Chapter 3)
Logical Operations e

In this chapter, we define and analyze the four basic logical operations: the unary
“not”, or complement, and the binary “and”, “inclusive or” and ‘“exclusive or”.
These are commonly known as bit-wise operations, as each one may be computed by
performing a certain operation on each bit of its argument (in the unary case) or each
pair of corresponding bits of its arguments (for binary operations). For example, the
logical “and” x & y of two bit vectors may be specified in a bit-wise manner as the
bit vector z such that for all k € N, z[k] = 1 iff x[k] = y[k] = 1.

In the context of our formalization, however, the logical operations are more
naturally defined as arithmetic functions: the complement is constructed as an
arithmetic difference and the binary operations are defined by recursive formulas,
which facilitate inductive proofs of their relevant properties. Among these are the
bit-wise characterizations, as represented by Lemmas 3.7 and 3.20.

3.1 Binary Operations

>

Following standard RTL syntax, we denote “and”, “inclusive or”” and “exclusive or’
with the infix symbols &, |, and *, respectively.

Definition 3.1 Forall x € Z and y € Z,

0 ifx=00ry=0
@ x&y=4x ifx=y

2-(lx/2] & |y/2]) + (x mod 2) & (y mod 2) otherwise,

y ifx=0o0rx=y
b)) x| y=13x ify=0

2-(lx/2] | Ly/2]) + (x mod 2) | (y mod 2) otherwise;
© Springer Nature Switzerland AG 2019 39

D. M. Russinoff, Formal Verification of Floating-Point Hardware Design,
https://doi.org/10.1007/978-3-319-95513-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95513-1_3&domain=pdf
https://doi.org/10.1007/978-3-319-95513-1_3

40 3 Logical Operations

y ifx =0
~. _)x ify=20
© x"y= 0 ifx=y

2 (lx/2] * Ly/2]) + (x mod 2) * (y mod 2) otherwise.

It is not obvious that these are admissible recursive definitions, i.e., that each of
them is satisfied by a unique function. To establish this, it suffices to demonstrate
the existence of a measure function u : Z x Z — N that strictly decreases on each
recursive call. Thus, we define
0 ifx=y

”(x’y):{|xy| ifx # y.

For the admissibility of each of the three definitions, we must show that p satisfies
the following two inequalities, corresponding to the two recursive calls, under the
restrictions x £ 0, y # 0, and x # y:

(D p(lx/2], Ly/2]) < m(x, y).
(2) w(x mod 2,y mod 2) < u(x,y)..

Since the restrictions imply that at least one of x and y is neither 0 nor —1, (1)
follows from Lemma 1.3. To establish (2), note that either x mod 2 = 0, y mod 2 =
0,or x mod 2 = 1 = y mod 2. In any case,

pw(x mod?2,ymod?2) =0 < |xy| = un(x,y).

The proof of the following is a typical inductive argument based on the recursion
of Definition 3.1 (a).
Lemma3.l IfxeNandy e Z, then) <x &y < x.

Proof We may assume that x £ 0, y # 0, and x ## y. Thus,
x &y =2(x/2] & y/2]) +x mod 2 & y mod 2
and by induction,

0<x&y<2|x/2]+xmod?2=x.

Corollary 3.2 If x is an n-bit vector and y € Z, then x & y is an n-bit vector.
Proof By Lemma3.1,0 <x &y <x < 2" O
Lemma 3.3 If x and y and n-bit vectors, then so are x | y and x * y.

Proof The same argument applies to both operations. The claim is trivial if n = 0,
x =0,y =0, orx = y.Inall other cases, |x/2] and |y/2] are (n — 1)-bit vectors

3.1 Binary Operations 41

and by induction, so is, for example, |x/2] | |y/2]. Thus,
x| y=2(x/2] | ly/2)) + (xmod2) | (ymod2) <2- ' -1 4+1<2".

O
Lemma 34 Forallx € Z,y € Z, andn € N,

(a) (x & y) mod 2" = (x mod 2") & (y mod 2");
(b) (x | y) mod 2" = (x mod 2") | (y mod 2");
(c) (x * y) mod 2" = (x mod 2") * (y mod 2").

Proof We present the proof for (a); (b) and (c) are similar.
We may assume thatn > 0, x % 0, y # 0, and x # y. By Definition 3.1 (a) and
Lemma 1.22,

(x & y) mod 2"
= 2-(1x/2) & |y/2)) + (x mod 2) & (y mod 2)) mod 2"
= (- (1x/2] & Ly/2)) mod 2" + (x mod 2) & (y mod 2)) mod 2".

