction

Model-finding tools, like the popular Alloy Analyzer [1], find concrete examples
of how a set of declarative constraints can be satisfied. These tools have found
application in a wide range of domains because of their power and generality.
Specifying a network configuration may yield examples of packets traversing a
firewall [2]. A UML class diagram may yield corresponding object diagrams [3,4].
Other applications abound in security [5,6], protocol design [7], network switch
programming [8,9] and more. Output models can either act as counterexamples
to expected properties or more generally improve intuition and aid understanding
of a system. However, specifications define a (frequently large) set of models,
each of which is useful to differing degrees (e.g., some showing a bug, some not).
The choice of which models to present and in what order is usually left entirely
to the underlying solvers, which are performance-focused and unconcerned with
the quality of each model found.

Some have proposed more rigorous notions of model quality. For instance,
minimal models [10–12] disgard extraneous information that may clutter the
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 568–587, 2018.
https://doi.org/10.1007/978-3-319-95582-7_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_34&domain=pdf

CompoSAT: Specification-Guided Coverage for Model Finding 569

model and hamper comprehension. Although it is appealing in broad strokes,
minimality falls short when it comes to showing what is merely possible or
contingent—negating one of the chief strengths of model finding. Indeed, recent
studies [13] suggest that purely-minimal output does not suffice. Most current
model-quality notions are also defined only in terms of the content of the models
themselves—i.e., they are purely semantic—rather than what models can reveal
about the specification, making them ill-suited to debugging.

In this work, we break with this trend to explore syntax-guided notions of
which models are best. For any specification, we extract a maximally representa-
tive ensemble (i.e., set) of models from the considerably larger stream provided
by the solver. To do so, we draw inspiration from test-suite coverage [14] but, as
we will show, doing so is subtle in this domain. One complication lies in the fact
that, with traditional coverage, code and tests are in principle written indepen-
dently. In contrast, the solver generates models directly from the specification.
Thus, using the specification to dictate whether a model is “good” may appear
circular. However, the essence of our work consists in filtering the generation
process itself. We detect how a specification constrains portions of a model in
context, effectively showing the “weight” of individual constraints in the speci-
fication. Where the default enumeration may produce bad coverage, ours does
far better—with relatively few models. We demonstrate this in Sect. 2.

Our theory and algorithms are realized in CompoSAT, a new extension to
the Alloy Analyzer ecosystem. CompoSAT directs users to high-coverage models
that exercise contingencies in the specification, rather than ignoring contingent
behavior (like a minimal model-finder) or potentially concealing them in a stream
of mediocrity (like Alloy’s default enumeration). Similarly to classical coverage,
this approach can also reveal when portions of the specification are never exer-
cised by any output model. Finally, as we will show, coverage is particularly
suited to detecting overconstraint bugs, which the online Alloy tutorial [15] goes
so far as to call the “bane of declarative modeling”.

2 Motivation and Example

We first show a small running example: an address book for email contacts.
(Sect. 8 examines more substantial, real-world specifications.) This example is
similar to others in Jackson [1, Chap. 2] but, for brevity, is less complete.

1 abstract sig Target {}

2 abstract sig Name extends Target {}

3 sig Alias , Group extends Name {}

4 sig Addr extends Target {}

5 one sig Book {

6 entries: Name -> Target

7 } {

8 all n: Name | n not in n.^ entries -- No cycles
9 all a: Name | some a.entries -- Names denote

10 }

11 run {}

570 S. Porncharoenwase et al.

Fig. 1. The two-model ensemble produced for the specification of Sect. 2.

Lines 1–4 declare types (called sigs in Alloy). The abstract keyword says
that a type is equal to the union of its subtypes. Addrs are meant to denote actual
email addresses; Names denote Aliases or Groups that address books will trans-
late. At this stage, only one Book (lines 5–10) is allowed in each model. Books
have an entries field—a relation between Names and Targets. Line 8 says that
no Name atom is self-reachable via entries (^ denotes transitive closure and ->
means product). Line 9 says that the book contains entries for all Names.

The final line tells Alloy to run the specification and produce models up to
the default size bound: 3 of each top-level sig. At this bound, Alloy produces 21
non-isomorphic models—daunting to page through, even at this small scale. On
the other hand, a minimal model finder would produce only one: the leftmost
model in Fig. 1, which contains nothing but an empty Book. This is because no
constraint forces Names to exist, in spite of the fact that lines 9 and 10 apply
if any do. Neither solution is ideal: one risks overloading the user with a huge
example set, but the other hides important insight into how constraints behave.

CompoSAT stakes out a position between these two extreme approaches. The
high-coverage ensemble it generates contains two models (both shown in Fig. 1).
These are not chosen arbitrarily: they together demonstrate—in a way we will
make precise in the next sections—all possible ways the constraints force truth
or falsity in models of the specification.

3 Adapting Coverage to Model Finding

Coverage for software [14] measures test-suite quality in terms of the statements
or branches of the program it exercises. Obtaining a similar definition for model
finding is subtle. We might start by defining the coverage of a model analogously
to line coverage in software by saying that a top-level constraint (e.g., line 8 in
Sect. 2) is covered by a model if it is true in that model. But this is unhelpful
since all models found must make every such constraint true!

The difficulty is that, even if a constraint is true in a model, it does not
directly determine the contents of that model in the same way that executing a
program statement determines that program’s behavior. We would nevertheless
like to capture an analogous intuition. Our solution has two components.

First, we focus on the non-determinism in constraints that comes from dis-
junction, implication, existential quantifiers, etc. Each disjunctive choice is anal-
ogous to a branch-point in a program, so we might imagine defining a coverage

CompoSAT: Specification-Guided Coverage for Model Finding 571

metric that captures the different ways that models satisfy constraints. Unfor-
tunately, this approach is computationally infeasible: if a specification has 100
possible branches—a modest number compared to many—there are up to 2100−1
paths to cover, and in the worst case just as many models to present! Moreover,
the fact that a constraint was satisfied does not imply that it actually had
impact in the model. For instance, consider the constraint-set (A or B) and (A
and B). The first conjunct is satisfied in the model { A, B } but without the
second conjunct, either literal could be consistently negated.

We therefore restrict our attention to branches that force what we call local
necessity in the model (we make this precise in Sect. 4). Informally, a portion of a
model is locally necessary if altering it would violate the specification in context
of the rest of the model. For instance, in the right model of Fig. 1, the address-
book entries are locally necessary because (1) a constraint said every Name must
have an entry and (2) there were no other entries for that Name already present.
CompoSAT takes the view that a model is “good” to the extent that it provides
new demonstrations of local necessity.

Note that a granularity of top level constraints (rather than branches) is
too broad for even the simple example in Sect. 2. CompoSAT must be able to
distinguish different ways that constraints apply—some, but not all, of which
may be unexpected or otherwise useful to show. Because branches often involve
expansion and instantiation of high-level constraints, we cannot define coverage
only in terms of source locations and must instead work with logical formulas.

4 Foundations

Formally, Alloy specifications are theories of relational logic with transitive clo-
sure. Their syntax includes the usual Boolean connectives (conjunction, nega-
tion, etc.) along with first-order quantification (all, some) and relational oper-
ators (product, join, transpose, transitive closure, etc.). Readers interested in
the full grammar of Alloy are encouraged to peruse Jackson [1] or the Alloy
documentation [16].

Given a specification T , its satisfying models, denoted Mod(T), are the set
of finite first-order models1 M that satisfy it, i.e., in which it evaluates to true.
Truth in a model is defined in the usual, recursive manner [18], e.g. the constraint
α ∧ β is true in model M if and only if both α and β are true in M.

4.1 Bounded Model Finding

These definitions mean that the model-finding is just the (finite) satisfiability
problem for first-order logic with transitive closure. Unfortunately, this is well-
known to be undecidable [19] in general. In order to render satisfiability checking
feasible, Alloy performs bounded model-finding. In addition to a specification and

1 We use the term model in its mathematical sense: a relational structure over a set. We
follow Milicevic [17] and others in referring to the constraint-set as the specification.

572 S. Porncharoenwase et al.

the name of a predicate to run (essentially just an additional constraint in the
specification), users must provide an explicit bound B be given on all top-level
sigs to check up to. Once given these numeric bounds, Alloy creates concrete
atoms (like Alias$1, Book$0, etc.) that populate the potential universe of models
within the bounds given. This yields a finite search space.

We will implicitly enrich the language with a distinct constant for every ele-
ment in the generated bounds and abuse notation somewhat to write formulas
involving these constants, e.g., “Alias$1 -> Addr$2 in entries”. When a for-
mula only expresses whether a product of atoms is in some sig or field name, we
will refer to it as atomic. A literal is either an atomic formula or its negation. The
vital intuition here is that each atomic formula is essentially bound to a Boolean
variable in each model, since under a bound every specification is a propositional
theory—which is what enables Alloy’s use of SAT-solving technology. Finally,
the diagram of a model M, which we denote as Δ(M), is the set of literals true
in M.

4.2 Local Necessity and Provenance

Our goal is to identify when constraints have direct impact upon model contents.
To make this intuition precise, we need to define what it means to have “impact”.
We introduce the following helpful definitions from prior work [20].

Definition 1 (L-alternate model). Let T be a specification and M a model
satisfying it. Let L be a literal true in M. The L-alternate of M, M

L, is the
model with the same universe as M but with Δ(ML) = (Δ(M) \ {L}) ∪ {¬L}.

Definition 2 (Local Necessity.) L is said to be locally necessary for T in M

if and if only if M makes T true but ML does not.

That is, a literal is locally necessary if changing its value from positive to negative
(or vice versa) would necessitate other changes in the model. This means that
whenever a literal is locally necessary, some constraint forces it to hold in the
context of the larger model. Local necessity is far weaker than entailment: T may
have models whose diagram contains L’s negation, but L cannot be consistently
changed in this particular model without other concurrent changes.

Constraints may act to force L in different ways. We make this precise by
defining provenances as particular conditions that satisfy constraint branches
and cause L to be locally necessary:

Definition 3 (Provenance). A provenance for L in M with respect to T is
a set of sentences α1, ..., αn where each αi is true in both M and M

L such that
T ∧ α1 ∧ ... ∧ αn entails L under the user-provided bounds B.

For instance, the constraint on line 9 of Sect. 2’s example, under the right-
most model in Fig. 1, induces the provenance { Group$0 in Name } for the local
necessity of the book entry Group$0->Addr$0—because the element Group$0 is
a valid instantiation of the quantifier.

CompoSAT: Specification-Guided Coverage for Model Finding 573

Fig. 2. Expansion function E+ for expanding provenance formulas in a positive context.
For brevity, we omit the symmetric negative-context E−, as well as cases for routine
syntactic sugar like bi-implication. Quantifiers are eliminated by instantiation up to
the (always finite) pertinent upper bound.

We restrict our attention to provenances that are partial instantiations and
expansions of original constraints. Although in principle we could consider prov-
inances that are fully expanded into conjunctions of literals, this would result in
a plethora of provenances, many of which would imply each other modulo T .

5 Algorithmics of Coverage

We might stop with the definitions in Sect. 4 and define the provenance-coverage
of a model M, denoted Provs(M), to be the set of provenances that it induces
across all literals. However, this definition proves to be unsatisfying. We discuss
and address three improvements that make it more practicable.

5.1 Expansion

Consider the constraint all a: Name | some a.entries in Sect. 2’s example,
along with the rightmost model in Fig. 1. Why is it locally necessary that the
Book’s entries contain the tuple Alias$0 -> Addr$0? Because: (1) Alias$0
is a Name and thus the variable a can be bound to it, and (2) there are no other
extant entries for Alias$0. Without some means of telling the two cases apart,
the provenance for the Group$0 entry is identical. That is, a model with (say)
only Groups would cover the constraint applying to an Alias.

To account for this and other (possibly nested) disjunction2 in provenance
formulas, we expand each formula to reflect which disjunctive branches satisfy
it in M. In the above example, then, the first formula becomes either Alias$0
in Alias or Group$0 in Group, depending on context. This difference reflects
the different insight these two provenances bring. Figure 2 gives the expansion
function E+, which maps formulas to expanded formulas, in more detail. The
input formula must be an α from some provenance (and thus true in both M

and M
L). The output formula is fully desugared and instantiated, in that it will

only contain the operators ∧, ∨, ¬, and literals.

2 The original constraint is equivalent to all a: Alias+Group | some a.entries.

574 S. Porncharoenwase et al.

5.2 Canonicalization

While expansion makes provenance-coverage more fine-grained, there are cases
in which we need to do the opposite and gloss over differences. For instance,
two models that are identical except for atom names will have differing prove-
nance sets, yet their provenances give the same information. To eliminate this
and other similar issues caused by atom names, we canonicalize provenances
(post-expansion) to eliminate variation in atom name. This amounts to sim-
ple substitution: replacing atom names and integer constants with canonical
representatives. A provenance that has undergone both expansion and canoni-
calization is called a provenance skeleton.

5.3 Coverage and Subsumption

The provenance coverage of a modelM,Provs(M), is a set of provenance skeletons:

{p|p is a provenance skeleton for some literal L in M with respect to T }

We lift this to a set E of models: Provs(E) �
⋃

M∈E Provs(M). It is now reason-
able to speak of one set (i.e., ensemble) of models providing more provenance
information than another. Naturally, Mod(T) has the largest provenance cover-
age for T . As user time and attention is precious, the ideal goal is thus to find
a minimal set of models E with the same coverage.

While attempting to cover a set of skeletons, we observe that some contain
strictly more information than others. By not attempting to cover superfluous
skeletons, we can reduce the runtime and memory requirements of coverage
computation (Sect. 6), and even the eventual ensemble size.

Consider the (propositional) constraint (q or r) implies s and three mod-
els that satisfy it: M1, M2, and M3 with diagrams Δ(M1) = {q,¬r, s}, Δ(M2) =
{¬q, r, s}, and Δ(M3) = {q, r, s}. The literal s is locally necessary in all three.
Let p1, p2, p3 be provenance skeletons for s from M1, M2, and M3 respectively.
In explaining why s holds, p3 gives q and r as a reason, while p1 and p2 give
either q or r but not both. Because p3 blames a strict superset of branches that
p1 and p2 do, we say that p3 subsumes p1 and p2. Formally, the provenance
subsumption relation ≤ is a preorder on provenance skeletons. Given two prove-
nance skeletons for the same literal P1 = {α1, ..., αn} and P2 = {β1, ..., βm},
P1 ≤ P2 iff ∀αi,∃βj , αi ≤ βj , where the subsumption relation on subformulas is

Fig. 3. Subformula subsumption relation ≤. (The conjunction case is defined similarly.)

CompoSAT: Specification-Guided Coverage for Model Finding 575

given in Fig. 3. If pi ≤ pj and pj �≤ pi, then pi strictly contains information less
than pj , so we can safely remove pi from consideration.

6 Implementation

CompoSAT is implemented as an extension to Alloy, leveraging our Amal-
gam [20] provenance-generation toolkit. High-coverage ensembles are enabled
via menu options. We made this design choice so that users can seamlessly tran-
sition from default Alloy to CompoSAT and back again without disruption—or
even exiting the tool. CompoSAT supports the same rich subset of Alloy that
Amalgam does, namely relational and boolean operators, transitive closure, set
cardinality and numeric inequalities without arithmetic.

Given a (user-defined) time budget, the tool first enumerates as many models
as possible, behind the scenes, via the underlying solver. As each model arrives,
CompoSAT generates all provenances via Amalgam, then performs expansion
and canonicalization to produce a skeleton set for each model. A subsumption
check then removes extraneous skeletons. Once the time limit or the supply of
models has expired, CompoSAT solves the set-cover problem to produce the
optimal ensemble. We use the Z3 [21] solver for this purpose.

In principle, a specification may have far more models than can feasibly be
enumerated. In such cases, CompoSAT reports that its enumeration was incom-
plete: enumeration has produced only a subset of Mod(T). Thus, the provenances
obtained form a subset of Provs(Mod(T)). However, even when the provenances
obtained are a strict subset of Provs(Mod(T)), our evaluation (Sect. 8) shows
that the tool still often produces an ensemble that is demonstrably better than
what Alloy’s enumeration would provide, skipping over dozens or hundreds of
models that give no new provenance information. Moreover, as we will discuss in
Sect. 7, even an incomplete high-coverage enumeration can be useful in revealing
errors and giving modelers new insight.

7 Qualitative Use Case: Overconstraint

We now discuss two key qualitative advantages of high-coverage ensembles.
Both are related to a class of specification bug called overconstraint. A spec-
ification is said to be underconstrained if it is satisfied by unintended mod-
els and overconstrained if some intended models do not satisfy it. One of the
advantages of model finding is that underconstraint can be discovered by simply
viewing surprising models. Overconstraint, however, is more challenging: miss-
ing models cannot be discovered without iterating through all of them and then
remembering what was never seen. For specifications with many models, this is
impractical.

Both of these issues are easy to accidentally introduce when refining con-
straints. To mitigate this risk, experienced Alloy users often run testing predi-
cates that characterize models that should or should not satisfy the specification.
Surprising results then indicate over- and underconstraint respectively. But this

576 S. Porncharoenwase et al.

technique requires anticipating potential problems in advance; unexpected bugs
and failures of intuition can still occur. Moreover, one of the strengths of Alloy
is that it facilitates both in-depth, detailed analysis and lightweight experimen-
tation. In the latter case, codifying detailed expectations can be premature.

7.1 Detecting Overconstraint via Local Necessity

Overconstraint can often appear as unexpected local necessity. In such cases,
showing the user which portions of their models are locally necessary can lead to
surprise and insight. For example, suppose that the constraint on line 9 in Sect.
2 overconstrains: it was meant to say that the book must contain an entry for
all Aliases, but empty Groups should be permitted. Unfortunately, the user has
committed a common error and quantified over a too-general type: Name. Alloy
will never produce an unexpected model due to this error, but it will neglect
models that the author expected to see—those with empty Groups.

Showing the rightmost model in Fig. 1 along with the information that
Group$0’s entry is forced by the constraint on line 9 points immediately to the
issue and suggests possible sites to implement a fix. Amalgam, which CompoSAT
invokes for provenance generation, does exactly this. However, Amalgam’s feed-
back is per-model, and so this useful information will never appear if suspect
models come late. (We have observed empirically that most users rarely view
more than the first few models unless they have reason to believe they have
made an error. This is especially true for more complex specifications where
models may require time and effort to understand.)

In this case, the first suspect model Alloy, and therefore Amalgam, produces
is the sixth—i.e., the user must click “Next” five times to have any chance of
discovering the bug, even with local-necessity highlighting.3 But as mentioned
in Sect. 2, CompoSAT produces an ensemble of only two models, one of which
contains the suspect necessity. Coverage thus enables far superior model enu-
meration in this context.

7.2 Highlighting Uncovered Constraints

High-coverage ensembles have power even without displaying local necessity. If
a constraint can never contribute to a provenance, it may indicate either that
the uncovered constraint is too weak or that some other constraint overshadows
it. Space limitations preclude a full example, but consider again the proposi-
tional constraint-set (A or B) and (A and B). The first conjunct can never
contribute to a provenance since the second conjunct only admits the model
{ A, B }. This benefit is similar to that observed by Torlak [23], except that we
consider highlighting induced by constraint coverage rather than unsatisfiable
cores.

3 Model-ordering is dependent on solver engine and other settings. Here, we use Min-
isat [22] with unsatisfiable cores and symmetry-breaking enabled.

CompoSAT: Specification-Guided Coverage for Model Finding 577

8 Evaluation

We evaluate CompoSAT with a variety of metrics in order to answer 3 research
questions. Namely: (RQ1) Can a relatively small ensemble of models cover a
large quantity of total provenances? (RQ2) Can model enumeration reasonably
be used to discover the provenances of a specification? (RQ3) How much cover-
age does enumerating only minimal models achieve? Together, these questions
evaluate the practicality of high-coverage ensembles as well as comparing them
against the two extremes discussed in Sect. 2: all models and minimal models.

8.1 Experimental Setup

We evaluate on a wide variety of specifications that exercise different Alloy oper-
ations and represent multiple domains. When examples came with only unsatisfi-
able commands (e.g., properties without counterexamples) we added a command
run {} to enumerate all models to the default bound.

Paper is the example from Sect. 2. From the Amalgam suite, we include col-
ored, undirected trees (ctrees), directed graph (digraph), directed tree (dtree,
dtbug), a logic puzzle (abc), trees without a vertex of degree 2 (gwh), and
two labs from an Alloy course: transitive closure and garbage collection (tclab
and gclab). Bad employee (bempl), grade book (grade), and other groups
(other) originally come from Saghafi, et al. [11]. Address book (addr), gene-
ology (gene) and own-grandpa (grand) come from the basic examples in the
Alloy distribution. Hotel-locking (hl4), ring election (elect), media asset man-
agement (media), and memory (simplem, fixedm, cachem) come from the
longer case-studies in Jackson [1]. Flowlog [9] (flow) specifies a program written
in Flowlog, a software-defined network programming language. Model finding
reveals a bug in the program. Our UML diagram specifications (uml1, uml2)
come from Maoz, et al. [3], and the semantic differences between those diagrams
(cddiff1, cddiff2) likewise come from Maoz, et al.’s CDDiff [4].

Various tools perform automatic compilation to Alloy from other input
languages—the UML, Semantic Differences, and Flowlog specifications were all
machine generated in this way. Since specification errors can be introduced by
these compilers, improved model output benefits not only end-users but also
compiler authors, who must have high confidence in their translation.

All experiments were performed on a Xeon E3-1240 v5 CPU at 3.50 GHz
running Debian 9.1. No experiment but media consumed more than 4 GB of
memory; for uniformity, we terminated media when recording its many large
provenances exceeded 4 GB. Figure 4 summarizes the results.

8.2 RQ1: Do Small Ensembles Suffice?

For each experiment, column 5 (Ensm size) shows the ensemble sizes needed to
achieve 50%, 70%, 90%, and 100% coverage discovered of provenance skeletons.
To compute these, we enumerate models and find the optimal 100% ensemble
as specified in Sect. 6. We then order each model in the ensemble by number of

578 S. Porncharoenwase et al.

F
ig
.
4
.

S
u
m

m
a
ry

o
f

re
su

lt
s.

E
a
ch

ro
w

d
es

cr
ib

es
a

se
p
a
ra

te
ex

p
er

im
en

t
o
n

a
d
is

ti
n
ct

sp
ec

ifi
ca

ti
o
n
,
p
re

d
ic

a
te

(o
r

a
ss

er
ti

o
n
)

a
n
d

b
o
u
n
d
s.

M
a
x
bo
u
n
d

d
en

o
te

s
th

e
h
ig

h
es

t
b
o
u
n
d

u
se

d
.

W
e

re
p
o
rt

th
e
m
a
xi
m
u
m

b
ec

a
u
se

m
o
d
el

-g
en

er
a
ti

o
n

ti
m

e
te

n
d
s

to
b
e

ex
p
o
n
en

ti
a
l

in
th

e
b
o
u
n
d
s.

W
e

st
o
p

en
u
m

er
a
ti

o
n

w
h
en

ei
th

er
a
ll

m
o
d
el

s
h
av

e
b
ee

n
p
ro

ce
ss

ed
o
r

a
ft

er
o
n
e
h
o
u
r

h
a
s

p
a
ss

ed
.
C

o
lu

m
n

3
(A

ll
?
)

is
b
la

n
k

if
a
ll

m
o
d
el

s
w

er
e

en
u
m

er
a
te

d
(i

.e
.,

th
e

tr
u
e

se
t

o
f

p
ro

v
en

a
n
ce

s
is

k
n
ow

n
).

It
co

n
ta

in
s

a
✗

if
en

u
m

er
a
ti

o
n

(f
o
r

th
a
t

ex
p
er

im
en

t)
te

rm
in

a
te

d
a
ft

er
o
n
e

h
o
u
r

a
n
d

a
n
M

if
en

u
m

er
a
ti

o
n

is
in

co
m

p
le

te
d
u
e

to
th

e
4

G
B

m
em

o
ry

li
m

it
.

CompoSAT: Specification-Guided Coverage for Model Finding 579

new skeletons and report how far into the ensemble the pertinent coverage level
is reached. This is a conservative metric, as a better ensemble might exist for,
say, 50% coverage than a 50% subset of the optimal 100% ensemble. Low sizes
may therefore be especially encouraging.

The largest 100% ensembles by far belong to incompletely enumerated exper-
iments: media (16 and 19) being the highest. It is possible that high-coverage
models (which would reduce the ensemble size) remain undiscovered, but this will
not always be true. These specifications are complex, with many skeletons up to
subsumption. We thus conclude that 100%-coverage ensembles are necessarily
large for some specifications. However, we temper this with two observations.

When we compare even these relatively high ensemble sizes with the total
number of models enumerated in the experiment, we see significant reduction in
the number of models shown. Even in media, the worst case, we see a 3-fold
reduction, and in flow a 10-fold reduction. Oftentimes, we see a 100x (fixedm),
1000x (digraph) or even 10000x (gclab) reduction. We also observe that ensem-
ble sizes at the 70% and 90% coverage levels are far more manageable. With the
exception of media, the 90% coverage ensembles are all under 10 models and
70% coverage ensembles are no larger than 4—for most, only 1 or 2.

Finally, we see in Column 4 that some experiments find relatively high-
coverage models within the first few enumerated. However, the lion’s share of
these occur in specifications with relatively few total models (gwh with 2 total
or elect-2 with 3). To achieve 90% coverage almost invariably requires a large
number of models be enumerated. This demonstrates the truth of our hypoth-
esis that automatic enumeration can filter valuable models from the chaff. We
defer questions of time to generate ensembles to the next section, as it separately
evaluates the viability of model-enumeration.

8.3 RQ2: Is Enumeration Effective?

For each experiment, column 4 reports the time taken and number of models
enumerated before reaching 50%, 70%, 90%, and 100% coverage. This is subtle
since subsumption reduces the number of overall skeletons during enumeration.

If we reported percentages without subsumption, the number of skeletons
shown would not reflect our actual coverage computation and inaccurately inflate
ensemble size. Yet if we reported percentages of the total up to subsumption by
all skeletons found, it would introduce a pro-CompoSAT bias into these results.
To see why, suppose (A) the first model contained provenances {p1, p2} and the
thousandth model contained p3 which subsumed p1 and p2. Then there would
be only one skeleton up to subsumption, not seen until the thousandth model—
but two of the three skeletons in total manifest in the first model. Now consider
(B) the opposite case: the first model contains p3 and the thousandth contains
{p1, p2}, which are both subsumed by p3. Our evaluation should make clear that
the first model achieves 100% coverage, not merely 33%.

580 S. Porncharoenwase et al.

Our measurements therefore take subsumption into account only up to the
current model M; skeletons enumerated later will contribute to the denominator
(reducing the coverage of M) but no skeleton will be subsumed by one as-yet-
unseen. This means that in (A), the first model reaches 66% coverage and in
(B) the first model achieves 100%—as expected. This approach ensures that
early models receive “credit” for skeletons they exhibit even if these are later
subsumed.

Columns 6 and 7 report the number of models enumerated and the total time
spent. These numbers are often different from the 100% sub-column in column
4 because there we are measuring only how long it takes to reach full coverage.
Even if all skeletons are seen early, our experiments still run to completion.

The results here somewhat echo Sect. 8.2 above. For completely enumerated
experiments, with one exception (cddiff at roughly 3 min) enumeration produces
100% coverage ensembles in under 70 seconds. We also see many incomplete
experiments (e.g., gclab) reaching full coverage (relative to skeletons discovered)
far quicker than their duration. A small, truly high-coverage ensemble may be
worth the wait. Even if not, the time to achieve 70% and 90% coverage is far
more modest across the board, with 27 of 29 experiments reaching 70% in under
one minute. Media remains an outlier, with new skeletons appearing up until
the very end of the enumeration process. This happens because, in media, most
models only contain a small handful of skeletons. We observe that this case is
not common.

In incomplete cases, it is possible that new skeletons (or superior models)
could be discovered with further enumeration. This is quite likely for media. In
others, such as uml1 (457 enumerated, last skeleton at 104) we see a long trail
of enumeration after a relatively early final skeleton discovery—making it more
likely, although not certain, that few skeletons remain undiscovered.

Overall, although enumeration has its weaknesses, it appears to be effec-
tive for producing high-coverage ensembles in practice. Indeed, as the only other
available option in Alloy at present is manual enumeration, CompoSAT’s app-
roach is, at worst, automating that process to produce optimal coverage.

8.4 RQ3: Minimal Model Coverage

Column 8 reports the number of minimal models for each experiment, collected
via the Aluminum [10] model-finder. It also gives the total provenance skeletons
found in these. The bracketed number says how many skeletons (column 2)
were not subsumed by any skeleton in a minimal model. Because these numbers
are computed up to subsumption, the found and unfound skeletons need not
always total the value in column 2. Where minimal models do well, it is for
one of two reasons. Some specifications (e.g., gene) are so constrained that all
satisfying models are minimal. Others (e.g., grade) contain no implications with
unnecessary antecedents; here, minimality covers all possible provenances.

For the remaining 23 experiments, minimal models omit swathes of prove-
nance skeletons. Minimal-model enumeration was complete for all except gclab.
Thus, the bracketed numbers are a strict lower bound on the amount of coverage

CompoSAT: Specification-Guided Coverage for Model Finding 581

neglected in all other incomplete cases; minimal models can do no better than
we report here. Finally, we note that the number of minimal models is often far
larger than the 100% ensemble, and when there are fewer minimal models (as in
Sect. 2), their coverage is under 100% in every case.

9 Related Work

Model finders fall into two classes: SEM-style [24], which reasons about a surface
logic directly, and MACE-style [25], which compiles to Boolean logic and applies
a SAT solver. Alloy and its internal engine, Kodkod [26], take the latter approach.
Our work is not SAT-specific and could apply to either group.

Model Quality. Some effort has been applied to improving output-model qual-
ity. Aluminum [10] and Razor [11] present only minimal models in an attempt
to reduce distracting example bloat. The Cryptographic Protocol Shapes Ana-
lyzer [27] is a domain-specific model-finder that produces minimal illustrative
protocol runs. Minimal models only contain locally-necessary positive literals—
everything present has a provenance, but negative literals may not be locally nec-
essary. CompoSAT is more general, and can detect when the specification disal-
lows either adding or removing elements. Target-Oriented Model Finding [12,28]
(TOMF) minimizes distance from user-defined targets, enabling, e.g., maximal
models. Bordeaux [29] uses relative minimization to find near-miss models that
fail to satisfy the specification but nearly do so in terms of edit distance. Our
approach differs starkly from all these as it is syntax-guided rather than purely
semantic.

Alloy and other model-finders endeavor to suppress models that are isomor-
phic to one already presented. Such symmetry-breaking [30,31] increases the
quality of the stream of models shown, but in a way orthogonal to ours.

Coverage in Other Settings. Coverage [14] has been a valued metric for test suites
since at least the 1960s [32]. While coverage is not without its weaknesses [33],
some of which we share (Sect. 10), it provides powerful insight. Our work is the
first to explore what it means for models to cover constraints.

Concolic testing [34–36] is a coverage-driven technique close to ours in spirit.
It marries concrete test generation and symbolic execution [37] to generate high-
coverage test suites for programs. CompoSAT operates on declarative constraints
rather than code: there may be no “execution” due to often-deliberate under-
constraint and the fact that not all specifications are temporal.

Coverage has also been applied (e.g., by Hoskote, et al. [38]) to model-
checking to measure how much of a system is exercised by properties. This
improves the set of properties to check, not counterexample quality or overcon-
straint detection. Others [39–42] use declarative specifications to aid in testing
programs, whereas we are concerned with helping modelers debug the specifica-
tion itself. As these approaches rely on a correct specification, CompoSAT is not
only orthogonal, but also potentially complementary to specification-aided test
generation.

582 S. Porncharoenwase et al.

Coverage for Declarative Specifications. Detecting vacuity [43,44], which can
cause constraints to never apply or properties to be unhelpfully true, can be
seen as another coverage analysis. Heaven and Russo [45] detect vacuity and
other bug-prone patterns in specifications. However, their work is focused on
detecting patterns, not optimizing output. Torlak, et al. [23] improve Alloy’s
unsat-core highlighting, which can be viewed as a coverage metric that applies
only to unsatisfiabile specifications. They observe that a suspiciously small core
suggests a problem with the property or the bounds given. This insight is useful
to debug unsatisfiable results but does not apply to improving models.

AUnit [46,47] also takes inspiration from code coverage, but differs in founda-
tion and execution. In AUnit, coverage atoms correspond to truth of subformulas
and cardinality of subexpressions. In our analogy, this is a refinement of state-
ment coverage. CompoSAT considers sets of subexpressions that capture unique
ways in which models are constrained, analogously to path coverage. Moreover,
AUnit enumerates models via SAT invocations until all coverage atoms are seen;
CompoSAT post-filters Alloy’s default enumeration process. Scenario Tour [48]
generates models using a combinatorial test-generation strategy. Combinations
comprise a pair of relations having specific cardinalities (empty, singleton, and
higher) in models found. This interesting approach is nevertheless more related
to pairwise test generation than statement or path coverage.

Provenance. Provenance for databases was introduced by Cui and Widom [49]
as the set of tuples in a source database that contribute to a tuple’s presence in
a query answer. Variations exist, e.g., Buneman et al. [50] and others distinguish
between tuples that bear responsibility from tuples that provide data in the
query answer. Meliou, et al. [51,52] find provenance for negative answers to
conjunctive queries. One key difference between this work and CompoSAT is
that specifications are strictly more expressive than conjunctive queries.

Provenance is also useful in other settings. Vermeer [53], for instance, explains
assertion violations in C programs via causal traces. WhyLine [54,55] “Why...”
and “Why not...” queries about Java program behavior. Y! [56,57] finds and
presents both positive and negative provenance for network events. These tools
all extract provenance from deterministic runtime logs, which possess temporal
structure that models need not possess—and are not available to a model finder.

In addition to minimal model output, Razor [11] is also able to give prove-
nance for every piece of a model. To do so, it draws on constructive model-finding
ideas (the Chase [58] algorithm) while still leveraging SAT. Amalgam [20] gives
provenance in arbitrary, rather than just minimal, models. Although CompoSAT
uses Amalgam as an engine to generate provenances, the core topic of this work—
syntax-guided model-quality criteria—is separate from provenance generation.

10 Conclusion and Discussion

We have introduced specification-guided coverage as a new metric for producing
high-quality model output. We now conclude with discussion.

CompoSAT: Specification-Guided Coverage for Model Finding 583

Coverage vs. Increased Bounds. Alloy searches for models of size up to to given
bounds. E.g, we write “for 4 Name” to search for models with up to 4 Names.
Because of this, increasing bounds will never lose provenances. Moreover, as
bounds increase, models can contain more skeletons; a higher bound often means
that a smaller ensemble is possible (at the cost of more models to enumerate). In
Sect. 2’s specification, for instance, raising the bound to 4 reveals a single-model
optimal ensemble. However, if we permit exact rather than upper bounds, this
property fails since exact bounds omit models of smaller size.

Weaknesses of Coverage. High-coverage ensembles have one significant weak-
ness: they are entirely syntax-guided. CompoSAT may thus do poorly at reveal-
ing underconstraint bugs: e.g., if a relation is left completely unconstrained,
CompoSAT may not demonstrate this. This is analogous to program coverage’s
blindness to missing complexity [59] in code, and is thus not unique to this work.
We see CompoSAT as a new and powerful option in what must become a more
diverse toolbox of output strategies, each focusing on a particular set of user
needs.

Alternatives to Post-Processing. One might wonder why CompoSAT filters
Alloy’s default output, rather than directly interfacing with SAT. For instance,
one could add SAT clauses to find as-yet-unseen locally-necessary literals. Sup-
pose that T is our specification, and we are interested in enumerating models
wherein some literal L is locally necessary. We could reflect this goal by tem-
porarily adding the constraint L ∧ ¬T [L 	→ ⊥] to the specification. That is,
requiring L to be true in any model found, and moreover that if L were false,
the specification would not be satisfied.

Example 1. Consider the propositional formula T ≡ (1 ∨ 2) ∧ (¬1 ∨ 3) ∧ (4 ∨ 5).
Suppose L = ¬1. Then ¬T [L 	→ ⊥] ≡ ¬((1 ∨ 2) ∧ (⊥ ∨ 3) ∧ (4 ∨ 5) which is
equivalent to (¬1 ∧ ¬2) ∨ (∧ ¬3) ∨ (¬4 ∧ ¬5)). The left and right disjuncts
can be discarded since they contradict the original specification when L holds.
The resulting addition forces the solver to find models where ¬3 holds, which is
enough to render L locally necessary.

Via this technique, CompoSAT could proceed to query SAT for locally-
necessary literals in round-robin fashion, ensuring at least one provenance for
each local necessity early in enumeration. Unfortunately, one literal may be
locally necessary for many different reasons, so this approach, alone, would
greatly reduce the granularity of coverage. CompoSAT distinguishes between
different causes of necessity, which would be challenging to encode in SAT up to
subsumption. Post-processing also allows CompoSAT to act as a modular exten-
sion to other enumeration strategies, such as TOMF [12].

Acknowlegements. We are grateful to the developers of Alloy and Kodkod, as well
as Natasha Danas and Daniel J. Dougherty for useful discussions and their work on
the Amalgam tool. We also thank the anonymous reviewers for their helpful remarks.
This work is partially supported by the U.S. National Science Foundation.

