Chapter 3 Logical Operations

In this chapter, we define and analyze the four basic logical operations: the unary "not", or complement, and the binary "and", "inclusive or" and "exclusive or". These are commonly known as *bit-wise* operations, as each one may be computed by performing a certain operation on each bit of its argument (in the unary case) or each pair of corresponding bits of its arguments (for binary operations). For example, the logical "and" $x \in y$ of two bit vectors may be specified in a bit-wise manner as the bit vector z such that for all $k \in \mathbb{N}$, z[k] = 1 iff x[k] = y[k] = 1.

In the context of our formalization, however, the logical operations are more naturally defined as arithmetic functions: the complement is constructed as an arithmetic difference and the binary operations are defined by recursive formulas, which facilitate inductive proofs of their relevant properties. Among these are the bit-wise characterizations, as represented by Lemmas 3.7 and 3.20.

3.1 Binary Operations

Following standard RTL syntax, we denote "and", "inclusive or" and "exclusive or" with the infix symbols &, |, and $^$, respectively.

Definition 3.1 For all $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$,

(a)
$$x \& y = \begin{cases} 0 & \text{if } x = 0 \text{ or } y = 0 \\ x & \text{if } x = y \\ 2 \cdot (\lfloor x/2 \rfloor \& \lfloor y/2 \rfloor) + (x \mod 2) \& (y \mod 2) \text{ otherwise,} \end{cases}$$
(b) $x \mid y = \begin{cases} y & \text{if } x = 0 \text{ or } x = y \\ x & \text{if } y = 0 \\ 2 \cdot (\lfloor x/2 \rfloor \mid \lfloor y/2 \rfloor) + (x \mod 2) \mid (y \mod 2) \text{ otherwise;} \end{cases}$

(c)
$$x \wedge y = \begin{cases} y & \text{if } x = 0 \\ x & \text{if } y = 0 \\ 0 & \text{if } x = y \\ 2 \cdot (\lfloor x/2 \rfloor \wedge \lfloor y/2 \rfloor) + (x \mod 2) \wedge (y \mod 2) \text{ otherwise.} \end{cases}$$

It is not obvious that these are admissible recursive definitions, i.e., that each of them is satisfied by a unique function. To establish this, it suffices to demonstrate the existence of a *measure* function $\mu: \mathbb{Z} \times \mathbb{Z} \to \mathbb{N}$ that strictly decreases on each recursive call. Thus, we define

$$\mu(x, y) = \begin{cases} 0 & \text{if } x = y \\ |xy| & \text{if } x \neq y. \end{cases}$$

For the admissibility of each of the three definitions, we must show that μ satisfies the following two inequalities, corresponding to the two recursive calls, under the restrictions $x \neq 0$, $y \neq 0$, and $x \neq y$:

- (1) $\mu(\lfloor x/2 \rfloor, \lfloor y/2 \rfloor) < \mu(x, y)$.
- (2) $\mu(x \mod 2, y \mod 2) < \mu(x, y)$..

Since the restrictions imply that at least one of x and y is neither 0 nor -1, (1) follows from Lemma 1.3. To establish (2), note that either $x \mod 2 = 0$, $y \mod 2 = 0$, or $x \mod 2 = 1 = y \mod 2$. In any case,

$$\mu(x \mod 2, y \mod 2) = 0 < |xy| = \mu(x, y).$$

The proof of the following is a typical inductive argument based on the recursion of Definition 3.1 (a).

Lemma 3.1 If $x \in \mathbb{N}$ and $y \in \mathbb{Z}$, then 0 < x & y < x.

Proof We may assume that $x \neq 0$, $y \neq 0$, and $x \neq y$. Thus,

$$x \& y = 2(|x/2| \& |y/2|) + x \mod 2 \& y \mod 2$$

and by induction,

$$0 < x \& y < 2|x/2| + x \mod 2 = x$$
.

Corollary 3.2 If x is an n-bit vector and $y \in \mathbb{Z}$, then x & y is an n-bit vector.

