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Learning Objectives
• To understand the basic principle of PET quantification
• To realize that uptake images represent summed images 

of several biological processes
• To get an understanding when and how PET data should 

be quantified
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• To realize that quantification requires attention to many 
data acquisition, data processing, and data analysis issues

• To understand the need for an accurate arterial input function
• To know when a reference tissue input function is 

sufficient
• To understand the basic principles of tracer kinetic 

modelling
• To understand the basic principles of parametric imaging
• To understand the limitations of simplified semiquantita-

tive methods

10.1  Characteristics of PET

The two most important characteristics of positron emission 
tomography (PET) are its high sensitivity (pico- to nano-
molar range) and its ability to accurately measure the con-
centration of a positron-emitting radionuclide within the 
human body. In fact, PET was developed in the 1970s as a 
noninvasive in vivo method to measure regional physiology 
(originally blood flow, oxygen utilization, and glucose 
metabolism) in humans [1, 2]. Its high sensitivity facilitated 
the development of tracer studies of neuroreceptors in the 
1980s. The high sensitivity of PET made it possible to use 
(tracer) amounts of labeled compounds that did not affect the 
receptors themselves (negligible receptor occupancy). At the 
same time, proper quantification remained important for cor-
rect interpretation of the signals captured in the image. Both 
sensitivity and quantitative accuracy are unique for PET and 
make it the method of choice for investigating molecular tar-
gets and interactions in vivo.

10.2  Issues in Quantification

Clinically, PET studies are usually performed using simple 
qualitative imaging. However, in many circumstances, quan-
tifying the data provides additional, clinically relevant infor-
mation (e.g., measuring absolute myocardial blood flow at 
rest and stress in a myocardial perfusion scan). The particu-
lar type of study (and associated scanning protocol) will 
depend on the actual research or clinical question that needs 
to be addressed. For example, for staging in oncology, it is 
important to identify and localize sites with increased [18F]
FDG uptake, and, consequently, a simple static scanning 
protocol with visual (qualitative) interpretation is sufficient. 
In other cases, e.g., for monitoring response to therapy, full 
quantification using a dynamic scanning protocol and arte-

rial sampling may be essential. Finally, for many applica-
tions, an intermediate semiquantitative method may be 
adequate. Nevertheless, all semiquantitative methods should 
first be validated by comparing results with those derived 
from a fully quantitative method.

10.3  Data Acquisition Issues

PET is based on the coincidence detection of two annihila-
tion high-energy photons resulting from the interaction of an 
emitted positron with an electron in tissue. Therefore, the 
line of response (the line along which the annihilation took 
place) can be identified, which is the basis for the quantitative 
nature of PET. This is primarily due to the fact that the total 
path length of the two annihilation photons through tissue is 
known. A separate acquisition of a CT scan provides infor-
mation about attenuation, to correct the detected photons for 
attenuation within the tissues. Absolute measurements of 
radioactivity concentrations require attention to detail, and 
the following data acquisition issues should be considered.

10.3.1  Normalization

Normalization of the scanner is needed to correct for differ-
ences in sensitivity between detector pairs (similar to perform-
ing a “flood” correction with a single-photon gamma camera). 
In general, the procedure prescribed by the manufacturer suf-
fices. This procedure needs to be repeated occasionally depend-
ing on the possible drift of the scanner. Again, the manufacturer 
usually has a daily quality control procedure in place to detect 
changes that would compromise scanner performance.

10.3.2  Injected Activity

The injected activity should be in a range that can be handled 
by the scanner. It is clear that reconstructed images will be very 
noisy if the activity is too low, making it difficult to extract reli-
able (precise) radioactivity measurements at least at the voxel 
level. On the other hand, if the activity is too high, the signal 
may be dominated by random coincidences (quadratic increase 
with activity) rather than true coincidences (linear increase 
with activity). As the true coincidences are obtained by sub-
tracting the random counts from the total counts [3], the true 
signal will become increasingly noisy, as it is obtained by sub-
tracting two large numbers from each other. In addition, with 
very high activities, dead- time may become an issue, and the 
response of the scanner could even become nonlinear.

Key Learning Points
• The two most important characteristics of PET are 

high sensitivity and quantitative accuracy.
• PET is the method of choice for measuring molecu-

lar targets and interactions in vivo.

Key Learning Point
• The level of quantification required depends on the 

clinical or research question to be addressed.
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10.3.3  Cross-Calibration

Fully quantitative PET studies usually require measurement 
of the arterial input function. Measurement of such an input 
function will be discussed later, but independent of those 
measurements themselves, the scanner needs to be cross- 
calibrated against a well-counter used for measuring manual 
blood samples. This is done by scanning a homogeneous 
phantom and measuring an aliquot of the radioactivity solu-
tion in the well-counter.

For semiquantitative studies the PET signal is often normal-
ized to injected activity. This means that a cross- calibration 
between scanner and dosimeter is required. This cross-calibra-
tion needs to be carried out with care, as technically it is more 
demanding than the cross-calibration with a well-counter.

10.4  Data Processing Issues

Before data can be analyzed to extract quantitative biological 
information, the acquired data need to undergo several cor-
rection and processing steps. Each of these steps could affect 
the accuracy of the final results. The most common issues are 
listed below.

10.4.1  Decay and Dead-Time

Prior or during reconstruction, acquired PET data need to be 
corrected for decay (if analysis is based on decay-corrected 
data), dead-time, random coincidences, and scattered coinci-
dences. These corrections routinely are incorporated in the 
scanner software. Usually these corrections are taken for 
granted, but for dynamic scanning protocols, it may be use-
ful to check their accuracy, e.g., the accuracy of dead-time 
corrections for very short frames.

10.4.2  Random and Scattered Coincidences

Nowadays the correction for random coincidences is usually 
performed by subtracting the random signal from the total 
signal (see above). More challenging is the scatter correc-
tion, which accounts for about 30–50% of the total number 
of acquired counts. This correction is based on both mea-
surements and calculations, e.g., by modelling the scatter 
distribution within the subject based on counts measured 

outside the subject [4]. Particularly vulnerable are areas with 
low tracer uptake, where an error in the scatter contribution 
has more impact on the accuracy of estimated radioactivity 
concentrations. This means that the accuracy of the scatter 
correction algorithm should really be checked if a region 
with low tracer uptake is important for the final outcome 
measures (e.g., reference tissue models, target-to-reference 
tissue ratios).