By induction and Lemmas 1.18, 2.3, and 2.13, the first addend may be written as

2 (1x/2) & Ly/21) mod 2 =2 ((1¥/2) & y/2)) mod 2~")
=2+ ((Lx/2) mod 271 & (Ly/2) mod 2"71))
=2 (1x/2]ln —2: 0] & [y/2][n —2 : O])
=2 (Ix[n—1:01/2) & [y[n—1:0]/2]),
and by Lemmas 2.22 and 2.31, the second addend is
(x mod 2) & (y mod 2) = x[0] & y[0] = x[n—1 : 0][0] & y[n—1 : 0][0O]
= (x[n—1:0] mod 2) & (y[n—1 : 0] mod 2).
Thus, by Definition 3.1 (a) and Lemmas 3.2 and 2.3,
(x & y) mod 2" = (x[n—1:0] & y[n—1 : 0]) mod 2"

=x[n—1:0] & y[n—1:0]
= (x mod 2") & (y mod 2").

42 3 Logical Operations

Lemma 3.5 Forallx € Z, y € Z,andn € N,

(a) [(x &y)/2"] = |x/2"] & |y/2");
(b) (x| /2] =1x/2"] | Ly/2");
(c) L&x = »)/2") = 1x/2"] © Ly/2"].

Proof We present the proof for (a); (b) and (c) are similar.
We may assume thatn > 0, x # 0, y # 0, and x # y. By Lemma 1.2, induction,
and Definition 3.1 (a),

L& 0)/2") = | L& /212
= w2y s b2
-1

/2" 2) s Le/2 2] |
= Lx/2"J & Ly/Z”J.

All three binary logical operators commute with the bit slice operator:
Lemma 3.6 Forallx €Z, yeZ,i €N, and j €N,

(@) x&yli:jl=xli:jl&yli:jl
(b) (x | Mi:jl=xli:jl|yli:jl
() (x * i :jl=xli:j1"yli:jl
Proof We present the proof for (a); (b) and (c) are similar.
We may assume that n > 0, x # 0, y # 0, and x # y. By Definition 2.2 and
Lemmas 3.4 and 3.5,

(x & i j1 = (0 & y) mod 2771 /27 |
_ L((x mod 2*1) & (y mod 2i+1))/2fj

= |(x mod 2:T1) /27| & [(y mod 2/*1) /27 |
=x[i:jl&yli:]j]

Corollary 3.7 Forallx € Z, y € Z, and k € N,

(a) (x & y)[n] = x[n] & y[n];
(b) (x | y)nl=x[n]| ylnl;
(c) (x * y)nl=x[n] " y[nl.

3.1 Binary Operations 43

Lemma 3.8 Forallxy €Z,y1 €Z,x2 €Z, y2 € Z, m €N, andn € N,

(@) {m'x1,n"y1} &{m'xz2,n" y2} = {m' (x1 &x2),n’" (y1 & y2)};
(b) {m'x1,n"yi1} | {m'x2,n" y2y ={m' (x1 | x2),n" (y1 | y2)}s
(c) {m"x1,n"y1} “{m’xa,n" y2} = {m’ (x1 ~ x2),n" (y1 * y2)}.

Proof We present the proof for (a); (b) and (c) are similar.
LetC ={m'x;,n"y1} & {m’x,n’" y>}. By Lemmas 3.4 and 2.48,
C mod 2"
= {x1[m-1:0], y1[n—-1: 0]}[n—1 : O] & {x2[m—1: O], y2[n—1 : O]}[n—1 : O]
= yi[n—1:0] & y2[n—1: 0].

By Lemma 3.5,
LC/2"] = [{x1[m~1: 0], y1[n—1:01}/2"] & [{x2[m~1: 0], y2[n-1: 01}/2"],
where, by Definition 2.3 and the properties of the floor,
L{xi[m=1:0], yi[n-1:01}/2"] = [(2"x;[m~1: 0] + y;[n—1: 0])/2"]

= x;[m-1:0]+ Ly;[n—1:0]/2"]
= x;[m-1:0].

Thus,
|C/2"| = x1[m—1: 0] & xp[m—1:0].
Finally, by Definitions 1.3 and 2.3,

C = [C/2"|2" 4+ (C mod 2"))
= 2"(xi[m—1: 0] & xp[m—1 : 0]) + yi[m—1:0] & y2[m—1:0])
= {x1[m-1:0] & xa[m—1: 0], y;[n—1 : 0] & y2[n—1 : O]}.

Lemma 3.9 Forallx € Z, y € Z,andn € N,

(a) 2"(x & y) =2"x & 2"y,
(b) 2"(x | y)=2"x | 2"y;
(c) 2"(x © y) =2"x * 2"y.
Proof We present the proof for (a); (b) and (c) are similar.

We may assume that n > 0, x # 0, y # 0, and x # y. By induction and
Definition 3.1 (a),

44 3 Logical Operations

Y ey =2(2""x & y))

2 (2”—1x 5 2"_1y>

2(12"x/2) & [2"x/2]) + (2"x mod 2) & (2"y mod 2)
2"x &2"y.