Proof By Lemma 3.1,
$$0 < x \& y < x < 2^n$$

Lemma 3.3 If x and y and n-bit vectors, then so are $x \mid y$ and $x \wedge y$.

Proof The same argument applies to both operations. The claim is trivial if n = 0, x = 0, y = 0, or x = y. In all other cases, $\lfloor x/2 \rfloor$ and $\lfloor y/2 \rfloor$ are (n - 1)-bit vectors

and by induction, so is, for example, $\lfloor x/2 \rfloor \mid \lfloor y/2 \rfloor$. Thus,

$$x \mid y = 2(\lfloor x/2 \rfloor \mid \lfloor y/2 \rfloor) + (x \mod 2) \mid (y \mod 2) \le 2 \cdot (2^{n-1} - 1) + 1 < 2^n.$$

Lemma 3.4 For all $x \in \mathbb{Z}$, $y \in \mathbb{Z}$, and $n \in \mathbb{N}$,

- (a) $(x \& y) \mod 2^n = (x \mod 2^n) \& (y \mod 2^n)$;
- (b) $(x \mid y) \mod 2^n = (x \mod 2^n) \mid (y \mod 2^n);$
- (c) $(x \wedge y) \mod 2^n = (x \mod 2^n) \wedge (y \mod 2^n)$.

Proof We present the proof for (a); (b) and (c) are similar.

We may assume that n > 0, $x \ne 0$, $y \ne 0$, and $x \ne y$. By Definition 3.1 (a) and Lemma 1.22,

$$(x & y) \bmod 2^{n}$$

$$= (2 \cdot (\lfloor x/2 \rfloor & \lfloor y/2 \rfloor) + (x \bmod 2) & (y \bmod 2)) \bmod 2^{n}$$

$$= ((2 \cdot (\lfloor x/2 \rfloor & \lfloor y/2 \rfloor)) \bmod 2^{n} + (x \bmod 2) & (y \bmod 2)) \bmod 2^{n}.$$

By induction and Lemmas 1.18, 2.3, and 2.13, the first addend may be written as

$$(2 \cdot (\lfloor x/2 \rfloor \& \lfloor y/2 \rfloor)) \bmod 2^{n} = 2 \cdot \left((\lfloor x/2 \rfloor \& \lfloor y/2 \rfloor) \bmod 2^{n-1} \right)$$

$$= 2 \cdot \left((\lfloor x/2 \rfloor \bmod 2^{n-1}) \& (\lfloor y/2 \rfloor \bmod 2^{n-1}) \right)$$

$$= 2 \cdot (\lfloor x/2 \rfloor [n-2:0] \& \lfloor y/2 \rfloor [n-2:0])$$

$$= 2 \cdot (|x[n-1:0]/2| \& |y[n-1:0]/2|),$$

and by Lemmas 2.22 and 2.31, the second addend is

$$(x \mod 2) \& (y \mod 2) = x[0] \& y[0] = x[n-1:0][0] \& y[n-1:0][0]$$

= $(x[n-1:0] \mod 2) \& (y[n-1:0] \mod 2)$.

Thus, by Definition 3.1 (a) and Lemmas 3.2 and 2.3,

$$(x \& y) \mod 2^n = (x[n-1:0] \& y[n-1:0]) \mod 2^n$$

= $x[n-1:0] \& y[n-1:0]$
= $(x \mod 2^n) \& (y \mod 2^n)$.

Lemma 3.5 For all $x \in \mathbb{Z}$, $y \in \mathbb{Z}$, and $n \in \mathbb{N}$,

- (a) $|(x \& y)/2^n| = |x/2^n| \& |y/2^n|$;
- (b) $\lfloor (x \mid y)/2^n \rfloor = \lfloor x/2^n \rfloor \mid \lfloor y/2^n \rfloor$;
- (c) $\lfloor (x \wedge y)/2^n \rfloor = \lfloor x/2^n \rfloor \wedge \lfloor y/2^n \rfloor$.

Proof We present the proof for (a); (b) and (c) are similar.

