
Chapter 10
Anisotropies in the Cosmic Microwave
Background

Long the realm of armchair philosophers, the study of the
origins and evolution of the universe became a physical science
with falsifiable theories

Wayne Hu, PhD Thesis

In this chapter we attack the hierarchy of Boltzmann equations that we have found
for photons and present an approximate, semi-analytic solution which will allow
us to understand the temperature correlation in the CMB sky and its relation with
the cosmological parameters. Our scope is to understand the features of the angular,
temperature-temperature power spectrum in Fig. 10.1.

Note that in this plot the definition

DT T
� ≡ �(� + 1)CTT,�

2π
, (10.1)

is used. We shall see the reason for the �(� + 1) normalisation, whereas the CTT,�’s
are given in Eq. (7.81) as functions of the multipole moments of the temperature
distribution and the primordial power spectrum for scalar perturbations.

In Fig. 10.1 we can also see data points up to � ≈ 2500. What can we say from
this number about the angular sensitivity of Planck? It can be roughly computed as
follows. For a given �max how many realisations of a�m do we have?

Exercise 10.1 For each � we have 2� + 1 possible values of m, thus show that:

N�max =
�max∑

�=0

(2� + 1) = (�max + 1)2 . (10.2)
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Fig. 10.1 CMB TT
spectrum. Figure taken from
Ade et al. (2016). The red
solid line is the best fit
�CDM model

The full sky has:

4π rad2 = 4

π
(180 deg)2 ≈ 41000 deg2 . (10.3)

If an experiment has sensitivity of 7 deg, then we can have at most

4

π
(180/7)2 ≈ 842 , (10.4)

pieces of independent information and therefore we can determine as many a�m .
This gives �max ≈ 28 and it was the sensitivity of CoBE. For Planck, the angular
sensitivity was of 5 arcmin, which corresponds to

4

π
(180 × 60/5)2 ≈ 106 , (10.5)

pieces of independent information and then to �max = 2436.
In this chapter we omit the superscript S referring to the scalar perturbations

contribution to �, since most of the time we shall discuss of it. We shall only use T
in order to distinguish the tensor contribution.

10.1 Free-Streaming

It is convenient to start neglecting the collisional term in the Boltzmann equation and
considering thus the phase of photon free-streaming. The following discussion is
similar to the one in Sect. 5.4. Consider Eq. (5.27) for photons and with no collisional
term. Using the definition of � in Eq. (5.80), we can write for scalar perturbations:
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(
∂

∂η
+ dxi

dη

∂

∂xi

)
(� + �) = � ′ − �′ . (10.6)

As we know from Boltzmann equation, the differential operator on the left hand side
is a convective derivative, i.e. a derivative along the photon path:

d

dη
(� + �) = � ′ − �′ , (10.7)

whose inversion is the basis of the line-of-sight integration approach to CMB
anisotropies (Seljak and Zaldarriaga 1996), which is an alternative to attacking the
hierarchy of coupled Boltzmann equations (which still must be attacked but can be
truncated at much lower �’s) as it was done e.g. in Ma and Bertschinger (1995). We
shall see this technique in some detail in Sect. 10.5.

For time-independent potentials, as they are in the matter-dominated epoch, the
collisionless Boltzmann equation for photons tells us that � + � is constant along
the photons paths, i.e. along our past light-cone, since recombination.

Recall that the scalar-perturbed metric that we are using is given in Eq. (4.171):

ds2 = −a2(η)(1 + 2�)dη2 + a2(η)(1 + 2�)δi j dx
idx j . (10.8)

Inside a potential well, � is negative. In order to be convinced of this one has just to
think about the Newtonian limit and realise that 2� is the Newtonian gravitational
potential, hence negative. So, since � + � stays constant, we have that:

�(η∗, x∗, p̂) + �(η∗, x∗) = �(η0, x0, p̂) + �(η0, x0) . (10.9)

where on the left hand side we have chosen the quantities at recombination whereas
on the right hand side we have chosen the present time. Note that x0, is where our
laboratory (the CMB experiment) is, i.e. Earth, and as such is fixed. Therefore, since
we can only detect photons on our past light-cone, and those from CMB comes from
a fixed comoving distance r∗ = η0 − η∗, we have that:

x∗ = x0 − r∗ p̂ . (10.10)

Note that p̂ is the photon direction and so it is opposite to the direction of the line of
sight n̂ = − p̂. So, the only independent variables are 2, the components of p̂. They
become just a single one, μ, because of the way in which we factorise the azimuthal
dependence (and assuming axial symmetry).

The potential �(η0, x0) is usually neglected, or incorporated in the potential at
recombination, since it is not detectable.As it iswell known, classically only potential
differences are physically meaningful. The above equation then tells us that:

�(η∗, x0 − r∗ p̂, p̂) + �(η∗, x0 − r∗ p̂) = �(η0, x0, p̂) , (10.11)
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i.e. the observed temperature fluctuation (on the right hand side) accounts for the
energy loss due to climbing out the potential well or falling down a potential hill.
This is the so-called Sachs-Wolfe effect (Sachs and Wolfe 1967). Writing the above
equation in Fourier modes, we have:

∫
d3k

(2π)3
�(η0,k, p̂)eik·x0 =

∫
d3k

(2π)3

[
�(η∗,k, p̂) + �(η∗,k)

]
eik·(x0−r∗ p̂) .

(10.12)
We can set now x0 = 0, without losing of generality, and manifest the dependences
as k and μ, the former since we normalise to the scalar primordial mode α(k), cf.
Eq. (7.64), and the latter since we are considering axisymmetric scalar perturbations.
Hence we have for the Fourier modes:

�(η0, k,μ) = [�(η∗, k,μ) + �(η∗, k)] e−ikμr∗ . (10.13)

Using the partial wave expansion, we get:

��(η0, k) = 1

(−i)�

∫ 1

−1

dμ

2
P�(μ) [�(η∗, k,μ) + �(η∗, k)] e−ikμr∗ , (10.14)

and using the relation:

∫ 1

−1

dμ

2
P�(μ)e−ikμr∗ = (−i)� j� (kr∗) , (10.15)

which can be obtained by inverting the expansion of Eq. (5.75), we can write:

��(η0, k) = �(η∗, k) j�(kr∗) + 1

(−i)�

∫ 1

−1

dμ

2
P�(μ)�(η∗, k,μ)e−ikμr∗ . (10.16)

Using again the partial wave expansion, we can write the above formula as:

��(η0, k) = �(η∗, k) j�(kr∗)

+ 1

(−i)�
∑

�′
(−i)�

′
(2�′ + 1)��′(η∗, k)

∫ 1

−1

dμ

2
P�(μ)P�′(μ)e−ikμr∗ . (10.17)

We shall see later that, because of tight-coupling, the monopole and the dipole con-
tribute the most at recombination. Hence, we can write, truncating the summation at
�′ = 1:

��(η0, k) = (�0 + �) (η∗, k) j�(kr∗) + 3�1(η∗, k)
(−i)�−1

∫ 1

−1

dμ

2
P�(μ)μe−ikμr∗ .

(10.18)
The integral can be performed as follows:



10.1 Free-Streaming 313

∫ 1

−1

dμ

2
P�(μ)μe−ikμr∗ = i

d

d(kr∗)

∫ 1

−1

dμ

2
P�(μ)e−ikμr∗ = 1

i�−1

d

d(kr∗)
j� (kr∗) .

(10.19)
The same technique can be used, in principle, to calculate the integral for any �′: for
each power of μ one gains a derivative of the spherical Bessel function. Recalling
the formula (Abramowitz and Stegun 1972)1:

d j�(x)

dx
= j�−1(x) − � + 1

x
j�(x) , (10.20)

we can write:

��(η0, k) = (�0 + �) (η∗, k) j�(kr∗)

+3�1(η∗, k)
[
j�−1(kr∗) − � + 1

kr∗
j�(kr∗)

]
. (10.21)

So, the spherical Bessel functions that we have mentioned in Chap. 9 start to appear.
We have obtained the above free-streaming solution neglecting the potentials deriva-
tives in Eq. (10.7). Taking them into account is not difficult, since an additional piece
containing the integration of the potential derivatives would appear in Eq. (10.13):

�(η0, k, μ) = [�(η∗, k, μ) + �(η∗, k)] e−ikμr∗ +
∫ η0

η∗
dη (� ′ − �′)(η, k)e−ikμ(η0−η) .

(10.22)
The exponential factor in the integral comes from the Fourier transform of the poten-
tials and from considering:

x = x0 − (η0 − η) p̂ , (10.23)

at any given time η along the photon trajectory (this is the “line of sight”, in practice).
Performing again the expansion in partial waves, we get:

��(η0, k) = (�0 + �) (η∗, k) j�(kr∗)

+3�1(η∗, k)
[
j�−1(kr∗) − � + 1

kr∗
j�(kr∗)

]

+
∫ η0

η∗
dη [� ′(η, k) − �′(η, k)] j�(kr) , (10.24)

where
r ≡ η0 − η . (10.25)

As we are going to see, the first two terms of the above formula contains the primary
anisotropies of the CMB, which are the acoustic oscillations and the Doppler
effect. The �(η∗, k) contribution in the first term is, as we have already anticipated,

1The website http://functions.wolfram.com is also very useful.

http://functions.wolfram.com
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Fig. 10.2 Evolution of the
spherical Bessel function
j210(x)

the Sachs-Wolfe effect. The last term is the Integrated Sachs-Wolfe (ISW) effect
(Sachs and Wolfe 1967) and contributes only when the gravitational potentials are
time-varying. This happens, as we have seen in Chap.9, when radiation and DE are
relevant. For this reason the ISW effect is usually separated in the early-times one,
due to a small presence of radiation still at decoupling, and in the late-times one, due
to DE.

Once we know all the contributions of the above formula, we can use Eq. (7.81)
and provide the prediction on the CS

TT,� spectrum.
The presence of the spherical Bessel function is interesting for two reasons, which

we display in Fig. 10.2 for the arbitrary choice � = 10.
We have chosen to plot the squared spherical Bessel function because it is the

relevant window function when computing the C�’s, as we shall see briefly. First, the
maximum value is attained roughly when x ≈ � and for x < � the spherical Bessel
function is practically vanishing. Therefore, for a given multipole � the scale which
contribute most for the observed anisotropy is:

k ≈ �

η0 − η∗
. (10.26)

We have anticipated this already in Chap. 9. The second reason of interest is that the
spherical Bessel function goes to zero for large x . This means that scales such that
kr∗ � 1 do not contribute to the observed anisotropy. Physically, this is an effect due
to the free-streaming phase for which, on very small scales, hot and cold photons
mix up destroying thus the anisotropy.

We have thus seen that the predicted anisotropy today is given by formula
Eq. (10.24). We have now to justify the fact of considering only the monopole and
the dipole at recombination. We shall commence in the next section discussing very
large scales.

In principle, Eq. (10.24) has the very same form for neutrinos, but with an initial
conformal time ηi which is well anterior to η∗, since neutrinos do not interact and
therefore they only free-stream (at least for temperatures of the primordial plasma
below 1 MeV).
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10.2 Anisotropies on Large Scales

On large scales, i.e. kη � 1, the relevant equations are those of Chap. 6, which we
report here:

δ′
γ = −4�′ , δ′

ν = −4�′ , δ′
c = −3�′ , δ′

b = −3�′ , (10.27)

i.e. only the monopoles are relevant. Since we want to describe CMB, let us focus
on the photon density contrast, which can be written as:

δγ(k, η) = 4�0(k, η) , (10.28)

introducing the monopole of the temperature fluctuation. The equation �′
0 = −�′

can be immediately integrated, obtaining:

�0(k, η) = −�(k, η) + Cγ(k) . (10.29)

For the adiabatic primordial mode, the only which we are going to consider, we know
from Eq. (6.94) that Cγ(k) = �P(k) − �P(k)/2 and thus:

�0(k, η) = −�(k, η) + �P(k) − 1

2
�P(k) . (10.30)

As we know from Chap. 9, we can consider the gravitational potentials to be equal in
modulus and on large scales �(k, η) is independent of time and since recombination
η∗ � ηeq takes place well after radiation-matter equality, we know that �(k, η∗) =
9�P(k)/10, i.e. the value of the gravitational potential drops of 10% in passing
through radiation-matter domination. Therefore:

�0(k, η∗) = 3

5
�P(k) = 2

3
�(k, η∗) = −2

3
�(k, η∗) . (10.31)

As we saw earlier in Eq. (10.24), the observed anisotropy is not �0(k, η∗) but
�0(k, η∗) + �(k, η∗), because of the gravitational redshift. Again, this is the Sachs-
Wolfe effect, amounting to a shift in the photons frequency when they decouple from
the baryonic plasma depending whether they are in a well or hill of the gravitational
potential. So, we have from Eq. (10.31) that:

(�0 + �)(k, η∗) = 1

3
�(k, η∗) . (10.32)

On the other hand, for δc we know that

δc(k, η) = −3�(k, η) + 9�P(k)

2
, (10.33)
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again assuming adiabatic primordial modes. Using again�(k, η∗) = 9�P(k)/10, we
get:

δc(k, η∗) = 2�(k, η∗) = −2�(k, η∗) . (10.34)

The fluctuations in CDM contribute more in generating the potential wells than
photons, a factor 2 against a factor −2/3. Combining the two equations:

(�0 + �)(k, η∗) = −δc(k, η∗)
6

(10.35)

This result tells us that on large scales colder spots represent larger overdensities, a
counter-intuitive result. One expects hotter photons the deeper the well is and in fact
this is the case with just �0(k, η∗), since we have:

�0(k, η∗) = −2

3
�(k, η∗) = δc(k, η∗)

3
, (10.36)

i.e. the larger the CDM overdensity, the larger the well and �0(k, η∗) are. However,
photons’ response to the gravitational potential is only a factor −2/3 whereas the
gravitational redshift adds a � contribution, changing thus the sign of the observed
anisotropy. In the limit of δc → −1, one gets (�0 + �)(k, η∗) → 1/6, so cosmic
voids correspond to hot spots!

