
Chapter 2
Bit Vectors

We shall use the term bit vector as a synonym of integer. Thus, a bit vector may be
positive, negative, or zero. However, only a nonnegative bit vector may be associated
with a width:

Definition 2.1 If x ∈ N, n ∈ N, and x < 2n, then x is a bit vector of width n, or an
n-bit vector.

Note that the width of a bit vector is not unique, since an n-bit vector is also an m-bit
vector for all m > n.

The bit slice and bit extraction functions are defined as follows:

Definition 2.2 Let x ∈ Z, i ∈ Z, and j ∈ Z.

(a) x[i : j] = �(x mod 2i+1)/2j �;
(b) x[i] = x[i : i].
Notation For the purpose of resolving ambiguous expressions, these operators take
precedence over the basic arithmetic operators, e.g.,

xy[i : j][k : �] = x((y[i : j])[k : �]).

For any x ∈ Z, the binary representation of x is (. . . b2b1b0)2, where bi = x[i]
for all i ∈ N. We may omit the subscript when the intention is clear. We shall show
(Lemma 2.40) that distinct integers have distinct binary representations, so that we
may write

x = (. . . b2b1b0)2.

In the sequel, we shall extend this notation to non-integral floating-point numbers:
for k ∈ N,

2−kx = (. . . bk.bk−1 . . . b1b0)2.

© Springer Nature Switzerland AG 2019
D. M. Russinoff, Formal Verification of Floating-Point Hardware Design,
https://doi.org/10.1007/978-3-319-95513-1_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95513-1_2&domain=pdf
https://doi.org/10.1007/978-3-319-95513-1_2

18 2 Bit Vectors

If x is an n-bit vector, then it is easily seen that x[i] = 0 for all i ≥ n, and we may
omit the leading zeroes in the representation of x:

x = (. . . 000bn−1 . . . b1b0)2 = (bn−1 . . . b1b0)2.

We shall also show (Corollary 2.38) that in this case,

x =
n−1∑

k=0

2kx[k].

Since bit extraction is defined as a special case of bit slice, we shall discuss the
latter in Sect. 2.1 and the former in Sect. 2.2. Section 2.3 deals with the basic RTL
operation of concatenation.

Arithmetic hardware employs a variety of encoding schemes to represent integers
and rational numbers as bit vectors. Floating-point representations are the subject
of Chap. 5. In Sects. 2.4 and 2.5, we address the simpler integer and fixed-point
formats.

2.1 Bit Slices

Lemma 2.1 For all x ∈ Z, i ∈ N, and j ∈ N, x[i : j] is an (i + 1 − j)-bit vector.

Proof By Lemmas 1.1 and 1.10, x[i : j] ∈ N. By Lemma 1.11,

x[i : j] = �(x mod 2i+1)/2j � ≤ (x mod 2i+1)/2j < 2i+1/2j = 2i+1−j .

��
Example Let x = 93 = (1011101)2. Then

x[4 : 2] = �(x mod 25)/22� = �(93 mod 32)/4� = �29/4� = 7 = (111)2

is a 3-bit vector and

x[10 : 7] = �(93 mod 211)/27� = �93/128� = 0 = (0000)2

is a 4-bit vector.

Lemma 2.2 Let x ∈ Z, y ∈ Z, i ∈ Z, and j ∈ N. If x mod 2i+1 = y mod 2i+1,
then x[i : j] = y[i : j].
Proof x[i : j] = �(x mod 2i+1)/2j � = �(y mod 2i+1)/2j � = y[i : j]. ��

2.1 Bit Slices 19

Lemma 2.3 For all x ∈ Z and i ∈ Z,

x[i : 0] = x mod 2i+1.

Proof x[i : 0] = �(x mod 2i+1)/20� = �x mod 2i+1� = x mod 2i+1. ��
Lemma 2.4 Let x ∈ Z and i ∈ N. If −2i+1 ≤ x < 2i+1, then

x[i : 0] =
{

x if x ≥ 0
x + 2i+1 if x < 0.

Proof If x ≥ 0, the claim follows from Lemma 2.3. If −2i+1 ≤ x < 0, then by
Lemmas 2.3, 1.15, and 1.11,

x[i : 0] = x mod 2i+1 = (x + 2i+1) mod 2i+1 = x + 2i+1.

��
If −2j ≤ x < 0, then x[i : j] is the bit vector of width i − j + 1 consisting of

all 1s:

Lemma 2.5 Let x ∈ Z, i ∈ N, and j ∈ N. If i ≥ j and −2j ≤ x < 0, then
x[i : j] = 2i−j+1 − 1.

Proof By Lemmas 2.3 and 1.15, x mod 2i+1 = x + 2i+1. Thus, by Definition 2.2,
Lemma 1.1, and Definition 1.1,

x[i : j] = �(x + 2i+1)/2j � = �x/2j + 2i−j+1� = �x/2j � + 2i−j+1 = 2i−j+1 − 1.