10.4.3  Image Reconstruction

An essential step in the processing of acquired PET data is 
their reconstruction into images displaying the distribution 
of radioactivity within the field of view. Originally, a filtered 
back projection (FBP) algorithm was used. This algorithm 
provides an analytical solution to the reconstruction prob-
lem. It is accurate but at the same time sensitive to noise 
(poor image quality for low count densities), sometimes even 
showing streak artifacts. State-of-the-art scanners are no lon-
ger equipped with the FBP algorithm, at least not as the stan-
dard choice. Nowadays, an iterative reconstruction algorithm 
will be the standard option for clinical studies. Iterative 
reconstructions provide significantly better image quality 
(hence their popularity), but they may be biased especially in 
high-contrast images where the optimal solution has not 
been reached within the limited (preset) number of itera-
tions. It is important to check the validity of an iterative 
reconstruction algorithm, especially when an image-derived 
arterial input function is used [5].

10.4.4  Tissue Attenuation

During reconstruction acquired data need to be corrected for 
tissue attenuation. For (older) stand-alone PET scanners, this 
could be done by acquiring a transmission scan using an 
external positron-emitting source. In theory, this is the most 
accurate method to correct for tissue attenuation, as the 
external source allows for direct measurements of the attenu-
ation of 511 keV photons, the main limitation being the num-
ber of counts that can be acquired within a reasonable 
scanning time.

In current state-of-the-art PET/CT scanners, correction 
for tissue attenuation is based on a (fast) low-dose CT scan 
[6]. Accuracy of this method has been well validated, 
although misregistration of the emission and transmission 
scans can occur if the CT scan is acquired during breath-hold 
and the emission scan during tidal respiration. In addition 
artifacts may occur due to metal implants.

Attenuation correction for PET/MRI is an entirely differ-
ent issue. As it is not possible to image bone with standard 
MRI sequences, attenuation needs to be estimated in a differ-
ent way. Two approaches have been followed. In the first 
method, attenuation coefficients are allocated to three or four 

Key Learning Points
• For accurate results it is important to check perfor-

mance of the scanner on a regular basis.
• The injected dose should be low enough such that 

the scanner response is linear and high enough to 
avoid excessive noise.
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different tissue types, which are defined by segmentation of 
standard MRI images [7]. This method is actually imple-
mented on most commercial PET/MRI scanners. It is, how-
ever, well documented that this type of attenuation correction 
(which basically ignores bone) can lead to substantial errors 
and therefore it is not suitable for quantitative PET studies 
unless serial measurements are performed (e.g., measuring 
response to therapy), where the error will be similar for suc-
cessive scans. A more promising technique is the use of 
ultrashort MRI sequences, which may be able to image bone 
directly. This is a field that still is in development and the 
best method has yet to be identified.

10.4.5  Patient Motion

An important source of error can be patient motion during 
scanning, especially when long dynamic scans are acquired. 
It is, therefore, important to monitor each patient carefully 
during scanning and to correct for motion immediately, when 
possible. This can, for example, be done by projecting laser 
beams on the skin and to mark the projected points at the 
start of the scan. In addition, it is important to assess whether 
patient motion has occurred retrospectively, i.e., before ana-
lyzing a scan, especially when volumes of interest are small. 
For a dynamic scan, it is then possible to co-register all 
dynamic frames to the same frame (if there is enough ana-
tomical detail in the individual frames; otherwise a series of 
short frames need to be added together). It should be noted, 
however, that if there has been motion during a scan, there 
will also be a mismatch between the attenuation (transmis-
sion or low-dose CT) scan and the frames that were acquired 
after the motion occurred. This means that co-registration is 
not sufficient but that also the attenuation correction needs to 
be adjusted [8]. This is also the case when there is patient 
movement between attenuation and emission scans. In prin-
ciple, it is also possible to monitor patient motion online 
using, for example, an external laser beam system, which 
provides a means to correct for motion during a frame rather 
than just between frames. Although systems have been avail-
able for some years, they have not found wide application.

10.4.6  Volume of Interest Definition

Whether data are analyzed on a region of interest basis or at a 
voxel level, at some stage volumes of interest (VOI) need to be 
defined for comparing results between different patient 
groups, for evaluating changes over time, or simply for report-
ing results to the scientific community. If the structures of 
interest can easily be identified on the PET scan, such as for 
tumors or metastatic lesions on an [18F]FDG scan, VOIs can 
be defined directly on the PET scan. The simplest way is to 
manually define VOIs. However, results will be very operator 
dependent and test-retest reliability may suffer. A better option 

is to use a fixed-size VOI centered on the maximum value. 
This reduces operator variability but may be prone to errors 
when following effects of therapy in small lesions (that may 
get smaller thereby imposing a variable partial volume effect). 
Another common option is to use a thresholding technique, 
where all voxels are incorporated that have a higher uptake 
than a certain percentage of the maximum (e.g., 50% or 70%). 
To account for variable background levels, the threshold val-
ues can also be adjusted for the actual background level.

If the structures of interest are not directly related to 
uptake in the PET scan, but to anatomical structures, a (low- 
dose) CT scan or, especially for brain studies, an MRI scan 
should be used. For brain studies it is common practice to 
use one of the VOI templates that have been published [9]. In 
that case, PET and MRI scans need to be co-registered, as 
templates usually are based on MRI. Again, co-registration 
accuracy for individual scans should be checked. 
Interestingly, often VOIs are defined for gray matter only, 
following a gray/white matter segmentation of the MRI scan. 
For multicenter studies and for studies comparing results 
with published data, it should be noted that this gray/white 
matter segmentation may depend on the MRI sequence. In 
addition, results from different scanners may not be the same 
even if the same sequence is used. This leads to some inter- 
study variability that should be taken into account when 
interpreting results.

10.4.7  Partial Volume Effects

Measured concentrations in small structures suffer from par-
tial volume effects, i.e., the concentration in a structure 
smaller than twice the spatial resolution of the scanner will be 
underestimated. This is due to the fact that part of the activity 
within the structure will spread out of the boundaries of the 
structure due to the limited spatial resolution. Similarly, 
activity from outside such a structure will spill-in. 
Consequently, measured concentrations may be underesti-
mated or overestimated. Many different algorithms have been 
developed to correct for partial volume effects [10, 11], but 
there is no consensus on which is the most accurate one, and 
results may differ. In the brain, for example, partial volume 
corrections usually are based on gray/white matter segmenta-
tion of MRI scans. As mentioned above, this segmentation is 
scanner-dependent, and therefore partial volume corrections 
based on these segmentations will exaggerate interinstitu-
tional differences. In addition, partial volume corrections 
may result in bias as they usually are based on regular (phan-
tom) structures, while tissue structure are less regular. In gen-
eral, it is good practice to analyze PET data with and without 
partial volume corrections. This could, for example, be a way 
to check whether observed differences between patient 
groups are due to partial volume effects or not.