We may assume that n > 0, $x \ne 0$, $y \ne 0$, and $x \ne y$. By Lemma 1.2, induction, and Definition 3.1 (a),

$$\lfloor (x \& y)/2^n \rfloor = \lfloor \lfloor (x \& y)/2^{n-1} \rfloor/2 \rfloor$$

$$= \lfloor (\lfloor x/2^{n-1} \rfloor \& \lfloor y/2^{n-1} \rfloor)/2 \rfloor$$

$$= \lfloor \lfloor x/2^{n-1} \rfloor/2 \rfloor \& \lfloor x/2^{n-1} \rfloor/2 \rfloor$$

$$= \lfloor x/2^n \rfloor \& \lfloor y/2^n \rfloor.$$

All three binary logical operators commute with the bit slice operator:

Lemma 3.6 For all $x \in \mathbb{Z}$, $y \in \mathbb{Z}$, $i \in \mathbb{N}$, and $j \in \mathbb{N}$,

- (a) (x & y)[i:j] = x[i:j] & y[i:j];
- (b) $(x \mid y)[i:j] = x[i:j] \mid y[i:j]$;
- (c) $(x \hat{y})[i:j] = x[i:j] \hat{y}[i:j]$.

Proof We present the proof for (a); (b) and (c) are similar.

We may assume that n > 0, $x \neq 0$, $y \neq 0$, and $x \neq y$. By Definition 2.2 and Lemmas 3.4 and 3.5,

$$(x \& y)[i : j] = \left\lfloor ((x \& y) \bmod 2^{i+1})/2^{j} \right\rfloor$$

$$= \left\lfloor ((x \bmod 2^{i+1}) \& (y \bmod 2^{i+1}))/2^{j} \right\rfloor$$

$$= \left\lfloor (x \bmod 2^{i+1})/2^{j} \right\rfloor \& \left\lfloor (y \bmod 2^{i+1})/2^{j} \right\rfloor$$

$$= x[i : j] \& y[i : j].$$

Corollary 3.7 *For all* $x \in \mathbb{Z}$, $y \in \mathbb{Z}$, and $k \in \mathbb{N}$,

- (a) (x & y)[n] = x[n] & y[n];
- (b) $(x \mid y)[n] = x[n] \mid y[n];$
- (c) $(x ^ y)[n] = x[n] ^ y[n]$.

Lemma 3.8 For all $x_1 \in \mathbb{Z}$, $y_1 \in \mathbb{Z}$, $x_2 \in \mathbb{Z}$, $y_2 \in \mathbb{Z}$, $m \in \mathbb{N}$, and $n \in \mathbb{N}$,

(a)
$$\{m'x_1, n'y_1\} \& \{m'x_2, n'y_2\} = \{m'(x_1 \& x_2), n'(y_1 \& y_2)\};$$

(b)
$$\{m'x_1, n'y_1\} \mid \{m'x_2, n'y_2\} = \{m'(x_1 \mid x_2), n'(y_1 \mid y_2)\};$$

(c)
$$\{m'x_1, n'y_1\} \land \{m'x_2, n'y_2\} = \{m'(x_1 \land x_2), n'(y_1 \land y_2)\}.$$

Proof We present the proof for (a); (b) and (c) are similar.

Let
$$C = \{m' x_1, n' y_1\} \& \{m' x_2, n' y_2\}$$
. By Lemmas 3.4 and 2.48,

 $C \mod 2^n$

=
$$\{x_1[m-1:0], y_1[n-1:0]\}[n-1:0] \& \{x_2[m-1:0], y_2[n-1:0]\}[n-1:0]$$

= $y_1[n-1:0] \& y_2[n-1:0]$.

