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Foreword

Stone masons were building bridges—and using mathematics—long before 1773,
when Coulomb published his groundbreaking mathematical analysis of some funda-
mental problems in civil engineering: the bending of beams, the failure of columns,
and the determination of abutment thrusts imposed by arches. While Coulomb’s
work was appreciated by the mathematicians and physicists of the day, it was largely
irrelevant to the bridge builders who were guided by experience, tradition, and
intuition. However, over the next several centuries attitudes changed; statics is now
a standard part of the civil engineer’s training. One reason is that as materials and
requirements changed, and as mathematics and computation further developed, what
was once impractical became practical and then, perhaps, automatic. Mathematical
tools facilitated the design of safe, cost-effective, reliable structures that could not
have been built by earlier techniques.

But acceptance took time and, sometimes, dreadful experience. For example,
a catastrophic bridge failure occurred a full century after Coulomb’s work. The
bridge carrying the Edinburgh to Dundee train over the estuary of the River Tay in
Scotland collapsed in 1879, killing 75 people. A commission conducted a rigorous
investigation that identified a number of contributing factors, including failure of
the bridge designer to allow for wind loading and shoddy quality control over
the manufacturing of the ironwork. The commission’s recommendations, based on
mathematical models and empirical studies of wind speeds and pressures, were
immediately adopted by engineers designing a new rail bridge over the Forth
estuary near Edinburgh. That bridge, the longest cantilever bridge in the world
when completed in 1890 and still the second longest, has stood for over 120 years
and carries about two hundred trains daily. The lesson is clear: while mathematics
alone will not guarantee your bridge will stand, mathematics, if properly applied,
can guarantee the bridge will stand if its construction, environment, and use are as
modeled in the design.

That mathematics can guide and reassure the engineer is nothing new (though the
fact that symbolic mathematics can model the physical world is really awe-inspiring
if one just stops taking it for granted). Engineers have been using mathematics this
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way for millennia. But as our mathematical and computational tools grow more
sophisticated, they find more use in engineering.

I have witnessed this firsthand in hardware and software verification. My own
specialty is the construction and use of mechanical theorem provers, i.e., software
that attempts to prove a formula by deriving it from a small set of axioms using
a small set of inference rules like chaining together previously proved results,
substitution of equals for equals, and induction. If the axioms are all valid (“always
true”) and if the rules of inference preserve validity, then any formula so proved
must be valid. Thus, proof is a way to establish truth. Mathematicians have been
using the axiomatic method since Euclid.

A theorem is a formula that has been proved. A lemma is just another name for
a theorem, but the label lemma is generally used only for formulas whose primary
role is in the proofs of more interesting formulas. If Lemma 1 tells us that when P
is true then Q is true, and Lemma 2 tells us that when Q is true, R is true, then we
can chain them together to prove the theorem that when P is true, R is true.

But how do we know that a “proof” is a proof? Traditionally, when a mathe-
matician publicizes a proof, other mathematicians interested in that result scrutinize
it, frequently finding flaws, typos, forgotten cases, unstated assumptions, etc.
Over time these flaws are fixed—if possible—and eventually the mathematical
community accepts the formula as proved.

Mechanical theorem provers are designed to circumvent this “social process” to
some extent. If a result has been proved by a trusted mechanical prover, then one
can rest assured that the “proof” is a proof and that the formula is “always true.” The
social process need only inspect the formula itself and its underlying definitions and
decide whether the formula actually means what the author intended to say.

An important application of mechanical theorem provers is to prove properties
of computer hardware and software. Exhaustive testing is impractical for modern
computing artifacts: there are just too many cases to consider. Proof is the obvious
way to establish the truth of properties. But the mathematical social process is
not well suited to these proofs: the proofs are often long; there are myriad cases
to consider because the artifacts, their specifications, and the underlying logical
concepts are often complicated; the various logical concepts are related in a wide
variety of ways by many lemmas; and the artifacts and their properties may be
proprietary. Just keeping track of all the assumptions and known relationships can
be an almost impossible challenge. Using a machine to check proofs is an ideal
solution.

I said above that I’ve witnessed firsthand the slow acceptance of “new” mathe-
matical methods by the engineering community. Here’s part of the story:

In 1987, after 16 years of working on mechanical theorem provers for hardware
and software verification, my colleagues and I at the University of Texas at Austin
started a company whose mission was to spread the technology to industry. One
of those colleagues was David Russinoff, who joined our theorem proving group
in 1983. When we learned that David had a PhD in number theory from the
Courant Institute, we challenged him to prove Wilson’s Theorem with the prover
and offered him a master’s degree for doing so. He succeeded and went on to
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prove mechanically many other results in number theory, including Gauss’s Law of
Quadratic Reciprocity. His was the first mechanically checked proof of that theorem
and, as he writes in his online bibliography, “The primary significance of this last
result, of course, was that it finally put to rest any suspicion that the 197 previously
published proofs of this theorem were all flawed.” His humor obscures the fact that
the result was of sufficient interest that 197 proofs were worthy of publication!

The company that the UT Austin group spun off in 1987 was called Compu-
tational Logic, Inc (CLI). There we continued to develop our tools, and in 1989,
together with my colleagues Bob Boyer and Matt Kaufmann, I started work on a
new prover that we called ACL2: A Computational Logic for Applicative Common
Lisp. The characteristics of ACL2 are unimportant except for three things. First,
ACL2’s logic is a subset of a standard programming language and is thus well suited
to modeling computational artifacts like hardware designs, programming languages,
algorithms, etc. Second, the more complicated a proof is, the more help the ACL2
user has to provide. Think of the prover as trying to find a path from point A to
point B. The more intermediate milestones the user provides, the more successful
the prover will be. Those milestones are the key lemmas in the proof. Third, the
existence of prior ACL2 work in a domain can be a great aid to the user because it
may not be necessary to formalize and prove so many lemmas.

In 1995, Advanced Micro Devices (AMD) hired the company to prove the math-
ematical correctness of the microcode for its floating-point division operation on
the soon-to-be-fabricated AMD K5 microprocessor. This was especially important
because the Intel Pentium FDIV bug was just beginning to be publicized and AMD
had recently made major changes in its floating-point unit requiring the design team
to discard previously tested hardware for division and re-implement it in microcode
using floating-point addition, subtraction, and multiplication.

I temporarily joined the AMD floating-point design team to lead the CLI proof
effort. The goal was to prove that the FDIV algorithm complied with IEEE Floating-
Point Standard 754. Roughly speaking, the tasks could be thought of as follows:
formalize the relevant part of the standard, formalize the algorithm, formalize the
desired properties, and then lead the mechanical theorem prover to a proof of the
properties by discovering, formalizing, and piecing together lemmas about floating-
point operations and concepts such as rounding. ACL2 had never been used to
do proofs about floating point so there was no “bookshelf” of previously proved
lemmas to draw upon. And while I had been programming for decades and thus had
a passing familiarity with floating point, I was basically ignorant of the technical
details. The designers in the group, many with a decade or more of experience in
floating-point design, were the experts. But their explanations of the various steps
taken by the division algorithm often involved examples, graphs plotting trends in
error reduction, assertions that this or that technique was well known and had been
reliably used in earlier products, etc. My real job was to distill that informal “shop
talk” down into formulas and prove them.

Once in a weekly meeting, when asked what I’d accomplished that week, I
displayed a lemma I’d proved only to be met by the universal response “we
knew that.” However, there is a big difference between “knowing” something
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and writing it down precisely so that it is always true even when interpreted by
the most malicious of readers! The lemma under discussion was a version of
Lemma 6.85 concerning what was called “sticky” rounding. I strongly suspect that
while everybody in the room could state some of the necessary hypotheses, I was
the only person in the room who could state them all and do so with confidence.

Working with Matt Kaufmann and the lead designer, Tom Lynch, we eventually
got ACL2 to prove the theorem in question. The project took a total of 9 weeks and
the K5 was fabricated on time.

AMD was interested in proving other properties of components of its floating-
point unit, but it was uninterested in hiring CLI to do so: sharing AMD proprietary
designs with outsiders was unusual, to say the least. Aside from offering AMD
assurance that its FDIV operation was correct, AMD considered the CLI project
a test to see if our technology was useful. We passed the test, but they wanted an
AMD employee to drive the prover. The person they hired away from CLI was David
Russinoff.

One might have hoped that upon arrival at AMD, David could simply build on
the library of lemmas developed for the FDIV proof. But that library was just what
you’d expect from a 9-week crash effort: an ad hoc collection of inelegant formulas.
Each was, of course, valid—that is the beauty of mechanized proof—but they were
far from a useful theory of floating point. So David started over and followed a
disciplined approach to developing such a theory in ACL2.

Here, he presents a carefully considered collection of the key properties of
floating-point operations of use when proving a wide variety of theorems about
many different kinds of algorithms. The properties are stated accurately and in
complete detail, there are no hidden assumptions, and each lemma and theorem
is valid. I consider this work a tour de force in formal reasoning about floating-point
designs. It truly provides a formal mathematical basis for the analysis of floating
point.

The definitions and theorems in this book are shown in conventional mathemat-
ical notation, not the rigid formal syntax of ACL2. But underlying this volume
is a large collection of definitions and theorems in ACL2’s syntax, all formally
processed and certified by ACL2. That collection—built by David over 20 years
of industrial application of ACL2 to floating-point designs—is a powerful aid to
formal verification. Many familiar companies have used David’s library. This book
is exquisite documentation of that library.

If you trust ACL2 and care only about validity, the proofs shown here are
unimportant, since the formulas have been mechanically verified. But in a much
deeper sense, following the traditions of mathematics, the proofs are everything
because they explain why these formulas are valid. Each proof also illustrates how
the previous lemmas can be used—a point driven home mainly by Part V of the
book, where David formally analyzes a commercially interesting floating-point unit.

Returning to the general theme of this foreword—the role of mathematics
in the construction of useful artifacts and the adoption of techniques that were
impractical just decades earlier—it is not unusual today to see logic-based tools,
such as mechanized theorem provers, in use in design and verification groups in
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the microprocessor industry. Companies such as AMD, Arm, Centaur, Intel, Oracle,
Samsung, and Rockwell Collins have used mechanical theorem provers to prove
important theorems about their products.

That last sentence would have been unthinkable just decades ago. Formal logic,
once studied only by philosophers and logicians, now is a branch of applied
mathematics. Mechanized provers are used in the design of amazing but now
common everyday objects found in everything from high-end servers to mobile
devices and from medical instruments to aircraft avionics. Indeed, many modern
microprocessor designs simply cannot be built with confidence without such tools.
The work presented in this book makes it easier to do the once unimaginable.

Edinburgh, Scotland J Strother Moore
April 2018
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It is not the purpose of this book to expound the principles of computer arithmetic
algorithms, nor does it presume to offer instruction in the art of arithmetic circuit
design. A variety of publications spanning these subjects are readily available,
including general texts as well as more specialized treatments, covering all areas of
functionality and aspects of implementation. There is one relevant issue, however,
that remains to be adequately addressed: the problem of eliminating human error
from arithmetic hardware designs and establishing their ultimate correctness.

As in all areas of computer architecture, the designer of arithmetic circuitry
is preoccupied with efficiency. His objective is the rapid development of logic
that optimizes resource utilization and maximizes execution speed, guided by
established practices and intuition. Subtle conceptual errors and miscalculations are
accepted as inevitable, with the expectation that they will be eliminated through a
separate validation effort.

As implementations grow in complexity through the use of increasingly sophis-
ticated techniques, errors become more difficult to detect. It is generally acknowl-
edged that testing alone is insufficient to provide a satisfactory level of confidence in
the functional correctness of a state-of-the-art floating-point unit; formal verification
methods are now in widespread use. A common practice is the use of an automated
sequential logic equivalence checker [20, 34] to compare a proposed register-
transfer logic (RTL) design either to an older trusted design or to a high-level C++
model. One deficiency of this approach is that the so-called golden model, whether
coded in Verilog or C++, has typically never been formally verified itself and
thus cannot be guaranteed to be free of errors. Another is the inherent complexity
limitations of such tools [33], which have been found to render them inadequate for
the comprehensive verification of complex high-precision floating-point modules.

A variety of projects have attempted to address these issues by combining such
automatic methods with the power of interactive mechanical theorem proving [21,
25]. This book is an outgrowth of one such effort in the formal verification of
commercial floating-point units, conducted over the course of two decades during
which I was employed by Advanced Micro Devices, Inc. (1996–2011), Intel Corp.
(2012–2016), and Arm Holdings (2016–present). My theorem prover of choice
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is ACL2 [11–13], a heuristic prover based on first-order logic, list processing,
rational arithmetic, recursive functions, and mathematical induction. ACL2 is a
freely available software system, developed and maintained at the University of
Texas by Matt Kaufmann and J Moore.

The principal advantages of theorem proving over equivalence and model
checking are greater flexibility, derived from a more expressive underlying logical
notation, and scalability to more complex designs. The main drawback is the
requirement of more control and expertise on the part of the user. In the domain
of computer arithmetic, effective use of an interactive prover entails a thorough
understanding and a detailed mathematical exposition of the design of interest.
Thus, the success of our project requires an uncommonly scrupulous approach
to the design and analysis of arithmetic circuits. Loose concepts, intuition, and
arguments by example must be replaced by formal development, explicit theorems,
and rigorous proofs.

One problem to be addressed is the semantic gap between abstract behavioral
specifications and concrete hardware models. While the design of a circuit is
modeled for most purposes at the bit level, its prescribed behavior is naturally
expressed in terms of high-level arithmetic concepts and algorithms. It is often
easier to prove the correctness of an algorithm than to demonstrate that it has been
implemented accurately.

As a simple illustration, consider the addition of two numbers, x and y, as
diagrammed below in binary notation. Suppose the sum z = x +y is to be truncated
at the dotted line and that the precision of x is such that its least significant nonzero
bit lies to the left of the line.

+
1xxxxx.xxxxxxxxx 00
1yyy.yyyyyyyyy yy

1zzzzzz.zzzzzzzzz zz

Instead of computing the exact value of z and then extracting the truncated result,
an implementation may choose to perform the truncation on y instead (at the same
dotted line) before adding it to x. The designer, in order to convince himself of the
equivalence of these two approaches, might resort to a diagram like the one above.

The next logical step would be to formulate the underlying principle in precise
terms (see Lemma 6.14 in Sect. 6.1), explicitly identifying the necessary conditions
for equivalence, and establishing its correctness by rigorous mathematical proof.
The result could then be integrated into an evolving theory of computer arithmetic
and thus become available for reuse and subject to extension and generalization
(e.g., Lemma 6.97 in Sect. 6.5) as appropriate for new applications.

Such results are nowhere to be found in the existing literature, which is more
concerned with advanced techniques and optimizations than with their theoretical
underpinnings. What prevents the organization of the essential properties of the
basic data objects and operations of this domain into a theory suitable for systematic
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application? The foregoing example, however trivial, serves to illustrate one of
the main obstacles to this objective: the modeling of data at different levels of
abstraction. Numbers are naturally represented as bit vectors, which, for some
purposes, may be viewed simply as strings of Boolean values. Truncation, for
example, is conveniently described as the extraction of an initial segment of bits.
For the purpose of analyzing arithmetic operations, on the other hand, the same data
must be interpreted as abstract numbers. Although the correspondence between a
number and its binary representation is straightforward, a rigorous proof derived
from this correspondence requires more effort than an appeal to intuition based on a
simple diagram. Consequently, the essential properties of bit vector arithmetic have
never been formalized and compiled into a well-founded comprehensive theory. In
the absence of such a theory, the designer must rediscover the basics as needed,
relying on examples and intuition rather than theorems and proofs.

Nearly two centuries ago, the Norwegian mathematician Niels Abel complained
about a similar state of affairs in another area of mathematical endeavor [14]:

It lacks so completely all plan and system that it is peculiar that so many men could have
studied it. The worst is, it has never been treated stringently. There are very few theorems
. . . which have been demonstrated in a logically tenable manner. Everywhere one finds this
miserable way of concluding from the specific to the general . . .

The subject in question was the calculus, a major mathematical development
with a profound impact on the sciences, but lacking a solid logical foundation.
Various attempts to base it on geometry or on intuition derived from other areas of
mathematics proved inadequate as the discipline grew in complexity. The result was
a climate of uncertainty, controversy, and stagnation. Abel and others resolved to
restore order by rebuilding the theory of calculus solely on the basis of arithmetical
concepts, thereby laying the groundwork for modern mathematical analysis.

While the contemporary hardware engineer may not be susceptible to the
same philosophical qualms that motivated nineteenth-century mathematicians, he is
certainly concerned with the “bugs” that inevitably attend undisciplined reasoning.
Even if the analogy overreaches the present problem, it charts a course for its
solution and sets the direction of this investigation.

Contents and Structure of the Book

Our initial objective is a unified mathematical theory, derived from the first
principles of arithmetic, encompassing two distinct domains of discourse. The
first of these, which is the subject of Part I, is the realm of register-transfer logic
(RTL), comprising the primitive data types and operations on which microprocessor
designs are built: bit vectors and logical operations. A critical first step is the
careful formulation of these primitives in a manner consistent with our goals,
which sometimes requires resistance to intuition. Thus, notwithstanding its name,
we define a bit vector of width k to be a natural number less than 2k rather than
a sequence of k Boolean values. This decision will seem unnatural to those who
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are accustomed to dealing with these objects in the context of hardware description
languages, but it is a critical step in the master plan of an arithmetic-based theory.
As a consequence, which may also be disturbing to some, the logical operations are
defined recursively rather than bit-wise.

Part II addresses the second domain of interest, the more abstract world of
rational arithmetic, focusing on floating-point representations of rational numbers
as bit vectors. The benefits of a rigorous approach are most evident in the chapter on
floating-point rounding, which includes a variety of results that would otherwise be
difficult to state or prove, especially those that relate abstract arithmetic operations
on rationals to lower-level properties of bit vectors. All of the architectural rounding
modes prescribed by IEEE Standard 754 [9] are thoroughly analyzed. Moreover,
since hardware implementation is of central interest, further attention is given to
several other modes that are commonly used for internal computations but are not
normally covered in treatises on floating-point arithmetic.

In Part III, the theory is extended to the analysis of several well-known algorithms
and techniques used in the implementation of elementary arithmetic operations. The
purpose here is not to present a comprehensive survey of the field, but merely
to demonstrate a methodology for proving the correctness of implementations,
providing guidance to those who are interested in applying it further. There is
a chapter on addition, including a discussion of leading zero anticipation, and
another on multiplication, describing several versions of Booth encoding. Two
division algorithms are analyzed: a subtractive SRT algorithm, which is also
applied to square root extraction, and a multiplicative algorithm based on a fused
multiplication-addition operation.

Although IEEE 754 is routinely cited as a specification of correctness of floating-
point implementations, it contains a number of ambiguities and leaves many aspects
of behavior unspecified, as reflected in the divergent behaviors exhibited by various
“compliant” architectures, especially in the treatment of exceptional conditions. In
particular, the two primary floating-point instruction sets of the x86 architecture,
known as SSE and x87, employ distinct exception-handling procedures that have
been implicitly established across the microprocessor industry. Another important
floating-point instruction set, with its own variations of exception handling, is
provided by the Arm architecture. For every new implementation of any of these
architectures, backward compatibility is a strict requirement. Unfortunately, no
existing published reference is adequate for this purpose. When a verification
engineer seeks clarification of an architectural detail, he is likely to consult an
established expert, who may refer to a trusted RTL module or even a comment
embedded in a microcode file, but rarely a published programming manual and
never, in my experience, an IEEE standard. We address this problem in Part IV,
presenting comprehensive behavioral specifications for the elementary arithmetic
instructions of these three instruction sets—SSE, x87, and Arm—which were
compiled and tested over the course of more than twenty years through simulation
and analysis of commercial RTL models.

Part V describes and illustrates our verification methodology. In Chap. 15, we
present a functional programming language, essentially a primitive subset of C
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augmented by C++ class templates that implement integer and fixed-point registers.
This language has proved suitable for abstract modeling of floating-point RTL
designs and is susceptible to mechanical translation to the ACL2 logic. The objective
in coding a design in the language is a model that is sufficiently faithful to the RTL to
allow efficient equivalence checking by a standard commercial tool, but as abstract
as possible in order to facilitate formal analysis. The ACL2 translation of such a
model may be verified to comply with the appropriate behavioral specification of
Part IV as an application of the results of Parts I–III, thereby establishing correctness
of the original RTL. Each of Chaps. 16–19 contains a correctness proof of a module
of a state-of-the-art floating-point unit that has been formally verified through this
process.

Formalization: The Role of ACL2

All definitions, lemmas, and theorems presented in this exposition have been
formalized in the logical language of ACL2 and mechanically checked with the
ACL2 prover. The results of Parts I–IV have been collected in an evolving library—
a component of the standard ACL2 release—which has been used in the formal
verification of a variety of arithmetic RTL designs [23, 27–32]. These include the
modules presented in Part V, the proof scripts for which also reside in the ACL2
repository, and are thus available to the ACL2 user, who may wish to “replay” and
experiment with these proofs on his own machine.

The role of ACL2 in the development of the theory is evidenced in various ways
throughout the exposition, including its emphasis on recursion and induction, but
mainly in the level of rigor that is inherent in the logic and enforced by the prover.
Any vague arguments, miscalculations, or missing hypotheses may be assumed to
have been corrected through the mechanization process. With regard to style of
presentation, the result will appeal to those readers whose thought processes most
closely resemble the workings of a mechanical theorem prover; others may find it
pedantic.

The above claim regarding the correspondence between the results presented here
and their ACL2 formalizations requires a caveat. Since the ACL2 logic is limited to
rational arithmetic,1 properties that hold generally for real numbers can be stated
formally only as properties of rationals. In the chapters relevant to the theory of
rounding—Chaps. 1, 4, and 6—all results, with the single exception of Lemma 4.13,
are stated and proved more generally, with real variables appearing in place of the
rational variables found in the corresponding ACL2 code.

This limitation of the logic is especially relevant to the square root operator,
which cannot be defined as an ACL2 function. This presents a challenge in the
formalization of IEEE compliance (i.e., correctly rounded results) of a square root

1It should be noted that an extension of ACL2 supporting the reals through nonstandard analysis
has been implemented by Gamboa [6].
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implementation, which is addressed in Chap. 7. Here, we introduce an equivalent
formulation of the IEEE requirement that is confined to the domain of rational
arithmetic and thus provides for the ACL2 formalization of the architectural
specifications presented in Part IV.

On the other hand, the ACL2 connection may be safely ignored by those
uninterested in the formal aspect of the theory. Outside of Sect. 15.6, no familiarity
with ACL2, LISP, or formal logic is required of (or even useful to) the reader.
Several results depend on computations that have been executed with ACL2 and
cannot reasonably be expected to be carried out by hand,2 but in each case,
the computation is explicitly specified and may be readily confirmed in any
suitable programming language. Otherwise, the entire exposition is surveyable and
self-contained, adhering to the most basic conventions of mathematical notation,
supplemented only by several RTL constructs common to hardware description
languages, all of which are explicitly defined upon first use. Nor is any uncommon
knowledge of mathematics presupposed. The entire content should be accessible
to a competent high school student who has been exposed to the algebra of
real numbers and the principle of mathematical induction, especially one with an
assiduous capacity for detail. It must be conceded, however, that repeated attempts
to substantiate this claim have been consistently unsuccessful.

The book has been written with several purposes in mind. For the ACL2 user
interested in applying or extending the associated RTL library, it may be read as
a user’s manual. The theory might also be used to guide other verification efforts,
either without mechanical support or encoded in the formalism of another theorem
prover. A more ambitious goal is a rigorous approach to arithmetic circuit design
that is accessible and useful to architects and RTL writers.

Obtaining the Associated ACL2 Code

The ACL2 distribution [13] includes a books directory, consisting of libraries
contributed and maintained by members of the ACL2 user community. Three of
its subdirectories are related to this project:

• books/rtl/: The formalization of the theory presented in Parts I–IV;
• books/projects/rac/: The parser and ACL2 translator for the language

described in Chap. 15;
• books/projects/arm: The scripts for the proofs presented in Chaps. 16–19.

A more up-to-date version of the books directory is available more directly through
the GitHub hosting service at

https://github.com/acl2/acl2/tree/master/books/.

2These pertain to table-based reciprocal computation (Lemma 11.1), FMA-based division (Lem-
mas 11.7 and 11.9), and SRT division and square root (Lemmas 10.7, 10.8, and 10.15).
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Part I
Register-Transfer Logic

An arithmetic circuit design may be modeled at various levels of abstraction, from
a netlist, which specifies an interconnection of electronic components, to a high-
level numerical algorithm. Although the former is required for implementation,
modern synthesis tools can readily create such a model from a higher-level register-
transfer logic (RTL) design coded in a hardware description language (HDL) such
as Verilog. There also exist high-level synthesis tools that can convert numerical
algorithms coded in C++ to Verilog RTL, but these are not nearly mature enough to
achieve the level of efficiency required of today’s commercial floating-point units.
Consequently, most of the design and verification effort is conducted at the RTL
level, i.e., in terms of the flow of data between hardware registers and the logical
operations performed on them.

The following three chapters may be viewed as an exposition of basic HDL
semantics. The fundamental data type is the bit vector, which is implemented as an
ordered set of two-state devices. A possible starting point for our theory, therefore,
is the definition of a bit vector as a sequence of Boolean values. An advantage of this
approach is that it allows straightforward definitions of primitive operations such as
bit extraction and concatenation. In the realm of computer arithmetic, however, a
bit vector is viewed more fruitfully as the binary expansion of an integer. In our
formalization, we shall identify a bit vector with the number that it so represents,
i.e., we shall define a bit vector to be an integer. This naturally leads to the definition
of the primitive RTL operations as arithmetic functions. While the consequences of
this decision may sometimes seem cumbersome, its benefits will become clear in
later chapters as we further explore the arithmetic of bit vectors.

In Chap. 2, we formalize and examine the properties of bit vectors and the
primitive operations of bit slice, bit extraction, and concatenation. The bit-wise
logical operations are discussed in Chap. 3. All of these operations are defined in
terms of the basic arithmetic functions floor and modulus, which are the subject of
Chap. 1.



Chapter 1
Basic Arithmetic Functions

This chapter examines the properties of the floor, ceiling, and modulus functions,
which are central to our formulation of the RTL primitives as well as the floating-
point rounding modes. Thus, their definitions and properties are prerequisite to a
reading of the subsequent chapters. We also define and investigate the properties of
a function that truncates to a specified number of fractional bits, which is related
to the floor and is relevant to the analysis of fixed-point encodings, as discussed in
Sect. 2.5.

The reader will find most of the lemmas of this chapter to be self-evident and
may question the need to include them all, but it will prove convenient to have these
results collected for later reference.

Notation The symbols R, Q, Z, N, and Z
+ will denote the sets of all real numbers,

rational numbers, integers, natural numbers (i.e., nonnegative integers), and positive
integers, respectively.

1.1 Floor and Ceiling

The functions �x� and �x�, known as the floor and ceiling, are approximations of
reals by integers. The floor is also known as the greatest integer function, because
the value of �x� may be characterized as the greatest integer not exceeding x:

Definition 1.1 For each x ∈ R, �x� is the unique integer that satisfies

�x� ≤ x < �x� + 1.

We list several obvious consequences of the definition:
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4 1 Basic Arithmetic Functions

Lemma 1.1 Let x ∈ R, y ∈ R, and n ∈ Z.

(a) �x� = x ⇔ x ∈ Z;
(b) x ≤ y ⇒ �x� ≤ �y�;
(c) n ≤ x ⇒ n ≤ �x�;
(d) �x + n� = �x� + n.

The following simplifying rule for quotients may be less obvious:

Lemma 1.2 If x ∈ R and n ∈ Z
+, then ��x�/n� = �x/n�.

Proof Since �x� ≤ x, �x�/n ≤ x/n, and by monotonicity, ��x�/n� ≤ �x/n�. To
derive the reverse inequality, note that since x/n ≥ �x/n�, we have x ≥ n�x/n�. It
follows that �x� ≥ n�x/n�, and hence �x�/n ≥ �x/n�, which implies ��x�/n� ≥
�x/n�. ��

The next result is used in a variety of inductive proofs pertaining to bit vectors.
(See, for example, the proof of Lemma 2.40.)

Lemma 1.3 If n ∈ Z, then |�n/2�| ≤ |n|, and if n /∈ {0,−1}, then |�n/2�| < |n|.
Proof It is clear that equality holds for n = 0 or n = −1. If n ≥ 1, then

|�n/2�| = �n/2� ≤ n/2 < n = |n|.
If n ≤ −2, then

n/2 − 1 < �n/2� ≤ n/2 ≤ −1

and therefore

|�n/2�| = −�n/2� < −(n/2 − 1) = −n/2 + 1 ≤ −n = |n|.
��

The floor commutes with negation only for integer arguments:

Lemma 1.4 For all x ∈ R,

�−x� =
{−�x� if x ∈ Z

−�x� − 1 if x /∈ Z.

Proof If x ∈ Z, then Lemma 1.1 implies

�−x� = −x = −�x�.

Otherwise,

�x� < x < �x� + 1,
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which implies

−�x� − 1 < −x < −�x�,

and by Definition 1.1,

�−x� = −�x� − 1.

��
When x is expressed as a ratio of integers, we also have the following uncondi-

tional expression for �−x�.

Lemma 1.5 If m ∈ Z, n ∈ Z, and n > 0, then

�−m/n� = −�(m − 1)/n� − 1.

Proof Suppose first that m/n ∈ Z. Then

�(m − 1)/n� = �m/n − 1/n� = m/n + �−1/n� = m/n − 1

and

−�(m − 1)/n� − 1 = −m/n = �−m/n�.

Now suppose m/n /∈ Z. Then m/n > �m/n�, which implies m > �m/n�n, and
hence m ≥ �m/n�n + 1. Thus,

�m/n� ≤ (m − 1)/n < m/n < �m/n� + 1,

and by Definition 1.1, �(m − 1)/n� = �m/n�. Finally, by Lemma 1.4,

�−m/n� = −�m/n� − 1 = −�(m − 1)/n� − 1.

