
Chapter 2
The Universe in Expansion

Oras ubicumque locaris extremas, quaeram: quid telo denique
fiet?
(wherever you shall set the boundaries, I will ask: what will then
happen to the arrow?)

Lucretius, De Rerum Natura

We introduce in this chapter the geometric basis of cosmology and the expansion of
the universe. A part from the technical treatment, historical, theological and mytho-
logical introductions to cosmology can be found in Ryden (2003) and Bonometto
(2008).

2.1 Newtonian Cosmology

In order to do cosmology we need a theory of gravity, because gravity is a long-range
interaction and the universe is pretty big. Electromagnetism is also a long-range
interaction, but considering the lack of evidence that the universe is charged or made
up of charges here and there, it seems reasonable that gravity is what we need in
order to describe the universe on large scales.

Which theory of gravity do we use for describing the universe? It turns out that
Newtonian physicsworks surprisinglywell! It is also surprising that attempts of doing
cosmology with Newtonian gravity are well posterior to relativistic cosmology itself.

In particular, the first work on Newtonian cosmology can be dated back to Milne
andMcCrea in the 1930s (McCrea andMilne 1934;Milne 1934). These were models
of pure dust, while pressure was introduced later by McCrea (1951) and Harrison
(1965). More recently the issue of pressure corrections in Newtonian cosmology has
been tackled again in Lima et al. (1997), Fabris and Velten (2012), Hwang and Noh
(2013) and Baqui et al. (2016).
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18 2 The Universe in Expansion

Newtonian cosmology works as follows. Imagine a sphere of dust of radius r .
This radius is time-dependent because the configuration is not stable since there is no
pressure, thus r = r(t). We assume homogeneity of the sphere during the evolution,
i.e. its density depends only on the time:

ρ(t) = 3M

4πr(t)3
, (2.1)

where M is the mass of the dust sphere and is constant. Now, imagine a small test
particle of mass m on the surface of the sphere. By Newton’s gravitation law and
Gauss’s theorem one has:

F = −GMm

r(t)2
⇒ r̈ = −4πG

3
ρr , (2.2)

where we have used Eq. (2.1) and the dot denotes derivationwith respect to the time t .
This is the same acceleration equation that we shall find later usingGR, cf. Eq. (2.51).

Exercise 2.1 Integrate Eq. (2.2) and show that:

ṙ2

r2
= 8πG

3
ρ − K

r2
, (2.3)

where K is an integration constant.

We shall also see that Eq. (2.3) is the same as Friedmann equation in GR, cf.
(2.50). The integration constant K can be interpreted as the total energy of the
particle. Indeed, we can rewrite Eq. (2.3) as follows:

E ≡ −mK

2
= m

2
ṙ2 − GMm

r
, (2.4)

which is the expression of the total energy of a particle of massm in the gravitational
field of the mass M .

2.2 Relativistic Cosmology

In GR we have geometry and matter related by Einstein equations:

Gμν = 8πG

c4
Tμν , (2.5)

where Gμν is the Einstein tensor, computed from the metric, and Tμν is the energy-
momentum or stress-energy tensor, and describes the matter content.
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In cosmology, which is the metric which describes the universe and what is the
matter content? It turns out that both questions are very difficult to answer and,
indeed, there are no still clear answers, as we stressed in Chap.1.

2.2.1 Friedmann–Lemaître–Robertson–Walker Metric

The metric used to describe the universe on large scales is the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric. This is based on the assumption of very high
symmetry for the universe, called the cosmological principle, which is minimally
stated as follows: the universe is isotropic and homogeneous, i.e. there is no preferred
direction or preferred position.

A more formal definition can be found in Weinberg (1972, p. 412) and is based
on the following two requirements:

1. The hypersurfaces with constant cosmic standard time are maximally symmetric
subspaces of the whole of the spacetime;

2. The global metric and all the cosmic tensors such as the stress-energy one Tμν

are form-invariant with respect to the isometries of those subspaces.

We shall come back in amoment tomaximally symmetric spaces. Roughly speaking,
the second requirement above means that the matter quantities can depend only on
the time.

The cosmological principle seems to be compatible with observations at very
large scales. According to Wu et al. (1999): on a scale of about 100 h−1Mpc the rms
density fluctuations are at the level of ∼10% and on scales larger than 300 h−1Mpc
the distribution of both mass and luminous sources safely satisfies the cosmological
principle of isotropy and homogeneity.

In a recent work Sarkar and Pandey (2016) find that the quasar distribution is
homogeneous on scales larger than 250h−1Mpc. Moreover, numerical relativity
seems to indicate that the average evolution of a generic metric on large scale is
compatible with that of FLRW metric (Giblin et al. 2016).

According to the cosmological principle, the constant-time spatial hypersurfaces
are maximally symmetric.1 A maximally symmetric space is completely charac-
terised by one number only, i.e. its scalar curvature, which is also a constant. See
Weinberg (1972, Chap.13).

Let R be this constant scalar curvature. The Riemann tensor of a maximally
symmetric D-dimensional space is written as:

Rμνρσ = R

D(D − 1)
(gμρgνσ − gμσgνρ) . (2.6)

Contracting with gμρ we get for the Ricci tensor:

1This means that they possess 6 Killing vectors, i.e. there are six transformations which leave the
spatial metric invariant (Weinberg 1972).
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Rνσ = R

D
gνσ , (2.7)

and then R is the scalar curvature, as we stated, since gνσgνσ = D. Since any given
number can be negative, positive or zero, we have three possible maximally sym-
metric spaces. Now, focusing on the 3-dimensional spatial case:

1. ds23 = |dx|2 ≡ δi j dxidx j , i.e. the Euclidean space. The scalar curvature is zero,
i.e. the space is flat. This metric is invariant under 3-translations and 3-rotations.

2. ds23 = |dx|2 + dz2, with the constraint z2 + |x|2 = a2. This is a 3-sphere of radius
a embedded in a 4-dimensional Euclidean space. It is invariant under the six
4-dimensional rotations.

3. ds23 = |dx|2 − dz2, with the constraint z2 − |x|2 = a2. This is a 3-hypersphere,
or a hyperboloid, in a 4-dimensional pseudo-Euclidean space. It is invariant under
the six 4-dimensional pseudo-rotations (i.e. Lorentz transformations).

Exercise 2.2 Why are there six independent 4-dimensional rotations in the
4-dimensional Euclidean space? How many are there in a D-dimensional Euclidean
space?

Let us write in a compact form the above metrics as follows:

ds23 = |dx|2 ± dz2 , z2 ± |x|2 = a2 . (2.8)

Differentiating z2 ± |x|2 = a2, one gets:

zdz = ∓x · dx . (2.9)

Now put this back into ds23 :

ds23 = |dx|2 ± (x · dx)2
a2 ∓ |x|2 . (2.10)

In a more compact form:

ds23 = |dx|2 + K
(x · dx)2

a2 − K |x|2 , (2.11)

with K = 0 for the Euclidean case, K = 1 for the spherical case and K = −1 for
the hyperbolic case. The components of the spatial metric in Eq. (2.11) can be imme-
diately read off and are:

g(3)
i j = δi j + K

xi x j

a2 − K |x|2 . (2.12)
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Exercise 2.3 Write down metric (2.11) in spherical coordinates. Use the fact that
|dx|2 = dr2 + r2d�2, where

d�2 ≡ dθ2 + sin2 θdφ2 , (2.13)

and use:

x · dx = 1

2
d|x|2 = 1

2
d(r2) = rdr . (2.14)

Show that the result is:

ds23 = a2dr2

a2 − Kr2
+ r2d�2 (2.15)

Calculate the scalar curvature R(3) for metric (2.15). Show that R(3)
i j = 2Kg(3)

i j /a2

and thus R(3) = 6K/a2.