584 S. Porncharoenwase et al.

References

1. Jackson, D.: Software Abstractions: Logic, Language, and Analysis, 2nd edn. MIT
Press, Cambridge (2012)

2. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The Mar-
grave tool for firewall analysis. In: USENIX Large Installation System Adminis-
tration Conference (2010)

3. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: class diagrams analysis using alloy
revisited. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol.
6981, pp. 592–607. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24485-8 44

4. Maoz, S., Ringert, J.O., Rumpe, B.: CDDiff: semantic differencing for class dia-
grams. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 230–254. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22655-7 12

5. Akhawe, D., Barth, A., Lam, P., Mitchell, J., Song, D.: Towards a formal foundation
of web security. In: IEEE Computer Security Foundations Symposium (2010)

6. Maldonado-Lopez, F.A., Chavarriaga, J., Donoso, Y.: Detecting network pol-
icy conflicts using alloy. In: Ait Ameur, Y., Schewe, K.D. (eds.) Abstract State
Machines, Alloy, B, TLA, VDM, and Z. ABZ 2014. LNCS, vol. 8477, pp. 314–317.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43652-3 31

7. Zave, P.: Using lightweight modeling to understand Chord. ACM Comput. Com-
mun. Rev. 42(2), 49–57 (2012)

8. Ruchansky, N., Proserpio, D.: A (not) NICE way to verify the OpenFlow switch
specification: formal modelling of the OpenFlow switch using Alloy. ACM Comput.
Commun. Rev. 43(4), 527–528 (2013)

9. Nelson, T., Ferguson, A.D., Scheer, M.J.G., Krishnamurthi, S.: Tierless program-
ming and reasoning for software-defined networks. In: Networked Systems Design
and Implementation (2014)

10. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
Principled scenario exploration through minimality. In: International Conference
on Software Engineering (2013)

11. Saghafi, S., Danas, R., Dougherty, D.J.: Exploring theories with a model-finding
assistant. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol.
9195, pp. 434–449. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21401-6 30

12. Cunha, A., Macedo, N., Guimarães, T.: Target oriented relational model finding.
In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 17–31. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8 2

13. Danas, N., Nelson, T., Harrison, L., Krishnamurthi, S., Dougherty, D.J.: User stud-
ies of principled model finder output. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017.
LNCS, vol. 10469, pp. 168–184. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66197-1 11

14. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. 29(4), 366–427 (1997)

15. Alloy Team: Overconstraint–the bane of declarative modeling. http://alloy.mit.
edu/alloy/tutorials/online/sidenote-overconstraint.html. Accessed 14 Aug 2017

16. Jackson, D.: Alloy: a language & tool for relational models. http://alloy.mit.edu/
alloy/ (2016). Accessed 1 Nov 2016

17. Milicevic, A., Near, J.P., Kang, E., Jackson, D.: Alloy*: a general-purpose higher-
order relational constraint solver. In: International Conference on Software Engi-
neering (2015)

https://doi.org/10.1007/978-3-642-24485-8_44
https://doi.org/10.1007/978-3-642-24485-8_44
https://doi.org/10.1007/978-3-642-22655-7_12
https://doi.org/10.1007/978-3-662-43652-3_31
https://doi.org/10.1007/978-3-319-21401-6_30
https://doi.org/10.1007/978-3-319-21401-6_30
https://doi.org/10.1007/978-3-642-54804-8_2
https://doi.org/10.1007/978-3-319-66197-1_11
https://doi.org/10.1007/978-3-319-66197-1_11
http://alloy.mit.edu/alloy/tutorials/online/sidenote-overconstraint.html
http://alloy.mit.edu/alloy/tutorials/online/sidenote-overconstraint.html
http://alloy.mit.edu/alloy/
http://alloy.mit.edu/alloy/

CompoSAT: Specification-Guided Coverage for Model Finding 585

18. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, New York
(1972)

19. Libkin, L.: Elements of Finite Model Theory. Texts in Theoretical Computer Sci-
ence. An EATCS Series. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-662-07003-1

20. Nelson, T., Danas, N., Dougherty, D.J., Krishnamurthi, S.: The power of “why”
and “why not”: Enriching scenario exploration with provenance. In: Foundations
of Software Engineering (2017)

21. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

22. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

23. Torlak, E., Chang, F.S.-H., Jackson, D.: Finding minimal unsatisfiable cores of
declarative specifications. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 326–341. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68237-0 23

24. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: International
Joint Conference On Artificial Intelligence (1995)

25. McCune, W.: Mace4 reference manual and guide. CoRR cs.SC/0310055 (2003)
26. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,

Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 49

27. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryptographic
protocols. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
523–537. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-
1 41

28. Macedo, N., Cunha, A., Guimarães, T.: Exploring scenario exploration. In: Egyed,
A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 301–315. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-9 20

29. Montaghami, V., Rayside, D.: Bordeaux: a tool for thinking outside the box. In:
Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 22–39. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 2

30. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking pred-
icates for search problems. In: Principles of Knowledge Representation and Rea-
soning (1996)

31. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search prob-
lems. Disc. Appl. Math. (2007)

32. Miller, J.C., Maloney, C.J.: Systematic mistake analysis of digital computer pro-
grams. Commun. ACM 6(2), 58–63 (1963)

33. Inozemtseva, L., Holmes, R.: Coverage is not strongly correlated with test suite
effectiveness. In: International Conference on Software Engineering (2014)

34. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Programming Language Design and Implementation (PLDI) (2005)

35. Larson, E., Austin, T.: High coverage detection of input-related security faults. In:
USENIX Security Symposium (2003)

36. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Foundations of Software Engineering (2005)

37. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-68237-0_23
https://doi.org/10.1007/978-3-540-68237-0_23
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_41
https://doi.org/10.1007/978-3-540-71209-1_41
https://doi.org/10.1007/978-3-662-46675-9_20
https://doi.org/10.1007/978-3-662-54494-5_2

586 S. Porncharoenwase et al.

38. Hoskote, Y., Kam, T., Ho, P.H., Zhao, X.: Coverage estimation for symbolic model
checking. In: Design Automation Conference (1999)

39. Gopinath, D., Zaeem, R.N., Khurshid, S.: Improving the effectiveness of spectra-
based fault localization using specifications. In: Automated Software Engineering
(2012)

40. Marinov, D., Khurshid, S.: TestEra: A novel framework for automated testing of
Java programs. In: Automated Software Engineering (2001)

41. Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: A tool for gener-
ating structurally complex test inputs. In: International Conference on Software
Engineering (2007)

42. Shao, D., Khurshid, S., Perry, D.E.: Whispec: White-box testing of libraries
using declarative specifications. In: Symposium on Library-Centric Software Design
(2007)

43. Beatty, D.L., Bryant, R.E.: Formally verifying a microprocessor using a simulation
methodology. In: Design Automation Conference (1994)

44. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in
actl formulas. In: International Conference on Computer Aided Verification, pp.
279–290 (1997)

45. Heaven, W., Russo, A.: Enhancing the Alloy analyzer with patterns of analysis.
In: Workshop on Logic-based Methods in Programming Environments (2005)

46. Sullivan, A., Zaeem, R.N., Khurshid, S., Marinov, D.: Towards a test automation
framework for Alloy. In: Symposium on Model Checking of Software (SPIN), pp.
113–116 (2014)

47. Sullivan, A., Wang, K., Zaeem, R.N., Khurshid, S.: Automated test generation
and mutation testing for Alloy. In: Software Testing, Verification and Validation
(ICST) (2017)

48. Saeki, T., Ishikawa, F., Honiden, S.: Automatic generation of potentially patholog-
ical instances for validating Alloy models. In: International Conference on Formal
Engineering Methods (ICFEM), pp. 41–56 (2016)

49. Cui, Y., Widom, J.: Practical lineage tracing in data warehouses. In: International
Conference on Data Engineering (2000)

50. Buneman, P., Khanna, S., Wang-Chiew, T.: Why and where: a characterization
of data provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS,
vol. 1973, pp. 316–330. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44503-X 20

51. Meliou, A., Gatterbauer, W., Moore, K.F., Suciu, D.: The complexity of causality
and responsibility for query answers and non-answers. Proc. VLDB Endow. 4(1),
34–45 (2010)

52. Meliou, A., Gatterbauer, W., Moore, K.F., Suciu, D.: WHY SO? or WHY NO?
functional causality for explaining query answers. In: VLDB workshop on Manage-
ment of Uncertain Data (MUD), pp. 3–17 (2010)

53. Schwartz-Narbonne, D., Oh, C., Schäf, M., Wies, T.: VERMEER: a tool for trac-
ing and explaining faulty C programs. In: International Conference on Software
Engineering, pp. 737–740 (2015)

54. Ko, A.J., Myers, B.A.: Designing the WhyLine: a debugging interface for asking
questions about program behavior. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 151–158. ACM (2004)

55. Ko, A.J., Myers, B.A.: Finding causes of program output with the Java Whyline. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 1569–1578. ACM (2009)

https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1007/3-540-44503-X_20

CompoSAT: Specification-Guided Coverage for Model Finding 587

56. Wu, Y., Zhao, M., Haeberlen, A., Zhou, W., Loo, B.T.: Diagnosing missing events
in distributed systems with negative provenance. In: Conference on Communica-
tions Architectures, Protocols and Applications (SIGCOMM), pp. 383–394. ACM
(2014)

57. Chen, A., Wu, Y., Haeberlen, A., Zhou, W., Loo, B.T.: Differential provenance:
better network diagnostics with reference events. In: Workshop on Hot Topics in
Networks, vol. 25. ACM (2015)

58. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4(4), 455–469 (1979)

59. Glass, R.L.: Persistent software errors. IEEE Trans. Softw. Eng. 7(2), 162–168
(1981)

Approximate Partial Order Reduction

Chuchu Fan(B), Zhenqi Huang, and Sayan Mitra

ECE Department, University of Illinois at Urbana-Champaign, Champaign, USA
{cfan10,zhuang25,mitras}@illinois.edu

Abstract. We present a new partial order reduction method for
reachability analysis of nondeterministic labeled transition systems over
metric spaces. Nondeterminism arises from both the choice of the ini-
tial state and the choice of actions, and the number of executions
to be explored grows exponentially with their length. We introduce a
notion of ε-independence relation over actions that relates approximately
commutative actions; ε-equivalent action sequences are obtained by
swapping ε-independent consecutive action pairs. Our reachability algo-
rithm generalizes individual executions to cover sets of executions that
start from different, but δ-close initial states, and follow different, but
ε-independent, action sequences. The constructed over-approximations
can be made arbitrarily precise by reducing the δ, ε parameters. Exploit-
ing both the continuity of actions and their approximate independence,
the algorithm can yield an exponential reduction in the number of
executions explored. We illustrate this with experiments on consensus,
platooning, and distributed control examples.

1 Introduction

Actions of different computing nodes interleave arbitrarily in distributed
systems. The number of action sequences that have to be examined for state-
space exploration grows exponentially with the number of nodes. Partial order
reduction methods tackle this combinatorial explosion by eliminating execu-
tions that are equivalent , i.e., do not provide new information about reachable
states (see [20,23,28] and the references therein). This equivalence is based on
independence of actions: a pair of actions are independent if they commute, i.e.,
applying them in any order results in the same state. Thus, of all execution
branches that start and end at the same state, but perform commuting actions
in different order, only one has to be explored. Partial order reduction meth-
ods have become standard tools for practical software verification. They have
been successfully applied to election protocols [2], indexers [19], file systems [9],
security protocol [8], distributed schedulers [3], among many others.

Current partial order methods are limited when it comes to computation with
numerical data and physical quantities (e.g., sensor networks, vehicle platoons,

This work is supported by the grants CAREER 1054247 and CCF 1422798 from the
National Science Foundation.

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 588–607, 2018.
https://doi.org/10.1007/978-3-319-95582-7_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_35&domain=pdf

Approximate Partial Order Reduction 589

IoT applications, and distributed control and monitoring systems). First, a pair
of actions are considered independent only if they commute exactly; actions that
nearly commute—as are common in these applications—cannot be exploited for
pruning the exploration. Second, conventional partial order methods do not elim-
inate executions that start from nearly similar states and experience equivalent
action sequences.

We address these limitations and propose a state space exploration
method for nondeterministic, infinite state transition systems based on
approximate partial order reduction. Our setup has two mild assumptions:
(i) the state space of the transition system has a discrete part L and a con-
tinuous part X and the latter is equipped with a metric; (ii) the actions on X
are continuous functions. Nondeterminism arises from both the choice of the ini-
tial state and the choice of actions. Fixing an initial state q0 and a sequence of
actions τ (also called a trace), uniquely defines an execution of the system which
we denote by ξq0,τ . For a given approximation parameter ε ≥ 0, we define two
actions a and b to be ε-independent if from any state q, the continuous parts of
states resulting from applying action sequences ab and ba are ε-close. Two traces
of A are ε-equivalent if they result from permuting ε-independent actions. To
compute the reachable states of A using a finite (small) number of executions,
the key is to generalize or expand an execution ξq0,τ by a factor r ≥ 0, so that,
this expanded set contains all executions that start δ-close to q0 and experience
action sequences that are ε-equivalent to τ . We call this r a (δ, ε)-trace equivalent
discrepancy factor (ted) for ξ.

For a fixed trace τ , the only source of nondeterminism is the choice of the
initial state. The reachable states from Bδ(q0)—a δ-ball around q0—can be
over-approximated by expanding ξq0,τ by a (δ, 0)-ted . This is essentially the
sensitivity of ξq0,τ to q0. Techniques for computing it are now well-developed for
a broad class of models [11,13,14,16].

Fixing q0, the only source of nondeterminism is the possible sequence of
actions in τ . The reachable states from q0 following all possible valid traces can
be over-approximated by expanding ξq0,τ by a (0, ε)-ted , which includes states
reachable by all ε-equivalent action sequences. Computing (0, ε)-ted uses the
principles of partial order reduction. However, unlike exact equivalence, here,
starting from the same state, the states reached at the end of executing two
ε-equivalent traces are not necessarily identical. This breaks a key assumption
necessary for conventional partial order algorithms: here, an action enabled after
ab may not be enabled after ba. Of course, considering disabled actions can still
give over-approximation of reachable states, but, we show that the precision of
approximation can be improved arbitrarily by shrinking δ and ε.

Thus, the reachability analysis in this paper brings together two differ-
ent ideas for handling nondeterminism: it combines sensitivity analysis with
respect to initial state and ε-independence of actions in computing (δ, ε)-ted , i.e.,
upper-bounds on the distance between executions starting from initial states that
are δ-close to each other and follow ε-equivalent action sequences (Theorem 1).
As a matter of theoretical interest, we show that the approximation error can

590 C. Fan et al.

be made arbitrarily small by choosing sufficiently small δ and ε (Theorem 2).
We validate the correctness and effectiveness of the algorithm with three case
studies where conventional partial order reduction would not help: an iterative
consensus protocol, a simple vehicle platoon control system, and a distributed
building heating system. In most cases, our reachability algorithm reduces the
number of explored executions by a factor of O(n!), for a time horizon of n, com-
pared with exhaustive enumeration. Using these over-approximations, we could
quickly decide safety verification questions. These examples illustrate that our
method has the potential to improve verification of a broader range of distributed
systems for consensus [5,17,26,27], synchronization [29,31] and control [18,25].

Related Work. There are two main classes of partial order reduction methods.
The persistent/ample set methods compute a subset of enabled transitions –the
persistent set (or ample set)– such that the omitted transitions are independent
to those selected [2,10]. The reduced system which only considers the transitions
in the persistent set is guaranteed to represent all behaviors of the original
system. The persistent sets and the reduced systems are often derived by static
analysis of the code. More recently, researchers have developed dynamic partial
order reduction methods using the sleep set to avoid the static analysis [1,19,32].
These methods examine the history of actions taken by an execution and decide
a set of actions that need to be explored in the future. The set of omitted actions
is the sleep set. In [6], Cassez and Ziegler introduce a method to apply symbolic
partial order reduction to infinite state discrete systems.

Analysis of sensitivity and the related notion of robustness analysis functions,
automata, and executions has recently received significant attention [7,11,30].
Majumdar and Saha [24] present an algorithm to compute the output devia-
tion with bounded disturbance combining symbolic execution and optimization.
In [7,30], Chaudhuri etc., present algorithms for robustness analysis of programs
and networked systems. Automatic techniques for local sensitivity analysis com-
bining simulations and static analysis and their applications to verification of
hybrid systems have been presented in [11,14,16].

In this paper, instead of conducting conventional partial order reduction, we
propose a novel method of approximate partial order reduction, and combine
it with sensitivity analysis for reachability analysis and safety verification for a
broader class of systems.

2 Preliminaries

Notations. The state of our labeled transition system is defined by the valuations
of a set of variables. Each variable v has a type, type(v), which is either the set of
reals or some finite set. For a set of variables V , a valuation v maps each v ∈ V
to a point in type(v). The set of all valuations of V is Val(V). R denotes the set
of reals, R≥0 the set of non-negative reals, and N the set of natural numbers.
For n ∈ N, [n] = {0, . . . , n − 1}. The spectral radius ρ(A) of a square matrix
A ∈ R

n×n is the largest absolute value of its eigenvalues. A square matrix A is

Approximate Partial Order Reduction 591

stable if its spectral radius ρ(A) < 1. For a set of tuples S = {〈sj1, . . . , sjn〉j},
S � i denotes the set {sji} which is the set obtained by taking the ith component
of each tuple in S.

2.1 Transition Systems

Definition 1. A labeled transition system A is a tuple 〈X ∪ L,Θ,A,→〉 where
(i) X is a set of real-valued variables and L is a set of finite-valued variables.
Q = Val(X ∪L) is the set of states, (ii) Θ ⊆ Q is a set of initial states such that
the sets of real-valued variables are compact, (iii) A is a finite set of actions,
and (iv) →⊆ Q × A × Q is a transition relation.

A state q ∈ Q is a valuation of the real-valued and finite-valued variables. We
denote by q.X and q.L, respectively, the real-valued and discrete (finite-valued)
parts of the state q. We will view the continuous part q.X as a vector in R

|X|

by fixing an arbitrary ordering of X. The norm | · | on q.X is an arbitrary norm
unless stated otherwise. For δ ≥ 0, the δ-neighborhood of q is denoted by Bδ(q)

Δ=
{q′ ∈ Q : q′.L = q.L ∧ |q′.X − q.X| ≤ δ}. For any (q, a, q′) ∈→, we write q

a→ q′.
For any action a ∈ A, its guard is the set guard(a) = {q ∈ Q | ∃q′ ∈ Q, q

a→ q′}.
We assume that guards are closed sets. An action a is deterministic if for any
state q ∈ Q, if there exists q1, q2 ∈ Q with q

a→ q1 and q
a→ q2, then q1 = q2.

Assumption 1. (i) Actions are deterministic. For notational convenience, the
name of an action a is identified with its transition function, i.e., for each q ∈
guard(a), q

a→ a(q). We extend this notation to all states, i.e., even those outside
guard(a). (ii) For any state pair q, q′, if q.L = q′.L then a(q).L = a(q′).L.

Executions and Traces. For a deterministic transition system, a state q0 ∈ Q and
a finite action sequence (also called a trace) τ = a0a1 . . . an−1 uniquely specifies
a potential execution ξq0,τ = q0, a0, q1, a1, . . . , an−1, qn where for each i ∈ [n],
ai(qi) = qi+1. A valid execution (also called execution for brevity) is a potential
execution with (i) q0 ∈ Θ and (ii) for each i ∈ [n], qi ∈ guard(ai). That is, a
valid execution is a potential execution starting from the initial set with each
action ai enabled at state qi. For any potential execution ξq0,τ , its trace is the
action sequence τ , i.e., trace(ξq0,τ) = τ ∈ A∗. We denote by len(τ) the length of
τ . For any for i ∈ [len(τ)], τ(i) is the i-th action in τ . The length of ξq0,τ is the
length of its trace and ξq0,τ (i) = qi is the state visited after the i-th transition.
The first and last state on a execution ξ are denoted as ξ. fstate = ξ(0) and
ξ. lstate = ξ(len(ξ)).

For a subset of initial states S ⊆ Θ and a time bound T ≥ 0, Execs(S, T)
is the set of length T executions starting from S. We denote the reach set at
time T by Reach(S, T) Δ= {ξ. lstate | ξ ∈ Execs(S, T)}. Our goal is to precisely
over-approximate Reach(Θ, T) exploiting partial order reduction.

592 C. Fan et al.

Fig. 1. Labeled transition system model of iterative consensus.

Example 1 (Iterative consensus). An n-dimensional iterative consensus protocol
with N processes is shown in Fig. 1. The real-valued part of state is a vector x in
R

n and each process i changes the state by the linear transformation x ← Aix.
The system evolves in rounds: in each round, each process i updates the state
exactly once but in arbitrary order. The boolean vector d marks the processes
that have acted in a round. The set of actions is {ai}i∈[N] ∪ {a⊥}. For each
i ∈ [N], the action ai is enabled when d[i] is false and when it occurs x is
updated as Aix, where Ai is an n × n matrix. The action a⊥ can occur only
when all d[i]’s are set to true and it resets all the d[i]’s to false. For an instance
with N = 3, a valid execution could have the trace τ = a0a2a1a⊥a1a0a2a⊥. It
can be checked that Assumption 1 holds. In fact, the assumption will continue
to hold if Aix is replaced by a nonlinear transition function ai : Rn → R

n.

2.2 Discrepancy Functions

A discrepancy function bounds the changes in a system’s executions as a
continuous function of the changes in its inputs. Methods for computing dis-
crepancy of dynamical and hybrid systems are now well-developed [12,14,22].
We extend the notion naturally to labeled transition systems: a discrepancy
for an action bounds the changes in the continuous state brought about by its
transition function.

Definition 2. For an action a ∈ A, a continuous function βa : R≥0 → R≥0

is a discrepancy function if for any pair of states q, q′ ∈ Q with q.L = q′.L,
(i) |a(q).X−a(q′).X| ≤ βa(|q.X−q′.X|), and (ii) βa(·) → 0 as |q.X−q′.X| → 0.

Property (i) gives an upper-bound on the changes brought about by action
a and (ii) ensures that the bound given by βa can be made arbitrarily pre-
cise. If the action a is Lipschitz continuous with Lipschitz constant La, then
βa(|q.X −q′.X|) = La(|q.X −q′.X|) can be used as a discrepancy function. Note
that we do not assume the system is stable. As the following proposition states,
given discrepancy functions for actions, we can reason about distance between
executions that share the same trace but have different initial states.

Approximate Partial Order Reduction 593

Proposition 1. Suppose each action a ∈ A has a discrepancy function βa. For
any T ≥ 0 and action sequence τ = a0a1a2 . . . aT , and for any pair of states
q, q′ ∈ Q with q.L = q′.L, the last states of the pair of potential executions
satisfy:

ξq,τ . lstate .L = ξq′,τ . lstate .L, (1)
|ξq,τ . lstate .X − ξq′,τ . lstate .X| ≤ βaT

βaT −1 . . . βa0(|q.X − q′.X|). (2)

Example 2. Consider an instance of Consensus of Example 1 with n = 3 and
N = 3 with the standard 2-norm on R

3. Let the matrices Ai be

A0 =

⎡
⎣

0.2 −0.2 −0.3

−0.2 0.2 −0.1

−0.3 −0.1 0.3

⎤
⎦ , A1 =

⎡
⎣
0.2 0.3 0.2

0.3 −0.2 0.3

0.2 0.3 0

⎤
⎦ , A2 =

⎡
⎣

−0.1 0 0.4

0 0.4 −0.2

0.4 −0.2 −0.1

⎤
⎦ .

It can be checked that for any pair q, q′ ∈ Q with q.L = q′.L, |ai(q).X −
ai(q′).X|2 ≤ |Ai|2|q.X − q′.X|2. Where the induced 2-norms of the matrices
are |A0|2 = 0.57, |A1|2 = 0.56, |A2|2 = 0.53. Thus, for any v ∈ R≥0, we can
use discrepancy functions for a0, a1, a2: βa0(v) = 0.57v, βa1(v) = 0.56v, and
βa2(v) = 0.53v.

For actions with nonlinear transition functions, computing global discrepancy
functions is difficult in general but local approaches using the eigenvalues of
the Jacobian matrices are adequate for computing reachable sets from compact
initial sets [16,21].

2.3 Combining Sets of Discrepancy Functions

For a finite set of discrepancy functions {βa}a∈A′ corresponding to a set of
actions A′ ⊆ A, we define βmax = maxa∈A′{βa} as βmax(v) = maxa∈A′ βa(v),
for each v ≥ 0. From Definition 2, for each a ∈ S, βa(|q.X − q′.X|) → 0 as
|q.X−q′.X| → 0. Hence, as the maximum of βa, we have βmax(|q.X−q′.X|) → 0
as |q.X − q′.X| → 0. It can be checked that βmax is a discrepancy function of
each a ∈ S.

For n ≥ 0 and a function βmax defined as above, we define a function
γn =

∑n
i=0 βi

max; here βi = β ◦ βi−1 for i ≥ 1 and β0 is the identity map-
ping. Using the properties of discrepancy functions as in Definition 2, we can
show the following properties of {γn}n∈N.

Proposition 2. Fix a finite set of discrepancy functions {βa}a∈A′ with A′ ⊆ A.
Let βmax = maxa∈A′{βa}. For any n ≥ 0, γn =

∑n
i=0 βi

max satisfies (i) ∀ ε ∈
R≥0 and any n ≥ n′ ≥ 0, γn(ε) ≥ γn′(ε), and (ii) limε→0 γn(ε) = 0.

Proof. (i) For any n ≥ 1, we have γn−γn−1 = βn
max. Since βn

max = maxa∈S{βa}
for some finite S, using Definition 2, βn

max takes only non-negative values. Hence,
the sequence of functions {γn}n∈R≥0 is non-decreasing.
(ii) Using the property of discrepancy functions, we have limε→0 βmax(ε) = 0.
By induction on the nested functions, we have limε→0 βi

max(0) for any i ≥ 0.
Hence for any n ∈ R≥0, limε→0 γn(ε) = limε→0

∑n
i=0 βi

max(ε) = 0.

594 C. Fan et al.

The function γn depends on the set of {βa}a∈A′ , but as the βs will be fixed and
clear from context, we write γn for brevity.

3 Independent Actions and Neighboring Executions

Central to partial order methods is the notion of independent actions. A pair of
actions are independent if from any state, the occurrence of the two actions, in
either order, results in the same state. We extend this notion and define a pair
of actions to be ε-independent (Definition 3), for some ε > 0, if the continuous
states resulting from swapped action sequences are within ε distance.

3.1 Approximately Independent Actions

Definition 3. For ε ≥ 0, two distinct actions a, b ∈ A are ε-independent,
denoted by a

ε∼ b, if for any state q ∈ Q (i) (Commutativity) ab(q).L = ba(q).L,
and (ii) (Closeness) |ab(q).X − ba(q).X| ≤ ε.

The parameter ε captures the degree of the approximation. Smaller the value of
ε, more restrictive the independent relation. If a and b are ε-independent with
ε = 0, then ab(q) = ba(q) and the actions are independent in the standard sense
(see e.g. Definition 8.3 of [4]). Definition 3 extends the standard definition in
two ways. First, b need not be enabled at state a(q), and vice versa. That is,
if ξq0,ab is an execution, we can only infer that ξq0,ba is a potential execution
and not necessarily an execution. Secondly, with ε > 0, the continuous states
can mismatch by ε when ε-independent actions are swapped. Consequently, an
action c may be enabled at ab(q) but not at ba(q). If ξq0,abc is a valid execution,
we can only infer that ξq0,bac is a potential execution and not necessarily an
execution.

We assume that the parameter ε does not depend on the state q. When
computing the value of ε for concrete systems, we could first find an invariant
for the state’s real-valued variable q.X such that q.X is bounded, then find
an upper-bound of |ab(q).X − ba(q).X| as ε. For example, if a and b are both
linear mappings with a(q).X = A1q.X + b1 and b(q).X = A2q.X + b2 and
there is an invariant for q.X is such that |q.X| ≤ r, then it can be checked
that |ab(q).X − ba(q).X| = |(A2A1 − A1A2)q.X + (A2b1 − A1b2 + b2 − b1)| ≤
|A2A1 − A1A2|r + |A2b1 − A1b2 + b2 − b1|.

For a trace τ ∈ A∗ and an action a ∈ A, τ is ε-independent to a, written as
τ

ε∼ a, if τ is empty string or for every i ∈ [len(τ)], τ(i) ε∼ a. It is clear that
the approximate independence relation over A is symmetric, but not necessarily
transitive.

Example 3. Consider approximate independence of actions in Consensus. Fix
any i, j ∈ [N] such that i �= j and any state q ∈ Q. It can be checked that:
aiaj(q).d[k] = ajai(q).d[k] = true if k ∈ {i, j}, otherwise it is q.d[k]. Hence,
we have aiaj(q).d = ajai(q).d and the commutativity condition of Definition 3

Approximate Partial Order Reduction 595

holds. For the closeness condition, we have |aiaj(q).x − ajai(q).x|2 = |(AiAj −
AjAi)q.x|2 ≤ |AiAj − AjAi|2|q.x|2. If the matrices Ai and Aj commute, then ai

and aj are ε-approximately independent with ε = 0.
Suppose initially x ∈ [−4, 4]3 then the 2-norm of the initial state is bounded

by the value 4
√

3. The specific matrices Ai, i ∈ [3] presented in Example 2 are all
stable, so |ai(q).x|2 ≤ |q.x|2, for each i ∈ [3] and the norm of state is non-
increasing in any transitions. Therefore, Inv = {x ∈ R

3 : |x|2 ≤ 4
√

3} is
an invariant of the system. Together, we have |a0a1(q).x − a1a0(q).x|2 ≤ 0.1,
|a0a2(q).x − a2a0(q).x|2 ≤ 0.07, and |a1a2(q).x − a2a1(q).x|2 ≤ 0.17. Thus, with
ε = 0.1, it follows that a0

ε∼ a1 and a0
ε∼ a2 and ε∼ is not transitive, but with

ε = 0.2, ε∼ is transitive.

3.2 (δ, ε)-trace Equivalent Discrepancy for Action Pairs

Definition 3 implies that from a single state q, executing two ε-independent
actions in either order, we end up in states that are within ε distance. The
following proposition uses discrepancy to bound the distance between states
reached after performing ε-independent actions starting from different initial
states q and q′.

Proposition 3. If a pair of actions a, b ∈ A are ε-independent, and the two
states q, q′ ∈ Q satisfy q.L = q′.L, then we have (i)ba(q).L = ab(q′).L, and (ii)
|ba(q).X − ab(q′).X| ≤ βb ◦ βa(|q.X − q′.X|) + ε, where βa, βb are discrepancy
functions of a, b respectively.

Proof. Fix a pair of states q, q′ ∈ Q with q.L = q′.L. Since a
ε∼ b, we have

ba(q).L = ab(q).L. Using the Assumption, we have ab(q).L = ab(q′).L. Using
triangular inequality, we have |ba(q).X − ab(q′).X| ≤ |ba(q).X − ba(q′).X| +
|ba(q′).X − ab(q′).X|. The first term is bounded by βb ◦ βa(|q.X − q′.X|) using
Proposition 1 and the second is bounded by ε by Definition 3, and hence, the
result follows.

4 Effect of ε-independent Traces

In this section, we will develop an analog of Proposition 3 for ε-independent
traces (action sequences) acting on neighboring states.

4.1 ε-equivalent Traces

First, we define what it means for two finite traces in A∗ to be ε-equivalent.

Definition 4. For any ε ≥ 0, we define a relation R ⊆ A∗ × A∗ such that τRτ ′

iff there exists σ, η ∈ A∗ and a, b ∈ A such that a
ε∼ b, τ = σabη, and τ ′ = σbaη.

We define an equivalence relation
ε≡ ⊆ A∗ × A∗ called ε-equivalence, as the

reflexive and transitive closure of R.

596 C. Fan et al.

That is, two traces τ, τ ′ ∈ A∗ are ε-equivalent if we can construct τ ′ from τ by
performing a sequence of swaps of consecutive ε-independent actions.

In the following proposition, states that the last states of two potential exe-
cutions starting from the same initial discrete state (location) and resulting from
equivalent traces have identical locations.

Proposition 4. Fix potential executions ξ = ξq0,τ and ξ′ = ξq′
0,τ ′ . If q0.L = q′

0.L

and τ
ε≡ τ ′, then ξ. lstate .L = ξ′. lstate .L.

Proof. If τ = τ ′, then the proposition follows from the Assumption. Suppose
τ �= τ ′, from Definition 4, there exists a sequence of action sequences τ0, τ1, . . . , τk

to join τ and τ ′ by swapping neighboring approximately independent actions.
Precisely the sequence {τi}k

i=0 satisfies: (i) τ0 = τ and τk = τ ′, and (ii) for each
pair τi and τi+1, there exists σ, η ∈ A∗ and a, b ∈ A such that a

ε∼ b, τi =
σabη, and τi+1 = σbaη. From Definition 3, swapping approximately independent
actions preserves the value of the discrete part of the final state. Hence for any
i ∈ [k], ξq0,τi

. lstate .L = ξq0,τi+1 . lstate .L. Therefore, ξ. lstate .L = ξ′. lstate .L.

Next, we relate pairs of potential executions that result from ε-equivalent
traces and initial states that are δ-close.

Definition 5. Given δ, ε ≥ 0, a pair of initial states q0, q
′
0, and a pair traces

τ, τ ′ ∈ A∗, the corresponding potential executions ξ = ξq0,τ and ξ′ = ξq′
0,τ ′ are

(δ, ε)-related, denoted by ξ
δ,ε≈ ξ′, if q0.L = q′

0.L, |q0.X − q′
0.X| ≤ δ, and τ

ε≡ τ ′.

Example 4. In Example 3, we show that a0
ε∼ a1 and a0

ε∼ a2 with ε =
0.1. Consider the executions ξ = q0, a0, q1, a1, q2, a2, q3, a⊥, q4 and ξ′ =
q′
0, a1, q

′
1, a2, q

′
2, a0, q

′
3, a⊥, q′

4. with traces trace(ξ) = a0a1a2a⊥ and trace(ξ′) =
a1a2a0a⊥. For ε = 0.1, we have a0a1a2a⊥

ε≡ a1a0a2a⊥ and a1a0a2a⊥
ε≡

a1a2a0a⊥. Since the equivalence relation
ε≡ is transitive, we have trace(ξ)

ε≡
trace(ξ′). Suppose q0 ∈ Bδ(q′

0), then ξ and ξ′ are (δ, ε)-related executions with
ε = 0.1.

It follows from Proposition 4 that the discrete state (locations) reached by any
pair of (δ, ε)-related potential executions are the same. At the end of this section,
in Lemma 2, we will bound the distance between the continuous state reached by
(δ, ε)-related potential executions. We define in the following this bound as what
we call trace equivalent discrepancy factor (ted), which is a constant number that
works for all possible values of the variables starting from the initial set. Looking
ahead, by bloating a single potential execution by the corresponding ted , we can
over-approximate the reachset of all related potential executions. This will be
the basis for the reachability analysis in Sect. 5.

Definition 6. For any potential execution ξ and constants δ, ε ≥ 0, a (δ, ε)-
trace equivalent discrepancy factor (ted) is a nonnegative constant r ≥ 0, such
that for any (δ, ε)-related potential finite execution ξ′,

|ξ′. lstate .X − ξ. lstate .X| ≤ r.

Approximate Partial Order Reduction 597

That is, if r is a (δ, ε)-ted , then the r-neighborhood of ξ’s last state Br(ξ. lstate)
contains the last states of all other (δ, ε)-related potential executions.

4.2 (0, ε)-trace Equivalent Discrepancy for Traces (on the Same
Initial States)

In this section, we will develop an inductive method for computing (δ, ε)-ted . We
begin by bounding the distance between potential executions that differ only in
the position of a single action.

Lemma 1. Consider any ε ≥ 0, an initial state q0 ∈ Q, an action a ∈ A and a
trace τ ∈ A∗ with len(τ) ≥ 1. If τ

ε∼ a, then the potential executions ξ = ξq0,τa

and ξ′ = ξq0,aτ satisfy

(i) ξ′. lstate .L = ξ. lstate .L and
(ii) |ξ′. lstate .X − ξ. lstate .X| ≤ γn−1(ε), where γn corresponds to the set of

discrepancy functions {βc}c∈τ for the actions in τ .

Proof. Part (i) directly follows from Proposition 4. We will prove part (ii) by
induction on the length of τ .

Base: For any trace τ of length 1, ξ and ξ′ are of the form ξ = q0, b0, q1, a, q2
and ξ′ = q0, a, q′

1, b0, q
′
2. Since a

ε∼ b0 and the two executions start from the
same state, it follows from Definition 3 that |q′

2.X − q2.X| ≤ ε. Recall from the
preliminary that γ0(ε) = β0(ε) = ε. Hence |q′

2.X − q2.X| ≤ γ0(ε) holds for trace
τ with len(τ) = 1.

Induction: Suppose the lemma holds for any τ with length at most n−1. Fixed
any τ = b0b1 . . . bn−1 of length n, we will show the lemma holds for τ .

Fig. 2. Potential executions ξ, ξ′, and ξ′′.

Let the potential executions ξ =
ξq0,τa and ξ′ = ξq0,aτ be the form

ξ = q0, b0, q1, b1, ..., bn−1, qn, a, qn+1,

ξ′ = q0, a, q′
1, b0, q

′
2, b1, ..., bn−1, q

′
n+1.

It suffices to prove that |ξ. lstate .X − ξ′. lstate .X| = |qn+1.X − q′
n+1.X| ≤

γn−1(ε). We first construct a potential execution ξ′′ = ξq0,b0ab1...bn−1 by
swapping the first two actions of ξ′. Then, ξ′′ is of the form: ξ′′ =
q0, b0, q1, a, q′′

2 , b1, ..., bn−1, q
′′
n+1. The potential executions ξ, ξ′ and ξ′′ are shown

in Fig. 2. We first compare the potential executions ξ and ξ′′. Notice that, ξ and
ξ′′ share a common prefix q0, b0, q1. Starting from q1, the action sequence of ξ′′

is derived from trace(ξ) by inserting action a in front of the action sequence
τ ′ = b1b2 . . . bn−1.