Lemma 3.10 Forallx € Z,y € Z, andn € N,

(a) 2"x & y =2"(x & [y/2");
(b) 2'x | y=2"(x | Ly/2") + y mod 27;
(c) 2"x *~ y=2"(x " |y/2") + y mod 2".

Proof

(a) Theclaimistrivialifx =0,y = 0, or y = 2"x; otherwise, by Definition 3.1 (a),
induction, and Lemma 1.2,

2"x &y =2(]2"x/2] & |y/2]) + (2"x mod 2) & (y mod 2)
=22""x & |y/2))+0
=2(2 " s L2127))
=2"(x & ly/2"]).
(b) Similarly,
2'x |y =2(12"x/2) | Ly/2]) + (2"x mod 2) | (y mod 2)
=22" 'x | Ly/2]) + y mod 2
=2 (2"—1 (x | Uy/zj/zn—lJ) + 1y/2) mod 2"—1) +y mod 2

=2"(x | Ly/2"]) +2(Ly/2) mod 2"~") + y mod 2,

where, by Lemmas 2.3 and 2.12,

2(Ly/2] mod 2" ') 4+ y mod 2 = 2| y/2][n — 2 : 0] + y[0]
=2y[n—1:1]+ y[0]
= y[n—1:0]
= y mod 2".

3.1 Binary Operations 45

The proof of (c) is similar to that of (b). |

Corollary 3.11 Let x € Z and let y be an n-bit vector, where n € N. Then
2"x | y=2"x+y.
Proof By Lemmas 3.10 and 1.11 and Definition 3.1 (b),

2" | y=2"x | y/2")+ymod2" =2"(x | 0)+y=2"x+y.

O
Lemma 3.12 Forallx € Zandn € N, 2" | x = {i Lo Z:ﬁﬁ z (1)
Proof By Definition 2.2 and Lemmas 3.4, 3.8, and 2.32,
" | x) mod 2"+ = (2" | x)[n : 0]
=2"[n:0] | x[n:0]
={1'1,0'(n — 1)} | {x[n], x[n—1: 0]}
={1'l, x[n—1: 0]}
| x[n:0] ifx[n] =1
" | x[m:0]4+2"if x[n] =0
[x mod 2" +! if x[n] =1
~ | x mod 2"*! 42" if x[n] = 0.
By Lemma 3.5,
L@" | x)/2" =0 | /2] = /27
The lemma follows from Definition 1.3. O

The logical “and” operator may be used to extract a bit slice:

Lemma3.13 Letx € Z,n € N, and k € N. Ifk < n, then
x & (2" =28y = 2*x[n—1: k.
Proof The proof is by induction on n. If n = 1, then k = 0 and
x& " -2=x8&1=2(x/2] & 0)+ (x mod 2) & 1 =0+ x[0] = x[n—1: k.

If n > 1 and k = 0, then by induction and Lemmas 2.12 and 2.32,

46 3 Logical Operations

r&e 2 -25=x&a@" -1
=2(|x/2] & [(2" — 1)/2]) + (x mod 2) & ((2" — 1) mod 2)
=2(x/2] & 2" ' = 1)+ (x mod 2) & 1
= 2[x/2][n — 2 : 0] + x[0]
= 2x[n—1: 1]+ x[0]
= x[n—1:0].

In the remaining case, n > k > 1 and

x & (2" =25 =2(1x/2] & (2" = 1)/2]) + (x mod 2) & ((2" — 2¥) mod 2)
=2(lx/2] & 2" ' =21 + (x mod 2) & 0
=2|x/2][n —2: k—1]

=x[n—1:k].
O
Corollary 3.14 Forallx € Zandn € N, x & 2" = 2"x[n].
Proof By Lemma 3.13,
x &2 =x& @ —2") = x[n:n] = x[n].
O

3.2 Complement

We have a simple arithmetic definition of the logical complement.

Definition 3.2 Forallx € Z, ~x = —x — 1.

Lemma 3.15 Forall x € Z, ~(~x) = x.

Proof By Definition 3.2, ~(~x) = —(—x — 1) — 1 = x. O
Lemma 3.16 Ifx € Zand k € N, then ~(28x) = 2% (~x) + 2k — 1.

Proof By Definition 3.2,

Ky +28—1=2k(—x -1 +2F—1==2kx —1 = ~(2%).

3.2 Complement 47

Lemma3.17 Ifx € Z,n e N,andn > 0, then ~|x/n] = |~x/n].
Proof By Definition 3.2 and Lemma 1.5,

L(~x)/n] = r“n_ IJ - L—x:ﬂ =[]~ 1=-tasm.