If we normalise r → r/a in metric (2.15), we can write:

ds23 = a2
(

dr2

1 − Kr2
+ r2d�2

)
, (2.16)

and letting a to be a function of time, we finally get the FLRW metric:

ds2 = −c2dt2 + a2(t)

(
dr2

1 − Kr2
+ r2d�2

)
(2.17)

The time coordinate used here is called cosmic time, whereas the spatial coordi-
nates are called comoving coordinates. For each t the spatial slices are maximally
symmetric; a(t) is called scale factor, since it tells us how the distance between two
points scales with time.

The FLRW metric was first worked out by Friedmann (1922, 1924) and then
derived on the basis of isotropy and homogeneity by Robertson (1935, 1936) and
Walker (1937). Lemaître’s work (Lemaitre 1931) had been also essential to develop
it.2

A further comment concerning FLRW metric (2.17) is in order here. The dimen-
sion of distance is being carried by the scale factora itself, sincewe rescaled the radius
r → r/a. Indeed, as we computed earlier, the spatial curvature is R(3) = 6K/a(t)2,
also time-varying, and it is a real, dimensional number as it should be.

2See also Lemaître (1997) for a recent republication and translation of Lemaître’s 1933 paper.
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2.2.2 The Conformal Time

A very useful form of rewriting FLRW metric (2.17) is via the conformal time η:

adη = dt ⇒ η − ηi =
∫ t

ti

dt ′

a(t ′)
. (2.18)

Aswe shall see later, but aswe already canguess from the above integration, c(η − ηi )
represents the comoving distance travelled by a photon between the times ηi and η,
or ti and t . The conformal time allows to rewrite FLRW metric (2.17) as follows:

ds2 = a(η)2
(

−c2dη2 + dr2

1 − Kr2
+ r2d�2

)
(2.19)

i.e. the scale factor has become a conformal factor (hence the name for η). Recalling
the earlier discussion about dimensionality, if a has dimensions then cη is dimen-
sionless. On the other hand, if a is dimensionless, then η is indeed a time.

Note also that metric (2.19) for K = 0 is Minkowski metric multiplied by a
conformal factor.

2.2.3 FLRW Metric Written with Proper Radius

A third useful way to write FLRW metric (2.17) is using the proper radius, which
is defined as follows:

D(t) ≡ a(t)r . (2.20)

We shall discuss in more detail the proper radius, or proper distance, in Sect. 2.5.

Exercise 2.4 Using D instead of r , show that the FLRW metric (2.17) becomes:

ds2 = −c2dt2
(
1 − H 2 D2/c2

1 − KD2/a2

)
− 2HDdtdD

1 − KD2/a2

+ dD2

1 − KD2/a2
+ D2d�2 , (2.21)

where

H ≡ ȧ

a
(2.22)

is the Hubble parameter. The dot denotes derivation with respect to the cosmic
time.
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2.2.4 Light-Cone Structure of the FLRW Space

Let us consider the K = 0 case, for simplicity. Moreover, consider also d� = 0.
In this case, the radial coordinate is also the distance. Then, putting ds2 = 0 in the
FLRW metric gives the following light-cone structures.

Cosmic Time-Comoving Distance

From the FLRW metric (2.17), the condition ds2 = 0 gives us:

cdt

dr
= ±a(t) . (2.23)

We put our observer at r = 0 and t = t0. The plus sign in the above equation then
describes an outgoing photon, i.e. the future light-cone, whereas the negative sign
describes an incoming photon, i.e. the past-light cone,which ismuchmore interesting
to us. So, let us keep the negative sign and discuss the shape of the light-cone.

Assume that a(0) = 0. Therefore, the slope of the past light-cone starts as−a(t0),
which we can normalise as −1, i.e. locally the past light-cone is identical to the
one in Minkowski space. However, a goes to zero, so the light-cone becomes flat,
encompassing more radii than it would for Minkowski space. See Fig. 2.1. We can
show this analytically by taking the second derivative of Eq. (2.23) with the minus
sign:

c2d2t

dr2
= −ȧ

cdt

dr
= aȧ . (2.24)

Being a > 0 and ȧ > 0 (we consider just the case of an expanding universe), the
function t (r) is convex (i.e. it is “bent upwards”).

Conformal Time-Comoving Distance

For the FLRW metric (2.19), the condition ds2 gives:

cdη

dr
= ±1 . (2.25)

The latter is exactly the same light-cone structure of Minkowski space. Indeed,
Friedmann metric written in conformal time and for K = 0 is Minkowski metric
multiplied by a conformal factor a(η). See Fig. 2.2.

Cosmic Time-Proper Distance

In order to find the light-cone structure for the FLRW metric (2.21) with K = 0, we
need to solve the following equation:

− c2dt2

dD2

(
1 − H 2D2

c2

)
− 2HD

c

cdt

dD + 1 = 0 . (2.26)
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Fig. 2.1 Space-time diagram and light-cone structure for the FLRW metric (2.17). Credit: Prof.
Mark Whittle, University of Virginia

Fig. 2.2 Space-time diagram and light-cone structure for the FLRW metric (2.19). Credit: Prof.
Mark Whittle, University of Virginia



2.2 Relativistic Cosmology 25

Exercise 2.5 Solve Eq. (2.26) algebraically for cdt/dD and show that:

cdt

dD =
(
HD
c

± 1

)−1

. (2.27)

For t = t0 we have H(t0) > 0 andD = 0. Therefore, from Eq. (2.27) we have that
(cdt/dD)(t0) = ±1 and thus we must choose the minus sign in order to describe the
past light-cone. Going back in time, HD grows, until

HD
c

= 1 , (2.28)

for which cdt/dD diverges. This means that no signal can come from beyond this
distanceD = c/H , which is theHubble radius that we met in Chap.1. See Fig. 2.3.
The lower part of this figure is explained as follows. First of all HD becomes larger
than 1, and this explains the change of sign of the slope of the light cone. Then, H →
∞ for a → 0 (if we assume a model with Big Bang) and therefore cdt/dD → 0.
This is why the light-cone flattens close to t = 0 in Fig. 2.3.

