
Chapter 7
IEEE-Compliant Square Root

Many of the preceding results are propositions pertaining to real variables, which
are formalized by ACL2 events in which these variables are restricted to the
rational domain. Many of the lemmas of this chapter similarly apply to arbitrary
real numbers, but in light of our present focus, these results are formulated to
correspond more closely with their formal versions. Apart from the informal
discussion immediately below, the lemmas themselves contain no references to the
real numbers or the square root function.

Establishing IEEE compliance of a floating-point square root module entails
proving that the final value r computed for a given radicand x, rounding mode R,
and precision n satisfies

r = R(
√

x, n). (7.1)

We would like to formulate a proposition of rational arithmetic that is transparently
equivalent to (7.1). This requirement is satisfied by the following criterion:

For all positive rational numbers � and h, if �2 ≤ x ≤ h2, then

R(�, n) ≤ r ≤ R(h, n). (7.2)

Obviously, the monotonicity of rounding (Lemma 6.95) and of the square root
ensure that (7.1) implies (7.2). On the other hand, suppose that (7.2) holds.
According to Lemma 6.100, either

√
x is (n + 1)-exact (and, in particular, rational)

or for some ε > 0, R(y, n) = R(
√

x, n) for all y satisfying |y − √
x| < ε.

In either case, there exist � ∈ Q and h ∈ Q such that � ≤ √
x ≤ h and

R(�, n) = R(
√

x, n) = R(h, n). Since �2 ≤ x ≤ h2,

R(
√

x, n) = R(�, n) ≤ r ≤ R(h, n) = R(
√

x, n)

and hence r = R(
√

x, n).
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Thus, we would like to prove formally that (7.2) is satisfied by the value r

computed by a square root module of interest. For this purpose, it will be useful to
have a function that computes, for given x and n, a rational number q that satisfies

R(q, n) = R(
√

x, n). (7.3)

We shall define a conceptually simple (albeit computationally horrendous) rational
function (k)

√
x that serves this need. The definition is motivated by Lemma 6.101,

which guarantees that if we are able to arrange that

(k)
√

x = RTO(
√

x, k), (7.4)

where k ≥ n + 2, then (7.3) holds for q = (k)
√

x. Of course, (7.4) will not be our
formal definition of (k)

√
x, nor shall we prove any instance of (7.3). However, after

formulating the definition, we shall prove the following (Lemma 7.17):

For all positive rationals � and h and positive integers k and n, if �2 ≤ x ≤ h2

and k ≥ n + 2, then

R(�, n) ≤ R( (k)
√

x, n) ≤ R(h, n). (7.5)

Thus, in order to prove that a computed value r satisfies (7.2), it will suffice to
show that r = R( (k)

√
x, n) for some k ≥ n + 2. This is the strategy followed in the

correctness proof of Chap. 19.

7.1 Truncated Square Root

The first step toward the definition of (n)
√

x is the following recursive function, the
name of which is motivated by the unproven observation that for 1

4 ≤ x < 1,

rtz-sqrt(x, n) = RTZ(
√

x, n).

Definition 7.1 Let x ∈ R and n ∈ N. If n = 0, then rtz-sqrt(x, n) = 0 and if n > 0
and z = rtz-sqrt(x, n − 1), then

rtz-sqrt(x, n) =
{

z if (z + 2−n)2 > x

z + 2−n if (z + 2−n)2 ≤ x.

Lemma 7.1 Let x ∈ Q and n ∈ N. If x ≥ 1
4 , then

1

2
≤ rtz-sqrt(x, n) ≤ 1 − 2−n.
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Proof If n = 1, then rtz-sqrt(x, n) = 1
2 and the claim is trivial. Proceeding by

induction, let n > 1, z = rtz-sqrt(x, n − 1), and w = rtz(x, n), and assume that
1
2 ≤ z ≤ 1−21−n. If w = z, the claim follows trivially; otherwise, w = z+2−n and

1

2
≤ z < w = z + 2−n ≤ (1 − 21−n) + 2−n = 1 − 2−n.

��
Corollary 7.2 Let x ∈ Q n ∈ Z+. If x ≥ 1

4 , then expo(rtz-sqrt(x, n)) = −1.