By Lemma 3.5,

$$\lfloor C/2^n \rfloor = \lfloor \{x_1[m-1:0], y_1[n-1:0]\}/2^n \rfloor \& \lfloor \{x_2[m-1:0], y_2[n-1:0]\}/2^n \rfloor,$$

where, by Definition 2.3 and the properties of the floor,

$$\lfloor \{x_i[m-1:0], y_i[n-1:0]\}/2^n \rfloor = \lfloor (2^n x_i[m-1:0] + y_i[n-1:0])/2^n \rfloor$$
$$= x_i[m-1:0] + \lfloor y_i[n-1:0]/2^n \rfloor$$
$$= x_i[m-1:0].$$

Thus,

$$\lfloor C/2^n \rfloor = x_1[m-1:0] \& x_2[m-1:0].$$

Finally, by Definitions 1.3 and 2.3,

$$C = \lfloor C/2^n \rfloor 2^n + (C \mod 2^n))$$

$$= 2^n (x_1[m-1:0] \& x_2[m-1:0]) + y_1[m-1:0] \& y_2[m-1:0])$$

$$= \{x_1[m-1:0] \& x_2[m-1:0], y_1[n-1:0] \& y_2[n-1:0]\}.$$

Lemma 3.9 For all $x \in \mathbb{Z}$, $y \in \mathbb{Z}$, and $n \in \mathbb{N}$,

- (a) $2^n(x \& y) = 2^n x \& 2^n y$:
- (b) $2^n(x \mid y) = 2^n x \mid 2^n y$;
- (c) $2^n(x \hat{y}) = 2^n x \hat{2}^n y$.

Proof We present the proof for (a); (b) and (c) are similar.

We may assume that n > 0, $x \neq 0$, $y \neq 0$, and $x \neq y$. By induction and Definition 3.1 (a),

$$2^{n}(x \& y) = 2\left(2^{n-1}(x \& y)\right)$$

$$= 2\left(2^{n-1}x \& 2^{n-1}y\right)$$

$$= 2\left(\lfloor 2^{n}x/2 \rfloor \& \lfloor 2^{n}x/2 \rfloor\right) + (2^{n}x \bmod 2) \& (2^{n}y \bmod 2)$$

$$= 2^{n}x \& 2^{n}y.$$

Lemma 3.10 For all $x \in \mathbb{Z}$, $y \in \mathbb{Z}$, and $n \in \mathbb{N}$,

- (a) $2^n x \& y = 2^n (x \& \lfloor y/2^n);$
- (b) $2^n x \mid y = 2^n (x \mid |y/2^n) + y \mod 2^n$;
- (c) $2^n x \wedge y = 2^n (x \wedge \lfloor y/2^n) + y \mod 2^n$.

Proof

(a) The claim is trivial if x = 0, y = 0, or $y = 2^n x$; otherwise, by Definition 3.1 (a), induction, and Lemma 1.2,

$$2^{n}x \& y = 2\left(\lfloor 2^{n}x/2\rfloor \& \lfloor y/2\rfloor\right) + (2^{n}x \bmod 2) \& (y \bmod 2)$$

$$= 2(2^{n-1}x \& \lfloor y/2\rfloor) + 0$$

$$= 2\left(2^{n-1}(x \& \lfloor \lfloor y/2\rfloor/2^{n-1}\rfloor)\right)$$

$$= 2^{n}(x \& \lfloor y/2^{n}\rfloor).$$

(b) Similarly,

$$2^{n}x \mid y = 2(\lfloor 2^{n}x/2 \rfloor \mid \lfloor y/2 \rfloor) + (2^{n}x \mod 2) \mid (y \mod 2)$$

$$= 2(2^{n-1}x \mid \lfloor y/2 \rfloor) + y \mod 2$$

$$= 2(2^{n-1}(x \mid \lfloor \lfloor y/2 \rfloor/2^{n-1} \rfloor) + \lfloor y/2 \rfloor \mod 2^{n-1}) + y \mod 2$$

$$= 2^{n}(x \mid \lfloor y/2^{n} \rfloor) + 2(\lfloor y/2 \rfloor \mod 2^{n-1}) + y \mod 2,$$

where, by Lemmas 2.3 and 2.12,

$$2(\lfloor y/2 \rfloor \mod 2^{n-1}) + y \mod 2 = 2\lfloor y/2 \rfloor [n-2:0] + y[0]$$

= $2y[n-1:1] + y[0]$
= $y[n-1:0]$
= $y \mod 2^n$.