The results found here are valid only on large scales, i.e. for kη∗ � 1, scales much
larger than the horizon at recombination, which has an angular size of approxima-
tively 1 degree. Moreover, they also depend on the choice of initial conditions. We
have opted for the adiabatic ones, as usual.

Exercise 10.2 Reproduce the above argument for the other primordial modes.

Let us use the theoretical prediction on theCS
TT,� given in Eq. (7.81) together with

the first contribution only from Eq. (10.24). The latter approximation is justified
by the fact that we are considering large scales, hence the dipole contribution is
negligible and the ISW effect is vanishing because the potentials are constant. Since:

(�0 + �)(k, η∗) = 1

3
�(k, η∗) = −1

3
�(k, η∗) = − 3

10
�P(k) = −1

5
R(k) ,

(10.37)
the transfer function is just the constant −1/5 (recall that we are neglecting the
neutrino fraction Rν) and thus the angular power spectrum is:

CS
TT,�(SW) = 4π

25

∫ ∞

0

dk

k
�2

R(k) j2� (kη0) , (10.38)
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since η∗ � η0. Note that kη∗ � kη0 and we have seen in Fig. 10.2 that the spherical
Bessel function contributes the most about kη0 ≈ �. Thus, for small �, i.e. large
angular scales, kη0 is small and kη∗ is very small, where in fact | (�0 + �) (k, η∗)|2
is constant. In other words, the above approximation is valid for small �, typically
� � 30.

In the above integral we can look at j2� (kη0) as a very peaked window function
and approximate it as:

CS
TT,�(SW) ≈ 4π

25
�2

R(�/η0)

∫ ∞

0

dk

k
j2� (kη0) . (10.39)

Using the result: ∫ ∞

0

dx

x
j2� (x) = 1

2�(� + 1)
, (10.40)

we have then:
�(� + 1)CS

TT,�(SW)

2π
≈ 1

25
�2

R(�/η0) . (10.41)

Hence, for a scale-invariant spectrum nS = 1 the combination �(� + 1)CS
TT,�(SW) is

constant and it is called Sachs-Wolfe plateau. This also explains why CMB power
spectra are usually presented with the �(� + 1) normalisation, as in Fig. 10.1.

If nS 
= 1, then �(� + 1)CS
TT,�(SW) is proportional to �nS−1, i.e. the primordial

tilt in the power spectrum leaves its mark in a tilted plateau for small �.

10.3 Tight-Coupling and Acoustic Oscillations

We have seen that in order to determine the prediction on the present time CTT,�’s
we need to know what happens at recombination. We devote this section to such
purpose, showing that the monopole and the dipole contribute the most.

Let us recover here the hierarchy of Boltzmann equations for the ��’s (not taking
into account polarisation) that we have derived in Chap. 5:

(2� + 1)�′
� + k[(� + 1)��+1 − ���−1] = (2� + 1)τ ′�� , (� > 2) , (10.42)

10�′
2 + 2k (3�3 − 2�1) = 10τ ′�2 − τ ′� , (10.43)

3�′
1 + k(2�2 − �0) = k� + τ ′ (3�1 − Vb) , (10.44)

�′
0 + k�1 = −�′ , (10.45)

where recall that δγ = 4�0 and 3�1 = Vγ . The best way to deal with these equations
is to solve them numerically by using Boltzmann codes such as CAMB or CLASS,
but in this way the physics behind the CTT,�’s remains hidden or unclear. For this
reason we attack these equations in an approximate fashion, but analytically.
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We take the limit −τ ′ � H, which is called tight-coupling (TC) approximation.
This limit physically means that the Thomson scattering rate between photons and
electrons is much larger than the Hubble rate until recombination and then drops
abruptly since the free electron fraction Xe goes to zero very rapidly, as we have
seen when studying thermal history in Chap. 3. We shall first consider the case of
sudden recombination, where all the photons last scatter at the same time. It is a
fair approximation, though unrealistic.

Exercise 10.3 From the definition of the optical depth:

τ ≡
∫ η0

η

dη′ neσTa , (10.46)

show that τ ∝ 1/η3 when matter dominates and τ ∝ 1/η when radiation dominates.

We can be more quantitative and write:

− τ ′ = neσTa = nbσTa = ρb

mb
σTa , (10.47)

where we have used the definition of τ and assumed to be in an epoch before recom-
bination, so that we can approximate ne with nb, since all the electrons are free.

Exercise 10.4 Introducing the baryon density parameter and usingmb = 1 GeV, the
mass of the proton, show that:

− τ ′ ≈ 1.46 × 10−19 	b0h2

a2
s−1 . (10.48)

Nowweneed to compare this scattering ratewith theHubble rate, in order to check
the goodness of the TC approximation. Assuming matter-domination and using the
conformal time Friedmann equation (this because τ ′ is derived with respect to the
conformal time), we have:

H = H0

√
	m0a

−1/2 ≈ 3.33 × 10−18h
√

	m0 a
−1/2 s−1 . (10.49)

Therefore, the ratio:
−τ ′

H = 0.044
	b0h2√
	m0h2

a−3/2 , (10.50)

diverges for a → 0 as expected (though the formula should be generalised to the
case of radiation-domination), so if it is sufficiently big at recombination then the
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TC approximation would be reliable. Substituting the Planck values 	b0h2 = 0.022
and 	m0h2 = 0.12 one gets at recombination, i.e. for a = 10−3:

−τ ′

H ≈ 102 . (10.51)

This means that the scattering rate is much larger than the Hubble rate even at
recombination as long as there are free electrons around and thus we are going to
use the tight-coupling approximation with reliability.

Let us see in detail how the TC limit works. Let us compare in the hierarchy
for � ≥ 2 the terms �′

� and k�� with τ ′��, which have all the same dimensions of
inverse time. There are two physical time scales in our problem, one is given by the
expansion rate and the other by the scattering rate, hence

�′
� ∝ H��, τ

′�� , (10.52)

from a dimensional analysis. However, the mode for which �′
� ∝ τ ′�� implies that

�� ∝ exp τ and hence diverges at early times, which is unacceptable for a small
fluctuation. We then dismiss this mode as unphysical and take into account just that
for which �′

� ∝ H��, which is small compared to τ ′��.
Now, let us inspect the ratio

−τ ′

k
. (10.53)

This is the number of collisions which take place on a scale 1/k. Hence, this number
is very large, provided that we consider sufficiently large scales, i.e. small k. If the
scale is too small, i.e. large k, then the TC approximation does not work well and
we must take into account the multipole moments for � ≥ 2. We will see this when
investigating the diffusion damping or Silk damping effect.

From the above analysis, for sufficiently large scales we can conclude then that
�� ≈ 0 for � ≥ 2. Sufficiently largemeansmuch larger than themean free path−1/τ ′
which is approximately of the order of 10 Mpc at recombination. This number can
be computed from Eq. (10.48) and is a comoving scale; the physical one is divided
by a factor a thousand and so it is 10 kpc.

Finally, note that �� ∼ τ ′/k��−1. Therefore, considering smaller and smaller
scales makes necessary to include higher and higher order multipoles.

Eliminating all the multipoles � ≥ 2, the relevant equations are just the following
two:

�′
0 + k�1 = −�′ , (10.54)

3�′
1 − k�0 = k� + τ ′ (3�1 − Vb) , (10.55)

i.e. the TC approximation allows us to treat photons as a fluid until recombination.
Note the coupling to baryons via the baryon velocity Vb. Thus, we need also the
equations for baryons:
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δ′
b + kVb = −3�′ , (10.56)

V ′
b + HVb = k� + τ ′

R
(Vb − 3�1) , (10.57)

where we have introduced R ≡ 3ρb/4ργ , i.e. the baryon density to photon density
ratio. This number can be cast as:

R = 3	b0

4	γ0
a ≈ 600a , (10.58)

using the usual values and it grows from zero at early times to R∗ ≈ 0.6 at recombi-
nation. So it is small, but not that negligible. Let us rewrite the velocity equation for
baryons in the following way:

Vb = 3�1 + R

τ ′
(
V ′
b + HVb − k�

)
. (10.59)

We can solve this equation via successive approximation, exploiting the fact that
R < 1 before recombination. That is, assume the expansion:

Vb = V (0)
b + RV (1)

b + R2V (2)
b + · · · . (10.60)

The solution for R = 0 simply gives V (0)
b = 3�1, which we have used in Chap. 6

in order to investigate the primordial modes. This solution is reliable well before
recombination, say at a = 10−7 for example, because R ≈ 6 × 10−5 there, but it is
not satisfactory at recombination and we shall take into account the first order in R
in the above expansion.

10.3.1 The Acoustic Peaks for R = 0

Let us start with the simple case of R = 0, which amounts to neglect baryons.

Exercise 10.5 Combine the photon Eqs. (10.54)–(10.55) with the zeroth-order TC
condition Vb = 3�1 and find the following second-order equation for �0:

�′′
0 + k2

3
�0 = −k2�

3
− �′′ . (10.61)

We have here already the first fundamental piece of physics of the CMB. This is
the equation of motion of a driven harmonic oscillator where instead of the position
we have the monopole of the temperature fluctuation and the driving force is given
by the gravitational potential. This equation describe acoustic oscillations of the
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baryon-photon fluid until recombination. After recombination we expect to observe
these fluctuations in the CTT,�’s, using the free-streaming formula (10.24), and in
fact we do, cf. Fig. 10.1.

Note that these oscillations are in the baryon-photon fluid and therefore affect also
baryons.We therefore expect to see oscillations in the baryondistribution after recom-
bination, called baryon acoustic oscillations (BAO), and detected by Eisenstein and
collaborators in 2005 (Eisenstein et al. 2005). The BAO are the manifestation of a
special length, the sound horizon at recombination, in the correlation function of
galaxies which appears as a bump, i.e. an excess probability. In the Fourier space,
i.e. for the power spectrum, a given scale is represented with various oscillations.
We have already encountered BAO in Chap. 9. BAO and weak gravitational lensing
are among the main observables on which current and future experiments (such as
Euclid and LSST ) are based.

Exercise 10.6 Combine Eqs. (10.56) and (10.57) and the TC condition Vb = 3�1

and find the following equation for δb:

δ′
b = 3�′

0 . (10.62)

Hence, the same oscillatory solution of �0 holds true for δb.

Now, consider the fact that close to recombination CDM is already dominating
and thus the potentials are equal and constant at all scales. We get:

�′′
0 + k2

3
�0 = −k2�

3
. (10.63)

This equation can be put in the following form:

(�0 + �)′′ + k2

3
(�0 + �) = 0 , (10.64)

where we have used the constancy of �. Note how the observed temperature fluctu-
ation, used in Eq. (10.24), has appeared. The solution is:

(�0 + �)(η, k) = A(k) sin

(
kη√
3

)
+ B(k) cos

(
kη√
3

)
, (10.65)

with the driving potential, i.e. CDM, providing just an offset for the oscillations. At
recombination we have

(�0 + �)(η∗, k) = A(k) sin

(
kη∗√
3

)
+ B(k) cos

(
kη∗√
3

)
, (10.66)
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with peaks and valleys in the temperature fluctuations given by this combination of
sine and cosine, therefore dependent on the functions A(k) and B(k). Inserting these
formula into Eq. (10.24) in order to compute the ��(η0, k) (the anisotropies today)
and then into Eq. (7.81) in order to compute the CTT,�’s, we are able to explain the
acoustic oscillations feature of the CMB TT spectrum, of Fig. 10.1.