��
Examples

�− 6
5� = −� 6−1

5 � − 1 = −�1� − 1 = −1 − 1 = −2
�−1� = �− 5

5� = −� 5−1
5 � − 1 = −� 4

5� − 1 = 0 − 1 = −1
�− 4

5� = −� 4−1
5 � − 1 = −� 3

5� − 1 = 0 − 1 = −1

The ceiling is defined most conveniently using the floor:

Definition 1.2 For all x ∈ R, �x� = −�−x�.

We have an alternative characterization of �x�, analogous to Definition 1.1, as the
least integer not exceeded by x:
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Lemma 1.6 For all x ∈ R, �x� ∈ Z and �x� ≥ x > �x� − 1.

Proof By Definition 1.1, �−x� ≤ −x < �−x� + 1, which leads to −�−x� ≥ x <

−�−x� − 1. The lemma now follows from Definition 1.2. ��
We also have analogs of Lemmas 1.1 and 1.2:

Lemma 1.7 Let x ∈ R, y ∈ R, and n ∈ Z.

(a) �x� = x ⇔ x ∈ Z;
(b) x ≤ y ⇒ �x� ≤ �y�;
(c) n ≥ x ⇒ n ≥ �x�;
(d) �x + n� = �x� + n.

Lemma 1.8 If x ∈ R and n ∈ Z
+, then ��x�/n� = �x/n�.

Proof By Definition 1.2 and Lemma 1.2,

��x�/n� = −�−�x�/n� = −��−x�/n� = −�−x/n� = �x/n�.

��
The floor and the ceiling are related as follows.

Lemma 1.9 For all x ∈ R,

�x� =
{ �x� if x ∈ Z

�x� + 1 if x /∈ Z.

Proof If x ∈ Z, then of course, �x� = �x� = x. Otherwise, by Lemma 1.1, x = �x�,
and hence Definition 1.1 yields �x� < x < �x� + 1. Rearranging these inequalities,
we have �x� + 1 > x > (�x� + 1) − 1. By Lemma 1.6, �x� = �x� + 1. ��

1.2 Modulus

The integer quotient of x and y may be defined as �x/y�. This formulation leads to
the following characterization of the modulus function:

Definition 1.3 For all x ∈ R and y ∈ R,

x mod y =
{

x − �x/y�y if y = 0
x if y = 0.

Notation For the purpose of resolving ambiguous expressions, the precedence of
this operator is higher than that of addition and lower than that of multiplication.
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Although x mod y is of interest mainly when x ∈ Z and y ∈ Z
+, the definition

is less restrictive and arbitrary real arguments must be considered. We note the
following closure properties, which follow from Definitions 1.3 and 1.1.

Lemma 1.10 Let m ∈ Z and n ∈ Z.

(a) m mod n ∈ Z;
(b) If n > 0, then m mod n ∈ N.

We have the following upper bounds in the integer case:

Lemma 1.11 Let m ∈ Z and n ∈ Z.

(a) If n > 0, then m mod n < n;
(b) If m ≥ 0, then m mod n ≤ m;
(c) If n > m ≥ 0, then m mod n = m.

Proof

(a) By Definitions 1.3 and 1.1,

m mod n = m − �m/n�n < m − ((m/n) − 1)n = n.

(b) By Definition 1.3, m mod n = m−�m/n�n. If n > 0, then m/n > 0, �m/n� ≥
0 by Lemma 1.1, and �m/n�n ≥ 0. If n < 0, then �m/n� ≤ m/n ≤ 0, and
again, �m/n�n ≥ 0.

(c) Since 0 ≤ m/n < 1, �m/n� = 0 by Definition 1.1. Now by Definition 1.3,

m = �m/n�n + m mod n = m mod n.

��
Lemma 1.12 If a ∈ R and n ∈ R − {0}, then

m mod n = 0 ⇔ m/n ∈ Z.

Proof By Definition 1.3 and Lemma 1.1,

m mod n = 0 ⇔ m = �m/n�n ⇔ m/n = �m/n� ⇔ m/n ∈ Z.

��
Lemma 1.13 If a ∈ Z, b ∈ Z, and n ∈ Z

+, then

a mod n = b mod n ⇔ (a − b)/n ∈ Z.

Proof By Definition 1.3,

a − b = �a/n�n − �b/n�n + (a mod n) − (b mod n).
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Therefore,

(a − b)/n = �a/n� − �b/n� + ((a mod n) − (b mod n))/n

and

(a − b)/n ∈ Z ⇔ ((a mod n) − (b mod n))/n ∈ Z.

By Lemmas 1.10 and 1.11, 0 ≤ a mod n < n and 0 ≤ b mod n < n, and hence,

((a mod n) − (b mod n))/n ∈ Z ⇔ a = b.

��
Corollary 1.14 Let a ∈ Z, b ∈ Z, and n ∈ Z. If |a − b| < n, then

a mod n = b mod n ⇔ a = b.

Proof Since |(a − b)/n| < 1, (a − b)/n ∈ Z ⇔ a = b. The result follows from
Lemma 1.13. ��
Definition 1.4 For a ∈ R, b ∈ R, and n ∈ R, a is congruent to b modulo n, or

a ≡ b (mod n),

if a mod n = b mod n.

According to Lemmas 1.12 and 1.13, if a ∈ Z, b ∈ Z, and n ∈ Z
+, then

a ≡ b (mod n) ⇔ a − b ≡ 0 (mod n) ⇔ (a − b)/n ∈ Z.

Lemma 1.15 For all a ∈ Z, m ∈ Z, and n ∈ Z,

m + an ≡ m (mod n).

Proof By Definition 1.3 and Lemma 1.1,

(m + an) mod n = m + an − �(m + an)/n�
= m + an − �m/n� − a

= m − �m/n�
= m mod n.

��
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Corollary 1.16 Let a ∈ Z, m ∈ Z, n ∈ Z, and r ∈ Z.

(a) If an ≤ m < (a + 1)n, then m mod n = m − an;
(b) If an ≤ m < an + r , then m mod n < r .

Proof By Lemmas 1.15 and 1.11, an ≤ m < (a + 1)n implies

m mod n = (m − an) mod n = m − an,

and if an ≤ m < an + r , then

m mod n = (m − an) mod n ≤ m − an < r.

��
Lemma 1.17 For all m ∈ Z, n ∈ Z, and p ∈ Z,

m mod np = 0 ⇔ m mod n = 0 and �m/n� mod p = 0.

Proof By Lemma 1.13,

m mod np = 0 ⇔ m/(np) ∈ Z

⇔ m/n ∈ Z and (m/n)/p ∈ Z

⇔ m/n ∈ Z and �m/n�/p ∈ Z

⇔ m mod n = 0 and �m/n� mod p = 0.

��
Lemma 1.18 For all k ∈ Z, m ∈ Z, and n ∈ Z,

km mod kn = k(m mod n).

Proof By Definition 1.3,

km mod kn = km −
⌊

km

kn

⌋
kn

= k(m − �m/n�n)

= k(m mod n).

��
As another consequence of Lemmas 1.10 and 1.11, mod is an idempotent

operator in the sense that for n > 0,

(m mod n) mod n = m mod n.

This observation may be generalized as follows:
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Lemma 1.19 For all m ∈ Z, k ∈ Z, and n ∈ Z,

(m mod kn) mod n = m mod n.

Proof By Definition 1.3,

(m mod kn) mod n = (x mod kn) − �(x mod kn)/n�n

= x −
⌊ x

kn

⌋
kn −

⌊
x − ⌊ x

kn

⌋
kn

n

⌋
n

= x −
⌊ x

kn

⌋
kn −

⌊x

n
−
⌊ x

kn

⌋
k
⌋

n

= x −
⌊ x

kn

⌋
kn −

(⌊x

n

⌋
−
⌊ x

kn

⌋
k
)

n

= x −
⌊x

n

⌋
n

= x mod n.

��
Lemma 1.19 is used most frequently with power-of-two moduli.

Corollary 1.20 For all a ∈ Z, b ∈ Z, and m ∈ Z, if a ≥ b ≥ 0, then

(m mod 2a) mod 2b = m mod 2b.

Proof This is the case of Lemma 1.19 with n = 2b and k = 2a−b. ��
Lemma 1.21 Let a ∈ Z, m ∈ Z

+, and n ∈ Z
+. Then

⌊
a mod mn

n

⌋
=
⌊a

n

⌋
mod m.

Proof By Lemmas 1.3, 1.1, and 1.2,

⌊
a mod mn

n

⌋
=
⌊

a − mn
⌊

a
mn

⌋
n

⌋

=
⌊a

n

⌋
− m

⌊ a

mn

⌋

=
⌊a

n

⌋
− m

⌊⌊
a
n

⌋
m

⌋

=
⌊a

n

⌋
mod m.

��
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Lemma 1.22 For all a ∈ Z, b ∈ Z, and n ∈ Z,

(a + (b mod n)) mod n = (a + b) mod n.

Proof By Definition 1.3, b mod n = b − �b/n�n, and hence

(a + (b mod n)) mod n = a + (b mod n) − �(a + (b mod n))/n�n
= a + b − �b/n�n − �(a + b)/n − �b/n��n
= a + b − �b/n�n − (�(a + b)/n� − �b/n�)n
= a + b − �(a + b)/n�n
= (a + b) mod n.

��
Lemma 1.23 For all a ∈ Z, b ∈ Z, and n ∈ Z,

(a − (b mod n)) mod n = (a − b) mod n.

Proof By Definition 1.3, b mod n = b − �b/n�n, and hence

(a − (b mod n)) mod n = a − (b mod n) − �(a − (b mod n))/n�n
= a − b + �b/n�n − �(a − b)/n + �b/n��n
= a − b + �b/n�n − (�(a − b)/n� + �b/n�)n
= a − b − �(a − b)/n�n
= (a − b) mod n.

��
Lemma 1.24 For all a ∈ N, b ∈ N, and n ∈ Z

+, then

(a mod n)b mod n = ab mod n.

Proof By Definition 1.3 and Lemma 1.1,

(a mod n)b mod n = (a mod n)b −
⌊

(a mod n)b

n

⌋
n

=
(
a −

⌊a

n

⌋
n
)

b −
⌊(

a − ⌊ a
n

⌋
n
)
b

n

⌋
n

= ab −
⌊a

n

⌋
nb −

⌊
ab

n
−
⌊a

n

⌋
b

⌋
n
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= ab −
⌊a

n

⌋
nb −

(⌊
ab

n

⌋
−
⌊a

n

⌋
b

)
n

= ab −
⌊

ab

n

⌋
n

= ab mod n.

��
Lemma 1.25 For all a ∈ N, b ∈ N, c ∈ N, and n ∈ Z

+, if a ≡ b (mod n), then

a + c ≡ b + c (mod n)

and

ac ≡ bc (mod n).

Proof By Lemma 1.22,

(a+c) mod n = ((a mod n)+c) mod n = ((b mod n)+c) mod n = (b+c) mod n,

and by Lemma 1.24,

ac mod n = (a mod n)c mod n = (b mod n)c mod n = bc mod n.

��

1.3 Truncation

The following function truncates a real number to a specified number of fractional
bits:

Definition 1.5 For x ∈ R and k ∈ Z,

x(k) = �2kx�
2k

.

Note that according to Definition 1.3, an equivalent definition is

x(k) = x − x mod 2−k.

Example Let

x = 51

8
= 6 + 3

8
.
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Then

x(2) = �22x�
22

=
⌊

51
2

⌋
4

= 25

4
= 6 + 1

4
.

Lemma 1.26 If x ∈ R, m ∈ Z, k ∈ Z, and k ≤ m, then

(
x(k)
)(m) =

(
x(m)

)(k) = x(k).

Proof

(
x(k)
)(m) =

⌊
2m · �2kx�

2k

⌋
2m

=
⌊

2m−k�2kx�⌋
2m

= 2m−k�2kx�
2m

= �2kx�
2k

= x(k)

and by Lemma 1.2,

(
x(m)

)(k) =
⌊

2k · �2mx�
2m

⌋
2k

=
⌊ �2mx�

2m−k

⌋
2k

=
⌊

2mx
2m−k

⌋
2k

= �2kx�
2k

= x(k).

��
Lemma 1.27 If x ∈ R, m ∈ Z, and k ∈ Z, then

(2kx)(m) = 2kx(k+m).

Proof (2kx)(m) = 2−m�2m(2kx)� = 2k(2−(k+m)�2k+mx� = 2kx(k+m). ��
Lemma 1.28 If x ∈ R, m ∈ N, n ∈ Z, then n ≤ x ⇔ n ≤ x(m).

Proof n ≤ x ⇔ 2mn ≤ 2mx ⇔ 2mn ≤ �2mx� ⇔ n ≤ �2mx�
2m . ��

Lemma 1.29 If x ∈ R, m ∈ Z, and −2−m ≤ x < 2−m, then

x(m) =
{

0 if x ≥ 0
−2−m if x < 0.

Proof Since −1 ≤ 2mx < 1, −1 ≤ �2mx� < 1, which implies

�2mx� =
{

0 if x ≥ 0
−1 if x < 0

and

x(m) = 2−m�2mx� =
{

0 if x ≥ 0
−2−m if x < 0.

��
If k > 0, then x(−k) = 2k�2−kx� is the largest multiple of 2k that does not

exceed x.
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Example Let

x = 51

8
= 6 + 3

8
.

Then

x(−2) = 22�2−2x� = 4

⌊
51

32

⌋
= 4.

The following two lemmas have found application in the analysis of floating-
point adders. (See the proof of Lemma 17.10.)

Lemma 1.30 If k ∈ N, n ∈ N, and x ∈ R, then

(a)
⌊

x
2n

⌋(−k) ≤ x(−k)

2n ;

(b) x(−k)+2k

2n ≤ ⌊ x
2n

⌋(−k) + 2k .

Proof

(a) By Lemma 1.2,

⌊ x

2n

⌋(−k) = 2k

⌊⌊
x
2n

⌋
2k

⌋
= 2k

⌊ x

2k+n

⌋
= 2k

⎢⎢⎢⎣
⌊

x
2k

⌋
2n

⎥⎥⎥⎦ ≤ 2k

⌊
x
2k

⌋
2n

= x(−k)

2n
.

(b) By Lemmas 1.3, 1.11, and 1.2,

x(−k) + 2k

2n
=

2k
(⌊

x
2k

⌋
+ 1
)

2n

= 2k−n
(⌊ x

2k

⌋
+ 1
)

= 2k−n

⎛
⎝2n

⎢⎢⎢⎣
⌊

x
2k

⌋
2n

⎥⎥⎥⎦+
⌊ x

2k

⌋
mod 2n + 1

⎞
⎠

≤ 2k−n

⎛
⎝2n

⎢⎢⎢⎣
⌊

x
2k

⌋
2n

⎥⎥⎥⎦+ (2n − 1) + 1

⎞
⎠

= 2k

(⌊⌊
x
2n

⌋
2k

⌋
+ 1

)

=
⌊ x

2n

⌋(−k) + 2k.

��
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Lemma 1.31 Let k ∈ N, n ∈ N, x ∈ R, and y ∈ R. y = x(−k). If �2−kx� = �2−ky�
and 2−kx /∈ Z, then

(
−
⌊ y

2n

⌋
− 1
)(−k) =

(
− x

2n

)(−k)

.

Proof We simplify the expression on the left using Lemmas 1.2 and 1.5:

(
−
⌊ y

2n

⌋
− 1
)(−k) = 2k

⌊
−
⌊ y

2n

⌋+ 1

2k

⌋

= −2k

(⌊⌊ y
2n

⌋
2k

⌋
+ 1

)

= −2k

⎛
⎝
⎢⎢⎢⎣
⌊

y

2k

⌋
2n

⎥⎥⎥⎦+ 1

⎞
⎠

= −2k

⎛
⎝
⎢⎢⎢⎣
⌊

x
2k

⌋
2n

⎥⎥⎥⎦+ 1

⎞
⎠

= −2k
(⌊ x

2k+n

⌋
+ 1
)

For the expression on the right, we apply the same two lemmas and Lemma 1.4:

(
− x

2n

)(−k) = 2k

⌊
−

x
2n

2k

⌋

= 2k

⌊ −x

2k+n

⌋

= 2k

⎢⎢⎢⎣
⌊−x

2k

⌋
2n

⎥⎥⎥⎦

= 2k

⎢⎢⎢⎣−
⌊

x
2k

⌋
− 1

2n

⎥⎥⎥⎦

= −2k

⎛
⎝
⎢⎢⎢⎣
⌊

x
2k

⌋
2n

⎥⎥⎥⎦+ 1

⎞
⎠

= −2k
(⌊ x

2k+n

⌋
+ 1
)

=
(
−
⌊ y

2k

⌋
− 1
)(−k)

.

��



Chapter 2
Bit Vectors

We shall use the term bit vector as a synonym of integer. Thus, a bit vector may be
positive, negative, or zero. However, only a nonnegative bit vector may be associated
with a width:

Definition 2.1 If x ∈ N, n ∈ N, and x < 2n, then x is a bit vector of width n, or an
n-bit vector.

Note that the width of a bit vector is not unique, since an n-bit vector is also an m-bit
vector for all m > n.

The bit slice and bit extraction functions are defined as follows:

Definition 2.2 Let x ∈ Z, i ∈ Z, and j ∈ Z.

(a) x[i : j ] = �(x mod 2i+1)/2j �;
(b) x[i] = x[i : i].
Notation For the purpose of resolving ambiguous expressions, these operators take
precedence over the basic arithmetic operators, e.g.,

xy[i : j ][k : �] = x((y[i : j ])[k : �]).

For any x ∈ Z, the binary representation of x is (. . . b2b1b0)2, where bi = x[i]
for all i ∈ N. We may omit the subscript when the intention is clear. We shall show
(Lemma 2.40) that distinct integers have distinct binary representations, so that we
may write

x = (. . . b2b1b0)2.

In the sequel, we shall extend this notation to non-integral floating-point numbers:
for k ∈ N,

2−kx = (. . . bk.bk−1 . . . b1b0)2.

© Springer Nature Switzerland AG 2019
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If x is an n-bit vector, then it is easily seen that x[i] = 0 for all i ≥ n, and we may
omit the leading zeroes in the representation of x:

x = (. . . 000bn−1 . . . b1b0)2 = (bn−1 . . . b1b0)2.

We shall also show (Corollary 2.38) that in this case,

x =
n−1∑
k=0

2kx[k].

Since bit extraction is defined as a special case of bit slice, we shall discuss the
latter in Sect. 2.1 and the former in Sect. 2.2. Section 2.3 deals with the basic RTL
operation of concatenation.

Arithmetic hardware employs a variety of encoding schemes to represent integers
and rational numbers as bit vectors. Floating-point representations are the subject
of Chap. 5. In Sects. 2.4 and 2.5, we address the simpler integer and fixed-point
formats.

2.1 Bit Slices

Lemma 2.1 For all x ∈ Z, i ∈ N, and j ∈ N, x[i : j ] is an (i + 1 − j)-bit vector.

Proof By Lemmas 1.1 and 1.10, x[i : j ] ∈ N. By Lemma 1.11,

x[i : j ] = �(x mod 2i+1)/2j � ≤ (x mod 2i+1)/2j < 2i+1/2j = 2i+1−j .

��
Example Let x = 93 = (1011101)2. Then

x[4 : 2] = �(x mod 25)/22� = �(93 mod 32)/4� = �29/4� = 7 = (111)2

is a 3-bit vector and

x[10 : 7] = �(93 mod 211)/27� = �93/128� = 0 = (0000)2

is a 4-bit vector.

Lemma 2.2 Let x ∈ Z, y ∈ Z, i ∈ Z, and j ∈ N. If x mod 2i+1 = y mod 2i+1,
then x[i : j ] = y[i : j ].
Proof x[i : j ] = �(x mod 2i+1)/2j � = �(y mod 2i+1)/2j � = y[i : j ]. ��
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Lemma 2.3 For all x ∈ Z and i ∈ Z,

x[i : 0] = x mod 2i+1.

Proof x[i : 0] = �(x mod 2i+1)/20� = �x mod 2i+1� = x mod 2i+1. ��
Lemma 2.4 Let x ∈ Z and i ∈ N. If −2i+1 ≤ x < 2i+1, then

x[i : 0] =
{

x if x ≥ 0
x + 2i+1 if x < 0.

Proof If x ≥ 0, the claim follows from Lemma 2.3. If −2i+1 ≤ x < 0, then by
Lemmas 2.3, 1.15, and 1.11,

x[i : 0] = x mod 2i+1 = (x + 2i+1) mod 2i+1 = x + 2i+1.

��
If −2j ≤ x < 0, then x[i : j ] is the bit vector of width i − j + 1 consisting of

all 1s:

Lemma 2.5 Let x ∈ Z, i ∈ N, and j ∈ N. If i ≥ j and −2j ≤ x < 0, then
x[i : j ] = 2i−j+1 − 1.

Proof By Lemmas 2.3 and 1.15, x mod 2i+1 = x + 2i+1. Thus, by Definition 2.2,
Lemma 1.1, and Definition 1.1,

x[i : j ] = �(x + 2i+1)/2j � = �x/2j + 2i−j+1� = �x/2j � + 2i−j+1 = 2i−j+1 − 1.

��
Corollary 2.6 If i ∈ N, j ∈ N, and i ≥ j , then (−1)[i : j ] = 2i−j+1 − 1.

The following results are derived from corresponding properties of mod.

Lemma 2.7 For all x ∈ Z, y ∈ Z, i ∈ Z, j ∈ Z, and k ∈ Z, if j ≥ 0 and k ≥ i,
then

(a) (x + y[k : 0])[i : j ] = (x + y)[i : j ];
(b) (x − y[k : 0])[i : j ] = (x + y)[i : j ];
(c) (xy[k : 0])[i : j ] = (xy)[i : j ].
Proof By Definition 2.2 and Lemmas 1.22 and 1.19,

(x + y[i : 0])[i : j ] = �(x + (y mod 2k+1) mod 2i+1)/2j �
= �((x + (y mod 2k+1) mod 2k+1) mod 2i+1)/2j �
= �(((x + y) mod 2k+1) mod 2i+1)/2j �
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= �((x + y) mod 2i+1)/2j �
= (x + y)[i : j ].

The other claims follow similarly from Lemmas 1.23 and 1.24. ��
By expanding the modulus, we may express a bit slice in terms of the floor alone:

Lemma 2.8 Let x ∈ Z, i ∈ Z, and j ∈ Z. If i ≥ j , then

x[i−1 : j ] =
⌊ x

2j

⌋
− 2i−j

⌊ x

2i

⌋
=
⌊ x

2j

⌋
mod 2i−j .

Proof Applying Definitions 2.2 and 1.3 and Lemma 1.1, we have

x[i−1 : j ] = �(x mod 2i )/2j �

=
⌊

x − �x/2i�2i

2j

⌋

=
⌊ x

2j
−
⌊ x

2i

⌋
2i−j

⌋

=
⌊ x

2j

⌋
− 2i−j

⌊ x

2i

⌋
.

The second claim follows from Definition 1.3 and Lemmas 2.8 and 1.2:

⌊ x

2j

⌋
mod 2i−j =

⌊ x

2j

⌋
− 2i−j

⌊�2−j x�
2i−j

⌋
=
⌊ x

2j

⌋
− 2i−j

⌊ x

2i

⌋
= x[i−1 : j ].

��
In most cases of interest, the index arguments of x[i : j ] satisfy i ≥ j ≥ 0.

However, the following lemma is worth noting.

Lemma 2.9 For all x ∈ Z, i ∈ Z, and j ∈ Z, if either i < 0 or i < j , then
x[i : j ] = 0.

Proof Suppose i < 0. Since −(i + 1) ≥ 0, 2−(i+1)x ∈ Z. Applying Definition 1.3
and Lemma 1.1, we have

x mod 2i+1 = x − �x/2i+1�2i+1�
= x − �2−(i+1)x�2i+1�
= x − 2−(i+1)x2i+1�
= 0.

If i < j , then by Lemma 1.11,

x mod 2i+1 < 2i+1 ≤ 2j ,
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and hence

x[i : j ] = �(x mod 2i+1)/2j � ≤ (x mod 2i+1)/2j < 1,

which, together with Lemma 2.1, implies x[i : j ] = 0. ��
Here is another case in which a bit slice may be reduced to 0:

Lemma 2.10 Let x ∈ N, i ∈ N, and j ∈ N. If x is a j -bit vector, then x[i : j ] = 0.

Proof By Lemmas 1.10 and 1.11,

0 ≤ x mod 2i+1 ≤ x < 2j .

Therefore, by Lemma 1.1 and Definition 1.1,

0 ≤ x[i : j ] = �(x mod 2i+1)/2j � ≤ (x mod 2i+1)/2j < 1,

which, together with Lemma 2.1, implies x[i : j ] = 0. ��
Corollary 2.11 For all i ∈ N and j ∈ N, 0[i : j ] = 0.

A slice of a right-shifted bit vector, �x/2k�, may always be represented as a slice
of x:

Lemma 2.12 For all x ∈ N, i ∈ N, j ∈ N, and k ∈ N,

�x/2k�[i : j ] = x[i + k : j + k].

Proof Let q = �x/2i+k+1� and r = x mod 2i+k+1, so that x = 2i+k+1q + r and
0 ≤ r < 2i+k+1. Then

�x/2k� = �2i+1q + r/2k� = 2i+1q + �r/2k�,

where �r/2k� ≤ r/2k ≤ 2i+1. Hence,

�x/2k� mod 2i+1 = �r/2k�

and by Definition 2.2 and Lemma 1.2,

�x/2k�[i : j ] = ��r/2k�/2j � = �r/2k+j � = �(x mod 2i+k+1)/2k+j � = x[i : j ].

��
Lemma 2.13 For all x ∈ N, i ∈ N, and k ∈ N,

�x/2k�[i : 0] = �x[i + k : 0]/2k�.
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Proof Applying Lemma 2.12, Definition 2.2, and Lemma 2.3 in succession, we have

�x/2k�[i : 0] = x[i + k : k] = �(x mod 2i+k+1)/2k� = �x[i + k : 0]/2k�.

��
Lemma 2.14 For all x ∈ N, i ∈ N, j ∈ N, and k ∈ N,

(2kx)[i : j ] = x[i − k : j − k].

Proof If k ≤ i, then by Definition 2.2 and Lemma 1.18,

(2kx)[i : j ] = �(2kx mod 2i+1)/2j �
= �2k(x mod 2i−k+1)/2j �
= �(x mod 2i−k+1)/2j−k�
= x[i − k : j − k].

If i < k, then by Definition 2.2 and Corollary 1.12,

(2kx)[i : j ] = �(2kx mod 2i+1)/2j �
= �(2i+1(2k−i−1x) mod 2i+1)/2j �
= 0

and x[i − k : j − k] = 0 by Lemma 2.9. ��
The next lemma provides an alternate expression for a left-shifted bit slice with

lower limit 0:

Lemma 2.15 For all x ∈ N, i ∈ N, and k ∈ N,

2kx[i : 0] = (2kx)[i + k : 0].

Proof By Lemmas 1.18 and 2.3,

(2kx)[i + k : 0] = 2kx mod 2i+k+1 = 2k(x mod 2i+1) = 2kx[i : 0].

��
We note two cases in which a bit slice of x + 2ky can be simplified.

Lemma 2.16 Let x ∈ Z, y ∈ Z, m ∈ N, n ∈ N, and k ∈ N. If k ≤ m and x < 2k ,
then

(x + 2ky)[n : m] = y[n − k : m − k].
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Proof By Lemma 2.9, we may assume that n ≥ m ≥ k. Since 0 ≤ x/2k < 1,

�(x + 2ky)/2k� = �y + 2/2k� = y.

We apply Lemma 2.12, substituting x + 2ky for x, n − k for i, and m − k for j :

y[n − k : m − k] = �(x + 2ky)/2k�[n − k : m − k] = (x + 2ky)[n : m].

��
Lemma 2.17 Let x ∈ Z, y ∈ Z, m ∈ N, n ∈ N, and k ∈ N. If n < k, then

(x + 2ky)[n : m] = x[n : m].

Proof Since 2ky = 2n+1(2k−n−1y), where 2k−n−1y ∈ Z, Lemma 1.15 implies
(x + 2ky) mod 2n+1 = x mod 2n+1. The lemma follows from Lemma 2.2. ��

Here is an important lemma that decomposes a slice into two subslices.

Lemma 2.18 Let x ∈ Z, m ∈ N, n ∈ N, and p ∈ N. If m ≤ p ≤ n, then

x[n : m] = 2p−mx[n : p] + x[p−1 : m].

Proof The proof consists of three applications of Lemma 2.8:

2p−mx[n : p] = 2p−m
(⌊ x

2p

⌋
− 2n+1−p

⌊ x

2n+1

⌋)
,

x[p−1 : m] =
⌊ x

2m

⌋
− 2p−m

⌊ x

2p

⌋
,

and hence,

2p−mx[n : p] + x[p−1 : m] =
⌊ x

2m

⌋
− 2n+1−m

⌊ x

2n+1

⌋

= x[n : m].

��
Compositions of bit slices may be reduced by means of the following.

Lemma 2.19 For all x ∈ N, i ∈ N, j ∈ N, k ∈ N, and � ∈ N,

x[i : j ][k : l] =
{

x[k + j : � + j ] if k ≤ i − j

x[i : � + j ] if k > i − j.

Proof By Lemma 2.12,
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x[i : j ][k : �] = �x/2j �[i − j : 0][k : �]
= (�x/2j � mod 2i−j+1)[k : �]
= (�(�x/2j � mod 2i−j+1) mod 2k+1)/2��.

If k ≤ i − j , then this reduces, by Corollary 1.20, to

�(�x/2j � mod 2k+1)/2�� = �x/2j �[k : �] = x[k + j : � + j ].

On the other hand, if k > i − j , then by Lemma 1.11,

�x/2j � mod 2i−j+1 < 2i−j+1 < 2k+1,

and by Lemma 1.11, the expression reduces instead to

�(�x/2j � mod 2i−j+1)/2�� = �x/2j �[i − j : �] = x[i : � + j ].