The proof of (c) is similar to that of (b).

Corollary 3.11 Let $x \in \mathbb{Z}$ and let y be an n-bit vector, where $n \in \mathbb{N}$. Then

$$2^n x \mid y = 2^n x + y.$$

Proof By Lemmas 3.10 and 1.11 and Definition 3.1 (b),

$$2^{n}x \mid y = 2^{n}(x \mid |y/2^{n}) + y \mod 2^{n} = 2^{n}(x \mid 0) + y = 2^{n}x + y.$$

Lemma 3.12 For all $x \in \mathbb{Z}$ and $n \in \mathbb{N}$, $2^n \mid x = \begin{cases} x & \text{if } x[n] = 1\\ x + 2^n & \text{if } x[n] = 0. \end{cases}$

Proof By Definition 2.2 and Lemmas 3.4, 3.8, and 2.32,

$$(2^{n} \mid x) \bmod 2^{n+1} = (2^{n} \mid x)[n:0]$$

$$= (2^{n})[n:0] \mid x[n:0]$$

$$= \{1'1, 0'(n-1)\} \mid \{x[n], x[n-1:0]\}$$

$$= \{1'1, x[n-1:0]\}$$

$$= \begin{cases} x[n:0] & \text{if } x[n] = 1\\ x[n:0] + 2^{n} & \text{if } x[n] = 0 \end{cases}$$

$$= \begin{cases} x \bmod 2^{n+1} & \text{if } x[n] = 1\\ x \bmod 2^{n+1} + 2^{n} & \text{if } x[n] = 0. \end{cases}$$

By Lemma 3.5,

$$|(2^n \mid x)/2^{n+1}| = 0 \mid |x/2^{n+1}| = |x/2^{n+1}|.$$

The lemma follows from Definition 1.3.

The logical "and" operator may be used to extract a bit slice:

Lemma 3.13 Let $x \in \mathbb{Z}$, $n \in \mathbb{N}$, and $k \in \mathbb{N}$. If k < n, then

$$x \& (2^n - 2^k) = 2^k x[n-1:k].$$

Proof The proof is by induction on n. If n = 1, then k = 0 and

$$x \& (2^n - 2^k) = x \& 1 = 2(\lfloor x/2 \rfloor \& 0) + (x \mod 2) \& 1 = 0 + x[0] = x[n-1:k].$$

If n > 1 and k = 0, then by induction and Lemmas 2.12 and 2.32,

$$x \& (2^{n} - 2^{k}) = x \& (2^{n} - 1)$$

$$= 2(\lfloor x/2 \rfloor \& \lfloor (2^{n} - 1)/2 \rfloor) + (x \mod 2) \& ((2^{n} - 1) \mod 2)$$

$$= 2(\lfloor x/2 \rfloor \& (2^{n-1} - 1)) + (x \mod 2) \& 1$$

$$= 2\lfloor x/2 \rfloor [n - 2 : 0] + x[0]$$

$$= 2x[n - 1 : 1] + x[0]$$

$$= x[n - 1 : 0].$$

In the remaining case, n > k > 1 and

$$x \& (2^{n} - 2^{k}) = 2(\lfloor x/2 \rfloor \& \lfloor (2^{n} - 1)/2 \rfloor) + (x \mod 2) \& ((2^{n} - 2^{k}) \mod 2)$$

$$= 2(\lfloor x/2 \rfloor \& (2^{n-1} - 2^{k-1})) + (x \mod 2) \& 0$$

$$= 2\lfloor x/2 \rfloor [n - 2 : k - 1]$$

$$= x[n - 1 : k].$$

Corollary 3.14 For all $x \in \mathbb{Z}$ and $n \in \mathbb{N}$, $x \& 2^n = 2^n x[n]$.

Proof By Lemma 3.13,

$$x \& 2^n = x \& (2^{n+1} - 2^n) = x[n:n] = x[n].$$

3.2 Complement

We have a simple arithmetic definition of the logical complement.