The functions A(k) and B(k) are determined by the initial condition, i.e. for
kη∗ � 1:

(�0 + �)(kη∗ � 1) ∼ A(k)
kη∗√
3

+ B(k) . (10.67)

Hence, if we choose adiabatic modes, we must put A(k) = 0. So, considering dif-
ferent initial conditions changes the position of the acoustic peaks and observation
allows to test the choice made. As we saw in Chap. 6, Planck limits the presence of
isocurvature modes to a few percent. With A(k) = 0, i.e. for adiabatic perturbations,
using the large-scale solution that we found in Eq. (10.37), we have:

(�0 + �)(η∗, k) = −1

5
R(k)T (k) cos

(
kη∗√
3

)
, (10.68)

where T (k) is the transfer function of �0 + �. We did not calculate it in Chap. 9,
but it can be shown that it is limited to a range 0.4-2, approximately. See Mukhanov
(2005).

The extrema of the effective temperature fluctuations are thus given by:

kη∗√
3

= nπ , (n = 1, 2, . . . ) , (10.69)

where the odd values provide peaks, corresponding to the highest temperature fluc-
tuations and thus to scales at which photons are maximally compressed and hot,
whereas the even values provide throats, corresponding to the lowest temperature
fluctuations and thus to scales at which photons are maximally rarefied and cold.
In the spectrum, cf. Fig. 10.1, only peaks appear because of the quadratic nature of
the CTT,�’s as functions of the ��’s, but it should be clear that the first and the third
peaks are compressional.

From Eqs. (10.54) and (10.68), we can determine easily the dipole contribution:

�1(η∗, k) = −�′
0(η∗, k)
k

= − 1

5
√
3
R(k)T (k) sin

(
kη∗√
3

)
, (10.70)

where we are still continuing in keeping the potentials constant. Substituting this
equation and Eq. (10.68) into Eq. (10.24) and then into Eq. (7.81) in order to compute
the angular power spectrum, we get:
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CTT,� = 4π

25

∫ ∞

0

dk

k
�2

R(k)

[
cos

(
kη∗√
3

)
j�(kη0) + √

3 sin

(
kη∗√
3

)
d j�(kη0)

d(kη0)

]2

,

(10.71)
where the derivative of the spherical Bessel function is given in Eq. (10.20). We have
put T (k) = 1 here for simplicity.

We can manipulate analytically this integral following the technique used in
Mukhanov (2004, 2005). In these references, baryon loading and diffusion damping
are taken into account but here we just tackle a simpler case.

The idea is to avoid the oscillatory nature of the Bessel function and of the trigono-
metric ones (which are also problematic from a numerical perspective) by approxi-
mating j�(x) as follows, for large �:

j�(x) ≈
{
0 , (x < �) ,

1√
x(x2−�2)1/4

cos
[√

x2 − �2 − � arccos(�/x) − π/4
]

, (x > �) .

(10.72)
This approximation is identical either for j�(x) and for j�−1(x), sincewe are assuming
� to be large. Hence, whenwe deal with the derivative of the spherical Bessel function
in Eq. (10.71), we can factorise a j2� (x) and we can approximate the squared cosine
coming from the above approximation with its average, i.e. a factor 1/2. We thus
have the following integration:

CTT,� = 2π�2
R

25

∫ ∞
�/η0

dk

k2η0
√

(kη0)2 − �2

[
cos

(
kη∗√
3

)
+ √

3

(
1 − �

kη0

)
sin

(
kη∗√
3

)]2
,

(10.73)
where we have already assumed a scale-invariant spectrum, for simplicity. Using
now the variable

x ≡ kη0
�

, (10.74)

we can write:

�2CTT,� = 2π�2
R

25

∫ ∞

1

dx

x2
√
x2 − 1

[
cos (��x) + √

3
x − 1

x
sin (��x)

]2

, (10.75)

where note the appearance of the factor �2 on the left hand side and we have defined
the quantity:

� ≡ η∗√
3η0

. (10.76)

Now, developing the square and using the trigonometric formulae:

cos2 α = 1 + cos 2α

2
, sin2 α = 1 − cos 2α

2
, 2 sinα cosα = sin 2α ,

(10.77)
we can write:
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�2CTT,� = 2π�2
R(k)

25

∫ ∞

1

dx

x2
√
x2 − 1[

x2 + 3(x − 1)2

2x2
+ x2 − 3(x − 1)2

2x2
cos (2��x) +

√
3(x − 1)

x
sin (2��x)

]
.

(10.78)

Now, let us treat separately the three integrands. The first, non-oscillatory one is
simplest one:

N ≡
∫ ∞

1

dx

x2
√
x2 − 1

x2 + 3(x − 1)2

2x2
= 3

(
1 − π

4

)
, (10.79)

but also the less interesting. The oscillatory ones can be dealt with following
Mukhanov (2005). Define:

O1 ≡
∫ ∞

1

dx√
x − 1

x2 − 3(x − 1)2

2x4
√
x + 1

cos (2��x) , (10.80)

then solving the problem in Mukhanov (2005, p. 383), we can use the formula:

∫ ∞

1

dx√
x − 1

f (x) cos(bx) ≈ f (1)

√
π

b
cos(b + π/4) , (10.81)

for large values of b and a slowly varying f (x). A similar result holds true also for
the sine function. Using this formula we have then:

O1 = 1

2
√
2

√
π

2��
cos(2�� + π/4) , (10.82)

whereas for the integral containing the sine:

O2 ≡
∫ ∞

1

dx√
x − 1

√
3(x − 1)

x3
√
x + 1

sin (2��x) ≈ 0 , (10.83)

since f (1) = 0 here. The contribution O2 comes from the cross product between the
monopole and the dipole terms and it is usually neglected in the calculations. We
have explicitly shown why here. Gathering the N and O1 contributions, we plot the
sum N + O1 in Fig. 10.3.

In order to make this plot, we have used a ∝ η2, since we are in the matter-
dominated epoch, and thus we have evaluated � as follows:

� = η∗√
3η0

= 1√
3(1 + z∗)

= 1√
3000

≈ 0.0183 . (10.84)
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Fig. 10.3 Sum of the N and
O1 contributions

The agreement between the plots of Figs. 10.1 and 10.3 is poor but at least we have
understood how the acoustic oscillations free-stream until today and are seen in the
CMB TT power spectrum. There are several feature missing in Fig. 10.3: there are
too many peaks, their relative height diminishes too slowly and the overall trend does
not decay as in Fig. 10.1. The reason is that we have neglected baryons and diffusion
damping, which we are going to tackle in the next sections.

10.3.2 Baryon Loading

The oscillations in Eq. (10.64) take place with frequency k/
√
3, i.e. as if the speed

of sound was 1/
√
3, i.e. the speed of sound of a pure photon fluid. We have been too

radical in assuming Vb = 3�1 in the equation for baryons. In fact we saw that this
assumption is equivalent to say that R = 0, i.e. the baryon density is negligible with
respect to the photon one. That is why photons do not feel baryons at all and baryons
fluctuations oscillate in the same way as photons do.

We now take into account R up to first-order. If we consider V (0)
b = 3�1 substi-

tuted in Eq. (10.59) we get up to order R:

Vb = 3�1 + R

τ ′
(
3�′

1 + 3H�1 − k�
)

. (10.85)

Exercise 10.7 Combine the above equation and Eqs. (10.54)–(10.55) in order to
find the following second-order equation for �0:

�′′
0 + H R

1 + R
�′

0 + k2

3(1 + R)
�0 = −k2�

3
− �′′ − H R

1 + R
�′ . (10.86)
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Now the speed of sound, i.e. the quantity multiplying k2, has been reduced:

c2s = 1

3(1 + R)
. (10.87)

The extrema of the temperature fluctuation at recombination are now expected to be
slightly changed, since:

kη∗√
3(1 + R)

= nπ , (n = 1, 2, . . . ) , (10.88)

is now the condition defining them. Moreover, baryons are also responsible for the
damping termHR�′

0/(1 + R), hencewe also expect the extrema to have less and less
amplitude. These features translate, once free-streamed,2 in a relative suppression of
the second peak with respect to the first one, as seen in Fig. 10.1.

This effect is due to the baryon loading and it is also called baryon drag. Physi-
cally, baryons are heavy and prevent the oscillations in�0 to be symmetric, favouring
compression over rarefaction. Since R ∝ a, then we have that:

R′ = HR . (10.89)

Let us write Eq. (10.86) in the following form:

(
d2

dη2
+ R′

1 + R

d

dη
+ k2c2s

)
(�0 + �) = k2

3

(
�

1 + R
− �

)
. (10.90)

The above equation cannot be solved analytically, but we can use a semi-analytic
approximation, provided by Hu and Sugiyama (1996). Let us employ the WKB
method and use the following ansatz:

(�0 + �)(η, k) = A(η)ei B(η,k) , (10.91)

where A(η) and B(η, k) are functions to be determined via Eq. (10.90).

Exercise 10.8 Substitute this ansatz into the homogenous part of Eq. (10.90) and
find the following couple of equations, by separately equating the real and imaginary
parts to zero:

−A(B ′)2 + A′′ + R′

1 + R
A′ + k2c2s A = 0 , (10.92)

2B ′A′ + AB ′′ + R′

1 + R
AB ′ = 0 . (10.93)

2To “free-stream” means to calculate the CTT,�’s weighting the solution at recombination with the
spherical Bessel function of Eq. (10.24).



10.3 Tight-Coupling and Acoustic Oscillations 327

In the first equation, let us neglect the second and the third termwith respect to the
first one. That is, the oscillations provide almost at any time (except at the extrema)
a much larger derivative than that of the amplitude or R. Then, the first equation is
readily solved as:

B(η, k) = k
∫ η

0
cs(η

′)dη′ ≡ krs(η) (10.94)

where in the last step we have defined the sound horizon, i.e. the conformal distance
travelled by a sound wave propagating in the baryon photon fluid. When evaluated
at recombination, rs(η∗) = 150 Mpc and this scale is fundamental for BAO, making
them standard rulers.

Exercise 10.9 Determine now A(η). Show that the above equations, together with
the found solution for B(η, k), can be cast as:

A′

A
= −1

4

R′

1 + R
, (10.95)

which gives:
A(η) = (1 + R)−1/4 . (10.96)

The general, approximate, solution of the homogeneous equation is then:

(�0 + �)(η, k) = 1

(1 + R)1/4
[C(k) sin(krs) + D(k) cos(krs)] (10.97)

The condition |A′|, R′ � |B ′|, which was employed in order to find the above solu-
tion, can be checked as follows:

R′

4(1 + R)5/4
, R′ � k√

3(1 + R)
, (10.98)

which essentially amounts to say that:

k � R′ , (10.99)

i.e. the solution found is good on sufficiently small scales. Since R′ = HR ∼ R/η,
we must have that kη � R. Since R is pretty small, being at most R∗ ≈ 0.6 at
recombination, this condition means any scale at early times, but sub-horizon scales
at recombination.
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Equation (10.97) gives us the general solution of the homogeneous part of
Eq. (10.90). In order to find the general solution of the full equation we need to
find a particular solution of Eq. (10.90). This can be obtained via Green’s functions
method, which we recall in Chap. 12. Let us define, in order to keep a more compact
notation, the independent solutions of the homogeneous equation that we have just
found in Eq. (10.97) as follows:

S1(η, k) ≡ 1

(1 + R)1/4
sin(krs) , S2(η, k) ≡ 1

(1 + R)1/4
cos(krs) . (10.100)

Taking into account the non-homogeneous term, the general solution of Eq. (10.90)
is:

(�0 + �)(η, k) = C(k)S1 + D(k)S2 + k2

3

∫ η

0
dη′

[
�(η′)
1 + R

− �(η′)
]
G(η, η′) ,

(10.101)
where G(η, η′) is the Green’s function.

Exercise 10.10 As done in Chap. 12, cf. Eq. (12.121), determine the Green’s func-
tion:

G(η, η′) = S1(η′)S2(η) − S1(η)S2(η′)
W (η′)

, (10.102)

using the homogeneous solution. Show that:

G(η, η′) = 1√
1 + R)

sin[krs(η′) − krs(η)]
W (η′)

, (10.103)

and

W (η′) = − 1√
3(1 + R)

. (10.104)

We are omitting the k-dependence for simplicity.

With the above results we can write:

(�0 + �)(η, k) = C(k)S1 + D(k)S2

+ k√
3

∫ η

0
dη′

[
�(η′)

1 + R(η′)
− �(η′)

] √
1 + R(η′) sin[krs(η) − krs(η

′)] . (10.105)

For the primordial modes, in the limit kη → 0, one gets at the dominant order:

(�0 + �)(0, k) = D(k) . (10.106)
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Hence, it is the adiabatic mode which multiplies the cosine. Since sine and cosine
have a π/2 phase difference, the effect of different initial conditions is to change the
scales for which the effective temperature fluctuations is maximum or minimum and
hence the positions of the peaks in the CTT,�’s.

In the adiabatic case, we have:

(�0 + �)(η, k) = (�0 + �)(0, k)
cos[krs(η)]
(1 + R)1/4

+ k√
3

∫ η

0
dη′

[
�(η′)
1 + R

− �(η′)
] √

1 + R sin[krs(η) − krs(η
′)] (10.107)

This is the semi-analytic (semi because the integral has to be performed numerically)
formula of Hu and Sugiyama (1996).