��

2.2 Bit Extraction

Instead of Definition 2.2, we could have defined x[n] more directly as follows.

Lemma 2.20 For all x ∈ Z and n ∈ Z,

x[n] = �x/2n� mod 2.

Proof By Lemmas 2.8 and 1.2 and Definition 1.3,

x[n] = x[(n + 1)−1 : n] = �x/2n� − 2�x/2n+1�
= �x/2n� − 2��x/2n�/2�
= �x/2n� mod 2.

��
Corollary 2.21 For all x ∈ Z and n ∈ Z, x[n] ∈ {0, 1}.

Here is an equivalent recursive definition that may be used in inductive proofs.

Lemma 2.22 For all x ∈ Z and n ∈ N,

x[n] =
{

x mod 2 if n = 0
�x/2�[n−1] if n > 0.
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Proof The base case is the n = 0 case of Lemma 2.20. The inductive case is an
instance of Lemma 2.12, with k = 1 and i = j = n − 1. ��

A number of important properties of bit extraction are special cases of the results
of Sect. 2.1 We list some of them here without proof.

Lemma 2.23 For all x ∈ Z and n ∈ Z, if n < 0, then x[n] = 0.

Lemma 2.24 For all k ∈ Z, 0[k] = 0.

Lemma 2.25 For all x ∈ Z, y ∈ Z, n ∈ Z, and k ∈ Z, if k < n and x mod 2n =
y mod 2n, then

x[k] = y[k].

Lemma 2.26 For all n ∈ Z, if x is an n-bit vector, then x[n] = 0.

Lemma 2.27 Let x ∈ Z and n ∈ N. If −2n ≤ x < 0, then x[n] = 1.

Corollary 2.28 For all i ∈ N, (−1)[i] = 1.

Lemma 2.29 For all x ∈ Z, n ∈ Z, and k ∈ Z,

(2kx)[n + k] = x[n].

Lemma 2.30 For all x ∈ N, i ∈ N, and k ∈ N,

�x/2k�[i] = x[i + k].

Lemma 2.31 For all x ∈ Z, i ∈ Z, j ∈ Z, and k ∈ Z, if 0 ≤ k ≤ i − j , then

x[i : j ][k] = x[j + k].

Lemma 2.32 For all x ∈ Z, m ∈ Z, and n ∈ Z, if m ≤ n, then

x[n : m] = 2n−mx[n] + x[n−1 : m].

Lemma 2.33 For all x ∈ Z, m ∈ Z, and n ∈ Z, if m ≤ n, then

x[n : m] = x[m] + 2x[n : m+1].

Lemma 2.34 Let n ∈ N and k ∈ N, and let x be an n-bit vector. If k < n and
x ≥ 2n − 2k , then x[k] = 1.

Proof Since 2n − 2k ≤ x < 2n, 2n−k − 1 ≤ x/2k < 2n−k , and by Definition 1.1,
�x/2k� = 2n−k − 1. Now by Lemma 2.20, x[k] = (2n−k − 1) mod 2 = 1. ��
Corollary 2.35 For all n ∈ Z and x ∈ N, if 2n ≤ x < 2n+1, then x[n] = 1.
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Lemma 2.36 For all n ∈ N and i ∈ Z, (2n)[i] = 1 ⇔ i = n.

Proof By Lemma 2.20, (2n)[n] = �2n/2n� mod 2 = 1 mod 2 = 1.
Suppose i = n. If i < n, then 2i is an n-bit vector and Lemma 2.26 applies. If

i > n, then

(2i )[n] = �2i/2n� mod 2 = mod2i−n mod 2 = 0.

��
The following lemma and its corollary justify the notation discussed at the

beginning of this chapter.

Lemma 2.37 For all x ∈ N, i ∈ N, and j ∈ N,

i∑
k=j

2k−j x[k] = x[i : j ].

Proof If i < j , then both sides of the equation reduce to 0 by Lemma 2.9. We
proceed by induction. Thus, for i ≥ j , applying Lemma 2.32, we have

i∑
k=j

2k−j x[k] = 2i−j x[i] +
i−1∑
k=j

2k−j x[k]

= 2i−j x[i] + x[i − i : j ]
= x[i : j ].

��
Corollary 2.38 If n ∈ N, n > 0, and x is an n-bit vector, then

n−1∑
k=0

2kx[k] = x.

Proof This follows from Lemmas 2.37 and 2.4. ��
The next lemma allows us to define a bit vector in a natural way as a sequence

of bits. That is, given a sequence of 1-bit vectors b0, . . . , bn−1, we may say, without
ambiguity, Let x be the bit vector of width n defined by x[k] = bk for k = 0, . . . , n−
1 . . . . The existence of such a bit vector is guaranteed by Lemma 2.39; its uniqueness
is ensured by Corollary 2.38.

Lemma 2.39 Let x = ∑n−1
i=0 2ibi , where n ∈ N and bi ∈ {0, 1}, i = 0, . . . , n − 1.

Then for k = 0, . . . , n − 1, x[k] = bk .

Proof Let U =∑n−1
i=k+1 2ibi and L =∑k−1

i=0 2ibi . Then

x = U + 2kbk + L.
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Since

U = 2k+1
n−1∑

i=k+1

2i−(k+1)bi,

x mod 2k+1 = U + 2kbk + L mod 2k+1 = 2kbk + L mod 2k+1

by Lemma 1.15. But since

L ≤
k−1∑
i=0

2i = 2k − 1

and

2kbk + L ≤ 2k + 2k − 1 < 2k+1,

2kbk + L mod 2k+1 = 2kbk + L

by Lemma 1.11. Thus, by Definitions 2.2 and 2.2,

x[k] = �(x mod 2k+1)/2k� = �(2kbk + L)/2k� = �bk + L/2k� = bk.

��
A bit vector is uniquely determined by its binary representation:

Lemma 2.40 Let x ∈ Z and y ∈ Z. If x[k] = y[k] for all k ∈ N, then x = y.

Proof The proof is by induction on |x| + |y|.
Suppose x = y. We must show that for some k ∈ N, x[k] = y[k]. We may

assume that x[0] = y[0], and hence �x/2� = �y/2�, for otherwise

x = 2�x/2� + x[0] = 2�y/2� + y[0] = y.

Since x = y and x[0] = y[0], at least one of x and y must be different from both 0
and -1, and hence, by Lemma 1.3,

|�x/2�| + |�y/2�)| < |x| + |y|.

By induction, there exists k ∈ N such that �x/2�[k] = �y/2�[k], and consequently,
by Lemma 2.30,

x[k+1] = �x/2�[k] = �y/2�[k] = y[k+1].

��
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2.3 Concatenation

If x = (βm−1 · · · β0)2 and y = (γn−1 · · · γ0)2 are considered as bit vectors of widths
m and n, respectively, then the concatenation of x and y is the (m + n)-bit vector

(βm−1 · · · β0γn−1 · · · γ0)2.

This notion is extended by the following function, which takes a list of bit vectors
and widths, coerces each bit vector to its associated width, and concatenates the
results:

Definition 2.3 For all x ∈ Z, y ∈ Z, m ∈ N, and n ∈ N,

cat (x,m, y, n) = 2nx[m−1 : 0] + y[n−1 : 0].

This construction is extended recursively to 2k arguments for arbitrary k ∈ Z
+:

cat (x1, n1, x2, n2, . . . , xk, nk) = cat (x1, n1, cat (x2, n2, . . . , xk, nk), n2+. . .+nk),

where xi ∈ Z and ni ∈ N for i = 1, . . . , k.

Associativity follows immediately:

Lemma 2.41 For all x ∈ Z, y ∈ Z, z ∈ Z, m ∈ N, n ∈ N, and p ∈ N,

cat(cat(x,m, y, n), z, p) = cat(x,m, y, n, z, p).

Lemma 2.42 For all x ∈ Z, y ∈ Z, m ∈ N, and n ∈ N, cat (x,m, y, n) is an
(m + n)-bit vector.

Proof By Lemma 2.1, x[m−1 : 0] < 2m and y[n−1 : 0] < 2n. It follows that
x[m−1 : 0] ≤ 2m − 1 and y[n−1 : 0] ≤ 2n − 1, and hence,

cat (x,m, y, n) = 2nx[m−1 : 0] + y[n−1 : 0]
≤ 2n(2m − 1) + (2n − 1)

= 2n+m − 1

< 2n+m.

��
We note several trivial cases:

Lemma 2.43 For all x ∈ Z, y ∈ Z, m ∈ N, and n ∈ N,

cat(x,m, y, 0) = x[m−1 : 0]
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and

cat(x, 0, y, n) = cat(0,m, y, n) = y[n−1 : 0].

Proof These are simple consequences of Definition 2.3 and Lemmas 2.9 and 2.11.
��

Notation In standard RTL syntax, the concatenation of two bit vectors φ and ψ is
denoted by {φ,ψ}. This notation depends on a characteristic shared by conventional
hardware description languages: any expression that represents a bit vector has an
associated (explicit or implicit) width. For example, the expression sig[3:0]
is understood to be of width 4, and the expression 5’b01001 identifies the
constant 9 as a bit vector of width 5. We shall incorporate this construct into our
informal mathematical notation through an abuse of Verilog syntax, representing
cat(x,m, y, n) as

{m’x, n’y}.

The width specifier may be omitted in a context in which it can be inferred by
default.

Example If x ∈ {0, 1} and y has been identified as a bit vector of width n, then

{x, y, z[i : j ], w[k]} = cat(x, 1, y, n, z[i : j ], i + 1 − j,w[k], 1).

The following is a restatement of Lemma 2.18:

Lemma 2.44 Let x ∈ Z, m ∈ N, n ∈ N, and p ∈ N. If m ≤ p ≤ n, then

x[n : m] = {x[n : p], x[p−1 : m]}.

Corollary 2.45 Let x ∈ Z, m ∈ N, and n ∈ N. If m ≤ n, then

x[n : m] = {x[n], x[n−1 : m]} = {x[n : m+1], x[m]}.

Lemma 2.46 Let z = {m’x, n’y}, where x ∈ Z, y ∈ Z, m ∈ N, and n ∈ N. Then

z[n−1 : 0] = y[n−1 : 0]

and

z[n + m−1 : n] = x[m−1 : 0].

Proof By Definition 2.3, we have

z = 2nx[m−1 : 0] + y[n−1 : 0],
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where 0 ≤ y[n−1 : 0] < 2n by Lemma 2.1. Thus, by Lemmas 2.3, 1.15, and 1.11,

z[n−1 : 0] = z mod 2n = y[n−1 : 0] mod 2n = y[n−1 : 0].

Now by Definition 2,

z[n + m−1 : n] = �(z mod 2n+m)/2n�.

But Lemma 2.42 yields z < 2n+m and hence, by Lemma 1.11,

z[n + m−1 : n] = �z/2n� = �x[m−1 : 0] + y[n−1 : 0]/2n�.

Finally, by Lemma 1.1, this reduces to

x[m−1 : 0] + �y[n−1 : 0]/2n� = x[m−1 : 0].

��
Corollary 2.47 Let x1 ∈ Z, y1 ∈ Z, x2 ∈ Z, y2 ∈ Z, m ∈ N, and n ∈ N. If

{m’x1, n’y1} = {m’x2, n’y2},

then x1[m−1 : 0] = x2[m−1 : 0]2 and y1[n−1 : 0]1 = y2[n−1 : 0].
Lemma 2.48 Let x ∈ Z, y ∈ Z, m ∈ N, n ∈ N, i ∈ N, and j ∈ N. If i ≥ j , then

{m’x, n’y}[i : j ] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y[i : j ] if n > i

x[i − n : j − n] if m + n > i ≥ j ≥ n

x[m−1 : j − n] if i ≥ m + n and j ≥ n

{x[i − n : 0], y[n−1 : j ]} if m + n > i ≥ n > j

{x[m−1 : 0], y[n−1 : j ]} if i ≥ n + m and n > j.

Proof Let z = {x[m−1 : 0], y[n−1 : 0]}. By Lemma 2.46,

y[n−1 : 0] = z[n−1 : 0]

and

x[m−1 : 0] = z[n + m−1 : n]

and by Lemma 2.42, z is an (m + n)-bit vector. Our goal is to compute z[i : j ]. We
consider five cases as suggested by the lemma statement, each of which involves
two or more applications of Lemma 2.19.
Case 1: n > i
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By Lemma 2.19,

z[i : j ] = z[n−1 : 0][i : j ] = y[n−1 : 0][i : j ] = y[i : j ].
Case 2: m + n > i ≥ j ≥ n

By Lemma 2.19,

z[i : j ] = z[m + n−1 : n][i − n : j − n]
= x[m−1 : 0][i − n : j − n]
= x[i − n : j − n].

Case 3: i ≥ m + n and j ≥ n

By Lemma 2.44,

z[i : j ] = {z[i : m + n], z[m + n−1 : j ]}.

But z[i : m + n] = 0 by Lemma 2.10 and hence

z[i : j ] = z[m + n−1 : j ]

by Lemma 2.43. Now by Lemma 2.19,

z[m + n−1 : j ] = z[m + n−1 : n][m−1 : j − n]
= x[m−1 : 0][m−1 : j − n]
= x[m−1 : j − n].

Case 4: m + n > i ≥ n > j

By Lemma 2.44,

z[i : j ] = {z[i : n], z[n−1 : j ]}.

But by Lemma 2.19,

z[i : n] = z[m + n−1 : n][i − n : 0]
= x[m−1 : 0][i − n : 0]
= x[i − n : 0]

and

z[n−1 : j ] = z[n−1 : 0][n−1 : j ]
= y[n−1 : 0][n−1 : j ]
= y[n−1 : j ].
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Case 5: i ≥ n + m and n > j

By Lemma 2.44,

z[i : j ] = {z[i : m + n], z[m + n−1 : n], z[n−1 : j ]}.
As in Case 4, z[n−1 : j ] = y[n−1 : j ]. By Lemma 2.10, z[i : m + n] = 0, and
hence by Lemma 2.43,

z[i : j ] = {z[m + n−1 : n], z[n−1 : j ]} = {x[m−1 : 0], y[n−1 : j ]}.
��

Corollary 2.49 If x ∈ Z, y ∈ Z, m ∈ N, n ∈ N, and i ∈ N, then

{m’x, n’y}[i] =
⎧⎨
⎩

y[i] if i < n

x[i − n] if n ≤ i < m + n

0 if n + m ≤ i.

Proof The cases listed correspond to the first three cases of Lemma 2.48 with i = j .
Note that for the third case, the lemma gives x[m−1 : i − n], but since i > n + m,
i.e., i − n > m − 1, this reduces to 0 by Lemma 2.9. ��

2.4 Integer Formats

The simplest of all bit vector encoding schemes is the unsigned integer format,
whereby the first 2n natural numbers, i.e., the bit vectors of width n, are represented
by themselves under the identity mapping. However trivial, it will be convenient to
have an explicit definition of this correspondence:

Definition 2.4 If r is a n-bit vector, where n ∈ N, then

ui(r, n) = r.

Somewhat more interesting is the signed integer format, which maps the set of 2n

integers x in the range −2n−1 ≤ x < 2n−1 to the set of bit vectors of width n and
may be defined by

x �−→ x[n−1 : 0].
With respect to this mapping, the most significant bit of the encoding of x,

x[n−1 : 0][n−1] = x[n−1],

is 0 if 0 ≤ x < 2n−1 (by Lemma 2.26) and 1 if −2n−1 ≤ x < 0 (by Lemma 2.27),
and is therefore considered the sign bit of the encoding.
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The integer represented by a given encoding is computed by the following
function, as affirmed by Lemma 2.50 below:

Definition 2.5 If r is a n-bit vector, where n ∈ N, then

si(r, n) =
{

r − 2n if r[n−1] = 1
r if r[n−1] = 0.

Lemma 2.50 Let n ∈ N and x ∈ Z. If −2n−1 ≤ x < 2n−1, then

si(x[n−1 : 0], n) = x.

Proof If 0 ≤ x < 2n−1, then x[n−1 : 0] = x by Lemma 2.4, and x[n−1] = 0 by
Lemma 2.26. Thus,

si(x[n−1 : 0], n) = si(x, n) = x.

If −2n−1 ≤ x < 0, then x[n−1 : 0] = x+2n by Lemma 2.4, and (x+2n)[n−1] = 1
by Corollary 2.35. Thus,

si(x[n−1 : 0], n) = si(x + 2n, n) = (x + 2n) − 2n = x.

��
This scheme is also known as the n-bit two’s complement encoding, because if

0 ≤ x < 2n, then the encoding of −x is the complement of x with respect to 2n,
i.e.,

x + (−x)[n−1 : 0] = x + (−x + 2n) = 2n.

Lemma 2.51 If n ∈ N, r ∈ N, i ∈ N, and j ∈ N with j ≤ i < n, then

si(r, n)[i : j ] = r[i : j ].

Lemma 2.52 If n ∈ N, k ∈ N, and r is an n-bit vector, then

si(2kr, k + n) = 2ksi(r, n).

Proof This follows easily from Definition 2.5 and Lemma 2.29. ��
An n-bit integer encoding is converted to an m-bit encoding, where m > n, by

sign extension:

Definition 2.6 Let r be an n-bit vector, where n ∈ N, and let m ∈ N, m ≥ n. Then

sextend(m, n, r) = si(r, n)[m−1 : 0].

A sign extension of an integer encoding r represents the same value as r:
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Lemma 2.53 Let r be an n-bit vector, where n ∈ N, and let m ∈ N, m ≥ n. Then

si(sextend(m, n, r),m) = si(r, n).

Proof First suppose r[n−1] = 0. Then si(r, n) = r and by Corollary 2.35, 0 ≤ r <

2n−1. By Lemma 2.4,

sextend(m, n, r) = si(r, n)[m−1 : 0] = r[m−1 : 0] = r,

and since Lemma 2.26 implies r[m−1] = 0,

si(sextend(m, n, x),m) = si(r,m) = r = si(r, n).

Now suppose r[n − 1] = 1. Then by Lemma 2.26, 2n−1 ≤ r < 2n. Now si(r, n) =
r − 2n, where −2m−1 ≤ −2n−1 ≤ r − 2n < 0. By Lemma 2.4,

sextend(m, n, r) = si(r, n)[m−1 : 0] = (r − 2n)[m−1 : 0] = r − 2n + 2m.

But since 2m−1 ≤ r−2n+2m < 2m. Corollary 2.35 implies (r−2n+2m)[m−1] = 1,
and hence

si(sextend(m, n, r),m) = si(r−2n+2m,m) = r−2n+2m−2m−r−2n = si(rl, n).

��
Given an approximation Y of an integer X, the following lemma provides a

condition under which the n-bit signed integer represented by Y is an equally
accurate approximation of the n-bit signed integer represented by X. This result is
useful in approximating the signed integer values of a “redundant” representation,
i.e., a representation of an integer as a sum or difference of two vectors. (See, for
example, the proof of Lemma 18.5.)

Lemma 2.54 Let X ∈ Z, Y ∈ Z, and n ∈ Z, with n > 0. If

|si(X mod 2n, n)| + |X − Y | < 2n−1,

then

si(X mod 2n, n) − si(Y mod 2n, n) = X − Y.

Proof Let X̄ = X mod 2n, Ȳ = Y mod 2n, and k = |X − Y |.
Case 1:

⌊
X
2n

⌋ = ⌊ Y
2n

⌋
.

In this case, X̄ − Ȳ = X − Y .
Suppose X̄ ≤ Ȳ . If X̄ ≥ 2n−1, then Ȳ ≥ 2n−1 and

si(X̄, n) − si(Ȳ , n) = (X̄ − 2n) − (Ȳ − 2n) = X̄ − Ȳ = X − Y,
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but if X̄ < 2n−1, then X̄ = si(X̄, n) < 2n−1 − k, which implies Ȳ < 2n−1 and

si(X̄, n) − si(Ȳ , n) = X̄ − Ȳ = X − Y.

On the other hand, suppose X̄ > Ȳ . If X̄ < 2n−1, then Ȳ < 2n−1 and

si(X̄, n) − si(Ȳ , n) = X̄ − Ȳ = X − Y,

but if X̄ ≥ 2n−1, then si(X̄, n) = X̄ − 2n, and since si(X̄, n) > −2n−1 + k,
X̄ > 2n−1 + k, which implies Ȳ > 2n−1 and

si(X̄, n) − si(Ȳ , n) = (X̄ − 2n) − (Ȳ − 2n) = X̄ − Ȳ = X − Y.

Case 2:
⌊

X
2n

⌋ = ⌊ Y
2n

⌋
.

Suppose X < Y . Let m = ⌊ X
2n

⌋
. Then

2nm ≤ X < 2n(m + 1) ≤ Y < X + 2n−1 < 2n(m + 2).

Thus, X̄ = X − 2nm and

Ȳ=Y −2n(m+1)=k+X−2n(m+1) = k+(X̄+2nm)−2n(m+1) = k−2n+X̄ < k < 2n−1.

But then

X̄ = Ȳ + 2n − k ≥ 2n − k > 2n−1

and

si(X̄, n) − si(Ȳ , n) = X̄ − 2n − Ȳ = (Ȳ + 2n − k) − 2n − Ȳ = −k = X − Y.

The case X > Y is similar. ��

2.5 Fixed-Point Formats

A fixed-point format may be thought of as derived from an integer format by
inserting an implicit binary point following some specified number of leading bits.
The rational value represented by an n-bit vector r with respect to an unsigned or
signed fixed-point format of width n with m integer bits is computed as follows:
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Definition 2.7 Let n ∈ Z and m ∈ Z with n > 0 and let r be a bit vector of
width n.

(a) uf (r, n,m) = 2m−nui(r) = 2m−nr;

(b) sf (r, n,m) = 2m−nsi(r, n) =
{

2m−nr if r < 2n−1

2m−nr − 2m if r ≥ 2n−1,
.

The number of fractional bits of a fixed-point format of width n and m integer bits
is f = n − m. Note that while n must be positive, there is no restriction on m. If
m > n, then the interpreted value is an integer with m−n trailing zeroes and f < 0;
if m < 0, then the interpreted value is a fraction with −m leading zeroes and f > n.

We have the following expression for a bit slice of an encoding in terms of the
encoded value:

Lemma 2.55 Let n ∈ N, m ∈ N, i ∈ N, and j ∈ N with m ≤ n and j ≤ i < n.
Let f = n − m. Let r be an n-bit vector and suppose that either x = uf (r, n,m) or
x = sf (r, n,m). Then

r[i : j ] = 2f −j
(
x(f −j) − x(f −i−1)

)
.

Proof If x = uf (r, n,m), then r = 2f x; if x = sf (r, n,m), then either r = 2f x or
r = 2f x + 2n. In any case, by Lemmas 2.2 and 2.8,

r[i : j ] = (2f x)[i : j ] =
⌊

2f x

2j

⌋
=
⌊

2f x

21+i

⌋
= 2f −j

(
x(f −j) − x(f −i−1)

)
.

��
Corollary 2.56 Let n ∈ N and m ∈ N with m ≤ n and let f = n − m. Let
k ∈ Z with f − n ≤ k < f . Let r be an n-bit vector and suppose that either
x = uf (x, n,m) or x = sf (x, n,m). Then

x(k) = x ⇔ r[f − k−1 : 0] = 0.

Proof By Lemma 2.55,

r[f − k−1 : 0] = 2f
(
x(f ) − x(k)

)
= 2f

(
x − x(k)

)
.

��
The following result is useful in determining the value of a fixed-point encoding:

Lemma 2.57 Let n ∈ N and m ∈ N with m ≤ n. Let r be an n-bit vector and
x = sf (r, n,m). If y ∈ Z satisfies r ≡ y (mod 2n) and −2n−1 ≤ y < 2n−1, then

x = 2m−ny.
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Proof Since r ≡ y (mod 2n) and 0 ≤ r < 2n, r = y mod 2n = y[n−1 : 0]. By
Lemma 2.50, y = si(r, n) and hence

x = sf (r, n,m) = 2m−nsi(r, n) = 2m−ny.

��



Chapter 3
Logical Operations

In this chapter, we define and analyze the four basic logical operations: the unary
“not”, or complement, and the binary “and”, “inclusive or” and “exclusive or”.
These are commonly known as bit-wise operations, as each one may be computed by
performing a certain operation on each bit of its argument (in the unary case) or each
pair of corresponding bits of its arguments (for binary operations). For example, the
logical “and” x & y of two bit vectors may be specified in a bit-wise manner as the
bit vector z such that for all k ∈ N, z[k] = 1 iff x[k] = y[k] = 1.

In the context of our formalization, however, the logical operations are more
naturally defined as arithmetic functions: the complement is constructed as an
arithmetic difference and the binary operations are defined by recursive formulas,
which facilitate inductive proofs of their relevant properties. Among these are the
bit-wise characterizations, as represented by Lemmas 3.7 and 3.20.

3.1 Binary Operations

Following standard RTL syntax, we denote “and”, “inclusive or” and “exclusive or”
with the infix symbols &, |, and ^, respectively.

Definition 3.1 For all x ∈ Z and y ∈ Z,

(a) x & y =
⎧⎨
⎩

0 if x = 0 or y = 0
x if x = y

2 · (�x/2� & �y/2�) + (x mod 2) & (y mod 2) otherwise,

(b) x | y =
⎧⎨
⎩

y if x = 0 or x = y

x if y = 0
2 · (�x/2� | �y/2�) + (x mod 2) | (y mod 2) otherwise;
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(c) x ^ y =

⎧⎪⎪⎨
⎪⎪⎩

y if x = 0
x if y = 0
0 if x = y

2 · (�x/2� ^ �y/2�) + (x mod 2) ^ (y mod 2) otherwise.

It is not obvious that these are admissible recursive definitions, i.e., that each of
them is satisfied by a unique function. To establish this, it suffices to demonstrate
the existence of a measure function μ : Z × Z → N that strictly decreases on each
recursive call. Thus, we define

μ(x, y) =
{

0 if x = y

|xy| if x = y.

For the admissibility of each of the three definitions, we must show that μ satisfies
the following two inequalities, corresponding to the two recursive calls, under the
restrictions x = 0, y = 0, and x = y:

(1) μ(�x/2�, �y/2�) < μ(x, y).
(2) μ(x mod 2, y mod 2) < μ(x, y)..

Since the restrictions imply that at least one of x and y is neither 0 nor −1, (1)
follows from Lemma 1.3. To establish (2), note that either x mod 2 = 0, y mod 2 =
0, or x mod 2 = 1 = y mod 2. In any case,

μ(x mod 2, y mod 2) = 0 < |xy| = μ(x, y).

The proof of the following is a typical inductive argument based on the recursion
of Definition 3.1 (a).

Lemma 3.1 If x ∈ N and y ∈ Z, then 0 ≤ x & y ≤ x.

Proof We may assume that x = 0, y = 0, and x = y. Thus,

x & y = 2(�x/2� & �y/2�) + x mod 2 & y mod 2

and by induction,

0 ≤ x & y ≤ 2�x/2� + x mod 2 = x.

��
Corollary 3.2 If x is an n-bit vector and y ∈ Z, then x & y is an n-bit vector.

Proof By Lemma 3.1, 0 ≤ x & y ≤ x < 2n ��
Lemma 3.3 If x and y and n-bit vectors, then so are x | y and x ^ y.

Proof The same argument applies to both operations. The claim is trivial if n = 0,
x = 0, y = 0, or x = y. In all other cases, �x/2� and �y/2� are (n − 1)-bit vectors
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and by induction, so is, for example, �x/2� | �y/2�. Thus,

x | y = 2(�x/2� | �y/2�) + (x mod 2) | (y mod 2) ≤ 2 · (2n−1 − 1) + 1 < 2n.

��
Lemma 3.4 For all x ∈ Z, y ∈ Z, and n ∈ N,

(a) (x & y) mod 2n = (x mod 2n) & (y mod 2n);
(b) (x | y) mod 2n = (x mod 2n) | (y mod 2n);
(c) (x ^ y) mod 2n = (x mod 2n) ^ (y mod 2n).

Proof We present the proof for (a); (b) and (c) are similar.
We may assume that n > 0, x = 0, y = 0, and x = y. By Definition 3.1 (a) and

Lemma 1.22,

(x & y) mod 2n

= (2 · (�x/2� & �y/2�) + (x mod 2) & (y mod 2)) mod 2n

= (
(2 · (�x/2� & �y/2�)) mod 2n + (x mod 2) & (y mod 2)

)
mod 2n.

By induction and Lemmas 1.18, 2.3, and 2.13, the first addend may be written as

(2 · (�x/2� & �y/2�)) mod 2n = 2 ·
(
(�x/2� & �y/2�) mod 2n−1

)

= 2 ·
(
(�x/2� mod 2n−1) & (�y/2� mod 2n−1)

)

= 2 · (�x/2�[n − 2 : 0] & �y/2�[n − 2 : 0])
= 2 · (�x[n−1 : 0]/2� & �y[n−1 : 0]/2�) ,

and by Lemmas 2.22 and 2.31, the second addend is

(x mod 2) & (y mod 2) = x[0] & y[0] = x[n−1 : 0][0] & y[n−1 : 0][0]
= (x[n−1 : 0] mod 2) & (y[n−1 : 0] mod 2).

Thus, by Definition 3.1 (a) and Lemmas 3.2 and 2.3,

(x & y) mod 2n = (x[n−1 : 0] & y[n−1 : 0]) mod 2n

= x[n−1 : 0] & y[n−1 : 0]
= (x mod 2n) & (y mod 2n).

��
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Lemma 3.5 For all x ∈ Z, y ∈ Z, and n ∈ N,

(a) �(x & y)/2n� = �x/2n� & �y/2n�;
(b) �(x | y)/2n� = �x/2n� | �y/2n�;
(c) �(x ^ y)/2n� = �x/2n� ^ �y/2n�.

Proof We present the proof for (a); (b) and (c) are similar.
We may assume that n > 0, x = 0, y = 0, and x = y. By Lemma 1.2, induction,

and Definition 3.1 (a),

�(x & y)/2n� =
⌊
�(x & y)/2n−1�/2

⌋

=
⌊
(�x/2n−1� & �y/2n−1�)/2

⌋

=
⌊
�x/2n−1�/2� & �x/2n−1�/2�

⌋

= ⌊
x/2n� & �y/2n

⌋
.