Definition 3.2 For all $x \in \mathbb{Z}$, $\neg x = -x - 1$.

Lemma 3.15 For all $x \in \mathbb{Z}$, $\sim (\sim x) = x$.

Proof By Definition 3.2,
$$\sim(\sim x) = -(-x - 1) - 1 = x$$
.

Lemma 3.16 If $x \in \mathbb{Z}$ and $k \in \mathbb{N}$, then $\sim (2^k x) = 2^k (\sim x) + 2^k - 1$.

Proof By Definition 3.2,

$$2^{k}(\sim x) + 2^{k} - 1 = 2^{k}(-x - 1) + 2^{k} - 1 = -2^{k}x - 1 = \sim (2^{k}x).$$

3.2 Complement 47

Lemma 3.17 If $x \in \mathbb{Z}$, $n \in \mathbb{N}$, and n > 0, then $\sim \lfloor x/n \rfloor = \lfloor \sim x/n \rfloor$.

Proof By Definition 3.2 and Lemma 1.5,

$$\lfloor (\sim x)/n \rfloor = \left \lfloor \frac{-x-1}{n} \right \rfloor = \left \lfloor -\frac{x+1}{n} \right \rfloor = -\left \lfloor \frac{x}{n} \right \rfloor - 1 = \sim \lfloor x/n \rfloor.$$

Lemma 3.18 *If* $x \in \mathbb{Z}$ *and* $n \in \mathbb{N}$ *, then*

$$\sim x \mod 2^n = 2^n - (x \mod 2^n) - 1.$$

Proof First note that by Lemmas 1.10 and 1.11,

$$0 \le 2^n - (x \mod 2^n) - 1 < 2^n.$$

Therefore, by Lemmas 1.15, 1.23, and 1.11,

$$-x \mod 2^n = (-x - 1) \mod 2^n$$

$$= (2^n - (x \mod 2^n) - 1) \mod 2^n$$

$$= 2^n - (x \mod 2^n) - 1.$$

Notation For the purpose of resolving ambiguous expressions, the complement has higher precedence than the bit slice operator, e.g., $\sim x[i:j] = (\sim x)[i:j]$.

Lemma 3.19 If $x \in \mathbb{Z}$, $i \in \mathbb{N}$, $j \in \mathbb{N}$, and $j \leq i$, then

$$\sim x[i:j] = 2^{i+1-j} - x[i:j] - 1.$$

Proof By Definitions 3.2 and 2.2 and Lemmas 3.18, 1.1, and 1.5,

$$\begin{aligned}
& \sim x[i:j] = \left\lfloor (\sim x \mod 2^{i+1})/2^{j} \right\rfloor \\
& = \left\lfloor \frac{2^{i+1} - (x \mod 2^{i+1}) - 1}{2^{j}} \right\rfloor \\
& = \frac{2^{i+1}}{2^{j}} + \left\lfloor -\frac{(x \mod 2^{i+1}) + 1}{2^{j}} \right\rfloor \\
& = 2^{i+1-j} - \left\lfloor \frac{x \mod 2^{i+1}}{2^{j}} \right\rfloor - 1 \\
& = 2^{i+1-j} - x[i:j] - 1.
\end{aligned}$$

The usual bit-wise characterization of the complement is a special case of Lemma 3.19:

Corollary 3.20 If $x \in \mathbb{Z}$ and $n \in \mathbb{N}$, then $\neg x[n] \neq x[n]$.

Proof By Lemma 3.19,
$$\sim x[n] = 2^{n+1-n} - x[n] - 1 = 1 - x[n]$$
.

The remaining results of this section are properties of complements of bit slices that have proved useful in manipulating expressions derived from RTL designs.