��
Corollary 2.6 If i ∈ N, j ∈ N, and i ≥ j , then (−1)[i : j] = 2i−j+1 − 1.

The following results are derived from corresponding properties of mod.

Lemma 2.7 For all x ∈ Z, y ∈ Z, i ∈ Z, j ∈ Z, and k ∈ Z, if j ≥ 0 and k ≥ i,
then

(a) (x + y[k : 0])[i : j] = (x + y)[i : j];
(b) (x − y[k : 0])[i : j] = (x + y)[i : j];
(c) (xy[k : 0])[i : j] = (xy)[i : j].
Proof By Definition 2.2 and Lemmas 1.22 and 1.19,

(x + y[i : 0])[i : j] = �(x + (y mod 2k+1) mod 2i+1)/2j �
= �((x + (y mod 2k+1) mod 2k+1) mod 2i+1)/2j �
= �(((x + y) mod 2k+1) mod 2i+1)/2j �

20 2 Bit Vectors

= �((x + y) mod 2i+1)/2j �
= (x + y)[i : j].

The other claims follow similarly from Lemmas 1.23 and 1.24. ��
By expanding the modulus, we may express a bit slice in terms of the floor alone:

Lemma 2.8 Let x ∈ Z, i ∈ Z, and j ∈ Z. If i ≥ j , then

x[i−1 : j] =
⌊ x

2j

⌋
− 2i−j

⌊ x

2i

⌋
=

⌊ x

2j

⌋
mod 2i−j .

Proof Applying Definitions 2.2 and 1.3 and Lemma 1.1, we have

x[i−1 : j] = �(x mod 2i)/2j �

=
⌊

x − �x/2i�2i

2j

⌋

=
⌊ x

2j
−

⌊ x

2i

⌋
2i−j

⌋

=
⌊ x

2j

⌋
− 2i−j

⌊ x

2i

⌋
.

The second claim follows from Definition 1.3 and Lemmas 2.8 and 1.2:

⌊ x

2j

⌋
mod 2i−j =

⌊ x

2j

⌋
− 2i−j

⌊�2−j x�
2i−j

⌋
=

⌊ x

2j

⌋
− 2i−j

⌊ x

2i

⌋
= x[i−1 : j].

��
In most cases of interest, the index arguments of x[i : j] satisfy i ≥ j ≥ 0.

However, the following lemma is worth noting.

Lemma 2.9 For all x ∈ Z, i ∈ Z, and j ∈ Z, if either i < 0 or i < j , then
x[i : j] = 0.

Proof Suppose i < 0. Since −(i + 1) ≥ 0, 2−(i+1)x ∈ Z. Applying Definition 1.3
and Lemma 1.1, we have

x mod 2i+1 = x − �x/2i+1�2i+1�
= x − �2−(i+1)x�2i+1�
= x − 2−(i+1)x2i+1�
= 0.

If i < j , then by Lemma 1.11,

x mod 2i+1 < 2i+1 ≤ 2j ,

2.1 Bit Slices 21

and hence

x[i : j] = �(x mod 2i+1)/2j � ≤ (x mod 2i+1)/2j < 1,

which, together with Lemma 2.1, implies x[i : j] = 0. ��
Here is another case in which a bit slice may be reduced to 0:

Lemma 2.10 Let x ∈ N, i ∈ N, and j ∈ N. If x is a j -bit vector, then x[i : j] = 0.

Proof By Lemmas 1.10 and 1.11,

0 ≤ x mod 2i+1 ≤ x < 2j .

Therefore, by Lemma 1.1 and Definition 1.1,

0 ≤ x[i : j] = �(x mod 2i+1)/2j � ≤ (x mod 2i+1)/2j < 1,

which, together with Lemma 2.1, implies x[i : j] = 0. ��
Corollary 2.11 For all i ∈ N and j ∈ N, 0[i : j] = 0.

A slice of a right-shifted bit vector, �x/2k�, may always be represented as a slice
of x:

Lemma 2.12 For all x ∈ N, i ∈ N, j ∈ N, and k ∈ N,

�x/2k�[i : j] = x[i + k : j + k].

Proof Let q = �x/2i+k+1� and r = x mod 2i+k+1, so that x = 2i+k+1q + r and
0 ≤ r < 2i+k+1. Then

�x/2k� = �2i+1q + r/2k� = 2i+1q + �r/2k�,

where �r/2k� ≤ r/2k ≤ 2i+1. Hence,

�x/2k� mod 2i+1 = �r/2k�

and by Definition 2.2 and Lemma 1.2,

�x/2k�[i : j] = ��r/2k�/2j � = �r/2k+j � = �(x mod 2i+k+1)/2k+j � = x[i : j].

��
Lemma 2.13 For all x ∈ N, i ∈ N, and k ∈ N,

�x/2k�[i : 0] = �x[i + k : 0]/2k�.