In some cases, such as measuring myocardial blood flow 
using [15O]H2O, it is possible to include a partial volume 
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correction term in the operational equation [12]. In other 
words, in fitting the data also a term accounting for partial 
volume is included. This leads to increased accuracy and 
there is no need to rely on anatomical imaging techniques.

10.5  Data Analysis Issues

After acquiring and processing PET data, taking into account 
all issues mentioned above, the resulting images should be 
ready for analysis. At this stage, these images should provide 
an accurate estimation of the spatial distribution of radioac-
tivity within the field of view of the scanner, nothing more 
and nothing less. However, the clinician will not really be 
interested in radioactivity measurements, but rather in the 
underlying biology reflected by these radioactivity concen-
trations. In other words, a final step has to be taken, extract-
ing relevant biological information from these radioactivity 
measurements. To do so, two issues are relevant.

10.5.1  Arterial Input Function

Obviously, the actual uptake in tissue will depend on the 
injected activity. If in the same patient (at the same time) 
twice as much would have been injected, the tissue concen-
tration would also have been twice as high. However, when a 
tracer is administered intravenously, it will circulate through 
the body. Exchange with tissue at the capillary level will 
depend not only on the arterial concentration at that time but 
also on residual tissue activity from exchange at earlier 
times. Over time, tracer will be cleared from the circulation 
by uptake in all tissues, by clearance from the body (e.g., 
through the kidneys), and by metabolism (of the tracer itself). 
This means that the arterial input can vary from subject to 
subject, between patient groups, and within one subject as a 

result of an intervention (e.g., a drug). For fully quantitative 
studies, it is therefore necessary to measure the arterial input 
function, i.e., the radioactivity concentration in arterial 
plasma as a function of time.

In general, a tracer is administered using a bolus intrave-
nous injection. Arterial concentrations first peak and then 
decline continuously during a scan, usually with very rapid 
changes early after injection. The arterial input function can 
be measured by taking multiple manual arterial blood sam-
ples during the scan, initially with fast sampling to catch the 
peak of the curve and subsequently with lower frequency 
when changes in the arterial concentration become slower. 
Although quite labor intensive, fast manual sampling cer-
tainly is a feasible option. The main drawback in terms of 
accuracy is the fact that timing errors are easily made, as it is 
very difficult to keep track of the exact times arterial samples 
are actually taken, especially when unexpected hiccups 
occur, given that initially a frequency of once per 5–10 s is 
required.

A better solution is the use of an automatic online blood 
sampler in which blood is withdrawn continuously from an 
artery (usually the radial artery) using a dedicated pump, 
with the radioactivity in the line monitored by an external 
detector [13]. Using this setup a time resolution of 1 s can 
easily be obtained. Apart from saving manpower (not only 
with respect to sampling itself but also when processing the 
samples), the advantages of an online system are better time 
resolution and no potential timing errors. A potential disad-
vantage of online blood withdrawal is the risk of obstruction 
due to blood clots. Care should be taken to keep the line open 
throughout the study period by regular flushing, e.g., imme-
diately following manual (see below) samples. In addition, 
because of the distance between cannula and detection site, a 
correction for delay (compared with arrival at the tissue) 
should be made. It should be noted that a correction for delay 
should also be made in case of manual sampling as the transit 
time from the heart to the wrist will be longer than that from 
the heart to, for example, the brain. For manual samples this 
delay is ignored, as it is almost impossible to measure with 
the time resolution of manual samples. Depending on the 
application, it may also be necessary to correct for dispersion 
in the tubing [14], but for many tracers this is not really nec-
essary as long as every effort is made to limit delay and dis-
persion by using as few connectors as possible and keeping 
the line as short and thin (e.g., 1 mm) as possible.

An alternative (less accurate) approach for measuring 
concentrations in blood is to include a large vascular struc-
ture (such as the aorta, carotid, or iliac artery) in the image 
and determine the total blood activity from a volume of inter-
est set within the structure.

Most ligands are metabolized in the body (liver). This 
means that for a radiotracer at least one of the metabolic 
products (metabolites) will be radioactive. These radioactive 
metabolites will also circulate through the body and could 
compromise the signal obtained with the parent radiotracer. 

Key Learning Points
• Accuracy of various corrections should be checked 

under conditions that resemble actual scans.
• Attenuation correction on PET/MRI scanners 

should be validated for each application.
• Several methods exist to correct for patient motion.
• For larger motions, an adjustment of the attenuation 

correction may also be required.
• Reconstruction algorithms may have an effect on 

the final results, and therefore the same algorithm 
should be used throughout a study.

• Definition of volumes of interest should also remain 
consistent (and reproducible) within a study.

• Where appropriate, data should be corrected for par-
tial volume effects, but even in those cases, data should 
also be analyzed without partial volume correction.

10 Essentials of Quantitative Imaging with PET
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For brain studies it is therefore good practice to use only 
tracers for which the radioactive metabolites do not cross the 
blood-brain barrier. As the brain signal is then due to the par-
ent tracer alone, it is logical that the arterial plasma curve 
needs to be corrected for radioactive metabolites to extract 
the true arterial input function

A metabolite-corrected arterial plasma input function can 
be derived from an online measured arterial whole blood 
curve by using information from a limited number of manual 
samples withdrawn during the scan at times where changes 
in the curve are not too rapid (i.e., after at least 5 min). Both 
whole blood and plasma radioactivity concentrations of 
these samples need to be measured together with metabolite 
fractions. The whole blood concentrations can be used to 
calibrate the curve obtained from the online samples. The 
plasma-to-whole blood radioactivity ratios of these samples 
are fitted to a mathematical function, usually an exponential. 
The whole blood curve should then be multiplied with this 
mathematical function to generate a (total) plasma curve as 
function of time. The measured plasma metabolite fractions 
are then used to derive the parent fraction for each sample, 
which is the fraction of total radioactivity in plasma that is 
due to the originally injected tracer. This fraction over time 
should also be fitted to a mathematical function, often a so- 
called Hill function [15]. Finally, the total plasma curve 
derived above should be multiplied with this mathematical 
function, resulting in the final metabolite-corrected arterial 
plasma input function.

10.5.2  Tissue Uptake

The acquired PET data results in images displaying the distri-
bution of radioactivity concentrations (uptake) in organs. 
Ideally, uptake is associated with a single biological process, 
but in reality it is not. In fact, it is the result of various processes, 
some of which may interact with each other. At any given time 
after injection, total uptake is the sum of intravascular activity, 
free tracer in tissue (not bound to anything), nonspecific 
binding (i.e., bound to tissue proteins), and specific binding 
(bound to the target of interest), all of which change over time. 
The problem with a single measurement is that one can only 
guess how large the contribution of each signal is. For example, 
a highly vascularized tumor will have a larger contribution 
from intravascular activity than a more necrotic tumor, but 
separation of vascular and tumor contributions cannot be 
derived from a single image. In addition, over time, the specific 
signal may increase at the cost of the free signal, and again 
kinetics of that process cannot be derived from a single 
measurement. Therefore, dynamic scanning is required for 
fully quantitative PET studies.