2.2.5 Christoffel Symbols and Geodesics

Exercise 2.6 Assume K = 0 in metric (2.17), rewrite it in Cartesian coordinates
and calculate the Christoffel symbols. Show that:

�0
00 = 0 , �0

0i = 0 , �0
i j = aȧ

c
δi j , �i

0 j = H

c
δi j . (2.29)

We now use these in the geodesic equation:

dPμ

dλ
+ �μ

νρP
νPρ = 0 , (2.30)

where Pμ ≡ dxμ/dλ is the four-momentum and λ is an affine parameter. For a
particle of mass m, one has λ = τ/m, where τ is the proper time. The norm of the
four-momentum is:

P2 ≡ gμνP
μPν = − E2

c2
+ p2 = −m2c2 , (2.31)
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Fig. 2.3 Space-time diagram and light-cone structure for the FLRW metric (2.21). Credit: Prof.
Mark Whittle, University of Virginia

where we have defined the energy and the physical momentum (or propermomen-
tum):

E2

c2
≡ −g00(P

0)2 , p2 ≡ gi j P
i P j , (2.32)

and the last equality of Eq. (2.31), which applies only to massive particles, comes
from:

ds2

dλ2
= m2ds2

dτ 2
= −m2c2 , (2.33)

since, by definition, ds2 = −c2dτ 2.Wehave recovered above thewell-knowndisper-
sion relation of special relativity. The metric gμν used above is, in principle, general.
But, of course, we now specialise it to the FLRW one.

For a photon, m = 0 and E = pc. The time-component of the geodesic equation
is the following:

dP0

dλ
+ aȧ

c
δi j P

i P j = 0 . (2.34)

Introducing the proper momentum as defined in Eq. (2.32), one gets:
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c
dp

dλ
+ Hp2 = 0 . (2.35)

Exercise 2.7 Solve Eq. (2.35) and show that p = E/c ∝ 1/a, i.e. the energy of the
photon is proportional to the inverse scale factor.

Therefore, we can write:
Eobs

Eem
= aem

aobs
. (2.36)

On the other hand the photon energy is E = h f , with f its frequency. Therefore:

aem
aobs

= Eobs

Eem
= fobs

fem
= λem

λobs
= 1

1 + z
. (2.37)

This is the relation between the redshift and the scale factor. We have connected
observation with theory. Usually, aobs = 1 and the above relation is simply written
as 1 + z = 1/a.

What does happen, on the other hand, to the energy of a massive particle? The
time-geodesic equation for massive particles is identical to the one for photons, but
the dispersion relation is different, i.e. E2 = m2c4 + p2c2. Therefore:

E =
√
m2c4 + p2i a

2
i c

2

a2
, (2.38)

where pi is some initial proper momentum, at the time ti and ai = a(ti ). For m = 0
we recover the result already obtained for photons. For massive particles the above
relation can be approximated as follows:

E = mc2
(
1 + p2i a

2
i

2a2m2c2
+ · · ·

)
, (mc 
 p) , (2.39)

i.e. performing the expansion for small momenta which is usually done in special
relativity. The second contribution between parenthesis is the classical kinetic energy
of the particle, whose average is proportional to kBT . Therefore:

T ∝ a−1 , for relativistic particles, (2.40)

T ∝ a−2 , for non-relativistic particles. (2.41)

We shall recover the above result also using the Boltzmann equation.

Exercise 2.8 Show that p ∝ 1/a by using not the time-component geodesic equa-
tion but the spatial one:
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dPi

dλ
+ 2�i

0 j P
0P j = 0 . (2.42)

Why is there a factor two in this equation?

2.3 Friedmann Equations

Given FLRWmetric, Friedmann equations can be straightforwardly computed from
the Einstein equations:

Gμν + �gμν = Rμν − 1

2
gμνR + �gμν = 8πG

c4
Tμν , (2.43)

where � is the cosmological constant.

Exercise 2.9 Calculate from FLRW metric (2.17) the components of the Ricci ten-
sor. Show that:

R00 = − 3

c2
ä

a
, R0i = 0 , Ri j = 1

c2
gi j

(
2H 2 + ä

a
+ 2

Kc2

a2

)
, (2.44)

and show that the scalar curvature is:

R = 6

c2

(
ä

a
+ H 2 + Kc2

a2

)
. (2.45)

Finally, compute the Einstein equations:

H 2 + Kc2

a2
= 8πG

3c2
T00 + �c2

3
(2.46)

gi j

(
H 2 + 2

ä

a
+ Kc2

a2
− �c2

)
= −8πG

c2
Ti j (2.47)

These are called Friedmann equations or Friedmann equation and acceleration
equation or Friedmann equation and Raychaudhuri equation.

Which stress-energy tensor Tμν do we use in Eqs. (2.46) and (2.47)? Having fixed
the metric to be the FLRW one, we have some strong constraints:
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• First of all: G0i = 0 implies that T0i = 0, i.e. there cannot be a flux of energy in
any direction because it would violate isotropy;

• Second, since Gi j ∝ gi j , then Ti j ∝ gi j .
• Finally, since Gμν depends only on t , then it must be so also for Tμν .

Therefore, let us stipulate that

T00 = ρ(t)c2 = ε(t) , T0i = 0 , Ti j = gi j P(t) , (2.48)

where ρ(t) is the rest mass density, ε(t) is the energy density and P(t) is the pressure.
In tensorial notation we can write the following general form for the stress-energy
tensor:

Tμν =
(

ρ + P

c2

)
uμuν + Pgμν (2.49)

where uμ is the four-velocity of the fluid element. In this form of Eq. (2.49), the stress-
energy tensor does not contain either viscosity or energy transport terms. Matter
described by (2.49) is known as perfect fluid. For more detail about the latter see
Schutz (1985) whereas for more detail about viscosity, heat fluxes and the imperfect
fluids see e.g. Weinberg (1972) and Maartens (1996).

Combine Eqs. (2.46), (2.47) and (2.48). The Friedmann equation becomes:

H 2 = 8πG

3
ρ + �c2

3
− Kc2

a2
(2.50)

while the acceleration equation is the following:

ä

a
= −4πG

3

(
ρ + 3P

c2

)
+ �c2

3
(2.51)

Exercise 2.10 Write Eqs. (2.50) and (2.51) using the conformal time introduced in
Eq. (2.18). Show that the Friedmann equation becomes:

H2 = 8πG

3
ρa2 + �c2a2

3
− Kc2 (2.52)

and that the acceleration equation becomes:

a′′

a
= 4πG

3

(
ρ − 3P

c2

)
a2 + 2�c2a2

3
− Kc2 , (2.53)

where the prime denotes derivation with respect to the conformal time η and
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H ≡ a′

a
(2.54)

is the conformal Hubble factor.

In the Friedmann and acceleration equations, ρ and P are the total density and
pressure. Hence, they can be written as sums of the contributions of the individual
components:

ρ ≡
∑
x

ρx , P ≡
∑
x

Px . (2.55)

The contribution from the cosmological constant can be considered either geomet-
rically or as a matter component with the following density and pressure:

ρ� ≡ �c2

8πG
, P� ≡ −ρ�c

2 . (2.56)

The scale factor a is, by definition, positive, but its derivative can be negative. This
would represent a contracting universe. Note that the left hand side of the Friedmann
equation (2.50) is non-negative. Therefore, ȧ can vanish only if K > 0, i.e. for a
spatially closed universe. This implies that, if K � 0 and if there exists an instant
for which ȧ > 0, then the universe will expand forever.