Since τ ′ ε∼ a, applying the induction hypothesis on the length n − 1 action
sequence τ ′, we get |qn+1.X−q′′

n+1.X| ≤ γn−2(ε). Then, we compare the potential
executions ξ′ and ξ′′. Since b0

ε∼ a, by applying the property of Definition 3 to
the first two actions of ξ′ and ξ′′, we have |q′

2.X −q′′
2 .X| ≤ ε. We note that ξ′ and

598 C. Fan et al.

ξ′′ have the same suffix of action sequence from q′
2 and q′′

2 . Using Proposition 1
from states q′

2 and q′′
2 , we have

|q′
n+1.X − q′′

n+1.X| ≤ βb1βb2 . . . βbn−1(|q′
2.X − q′′

2 .X|) ≤ βn−1(ε). (3)

Combining the bound on |q′
2.X − q′′

2 .X| and (3) with triangular inequality, we
have |qn+1.X − q′

n+1.X| ≤ |qn+1.X − q′′
n+1.X| + |q′

n+1.X − q′′
n+1.X| ≤ γn−2(ε) +

βn−1(ε) = γn−1(ε).

4.3 (δ, ε)-trace Equivalent Discrepancy for Traces

Lemma 1 gives a way to compute (0, ε)-ted . Now, we generalize this to compute
(δ, ε)-ted , for (δ, ε)-related potential executions, with any δ ≥ 0. The following
lemma gives an inductive way of constructing ted as an action a is appended to
a trace τ . The proof is analog to the proof of Lemma1 and is provided in the
full version of this paper [15].

Lemma 2. For any potential execution ξ = ξq0,τ and constants δ, ε ≥ 0, if r is a
(δ, ε)-ted for ξ, and the action a ∈ A satisfies τ

ε∼ a, then r′ = βa(r)+γlen(τ)−1(ε)
is a (δ, ε)-ted for ξq0,τa.

5 Reachability with Approximate Partial Order
Reduction

We will present our main algorithm (Algorithm2) for reachability analysis with
approximate partial order reduction in this section. The core idea is to over-
approximate Reach(Bδ(q0), T) by (a) computing the actual execution ξq0,τ and
(b) expanding this ξq0,τ by a (δ, ε)-ted to cover all the states reachable from any
other (δ0, ε)-related potential execution. Combining such over-approximations
from a cover of Θ, we get over-approximations of Reach(Θ, T), and therefore,
Algorithm 2 can be used to soundly check for bounded safety or invariance.
The over-approximations can be made arbitrarily precise by shrinking δ0 and ε
(Theorem 2). Of course, at ε = 0 only traces that are exactly equivalent to τ
will be covered, and nothing else. Algorithm2 avoids computing (δ0, ε)-related
executions, and therefore, gains (possibly exponential) speedup.

The key subroutine in Algorithm2 is CompTed which computes the ted by
adding one more action to the traces. It turns out that, the ted is independent
of q0, but only depends on the sequence of actions in τ . CompTed is used to
compute δt from δt−1, such that, δt is the ted for the length t prefix of ξ. Let
action a be the tth action and ξ = ξq0,τa. If a is ε-independent to τ , then the ted
δt can be computed from δt−1 just using Lemma 2. For the case where a is not
ε-independent to the whole sequence τ , we would still want to compute a set of
executions that ξq0,τa can cover. We observe that, with appropriate computation
of ted , ξq0,τa can cover all executions of the form ξq0,φaη, where φaη is ε-equivalent
to τa and a /∈ η. In what follows, we introduce this notion of earliest equivalent
position of a in τ (Definition 7), which is the basis for the CompTed subroutine,
which in turn is then used in the main reachability Algorithm2.

Approximate Partial Order Reduction 599

5.1 Earliest Equivalent Position of an Action in a Trace

For any trace τ ∈ A∗ and action a ∈ τ , we define lastPos(τ, a) as the largest
index k such that τ(k) = a. The earliest equivalent position, eep(τ, a, ε) is the
minimum of lastPos(τ ′, a) in any τ ′ that is ε-equivalent to τa.

Definition 7. For any trace τ ∈ A∗, a ∈ A, and ε > 0, the earliest equivalent
position of a on τ is eep(τ, a, ε) Δ= min

τ ′ ε≡τa
lastPos(τ ′, a).

For any trace τa, its ε-equivalent traces can be derived by swapping consecutive
ε-independent action pairs. Hence, the eep of a is the leftmost position it can
be swapped to, starting from the end. Any equivalent trace of τa is of the form
φaη where φ and η are the prefix and suffix of the last occurrence of action a.
Hence, equivalently: eep(τ, a, ε) = min

φaη
ε≡τa, a/∈η

len(φ). In the full version of
this paper [15] we give a simple O(len(τ)2) algorithm for computing eep(). If the
ε-independence relation is symmetric, then it eep can be computed in O(len(τ))
time.

Example 5. In Example 3, we showed that a0
ε∼ a1 and a0

ε∼ a2 with ε = 0.1; a⊥
is not ε-independent to any actions. What is eep(a⊥a0a1, a2, ε)? We can swap a2

ahead following the sequence τa2 = a⊥a0a1a2
ε≡ a⊥a1a0a2

ε≡ a⊥a1a2a0. As a⊥
and a1 are not independent of a2, it cannot occur earlier. eep(a⊥a0a1, a2, ε) = 2.

5.2 Reachability Using (δ, ε)-trace Equivalent Discrepancy

CompTed (Algorithm 1) takes inputs of trace τ , a new action to be added a, a
parameter r ≥ 0 such that r is a (δ0, ε)-ted for the potential execution ξq0,τ for
some initial state q0, initial set radius δ0, approximation parameter ε ≥ 0, and a
set of discrepancy functions {βa}a∈A. It returns a (δ0, ε)-ted r′ for the potential
execution ξq0,τa.

Algorithm 1. CompTed(τ, a, r, ε, {βa}a∈A)

1: β ← maxb∈τa{βb}; k ← eep(τ, a, ε); t ← len(τ);
2: if k = t then r′ ← βa(r) else r′ ← βa(r) + γt−k−1(ε)
3: return r′;

Lemma 3. For some initial state q0 and initial set size δ0, if r is a (δ0, ε)-ted
for ξq0,τ then value returned by CompTed() is a (δ0, ε)-ted for ξq0,τa.

Proof. Let us fix some initial state q0 and initial set size δ0.

600 C. Fan et al.

Fig. 3. Potential executions
ξt+1, ξ′,ξ′′

Let ξt = ξq0,τ be the potential execu-
tion starting from q0 by taking the trace
τ , and ξt+1 = ξq0,τa. Fix any ξ′ that
is (δ0, ε)-related to ξt+1. From Proposition 4,
ξ′. lstate .L = ξt+1. lstate .L. It suffice to prove
that |ξ′. lstate .X − ξt+1. lstate .X| ≤ r′.

Since trace(ξ′)
ε≡ τa, action a is in the

sequence trace(ξ′). Partitioning trace(ξ′) on the
last occurrence of a, we get trace(ξ′) = φaη for
some φ, η ∈ A∗ with a �∈ η. Since k is the eep, from Definition 7, the position
of the last occurrence of a on trace(ξ′) is at least k. Hence we have len(φ) ≥ k
and len(η) = t − len(φ) ≤ t − k. We construct another potential execution
ξ′′ = ξq′

0,φηa with the same initial state as ξ′. The executions ξt+1, ξ
′ and ξ′′ are

illustrated in Fig. 3.
qt is the last state of the execution ξt. From the assumption, Br(qt) is an

over-approximation of the reachset at step t. We note that the length t prefix
ξ′′ is (δ0, ε)-related to ξt. Therefore, |qt.X − q′′

t .X| ≤ r. Using the discrepancy
function of action a, we have

|qt+1.X − q′′
t+1.X| ≤ βa(|qt.X − q′′

t .X|) ≤ βa(r). (4)

We will quantify the distance between ξ′ and ξ′′. There are two cases:
(i) If k = t then, len(η) ≤ t − k = 0, that is, η is an empty string.
Hence, ξ′ and ξ′′ are indeed identical and q′

t+1 = q′′
t+1. Thus from (4),

|qt+1.X − q′
t+1.X| = |qt+1.X − q′′

t+1.X| ≤ βa(r), and the lemma holds. (ii) Oth-
erwise k < t and from Lemma 1, we can bound the distance between ξ′ and ξ′′

as |q′
t+1.X − q′′

t+1.X| ≤ γlen(η)−1(ε) ≤ γt−k−1(ε). Combining with (4), we get
|qt+1.X − q′

t+1.X| ≤ |qt+1.X − q′′
t+1.X| + |q′

t+1.X − q′′
t+1.X| ≤ βa(r) + γt−k−1(ε).

Next, we present the main reachability algorithm which uses CompTed .
Algorithm 2 takes inputs of an initial set Θ, time horizon T , two parameters
δ0, ε ≥ 0, and a set of discrepancy functions {βa}a∈A. It returns the over-
approximation of the reach set for each time step.

The algorithm first computes a δ0-cover Q0 of the initial set Θ such that
Θ ⊆ ∪q0∈Q0Bδ(q0) (Line 2). The for-loop from Line 3 to Line 14 will compute the
over-approximation of the reachset from each initial cover Reach(Bδ0(q0), t). The
over-approximation from each cover is represented as a collection 〈R0, . . . , RT 〉,
where each Rt is a set of tuples 〈τt, qt, δt〉 such that (i)the traces Rt � 1 and
their ε-equivalent traces contain the traces of all valid executions of length t, (ii)
the traces in Rt � 1 are mutually non-ε-equivalent, (iii) for each tuple δt is the
(δ0, ε)-ted for ξq0,τt

,
For each initial cover Bδ0(q0), R0 is initialized as the tuple of empty string,

the initial state q0 and size δ0 (Line 4). Then the reachset over-approximation
is computed recursively for each time step by checking for the maximum set
of enabled actions EA for the set of states Bδt

(qt) (Line 8), and try to attach
each enabled action a ∈ EA to τt unless τta is ε-equivalent to some length t + 1
trace that is already in Rt+1 � 1. This is where the major reduction happens

Approximate Partial Order Reduction 601

using approximate partial order reduction. If not, the (δ0, ε)-ted for ξq0,τta will
be computed using CompTed , and new tuple 〈τta, qt+1, δt+1〉 will be added to
Rt+1 (Line 13).

If there are k actions in total and they are mutually ε-independent, then as
long as the numbers of each action in τt and τ ′

t are the same, τt
ε≡ τ ′

t . Therefore,
in this case, Rt contains at most

(
t+k−1
k−1

)
tuples. Furthermore, for any length t

trace τt, if all actions in τt are mutually ε-independent, the algorithm can reduce
the number of executions explored by O(t!). Essentially, each τt ∈ Rt � 1 is a
representative trace for the length t ε-equivalence class.

Algorithm 2. Reachability algorithm to over-approximate Reach(Θ, T)

1: Input: Θ, T, ε, δ0, {βa};
2: Q0 ← δ0-cover(Θ); R ← ∅
3: for q0 ∈ Q0 do
4: R0 ← {〈′′, q0, δ0〉};
5: for t = [T] do
6: RT ← ∅;
7: for each 〈τt, qt, δt〉 ∈ Rt do
8: EA ← enabledactions(Bδt(qt));
9: for a ∈ EA do

10: if ∀τt+1 ∈ Rt+1 � 1, ¬
(
τta

ε≡ τt+1

)
then;

11: qt+1 ← a(qt)
12: δt+1 ← CompTed(τt, a, δt, ε, {βa}a∈A)
13: Rt+1 ← Rt+1 ∪ 〈τta, qt+1, δt+1〉
14: R ← R ∪ 〈R0, . . . , RT 〉
15: return R;

Theorem 1 shows that Algorithm 1 indeed computes an over-approximation
for the reachsets, and Theorem2 states that the over-approximation can be made
arbitrarily precise by reducing the size of δ0, ε.

Theorem 1 (Soundness). Set R returned by Algorithm2, satisfies ∀t =
0, . . . , T,

Reach(Θ, t) ⊆
⋃

Rt∈R
t

⋃
〈τ,q,δ〉∈Rt

Bδ(q). (5)

Proof. Since ∪q0∈Q0Bδ(q0) ⊇ Θ, it suffices to show that at each time step
t = 0, . . . , T , the Rt computed in the for-loop from Line 4 to Line 13 sat-
isfy Reach(Bδ0(q0), t) ⊆ ∪〈τ,q,δ〉∈Rt

Bδ(q). Fix any q0 ∈ Q0, we will prove by
induction.

Base case: initially before any action happens, the only valid trace is the
empty string ′′ and the initial set is indeed Bδ0(q0).

Induction step: assume that at time step t < T , the union of all the traces
Rt � 1 and their ε-equivalent traces contain the traces of all length t valid

602 C. Fan et al.

executions, and for each tuple 〈τt, qt, δt〉 ∈ Rt, δt is a (δ0, ε)-ted for ξq0,τt
. That

is, Bδt
(qt) contains the final states of all (δ0, ε)-related executions to ξq0,τt

. This
is sufficient for showing that Reach(Bδ0(q0), t) ⊆ ∪〈τ,q,δ〉∈Rt

Bδ(q).
Since for each tuple contained in Rt, we will consider the maximum possible

set of actions enabled at Line 8 and attempts to compute the (δ0, ε)-ted for
ξq0,τta. If τta is not ε-equivalent to any of the length t+1 traces that has already
been added to Rt+1, then Lemma 3 guarantees that the qt+1 and δt+1 computed
at Line 11 and 12 satisfy that δt+1 is the (δ0, ε)-ted for ξq0,τta. Otherwise, τta is
ε-equivalent to some trace τt+1 that has already been added to Rt+1, then for
any initial state q′

0 that is δ0-close to q0, ξq′
0,τta and ξq0,τt+1 are (δ0, ε)-related and

the final state of ξq′
0,τta is already contained in Bδt+1(qt+1). Therefore, the union

of all the traces Rt+1 � 1 and their ε-equivalent traces contain the traces of all
length t+1 valid executions, and for each tuple 〈τt+1, qt+1, δt+1〉 ∈ Rt+1, δt+1 is
a (δ0, ε)-ted for ξq0,τt+1 , which means Reach(Bδ0(q0), t + 1) ⊆ ∪〈τ,q,δ〉∈Rt+1Bδ(q).
So the theorem holds.

Theorem 2 (Precision). For any r > 0, there exist δ0, ε > 0 such that, the
reachset over-approximation R computed by Algorithm2 satisfies ∀t = 0, . . . , T,

⋃
Rt∈R
t

⋃
〈τ,q,δ〉∈Rt

Bδ(q) ⊆ Br(Reach(Θ, t)). (6)

The proof is based on the fact that δt computed in Algorithm 2 converges to
zero as δ0 → 0 and ε → 0, and the details are given in the full version of the
paper [15]. Notice that as δ0 and ε go to 0, the Algorithm 2 actually converges
to a simulation algorithm which simulates every valid execution from a single
initial state.

6 Experimental Evaluation of Effectiveness

We discuss the results from evaluating Algorithm2 in three case studies. Our
Python implementation runs on a standard laptop (Intel CoreTM i7-7600 U CPU,
16G RAM).

Iterative Consensus. This is an instance of Consensus (Example 1) with 3 con-
tinuous variables and 3 actions a0, a1, a2. We want to check if the continuous
states converge to [−0.4, 0.4]3 in 3 rounds starting from a radius 0.5 ball around
[2.5, 0.5,−3]. Figure 4 (Left) shows reachset over-approximation computed and
projected on x[0]. The blue and red curves give the bounds. As the figure shows,
x[0] converges to [−0.4, 0.4] at round 3; and so do x[1] and x[2] (not shown). We
also simulated 100 random valid executions (yellow curves) from the initial set
and validate that indeed the over-approximation is sound.

Recall, three actions can occur in any order in each round, i.e., 3! = 6 traces
per round, and 63 = 216 executions from a single initial state up to 3 rounds.
We showed in Example 3 that a0

ε∼ a1 and a0
ε∼ a2 with ε = 0.1. Therefore,

a0a1a2
ε≡ a1a0a2

ε≡ a1a2a0 and a0a2a1
ε≡ a2a0a1

ε≡ a2a1a0, and Algorithm 2

Approximate Partial Order Reduction 603

Fig. 4. Reachset computations. The blue curves are the upper bound of the reachsets
and the red curves are the lower bound of the reachsets. Between the blue and red
curves, the yellow curves are 100 random simulations of valid executions. Left: Linear
transition system. Right: Room heating system. (Color figure online)

explored only 2 (length 12) executions from a set of initial states for computing
the bounds. The running time for Algorithm2 is 1 ms while exploring all valid
executions from even only a single state took 20 ms.

Platoon. Consider an N car platoon on a single lane (see Fig. 7 in the full version
of the paper [15] for the pseudocode and details). Each car can choose one of
three actions at each time step: a (accelerate), b (brake), or c (cruise). Car 0
can choose any action at each time step; remaining cars try to keep safe distance
with predecessor by choosing accelerate (a) if the distance is more than 50, brake
(b) if the distance is less than 30, and cruise (c) otherwise.

Consider a 2-car platoon and a time horizon of T = 10. We want to verify
that the cars maintain safe separation. Reachset over-approximations projected
on the position variables are shown in Fig. 5, with 100 random simulations of
valid executions as a sanity check. Car 0 has lots of choices and it’s position over-
approximation diverges (Fig. 5). Car 1’s position depends on its initial relative
distance with Car 0. It is also easy to conclude from Fig. 5 that two cars maintain
safe relative distance for these different initial states.

From a single initial state, in every step, Car 0 has 3 choices, and therefore
there are 310 possible executions. Considering a range of initial positions for two
cars, there are infinitely many execution, and 910 (around 206 trillion) possi-
ble traces. With ε = 0.282, Algorithm 2 explored a maximum of

(
18
8

)
= 43758

traces; the concrete number varies for different initial sets. The running time for
Algorithm 2 is 5.1 ms while exploring all valid executions from even only a single
state took 2.9 s.

For a 4-car platoon and a time horizon of T = 10, there are 8110 possi-
ble traces considering a range of initial positions. With ε = 0.282, Algorithm 2
explored 7986 traces to conclude that all cars maintain safe separation for the
setting where all cars are initially separated by a distance of 40 and has an initial
set radius of 4. The running time for Algorithm2 is 62.3 ms, while exploring all
valid executions from even only a single state took 6.2 s.

604 C. Fan et al.

Fig. 5. Position over-approximations for 2 cars. The blue curves are the upper bound
of the reachsets and the red curves are the lower bound of the reachsets. Between the
blue and red curves, the yellow curves are 100 random simulations of valid executions.
Car1’s initial position is in the range [0, 5], Car2’s initial position is 60 (Left), 40
(Center) and 25 (Right). (Color figure online)

Building Heating System. Consider a building with N rooms, each with a heater
(see the full version of the paper [15] for pseudocode and details). For i ∈ [N],
x[i] ∈ R is the temperature of room i and m[i] ∈ {0, 1} captures the off/on state
of it’s heater. The controller measures the temperature of rooms periodically;
based on these measurements (y[i]) heaters turn on or off. These decisions are
made asynchronously across rooms in arbitrary order. The room temperature
x[i] changes linearly according to the heater input m[i], the thermal capacity
of the room, and the thermal coupling across adjacent rooms as given in the
benchmark problem of [18]. For i ∈ [N], actions oni, offi capture the decision
making process of room i on whether or not to turn on the heater. Time elapse
is captured by a flow action that updates the temperatures. We want to verify
that the room temperatures remain in the [60, 79] range.

Consider a building with N = 3 rooms. In the full version of the paper [15],
we provide computation details to show that for any i, j ∈ [3] with i �= j, a ∈
{oni, offi} and b ∈ {onj , offj}, a

ε∼ b with ε = 0.6; but, flow is not independent
with any other actions. Computed reachset over-approximation for 8 rounds
and projected on the temperature of Room 0 is shown in Fig. 4 (Right). Indeed,
temperature of Room 0 is contained within the range.

For a round, where each room makes a decision once in arbitrary order, there
are 3! = 6 ε-equivalent action sequences. Therefore, from a single initial state,
there are 68 (1.6 million) valid executions. Algorithm2, in this case explore only
one (length 32) execution with ε = 0.6 to approximate all executions starting
from an initial set with radius δ = 2. The running time for Algorithm2 is 1 ms
while exploring all valid executions from even only a single state took 434 s.

7 Conclusion

We proposed a partial order reduction technique for reachability analysis of
infinite state transition systems that exploits approximate independence and
bounded sensitivity of actions to reduce the number of executions explored.
This relies on a novel notion of ε-independence that generalizes the traditional
notion of independence by allowing approximate commutation of actions. With

Approximate Partial Order Reduction 605

this ε-independence relation, we have developed an algorithm for soundly over-
approximating reachsets of all executions using only ε-equivalent traces. The
over-approximation can also be made arbitrarily precise by reducing the size of
δ, ε. In experimental evaluation with three case studies we observe that it can
reduce the number of executions explored exponentially compared to explicit
computation of all executions.

The results suggest several future research directions. In Definition 3, ε-
independent actions are required to be approximately commutative globally. For
reachability analysis, this definition could be relaxed to actions that approxi-
mately commute locally over parts of the state space. An orthogonal direction is
to apply this reduction technique to verify temporal logic properties and extend
it to hybrid models.

References

1. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order
reduction. In: ACM SIGPLAN Notices, vol. 49, pp. 373–384. ACM (2014)

2. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-
order reduction in symbolic state space exploration. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 340–351. Springer, Heidelberg (1997). https://doi.org/
10.1007/3-540-63166-6 34

3. Baier, C., Größer, M., Ciesinski, F.: Partial order reduction for probabilistic sys-
tems. QEST 4, 230–239 (2004)

4. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. MIT press,
Cambridge (2008)

5. Blondel, V., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J., et al.: Convergence in
multiagent coordination, consensus, and flocking. In: IEEE Conference on Decision
and Control, vol. 44, p. 2996. IEEE; 1998 (2005)

6. Cassez, F., Ziegler, F.: Verification of concurrent programs using trace abstraction
refinement. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR
2015. LNCS, vol. 9450, pp. 233–248. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48899-7 17

7. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of pro-
grams. Commun. ACM 55(8), 107–115 (2012)

8. Clarke, E., Jha, S., Marrero, W.: Partial order reductions for security protocol
verification. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785,
pp. 503–518. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-
0 34

9. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using
partial order techniques. Int. J. Softw. Tools Technol. Transfer 2(3), 279–287 (1999)

10. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge
(1999)

11. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Computer Aided Verification (CAV) (2010)

12. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bempo-
rad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71493-4 16

https://doi.org/10.1007/3-540-63166-6_34
https://doi.org/10.1007/3-540-63166-6_34
https://doi.org/10.1007/978-3-662-48899-7_17
https://doi.org/10.1007/978-3-662-48899-7_17
https://doi.org/10.1007/3-540-46419-0_34
https://doi.org/10.1007/3-540-46419-0_34
https://doi.org/10.1007/978-3-540-71493-4_16

606 C. Fan et al.

13. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from
executions. In: EMSOFT (2013)

14. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 5

15. Fan, C., Huang, Z., Mitra, S.: Approximate partial order reduction (full version),
May 2018. https://arxiv.org/abs/1610.06317

16. Fan, C., Mitra, S.: Bounded verification with on-the-fly discrepancy computation.
In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp.
446–463. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7 32

17. Fang, L., Antsaklis, P.J.: Information consensus of asynchronous discrete-time
multi-agent systems. In: Proceedings of the 2005, American Control Conference,
pp. 1883–1888. IEEE (2005)

18. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur,
R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 22

19. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: ACM Sigplan Notices, vol. 40, pp. 110–121. ACM (2005)

20. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems: An Approach to the State-Explosion Problem. LNCS, vol. 1032. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-60761-7

21. Huang, Z., Fan, C., Mereacre, A., Mitra, S., Kwiatkowska, M.: Simulation-based
verification of cardiac pacemakers with guaranteed coverage. IEEE Des. Test 32(5),
27–34 (2015)

22. Huang, Z., Mitra, S.: Proofs from simulations and modular annotations. In: Pro-
ceedings of the 17th International Conference on Hybrid systems: Computation
and Control, pp. 183–192. ACM (2014)

23. Kurshan, R., Levin, V., Minea, M., Peled, D., Yenigün, H.: Static partial order
reduction. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 345–357.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054182

24. Majumdar, R., Saha, I.: Symbolic robustness analysis. In: 30th IEEE Real-Time
Systems Symposium, RTSS 2009, pp. 355–363. IEEE (2009)

25. Mitra, D.: An asynchronous distributed algorithm for power control in cellular
radio systems. In: Holtzman, J.M., Goodman, D.J. (eds.) Wireless and Mobile
Communications, pp. 177–186. Springer, Boston (1994)

26. Mitra, S., Chandy, K.M.: A formalized theory for verifying stability and con-
vergence of automata in PVS. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.)
TPHOLs 2008. LNCS, vol. 5170, pp. 230–245. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71067-7 20

27. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked
multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

28. Peled, D.: Ten years of partial order reduction. In: Hu, A.J., Vardi, M.Y. (eds.)
CAV 1998. LNCS, vol. 1427, pp. 17–28. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0028727

29. Rhee, I.K., Lee, J., Kim, J., Serpedin, E., Wu, Y.C.: Clock synchronization in
wireless sensor networks: an overview. Sensors 9(1), 56–85 (2009)

30. Samanta, R., Deshmukh, J.V., Chaudhuri, S.: Robustness analysis of networked
systems. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 229–247. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35873-9 15

https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-662-46681-0_5
https://arxiv.org/abs/1610.06317
https://doi.org/10.1007/978-3-319-24953-7_32
https://doi.org/10.1007/978-3-540-24743-2_22
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/BFb0054182
https://doi.org/10.1007/978-3-540-71067-7_20
https://doi.org/10.1007/978-3-540-71067-7_20
https://doi.org/10.1007/BFb0028727
https://doi.org/10.1007/BFb0028727
https://doi.org/10.1007/978-3-642-35873-9_15
https://doi.org/10.1007/978-3-642-35873-9_15

Approximate Partial Order Reduction 607

31. Welch, J.L., Lynch, N.: A new fault-tolerant algorithm for clock synchronization.
Inf. Comput. 77(1), 1–36 (1988)

32. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Efficient stateful dynamic
partial order reduction. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN
2008. LNCS, vol. 5156, pp. 288–305. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85114-1 20

https://doi.org/10.1007/978-3-540-85114-1_20
https://doi.org/10.1007/978-3-540-85114-1_20

A Lightweight Deadlock Analysis
for Programs with Threads

and Reentrant Locks

Cosimo Laneve(B)

Department of Computer Science and Engineering,
University of Bologna – Inria Focus, Bologna, Italy

cosimo.laneve@unibo.it

Abstract. Deadlock analysis of multi-threaded programs with reentrant
locks is complex because these programs may have infinitely many states.
We define a simple calculus featuring recursion, threads and synchro-
nizations that guarantee exclusive access to objects. We detect dead-
locks by associating an abstract model to programs – the extended lam
model – and we define an algorithm for verifying that a problem-
atic object dependency (e.g. a circularity) between threads will not be
manifested. The analysis is lightweight because the deadlock detection
problem is fully reduced to the corresponding one in lams (without using
other models). The technique is intended to be an effective tool for the
deadlock analysis of programming languages by defining ad-hoc extrac-
tion processes.

1 Introduction

Threads and locks are a common model of concurrent programming that is
nowadays widely used by the mainstream programming languages (Java, C#.
C++, Objective C, etc.). Most of these languages feature thread creations and
guarantee exclusive access to objects by means of synchronizations. In this
model, deadlocks are flaws that occur when two or more threads are blocked
because each one is attempting to acquire an object’s lock held by another one.
As an example, consider the following method

buildTable(x,y;n)= (newObject z)(if (n=0) then sync(y){ sync(x){ 0 } }
else (newThread sync(x){ sync(z){ 0 } })

buildTable(z,y;n-1)
)

where newObject z creates a new object (the class is omitted), (newThread P)
Q creates a new thread whose body is P (the class is again omitted) and run-
ning it in parallel with the continuation Q, and sync(x){ P } is the operation
locking the object x and performing P . This method creates a table of n + 1
threads – the philosophers – each one sharing an object – the fork – with the
close one. Every philosopher, except one, grabs the fork on his left – the first

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 608–624, 2018.
https://doi.org/10.1007/978-3-319-95582-7_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_36&domain=pdf

A Lightweight Deadlock Analysis for Programs 609

argument – and on his right – the second argument – in this order and then
release them. The exceptional case is the then-branch (n = 0) where the grab-
bing strategy is opposite. It is well-known that, when the method is invoked with
buildTable(x,x;n), no deadlock will ever occur because at least one philoso-
pher has a strategy that is different from the other ones. On the contrary, if we
change the then-branch into sync(x){ sync(y){ 0 } } a deadlock may occur
because philosophers’ strategies are all symmetric. It is worth to notice that
buildTable(x,x;0) is deadlock-free because it just locks twice the object x,
which is admitted in the model with threads and locks – a thread may acquire
a same lock several times (lock-reentrancy).

In order to ensure termination, current analysers [1,4,7,13,19,20] use
finite approximate models representing the dependencies between object
names. The corresponding algorithms usually return false positives with input
buildTable(x,x;n) because they are not powerful enough to manage structures
that are not statically bounded.

In [10,14] we solved this problem for value-passing CCS [16] and
pi-calculus [17]. In that case, the technique used two formal models: Petri Nets
and deadLock Analysis Model – lams, which are basic recursive models that
collect dependencies and features recursion and dynamic name creation. In the
pi-calculus analyser, Petri Nets were used to verify the consistency of the com-
munication protocol of every channel, while lams were used for guaranteeing the
correctness of the dependencies between different channels. In particular, the
corresponding algorithm required a tool for verifying the reachability of Petri
Nets that model channels’ behaviours (which has exponential computational
complexity with respect to the size of the net [12]) and a tool for analysing lams
(which has exponential computational complexity with respect to the number of
arguments of functions).

In this paper we demonstrate that it is possible to define a deadlock analyzer
for programs with threads and (reentrant) locks by only using an extension of
lams. For example, the lam function corresponding to buildTable is1

buildTable(t, x, y) = (ν s, z)((y, x)t + (x, z)s � buildTable(t, z, y)).

The term (y, x)t, called dependency, indicates that the thread t, which owns
the lock of y, is going to grab the lock of x. The operation “+” and “�” are
disjunction and conjunctions of dependencies, respectively. The index t of (y, x)t
was missing in [10,14]; it has been necessary for modelling reentrant locks. In
particular, (x, x) is a circularity in the standard lam model, whilst (x, x)t is not a
circularity in the extended lam model because it means that t is acquiring x twice.
Therefore, buildTable(t, x, x) manifests a circularity in the model of [10,14] and
it does not in the extended model. A problematic lam in the extended model
is (y, x)t�(x, y)s, which denotes that two different threads are attempting to
acquire two objects in different order. This lam gives (x, x)�, which represents
a circularity.
1 Actually, the lam function associated to buildTable by the type system in Sect. 4

has an additional name that records the last name synchronized by the thread t.

610 C. Laneve

Because of the foregoing extension, the algorithm for detecting circularities
in extended lams is different than the one in [10,14]. In particular, while there is
a decision algorithm for the presence/absence of circularities in standard lams,
in Sect. 2 we define an algorithm that verifies the absence and is imprecise in
some cases (it may return that a lam will manifest a circularity while it will not
be the case – a false positive).

We also define a simple object-oriented calculus featuring recursion, threads
and synchronizations that guarantee exclusive access to objects. (The method
buildTable is written in our calculus.) The syntax, semantics, and examples
of the object-oriented calculus are in Sect. 3. In Sect. 4 we define a type sys-
tem that associates lams to processes. Using the type system, for example, the
lam function buildTable can be extracted from the method buildTable. As a
byproduct of the type system and the lams, our technique can detect deadlocks
of programs like buildTable. For space constraints, the proof of soundness of
the type system is omitted: is is reported in the full paper2. We discuss a few
weaknesses of the techniques in Sect. 5 and we point to related works and deliver
some concluding remark in Sect. 6.

Overall, the technicalities (the algorithm for lams, the syntax and semantics
of the calculus, the typing rules, and the type safety) illustrate many interesting
features of a deadlock analyser for a full object-oriented language, while remain-
ing pleasingly compact. In fact, this paper also aims at presenting a handy tool
for studying the consequences of extensions and variations of the constructs
defined here.

2 Lams and the Algorithm for Detecting Circularities

This section extends the theory developed in [10,14] to cover thread reentrancy.
In particular, the new definitions are those of transitive closure and Definition 3.
Theorem 1 is new.

Preliminaries. We use an infinite set A of names, ranged over by x, y, t, s, · · · .
A relation on A , denoted R, R′, · · · , is an element of P(A × A × A ∪ {�, •}),
where P(·) is the standard powerset operator, · × · is the cartesian product,
and �, • /∈ A are two special names. The elements of R, called dependencies,
are denoted by (x, y)t, where t is called thread. The name � indicates that the
dependency is due to the contributions of two or more threads; • indicates that
the dependency is due to a thread whose name is unknown.

Let

– R+ be the least relation containing R and closed under the operations:
1. if (x, y)t, (y, z)t′ ∈ R+ and t �= t′ then (x, z)� ∈ R+;
2. if (x, y)t, (y, z)t ∈ R+, t ∈ A ∪ {�}, then (x, z)t ∈ R+;
3. if (x, y)•, (y, z)• ∈ R+, (x, y)• �= (y, z)•, then (x, z)� ∈ R+.

2 Available at http://cs.unibo.it/∼laneve/papers/FM2018-full.pdf.

http://cs.unibo.it/~laneve/papers/FM2018-full.pdf

A Lightweight Deadlock Analysis for Programs 611

– {R1, · · · , Rm} � {R′
1, · · · , R′

n} if and only if, for all Ri, there is R′
j such that

1. if (x, y)t ∈ Ri, t ∈ A , then (x, y)t ∈ R′
j
+

2. if (x, y)� ∈ Ri then either (x, y)� ∈ R′
j
+ or (x, y)t ∈ R′

j
+ with t ∈ A ;

3. if (x, y)• ∈ Ri then either (x, y)• ∈ R′
j
+ or (x, y)t ∈ R′

j
+ with t ∈ A .

– {R1, · · · , Rm}�{R′
1, · · · , R′

n} def
= {Ri ∪ R′

j | 1 � i � m and 1 � j � n}.

We use R,R′, · · · to range over {R1, · · · , Rm}, which are elements of P(P(A ×
A × A ∪ {�, •})).

The names � and • are managed in an ad-hoc way in the transitive closure
R+ and in the relation �. In particular, if (x, y)t and (y, z)t′ belong to a relation
and t �= t′, the dependency obtained by transitivity, e.g. (x, z)�, records that it
has been produced by a contribution of two different threads – this is important
for separating circularities, e.g. (x, x)�, from lock reentrancy, e.g. (x, x)t. The
name • copes with another issue: it allows us to abstract out thread names
that are created inside methods. For this reason the transitive dependency of
(x, y)• and (y, z)• is (x, z)� because the threads producing (x, y)• and (y, z)•
might be different. The meaning of R � R′ is that R′ is “more precise” with
respect to pairs (x, y): if this pair is indexed with either � or • in some R ∈ R
then it may be indexed by a t (t �= �) in the corresponding (transitive closure)
relation of R′. For example { {(x, y)•, (y, z)•, (x, z)�} } � { {(x, y)t, (y, z)t} }
and { {(x, x)•} } � { {(x, x)t, (x, x)t′} }.

Definition 1. A relation R has a circularity if (x, x)� ∈ R+ for some x. A set
of relations R has a circularity if there is R ∈ R that has a circularity.

Lams. In our technique, dependencies are expressed by means of lams [14], noted
�, whose syntax is

� ::= 0 | (x, y)t | (ν x) � | �� � | � + � | f(x)

The term 0 is the empty type; (x, y)t specifies a dependency between the name
x and the name y that has been created by (the thread) t. The operation (ν x) �
creates a new name x whose scope is the type �; the operations �� �′ and � + �′

define the conjunction and disjunction of the dependencies in � and �′, respec-
tively. The operators + and � are associative and commutative. The term f(x)
defines the invocation of f with arguments x. The argument sequence x has
always at least two elements in our case: the first element is the thread that
performed the invocation, the second element is the last object whose lock has
been acquired by it.

A lam program is a pair
(
L , �

)
, where L is a finite set of function definitions

f(x) = �f

with �f being the body of f, and � is the main lam. We always assume that
�f = (ν z) �′

f where �′
f has no ν-binder. Similarly for �. The function buildTable

in the Introduction is an example of a lam function.

612 C. Laneve

The semantics of lams is very simple: it amounts to unfolding function invo-
cations. Let a lam context, noted L[], be a term derived by the following syntax:

L[] ::= [] | ��L[] | � + L[]

As usual L[�] is the lam where the hole of L[] is replaced by �. We remark
that, according to the syntax, lam contexts have no ν-binder. The operational
semantics of a program

(
L , (ν x) �

)
is a transition system where states are lams,

the transition relation is the least one satisfying the rule

(Red)
f(x) = (ν z) �f ∈ L z′ are fresh

L[f(u)] −→ L[�f{z′
/z}{u/x}]

and the initial state is the lam �. We write −→∗ for the reflexive and transitive
closure of −→.

For example, if f(t, x) = (ν s, z) ((x, z)t�f(s, z)) then f(t, x) −→
(x, z′)t�f(t′, z′), where t′ and z′ are fresh names. By continuing the evalua-
tion of f(t, x), the reader may observe that (i) every invocation creates new
fresh names and (ii) the evaluation does not terminate because f is recursive.
These two points imply that a lam model may have infinite states, which makes
any analysis nontrivial.