22 2 Bit Vectors

Proof Applying Lemma 2.12, Definition 2.2, and Lemma 2.3 in succession, we have

�x/2k�[i : 0] = x[i + k : k] = �(x mod 2i+k+1)/2k� = �x[i + k : 0]/2k�.

��
Lemma 2.14 For all x ∈ N, i ∈ N, j ∈ N, and k ∈ N,

(2kx)[i : j] = x[i − k : j − k].

Proof If k ≤ i, then by Definition 2.2 and Lemma 1.18,

(2kx)[i : j] = �(2kx mod 2i+1)/2j �
= �2k(x mod 2i−k+1)/2j �
= �(x mod 2i−k+1)/2j−k�
= x[i − k : j − k].

If i < k, then by Definition 2.2 and Corollary 1.12,

(2kx)[i : j] = �(2kx mod 2i+1)/2j �
= �(2i+1(2k−i−1x) mod 2i+1)/2j �
= 0

and x[i − k : j − k] = 0 by Lemma 2.9. ��
The next lemma provides an alternate expression for a left-shifted bit slice with

lower limit 0:

Lemma 2.15 For all x ∈ N, i ∈ N, and k ∈ N,

2kx[i : 0] = (2kx)[i + k : 0].

Proof By Lemmas 1.18 and 2.3,

(2kx)[i + k : 0] = 2kx mod 2i+k+1 = 2k(x mod 2i+1) = 2kx[i : 0].

��
We note two cases in which a bit slice of x + 2ky can be simplified.

Lemma 2.16 Let x ∈ Z, y ∈ Z, m ∈ N, n ∈ N, and k ∈ N. If k ≤ m and x < 2k ,
then

(x + 2ky)[n : m] = y[n − k : m − k].

2.1 Bit Slices 23

Proof By Lemma 2.9, we may assume that n ≥ m ≥ k. Since 0 ≤ x/2k < 1,

�(x + 2ky)/2k� = �y + 2/2k� = y.

We apply Lemma 2.12, substituting x + 2ky for x, n − k for i, and m − k for j :

y[n − k : m − k] = �(x + 2ky)/2k�[n − k : m − k] = (x + 2ky)[n : m].

��
Lemma 2.17 Let x ∈ Z, y ∈ Z, m ∈ N, n ∈ N, and k ∈ N. If n < k, then

(x + 2ky)[n : m] = x[n : m].

Proof Since 2ky = 2n+1(2k−n−1y), where 2k−n−1y ∈ Z, Lemma 1.15 implies
(x + 2ky) mod 2n+1 = x mod 2n+1. The lemma follows from Lemma 2.2. ��

Here is an important lemma that decomposes a slice into two subslices.

Lemma 2.18 Let x ∈ Z, m ∈ N, n ∈ N, and p ∈ N. If m ≤ p ≤ n, then

x[n : m] = 2p−mx[n : p] + x[p−1 : m].

Proof The proof consists of three applications of Lemma 2.8:

2p−mx[n : p] = 2p−m
(⌊ x

2p

⌋
− 2n+1−p

⌊ x

2n+1

⌋)
,

x[p−1 : m] =
⌊ x

2m

⌋
− 2p−m

⌊ x

2p

⌋
,

and hence,

2p−mx[n : p] + x[p−1 : m] =
⌊ x

2m

⌋
− 2n+1−m

⌊ x

2n+1

⌋

= x[n : m].

��
Compositions of bit slices may be reduced by means of the following.

Lemma 2.19 For all x ∈ N, i ∈ N, j ∈ N, k ∈ N, and � ∈ N,

x[i : j][k : l] =
{

x[k + j : � + j] if k ≤ i − j

x[i : � + j] if k > i − j.

Proof By Lemma 2.12,

24 2 Bit Vectors

x[i : j][k : �] = �x/2j �[i − j : 0][k : �]
= (�x/2j � mod 2i−j+1)[k : �]
= (�(�x/2j � mod 2i−j+1) mod 2k+1)/2��.

If k ≤ i − j , then this reduces, by Corollary 1.20, to

�(�x/2j � mod 2k+1)/2�� = �x/2j �[k : �] = x[k + j : � + j].

On the other hand, if k > i − j , then by Lemma 1.11,

�x/2j � mod 2i−j+1 < 2i−j+1 < 2k+1,

and by Lemma 1.11, the expression reduces instead to

�(�x/2j � mod 2i−j+1)/2�� = �x/2j �[i − j : �] = x[i : � + j].

��

2.2 Bit Extraction

Instead of Definition 2.2, we could have defined x[n] more directly as follows.

Lemma 2.20 For all x ∈ Z and n ∈ Z,

x[n] = �x/2n� mod 2.

Proof By Lemmas 2.8 and 1.2 and Definition 1.3,

x[n] = x[(n + 1)−1 : n] = �x/2n� − 2�x/2n+1�
= �x/2n� − 2��x/2n�/2�
= �x/2n� mod 2.

��
Corollary 2.21 For all x ∈ Z and n ∈ Z, x[n] ∈ {0, 1}.