The above solution (10.107) can also be used for baryons. Indeed, combining
Eq. (10.56) with Eq. (10.85) and then with Eq. (10.54) we get:

δ′
b = 3�′

0 + 3R

τ ′

[
�′′

0 + �′′ + H(�′
0 + �′) + k2�

3

]
. (10.108)

Eliminating the second derivative by means of the differential equation (10.90), we
have:

δ′
b = 3�′

0 + R

τ ′(1 + R)

[−k2�0 + 3H(�′
0 + �′)

]
. (10.109)

Just to make a rough estimative, let us neglect the second contribution (which is
divided by τ ′ anyway which is much larger than H and also than k, for suitable
scales) and use the homogeneous part of Eq. (10.107). It is straightforward then to
integrate δ′

b and obtain at recombination:

δb(η∗, k) ∝ cos[krs(η∗)] = cos

[
2π

rs(η∗)
λ

]
. (10.110)

So the scale rs(η∗) ≈ 150Mpc is relevant for baryons, too. Indeed, at about this scale
the matter power spectrum display the BAO feature, as we saw in Chap. 9.

10.4 Diffusion Damping

In order to understand what happens to theCTT,�’s when � grows larger and larger we
need to take into account smaller and smaller scales, because of the relation � ≈ kη0.
As discussed earlier, for larger and larger k the ratio −τ ′/k becomes smaller and
smaller and so the TC approximation must be relaxed.
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In this section then we investigate what happens to the temperature fluctuations
when the quadrupole moment �2 is taken into account. Since this analysis accounts
for the behavior of very small scaleswhich entered the horizondeep into the radiation-
dominated epoch, we can neglect the gravitational potentials since these, as we saw
in Chap. 9, rapidly decay.

Moreover, being deep into the radiation-dominated epoch, we can also neglect R
and thus take 3�1 = Vb. Neglecting also polarisation, we have the following set of
three equations for �0, �1 and �2:

�′
0 + k�1 = 0 , (10.111)

3�′
1 + 2k�2 − k�0 = 0 , (10.112)

10�′
2 − 4k�1 = 9τ ′�2 . (10.113)

In the last equation we can neglect �′
2 with respect τ ′�2, as we already did earlier,

and then find:

�2 = − 4k

9τ ′ �1 . (10.114)

The minus sign might ring some alarm, but recall that τ ′ is always negative by
definition.

Exercise 10.11 Combine the above condition with the remaining equations in order
to find a closed equation for �0:

�′′
0 +

(
− 8k2

27τ ′

)
�′

0 + k2

3
�0 = 0 (10.115)

This is the equation for an harmonic oscillator that we have already found earlier
in Eq. (10.64), only that now there appears a damping termwhich is relevant on small
scales, i.e. when k ∼ −τ ′. Baryons also provide a damping term, cf. Eq. (10.86), but
they are irrelevant in the present case since we set R = 0.

This damping term here depends on �2 and is time-dependent. Let us consider it
constant and assume a solution of the type �0 ∝ exp(iωη). Substituting this ansatz
in the equation, we find:

− ω2 +
(

− 8k2

27τ ′

)
iω + k2

3
= 0 . (10.116)

The frequency must have an imaginary part, which accounts for the damping, thus
let us stipulate:

ω = ωR + iωI , (10.117)
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Exercise 10.12 Substitute this ansatz in the equation and find:

ωR = k√
3

, ωI = − 4k2

27τ ′ . (10.118)

Hence, we can write the general solution for �0 as:

�0 ∝ eikη/
√
3e−k2/k2Silk , (10.119)

where we have introduced the comoving diffusion length, the Silk length, as

λ2
Silk = 1

k2Silk
≡ − 4η

27τ ′ . (10.120)

What does the diffusion length physically represent? It is the comoving distance
travelled by a photon in a time η, but taking into account the collisions which it is
suffering, i.e. its diffusion. Let us see this in some more detail.

Since −τ ′ is the scattering rate, i.e. how many collisions take place per unit
conformal time, then −1/τ ′ is the average conformal time between 2 consecutive
collisions, which for a photon is also the average comoving distance between two
collision, i.e. the mean free path.

Now, we have:
λ2
Silk ∝ − η

τ ′ ∝ λMFPη , (10.121)

where we have used the comoving mean free path, λMFP. Now, multiply and divide
by λMFP and take the square root:

λSilk ∝ λMFP

√
η

λMFP
, (10.122)

Under the square root we have the comoving distance η divided by the photon comov-
ingmean free path. This gives us the average number of collision N which the photons
experience up to the time η and hence:

λSilk ∝ √
NλMFP , (10.123)

which is the typical relation for diffusion. Below this scales λSilk all fluctuations are
suppressed because photons cannot agglomerate since they escape away. This effect
is known as Silk damping (Silk 1967). Therefore, the behaviour of the Cl’s for large
l’s, as seen in Fig. 10.1, is also decaying, though not exactly as in the above solution
since this has to be free-streamed first.
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We can do a more detailed calculation of the damping scale as follows. Let us
neglect the gravitational potential and the � ≥ 3 multipoles as before, but let us deal
with more care of baryons and take into account polarisation. From Eq. (10.59) we
have:

Vb = 3�1 + R

τ ′
(
V ′
b + HVb

)
, (10.124)

and the six equations for the monopole, dipole and quadrupole of the temperature
fluctuations and polarisation:

�′
0 + k�1 = 0 , (10.125)

3�′
1 + 2k�2 − k�0 = τ ′(3�1 − Vb) , (10.126)

10�′
2 − 4k�1 = 9τ ′�2 − τ ′�P0 − τ ′�P2 , (10.127)

2�′
P0 + 2k�P1 = τ ′�P0 − τ ′�P2 − τ ′�2 , (10.128)

3�′
P1 + 2k�P2 − k�P0 = 3τ ′�P1 , (10.129)

10�′
P2 − 4k�P1 = 9τ ′�P2 − τ ′�P0 − τ ′�2 . (10.130)

Now, assuming a solution of the type exp(i
∫

ωdη) for all the above 7 variables and
also assuming that ω � H, we have:

Vb = 3�1

1 + Riωηc
, (10.131)

where we have defined ηc ≡ −1/τ ′ as the the average conformal time between 2
consecutive collisions. We have thus a closed system for �0, �1, �2, �P0, �P1 and
�P2:

iω�0 + k�1 = 0 , (10.132)

−k�0 + 3iω�1

(
1 + R

1 + Riωηc

)
+ 2k�2 = 0 , (10.133)

−4kηc�1 + (10iωηc + 9)�2 − �P0 − �P2 = 0 , (10.134)

−�2 + (2iωηc + 1)�P0 + 2kηc�P1 − �P2 = 0 , (10.135)

−k�P0 + 3(iωηc + 1)�P1 + 2kηc�P2 = 0 , (10.136)

−�2 − �P0 − 4kηc�P1 + (10iωηc + 9)�P2 = 0 . (10.137)

We have already arranged the variables in order for the system matrix to appear
clearly. The determinant of this matrix, in order to have a non trivial solution, must
be zero. Considering the limit ωηc � 1, and keeping the first-order only in ωηc we
get:

k2

3
− ω2(1 + R) + 2i

30
ωηc

[
37k2 − 285(1 + R)ω2 + 15ω2R2

] = 0 . (10.138)
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In order to solve for ω, let us again employ the smallness of ωηc and stipulate that:

ω = ω0 + δω , (10.139)

where δω is a small correction. From the above equation is then straightforward to
obtain:

k2

3
− ω2

0(1 + R) = 0 ,

(10.140)

−2ω0δω(1 + R) + 2i

30
ω0ηc

[
37k2 − 285(1 + R)ω2

0 + 15ω2
0R

2
] = 0 .

(10.141)

The first equation gives the result that we have already encountered:

ω2
0 = k2

3(1 + R)
= k2c2s (10.142)

which, substituted in the second equation, gives us:

δω = iηck2

6(1 + R)

[
16

15
+ R2

1 + R

]
(10.143)

This result was obtained for the first time by Kaiser (1983). See also the derivation
of Weinberg (2008).

Therefore, the evolution of the multipoles is proportional to the following factor:

exp

(
i
∫

ωdη

)
= eikrs (η)e−k2/k2Silk , (10.144)

where

1

k2Silk
≡ −

∫ η

0
dη′ 1

6τ ′(1 + R)

(
16

15
+ R2

1 + R

)
(10.145)

From the best fit values of the parameter of the �CDM model we have:

dSilk = 0.0066 Mpc (10.146)
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10.5 Line-of-Sight Integration

The approximate solutions found earlier are based on the TC limit, which allows us
to take into account just the monopole and the dipole until recombination and then
to better understand the physics behind the CMB anisotropies. On the other hand,
observation demands more precise calculations to be compared with and therefore,
at the end, numerical computation and codes such as CLASS are needed. Even so,
there is a more efficient way of computing predictions on the CMB anisotropies than
dealing directly with the hierarchy of Boltzmann equation and that is to formally
integrate along the photon past light-cone according to a semi-analytic technique
called line-of-sight integration, due to Seljak and Zaldarriaga (1996), and which
was the basis for the CMBFAST code.3

Recall the photon Boltzmann equations (5.114) and (5.115):

�′ + ikμ� = −�′ − ikμ� − τ ′
[
�0 − � − iμVb − 1

2
P2(μ)�

]
,

(10.147)

�′
P + ikμ�P = −τ ′

[
−�P + 1

2
[1 − P2(μ)]�

]
,

(10.148)

where � = �2 + �P2 + �P0. Let us rewrite them as follows:

�′ + (ikμ − τ ′)� = −�′ − ikμ� − τ ′
[
�0 − iμVb − 1

2
P2(μ)�

]
≡ S(η, k, μ) ,

(10.149)

�′
P + (ikμ − τ ′)�P = − τ ′

2
[1 − P2(μ)]� ≡ SP (η, k, μ) ,

(10.150)

where we have introduced two source functions on the right hand sides. Note that
the dependence in on k and not on k = kẑ because we are considering the equations
for the transfer functions. Afterwards, before performing the anti-Fourier transform,
we must rotate back k̂ in a generic direction.

Let us write the left hand sides as follows:

�′ + (ikμ − τ ′)� = e−ikμη+τ d

dη

(
� eikμη−τ

)
, (10.151)

with a similar expression for �P . Substituting these into the Boltzmann equations
and integrating formally from a certain initial ηi → 0 to today η0, we get:

3https://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm.

https://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm
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�(η0)e
−τ (η0) = �(ηi )e

ikμ(ηi−η0)−τ (ηi ) +
∫ η0

ηi

dη eikμ(η−η0)−τ (η)S(η, k,μ) ,

(10.152)

�P(η0)e
−τ (η0) = �P(ηi )e

ikμ(ηi−η0)−τ (ηi ) +
∫ η0

ηi

dη eikμ(η−η0)−τ (η)SP(η, k,μ) ,

(10.153)

Now recall the definition of the optical depth:

τ ≡
∫ η0

η

dη′ neσT a . (10.154)

It is clear then that τ (η0) = 0 and, since ηi → 0 is deep into the radiation-dominated
epoch, then τ ∝ 1/η is very large and we can neglect exp[−τ (ηi )]. Therefore, we
are left with

�(η0, k,μ) =
∫ η0

0
dη eikμ(η−η0)−τ (η)S(η, k,μ) , (10.155)

�P(η0, k,μ) =
∫ η0

0
dη eikμ(η−η0)−τ (η)SP(η, k,μ) . (10.156)

where we have already implemented the limit ηi → 0. Now we calculate the ��’s
inverting the Legendre expansion as done in Eq. (5.113) and obtain:

��(η0, k) = 1

(−i)�

∫ 1

−1

dμ

2
P�(μ)

∫ η0

0
dη eikμ(η−η0)−τ (η)S(k, η,μ) ,

(10.157)

�P�(η0, k) = 1

(−i)�

∫ 1

−1

dμ

2
P�(μ)

∫ η0

0
dη eikμ(η−η0)−τ (η)SP(k, η,μ) ,

(10.158)

The source terms have μ-dependent contributions (up to μ2) that we can handle
integrating by parts. Take for example the −ikμ� contribution of S(k, η,μ). Let I�
be its integral, which can be rewritten as follows:

I� ≡ −
∫ η0

0
dη ikμ�eikμ(η−η0)−τ (η) = −

∫ η0

0
dη �e−τ (η) d

dη

[
eikμ(η−η0)

]
,

(10.159)
and now it is easy to integrate by parts and obtain:

I� = − �e−τ (η)eikμ(η−η0)
∣∣η0
0 +

∫ η0

0
dη eikμ(η−η0)

d

dη

[
�e−τ (η)

]
. (10.160)
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The first contribution gives −�(η0), i.e. the gravitational potential evaluated at
present time. This is just an undetectable offset that we incorporate into the defi-
nition of ��(η0, k), as the observed anisotropy, like we did at the beginning of this
chapter when dealing with the free-streaming solution.