��
All three binary logical operators commute with the bit slice operator:

Lemma 3.6 For all x ∈ Z, y ∈ Z, i ∈ N, and j ∈ N,

(a) (x & y)[i : j ] = x[i : j ] & y[i : j ];
(b) (x | y)[i : j ] = x[i : j ] | y[i : j ];
(c) (x ^ y)[i : j ] = x[i : j ] ^ y[i : j ].
Proof We present the proof for (a); (b) and (c) are similar.

We may assume that n > 0, x = 0, y = 0, and x = y. By Definition 2.2 and
Lemmas 3.4 and 3.5,

(x & y)[i : j ] =
⌊
((x & y) mod 2i+1)/2j

⌋

=
⌊
((x mod 2i+1) & (y mod 2i+1))/2j

⌋

= �(x mod 2i+1)/2j � & �(y mod 2i+1)/2j �
= x[i : j ] & y[i : j ].

��
Corollary 3.7 For all x ∈ Z, y ∈ Z, and k ∈ N,

(a) (x & y)[n] = x[n] & y[n];
(b) (x | y)[n] = x[n] | y[n];
(c) (x ^ y)[n] = x[n] ^ y[n].
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Lemma 3.8 For all x1 ∈ Z, y1 ∈ Z, x2 ∈ Z, y2 ∈ Z, m ∈ N, and n ∈ N,

(a) {m’x1, n’y1} & {m’x2, n’y2} = {m’(x1 & x2), n’(y1 & y2)};
(b) {m’x1, n’y1} | {m’x2, n’y2} = {m’(x1 | x2), n’(y1 | y2)};
(c) {m’x1, n’y1} ^ {m’x2, n’y2} = {m’(x1 ^ x2), n’(y1 ^ y2)}.
Proof We present the proof for (a); (b) and (c) are similar.

Let C = {m’x1, n’y1} & {m’x2, n’y2}. By Lemmas 3.4 and 2.48,

C mod 2n

= {x1[m–1 : 0], y1[n–1 : 0]}[n–1 : 0] & {x2[m–1 : 0], y2[n–1 : 0]}[n–1 : 0]
= y1[n–1 : 0] & y2[n–1 : 0].

By Lemma 3.5,

�C/2n� = �{x1[m–1 : 0], y1[n–1 : 0]}/2n� & �{x2[m–1 : 0], y2[n–1 : 0]}/2n�,

where, by Definition 2.3 and the properties of the floor,

�{xi[m–1 : 0], yi[n–1 : 0]}/2n� = �(2nxi[m–1 : 0] + yi[n–1 : 0])/2n�
= xi[m–1 : 0] + �yi[n–1 : 0]/2n�
= xi[m–1 : 0].

Thus,

�C/2n� = x1[m–1 : 0] & x2[m–1 : 0].

Finally, by Definitions 1.3 and 2.3,

C = �C/2n�2n + (C mod 2n))

= 2n(x1[m–1 : 0] & x2[m–1 : 0]) + y1[m–1 : 0] & y2[m–1 : 0])
= {x1[m–1 : 0] & x2[m–1 : 0], y1[n–1 : 0] & y2[n–1 : 0]}.

��
Lemma 3.9 For all x ∈ Z, y ∈ Z, and n ∈ N,

(a) 2n(x & y) = 2nx & 2ny;
(b) 2n(x | y) = 2nx | 2ny;
(c) 2n(x ^ y) = 2nx ^ 2ny.

Proof We present the proof for (a); (b) and (c) are similar.
We may assume that n > 0, x = 0, y = 0, and x = y. By induction and

Definition 3.1 (a),
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2n(x & y) = 2
(

2n−1(x & y)
)

= 2
(

2n−1x & 2n−1y
)

= 2
(�2nx/2� & �2nx/2�)+ (2nx mod 2) & (2ny mod 2)

= 2nx & 2ny.

��
Lemma 3.10 For all x ∈ Z, y ∈ Z, and n ∈ N,

(a) 2nx & y = 2n(x & �y/2n);
(b) 2nx | y = 2n(x | �y/2n) + y mod 2n;
(c) 2nx ^ y = 2n(x ^ �y/2n) + y mod 2n.

Proof

(a) The claim is trivial if x = 0, y = 0, or y = 2nx; otherwise, by Definition 3.1 (a),
induction, and Lemma 1.2,

2nx & y = 2
(�2nx/2� & �y/2�)+ (2nx mod 2) & (y mod 2)

= 2(2n−1x & �y/2�) + 0

= 2
(

2n−1(x &
⌊
�y/2�/2n−1

⌋
)
)

= 2n(x & �y/2n�).

(b) Similarly,

2nx | y = 2
(�2nx/2� | �y/2�)+ (2nx mod 2) | (y mod 2)

= 2(2n−1x | �y/2�) + y mod 2

= 2
(

2n−1
(
x |

⌊
�y/2�/2n−1

⌋)
+ �y/2� mod 2n−1

)
+ y mod 2

= 2n(x | �y/2n�) + 2(�y/2� mod 2n−1) + y mod 2,

where, by Lemmas 2.3 and 2.12,

2(�y/2� mod 2n−1) + y mod 2 = 2�y/2�[n − 2 : 0] + y[0]
= 2y[n−1 : 1] + y[0]
= y[n−1 : 0]
= y mod 2n.
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The proof of (c) is similar to that of (b). ��
Corollary 3.11 Let x ∈ Z and let y be an n-bit vector, where n ∈ N. Then

2nx | y = 2nx + y.

Proof By Lemmas 3.10 and 1.11 and Definition 3.1 (b),

2nx | y = 2n(x | �y/2n) + y mod 2n = 2n(x | 0) + y = 2nx + y.

��
Lemma 3.12 For all x ∈ Z and n ∈ N, 2n | x =

{
x if x[n] = 1
x + 2n if x[n] = 0.

Proof By Definition 2.2 and Lemmas 3.4, 3.8, and 2.32,

(2n | x) mod 2n+1 = (2n | x)[n : 0]
= (2n)[n : 0] | x[n : 0]
= {1′1, 0′(n − 1)} | {x[n], x[n−1 : 0]}
= {1′1, x[n−1 : 0]}

=
{

x[n : 0] if x[n] = 1
x[n : 0] + 2n if x[n] = 0

=
{

x mod 2n+1 if x[n] = 1
x mod 2n+1 + 2n if x[n] = 0.

By Lemma 3.5,

�(2n | x)/2n+1� = 0 | �x/2n+1� = �x/2n+1�.

The lemma follows from Definition 1.3. ��
The logical “and” operator may be used to extract a bit slice:

Lemma 3.13 Let x ∈ Z, n ∈ N, and k ∈ N. If k < n, then

x & (2n − 2k) = 2kx[n−1 : k].

Proof The proof is by induction on n. If n = 1, then k = 0 and

x & (2n − 2k) = x & 1 = 2(�x/2� & 0) + (x mod 2) & 1 = 0 + x[0] = x[n−1 : k].

If n > 1 and k = 0, then by induction and Lemmas 2.12 and 2.32,
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x & (2n − 2k) = x & (2n − 1)

= 2(�x/2� & �(2n − 1)/2�) + (x mod 2) & ((2n − 1) mod 2)

= 2(�x/2� & (2n−1 − 1)) + (x mod 2) & 1

= 2�x/2�[n − 2 : 0] + x[0]
= 2x[n−1 : 1] + x[0]
= x[n−1 : 0].

In the remaining case, n > k > 1 and

x & (2n − 2k) = 2(�x/2� & �(2n − 1)/2�) + (x mod 2) & ((2n − 2k) mod 2)

= 2(�x/2� & (2n−1 − 2k−1)) + (x mod 2) & 0

= 2�x/2�[n − 2 : k−1]
= x[n−1 : k].

��
Corollary 3.14 For all x ∈ Z and n ∈ N, x & 2n = 2nx[n].
Proof By Lemma 3.13,

x & 2n = x & (2n+1 − 2n) = x[n : n] = x[n].

��

3.2 Complement

We have a simple arithmetic definition of the logical complement.

Definition 3.2 For all x ∈ Z, ~x = −x − 1.

Lemma 3.15 For all x ∈ Z, ~(~x) = x.

Proof By Definition 3.2, ~(~x) = −(−x − 1) − 1 = x. ��
Lemma 3.16 If x ∈ Z and k ∈ N, then ~(2kx) = 2k(~x) + 2k − 1.

Proof By Definition 3.2,

2k(~x) + 2k − 1 = 2k(−x − 1) + 2k − 1 = −2kx − 1 = ~(2kx).

��
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Lemma 3.17 If x ∈ Z, n ∈ N, and n > 0, then ~�x/n� = �~x/n�.

Proof By Definition 3.2 and Lemma 1.5,

�(~x)/n� =
⌊−x − 1

n

⌋
=
⌊
−x + 1

n

⌋
= −

⌊x

n

⌋
− 1 = ~�x/n�.

��
Lemma 3.18 If x ∈ Z and n ∈ N, then

~x mod 2n = 2n − (x mod 2n) − 1.

Proof First note that by Lemmas 1.10 and 1.11,

0 ≤ 2n − (x mod 2n) − 1 < 2n.

Therefore, by Lemmas 1.15, 1.23, and 1.11,

~x mod 2n = (−x − 1) mod 2n

= (2n − (x mod 2n) − 1) mod 2n

= 2n − (x mod 2n) − 1.

��
Notation For the purpose of resolving ambiguous expressions, the complement has
higher precedence than the bit slice operator, e.g., ~x[i : j ] = (~x)[i : j ].
Lemma 3.19 If x ∈ Z, i ∈ N, j ∈ N, and j ≤ i, then

~x[i : j ] = 2i+1−j − x[i : j ] − 1.

Proof By Definitions 3.2 and 2.2 and Lemmas 3.18, 1.1, and 1.5,

~x[i : j ] =
⌊
(~x mod 2i+1)/2j

⌋

=
⌊

2i+1 − (x mod 2i+1) − 1

2j

⌋

= 2i+1

2j
+
⌊
− (x mod 2i+1) + 1

2j

⌋

= 2i+1−j −
⌊

x mod 2i+1

2j

⌋
− 1

= 2i+1−j − x[i : j ] − 1.

��
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The usual bit-wise characterization of the complement is a special case of
Lemma 3.19:

Corollary 3.20 If x ∈ Z and n ∈ N, then ~x[n] = x[n].
Proof By Lemma 3.19, ~x[n] = 2n+1−n − x[n] − 1 = 1 − x[n]. ��

The remaining results of this section are properties of complements of bit slices
that have proved useful in manipulating expressions derived from RTL designs.

Lemma 3.21 Let x ∈ Z, i ∈ N, j ∈ N, k ∈ N, and � ∈ N. If � ≤ k ≤ i − j , then

~(x[i : j ])[k : �] = ~x[k + j : � + j ].

Proof By Lemmas 3.19 and 2.19,

~(x[i : j ])[k : �] = 2k+1−� − x[i : j ][k : �] − 1

= 2(k+j)+1−(�+j) − x[k + j : � + j ] − 1

= ~x[k + j : � + j ].
��

Lemma 3.22 If x ∈ Z and y in an n-bit vector, where n ∈ N, then

~(x[n−1 : 0]) & y = ~x[n−1 : 0] & y.

Proof By Lemma 3.21, ~(x[n−1 : 0])[n−1 : 0] = ~x[n−1 : 0], and hence by
Lemmas 3.2, 2.4, and 3.6

~(x[n−1 : 0]) & y = (~(x[n−1 : 0]) & y) [n−1 : 0]
= ~(x[n−1 : 0])[n−1 : 0] & y[n−1 : 0]
= ~x[n−1 : 0] & y.

��
Lemma 3.23 Let x ∈ Z, i ∈ N, j ∈ N, k ∈ N, and � ∈ N. If � ≤ k ≤ i − j , then

~(~x[i : j ])[k : �] = x[k + j : � + j ].

Proof By Lemmas 3.19, 2.19, and 3.15,

~(~x[i : j ])[k : �] = 2k+1−� − ~x[i : j ][k : �] − 1

= 2(k+j)+1−(�+j) − ~x[k + j : � + j ] − 1

= ~(~x)[k + j : � + j ]
= x[k + j : � + j ].

��
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3.3 Algebraic Properties

We conclude this chapter with a set of identities pertaining to special cases and
compositions of logical operations.

The first two lemmas are immediate consequences of the definitions.

Lemma 3.24 For all x ∈ Z,

(a) x & 0 = 0;
(b) x | 0 = x;
(c) x ^ 0 = x.

Lemma 3.25 For all x ∈ Z and y ∈ Z,

(a) x & x = x;
(b) x | x = x;
(c) x ^ x = 0.

All of the remaining results of this section may be derived in a straightforward
manner from Lemmas 3.20, 3.7, and 2.40.

Lemma 3.26 For all x ∈ Z,

(a) x & − 1 = x;
(b) x | − 1 = −1;
(c) x ^ − 1 = ~x.

Lemma 3.27 For all x ∈ Z and y ∈ Z,

(a) x | y = 0 ⇔ x = y = 0;
(b) x ^ y = 0 ⇔ x = y.

Proof Suppose x | y = 0. By Lemma 3.7, for all k ∈ N

x[k] | y[k] = (x | y)[k] = 0[k] = 0,

and it is readily seen by exhaustive computation that this implies x[k] = y[k] = 0.
It follows from Lemma 2.40 that x = y = 0. A similar argument applies to (b). ��

The proofs of the remaining lemmas are sufficiently similar to that of
Lemma 3.27 that they may be safely omitted.

Lemma 3.28 For all x ∈ Z, y ∈ Z, and n ∈ Z,

(a) x & y = y & x;
(b) x | y = y | x;
(c) x ^ y = y ^ x.

Lemma 3.29 For all x ∈ N, y ∈ N, and z ∈ N,

(a) (x & y) & z = x & (y & z);
(b) (x | y) | z = x | (y | z);
(c) (x ^ y) ^ z = x ^ (y ^ z).
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Lemma 3.30 For all x ∈ N, y ∈ N, and z ∈ N,

(a) (x | y) & z = (x | y) & (x | z);
(b) x & (y | z) = x & y | x & z;
(c) x & y | x & z | y & z = x & y | (x ^ y) & z.

Lemma 3.31 For all x ∈ N and y ∈ N,

(a) x ^ y = x & ~y | y & ~x;
(b) ~(x ^ y) = (~x) ^ y.



Part II
Floating-Point Arithmetic

According to the IEEE floating-point standard [9], each of the elementary arithmetic
operations of addition, multiplication, division, square root extraction, and fused
multiplication-addition

. . . shall be performed as if it first produced an intermediate result correct to infinite
precision and then rounded that result according to one of the [supported] modes . . .

Since the operands (or operand, in the case of square root) and final result are
represented as bit vectors, the relationship between inputs and outputs that is
implicit in this specification, which is known as the principle of correct rounding, is
as diagrammed in Fig. II.1.

That is, to compute the prescribed output, the pure mathematical operation to
be implemented is applied to the decoded values of the inputs, and the result of
this operation is rounded and encoded as the output. Of course, an implementation
is not actually required to generate the output by such a procedure, and in fact, in

�

�

� �

EncodeDecode

+
×
÷√

Round

Bit Vector
Input(s)

Bit Vector
Output

Rational
Operand(s)

Precise
Result

Rounded
Result

Fig. II.1 Principle of correct rounding
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most cases an explicit representation of the precise unrounded result is infeasible.
In Chaps. 4 and 5, we describe the common schemes for encoding real numbers as
bit vectors. Chapter 6 addresses the problem of rounding.

As discussed in the preface, the formalization of the principle of correct rounding
in the ACL2 logic, which is limited to rational arithmetic, presents a challenge in
the case of the square root operation. In Chap. 7, we discuss our solution to this
technical problem, which is based on a function that computes a rational number
(66)
√

x, which approximates the real square root of a rational number x, and has the
property that it rounds to the same value as does the precise square root with respect
to any IEEE rounding mode and any format of interest. This chapter may be omitted
by the reader who is not interested in the problem of formalization.



Chapter 4
Floating-Point Numbers

The designation floating-point number is a relative term, used to refer to a rational
number that is representable with respect to a particular format, as described in
Chap. 5. In this chapter, we discuss properties of real numbers that are relevant to
these representations.

4.1 Decomposition

Floating-point arithmetic is based on the observation that every nonzero x ∈ R

admits a unique representation of the form

x = ±m · 2e,

where e is an integer, called the exponent of x, and m is a number in the range
1 ≤ m < 2, called the significand of x. These components are defined as follows.

Definition 4.1 Let x ∈ R. If x = 0, then

(a) sgn(x) = x
|x| =

{
1 if x > 0

−1 if x < 0;
(b) expo(x) is the unique integer that satisfies 2expo(x) ≤ |x| < 2expo(x)+1;
(c) sig(x) = |x|2−expo(x).

If x = 0, then sgn(x) = expo(x) = sig(x) = 0.

The decomposition property is immediate:

Lemma 4.1 For all x ∈ R, x = sgn(x)sig(x)2expo(x).
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Lemma 4.2 For all x ∈ R, y ∈ R, and n ∈ Z,

(a) If 2n ≤ x, then n ≤ expo(x);
(b) If 0 < |x| < 2n+1, then expo(x) ≤ n;
(c) If 0 < |x| ≤ |y|, then expo(x) ≤ expo(y);
(d) expo(2n) = n.

Proof

(a) If n > expo(x), then n ≥ expo(x) + 1, which implies |x| < 2expo(x)+1 ≤ 2n.
(b) If n < expo(x), then n + 1 ≤ expo(x), which implies 2n+1 ≤ 2expo(x) ≤ |x|.
(c) Since |x| ≤ |y| < 2expo(y)+1, this follows from (b).
(d) This is an immediate consequence of Definition 4.1. ��
Lemma 4.3 Let x ∈ R.

(a) If x = 0, then 1 ≤ sig(x) < 2;
(b) If 1 ≤ x < 2, then sig(x) = x;
(c) sig(sig(x)) = sig(x).

Proof

(a) Definition 4.1 yields

1 = 2expo(x)/2expo(x) ≤ |x|/2expo(x) < 2expo(x)+1/2expo(x) = 2.

(b) Since 20 ≤ |x| = x < 21, expo(x) = 0, and hence sig(x) = x/20 = x.
(c) follows from (a) and (b). ��
Lemma 4.4 Let x ∈ R. If |x| = 2em, where e ∈ Z, m ∈ R, and 1 ≤ m < 2, then
m = sig(x) and e = expo(x).

Proof Since 1 ≤ m < 2, 2e ≤ 2em < 2e2 = 2e+1, where 2em = |x|. It follows
from Definition 4.1 that e = expo(x), and therefore sig(x) = |x|/2e = m. ��

Changing the sign of a number does not affect its exponent or significand.

Lemma 4.5 For all x ∈ R,

(a) sgn(−x) = −sgn(x);
(b) expo(−x) = expo(x);
(c) sig(−x) = sig(x).

A shift does not affect the sign or significand.

Lemma 4.6 If x ∈ R, x = 0, and n ∈ Z, then

(a) sgn(2nx) = sgn(x);
(b) expo(2nx) = expo(x) + n;
(c) sig(2nx) = sig(x).

Proof

(a) sgn(2nx) = 2nx/|2nx| = x/|x| = sgn(x).
(b) 2expo(x) ≤ |x| < 2expo(x)+1 ⇒ 2expo(x)+n ≤ |2nx| < 2expo(x)+n+1.
(c) sig(2nx) = |2nx|2−(expo(x)+n) = |x|2−expo(x) = sig(x). ��
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We have the following formulas for the components of a product.

Lemma 4.7 Let x ∈ R and y ∈ R. If xy = 0, then

(a) sgn(xy) = sgn(x)sgn(y);

(b) expo(xy) =
{

expo(x) + expo(y) if sig(x)sig(y) < 2
expo(x) + expo(y) + 1 if sig(x)sig(y) ≥ 2

;

(c) sig(xy) =
{

sig(x)sig(y) if sig(x)sig(y) < 2
sig(x)sig(y)/2 if sig(x)sig(y) ≥ 2.

Proof

(a) sgn(xy) = xy/|xy| = (x/|x|)(y/|y|) = sgn(x)sgn(y).
(b) Since 2expo(x) ≤ |x| < 2expo(x)+1 and 2expo(y) ≤ |y| < 2expo(y)+1, we have

2expo(x)+expo(y) = 2expo(x)2expo(y)

≤ |xy|
< 2expo(x)+12expo(y)+1

= 2expo(x)+expo(y)+2.

If sig(x)sig(y) = |x|2−expo(x)|y|2−expo(y) < 2, then

|xy| < 2 · 2expo(x)2expo(y) = 2expo(x)+expo(y)+1,

and by Definition 4.1, expo(xy) = expo(x) + expo(y).
On the other hand, if sig(x)sig(y) ≥ 2, then similarly,

|xy| ≥ 2expo(x)+expo(y)+1,

and Definition 4.1 yields expo(xy) = expo(x) + expo(y) + 1.
(c) If sig(x)sig(y) < 2, then

sig(xy) = |xy|2−expo(xy)

= |xy|2−(expo(x)+expo(y))

= |x|2−expo(x)|y|2−expo(y)

= sig(x)sig(y).

Otherwise,

sig(xy) = |xy|2−expo(xy)

= |xy|2−(expo(x)+expo(y)+1)

= |x|2−expo(x)|y|2−expo(y)/2

= sig(x)sig(y)/2.

��
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4.2 Exactness

In order for a significand, which has the form

(1.β1β2 · · · )2,

to be represented by an n-bit field, we must have βk = 0 for all k ≥ n, or
equivalently, a right shift of the radix point by n− 1 places must result in an integer.
This motivates our definition of exactness.

Definition 4.2 If x ∈ R and n ∈ N, then x is n-exact ⇔ sig(x)2n−1 ∈ Z.

The definition may be restated in various ways:

Lemma 4.8 Let x ∈ R, n ∈ N, and k ∈ Z. The following are equivalent:

(a) x is n-exact;
(b) −x is n-exact;
(c) sig(x) is n-exact;
(d) 2kx is n-exact;
(e) x2n−1−expo(x) ∈ Z.

It is clear that if sig(x) is representable in a given field of bits, then it is also
representable in any wider field.

Lemma 4.9 For all x ∈ R, n ∈ Z, and m ∈ Z, if m < n and x is m-exact, then x is
n-exact.

Proof Since 2n−m ∈ Z and x · 2m−1−expo(x) ∈ Z,

x · 2n−1−expo(x) = 2n−m · x · 2m−1−expo(x) ∈ Z.

��
A power of 2 has a 1-bit significand.

Lemma 4.10 If n ∈ Z and m ∈ Z
+, then 2n is m-exact.

Proof By Lemma 4.2 (d),

2n · 2m−1−expo(2n) = 2n · 2m−1−n = 2m−1 ∈ Z.

��
A bit vector is exact with respect to its width.

Lemma 4.11 Let x ∈ R and n ∈ Z. If x is a bit vector of width n, then x is n-exact.

Proof Since 0 is n-exact for all n ∈ Z, we may assume x > 0, and therefore
n > 0. Now since 0 < x < 2n, Lemma 4.2 implies expo(x) ≤ n − 1, and hence
x · 2n−1−expo(x) ∈ Z. ��

We have the following formula for the exactness of a product.
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Lemma 4.12 Let x ∈ R, y ∈ R, m ∈ Z, and n ∈ Z. If x is m-exact and y is n-exact,
then xy is (m + n)-exact.

Proof If x2m−1−expo(x) and y2n−1−expo(y) are integers, then by Lemma 4.7, so is

x2m−1−expo(x)y2n−1−expo(y)2expo(x)+expo(y)+1−expo(xy) = xy2m+n−1−expo(xy).

��
In particular, if x is n-exact, then x2 is 2n-exact. The converse also holds.

Lemma 4.13 Let x ∈ Q and n ∈ Z. If x2 is 2n-exact, then x is n-exact.

Proof We shall require an elementary fact of arithmetic:

If r ∈ Q and 2r2 ∈ Z, then r ∈ Z.

In order to establish this result, let r = a/b, where a and b are integers with no
common prime factor, and assume that 2r2 = 2a2/b2 ∈ Z. If b were even, say
b = 2c, then 2a2/b2 = a2/2c2 ∈ Z, implying that a is even, which is impossible.
Thus, b cannot have a prime factor that does not also divide a, and hence b = 1.

Now to show that x is n-exact, i.e., x2n−1−expo(x) ∈ Z, it will suffice to show that

2
(
x2n−1−expo(x)

)2 = x222n−1−2expo(x) ∈ Z.

But since x2 is 2n-exact, we have x222n−1−expo(x2) ∈ Z, and since Lemma 4.7
implies expo(x2) ≥ 2expo(x),

x222n−1−2expo(x) = x222n−1−expo(x2)2expo(x2)−2expo(x) ∈ Z.

��
Lemma 4.14 Let n ∈ N, x ∈ R, and y ∈ R. Assume that x and y are nonzero and
k-exact for some k ∈ N. If xy is n-exact, then so are x and y.

Proof Let p and q be the smallest integers such that x′ = 2px and y′ = 2qy are
integers. Thus, x′ and y′ are odd. By Lemma 4.8, x, y, or xy, respectively, is n-exact
iff x′, y′, or x′y′ is n-exact. Consequently, we may replace x and y with x′ and y′.
That is, we may assume without loss of generality that x and y are odd integers.

By Lemma 4.8, an odd integer z is n-exact iff expo(z) ≤ n − 1, or equivalently,
according to Lemma 4.2, |z| < 2n. Thus, since xy is n-exact, xy < 2n, which
implies x < 2n and y < 2n, and hence x and y are n-exact. ��

Exactness of a bit vector may be formulated in various ways.

Lemma 4.15 Let x ∈ N, k ∈ N, and n ∈ N. If expo(x) = n − 1 and k < n, then
the following are equivalent:
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(a) x is (n − k)-exact;
(b) x/2k ∈ Z;
(c) x[n−1 : k] = x/2k;
(d) x[k−1 : 0] = 0.

Proof The equivalence between (a) and (b) follows from Lemma 4.8, since

x2(n−k)−1−expo(x) = x2n−k−1−(n−1) = x/2k.

Now by Lemmas 2.4 and 2.18,

x = x[n−1 : 0] = 2kx[n−1 : k] + x[k−1 : 0],
and hence

x/2k = x[n−1 : k] + x[k−1 : 0]/2k.

But by Lemma 2.1, 0 ≤ x[k−1 : 0]/2k < 1, which implies that (b), (c), and (d) are
all equivalent. ��
Corollary 4.16 Let x ∈ N, k ∈ N, and n ∈ N such that expo(x) = n−1 and k < n,
Assume that x is (n − k)-exact. Then x is (n − k − 1)-exact if and only if x[k] = 0.

The next lemma gives a formula for exactness of a difference.

Lemma 4.17 Let x ∈ R, y ∈ R, n ∈ Z, and k ∈ Z. Assume that n > 0 and n > k.
If x and y are both n-exact and expo(x − y) + k ≤ min(expo(x), expo(y)), then
x − y is (n − k)-exact.

Proof Since x is n-exact and expo(x − y) + k ≤ expo(x),

x2n−1−(expo(x−y)+k) = x2n−1−expo(x)2expo(x)−(expo(x−y)+k ∈ Z

by Lemma 4.8. Similarly, y2n−1−(expo(x−y)+k) ∈ Z. Thus,

(x − y)2(n−k)−1−expo(x−y) = x2n−1−(expo(x−y)+k) − y2n−1−(expo(x−y)+k) ∈ Z.

��
Lemma 4.17 is often applied with k = 0, in the following weaker form.

Corollary 4.18 Let x ∈ R, y ∈ R, and n ∈ Z with n > 0. If x and y are both
n-exact and |x − y| ≤ min(|x|, |y|), then x − y is n-exact.

If x is positive and n-exact, then the least n-exact number exceeding x is
computed as follows.

Definition 4.3 Let x ∈ R, x > 0, and n ∈ N, n > 0. Then

fp+(x, n) = x + 2expo(x)+1−n.
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Lemma 4.19 Let x ∈ R, x > 0, and n ∈ N, n > 0. If x is n-exact, then fp+(x, n)

is n-exact.

Proof Let e = expo(x) and x+ = fp+(x, n) = x + 2e+1−n. Since x is n-exact,
x · 2n−1−e ∈ Z, and by Lemma 4.2, x < 2e+1. Thus,

x · 2n−1−e < 2e+1 · 2n−1−e = 2n,

which implies x · 2n−1−e ≤ 2n − 1. Therefore, x ≤ 2e+1 − 2e+1−n and x+ =
x + 2e+1−n ≤ 2e+1. If x+ = 2e+1, then x+ is n-exact by Lemma 4.10. Otherwise,
x+ < 2e+1, expo(x+) = e, and

x+ · 2n−1−expo(x+) = (x + 2e+1−n)2n−1−e = x · 2e+1−n + 1 ∈ Z.

��
Lemma 4.20 Let x ∈ R, y ∈ R, y > x > 0, and n ∈ N, n > 0. If x and y are
n-exact, then y ≥ fp+(x, n).

Proof Let e = expo(x) and x+ = fp+(x, n) = x + 2e+1−n. Since x is n-exact,
x · 2n−1−e ∈ Z. Similar, since y is n-exact, y · 2n−1−expo(y) ∈ Z. But expo(y) ≥ e

by Lemma 4.2 (c), and hence

y · 2n−1−e = y · 2n−1−expo(y) · 2expo(y)−e ∈ Z

as well. Now since y > x, y · 2n−1−e > x · 2n−1−e, which implies

y · 2n−1−e ≥ x · 2n−1−e + 1.

Thus,

y ≥ (x · 2n−1−e + 1)/2n−1−e = x + 2e+1−n = x+.

��
Corollary 4.21 Let x ∈ R, x > 0, and n ∈ N, n > 0. If x is n-exact and
expo(fp+(x, n)) = expo(x), then fp+(x, n) = 2expo(x)+1.