Here is an equivalent recursive definition that may be used in inductive proofs.

Lemma 2.22 For all x ∈ Z and n ∈ N,

x[n] =
{

x mod 2 if n = 0
�x/2�[n−1] if n > 0.

2.2 Bit Extraction 25

Proof The base case is the n = 0 case of Lemma 2.20. The inductive case is an
instance of Lemma 2.12, with k = 1 and i = j = n − 1. ��

A number of important properties of bit extraction are special cases of the results
of Sect. 2.1 We list some of them here without proof.

Lemma 2.23 For all x ∈ Z and n ∈ Z, if n < 0, then x[n] = 0.

Lemma 2.24 For all k ∈ Z, 0[k] = 0.

Lemma 2.25 For all x ∈ Z, y ∈ Z, n ∈ Z, and k ∈ Z, if k < n and x mod 2n =
y mod 2n, then

x[k] = y[k].

Lemma 2.26 For all n ∈ Z, if x is an n-bit vector, then x[n] = 0.

Lemma 2.27 Let x ∈ Z and n ∈ N. If −2n ≤ x < 0, then x[n] = 1.

Corollary 2.28 For all i ∈ N, (−1)[i] = 1.

Lemma 2.29 For all x ∈ Z, n ∈ Z, and k ∈ Z,

(2kx)[n + k] = x[n].

Lemma 2.30 For all x ∈ N, i ∈ N, and k ∈ N,

�x/2k�[i] = x[i + k].

Lemma 2.31 For all x ∈ Z, i ∈ Z, j ∈ Z, and k ∈ Z, if 0 ≤ k ≤ i − j , then

x[i : j][k] = x[j + k].

Lemma 2.32 For all x ∈ Z, m ∈ Z, and n ∈ Z, if m ≤ n, then

x[n : m] = 2n−mx[n] + x[n−1 : m].

Lemma 2.33 For all x ∈ Z, m ∈ Z, and n ∈ Z, if m ≤ n, then

x[n : m] = x[m] + 2x[n : m+1].

Lemma 2.34 Let n ∈ N and k ∈ N, and let x be an n-bit vector. If k < n and
x ≥ 2n − 2k , then x[k] = 1.

Proof Since 2n − 2k ≤ x < 2n, 2n−k − 1 ≤ x/2k < 2n−k , and by Definition 1.1,
�x/2k� = 2n−k − 1. Now by Lemma 2.20, x[k] = (2n−k − 1) mod 2 = 1. ��
Corollary 2.35 For all n ∈ Z and x ∈ N, if 2n ≤ x < 2n+1, then x[n] = 1.

26 2 Bit Vectors

Lemma 2.36 For all n ∈ N and i ∈ Z, (2n)[i] = 1 ⇔ i = n.

Proof By Lemma 2.20, (2n)[n] = �2n/2n� mod 2 = 1 mod 2 = 1.
Suppose i
= n. If i < n, then 2i is an n-bit vector and Lemma 2.26 applies. If

i > n, then

(2i)[n] = �2i/2n� mod 2 = mod2i−n mod 2 = 0.

��
The following lemma and its corollary justify the notation discussed at the

beginning of this chapter.

Lemma 2.37 For all x ∈ N, i ∈ N, and j ∈ N,

i∑

k=j

2k−j x[k] = x[i : j].

Proof If i < j , then both sides of the equation reduce to 0 by Lemma 2.9. We
proceed by induction. Thus, for i ≥ j , applying Lemma 2.32, we have

i∑

k=j

2k−j x[k] = 2i−j x[i] +
i−1∑

k=j

2k−j x[k]

= 2i−j x[i] + x[i − i : j]
= x[i : j].

��
Corollary 2.38 If n ∈ N, n > 0, and x is an n-bit vector, then

n−1∑

k=0

2kx[k] = x.

Proof This follows from Lemmas 2.37 and 2.4. ��
The next lemma allows us to define a bit vector in a natural way as a sequence

of bits. That is, given a sequence of 1-bit vectors b0, . . . , bn−1, we may say, without
ambiguity, Let x be the bit vector of width n defined by x[k] = bk for k = 0, . . . , n−
1 The existence of such a bit vector is guaranteed by Lemma 2.39; its uniqueness
is ensured by Corollary 2.38.

Lemma 2.39 Let x = ∑n−1
i=0 2ibi , where n ∈ N and bi ∈ {0, 1}, i = 0, . . . , n − 1.

Then for k = 0, . . . , n − 1, x[k] = bk .

Proof Let U = ∑n−1
i=k+1 2ibi and L = ∑k−1

i=0 2ibi . Then

x = U + 2kbk + L.