Exercise 10.13 Take care of the term containing μ2, in P2(μ). Show that:

∫ η0

0
dη τ ′μ2�eikμ(η−η0)−τ (η) = − 1

k2

∫ η0

0
dη eikμ(η−η0)

d2

dη2

[
τ ′�e−τ (η)

]
.

(10.161)

Combining all the terms treated with integration by parts, we get:

��(k, η0) = 1

(−i)�

∫ 1

−1

dμ

2
P�(μ)

∫ η0

0
dη eikμ(η−η0)

[
−

(
�′ + τ ′�0 + τ ′�

4

)
e−τ +

(
�e−τ − τ ′Vbe−τ

k

)′
− 3

4k2
(
τ ′�e−τ

)′′
]

,

(10.162)

�P�(k, η0) = − 3

4(−i)�

∫ 1

−1

dμ

2
P�(μ)

∫ η0

0
dη eikμ(η−η0)

[
τ ′�e−τ + 1

k2
(
τ ′�e−τ

)′′
]

.

(10.163)

Using now the relation of Eq. (10.15), we can cast the above equations as:

��(η0, k) =
∫ η0

0
dη S(η, k) j� [k(η0 − η)] , (10.164)

�P�(η0, k) =
∫ η0

0
dη SP(η, k) j� [k(η0 − η)] . (10.165)

with

S(η, k) ≡ (� ′ − �′)e−τ + g

(
�0 + �

4
+ �

)
+ 1

k
(gVb)

′ + 3

4k2
(g�)′′ ,

(10.166)

SP(η, k) ≡ 3

4
g� + 3

4k2
(g�)′′ ,

(10.167)

where we have introduced the visibility function:

g(η) ≡ −τ ′e−τ (10.168)
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Fig. 10.4 Visibility function
g as function of the redshift
from the numerical
calculation performed with
CLASS for the standard
model

Exercise 10.14 Show that the visibility function is normalised to unity, i.e.

∫ η0

0
dη g(η) = 1 . (10.169)

The visibility function represents the Poissonian probability that a photon is last
scattered at a time η. It is very peaked at a time that we define as the one of recom-
bination, i.e. at η = η∗, because for η > η∗ it is basically zero, since τ ′ = 0. Before
recombination, in the radiation-dominated epoch, we saw that −τ ′ ∝ 1/η2 and thus
τ ∝ 1/η and g ∝ exp(−1/η)/η2, i.e. it goes to zero exponentially fast.

In Fig. 10.4 we plot the numerical calculation of the visibility function performed
with CLASS for the standard model. Note the peak at about z = 1000, which has
always been our reference for the recombination redshift. Note also another peak
at about z = 10, representing the epoch of reionisation. Until now we have used
the peakedness of the visibility function as if it were a Dirac delta δ(η − η∗), i.e.
we have made the sudden recombination approximation. From Fig. 10.4 we can
appreciate that it is a good approximation (mind the logarithmic scale there). As
usual, in cosmology but not only, the calculations get more and more complicated
and impossible to do analytically the more precision we demand.

Inserting the source terms (10.166) and (10.167) in the expressions for ��(η0, k)
and �P�(η0, k) in the expression of �� and integrating by parts, we get:

��(k, η0) =
∫ η0

0
dη g

(
�0 + � + �

4

)
j� [k(η0 − η)]

−
∫ η0

0
dη

gVb

k

d

dη
j� [k(η0 − η)] +

∫ η0

0
dη

3g�

4k2
d2

dη2
j� [k(η0 − η)]

+
∫ η0

0
dη e−τ (� ′ − �′) j� [k(η0 − η)] ,

(10.170)
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�P�(k, η0) =
∫ η0

0
dη

3g�

4
j� [k(η0 − η)] +

∫ η0

0
dη

3g�

4k2
d2

dη2
j� [k(η0 − η)] .

(10.171)

Assuming the visibility function to be a Dirac delta δ(η − η∗), i.e. the sudden recom-
bination mentioned earlier, and neglecting �, we recover formula (10.24). Note that
neglecting� no polarisation is present. Indeed, from the above equation we see that a
non-zero quadrupole moment of the photon distribution at recombination is essential
in order to have polarisation.

The above equations still need the Boltzmann hierarchy in order to be integrated,
but just up to � = 4 (because �2 and �4 moments are contained in the equation for
�′

3) and hence are much more convenient from the computational point of view.
The partial wave expansion of � given in Eq. (7.77):

�(k,μ) =
∑

�

(−i)�(2� + 1)P�(μ)��(k) , (10.172)

and that we have used in the above calculations is valid as long as k̂ = ẑ. Now we
have to rotate it in a general direction before performing the Fourier anti-transform.
The task is simple because the temperature fluctuation is a scalar. Therefore:

�(k, k̂ · p̂) =
∑

�

(−i)�(2� + 1)P�(k̂ · p̂)��(k) . (10.173)

The same is not true for �P , since the Stokes parameters are not scalars.
Using the definition of aT,�m given in Eq. (7.73) we can then write:

aS
T,�m =

∫
d2n̂ Y m∗

� (n̂)
∑

l

(−i)�(2� + 1)
∫

d3k
(2π)3

P�(k̂ · p̂)α(k)��(k) .

(10.174)
The integration is over d2n̂, hence we must change p̂ → n̂ = − p̂ in the Legendre
polynomial. This gives an extra (−1)� factor, due to the parity of the Legendre
polynomials, and then using the addition theorem we obtain:

aS
T,�m =

∫
d2n̂ Y m∗

� (n̂)
∑

l

i�(2� + 1)
∫

d3k
(2π)3

α(k)
4π

2�′ + 1

�′∑

m ′=−�′
Y ∗m ′

�′ (k̂)Ym ′
�′ (n̂)��(k) . (10.175)

Now the integration over the whole solid angle can be performed and the orthonor-
mality of the spherical harmonics can be employed, obtaining thus:



10.5 Line-of-Sight Integration 339

aS
T,�m = 4πi�

∫
d3k

(2π)3
Ym∗

� (k̂)α(k)��(k) (10.176)

This formula, together with Eq. (10.170) allows us to explicitly calculate the scalar
contribution to the aT,�m’s. Earlier, we have focused on the CTT,�’s only, for which
the calculations are simpler because there is no need of performing a spatial rotation,
but we need to know the explicit form of the aT,�m’s in order to compute the TE
correlation spectrum of Eq. (7.87).

10.6 Finite Thickness Effect and Reionization

In this section we discuss twomore effects that influence the CMB spectrum, namely
the finite thickness effect and the reionisation. The first one is related to the fact that
the visibility function g in Fig. 10.4 is very peaked but it is not a Dirac delta. In
other words, CMB photons do not last scatter all at once at η∗ but during a finite
amount of time say �η∗. This is the finite thickness effect. Physically, on scales
smaller than the thickness�η∗ we expect fluctuations to be washed out because they
are averaged over a finite amount of time. This is similar to what is called Landau
damping (although the latter arises from a spread in frequency and not in time). It
may seem that Landau damping is a small effect, but actually is of the same order of
Silk damping and therefore it must be taken into account.

Let us take advantage of this investigation and derive the form of the visibility
function here. The question is: what is the probability that a photon last scatter during
some sufficiently small interval between the instants η and η + �η? The time interval
�η is sufficiently small so that only one collision can take place into it. The attentive
reader has noticed that this is the same requirement we make when we derive the
Poisson distribution, cf. Chap. 12, which in fact rules the statistics of e.g. scattering
process.

So, we divide the time interval η0 − η in many, i.e. N ≡ (η0 − η)/�η, intervals
and write the probability as:

�P = �η

ηc(η)

[
1 − �η

ηc(η1)

] [
1 − �η

ηc(η2)

]
. . .

[
1 − �η

ηc(ηN )

]
, (10.177)

where recall that ηc ≡ −1/τ ′ is the average time between two consecutive collisions
and it is time-dependent. We have chosen the time interval�η small enough in order
for �η/ηc to be the probability of having one scattering during its duration and
hence 1 − �η/ηc being that of having no scattering. Now, in the limit �η → 0 we
can write:

dP = dη

ηc
exp

(
−

∫ η0

η

dη

ηc

)
= −τ ′ exp [−τ (η)] dη = g(η)dη , (10.178)
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i.e. the visibility function defined in Eq. (10.168) appears. As we have anticipated,
the maximum of the visibility function occurs in a time that we dub η∗, i.e. the
recombination time if we make the assumption of sudden recombination. From the
condition for the extrema of a function:

g′(η) = −τ ′′e−τ + (τ ′)2e−τ = 0 , (10.179)

we get:
− τ ′′ = (τ ′)2 , (10.180)

as the condition which defines η∗. Therefore, employing the definition of the optical
depth, we get:

(neσTa)′∗ = −(neσTa)2∗ , (10.181)

where the derivative is evaluated at η∗, as well as the function on the right hand side.
Now, let us write the free-electron number density as ne = Xenb, i.e. introducing
the free-electron fraction and the baryon number density and recall from Boltzmann
equation, cf. Chap. 3, that:

X ′
e = −1.44 × 104

z
HXe . (10.182)

Evaluating the above equation at η∗ and combining it with the extrema condition for
the visibility function, we get:

Xe(η∗) ≈ 1.44 × 104

z∗(nbσTa)∗
H(η∗) ≡ K

(nbσTa)∗
H(η∗) , (10.183)

and from this we get the recombination redshift z∗ ≈ 1050.
Let us approximate the visibility function by expanding it about its maximum:

g(η) = exp[ln(−τ ′) − τ ] ≈ exp

[
−1

2
[τ − ln(−τ ′)]′′∗(η − η∗)2

]
, (10.184)

i.e. we have a Gaussian function. Nowwe determine the second derivative, and hence
the variance of the distribution by using Boltzmann equation and employing the fol-
lowing approximation: we consider only the first derivative of Xe to be different from
zero. All the other quantities are approximately constant indeed since recombination
takes place quite rapidly. So, we can write:

(
τ ′ − τ ′′

τ ′

)′

∗
=

(
−nbXeσTa − nbX ′

eσTa

nbXeσTa

)′

∗
. (10.185)

Now, within our approximation X ′
e/Xe is constant, and thus:
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(
τ ′ − τ ′′

τ ′

)′

∗
= −(nbX

′
eσTa)∗ = (nbXeσTa)2∗ = K 2H(η∗)2 . (10.186)

Hence the visibility function can be approximated as a Gaussian function:

g(η) ≈ KH∗√
2π

[
−1

2
(KH∗)2(η − η∗)2

]
, (10.187)

with variance 1/(KH∗).
When we substitute this approximation of the visibility function in the line-of-

sight integrals of Eqs. (10.170) and (10.171) we can extract the spherical Bessel
functions as jl[k(η0 − η∗)], since η0 is much larger than any conformal time about
recombination, and the other integrals are oscillating functions of krs(η), as we saw
in Eq. (10.107). We can approximate this about η∗, as follows:

krs(η) = k
∫ η

0
dη′ 1√

3(1 + R)
≈ krs(η∗) + k√

3(1 + R∗)
(η − η∗) . (10.188)

Hence, we have finally a conformal time Gaussian integral of the following type:

∫ ∞

−∞
dη exp

[
−1

2
(KH∗)2(η − η∗)2 + ik√

3(1 + R∗)
(η − η∗)

]
. (10.189)

Now, using the formula for the Gaussian integral:

∫ ∞

−∞
e−ax2+bxdx =

√
π

a
eb

2/4a , (10.190)

we can conclude that the ��’s get an additional damping factor of the following
form:

exp

[
− k2

6(1 + R∗)(KH∗)2

]
, (10.191)

so a new damping scale appears:

d2
Landau = 1

k2Landau
≡ 1

6(1 + R∗)(KH∗)2
(10.192)

which, followingWeinberg (2008), we call Landau damping scale. For the�CDM
model best fit parameters we have:

dLandau ≈ 0.0048 Mpc (10.193)
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Now let us turn to reionisation. At a redshift of about 10 hydrogen gets ionised again
by the ultraviolet radiation of the first structures. Hence, the free-electron fraction
grows again increasing the probability of a CMB photon to be scattered again, cf.
the extra bump in the visibility function in Fig. 10.4. Following the calculation done
above in order to obtain the visibility function, we know that the probability for a
photon not to be scattered from reionisation until today is:

exp[−τ (ηreion)] , (10.194)

and of course the one for being scattered is 1 minus the above quantity, which we
compute now:

τ (ηreion) =
∫ η0

ηreion

dη neσTa = σT

∫ zreion

0

dz

(1 + z)2Hne . (10.195)

For the free-electron number density we can write:

ne = 0.88nbXe = 0.88
3H 2

0

8πmb
	b0(1 + z)3 , (10.196)

where the factor 0.88 is due to the fact that not all the baryons are electrons or
protons, but there are also neutrons in Helium nuclei. Assuming matter-domination
and instantaneous reionisation, i.e.