2.3.1 The Hubble Constant and the Deceleration Parameter

When the Hubble parameter H is evaluated at the present time t0, it becomes a
number: the Hubble constant H0 which we already met in Chap. 1 in the Hubble’s
law (1.1). Its value is

H0 = 67.74 ± 0.46 km s−1 Mpc−1 , (2.57)

at the 68% confidence level, as reported by the Planck group (Ade et al. 2016).
Usually H0 is conveniently written as

H0 = 100 h km s−1 Mpc−1 . (2.58)

The unit of measure of the Hubble constant is an inverse time:

H0 = 3.24 h × 10−18 s−1 , (2.59)

whose inverse gives the order of magnitude of the age of the universe:
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1

H0
= 3.09 h−1 × 1017 s = 9.78 h−1 Gyr , (2.60)

and multiplied by c gives the order of magnitude of the size of the visible universe,
i.e. the Hubble radius that we have already seen in Eq. (2.28) but evaluated at the
present time t = t0:

c

H0
= 9.27 h−1 × 1025 m = 3.00 h−1 Gpc . (2.61)

But what does “present time” t0 mean? Time flows, therefore t0 cannot be a constant!
That is true, but if we compare a time span of 100 years (the span of some human
lives) to the age of the universe (about 14 billion years), we see that the ratio is about
10−8. Since this is pretty small, we can consider t0 to be a constant, also referred to
as the age of the universe.3 We can calculate it as follows:

t0 =
∫ t0

0
dt =

∫ 1

0

da

ȧ
=

∫ 1

0

da

H(a)a
=

∫ ∞

0

dz

H(z)(1 + z)
. (2.62)

Exercise 2.11 Prove the last equality of Eq. (2.62).

The integration limits of Eq. (2.62) deserve some explanation. We assumed that
a(t = 0) = 0, i.e. the Big Bang. This condition is not always true, since there are
models of the universe, e.g. the de Sitter universe, for which a vanishes only when
t → −∞. The other assumption is that a(t0) = 1. This is a pure normalisation, done
for convenience, which is allowed by the fact that the dynamics is invariant if we
multiply the scale factor by a constant.

Recall that, in cosmology, when a quantity has subscript 0, it usually means that
it is evaluated at t = t0.

The Deceleration Parameter

Let us focus now on Eq. (2.51). It contains ä, so it describes how the expansion of the
universe is accelerating. The key-point is that if the right hand side of Eq. (2.51) is
positive, i.e. ρ + 3P/c2 < 0, then ä > 0. There exists a parameter, named deceler-
ation parameter, with which to measure the entity of the acceleration. It is defined
as follows:

q ≡ − äa

ȧ2
(2.63)

3Pretty much the same happens with the redshift. A certain source has redshift z which, actually, is
not a constant but varies slowly. This is called redshift drift and it was first considered by Sandage
(1962) and McVittie (1962). Applications of the redshift drift phenomenon to gravitational lensing
are proposed in Piattella and Giani (2017).
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InRiess et al. (1998) and Perlmutter et al. (1999) analysis based on type Ia supernovae
observation have shown that q0 < 0, i.e. the deceleration parameter is negative and
therefore the universe is in a state of accelerated expansion. We perform a similar
but simplified analysis in Sect. 11.1 in order to illustrate how data in cosmology are
analysed.

2.3.2 Critical Density and Density Parameters

Let us now rewrite Eq. (2.50) incorporating � in the total density ρ:

H 2 = 8πGρ

3
− Kc2

a2
. (2.64)

The value of the total ρ such that K = 0 is called critical energy density and has
the following form:

ρcr ≡ 3H 2

8πG
(2.65)

Its present value (Ade et al. 2016) is:

ρcr,0 = 1.878 h2 × 10−29 g cm−3 (2.66)

It turns out that ρ0 is very close to ρcr,0, so that our universe is spatially flat. Such an
extreme fine-tuning in K is a really surprising coincidence, known as the flatness
problem. A possible solution is provided by the inflationary theory which we shall
see in detail in Chap.8.

Instead of densities, it is very common and useful to employ the density parameter
�, which is defined as

� ≡ ρ

ρcr
= 8πGρ

3H 2
(2.67)

i.e. the energy density normalised to the critical one. We can then rewrite Friedmann
equation (2.50) as follows:

1 = � − Kc2

H 2a2
. (2.68)

Defining

�K ≡ − Kc2

H 2a2
, (2.69)

i.e. associating the energy density
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ρK ≡ − 3Kc2

8πGa2
, (2.70)

to the spatial curvature, we can recast Eq. (2.68) in the following simple form:

1 = � + �K . (2.71)

Therefore, the sumof all the density parameters, the curvature one included, is always
equal to unity. In particular, if it turns out that � � 1, this implies that �K � 0, i.e.
the universe is spatially flat. From the latest Planck data (Ade et al. 2016) we know
that:

�K0 = 0.0008+0.0040
−0.0039 (2.72)

at the 95% confidence level.
It is more widespread in the literature the normalisation of ρ to the present-time

critical density, i.e.

� ≡ ρ

ρcr,0
= 8πGρ

3H 2
0

(2.73)

because it leaves more evident the dependence on a of each material component.
With this definition of �, Friedmann equation (2.50) is written as:

H 2

H 2
0

=
∑
x

�x0 fx (a) + �K0

a2
, (2.74)

where fx (a) is a function which gives the a-dependence of the material component
x and fx (a0 = 1) = 1. Consistently:

∑
x

�x0 + �K0 = 1 (2.75)

also known as closure relation.We shall use the definition�x ≡ ρx/ρcr,0 throughout
these notes.

2.3.3 The Energy Conservation Equation

The energy conservation equation

∇νT
μν = 0 (2.76)
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is encapsulated in GR through the Bianchi identities. Therefore, it is not independent
from the Friedmann equations (2.50) and (2.51). For the FLRWmetric and a perfect
fluid, it has a particularly simple form:

ρ̇ + 3H

(
ρ + P

c2

)
= 0 (2.77)

This is the μ = 0 component of∇νT μν = 0 and it is also known from fluid dynamics
as continuity equation.

Exercise 2.12 Derive the continuity equation (2.77) by combining Friedmann and
acceleration equations (2.50) and (2.51). Derive it in a second way by explicitly
calculating the four-divergence of the energy-momentum tensor.

The continuity equation can be analytically solved if we assume an equation of state
of the form P = wρc2, with w constant. The general solution is:

ρ = ρ0a
−3(1+w) (w = constant) , (2.78)

where ρ0 ≡ ρ(a0 = 1).

Exercise 2.13 Prove the above result of Eq. (2.78).

There are three particular values of w which play a major role in cosmology:

Cold matter: w = 0, i.e. P = 0, for which ρ = ρ0a−3. As we have discussed in
Chap.1, the adjective cold refers to the fact that particles making up this kind of
matter have a kinetic energy much smaller than the mass energy, i.e. they are non-
relativistic. If they are thermally produced, i.e. if they were in thermal equilibrium
with the primordial plasma, they have a mass much larger than the temperature of
the thermal bath. We shall see this characteristic in more detail in Chap.3.

Cold matter is also called dust and it encompasses all the non-relativistic known
elementary particles, which are overall dubbed baryons in the jargon of cosmology.
If they exist, unknown non-relativistic particles are called cold darkmatter (CDM).