2.2 Bit Extraction 27

Since

U = 2k+1
n−1∑

i=k+1

2i−(k+1)bi,

x mod 2k+1 = U + 2kbk + L mod 2k+1 = 2kbk + L mod 2k+1

by Lemma 1.15. But since

L ≤
k−1∑

i=0

2i = 2k − 1

and

2kbk + L ≤ 2k + 2k − 1 < 2k+1,

2kbk + L mod 2k+1 = 2kbk + L

by Lemma 1.11. Thus, by Definitions 2.2 and 2.2,

x[k] = �(x mod 2k+1)/2k� = �(2kbk + L)/2k� = �bk + L/2k� = bk.

��
A bit vector is uniquely determined by its binary representation:

Lemma 2.40 Let x ∈ Z and y ∈ Z. If x[k] = y[k] for all k ∈ N, then x = y.

Proof The proof is by induction on |x| + |y|.
Suppose x
= y. We must show that for some k ∈ N, x[k]
= y[k]. We may

assume that x[0] = y[0], and hence �x/2�
= �y/2�, for otherwise

x = 2�x/2� + x[0] = 2�y/2� + y[0] = y.

Since x
= y and x[0] = y[0], at least one of x and y must be different from both 0
and -1, and hence, by Lemma 1.3,

|�x/2�| + |�y/2�)| < |x| + |y|.

By induction, there exists k ∈ N such that �x/2�[k]
= �y/2�[k], and consequently,
by Lemma 2.30,

x[k+1] = �x/2�[k]
= �y/2�[k] = y[k+1].

��

28 2 Bit Vectors

2.3 Concatenation

If x = (βm−1 · · · β0)2 and y = (γn−1 · · · γ0)2 are considered as bit vectors of widths
m and n, respectively, then the concatenation of x and y is the (m + n)-bit vector

(βm−1 · · · β0γn−1 · · · γ0)2.

This notion is extended by the following function, which takes a list of bit vectors
and widths, coerces each bit vector to its associated width, and concatenates the
results:

Definition 2.3 For all x ∈ Z, y ∈ Z, m ∈ N, and n ∈ N,

cat (x,m, y, n) = 2nx[m−1 : 0] + y[n−1 : 0].

This construction is extended recursively to 2k arguments for arbitrary k ∈ Z
+:

cat (x1, n1, x2, n2, . . . , xk, nk) = cat (x1, n1, cat (x2, n2, . . . , xk, nk), n2+. . .+nk),

where xi ∈ Z and ni ∈ N for i = 1, . . . , k.

Associativity follows immediately:

Lemma 2.41 For all x ∈ Z, y ∈ Z, z ∈ Z, m ∈ N, n ∈ N, and p ∈ N,

cat(cat(x,m, y, n), z, p) = cat(x,m, y, n, z, p).

Lemma 2.42 For all x ∈ Z, y ∈ Z, m ∈ N, and n ∈ N, cat (x,m, y, n) is an
(m + n)-bit vector.

Proof By Lemma 2.1, x[m−1 : 0] < 2m and y[n−1 : 0] < 2n. It follows that
x[m−1 : 0] ≤ 2m − 1 and y[n−1 : 0] ≤ 2n − 1, and hence,

cat (x,m, y, n) = 2nx[m−1 : 0] + y[n−1 : 0]
≤ 2n(2m − 1) + (2n − 1)

= 2n+m − 1

< 2n+m.

��
We note several trivial cases:

Lemma 2.43 For all x ∈ Z, y ∈ Z, m ∈ N, and n ∈ N,

cat(x,m, y, 0) = x[m−1 : 0]

2.3 Concatenation 29

and

cat(x, 0, y, n) = cat(0,m, y, n) = y[n−1 : 0].

Proof These are simple consequences of Definition 2.3 and Lemmas 2.9 and 2.11.
��

Notation In standard RTL syntax, the concatenation of two bit vectors φ and ψ is
denoted by {φ,ψ}. This notation depends on a characteristic shared by conventional
hardware description languages: any expression that represents a bit vector has an
associated (explicit or implicit) width. For example, the expression sig[3:0]
is understood to be of width 4, and the expression 5’b01001 identifies the
constant 9 as a bit vector of width 5. We shall incorporate this construct into our
informal mathematical notation through an abuse of Verilog syntax, representing
cat(x,m, y, n) as

{m’x, n’y}.

The width specifier may be omitted in a context in which it can be inferred by
default.

Example If x ∈ {0, 1} and y has been identified as a bit vector of width n, then

{x, y, z[i : j], w[k]} = cat(x, 1, y, n, z[i : j], i + 1 − j,w[k], 1).

The following is a restatement of Lemma 2.18:

Lemma 2.44 Let x ∈ Z, m ∈ N, n ∈ N, and p ∈ N. If m ≤ p ≤ n, then

x[n : m] = {x[n : p], x[p−1 : m]}.

Corollary 2.45 Let x ∈ Z, m ∈ N, and n ∈ N. If m ≤ n, then

x[n : m] = {x[n], x[n−1 : m]} = {x[n : m+1], x[m]}.

Lemma 2.46 Let z = {m’x, n’y}, where x ∈ Z, y ∈ Z, m ∈ N, and n ∈ N. Then

z[n−1 : 0] = y[n−1 : 0]

and

z[n + m−1 : n] = x[m−1 : 0].