By projecting VOIs onto a dynamic scan, tissue time-
(radio)activity curves can be extracted reflecting uptake, 
retention, and clearance in those VOIs. Even such a time- 
activity curve, however, only represents total uptake in a VOI 

(tissue) as a function of time. Each time-activity curve is a 
direct result of (the history of) the arterial input function. A 
tracer kinetic model is needed to extract relevant quantitative 
biological, physiological, or molecular information from the 
measured tissue tracer concentrations.

Such a model is a mathematical description of the fate of 
the tracer in the tissue under study. In practice all tracer 
kinetic models are compartmental models in which the uptake 
of a tracer is distributed over a (limited) number of discrete 
compartments [16]. For most applications single- tissue or 
two-tissue compartmental models suffice. It should be noted 
that the various compartments do not necessarily reflect phys-
ical compartments. For example, nonspecific and specific 
bindings are different compartments in a compartmental 
model although they are spread out over the same physical 
space. The main purpose of the compartments is that they 
provide a convenient way to describe tracer kinetics.

10.6  Compartmental Models

10.6.1  Single-Tissue Compartmental Model

As indicated by the name, in a single-tissue compartmental 
model, tissue is represented by just a single tissue. This is a 
valid model for a perfusion tracer in which the tracer enters 
and clears the tissue in a flow-dependent manner without 
having any significant molecular interactions (such as bind-
ing to a target) within that tissue. It can also be used for mea-
suring uptake in tissue, including binding, if interaction 
within the tissue cannot be clearly separated.

The basic differential equation of a single-tissue compart-
mental model, illustrated in Fig. 10.1, is given by:

 
d dT P TC t t K C t k C t( ) = × ( ) - × ( )/ 1 2  (10.1)

where CT and CP are concentrations as function of time t for 
tissue and metabolite-corrected arterial plasma, respectively, 
and K1 and k2 represent rate constants for influx into and 
efflux out of the tissue, respectively. In other words, the rate 

Plasma

metabolites

Tissue

K1

CP CT

k2

VB
PET

Fig. 10.1 Schematic diagram of the single-tissue compartmental 
model. CP and CT represent arterial plasma and tissue concentrations, K1 
and k2 represent influx and efflux rate constants, and VB represents 
blood volume within the PET region
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of change of the tissue concentration is the difference 
between influx and efflux.

Note that if radiolabeled metabolites would also enter the 
tissue, another input function (i.e., representing radiolabeled 
metabolites in plasma) and additional rate constants describ-
ing rates of exchange of those metabolites would be needed, 
seriously complicating the overall equation. Therefore, here 
it is assumed that radiolabeled metabolites do not enter the 
tissue, but in practice this needs to be validated for each 
tracer.

Equation (10.1) describes tissue uptake and clearance. In 
contrast to in  vitro measurements where tissues can be 
washed, in vivo PET measurements do not allow for separat-
ing tissue from blood. Measured VOI concentrations are 
based on activity in both tissue and blood (vessels). To 
account for this, Eq. (10.1) has to be extended as follows:

 
C t V C t V C tPET B T B A( ) = -( ) × ( ) + × ( )1  (10.2)

where CPET is the concentration as measured by the PET 
scanner, CA the concentration in arterial whole blood (this 
time not corrected for metabolites, as the metabolites will 
also circulate in the blood), and VB the fractional blood 
volume.

The solution of Eq. (10.1) is given by:

 
C t K C t k tPT ( ) = × ( )Ä - ×( )1 2exp  (10.3)

where ⊗ represents a convolution operation. In other words, 
CT at a given time is not directly dependent on CP at that 
time, but on the history of CP. By substituting Eq. (10.3) into 
Eq. (10.2), the following solution for the measured PET con-
centration is obtained:

C t V K C t k t V C tPET B P B A( ) = -( ) × × ( )Ä - ×( ) + × ( )1 1 2exp  
 (10.4)

in which the measured PET concentration is a function of 
two (measured) input functions, i.e., the metabolite-corrected 
arterial plasma curve and the non-corrected arterial whole 
blood curve. In addition, the equation contains the parame-
ters K1, k2, and VB, characteristic of the tissue under study, 
that can be obtained by nonlinear regression analysis (fitting 

the tissue time-activity curves with both vascular curves as 
input functions until the fitted parameters K1, k2, and VB 
converge).

The fitted rate constants K1 and k2 also allow for calcula-
tion of an important characteristic of tissue, the volume of 
distribution or partition coefficient, which is the ratio of tis-
sue and plasma concentrations at equilibrium. The volume of 
distribution VT is defined as:

 V C CT T P= /  (10.5)

where CT and CP now represent equilibrium (independent 
of time t) tissue and arterial plasma concentrations, respec-
tively. It essentially indicates what tissue concentration 
would be achieved in case of a constant arterial plasma 
concentration. As mentioned above, VT can also be calcu-
lated from K1 and k2, i.e., from a study in which no equilib-
rium is reached. This can be derived by imposing 
equilibrium conditions onto Eq. (10.1). In that case, there 
will be no change in any concentration, and the left hand of 
Eq. (10.1) will be 0:

 
d d P TC t t K C t k C tT ( ) = × ( ) × ( ) =/ 1 2 0-  (10.6)

It then follows that:

 V K kT = 1 2/  (10.7)

10.6.2  Two-Tissue Compartmental Model

If the tracer undergoes (kinetically measurable) interactions 
within tissue, more compartments need to be added to prop-
erly describe tracer kinetics. The most used model is a two- 
tissue compartmental model, which is shown in Fig. 10.2. This 
is the typical model for, among others, receptor studies. A 
good ligand will bind only to a single type of receptor, but the 
PET signal is still the sum of free ligand, nonspecifically 
bound ligand (i.e., binding to various proteins), and ligand 
specifically bound to the receptor. In theory this even requires 
a three-tissue compartmental model, but in practice the free 
and nonspecific compartments are lumped together into a 

Plasma

metabolites

Tissue

K1

CND CS

k3

k4

CP

k2

VB

PET

Fig. 10.2 Schematic diagram 
of the two-tissue 
compartmental model. CP, 
CND, and CS represent arterial 
plasma, and non-displaceable 
and specific tissue 
concentrations, respectively. 
K1 to k4 are rate constants for 
the transport between 
compartments, and VB is the 
blood volume within the PET 
region
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single non-displaceable compartment, as it is assumed that 
kinetics between free and nonspecific compartments are very 
fast.