Lemma 7.3 Let x ∈ Q and n ∈ Z+. If x ≥ 1
4 , then rtz-sqrt(x, n) is n-exact.

Proof The claim is trivial for n = 0. Let n > 1, z = rtz-sqrt(x, n − 1), and
w = rtz(x, n), and assume that z is (n − 1)-exact, i.e., 2n−1z ∈ Z. Then either
w = z and 2nw = 2(2n−1z) ∈ Z or

2nw = 2n(z + 2−n) = 2(2n−1z) + 1 ∈ Z.

��
Lemma 7.4 Let x ∈ Q and n ∈ N. Assume that 1

4 ≤ x < 1 and let w =
rtz-sqrt(x, n). Then w2 ≤ x < (w + 2−n)2.

Proof The claim is trivial for n = 0. Let n > 0, z = rtz-sqrt(x, n − 1), and assume
that z2 ≤ x < (z + 21−n)2. If x < (z + 2−n)2 and w = z, the claim is trivial.
Otherwise, x ≥ (z + 2−n), w = z + 2−n, and

w2 = (z + 2−n)2 ≤ x ≤ (z + 21−n)2 = (w + 2−n)2.

��
According to the next lemma, rtz-sqrt(x, n) is uniquely determined by the above

properties.

Lemma 7.5 Let x ∈ Q, a ∈ Q, and n ∈ Z+. Assume that 1
4 ≤ x < 1 and a ≥ 1

2 . If
a is n-exact and a2 ≤ x < (a + 2−n)2, then a = rtz-sqrt(x, n).

Proof Let w = rtz-sqrt(x, n). If a < w, then by Lemma 4.20,

w ≥ fp+(a, n) = a + 2expo(a)+1−n ≥ a + 2−n,

which implies w2 ≥ (a + 2−n)2 > x, contradicting Lemma 7.4. But if a > w, then

a ≥ fp+(w, n) = w + 2−n,

and by Lemma 7.4, a2 ≥ (w + 2−n)2 > x, contradicting our hypothesis. ��
We have the following variation of Lemma 6.12.
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Lemma 7.6 Let x ∈ Q, m ∈ Z+, and n ∈ Z+. If x ≥ 1
4 and n ≥ m, then

RTZ(rtz-sqrt(x, n),m) = rtz-sqrt(x,m).

Proof The case m = n follows from Lemmas 6.8 and 7.3. We proceed by induction
on n − m. Let 1 < m ≤ n and assume that RTZ(rtz-sqrt(x, n),m) = rtz-sqrt(x,m).
Then by Lemma 6.12,

RTZ(rtz-sqrt(x, n),m − 1) = RTZ(RTZ(rtz-sqrt(x, n),m),m − 1)

= RTZ(rtz-sqrt(x,m),m − 1),

and we need only show that RTZ(rtz-sqrt(x,m),m − 1) = rtz-sqrt(x,m − 1). Let
w = rtz-sqrt(x,m) and z = rtz-sqrt(x,m − 1). If w = z, then w is (n − 1)-
exact by Lemma 7.3 and RTZ(w, n − 1) = w = z by Lemma 6.8. But otherwise,
w = z + 2−n, 2n−1z ∈ Z by Corollary 7.2, and hence, by Definition 6.1,

RTZ(w, n − 1) = 21−n�2n−1w	
= 21−n�2n−1(z + 2−n)	
= 21−n�2n−1z + 1	
= 21−n(2n−1z)

= z.

��

7.2 Odd-Rounded Square Root

The name of the following function is motivated by the (once again unproven)
observation that for 1

4 ≤ x < 1,

rto-sqrt(x, n) = RTO(
√

x, n).

Definition 7.2 Let x ∈ R and n ∈ Z+, and let z = rtz-sqrt(x, n − 1). Then

rto-sqrt(x, n) =
{

z if x ≤ z2

z + 2−n if x > z2.

Lemma 7.7 Let x ∈ Q and n ∈ Z+. If x ≥ 1
4 , then

1

2
≤ rto-sqrt(x, n) ≤ 1 − 2−n.
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Proof If n = 1, then rto-sqrt(x, n) = 1
2 and the claim is trivial. Let n > 1 and

z = rtz-sqrt(x, n − 1). By Lemma 7.1, 1
2 ≤ z < 1, which implies

1

2
≤ z ≤ rto-sqrt(x, n) ≤ z + 2−n ≤ (1 − 21−n) + 2−n = 1 − 2−n.