]
Lemma 3.18 [fx € Zandn € N, then
~x mod 2" =2" — (x mod 2") — 1.
Proof First note that by Lemmas 1.10 and 1.11,
0<2"—(xmod?2") —1 < 2"
Therefore, by Lemmas 1.15, 1.23, and 1.11,
~x mod 2" = (—x — 1) mod 2"
= (2" — (x mod 2") — 1) mod 2"
=2" — (x mod 2") — 1.
]

Notation For the purpose of resolving ambiguous expressions, the complement has
higher precedence than the bit slice operator, e.g., ~x[i : j] = (~x)[i : j].

Lemma3.19 I[fxeZ,ieN, jeN, and j <1i, then
~xlis j1=217 i j1—1.
Proof By Definitions 3.2 and 2.2 and Lemmas 3.18, 1.1, and 1.5,

xli: jl= L(~x mod 2"+1)/2J'J

_ {2“‘ — (x mod 2ty — IJ

2J
Ak (x mod 211y + 1
= - 2

i+1
_ Ai4l—j | X mod?2' _

=2t _x[i . j]1—1.

48 3 Logical Operations
The usual bit-wise characterization of the complement is a special case of

Lemma 3.19:

Corollary 3.20 Ifx € Z andn € N, then ~x[n] # x[n].

Proof By Lemma 3.19, ~x[n] = 2"t —x[n] — 1 = 1 — x[n]. O

The remaining results of this section are properties of complements of bit slices
that have proved useful in manipulating expressions derived from RTL designs.

Lemma3.21 Letx € Z, i €N, jeN keNandl e N If¢ <k <i— j, then

~(x[i : jDlk : €] = ~x[k+j: €L+ j].

Proof By Lemmas 3.19 and 2.19,
i DIk €] = 2518 i s ik 0] — 1
= pFDFIEHED) x4+ j e+ 11
=~xlk+j: €4+l

Lemma 3.22 [fx € Z and y in an n-bit vector, where n € N, then
~(x[n—1:0]) &y = ~x[n—1:0] & y.
Proof By Lemma 3.21, ~(x[n—1 : 0])[n—1 : 0] = ~x[n—1 : 0], and hence by
Lemmas 3.2, 2.4, and 3.6
~(x[n—1:0]) & y = (~(x[n—1:0]) & y) [n—1:0]
= ~(x[n—1:0])[n—1:0] & y[n—1:0]
= ~x[n—1:0] & y.
O

Lemma3.23 Letx€Z,ie€N, jeNkeNandl e N Ift <k <i— j, then

~(exi s jDIk €1 = x[k +j : £+ j].

Proof By Lemmas 3.19, 2.19, and 3.15,
~(~xli s DIk €] =217 — i s jlk €] — 1
= 2UADHAERD) — yfk+ e+ j1-1
= ~(~X)[k+j:l+]]
=xlk+j:L4+]l

3.3 Algebraic Properties 49
3.3 Algebraic Properties

We conclude this chapter with a set of identities pertaining to special cases and
compositions of logical operations.
The first two lemmas are immediate consequences of the definitions.

Lemma 3.24 Forall x € Z,

(a) x &0=0;
(b) x | 0=ux;
(c) x *0=x.

Lemma 3.25 Forallx € Zand y € Z,

(a) x & x = x;
(b) x | x =x;
(c) x *x=0.

All of the remaining results of this section may be derived in a straightforward
manner from Lemmas 3.20, 3.7, and 2.40.

Lemma 3.26 Forall x € 7,

(a) x & —1=x;
(b) x | —1=-1;
(c) x* —1=-~x.

Lemma 3.27 Forallx € Zandy € Z,

(@) x | y=0&x=y=0;
() x " y=0&x=y.

Proof Suppose x | y =0.By Lemma 3.7, forall k € N
x[k] | ylkl = (x | y)[k] = O[k] =0,

and it is readily seen by exhaustive computation that this implies x[k] = y[k] = O.
It follows from Lemma 2.40 that x = y = 0. A similar argument applies to (b). O

The proofs of the remaining lemmas are sufficiently similar to that of
Lemma 3.27 that they may be safely omitted.

Lemma 3.28 Forallx € Z,y € Z, andn € Z,

(a) x&y=y &x;
b) x|y=y|x
(c) x " y=y"x
Lemma 3.29 Forallx e N,y e N, andz € N,

(a) (x&y)&z=x&(&2);
b) x|y |z=x]]2
(c) x*y) " z=x"("2.

50 3 Logical Operations

Lemma 3.30 Forallx e N, ye N, andz e N,

(@) x| &z=|y & |2y
b) x&(y|2)=x&y | x&z
(¢c) x&y |x&z|y&z=x&y | x "y &z

Lemma 3.31 Forallx e Nandy € N,

(@) x“y=x&~y|y&-~x;
(b) ~(x " y)=(~x) " y.

	3 Logical Operations
	3.1 Binary Operations
	3.2 Complement
	3.3 Algebraic Properties