Proof Since fp+(x, n) > x, Lemma 4.2 (c) implies expo(fp+(x, n)) ≥ expo(x).
Therefore, we have expo(fp+(x, n)) > expo(x), which, according to Lemma 4.2,
implies fp+(x, n) ≥ 2expo(x)+1. On the other hand, since 2expo(x)+1 is n-exact by
Lemma 4.10, Lemma 4.20 implies 2expo(x)+1 ≥ fp+(x, n). ��
Corollary 4.22 Let x ∈ R, y ∈ R, and n ∈ N with n > 0. If x and y are n-exact
and x = y, then

expo(x − y) ≥ min(expo(x), expo(y)) + 1 − n
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Proof Since the case xy < 0 is trivial, we shall assume that xy > 0 and, without
loss of generality, that y > x > 0. But then by Lemma 4.20,

expo(y − x) ≥ expo(2expo(x)+1−n) = expo(x) + 1 − n.

��
Similarly, the following definition computes the greatest n-exact number that is

less than a given n-exact number.

Definition 4.4 Let x ∈ R, x > 0, and n ∈ N, n > 0. Then

fp−(x, n) =
{

x − 2expo(x)−n if x = 2expo(x)

x − 2expo(x)+1−n if x = 2expo(x).

.

Lemma 4.23 Let x ∈ R, x > 0, and n ∈ N, n > 0. If x is n-exact, then fp−(x, n)

is n-exact.

Proof Let e = expo(x) and x− = fp−(x, n).
Suppose first that x = 2e. Then x− = x − 2e−n, and since

2e > x− ≥ 2e − 2e−1 = 2e−1,

Definition 4.1 implies expo(x−) = e − 1. Therefore,

x−2n−1−expo(x−) = x−2n−e = (x − 2e−n)2n−e = (2e − 2e−n)2n−e = 2n − 1 ∈ Z,

and x− is n-exact by Lemma 4.8.
Now suppose x = 2e. Then by Lemma 4.19,

x ≥ fp+(2e, n) = 2e + 2e+1−n.

Now x− = x − 2e+1−n ≥ 2e, and hence expo(x−) = e. Thus,

x−2n−1−expo(x−) = x−2n−1−e = (x − 2e+1−n)2n−1−e = x2n−1−e − 1 ∈ Z,

which implies x− is n-exact. ��
Lemma 4.24 Let x ∈ R, x > 0, and n ∈ N, n > 0. If x is n-exact, then

fp+(fp−(x, n), n) = fp−(fp+(x, n), n) = x.

Proof Let e = expo(x), x− = fp−(x, n), and x+ = fp+(x, n). We shall prove first
that fp+(x−, n) = x.



4.2 Exactness 61

As noted in the proof of Lemma 4.19,

expo(x−) =
{

e − 1 if x = 2e

e if x > 2e.

If x = 2e, then

fp+(x−, n) = x− + 2(e−1)+1−n = x − 2e−n + 2e−n = x.

But if x > 2e, then

fp+(x−, n) = x− + 2e+1−n = x − 2e+1−n + 2e+1−n = x.

Next, we prove that fp−(x+, n) = x. Note that x+ = x + 2e+1−n. If x+ < 2e+1,
then expo(x+) = e, and since x+ = 2e,

fp−(x+, n) = x+ − 2e+1−n = x + 2e+1−n − 2e+1−n = x.

We may assume, therefore, that x+ ≥ 2e+1. By Lemma 4.19, since 2e+1 is n-exact,
2e+1 ≥ x+, and hence, x+ = 2e+1. Thus,

fp−(x+, n) = x+ − 2e+1−n = x + 2e+1−n − 2e+1−n = x.

��
Lemma 4.25 Let x ∈ R, y ∈ R, x > y > 0, and n ∈ N, n > 0. If x and y are
n-exact, then y ≤ fp−(x, n).

Proof Suppose y > fp−(x, n). Then since fp−(x, n) and y are both n-exact,
Lemma 4.19 implies y ≥ fp+(fp−(x, n), n) = x, a contradiction. ��



Chapter 5
Floating-Point Formats

A floating-point format is a scheme for representing a number as a bit vector
consisting of three fields corresponding to its sign, exponent, and significand. In
this chapter, we present a classification of such formats, including those prescribed
by IEEE Standard 754 [9], and examine the characteristics of the numbers that they
represent.

5.1 Classification of Formats

A floating-point format is characterized by the precision p with which representable
numbers are differentiated, and the number q of bits allocated to the exponent,
determining the range of representable numbers. Some formats represent all p bits
of a number’s significand explicitly, but a common optimization is to omit the
integer bit. Thus, we define a format as a triple:

Definition 5.1 A floating-point format is a triple F = 〈e, p, q〉, where

(a) e is a boolean indication that the format is explicit (e = 1) or implicit (e = 0),
i.e., whether or not the integer bit is explicitly represented;

(b) p = prec(F ) is an integer, p ≥ 2, the precision of F ;
(c) q = expw(F ) is an integer, q ≥ 2, the exponent width of F .

The significand width of F is sigw(F ) =
{

p if F is explicit
p − 1 if F is implicit.

In this chapter, every “format” will be understood to be a floating-point format.

Definition 5.2 An encoding for a format F is a bit vector of width expw(F ) +
sigf (F ) + 1.
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sigfexpfsgnf

p+q–1 p+q–2 p–1 p–2 0

Fig. 5.1 A floating-point format with implicit integer bit

Definition 5.1 is sufficiently broad to include the formats that will be of interest to
us. The most common implicit formats are the IEEE basic single (p = 24, q = 8)
and double precision (p = 53, q = 11) formats, at least one of which must be
implemented by any IEEE-compliant floating-point unit. Explicit formats include
most implementations of the single extended (p = 32, q = 11) and double extended
(p = 64, q = 15) formats, as well as the higher-precision formats that are typically
used for internal computations in floating-point units.

We establish the following notation for the formats that are used by the x86 and
Arm elementary arithmetic operations discussed in Part IV:

Definition 5.3 The half, single, double, and (double) extended formats are as
follows:

HP = 〈0, 11, 5〉;

SP = 〈0, 24, 8〉;

DP = 〈0, 53, 11〉;

EP = 〈1, 64, 15〉.

The sign, exponent, and significand fields of an encoding are defined as illustrated
in Figs. 5.1 and 5.2. We also define the mantissa field as the significand field without
the integer bit, if present:

Definition 5.4 If x is an encoding for a format F , then

(a) sgnf (x, F ) = x[expw(F ) + sigw(F )];
(b) expf (x, F ) = x[expw(F ) + sigw(F )−1 : sigw(F )];
(c) sigf (x, F ) = x[sigw(F )−1];
(d) manf (x, F ) = x[prec(F ) − 2].

The encodings for a given format are partitioned into several classes determined
primarily by the exponent field, as described in the next three sections.
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sigfexpfsgnf

p+q p+q–1 p p–1 0

Fig. 5.2 A floating-point format with explicit integer bit

5.2 Normal Encodings

Encodings with exponent field 0 represent very small values according to a separate
scheme (Sect. 5.3); those with maximal exponent field (all 1s) are reserved for
representing non-numerical entities (Sect. 5.4). The remaining encodings are the
subject of this section.

Definition 5.5 An encoding x for a format F is normal iff the following conditions
hold:

(a) 0 < expf (x, F ) < 2expw(F ) − 1;
(b) If F is explicit, then x[prec(F )−1] = 1.

The implied integer bit of a normal encoding for an implicit format is 1, as
reflected in Definition 5.8 below. For an explicit format, the case of a nonzero
exponent field and a zero leading significand bit is an anomaly that should never
be generated by hardware.

Definition 5.6 An encoding x for an explicit format F is unsupported iff the
following conditions hold:

(a) expf (x, F ) > 0;
(b) x[prec(F )−1] = 0.

Let x be a normal encoding for a format F with prec(F ) = p and expw(F ) =
q. The significand field sigf (x, F ) is interpreted as a p-exact value in the interval
[1, 2), i.e., with an implied binary point following the leading bit, which is 1, either
explicitly or implicitly. The value encoded by x is the signed product of this value
and a power of 2 determined by the exponent field. Since it is desirable for the range
of exponents to be centered at 0, this field is interpreted with a bias of 2q−1 − 1, i.e.,
the value of the exponent represented is

2expf (x,F )−(2q−1−1),

which lies in the range

2q−1 − 1 ≤ expf (x, F ) − (2q−1 − 1) ≤ 2q−1.

Definition 5.7 The exponent bias of a format F is bias(F ) = 2expw(F )−1 − 1.

Thus, the decoding function is defined as follows.



66 5 Floating-Point Formats

Definition 5.8 Let F be a format with p = prec(F ) and B = bias(F ). If x is a
normal encoding for F , then

ndecode(x, F ) = (−1)sgnf (x,F )
(

1 + 21−pmanf (x, F )
)

2expf (x,F )−B.

The following is a trivial consequence of Definition 5.8.

Lemma 5.1 Let x be a normal encoding for a format F and let x̂ = ndecode(x, F ).
then

(a) sgn(x̂) = (−1)sgnf (x,F );
(b) expo(x̂) = expf (x, F ) − bias(F );
(c) sig(x̂) = 1 + 21−prec(F )manf (x, F ).

The numbers that admit normal encodings may be characterized as follows:

Definition 5.9 Let F be a format and let r ∈ Q. Then r is a normal value of F iff
the following conditions hold:

(a) r = 0;
(b) 0 < expo(r) + bias(F ) < 2expw(F ) − 1;
(c) r is prec(F )-exact.

The normal encoding of a normal value is derived as follows.

Definition 5.10 Let r be a normal value of F . Let

s =
{

0 if r > 0
1 if r < 0,

e = expo(r) + bias(F ),

and

m = 2prec(F )−1sig(r).

then

nencode(r, F ) = {1’s, expw(F )’e, sigw(F )’m}.

The next two lemmas establish an inverse relation between the encoding and
decoding functions, from which it follows that the numbers that admit normal
encodings are precisely those that satisfy Definition 5.9.

Lemma 5.2 If x is a normal encoding for a format F , then ndecode(x, F ) is a
normal value of F and

nencode(ndecode(x, F ), F ) = x.
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Proof Let p = prec(F ), q = expw(F ), B = bias(F ), and x̂ = ndecode(x, F ). It is
clear from Definition 5.8 that x̂ = 0. By Lemma 5.1,

expo(x̂) + B = expf (x, F )

is a q-bit vector, and

2p−1sig(x̂) = 2p−1(1 + 21−psigf (x, F )) = 2p−1 + sigf (x, F ) ∈ Z,

i.e., x̂ is p-exact. Thus, x̂ is a normal value of F .

It also clear from Definition 5.8 that sgnf (x, F ) =
{

0 if x̂ > 0
1 if x̂ < 0.

Suppose F is implicit. Then by Definitions 5.10 and 5.4 and Lemmas 2.44 and 2.4,

nencode(x̂, F ) = {sgnf (x, F ), q’(expo(x̂) + B)}, (p − 1)’(2p−1(sig(x̂) − 1))}
= {sgnf (x, F ), q’expf (x, F ), (p − 1)’sigf (x, p)}
= {x[p + q−1], x[p + q − 2 : p−1], x[p − 2 : 0]}
= x[p + q−1 : 0]
= x.

The explicit case is similar. ��
Lemma 5.3 If r is a normal value of a format F , then nencode(r, F ) is a normal
encoding for F and

ndecode(nencode(r, F ), F ) = r.

Proof We give the proof for the implicit case; the explicit case is similar.
Let p = prec(F ), q = expw(F ), B = bias(F ), and x = nencode(r, F ). By

Lemma 2.42, x is a (p + q)-bit vector and by Lemma 2.46,

sgnf (x, F ) = x[p + q−1] =
{

0 if r > 0
1 if r < 0,

expf (x, F ) = x[p + q − 2 : p−1] = (expo(r) + B)[q−1 : 0],

and

sigf (x, F ) = x[p − 2 : 0] = (2p−1(sig(r) − 1))[p − 2 : 0].

Since expo(r) + B is a q-bit vector,

(expo(r) + B)[q−1 : 0] = expo(r) + B

by Lemma 2.4.
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Since r is p-exact,

2p−1(sig(r) − 1) = 2p−1sig(r) − 2p−1 ∈ Z

and by Lemma 4.3, 2p−1(sig(r) − 1) < 2p−1, which implies

(2p−1(sig(r) − 1))[p − 2 : 0] = 2p−1(sig(r) − 1).

Finally, according to Definition 5.8,

ndecode(x, F ) = (−1)sgnf (x,F )(2p−1 + sigf (x, p))2expf (x,F )+1−p−bias(F )

= sgn(r)2p−1sig(r)2expo(r)+B+1−p−B

= sgn(r)sig(r)2expo(r)

= r.

��
We shall have occasion to refer to the smallest and largest positive numbers that

admit normal representations.

Definition 5.11 The smallest positive normal of a format F is

spn(F ) = 21−bias(F ) = 22−2expw(F )−1
.

Lemma 5.4 For any format F ,

(a) spn(F ) > 0;
(b) spn(F ) is a normal value of F ;
(c) r is a normal value of F , then |r| ≥ spn(F ).

Proof It is clear that spn(F ) is positive and satisfies Definition 5.9. Moreover, if
r > 0 and r is a normal value of F , then since expo(r) > −bias(F ), r ≥ 21−bias(F )

by Lemma 4.2. ��
Definition 5.12 The largest positive normal of a format F is

lpn(F ) = 22expw(F )−2−bias(F )(2 − 21−prec(F )).

Lemma 5.5 For any format F ,

(a) lpn(F ) > 0;
(b) lpn(F ) is a normal value of F ;
(c) If r is a normal value of F , then r ≤ lpn(F ).
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Proof It is clear that lpn(F ) is positive and satisfies Definition 5.9. Let p = prec(F )

and q = expw(F ). If r is a normal value of F , then by Definition 5.9, expo(r) ≤
2q − 2 − bias(F ) and r is p-exact. Thus, r < 2expo(r)+1 ≤ 22q−1−bias(F ) and by
Lemma 4.25,

r ≤ fp−(22q−1−bias(q), p) = lpn(F ).

��

5.3 Denormals and Zeroes

An exponent field of 0 is used to encode numerical values that lie below the normal
range. If the exponent and significand fields of an encoding are both 0, then the
encoded value itself is 0 and the encoding is said to be a zero. If the exponent field
is 0 and the significand field is not, then the encoding is either denormal or pseudo-
denormal:

Definition 5.13 Let x be an encoding for a format F with expf (x, F ) = 0.

(a) If sigf (x, F ) = 0, then x is a zero encoding for F.
(b) If sigf (x, F ) = 0 and either F is implicit or x[prec(F )−1] = 0, then x is a

denormal encoding for F.
(c) If F is explicit and x[prec(F )−1] = 1, then x is a pseudo-denormal encoding

for F.

Note that a zero can have either sign:

Definition 5.14 Let F be a format and let s ∈ {0, 1}. Then

zencode(s, F ) = {1’s, (expw(F ) + sigw(F ))’0}.

The numerical value of a denormal encoding is interpreted according to a
separate scheme that provides a broader range (at the expense of lower precision)
than would otherwise be possible. There are two differences between the decoding
formulas for denormal and normal encodings:

1. For a denormal encoding for an implicit format, the integer bit is taken to be 0
rather than 1.

2. The power of 2 represented by the zero exponent field of a denormal or pseudo-
denormal encoding is 21−bias(F ) rather than 20−bias(F ).

Definition 5.15 Let F be a format with p = prec(F ) and B = bias(F ). If x is an
encoding for F with expf (x, F ) = 0, then

ddecode(x, F ) = (−1)sgnf (x,F )
(

21−psigf (x, F )
)

21−B

= (−1)sgnf (x,F )sigf (x, F )22−p−B.

We also define a general decoding function:



70 5 Floating-Point Formats

Definition 5.16 Let x be an encoding for a format F . If expf (x, F ) = 2expw(F ) −1,
then x is a numerical encoding and

decode(x, F ) =
{

ndecode(x, F ) if expf (x, F ) = 0
ddecode(x, F ) if expf (x, F ) = 0.

Note that the function ddecode is applied to pseudo-denormal as well as
denormal encodings. If x is a pseudo-denormal encoding for an explicit format F

and x′ is the normal encoding derived from x by replacing its 0 exponent field
with 1, then expanding Definitions 5.8 and 5.15 and observing that sigf (x, F ) =
2p−1 + manf (x, F ), we have

decode(x′, F ) = ndecode(x′, F ) = ddecode(x, F ) = decode(x, F ).

Thus, any value encoded as a pseudo-denormal admits an alternative encoding as a
normal.

Lemma 5.6 Let x be a denormal encoding for F and let x̂ = ddecode(x, F ).

(a) sgn(x̂) = (−1)sgnf (x,F ).
(b) expo(x̂) = expo(sigf (x, F )) − bias(F ) + 2 − prec(F ).
(c) sig(x̂) = sig(sigf (x, F )).

Proof (a) is trivial; (b) and (c) follow from Lemmas 4.5 and 4.6. ��
The class of numbers that are representable as denormal encodings is recognized

by the following predicate.

Definition 5.17 Let F be a format and let r ∈ Q. Then r is a denormal value of F

iff the following conditions hold:

(a) r = 0;
(b) 2 − prec(F ) ≤ expo(r) + bias(F ) ≤ 0;
(c) r is (prec(F ) + expo(r) − expo(spn(F )))-exact.

The encoding of a denormal value is constructed as follows.

Definition 5.18 If r is a denormal value of F with

s =
{

0 if r > 0
1 if r < 0

and

m = 2prec(F )−2+expo(r)+bias(F )sig(r),

then

dencode(r, F ) = {1’s, expw(F )’0, sigw(F )’m}.
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According to the next two lemmas, ddecode and dencode are inverse functions
and the denormal values are precisely those that are represented by denormal
encodings.

Lemma 5.7 If x is a denormal encoding for a format F , then ddecode(x, F ) is a
denormal value of F and

dencode(ddecode(x, F ), F ) = x.

Proof Let p = prec(F ), q = expw(F ), b = bias(F ), s = sgnf (x, F ), m =
sigf (x, F ), and x̂ = ddecode(x, F ). Since 1 ≤ m < 2p−1,

22−p−b ≤ |x̂| = 22−p−bm < 21−b,

and by Lemma 4.2,

2 − p − b ≤ expo(x̂) < 1 − b,

which is equivalent to Definition 5.17 (b). In order to prove (c), we must show,
according to Definition 4.2, that

2p+expo(r)−expo(spn(F )+expo(x̂)−1sig(x̂) = 2p−2+b+expo(x̂)sig(x̂) ∈ Z.

But

2p−2+b+expo(x̂)sig(x̂) = 2p−2+b+expo(x̂)|x̂|2−expo(x̂)

= 2p−2+b|x̂|
= 2p−2+b(22−p−bm)

= m ∈ Z.

This establishes that x̂ is a denormal value.

Now by Definition 5.15, s =
{

0 if x̂ > 0
1 if x̂ < 0.

Therefore, by Definitions 5.13, 5.18, and 5.4 and Lemmas 2.44 and 2.4,

dencode(x̂, F ) = {1’s, q’0, (2p−2+expo(x̂)+bsig(x̂))[p − 2 : 0]}
= {1’sgnf (x, F ), expw(F )’expf (x, F ), sigw(F )’sigf (x, F )}
= x.

��
Lemma 5.8 If r is a denormal value of F , then dencode(r, F ) is a denormal
encoding for F and

ddecode(dencode(r, F ), F ) = r.
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Proof Let p = prec(F ), q = expw(F ), b = bias(F ), and x = dencode(r, F ). By
Lemma 2.42, x is a (p + q)-bit vector and by Lemma 2.46,

sgnf (x, F ) = x[p + q − 1] =
{

0 if r > 0
1 if r < 0,

expf (x, F ) = x[p + q − 2 : p−1] = 0,

and

sigf (x, F ) = x[p − 2 : 0] = (2p−2+expo(r)+bias(F )sig(r))[p − 2 : 0].

Since r is (p − 2 + 2q−1 + expo(r))-exact,

2p−2+expo(r)+bsig(r) = 2(p−2+2q−1+expo(r))−1sig(r) =∈ Z

and since expo(r) + b ≤ 0,

2p−2+expo(r)+bsig(r) < 2p−2 · 2 = 2p−1

by Lemma 4.3, which implies

(2p−2+expo(r)+bsig(r))[p − 2 : 0] = 2p−2+expo(r)+bsig(r).

Finally, according to Definition 5.15,

ddecode(x, F ) = (−1)sgnf (x,F )sigf (x, F )22−p−b

= sgn(r)2p−2+expo(r)+bsig(r)22–p–b

= sgn(r)sig(r)2expo(r)

= r.

��

Definition 5.19 The smallest positive denormal of a format F is

spd(F ) = 22−bias(F )−prec(F ) = 23−2expw(F )−prec(F ).

Lemma 5.9 For any format F ,

(a) spd(F ) > 0;
(b) spd(F ) is a denormal value of F ;
(c) If r is a denormal value of F , then |r| ≥ spd(F ).
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Proof Let p = prec(F ), q = expw(F ), and b = bias(F ). It is clear that spd(F )

is positive. To show that spd(F ) is (p + expo(spd(F )) − expo(spn(F )))-exact, we
need only observe that

p + expo(spd(F )) − expo(spn(F )) = p + (2 − b − p) − (1 − b) = 1.

Finally, since

expo(spd(F )) + b = 2 − p < 0,

spd(F ) is a denormal value and moreover, spd(F ) is the smallest positive r that
satisfies 2 − p ≤ expo(r) + b. ��

Every number with a denormal representation is a multiple of the smallest
positive denormal.

Lemma 5.10 If r ∈ Q and let F be a format, then r is a denormal value of F iff
r = m · spd(F ) for some m ∈ N, 1 ≤ m < 2prec(F )−1.

Proof Let p = prec(F ) and b = bias(F ). For 1 ≤ m ≤ p−1, let am = m · spd(F ).
Then a1 = spd(F ) and

a2p−1 = 2p−1spd(F ) = 2p−122−b−p = 21−b = spn(F ).

We shall show, by induction on m, that am is a denormal value of F for 1 ≤ m <

2n−1. First note that for all such m,

fp+(am, p + expo(am) − expo(spn(F )))

= am + 2expo(am)+1−(p+expo(am)−expo(spn(F )))

= am + 2expo(spn(F ))−(p−1)

= am + spd(F )

= am+1.

Suppose that am−1 is a denormal value for some m, 1 < m < 2p−1. Then am−1 is
(p + expo(am−1) − expo(spn(F )))-exact, and by Lemma 4.20, so is am. But since
expo(am) ≥ expo(am−1), it follows from Lemma 4.9 that am is also (p+expo(am)−
expo(spn(F )))-exact. Since

am < a2p−1 = spn(F ) = 21−b,

expo(am) < 1 − b, i.e., expo(am) + b ≤ 0, and hence, am is a denormal value.
Now suppose that z is a denormal value. Let m = �z/a1�. Clearly, 1 ≤ m <

2p−1, and am ≤ z < am+1. It follows from Lemma 4.21 that expo(z) = expo(am),
and consequently, z is (p+expo(am)−expo(spn(F )))-exact. Thus, by Lemma 4.20,
z = am. ��
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5.4 Infinities and NaNs

The upper extreme value 2expw(F ) − 1 of the exponent field is reserved for encoding
non-numerical entities. According to Definition 5.6, an encoding for an explicit
format with exponent field 2expw(F ) − 1 is unsupported if its integer bit is 0. In
all other cases an encoding with this exponent field is an infinity if its significand
field is 0, and a NaN (“Not a Number”) otherwise. A NaN is further classified as an
SNaN (“signaling NaN”) or a QNaN (“quiet NaN”) according to the most significant
bit of its mantissa field:

Definition 5.20 Let x be an encoding for a format F with expf (x, F ) = 2expw(F )−
1 and assume that if F is explicit, then x[prec(F )−1] = 1.

(a) x is an infinity for F iff expf (x, F ) = manf (x, F ) = 0;
(b) x is a NaN for F iff manf (x, F ) = 0;
(c) x is an SNaN for F iff x is a NaN and x[prec(F ) − 2] = 0;
(d) x is a QNaN for F iff x is a NaN and x[prec(F ) − 2] = 1.

An infinity is used to represent a computed value that lies above the normal range;
when it occurs as an operand of an arithmetic operation, it is treated as ±∞. This
function constructs an infinity with a given sign:

Definition 5.21 Let F be a format, let s ∈ {0, 1} and let e = 2expw(F ) − 1. Then

iencode(s, F ) =
{ {1’s, expw(F )’e, sigw(F )’0} if F is implicit

{1’s, expw(F )’e, 1’1, (sigw(F ) − 1)’0} if F is explicit.

An SNaN operand always triggers an exception and is converted to a QNaN to
be returned as an instruction value. SNaNs are not generated by hardware, but may
be written by software to indicate exceptional conditions. For example, a block of
memory may be filled with SNaNs to guard against its access until it is initialized.

A QNaN may be generated by hardware to be returned by an instruction either
by “quieting” an SNaN operand or as an indication of an invalid operation, such as
an indeterminate form. A QNaN operand is generally propagated as the value of an
instruction without signaling an exception.

The following function converts an SNaN to a QNaN:

Definition 5.22 If x is a NaN encoding for a format F , then

qnanize(x, F ) = x | 2prec(F )−2.

The following encoding, known as the real indefinite QNaN, is the default value
used to signal an invalid operation:
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Definition 5.23 Let F be a format and let e = 2expw(F ) − 1. Then

indef (F ) =
{ {1’0, expw(F )’e, 1’1, (sigw(F ) − 1)’0} if F is implicit

{1’0, expw(F )’e, 2’3, (sigw(F ) − 2)’0} if F is explicit.

Infinities and NaNs will be discussed further in the context of elementary
arithmetic operations in Part IV.



Chapter 6
Rounding

The objective of floating-point rounding is the approximation of a real number by
one that is representable in a given floating-point format. Thus, a rounding mode
is a function that computes an n-exact value R(x, n), given a real number x and
precision n. In this chapter, we investigate the properties of a variety of rounding
modes, including those that are prescribed by the IEEE standard as well as others
that are commonly used in implementations of floating-point operations.

Every mode that we consider will be shown to satisfy the following axioms, for
all x ∈ R, y ∈ R, n ∈ Z

+, and k ∈ Z:

(1) R(x, n) is n-exact.
(2) If x is n-exact, then R(x, n) = x.
(3) If x ≤ y, then R(x, n) ≤ R(y, n).
(4) R(2kx, n) = 2kR(y, n).

A critical consequence of these properties is that R is optimal in the sense that
there can exist no n-exact number in the open interval between x and R(x, n). For
example, if y is n-exact and x < y, then by (2) and (3), R(x, n) ≤ R(y, n) = y. In
particular, since 0 is n-exact for all n, it follows that

sgn(R(x, n)) = sgn(x).

Also note that (4) implies that R is determined by its behavior for 1 ≤ |x| < 2.
In the first two sections of this chapter, we examine the basic directed rounding

modes RTZ (“round toward zero”) and RAZ (“round away from zero”), character-
ized by the inequalities

|RTZ(x, n)| ≤ |x|
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and

|RAZ(x, n)| ≥ |x|.

It is clear that for any rounding mode R and arguments x and n, either R(x, n) =
RTZ(x, n) or R(x, n) = RAZ(x, n). It is natural, therefore, to define other rounding
modes in terms of these two. In Sect. 6.3, we discuss two versions of “rounding to
nearest”, RNE (“round to nearest even”) and RNA (“round to nearest away from
zero”), both of which select the more accurate of the two approximations, but
which handle the ambiguous case of a midpoint between consecutive representable
numbers differently.

A desirable property of a rounding mode is that the expected (i.e., average) error
that it incurs is 0, so that errors generated over a long sequence of computations tend
to cancel one other. In Sect. 6.3, we shall make this notion precise with the definition
of an unbiased rounding mode, and demonstrate that it is satisfied by RNE, which,
for this reason, is identified by the standard as the “default” rounding mode.

Among other properties that are shared by some, but not all, of the rounding
modes of interest are symmetry,

R(−x, n) = −R(x, n),

and decomposability: the property that for m < n,

R(R(x, n),m) = R(x,m).

We shall see, for example, that both versions of rounding to nearest fail to satisfy the
latter condition. This accounts for the phenomenon of “double rounding”: when the
result of a computation undergoes a preliminary rounding to be temporarily stored in
a register that is wider than the target format of an instruction, care must be taken to
ensure the accuracy of the final rounding. In Sect. 6.4, we discuss another unbiased
rounding mode that is commonly used internally by floating-point units to address
this problem.

In Sect. 6.5, we define the two other directed rounding modes that are prescribed
by the IEEE standard, and collect the properties that are shared by all IEEE modes.
We present several techniques that are commonly employed in the implementation
of rounding by commercial floating-point units.

Considerations other than n-exactness are involved in the rounding of results that
lie outside the normal range of a format. In the case of overflow, which occurs when
the result of a computation exceeds the representable range, the standard prescribes
rounding either to the maximum representable number or to infinity. The rules that
govern this choice, which are quite arbitrary from a mathematical perspective, are
deferred to Part IV. The more interesting case of underflow, involving a denormal
result, is the subject of Sect. 6.6.

In our discussion of denormal rounding (see Definition 6.10), we shall find it
convenient to extend the notion of rounding to allow negative precisions. Thus, in
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general, we shall consider a rounding mode to be a mapping

R : R × Z → R.

Most of the results of this chapter pertaining to R(x, n) will be formulated with the
hypothesis n > 0, with the exception of those that are required in the more general
case in Sect. 6.6 (see Lemmas 6.87 and 6.97).

6.1 Rounding Toward Zero

The most basic rounding mode, which the IEEE standard calls “round toward 0”,
may be described as a three-step operation on the significand of its first argument.
Thus, RTZ(x, n) has the same sign and exponent as x, while its significand is
computed from sig(x) as follows:

1. Shift the binary point of sig(x) by n − 1 bits to the right.
2. Extract the floor of the result.
3. Shift the binary point by n − 1 bits to the left.