��
Corollary 7.8 Let x ∈ Q n ∈ Z+. If x ≥ 1

4 , then expo(rto-sqrt(x, n)) = −1.

Lemma 7.9 Let x ∈ Q and n ∈ Z+. If x ≥ 1
4 , then rto-sqrt(x, n) is n-exact.

Proof Let z = rtz-sqrt(x, n−1) and w = rto-sqrt(x, n). By Corollaries 7.2 and 7.8,
expo(z) = expo(w) = −1. By Lemma 7.3, 2n−1z ∈ Z. Consequently, since w is
either z or z + 2−n, 2nw ∈ Z, i.e., w is n-exact. ��
Lemma 7.10 Let x ∈ Q, m ∈ Z+, and n ∈ N. Assume that 1

4 ≤ x < 1 and
2 ≤ n ≤ m. Then

rto(rto-sqrt(x,m), n) = rto-sqrt(x, n).

Proof We first consider the case n = m − 1. Let z1 = rtz-sqrt(x,m − 2), w1 =
rto-sqrt(x,m−1), z2 = rtz-sqrt(x,m−1), and w2 = rto-sqrt(x,m). We shall show
that rto(w2,m−1) = w1. Note that by Lemmas 7.2, 7.6, and 7.4, 1

2 ≤ z2
1 ≤ z2

2 ≤ x.

Case 1: z1 = z2 and z2
2 < x.

z1 = w1 = z2 = w2. Since w2 is (m−1)-exact, Lemma 6.74 implies rto(w2,m−
1) = w2 = w1.

Case 2: z1 = z2 and z2
2 < x.

Since w1 is (m − 2)-exact, Lemma 4.20 implies that w1 = z1 + 21−n is not
(m − 2)-exact; similarly, since w2 is (m − 1)-exact, w2 = z2 + 2−m is not (m − 1)-
exact. Therefore,

rto(w2,m − 1) = RTZ(w2,m − 2) + 21−n = z1 + 21−m = w1.

Case 3: z1 < z2 and z2
2 = x.

By Lemma 7.3, z1 is (m − 1)-exact and z2 is (m − 2)-exact. By Lemma 7.6,
z1 = RTZ(z2,m − 2) < z2, and it follows from Lemma 6.9 that z2 = z1 + 21−m.
Thus, w1 = z2 = w2 and by Lemma 6.74, rto(w2,m − 1) = w2 = w1.

Case 4: z1 < z2 and z2
2 < x.

In this case, w1 = z2 = z1 + 21−m and w2 = z2 + 2−m = z1 + 21−m + 2−m,
which is not (m − 2)-exact. Thus,

rto(w2,m − 1) = RTZ(w2,m − 2) + 21−m = z1 + 21−m = w1.
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The proof is completed by induction on m. If m > n, then by Lemma 6.81,

rto(rto-sqrt(x,m), n) = rto(rto(rto-sqrt(x,m),m − 1), n)

= rto(rto-sqrt(x,m − 1), n)

= rto-sqrt(x, n). �

Lemma 7.11 Let x ∈ Q, � ∈ Q ,h ∈ Q, and n ∈ Z+. Assume that 1
4 ≤ x < 1,

h > 0, and �2 ≤ x ≤ h2. Then

rto(�, n) ≤ rto-sqrt(x, n) ≤ rto(h, n).

Proof Let z = rtz-sqrt(x, n − 1) and w = rto-sqrt(x, n). Suppose z2 = x. Then
w = z, �2 ≤ x = w2, and hence � ≤ w. By Lemmas 6.79, 6.74, and 7.3,

rto(l, n) ≤ rto(w, n) = w.

Thus, we may assume z2 < x and w = z + 2−n. By Lemma 7.4, �2 ≤ x < w2,
and hence � < w = fp+(z, n − 1). It follows from Lemmas 6.3, 6.7, and 4.20 that
RTZ(�, n − 1) ≤ z. Therefore,

rto(�, n) ≤ RTZ(�, n − 1) + 21+expo(�)−n ≤ z + 2−n = w.