Flattening and Circularities. Lams represent elements of the set P(P(A ×
A × A ∪ {�, •})). This property is displayed by the following flattening func-
tion. Let L be a set of function definitions and let I(·), called flattening, be a
function on lams that (1) maps function name f defined in L to elements of
P(P(A × A × A ∪ {�, •})) and (2) is defined on lams as follows

I(0) = {∅}, I((x, y)t) = {{(x, y)t}}, I(���′) = I(�)�I(�′),

I(� + �′) = I(�) ∪ I(�′), I((ν x) �) = I(�){x′
/x} with x′ fresh,

I(f(u)) = I(f){u/x} (where x are the formal parameters of f).

Let I⊥ be the map such that, for every f defined in L , I⊥(f) = {∅}. For
example, let buildTable be the function in the Introduction and let

I(buildTable) = {{(y, x)t}} � = buildTable(t, x, y)�(x, y)s + (x, y)s.

Then I(�) =
{{(y, x)t, (x, y)s}, {(x, y)s}

}
, I⊥(�) =

{{(x, y)s}
}
.

Definition 2. A lam � has a circularity if I⊥(�) has a circularity. A lam program(
L , �

)
has a circularity if there is � −→∗ �′ and �′ has a circularity.

For example the above lam � has a circularity because

buildTable(t, x, y)�(x, y)s + (x, y)s
−→ ((y, x)t + (x, z)s�buildTable(t, z, y))�(x, y)s + (x, y)s

= �′

and I⊥(�′) has a circularity.

A Lightweight Deadlock Analysis for Programs 613

Fixpoint Definition of the Interpretation Function. Our algorithm relies on
the computation of lam functions’ interpretation, which is done by a standard
fixpoint technique.

Let L be the set fi(xi) = (ν zi) �i, with i ∈ 1..n. Let A =
⋃

i∈1..n xi

and κ be a special name that does not occur in
(
L , �

)
. We use the domain(

P(P(A ∪ {κ} × A ∪ {κ} × A ∪ {�, •})), ⊆
)

which is a finite lattice [5].

Definition 3. Let fi(xi) = (ν zi) �i, with i ∈ 1..n, be the function definitions
in L . The family of flattening functions I

(k)
L : {f1, · · · , fn} → P(P(A ∪ {κ} ×

A ∪ {κ} × A ∪ {�, •})) is defined as follows

I
(0)
L (fi) = {∅} I

(k+1)
L (fi) = {projzixi

(R+) | R ∈ I
(k)
L (�i)}

where

projzx(R)
def
= {(u, v)t | (u, v)t ∈ R and u, v ∈ x and t ∈ x ∪ {�}}

∪ {(κ, κ)� | (u, u)� ∈ R and u /∈ x}
∪ {(u, v)• | (u, v)t ∈ R and u, v ∈ x and t ∈ z}

We notice that I
(0)
L is the function I⊥. Let us analyze the definition of I

(k+1)
L (fi)

and, in particular, the function proj:

– first of all, notice that proj applies to the transitive closures of relations,
which may have names in A, zi, �, • and κ;

– the transitive closure operation is crucial because a circularity may fol-
low with the key contribution of fresh names. For instance the model
of f(x) = (ν t, t′, z) (x, z)t � (z, x)t′ is {{(x, x)�}}; the model of g() =
(ν t, t′, x, y) (x, y)t � (y, x)t′ is { {(κ, κ)�} } (this is the reason why we use
the name κ);

– every dependency (u, v)t ∈ projzx(R) is such that u, v ∈ x, except for (κ, κ)�.
For example, if f′(x, y) = (ν s, z) ((x, y)s � (x, z)s) then, if we invoke f′(u, v)
we obtain (u, v)t′ � (u, z′)t′ , where t′ and z′ are fresh object names. This
lam may be simplified because, being z′ fresh and unknown elsewhere, the
dependency (u, z′)t′ will never be involved in a circularity. For example, if
we have � = (v, u)t � f′(u, v) then we may safely reason on �′-simplified
(u, v)t � (u, v)t′ . For this reason we drop the dependencies containing fresh
names after their contribution to the transitive closure has been computed ;

– the same argument does not apply to names used as threads. For example,
in the above �′-simplified lam we cannot drop (u, v)t′ because t′ is fresh. In
fact, the context (v, u)t � (u, v)t′ gives a circularity. Therefore, dependencies
whose thread names are fresh must be handled in a different way. We take
a simple solution: these dependencies all have • as thread name. That is, we
assume that they are all generated by the contribution of different threads.
For example, g′(x, y) = (ν t) (x, y)t. Then, I

(1)
L (g′) = { {(x, y)•} }.

614 C. Laneve

Example 1. The flattening functions of buildTable are

I
(0)
L (buildTable) = {∅}

I
(1)
L (buildTable) = { {(y, x)t} }

As another example, consider the function g(x, y, z) = (ν t, u) (x, y)t � g(y, z, u).
Then:

I
(0)
L (g) = {∅}

I
(1)
L (g) = { {(x, y)•} }

I
(2)
L (g) = { {(x, y)•, (y, z)•, (x, z)�} }

Proposition 1. Let f(x) = (ν z) �f ∈ L .

1. For every k, I
(k)
L (f) ∈ P(P((x ∪ {κ}) × (x ∪ {κ}) × (x ∪ {�, •}))).

2. For every k, I
(k)
L (f) � I

(k+1)
L (f), where z′ are fresh.

Proof. (1) follows by definition. As regards (2), we observe that I(�) is monotonic
on I: for every f, I(f) � I ′(f) implies I(�) � I ′(�), which can be demonstrated
by a standard structural induction on �. Then, an induction on k gives I

(k)
L (f) �

I
(k+1)
L (f). ��

Since, for every k, I
(k)
L (fi) ranges over a finite lattice, by the fixpoint

theory [5], there exists m such that I
(m)
L is a fixpoint, namely I

(m)
L ≈ I

(m+1)
L

where ≈ is the equivalence relation induced by �. In the following, we let
IL , called the interpretation function (of a lam), be the least fixpoint I

(m)
L . In

Example 1, I
(1)
L is the fixpoint of buildTable and I

(2)
L is the fixpoint of g.

Proposition 2. Let L be a lam context, � be a lam, and I(·) be a flattening.
Then we have:

1. I(L[�]) has a circularity if and only if I(L[R]) has a circularity for some
R ∈ I(�).

2. Let
(
L , �

)
be a lam program, f(x) = (ν z) �f ∈ L and R ∈ I(�f{z′

/z}) with
z′ fresh. If I(L[R{u/x}]) has a circularity then I(L[(projzx(R+)){u/x}]) has a
circularity.

Proof. Property 1 follows from the definitions. To see 2, we use a straightforward
induction on L. We analyze the basic case L = []: the general case follows by
induction. Let R ∈ I(�f{z′

/z}) such that I(R{u/x}) has a circularity. There are
two cases:

– (v, v)� ∈ R+. By definition of projzx(R+) either (v, v)� ∈ projzx(R+), when
v /∈ z′, or (κ, κ)� ∈ projzx(R+), otherwise. In this case the statement 2 follows
immediately.

A Lightweight Deadlock Analysis for Programs 615

– (v, v)� ∈ R{u/x}+. By definition of transitive closure R{u/x}+ =
(R+){u/x}. Then there is a dependency (x1, x2)� ∈ R+ such that
(x1, x2)�{u/x} = (v, v)�. By definition of proj, (x1, x2)� ∈ projzx(R+).
Therefore projzx(R+){u/x} has also a circularity. ��

Lemma 1. Let
({f1(x1) = (ν z1) �1, · · · , fn(xn) = (ν zn) �n}, �

)
be a lam

program and let

L[fi1(u1)] · · · [fim(um)] −→m L[�i1{z′
1/zi1

}{u1/xi1
}] · · · [�im{z′

m/zim
}{um/xim

}]

where L[·] · · · [·] is a multiple context without function invocations.
If I

(k)
L (L[�i1{z′

1/zi1
}{u1/xi1

}] · · · [�im{z′
m/zim

}{um/xim
}]) has a circularity

then I
(k+1)
L (L[fi1(u1)] · · · [fim(um)]) has also a circularity.

Proof. To show the implication suppose that

I
(k)
L (L[�i1{z′

1/zi1
}{u1/xi1

}] · · · [�im{z′
m/zim

}{um/xim
}])

has a circularity. By repeated applications of Proposition 2(1), there exists
Rj ∈ I(k)(�i1{z′

j/zij
}{uj/xij

}) with 1 � j � m such that I(k)(L[R1] · · · [Rm])
has a circularity. It is easy to verify that every Rj may be written as R′

j{uj/xij
},

for some R′
j . By repeated application of Proposition 2(2), we have that

I(k)(L[projzi1
xi1

(R′
1
+){u1/x1

}] · · · [projzim

xim
(R′

m
+){um/xm

}])

has a circularity. Since, for every 1 � j � m,

proj
zij

xij
(R′

j
+){u1/x1

} ∈ I(k+1)(fij (uj))

and since L has no function invocation, we derive that I
(k+1)
L (L[fi1(u1)] · · ·

[fim(um)]) has also a circularity. ��
Unlike [10,14], Lemma 1 is strict in our case, for every k. For example,

consider

h(x, y, z) = (ν t) (x, y)t � (y, z)t.

Then, when k � 1, I
(k)
L (h) = { {(x, y)•, (y, z)•} }. Notice that I

(k)
L (h(x, y, x)) =

{ {(x, y)•, (y, x)•} }, which has a circularity – see Definition 1. However

I
(k)
L ((x, y)t � (y, x)t) = { {(x, y)t, (y, x)t, (x, x)t} }

has no circularity (this is a case of reentrant lock).

Theorem 1. Let
(
L , �

)
be a lam program and � −→∗ �′. If IL (�′) has a cir-

cularity then IL (�) has also a circularity. Therefore
(
L , �

)
has no circularity if

IL (�) has no circularity.

616 C. Laneve

Proof. Let �′ have a circularity. Hence, by definition, I⊥(�′) has a circularity and,
since I⊥(�′) = I

(0)
L (�′), by Proposition 1(2) I

(0)
L (�′) � IL (�′). Therefore IL (�′)

has also a circularity. Then, by Lemma 1, since IL is the fixpoint interpretation
function, IL (�) has also a circularity. ��

Our algorithm for verifying that a lam will never manifest a circularity con-
sists of computing IL (f), for every f, and IL (�), where � is the main lam. As
discussed in this section, IL (f) uses a saturation technique on names based
on a powerset construction. Hence it has a computational complexity that is
exponential on the number of names. We remind that the names we consider are
the arguments of lam functions (that corresponds to methods’ arguments), which
are usually not so many. In fact, this algorithm is quite efficient in practice [9].

3 The Language and Its Semantics

In the rest of the paper, we use lams to define an analysis technique for a simple
programming model of concurrent object-oriented languages (the basic opera-
tions of thread creation and synchronization used in Java and C# may be easily
recognized). In this section we first define the model, give a description of how
deadlock may be identified, and discuss few examples. The next section defines
the type system associating lams to the programs.

Our model has two disjoint countable sets of names: there are integer and
object names, ranged over by x, y, z, t, s, · · · , and method names, ranged over
by A, B, · · · . A program is a pair

(
D , P

)
, where D is a finite set of method

name definitions A(x; y) = PA, with x; y and PA respectively being the formal
parameters and the body of A, and P is the main process.

The syntax of processes P and expressions e is defined below

P ::= 0 | (ν x) P | (ν P) P | if e then P else P | A(x; y)
| sync(x){ P }. P

e ::= x | v | e op e

A process can be the inert process 0, or a restriction (ν x) P that behaves like P
except that the external environment cannot access to the object x, or the spawn
(ν Q) P of a new thread Q by a process P , or a conditional if e then P else Q
that evaluates e and behaves either like P or like Q depending on whether
the value is �= 0 (true) or = 0 (false), or an invocation A(x; y) of the process
corresponding to A. In the invocation, a semicolon separates the arguments that
are objects from those that are integers. The last process is sync(x){ P }. Q that
executes P with exclusive access to x and then performs Q. An expression e can
be a name x, an integer value v, or a generic binary operation on integers v op v′,
where op ranges over a set including the usual operators like +, �, etc. Integer
expressions without names (constant expressions) may be evaluated to an integer
value (the definition of the evaluation of constant expressions is omitted). Let [[e]]
be the evaluation of a constant expression e ([[e]] is undefined when the integer

A Lightweight Deadlock Analysis for Programs 617

expression e contains integer names). Let also [[x]] = x when x is a non-integer
name. We always shorten sync(x){ P }. 0 into sync(x){ P }.

In order to define the operational semantics, we use terms P ::= P | P
x• P that

are called threads. The term P
x• P corresponds to a thread that is performing P

in a critical section for x; when P terminates, the lock of x must be released (if P
does not contain

x•) and the continuation P may start. The thread P is reentrant
on x when

x• occurs at least twice in P.
States, ranged over by T , are multisets of threads, written P1 | · · · | Pn and

sometime shortened into
∏

i∈1..n Pi. We write x ∈ P if P contains
x•; we write

x ∈ T if there is P ∈ T such that x ∈ P.

Definition 4. The structural equivalence ≡ on threads is the least congruence
containing alpha-conversion of bound names, commutativity and associativity
of | with identity 0, closed under the rule:

((ν x) P) | T ≡ (ν x) (P | T) x /∈ var(T).

The operational semantics of a program
(
D , P

)
is a transition system where

the initial state is P , and the transition relation −→D is the least one closed
under the rules (the notation P [

x• P] stands for either P or P
x• P):

(Zero)
0

x• P | T −→D P | T
(NewO)

z fresh

(ν x) P | T −→D P{z/x} | T
(NewT)
(ν P) P | T −→D P | P | T

(IfT)
[[e]] �= 0

if e then P else P ′[
x• P] | T

−→D P [
x• P] | T

(IfF)
[[e]] = 0

if e then P else P ′[
x• P] | T

−→D P ′[
x• P] | T

(Call)
[[e]] = v A(y; z) = P ∈ D

A(u; e)[
x• P] | T −→D P{u; v/y, z}[

x• P] | T

(Sync)
x /∈ T

sync(x){ P }. P | T −→D P
x• P | T

(Cong)
T ′

1 −→D T ′
2

T1 ≡ (ν x) T ′
1 (ν x) T ′

2 ≡ T2

T1 −→D T2

We often omit the subscript of −→D when it is clear from the context. We
write −→∗ for the reflexive and transitive closure of −→.

Definition 5 (deadlock-freedom). A program
(
D , P

)
is deadlock-free if the

following condition holds:

whenever P −→∗ T and T ≡ (ν x1) · · · (ν xn) (sync(x){ P ′ }. P | T ′)
then there exists T ′′ such that T −→ T ′′.

618 C. Laneve

Example 2. We select three processes and discuss their behaviours, highlighting
whether they deadlock or not:

– (ν sync(x){ sync(y){ 0 } }) sync(x){ sync(y){ 0 } }. This process spawns a
thread that acquire the locks of x and y in the same order of the main thread:
no deadlock will ever occur.

– On the contrary, the process (ν sync(y){ sync(x){ 0 } }) sync(x){ sync(y)
{ 0 }} spawns a thread acquiring the locks in reverse order. This is a compu-
tation giving a deadlock:

(ν sync(y){ sync(x){ 0 } }) sync(x){ sync(y){ 0 } }
−→ sync(y){ sync(x){ 0 } } | sync(x){ sync(y){ 0 } }
−→ sync(x){ 0 } y• 0 | sync(x){ sync(y){ 0 } }
−→ sync(x){ 0 } y• 0 | sync(y){ 0 } x• 0

– The following method

A(x, y;n) = if (n = 0) then (ν sync(y){ sync(x){ 0 } }) sync(y){ 0 }
else sync(x){ A(x, y;n − 1) }

performs n-nested synchronizations on x (reentrancy) and then spawns a
thread acquiring the locks y, x in this order, while the main thread acquire
the lock y. This method deadlocks for every n � 1, however it never deadlocks
when n � 0.

4 Static Semantics

Environments, ranged over by Γ , contain the types of objects, e.g. x : C
(we assume objects have all the same class C), the type of integer variables
e.g. x : int, and the types of process names, e.g. A : [C; int]. Types C and int
are ranged over by T. Let dom(Γ) be the domain of Γ and let

– Γ, x:T, when x /∈ dom(Γ)

(Γ, x:T)(y)
def
=

{
T if y = x
Γ (x) otherwise

– Γ + Γ ′, when x ∈ dom(Γ) ∩ dom(Γ ′) implies Γ (x) = Γ ′(x):

(Γ + Γ ′)(x)
def
=

⎧
⎨

⎩

Γ (x) if x ∈ dom(Γ)
Γ ′(x) if x ∈ dom(Γ ′)
undefined otherwise

We also use sequences σ of (object) names that record the nesting of synchro-

nizations. Let (x1 · · · xn)t
def
= �i∈1..n−1(xi, xi+1)t.

A Lightweight Deadlock Analysis for Programs 619

The static semantics has two judgments:

– Γ � e : T – the expression e has type T in Γ ;
– Γ ;σ �t P : � – the thread P with name t has lam � in Γ ;σ.

Fig. 1. The type system (we assume a function name fA for every process name A)

The type system is defined in Fig. 1. A few key rules are discussed. Rule
(T-Zero) types the process 0 in a thread t that has locked the objects in σ
in (inverse) order. The lam is the conjunction of dependencies in σ with thread
t – c.f. notation (σ)t. Rule (T-Sync) types the critical section P with a sequence
of locks extended with x. The corresponding lam is in disjunction with the lam
of the continuation P ′ because, in P ′ the lock on x has been released. Rule
(T-Par) types a parallel composition of processes by collecting the lams of
the components. Rule (T-Call) types a process name invocation in terms of a
(lam) function invocation and constrains the sequences of object names in the
two invocations to have equal lengths (|u| = |C|) and the types of expressions
to match with the types in the process declaration. The arguments of the lam
function invocation are extended with the thread name of the caller and the
name of the last object locked by it (and not yet released). In addition we also
conjunct the dependencies (σ · x)t created by the caller.

620 C. Laneve

Example 3. Let us show the typing of the method buildTable in the Introduc-
tion (the keywords newThread and newObject are replaced by ν). Let

Γ = buildTable:[C, C, C, C; int], x:C, y:C, n:int, t:C, u:C
P = sync(y){sync(x){0}}
Q = (ν sync(x){sync(z){0}}) buildTable(t, u, z, y;n − 1)

Then

Γ, z : C;u · y · x �t 0 : �1 �1 = (u, y)t�(y, x)t
Γ, z : C;u · y �t sync(x){0} : �1

Γ, z : C;u �t P : �1

(∗)
Γ, z : C;u �t Q : �2

Γ, z : C;u �t if n = 0 then P else Q : �1 + �2

Γ ;u �t (ν z) (if n = 0 then P else Q : (ν z) �1 + �2)

where �2 = (ν s, v) �′
2 + �′′

2 and (∗) are the two proof trees

· · ·
Γ, z : C, s:C, v:C; v �t sync(x){sync(z){0}} : �′

2

and

· · ·
Γ, z : C;u �t buildTable(t, u, z, y;n − 1) : �′′

2

(the reader may complete them). After completing the proof tree, one obtains
the lam function

buildTable(t, u, x, y) = (ν z, s, v) ((u, y)t�(y, x)t
+(v, x)s�(x, z)s � buildTable(t, u, z, y))

which has an additional argument with respect to the one in the Introduction.

The following theorem states the soundness of our type system.

Theorem 2. Let Γ � (
D , P

)
:
(
L , �

)
. If

(
L , �

)
has no circularity then

(
D , P

)

is deadlock-free.

Example 4. Let us verify whether the process buildTable(x, x, n) is deadlock-
free. The lam function associated by the type system is detailed in Example 3.
The interpretation function IL (buildTable) is computed as follows:

I
(0)
L (buildTable) = {∅}

I
(1)
L (buildTable) = { {(u, y)t, (y, x)t, (u, x)t} }

I
(2)
L (buildTable) = { {(u, y)t, (y, x)t, (u, x)t}, {(u, y)t} }.

A Lightweight Deadlock Analysis for Programs 621

Since I
(2)
L = IL , we are reduced to compute I

(2)
L (buildTable(t, u, x, x)).

That is

{ {(u, y)t, (y, x)t, (u, x)t}, {(u, y)t} }{x/y} = { {(u, x)t, (x, x)t}, {(u, x)t} }

which has no circularity, therefore the process buildTable(x, x, n) is
deadlock-free.

It is interesting to verify whether the process buildTableD(x, x, n) is
deadlock-free, where buildTableD is the method having philosophers with
symmetric strategies:

buildTableD(x,y;n) = (ν z)(if (n=0) then sync(x){ sync(y){ 0 } }
else (ν sync(x){ sync(z){ 0 } })

buildTableD(z,y;n-1)
)

In this case IL (buildTableD) = { {(u, x)t, (x, y)t, (u, y)t}, {(x, y)�, (u, y)t} }.
It is easy to verify that IL (buildTableD(t, x, x)) has a circularity, therefore the
process buildTableD(x, x, n) may have (and actually has) a deadlock.

5 Remarks About the Analysis Technique

The deadlock analysis technique presented in this paper is lightweight because it
is compact, intelligible and theoretically manageable. The technique is also very
powerful because we can successfully verify processes like buildTable and its
variant where every philosopher has a symmetric strategy. However, there are
processes for which our technique of collecting dependencies is too rough (and
we get false positives).

One example is

(ν sync(x){ sync(z){ sync(y){ 0 } } }) sync(x){ sync(y){ sync(z){ 0 } } }.

This process has two threads: the first one locks x and then z and y in order;
the second one locks x and then grabs y and z in order. Since the two threads
initially compete on the object x, they will be executed in sequence and no
deadlock will ever occur. However, if we compute the dependencies, we obtain

(x · z · y)t � (x · y · z)s

that is equal to ((x, z)t�(z, y)t) � ((x, y)s�(y, z)s) where the reader may easily
recognize the circularity (z, y)t�(y, z)s. This inaccuracy follows by the fact that
our technique does not record the dependencies between threads and their state
(of locks) when the spawns occur: this is the price we pay to simplicity. In [9]
we overcome this issue by associating line codes to symbolic names and depen-
dencies. Then, when a circularity is found, we can exhibit an abstract witness
computation that, at least in the simple cases as the above one, can be used to
manually verify whether the circularity is a false positive or not.

622 C. Laneve

Another problematic process is A(x, y, n) in Example 2(3). This process never
deadlocks when n � 0. However, since our technique drops integer values, it
always return a circularity (this is a correct result when n > 0 and it is false
positive otherwise). To cope with these cases, it suffices to complement our
analysis with standard techniques of data-flow analysis and abstract evaluation
of expressions.

6 Related Works and Conclusions

In this paper we have defined a simple technique for detecting deadlocks in
object-oriented programs. This technique uses an extension of the lam model in
order to cope with reentrant locks, a standard feature of object-oriented pro-
grams. We have defined an algorithm for verifying the absence of circularities
in lams and we have applied this model to a simple concurrent object-oriented
calculus. This work is intended to serve as a core system for studying the con-
sequences of extensions and variations.

The lam model has been introduced and studied for detecting deadlocks of
an object-oriented language with futures (and no lock and lock reentrancy) [11],
but the extension discussed in this paper is new as well as the algorithm for the
circularity of lams. We have prototyped this algorithm in JaDA, where we use it
for the deadlock analysis of Java bytecode [9]. The paper [15], reports an initial
assessment of JaDA with respect to other tools (it also contains a (very) informal
description of the algorithm). As we discussed in the Introduction, the model
has been also applied to process calculi [10,14].

Several techniques have been developed for the deadlock detection of con-
current object-oriented languages. The technique [2] uses a data-flow analysis
that constructs an execution flow graph and searches for cycles within this
graph. Some heuristics are used to remove likely false positives. No alias analy-
sis to resolve object identity across method calls is attempted. This analysis is
performed in [6,18], which can detect reentrance on restricted cases, such as
when lock expressions concern local variables (the reentrance of formal param-
eters, as in buildTable (x,x;0) is not detected). The technique in [3] and its
refinement [6] use a theory that is based on monitors. Therefore the technique
is a runtime technique that tags each segment of the program reached by the
execution flow and specifies the exact order of lock acquisitions. Thereafter,
these segments are analyzed for detecting potential deadlocks that might occur
because of different scheduler choices (than the current one). This kind of tech-
nique is partial because one might overlook sensible patterns of methods’ argu-
ments (cf. buildTable , for instance). A powerful static techniques that is based
on abstract interpretation is SACO [8]. SACO has been developed for ABS, an
object-oriented language with a concurrent model different from Java. A com-
parison between SACO and a tool using a technique similar to the one in this
paper can be found in [11].

A Lightweight Deadlock Analysis for Programs 623

Our future work includes the analysis of concurrent features of
object-oriented calculi that have not been studied yet. A relevant one is thread
coordination, which is usually expressed by the methods wait and notify (and
notifyAll). These methods modify the scheduling of processes: the thread exe-
cuting wait(x) is suspended, and the corresponding lock on x is released; the
thread executing notify(x) wakes up one thread suspended on x, which will
attempt again to grab x. A simple deadlock in programs with wait and notify
is when the wait operation is either mismatched or happens-after the matching
notification. For this reason we are currently analysing Petri Nets techniques
that complement our extended lam model with happen-before informations, in
the same way as we did for process calculi.

References

1. Abadi, M., Flanagan, C., Freund, S.N.: Types for safe locking: static race detection
for java. ACM Trans. Program. Lang. Syst. 28, 207–255 (2006)

2. Atkey, R., Sannella, D.: Threadsafe: static analysis for java concurrency. In: Elec-
tronic Communications of the ECEASST, vol. 72 (2015)

3. Bensalem, S., Havelund, K.: Dynamic deadlock analysis of multi-threaded pro-
grams. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC 2005. LNCS, vol. 3875, pp.
208–223. Springer, Heidelberg (2006). https://doi.org/10.1007/11678779 15

4. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe program: preventing
data races and deadlocks. In: OOPSLA, pp. 211–230. ACM (2002)

5. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge
University Press, Cambridge (2002)

6. Eslamimehr, M., Palsberg, J.: Sherlock: scalable deadlock detection for concurrent
programs. In: Proceedings of the 22nd International Symposium on Foundations
of Software Engineering (FSE-22), pp. 353–365. ACM (2014)

7. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI, pp.
338–349. ACM (2003)

8. Flores-Montoya, A.E., Albert, E., Genaim, S.: May-happen-in-parallel based dead-
lock analysis for concurrent objects. In: Beyer, D., Boreale, M. (eds.) FMOODS/-
FORTE -2013. LNCS, vol. 7892, pp. 273–288. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38592-6 19

9. Garcia, A., Laneve, C.: JaDA - the Java deadlock analyser. In: Behavioural Types:
From Theories to Tools, pp. 169–192. River Publishers (2017)

10. Giachino, E., Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process
networks. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp.
63–77. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6 6

11. Giachino, E., Laneve, C., Lienhardt, M.: A framework for deadlock detection in
core ABS. Softw. Syst. Model. 15(4), 1013–1048 (2016)

12. Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of some problems in Petri
nets. Theor. Comput. Sci. 4(3), 277–299 (1977)

13. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C.,
Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer,
Heidelberg (2006). https://doi.org/10.1007/11817949 16

14. Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process networks. Inf.
Comput. 252, 48–70 (2017)

https://doi.org/10.1007/11678779_15
https://doi.org/10.1007/978-3-642-38592-6_19
https://doi.org/10.1007/978-3-642-38592-6_19
https://doi.org/10.1007/978-3-662-44584-6_6
https://doi.org/10.1007/11817949_16

624 C. Laneve

15. Laneve, C., Garcia, A.: Deadlock detection of java bytecode. In: LOPSTR 2017
Pre-proceedings (2017). http://arxiv.org/abs/1709.04152

16. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

17. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, ii. Inf. Comput.
100, 41–77 (1992)

18. Naik, M., Park, C.-S., Sen, K., Gay, D.: Effective static deadlock detection. In:
Proceedings of the 31st International Conference on Software Engineering (ICSE
2009), pp. 386–396. ACM (2009)

19. Suenaga, K.: Type-based deadlock-freedom verification for non-block-structured
lock primitives and mutable references. In: Ramalingam, G. (ed.) APLAS 2008.
LNCS, vol. 5356, pp. 155–170. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89330-1 12

20. Vasconcelos, V.T., Martins, F., Cogumbreiro, T.: Type inference for deadlock
detection in a multithreaded polymorphic typed assembly language. In: PLACES.
EPTCS, vol. 17, pp. 95–109 (2009)

http://arxiv.org/abs/1709.04152
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-540-89330-1_12
https://doi.org/10.1007/978-3-540-89330-1_12

Formal Specification and Verification
of Dynamic Parametrized Architectures

Alessandro Cimatti, Ivan Stojic(B), and Stefano Tonetta

FBK-irst, Trento, Italy
{cimatti,stojic,tonettas}@fbk.eu

Abstract. We propose a novel approach to the formal specification and
verification of dynamic architectures that are at the core of adaptive
systems such as critical infrastructure protection. Key features include
run-time reconfiguration based on adding and removing components and
connections, resulting in systems with unbounded number of compo-
nents. We provide a logic-based specification of a Dynamic Parametrized
Architecture (DPA), where parameters represent the infinite-state space
of possible configurations, and first-order formulas represent the sets of
initial configurations and reconfiguration transitions. We encode infor-
mation flow properties as reachability problems of such DPAs, define a
translation into an array-based transition system, and use a Satisfiability
Modulo Theories (SMT)-based model checker to tackle a number of case
studies.

1 Introduction

In many applications, safety-critical systems are becoming more and more net-
worked and open. For example, many critical infrastructures such as energy
distribution, air traffic management, transport infrastructures, and industrial
control nowadays employ remote communication and control. Critical infrastruc-
ture protection is becoming of paramount importance as witnessed for example
by related European and US frameworks [1,2] which promote actions to make
critical infrastructures more resilient.

In order to be resilient, a system must be adaptive, changing its architec-
tural configuration at run-time, due to new requirements, component failures or
attacks. A reconfiguration means adding and removing components and connec-
tions, so that the resulting system has an infinite state space where each state
is an architectural configuration. In this context, simple reachability properties
such as the existence of information flow paths become very challenging due to
the interplay between communications and reconfigurations. The design, imple-
mentation, and certification of a system with such properties are the challenges
of the European project CITADEL [3].

While the literature about the formal specification of dynamic software archi-
tectures is abundant [5,7–10,21,24–26,31–33], very few works consider their for-
mal verification and none of them provided a concrete evaluation showing the
feasibility of the proposed analysis.
c© The Author(s) 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 625–644, 2018.
https://doi.org/10.1007/978-3-319-95582-7_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_37&domain=pdf

626 A. Cimatti et al.

If the number of components is bounded, formal verification can be reduced
to static verification by encoding in the state if the component is active or not
with possibly an additional component to control the (de)activation (see, for
example, [9]). If, instead, new components can be added, the encoding is less
trivial. In principle, parametrized verification, by verifying a system considering
any number of replicas of components, seems a good candidate, but we need
the capability to encode in the state the activation of an unbounded number of
components.

In this paper, we propose Dynamic Parametrized Architectures (DPAs),
which extend a standard architecture description of components and connections
with (1) parameters and symbolic constraints to define a set of configurations,
(2) symbolic constraints to define the sets of initial configurations and reconfig-
urations. In particular, the architectural topology is represented by indexed sets
of components and symbolic variables that can enable/disable the connections,
while the constraints are specified with first-order formulas with quantifiers over
the set of indices.

We propose to use Satisfiability Modulo Theories (SMT)-based model check-
ing for array-based transition systems [13,19], a syntactically restricted class of
parametrized transition systems with states represented as arrays indexed by an
arbitrary number of processes. We define carefully the fragment of first-order
logic used in the architecture description so that we can provide a translation
into array-based transition systems.

In this paper, we focus on simple information “can-flow” properties over
DPAs: we check if information can pass from one component to another one
through a sequence of communications between connected components and
reconfigurations. We automatically translate the DPA and the properties into an
array-based transition system and we verify the properties with Model Checker
Modulo Theories (MCMT) [19].

Summarizing, the contributions of the paper are: (1) to define a new formal
specification of dynamic architectures; (2) to translate the reachability problem
of dynamic architectures into reachability problems for infinite-state array-based
transition systems; (3) to provide a prototype implementation and an experimen-
tal evaluation of the feasibility of the approach.

The rest of the paper is structured as follows: Sect. 2 gives an account of
related work; Sect. 3 exemplifies the problem using a concrete language; Sect. 4
defines the abstract syntax and semantics of DPAs; Sect. 5 describes array-based
transition systems and the translation from DPAs; Sect. 6 presents some bench-
marks and experimental results; and, finally, in Sect. 7, we draw some conclusions
and directions for future works.

2 Related Work

The approach closest to the one presented below is proposed in [31] as exten-
sion of the BIP (Behavior, Interaction, Priority) framework [6]. BIP has been
extended for dynamic and parametrized connections in [7,23], and to allow

Formal Specification and Verification of DPAs 627

spawning new components and interactions in [9]. The work in [31] proposes
a second-order logic to specify constraints on the evolution of the architecture
including creation/removal of components. However, no model checking proce-
dure is provided to verify such dynamic architectures. In this paper, we restrict
the logic, for example avoiding second-order quantification, so that the language
is still suitable to describe interesting dynamics but can be translated into array-
based transition systems for model checking.

Since a system architecture can be seen as a graph of connections, graph
grammars [29] are a good candidate for specification of dynamic architectures.
In fact, in [21,26,32,33], the authors propose to model dynamic architectures
in terms of graph transformation systems: the initial configuration is repre-
sented by a graph (or hypergraph) and reconfigurations as graph production
rules, which are based on subgraph matching. In [21,26,32], there is no attempt
at formal verification, while in [33] it is limited to finite-state model checking.
Moreover, compared to our language, reconfigurations are limited to matching a
finite subgraph which does not allow to express transition guards based on nega-
tion or updates that change sets of components. These limitations can be partly
lifted considering infinite-state attributed graph grammars and related verifica-
tion techniques [22]. After a first attempt to use these techniques as backends
for DPAs, we concluded that in practice they do not scale very well on our
benchmarks.

π-calculus [27] is another clear candidate to represent the semantics of
dynamic architectures, since it has the ability to describe the creation of pro-
cesses and their dynamic synchronizations. As is, it does not clearly define the
topology of the network, but works such as [10,24] use it as underlying semantics
for dynamic extensions of architecture specification languages. Also in this con-
text, no previous work provided a concrete proposal for model checking showing
the feasibility of the approach.

The analysis of how information can flow from one component to another is
addressed in many contexts such as program analysis, process modeling, access
control, and flow latency analysis. The novel challenge addressed by this paper is
posed by the complexity of the adaptive systems’ architectures, for which design
and verification is an open problem. We propose a very rich system specification
and we provide verification techniques for simple information flow properties
formalized as reachability problems.

In this paper, we consider information flow as reachability, which is well stud-
ied for standard state machine models. More complex information flow proper-
ties extensively studied in the literature on security are related to the notion of
non-interference. In the seminal work of Goguen and Meseguer [20], the simple
information flow property is extended to make sure that components at different
levels of security do not interfere. The verification of non-interference on DPAs
is an open problem left for future work.

628 A. Cimatti et al.

3 An Example of a Dynamic Parametrized Architecture

In this section, we describe an example of a dynamic architecture in an extended
version of theArchitectureAnalysis andDesignLanguage (AADL) [16],which is an
industrial language standardized bySAE International [30]. The concrete language
extension is under definition [12] within the CITADEL project, while in this paper
we focus on the underlying formal specification and semantics of DPAs.

Fig. 1. Example of a component
implementation in AADL

In AADL, the system is specified in terms
of component types, defining the interfaces
and thus the input/output ports, and com-
ponent implementations, defining how com-
posite components are built from other com-
ponents, called subcomponents, composed by
connecting their ports. An example of an
AADL component implementation is shown
in Fig. 1. The system represents a network of
computers, in which one is a database server
that contains sensitive data; three are appli-
cation servers that provide services to the
clients, with two of them connected to the
database server; and the others are clients.
Each client is connected to one server and
may be connected to other clients. As can be
seen, the number of components and that of
their connections are finite and static. The
specification represents a single static archi-
tecture.

We now extend the example to consider
an arbitrary number of servers and clients
and to consider changes in the configurations
so that computers and connections can be
added/removed and computers can be com-
promised becoming untrusted (due to a fail-
ure or attack). We consider the system to be safe if no information can flow
from the database to the untrusted clients; otherwise the system is unsafe. This
dynamic version of the system is specified in Fig. 2 (for the moment, ignore the
highlighted parts of the code), in an extended version of AADL. In particular,
the extension has two layers:

1. Parametrized Architecture: the subcomponents can now be indexed sets (e.g.,
clients is a set indexed by C) and connections are specified iterating over the
indices (e.g., there is a connection from servers[s] to clients[c] for each s in S,
c in C); besides the sets of indices, the architecture is parametrized by other
parameters that can be used in expressions that guard the connections (e.g.,
there exists a connection from servers[s] to clients[c] only if s = connectedTo[c]);
notice that also parameters may be indexed sets.

Formal Specification and Verification of DPAs 629

2. Dynamic Parametrized Architecture: an initial formula defines the set of initial
configurations; a set of reconfigurations defines the possible changes in the
values of the parameters.

Analyzing the reconfigurations of the example (still ignoring the highlighted
parts), we can see that every time an untrusted client is connected to a server,
the server becomes untrusted as well. Since the connection with the database
is disabled when the server is not trusted, one may erroneously think that no
information can flow from the database to an untrusted client. In fact, the infor-
mation can flow to the server while it is trusted, a reconfiguration may happen
making the server untrusted, and the information can then flow to an untrusted
client, making the system unsafe.