Proof By Definition 2.3, we have

z = 2nx[m−1 : 0] + y[n−1 : 0],

30 2 Bit Vectors

where 0 ≤ y[n−1 : 0] < 2n by Lemma 2.1. Thus, by Lemmas 2.3, 1.15, and 1.11,

z[n−1 : 0] = z mod 2n = y[n−1 : 0] mod 2n = y[n−1 : 0].

Now by Definition 2,

z[n + m−1 : n] = �(z mod 2n+m)/2n�.

But Lemma 2.42 yields z < 2n+m and hence, by Lemma 1.11,

z[n + m−1 : n] = �z/2n� = �x[m−1 : 0] + y[n−1 : 0]/2n�.

Finally, by Lemma 1.1, this reduces to

x[m−1 : 0] + �y[n−1 : 0]/2n� = x[m−1 : 0].

��
Corollary 2.47 Let x1 ∈ Z, y1 ∈ Z, x2 ∈ Z, y2 ∈ Z, m ∈ N, and n ∈ N. If

{m’x1, n’y1} = {m’x2, n’y2},

then x1[m−1 : 0] = x2[m−1 : 0]2 and y1[n−1 : 0]1 = y2[n−1 : 0].
Lemma 2.48 Let x ∈ Z, y ∈ Z, m ∈ N, n ∈ N, i ∈ N, and j ∈ N. If i ≥ j , then

{m’x, n’y}[i : j] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y[i : j] if n > i

x[i − n : j − n] if m + n > i ≥ j ≥ n

x[m−1 : j − n] if i ≥ m + n and j ≥ n

{x[i − n : 0], y[n−1 : j]} if m + n > i ≥ n > j

{x[m−1 : 0], y[n−1 : j]} if i ≥ n + m and n > j.

Proof Let z = {x[m−1 : 0], y[n−1 : 0]}. By Lemma 2.46,

y[n−1 : 0] = z[n−1 : 0]

and

x[m−1 : 0] = z[n + m−1 : n]

and by Lemma 2.42, z is an (m + n)-bit vector. Our goal is to compute z[i : j]. We
consider five cases as suggested by the lemma statement, each of which involves
two or more applications of Lemma 2.19.
Case 1: n > i

2.3 Concatenation 31

By Lemma 2.19,

z[i : j] = z[n−1 : 0][i : j] = y[n−1 : 0][i : j] = y[i : j].
Case 2: m + n > i ≥ j ≥ n

By Lemma 2.19,

z[i : j] = z[m + n−1 : n][i − n : j − n]
= x[m−1 : 0][i − n : j − n]
= x[i − n : j − n].

Case 3: i ≥ m + n and j ≥ n

By Lemma 2.44,

z[i : j] = {z[i : m + n], z[m + n−1 : j]}.

But z[i : m + n] = 0 by Lemma 2.10 and hence

z[i : j] = z[m + n−1 : j]

by Lemma 2.43. Now by Lemma 2.19,

z[m + n−1 : j] = z[m + n−1 : n][m−1 : j − n]
= x[m−1 : 0][m−1 : j − n]
= x[m−1 : j − n].

Case 4: m + n > i ≥ n > j

By Lemma 2.44,

z[i : j] = {z[i : n], z[n−1 : j]}.

But by Lemma 2.19,

z[i : n] = z[m + n−1 : n][i − n : 0]
= x[m−1 : 0][i − n : 0]
= x[i − n : 0]

and

z[n−1 : j] = z[n−1 : 0][n−1 : j]
= y[n−1 : 0][n−1 : j]
= y[n−1 : j].

32 2 Bit Vectors

Case 5: i ≥ n + m and n > j

By Lemma 2.44,

z[i : j] = {z[i : m + n], z[m + n−1 : n], z[n−1 : j]}.
As in Case 4, z[n−1 : j] = y[n−1 : j]. By Lemma 2.10, z[i : m + n] = 0, and
hence by Lemma 2.43,

z[i : j] = {z[m + n−1 : n], z[n−1 : j]} = {x[m−1 : 0], y[n−1 : j]}.
��

Corollary 2.49 If x ∈ Z, y ∈ Z, m ∈ N, n ∈ N, and i ∈ N, then

{m’x, n’y}[i] =
⎧
⎨

⎩

y[i] if i < n

x[i − n] if n ≤ i < m + n

0 if n + m ≤ i.

Proof The cases listed correspond to the first three cases of Lemma 2.48 with i = j .
Note that for the third case, the lemma gives x[m−1 : i − n], but since i > n + m,
i.e., i − n > m − 1, this reduces to 0 by Lemma 2.9. ��

2.4 Integer Formats

The simplest of all bit vector encoding schemes is the unsigned integer format,
whereby the first 2n natural numbers, i.e., the bit vectors of width n, are represented
by themselves under the identity mapping. However trivial, it will be convenient to
have an explicit definition of this correspondence:

Definition 2.4 If r is a n-bit vector, where n ∈ N, then

ui(r, n) = r.