For a two-tissue compartmental model, the measured PET 
concentration is still given by Eq. (10.2). The difference with 
the single-tissue compartmental model is the expression of CT, 
which for the two-tissue compartmental model is given by:

 
C t C t C tT ND S( ) = ( ) + ( )  (10.8)

where CND(t) and CS(t) represent concentrations in non- 
displaceable and specific compartments, respectively, both 
as function of time. The kinetics of these two compartments 
is given by the following differential equations:

 
d dND P ND ND SC t t K C t k C t k C t k C t( ) = × ( ) - × ( ) - × ( ) + × ( )/ 1 2 3 4  
 (10.9)

 
d dS ND SC t t k C t k C t( ) = × ( ) - × ( )/ 3 4  (10.10)

As for the single-tissue compartmental model, the solu-
tions of both Eqs. (10.9) and (10.10) contain convolutions 
similar to the one shown in Eq. (10.3). These solutions can 
be substituted in Eq. (10.8), which in turn can be substituted 
in Eq. (10.2). The final nonlinear equation, now containing 
two convolutions [17], can again be fitted using nonlinear 
regression analysis, resulting in values for the four rate con-
stants and VB.

Fitting five parameters (K1, k2, k3, k4, VB) from a single 
time-activity curve is a difficult task, especially since nonlin-
ear regression is sensitive to noise. In addition, there can be 
high correlation between parameters, especially between k2 
and k3 (both representing efflux from the first compartment), 
which means that the precision of fitted rate constants, also 
called micro-parameters, can be low. The rapidly increasing 
mathematical complexity with additional compartments 
(each compartment adds another convolution) means that 
attempts of using a three-tissue compartmental model have 
been rare and, in general, unsuccessful.

Even if the precision of parameters derived from the two- 
tissue compartmental model is low, it is still possible to 
obtain valuable tissue information by using combinations of 
parameters, so-called macro-parameters. The most interest-
ing macro-parameter for receptor studies is the non- 
displaceable binding potential BPND (more precisely it is the 
binding potential relative to the non-displaceable 
compartment), which, for tracer experiments, is given by 
[18]:

 BPND = k k3 4/  (10.11)

BPND is of special interest because of its direct relation-
ship with parameters known in pharmacology. k3 and k4 are 

related to pharmacological parameters in the following 
way [19]:

 k f k B3 = × ×ND on avail  (10.12)

 k k4 = off  (10.13)

where fND represents the free fraction in the non-displaceable 
compartment, Bavail represents the number of available recep-
tors, and kon and koff represent the rate constants for associa-
tion and dissociation of the ligand-receptor complex, 
respectively. It is tempting to use the pharmacological 
parameter Bmax (maximum number of receptors) in Eq. 
(10.12), but this is not correct as some receptors might be 
occupied by endogenous ligands, hence the use of Bavail. In 
pharmacology, the equilibrium dissociation constant Kd is 
defined by:

 K k kd off on= /  (10.14)

Combining Eq. (10.11) with Eq. (10.14) results in:

 BPND ND avail d= ×f B K/  (10.15)

Assuming that fND is constant, Eq. (10.15) illustrates that 
BPND is related both to the number of available receptors 
(Bavail) and to the affinity of the ligand for the receptor (Kd).

Reliability of estimated BPND values can be poor, espe-
cially when kinetics between both tissue compartments are 
fast, making it difficult to distinguish them from each other. 
In that case, a better outcome measure will be VT, which 
tends to have higher precision.

VT is defined by Eq. (10.5) and, at equilibrium, both 
dCND(t)/dt and dCS(t)/dt are 0. From Eq. (10.10) it then fol-
lows that:

 
C k k CS ND= ( ) ×3 4/  (10.16)

where CS and CND are now independent of time. From Eqs. 
(10.5), (10.8), and (10.16), it follows that:

 
V C C C C C k k C CT T P ND S P ND P= = +( ) = +( ) ×/ / / /1 3 4   

 (10.17)

Next, from:

 
d d d dND S P NDC t t C t t K C k C( ) + ( ) = × - × =/ / 1 2 0  (10.18)

it follows that:

 
C K k CND P= ( ) ×1 2/  (10.19)

Finally, substituting Eq. (10.19) into Eq. (10.17) results in:

 
V K k k k K kT NDBP= ( ) × +( ) = ( ) × +( )1 2 3 4 1 21 1/ / /  (10.20)
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which shows the relationship between VT and BPND. It can be 
seen that VT does not only reflect specific binding (BPND) but 
that it also contains a non-displaceable component (K1/k2), 
which is primarily due to nonspecific binding.

In the brain BPND can still be calculated from VT if another 
region exists with a similar level of nonspecific binding, but 
without specific binding, i.e., a region that is devoid of the 
receptor being targeted. The volume of distribution VT′ of 
such a reference region is given by:

 V K kT
¢ ¢ ¢= 1 2/  (10.21)

where K1′ and k2′ are the rate constants for the reference tissue.
If the blood-brain barrier is symmetric (i.e., increased 

transport into the brain is matched by a similar increase in rate 
of transport out of the brain) and the level of nonspecific bind-
ing is constant across the brain, the following equality holds:

 K k K k1 2 1 2/ /= ¢ ¢  (10.22)

Combining Eq. (10.20) with Eq. (10.21) results in [20]:

 
BPND T T T T T T= -( ) ( ) = -( ) = -¢ ¢ ¢V K k K k V V V V V1 2 1 2 1/ / / / /  
 (10.23)

In general, this estimation of BPND is more stable than 
direct fitting of BPND, but it can only be performed if a refer-
ence tissue devoid of receptors does exist. In addition, the 
calculation is only valid if the blood-brain barrier is intact 
(assumption of constant K1/k2 over the brain).

10.6.3  Reference Tissue Models

The last paragraph of the previous section describes a means 
to calculate BPND indirectly from VT values derived from a 
two-tissue compartmental model, provided a reference tissue 
exists that does not express the receptor being studied. In 
general, this method works very well, but it should be real-
ized that an arterial plasma input function is needed to fit for 
VT. Apart from being invasive, measuring a metabolite- 
corrected arterial plasma input function is labor intensive.