Hot matter: w = 1/3, i.e. P = ρ/3, for which ρ = ρ0a−4. The adjective hot refers
to the fact that particles making up this kind of matter are relativistic.
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For this reason they are known, in the jargon of cosmology, as radiation and
they encompass not only the relativistic known elementary particles, but possibly the
unknown ones (i.e. hot darkmatter). The primordial neutrino background belonged
to this class, but since neutrino seems to have a mass of approximately 0.1eV, it is
now cold. We shall see why in Chap.3.

Vacuum energy: w = −1, i.e. P = −ρc2 and ρ is a constant. It behaves as the
cosmological constant and provides the best (and the simplest) description that we
have for dark energy, though plagued by the serious issues that we have presented in
Chap.1.

2.3.4 The ΛCDMModel

Themost successful cosmologicalmodel is called�CDMand ismadeupof�, CDM,
baryons and radiation (photons andmassless neutrinos). The Friedmann equation for
the �CDM model is the following:

H 2

H 2
0

= �� + �c0

a3
+ �b0

a3
+ �r0

a4
+ �K0

a2
. (2.79)

We already saw in Eq. (2.72) the value of the spatial curvature contribution. From
Ade et al. (2016) here are the other ones:

�� = 0.6911 ± 0.0062 , �m0 = 0.3089 ± 0.0062 (2.80)

at 68% confidence level, where �m0 = �c0 + �b0, i.e. it includes the contributions
from both CDM and baryons, since they have the same dynamics (i.e. they are both
cold). It is however possible to disentangle them and one observes:

�b0h
2 = 0.02230 ± 0.00014 , �c0h

2 = 0.1188 ± 0.0010 (2.81)

also at 68% confidence level. The radiation content, i.e. photons plus neutrinos, can
be easily calculated from the temperature of the CMB, as we shall see in Chap. 3. It
turns out that:

�γ0h
2 ≈ 2.47 × 10−5 , �ν0h

2 ≈ 1.68 × 10−5 (2.82)

Since h = 0.68, and recalling the closure relation of Eq. (2.75), we can conclude that
today 69% of our universe is made of cosmological constant, 26% of CDM and 5%
of baryons. Radiation and spatial curvature are negligible. That is, the situation is
pretty obscure, in all senses.
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Fig. 2.4 Dimensionless age of the universe H0t0 as function of �� (keeping fixed the matter and
radiation content) and as function of �m0 (keeping fixed the radiation content and with no �)

Let us now calculate the age of the universe for the �CDM model. Using
Eq. (2.62), we get:

t0 = 1

H0

∫ 1

0
da

a√
��a4 + �m0a + �r0 + �K0a2

. (2.83)

Using the numbers shown insofar, we get upon numerical integration:

t0 = 0.95

H0
= 13.73 Gyr (2.84)

The value reported by Ade et al. (2016) is 13.799 ± 0.021 at 68% confidence level.
Note how H0t0 ≈ 1. This fact has been dubbed synchronicity problem by Avelino
and Kirshner (2016). In Fig. 2.4 we plot the dimensionless age of the universe H0t0
for models with or without � and in Fig. 2.5 we plot the evolution of H0t as function
of a in order to show indeed how H0t0 ≈ 1 is quite a peculiar instant of the history
of the universe.

As one can see, in presence of � the dimensionless age of the universe reaches
values larger than unity. This, mathematically, is due to the a4 factor multiplying��

in Eq. (2.83). Note that we can obtain the observed value H0t0 ≈ 0.95 also in absence
of a cosmological constant and for a curvature-dominated universe, i.e.�K0 ≈ 0.97.
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Fig. 2.5 Dimensionless age of the universe H0t as function of a for the �CDMmodel (solid line)
and in a model made only of CDM (dashed line)

2.4 Solutions of the Friedmann Equations

The Friedmann equations can be solved exactly for many cases of interest.

2.4.1 The Einstein Static Universe

As the first application of his theory to cosmology, Einstein was looking for a static
universe, since at his time there was not yet compelling evidence of the contrary.
Therefore, wemust set ȧ = ä = 0. Since ρ is positive,wemust have K = 1, therefore
the Einstein Static Universe (ESU) is a closed universe. Its radius is:

8πG

3
ρ = c2

a2
⇒ a =

√
3c2

8πGρ
. (2.85)

From the acceleration equation we get that

ρ + 3P/c2 = 0 , (2.86)

thereforewe cannot have simply ordinarymatter becauseweneed a negative pressure.
Here enters the cosmological constant �. We assume that ρ = ρm + ρ�, so that
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ρ + 3P/c2 = 0 , ⇒ ρm + ρ� − 3ρ� = 0 , (2.87)

and therefore ρm = 2ρ�. The radius can thus be written as

a = c√
4πGρm

= 1√
�

. (2.88)

Until here all seems to be fine. But it is not. The problem is indeed the condition
ρm = 2ρ�, which makes the ESU unstable. In fact, if this condition is broken, say
ρm/ρ� = 2 + ε, then the universe expands or collapses, depending on the sign of ε.

Exercise 2.14 Prove that the ESU is unstable. Hint: use ρm/ρ� = 2 + ε in the
Friedmann and acceleration equations.

2.4.2 The de Sitter Universe

For ρ = 0, the Friedmann equation (2.50) becomes:

H 2 = �c2

3
− Kc2

a2
. (2.89)

When spatial curvature is taken into account, it is more convenient to solve the
acceleration equation (2.51) rather than Friedmann equation. Indeed:

ä = �c2

3
a , (2.90)

is straightforwardly integrated:

a(t) = C1 exp

(√
�

3
ct

)
+ C2 exp

(
−

√
�

3
ct

)
, (2.91)

where C1 and C2 are two integration constants. One of these is constrained by Fried-
mann equation (2.89). Calculating ȧ2 and a2 from Eq. (2.91) we get:

ȧ2 = �c2

3

[
C2
1 exp

(
2

√
�

3
ct

)
+ C2

2 exp

(
−2

√
�

3
ct

)
− 2C1C2

]
, (2.92)

a2 = C2
1 exp

(
2

√
�

3
ct

)
+ C2

2 exp

(
−2

√
�

3
ct

)
+ 2C1C2 . (2.93)
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Combining them, one finds:

ȧ2 = �c2

3
(a2 − 4C1C2) . (2.94)

Using Eq. (2.89), we can put a constraint on the product of the two integration con-
stants:

4�

3
C1C2 = K , (2.95)

so that we have freedom to fix just one of them. Assuming that C1 �= 0, we can write
the general solution as:

a(t) = C1 exp

(√
�

3
ct

)
+ 3K

4�C1
exp

(
−

√
�

3
ct

)
. (2.96)

When K = ±1 we can set C1 such that we can write the solution as follows:

a(t) =

⎧⎪⎨
⎪⎩

√
3/� sinh

(√
�/3ct

)
, for K = −1 ,

a0 exp
(√

�/3ct
)

, for K = 0 ,√
3/� cosh

(√
�/3ct

)
, for K = 1 .

(2.97)

where a0 is some initial t = 0 scale factor. Note that there is no a0 for the solutions
with spatial curvature because we fixed the integration constant in order to have the
hyperbolic sine and cosine.