In other words, RTZ(x, n) is the result of replacing sig(x) by �2n−1sig(x)�21−n:

Definition 6.1 For all x ∈ R and n ∈ Z,

RTZ(x, n) = sgn(x)�2n−1sig(x)�2expo(x)−n+1.

RTZ is also known as truncation; it is trivially related to the truncation function
of Sect. 1.5 by

RTZ(x, n) = sgn(x)2expo(x)sig(x)(n−1).

Example Let x = 45/8 = (101.101)2 and n = 5. Then sgn(x) = 1, expo(x) = 2,
sig(x) = (1.01101)2,

�2n−1sig(x)�21−n = �(10110.1)2�2−4 = 10110 · 2−4 = 1.011,

and

RTZ(x, n) = �2n−1sig(x)�21−n2expo(x) = 1.011 · 22 = 101.1.

Note that this value is the largest 5-exact number that does not exceed x.

The second argument of any rounding mode is normally positive; for this mode,
the negative-precision case is trivial:

Lemma 6.1 For all x ∈ R and n ∈ Z, if n ≤ 0, then

RTZ(x, n) = 0.
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Proof By Lemma 4.3,

0 < 2n−1sig(x) ≤ sig(x)/2 < 1,

which implies �2n−1sig(x)� = 0. ��
As we have noted, RTZ preserves exponent:

Lemma 6.2 If x ∈ R and n ∈ Z
+, then

expo(RTZ(x, n)) = expo(x).

Proof Since |RTZ(x, n)| ≤ |x|, Lemma 4.2 (c) implies expo(RTZ(x, n)) ≤
expo(x). But by Lemmas 4.3 and 1.1,

|RTZ(x, n)| = �2n−1sig(x)�2expo(x)−n+1 ≥ 2n−12expo(x)−n+1 = 2expo(x),

and hence, by Lemma 4.2,

expo(RTZ(x, n)) ≥ expo(x).

��
The following inequality is the defining characteristic of RTZ:

Lemma 6.3 For all x ∈ R and n ∈ Z
+,

|RTZ(x, n)| ≤ |x|.

Proof By Definition 1.1 and Lemma 4.1,

|RTZ(x, n)| ≤ 2n−1sig(x)2expo(x)−n+1 = sig(x)2expo(x) = |x|.

��
The following complements Lemma 6.3, confining RTZ(x, n) to an interval.

Lemma 6.4 If x ∈ R, x = 0, and n ∈ Z
+, then

|RTZ(x, n)| > |x| − 2expo(x)−n+1 ≥ |x|(1 − 21−n).

Proof By Definitions 6.1 and 1.1 and Lemma 4.1,

|RTZ(x, n)| > (2n−1sig(x) − 1)2expo(x)−n+1 = |x| − 2expo(x)−n+1.

The second inequality follows from Definition 4.1. ��
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Corollary 6.5 For all x ∈ R and n ∈ Z
+,

|x − RTZ(x, n)| < 2expo(x)−n+1 ≤ 21−n|x|.

Proof By Lemma 6.3,

|x − RTZ(x, n)| = ||x| − |RTZ(x, n)|| = |x| − |RTZ(x, n)|.

The corollary now follows from Lemma 6.4. ��
The next five lemmas establish that RTZ has all the properties listed at the

beginning of this chapter, including symmetry and decomposability:

Lemma 6.6 For all x ∈ R and n ∈ Z,

RTZ(−x, n) = −RTZ(x, n).

Proof This is an immediate consequence of Definition 6.1 ��
Lemma 6.7 For all x ∈ R and n ∈ Z

+, RTZ(x, n) is n-exact.

Proof Since expo(RTZ(x, n)) = expo(x), it suffices to observe that

RTZ(x, n)2n−1−expo(x) = sgn(x)�2n−1sig(x)� ∈ Z.

��
Lemma 6.8 Let x ∈ R and n ∈ Z

+. If x is n-exact, then

RTZ(x, n) = x.

Proof By Definition 4.2 and Lemma 1.1,

�2n−1sig(x)� = 2n−1sig(x),

and hence by Definition 6.1 and Lemma 4.1,

RTZ(x, n) = sgn(x)�2n−1sig(x)�2expo(x)−n+1

= sgn(x)2n−1sig(x)2expo(x)−n+1

= sgn(x)sig(x)2expo(x)

= x.

��
Lemma 6.9 Let x ∈ R, a ∈ R, and n ∈ Z

+. If a is n-exact and a ≤ x, then
a ≤ RTZ(x, n).
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Proof If x < 0, then x ≤ RTZ(x, n) by Lemma 6.3. Therefore, we may assume that
x ≥ 0. Suppose a > RTZ(x, n). Then by Lemma 4.20,

RTZ(x, n) ≤ a − 2expo(RTZ(x,n))−n+1 = a − 2expo(x)−n+1 ≤ x − 2expo(x)−n+1,

contradicting Lemma 6.4. ��
Lemma 6.10 Let x ∈ R, y ∈ R, and n ∈ Z

+. If x ≤ y, then

RTZ(x, n) ≤ RTZ(y, n).

Proof First suppose x > 0. By Lemma 6.3, RTZ(x, n) ≤ x ≤ y. Since RTZ(x, n)

is n-exact by Lemma 6.7, Lemma 6.9 implies

RTZ(x, n) ≤ RTZ(y, n).

Now suppose x ≤ 0. We may assume that x ≤ y < 0. Thus, since 0 < −y ≤ −x,
we have RTZ(−y, n) ≤ RTZ(−x, n) and by Lemma 6.6,

RTZ(x, n) = −RTZ(−x, n) ≤ −RTZ(−y, n) = RTZ(y, n).

��
Lemma 6.11 For all x ∈ R, n ∈ Z

+, and k ∈ Z,

RTZ(2kx, n) = 2kRTZ(x, n).

Proof By Lemma 4.6,

RTZ(2kx, n) = sgn(2kx)�2n−1sig(2kx)�2expo(2kx)−n+1

= sgn(x)�2n−1sig(x)�2expo(x)+k−n+1

= 2kRTZ(x, n).

��
Lemma 6.12 Let x ∈ R, m ∈ Z

+, and n ∈ Z
+. If m ≤ n, then

RTZ(RTZ(x, n),m) = RTZ(x,m).

Proof We assume x ≥ 0; the case x < 0 follows easily from Lemma 6.6. Applying
Lemma 1.2, we have

RTZ(RTZ(x, n),m)

= �2m−1−expo(x)(�2n−1−expo(x)x�2expo(x)+1−n)�2expo(x)+1−m
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= ��2n−1−expo(x)x�/2n−m�2expo(x)+1−m

= �2n−1−expo(x)x/2n−m�2expo(x)+1−m

= �2m−1−expo(x)x�2expo(x)+1−m

= RTZ(x,m).

��
If x is (n + 1)-exact but not n-exact, then x is equidistant from two successive

n-exact numbers. In this case, we have an explicit formula for RTZ(x, n).

Lemma 6.13 Let x ∈ R and n ∈ N. If x is (n + 1)-exact but not n-exact, then

RTZ(x, n) = x − sgn(x)2expo(x)−n.

Proof For the case n = 0, we have sig(x) = 1 by Definition 4.2, and by Lemmas 4.1
and 6.1,

x − sgn(x)2expo(x)−n = sgn(x)2expo(x) − sgn(x)2expo(x) = 0 = RTZ(x, n).

Thus, we may assume n > 0, and by Lemma 6.6, we may also assume x > 0.
Let a = x−2expo(x)−n and b = x+2expo(x)−n. Since x > 2expo(x), x ≥ 2expo(x)+

2expo(x)+1−n by Lemma 4.20, and hence a ≥ 2expo(x) and expo(a) = expo(x). It
follows that b = fp+(a, n).

By hypothesis, x2n−expo(x) ∈ Z but x2n−expo(x)/2 = x2n−1−expo(x) /∈ Z, and
therefore, x2n−expo(x) is odd. Let x2n−expo(x) = 2k + 1. Then

a2n−1−expo(a) = (x − 2expo(x)−n)2n−1−expo(x) = (2k + 1)/2 − 1/2 = k ∈ Z.

Thus, a is n-exact, and by Lemma 4.19, so is a + 2expo(a)+1−n = b. Now by
Lemma 6.9, a ≤ RTZ(x, n), but if a < RTZ(x, n), then since RTZ(x, n) is n-
exact, Lemma 4.20 would imply b ≤ RTZ(x, n), contradicting x < b. Therefore,
a = RTZ(x, n). ��

Figure 6.1 is provided as a visual aid in understanding the following lemma,
which formulates the conditions under which a truncated sum may be computed by
truncating one of the summands in advance of the addition.

Lemma 6.14 Let x ∈ R, y ∈ R, and k ∈ Z. If x ≥ 0, y ≥ 0, and x is (k +
expo(x) − expo(y))-exact, then

x + RTZ(y, k) = RTZ(x + y, k + expo(x + y) − expo(y)).

Proof Let n = k + expo(x) − expo(y). Since x is n-exact,

x2k−1−expo(y) = x2n−1−expo(x) ∈ Z.
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k+expo (x)−expo(y)
︷ ︸︸ ︷

k
︷ ︸︸ ︷

+
1xxxxx.xxxxxxxxx 00 · · ·
1yyy.yyyyyyyyy yy · · ·

1zzzzzz.zzzzzzzzz zz · · ·
k+expo(x+y)−expo(y)

Fig. 6.1 Lemma 6.14

Let k′ = k + expo(x + y) − expo(y). Then by Lemma 1.1,

x + RTZ(y, k) = x + �2k−1−expo(y)y�2expo(y)+1−k

= (x2k−1−expo(y) + �2k−1−expo(y)y�)2expo(y)+1−k

= �2k−1−expo(y)(x + y)�2expo(y)+1−k

= �2k′−1−expo(x+y)(x + y)�2expo(x+y)+1−k′

= RTZ(x + y, k′).

��
Lemma 6.14 holds for subtraction as well, but only if the summands are properly
ordered.

Lemma 6.15 Let x ∈ R, y ∈ R, and k ∈ Z. If y > x > 0, k + expo(x − y) −
expo(y) > 0, and x is (k + expo(x) − expo(y))-exact, then

x − RTZ(y, k) = RTZ(x − y, k + expo(x − y) − expo(y)).

Proof Let n = k + expo(x) − expo(y). Since x is n-exact,

x2k−1−expo(y) = x2n−1−expo(x) ∈ Z.

Let k′ = k + expo(x − y) − expo(y). Then by Lemma 1.1,

x − RTZ(y, k) = x − �2k−1−expo(y)y�2expo(y)+1−k

= −(�2k−1−expo(y)y� − x2k−1−expo(y))2expo(y)+1−k

= −�2k−1−expo(y)(y − x)�2expo(y)+1−k

= −�2k′−1−expo(y−x)(y − x)�2expo(y−x)+1−k′

= −RTZ(y − x, k′)

= RTZ(x − y, k′).

��
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Truncation of a bit vector may be described as a shifted bit slice.

Lemma 6.16 Let x ∈ N and k ∈ N, and let n = expo(x) + 1. If 0 < k ≤ n, then

RTZ(x, k) = 2n−kx[n−1 : n − k].

Proof By Lemmas 2.4 and 2.12,

RTZ(x, k) = �2k−1−expo(x)x�2expo(x)+1−k

= �x/2n−k�2n−k

= 2n−k�x/2n−k�[k−1 : 0]
= 2n−kx[n−1 : n − k].

��
Corollary 6.17 Let x ∈ N, i ∈ N, j ∈ N, and k ∈ N. If 0 < k ≤ expo(x) + 1 and
expo(x) + 1 − k ≤ j ≤ i expo(x), then

RTZ(x, k)[i : j ] = x[i : j ]

Proof Let n = expo(x) + 1. By Lemmas 6.16, 2.14, and 2.19,

RTZ(x, k)[i : j ] = (2n−kx[n−1 : n − k])[i : j ]
= x[n−1 : n − k][i + k − n : j + k − n]
= x[i : j ].

��
Corollary 6.18 Let x ∈ N, m ∈ N, and k ∈ N, and let n = expo(x) + 1. If x ≥ 0
and 0 < k < m ≤ n, then

RTZ(x,m) = RTZ(x, k) + 2n−mx[n − k−1 : n − m].

Proof By Lemmas 6.16 and 2.18,

RTZ(x,m) = 2n−mx[n−1 : n − m]
= 2n−m(2m−kx[n−1 : n − k] + x[n − k−1 : n − m])
= 2n−kx[n−1 : n − k] + 2n−mx[n − k−1 : n − m]
= RTZ(x, k) + 2n−mx[n − k−1 : n − m].

��
Corollary 6.19 Let x ∈ N, m ∈ N, and k ∈ N, and let n = expo(x). If 0 < k <

n ≤ m, then

RTZ(x, k) = x & (2m − 2n−k).
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Proof By Lemmas 6.16 and 3.13,

RTZ(x, k) = 2n−kx[n−1 : n − k] = x & (2n − 2n−k),

and by Lemmas 3.2 2.4, and 3.6,

x & (2n − 2n−k) =
(
x & (2n − 2n−k)

)
[n−1 : 0]

= x[n−1 : 0] & (2n − 2n−k)[n−1 : 0]
= x & (2n − 2n−k)[n−1 : 0].

But since

2m − 2n−k = 2n(2m−n − 1) + 2n − 2n−k,

(2m − 2n−k)[n−1 : 0] = (2m − 2n−k) mod 2n = 2n − 2n−k.

��

6.2 Rounding Away from Zero

The dual of truncation is defined similarly, using the ceiling instead of the floor.

Definition 6.2 For all x ∈ R and n ∈ Z,

RAZ(x, n) = sgn(x)�2n−1sig(x)�2expo(x)−n+1.

Example Let x = 45/8 = (101.101)2 and n = 5. Then sgn(x) = 1, expo(x) = 2,
sig(x) = (1.01101)2,

�2n−1sig(x)�21−n = �(10110.1)2�2−4 = (10111)2 · 2−4 = (1.0111)2,

and

RAZ(x, n) = �2n−1sig(x)�21−n2expo(x) = (1.0111)2 · 22 = (101.11)2.

Note that this value is the smallest 5-exact number not exceeded by x.

The negative-precision case is less than intuitive.

Lemma 6.20 For all x ∈ R and n ∈ Z, if n ≤ 0, then

RAZ(x, n) = sgn(x)2expo(x)+1−n.
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Proof By Lemma 4.3,

0 < 2n−1sig(x) ≤ sig(x)/2 < 1,

and hence, by Lemma 1.6,

RAZ(x, n) = sgn(x)�2n−1sig(x)�2expo(x)+1−n = sgn(x)2expo(x)+1−n.

��
We have the following bounds on RAZ(x, n).

Lemma 6.21 For all x ∈ R and n ∈ Z
+,

|RAZ(x, n)| ≥ |x|.

Proof By Lemmas 1.6 and 4.1,

|RAZ(x, n)| ≥ 2n−1sig(x)2expo(x)−n+1 = sig(x)2expo(x) = |x|.

��
Lemma 6.22 If x ∈ R, x = 0, and n ∈ Z

+, then

|RAZ(x, n)| < |x| + 2expo(x)−n+1 ≤ |x|(1 + 21−n).

Proof By Definitions 6.2 and 1.1 and Lemma 4.1,

|RAZ(x, n)| < (2n−1sig(x) + 1)2expo(x)−n+1 = |x| + 2expo(x)−n+1.

The second inequality follows from Definition 4.1. ��
Corollary 6.23 For all x ∈ R and n ∈ Z

+,

|RAZ(x, n) − x| < 2expo(x)−n+1 ≤ 21−n|x|.

Proof By Lemmas 6.21,

|RAZ(x, n) − x| = ||RAZ(x, n)| − |x|| = |RAZ(x, n)| − |x|.

The corollary now follows from Lemma 6.22. ��
Unlike RTZ, RAZ is not guaranteed to preserve the exponent of its argument, but

the only exception is the case in which a number is rounded up to a power of 2.

Lemma 6.24 For all x ∈ R and n ∈ Z
+, if |RAZ(x, n)| = 2expo(x)+1, then

expo(RAZ(x, n)) = expo(x).



88 6 Rounding

Proof By Lemma 4.3,

|RAZ(x, n)| = �2n−1sig(x)�2expo(x)−n+1

≤ �2n�2expo(x)−n+1

= 2n2expo(x)−n+1

= 2expo(x)+1.

The claim now follows from Lemmas 6.21 and 4.2 (c). ��
The standard rounding mode properties may now be derived.

Lemma 6.25 For all x ∈ R and n ∈ Z,

RAZ(−x, n) = −RAZ(x, n).

Proof This is an immediate consequence of Definition 6.1 ��
Lemma 6.26 If x ∈ R and n ∈ Z

+, then RAZ(x, n) is n-exact.

Proof By Corollary 6.24 and Lemma 4.10, we may assume that

expo(RAZ(x, n)) = expo(x).

Consequently, it suffices to observe that

RAZ(x, n)2n−1−expo(x) = sgn(x)�2n−1sig(x)� ∈ Z.

��
Lemma 6.27 Let x ∈ R and n ∈ Z

+. If x is n-exact, then

RAZ(x, n) = x.

Proof By Definition 4.2 and Lemma 1.7,

�2n−1sig(x)� = 2n−1sig(x),

and hence by Definition 6.2 and Lemma 4.1,

RAZ(x, n) = sgn(x)�2n−1sig(x)�2expo(x)−n+1

= sgn(x)2n−1sig(x)2expo(x)−n+1

= sgn(x)sig(x)2expo(x)

= x.

��
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Lemma 6.28 Let x ∈ R, a ∈ R, and n ∈ Z
+. If a is n-exact and a ≥ x, then

a ≥ RAZ(x, n).

Proof If x < 0, then

x = −|x| ≥ −|RAZ(x, n)| = RAZ(x, n)

by Lemma 6.21. Therefore, we may assume that x ≥ 0. Suppose a < RAZ(x, n).
Then by Lemmas 4.20 and 4.2 (c),

RAZ(x, n) ≥ a + 2expo(a)−n+1 ≥ x + 2expo(x)−n+1,

contradicting Lemma 6.22. ��
Corollary 6.29 Let x ∈ R, a ∈ R, and n ∈ Z

+. If a is n-exact and a > |RTZ(x, n)|,
then a ≥ |RAZ(x, n)|.
Proof We may assume that x > 0 and x is not n-exact. By Lemma 6.9, a > x, and
by Lemma 6.28, a ≥ RAZ(x, n). ��
Lemma 6.30 Let x ∈ R, k ∈ Z, m ∈ Z

+, and n ∈ Z
+, with m < n and |x| < 2k .

If |RAZ(x, n)| = 2k , then |RAZ(x,m)| = 2k .

Proof We may assume that x > 0 and RAZ(x, n) = 2k . By Lemmas 6.21, 6.27,
and 4.23,

RAZ(x,m) ≥ x > fp−(2k, n) > fp−(2k,m).

By Lemmas 4.20 and 4.24, RAZ(x,m) ≥ 2k , and the lemma follows from
Lemma 6.28. ��
Lemma 6.31 Let x ∈ R, y ∈ R, and n ∈ Z

+. If x ≤ y, then

RAZ(x, n) ≤ RAZ(y, n).

Proof First suppose x > 0. By Lemma 6.21, RAZ(y, n) ≥ y ≥ x. Since RAZ(x, n)

is n-exact by Lemma 6.26, Lemma 6.28 implies

RAZ(y, n) ≥ RAZ(x, n).

Now suppose x ≤ 0. We may assume that x ≤ y < 0. Thus, since 0 < −y ≤ −x,
we have RAZ(−y, n) ≤ RAZ(−x, n) and by Lemma 6.25,

RAZ(x, n) = −RAZ(−x, n) ≤ −RAZ(−y, n) = RAZ(y, n).

��
Lemma 6.32 For all x ∈ R, n ∈ Z

+, and k ∈ Z
+,

RAZ(2kx, n) = 2kRAZ(x, n).
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Proof By Lemma 4.6,

RAZ(2kx, n) = sgn(2kx)�2n−1sig(2kx)�2expo(2kx)−n+1

= sgn(x)�2n−1sig(x)�2expo(x)+k−n+1

= 2kRAZ(x, n).

��
Lemma 6.33 Let x ∈ R, m ∈ N, and n ∈ N. If 0 < m ≤ n, then

RAZ(RAZ(x, n),m) = RAZ(x,m).

Proof We may assume x > 0. Consider first the case

RAZ(x, n) = 2expo(x)+1.

In this case, RAZ(x, n) is m-exact, so that

RAZ(RAZ(x, n),m) = RAZ(x, n) = 2expo(x)+1.

By Lemma 6.24, we need only show that RAZ(x,m) ≥ 2expo(x)+1. But since m ≤
n, RAZ(x,m) is n-exact, and since RAZ(x,m) ≥ x, RAZ(x,m) ≥ RAZ(x, n) by
Lemma 6.28.

Thus, we may assume RAZ(x, n) < 2expo(x)+1. By Corollary 6.24,

expo(RAZ(x, n)) = expo(x),

and hence by Lemma 1.8,

RAZ(RAZ(x, n),m)

= �2m−1−expo(x)(�2n−1−expo(x)x�2expo(x)+1−n)�2expo(x)+1−m

= ��2n−1−expo(x)x�/2n−m�2expo(x)+1−m

= �2n−1−expo(x)x/2n−m�2expo(x)+1−m

= �2m−1−expo(x)x�2expo(x)+1−m

= RAZ(x,m).

��
The next four results correspond to Lemmas 6.13, 6.12, 6.14, and 6.15 of the

preceding section.

Lemma 6.34 Let x ∈ R and n ∈ N. If x is (n + 1)-exact but not n-exact, then

RAZ(x, n) = x + sgn(x)2expo(x)−n.
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Proof For the case n = 0, we have sig(x) = 1 by Definition 4.2, and by Lemmas 4.1
and 6.20,

x + sgn(x)2expo(x)−n = sgn(x)2expo(x) + sgn(x)2expo(x)

= sgn(x)2expo(x)+1

= RAZ(x, n).

Thus, we may assume n > 0, and by Lemma 6.25, we may also assume x > 0. Let
a = x − 2expo(x)−n and b = x + 2expo(x)−n. As noted in the proof of Lemma 6.13,
a and b are both n-exact and b = fp+(a, n). Now by Lemma 6.28, b ≥ RAZ(x, n),
but if b = fp+(a, n) > RAZ(x, n), then since RAZ(x, n) is n-exact, Lemma 4.20
would imply a ≥ RAZ(x, n), contradicting a < x. Therefore, a = RAZ(x, n). ��
Lemma 6.35 Let x ∈ R, y ∈ R, and k ∈ Z. If x ≥ 0, y ≥ 0, and x is (k +
expo(x) − expo(y))-exact, then

x + RAZ(y, k) = RAZ(x + y, k + expo(x + y) − expo(y)).

Proof Let n = k + expo(x) − expo(y). Since x is n-exact,

x2k−1−expo(y) = x2n−1−expo(x) ∈ Z.

Let k′ = k + expo(x + y) − expo(y). Then by Lemma 1.7(d),

x + RAZ(y, k) = x + �2k−1−expo(y)y�2expo(y)+1−k

= (x2k−1−expo(y) + �2k−1−expo(y)y�)2expo(y)+1−k

= �2k−1−expo(y)(x + y)�2expo(y)+1−k

= �2k′−1−expo(x+y)(x + y)�2expo(x+y)+1−k′

= RAZ(x + y, k′).

��
Lemma 6.36 Let x ∈ R, y ∈ R, and k ∈ Z. If x > y > 0, k + expo(x − y) −
expo(y) > 0, and x is (k + expo(x) − expo(y))-exact, then

x − RTZ(y, k) = RAZ(x − y, k + expo(x − y) − expo(y)).

Proof Let n = k + expo(x) − expo(y). Since x is n-exact,

x2k−1−expo(y) = x2n−1−expo(x) ∈ Z.



92 6 Rounding

Let k′ = k + expo(x − y) − expo(y). Then by Lemma 1.1,

x − RTZ(y, k) = x − �2k−1−expo(y)y�2expo(y)+1−k

= −(�2k−1−expo(y)y� − x2k−1−expo(y))2expo(y)+1−k

= −�2k−1−expo(y)(y − x)�2expo(y)+1−k

= −�2k′−1−expo(y−x)(y − x)�2expo(y−x)+1−k′

= −RTZ(y − x, k′)

= RTZ(x − y, k′).

��
The following result combines Lemmas 6.15 and 6.36.

Corollary 6.37 Let x ∈ R and y ∈ R such that x = 0, y = 0, and x + y = 0. Let
k ∈ Z,

k′ = k + expo(x) − expo(y),

and

k′′ = k + expo(x + y) − expo(y).

If k′′ > 0, and x is k′-exact, then

x + RTZ(y, k) =
{

RTZ(x + y, k′′) if sgn(x + y) = sgn(y)

RAZ(x + y, k′′) if sgn(x + y) = sgn(y).

Proof By Lemmas 6.6 and 6.25, we may assume that x > 0. The case y > 0 is
handled by Lemma 6.14. For the case y < 0, Lemmas 6.15 and 6.36 cover the
subcases −y > x and −y < x, respectively. ��

We turn now to the problem of bit-level implementation of rounding. Truncation,
according to Lemma 6.16, is equivalent to a bit slice operation, which may be
implemented as a logical operation using Corollary 6.19. Other rounding modes
may be reduced to the case of truncation by a method known as constant injection.
Let x be m-exact with expo(x) = e, say

x = (1.β1β2 · · · βm−1)2 · 2e,

to be rounded to n bits, where n ≤ m, according to a rounding mode R. Our goal is
to construct a rounding constant C, depending on m, n, e, and R, such that

R(x, n) = RTZ(x + C, n).
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The appropriate constant for the case R = RAZ is

C = 2e(2−(n−1) − 2−(m−1)) = 2e+1(2−n − 2−m),

which consists of a string of 1s at the bit positions corresponding to the least
significant m − n bits of x, as illustrated below.

1 1β2 βn−1βn βm−1 × 2e
+ 1 .

. β
0 0 0 1 1 × 2e

As suggested by the diagram, the addition x + C generates a carry into the position
of βn−1 unless βn = · · · = βm−1 = 0, i.e., unless x is n-exact, and x is rounded up
accordingly. This observation is formalized by the following lemma.

Lemma 6.38 Let x ∈ R, m ∈ Z
+, and n ∈ Z

+. If x is m-exact, x > 0, and m ≥ n,
then

RAZ(x, n) = RTZ(x + 2expo(x)+1(2−n − 2−m), n).

Proof Let a = RTZ(x +2expo(x)+1(2−n −2−m), n). Since a and RAZ(x, n) are both
n-exact and

a < x + 2expo(x)+1−n ≤ RAZ(x, n) + 2expo(RAZ(x,n))+1−n,

a ≤ RAZ(x, n) by Lemma 4.20.
If x is n-exact, then a ≥ RTZ(x, n) = x = RAZ(x, n), and hence a = RAZ(x, n).

Thus, we may assume x is not n-exact. But then since x > RTZ(x, n) and x is m-
exact,

x ≥ RTZ(x, n) + 2expo(x)+1−m

and hence

x + 2expo(x)+1(2−n − 2−m) ≥ RTZ(x, n) + 2expo(x)+1−n = RAZ(x, n),

which implies a ≥ RAZ(x, n). ��

6.3 Rounding to Nearest

Next, we examine the mode RNE, which may round in either direction, selecting
the representable number that is closest to its argument. This mode is known
as “rounding to nearest even” because of the manner in which it resolves the
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ambiguous case of a number that is equidistant from two successive representable
numbers.

Definition 6.3 Given x ∈ R and n ∈ Z, let z = �2n−1sig(x)�, and f =
2n−1sig(x) − z. Then

RNE(x, n) =
{

RTZ(x, n) if f < 1/2 or f = 1/2 and z is even
RAZ(x, n) if f > 1/2 or f = 1/2 and z is odd.

Example Let x = (101.101)2 and n = 5. Then

z = �2n−1sig(x)� = �(10110.1)2� = (10110)2

and

f = 2n−1sig(x) − z = (10110.1)2 − (10110)2 = (0.1)2 = 1/2,

indicating a “tie”, i.e., that x is equidistant from two successive 5-exact numbers.
Since z is even, the tie is broken in favor of the lesser of the two:

RNE(x, n) = RTZ(x, n) = (101.10)2.

Like all rounding modes, the value of RNE is always that of either RTZ or RAZ.
We list several properties of RNE that may be derived from this observation and the
corresponding properties of RTZ and RAZ.

Lemma 6.39 If x ∈ R, n ∈ Z
+, then RNE(x, n) is n-exact.

Lemma 6.40 Let x ∈ R and n ∈ Z
+. If x is n-exact, then

RNE(x, n) = x.

Lemma 6.41 Let x ∈ R, a ∈ R, and n ∈ N. Suppose a is n-exact.

(a) If a ≥ x, then a ≥ RNE(x, n);
(b) If a ≤ x, then a ≤ RNE(x, n).

Lemma 6.42 For all x ∈ R and n ∈ N, if |RNE(x, n)| = 2expo(x)+1, then

expo(RNE(x, n)) = expo(x).

Lemma 6.43 For all x ∈ R, n ∈ Z
+, and k ∈ Z,

RNE(2kx, n) = 2kRNE(x, n).

Proof It is clear from Definition 6.3 that the choice between RTZ(x, n) and
RAZ(x, n) depends only on sig(x). Thus, for example, if RNE(x, n) = RTZ(x, n),



6.3 Rounding to Nearest 95

then since sig(2kx) = sig(x), RNE(2kx, n) = RTZ(2kx, n) as well, and by
Lemma 6.11,

RNE(2kx, n) = RTZ(2kx, n) = 2kRTZ(x, n) = 2kRNE(x, n).

��
Lemma 6.44 For all x ∈ R and n ∈ Z,

RNE(−x, n) = −RNE(x, n).

Proof This may be derived from Lemmas 6.6 and 6.25 by following the same
reasoning as used in the proof of Lemma 6.43. ��

In the computation of RNE(x, n), the choice between RTZ(x, n) and RAZ(x, n)

is governed by their relative distances from x.

Lemma 6.45 Let x ∈ R and n ∈ Z
+.