If a reference tissue exists, a better alternative to derive 
BPND is the use of a so-called reference tissue model. 
Figure 10.3 shows a schematic diagram of the full reference 
tissue model, which is directly related to the two-tissue 
plasma input model. Kinetics of the target tissue are still 
described by Eqs. (10.9) and (10.10). For the reference tis-
sue, however, the specific compartment does not exist, and 
kinetics are described by a single-tissue compartmental 
model, analogous to Eq. (10.1):

 
d dR p RC t t K C t k C t( ) = × ( ) - × ( )¢ ¢/ 1 2  (10.24)

where CR(t) represents the tissue concentration as function of 
time in the reference tissue.

By combining Eq. (10.24) with Eqs. (10.8)–(10.10), it is 
possible to express CT(t) as function of CR(t) rather than 
CP(t), resulting in an operational equation that enables fitting 
for R1 (=K1/K1′), k2, k3, and BPND [20]. As target tissue time- 
activity curves are now expressed relative to reference tissue 
time-activity curves, it is no longer possible to fit for K1, but 
rather for its value (R1) relative to K1′.

The main limitation of the full reference tissue model is 
correlation between parameters, especially between k2 and 
k3, even more so than for the two-tissue plasma input com-
partmental model. As a result, convergence tends to be slow, 
and care should be taken to avoid solutions that correspond 
to local minima. This typically involves multiple fits using 
different starting values in order to find the global minimum. 
Due to these limitations, use of the full reference tissue 
model has been limited.

To improve fitting stability and speed, the simplified 
reference tissue model (SRTM) was developed (Fig. 10.4). 
This model assumes that the exchange between non-dis-
placeable and specific compartments is fast enough, so 
that the net effect of BPND can be represented by an appar-
ent change in clearance from the tissue (i.e., k2). The 
resulting differential equation for the target tissue is 
given by [21]:

 
d d BPT P T NDC t t K C t k C t( ) = × ( ) - × ( ) +( )/ /1 2 1  (10.25)

while kinetics of the reference tissue are still given by Eq. (10.24).
The net result of this simplification is that only three 

parameters (R1, k2, BPND) need to be fitted rather than the 

Plasma Tissue

ND

ND

Target
Tissue
CT(t)

Reference
Tissue
CR(t)

S

K1

k2

K1′

k2′

k3

k4

Fig. 10.3 Schematic diagram of the full reference tissue model. ND 
and S represent non-displaceable and specific compartments, respec-
tively. In the solution of this model, the target tissue concentration CT is 
expressed in terms of the reference tissue concentration CR with four fit 
parameters (R1 = K1/K1′, k2, k3, BPND)
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four needed for the full reference tissue model. More 
importantly, this reduction in the number of parameters also 

results in a much simpler operational equation, containing 
only one rather than two convolutions [21]:

Plasma Tissue

ND+S

ND

Target
Tissue
CT(t)

Reference
Tissue
CR(t)

K1

k2/(1+BPND)

K1′

k2′

Fig. 10.4 Schematic diagram of the simplified reference tissue model. 
In this model, the non-displaceable binding potential BPND results in a 
reduced apparent k2 for the target tissue, after non-displaceable (ND) 
and specific (S) compartments are lumped together. In the solution of 
this model, the target tissue concentration CT is expressed in terms of 
the reference tissue concentration CR with three fit parameters 
(R1 = K1/K1′, k2, BPND)

Key Learning Points
• An arterial input function should be acquired using 

an automatic online blood sampler.
• Additional manual samples are needed to derive a 

metabolite-corrected arterial plasma input function.

 C t R C t k R C t k tT R ND R NDBP BP( ) = × ( ) + × - +( ){ }× ( )Ä - × +( ){1 2 1 21 1 1/ exp / }}  (10.26)

This three-parameter model is much faster than the origi-
nal four-parameter model, and, in general, results are very 
stable. More recently it has been shown that SRTM might 
also be valid even if kinetics of specific binding are not as 
fast as expected in the underlying assumptions. Nevertheless, 
use of SRTM and also of FRTM should always be validated 
against the optimal plasma input model. In particular, in both 
FRTM and SRTM (and any method that relies on a reference 
tissue), it is assumed that K1/k2 is constant over the brain, an 
assumption that is likely to be violated when the blood-brain 
barrier is damaged [22].

10.7  Practical Modelling Issues

10.7.1  Weighting Factors

Quantification of (dynamic) PET studies requires fitting of 
tissue data using plasma or reference tissue input functions, 
resulting in estimates of various parameters (rate constants, 
fractional blood volume). In fitting a tissue time-activity 
curve, it should be realized that the precision of successive 
data points is not the same. Data are expressed as concentra-
tions, but typically early frames are short (e.g., 5–10  s), 
while late frames can be as long as 10 min. In other words 
the number of acquired counts is much higher in the later 
frames, and, for similar concentrations, these later frames 
will have higher precision. On the other hand, especially for 
short physical half-lives, the tracer will decay, and if data are 
decay corrected, later frames will have lower precision. To 
account for both effects during fitting, each point of a time- 
activity curve should be weighted according to its precision.

Several weighting schemes have been proposed, and it 
seems that all of these schemes are better than not weighting 
at all (i.e., giving the same weight to all points), basically 
because all take into account differences in precision 
between data points [23]. The most logical scheme is based 

• Fitting tissue data requires two input functions, a 
metabolite-corrected arterial plasma input function 
and a non-corrected arterial whole blood input 
function.

• A tracer kinetic (compartmental) model is needed 
to extract specific biological information from tis-
sue time-activity curves.

• The number of compartments depends on the 
kinetic behavior of the tracer, but usually two-tissue 
compartments are sufficient.

• Binding potential relative to the non-displaceable 
compartment BPND is the best parameter to charac-
terize reversible binding to a target.

• If BPND cannot be determined reliably, volume of 
distribution VT can be used, but it should be realized 
that VT contains a nonspecific component.

• A reference tissue model can be used if (1) a region 
exists that is devoid of the binding site under study 
and (2) the level of non-displaceable uptake in tar-
get and reference tissues is the same.
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on total (true) counts per frame, and this is the scheme 
 presented here.