Lemma 3.21 Let $x \in \mathbb{Z}$, $i \in \mathbb{N}$, $j \in \mathbb{N}$, $k \in \mathbb{N}$, and $\ell \in \mathbb{N}$. If $\ell \leq k \leq i-j$, then

$$\sim (x[i:j])[k:\ell] = \sim x[k+j:\ell+j].$$

Proof By Lemmas 3.19 and 2.19,

Lemma 3.22 If $x \in \mathbb{Z}$ and y in an n-bit vector, where $n \in \mathbb{N}$, then

$$\sim (x[n-1:0]) \& y = \sim x[n-1:0] \& y.$$

Proof By Lemma 3.21, $\sim (x[n-1:0])[n-1:0] = \sim x[n-1:0]$, and hence by Lemmas 3.2, 2.4, and 3.6

$$\sim (x[n-1:0]) \& y = (\sim (x[n-1:0]) \& y)[n-1:0]$$

= $\sim (x[n-1:0])[n-1:0] \& y[n-1:0]$
= $\sim x[n-1:0] \& y$.

Lemma 3.23 Let $x \in \mathbb{Z}$, $i \in \mathbb{N}$, $j \in \mathbb{N}$, $k \in \mathbb{N}$, and $\ell \in \mathbb{N}$. If $\ell \leq k \leq i-j$, then

$$\sim (\sim x[i:j])[k:\ell] = x[k+j:\ell+j].$$

Proof By Lemmas 3.19, 2.19, and 3.15,

3.3 Algebraic Properties

We conclude this chapter with a set of identities pertaining to special cases and compositions of logical operations.

The first two lemmas are immediate consequences of the definitions.

Lemma 3.24 *For all* $x \in \mathbb{Z}$.

- (a) x & 0 = 0;
- (b) $x \mid 0 = x$;
- (c) $x ^ 0 = x$.

Lemma 3.25 For all $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$,

- (a) x & x = x;
- (b) $x \mid x = x$;
- (c) $x \cdot x = 0$.

All of the remaining results of this section may be derived in a straightforward manner from Lemmas 3.20, 3.7, and 2.40.

Lemma 3.26 For all $x \in \mathbb{Z}$,

- (a) x & -1 = x;
- (b) $x \mid -1 = -1$;
- (c) x 1 = -x.

Lemma 3.27 For all $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$,

- (a) $x \mid y = 0 \Leftrightarrow x = y = 0$;
- (b) $x \cdot y = 0 \Leftrightarrow x = y$.

Proof Suppose $x \mid y = 0$. By Lemma 3.7, for all $k \in \mathbb{N}$

$$x[k] \mid y[k] = (x \mid y)[k] = 0[k] = 0,$$

and it is readily seen by exhaustive computation that this implies x[k] = y[k] = 0. It follows from Lemma 2.40 that x = y = 0. A similar argument applies to (b). \Box

The proofs of the remaining lemmas are sufficiently similar to that of Lemma 3.27 that they may be safely omitted.

Lemma 3.28 For all $x \in \mathbb{Z}$, $y \in \mathbb{Z}$, and $n \in \mathbb{Z}$,

- (a) x & y = y & x;
- (b) $x \mid y = y \mid x$;
- (c) $x \hat{y} = y \hat{x}$.

Lemma 3.29 For all $x \in \mathbb{N}$, $y \in \mathbb{N}$, and $z \in \mathbb{N}$,

- (a) (x & y) & z = x & (y & z);
- (b) $(x \mid y) \mid z = x \mid (y \mid z);$
- (c) $(x ^ y) ^ z = x ^ (y ^ z)$.

Lemma 3.30 For all $x \in \mathbb{N}$, $y \in \mathbb{N}$, and $z \in \mathbb{N}$,

- (a) $(x \mid y) \& z = (x \mid y) \& (x \mid z);$
- (b) $x \& (y \mid z) = x \& y \mid x \& z;$
- (c) $x \& y \mid x \& z \mid y \& z = x \& y \mid (x \land y) \& z$.

Lemma 3.31 For all $x \in \mathbb{N}$ and $y \in \mathbb{N}$,

- (a) $x \hat{y} = x \& \neg y \mid y \& \neg x;$ (b) $\neg (x \hat{y}) = (\neg x) \hat{y}.$