H2 = H 2
0 	m0(1 + z)3 , (10.197)

and Xe = 1 for z < zreion, we get:

τ (zreion) ≈ 0.04
	b0h2√
	m0h2

z3/2reion . (10.198)

Hence, the probability for a CMB photon not to be scattered for reionisation taking
place at redshift zreion = 10 is about 0.99, i.e. very high. Those photons which are
scattered aremixed up, hence the correlation in their temperature is destroyed. So, the
effect of reionisation on theCTT,�’s is simply toweigh themby a factor exp(−2τreion),
the factor 2 appearing because the spectrum is a quadratic function of the temperature
fluctuations.

10.7 Cosmological Parameters Determination

In this section we discuss how the CMBTT spectrum, i.e. theCTT,�’s, are sensitive to
the cosmological parameters. We have learned in this chapter about many quantities
which are of relevance in forming the shape of the spectrum but we have not actually
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derived an analytic, approximated formula in order to see this explicitly. These can be
found in Mukhanov (2005) and Weinberg (2008). Here instead we plot with CLASS
various spectra for varying parameters and discuss the physics behind the changes.

Note that, for the standard � model, 6 of the overall parameters are usually left
free and constrained by observation:

1. The amplitude of the primordial power spectrum: AS;
2. The primordial tilt: nS;
3. The baryonic abundance: 	b0h2;
4. The CDM abundance: 	c0h2;
5. The reionization epoch: zreion;
6. The sound horizon at recombination: rs(η∗), which is related to the Hubble

constant value H0.

The other parameters can be derived by these ones. In particular, the amount of
radiation is already well known by measuring the CMB temperature and so the
amount of � and curvature is determined via the positions of the peaks, which
depend on rs(η∗), which in turn depends on the baryon content.

In Figs. 10.5 and 10.6 we start to show the numerical calculation of CMB TT
power spectrum decomposed in the contributions discussed in this chapter. See also
Wands et al. (2016). We consider the �CDM as fiducial model.

In Fig. 10.7 we show what happens to CMB TT the spectrum for 	b0h2 =
0.010, 0.014, 0.018, 0.022, 0.026, 0.030, 0.034. Taking the first peak height as ref-
erence, the larger the value of 	b0h2 is, the higher the peak is. When we vary one
of the density parameters, since their sum must be equal to one that means that also
something else must vary. In this case we have chosen to vary 	�.

Why so? We have seen that baryons loading makes compression favoured over
rarefaction and hence the first and the third peaks are higher for higher values of

Fig. 10.5 Total CMB TT power spectrum (blue line) computed with CLASS and decomposed
in the physically different contributions: Sachs-Wolfe effect (yellow line), early-times ISW effect
(green line), late-times ISW effect (red line), Doppler effect (purple line), and polarisation (brown
line)
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Fig. 10.6 Same as Fig. 10.5 but in logarithmic scale, in order to better distinguish the weakest
contributions

Fig. 10.7 CMB TT power spectrum computed with CLASS and varying 	b0h2. From the lowest
first peak to the highest: 	b0h2 = 0.010, 0.014, 0.018, 0.022, 0.026, 0.030, 0.034

	b0h2, but the second one is lower. In other words, the peaks relative height is very
sensitive to the baryon content. The position of the first peak does not change much
because it is most sensitive to the spatial curvature and this has been fixed to zero.
Finally, the curves for larger 	b0h2, as we commented, have less 	� and therefore
less ISW effect. For these reason they are slightly lower for small �.

In Fig. 10.8 we show what happens to CMB TT the spectrum for 	c0h2 =
0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15. Taking the first peak height as reference, the
larger the value of 	c0h2 is, the lower the peak is. This behaviour is the opposite of
the one that we found by varying 	b0h2. Mostly CDM intervenes through the SW
effect since it dominates the gravitational potential � at recombination. The first
peak is affected more because it corresponds to large scales, basically the horizon at
recombination, and there the transfer function is approximately unit, meaning that
−� is as large as possible. The subsequent peaks correspond to scales which entered
the horizon much earlier and therefore the CDM influence there is weak.
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Fig. 10.8 CMB TT power spectrum computed with CLASS and varying 	c0h2. From the highest
first peak to the lowest: 	c0h2 = 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15

Fig. 10.9 CMB TT power spectrum computed with CLASS and varying τreion. From the highest
first peak to the lowest: τreion = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7

In this case also we have chosen to vary 	� in order to keep the total density
budget. Indeed, the more CDM, the less � and the less ISW effect, as expected.

In Fig. 10.9 we show what happens to CMB TT the spectrum for τreion =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. As we have commented in the previous section, the
overall effect of reionisation is simple because it happens very lately: a damping of
the order exp(−2τreion) for multipoles larger than a certain �reion which we infer to
be about 10 from the plots in Fig. 10.9.

From Fig. 10.10 we can appreciate how the CMB TT power spectrum is affected
by the spatial geometry of the universe. From the leftmost spectrum to the rightmost
one 	K0 = −0.2,−0.1, 0, 0.1, 0.2. Hence, the position of the first peak is of great
importance in order to determine whether our universe is closed or open. Note that
the flat case is a limiting value which we cannot determine observationally, because
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Fig. 10.10 CMB TT power spectrum computed with CLASS and varying 	K0. From the left to
the right: 	K0 = −0.2,−0.1, 0, 0.1, 0.2

of the experimental error; we can only conclude that observation is consistent with
	K0 = 0, i.e. this value is not ruled out.

As we saw in Eq. (10.107), the length scale associated to the acoustic peaks is the
sound horizon at recombination:

rs(η∗) =
∫ η∗

0
csdη , (10.199)

where the speed of sound of the baryon-photon plasma is given by Eq. (10.87):

c2s = 1

3(1 + R)
= 4	γ0

3(4	γ0 + 3	b0a)
. (10.200)

The physical sound horizon is given by:

rphyss (z∗) =
∫ t∗

0
cs(t)dt =

∫ ∞

z∗
dz

cs(z)

H(z)(1 + z)
, (10.201)

i.e. integrating the lookback time. We need the physical quantity in order to relate it
with the angular-diameter distance to recombination:

dA(z∗) = 1

(1 + z∗)

∫ z∗

0

dz

H(z)
, (10.202)

and thus estimate the multipole corresponding to the first peak:

�1st ≈ 1

θ1st
= dA(z∗)

rphyss (z∗)
. (10.203)
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Let us approximate the physical sound horizon by assuming cs constant and amatter-
dominated universe. We have thus:

rphyss (z∗) ≈ cs
H0

√
	m0

∫ ∞

z∗

dz

(1 + z)5/2
= 2cs

3H0
√

	m0

1

(1 + z∗)3/2
, (10.204)

and for the angular-diameter distance we also assume a matter plus � universe:

dA(z∗) = 1

H0(1 + z∗)

∫ z∗

0

dz√
	m0(1 + z)3 + (1 − 	m0)

. (10.205)

Exercise 10.15 Show that dA(z∗) can be approximated as:

dA(z∗) ≈ 2

7H0(1 + z∗)
√

	m0
(9 − 2	3

m0) . (10.206)

Hence, we have:

�1st ≈ 0.74
√
1 + z∗(9 − 2	3

m0) ≈ 220 , (10.207)

which clearly shows how the position of the first peak changes as function of the
total matter content.

In Fig. 10.11 we show how the initial conditions dramatically affect the CMB
TT power spectrum and how the adiabatic ones are favoured by observation (when
comparing with the data points of Fig. 10.1).

Fig. 10.11 CMB TT power spectrum computed with CLASS and varying initial conditions: adia-
batic (blue line), baryon isocurvature (yellow line), CDM isocurvature (green line), neutrino density
isocurvature (red line), neutrino velocity isocurvature (purple line)
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10.8 Tensor Contribution to the CMB TT Correlation

Tensor perturbations also contribute to generate temperature anisotropies, as we see
in Eq. (5.138), which we report here after renormalising to the primordial mode
β(k,λ), cf. Eq. (7.101):

(
∂

∂η
+ ikμ − τ ′

)
�(T )(η, k,μ) + h

′T

2
=

−τ ′
[
3

70
�

(T )
4 + 1

7
�

(T )
2 + 1

10
�

(T )
0 − 3

70
�

(T )
P4 + 6

7
�

(T )
P2 − 3

5
�

(T )
P0

]

≡ −τ ′ST (η, k) , (10.208)(
∂

∂η
+ ikμ − τ ′

)
�

(T )
P (η, k,μ) = τ ′ST (η, k) , (10.209)

The label λ representing the two possible states of helicity is absent because of the
renormalisation with β(k,λ). It represents the fact that the evolution of the two
helicities is the same.

The line-of-sight solutions of the above equations are the following:

�(T )(η0, k,μ) =
∫ η0

0
dη eikμ(η−η0)−τ

[−h′T /2 − τ ′ST (η, k)
]

, (10.210)

�
(T )
P (η0, k,μ) =

∫ η0

0
dη eikμ(η−η0)−τ τ ′ST (η, k) . (10.211)

We now focus on �(T )(η0, k,μ). Defining:

ST (η, k) ≡ e−τ
[−h′T /2 − τ ′ST (η, k)

]
, (10.212)

and using Eqs. (5.131) and (5.32), the tensor contribution to the temperature fluctu-
ation is made up of the sum of the following two contributions:

fλ(kẑ, p̂) ≡ 4

√
π

15
Y λ
2 ( p̂)

∫ η0

0
dη ST (η, k)e−iμkr(η) , (10.213)

where r(η) ≡ η0 − η and where we stress that the result holds true for k̂ = ẑ since
this was the condition under which we derived the Boltzmann equation for photons.
We cannot yet sum over λ because we have to include β(k,λ) first. For this reason,
we shall work on fλ(kẑ, p̂).

In order to investigate temperature fluctuations in the sky, we need to anti-
transform �(T )(k, p̂) in order to employ the usual expansion:

�(T )(n̂) =
∑

�m

aT
T,�mY

m
� (n̂) , aT

T,�m =
∫

d2n̂ Y m∗
� (n̂)�(T )(n̂) . (10.214)
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So, let us proceed as follows. We trade p̂ for the line-of-sight n̂ = − p̂ and use the
expansion of a plane wave in spherical harmonics:

eik̂·n̂kr =
∑

LM

i LY M∗
L (k̂)Y M

L (n̂) jL(kr) , (10.215)

in Eq. (10.213).

Exercise 10.16 First of all, since k̂ = ẑ then show that:

Y M∗
L (k̂) = Y M∗

L (ẑ) = δM0

√
2L + 1

4π
, (10.216)

i.e. for θ = 0 (representing the ẑ direction) the spherical harmonics are non-vanishing
only if M = 0.

Therefore, we can write:

fλ(kẑ, n̂) = 2√
15

Y λ
2 (n̂)

∑

L

i L
√
2L + 1Y 0

L (n̂)

∫ η0

0
dη ST (η, k) jL(kr) . (10.217)

The idea is now to perform a rotation in order to put k̂ in a generic direction. But then
also n̂ rotates and therefore we need to know how a spherical harmonics behaves
under rotations. In order to deal with just one spherical harmonic we take advantage
of the following decomposition:

Y±2
2 (n̂)Y 0

L (n̂) =
√
5(2L + 1)

4π

∑

L ′

√
2L ′ + 1

(
L 2 L ′
0 ±2 ∓2

) (
L 2 L ′
0 0 0

)
Y±2
L ′ (n̂) , (10.218)

where we have employed the Wigner 3 j-symbols, which are coefficients appear-
ing in the quantum theory of angular momentum, when we combine two angular
momenta and we want to write the state of total angular momentum as a linear com-
bination on the basis of the tensor product of the two combined angular momenta.
They are an alternative to the (perhaps more commonly used) Clebsch-Gordan coef-
ficient See e.g. Landau and Lifshits (1991) and Weinberg (2015).

This expansion allows us to deal with just one spherical harmonics. Now we take
advantage of the properties of the spherical harmonics under spatial rotation, i.e.
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Ym
� (Rn̂) =

�∑

m ′=−�

D(�)
m ′m(R−1)Ym ′

� (n̂) (10.219)

where the D(�)
m ′m are the elements of theWigner D-matrix. See Landau and Lifshits

(1991) for more detail. The above R is a generic rotation. Of course, we are interested
in a R(k̂) rotation which brings k̂ in a generic direction. Hence, we can write:

fλ(k, n̂) =
∑

L

i L
2L + 1√

3π

∑

L ′

√
2L ′ + 1

(
L 2 L ′
0 λ −λ

)

(
L 2 L ′
0 0 0

) ∑

m ′
D(L ′)

m ′λ [R(k̂)]Ym ′
L ′ (n̂)

∫ η0

0
dη ST (η, k) jL(kr) . (10.220)

Here we have dubbed Rn̂ the original line of sight and n̂ the resulting one after the
rotation.