Exercise 2.15 From the Einstein equations (2.43) show that R = 4� for the de
Sitter universe. Verify that the above solutions (2.96) and (2.97) satisfy this relation
by substituting them into the expression in Eq. (2.45) for the Ricci scalar.

The de Sitter universe (de Sitter 1917, 1918a, b, c) is eternal with no Big-Bang
(i.e. when a = 0) for K = 1. Here we have rather a bounce at the minimum value
a0 for the scale factor. For K = 0 there is a Big-Bang at t = −∞. For K = −1
we might have negative scale factors, which we however neglect and consider the
evolution as starting only at t = 0, for which there is another Big-Bang. Note that
the Big-Bang’s we are mentioning here are not singularities. There is no physical
singularity in the de Sitter space, since it is maximally symmetric.

The deceleration parameter is the following

q = − äa

ȧ2
= −�c2

3

a2

ȧ2
= −

(
1 − 3K

�a2

)−1

, (2.98)

i.e. always negative.
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2.4.3 Radiation-Dominated Universe

For ρ = ρ0a−4, K = 0 and � = 0, the solution of Eq. (2.50) is:

a =
√

t

t0
, (2.99)

The deceleration parameter is q0 = 1 and the age of the universe is:

t0 = 1

2H0
. (2.100)

Exercise 2.16 Prove the results of Eqs. (2.99) and (2.100).

It is quite complicated to analytically solve Friedmann equation (2.50) for a
radiation-dominated universe when K �= 0. On the other hand, solving the accel-
eration equation (2.53) is much easier. For ρc2 = 3P , Eq. (2.53) becomes:

a′′ + Kc2a = 0 , (2.101)

whose general solution is:

a(η) =

⎧⎪⎨
⎪⎩
C1 exp(cη) + C2 exp(−cη) , for K = −1 ,

C3 + C4η , for K = 0 ,

C5 sin(cη) + C6 cos(cη) , for K = 1 .

(2.102)

First of all, we can choose a(0) = 0. Thus, the general solution (2.102) becomes:

a(η) =

⎧⎪⎨
⎪⎩
2C1 sinh(cη) , for K = −1 ,

C4η , for K = 0 ,

C5 sin(cη) , for K = 1 .

(2.103)

Second, these solutions are subject to the constraint of Friedmann equation (2.52),
written of course in the radiation-dominated case:

a′2 = 8πG

3
ρa4 − Kc2a2 , (2.104)

where notice that ρa4 = ρ0, i.e. a constant. When a = 0, i.e. η = 0, then

a′2(η = 0) = 8πG

3
ρ0 ≡ a2mc

2 , (2.105)
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and the solutions (2.103) become:

a(η) = am

⎧⎪⎨
⎪⎩
sinh(cη) , for K = −1 ,

cη , for K = 0 ,

sin(cη) , for K = 1 .

(2.106)

If we want to recover the cosmic time from the above solutions, we need to solve the
following integration: ∫ η

0
a(η′)dη′ = t . (2.107)

Using Eq. (2.106), one obtains:

ct = am

⎧⎪⎨
⎪⎩
cosh(cη) − 1 , for K = −1 ,

(cη)2/2 , for K = 0 ,

1 − cos(cη) , for K = 1 .

(2.108)

Inverting these relations allows you to find η = η(t), which once substituted in
Eq. (2.106) allows to find a = a(t).

Exercise 2.17 Using the solutions (2.108), find the explicit form of a(t). Show that
ct = amη2/2 leads to Eq. (2.99).

2.4.4 Cold Matter-Dominated Universe

For ρ = ρ0a−3, K = 0 and � = 0, the solution of Friedmann equation (2.50) is
straightforwardly obtained:

a =
(
t

t0

)2/3

. (2.109)

The deceleration parameter is q0 = 1/2 and the age of the universe is:

t0 = 2

3H0
= 6.52 h−1 Gyr . (2.110)

This model of universe is also known as the Einstein-de Sitter universe. A part
the fact that it does not predict any accelerated expansion, there are also problems
with the age of the universe given in Eq. (2.110): it is smaller than the one of some
globular clusters (Velten et al. 2014).
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Exercise 2.18 Prove the results of Eqs. (2.109) and (2.110).

Worse than the radiation-dominated case, it is impossible to analytically solve Fried-
mann equation (2.50) for a dust-dominated universe when K �= 0. But, as in the
radiation-dominated case, it is possible to find an exact solution for a(η). Let’s write
Eq. (2.53) for the dust-dominated case:

a′′ = 4πG

3
ρa3 − Kc2a . (2.111)

Note that ρa3 = ρ0 = constant. The general solution is therefore the general solution
of Eq. (2.101) plus a particular solution of Eq. (2.111), that is:

a(η) =

⎧⎪⎨
⎪⎩
C1 sinh(cη) + C2 cosh(cη) − 4πG

3c2 ρ0 , for K = −1 ,

C3 + C4η + 2πG
3 ρ0η

2 , for K = 0 ,

C5 sin(cη) + C6 cos(cη) + 4πG
3c2 ρ0 , for K = 1 .

(2.112)

Exercise 2.19 Using the condition a(0) = 0 and employing Friedmann equation for
a dust-dominated universe, i.e.

a′2 + Kc2a2 = 8πG

3
ρa4 , (2.113)

as constraint, show that Eq. (2.112) can be cast as:

a(η) = 4πG

3c2
ρ0

⎧⎪⎨
⎪⎩
cosh(cη) − 1 , for K = −1 ,

(cη)2/2 , for K = 0 ,

1 − cos(cη) , for K = 1 .

(2.114)

Recovering the cosmic time from Eq. (2.114) one has:

ct = 4πG

3c2
ρ0

⎧⎪⎨
⎪⎩
sinh(cη) − cη , for K = −1 ,

(cη)3/6 , for K = 0 ,

cη − sin(cη) , for K = 1 .

(2.115)

Unfortunately, the above relations for K = ±1 cannot be explicitly inverted in order
to give η(t) and then a(t).
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2.4.5 Radiation Plus Dust Universe

The mixture of radiation plus matter is a cosmological model closer to reality and
with which we can describe the evolution of our universe on a larger timespan than
the single component-dominated cases. Consider the total density:

ρ = ρm + ρr = ρeq

2

a3eq
a3

+ ρeq

2

a4eq
a4

, (2.116)

where aeq is the equivalence scale factor, i.e. the scale factor evaluated at the time at
which dust and radiation densities were equal. At this time, we dub the total density
as ρeq. Now write down the acceleration equation (2.53) for the dust plus radiation
model:

a′′ = 4πG

3
ρma

3 − Kc2a . (2.117)

It is identical to the dust-dominated case, viz. Eq. (2.111)! Indeed, the fact that radi-
ation is also present will enter when we set the constraint from Friedmann equation,
which is the following:

a′2 + Kc2a2 = 4πGρeq

3

(
a3eqa + a4eq

)
. (2.118)

Solving Eq. (2.117) with the condition a(0) = 0 leads to the following solutions:

a(η) = 2πGρeqa3eq
3c2

⎧⎪⎨
⎪⎩
C1 sinh(cη) + cosh(cη) − 1 , for K = −1 ,

C2η + (cη)2/2 , for K = 0 ,

C3 sin(cη) + 1 − cos(cη) , for K = 1 .