Suppose A total counts (not corrected for decay) have 
been acquired in a frame of duration L. Then the total count 
rate R for that frame equals A/L. Total counts will be distrib-
uted according to Poisson statistics, so:

 
Var A A( ) =  (10.27)

 
SD A A( ) =  (10.28)

 
COV A A A A( ) = =/ /1  (10.29)

where Var represents variance, SD standard deviation, and 
COV coefficient of variation. Assuming no error in frame 
duration L, the following equations can be derived:

 
COV R A( ) =1/  (10.30)

 
SD R R A( ) = /  (10.31)

 
Var R R A( ) = 2 /  (10.32)

 
Weight R A R L R L A( ) = = =/ / /2 2  (10.33)

It should be noted that these weights apply to non-decay- 
corrected data. It is common, however, to work with time- 
activity curves that are corrected for decay, so that these 
curves only reflect biological processes. In case of decay cor-
rection, R is not equal to A/L, but needs to be modified to 
account for physical decay:

 R f A L= × /  (10.34)

where f is the decay correction factor for the frame. This fac-
tor is given by:

 
f A T T= × - ×( ) - - ×( ){ }l l l/ exp exps e  (10.35)

where Ts and Te are start and end times of the frame (note that 
L = Te − Ts) and λ is the decay constant of the radionuclide 
used. The corresponding weighting factors for decay- 
corrected data are then given by:

 
Weight R L f A( ) = ×( )2 2/  (10.36)

10.7.2  Model Selection Criteria

In Sect. 10.6 a number of compartmental models have been 
described. When analyzing patient data, however, it is impor-
tant to stick to one model, as each model will have some bias, 
but this bias will be different for different models. 
Nevertheless, bias should be limited as much as possible, 

and, therefore, it is essential to fit data to the model that gives 
the best description of the kinetics of the tracer. This is not 
necessarily the model with the highest number of parame-
ters, as at some stage adding more parameters will not change 
the quality of the fit significantly. The main problem of too 
many parameters is that these parameters cannot be fitted 
with any degree of precision, i.e., the compartment they are 
associated with is not identifiable. Therefore, it is important 
to identify the optimal model balancing the number of addi-
tional parameters against the improvement in sum of squares 
associated with the fit.

There are several model selection criteria that can be used 
to select the optimal model for a certain tracer (and applica-
tion). The most widely used one is the Akaike information 
criterion (AIC), which is given by [24]:

 
AIC SS= × ( ) +N Pln 2  (10.37)

where N is the number frames, P the number of parameters, 
and SS the residual sum of squares.

The model that produces fits with the lowest AIC value is 
then considered to be the preferred (best) model. Equation 
(10.37) demonstrates that additional parameters are penal-
ized, as they will increase the AIC value. In other words, 
additional parameters are only considered if they result in a 
sufficient decrease in the sum of squares of the fit.

It is good practice to use a few additional model selection 
criteria to check consistency in model selection, i.e., to make 
sure that indeed the optimal model is selected for further 
analysis of the data. Other selection criteria are, for example, 
the Schwarz criterion and the F-test. The Schwarz criterion 
is given by [25]:

 
SC SS= × ( ) + × ( )N P Nln ln  (10.38)

Again, the model that produces the lowest SC value is con-
sidered to be the optimal model. The F-test is given by [26]:

 
F P P N P= -( ) -( ){ } -( ){ }SS SS SS1 2 2 1 2 2/ / /  (10.39)

where subscripts 1 and 2 represent fits with the lowest and 
highest number of parameters, respectively. Unfortunately, 
evaluating results is more cumbersome than for Akaike and 
Schwarz tests, as an F-statistic table is required to assess 
significance.

Key Learning Points
• When fitting tissue time-activity curves, individual 

data points should be weighted to account for dif-
ferences in precision between data points.

• Identification of the optimal model should be based 
on an objective model selection criterion.
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10.8  Parametric Imaging

10.8.1  Linearizations

The optimal tracer kinetic model is defined using nonlinear 
regression analysis of time-activity curves derived from pre-
defined volumes of interest. As mentioned earlier, such a 
time-activity curve can contain contributions from several 
sources (compartments), e.g., free, nonspecifically, and spe-
cifically bound tracer. If only part of the VOI is abnormal, the 
resulting time-activity curve will be a mixture of normal and 
abnormal tissue. Apart from problems associated with tissue 
heterogeneity, this “dilution” with normal tissue may mean 
that the disease-related abnormality will not be detected. If 
the abnormality is related to one process only, for example, 
specific imaging, while other processes (in this case free and 
nonspecific binding) are unchanged, it is questionable 
whether an abnormality in the original radioactivity images 
will be picked up. Clearly, it is preferable to perform tracer 
kinetic modelling at the voxel level in order to fully utilize 
the resolution of the scanner. Unfortunately, the one disad-
vantage of nonlinear regression is its sensitivity to noise. As 
a result, fitting at the voxel level would result in parametric 
images (i.e., images that directly represent the distribution of 
a certain parameter) with very high noise levels, and, conse-
quently, it will still not be possible to detect subtle regional 
changes in such a parametric image. In addition, because of 
the high noise levels, fitting will be slow, as it will take time 
to obtain convergence (for each voxel).

Nevertheless various parametric imaging methods have 
been developed successfully. To avoid noise amplification, 
they are all based on some form of linearization of the origi-
nal nonlinear operational equations.

10.8.2  Patlak and Logan Plots

The first (and best known) linearized method is the Patlak 
plot [27], which originally was developed for analysis of 
[18F]FDG data but which can be used for any tracer with irre-
versible uptake (for a two-tissue compartmental model, it 
means that k4 = 0), providing the net rate of influx Ki from 
plasma into the irreversible compartment. It can be shown 
that, after an equilibration period, the plot of CT/CP against 
∫CP/CP becomes a straight line [27]:

 C C K C C ViT P P P i/ /= × ò +  (10.40)

where Vi is the initial volume of distribution (i.e., volume of 
distribution of free tracer) and, for a two-tissue compartmen-
tal model, Ki is given by:

 
K K k k ki = × +( )1 3 2 3/  (10.41)

Ki reflects the net uptake in the irreversible compartment. 
K1 is the rate of transfer from plasma to the non-displaceable 
compartment (or in the case of [18F]FDG the free compart-
ment). Once a molecule is in this first compartment, the 
chance of moving on to the second compartment is 
k3/(k2  +  k3), and so the rate of net uptake in the second 
(irreversible) compartment is this ratio times K1. Note that 
for [18F]FDG, Ki is directly proportional to glucose 
metabolism, explaining why the method became well known. 
Using the Patlak plot on a voxel-by-voxel level, it is possible 
to generate images of glucose metabolism rather than [18F]
FDG uptake images.

Many years later a comparable linearization was devel-
oped for reversible tracers. In this Logan plot [28], ∫CT/CT is 
plotted against ∫CP/CT, which, after an equilibration time and 
ignoring intravascular activity, results in a straight line with 
a slope that represents VT:

 ò = × ò +C C V C C KT T T P T/ /  (10.42)

where K is a constant that depends on k2, k3, and k4.
Later the method was adapted to allow for a reference tis-

sue input [29]. With respect to reference tissue models, more 
methods have been proposed, in particular various versions 
using multi-linear regression analysis [30, 31].