Now we can perform the Fourier anti-transform. Let us multiply fλ(k, n̂) by
β(k,λ) and Ym∗

� (n̂) and integrate over d2n̂ in order to obtain the aT
T,�m’s. We obtain:

aT
�m,±2 =

∑

L

i L
2L + 1√

3π

√
2� + 1

(
L 2 �

0 ±2 ∓2

)

(
L 2 �

0 0 0

) ∫
d3k

(2π)3
D(�)

m±2[R(k̂)]β(k,±2)
∫ η0

0
dη ST (η, k) jL(kr) . (10.221)

We have used here the orthonormality relation of the spherical harmonics and distin-
guished the contributions from different helicities. Of course a�m = a�m,+2 + a�m,−2.

It is now time to compute the 3 j symbols and to perform the summation over
L . A general formula for those was obtained in Racah (1942), but we can read
their expression from Landau and Lifshits (1991). We then have the only following
non-vanishing occurrences:

(
� 2 �

0 0 0

)
= (−1)�+1

√
�(� + 1)

(2� − 1)(2� + 1)(2� + 3)
, (10.222)

(
� + 2 2 �

0 0 0

)
= (−1)�

√
3(� + 1)(� + 2)

2(2� + 1)(2� + 3)(2� + 5)
, (10.223)

(
� − 2 2 �

0 0 0

)
= (−1)�

√
3�(� − 1)

2(2� − 3)(2� − 1)(2� + 1)
. (10.224)

In particular, there is no contribution coming from L = � ± 1. The other three rele-
vant (i.e. not considering those for L = � ± 1 which are non-vanishing in this case)
symbols are:
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(
� 2 �

0 ±2 ∓2

)
= (−1)�

√
3(� − 1)(� + 2)

2(2� − 1)(2� + 1)(2� + 3)
, (10.225)

(
� + 2 2 �

0 ±2 ∓2

)
= (−1)�

1

2

√
(� − 1)�

(2� + 1)(2� + 3)(2� + 5)
, (10.226)

(
� − 2 2 �

0 ±2 ∓2

)
= (−1)�

1

2

√
(� + 1)(� + 2)

(2� − 3)(2� − 1)(2� + 1)
, (10.227)

Exercise 10.17 Derive the above expressions for the relevant Wigner 3 j symbols
given in Landau and Lifshits (1991) and put them in Eq. (10.221). Show that:

aTT,�m,±2 = −i�

√
(2� + 1)(� + 2)!

8π(� − 2)!
∫

d3k
(2π)3

D(�)
m±2[R(k̂)]β(k,±2)

∫ η0

0
dη ST (η, k)

[
j�−2(kr)

(2� − 1)(2� + 1)
+ 2 j�(kr)

(2� − 1)(2� + 3)
+ j�+2(kr)

(2� + 1)(2� + 3)

]
.

(10.228)

Recall that r = r(η) ≡ η0 − η.

Exercise 10.18 Show that, using the recurrence relation (Abramowitz and Stegun
1972):

j�(x)

x
= j�−1(x) + j�+1(x)

2� + 1
, (10.229)

we can write:

aT
T,�m = −i�

√
(2� + 1)(� + 2)!

8π(� − 2)!
∑

λ=±2

∫
d3k

(2π)3
D(�)

m,λ[R(k̂)]β(k,λ)

∫ η0

0
dη ST (η, k)

j�(kr)

(kr)2
. (10.230)

The Wigner D-matrix can be related to the spin-weighted spherical harmonics as
follows:

D(�)
m,±2(k̂) =

√
4π

2� + 1
±2Y

−m
� (k̂) =

√
4π

2� + 1
∓2Y

m∗
� (k̂) , (10.231)
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so we have:

aT
T,�m = −i�

√
(� + 2)!
2(� − 2)!

∑

λ=±2

∫
d3k

(2π)3
λY

m∗
� (k̂)β(k,λ)

∫ η0

0
dη ST (η, k)

j�(kr)

(kr)2

(10.232)

This is our main result of this section. It is not surprising that Ym∗
� (k̂) eventually

appeared, being GW a spin-2 field.
In order to compute the tensor contribution to the CTT,�’s, we perform the ensem-

ble average:
〈aT

T,�ma
T∗
T,�′m ′ 〉 = CT

TT,�δ��′δmm ′ . (10.233)

Exercise 10.19 AssumingGaussian perturbations, using Eq. (7.102) and the orthog-
onality property of theWigner D-matrices or the spin-weighted spherical harmonics:

∫
d2k̂ D(�)

m,±2[R(k̂)]D(�′)∗
m ′,±2[R(k̂)] = 4π

2� + 1
δ��′δmm ′ , (10.234)

show that:

CT
TT,� = (� + 2)!

4π(� − 2)!
∫ ∞

0

dk

k
�2

h(k)

∣∣∣∣
∫ η0

0
dη ST (η, k)

j�(kr)

(kr)2

∣∣∣∣
2

(10.235)

Note that a factor 2 arises because of the two polarisation states.
The above result was originally obtained in Abbott and Wise (1984) (though not

exactly in the same way and final form).

Themain difficulty we faced in computing the aT
T,�m was the spatial rotationwhich

brought k̂ in a generic direction. This can be avoided if we calculate straightaway
CT

TT,� because it is rotationally invariant. Note that no correlation exists between
scalar and tensor modes. In fact if we compute:

〈aT
T,�ma

S∗
T,�′m ′ 〉 , (10.236)

we would get zero, mathematically because of the integral:

∫
d2k̂ 2Y

m
� (k̂)Ym ′

�′ (k̂) = 0 , (10.237)

between a spin-2 spherical harmonic and a spin-0 one. Physically, because we know
that at the linear order scalar and tensor perturbations do not couple.
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We can again approximate this angular power spectrum for large values of � as
follows. First, ST (η, k) contains the derivative of h, which is maximumwhen amode
enters the horizon, for kη ≈ 1, being almost zero elsewhere. Therefore, assuming
instantaneous recombination, we can write:

CT
TT,� = (� − 1)�(� + 1)(� + 2)

4π

∫ ∞

0

dk

k
�2

h(k)
j2� (kη0)

(kη0)4
. (10.238)

Defining the new variable x ≡ kη0 and introducing the primordial tensor power
spectrum we get:

CT
TT,� ∝ (� − 1)�(� + 1)(� + 2)

4π

∫ ∞

0
dx xnT −5 j2� (x) . (10.239)

The integral can be performed exactly:

∫ ∞

0
dx xnT −5 =

√
π

2


[1 − (nT − 4)/2]
[(nT − 4)/2 + �]
(4 − nT )
[1/2 − (nT − 4)/2]
[� + 2 − (nT − 4)/2] ,

(10.240)
but in the case of nT = 0, a scale-invariant primordial tensor spectrum, we get:

�(� + 1)CT
TT,�

2π
∝ �(� + 1)

(� − 2)(� + 3)
. (10.241)

The behaviour of the tensor contribution to the TT power spectrum is thus very
different from the one coming from scalar perturbations. In Figs. 10.12 and 10.13 we
display the numerical calculations done with CLASS of the total (solid line), scalar
(dashed line) and tensor (dotted line) angular power spectra.

Fig. 10.12 Numerical calculations done with CLASS of the total (solid line), scalar (dashed line)
and tensor (dotted line) angular power spectra
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Fig. 10.13 Same as Fig. 10.12 but using a logarithmic scale

The tensor contribution is practically irrelevant on very small angular scale (i.e.
large �) and on large angular scales they can be as large as 10% of the total. Typically
then one can give upper limits onCT

TT,�/C
S
TT,� for small multipoles (� = 2 or � = 10)

and this ratio is proportional to AT /AS and therefore on the parameter r , the tensor-
to-scalar ratio. From Eq. (8.176) we saw that r < 0.1. In order to determine this
constraint one has also to use polarisation data since with these we are able to
disentangle the AS exp(−2τreion) dependence coming from the scalar contribution
only to the temperature power spectrum.

10.9 Polarisation

In this section we address CMB polarisation. Recall that before recombination polar-
isation is also erased because of tight-coupling. Polarisation is generated thanks to
the fact that recombination does not take place instantaneously, so the finite-thickness
effect is indeed important.Moreover, since Thomson scattering is axially-symmetric,
circular polarisation is not produced.

In Sect. 12.7 we recall the main terminology regarding polarisation and in partic-
ular the Stokes parameters.

10.9.1 Scalar Perturbations Contribution to Polarisation

Now, let us focus on scalar perturbations only and write down from Eq. (5.115) the
line of sight solution for the combination Q + iU . Since we have chosen a reference
frame in which k̂ = ẑ, there is noU polarisation. This can be also seen from the fact
that B0 = 0. Hence, we shall again perform a rotation in order to compute the aP,�m .
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We have called �P the Stokes parameter Q in the k̂ = ẑ frame. So, let us work
on its line-of-sight solution.

Exercise 10.20 Show that:

�P(kẑ, n̂) = 3

2

√
8π

15
2Y

0
2 (n̂)

∫ η0

0
dη e−iμkr SS

P(η, k) , (10.242)

where we have defined a new source term:

SS
P(η, k) ≡ g(η)�(η, k) . (10.243)

We could have written −2Y 0
2 (n̂) instead of 2Y 0

2 (n̂), since they are equal. However,
we are going to deal with Q + iU first. The above equation can written as:

�P(kẑ, n̂) =
√

9

30
2Y

0
2 ( p̂)

∑

L

i L
√
2L + 1Y 0

L (n̂)

∫ η0

0
dη SS

P(η, k) jL(kr) ,

(10.244)

where again r ≡ η0 − η and we have used the well-known-by-now expansion of a
plane wave into spherical harmonics plus the fact that k̂ = ẑ.

Now, as in Eq. (10.218) we can write the product of spherical harmonics as
follows:

2Y
0
2 (n̂)Y 0

L (n̂) =
√
5(2L + 1)

4π

∑

L ′

√
2L ′ + 1

(
L 2 L ′
0 −2 +2

)(
L 2 L ′
0 0 0

)
2Y

0
L ′(n̂) , (10.245)

and thus obtain:

(Q + iU )S(n̂) =
√

3

8π

∑

L

i L (2L + 1)
∑

L ′

√
2L ′ + 1

(
L 2 L ′
0 −2 2

)

(
L 2 L ′
0 0 0

)∑

m′
2Y

m′
L ′ (n̂)

∫
d3k

(2π)3
D(L ′)
m′0 (k̂)α(k)

∫ η0

0
dη SSP (η, k) jL (kr) , (10.246)

where we have already considered the rotation which brings k̂ in a generic direction.
Now, from the expansion:

(Q + iU )S(n̂) =
∑

�m

aS
P,�m 2Y

m
� (n̂) , (10.247)
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we are able to calculate the coefficients aS
P,�m by taking advantage of the orthonor-

mality of the spin-2 spherical harmonics. We can therefore write:

aS
P,�m =

√
3

8π

∑

L

i L(2L + 1)
√
2� + 1

(
L 2 �

0 −2 2

)

(
L 2 �

0 0 0

)∫
d3k

(2π)3
D(�)

m0(k̂)α(k)

∫ η0

0
dη SS

P(η, k) jL(kr) . (10.248)

Remarkably, the sum over L can be performed in the very same way we did for the
aT
T,�m , since the 3 j symbols are the same. Therefore, we have:

aS
P,�m = −3i�

8

√
(2� + 1)(� + 2)!

π(� − 2)!
∫

d3k
(2π)3

D(�)
m0(k̂)α(k)

∫ η0

0
dη SS

P(η, k)
j�(kr)

(kr)2
, (10.249)

and using

D(�)
m0(k̂) =

√
4π

2� + 1
Y−m

� (k̂) =
√

4π

2� + 1
Ym∗

� (k̂) , (10.250)

we can write:

aS
P,�m = −3i�

4

√
(� + 2)!
(� − 2)!

∫
d3k

(2π)3
Ym∗

� (k̂)α(k)

∫ η0

0
dη SS

P(η, k)
j�(kr)

(kr)2

(10.251)

The expansion for (Q − iU )S(n̂) can be obtained by complex conjugation, i.e.

(Q − iU )(n̂) =
∑

�m

a∗
P,�m 2Y

m∗
� (n̂) =

∑

�m

a∗
P,�m −2Y

−m
� (n̂)

=
∑

�m

a∗
P,�,−m −2Y

m
� (n̂) . (10.252)

There is no reality condition here holding true for the aP,�m as the one holding true
for the aT,�m , because Q + iU is not real and is not a scalar. It is thus convenient to
define the following combinations:

aE,�m ≡ −(aP,�m + a∗
P,�,−m)/2 , aB,�m ≡ i(aP,�m − a∗

P,�,−m)/2 , (10.253)

because the first has parity (−1)� whereas the second (−1)�+1. Thus Q ± iU can be
expanded as:
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(Q ± iU )(n̂) =
∑

�m

(−aE,�m ∓ iaB,�m) 2Y
m
� (n̂) . (10.254)

Now, if we compute aS∗
P,�m , we obtain:

aS∗
P,�m = −3(−i)�

4

√
(� + 2)!
(� − 2)!