(2.119)

Now use the constraint from Friedmann equation, i.e.

a′2(η = 0) = 4πGρeq

3
a4eq , (2.120)

and find that:

C1 = C3 = c

√
3

πGρeqa2eq
≡ cη̃ , C2 = c2η̃ , (2.121)

so that:

a(η) = 2aeq
c2η̃2

⎧⎪⎨
⎪⎩
cη̃ sinh(cη) + cosh(cη) − 1 , for K = −1 ,

c2η̃η + (cη)2/2 , for K = 0 ,

cη̃ sin(cη) + 1 − cos(cη) , for K = 1 .

(2.122)
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In particular, the solution for K = 0 is:

a(η) = aeq

(
2
η

η̃
+ η2

η̃2

)
. (2.123)

Exercise 2.20 Show that the conformal time at equivalence ηeq and η̃ are related by:

ηeq = (
√
2 − 1)η̃ . (2.124)

Exercise 2.21 SolveFriedmannequation for the�CDMmodel, neglecting radiation
and spatial curvature:

H 2

H 2
0

= �m0

a3
+ �� . (2.125)

Show that:

a(t) =
[
�m0

��

sinh2
(
3

2

√
��H0t

)]1/3

. (2.126)

Exercise 2.22 Solve the Friedmann equation for the curvature-dominated universe:

H 2 = −Kc2

a2
. (2.127)

This is the Milne model (Milne 1935). Clearly, only K = −1 is allowed.
Show then that a = ct . Substitute this solution into the expression for the Ricci

scalar (2.45). Show that R = 0.
Write down explicitly the FLRWmetricwith a = ct and show that it isMinkowski

metric written in a coordinate systems different from the usual.

The above last result is not completely surprising, since Milne model has no
matter (empty universe) and no cosmological constant. The spatial hypersurfaces
are already maximally symmetric because of the cosmological principle and the
absence of matter add even more symmetry to the spacetime.

2.5 Distances in Cosmology

We present and discuss in this section the various notions of distance that are
employed in cosmology. See e.g. Hogg (1999) for a reference on the subject.
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2.5.1 Comoving Distance and Proper Distance

We have already encountered comoving coordinates in the FLRW metric (2.17) and
the proper radiusD(t) ≡ a(t)r in the FLRWmetric (2.21). Wemust be clearer about
the difference between the radial coordinate and the distance. They are equal only
when d� = 0. The comoving square infinitesimal distance is indeed, from FLRW
metric (2.17) the following:

dχ2 = dr2

1 − Kr2
+ r2d�2 , (2.128)

i.e. it has indeed a radial part, but also has a transversal part. So, if χ is the comoving
distance between two points, the proper distance at a certain time t is d(χ, t) = a(t)χ.

The comoving distance is a notion of distance which does not include the expan-
sion of the universe and thus does not depend on time.

The proper distance is the distance that would be measured instantaneously by
rulers. For example, imagine to extend a ruler between GN-z11 (the farthest known
galaxy, z = 11.09) and us. Our reading at the time t would be the proper distance at
that time.

Suppose that d� = 0. Then the comoving distance to an object with radial coor-
dinate r is the following:

χ =
∫ r

0

dr ′
√
1 − Kr ′2

=

⎧⎪⎨
⎪⎩
arcsin r , for K = 1 ,

r , for K = 0 ,

arcsinh r , for K = −1 .

(2.129)

Deriving d with respect to the time one gets:

ḋ = ȧχ = ȧ

a
d = Hd , (2.130)

which recovers the Hubble’s law for t = t0.

2.5.2 The Lookback Time

Imagine a photon emitted by a galaxy at a time tem and detected at the time t0 on
Earth. A very basic notion of distance is c(t0 − tem), i.e. it is the light-travel distance,
based on the fact that light always travels with speed c. The quantity t0 − tem is called
lookback time and suggestively reminds the fact that when we observe some source
in the sky we are actually looking into the past, because of the finiteness of c.

From the FLRWmetric, by putting ds2 = 0, we can relate the lookback time with
the comoving distance as follows:
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cdt = a(t)dχ . (2.131)

This seems quite similar to the proper distance, but careful: the proper distance is
defined as aχ and evidently adχ �= d(aχ). The lookback time is the photon time of
flight and thus it includes cumulatively the expansion of the universe. On the other
hand, the proper distance is the distance considered between two simultaneous events
and therefore the expansion of the universe is not taken into account cumulatively.

Since we observe redshifts, is there a way to calculate the lookback time from
z? In principle yes: one solves Friedmann equation, finds a(t), inverts this function
in order to find t = t (a), uses 1 + z = 1/a and finally gets a relation t = t (z). For
example, for the flat Einstein-de Sitter universe, using Eqs. (2.109) and (2.110) one
gets:

1 + z =
(

2

3H0t

)2/3

⇒ t = 2

3H0(1 + z)3/2
. (2.132)

This approach is model-dependent because in order to solve the Friedmann equation
we must know it and this is possible only if we know, or model, the energy content
of the universe. Hence the model-dependence.

Amodel-independentway of relating lookback time and redshift is cosmography,
a word which means “measuring the universe”. In practice, cosmography consists in
a Taylor expansion of the scale factor about its today value:

a(t) = a(t0) + da

dt

∣∣∣∣
t0

(t − t0) + 1

2

d2a

dt2

∣∣∣∣
t0

(t − t0)
2 + · · · (2.133)

where we stop at the second order, for simplicity. This can be written as

a(t) = a(t0)

[
1 + H0(t − t0) − 1

2
q0H

2
0 (t − t0)

2 + · · ·
]

, (2.134)

i.e. the first coefficient of the expansion is the Hubble constant, whereas the second
one is proportional to the deceleration parameter. The third is usually called jerk and
the fourth snap. All these parameters are evaluated at t0 in the above expansion.

Exercise 2.23 For a(t0) = 1 and introducing the redshift show that:

z ∼ H0(t0 − t) + 1

2
(q0 + 2)H 2

0 (t0 − t)2 . (2.135)

Here is a direct, model-independent relation between the redshift and the lookback
time (t0 − t).
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2.5.3 Distances and Horizons

For a photon, not unexpectedly,

dχ = cdt

a(t)
= cdη , (2.136)

i.e. the comoving distance is equal to the conformal time, which we introduced in
Eq. (2.18). We might say that the comoving distance is a lookback conformal time.

By integrating cdt/a(t) from tem to t0 we get the comoving distance from the
source to us, or the conformal time spent by the photon travelling from the source to
us:

χ =
∫ t0

tem

cdt ′

a(t ′)
=

∫ 1

a

cda′

H(a′)a ′2 . (2.137)

For the dust-dominated case one has H = H0/a3/2 and the comoving distance as a
function of the scale factor and of the redshift is:

χ(a) = c

H0

∫ 1

a

da′
√
a′ = 2c

H0

(
1 − √

a
)

, χ(z) = 2c

H0

(
1 − 1√

1 + z

)
. (2.138)

When z → 0,χ ∼ cz/H0. Comparingwith Eq. (2.135) one sees that, at the first order
in the redshift, the lookback time distance is equivalent to the comoving one.