(a) If |x − RTZ(x, n)| < |x − RAZ(x, n)|, then RNE(x, n) = RTZ(x, n).
(b) If |x − RTZ(x, n)| > |x − RAZ(x, n)|, then RNE(x, n) = RAZ(x, n).

Proof We may assume that 2n−1sig(x) /∈ Z, for otherwise

RTZ(x, n) = RAZ(x, n) = RNE(x, n) = x.

Let f = 2n−1sig(x) − �2n−1sig(x)�. Then

|x − RTZ(x, n)| = |x| − |RTZ(x, n)|
= 2expo(x)+1−n(2n−1sig(x) − �2n−1sig(x)�)
= 2expo(x)+1−nf

and

|x − RAZ(x, n)| = |RAZ(x, n)| − |x|
= 2expo(x)+1−n(�2n−1sig(x)� − 2n−1sig(x))

= 2expo(x)+1−n(1 − f ).

Thus, (a) and (b) correspond to f < 1/2 and f > 1/2, respectively. ��
No n-exact number can be closer to x than is RNE(x, n):

Lemma 6.46 Let x ∈ R, y ∈ R, and n ∈ Z
+. If y is n-exact, then

|x − y| ≥ |x − RNE(x, n)|.

Proof Assume |x − y| < |x − RNE(x, n)|. We shall only consider the case x > 0,
as the case x < 0 is handled similarly.
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First suppose RNE(x, n) = RTZ(x, n). Since RNE(x, n) ≤ x, we must have
y > RNE(x, n) and hence y > x by Lemma 6.9. But since RAZ(x, n) − x ≥
x − RNE(x, n) by Lemma 6.45, we also have y < RAZ(x, n), and hence y < x by
Lemma 6.28.

In the remaining case, RNE(x, n) = RAZ(x, n) > x. Now y < RNE(x, n) and
by Lemma 6.28, y < x. But in this case, Lemma 6.45 implies y > RTZ(x, n), and
hence y > x by Lemma 6.9. ��

Consequently, the maximum RNE rounding error is half the distance between
successive representable numbers.

Lemma 6.47 If x ∈ R and n ∈ Z
+, then

|x − RNE(x, n)| ≤ 2expo(x)−n ≤ 2−n|x|.

Proof By Lemma 6.44, we may assume x > 0. Let

a = RTZ(x, n) + 2expo(x)+1−n = fp+(RTZ(x, n), n).

If the statement fails, then since RTZ(x, n) and RAZ(x, n) are both n-exact,
Lemma 6.46 implies

RTZ(x, n) < x − 2expo(x)−n < x + 2expo(x)−n < RAZ(x, n),

and hence a < RAZ(x, n). Then by Lemmas 4.20 and 6.28, we have a < x,
contradicting Lemma 6.4. ��
Corollary 6.48 Let x ∈ R, y ∈ R, and n ∈ Z

+. If x = 0, y is n-exact, and
|x − y| < 2expo(x)−n, then y = RNE(x, n).

Proof We shall consider the case x > 0; the case x < 0 then follows from
Lemma 6.44.

Let e = expo(x). and z = RNE(x, n). By Lemma 6.42, expo(z) ≥ e. We also
have expo(y) ≥ e, for otherwise y < 2e and by Lemma 4.25,

y ≤ fp−(2e, n) = 2e − 2e−n ≤ x − 2e−n,

contradicting |x − y| < 2e−n. By Lemma 6.47,

|y − z| ≤ |x − y| + |x − z| < 2e−n + 2e−n = 2e+1−n.

If y < z, then since

z < y + 2e+1−n ≤ y + 2expo(y)+1−n = fp+(y, n),

Lemma 4.20 implies y = z. But if z < y, we have a similar contradiction. ��
The one remaining rounding mode axiom, monotonicity, may also be derived as

a consequence of Lemma 6.46:
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Lemma 6.49 Let x ∈ R, y ∈ R, and n ∈ Z
+. If x ≤ y, then

RNE(x, n) ≤ RNE(y, n).

Proof Suppose x < y and RNE(x, n) > RNE(y, n). Then Lemma 6.46 implies
x > RNE(y, n), otherwise x ≤ RNE(y, n) < RNE(x, n) and |x − RNE(y, n)| <

|x − RNE(x, n)|. Similarly, y < RNE(x, n), and thus RNE(y, n) < x < y <

RNE(x, n). Applying Lemma 6.46 again, we have x −RNE(y, n) ≥ RNE(x, n)−x,
and hence 2x ≥ RNE(x, n)+RNE(y, n). Similarly, RNE(x, n)−y ≥ y−RNE(y, n),
and hence RNE(x, n) + RNE(y, n) ≥ 2y. Consequently, 2x ≥ 2y, contradicting
x < y. ��

We have the following analog of Lemma 6.30:

Lemma 6.50 Let x ∈ R, k ∈ N, m ∈ N, and n ∈ N, with 0 < m < n and |x| < 2k .
If |RNE(x, n)| = 2k , then |RNE(x,m)| = 2k .

Proof We may assume that x > 0. By Lemmas 4.23 and 6.41,

x > fp−(2k, n) = 2k − 2k−n ≥ 2k − 2k−m−1 > 2k − 2k−m = fp−(2k,m).

Let y = 2k − 2k−m−1 = 2k−1(2 − 2−m). Then

2m−1sig(y) = 2m−1(2 − 2−m) = 2m − 1

2
.

If z = �2m−1sig(y)� = 2m − 1 and f = 2m−1sig(y) − z = 1
2 , then according to

Definition 6.3, since z is odd,

RNE(y,m) = RAZ(y,m) ≥ y > fp−(2k,m).

By Lemma 6.49,

RNE(x,m) ≥ RNE(y,m) ≥ y > fp−(2k,m),

which implies RNE(x,m) = 2k . ��
A midpoint with respect to a precision n may be characterized as a number that

is (n+ 1)-exact but not n-exact. By virtue of the following result, the term rounding
boundary is sometimes used as well.

Lemma 6.51 Let x ∈ R, y ∈ R, and n ∈ N. If 0 < x < y and RNE(x, n) =
RNE(y, n), then for some a ∈ R, x ≤ a ≤ y and a is (n + 1)-exact.
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Proof By Lemma 6.49, RNE(x, n) < RNE(y, n). Let e = expo(RNE(x, n)),

a = fp+(RNE(x, n), n + 1) = RNE(x, n) + 2e−n

and

b = fp+(RNE(x, n), n) = RNE(x, n) + 2e+1−n = a + 2e−n.

Since RNE(x, n) and RNE(y, n) are both n-exact by Lemma 6.39, Lemma 4.19
implies that a is (n + 1)-exact and b is n-exact and consequently, by Lemma 4.20,
a is not n-exact and RNE(y, n) ≥ b. Thus,

RNE(x, n) < a < b ≤ RNE(y, n).

Moreover, x ≤ a ≤ y, for if x > a, then |x − b| < |x − RNE(x, n|, contradicting
Lemma 6.46 and similarly if y < a, then |y − RNE(x, n)| < |y − RNE(y, n|. ��
Lemma 6.52 Let x ∈ R, y ∈ R, a ∈ R, n ∈ Z

+, and k ∈ Z
+ with n ≥ k. If a is

(n + 1)-exact, 0 < a < x, and 0 < y < a + 2expo(a)−n, then

RNE(x, k) ≥ RNE(y, k).

Proof By Lemma 6.49, we may assume x < y, so that a < x < y < a+2expo(a)−n.
By Lemmas 4.19 and 4.20, a and a+2expo(a)−n are successive (n+1)-exact numbers,
and hence RNE(x, k) = RNE(y, k) by Lemma 6.51. ��

We also have the following partial converse of Lemma 6.51.

Lemma 6.53 Let x ∈ R, y ∈ R, a ∈ R, and n ∈ Z
+. If 0 < x < a < y and a is

(n + 1)-exact but not n-exact, then

RNE(x, n) < RNE(y, n).

Proof Let e = expo(a). Since a is not n-exact, a = 2e. Let

b = fp−(a, n + 1) = a − 2e−n.

By Lemma 4.24,

fp+(b, n + 1) = b + 2expo(b)−n = a = b + 2e−n,

and it follows that expo(b) = e.
By hypothesis, 2n−ea ∈ Z but 2n−1−ea /∈ Z, and therefore, 2n−ea is odd, i.e.,

2n−ea = 2k + 1, where k ∈ Z. Now since

2n−1−eb = 2n−1−e(a − 2n−e) = 1

2
(2n−ea − 1) = k ∈ Z,
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b is n-exact. Let

c = fp+(b, n) = b + 2n+1−e = a + 2n−e.

By Lemma 4.19, c is n-exact as well.
If RNE(x, n) > b, then by Lemma 4.20, RNE(x, n) ≥ c, which implies |b−x| <

|RNE(x, n) − x|, contradicting Lemma 6.46. Similarly, if RNE(y, n) < c, then
RNE(y, n) ≤ b and |c − y| < |RNE(y, n) − y|. Thus,

RNE(x, n) ≤ b < a < c ≤ RNE(y, n).

��
The meaning of “round to nearest even” is that in the case of a midpoint x,

RNE(x, n) is defined to be the “rounder” of the two nearest n-exact numbers, i.e.,
the one that is (n − 1)-exact.

Lemma 6.54 Let n ∈ N, n > 1, and x ∈ R. If x is (n + 1)-exact but not n-exact,
then RNE(x, n) is (n − 1)-exact.

Proof Again we may assume x > 0. Let z = �2n−1sig(x)� and f = 2n−1sig(x)−z.
Since 2n−1sig(x) /∈ Z, 0 < f < 1. But 2nsig(x) = 2z + 2f ∈ Z, hence 2f ∈ Z

and f = 1
2 .

If z is even, then

RNE(x, n) = RTZ(x, n) = z2expo(x)+1−n

and by Lemma 6.2,

2n−2−expo(RNE(x,n))RNE(x, n) = 2n−2−expo(x)z2expo(x)+1−n = z/2 ∈ Z.

If z is odd, then

RNE(x, n) = RAZ(x, n) = (z + 1)2expo(x)+1−n.

We may assume RAZ(x, n) = 2expo(x)+1, and hence by Corollary 6.24,

2n−2−expo(RNE(x,n))RNE(x, n) = 2n−2−expo(x)(z + 1)2expo(x)+1−n

= (z + 1)/2

∈ Z.

��
As we have noted, RNE does not satisfy the property of decomposability:

Example Let x = 43 = (101011)2.

RNE(RNE(x, 5), 3) = RNE((101100)2, 3) = (110000)2 = 48,
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whereas

RNE(x, 3) = (101000)2 = 40.

A consequence of Lemma 6.54 is that a midpoint is sometimes rounded up and
sometimes down, and therefore, over the course of a long series of computations and
approximations, rounding error is less likely to accumulate to a significant degree
in one direction than it would be if the choice were made more consistently.

Intuitively, a rounding mode R is unbiased if the expected error that it incurs in
rounding a representative set of values to a given precision is 0. Given a rounding
precision n > 1, one choice of “representative set” is the set of all m-exact numbers
for some m > n. In order to limit the error computation to finite sets, we seek to
identify a partition of the real numbers such that for all m > n, the expected error
over the m-exact numbers within each interval of the partition may be shown to be 0.
In practice, we find that a suitable partition is the set of (n−1)-exact numbers. If we
assume that R is symmetric, then we need only consider positive values. Thus, we
consider the set of m-exact numbers that lie between two consecutive (n − 1)-exact
values x0 > 0 and fp+(x0, n − 1) = x0 + 2expo(x0)+2−n, i.e.,

{x0 + 2expo(x0)+1−mk | 0 ≤ k < 2n+1−m}.
This leads to the following definition:

Definition 6.4 A symmetric rounding mode R is unbiased if for all n ∈ N, m ∈ N,
and x0 ∈ R, if m > n > 1, x0 > 0, and x0 is (n − 1)-exact, then the expected error

E(R, n,m, x0) = 1

2m+1−n

2m+1−n−1∑
k=0

(R(xk, n) − xk) = 0,

where xk = x0 + 2expo(x0)+1−mk for 0 ≤ k < 2m+1−n.

This property holds for R = RNE:

Lemma 6.55 RNE is an unbiased rounding mode.

Proof Let e = expo(x0), where x0 > 0 and x0 is (n−1)-exact, and let N = 2m+1−n.
For 0 ≤ k ≤ N , let xk = x0 + 2e+1−mk and εk = R(xk, n) − xk . Since x0 and xN/2
are both n-exact, ε0 = εN/2 = 0 and the sum in Definition 6.4 may be expressed as

E(R, n,m, x0) = 1

2n+1−m
(Σ1 + εN/4 + Σ2 + Σ3 + ε3N/4 + Σ4),

where

Σ1 =
N
4 −1∑
k=1

εk, Σ2 =
N
2 −1∑

k= N
4 +1

εk, Σ3 =
3N
4 −1∑
k= N

2

εk, and Σ4 =
N−1∑

k= 3N
4 +1

εk.
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It follows easily from Lemmas 4.19 and 4.20 that xN is (n−1)-exact, xN/2 is n-exact
but not (n − 1)-exact, xN/4 and x3N/4 are (n + 1)-exact but not n-exact, and that
no other n-exact numbers lie between x0 and xN . By Lemmas 6.39, 6.47, and 6.54,
RNE(xN/4, n) = x0 and RNE(x3N/4, n) = xN , and hence

εN/4 + ε3N/4 = (x0 − xN/4) + (xN − x3N/4) = −2e−n + 2e−n = 0.

By Corollary 6.48, RNE(xk, n) = x0 for 0 < k < N/4, and RNE(xk, n) = xN/2 for
N/4 < k < N/2. Therefore,

Σ1 =
N
4 −1∑
k=1

(x0 − xk) =
N
4 −1∑
k=1

(−2e+1−mk) = −2e+1−m

N
4 −1∑
k=1

k

and

Σ2 =
N
2∑

k= N
4 +1

(xN/2 − xk)

=
N
2∑

k= N
4 +1

(
(xN/2 − x0) + (x0 − xk)

)

= N

4
(2e+1−n) − 2e+1−m

N
2∑

k= N
4 +1

k

= 2e+1−m

⎛
⎜⎝N

4

N

2
−

N
2∑

k= N
4 +1

k

⎞
⎟⎠ .

Thus,

Σ1 + Σ2 = 2e+1−m

⎛
⎜⎝−

N
4 −1∑
k=1

k + N

4

N

2
−

N
2∑

k= N
4 +1

k

⎞
⎟⎠

= 2e+1−m

⎛
⎜⎝N2

8
+ N

4
−

N
2∑

k=1

k

⎞
⎟⎠

= 2e+1−m

(
N2

8
+ N

4
− 1

2

N

2

(
N

2
+ 1

))

= 0.

Similarly, Σ3 + Σ4 − 0 and the lemma follows. ��



102 6 Rounding

The cost of this feature is a complicated definition requiring an expensive
implementation. When the goal of a computation is provable accuracy rather than
IEEE-compliance, a simpler version of “round to nearest” may be appropriate. The
critical feature of this mode then becomes the relative error bound guaranteed by
Lemma 6.47, since this is likely to be the basis for any formal error analysis. The
following definition presents an alternative to RNE known as “round to nearest
away from zero”. This variant, which is mentioned but not prescribed by the
standard, respects the same error bound as RNE (see Lemma 6.66) and admits a
simpler implementation, and is therefore commonly used for internal floating-point
calculations.

Definition 6.5 Given x ∈ R and n ∈ Z, let z = �2n−1sig(x)�, and f =
2n−1sig(x) − z. Then

RNA(x, n) =
{

RTZ(x, n) if f < 1/2
RAZ(x, n) if f ≥ 1/2.

Example Let x = (101.101)2 and n = 5. Since

f = 2n−1sig(x) − �2n−1sig(x)� = (10110.1)2 − (10110)2 = (0.1 = 1/2)2,

RNA(x, n) = RAZ(x, n) = (101.11)2.

Naturally, many of the properties of RNE are held by RNA as well. We list some
of them here, omitting the proofs, which are essentially the same as those given
above for RNE.

Lemma 6.56 For all x ∈ R and n ∈ N, RNA(x, n) is n-exact.

Lemma 6.57 Let x ∈ R and n ∈ N. If x is n-exact, then

RNA(x, n) = x.

Lemma 6.58 Let x ∈ R, a ∈ R, and n ∈ N. Suppose a is n-exact.

(a) If a ≥ x, then a ≥ RNA(x, n);
(b) If a ≤ x, then a ≤ RNA(x, n).

Lemma 6.59 Let x ∈ R, y ∈ R, and n ∈ Z
+. If x ≤ y, then

RNA(x, n) ≤ RNA(y, n).

Lemma 6.60 For all x ∈ R, n ∈ Z
+, and k ∈ Z,

RNA(2kx, n) = 2kRNA(x, n).

Lemma 6.61 For all x ∈ R and n ∈ N, if |RNA(x, n)| = 2expo(x)+1, then

expo(RNA(x, n)) = expo(x).
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Lemma 6.62 For all x ∈ R and n ∈ Z,

RNA(−x, n) = −RNA(x, n).

Lemma 6.63 Let x ∈ R and n ∈ N.

(a) If |x − RTZ(x, n)| < |x − RAZ(x, n)|, then RNA(x, n) = RTZ(x, n).
(b) If |x − RTZ(x, n)| > |x − RAZ(x, n)|, then RNA(x, n) = RAZ(x, n).

Lemma 6.64 Let x ∈ R, k ∈ N, m ∈ N, and n ∈ N. 0 < m < n, |x| < 2k , and
|RNA(x, n)| = 2k , then |RNE(x,m)| = 2k .

Lemma 6.65 Let x ∈ R, y ∈ R, and n ∈ Z
+. If y is n-exact, then

|x − y| ≥ |x − RNA(x, n)|.

Lemma 6.66 If x ∈ R, n ∈ Z
+, then

|x − RNA(x, n)| ≤ 2expo(x)−n.

Lemma 6.67 Let x ∈ R, y ∈ R, and n ∈ N. If 0 < x < y and RNA(x, n) =
RNA(y, n), then for some a ∈ R, x ≤ a ≤ y and a is (n + 1)-exact.

Lemma 6.68 Let x ∈ R, y ∈ R, a ∈ R, n ∈ Z
+, and k ∈ Z

+ with n ≥ k. If a is
(n+1)-exact, 0 < a < x, and 0 < y < a+2expo(a)−n, then RNA(x, k) ≥ RNA(y, k).

The difference between RNE and RNA is that the latter always rounds a midpoint
away from 0.

Lemma 6.69 Let x ∈ R and n ∈ N. If x is (n + 1)-exact but not n-exact, then

RNA(x, n) = RAZ(x, n) = x + sgn(x)2expo(x)−n.

Proof By Lemmas 6.44 and 6.25, we may assume x > 0. Let z = �2n−1sig(x)�
and f = 2n−1sig(x) − z. Since 2n−1sig(x) /∈ Z, 0 < f < 1. But 2nsig(x) =
2z + 2f ∈ Z, hence 2f ∈ Z and f = 1

2 . Therefore, according to Definition 6.5,
RNA(x, n) = RAZ(x, n). The second inequality is a restatement of Lemma 6.34.

��
RNA is not decomposable, as illustrated by the same example that we used for

RNE:

Example Let x = 43 = (101011)2.

RNA(RNA(x, 5), 3) = RNA((101100)2, 3) = (110000)2 = 48,

whereas

(RNA(x, 3) = (101000)2 = 40.
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There is one case of a midpoint for which RNE and RNA are guaranteed to
produce the same result: if the greater of the two representable numbers that are
equidistant from x is a power of 2, i.e., x = 2expo(x)+1 − 2expo(x)−n, then both
modes round to this number.

Lemma 6.70 Let n ∈ N, n > 1, and x ∈ R, x > 0. If x + 2expo(x)−n ≥ 2expo(x)+1,
then

RNE(x, n) = RNA(x, n) = 2expo(x)+1 = RTZ(x + 2expo(x)−n, n).

Proof Suppose RNE(x, n) = 2expo(x)+1. Then Lemma 6.42 implies

RNE(x, n) < 2expo(x)+1

and by Lemmas 4.20 and 6.47,

2expo(x)+1 ≥ RNE(x, n) + 2expo(x)+1−n

≥ x − 2expo(x)−n + 2expo(x)+1−n

= x + 2expo(x)−n

≥ 2expo(x)+1.

It follows that x = 2expo(x)+1 − 2expo(x)−n, which is easily seen to be (n + 1)-exact
but not n-exact, while RNE(x, n) = 2expo(x)+1 − 2expo(x)+1−n is n-exact but not
(n − 1)-exact, contradicting Lemma 6.54.

Now suppose RNA(x, n) = 2expo(x)+1. Using Lemmas 6.61 and 6.66, we may
show in the same way as above that x = 2expo(x)+1 − 2expo(x)−n. Once again, x is
(n + 1)-exact but not n-exact, and hence, by Lemma 6.69,

RNA(x, n) = x + 2expo(x)−n = 2expo(x)+1,

a contradiction.
Finally, suppose 2expo(x)+1 = RTZ(x+2expo(x)−n, n). Since 2expo(x)+1 is n-exact,

2expo(x)+1 < RTZ(x + 2expo(x)−n, n) by Lemma 6.9. But then by Lemma 4.20,

RTZ(x + 2expo(x)−n, n) ≥ 2expo(x)+1 + 2expo(x)+2−n > x + 2expo(x)−n,

contradicting Lemma 6.3. ��
The additive property shared by RTZ and RAZ that is described in Lemmas 6.14

and 6.35, respectively, does not hold for RNE in precisely the same form.

Example Let x = 2 = (10)2, y = 5 = (101)2, and k = 2. Then

k + expo(x) − expo(y) = 2 + 1 − 2 = 1
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and

k + expo(x + y) − expo(y) = 2 + 2 − 2 = 2.

Although x is clearly (k + expo(x) − expo(y))-exact,

x + RNE(y, k) = (10)2 + RNE((101)2, 2) = (10)2 + (100)2 = (110)2,

while

RNE(x + y, k + expo(x + y) − expo(y)) = RNE((111, 2)2) = (1000)2.

However, this property is shared by RNA, and a slightly weaker version holds for
RNE.

Lemma 6.71 Let x ∈ R, y ∈ R, and k ∈ Z with x ≥ 0 and y ≥ 0. Let

k′ = k + expo(x) − expo(y)

and

k′′ = k + expo(x + y) − expo(y).

(a) If x is (k′ − 1)-exact, then

x + RNE(y, k) = RNE(x + y, k′′).

(b) If x is k′-exact, then

x + RNA(y, k) = RNA(x + y, k′′).

Proof

(a) Applying Lemmas 6.14 and 6.35, we need only show that either

RNE(y, k) = RTZ(y, k) and RNE(x + y, k′′) = RTZ(x + y, k′′)

or

RNE(y, k) = RAZ(y, k) and RNE(x + y, k′′) = RAZ(x + y, k′′).

Let z1 = �2k−1sig(y)�, f1 = 2k−1sig(y)−z1, z2 = �2k′′−1sig(x+y)�, and f2 =
2k′′−1sig(x + y) − z2. According to Definition 6.3, it will suffice to show that

2k′′−1sig(x + y) − 2k−1sig(y) = 2�,
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for some � ∈ Z, for then Lemma 1.1 will imply that z2 = z1 + 2� and f2 = f1.
But

2k′′−1sig(x + y) − 2k−1sig(y) = 2k′′−expo(x+y)−1(x + y) − 2k−expo(y)−1y

= 2k−expo(y)−1(x + y) − 2k−expo(y)−1y

= 2k−expo(y)−1x

= 2k′−expo(x)−1x

= 2�,

where

� = 2(k′−1)−expo(x)−1 ∈ Z

by Lemma 4.8.
(b) Here we must show that either

RNA(y, k) = RTZ(y, k) and RNA(x + y, k′′) = RTZ(x + y, k′′)

or

RNA(y, k) = RAZ(y, k) and RNA(x + y, k′′) = RAZ(x + y, k′′).

According to Definition 6.5, this is true whenever f1 = f2. Thus, we need only
show that

2k′′−1sig(x + y) − 2k−1sig(y) = 2k′−expo(x)−1x ∈ Z,

which is equivalent to the hypothesis that x is k′-exact. ��
The rounding constant C (see the discussion preceding Lemma 6.38) for both of

the modes RNE and RNA is a simple power of 2, equal to half the value of the least
significant bit of the rounded result. That is, if the rounding precision is n and the
unrounded result is

x = (1.β1β2 · · · )2 × 2e,

then C = 2e−n, as illustrated below.

1 . β1β2 · · · βn−1βn · · · × 2e

+ 1 . 0 0 · · · 0 1 × 2e
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The following lemma exposes the extra expense of implementing RNE as
compared to RNA. While the correctly rounded result is given by RTZ(x + C, n)

in most cases, special attention is required for the computation of RNE in the case
where it differs from RNA, i.e., when x is (n+ 1)-exact and βn = 1. In this case, the
least significant bit must be forced to 0. This is accomplished by truncating x +C to
n − 1 bits rather than n.

Lemma 6.72 If n ∈ N, n > 1, x ∈ R, and x > 0, then

RNE(x, n) =
{

RTZ(x+2expo(x)−n, n–1) if x is (n+1)-exact but not n-exact
RTZ(x+2expo(x)−n, n) otherwise

and

RNA(x, n) = RTZ(x + 2expo(x)−n, n).

Proof If x + 2expo(x)−n ≥ 2expo(x)+1, then by Lemma 6.70,

RNE(x, n) = RNA(x, n) = 2expo(x)+1 = RTZ(x + 2expo(x)−n, n).

But then, by Lemmas 6.12, 4.10, and 6.8,

RTZ(x + 2expo(x)−n, n − 1) = RTZ(RTZ(x + 2expo(x)−n, n), n − 1)

= RTZ(2expo(x)+1, n − 1)

= 2expo(x)+1

= RTZ(x + 2expo(x)−n, n).

Thus, we may assume x + 2expo(x)−n < 2expo(x)+1, and it follows from Lem-
mas 6.42, 6.47, 6.61, and 6.66 that

expo(RNE(x, n)) = expo(RNA(x, n)) = expo(x + 2expo(x)−n) = expo(x).

Case 1: x is n-exact
By Lemma 6.9, rtz(x + 2expo(x)−n, n) ≥ x. But since

RTZ(x + 2expo(x)−n, n) ≤ x + 2expo(x)−n < x + 2expo(x)+1−n,

Lemma 4.20 yields RTZ(x + 2expo(x)−n, n) ≤ x, and hence

RTZ(x + 2expo(x)−n, n) = x = RNE(x, n) = RNA(x, n).

Case 2: x is not (n + 1)-exact
We have RNE(x, n) > x − 2expo(x)−n, for otherwise Lemma 6.47 <would imply

RNE(x, n) = x − 2expo(x)−n,
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and since RNE(x, n) is (n + 1)-exact, so would be

RNE(x, n) + 2expo(RNE(x,n))−n = x − 2expo(x)−n + 2expo(RNE(x,n))−n = x.

Since RNE(x, n) ≤ x + 2expo(x)−n, RNE(x, n) ≤ RTZ(x + 2expo(x)−n, n) by
Lemma 6.9. But since

RTZ(x + 2expo(x)−n, n) ≤ x + 2expo(x)−n < RNE(x, n) + 2expo(x)+1−n,

RTZ(x + 2expo(x)−n, n) ≤ RNE(x, n).
The same argument applies to RNA(x, n), but with Lemma 6.66 invoked in place

of Lemma 6.47.

Case 3: x is (n + 1)-exact but not n-exact
The identity for RNA(x, n) is given by Lemma 6.69. To prove the claim for

RNE, we first consider the case RNE(x, n) > x. Since RNE(x, n) is (n + 1)-exact,
RNE(x, n) ≥ x+2expo(x)−n, hence RNE(x, n) = x+2expo(x)−n, and by Lemma 6.54,

RTZ(x + 2expo(x)−n, n − 1) = RTZ(RNE(x, n), n − 1) = RNE(x, n).

Now suppose RNE(x, n) < x. Then RNE(x, n) < x + 2expo(x)−n implies
RNE(x, n) ≤ RTZ(x + 2expo(x)−n, n − 1). But since

RTZ(x + 2expo(x)−n, n − 1) ≤ x + 2expo(x)−n

= x − 2expo(x)−n + 2expo(x)+1−n

< RNE(x, n) + 2expo(x)+2−n,

we have RTZ(x + 2expo(x)−n, n − 1) ≤ RNE(x, n). ��
As a consequence of the preceding lemma, RNA(x,m) depends only on the most

significant m + 1 bits of x.

Lemma 6.73 Let x ∈ R, m ∈ Z
+, and n ∈ Z

+. If n > m, then

RNA(RTZ(x, n),m) = RNA(x,m).

Proof By Lemmas 6.62 and 6.6, we may assume that x > 0. Furthermore, it will
suffice to consider the case n = m + 1, because then for n > m + 1,

RNA(RTZ(x, n),m) = RNA(RTZ(RTZ(x, n),m + 1),m)

= RNA(RTZ(x,m + 1),m)

= RNA(x,m).

Thus, according to Lemmas 6.72 and 6.2, our goal is to prove

RTZ(RTZ(x,m + 1) + 2expo(x)−n,m) = RTZ(x + 2expo(x)−n,m),
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but after applying Lemma 6.3, we need only show

RTZ(RTZ(x,m + 1) + 2expo(x)−n,m) ≥ RTZ(x + 2expo(x)−n,m).

Let

y = RTZ(x,m + 1) + 2expo(x)−n = fp+(RTZ(x,m + 1),m + 1).

By Lemmas 6.7 and 4.19, y is (m + 1)-exact. Now since RTZ(x + 2expo(x)−n,m) is
also (m + 1)-exact and Lemmas 6.3 and 6.4 imply

RTZ(x + 2expo(x)−n,m) ≤ x + 2expo(x)−n

< RTZ(x,m + 1) + 2expo(x)−n + 2expo(x)−n

= y + 2expo(x)−n

= fp+(y,m + 1),

Lemma 4.20 yields RTZ(x + 2expo(x)−n,m) ≤ y. Finally, by Lemma 6.9,

RTZ(x + 2expo(x)−n,m) ≤ RTZ(y,m).