Fig. 2. Example of a DPA specified in an extension of AADL

The version of the example with the highlighted parts is safe because it
introduces two phases (represented by the protected parameter) and it allows
connection to the database only in the protected mode, while reconfigurations
downgrading the servers are allowed only in the unprotected mode. Proving
automatically that this system is safe is quite challenging.

4 Formal Specification of Dynamic Parametrized
Architectures

4.1 Definitions

In the following, let N be a countable set of indexes (in practice, we set N = Z).
An index set is a finite subset of N . Given a set S and an index set I, S is

630 A. Cimatti et al.

indexed by I iff there exists a bijective mapping from I to S. If S is indexed by
I, we write S = {si}i∈I . An index set parameter is a variable whose domain is
the set of finite subsets of N .

Definition 1. An architectural configuration is a pair (C,E), where C is a set
of components and E ⊆ C × C is a set of connections between components.

We now define a more structured version of architecture, still flat but in which
components are grouped into sets. We use indexed sets of components. For exam-
ple, I = {1, 2, 3} is a set of indexes and C = {c1, c2, c3} and C ′ = {c′

1, c
′
2, c

′
3} are

two sets of components indexed by I.

Definition 2. An architectural structured configuration is a pair (C, E), where:

– C is a finite set of disjoint sets of components indexed by some index sets;
– E ⊆ ⋃

C∈C ×⋃
C∈C is a set of connections between components.

If c ∈ C and C ∈ C we write simply (abusing notation) c ∈ C.

For example, consider index sets I1, I2, where I1 = {1, 2, 3}, I2 = {2}, C =
{C1, C2, C3}, C1 = {c1i}i∈I1 , C2 = {c2i}i∈I1 , C3 = {c3i}i∈I2 = {c32}, E =
{〈c1i, c2i〉 | i ∈ I1}.

Definition 3. A system of parameters is a pair (I,V) where I is a finite set
of symbols for index set parameters and V is a finite set of symbols for indexed
sets of parameters, where each V ∈ V is associated with an index set parameter
symbol IV ∈ I and with a sort sortV (in practice, sortV ∈ {bool, int}).
Definition 4. An assignment to a system of parameters (I,V) is a tuple μ =
(μI , {μV }V ∈V), where

– μI : I → {S ⊂ N : Sfinite};
– For V ∈ V, μV : μI(IV) → R(sortV) (in practice, R(bool) = B = {�,⊥}

and R(int) = Z).

The following definitions refer to formulas of the logic for systems of parameters
and the evaluation (under an assignment μ) �·�μ of its expressions and formulas.
These are defined later in Sect. 4.2.

Definition 5. A parametrized architecture is a tuple A = (I,V,P, Ψ, Φ) where

– (I,V) is a system of parameters;
– P is a finite set of parametrized indexed sets of components; each set P ∈ P

is associated with an index set IP ∈ I;
– Ψ = {ψP (x)}P∈P is a set of formulas (component guards) over (I,V) and a

free variable x;
– Φ = {φPQ(x, y)}P,Q∈P is a set of formulas (connection guards) over (I,V)

and free variables x, y.

Given an assignment μ to the system of parameters (I,V), the instantiated
(structured architectural) configuration defined by the assignment μ is given by
μ(A) := (C, E) (we also write (Cμ, Eμ)) where

Formal Specification and Verification of DPAs 631

– C = {CμP : P ∈ P}. For all CμP ∈ C, for all indexes i, cPi ∈ CμP iff
i ∈ μI(IP) and �ψP (i/x)�μ = �.

– for all CμP , CμQ ∈ C, for all component instances cPi ∈ CμP , cQj ∈ CμQ,
(cPi, cQj) ∈ E iff �φPQ(i/x, j/y)�μ = �.

Syntactic restrictions: formulas in Ψ and Φ are quantifier-free and do not contain
index set predicates =, ⊆.

Example: For I = {I1, I2}, V = {V }, V a set of Boolean variables, with IV = I1,
P = {P1, P2, P3}, IP1 = I1, IP2 = I1, IP3 = I2, ψP1(x) = ψP2(x) = ψP3(x) := �,
φP1P2(x, y) := x = y∧x ∈ IV ∧V [x], φP1P3(x, y) := x ∈ IV ∧¬V [x], φP2P3(x, y) =
φP2P1(x, y) = φP3P1(x, y) = φP3P2(x, y) := ⊥. By assigning μI(I1) = {1, 2, 3},
μI(I2) = {2}, μV (1) = μV (2) = μV (3) = �, we get the configuration in the
previous example.

Definition 6. A dynamic parametrized architecture is a tuple (A, ι, κ, τ), where

– A = (I,V,P, Ψ, Φ) is a parametrized architecture;
– ι is a formula over (I,V), specifying the set of initial assignments;
– κ is a formula over (I,V), specifying the invariant;
– τ is a transition formula over (I,V), specifying the reconfiguration transitions.

The dynamic parametrized architecture defines a dynamically changing architec-
ture as a transition system over (structured architectural) configurations obtained
by instantiation from A. The set of initial configurations is given by

{μ(A) : μ is an assignment to (I,V) such that �ι�μ = �and �κ�μ = �}.

A configuration μ′(A) is directly reachable from a configuration μ(A) iff �τ�μμ′ =
� and �κ�μ′ = �.
Syntactic restrictions:

– ι is of the form ∀I1
i1∀IC

2
i2 α, where α is a quantifier-free formula in which

index set predicates =, ⊆ do not appear under negation.
– κ is a quantifier-free formula without index set predicates =, ⊆.
– τ is a disjunction of transition formulas of the form ∃I1

i1∃IC
2
i2 (α ∧ β ∧ γβ)

where I1, I2 ⊆ I, α is a quantifier-free formula, β is a conjunction of tran-
sition formulas of the forms 1) I ′ = I ∪ {tk}k, 2) I ′ = I \ {tk}k, 3) t ∈ I ′,
4) V ′[t] = e, 5) ∀I′

V ′ j V ′[j] = e, where I ∈ I, I ′ ∈ I ′ are variables of sort is

(each variable I ′ ∈ I ′ may appear at most once), t, tk are terms over (I,V)
of sort idx, V ′ ∈ V ′ is a variable of one of the sorts vsk (for each V ′, either
atoms of the form 4 appear in β, or at most a single atom of the form 5
appears: atoms of forms 4, 5 never appear together), e are terms over (I,V)
of sorts elk, and j is a variable of sort idx; furthermore, value V ′[tk] of
every introduced (by an atom of form 1,with I ′ = I ′

V ′ and I = IV) parameter
must be set in β with an atom of form 4 or 5; finally, the frame condition γβ

is a conjunction of

632 A. Cimatti et al.

• transition formulas ∀I′
V ′ j

((∧
t∈tV ′ (j �= t)

)
→ V ′[j] = V [j]

)
for all V ′ ∈

V which do not appear in a conjunct of form 5 in β, where tV ′ is the
(possibly empty) set of all terms which appear as indexes of V ′ in β, and

• transition formulas I ′ = I for all I ′ ∈ I ′ which do not appear in conjuncts
of forms 1, 2 in β.

(In practice, when specifying the transition formulas, the frame condition γβ is
generated automatically from β, instead of being specified directly by the user.)

Example: Consider the parametrized architecture from the previous example,
with ι := I1 = {1, 2, 3} ∧ I2 = {2} ∧ V [1] ∧ V [2] ∧ V [3]; , κ := � and τ := τ1 ∨ τ2,
where τ1 := ∃IC

1
i (I ′

1 = I1 ∪ {i} ∧ V ′[i]) and τ2 := ∃I1i (¬V ′[i]). This defines
the set of initial architectures which contains only the single architecture from
the previous example and two transitions. The transition τ1 adds a new index
i ∈ IC

1 into the index set I1, adding two new components C1i and C2i and a
new parameter V [i] and sets the value of the newly added parameter V [i] to
�, adding a connection between the two new components C1i and C2i. The
transition τ2 changes the value of some V [i] to ⊥, removing the connection
between components C1i and C2i and adding connections between component
C1i and each of the components C3j , j ∈ I2.

Definition 7. Given a dynamic parametrized architecture (A, ι, κ, τ), where
A = (I,V,P, Ψ, Φ), a configuration is an assignment to the system of param-
eters (I,V). For a configuration μ(A) = (C, E), a communication event is a
connection e ∈ E.

Trace of the dynamic parametrized architecture is a sequence e1, e2, . . . of
configurations and communication events, such that:

– e1 = μ1 is a configuration such that μ1(A) is in the set of initial configura-
tions.

– The subsequence ek1 , ek2 , . . . of all configurations in the trace is such that for
all ki, eki+1(A) (if it exists) is directly reachable from eki

(A).
– For all communication events ek = (ck, c′

k) in the trace, (ck, c′
k) ∈ Eer(k) ,

where er(k), r(k) := max{n ∈ N : n < k, enis a configuration}, is the last
configuration prior to ek.

Definition 8. An instance of the dynamic information flow problem is a tuple
(D,Psrc, ρsrc, Pdst, ρdst) where

– D = (A, ι, κ, τ) is a dynamic parametrized architecture;
– Psrc ∈ PA and Pdst ∈ PA are (source and destination) parametrized indexed

sets of components;
– ρsrc(x) and ρdst(x) (source and destination guard) are formulas over

(IA,VA).

Formal Specification and Verification of DPAs 633

The problem is to determine whether there exists a finite trace (called
information flow witness trace) e1, e2, . . . , en of D with a subtrace ek1 =
(ck1 , c

′
k1

), . . . , ekm
= (ckm

, c′
km

) of communication events such that:

– ck1 = cPsrcisrc ∈ Cer(k1)Psrc
for some isrc, and �ρsrc(isrc/x)�er(k1) = � (the

information originates in a source component);
– c′

km
= cPdstidst ∈ Cer(km)Pdst

for some idst, and �ρdst(idst/x)�er(km) = � (the
information is received by a destination component);

– for all n such that 1 ≤ n < m, c′
kn

= ckn+1 (the intermediate components
form a chain over which the information propagates);

– for all n, 1 ≤ n < m, for all configurations ek′ such that kn < k′ < kn+1,
ckn+1 ∈ Cek′ (after an intermediate component receives the information and
before it passes it on, it is not replaced by a fresh component with the same
index).

If such a trace exists, we say that information may flow from a source component
which satisfies the source condition given by Psrc, ρsrc to a destination component
which satisfies the destination condition given by Pdst, ρdst.
Syntactic restrictions: ρsrc and ρdst are quantifier-free formulas, without index
set predicates =, ⊆.

4.2 Logic for Systems of Parameters

In the following, we define a many-sorted first-order logic [15]. Signatures contain
no quantifier symbols except those explicitly mentioned.

Syntax. Theory TIDX = (ΣIDX , CIDX) of indexes with a single sort idx (in
practice, we are using the theory of integers with sort int and with standard
operators).

A finite number K of theories TELk
= (ΣELk

, CELk
) of elements, each with

a single sort elk with a distinguished constant symbol delk (a default value) (in
practice, we consider the theory of booleans with sort bool and the theory of
integers, the same as the theory TIDX).

The theory SPEL1,...,ELK

IDX (or simply SPEL
IDX) of systems of parameters with

indexes in TIDX and elements in EL1, . . . , ELK is a combination of the above
theories. Its sort symbols are idx, is, el1, . . . , elK , vs1, . . . , vsK , where is is
a sort for index sets and vsk is a sort for indexed sets of parameters of sort
elk. The set of variable symbols for each sort vsk contains a countable set of
variables {V I

k,n}n∈N for each variable symbol I of sort is (we omit the super-
script and subscripts when they are clear from the context). The signature is
the union of the signatures of the above theories, ΣIDX ∪ ⋃K

k=1 ΣELk
, with the

addition of: for sort idx, quantifier symbols ∀, ∃, and ∀I , ∀IC , ∃I , ∃IC for all
variables I of the sort is; predicate symbol ∈ of sort (idx, is); predicate sym-
bols =,⊆ of sort (is, is); function symbols ∪,∩, \ of sort (is, is, is); for every
n ∈ N, n-ary function symbol {·, . . . , ·}(n) (we write simply {·, . . . , ·}) of sort
(idx, . . . , idx, is); function symbols ·[·]k, k = 1, . . . , K (we write simply ·[·]) of
sorts (vsk, idx, elk).

634 A. Cimatti et al.

Semantics. A structure M = (idxM, isM, elM
1 , . . . , elM

k , vsM
1 , . . . , vsM

k , IM)
for SPEL

IDX is restricted in the following manner:

– isM is the power set of idxM;
– each vsM

k is the set of all (total and partial) functions from idxM to elM
k ;

– ∈ is interpreted as the standard set membership predicate;
– =, ⊆ are interpreted as the standard set equality and subset predicates;
– ∪, ∩, \ are interpreted as the standard set union, intersection and difference

on isM, respectively;
– for every n ∈ N, IM({·, . . . , ·}(n)) is the function that maps the n-tuple of

its arguments to the set of indexes containing exactly the arguments, i.e. it
maps every (x1, . . . , xn) ∈ (idxM)n to {x1, . . . , xn} ∈ isM;

– ·[·]k, k = 1, . . . , K are interpreted as function applications: (V [i])M :=
V M(iM).

The structure M is a model of SPEL
IDX iff it satisfies the above restrictions and

(idxM, IM�ΣIDX
), (elM

1 , IM�ΣEL1
), . . . , (elM

K , IM�ΣELK
) are models of TIDX ,

TEL1 , . . . , TELK
, respectively.

Definition 9. A formula (resp. term) over a system of parameters (I,V) is a
formula (resp. term) of the logic SPEL

IDX in which the only occurring symbols of
sort idx are from I and the only occurring symbols of sort vsk are from the
set {V ∈ V : sortV = elk}, for k = 1, . . . , K. Furthermore, in the formula all
accesses V [·] to parameters V ∈ V are guarded parameter accesses, i.e. each
atom α(V [t]) that contains a term of the form V [t] must occur in conjunction
with a guard which ensures that index term t is present in the corresponding
index set: t ∈ IV ∧ α(V [t]).

Definition 10. A transition formula over the system of parameters (I,V) is
a formula of the logic SPEL

IDX in which the only occurring symbols of sort idx
are from I ∪ I ′ and the only occurring symbols of sort vsk are from the set
{W ∈ V ∪ V ′ : sortW = elk}, for k = 1, . . . ,K. Furthermore, all accesses
W [·] to parameters W ∈ V ∪ V ′ are guarded parameter accesses (as defined in
Definition 9).

The subscripted quantifier symbols are a syntactic sugar for quantification over
index sets and their complements: all occurrences of the quantifiers ∀I i φ, ∀IC i φ,
∃I i φ, ∃IC i φ—where I is a variable of sort is, i is a variable of sort idx, and
φ is a formula—are rewritten to ∀i (i ∈ I → φ), ∀i (i �∈ I → φ), ∃i (i ∈ I ∧ φ),
∃i (i �∈ I ∧ φ), respectively, after which the formula is evaluated in the standard
manner.

Definition 11. Evaluation �φ�μ with respect to an assignment μ to a system of
parameters (I,V), of a formula (or a term) φ over (I,V) is defined by interpret-
ing I with IM = μI(I) for every I ∈ I and interpreting V [x] as follows for every
V ∈ V: (V [x])M = μV (xM) if xM ∈ μ(IV), and (V [x])M = dM

sortV
otherwise.

The evaluation �φ�μμ′ of a transition formula with respect to two assignments
μ, μ′ is defined by interpreting, in the above manner, (I,V) with μ and (I ′,V ′)
with μ′.

Formal Specification and Verification of DPAs 635

5 Analysis with SMT-Based Model Checking

5.1 Background Notions on SMT-Based Model Checking

Many-sorted first-order logic of arrays. The target logic for the trans-
lation is the many-sorted first-order logic [15] with theories for indexes, ele-
ments and arrays as defined in [18]. Following that paper, we fix a the-
ory TI = (ΣI , CI) for indexes whose only sort symbol is index and we
fix theories TEk

= (ΣEk
, CEk

), k = 1, . . . , K whose only sort symbols are
elemk, respectively. The theory AE1,...,EK

I (or simply AE
I) of arrays with

indexes in TI and elements in E1, . . . , EK is defined as the combination
of theories TI , TE1 , . . . , TEK

as follows. The sort symbols of AE
I are index,

elem1, . . . , elemK , array1, . . . , arrayK , the signature is Σ := ΣI ∪ ⋃K
k=1 ΣEi

∪
⋃K

k=1{·[·]k} where ·[·]k are function symbols of sorts (arrayk, index, elemk).
A structure M = (indexM, elemM

1 , . . . , elemM
K , arrayM

1 , . . . , arrayM
K , I) is a

model of AE
I iff arrayM

k are sets of all functions from indexM to elemM
k ,

respectively, the function symbols ·[·]k are interpreted as function applica-
tions, and MI = (indexM, I�ΣI

), MEk
= (elemM

k , I�ΣEk
) are models of TI ,

TEk
, k = 1, . . . ,K, respectively.

Array-Based Transition Systems. In the following, i, j denote variables of
the sort index, i denotes a set of such variables, a denotes a variable of one of
the array sorts, a denotes a set of such variables, notation a[i] denotes the set of
terms {a[i] : a ∈ a, i ∈ i}, and φ(x), ψ(x) denote quantifier free Σ(x) formulas.

As in [18], an array-based (transition) system (for (TI , TE1 , . . . , TEK
)) is a

triple S = (a, Init, T r) where

– a = {a1, . . . , an} is a set of state variables of the sorts array1, . . . , arrayK .
– Init(a) is the initial Σ(a)-formula of the form

∀i.φ(i, a[i]). (1)

– Tr(a, a′) is the transition Σ(a, a′)-formula and is a disjunction of formulas of
the form

∃i

(

ψ(i, a[i]) ∧
n∧

k=1

∀j a′
k[j] = tk(i, a[i], j, a[j])

)

(2)

where each tk is a Σ(a)-term which may contain nested if-then-else operators.

Given an array-based system S = (a, Init, T r) and a Σ(a)-formula U (unsafe
formula) of the form

∃i.φ(i, a[i]) (3)

an instance of the array-based safety problem is to decide whether there exists
n ∈ N such that the formula Init(a0) ∧ Tr(a0, a1) ∧ · · · ∧ Tr(an−1, an) ∧ U(an)
is AE

I -satisfiable.

Decidability of the Array-Based Safety Problem. The array-based safety
problem is in general undecidable (Thm. 4.1. in [18]), but it becomes decidable

636 A. Cimatti et al.

under 1) the following assumptions on the theory TI of indexes: local finiteness,
closedness under substructures, decidability of SMT(TI), 2) assumptions of local
finiteness of TE and of decidability of SMT(TE), and 3) further assumptions on
the array-based transition system under analysis (for details see Theorem 3.3.
and Theorem 4.6. in [18]).

5.2 Encoding into SMT-Based Model Checking

Translation of Formulas. We recursively define the translation ·A of formulas
and transition formulas of SPEL

IDX to formulas of AE
I . We set the index and

element sorts to correspond, i.e. index := idx and elemk := elk, k = 1, . . . ,K.
In practice, we set TI to be the theory of integers (with sort index = int),
number of element theories to K = 2, and we set E1 = TI and E2 to be the
theory of Booleans (with sort elem2 = bool).

– Symbols of the sorts idx and elk, k = 1, . . . ,K are treated as symbols of the
sorts index, elemk, k = 1, . . . , K, respectively.

– For a variable I of sort is, IA := aI , where aI is of the sort arraybool.
– For a variable V of sort vsk, V A := aV , where aV is of the sort arrayelemk .
– For a term t of sort idx and term T of sort is, (t ∈ T)A := TAt .
– For terms T1, T2 of sort is, (T1∩T2)At := TAt

1 ∧TAt
2 ; analogously for ∪ and \.

– For a variable I of sort is, IAt := IA[tA].
– ({e1, . . . , en})At :=

∨n
k=1

(
tA = eA

k

)
.

– For terms T1, T2 of sort is, (T1 = T2)A := ∀i (TAi
1 = TAi

2), where i is a fresh
variable of sort idx; analogously for ⊆ which is translated using →.

– For a variable V of sort vsk and a term t of sort idx, (V [t])A := V A[tA].
– Other logical connectives, quantifiers and operators are present in both logics

and are translated directly, e.g. (e1 ≤ e2)A := eA
1 ≤ eA

2 and (φ1 ∧ φ2)A :=
φA
1 ∧ φA

2 .

Translation of a Dynamic Information Flow Problem to an Array-
Based Safety Problem. Given a dynamic parametrized architecture D =
(A, ι, κ, τ) where A = (I,V,P, Ψ, Φ), and given an information flow problem
instance (D,Psrc, ρsrc, Pdst, ρdst), we generate a safety problem (S, U) where
S = (a, Init, T r), as follows.

Given a system of parameters (I,V), we set a to be the (disjoint) union:

a := {aI : I ∈ I, sort(aI) = arraybool}
∪ {aV : V ∈ V, sort(aV) = arraysortV }
∪ {aP : P ∈ P, sort(aP) = arraybool},

(4)

of the set of boolean array symbols aI which model index sets, the set of array
symbols aV which model sets of parameters, and the set of boolean array symbols
aP which model information taint of the component instances.

Formal Specification and Verification of DPAs 637

The initial formula Init is set to

ιA ∧ κA ∧ ∀j
(
aPsrc

[j] =
(
aIPsrc

[j] ∧ ψPsrc
(j/x)A ∧ ρsrc(j/x)A))

∧∧
P∈P\{Psrc} ∀j aP [j] = ⊥.

(5)

Here the third conjunct models the initial taint of the source components, by
specifying that a source component with index j is tainted iff it is present in the
system and satisfies the constraint ρsrc, and the last conjunct models the fact
that initially all non-source components are not tainted.

Recall that τ =
∨

k τk, where τk are of the form ∃I1
i1∃IC

2
i2 (αk ∧ βk ∧ γβk

)
(see Definition 6). The transition formula Tr is set to

∨

P,Q∈P
Taint(P,Q) ∨

∨

k

Reconfk. (6)

Here Taint(P,Q) is the following formula that models taint propagation between
two connected component instances of which the first one is tainted:

∃i1∃i2
(
φPQ(i1/x, i2/y)A ∧ aIP [i1] ∧ ψP (i1/x)A ∧ aIQ [i2] ∧ ψQ(i2/x)A

∧ aP [i1] ∧ ∀j (a′
Q[j] = (j = i2 ? � : aQ[j])) ∧ ∧

a�=aQ
∀j (a′[j] = a[j])

)
.

(7)

Reconfk is obtained from τk by the following steps.

Differentiation of Primed Parameter Accesses. We say that accesses to a primed
parameter V ′ ∈ V ′ in τk are differentiated if for all pairs of conjuncts of form 4 in
βk as defined in Definition 6, V ′[t1] = e1 and V ′[t2] = e2, αk contains a top-level
conjunct (t1 �= t2), i.e., αk is of the form α′

k ∧ (t1 �= t2). We may assume that
in τk, accesses to all primed parameters V ′ ∈ V ′ are differentiated. Note that if
the accesses to some primed parameter V ′ ∈ V ′ in τk are not differentiated, then
for a pair of undifferentiated accesses V ′[t1] = e1 and V ′[t2] = e2 formula τk can
be rewritten as a disjunction of two formulas τ=

k and τ �=
k which are of the same

general form as τk and are defined by

– τ=
k := ∃I1

i1∃IC
2
i2

(
α=

k ∧ β=
k ∧ γβ=

k

)
where α=

k := αk ∧ (t1 = t2) ∧ (e1 = e2),
and β=

k is obtained from βk by removing the conjunct V ′[t2] = e2;
– τ �=

k := ∃I1
i1∃IC

2
i2

(
α �=

k ∧ βk ∧ γβk

)
where α �=

k := αk ∧ (t1 �= t2).

It is easy to verify that the formulas τk and τ=
k ∨τ �=

k are equivalent. By continuing
the rewriting recursively, τ can be transformed into a disjunction of formulas with
differentiated accesses to primed parameters.

For a symbol I ′ ∈ I ′, there is exactly one conjunct in τk in which I ′ appears
in the equality, and it is one of I ′ = I ∪ {tk}k, I ′ = I \ {tk}k, or I ′ = I. In all
three cases, value of I ′ is a function of the value of I and some terms over (I,V),
and therefore the conjunct can be rewritten as ∀j (j ∈ I ′ ↔ UpdateI(j)) where
UpdateI is a term of sort bool over (I,V) and a free variable. For example, for
the first case we have UpdateI(j) = (j ∈ I ∨ ∨

k(j = tk)). The conjuncts in
τk of the form t ∈ I ′ can be rewritten as UpdateI(t). From τk we obtain τ ′

k by

638 A. Cimatti et al.

performing the above rewriting of conjuncts which contain I ′, for all I ′ ∈ I ′. It
is easy to verify that τ ′

k and τk are equivalent formulas.
For a symbol V ′ ∈ V ′, the set of conjuncts in the τ ′

k in which V ′ occurs is either
equal to {V ′[tk] = ek : k = 1, . . . , n} ∪ {∀I′

V ′ j ((
∧n

k=1(j �= tk)) → V ′[j] = V [j])}
where tk are differentiated, or to {∀I′

V ′ j V ′[j] = ej}. In both cases, the set of con-
juncts can be rewritten as ∀j (V ′[j] = UpdateV (j)), where UpdateV is a term of
sort sortV ′ ; in the first case,

UpdateV (j) := if j = t1 then e1 else if . . . else if j = tn then en

else if UpdateIV (j) then V [j] else dsortV ′

and in the second case UpdateV (j) := if UpdateIV (j) then V [j] else dsortV ′ .
Formula τ ′′

k is obtained from τ ′
k by performing the above rewrites for every

V ′ ∈ V ′. It is easy to verify that τ ′′
k and τ ′

k are equivalent.
From the invariant formula κ we obtain the next-state invariant κ′ by first

distributing set membership operator over the set operations (e.g. transforming
t ∈ I ∪ J to t ∈ I ∨ t ∈ J), and then replacing, for all I ∈ I, each term of the
form t ∈ I with the term UpdateI(t), and replacing, for all V ∈ V, each term
of the form V [t] with the term UpdateV (t). Analogously, from the formula ρsrc

and component guards ψP , P ∈ P we obtain their next-state versions ρ′
src and

ψ′
P , P ∈ P by performing the same transformations. Reconfk is set to

τ ′′
k

A ∧ κ′A∧
∀j

(
a′

Psrc
[j] =

(
UpdateIPsrc

(j)A ∧ ψ′
Psrc

(j/x)A ∧ (aPsrc
[j] ∨ ρ′

src(j/x)A)
))

∧∧
P∈P\{Psrc} ∀j

(
a′

P [j] = (UpdateIP (j)A ∧ ψ′
P (j/x)A ∧ aP [j])

)
.

(8)

Here the last conjunct updates the information taint for all components, by
setting it to true iff the component is present in the next state and it is currently
tainted. The third conjunct performs the same update for source components,
taking care to also taint the source components which satisfy the next-state
source condition ρ′

src.
Finally, the unsafe formula U is set to

∃i
(
aIPdst

[i] ∧ ψPdst
(i/x)A ∧ ρdst(i/x)A ∧ aPdst

[i]
)

, (9)

modeling the set of states in which there exists a destination component with
index i which satisfies the destination condition ρdst and is tainted.

The following theorems state that the information flow problem can be
reduced to the array-based safety problem, using the above translation. The
detailed proofs can be found in the extended version of the paper at https://es.
fbk.eu/people/stojic/papers/fm18.

Theorem 1. Problem (S, U), S = (a, Init, T r), which is obtained by translation
from an arbitrary information flow problem, where a is given by (4), Init is given
by (5), Tr is given by (6), (7), (8), and U is given by (9), is an array-based safety
problem.

https://es.fbk.eu/people/stojic/papers/fm18
https://es.fbk.eu/people/stojic/papers/fm18

Formal Specification and Verification of DPAs 639

The proof amounts to the inspection of the obtained formulas, to confirm that
they are indeed in the required fragment.

Theorem 2. Let DIFP = (D,Psrc, ρsrc, Pdst, ρdst) be an arbitrary instance
of the dynamic information flow problem, and ASP = (S, U) the array-based
safety problem obtained by translation from DIFP . There is an information
flow witness trace for DIFP if and only if ASP is unsafe.

The proof involves constructing, for an information flow witness trace for DIFP ,
a counterexample (unsafe) trace of the problem ASP , and vice-versa.

Decidability. The dynamic information flow problem is undecidable in gen-
eral (it is straightforward to model Minsky 2-counter machines [28]), but it is
decidable under certain assumptions inherited from the array-based transition
systems (see the remark on decidability at the end of Sect. 5.1).

6 Experimental Evaluation

6.1 Setup

Back-End Solver. We use MCMT [4] version 2.5.2 to solve array-based safety
problems. MCMT is a model checker for array-based systems, based on the SMT
solver Yices1. We run MCMT with the default settings. The time-out for testing
is set to 1000 seconds.

Translation Implementation. We have implemented in C the translation from
the extended version of AADL to the input language for MCMT using the parser
generator GNU Bison. The input language of MCMT is low level and as such is
not suitable for manual modeling of anything but the simplest examples, being
instead intended as a target language for automatic generation from specifica-
tions written in a higher level language [17]. The translation follows the same
outline as its theoretical description in Sect. 5.2, but is more complicated due to
the specific features, limitations and idiosyncracies of the target MCMT input
language. In particular, the more constraining limitations of MCMT, in addition
to the theoretical restrictions on formulas from Sect. 5.1, are:

– The initial formula can contain at most two universally quantified variables.
– The transitions can contain at most two existentially quantified variables.
– The maximum number of transitions (the disjuncts in the transition formula)

is 50.
– The unsafe formula can contain at most four existentially quantified variables.
– A term can contain at most ten index variables.

Our translator inherits the above restrictions on the formulas specified in the
extended AADL model. While these restrictions do not severely limit the expres-
sivity of the language, the limitation on the maximum number of transitions

1 http://yices.csl.sri.com/.

http://yices.csl.sri.com/

640 A. Cimatti et al.

limits the size of the examples that can be handled by the present version of the
tool.

Hardware. We have used a desktop PC based on an Intel R© CoreTM i7 CPU 870
clocked at 2.93GHz, with 8 GB of main memory and running Ubuntu 14.04.5
LTS.

Distribution Tarball. The translator, tested models, scripts which automat-
ically perform the translation from extended AADL to MCMT input language
and run MCMT, as well as setup and usage instructions can be found at https://
es.fbk.eu/people/stojic/papers/fm18/.

6.2 Benchmarks and Results

In the following diagrams, arrows between (sets of) components represent con-
nections from all components in the source set to all components in the destina-
tion set, unless further restricted in the model description. All sets of components
are dynamic, allowing addition/removal of components.

Converging Model. This model contains 2n + 1 sets of components
a0, . . . , an−1, b0, . . . , bn−1, c, with the connections shown as black arrows in Fig. 3.
There are also connections between all pairs of components in the same set. We
test for information flow from the set a�n/2� to the set b0. The unsafe model in
addition contains the connections shown as red arrows. Results for the model
are in Fig. 7. We hit the MCMT limitation on the number of transitions (see
Sect. 6.1) for n = 7 for the safe model, and for n = 5 for the unsafe model.
Number of calls made by MCMT to the underlying SMT solver ranges from 211
(safe, n = 1) to 29907 (safe, n = 6).

Fig. 3. Converging model (Color figure online)

Fig. 4. Messenger model

Messenger Model. In this model, for
n = 1 there are two sets of components,
a and b, and a singleton component m0.
m0 models a messenger which is intended
to allow components within the same set
to communicate; m0 can connect in turn
to any single component in a or in b, but
not at the same time. We test for infor-
mation flow from set a to set b. The system as described is unsafe because m0

https://es.fbk.eu/people/stojic/papers/fm18/
https://es.fbk.eu/people/stojic/papers/fm18/

Formal Specification and Verification of DPAs 641

Fig. 5. Messenger and Network models
results

can connect to some a[i], disconnect, and
then connect to some b[j], therefore estab-
lishing a path for flow of information. The
safe model removes such paths by using
Boolean parameters to record whether m0

has previously connected to components
in a and b. If it has previously connected
to one of these sets, then it is not allowed
to connect to the other set before it is
scrubbed (which is modeled by removing
and re-adding it). For n = 2 (Fig. 4), the
system is extended with another set of components c and another messenger m1

which is shared by b and c, and we check for information flow between a and c.
Results are shown in Fig. 5.

Network Model. This is the model whose safe version is specified in Fig. 2,
while the highlighted parts are omitted in the unsafe version. Results are shown
in Fig. 5.

Sequence Model. This is a scalable example which models a sequence of n sets
of components a0, . . . , an−1 (see Fig. 6 ignoring the dashed loop-back arrow).
There is a connection from ax[i] to ay[j] iff (x = y − 1 ∨ x = y) ∧ i < j. We
check for information flow from a0[0] to an−1[n− 2] in the safe version and from
a0[0] to an−1[n − 1] in the unsafe version. The results are shown in Fig. 8. The
verification of this model times out for n = 6 (safe) and n = 7 (unsafe). Number
of calls to the SMT solver ranges from 116 (unsafe, n = 1) to 60799 (unsafe,
n = 6).

Fig. 6. Sequence and Ring models

Ring Model. This model is the same
as the Sequence model, but with addi-
tional connections from an−1[i] to a0[j]
(dashed loop-back arrow in Fig. 6) which
are present only when i < j+n in the safe
version (i < j + n + 1 in the unsafe ver-
sion), and we check for information flow
from a0[0] to an−1[n − 2] in both the safe
and unsafe versions. The results are shown
in Fig. 9. The verification of this model times out for n = 6 (safe) and n = 5
(unsafe). Number of calls to the SMT solver ranges from 188 (unsafe, n = 1) to
130068 (unsafe, n = 4).

642 A. Cimatti et al.

Fig. 7. Converging model
results

Fig. 8. Sequence model
results

Fig. 9. Ring model results

7 Conclusions and Future Work

We propose a new logic-based specification of dynamic architectures where the
architectural topology is represented by a set of parameters, while first-order for-
mulas over such parameters define the sets of initial configurations and reconfig-
urations. The Dynamic Parametrized Architectures so defined can be translated
into array-based transition systems, which are amenable to SMT-based model
checking. We provide an initial experimental evaluation of various DPAs proving
safe and unsafe cases with the MCMT model checker. The results show that the
approach is feasible and promising.

As future work, we aim at trying other SMT-based model checkers such as
Cubicle [13] and nuXmv [11]. We will investigate new algorithms that directly
exploit the topology of the architecture. We will extend the specification to
incorporate component behavior and more complex interactions, as well as more
general properties. Finally, we are interested in generating certifying proofs for
the safe DPAs, possibly exploiting the existing automatic generation of proofs
for array-based transition systems [14].