Exercise 2.24 Calculate the comoving distance as a function of the scale factor and
of the redshift for a radiation-dominated universe and for the de Sitter universe.

When the lower integration limit in Eq. (2.137) is a = 0, i.e. the Big Bang, one
defines the comoving horizon χp (also known as particle horizon or cosmological
horizon). This is the conformal time spent from the Big Bang until the cosmic time
t or scale factor a. It is also the maximum comoving distance travelled by a photon
(hence the name particle horizon) since the Big Bang and so it is the comoving size
of the visible universe.

In the dust-dominated case, using Eq. (2.138), with a = 0 or z = ∞ one obtains:

χp = cη0 = 2c

H0
. (2.139)

Note that this is not the age of the universe given in Eq. (2.110), but three times its
value.

When the upper integration limit of Eq. (2.137) is infinite, one defines the event
horizon:

χe(t) ≡ c
∫ ∞

t

dt ′

a(t ′)
= c

∫ ∞

a

da′

H(a′)a ′2 , (2.140)
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which of course makes sense only if the universe does not collapse. This represents
the maximum distance travelled by a photon from a time t . If it diverges, then no
event horizon exists and therefore eventually all the events in the universe will be
causally connected. This happens, for example, in the dust-dominated case:

χe = c

H0

∫ ∞

a

da′
√
a′ = ∞ . (2.141)

But, in the de Sitter universe we have

χe = c

H0

∫ ∞

a

da′

a ′2 = c

H0a
. (2.142)

The proper event horizon for the de Sitter universe is a constant:

aχe = c

H0
. (2.143)

2.5.4 The Luminosity Distance

The luminosity distance is a very important notion of distance for observation. It is
based on the knowledge of the intrinsic luminosity L of a source, which is therefore
called standard candle. Type Ia supernovae are standard candles, for example. Then,
measuring the flux F of that source and dividing L by F , one obtains the square
luminosity distance:

d2
L ∝ L

F
. (2.144)

Now, imagine a source at a certain redshift z with intrinsic luminosity L = dE/dt .
The observed flux is given by the following formula:

F = dE0

dt0A0
, (2.145)

where A0 is the area of the surface on which the radiation is spread:

A0 = 4πa20χ
2 , (2.146)

i.e. over a sphere with the proper distance as the radius. We must use the proper
distance, because this is the instantaneous distance between source and observer at
the time of detection. Note that χ is the comoving distance between the source and
us.

We do not observe the same photon energy as the one emitted, because photons
suffer from the cosmological redshift, thus:
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dE

dE0
= a0

a
. (2.147)

Finally, the time interval used at the source is also different from the one used at the
observer location:

dt

dt0
= a

a0
. (2.148)

We can easily show this by using FLRW metric with ds2 = 0, i.e. cdt = a(t)dχ.
Consider the samedχ at the source and at the observer’s location.Thus, cdt = a(t)dχ
and cdt0 = a(t0)dχ and the above result follows.

Putting all the contributions together, we get

F = dE0

dt0A0
= a2dE

a20dt4πa
2
0χ

2
= dE

dt4πa20χ
2(1 + z)2

. (2.149)

Hence, the luminosity distance is defined as:

dL ≡ a0(1 + z)χ (2.150)

From this formula and the observed redshifts of type Ia supernovae we can determine
if the universe is in an accelerated expansion, in a model-independent way. In order
to do this, we first need to know how to expand χ in series of powers of the redshift.

Using the definition (2.137) and the expansion (2.135), we get:

χ =
∫ t0

t

cdt ′

a(t ′)
= c(t0 − t)

a0
+ cH0

2a0
(t0 − t)2 + · · · (2.151)

wherewe stop at the secondorder only. This is the expansion of the comovingdistance
with respect to the lookback time. We must invert the power series of Eq. (2.135) in
order to find the expansion of the lookback time with respect to the redshift. This
can be done, for example, by assuming the following ansatz:

H0(t0 − t) = α + βz + γz2 + · · · (2.152)

and substitute it into Eq. (2.135), keeping at most terms O(z2).

Exercise 2.25 Show that:

α = 0 , β = 1 , γ = −1

2
(q0 + 2) , (2.153)

and thus

H0(t0 − t) = z − 1

2
(q0 + 2)z2 + · · · (2.154)
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Substituting the expansion of Eq. (2.154) back into Eq. (2.150), one gets

dL = c

H0

[
z + 1

2
(1 − q0)z

2 + · · ·
]

, (2.155)

where note again that at the lowest order the luminosity distance is cz/H0, identical
to the comoving distance and to the lookback time distance.

Since dL and z are measured, one can fit the data with this quadratic function and
determine q0, thereby establishing if the universe expansion is accelerated or not.
Note that H0 is an overall multiplicative factor, thus does not determine the shape of
the function dL(z).

In the case of a dust-dominated universe, usingEq. (2.138), the luminosity distance
has the following expression:

dL = 2c

H0

(
1 + z − √

1 + z
)

. (2.156)

For small z, this distance can be expanded in powers of the redshift as:

dL = c

H0

(
z + 1

4
z2 + · · ·

)
, (2.157)

which, when compared with Eq. (2.150), provides q0 = 1/2, as expected.

2.5.5 Angular Diameter Distance

The angular diameter distance is based on the knowledge of proper sizes. Objects
with a known proper size are called standard rulers. Suppose a standard ruler of
transversal proper size ds (small) to be at a redshift z and comoving distance χ.
Moreover, this object has an angular dimension dφ, also small. See Fig. 2.6 for
reference.

At a fixed time t , we can write the FLRW metric as:

ds2 = a(t)2dχ2 . (2.158)

Fig. 2.6 Defining the
angular diameter distance
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Since the object is small andwe are at the origin of the reference frame, the comoving
distance χ is also the radial distance. Therefore, the transversal distance is:

ds = a(t)χdφ . (2.159)

Dividing the proper dimension of the object by its angular size provides us with the
angular diameter distance:

dA = a(t)χ . (2.160)

For the case of a dust-dominated universe, one has:

dA = 2c

H0

[
1

1 + z
− 1

(1 + z)3/2

]
. (2.161)

In the limit of small z, we find dA ∼ cz/H0. All the distances that we defined insofar
coincide at the first order expansion in z.

Note the relation:
dL = (1 + z)2dA , (2.162)

known as Etherington’s distance duality (Etherington 1933).
In gravitational lensing applications it is often necessary to know the angular-

diameter distance between two sources at different redshifts (i.e. the angular-diameter
distance between the lens and the background source). In order to compute this, let
us refer to Fig. 2.7.

The problem is to determine the angular-diameter distance between L and S,
say dA(LS). Is this the difference between the angular-diameter distances dA(S) −
dA(L)? We now show that this is not the case. Simple trigonometry is sufficient to
establish that:

ds = a(tS)χSdφS = a(tS)χLSdφL , (2.163)

And for comoving distances we do have that χLS = χS − χL. Therefore, we have

dA(LS) = a(tS)χLS = a(tS)(χS − χL) (2.164)

Fig. 2.7 The angular
diameter distance between
two different redshifts
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which is the relation we were looking for, and it is different from the difference
between the angular diameter distances:

dA(S) − dA(L) = a(tS)χS − a(tL)χL . (2.165)
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