To prove the second inequality, we note that if h ≥ w, then by Lemmas 6.79,
6.74, and 7.3,

rto(h, n) ≥ rto(w, n) = w.

Therefore, we may assume that h < w. If z2 = x, then w = z, h2 ≥ x = w2, and
h ≥ w. Thus, by Lemma 7.4, z2 < x and w = z + 2−n = fp+(z, n − 1). Since
h2 ≥ x > z2, h > z. It follows from Lemma 6.9 that RTZ(h, n − 1) ≥ a. By
Lemma 4.20, h is not n-exact, and hence

rto(h, n) = RTZ(h, n − 1) + 2−n ≥ z + 2−n = w. �

Lemma 7.12 Let x ∈ Q, q ∈ Q, and n ∈ Z+. Assume that 1
4 ≤ x < 1, q > 0, and

q is (n − 1)-exact. Then

(a) q2 < x ⇔ q < rto-sqrt(x, n);
(b) q2 > x ⇔ q > rto-sqrt(x, n).

Proof Let z = rtz-sqrt(x, n − 1) and w = rto-sqrt(x, n). If q2 > x, then by
Lemma 7.4, q2 > z2, so that q > z and by Lemma 4.20,

q ≥ z + 21−n > z + 2−n ≥ w.
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We may assume, therefore, that q2 ≤ x < (z + 2−n)2, and hence q < z + 2−n.
We must show that q < x2 iff q < w. By Lemma 4.20, q ≤ z. If q < z, then
q < x2 and q < w. If q = z = x2, then q = z = w. Finally, if q = z < x2, then
q = z < z + 2−n = w. ��

7.3 IEEE-Rounded Square Root

The desired approximation function is a simple generalization of rto-sqrt to arbitrary
positive rationals:

Definition 7.3 Let x ∈ Q and n ∈ Z+ with x > 0. Let e =
⌊

expo(x)
2

⌋
+ 1. Then

(n)
√

x = 2erto-sqrt(2−2ex, n).

Lemma 7.13 Let x ∈ Q, x > 0, e =
⌊

expo(x)
2

⌋
+ 1, and x′ = 2−2ex. Then

1
4 ≤ x′ < 1.

Proof Since

expo(x)

2
− 1 <

⌊
expo(x)

2

⌋
≤ expo(x)

2
,

we have

expo(x) < 2

⌊
expo(x)

2

⌋
+ 2 = 2e

and

expo(x) ≥ 2

⌊
expo(x)

2

⌋
= 2e − 2.

By Lemma 4.6, −2 ≤ expo(x′) < 0 and the lemma follows. ��
Lemma 7.14 Let x ∈ Q and n ∈ Z+. If 1

4 ≤ x < 1, then

(n)
√

x = rto-sqrt(x, n).

Proof Since expo(x) ∈ {−2,−1},
⌊

expo(x)
2

⌋
= −1 and e = 0. ��

Lemma 7.15 Let x ∈ Q and n ∈ Z+ with x > 0. For all k ∈ Z,

(n)
√

22kx = 2k (n)
√

x.
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Proof Let x′ = 22kx, e =
⌊

expo(x)
2

⌋
+ 1, and

e′ =
⌊

expo(x′)
2

⌋
+ 1 =

⌊
expo(x)

2
+ k

⌋
+ 1 = e + k.

Then

(n)
√

x′ = 2e′
rto-sqrt(2−2e′

x′, n)

= 2e+krto-sqrt(2−2(e+k)22kx, n)

= 2k
(

2erto-sqrt(22ex, n)
)

= 2k (n)
√

x. �

Lemma 7.16 Let x ∈ Q, k ∈ N, m1 ∈ N, and n2 ∈ N with x > 0 and 2 < k + 2 ≤
m ≤ n and let R be a common rounding mode. Then

R( (m)
√

x, k) = R( (n)
√

x, k).