References

1. European Programme for Critical Infrastructure Protection (EPCIP). http://
eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0786:FIN:EN:PDF.
Accessed 15 Jan 2018

2. NIST Cybersecurity Framework. http://www.nist.gov/cyberframework. Accessed
15 Jan 2018

3. The CITADEL Project (Critical Infrastructure Protection using Adaptive MILS).
http://www.citadel-project.org/. Accessed 15 Jan 2018

4. Alberti, F., Ghilardi, S., Sharygina, N.: A framework for the verification of param-
eterized infinite-state systems. In: CEUR Workshop Proceedings, vol. 1195, pp.
302–308 (2014)

5. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing dynamic software
architectures. In: Astesiano, E. (ed.) FASE 1998. LNCS, vol. 1382, pp. 21–37.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053581

6. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components
in BIP. In: Fourth IEEE International Conference on Software Engineering and
Formal Methods (SEFM 2006), Pune, India, pp. 3–12, 11–15 September 2006

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0786:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0786:FIN:EN:PDF
http://www.nist.gov/cyberframework
http://www.citadel-project.org/
https://doi.org/10.1007/BFb0053581

Formal Specification and Verification of DPAs 643

7. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using
Dy-BIP. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012.
LNCS, vol. 7306, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-30564-1 1

8. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-
management in dynamic software architecture specifications. In: Proceedings of
the 1st ACM SIGSOFT Workshop on Self-Managed Systems WOSS 2004, New-
port Beach, California, USA, pp. 28–33, 31 October - 1 November 2004

9. Bruni, R., Melgratti, H., Montanari, U.: Behaviour, interaction and dynamics. In:
Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS,
vol. 8373, pp. 382–401. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54624-2 19

10. Canal, C., Pimentel, E., Troya, J.M.: Specification and refinement of dynamic
software architectures. In: Donohoe, P. (ed.) Software Architecture. ITIFIP, vol.
12, pp. 107–125. Springer, Boston, MA (1999). https://doi.org/10.1007/978-0-387-
35563-4 7

11. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9 22

12. CITADEL Modeling and Specification Languages. Technical report D3.1, Version
2.2, CITADEL Project, April 2018

13. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zäıdi, F.: Cubicle: a parallel SMT-
based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 55

14. Conchon, S., Mebsout, A., Zäıdi, F.: Certificates for parameterized model checking.
In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 126–142. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19249-9 9

15. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press,
Boston (2001)

16. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL - An Introduc-
tion to the SAE Architecture Analysis and Design Language. Addison-Wesley, SEI
series in software engineering (2012)

17. Ghilardi, S.: MCMT v2.5 - User Manual (2014). http://users.mat.unimi.it/users/
ghilardi/mcmt/UM MCMT 2.5.pdf. Accessed 15 Jan 2018

18. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT
solving: termination and invariant synthesis. Log. Meth. Comput. Sci. 6(4), 1–48
(2010)

19. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1 3

20. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, pp. 11–20, 26–28 April
1982

21. Hirsch, D., Inverardi, P., Montanari, U.: Reconfiguration of software architecture
styles with name mobility. In: Porto, A., Roman, G.-C. (eds.) COORDINATION
2000. LNCS, vol. 1906, pp. 148–163. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-45263-X 10

https://doi.org/10.1007/978-3-642-30564-1_1
https://doi.org/10.1007/978-3-642-30564-1_1
https://doi.org/10.1007/978-3-642-54624-2_19
https://doi.org/10.1007/978-3-642-54624-2_19
https://doi.org/10.1007/978-0-387-35563-4_7
https://doi.org/10.1007/978-0-387-35563-4_7
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-642-31424-7_55
https://doi.org/10.1007/978-3-319-19249-9_9
http://users.mat.unimi.it/users/ghilardi/mcmt/UM_MCMT_2.5.pdf
http://users.mat.unimi.it/users/ghilardi/mcmt/UM_MCMT_2.5.pdf
https://doi.org/10.1007/978-3-642-14203-1_3
https://doi.org/10.1007/3-540-45263-X_10
https://doi.org/10.1007/3-540-45263-X_10

644 A. Cimatti et al.

22. König, B., Kozioura, V.: Towards the verification of attributed graph transforma-
tion systems. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT
2008. LNCS, vol. 5214, pp. 305–320. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-87405-8 21

23. Konnov, I.V., Kotek, T., Wang, Q., Veith, H., Bliudze, S., Sifakis, J.: Parameterized
systems in BIP: design and model checking. In: 27th International Conference on
Concurrency Theory CONCUR 2016, Québec City, Canada, pp. 30:1–30:16, 23–26
August 2016

24. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: SIGSOFT
1996 Proceedings of the Fourth ACM SIGSOFT Symposium on Foundations of
Software Engineering, San Francisco, California, USA, pp. 3–14, 16–18 October
1996

25. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26(1), 70–93
(2000)

26. Métayer, D.L.: Describing software architecture styles using graph grammars. IEEE
Trans. Softw. Eng. 24(7), 521–533 (1998)

27. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes I and II. Inf.
Comput. 100(1), 1–77 (1992)

28. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc, Upper
Saddle River (1967)

29. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, Singapore (1997)

30. Architecture Analysis & Design Language (AADL) (rev. B). SAE Standard
AS5506B, International Society of Automotive Engineers, September 2012

31. Sifakis, J., Bensalem, S., Bliudze, S., Bozga, M.: A theory agenda for component-
based design. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Sys-
tems. LNCS, vol. 8950, pp. 409–439. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-15545-6 24

32. Wermelinger, M., Fiadeiro, J.L.: Algebraic software architecture reconfiguration.
In: Nierstrasz, O., Lemoine, M. (eds.) ESEC/SIGSOFT FSE -1999. LNCS, vol.
1687, pp. 393–409. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48166-4 24

33. Xu, H., Zeng, G., Chen, B.: Description and verification of dynamic software archi-
tectures for distributed systems. JSW 5(7), 721–728 (2010)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-87405-8_21
https://doi.org/10.1007/978-3-540-87405-8_21
https://doi.org/10.1007/978-3-319-15545-6_24
https://doi.org/10.1007/978-3-319-15545-6_24
https://doi.org/10.1007/3-540-48166-4_24
https://doi.org/10.1007/3-540-48166-4_24
http://creativecommons.org/licenses/by/4.0/

FM 2018 Industry Day

From Formal Requirements to Highly
Assured Software for Unmanned Aircraft

Systems

César Muñoz(B), Anthony Narkawicz, and Aaron Dutle

NASA Langley Research Center, Hampton, VA 23681-2199, USA
{cesar.a.munoz,anthony.narkawicz,aaron.m.dutle}@nasa.gov

Abstract. Operational requirements of safety-critical systems are often
written in restricted specification logics. These restricted logics are
amenable to automated analysis techniques such as model-checking,
but are not rich enough to express complex requirements of unmanned
systems. This short paper advocates for the use of expressive logics,
such as higher-order logic, to specify the complex operational require-
ments and safety properties of unmanned systems. These rich logics are
less amenable to automation and, hence, require the use of interactive
theorem proving techniques. However, these logics support the formal
verification of complex requirements such as those involving the physical
environment. Moreover, these logics enable validation techniques that
increase confidence in the correctness of numerically intensive software.
These features result in highly-assured software that may be easier to cer-
tify. The feasibility of this approach is illustrated with examples drawn
for NASA’s unmanned aircraft systems.

1 Introduction

Recent advances in theorem proving technology have prompted the develop-
ment of environments such as ASSERT (Analysis of Semantic Specifications and
Efficient generation of Requirements-based Test) [17] and SpeAR (Specification
and Analysis of Requirements) [6] that provide English-like, but semantically
rigorous, languages to capture requirements. These requirements are formally
analyzed for consistency using automated theorem proving tools. Environments
such as ASSERT and SpeAR are examples of the state-of-the-art in formal
requirements design. Yet, the kinds of requirements that can be analyzed using
these environments are those supported by automated verification techniques,
which are typically limited to finite state machines and decidable theories sup-
ported by SMT solvers. These formalisms are not rich enough to allow for
the specification of complex requirements of cyber-physical systems. This short
paper reports work by the Formal Methods (FM) Team at NASA Langley

U.S. Government, as represented by the Administrator of the National Aeronautics

and Space Administration. No copyright is claimed in the United States under Title 17,

U.S. Code. All Other Rights Reserved. 2018

K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 647–652, 2018.

https://doi.org/10.1007/978-3-319-95582-7_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_38&domain=pdf

648 C. Muñoz et al.

Research Center (LaRC) on the use of higher-order logic and interactive the-
orem proving for the specification, analysis, and implementation of operational
and functional requirements of unmanned aircraft systems (UAS).

2 UAS Detect and Avoid

In 2011, the UAS Sense and Avoid Science and Research Panel (SARP) was
tasked with making a recommendation to the FAA for a quantitative defini-
tion of a concept for UAS called well clear. The origin of this concept is the
see-and-avoid principle in manned aircraft operations that states that on-board
pilots have, in part, the responsibility for not “operating an aircraft so close to
another aircraft as to create a collision hazard”, “to see and avoid other aircraft”,
and when complying with the particular rules addressing right-of-way, on-board
pilots “may not pass over, under, or ahead [of the right-of-way aircraft] unless
well clear” [7]. The lack of a similar principle for UAS was identified by the FAA
as one of the main obstacles in the integration of UAS in the National Airspace
System. Hence, the final report of the Federal Aviation Administration (FAA)
Sense and Avoid (SAA) Workshop [5] defined the concept of sense and avoid,
also called detect and avoid (DAA), as “the capability of a UAS to remain well
clear from and avoid collisions with other airborne traffic.”

Consiglio et al. proposed the following guiding principles for the definition of
well clear and DAA requirements: (a) The well-clear concept should be geometri-
cally represented by a time and distance volume in the airspace, (b) DAA should
interoperate with existing collision avoidance systems, (c) DAA should avoid
undue concern for traffic aircraft, and (d) DAA should enable self-separation
capabilities [1]. Based on these guidelines, a family of well-clear volumes was
formally specified in the Program Verification System (PVS) [14]. This family
is defined by a Boolean predicate, representing a volume in the airspace, that
depends on the position and velocity of the ownship and intruder aircraft at the
current time. It was formally verified that volumes in this family satisfy several
properties such as inclusion, symmetry, extensibility, local convexity, and conver-
gence [8,10]. These properties were used by the UAS SARP to discard competing
proposals for the well-clear volume. The volume ultimately recommended by the
UAS SARP [3] is based on distance and time functions used in the detection logic
of the second generation of the Traffic Alerting and Collision Avoidance System
(TCAS II) Resolution Advisory (RA) detection logic [16]. Since this volume is a
member of the family specified in PVS, it inherits the family’s formally verified
properties. For example, it has been formally verified that for a choice of thresh-
old values, the well-clear volume is larger than the TCAS II RA volume [10]
(inclusion) and that in pairwise encounter both aircraft simultaneously compute
the same well-clear status (symmetry). The use of higher-order logic enabled the
definition of this family of volumes that is not only parametric with respect to
distance and time thresholds, but also with respect to continuous functions on
positions and velocities.

From Formal Requirements to Highly Assured Software 649

The standards organization RTCA established Special Committee 228
(SC-228) to provide technical guidance to the FAA for defining minimum oper-
ational performance standards for a DAA concept based on the definition of
well-clear recommended by the UAS SARP. This concept consists of three func-
tional capabilities: detection logic, alerting logic, and maneuver guidance logic.
The detection logic specifies a time interval where a well-clear violation occurs,
within a lookhead time interval, assuming non-accelerating aircraft trajectories.
A parametric algorithm that computes this time interval, for an arbitrary choice
of the threshold values used in the definition of the well-clear volume, has been
formally verified in PVS [9]. This parametric algorithm is key to the definition
of the alerting logic, which is specified by a series of thresholds that yield vol-
umes of decreasing size. Depending on the time to violation of these volumes,
the alerting logic returns a numerical value representing the severity of a pre-
dicted conflict. The smaller the volume and the shorter the time to violation, the
greater the severity. It has been formally verified that the alerting logic satisfies
the following operational properties (assuming non-accelerating aircraft trajec-
tories) [8,10]: (extensibility) alerts progress according to the severity level; (local
convexity) once an alert is issued, it is continuously issued until threat disap-
pears; and (convergence) once an alert is issued, it does not disappear before
time of closest point of approach. Finally, the manuever guidance logic specifies
ranges of one-dimensional maneuvers, i.e., change of horizontal direction, change
of horizontal speed, change of vertical speed, or change of altitude, that lead to
a well-clear violation within a lookahead time interval. In the case of a well-clear
violation, the maneuver guidance logic specifies ranges of maneuvers that recover
well-clear status. Assuming a kinematic model of the ownship trajectories, an
algorithm that computes maneuver guidance for each dimension has been for-
mally proved to be correct within a user specified granularity. This algorithm
is parametric with respect to a detection algorithm for an arbitrary definition
of the well-clear volume. These algorithms are collectively called DAIDALUS
(Detect and Avoid Alerting Logic for Unmanned Systems) [11] and they are
included in RTCA DO-365 [15].

3 From DAIDALUS to ICAROUS

Software implementations of DAIDALUS are available in Java and C++ and
they are distributed under NASA’s Open Source Agreement.1 The PVS spec-
ifications and proofs are also available as part of the distribution. Except for
language idiosyncrasies both implementations are identical and they closely fol-
low the PVS algorithms. A formal verification of the software implementations
is a major endeavor that has not been attempted. In particular, DAIDALUS
algorithms are formally verified in PVS assuming real-number arithmetic, while
the software implementations of DAIDALUS use floating-point arithmetic. How-
ever, the software implementations of DAIDALUS have been validated against
the PVS algorithms using model animation [4] on a set of stressing cases. This
1 https://github.com/nasa/wellclear.

https://github.com/nasa/wellclear

650 C. Muñoz et al.

validation improves the assurance that the hand translation from formal models
to code is faithful and that floating point errors do not greatly affect correctness
and safety properties that are formally verified in PVS.

The approach used in the development of DAIDALUS, from formal
requirements to highly assured software, is called MINERVA [13] (Mirrored
Implementation Numerically Evaluated against Rigorously Verified Algorithms).
The MINERVA approach has been used in the development of other UAS
applications. PolyCARP, a collection of algorithms for weather avoidance
and geofencing has been formally developed in PVS [12]. Implementations
of PolyCARP in Java, C++, and Python have been validated using model
validation. This development, including software, specifications, and proofs, is
available under NASA’s Open Source Agreement.2 DAIDALUS and PolyCARP
are two of the algorithms included in ICAROUS (Independent Configurable
Architecture for Reliable Operations of Unmanned Systems) [2]. ICAROUS is
an open software architecture composed of mission specific software modules
and highly assured core algorithms for building autonomous unmanned aircraft
applications.3

4 Conclusion

The examples presented in this paper show that the use of expressive formalisms,
such as PVS, for writing requirements and formally analyzing them is not only
feasible but effective in the development of safety-critical systems. Higher-order
logic enables, for example, the specification and formal analysis of generic models
that can be instantiated and reused in multiple ways. DAIDALUS algorithms,
for example, can be instantiated with different set of thresholds, different notions
of well-clear, and different aircraft performance characteristics. The default con-
figuration of DAIDALUS defined in DO-365 is appropriate for large fixed wing
UAS. In ICAROUS, however, DAIDALUS is instantiated with the performance
of a small rotorcraft and a smaller set of thresholds that define a cylindrical
well-clear volume. The formal models are correct for both of any instantiation
due to the parametric nature of the models.

However, rich formalisms such as higher-order logic are not the silver bullet.
These expressive logics are typically undecidable and, in the case of PVS, even
type-checking is undecidable. Interactive theorem proving is a human intensive
activity and the tools are still difficult to use by system developers. Applications
such as DAIDALUS, PolyCARP, and ICAROUS are possible because of years of
fundamental developments in interactive theorem proving technology including
formal libraries and proof strategies. The call in this paper is for the integration
of this infrastructure, which is also available in other proofs assistants, in modern
requirement engineering tools like ASSERT and SPEAR.

2 https://github.com/nasa/PolyCARP.
3 https://github.com/nasa/ICAROUS.

https://github.com/nasa/PolyCARP
https://github.com/nasa/ICAROUS

From Formal Requirements to Highly Assured Software 651

References

1. Consiglio, M., Chamberlain, J., Muñoz, C., Hoffler, K.: Concept of integration for
UAS operations in the NAS. In: Proceedings of 28th International Congress of the
Aeronautical Sciences, ICAS 2012, Brisbane, Australia (2012)

2. Consiglio, M., Muñoz, C., Hagen, G., Narkawicz, A., Balachandran, S.: ICAROUS:
integrated configurable algorithms for reliable operations of unmanned systems.
In: Proceedings of the 35th Digital Avionics Systems Conference (DASC 2016),
Sacramento, California, US, September 2016

3. Cook, S.P., Brooks, D., Cole, R., Hackenberg, D., Raska, V.: Defining well clear for
unmanned aircraft systems. In: Proceedings of the 2015 AIAA Infotech@ Aerospace
Conference, Number AIAA-2015-0481, Kissimmee, Florida, January 2015

4. Dutle, A.M., Muñoz, C.A., Narkawicz, A.J., Butler, R.W.: Software validation via
model animation. In: Blanchette, J.C., Kosmatov, N. (eds.) TAP 2015. LNCS,
vol. 9154, pp. 92–108. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21215-9 6

5. FAA Sponsored Sense and Avoid Workshop. Sense and avoid (SAA) for Unmanned
Aircraft Systems (UAS), October 2009

6. Fifarek, A.W., et al.: SpeAR v2.0: formalized past LTL specification and analysis
of requirements. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS,
vol. 10227, pp. 420–426. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-57288-8 30

7. International Civil Aviation Organization (ICAO): Annex 2 to the Convention on
International Civil Aviation, July 2005

8. Muñoz, C., Narkawicz, A.: Formal analysis of extended well-clear boundaries for
unmanned aircraft. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS,
vol. 9690, pp. 221–226. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40648-0 17

9. Muñoz, C., Narkawicz, A., Chamberlain, J.: A TCAS-II resolution advisory detec-
tion algorithm. In: Proceedings of the AIAA Guidance Navigation, and Control
Conference and Exhibit 2013, Number AIAA-2013-4622, Boston, Massachusetts,
August 2013

10. Muñoz, C., Narkawicz, A., Chamberlain, J., Consiglio, M., Upchurch, J.: A family
of well-clear boundary models for the integration of UAS in the NAS. In: Proceed-
ings of the 14th AIAA Aviation Technology, Integration, and Operations (ATIO)
Conference, Number AIAA-2014-2412, Georgia, Atlanta, USA, June 2014

11. Muñoz, C., Narkawicz, A., Hagen, G., Upchurch, J., Dutle, A., Consiglio, M.:
DAIDALUS: detect and avoid alerting logic for unmanned systems. In: Proceedings
of the 34th Digital Avionics Systems Conference (DASC 2015), Prague, Czech
Republic, September 2015

12. Narkawicz, A., Hagen, G.: Algorithms for collision detection between a point and
a moving polygon, with applications to aircraft weather avoidance. In: 16th AIAA
Aviation Technology, Integration, and Operations Conference, AIAA AVIATION
Forum, Number AIAA-2016-3598, Washington, DC, USA, June 2016

13. Narkawicz, A., Muñoz, C., Dutle, A.: The MINERVA software development pro-
cess. In: Proceedings of the Workshop on Automated Formal Methods 2017 (AFM
2017), Meno Park, California, USA (2017)

https://doi.org/10.1007/978-3-319-21215-9_6
https://doi.org/10.1007/978-3-319-21215-9_6
https://doi.org/10.1007/978-3-319-57288-8_30
https://doi.org/10.1007/978-3-319-57288-8_30
https://doi.org/10.1007/978-3-319-40648-0_17
https://doi.org/10.1007/978-3-319-40648-0_17

652 C. Muñoz et al.

14. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

15. RTCA SC-1228. RTCA-DO-365, Minimum Operational Performance Standards for
Detect and Avoid (DAA) Systems, May 2017

16. RTCA SC-147. RTCA-DO-185B, Minimum Operational Performance Standards
for Traffic alert and Collision Avoidance System II (TCAS II), July 2009

17. Siu, K., Moitra, A., Durling, M., Crapo, A., Li, M., Yu, H., Herencia-Zapana, H.,
Castillo-Effen, M., Sen, S., McMillan, C., Russell, D., Roy, S., Manolios, P.: Flight
critical software and systems development using ASSERT. In: 2017 IEEE/AIAA
36th Digital Avionics Systems Conference (DASC), Number 978-1-5386-0365-9/17,
pp. 1–10, September 2017

https://doi.org/10.1007/3-540-55602-8_217

Interlocking Design Automation
Using Prover Trident

Arne Borälv(&)

Prover Technology, Krukmakargatan 21, 118 51 Stockholm, Sweden
arne.boralv@prover.com

Abstract. This article presents the industrial-strength Prover Trident approach to
develop and check safety-critical interlocking software for railway signaling
systems. Prover Trident is developed by Prover Technology to meet industry
needs for reduced cost and time-to-market, by capitalizing on the inherent
repetitive nature of interlocking systems, in the sense that specific systems can be
created and verified efficiently as specific instances of generic principles. This
enables a high degree of automation in an industrial-strength toolkit for creation of
design and code, with seamless integration of push-button tools for simulation and
formal verification. Safety assessment relies on formal verification, performed on
the design, the revenue service software code as well as the binary code, using an
independent toolset for formal verification developed to meet the applicable
certification requirements. Basic ideas of this approach have been around for some
time [1, 2, 3], while methodology and tools have matured over many industrial
application projects. The presentation highlights the main ingredients in this
successful application of formal methods, as well as challenges in establishing this
approach for production use in a conservative industry domain.

Keywords: Formal verification � Sign-off � Interlocking � Prover trident

1 Background

In railway signaling, interlocking systems control the signals, switches and other
wayside objects to ensure railway operations are always safe. Interlocking systems used
to be based on electro-mechanical relays, with most new systems being computerized.
The interlocking principles vary considerably, in different countries and for different
railway infrastructure managers, with high life-cycle cost (one of the costliest railway
signaling components). The plethora of different signaling principles contributes to that
development and checking is time-consuming and costly. The adoption of new tech-
nology such as automation tools is slow, due to the conservative nature of the industry,
and the stringent safety integrity levels that pose a challenge of trust in automation
tools. There is also resistance in terms of minds to change and win over.

This article presents Prover Trident, an industrial-strength approach based on for-
mal methods to develop and check safety-critical interlocking software for railway
signaling systems that is used in production.

© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 653–656, 2018.
https://doi.org/10.1007/978-3-319-95582-7_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_39&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_39&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_39&domain=pdf

2 The Prover Trident Process

The Prover Trident process automates development and checking of interlocking
software, leading to reduced effort and cost, and predictable schedules. This section
outlines the main steps in configuring and using Prover Trident. Compared to “tradi-
tional” processes, more effort is spent on requirement specification, and a greater level
of requirements precision is required. This extra effort is worthwhile, due to savings
achieved from automated development of many systems, and the reduced long-term
maintenance costs. Prover Trident is based on the following three main components:

• PiSPEC IP: A formal specification library of generic interlocking system
requirements defined in PiSPEC, an object-oriented language supporting many-
sorted first order logic and Boolean equations.

• Prover iLock: An Integrated Development Environment (IDE) that generates the
design, test cases and safety requirements based on the PiSPEC IP and a system
configuration, with push-button tools to automate simulation, formal verification
and code generation.

• Prover Certifier: An independent sign-off verification tool that formally verifies
that the revenue service code satisfies all safety requirements, using a process and
tool chain designed to meet safety certification standards thanks to the use of
diversified translation of input models, and proof logging and checking.

2.1 PiSPEC IP

The generic principles for a family of interlocking systems are determined by analyzing
applicable standards, requirement specifications, interfaces, rules and regulations. To
ensure good quality of results, with predictable development and maintenance, the
principles are defined based on an object model (see Fig. 1). The object model defines
the underlying ideas and objects, including both physical objects (e.g. signals,
switches) and virtual objects (e.g. routes, protection areas), along with their properties
and relations. The object model provides a common interface to ensure coherence and
consistency in defining all interlocking software requirements, with clear separation of
design, test and safety requirements. Configuration of individual interlocking systems
populates the object model.

The object model and the generic design, test and safety requirements are defined in
PiSPEC, using many-sorted first order logic. This enables to express requirements that
are generic, using quantifiers over different sorts, corresponding to different types of
objects in the object model. For example, to express a generic safety requirement that a
signal must display the stop aspect if it does not have control line safety can be
expressed as follows, where cl_safety() and stop() are predicates defined for signals:

ALL si:SIGNAL ðnot cl safetyðsiÞ ! stopðsiÞÞ ð1Þ

A non-trivial task is to verify completeness of the safety requirements. This task is
usually managed based on manual review by domain experts, and/or diversification.

654 A. Borälv

2.2 Prover iLock

Prover iLock is an Integrated Development Environment (IDE) for development of
interlocking software. An individual system is created based on a high-level configu-
ration of its track and signal arrangement that is created graphically (and other tabular
data that can be imported). Prover iLock generates the design, test cases and safety
requirements based on the PiSPEC IP and the system’s configuration. Push-button tools
can then be applied directly, for formal verification of design safety (Verifier), auto-
mated simulation of the design with its environment models using time-compression
optimization techniques (Simulator), and generation of software code for revenue
service (Coder).

Prover iLock supports animation in the graphical railyard configuration, providing
visualization of state from interactive simulation or from counterexamples to safety
requirements. This is useful for education purposes and during development of the
PiSPEC IP. (In production use, simulation and verification are run in batch mode,
normally not failing).

2.3 Prover Certifier

Using Prover Trident, safety verification of the revenue service code (target code)
generated from Prover iLock is done using an independent sign-off verification tool. This
step proves that the target code satisfies the same safety requirements that were verified
against the design. This step also proves the equivalence of the design and the target
code, or alternatively the equivalence of the target code and the resulting binary code.

A sign-off verification tool is based on Prover Certifier, which has been designed
and developed as a reusable component that meets strict certification requirements.
Prover Certifier uses techniques to reduce risks that errors go undetected, including
diversified processing of input data using multiple implementation languages and using
proof logging and proof checking. A sign-off verification tool extends Prover Certifier
with diversified translators for the target code and the binary code.

Fig. 1. Structure of generic principles (PiSPEC IP)

Interlocking Design Automation Using Prover Trident 655

The configuration data that needs manual review per interlocking system should be
kept small. A dedicated format called LCF [4] is used for this purpose. This format
provides easy-to-review, compact representation of configuration data, supported by
diversified translation to Prover Certifier input.

3 Results and Conclusions

The Prover Trident approach is the result of many years of experience from formal
verification of interlocking systems, and from development of high-integrity tools for
formal verification. This has made it possible to automate repetitive and time-
consuming tasks in development and checking of railway interlocking software, with
manual tasks mainly for creating the system configuration, the use of push-button tools
and running the sign-off verification. With new systems developed with much less
effort, efficiency is increased, and time-to-market and cost are reduced. It also ensures
that each system is developed and verified based on same (reusable) principles.

The Prover Trident approach is used for creating revenue service interlocking
software for application in urban metro, mainline railway, light-rail and, in its core
parts, even in freight railways. The process and tools used are essentially the same – the
differences imposed for different target platforms and railway infrastructure managers
are minor, with a variety of target platforms being supported. Generic tools can be
extended by adding code generators and customizing the sign-off verification tool. This
enables the support of any interlocking system type and any target, at least in principle.

The big difference lies in input data, in the form of different PiSPEC IP. Using the
Prover Trident approach, the truly creative aspects lie in the specification work required
for defining the generic interlocking software principles.

There are no real technical obstacles for using Prover Trident for interlocking
software development. Rather, the main challenge lies in conversion from old habits
and the many hearts and minds to win over in the conservative railway signaling
domain. In addition, commercial aspects and job security are also real concerns.

References

1. Borälv, A.: Case study: formal verification of a computerized railway interlocking. Formal
Aspects of Comput. 10, 338 (1998). https://doi.org/10.1007/s001650050021

2. Borälv, A., Stålmarck, G.: Formal verification in railways. In: Hinchey, M.G., Bowen, J.
P. (eds.) Industrial-Strength Formal Methods in Practice. Formal Approaches to Computing
and Information Technology (FACIT), pp. 329–350. Springer, London (1999). https://doi.org/
10.1007/978-1-4471-0523-7_15

3. Duggan (Siemens), P., Borälv, A.: Mathematical Proof in an Automated Environment for
Railway Interlockings, Technical Paper in IRSE Presidential Programme, IRSE NEWS 217
(2015)

4. Layout Configuration Format (LCF) v1.1, Format Specification. PCERT-LCF-FMT, version
1.0, Prover Technology (2018)

656 A. Borälv

http://dx.doi.org/10.1007/s001650050021
http://dx.doi.org/10.1007/978-1-4471-0523-7_15
http://dx.doi.org/10.1007/978-1-4471-0523-7_15

Model-Based Testing for Avionics
Systems

Jörg Brauer(B) and Uwe Schulze

Verified Systems International GmbH, Bremen, Germany
{brauer,schulze}@verified.de

Abstract. Model-based testing is considered state-of-the-art in verifica-
tion and validation of safety-critical systems. This paper discusses some
experiences of applying the model-based testing tool RTT-MBT for the
evacuation function of an aircraft cabin controller. One challenge of this
project was the parametric design of the software, which allows to tailor
the software to a certain aircraft configuration via application parame-
ters. Further challenges consisted of connecting hardware signals of the
system under test to abstract model variables, and handling incremental
test model development during an ongoing test campaign. We discuss
solutions that we developed to successfully conduct this test campaign.

1 Introduction

Over the past two decades, we have observed a wide-spread adoption of
model-based development techniques in industry. In parallel, the scientific com-
munity has provided promising concepts and powerful solutions for the area of
model-based testing, in particular with respect to the automation of the test case
generation process. SMT solvers, to name just one example, have advanced to the
state where they can easily solve problems involving thousands of variables, and
thus support the automated generation of test data for large test models. This
technological progress is a prerequisite for effective application of model-based
testing in industry. In practise, however, there is often some mismatch between
the scientific progress on the one hand and the industrial requirements on the
other hand. In particular, we have observed that the successful and not so suc-
cessful model-based testing projects often just differ in the supportive features
offered by the model-based testing frameworks.

This paper is about effective model-based testing for the avionics domain, and
the peculiarities that need to be taken care of, which in the end often make the
difference between success and failure of a project. For the cabin control system of
several Airbus aircrafts, our company has provided several hardware-in-the-loop
(HIL) test benches which traditionally execute hand-written tests. More recently,

The work presented in this contribution has been partially funded by the German
Federal Ministry for Economic Affairs and Energy (BMWi) in the context of project
STEVE, grant application 20Y1301P.

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 657–661, 2018.
https://doi.org/10.1007/978-3-319-95582-7_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_40&domain=pdf

658 J. Brauer and U. Schulze

the existing test infrastructure was extended by tests generated from test mod-
els using RTT-MBT [3], which is based on simulation and SMT solving [1,2].
Model-based testing for the cabin control system poses some interesting
challenges that need to be taken care of:

– The runtime behavior of the system is highly configurable via application
parameters that need to be selected by the test case generator with the test
data. Trying out all admissible combinations of parameters is infeasible.

– The system uses numerous different I/O interfaces.
– The test case generator needs assistance for the creation of meaningful,

descriptive test cases which not just cover the requirements using some arbi-
trary inputs, but also trigger the standard use cases of the system.

2 Core Challenges

The emergency evacuation function of the cabin controller has some interesting
properties. First and foremost, the software is highly configurable at runtime,
using a configuration file, which allows to adapt the software to the layout of
and the devices installed in an aircraft. The logic implemented by the evacuation
function itself strongly depends on these parameters. This characteristic has been
investigated in recent years under the term product line testing. For instance,
contemporary aircrafts have a set of attendant panels, the number of which
is configurable. Attendant panels can be configured to indicate an evacuation
situation differently: either a flashing light or a steady light can be used for this
purpose. A test which examines the behavior of the evacuation function with
respect to the attendant panels thus needs to be run with a configuration file
that matches the prerequisites for the test. If the test objective is to examine
whether the flashing behaviour is correctly implemented, a configuration needs
to be created which (1) installs at least one attendant panel and (2) assigns the
flashing mode to the panel indication lights used by the evacuation function. For
testing the steady indication, another configuration and another test is needed.

2.1 Application Parameters

In our target system, the parameter configuration consists of roughly 100
C-structures. The parameters defined in the structures can themselves be struc-
tured and can define dependencies on other system parameters. This provides a
very powerful way to customize the system, but also makes it virtually impos-
sible to take all possible parameter settings into account when defining the
test model. The complexity of the system parameters is also a serious chal-
lenge in manual test campaigns, because manually calculating suitable system
parameters is complicated and error-prone. Normally only a small subset of the
parameters is directly related to the functionality addressed by a test model.
In case of the evacuation function, only 16 parameters defined in two of the
structures directly affect the behavior of the function. These parameters must
be adjusted to enable certain parts of the system behavior under consideration.

Model-Based Testing for Avionics Systems 659

Other parameters are still relevant, but do not need to be changed to reach
certain test goals. They do, however, define constraints to the system, and these
must be taken into account when designing the test model. For these parameters,
constants were defined in the model to represent the selected settings, and a
fixed definition for this part of the parameter state space was used for all test
generations of the test suite. The configuration parameters cannot be changed at
runtime without restarting the system. This information is reflected in a model
via a UML stereotype called “parameter”, which is assigned to the respective
model variables. The transition relation used by the test generator is augmented
with constraints to ensure that the parameters do not change during a single
test. This approach results in a significant improvement compared to manual
test development with manual calculation of the configuration parameters.

2.2 Interface Modules

Despite the improvements on SMT solving, generating test cases may still be
computationally infeasible on the concrete semantics of an application, which
naturally leads to the question of abstraction. Modelling the application behav-
ior on the granularity of hardware interfaces leads to state explosion, which
entails that some kind of abstraction layer has to be introduced, which maps
model inputs to concrete hardware signals and vice versa. For instance, it is not
uncommon that some model input is represented by the conjunction of multiple
concrete hardware signals. The mapping between model variables and hardware
signals is implemented manually in a layer that resides between the device drivers
and the test driver, and requires significant expertise of the test engineers.

2.3 Test Scenarios

Model-based test generation often produces tests that are semantically correct,
but not very realistic, which may be an issue if the tests are used for certifica-
tion purposes. RTT-MBT provides a mechanism to restrict the test generator
by defining constraints for the test environment. Defining a complete test envi-
ronment specification suitable for all tests generated from a model, however, can
require a lot of effort or even be practically infeasible. Simple test goals with
RTT-MBT can be defined as states or transitions to be covered, but complex
test goals must be specified in LTL, which is not intuitive to most users. Both
problems are addressed using additional state machines in the test models that
define so-called test scenarios. A test scenario defines a complex test goal trough
a sequence of sub-goals and excludes undesired behavior. An example of such
a test scenario is given in Fig. 1. This way, a test scenario combines the partial
definition of test environment restrictions that are tailored to a complex test goal
together with the intuitive step by step definition of the goal itself. Note that the
test generator is still used to calculate the concrete test data, but is restricted
through the constraints imposed by the additional scenario state machine.

660 J. Brauer and U. Schulze

Fig. 1. A test scenario characterizes a family of stimulations

3 Conclusion

We have described an approach to model-based testing of highly configurable
avionics control systems. To name one example, the approach has been used
for the verification of sub-systems of the Airbus A350 aircraft. Our strategy
relies on test models that describe the system behavior depending on application
parameters, which are integrated as model constraints. An interesting aspect
with respect to economic viability of model-based testing is the efficiency of
test model development. Significant reductions in efforts can be achieved with
regression campaigns, but the initial investment for the transition should not be
underestimated, which may be explained by the fact that model development
requires a different skill set than traditional test development. There are, of
course, open issues to be addressed in the future. For instance, the question of
sufficient configuration coverage needs to be answered. To this end, we currently
adapt an input equivalence class testing strategy with guaranteed fault detection
properties.

Model-Based Testing for Avionics Systems 661

References

1. Lapschies, F.: SONOLAR homepage, June 2014. http://www.informatik.uni-
bremen.de/agbs/florian/sonolar/

2. Peleska, J., Vorobev, E., Lapschies, F.: Automated test case generation with SMT-
solving and abstract interpretation. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 298–312. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20398-5 22

3. Verified Systems International GmbH: RTT-MBT: Model-Based Testing. https://
www.verified.de/products/model-based-testing

http://www.informatik.uni-bremen.de/agbs/florian/sonolar/
http://www.informatik.uni-bremen.de/agbs/florian/sonolar/
https://doi.org/10.1007/978-3-642-20398-5_22
https://www.verified.de/products/model-based-testing
https://www.verified.de/products/model-based-testing

On Software Safety, Security, and
Abstract Interpretation

Daniel Kästner, Laurent Mauborgne, and Christian Ferdinand(B)

AbsInt Angewandte Informatik GmbH, Saarbrücken, Germany
ferdinand@absint.com

Abstract. Static code analysis can be applied to show compliance to
coding guidelines, and to demonstrate the absence of critical program-
ming errors, including runtime errors and data races. In recent years,
security concerns have become more and more relevant for safety-critical
systems, not least due to the increasing importance of highly-automated
driving and pervasive connectivity. While in the past, sound static
analyzers have been primarily applied to demonstrate classical safety
properties they are well suited also to address data safety, and to dis-
cover security vulnerabilities. This article gives an overview and discusses
practical experience.

1 Introduction

In safety-critical systems, static analysis plays an important role. With the
growing size of software-implemented functionality, preventing software-induced
system failures becomes an increasingly important task. One particularly
dangerous class of errors are runtime errors which include faulty pointer manip-
ulations, numerical errors such as arithmetic overflows and division by zero, data
races, and synchronization errors in concurrent software. Such errors can cause
software crashes, invalidate separation mechanisms in mixed-criticality software,
and are a frequent cause of errors in concurrent and multi-core applications. At
the same time, these defects are also at the root of many security vulnerabilities,
including exploits based on buffer overflows, dangling pointers, or integer errors.

In safety-critical software projects, obeying coding guidelines such as
MISRA C is strongly recommended by safety standards like DO-178C,
IEC-61508, ISO-26262, or EN-50128. In addition, all of them consider demon-
strating the absence of runtime errors explicitly as a verification goal. This
is often formulated indirectly by addressing runtime errors (e.g., division by
zero, invalid pointer accesses, arithmetic overflows) in general, and additionally
considering corruption of content, synchronization mechanisms, and freedom of
interference in concurrent execution. Semantics-based static analysis has become
the predominant technology to detect runtime errors and data races.

Abstract interpretation-based static analyzers provide full control and data
coverage and allow conclusions to be drawn that are valid for all program runs
with all inputs. Such conclusions may be that no timing or space constraints are
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 662–665, 2018.
https://doi.org/10.1007/978-3-319-95582-7_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_41&domain=pdf

On Software Safety, Security, and Abstract Interpretation 663

violated, or that runtime errors or data races are absent: the absence of these
errors can be guaranteed.

In the past, security properties have mostly been relevant for non-embedded
and/or non-safety-critical programs. Recently due to increasing connectiv-
ity requirements (cloud-based services, car-to-car communication, over-the-air
updates, etc.), more and more security issues are rising in safety-critical soft-
ware as well.

Safety-critical software is developed according to strict guidelines which
improve software verifiability. As an example dynamic memory allocation and
recursion often are forbidden or used in a very limited way. Stronger code prop-
erties can be shown, so that also security vulnerabilities can be addressed in a
more powerful way.

The topic of this article is to show that some classes of defects can be proven
to be absent in the software so that exploits based on such defects can be
excluded. Additional syntactic checks and semantical analyses become neces-
sary to address security properties that are orthogonal to safety requirements.

2 Security in Safety-Critical Systems

MISRA C aims at avoiding programming errors and enforcing a programming
style that enables the safest possible use of C. A particular focus is on deal-
ing with undefined/unspecified behavior of C and on preventing runtime errors.
As a consequence, it is also directly applicable to security-relevant code, which
is explicitly addressed by Amendment 1 to MISRA C:2012. Other well-known
coding guidelines are the ISO/IEC TS 17961, SEI CERT C, and the MITRE
Common Weakness Enumeration CWE. The most prominent vulnerabilities at
the C code level which are addressed in all coding guidelines are the following:
Stack-based buffer overflows, heap-based buffer overflows, general invalid pointer
accesses, uninitialized memory accesses, integer errors, format string vulnerabil-
ities, and concurrency defects.

Most of these vulnerabilities are based on undefined behaviors, and among
them buffer overflows seem to play the most prominent role. Most of them can be
used for denial-of-service attacks by crashing the program or causing erroneous
behavior. They can also be exploited to inject code and cause the program to
execute it, and to extract confidential data from the system. It is worth noticing
that from the perspective of a static analyzer most exploits are based on potential
runtime errors: when using an unchecked value as an index in an array the error
will only occur if the attacker manages to provide an invalid index value. The
obvious conclusion is that safely eliminating all potential runtime errors due to
undefined behaviors in the program significantly reduces the risk for security
vulnerabilities.