All parametric methods mentioned above are based on a 
linearization of the operational equation with subsequent lin-
ear regression analysis of the data (fitting a straight line) to 
obtain desired outcome measures. The major advantage of 
this approach is that linear regression does not lead to noise 
amplification, resulting in high-quality images of the param-
eter of interest. A disadvantage is that bias may be intro-
duced, as fitted parameters are not independent of each other. 
For example, CP occurs in both the left- and right-hand sides 
of Eq. (10.40). In addition, because of interdependency of X 
and Y parameters, it is more difficult to calculate uncertain-
ties in the estimated parameters. Finally, only macro- 
parameters (e.g., Ki or VT) can be obtained.

10.8.3  Basis Function Methods

Another, more general, approach is the basis function 
method, which in theory can be used for all compartmental 
models. The method has indeed been used for plasma input 
models [32], but is best known for its implementation of 
SRTM, known as RPM [33]. Taking SRTM as an example, it 
can be seen that its operational equation, i.e., Eq. (10.26), 
contains both a linear and a convolution term. In the basis 
function method, prior to fitting, first the convolution term is 
calculated for a series (usually 50–100) of so-called basis 
functions that cover the entire range of physiological values 
for the parameters involved in the convolution. Consequently, 
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for each basis function, Eq. (10.26) becomes linear, and this 
linear expression can be fitted by linear regression. Next, lin-
ear regression is performed for all basis functions. Finally, 
parameter values are obtained from the fit with the basis 
function that results in the lowest sum of squares.

RPM provides parameter estimates of R1, k2, and BPND for 
each voxel. From Eq. (10.22) it follows that:

 R K K k k1 1 1 2 2= =¢ ¢/ /  (10.43)

This can be rearranged to:

 k k R2 2 1
¢ = /  (10.44)

It will be clear that each set of R1 and k2 values will provide 
another k2′ value. However, k2′ should be a constant as it rep-
resents k2 of the reference tissue. This provides a means to 
reduce the number of fit parameters from 3 to 2 [34], thereby 
further improving stability. After running RPM with three 
parameters, k2′ is fixed to the median value (not mean, as this 
would be sensitive to outliers), and subsequently a second run 
is performed with only two parameters (R1 and BPND).

10.8.4  Validation

As mentioned above, all parametric methods are based on 
some form of linearization. This also means that each para-
metric method essentially is an approximation of the full 
compartmental model and that it may show nonlinear sensi-
tivity to noise. Interestingly, it seems that no single paramet-
ric method is ideal for all tracers. In other words, for every 
new tracer (and application), results of all methods need to 
be compared at a regional level with those of the optimal 
compartmental model to identify the best method for para-
metric imaging of that tracer.

10.8.5  Semi-Quantification

Many studies that claim to be quantitative use in fact semi-
quantitative methods, such as tumor-to-blood ratios, stan-
dardized uptake values (SUV), or, in the brain, SUV ratios 
(SUVr).

SUV represents uptake in a volume of interest (or voxel) 
normalized to injected activity and body weight (alterna-
tively, lean body mass and body mass index have also been 
used). This approach basically assumes that delivery to a tis-
sue (arterial input function) is directly related to the injected 
activity, i.e., that not only the height but also the shape of the 
input function is predictable. For some tracers this may be 
valid, but for others there may be significant intersubject 
variation in plasma clearance. In addition, in intervention 

(drug) studies, the intervention itself may affect body uptake 
and clearance, so the arterial input function can be signifi-
cantly different (especially in shape) before and after the 
intervention, even in the same subject [35].

In SUVr studies, SUV of the target tissue is normalized to 
SUV of a reference region, and differences in arterial plasma 
input function will have a smaller effect on the results, as they 
affect both target and reference tissues equally. However, SUVr 
applications assume that there is some kind of equilibrium 
between both tissues. This may not be the case if flow is affected 
in one or both of the regions, as equilibrium may be slower than 
assumed when validating the method [36]. In addition, the rate 
of clearance from the tissues may affect the bias [37].

Semiquantitative methods are attractive, as they are based 
on simple scanning protocols (static scans). However, just as 
for the parametric imaging methods listed above, they should 
be validated for each new application and even for the same 
application in a new patient group. In addition, simulations 
should be performed to characterize their sensitivity to pos-
sible violations of the underlying simulations. Finally, 
because of intersubject variability in kinetic parameters that 
cannot be measured using SUV or SUVr themselves (which 
are based on total uptake), test-retest variability can be sub-
stantially higher than for fully quantitative methods. This 
means that in some applications (many) more patients need 
to be included in a trial [38]. Especially in drug trials, where 
changes in delivery and/or flow may occur, semiquantitative 
methods should only be used with the utmost care.

10.9  Conclusions

Although PET is an intrinsically quantitative imaging 
modality, true quantification requires attention to detail in 
data acquisition, data processing, and data analysis. For 

Key Learning Points
• Parametric images are based on linearizations of 

underlying compartmental models.
• Parametric imaging methods are fast (linear 

regression) and do not amplify noise, but they 
should be validated as bias may occur.

• The best parametric imaging method is 
tracer-dependent.

• Although semiquantitative methods such as SUV 
and SUVr are attractive, given that they are based on 
simple scanning protocols, they should be validated 
even more vigorously, as substantial bias may occur.

• SUV and SUVr should be avoided in longitudinal 
studies where changes in tracer delivery can be 
expected.
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fully quantitative studies, dynamic scanning is required 
together with compartmental analysis of the data, in first 
instance using an arterial plasma input function. Only after 
proper validation, i.e., comparison with full quantitative 
analyses and appropriate simulations, can other methods 
such as reference tissue models and parametric imaging 
methods be used.

Simplified scanning protocols and data analysis methods 
should only be used when tracer kinetics are fully under-
stood. This applies to new tracers but also to new applica-
tions (different patient population or different intervention) 
using an existing tracer. Otherwise it is possible that the sim-
plification is invalid for addressing the specific research or 
clinical question. When fully quantitative studies have been 
performed, it is always possible to retrospectively apply a 
(validated) simplified analysis to the data, so that existing 
data are not lost. In contrast, when using a simplified method 
that later appears to be invalid implies that all data acquired 
with that method will be lost. Moreover, even progress in the 
entire field may be delayed, as others will base their research 
on incorrect results from those studies.

Clearly, the level of quantification depends on the clinical 
or research question at hand. As mentioned above, for stag-
ing in oncology even a qualitative approach will often suffice 
(finding metastases). Simplified quantitative and semiquanti-
tative methods can be useful, provided they have been vali-
dated against fully quantitative methods and are still valid for 
the clinical or research question at hand. In practice, the 
challenge is to find the optimal balance between accuracy 
and precision.
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