Somewhat more interesting is the signed integer format, which maps the set of 2n

integers x in the range −2n−1 ≤ x < 2n−1 to the set of bit vectors of width n and
may be defined by

x �−→ x[n−1 : 0].
With respect to this mapping, the most significant bit of the encoding of x,

x[n−1 : 0][n−1] = x[n−1],

is 0 if 0 ≤ x < 2n−1 (by Lemma 2.26) and 1 if −2n−1 ≤ x < 0 (by Lemma 2.27),
and is therefore considered the sign bit of the encoding.

2.4 Integer Formats 33

The integer represented by a given encoding is computed by the following
function, as affirmed by Lemma 2.50 below:

Definition 2.5 If r is a n-bit vector, where n ∈ N, then

si(r, n) =
{

r − 2n if r[n−1] = 1
r if r[n−1] = 0.

Lemma 2.50 Let n ∈ N and x ∈ Z. If −2n−1 ≤ x < 2n−1, then

si(x[n−1 : 0], n) = x.

Proof If 0 ≤ x < 2n−1, then x[n−1 : 0] = x by Lemma 2.4, and x[n−1] = 0 by
Lemma 2.26. Thus,

si(x[n−1 : 0], n) = si(x, n) = x.

If −2n−1 ≤ x < 0, then x[n−1 : 0] = x+2n by Lemma 2.4, and (x+2n)[n−1] = 1
by Corollary 2.35. Thus,

si(x[n−1 : 0], n) = si(x + 2n, n) = (x + 2n) − 2n = x.

��
This scheme is also known as the n-bit two’s complement encoding, because if

0 ≤ x < 2n, then the encoding of −x is the complement of x with respect to 2n,
i.e.,

x + (−x)[n−1 : 0] = x + (−x + 2n) = 2n.

Lemma 2.51 If n ∈ N, r ∈ N, i ∈ N, and j ∈ N with j ≤ i < n, then

si(r, n)[i : j] = r[i : j].

Lemma 2.52 If n ∈ N, k ∈ N, and r is an n-bit vector, then

si(2kr, k + n) = 2ksi(r, n).

Proof This follows easily from Definition 2.5 and Lemma 2.29. ��
An n-bit integer encoding is converted to an m-bit encoding, where m > n, by

sign extension:

Definition 2.6 Let r be an n-bit vector, where n ∈ N, and let m ∈ N, m ≥ n. Then

sextend(m, n, r) = si(r, n)[m−1 : 0].

A sign extension of an integer encoding r represents the same value as r:

34 2 Bit Vectors

Lemma 2.53 Let r be an n-bit vector, where n ∈ N, and let m ∈ N, m ≥ n. Then

si(sextend(m, n, r),m) = si(r, n).

Proof First suppose r[n−1] = 0. Then si(r, n) = r and by Corollary 2.35, 0 ≤ r <

2n−1. By Lemma 2.4,

sextend(m, n, r) = si(r, n)[m−1 : 0] = r[m−1 : 0] = r,

and since Lemma 2.26 implies r[m−1] = 0,

si(sextend(m, n, x),m) = si(r,m) = r = si(r, n).

Now suppose r[n − 1] = 1. Then by Lemma 2.26, 2n−1 ≤ r < 2n. Now si(r, n) =
r − 2n, where −2m−1 ≤ −2n−1 ≤ r − 2n < 0. By Lemma 2.4,

sextend(m, n, r) = si(r, n)[m−1 : 0] = (r − 2n)[m−1 : 0] = r − 2n + 2m.

But since 2m−1 ≤ r−2n+2m < 2m. Corollary 2.35 implies (r−2n+2m)[m−1] = 1,
and hence

si(sextend(m, n, r),m) = si(r−2n+2m,m) = r−2n+2m−2m−r−2n = si(rl, n).

��
Given an approximation Y of an integer X, the following lemma provides a

condition under which the n-bit signed integer represented by Y is an equally
accurate approximation of the n-bit signed integer represented by X. This result is
useful in approximating the signed integer values of a “redundant” representation,
i.e., a representation of an integer as a sum or difference of two vectors. (See, for
example, the proof of Lemma 18.5.)

Lemma 2.54 Let X ∈ Z, Y ∈ Z, and n ∈ Z, with n > 0. If

|si(X mod 2n, n)| + |X − Y | < 2n−1,

then

si(X mod 2n, n) − si(Y mod 2n, n) = X − Y.

Proof Let X̄ = X mod 2n, Ȳ = Y mod 2n, and k = |X − Y |.
Case 1:

⌊
X
2n

⌋ = ⌊
Y
2n

⌋
.