Proof Let e =
⌊

expo(x)
2

⌋
+ 1. By Definition 7.3 and Lemmas 7.11 and 6.80,

R( (m)
√

x, k) = R(2erto-sqrt(2−2ex,m), k)

= 2eR(rto-sqrt(2−2ex,m), k)

= 2eR(rto-sqrt(2−2ex, n), k)

= R(2erto-sqrt(2−2ex, n), k)

= R( (n)
√

x, k). �

The next lemma establishes the critical property of (k)
√

x discussed at the
beginning of this chapter.

Lemma 7.17 Let x ∈ Q, � ∈ Q, h ∈ Q n ∈ Z+, and k ∈ Z+. Assume that x > 0
h > 0, k ≥ n + 2, and �2 ≤ x ≤ h2. Let R be a common rounding mode. Then

R(�, n) ≤ R( (k)
√

x, n) ≤ R(h, n).

Proof Let e =
⌊

expo(x)
2

⌋
+ 1, x′ = 2−2ex, �′ = 2−e�, and h′ = 2−eh. By

Lemmas 7.13 and 7.11,

RTO(�′, k) ≤ rto-sqrt(x′, k) ≤ RTO(h′, k),

or

RTO(2−k�, k) ≤ 2−k (k)
√

x ≤ RTO(2−kh, k).
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By Lemma 6.80,

RTO(�, k) ≤ (k)
√

x ≤ RTO(h, k),

and by Lemma 6.101,

R(�, n) = R(RTO(�, k), n) ≤ R( (k)
√

x, n) ≤ R(RTO(h, k), n) = R(h, n). �

Our final lemma, which is also required for the proof of Chap. 19, warrants
some motivation. In practice, a typical implementation of a subtractive square
root algorithm produces a final truncated approximation q of the square root and
a remainder that provides a comparison between q2 and the radicand x. A final
rounded result r is derived from this approximation in accordance with a given
rounding mode R and precision n. In order to apply (7.5), we would like to show
that r = R( (k)

√
x, n) for some appropriate k. This may be done, for example, by

invoking Lemma 6.104 with q and (k)
√

x substituted for x and z, respectively. But
this requires showing that q = RTZ( (k)

√
x, n) and determining whether q = (k)

√
x.

Thus, we require a means of converting inequalities relating q2 and x to inequalities
relating q and (k)

√
x. This is achieved by the following:

Lemma 7.18 Let x ∈ Q, q ∈ Q, and n ∈ N. Assume that x > 0, q > 0, n > 1, and
q is (n − 1)-exact. Then

(a) q2 < x ⇔ q < (n)
√

x;
(b) q2 > x ⇔ q > (n)

√
x;

(c) q2 = x ⇔ q = (n)
√

x.

Proof Let e =
⌊

expo(x)
2

⌋
+ 1, x′ = 2−2ex, and q ′ = 2−eq. Then 1

4 ≤ x′ < 1 and
(n)
√

x = 2erto-sqrt(x′, n). By Lemma 7.12,

q2 < x ⇔ q ′2 < x′

⇔ q ′ < rto-sqrt(x′, n)

⇔ 2−eq < 2−e (n)
√

x

⇔ q < (n)
√

x.

The proof of (b) is similar, and (c) follows. ��

Corollary 7.19 Let x ∈ Q and n ∈ N with x > 0 and n > 1. If (n)
√

x is (n − 1)-
exact, then ( (n)

√
x)2 = x.

Proof Instantiate Lemma 7.18 with q = (n)
√

x. ��
Corollary 7.20 Let x ∈ Q, k ∈ N, n ∈ N, and m ∈ N with x > 0, k > 1, n > k,
and m > k. If (n)

√
x is (n − 1)-exact, then (m)

√
x = (n)

√
x.



144 7 IEEE-Compliant Square Root

Proof By Corollary 7.19, ( (n)
√

x)2 = x. The corollary again follows from
Lemma 7.18. ��

Lemma 7.18 is also critical in the detection of floating-point precision exceptions.
As described more fully in Sects. 12.5, 13.5, and 14.3, this exception is signaled
when an instruction returns a rounded result r that differs from the precise
mathematical value u of an operation. But in the case of the square root, the ACL2
formalization compares r to (p+2)

√
x rather than u = √

x, where p is the target
precision. This is justified by (c) above, from which it follows that r = √

x iff
r = (p+2)

√
x.
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