From a semantical point of view, a safety property can always be expressed
as a trace property. This means that to find all safety issues, it is enough to look
at each trace of execution in isolation.

664 D. Kästner et al.

This is not possible any more for security properties. Most of them can only
be expressed as set of traces properties, or hyperproperties [2]. A typical example
is non-interference [7]: to express that the final value of a variable x can only be
affected by the initial value of y and no other variable, one must consider each
pair of possible execution traces with the same initial value for y, and check that
the final value of x is the same for both executions. It was proven in [2] that
any other definition (tracking assignments, etc) considering only one execution
trace at a time would miss some cases or add false dependencies. This additional
level of sets has direct consequences on the difficulty to track security properties
soundly.

Finding expressive and efficient abstractions for such properties is a young
research field (see [1]), which is the reason why no sound analysis of such
properties appear in industrial static analyzers yet. The best solution using
the current state of the art consists of using dedicated safety properties as an
approximation of the security property in question, such as the taint propagation
described below.

3 Proving the Absence of Defects

In the following we will concentrate on the sound static runtime error ana-
lyzer Astrée [3]. It reports program defects caused by unspecified and undefined
behaviors and program defects caused by invalid concurrent behavior. Users
are notified about: integer/floating-point division by zero, out-of-bounds array
indexing, erroneous pointer manipulation and dereferencing (buffer overflows,
null pointer dereferencing, dangling pointers, etc.), data races, lock/unlock prob-
lems, deadlocks, integer and floating-point arithmetic overflows, read accesses to
uninitialized variables, unreachable code, non-terminating loops, and violations
of coding rules (MISRA C, ISO/IEC TS 17961, CERT, CWE).

Astrée computes data and control flow reports containing a detailed list-
ing of accesses to global and static variables sorted by functions, variables, and
processes and containing a summary of caller/called relationships between func-
tions. The analyzer can also report each effectively shared variable, the list of
processes accessing it, and the types of the accesses (read, write, read/write).

To deal with concurrency defects, Astrée implements a sound low-level con-
current semantics [5] which provides a scalable sound abstraction covering all
possible thread interleavings. In addition to the classes of runtime errors found
in sequential programs, Astrée can report data races, and lock/unlock problems,
i.e., inconsistent synchronization. After a data race, the analysis continues by
considering the values stemming from all interleavings. Since Astrée is aware of
all locks held for every program point in each concurrent thread, Astrée can also
report all potential deadlocks. Practical experience on avionics and automotive
industry applications are given in [3,6].

Sophisticated data and control flow information can be provided by two
dedicated analysis methods: program slicing and taint analysis. Program slic-
ing aims at identifying the part of the program that can influence a given set of

On Software Safety, Security, and Abstract Interpretation 665

variables at a given program point. Applied to a result value, e.g., it shows which
functions, which statements, and which input variables contribute to its com-
putation. Taint analysis tracks the propagation of specific data values through
program execution. It can be used, e.g., to determine program parts affected by
corrupted data from an insecure source. A sound taint analyzer will compute an
over-approximation of the memory locations that may be mapped to a tainted
value during program execution [4].

4 Conclusion

In this article, we have listed code-level defects and vulnerabilities relevant for
functional safety and security. We have shown that many security attacks can be
traced back to behaviors undefined or unspecified according to the C semantics.
By applying sound static runtime error analyzers, a high degree of security can be
achieved for safety-critical software. Security hyperproperties require additional
analyses to be performed which, by nature, have a high complexity. We have
given two examples of scalable dedicated analyses, program slicing and taint
analysis. Applied as extensions of sound static analyzers, they allow to further
increase confidence in the security of safety-critical embedded systems.

Acknowledgment. This work was funded within the project ARAMiS II by the
German Federal Ministry for Education and Research with the funding ID 01—S16025.
The responsibility for the content remains with the authors.

References

1. Assaf, M., Naumann, D.A., Signoles, J., Totel, E., Tronel, F.: Hypercollecting seman-
tics and its application to static analysis of information flow. CoRR abs/1608.01654
(2016). http://arxiv.org/abs/1608.01654. Accessed Sep 2017

2. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18, 1157–1210
(2010)

3. Kästner, D., Miné, A., Mauborgne, L., Rival, X., Feret, J., Cousot, P., Schmidt,
A., Hille, H., Wilhelm, S., Ferdinand, C.: Finding all potential runtime errors and
data races in automotive software. In: SAE World Congress 2017. SAE International
(2017)

4. Kästner, D., Mauborgne, L., Ferdinand, C.: Detecting safety- and security-relevant
programming defects by sound static analysis. In: Falk, R., Steve Chan, J.C.B. (eds.)
The Second International Conference on Cyber-Technologies and Cyber-Systems
(CYBER 2017). IARIA Conferences, vol. 2, pp. 26–31. IARIA XPS Press (2017)

5. Miné, A.: Static analysis of run-time errors in embedded real-time parallel C pro-
grams. Log. Methods Comput. Sci. (LMCS) 8(26), 63 (2012)

6. Miné, A., Delmas, D.: Towards an industrial use of sound static analysis for the
verification of concurrent embedded avionics software. In: Proceedings of the 15th
International Conference on Embedded Software (EMSOFT 2015), pp. 65–74. IEEE
CS Press, October 2015

7. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

http://arxiv.org/abs/1608.01654

Variant Analysis with QL

Pavel Avgustinov(B), Kevin Backhouse, and Man Yue Mo

Semmle Ltd., Oxford, UK
{pavel,publications}@semmle.com

Abstract. As new security problems and innovative attacks continue to
be discovered, program analysis remains a burgeoning area of research.
QL builds on previous attempts to enable declarative program analy-
sis through Datalog, but solves some of the traditional challenges: Its
object-oriented nature enables the creation of extensive libraries, and
the query optimizer minimizes the performance cost of the abstraction
layers introduced in this way. QL enables agile security analysis, allowing
security response teams to find all variants of a newly discovered vulner-
ability. Their work can then be leveraged to provide automated on-going
checking, thus ensuring that the same mistake never makes it into the
code base again. This paper demonstrates declarative variant analysis by
example.

1 Introduction

QL is an object-oriented, declarative, logic language which has been successfully
applied to the domain of program analysis. The idea is not new: Datalog-like
formalisms are established as an effective way of implementing complex flow-
sensitive analyses like points-to and dataflow [3,6]. However, the expressiveness
and modularity of QL allows us to do something interesting and novel: Analysis
building blocks are packaged up in reusable libraries, which can then be easily
instantiated to particular problems encountered in the wild.

This process is known as variant analysis. Given a newly discovered bug or
vulnerability, how can we find more instances (variants) of the same issue? Secu-
rity research teams around the world currently do this by laborious manual
search, but formally encoding the concern in QL can make the task signifi-
cantly more achievable. The end result is a democratization of program analysis:
Everyone is empowered to propose and implement new checks, or to proactively
eradicate bugs of a certain class from the codebase they work on.

2 QL for Ad-hoc Variant Analysis

In order to make program analysis a standard part of the software developer’s
toolbox, we must make the barrier to getting started as low as possible. QL’s
approach of high-level, declarative queries, separate from the messy details of
how to parse and compile the code, is a big step in that direction.
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 666–670, 2018.
https://doi.org/10.1007/978-3-319-95582-7_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_42&domain=pdf

Variant Analysis with QL 667

We will use a recent example of this use case for a whirlwind tour of QL (for
which [1] provides a full introduction). A vulnerability had been caused by an
invalid overflow check in C++. The code looked something like this:

i f (cur + offset < cur)

return false;

use(cur + offset);

In the above, cur and offset were unsigned 16-bit values, and the check
was intended to detect arithmetic overflow and wraparound. Unfortunately, it
was flawed: The C/C++ standard specifies that 16-bit values are promoted to
32-bits for the purposes of arithmetic, and in this wider type the addition cannot
possibly overflow. The comparison then has a 32-bit value on its left and a
16-bit value on its right, and will promote its right-hand side to 32 bits. Thus, a
potential overflow in the 16-bit range would never be detected.

Here is the QL query we wrote as the customer was describing the issue:

from Variable v, RelationalOperation cmp, AddExpr add

where v.getAnAccess() = add.getAnOperand()

and add = cmp.getAnOperand()

and v.getAnAccess() = cmp.getAnOperand()

and v.getType().getSize() < 4

and not add.getExplictlyConverted().getType().getSize() < 4

select cmp, ‘‘Bad overflow check.’’

This directly encodes the verbal definition of the problem into machine-
checkable QL. We are going to reason about a variable v, a relational
operation cmp and an addition operation add, where: (a) an access to v fig-
ures as an operand of add, (b) the addition add is an operand of the comparison
cmp, (c) another access to v is an operand of cmp, (d) the type of v is smaller
than 4 bytes (i.e. subject to arithmetic promotion), and (e) the addition add is
not explicitly truncated to a type smaller than 4 bytes.

This flagged the original problem and a few other variants in the same code
base that had escaped manual detection. Indeed, the check is of general utility—
there is nothing codebase-specific in it! In running it across other code bases,
we have discovered numerous instances of incorrect overflow guards, and we are
aware of several that turned out to be security vulnerabilities.

3 Variant Analysis from Building Blocks

Writing more sophisticated analyses is usually considered a highly specialist task.
It is also extremely challenging to create general-purpose analyses that have
high precision on arbitrary code bases. Both of these problems are addressed by
creating easily reusable “analysis building blocks” in the standard QL libraries.
We can provide a framework for doing dataflow analysis, or points-to analysis, or
taint tracking, which encapsulates the complexities of the target language and
allows end users to easily achieve remarkable bespoke results.

A recent spate of Java deserialization vulnerabilities suggests that numerous
unknown variants might still be lurking in well-known code bases. The problem

668 P. Avgustinov et al.

arises when untrusted (attacker-controlled) data is passed to some deserialization
mechanism, which then creates attacker-determined objects. Merely this act can
lead to arbitrary code execution [4]. Here is our QL query for such problems:

import java

import semmle.code.java.dataflow.FlowSources

import UnsafeDeserialization

from UnsafeDeserializationSink sink, RemoteUserInput source

where source.flowsTo(sink)

select sink.getMethodAccess(), "Unsafe deserialization of $@.",

source, "user input"

Most of the logic is encapsulated in the imported libraries, which stand ready
to be extended. The query itself checks that a value in the RemoteUserInput
class flows to sink, which is an UnsafeDeserializationSink. The most
common Java APIs are already modelled by the QL libraries; for example,
RemoteUserInput will cover HTTP servlet request objects and data read over
network sockets, while UnsafeDeserializationSink models Java serialization,
but also frameworks like XStream and Kryo. Each of these concepts, as well as,
if necessary, the dataflow computation itself may be extended separately.

In the work that led to the discovery of CVE-2017-9805 [5], we were auditing
Apache Struts and noticed that it had a somewhat convoluted code pattern
for deserialization: implementors of the interface ContentTypeHandler would
be responsible for deserializing data passed in via the first parameter of their
toObject method. Adding support for this1 was a simple matter of providing
an additional kind of UserInput by adding this class definition:

/∗∗ Mark the first argument of ‘toObject‘ as user input source ∗∗/
class ContentTypeHandlerInput extends UserInput {

ContentTypeHandlerInput() {

exists(Method m | m.asParameter() = m.getParameter(0) |

m.getSignature() = "toObject(java.io.Reader,java.lang.Object)" and
m.getDeclaringType().getASupertype+().hasQualifiedName(

"org.apache.struts2.rest.handler", "ContentTypeHandler")

)

}

}

With this definition in scope, the remainder of the library will kick in and
perform the additional tracking, leading us to the result.

A more general customization hook for variant analysis is provided by the
libraries in the form of so-called dataflow configurations. The user can specify
a set of sources, a set of sinks and (optionally) a set of sanitizers that should
prevent flow. The libraries then take care of the rest.

An example of this in action can be seen in our work on CVE-2017-13782 [2],
inspired by past issues with the dtrace component of Apple’s MacOS kernel.
This subsystem allows user-supplied dtrace scripts to perform various operations,

1 More recent versions of the QL libraries are able to track this pattern out of the box,
but the same customization mechanisms are still available.

Variant Analysis with QL 669

with their data stored in an array of registers. Such data should not be used in
sensitive operations like pointer arithmetic or array subscripting, at least without
careful validation. The dataflow configuration that identified the vulnerability
was defined as follows:

class DtraceRegisterFlow extends DataFlow::Configuration {

DtraceRegisterFlow() { this = "DtraceRegisterFlow" }

/∗∗ Our sources are register reads like ‘regs[i]‘. ∗/
override predicate isSource(DataFlow::Node node) {

exists(ArrayExpr regRead | regRead = node.asExpr() |

regRead.getArrayBase().(VariableAccess).getTarget().hasName("regs") and
regRead.getEnclosingFunction().hasName("dtrace_dif_emulate")

)

}

/∗∗ Our sinks are array index or pointer arithmetic operations. ∗/
override predicate isSink(DataFlow::Node node) {

exists(Expr use | use = node.asExpr() |

use = any(ArrayExpr ae).getArrayOffset() or
use = any(PointerAddExpr add).getAnOperand()

)

}

}

This concern is much too codebase-specific to be flagged by a standard
analysis, but the vulnerability leaks arbitrary kernel memory and is, therefore,
of high severity. QL’s approach of providing analysis building blocks makes it
feasible to create bespoke checks in such cases.

4 Conclusion

We have discussed the idea of variant analysis: Given a bug or vulnerability,
how can we find other variants of the same problem? QL makes it very easy to
write simple analyses, and allows users to bring state-of-the-art flow analysis to
bear when necessary, all while abstracting away the complexity. The underlying
libraries are continuously evolving, and as they become more powerful existing
queries written against them automatically increase in power as well.

In our experience, this approach resonates strongly with both security
researchers and developers, who embrace the idea that program analysis should
be everyone’s concern. The analyses created during this process tend to distribute
fairly evenly into three categories:

Codebase-specific. Concerns specific to a particular code base, its APIs and
invariants, like our “bad use of dtrace data” example.

Domain-specific. Analyses that apply to code written for a particular domain,
possibly while requiring some customization. A good example is unsafe
deserialization, which is applicable to any code that serializes data.

General. Checks that are applicable to any code base, usually concerning
common pitfalls of the target language, like the “bad overflow guard” query.

670 P. Avgustinov et al.

QL is used to analyze over 50,000 open-source projects on the https://
lgtm.com portal, and a query console is available to run custom analyses. The
default libraries are available as open-source at https://github.com/lgtmhq/
lgtm-queries.

References

1. Avgustinov, P., de Moor O., Jones, M.P., Schäfer. M.: QL: object-oriented queries on
relational data. In: Krishnamurthi, S., Lerner, B.S. (eds.) 30th European Conference
on Object-Oriented Programming, ECOOP 2016, LIPIcs, Rome, Italy, 18–22 July
2016, vol. 56, pp. 2:1–2:25. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2016)

2. Backhouse, K.: Using QL to find a memory exposure vulnerability in Apple’s macOS
XNU kernel. In: lgtm.com blog (2017). https://lgtm.com/blog/apple xnu dtrace
CVE-2017-13782

3. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated
points-to analyses. In: OOPSLA (2009)

4. Frohoff, C., Lawrence, G.: Deserialize My Shorts, Or How I Learned to Start Wor-
rying and Hate Java Object Deserialization. In: AppSec California (2015)

5. Mo, M.Y.: Using QL to find a remote code execution vulnerability in Apache Struts.
lgtm.com blog (2017). https://lgtm.com/blog/apache struts CVE-2017-9805

6. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using datalog with binary decision
diagrams for program analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp.
97–118. Springer, Heidelberg (2005). https://doi.org/10.1007/11575467 8

https://lgtm.com
https://lgtm.com
https://github.com/lgtmhq/lgtm-queries
https://github.com/lgtmhq/lgtm-queries
https://lgtm.com/blog/apple_xnu_dtrace_CVE-2017-13782
https://lgtm.com/blog/apple_xnu_dtrace_CVE-2017-13782
https://lgtm.com/blog/apache_struts_CVE-2017-9805
https://doi.org/10.1007/11575467_8

Object-Oriented Security Proofs

Ernie Cohen(B)

Amazon Web Services, Wyncote, USA
ecohen@amazon.com

Abstract. We use standard program transformations to construct
formal security proofs.

1 Security as Object Equivalence

A security specification is a functional specification that additionally bounds
information flow. For example, a functional specification for a communication
channel might say that messages are received in the order sent; its security
specification might additionally say that sending a message can leak to an adver-
sary only the length of the message, not its bits. Such precise specification allows
the proof of useful security guarantees for practical designs under realistic envi-
ronmental assumptions. Security proofs most commonly appear in the context of
cryptographic protocols, but can handle a variety of security enforcement mech-
anisms, such as security policy checks, virtualization, and human operations.

We formalize a specification as a constructor producing fresh objects
exhibiting permitted behaviors. The constructor parameters can include objects
representing components of the (possibly adversarial) environment, providing to
the constructed object both services to call and a way to explicitly leak informa-
tion. For example, one possible ideal channel specification maintains the history
of messages sent as a private field, with a send method that leaks to the adver-
sary the length of the message, but not its bits. As demonic nondeterminism in
the language would provide to an attacker an NP oracle, breaking all reason-
able cryptographic assumptions, methods also delegate to the environment the
resolution of nondeterminism. For example, the receive method of the channel
would ask the environment to decide whether to fail the call or to return the
next undelivered message from the history.

A specification C() refines a specification A() iff there is a function f
such that C(x) and A(f(x)) are equivalent. Typically, A(x) will be an abstract
specification of a service that describes security intent, while C(x) is a more con-
crete implementation of the service. This reduces security reasoning to object
equivalence (or, more precisely, equivalence of two constructor calls).

This approach, a flavor of universal composability, bears some similarity to
methods based on process algebra or higher-order functional programming, but
has some practical advantages. One advantage is that object identity makes it
easy to write first-order invariants about the program state. Another is that,
unlike spi calculi, there are no cryptographic security assumptions built into the
logic; they are formulated directly as equivalence assumptions.
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 671–674, 2018.
https://doi.org/10.1007/978-3-319-95582-7_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_43&domain=pdf

672 E. Cohen

2 Reasoning About Object Equivalence

What does it mean for two objects to be equivalent? A natural definition is for
every language-definable Boolean function of a single object reference to return
the same value when called on the two objects. In a probabilistic language, the
two function calls would have to have the same probability of returning true.
This definition of equivalence, semantic equivalence, is suitable for constructions
that do not use cryptography.

The basic tools for reasoning about semantic equivalence are mostly famil-
iar ones used for modular reasoning about object-oriented programs. These
include inlining method calls, introducing/eliminating auxiliary variables, type
invariants, admissible object invariants, ownership (to justify admissibility of
invariants depending on the state of owned objects), sequential code equivalence
(leveraging object invariants), and simulation. To simplify such reasoning, it is
useful to guarantee that a method call cannot result in a callback, so that we
do not have to worry about changes to the local object state when making a
method call. We achieve this by (1) requiring an object calling a method to hold
a “reference” to the object (in addition to its address), (2) allowing only con-
structors to create new references, and (3) allowing references to be passed into
constructors and returned from method calls, but not passed into method calls.
In the absence of infinite loops/recursions within a single object, this discipline
also guarantees that all method calls terminate.

Cryptography requires a more permissive and complex equivalence:
indistinguishability. Indistinguishability assumes that objects are additionally
parameterized by a security parameter. It requires that for every probabilistic
function running in time polynomial in the security parameter, and given one
of the two objects with equal probability, the advantage (probability in excess
of 0.5) of the function guessing which of the two objects it is interacting with
is negligible in the security parameter. (A real-valued function f(n) is negligible
iff for every polynomial p(n), limn→∞(p(n) · f(n)) = 0.) Fortunately, indistin-
guishability is in practice not very different from semantic equivalence. It adds
the side condition that the environment runs in probabilistic polynomial time.
It also provides additional assumptions, e.g., that a uniformly chosen random
number, of length linear in the security parameter, chooses a value not in any
previously constructed set of polynomial size.

Our simulations are program terms that transform one state representation
to another, with the usual forward simulation condition (simulation followed
by a method of the first representation is equivalent to a method call of the
second representation followed by simulation). This formulation is independent
of semantic details of the language and the equivalence. In particular, it allows
probabilistic simulations, which often eliminate explicit probability reasoning.

In a concurrent system, we want to allow internal steps, as many internal
interactions with the environment might be required between successful external
interactions. We do this by providing an additional method that performs an
internal step. The method queries the adversary to choose which internal action

Object-Oriented Security Proofs 673

to perform, performs the chosen action, and returns the result to the adversary.
Timing side channels are easily modeled by leaking the time required to perform
an operation. This also allows us to reason about transition systems.

A typical cryptographic assumption is that a concrete encryption functional-
ity, which encrypts with a randomly generated key, is indistinguishable from an
ideal encryption functionality (which zeroes message bits before encryption, but
remembers the original plaintext). Proofs often revolve around transforming an
implementation to encapsulating a key within a concrete encryption functional-
ity, so as idealize it. If that ideal functionality is used to encrypt other keys, it
can be transformed, through simulation, to instead map ciphertexts to concrete
encryption functionalities encapsulating the encrypted keys, allowing them to be
idealized also. Avoidance of key cycles thus arises naturally through the order
in which encapsulations are done in the proof.

An important consideration in reasoning about key compromise using
this style of proof (as opposed to direct game arguments) is the so-called
commitment problem: when an encryption key is compromised, we can no longer
justify the prior pretense that encryptions carried no information about the mes-
sages sent. Fortunately, it is still sound to use the ideal functionality to prove
safety properties of the whole system that hold up to the point of key compro-
mise. This allows the proof of properties like perfect forward secrecy.

3 Some Specification Examples

We write specifications in a simple, untyped, object language, where all values
(including addresses) are bitstrings, fields are private, and method bodies are
expressions. Calling a method that doesn’t exist simply returns 0 (the empty
string). We use ~ to denote indistinguishability on program terms. Z(m) is the
bitstring m with all bits replaced with 0’s, and & is the C && operator.

As a simple example, here is a possible communication channel specification:

ChI(n) { new (n,s=0,r=0,h=0) {
snd(m) { m & n.snd(Z(m)), h[s++] = m }
rcv() { n.rcv() & r<s & h[r++] }

}}

This defines a function ChI that returns the address of a freshly constructed
object, with fields n (initialized to the parameter n), s, r, and h (each initialized
to 0). These fields give the address of the environment/adversary object, the
number of messages sent, the number of messages received, and the sequence
of messages sent (represented as a sparse map). Since we use 0 to represent
failure, messages must be nonzero. We leak to the adversary the length of the
messages sent, and allow it to fail reception. If communication was to be only
authenticated, m itself would be leaked instead of Z(m). We could allow internal
steps by adding the method step() { n.step() }.

ChI can be viewed as turning an arbitrary (insecure) service n into a secure,
FIFO service. Since ChI is idempotent (i.e., ChI(ChI(n)) ~ ChI(n)), we say

674 E. Cohen

an expression t returns a fresh, asymptotically computationally secure channel
iff ChI(t) ~ t.

We can implement ChI using AEAD (authenticated encryption with
associated data) as follows:

AEAD(n) { new (n,d=0) {
enc(a,m) { m & c = n.enc(a,Z(m)) & d[a][c] = m & c }
dec(a,c) { d[a][c] }

}}

ChC(n,e) { new (n,e,s=0,r=0) {
snd(m) { m & n.snd(e.enc(s++,m)), m }
rcv() { m = e.dec(r, n.rcv()) & r++ & m }

}}

The correctness of this construction is given by the following theorem. For rea-
soning purposes, it matters little what the term inside ChI is:

Theorem: ChC(n,AEAD(e)) ~ ChI(ChC(n,AEAD(e)))

A typical AEAD implementation uses a uniformly chosen symmetric key k:

Enc(k) { new (k) {
enc(a,m) { skEnc(k,a,m) }
dec(a,c) { skDec(k,a,c) }

}}

where rnd() chooses uniformly a bitstring of length given by the security param-
eter. (The key is a parameter so that we can replace rnd() with any expression
indistinguishable from rnd(), such as the output of a key derivation function or a
pseudorandom generator.) This gives a computationally secure implementation,
i.e., ChC(n,Enc(rnd())) ~ ChI(ChC(n,Enc(rnd()))).

4 Conclusion

We have used the methodology to formally verify several security properties of
industrial protocols, including the following:

– We proved that a simple, TLS-like shared-key ciphersuite communication
protocol provides a factory for secure communication channels.

– We proved that a distributed system design (using symmetric and asymmet-
ric encryption, unauthenticted Diffie-Hellman agreement, KDFs, public-key
signatures, envelope encryption, multiple encryption domains with mutually
distrusting quorums, dynamically changing domain operator/server member-
ships, and domain key rotation) provides an ideal encryption service.

Current work includes mechanization and proofs with concrete security bounds.

Acknowledgements. We thank Supriya Anand, James Bornholdt, Matt Campagna,
Byron Cook, Andres Erbsen, Ralf Küsters, Rustan Leino, Andrea Nedic, Jade
Philipoom, and Serdar Tasiran for their contributions.

Z3 and SMT in Industrial R&D

Nikolaj Bjørner(B)

Microsoft Research, Redmond, USA
nbjorner@microsoft.com

Abstract. Theorem proving has a proud history of elite academic pur-
suit and select industrial use. Impact, when predicated on acquiring the
internals of a formalism or proof environment, is gated on skilled and
idealistic users. In the case of automatic theorem provers known as Sat-
isfiability Modulo Theories, SMT, solvers, the barrier of entry is shifted
to tool builders and their domains. SMT solvers typically provide conve-
nient support for domains that are prolific in software engineering and
have in the past decade found widespread use cases in both academia
and industry. We describe some of the background developing the Z3
solver, the factors that have played an important role in shaping its use,
and an outlook on further development and use.

1 Introduction

SMT has been pursued for decades by logicians and in industrial laboratories.
Decision procedures for selected logical theories have been studied by Pres-
burger, who gave a decision procedure for quantified formulas over linear integer
arithmetic, postulated by Hilbert in his famous 10th (unsolvable) problem on
Diophantine equations to give two examples. They have been integrated with the-
orem provers NQTHM, Standford Pascal Verifier, EHDM starting in the 1970s
and promoted in the context of PVS and Simplify in the 1990s. A set of impor-
tant confluences materialized in the past 10–20 years for SMT: our understanding
of efficient SAT solving advanced with conflict directed clause learning [5] and
efficient data-structures [4], “killer” applications, such as dynamic symbolic exe-
cution [3], emerged; and a community around SMT benchmarks and formats
formed thanks to initiatives by persistent stake-holders [1].

In the following we describe a set of driving scenarios that have shaped our
development and use of Z31, the importance of the SMT community efforts to
drive usage, the role of engineering APIs and open sourcing, and conclude by
describing some current efforts on applying Z3 in industrial contexts.

2 Driving Scenarios and Research Synergy

Z3 had the fortune to be nurtured in an environment populated with researchers
with synergistic pursuits. These initial driving scenarios and synergies with close
1 https://github.com/Z3Prover/z3.

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 675–678, 2018.
https://doi.org/10.1007/978-3-319-95582-7_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_44&domain=pdf
https://github.com/Z3Prover/z3

676 N. Bjørner

collaborators are significant enablers. Fortunately, the case for SMT and Z3 has
broadened over time. In 2005 Dynamic Symbolic Execution introduced a sweet
spot between fuzzing and model checking by applying symbolic solving to path
conditions and coped with partial modeling of system calls or other unmodeled
instructions using concrete run-time values. It facilitates an established part
of software engineering, unit tests, exemplified by Pex, and enhances security
fuzzing, exemplified by SAGE. Program verification and contract checking were
established since the 90’s using the Simplify SMT solver. Simplify had hit a
performance barrier in its techniques for quantifier instantiation and our first
advance with Z3 was to introduce efficient data-structures that would perform
simultaneous E-matching on sets of terms and quantifiers [2]. Microsoft Research
was also an incubator to the SLAM symbolic model checker, which had instigated
the previous generations of SMT solvers at Microsoft: Zapatho solved integer dif-
ference logic and uninterpreted functions, Zap2 (dropping “atho”) extended the
scope to full linear arithmetic, uninterpreted functions, arrays and quantifiers,
and Leonardo de Moura and I created a v. 3 from scratch, Z3, dropping “ap”.

Further developments in Z3 and SMT solvers generally continue to be based
on inspiration from driving scenarios, by improving their existing uses of con-
straint solving and enabling new uses through a combination of improved solvers
and more expressive functionality. In the context of Z3, Christoph Wintersteiger
added solvers for machine arithmetic with IEEE floating point theories. We
added additional theories, such as for sequences and strings, plugins for adding
custom theories, powerful quantifier instantiation engines that act as decision
procedures for several quantified decidable theories, specialized solvers for a class
of formulas characterized as constrained Horn clauses that serve as a logical layer
for symbolic model checking of procedural languages, scalable linear program-
ming by Lev Nachmanson, and optimization features for the case users need to
retrieve models that optimize objectives. I like to characterize a common thread
in these developments as one throws a new “toy” in the basket and typically
smart minds put it to creative and useful uses. As a logical toolbox Z3 enjoys
a cross-cut of application areas that go beyond initial uses. Conversely, users
constantly put a growing feature set into increased stress-test, which helps raise
the quality bar and inspire areas for further innovation.

Z3 had the benefit of an organization that invests in research tooling. While
this is not similar to how products are managed, which include service level
agreements and support, it allows for a longer term view compared to academic
environments where students expire after a few years, or industrial environ-
ments that are driven by short term deliverables and therefore require leveraging
existing tools.

3 SMT-LIB - A Research Community

The value of the academic initiative in the SMT community cannot be under-
estimated. It has produced a standard, SMT-LIB [1], which serves as a well
designed and documented basis for community efforts. It has produced a large

Z3 and SMT in Industrial R&D 677

set of shared benchmarks from industrial and experimental use cases. The barrier
of entry of using SMT tools has been reduced, perhaps at expense of the entry
point for producing new solvers that can supersede previous solvers. A clear
indication of success for the SMT-LIB efforts is that tools that use SMT solvers
can cherry-pick solvers in a portfolio, as done in software model checking tools.

4 Tooling and Infrastructure

A fruit from the interaction with Jakob Lichtenberg from the SLAM/SDV model
checker team, was an initial API for Z3, exposed as bindings from C, and on
top of that with wrappers for OCaml and .NET. It enabled an initial direct
integration, even though maintaining a text pipeline (Z3 originally supported a
text-based front-end for the Simplify format) is easier to maintain and debug.
A very significant development was the addition of Python based bindings. This
enabled easy prototyping through high-level, intuitive, scripting. Together with
the well-designed SMT-LIB2 text format, these accessible interfaces are possibly
the most important enablers for SMT technologies. In comparison, SAT solvers
use lower level formats where formulas are already converted to CNF, and vari-
able names are replaced by numerals. Writing a parser for a SAT solver is trivial,
but the barrier of entry of using a SAT solver then includes converting formulas
to CNF, and tracking variable names as a separate process.

4.1 Development

A common question is: “who are you managing to develop Z3?”. Perhaps this
was inspired from institutions where professors are project managers, but not
developers. While Z3 is over 300KLOC most was written by relatively few con-
tributors, and development is synergistic with evaluating experimental research
questions: e.g., develop more efficient decision procedures. Check-ins into GitHub
are monitored by two services, Travis and VS-build, that compile to several tar-
get platforms and run unit tests. We use a couple of thousand Azure compute
nodes to run full SMT-LIB regressions on check-ins. A custom distributed test
infrastructure performs file-sweeping and presents SMT friendly output.

4.2 Open Sourcing

Z3 was open sourced in two stages. In the fist stage, the code was shared and open
for academics to use and modify for any research purpose. In the second stage, Z3
was open sourced under an MIT license and moved to GitHub which opened up
for significant traction, especially contributions around improved interfacing and
later on solving internals. It eradicated several barriers for commercial uses, such
as the one a researcher faced when he wanted to acquire Z3 for his company and
went through a futile email thread of 7 different parties and 20+ emails because
Z3 was only available from the Microsoft online store and not through re-sellers.
The open license terms in place today mean that Z3 is integrated in commercial

678 N. Bjørner

products without royalties. Open sourcing applies to a dominant number of other
tools from Microsoft Research today and overall fits well into a modern era where
code development is eased by online tools; and an environment where research
code is shared as part of advancing science, advancing usage, and resulting in
feedback and improvements.

5 Push, Pull and Confluences

Industrial uses of symbolic solving is a combination of push, pull, and conflu-
ences. Program verification has been mainly pushed as a scientific, academic
pursuit of ideal software development, but thanks to an active community
and tools it is taking inroads with systems such as the Verifying C Compiler,
VCC, the Microsoft Research Everest project for verifying secure socket layer
implementations. Z3 is part of crypto blockchain verification utilities, including
Etherum. The LLVM toolsets, and a development version of the Visual Stu-
dio compiler, use Z3 for checking correctness of compiler transformations, and
it is used for super-optimization of code snippets. Network Verification is an
active area in the management of wide-area and corporate networks; with growth
and complexity outpacing traditional lower level network management tools, Z3
and symbolic solving have become useful ingredients for managing networking
based on intents with deployments in Azure, Amazon, startup code bases and
in advanced academic prototypes. Broadly speaking, symbolic solving is being
embraced as part of systems developments and deployments, perhaps resem-
bling deployments of operations research optimization tools. New confluences are
emerging with the software industry’s quest for data-driven and learning-based
experiences: operations research and SMT solvers add capabilities to integrate
solving and optimization capabilities.

References

1. Barrett, C., Pascal, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). www.smt-lib.org

2. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73595-3 13

3. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation, Chicago, IL, USA, June 12–15, pp. 213–223 (2005)

4. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering
an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference,
DAC 2001, Las Vegas, NV, USA, June 18–22, pp. 530–535 (2001)

5. Marques Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

http://www.smt-lib.org/
https://doi.org/10.1007/978-3-540-73595-3_13

Evidential and Continuous Integration
of Software Verification Tools

Tewodros A. Beyene(B) and Harald Ruess

fortiss — An-Institut Technische Universität München, Munich, Germany
beyene@fortiss.org

1 Introduction

The complexity of embedded software and increasing demands on dependability,
safety, and security has outpaced the capabilities of current verification and certi-
fication methods. In particular traditional verification and certification methods
based on manual reviews, process constraints, and testing, which are mandated
by current safety standards such as DO-178C [1] and DO-278A [2] for airborne
systems and air traffic management systems, ISO 26262 [11] in the automative
domain, and IEC 61508 for industrial domains including factory automation and
robotics are proving to be overly time- and resource-intensive. For example, costs
for developing certification evidence in safety cases according to the DO-178C
standard have been shown to range between $50 to $100 per executable line of
code, depending on the required safety level [15]. Unless mission-critical embed-
ded software can be developed and verified with less cost and effort, while still
satisfying the highest dependability requirements, new mission-critical capabili-
ties such as autonomous control may never reach the market.

In this short paper, we present an overview of our approach for automating
the process of creating certification evidence for mission-critical software. This
framework supports the integrated verification of a wide range of complementary
approaches to software verification, including automated tools and methods such
as model checking and static analysis [3,7], and manual and consensus-driven
approaches such as code review processes [8]. A workflow pattern for a given
verification activity (e.g., analysis, review or test) specifies which methods to be
used and how the methods are integrated in the given verification activity [10].
Our framework takes a single workflow pattern as an input to perform such an
integrated verification task.

The framework is said to be evidential as verification evidence, which form
the basis for certification processes, are automatically generated from pre-defined
workflow patterns. This is done by chaining evidence from combination of the
formal software analysis methods [5] as given in the workflow patterns [12]. The
framework also supports continuous verification by executing verification and by
generating corresponding evidence during each iteration of an agile development
process. For this, the framework is technically based on the widely used Jenkins
CI [6]. Therefore, our framework supports integrated verification, where verifica-
tion evidence are automatically generated and updated continuously as software
development progresses.
c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 679–685, 2018.
https://doi.org/10.1007/978-3-319-95582-7_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_45&domain=pdf

680 T. A. Beyene and H. Ruess

Our tool integration framework is inspired and also closely related to SRI’s
evidential toolbus (ETB) [4,14,16], which is a distributed workflow-based tool
integration framework for constructing claims supported by evidence. A main
difference is our choice of basing our integration framework on an widely used
continuous integration framework. This design choice allows us to seamlessly
integrate our verification framework into a large number of industrial software
development infrastructures. Our prototype implementation uses Jenkins CI 1

as it provides the following crticial services for our integration framework: dis-
tributed computing capabilities, notion of analysis evidence, and Interaction
mechanism with humans.

2 Verification Activities, Workflows and Patterns

The creation of assurance cases as the basis for certification is labour-intensive
and largely manual. This process usually starts by developing a verification
plan for determining adequate verification methods and tools together with
acceptance criteria for successful verification runs. These verification plans are
executed and verification results are, more or less manually, compiled into an
assurance case as the basis for certification.

More generally, verification planning may be viewed as defining workflows for
the selected verification activities such as analysis, review and test. A verification
workflow is a sequence of steps applying verification methods and tools with
the aim of ensuring that a system under verification satisfies its specification.
Verification workflows, together with their verification methods and tools, are
identified and defined during the verification planning phase of a project [10].

Fig. 1. A code review workflow Fig. 2. A code review workflow pattern

1 https://jenkins.io.

https://jenkins.io

Evidential and Continuous Integration of Software Verification Tools 681

An example code review workflow, which is inspired and extends
Holzmann’s [8,10] portfolio approach, is provided in Fig. 1. This code review
workflow takes a program source code P as input and produces a review report
R with potential defects. The workflow applies static analysis using Infer2 and
cppCheck3 (Lines 1 & 2), and merges analysis results (Line 3). The merged
result is further refined (e.g., false positives from static analysis are detected
and therefore excluded from the review report) by calling the function Refine,
which employs the CBMC [13] model checker (Line 4).