In this case, X̄ − Ȳ = X − Y .
Suppose X̄ ≤ Ȳ . If X̄ ≥ 2n−1, then Ȳ ≥ 2n−1 and

si(X̄, n) − si(Ȳ , n) = (X̄ − 2n) − (Ȳ − 2n) = X̄ − Ȳ = X − Y,

2.5 Fixed-Point Formats 35

but if X̄ < 2n−1, then X̄ = si(X̄, n) < 2n−1 − k, which implies Ȳ < 2n−1 and

si(X̄, n) − si(Ȳ , n) = X̄ − Ȳ = X − Y.

On the other hand, suppose X̄ > Ȳ . If X̄ < 2n−1, then Ȳ < 2n−1 and

si(X̄, n) − si(Ȳ , n) = X̄ − Ȳ = X − Y,

but if X̄ ≥ 2n−1, then si(X̄, n) = X̄ − 2n, and since si(X̄, n) > −2n−1 + k,
X̄ > 2n−1 + k, which implies Ȳ > 2n−1 and

si(X̄, n) − si(Ȳ , n) = (X̄ − 2n) − (Ȳ − 2n) = X̄ − Ȳ = X − Y.

Case 2:
⌊

X
2n

⌋
= ⌊
Y
2n

⌋
.

Suppose X < Y . Let m = ⌊
X
2n

⌋
. Then

2nm ≤ X < 2n(m + 1) ≤ Y < X + 2n−1 < 2n(m + 2).

Thus, X̄ = X − 2nm and

Ȳ=Y −2n(m+1)=k+X−2n(m+1) = k+(X̄+2nm)−2n(m+1) = k−2n+X̄ < k < 2n−1.

But then

X̄ = Ȳ + 2n − k ≥ 2n − k > 2n−1

and

si(X̄, n) − si(Ȳ , n) = X̄ − 2n − Ȳ = (Ȳ + 2n − k) − 2n − Ȳ = −k = X − Y.

The case X > Y is similar. ��

2.5 Fixed-Point Formats

A fixed-point format may be thought of as derived from an integer format by
inserting an implicit binary point following some specified number of leading bits.
The rational value represented by an n-bit vector r with respect to an unsigned or
signed fixed-point format of width n with m integer bits is computed as follows:

36 2 Bit Vectors

Definition 2.7 Let n ∈ Z and m ∈ Z with n > 0 and let r be a bit vector of
width n.

(a) uf (r, n,m) = 2m−nui(r) = 2m−nr;

(b) sf (r, n,m) = 2m−nsi(r, n) =
{

2m−nr if r < 2n−1

2m−nr − 2m if r ≥ 2n−1,
.

The number of fractional bits of a fixed-point format of width n and m integer bits
is f = n − m. Note that while n must be positive, there is no restriction on m. If
m > n, then the interpreted value is an integer with m−n trailing zeroes and f < 0;
if m < 0, then the interpreted value is a fraction with −m leading zeroes and f > n.

We have the following expression for a bit slice of an encoding in terms of the
encoded value:

Lemma 2.55 Let n ∈ N, m ∈ N, i ∈ N, and j ∈ N with m ≤ n and j ≤ i < n.
Let f = n − m. Let r be an n-bit vector and suppose that either x = uf (r, n,m) or
x = sf (r, n,m). Then

r[i : j] = 2f −j
(
x(f −j) − x(f −i−1)

)
.

Proof If x = uf (r, n,m), then r = 2f x; if x = sf (r, n,m), then either r = 2f x or
r = 2f x + 2n. In any case, by Lemmas 2.2 and 2.8,

r[i : j] = (2f x)[i : j] =
⌊

2f x

2j

⌋
=

⌊
2f x

21+i

⌋
= 2f −j

(
x(f −j) − x(f −i−1)

)
.

��
Corollary 2.56 Let n ∈ N and m ∈ N with m ≤ n and let f = n − m. Let
k ∈ Z with f − n ≤ k < f . Let r be an n-bit vector and suppose that either
x = uf (x, n,m) or x = sf (x, n,m). Then

x(k) = x ⇔ r[f − k−1 : 0] = 0.

Proof By Lemma 2.55,

r[f − k−1 : 0] = 2f
(
x(f) − x(k)

)
= 2f

(
x − x(k)

)
.

��
The following result is useful in determining the value of a fixed-point encoding:

Lemma 2.57 Let n ∈ N and m ∈ N with m ≤ n. Let r be an n-bit vector and
x = sf (r, n,m). If y ∈ Z satisfies r ≡ y (mod 2n) and −2n−1 ≤ y < 2n−1, then

x = 2m−ny.

2.5 Fixed-Point Formats 37

Proof Since r ≡ y (mod 2n) and 0 ≤ r < 2n, r = y mod 2n = y[n−1 : 0]. By
Lemma 2.50, y = si(r, n) and hence

x = sf (r, n,m) = 2m−nsi(r, n) = 2m−ny.

��

	2 Bit Vectors
	2.1 Bit Slices
	2.2 Bit Extraction
	2.3 Concatenation
	2.4 Integer Formats
	2.5 Fixed-Point Formats