∫
d3k

(2π)3
Y−m∗

� (k̂)α(−k)

∫ η0

0
dη SS

P(η, k)
j�(kr)

(kr)2
, (10.255)

sinceα(k)∗ = α(−k) because of the reality condition of the power spectrum. Chang-
ing the integration variable to k and using the parity of the spherical harmonic:

Y−m∗
� (−k̂) = (−1)�Y−m∗

� (k̂) , (10.256)

we can finally conclude that:
aS
P,�m = aS∗

P,�,−m , (10.257)

and therefore scalar perturbations only affect the E-mode, i.e.

aS
E,�m = −aS

P,�m , aS
B,�m = 0 . (10.258)

This means that, if the B-mode was detected, it would be a clear indication of the
existence of primordial gravitational waves.

From Eq. (10.251) we can then obtain the scalar contribution to the EE spectrum.
Assuming adiabatic Gaussian perturbations:

CS
EE,� = 9

64π

(� + 2)!
(� − 2)!

∫
dk

k
�2

R

∣∣∣∣
∫ η0

0
dη SS

P(η, k)
j�(kr)

(kr)2

∣∣∣∣
2

(10.259)

Using instead Eq. (10.176) we can compute the cross-correlation TE multipole coef-
ficients:

CS
T E,� = −3

4

√
(� + 2)!
(� − 2)!

∫
dk

k
�2

R��(k)
∫ η0

0
dη SS

P(η, k)
j�(kr)

(kr)2
(10.260)

10.9.2 Tensor Perturbations Contribution to Polarisation

Let us now calculate the contribution to CMB polarisation coming from tensor per-
turbations. From Eq. (10.211) we have
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�
(T )
P (η0, kẑ,μ) =

∫ η0

0
dη eikμ(η−η0)STP (η, k) , (10.261)

with

STP (η, k) ≡ g(η)ST (η, k) . (10.262)

and then use Eq. (5.132) in order to write part of the tensor contribution to polariza-
tion:

Q(T )

λ (kẑ, p̂) ≡
√
8π

5
Eλ( p̂)

∫ η0

0
dη e−iμkr(η)STP (η, k) , (10.263)

where r(η) ≡ η0 − η and where we stress that the result holds true for k̂ = ẑ since
this was the condition under which we derived the Boltzmann equation for photons.

In the scalar case no U contribution to polarisation is produced, so the above
expression already furnishes the quantity Q + iU . However, the same is not true for
tensor perturbation. We have thus to add the iU contribution. As we saw in Chap. 5
this is equal to BmQ/Em and for this reason we have just one polarisation hierarchy.
Hence, summing up we get:

(Qλ + iUλ)
(T )(kẑ, n̂) =

√
32π

5
2Y

λ
2 (n̂)

∫ η0

0
dη eik̂·n̂kr(η)STP (η, k) . (10.264)

Using the usual plane-wave expansion and recalling that k̂ = ẑ we get:

(Qλ + iUλ)
(T )(kẑ, n̂) =

√
8

5
2Y

λ
2 (n̂)

∑

L

i L
√
2L + 1Y 0

L (n̂)

∫ η0

0
dη STP (η, k) jL(kr) . (10.265)

The product of the two spherical harmonics can bewritten via theWigner 3 j-symbols
as follows:

2Y
±2
2 (n̂)Y 0

L (n̂) =
√
5(2L + 1)

4π

∑

L ′

√
2L ′ + 1

(
L 2 L ′
0 ±2 ∓2

)(
L 2 L ′
0 −2 2

)
2Y

±2
L ′ (n̂) , (10.266)

and we rotate in a generic k̂ direction the only spherical harmonic left, i.e.

2Y
±2
L ′ (Rn̂) =

L ′∑

m ′=−L ′
D(L ′)

m ′,±2[R−1(k̂)]2Ym ′
L ′ (n̂) . (10.267)
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Hence, we can write:

(Qλ + iUλ)
(T )(k, n̂) =

√
2

π

∑

L

i L(2L + 1)
∑

L ′

√
2L ′ + 1

(
L 2 L ′
0 λ −λ

)

(
L 2 L ′
0 −2 2

) ∑

m ′
D(L ′)

m ′λ [R(k̂)]Ym ′
L ′ (n̂)

∫ η0

0
dη STP (η, k) jL(kr) . (10.268)

Now we can perform the Fourier anti-transform. Multiply by β(k,λ) and 2Ym∗
� (n̂)

and integrate over d2n̂ in order to obtain the aT
P,�m’s. We obtain:

aT
P,�m,±2 =

√
2

π

∑

L

i L(2L + 1)
√
2� + 1

(
L 2 �

0 ±2 ∓2

)

(
L 2 �

0 −2 2

) ∫
d3k

(2π)3
D(�)

m±2[R(k̂)]β(k,λ)

∫ η0

0
dη STP (η, k) jL(kr) . (10.269)

We have used here the orthonormality relation of the spin-2 spherical harmonics and
distinguished the contributions of different helicity. Of course aT

P,�m = aT
P,�m,+2 +

aT
P,�m,−2.
We have already computed some of the 3 j symbols earlier, for the tensor case but

now two more enter: those for L = � ± 1. We shall see that these contributions will
characterise the B-mode of polarisation. They are:

(
� + 1 � 2
0 −2 +2

)
= (−1)�+1

√
(� − 1)

2(2� + 1)(2� + 3)
, (10.270)

(
� � − 1 2

−2 0 +2

)
= (−1)�

√
(� + 2)

2(2� − 1)(2� + 1)
. (10.271)

Extra care has to be used when manipulating these terms. The reason is that the 3 j
symbols gain an overall phase factor

(−1) j1+ j2+ j3 , (10.272)

where j1,2,3 are the momenta which are being combined, each time we swap two
columns or change simultaneously all the signs of the bottom row.4 Therefore, as long
as j1 + j2 + j3 is even, no matter how many times we perform the above operations.
This is the case for L = � ± 2 or L = �. However, for L = � ± 1 we have that

4These signs can be changed only simultaneously since the sums m1 + m2 + m3 = 0 always. This
is a selection rule.
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L + � + 2 = 2(� + 1) ± 1 , (10.273)

which is odd and thus we have to keep track of the correct sign.

Exercise 10.21 Using the formulas for the 3 j symbols, show that:

aTP,�m,±2 = −i�
√
2� + 1√
8π

∫
d3k

(2π)3
D(�)
m±2[R(k̂)]β(k,λ)

∫ η0

0
dη STP (η, k)

[
(� + 1)(� + 2)

(2� − 1)(2� + 1)
j�−2(kr) − 6(� − 1)(� + 2)

(2� − 1)(2� + 3)
j�(kr) + (� − 1)�

(2� + 1)(2� + 3)
j�+2(kr)

±2i
� − 1

2� + 1
j�+1(kr) ∓ 2i

� + 2

2� + 1
j�−1(kr)

]
.

(10.274)

Recall that r = r(η) ≡ η0 − η.

Exercise 10.22 Show that, using the recurrence relation of Eq. (10.229) and the
following ones for the derivatives:

j ′�(x) = j�−1(x) − � + 1

x
j�(x) , j ′�(x) = �

x
j�(x) − j�+1(x) , (10.275)

we can write:

aT
P,�m = −i�

√
2� + 1√
8π

∑

λ=±2

∫
d3k

(2π)3
D(�)

m,λ[R(k̂)]β(k,λ)

∫ η0

0
dη STP (η, k)

[
2

kr
j ′� − 2 j� + 2 + �(� + 1)

(kr)2
j� − iλ

(
j ′� + 2

kr
j�

)]
.

(10.276)

Show that the term between square brackets is equal to the corresponding one in
Weinberg (2008, p. 389). In order to make the second derivative of the spherical
Bessel function to appear one must use Bessel differential equation:

j ′′� + 2

x
j� + 1 − �(� + 1)

x2
j� = 0 . (10.277)

Now we are ready to investigate the reality property of aT
P,�m and discern from it

the E-mode and B-mode contributions. Recall that Wigner D-matrix can be related
to the spin-weighted spherical harmonics as follows:



10.9 Polarisation 361

D(�)
m,±2(k̂) =

√
4π

2� + 1
±2Y

−m
� (k̂) =

√
4π

2� + 1
∓2Y

m∗
� (k̂) . (10.278)

So taking the complex conjugate we find:

aT∗
P,�m = − (−i)�√

2

∑

λ=±2

∫
d3k

(2π)3
∓2Y

m
� (k̂)β(−k,λ)

∫ η0

0
dη STP (η, k)

[
2

kr
j ′� − 2 j� + 2 + �(� + 1)

(kr)2
j� + iλ

(
j ′� + 2

kr
j�

)]
. (10.279)

Note that β(k,λ)∗ = β(−k,λ) because of the reality condition and beware that the
sign of the imaginary unit inside the square brackets has changed. Now, changing
integration variable

k → −k , (10.280)

and taking advantage of the parity property and the complex conjugation property:

∓2Y
m
� (−k̂) = (−1)�±2Y

m
� (k̂) = (−1)�∓2Y

−m∗
� (k̂) , (10.281)

we get:

aT∗
P,�m = − i�√

2

∑

λ=±2

∫
d3k

(2π)3
∓2Y

−m∗
� (k̂)β(k,λ)

∫ η0

0
dη STP (η, k)

[
2

kr
j ′� − 2 j� + 2 + �(� + 1)

(kr)2
j� + iλ

(
j ′� + 2

kr
j�

)]
. (10.282)

This time we have not the same situation as in Eq. (10.257) because of the iλ
contribution. Hence, we can compute the E-mode:

aT
E,�m = i�√

2

∑

λ=±2

∫
d3k

(2π)3
∓2Y

m∗
� (k̂)β(k,λ)

∫ η0

0
dη STP (η, k)

[
2

kr
j ′� − 2 j� + 2 + �(� + 1)

(kr)2
j�

]
. (10.283)

and the B-mode is also present:

aT
B,�m = − i�√

2

∑

λ=±2

λ

∫
d3k

(2π)3
∓2Y

m∗
� (k̂)β(k,λ)

∫ η0

0
dη STP (η, k)

(
j ′� + 2

kr
j�

)

(10.284)

Nowwe are in position of giving the formulas for the angular power spectra. Assum-
ing Gaussian perturbations we have:
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CT
EE,� =

∫
dk

4πk
�2

h(k)

∣∣∣∣
∫ η0

0
dη STP (η, k)

[
2

kr
j ′� − 2 j� + 2 + �(� + 1)

(kr)2
j�

]∣∣∣∣
2

,

(10.285)

and

CT
BB,� =

∫
dk

4πk
�2

h

∣∣∣∣
∫ η0

0
dη STP (η, k)

(
2 j ′� + 4

kr
j�

)∣∣∣∣
2

. (10.286)

The cross-correlation CT
T E,�, using Eq. (10.232) gives:

CT
T E,� = −

√
(� + 2)!
(� − 2)!

∫
dk

8πk
�2

h(k)
∫ η0

0
dη ST (η, k)

j�
(kr)2

∫ η0

0
dη′STP (η′, k)

[
2

kr
j ′� − 2 j� + 2 + �(� + 1)

(kr)2
j�

]
. (10.287)

If we try to compute the cross correlations CT
T B,� and CT

EB,� we obtain a vanishing
result, as expected, because of the term λ in the sum of Eq. (10.284). In fact we get,
considering for example CT

EB,�:

CT
EB,� = −

∑

λ=±2

λ

2

∫
dk

4πk
�2

h

∫ η0

0
dη STP (η, k)

[
2

kr
j ′� − 2 j� + 2 + �(� + 1)

(kr)2
j�

]

∫ η0

0
dη̄ STP (η̄, k)

(
2 j ′� + 4

kr
j�

)
.

(10.288)

Now, the sum over λ is equivalent to a difference and since nothing else depends on
λ the result is zero. The same happens with the correlation CT

T B,�.
In Fig. 10.14 we display the 4 angular CMB power spectra which constitute a

wealth of cosmological information. The only possible cross-correlation is the one
between temperature and the E-mode of polarisation. The largest signal is the TT
one and then, in order of decreasing power, the TE, EE and BB one. The latter is 5
orders of magnitude smaller than the TT one and it has not yet been detected. The
bump it displays for small �’s is due to reionisation.

From Fig. 10.14 we can appreciate how small the polarisation spectra are with
respect to the TT one. This is due to the fact that a quadrupole moment in the
distribution of photons is needed in order to have production of polarisation. Before
recombination, Thomson scattering rate is so high that photons are in nearly perfect
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Fig. 10.14 The four angular power spectra characterising the CMB, computed with CLASS for
the standard model. Top left: TT. Top right: TE. Bottom left: EE. Bottom right: BB. As for the TT
spectrum, D ≡ �(� + 1)C�/(2π)

thermal equilibrium and any moment from the quadrupole up is washed out. After
recombination, photons free stream and thus have no more chance of being polarised
by Thomson scattering.
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