These kinds of workflows are usually instantiations of given verification
workflow patterns. An example workflow pattern for a code review verification
process is specified in Fig. 2. Like the workflow in Fig. 1, the workflow pattern
takes a program source code P as an input, and produces a review report R as an
output. However, the specification of specific verification tools are not required
in the definition of the workflow pattern. Instead, it is parameterised by a set
of static analysis tools T and a model cheker M . The workflow pattern applies
each static analysis tool over the source code (Lines 2–5), and collects the anal-
ysis results (Line 4). It also refines the collected report further by tagging, for
example, false positives (Line 6).

The advantage of using verification workflow patterns is twofold: (1) choice
of specific verification tools implementing verification methods in the workflow
pattern can be made during the actual verification execution phase of the project,
and (2) a given workflow pattern can be flexibly instantiated with different veri-
fication tools resulting in completely different verification workflows. In this way,
our tool integration framework provides a flexible way of instantiating verifica-
tion workflow patterns according to the heterogeneous needs and requirements
of different industrial software development environments and supporting tool
infrastructures. For example, the code review workflow pattern in Fig. 2 can
be instantiated in a number of different ways by assigning different values for
the parameters T and M . Consider, for example, the following three possible
instantiations: {(T = {infer, cppCheck}, M = CBMC), (T = {infer, coverity4},
M = CBMC), and (T = {infer, coverity}, M = SPIN [9])}. The first instantia-
tion is actually equivalent to the workflow in Fig. 1.

As verification methods form an integral part of verification workflow
patterns, each verification method must be defined in terms of inputs and out-
puts. For example, the verification method Static Analysis, which is used in the
verification workflow pattern of Fig. 2, can be defined as taking a program source
code as an input and producing a set of errors as an output. Any verification
tool implementing a given verification method must agree on inputs and outputs
with the verification method.

2 http://fbinfer.com.
3 http://cppcheck.sourceforge.net.
4 https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.

html.

http://fbinfer.com
http://cppcheck.sourceforge.net
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html

682 T. A. Beyene and H. Ruess

3 Structure of the Integration Framework

Our tool integration framework, as shown in Fig. 3, is built on top of a CI
framework. It contains three additional components, namely Patterns Database,
Tools Server and Integration Engine, for instrumenting and configuring the
framework with the specific verification needs and available resources of a given
software development project.

Fig. 3. The Integration Framework

One instrumentation deals with adding each verification tool, which imple-
ments certain verification method, to the Tools Server component. Another
instrumentation deals with adding workflow patterns, which are created for the
planned verification activities of the project, to the Patterns Database compo-
nent. These instrumentations make the framework ready for integrated verifica-
tion.

Users can perform an integrated verification by executing the framework with
the appropriate workflow pattern and tools to instantiate the verification meth-
ods specified in the given workflow pattern. The Integration Engine is responsible
for instantiating verification methods with the proper verification tools (as pro-
vided by the user), collecting outputs of each tool, and composing these outputs
into high-level verification evidence.

4 Illustration

Let us run our framework with the verification workflow pattern in Fig. 2, param-
eter instantiations T = {infer, coverity} and M = SPIN, and with the input
program listed in Fig. 4. The generated review report is listed in Fig. 5. Let us
consider two of the error entries in the report:

Error E1 is initially reported during static analysis by Infer and Coverity
as a possible dereference of null pointer on line 50 of the source file. Then, the
refinement procedure of our framework (implemented as function Refine, and
whose refinement logic depends on the type of error) tries to refute the error

Evidential and Continuous Integration of Software Verification Tools 683

Fig. 4. An example source code fragment Fig. 5. Report generated by our
framework

claim by adding the assertion ‘max �= NULL’ on line 50 and running SPIN.
Since SPIN proves the assertion does not hold and provides a counter-example,
the process concludes that the error is a real violation. The counter-example
from SPIN further supports the initial error claim. These kinds of additional
evidence are added to the error report as the basis for further investigation, for
example, in a code review meeting.

Error E2 is initially reported during static analysis as a possible resource leak
error on line 20. The refinement procedure now encodes the eventual release of
the file resource in LTL and applies SPIN. The model checking by SPIN actually
succeeds as the resource is later released in the main function, i.e., the potential
error does not actually materialize. Therefore, this error is marked as false alarm
in the final review report. The set of applied tools as well as verification outputs
will be kept as verification evidence for every verification decision made by the
framework.

We have applied our framework with the code review workflow pattern on
the Toyota static analysis benchmarks.5 Although the refinement procedure of
our framework is not defined for all type of possible defects addressed in this
benchmark, the framework at least is able to refine many false positives for the
type of errors it can handle (such as null dereference and division by zero errors).
We have also used the framework in a project within the Airbus Group as a front
end for a tool-based code review solution for Ada programs. In this project, the
framework is able to integrate Ada code analysis tools, such as GNATProve and
AdaCtl, with an in-house developed Ada model checker.

5 Conclusion

We have presented a tool integration framework for supporting the automated
and continuous verification of mission-critical software. First, the framework
supports integrated verification as it applies a workflow-based combination of
complementary software analysis methods. Second, the framework is evidential
as verification evidence, which form the basis for certification, are automatically
generated from pre-defined verification workflow patterns by chaining results
5 https://github.com/regehr/itc-benchmarks/.

https://github.com/regehr/itc-benchmarks/

684 T. A. Beyene and H. Ruess

from the integrated software analysis tools. Third, the framework is continuous
as it is aimed at executing verification and generating corresponding evidence
during each iteration of an agile development process.

We are in the process of launching and applying this tool integration frame-
work in a number of industrial verification efforts for safety- and security-related
software in the automotive and the aerospace domain. The ultimate goal here
is to automatically generate assurance cases according to sector-specific safety
standards such as ISO 26262, DO178C, or ECSS. In the future, we also plan to
use this integrated verification framework for the on-line generation of certifi-
cation evidence during operation, for example, for adaptive and learning-based
control systems.

Benefits of using our tool integration framework include: (1) flexible
and seamless integration into agile industrial software development processes,
(2) integration of a number of complementary automated software verification
tools with more process-oriented methods such as code review as mandated in
industrial safety standards, (3) formal and automated process from verification
planning down to producing corresponding verification evidence during devel-
opment and in accordance with industrial safety standards; (4) considerable
reduction of certification effort by means of automated generation of verification
evidence; (5) instantaneous and up-to-date verification evidence and correspond-
ing assurance cases as the basis for guiding agile development processes.

References

1. RTCA DO-178C Software Considerations in Airborne Systems and Equipment
Certification. RTCA Standard, December 2011

2. RTCA DO-278A Software Integrity Assurance Considerations for Communication,
Navigation and Air Traffic Management (CNS/ATM) Systems, December 2011

3. Ábrahám, E., Havelund, K.: Some recent advances in automated analysis. Int. J.
Softw. Tools Technol. Transf. 18(2), 121–128 (2016)

4. Cruanes, S., Hamon, G., Owre, S., Shankar, N.: Tool integration with the evidential
tool bus. In: VMCAI (2013)

5. Denney, E., Pai, G.: Evidence arguments for using formal methods in software
certification. In: Software Reliability Engineering Workshops (ISSREW), Nov 2013

6. Duvall, P., Matyas, S.M., Glover, A.: Continuous Integration: Improving Software
Quality and Reducing Risk. Addison-Wesley Professional, Boston (2007)

7. Groce, A., Havelund, K., Holzmann, G., Joshi, R., Xu, R.-G.: Establishing flight
software reliability: testing, model checking, constraint-solving, monitoring and
learning. Ann. Math. Artif. Intell. 70, 315–349 (2014)

8. Havelund, K., Holzmann, G.J.: Software certification: coding, code, and coders. In:
EMSOFT 2011. ACM, New York, NY, USA (2011)

9. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional, Boston (2011)

10. Holzmann, G.J.: SCRUB: a tool for code reviews, December 2010
11. ISO: Road vehicles - Functional safety (2011)
12. Kelly, T.P., McDermid, J.A.: Safety case construction and reuse using patterns.

In: Software Reliability Engineering Workshops (ISSREW) (1997)

Evidential and Continuous Integration of Software Verification Tools 685

13. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

14. Moura, L.D., Owre, S., Ruess, H., Rushby, J., Shankar, N.: Integrating verification
components. Theories, Tools, Experiments. In: Verified Software (2005)

15. RTI Real-Time Innovations: DDS for Safety-Critical Applications (2014)
16. Rushby. J.: An evidential tool bus. In: Proceedings of ICFEM (2005)

https://doi.org/10.1007/978-3-642-54862-8_26

Disruptive Innovations
for the Development and the Deployment

of Fault-Free Software

Thierry Lecomte(B)

CLEARSY, 320 avenue Archimède, Aix en Provence, France
thierry.lecomte@clearsy.com

Abstract. Developing safety critical systems is a very difficult task.
Such systems require talented engineers, strong experience and dedica-
tion when designing the safety principles of these systems. Indeed it
should be demonstrated that no failure or combination of failures may
lead to a catastrophic situation where people could be injured or could
die because of that system. This article presents disruptive technologies
that reduce the effort to develop such systems by providing integrated
building blocks easier to use.

Keywords: Formal methods · Safety critical · Software development

1 Introduction

Developing safety critical systems [2] requires higher costs (advanced engi-
neering, redundant architecture for SIL3/41 applications, extensive verification
& validation, specific hardware, etc.). Using off-the-shelf hardware is often a
nightmare as it requires to constraint the development cycle by using specific
modeling and verification tools, software libraries (and imposed basic operators),
etc. Lack of flexibility, requirement for expert practitioners, and resulting higher
selling price could dramatically lower competitiveness. Even worse, from a soci-
etal point of view, means to improve population safety might not be put into
existence because of economical reasons (costs).

To overcome this situation, a solution based on formal methods, the
CLEARSY Safety Platform [3], has been designed to ease the development and
the deployment of a function, by providing means to model the software, to
prove its behavior regarding its specification, to verify mathematically the sound-
ness and the correctness of its parameters, and to ensure a safe execution on a
dedicated hardware.

The CLEARSY Safety Platform is made of an integrated software devel-
opment environment (IDE) and a hardware platform that natively integrates

1 Safety Integrity Level. 4 is the highest level, corresponding to a maximum of one
catastrophic failure every hundred centuries.

c© Springer International Publishing AG, part of Springer Nature 2018
K. Havelund et al. (Eds.): FM 2018, LNCS 10951, pp. 686–689, 2018.
https://doi.org/10.1007/978-3-319-95582-7_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95582-7_46&domain=pdf

Disruptive Innovations for the Development and the Deployment 687

safety principles. Hence the developer only has to focus on the functional design
while mathematical proof replaces unit and integration testing. There is no need
for independent software development teams: redundant software is automati-
cally produced from a single model. A certification kit allows the developer to
build a safety case and as such ease the certification process. The final safety
demonstration remains the responsibility of the developer.

2 Software Modeling

The B formal method is at the core of the software development process (Fig. 1).
Mathematical proofs ensure that the software complies with its specification and
guarantees the absence of programming errors while avoiding unit testing and
integration testing.

Fig. 1. Software development and deployment: a single formal model is used to generate
diverse software. A sequencer and verification functions, developed with B, constitute
the safety belt. The sequencer calls the software function every cycle while the verifi-
cation functions ensure that any divergent behavior is detected and leads to reboot.

Moreover only one functional model is used to produce automatically the
redundant software, avoiding the need to have two independent teams for its
development. The formal model may be developed manually or be the by-product
of a translation from a Domain Specific Language to B (BXml open API). A
subset of the B formal language is supported to develop control-command appli-
cations. A software project is a B project already filled with an interface descrip-
tion with the board (inputs, outputs, current time), the supported types and
operators. The developer only has to fill in the specification and design of the
function user logic. In its current form, the software integrated development
environment allows developing cyclic applications (read inputs and current time,

688 T. Lecomte

perform computations, command outputs), run directly on the hardware without
any underlying operating system. There is no predefined cycle time to comply
with: the application is run as fast as possible and the time information is man-
aged directly by the application software. With PIC32 micro-controllers, the
platform offers up to 100 MIPS for lightweight applications handling Boolean
and integer data.

3 Low Cost High Integrity Platform

Software is not safe by itself as it is necessary to consider the processor (and its
failures) that is going to execute it (Fig. 2).

The safety principles are built-in, both at software level and at hardware
level (2oo2 hardware, 4oo4 software).

Fig. 2. The CLEARSY Safety Platform: the starter kit SK0

The functional correctness is ensured by mathematical proof. The software
is also demonstrated to be programming error free.

The detection of any divergent behavior among the two processors and the
four instances of the software is handled by the platform. The safety verifications
include cross checks between software instances and between micro-controllers,
memory integrity, micro-controller instruction checker, etc. In case of failure,
the execution platform reboots. As the outputs require the two micro-controllers
to be alive and running, it is not possible to have the outputs commanded in
a permissive state in case of divergent behavior. The safety principles of the
platform are out of reach of the developer who cannot alter them.

4 Formal Data Validation

Software applications are usually developed and validated independently from
the parameters or constant data that fine-tune their behavior. In order to avoid
a new compilation if the data are modified but not the software, two different
processes define the software and the data validations. Data validation consists
in checking a heterogeneous data collection against a set of properties/rules

Disruptive Innovations for the Development and the Deployment 689

issued from diverse sources like technical constraints, regulation, exploitation
constraints, etc. Manual data validation used to be entirely human, error-prone
activities.

Formal data validation [1] is the natural evolution of this human-based
process into a more secure one where the properties/rules are formalized, to
constitute a formal data model (mathematical, based on the B language). It is
built from natural language inputs. The verification of conformance between the
data collection and the formal data model is performed by a formal tool, i.e.
a model-checker (or by a combination of redundant formal tool if required).
In the case of the applications developed with the CLEARSY Safety Plat-
form, the parameters of the application but also the technical parameters of the
implementation are formally verified.

5 Conclusion and Perspectives

The CLEARSY Safety Platform is aimed at easing the development and the
deployment of safety critical applications, up to SIL4. It relies on the smart
integration of formal methods, redundant code generation and compilation, and
a hardware platform that ensures a safe execution of the software.

A starter kit SK0, developed with the support of the French R & D project
FUI LCHIP (Low Cost High Integrity Platform), is available since Q4 2017 for
experiment and education.

The building blocks of this technology have already been certified
(SIL3/SIL4) in several railway projects worldwide, in particular the COPPILOT
systems open and closing platform screen doors in São Paulo and Stockholm.

Together with the full automation of the proof, the connection with Domain
Specific Languages, like Grafcet or Structured Text, is expected during this
year 2018 to enable the development of functions independently of the B formal
language, hence to ease the adoption of these new technologies in the industry.

References

1. Falampin, J., Le-Dang, H., Leuschel, M., Mokrani, M., Plagge, D.: Improving rail-
way data validation with proB. In: Romanovsky, A., Thomas, M. (eds.) Industrial
Deployment of System Engineering Methods, pp. 27–43. Springer, Heidelberg (2013)

2. Lecomte, T.: Applying a formal method in industry: a 15-Year trajectory. In:
Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp.
26–34. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04570-7 3

3. Lecomte, T.: Double cœur et preuve formelle pour automatismes sil4. 8E-Modèles
formels/preuves formelles-sûreté du logiciel (2016)

https://doi.org/10.1007/978-3-642-04570-7_3

Author Index

Ábrahám, Erika 312, 382
Akazaki, Takumi 456
Albert, Elvira 550
Alrajeh, Dalal 110
Alvim, Mário S. 55
Américo, Arthur 55
Avellaneda, Florent 93
Avgustinov, Pavel 666
Azadbakht, Keyvan 39

Bacci, Giovanni 203
Backhouse, Kevin 666
Becker, Heiko 355
Berger, Philipp 312
Beyene, Tewodros A. 679
Bjørner, Nikolaj 675
Bobot, François 364
Borälv, Arne 653
Bouyer, Patricia 203
Brauer, Jörg 657
Busard, Simon 129

Cavezza, Davide Giacomo 110
Chifflier, Pierre 338
Chockler, Hana 438
Cimatti, Alessandro 625
Cohen, Ernie 671
Colvin, Robert J. 240

Darulova, Eva 355
de Boer, Frank S. 39
de Putter, Sander 485
de Vink, Erik 39
Dras, Mark 3
Duan, Yihai 456
Dutle, Aaron 364, 647

Fahrenberg, Uli 203
Fan, Chuchu 588
Fava, Daniel Schnetzer 258
Ferdinand, Christian 662
Fernandes, Natasha 3
Ferrère, Thomas 147

Garcia, Sergio 399
Garlan, David 165
Geisler, Signe 277
Ghorbal, Khalil 418
Gómez-Zamalloa, Miguel 550
Guha, Shibashis 438
Guldstrand Larsen, Kim 22
György, András 110

Hao, Jianye 456
Haxthausen, Anne E. 277
Hayes, Ian J. 222
Hiet, Guillaume 338
Huang, Kai 294
Huang, Zhenqi 588

Iraci, Grant 165

Jia, Yifan 73

Kästner, Daniel 662
Katoen, Joost-Pieter 312, 382
Khanna, Dhriti 466
Krishnamurthi, Shriram 568
Kupferman, Orna 438

Laneve, Cosimo 608
Larsen, Kim Guldstrand 203
Lecomte, Thierry 686
Legay, Axel 329, 542
Letan, Thomas 338
Lin, Shang-Wei 523
Liu, Shuang 456
Liu, Yang 523
Lluch Lafuente, Alberto 329
Lorber, Florian 22
Lowe, Gavin 505
Lv, Yiqi 294

Markey, Nicolas 203
Mauborgne, Laurent 662
McIver, Annabelle 3, 55
Meinicke, Larissa A. 222

Menghi, Claudio 399
Mitra, Sayan 588
Mo, Man Yue 666
Moscato, Mariano M. 364
Muñoz, César A. 364
Muñoz, César 647

Narkawicz, Anthony 647
Nellen, Johanna 382
Nelson, Tim 568
Nielsen, Brian 22
Nowotka, Dirk 542

Panchekha, Pavel 355
Pardo, Raúl 185
Pecheur, Charles 129
Pelliccione, Patrizio 399
Petrenko, Alexandre 93
Platzer, André 418
Porncharoenwase, Sorawee 568
Poulsen, Danny Bøgsted 542
Purandare, Rahul 466

Qin, Shengchao 73

Rambow, Thomas 312, 382
Régis-Gianas, Yann 338
Reynier, Pierre-Alain 203
Rodríguez, César 466
Rubio, Albert 550
Ruchkin, Ivan 165
Ruess, Harald 679

Sammartino, Matteo 550
Sanán, David 523
Sánchez, César 185
Schmerl, Bradley 165

Schneider, Gerardo 185
Schulze, Uwe 657
Sharma, Subodh 466
Silva, Alexandra 550
Smith, Graeme 240
Sogokon, Andrew 418
Steffen, Martin 258
Stojic, Ivan 625
Stolz, Volker 258
Sun, Jun 73, 523
Sunshine, Joshua 165

Tan, Yong Kiam 418
Tatlock, Zachary 355
ter Beek, Maurice H. 329
Titolo, Laura 364
Tiu, Alwen 523
Tonetta, Stefano 625
Tranouez, Louis-Marie 542
Tumova, Jana 399

Vandin, Andrea 329

Waez, Md Tawhid Bin 312, 382
Wang, Jingyi 73
Wijs, Anton 485

Xu, Zhiwu 73

Yamagata, Yoriyuki 456
Yan, Rongjie 294
Yang, Junjie 294

Zhang, Fan 294
Zhang, Fuyuan 523
Zhao, Yongwang 523
Zhu, Di 294

692 Author Index

	Preface
	Organization
	Contents
	Invited Papers
	Processing Text for Privacy: An Information Flow Perspective
	1 Introduction
	2 Text Document Processing
	2.1 Representing Documents for Topic Classification and Author Identification
	2.2 Privacy Versus Utility

	3 Channels, Secrets and Information Flow
	3.1 Vulnerability Induced by Gain-Functions
	3.2 Privacy Mechanisms as Channels
	3.3 Attacks on Simple Confusability
	3.4 Universal Confusability
	3.5 Differential Privacy
	3.6 Privacy Versus Utility

	4 Generalised Differential Privacy and Obfuscation
	4.1 Experiments

	5 Conclusions and Future Work
	References

	20Years of Real Real Time Model Validation
	1 Introduction
	2 The Uppaal Tool Suite
	3 Verification
	4 Testing
	5 Planning, Scheduling and Synthesis
	6 Lessons Learned
	References

	FM 2018 Main Conference
	Deadlock Detection for Actor-Based Coroutines
	1 Introduction
	2 The Programming Language
	3 The Concrete System
	4 The Abstract System
	5 Correctness of Predicate Abstraction
	6 Decidability of Deadlock Detection
	7 Conclusion
	References

	An Algebraic Approach for Reasoning About Information Flow
	1 Introduction
	2 Preliminaries
	3 Operators on Channel Composition
	3.1 The Parallel Composition Operator
	3.2 The Visible Choice Operator p
	3.3 The Hidden Choice Operator p
	3.4 A Compositional Description of the Dining Cryptographers

	4 Algebraic Properties of Channel Operators
	4.1 Properties Regarding Channel Operators
	4.2 Properties Regarding Cascading

	5 Information Leakage of Channel Operators
	5.1 The Problem of Compositional Vulnerability
	5.2 The Problem of Relative Monotonicity

	6 Case Study: The Crowds Protocol
	7 Related Work
	8 Conclusions and Future Work
	References

	Towards `Verifying' a Water Treatment System
	1 Introduction
	2 Background
	3 Our Approach
	3.1 The Model
	3.2 Learning Algorithm
	3.3 Verification
	3.4 Abstraction Refinement
	3.5 Overall Algorithm

	4 Case Study Results
	5 Conclusion and Related Work
	References

	FSM Inference from Long Traces
	1 Introduction
	2 Definitions
	3 Passive Inference
	3.1 Problem Statement
	3.2 Encoding as a SAT Problem
	3.3 Auxiliary Variables
	3.4 Symmetry Breaking

	4 Incremental Inference
	4.1 Prefix-Based Method
	4.2 Suffix-Based Method
	4.3 Discussion

	5 Industrial Case Study
	6 Conclusion
	References

	A Weakness Measure for GR(1) Formulae
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Problem Statement
	5 Weakness Measure of GR(1) Formulae
	5.1 Dimension of Invariants
	5.2 Fairness and Fairness Complements
	5.3 Dimension Pairs for GR(1) Formulae
	5.4 Initial Conditions

	6 Evaluation
	7 Conclusion
	References

	Producing Explanations for Rich Logics
	1 Introduction
	2 The Propositional µ-Calculus
	3 A µ-Calculus-Based Framework for Rich Explanations
	3.1 Translation of ATL Models and Formulas to µ-calculus
	3.2 µ-Calculus Explanations
	3.3 Translating µ-Calculus Explanations

	4 Implementation
	5 Application to ATL
	6 Related Work
	7 Conclusion
	References

	The Compound Interest in Relaxing Punctuality
	1 Introduction
	2 Preliminaries
	3 Metric Interval Regular Expressions
	4 From MIRE to Deterministic Timed Automata
	5 Metric Interval Dynamic Logic
	6 From MIDL to Nondeterministic Timed Automata
	7 Discussion
	References

	IPL: An Integration Property Language for Multi-model Cyber-physical Systems
	1 Introduction
	2 Motivating Integration Case
	3 Related Work
	4 Integration Property Language: Design
	5 Integration Property Language: Details
	5.1 Concepts and Preliminaries
	5.2 Syntax
	5.3 Semantics
	5.4 Verification Algorithm

	6 Evaluation
	6.1 Case Study: Adaptive Mobile Robot

	7 Discussion
	References

	Timed Epistemic Knowledge Bases for Social Networks
	1 Introduction
	2 A Timed Knowledge Based Logic
	2.1 Syntax
	2.2 Semantics
	2.3 Model Checking KBLRT
	2.4 Properties of the Framework

	3 Writing Privacy Policies
	4 Related Work and Concluding Remarks
	References

	Optimal and Robust Controller Synthesis
	1 Introduction
	2 Energy Timed Automata
	3 Energy Timed Automata with Uncertainties
	4 Case Study
	5 Conclusion
	References

	Encoding Fairness in a Synchronous Concurrent Program Algebra
	1 Introduction
	2 Synchronous Concurrent Refinement Algebra
	3 Properties of Iterations
	4 Properties of fair
	5 Properties of Fair and Concurrency
	6 Properties of Fair Parallel
	7 Conclusions
	References

	A Wide-Spectrum Language for Verification of Programs on Weak Memory Models
	1 Introduction
	2 Instruction Reordering in Weak Memory Models
	2.1 Thread-Local Reorderings
	2.2 Reordering and Forwarding Instructions
	2.3 General Operational Rules for Reordering
	2.4 Reasoning About Reorderings

	3 Semantics
	3.1 Formal Language
	3.2 Operational Semantics
	3.3 Reordering and Forwarding for ARM and POWER

	4 Model Checking Concurrent Data Structures
	4.1 Chase-Lev Deque

	5 Related Work
	6 Conclusion
	References

	Operational Semantics of a Weak Memory Model with Channel Synchronization
	1 Introduction
	2 Background
	3 Abstract Syntax
	4 Operational Semantics
	4.1 Local States, Events, and Configurations
	4.2 Reduction Steps

	5 Strong Semantics
	6 Relating the Strong and the Weak Semantics
	6.1 The Strong Semantics Conditionally Simulates the Weak One

	7 Related Work
	8 Conclusion
	References

	Stepwise Development and Model Checking of a Distributed Interlocking System - Using RAISE
	1 Introduction
	1.1 Background
	1.2 Contribution
	1.3 Related Work
	1.4 Paper Overview

	2 Case Study
	2.1 Engineering Concept
	2.2 Overview of Formal Development

	3 First Model
	4 Second Model
	5 Third Model
	6 Verification
	6.1 Model Checking
	6.2 Other Verification Activities

	7 Conclusion and Future Work
	References

	Resource-Aware Design for Reliable Autonomous Applications with Multiple Periods
	1 Introduction
	2 Related Work
	3 The Motivating Example
	4 Preliminaries
	4.1 Atypical Task Graph
	4.2 Communication Model
	4.3 Active Redundancy Based Fault Tolerance

	5 Reliable and Resource-Aware Design
	5.1 Redundancy Optimization
	5.2 Constraint Formalization and Resource Optimization
	5.3 Implementation

	6 Case Study
	6.1 Redundancy Degree for Various Reliability Requirements
	6.2 Resource Optimization Within Various Scenarios
	6.3 Timing Constraint on Weak Dependency

	7 Conclusion
	References

	Verifying Auto-generated C Code from Simulink
	1 Introduction
	2 The Case Studies
	3 The BTC Tool
	3.1 The BTC EmbeddedPlatform

	4 Experience Report
	4.1 Formalizing the Requirements
	4.2 Formal Verification of Auto-generated Code

	5 Reflections and Recommendations
	5.1 Requirements
	5.2 Code Verification

	6 Conclusion
	References

	QFLan: A Tool for the Quantitative Analysis of Highly Reconfigurable Systems
	1 Introduction
	2 QFLan Architecture
	3 QFLan at Work: Coffee Vending Machine
	4 Outlook
	References

	Modular Verification of Programs with Effects and Effect Handlers in Coq
	1 Introduction
	2 Modelling Programs with Effects
	2.1 Interface of Effects
	2.2 Operational Semantics for Effects
	2.3 The Program Monad
	2.4 Components as Programs with Effects

	3 Modular Verification of Programs with Effects
	3.1 Definition
	3.2 Compliance and Correctness
	3.3 Proofs Techniques to Show Compliance for Components

	4 Discussion
	4.1 FreeSpec as a Methodology
	4.2 FreeSpec as a Framework

	5 Related Work
	6 Conclusion and Future Work
	References

	Combining Tools for Optimization and Analysis of Floating-Point Computations
	1 Introduction
	2 Implementation
	3 Experimental Results
	4 Discussion
	References

	A Formally Verified Floating-Point Implementation of the Compact Position Reporting Algorithm
	1 Introduction
	2 The Compact Position Reporting Algorithm
	2.1 Encoding
	2.2 Local Decoding
	2.3 Global Decoding

	3 An Alternative Implementation of CPR
	3.1 Alternative Encoding
	3.2 Alternative Local Decoding
	3.3 Alternative Global Decoding

	4 Verification Approach
	5 Related Work
	6 Conclusion
	References

	Formal Verification of Automotive Simulink Controller Models: Empirical Technical Challenges, Evaluation and Recommendations
	1 Introduction
	2 The Case Study
	2.1 Controller Model
	2.2 Simulink Design Verifier
	2.3 Goals

	3 Feasibility Analysis
	3.1 Preparation
	3.2 Verification
	3.3 Scalability

	4 Lessons Learned
	4.1 Specification
	4.2 Model
	4.3 Verification Tool

	5 Conclusions and Discussion
	References

	Multi-robot LTL Planning Under Uncertainty
	1 Introduction
	2 Running Example
	3 Modeling Partial Knowledge in a Robotic Application
	4 Planning with Partial Knowledge
	5 Algorithms
	6 Evaluation
	7 Related Work
	8 Conclusions
	References

	Vector Barrier Certificates and Comparison Systems
	1 Introduction
	2 Fundamental Definitions
	2.1 Systems of Ordinary Differential Equations
	2.2 Safety Verification and Direct Methods

	3 Barrier Certificates
	3.1 Comparison System-Based Barrier Certificates
	3.2 Comparison Systems
	3.3 Comparison Principle Interpretation of Barrier Certificates
	3.4 Invariant Set-Based Barrier Certificates

	4 From Scalar to Vector Comparison Systems
	4.1 Vector Lyapunov Functions
	4.2 Vector Comparison Principle
	4.3 Safety with Vector Barrier Certificates
	4.4 Generating Vector Barrier Certificates Using SDP

	5 Limitations and Outlook
	6 Related Work
	7 Conclusion
	References

	Timed Vacuity
	1 Introduction
	2 Preliminaries
	2.1 TCTL, Timed Automata, and Timed Transition Systems
	2.2 Timed Vacuity

	3 TCTL+ and Its Model Checking
	4 Satisfying a TCTL Formula Timed Vacuously
	4.1 Complexity Results
	4.2 Algorithms for Tightening TCTL Formulas

	5 Ranking Vacuity Results
	6 Conclusions
	References

	Falsification of Cyber-Physical Systems Using Deep Reinforcement Learning
	1 Introduction
	2 Preliminary
	3 Our Approach
	3.1 Overview of Our Algorithm
	3.2 Reward Definition for Life-Long Property Falsification

	4 Preliminary Results
	5 Conclusion and Future Work
	References

	Dynamic Symbolic Verification of MPI Programs
	1 Introduction
	2 Overview
	3 MPI Model and Execution Semantics
	4 Encoding Rules
	5 Design
	5.1 Components
	5.2 Deadlock Detection
	5.3 Correctness and Termination

	6 Implementation
	6.1 Non-chronological Backtracking
	6.2 Terminated Interleavings

	7 Evaluation
	8 Related Work
	9 Conclusion and Future Work
	References

	To Compose, or Not to Compose, That Is the Question: An Analysis of Compositional State Space Generation
	1 Introduction
	2 Related Work
	3 Background
	4 Methodology
	5 Results
	5.1 Case and Subject Descriptions
	5.2 Analysis
	5.3 Threats to Validity

	6 Conclusions
	References

	View Abstraction for Systems with Component Identities
	1 Introduction
	1.1 Related Work

	2 The Framework
	2.1 Systems

	3 Using View Abstraction
	4 Bounding the Number of Components
	5 Using Symmetry
	6 The Algorithm and Implementation
	6.1 Prototype Implementation

	7 Analysing Reference-Linked Data Structures
	8 Conclusions
	References

	Compositional Reasoning for Shared-Variable Concurrent Programs
	1 Introduction
	2 Related Work
	3 Succinct Automata
	3.1 Syntax and Semantics
	3.2 Parallel Composition

	4 Compositional Reasoning for Succinct Automata
	4.1 Safety Verification of Succinct Automata
	4.2 Simulations of Succinct Automata
	4.3 Safety Property Preservation Under Refinement

	5 Automatic Verification of Succinct Automata
	5.1 Generation of Succinct Automata
	5.2 Refinement Checking Between Succinct Automata

	6 Conclusions and Future Work
	References

	Statistical Model Checking of LLVM Code
	1 Introduction
	2 Lodin
	3 Plasma-Lab
	4 Conclusion
	References

	SDN-Actors: Modeling and Verification of SDN Programs
	1 Introduction
	2 Overview
	2.1 Concurrency Errors in SDN Networks
	2.2 Actor-Based Modeling of SDN Networks

	3 SDN-Actors: An Actor Based Encoding of SDN Programs
	3.1 Network Topology
	3.2 The Switch and Host Classes
	3.3 The Controller
	3.4 Barriers

	4 DPOR-Based Model Checking of SDN-Actors
	4.1 DPOR-Based Model Checking in Actors
	4.2 Entry-Level and Context-Sensitive Independence
	4.3 Comparison of DPOR Reductions with Related Work

	5 Checking SDN Properties in Case Studies
	6 Conclusions and Related Work
	References

	CompoSAT: Specification-Guided Coverage for Model Finding
	1 Introduction
	2 Motivation and Example
	3 Adapting Coverage to Model Finding
	4 Foundations
	4.1 Bounded Model Finding
	4.2 Local Necessity and Provenance

	5 Algorithmics of Coverage
	5.1 Expansion
	5.2 Canonicalization
	5.3 Coverage and Subsumption

	6 Implementation
	7 Qualitative Use Case: Overconstraint
	7.1 Detecting Overconstraint via Local Necessity
	7.2 Highlighting Uncovered Constraints

	8 Evaluation
	8.1 Experimental Setup
	8.2 RQ1: Do Small Ensembles Suffice?
	8.3 RQ2: Is Enumeration Effective?
	8.4 RQ3: Minimal Model Coverage

	9 Related Work
	10 Conclusion and Discussion
	References

	Approximate Partial Order Reduction
	1 Introduction
	2 Preliminaries
	2.1 Transition Systems
	2.2 Discrepancy Functions
	2.3 Combining Sets of Discrepancy Functions

	3 Independent Actions and Neighboring Executions
	3.1 Approximately Independent Actions
	3.2 (,)-trace Equivalent Discrepancy for Action Pairs

	4 Effect of -independent Traces
	4.1 -equivalent Traces
	4.2 (0,)-trace Equivalent Discrepancy for Traces (on the Same Initial States)
	4.3 (,)-trace Equivalent Discrepancy for Traces

	5 Reachability with Approximate Partial Order Reduction
	5.1 Earliest Equivalent Position of an Action in a Trace
	5.2 Reachability Using (,)-trace Equivalent Discrepancy

	6 Experimental Evaluation of Effectiveness
	7 Conclusion
	References

	A Lightweight Deadlock Analysis for Programs with Threads and Reentrant Locks
	1 Introduction
	2 Lams and the Algorithm for Detecting Circularities
	3 The Language and Its Semantics
	4 Static Semantics
	5 Remarks About the Analysis Technique
	6 Related Works and Conclusions
	References

	Formal Specification and Verification of Dynamic Parametrized Architectures
	1 Introduction
	2 Related Work
	3 An Example of a Dynamic Parametrized Architecture
	4 Formal Specification of Dynamic Parametrized Architectures
	4.1 Definitions
	4.2 Logic for Systems of Parameters

	5 Analysis with SMT-Based Model Checking
	5.1 Background Notions on SMT-Based Model Checking
	5.2 Encoding into SMT-Based Model Checking

	6 Experimental Evaluation
	6.1 Setup
	6.2 Benchmarks and Results

	7 Conclusions and Future Work
	References

	FM 2018 Industry Day
	From Formal Requirements to Highly Assured Software for Unmanned Aircraft Systems
	1 Introduction
	2 UAS Detect and Avoid
	3 From DAIDALUS to ICAROUS
	4 Conclusion
	References

	Interlocking Design Automation Using Prover Trident
	Abstract
	1 Background
	2 The Prover Trident Process
	2.1 PiSPEC IP
	2.2 Prover iLock
	2.3 Prover Certifier

	3 Results and Conclusions
	References

	Model-Based Testing for Avionics Systems
	1 Introduction
	2 Core Challenges
	2.1 Application Parameters
	2.2 Interface Modules
	2.3 Test Scenarios

	3 Conclusion
	References

	On Software Safety, Security, and Abstract Interpretation
	1 Introduction
	2 Security in Safety-Critical Systems
	3 Proving the Absence of Defects
	4 Conclusion
	References

	Variant Analysis with QL
	1 Introduction
	2 QL for Ad-hoc Variant Analysis
	3 Variant Analysis from Building Blocks
	4 Conclusion
	References

	Object-Oriented Security Proofs
	1 Security as Object Equivalence
	2 Reasoning About Object Equivalence
	3 Some Specification Examples
	4 Conclusion

	Z3 and SMT in Industrial R&D
	1 Introduction
	2 Driving Scenarios and Research Synergy
	3 SMT-LIB - A Research Community
	4 Tooling and Infrastructure
	4.1 Development
	4.2 Open Sourcing

	5 Push, Pull and Confluences
	References

	Evidential and Continuous Integration of Software Verification Tools
	1 Introduction
	2 Verification Activities, Workflows and Patterns
	3 Structure of the Integration Framework
	4 Illustration
	5 Conclusion
	References

	Disruptive Innovations for the Development and the Deployment of Fault-Free Software
	1 Introduction
	2 Software Modeling
	3 Low Cost High Integrity Platform
	4 Formal Data Validation
	5 Conclusion and Perspectives
	References

	Author Index