��

6.4 Odd Rounding

A landmark paper of 1946 by von Neumann et al. contains an early discussion of
rounding [3]1:

. . . the round-off is intended to produce satisfactory n-digit approximations for the product
xy and the quotient x/y of two n-digit numbers. Two things are wanted of the round-off:
(1) The approximation should be good, i.e., its variance from the “true” xy or x/y should
be as small as practical; (2) The approximation should be unbiased, i.e., its mean should be
equal to the “true” xy or x/y.

The authors are willing to relax the exclusion of bias, noting that it generally incurs
a cost in efficiency and concluding that “we shall not complicate the machine by
introducing such corrections.” Two methods of rounding are recommended:

The first class is characterized by its ignoring all digits beyond the nth, and even the nth

digit itself, which it replaces by a 1. The second class is characterized by the procedure of
adding one unit in the n + 1st digit, performing the carries which this may induce, and then
keeping only the first n digits.

1A notable aspect of this paper, which is often cited as the “birth certificate of computer science”,
is its position, expounded in Section 5.3, that floating-point arithmetic is generally a bad idea.
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The second of these is the mode that we have designated RNA in the preceding
section. The first, which has come to be known as von Neumann rounding, may be
formulated as

R(x, n) = RTZ(x, n − 1) + sgn(x)2expo(x)+1−n.

This mode has twice the error range of rounding to nearest but is much easier to
implement, involving neither carry propagation nor operand analysis. On the other
hand, not only is it slightly biased, but it is in violation of our second axiom, since
R(x, n) = x when x is (n − 1)-exact. Just as modern computing has replaced RNA
with the less efficient but strictly unbiased RNE, we have the following variant of
von Neumann rounding, known as sticky [22] or odd [1] rounding:

Definition 6.6 If x ∈ R, n ∈ N, and n > 1, then

RTO(x, n) =
{

x if x is (n−1)-exact
RTZ(x, n − 1) + sgn(x)2expo(x)+1−n otherwise.

We shall see that odd rounding holds all of the properties discussed at the beginning
of this chapter, as well as others that are relevant to the double rounding problem
(Lemma 6.84) and the implementation of floating-point addition (Lemma 6.85).

Lemma 6.74 Let x ∈ R and n ∈ Z
+. If x is n-exact, then

RTO(x, n) = x.

Proof We may assume that x is not (n − 1)-exact, and hence Lemma 6.13 yields

RTZ(x, n − 1) = x − sgn(x)2expo(x)+1−n.

Thus,

RTO(x, n) = RTZ(x, n − 1) + sgn(x)2expo(x)+1−n = x.

��
It follows that RTO is symmetric:

Lemma 6.75 For all x ∈ R and n ∈ N,

RTO(−x, n) = −RTO(x, n).

Proof If x is (n − 1)-exact, then so is −x, and

RTO(−x, n) = −x = −RTO(x, n).
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Otherwise, by Lemmas 6.6 and 4.5,

RTO(−x, n) = RTZ(−x, n − 1) + sgn(−x)2expo(−x)+1−n

= −RTZ(x, n − 1) − sgn(x)2expo(x)+1−n

= −RTO(x, n).

��
Definition 6.4 may now be applied:

Lemma 6.76 RTO is an unbiased rounding mode.

Proof Let x0, e, n, m, N , and xk be defined as in the proof of Lemma 6.55. Then for
0 < k < N , x0 < xk < xN , where x0 and xN are successive (n− 1)-exact numbers,
and therefore

RTO(xk, n) = RTZ(xk, n − 1) + 2expo(xk)+1−n = x0 + 2e+1−n = xN/2.

Thus,

N−1∑
k=0

(RTO(xk, n) − xk) =
N−1∑
k=1

(xN/2 − xk)

=
N−1∑
k=1

(xN/2 − x0 − 2e+1−mk)

= (N − 1)(xN/2 − x0) − 2e+1−m
N−1∑
k=1

k

= (N − 1)2e+1−n − 2e+1−m · N

2
(N − 1)

= (N − 1)(2e+1−n − 2e+1−m · 2m−n)

= 0.

��
Lemma 6.77 If x ∈ R and n ∈ Z

+, then

expo(RTO(x, n)) = expo(x).

Proof By Lemma 6.75, we may assume that x > 0. If x is (n−1)-exact, the claim is
trivial. Suppose x is not (n − 1)-exact. By Lemma 6.2, RTZ(x, n − 1) < 2expo(x)+1.
Since RTZ(x, n − 1) and 2expo(x)+1 are both (n − 1)-exact, Lemma 4.20 implies
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2expo(x)+1 ≥ fp+(RTZ(x, n − 1), n − 1)

= RTZ(x, n − 1) + 2expo(x)+1−(n−1)

> RTZ(x, n − 1) + 2expo(x)+1−n

= RTO(x, n),

and it follows that expo(RTO(x, n)) = expo(x). ��
Lemma 6.78 For all x ∈ R and n ∈ N, RTO(x, n) is n-exact.

Proof If x is (n − 1)-exact, then RTO(x, n) = x. Suppose x is not (n − 1)-exact.
Since RTZ(x, n − 1) is (n − 1)-exact, i.e.,

2(n−1)−1−expo(RTZ(x,n−1))RTZ(x, n − 1) = 2n−2−expo(x)RTZ(x, n − 1) ∈ Z,

Lemma 6.77 implies

2n−1−expo(RTO(x,n))RTO(x, n)

= 2n−1−expo(x)(RTZ(x, n − 1) + sgn(x)2expo(x)+1−n

= 2n−1−expo(x)RTZ(x, n − 1) + sgn(x)

= 2 · 2n−2−expo(x)RTZ(x, n − 1) + sgn(x)

∈ Z.

��
Lemma 6.79 Let x ∈ R, y ∈ R, and n ∈ N. If x ≤ y, then

RTO(x, n) ≤ RTO(y, n).

Proof Using Lemma 6.75, we may assume that 0 < x < y. Suppose first that x is
(n − 1)-exact. If y is also (n − 1)-exact, then the claim is trivial, and if not, then by
Lemmas 6.8 and 6.10,

RTO(x, n) = x

= RTZ(x, n − 1)

≤ RTZ(y, n − 1)

< RTZ(y, n − 1) + 2expo(y)+1−n

= RTO(y, n).
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Similarly, if neither x nor y is (n − 1)-exact, then Lemmas 6.10 and 4.2 (c) imply

RTO(x, n) = RTZ(x, n − 1)2expo(x)+1−n

≤ RTZ(y, n − 1)

< RTZ(y, n − 1) + 2expo(y)+1−n

= RTO(y, n).

In the remaining case, y is (n − 1)-exact and x is not. Now by Lemmas 6.7 and 4.9,
RTZ(x, n − 1) and y are both n-exact, and hence, by Lemmas 4.20 and 6.2,

RTO(y, n) = y

≥ fp+(RTZ(x, n − 1), n)

= RTZ(x, n − 1) + 2expo(x)+1−n

= RTO(x, n).

��
Lemma 6.80 For all x ∈ R, n ∈ Z

+, and k ∈ Z,

RTO(2kx, n) = 2kRTO(x, n).

Proof If x is (n − 1)-exact, then so is −x, and

RTO(2kx, n) = 2kx = 2kRTO(x, n).

Otherwise, by Lemmas 6.11 and 4.6,

RTO(2kx, n) = RTZ(2kx, n − 1) + sgn(2kx)2expo(2kx)+1−n

= 2kRTZ(x, n − 1) + 2ksgn(x)2expo(x)+1−n

= 2kRTO(x, n).

��
Lemma 6.81 Let m ∈ N, n ∈ N, and x ∈ R. If n ≥ m > 1, then

RTO(RTO(x, n),m) = RTO(x,m).

Proof If x is (n − 1)-exact, then the claim follows trivially from Definition 6.6.
Suppose x is not (n − 1)-exact. We may assume x > 0. Let a = RTZ(x, n − 1),

e = expo(x) = expo(a),
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and

z = RTO(x, n) = a + 2e+1−n.

Since a is (n − 1)-exact and

a < z < a + 2e+2−n = fp+(a, n − 1),

RTZ(z, n−1) = a = z. It follows that expo(z) = e and z is not (n−1)-exact, which
implies z is not (m − 1)-exact. Thus,

RTO(RTO(x, n),m) = RTO(z,m)

= RTZ(z,m − 1) + 2e+1−m

= RTZ(x,m − 1) + 2e+1−m

= RTO(x,m).

��
The following property, which is not shared by any of the other modes that we

have considered, is critical to this mode’s utility.

Lemma 6.82 Let x ∈ R, m ∈ Z
+, and n ∈ Z

+. If n > m, then RTO(x, n) is
m-exact if and only if x is m-exact.

Proof According to Lemma 6.75, we may assume that x > 0. But clearly we may
also assume that x is not (n − 1)-exact, and hence, by Lemma 4.9, x is not m-exact.
On the other hand, RTZ(x, n − 1) is (n − 1)-exact, and since

RTO(x, n) = RTZ(x, n − 1) + 2expo(x)+1−n

< RTZ(x, n − 1) + 2expo(x)+1−(n−1)

= fp+(RTZ(x, n − 1), n − 1),

Lemma 4.20 implies that RTO(x, n) is not (n − 1)-exact. Applying Lemma 4.9
again, we conclude that RTO(x, n) is not m-exact. ��

An important consequence of Lemma 6.82 is a generalization of Lemma 6.81: a
rounded result with respect to any of the modes considered thus far may be derived
from an intermediate odd-rounded value. In particular, for directed rounding, an
m-bit rounded result may be derived from an (m + 1)-bit odd rounding:

Lemma 6.83 Let m ∈ Z
+, n ∈ Z

+, and x ∈ R. If n > m, then

RTZ(RTO(x, n),m) = RTZ(x,m)

and

RAZ(RTO(x, n),m) = RAZ(x,m).
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Proof We may assume that x > 0 and x is not (n − 1)-exact; the other cases follow
trivially. First, note that by Lemmas 6.78 and 6.82, RTO(x, n) is n-exact but not
(n − 1)-exact, and therefore, according to Lemmas 6.13 and 6.77,

RTZ(RTO(x, n), n − 1) = RTO(x, n) − 2expo(RTO(x,n))−(n−1)

= RTO(x, n) − 2expo(x)+1−n

= RTZ(x, n − 1).

Thus, by Lemma 6.12, for any m < n,

RTZ(RTO(x, n),m) = RTZ(RTZ(x, n − 1),m) = RTZ(x,m).

The corresponding result for RAZ may be similarly derived. ��
For rounding to nearest, one extra bit is required:

Lemma 6.84 Let m ∈ Z
+, n ∈ Z

+, and x ∈ R. If n > m + 1, then

RNE(RTO(x, n),m) = RNE(x,m)

and

RNA(RTO(x, n),m) = RNA(x,m).

Proof The second equation follows easily from Lemmas 6.73 and 6.83:

RNA(RTO(x, n),m) = RNA(RTZ(RTO(x, n),m + 1),m)

= RNA(RTZ(x,m + 1),m)

= RNA(x,m).

To prove the first equation using Lemma 6.83, it will suffice to show that if
RTZ(x,m + 1) = RTZ(y,m + 1) and RAZ(x,m + 1) = RAZ(y,m + 1), then
RNE(x,m) = RNE(y,m). Without loss of generality, we may assume x ≤ y.
Suppose RNE(x,m) = RNE(y,m). Then by Lemma 6.51, for some (m + 1)-exact
a, x ≤ a ≤ y. But this implies x = a, for otherwise RTZ(x,m + 1) ≤ x <

a ≤ RTZ(y,m + 1). Similarly, y = a, for otherwise RAZ(x,m + 1) ≤ a < y ≤
RAZ(y,m + 1). Thus, x = y, a contradiction. ��

The following analog of Lemma 6.14 first appeared in [22]. This property is
essential for the implementation of floating-point addition, as it allows a rounded
sum or difference of unaligned numbers to be derived without computing the full
sum explicitly. Figure 6.2 is provided as a visual aid to the proof. Note the minor
departure from Fig. 6.1.
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k+expo(x)−expo(y)
︷ ︸︸ ︷

k
︷ ︸︸ ︷

+
1xxxxx.xxxxxxxx0 00 · · ·
1yyy.yyyyyyyyy yy · · ·

1zzzzzz.zzzzzzzzz zz · · ·
k+expo(x+y)−expo(y)

Fig. 6.2 Lemma 6.85

Lemma 6.85 Let x ∈ R and y ∈ R such that x = 0, y = 0, and x + y = 0. Let
k ∈ N,

k′ = k + expo(x) − expo(y),

and

k′′ = k + expo(x + y) − expo(y).

If k > 1, k′ > 1, k′′ > 1, and x is (k′ − 1)-exact, then

x + RTO(y, k) = RTO(x + y, k′′).

Proof Since x is (k′ − 1)-exact,

2k−2−expo(y)x = 2(k′−1)−1−expo(x)x ∈ Z.

Thus,

y is (k − 1)-exact ⇔ 2k−2−expo(y)y ∈ Z

⇔ 2k−2−expo(y)y + 2k−2−expo(y)x ∈ Z

⇔ 2k′′−2−expo(x+y)(x + y) ∈ Z

⇔ x + y is (k′′ − 1)-exact.

If y is (k − 1)-exact, then

x + RTO(y, k) = x + y = RTO(x + y, k′′).

Thus, we may assume that y is not (k − 1)-exact. We invoke Corollary 6.37:

x + RTZ(y, k) =
{

RTZ(x + y, k′′) if sgn(x + y) = sgn(y)

RAZ(x + y, k′′) if sgn(x + y) = sgn(y).
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Now if sgn(x + y) = sgn(y), then

x + RTO(y, k) = x + RTZ(y, k − 1) + sgn(y)2expo(y)+1−k

= RTZ(x + y, k′′ − 1) + sgn(x + y)2expo(x+y)+1−k′′

= RTO(x + y, k′′).

On the other hand, if sgn(x + y) = sgn(y), then

x + RTO(y, k) = x + RTZ(y, k − 1) + sgn(y)2expo(y)+1−k

= RAZ(x + y, k′′ − 1) − sgn(x + y)2expo(x+y)+1−k′′

= RTZ(x + y, k′′ − 1) + sgn(x + y)2expo(x+y)+1−k′′

= RTO(x + y, k′′).

��

6.5 IEEE Rounding

The IEEE standard prescribes four rounding modes: “round to nearest even” (RNE),
“round toward 0” (RTZ), “round toward +∞’, and “round toward −∞”. The last
two are formalized here by the following functions:

Definition 6.7 For all x ∈ R and n ∈ N,

RUP(x, n) =
{

RAZ(x, n) if x ≥ 0
RTZ(x, n) if x < 0.

Definition 6.8 For all x ∈ R and n ∈ N,

RDN(x, n) =
{

RTZ(x, n) if x ≥ 0
RAZ(x, n) if x < 0.

The essential properties of these modes are given by the following:

Lemma 6.86 For all x ∈ R and n ∈ N,

RUP(x, n) ≥ x

and

RDN(x, n) ≤ x.
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Proof If x ≥ 0, then

RUP(x, n) = RAZ(x, n) = |RAZ(x, n)| ≥ |x| = x

and

RDN(x, n) = RTZ(x, n) = |RTZ(x, n)| ≤ |x| = x;

if x < 0, then

RUP(x, n) = RTZ(x, n) = −|RTZ(x, n)| ≥ −|x| = x

and

RUP(x, n) = RAZ(x, n) = −|RAZ(x, n)| ≤ −|x| = x.

��
In this section, we collect a set of general results that pertain to all of the IEEE

rounding modes, many of which are essentially restatements of lemmas that are
proved in earlier sections. Since these results also hold for two of the other modes
that we have discussed, RAZ and RNA, we shall state them as generally as possible.
For this purpose, we make the following definition:

Definition 6.9 The common rounding modes are RTZ, RAZ, RNE, RNA, RUP, and
RDN.

Note that RUP and RDN do not share the symmetry property held by the other
modes. A generalization is given by the following lemma.

Lemma 6.87 Let R be a common rounding mode and let

R̂ =
⎧⎨
⎩

RDN if R = RUP
RUP if R = RDN
R otherwise.

For all x ∈ R and n ∈ Z,

R(−x, n) = −R̂(x, n).

Proof Suppose, for example, that R = RUP and x > 0. Then since −x < 0,

R(−x, n) = RUP(−x, n) = RTZ(−x, n) = −RTZ(x, n) = −R̂(x, n).

The other cases are handled similarly. ��
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Lemma 6.88 Let R be a common rounding mode. For all x ∈ R and n ∈ N, either

R(x, n) = RTZ(x, n)

or

R(x, n) = RAZ(x, n).

Proof This is an immediate consequence of Definitions 6.3, 6.5, 6.7, and 6.8. ��
Most of following results are consequences of Lemma 6.88 and the correspond-

ing lemmas pertaining to RTZ and RAZ.

Lemma 6.89 Let R be a common rounding mode. For all x ∈ R and n ∈ N,
R(x, n) is n-exact.

Lemma 6.90 Let x ∈ R and n ∈ Z
+ and let R be a common rounding mode. If x

is n-exact, then

R(x, n) = x.

Lemma 6.91 Let x ∈ R, a ∈ R, and n ∈ Z
+, and let R be a common rounding

mode. Suppose a is n-exact.

(a) If a ≥ x, then a ≥ R(x, n);
(b) If a ≤ x, then a ≤ R(x, n).

Lemma 6.92 If x ∈ R, n ∈ Z
+, and R is a common rounding mode, then

sgn(R(x, n)) = sgn(x).

Lemma 6.93 Let x ∈ R and n ∈ Z
+ and let R be a common rounding mode. Then

|x − R(x, n)| < 2expo(x)−n+1.

Lemma 6.94 Let R be a common rounding mode. For all x ∈ R and n ∈ N, if
|R(x, n)| = 2expo(x)+1, then

expo(R(x, n)) = expo(x).

Lemma 6.95 Let x ∈ R, y ∈ R, and n ∈ Z
+. Let R be a common rounding mode.

If x ≤ y, then

R(x, n) ≤ R(y, n).

Proof The modes RTZ, RAZ, RNE, and RNA are covered by Lemmas 6.10,
6.31, 6.49, and 6.59. For the modes RUP and RDN, we may assume, using
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Lemma 6.92, that x and y are either both positive or both negative. It follows that
either

R(x, n) = RTZ(x, n) ≤ RTZ(y, n) = R(y, n)

or

R(x, n) = RAZ(x, n) ≤ RAZ(y, n) = R(y, n).

��
Lemma 6.96 Let R be a common rounding mode. For all x ∈ R, n ∈ N, and k ∈ Z,

R(2kx, n) = 2kR(x, n).

Proof The modes RTZ, RAZ, RNE, and RNA are covered by Lemmas 6.11,
6.32, 6.43, and 6.60. For the modes RUP and RDN, we may assume, using
Lemma 6.87, that x > 0, in which case

RUP(2kx, n) = RAZ(2kx, n) = 2kRAZ(x, n) = 2kRUP(x, n)

and

RDN(2kx, n) = RTZ(2kx, n) = 2kRTZ(x, n) = 2kRDN(x, n).

��
Lemma 6.97 Let R be a common rounding mode, x ∈ R, y ∈ R, and k ∈ Z with
x ≥ 0 and y ≥ 0. Let k′ = k+expo(x)−expo(y) and k′′ = k+expo(x+y)−expo(y).
If x is (k′ − 1)-exact, then

x + R(y, k) = R(x + y, k + expo(x + y) − expo(y)).

Proof See Lemmas 6.14, 6.35, and 6.71. ��
Lemma 6.98 Let x ∈ R and n ∈ N and let R be a common rounding mode. If
x ≥ 0, then

RTZ(x, n) ≤ R(x, n) ≤ RAZ(x, n).

Proof This is an immediate consequence of Lemmas 6.3 and 6.21:

RTZ(x, n) = |RTZ(x, n)| ≤ |x| ≤ |RAZ(x, n)| = RAZ(x, n).

��
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If x is not (n+ 1)-exact and y is sufficiently close to x, then x and y round to the
same value under any common rounding mode:

Lemma 6.99 Let x ∈ R, y ∈ R, and n ∈ Z
+ with x > 0. Let R be a common

rounding mode. Assume that x is not (n + 1)-exact. If either

RTZ(x, n + 1) < y < x

or

RAZ(x, n + 1) > y > x,

then R(x, n) = R(y, n).

Proof We show the proof for the claim pertaining to RTZ; the other is similar.
By Lemma 6.95, we need only show that R(x, n) ≤ R(y, n). We also note that

by Lemmas 6.12 and 6.3,

RTZ(x, n) = RTZ(RTZ(x, n + 1), n) ≤ RTZ(x, n + 1) < y.

Case 1: R = RTZ or R = RDN
by Lemma 6.7, RTZ(x, n) is n-exact. By Lemma 6.9 (with RTZ(x, n) and y

substituted for a and x) and Definition 6.8,

R(x, n) = RTZ(x, n) ≤ RTZ(y, n) = R(y, n).

Case 2: R = RAZ or R = RUP
By Lemma 6.33,

RTZ(x, n) < y < x ≤ RAZ(x, n + 1) ≤ RAZ(RAZ(x, n + 1), n) = RAZ(x, n).

By Definition 6.7 and Lemmas 6.26, 6.28, and 6.29,

R(y, n) = RAZ(y, n) = RAZ(x, n) = R(x, n).

Case 3: R = RNE or R = RNA
By Lemma 6.21,

RTZ(x, n + 1) < y < x < RAZ(x, n + 1) = fp+(RTZ(x, n + 1)).

The claim follows from Lemmas 6.29, 6.52 and 6.68. ��
Corollary 6.100 Let x ∈ R and n ∈ Z

+ with x > 0. Assume that x is not (n + 1)-
exact. There exists ε ∈ R, ε > 0, such that for all y ∈ R and every common
rounding mode R, if |x − y| < ε, then R(x, n) = R(y, n).
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Proof According to Lemma 6.99, this holds for ε = min(x − RTZ(x, n +
1), RAZ(x, n + 1) − x). ��
Lemma 6.101 Let R be a common rounding mode, m ∈ Z

+, n ∈ Z
+, and x ∈ R.

If n ≥ m + 2, then

R(x,m) = R(RTO(x, n),m).

Proof The modes RTZ and RAZ are handled by Lemma 6.83; RNE and RNA are
covered by Lemma 6.84; RUP and RDN are easily reduced to RTZ and RAZ. ��
Lemma 6.102 Let R be a common rounding mode, x ∈ R, k ∈ N, m ∈ N, and n ∈
N, with 0 < m < n and |x| < 2k . If |rnd(x,R, n)| = 2k , then |rnd(x,R,m)| = 2k .

Proof This is a consequence of Lemmas 6.30, 6.50, 6.64, and 6.3. ��
The remaining results of this section pertain to the implementation of rounding.

For the sake of simplicity, our characterization of the method of constant injection
is formulated in the context of bit vector rounding.

Lemma 6.103 Let R be a common rounding mode, n ∈ N, n > 1, and x ∈ N with
expo(x) ≥ n. Then

R(x, n) = RTZ(x + C, ν),

where

C =
⎧⎨
⎩

2expo(x)−n if R = RNE or R = RNA
2expo(x)−n+1 − 1 if R = RUP or R = RAZ
0 if R = RTZ or R = RDN

and

ν =
{

n − 1 if R = RNE and x is (n + 1)-exact but not n-exact
n otherwise.

Proof For the modes RAZ and RUP, the identity follows from Lemma 6.38, with
m = expo(x) + 1, and Lemma 4.11. For RNE and RNA, it reduces to Lemmas 6.72
and 6.72. For RTZ and RDN, the lemma is trivial. ��

Another common implementation of rounding is provided by the following
result. Suppose our objective is a correct n-bit rounding (with respect to some
common rounding mode) of a precise result z > 0, and that we have a bit vector
representation of x = �z�. Then the desired result may be derived by rounding x in
the direction specified by the following lemma. (This result is applied repeatedly in
the correctness proofs of Part V.)
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Lemma 6.104 Let R be a common rounding mode, z ∈ R, and n ∈ N. Assume that
0 < n and 2n ≤ z. Let x = �z� and e = expo(x).

(a) z is n-exact iff x[e − n : 0] = 0 and z ∈ Z.
(b) If any of the following conditions holds, then R(z, n) = fp+(RTZ(x, n), n), and

otherwise R(z, n) = RTZ(x, n):

– R = RUP or R = RAZ and at least one of the following is true:

* x[e − n : 0] = 0;
* x = z.

– R = RNA and x[e − n] = 1
– R = RNE, x[e − n] = 1, and at least one of the following is true:

* x[e − n−1 : 0] = 0;
* x = z;
* x[e + 1 − n] = 1;

Proof It is clear that expo(z) = e. Definition 6.1,

RTZ(z, e + 1) = �2(e+1)−1sig(z)�2e−(e+1)+1 = �2esig(z)� = �z� = x,

and hence, by Lemma 6.12, RTZ(z, n) = RTZ(x, n).

(a) According to Lemmas 6.7 and 6.8, it suffices to show that z = RTZ(z, n) iff
either x[e − n : 0] = 0 or x = z. By Lemma 6.3,

RTZ(x, n) ≤ x = RTZ(z, k) ≤ z,

and it is clear that z = RTZ(z, n) iff either x − RTZ(x, n) > 0 or x = z. Now
since x is k-exact, Lemma 4.9 implies that x is (e + 1)-exact, and therefore, by
Lemmas 6.7 and 6.18,

x − RTZ(x, n) = RTZ(x, e + 1) − RTZ(x, n) = x[e − n : 0].
(b) Since RDN(z, n) = RTZ(z, n) and RUP(z, n) = RAZ(z, n), we need only

consider RAZ, RNE, and RNA.

Suppose R = RAZ. By Lemmas 6.29, 6.7, and 6.26,

RAZ(z, n) =
{

RTZ(x, n) if z = RTZ(z, n)

fp+(RTZ(x, n), n) if z = RTZ(z, n).

Thus, RAZ(z, n) = RTZ(x, n) iff z = RTZ(z, n). But we have shown that this holds
iff x[e − n : 0] = 0 and z ∈ Z, as stated by the lemma.

For the remaining cases, RNE, and RNA, we refer directly to Definitions 6.3
and 6.5. Let

y = �2n−1sig(z)� = �2n−1−ez� = �x/2e+1−n�
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and

f = 2n−1sig(z) − y = 2n−1−ez − y.

By Definition 2.2, y = x[e : 1 + e − n]. By Definition 6.1, RTZ(z, n) = 21+e−ny

and consequently 21+e−nf = z − RTZ(z, n) and f = 2n−e−1(z − RTZ(z, n)). By
Lemma 6.18,

z − RTZ(z, n) = (RTZ(x, n + 1) − RTZ(x, n)) + (z − RTZ(z, n + 1))

= 2e−nx[e − n] + (z − RTZ(z, n + 1)).

Thus,

f = 2n−e−1(z − RTZ(z, n)) = 1

2
x[e − n] + 2n−e−1(z − RTZ(z, n + 1)).

By Lemma 6.5,

2n−e−1(z − RTZ(z, n + 1)) < 2n−e−12e−n = 1

2
.

This leads to the following observations:

1. f ≥ 1
2 iff x[e − n] = 1.

2. f > 1
2 iff x[e − n] = 1 and z − RTZ(z, n + 1) > 0, but by Lemma 6.18,

z − RTZ(z, n + 1) = (z − x) + (x − RTZ(z, n + 1))

= (z − x) + (RTZ(x, e + 1) − RTZ(x, n + 1))

= (z − x) + x[e − 1 − n : 0],

and hence f > 1
2 iff x[e − n] = 1 and either x[e − 1 − n : 0] = 0 or z = x.

Referring to Definition 6.5, we see that (1) is sufficient to complete the proof for the
case R = RNA.

For the case R = RNE, it is clear from Definition 6.3 and (1) and (2) above that
we need only show that y is even iff x[1 + e − n] = 0. But this is a consequence of
the above equation z = x[e : 1 + e − n]. ��

The final result of this section is a variation of Lemma 6.104 that allows us
to compute the absolute value of a rounded result when the unrounded value z

is negative, given a signed integer encoding x of �z�, i.e., x = �z� + 2k , where
z ≥ −2k .

Lemma 6.105 Let R be a common rounding mode, z ∈ R, n ∈ N, and k ∈ N.
Assume that 0 < n < k and −2k ≤ z < −2n. Let x = �z� + 2k , x̃ = 2k − x − 1,
and e = expo(x̃).
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(a) If expo(z) = e, then z = −2e+1.
(b) z is n-exact iff x[e − n : 0] = 0 and z ∈ Z.
(c) If any of the following conditions holds, then |R(z, n)| = fp+(RTZ(x̃, n), n),

and otherwise |R(z, n)| = RTZ(x̃, n):

– R = RDN or R = RAZ;
– R = RUP or R = RTZ and both of the following are true:

* x[e − n : 0] = 0;
* z ∈ Z;

– R = RNA and at least one of the following is true:

* x[e − n] = 0;
* x[e − n−1 : 0] = 0 and z ∈ Z;

– R = RNE and at least one of the following is true:

* x[e − n] = 0
* x[e + 1 − n] = x[e − n−1 : 0] = 0 and z ∈ Z.

Proof Let f = z − �z�. Then x = (z − f ) + 2k ,

x̃ = 2k − x − 1 = 2k − (z − f + 2k) − 1 = −z − (1 − f ) = |z| − (1 − f ),

and |z| = x̃ + (1 − f ).
To prove (a), note that if expo(z) = e, then since x̃ ≤ 2e+1 − 1, we must have

x̃ = 2e+1 − 1, f = 0, and |z| = 2e+1.
For the proof of (b) and (c), by Lemmas 2.18 and 6.16, we have

|z| = x̃ + (1 − f )

= 2e+1−nx̃[e : e + 1 − n] + x̃[e − n : 0] + (1 − f )

= RTZ(x̃, n) + x̃[e − n : 0] + (1 − f ).

Suppose first that f = x[e − n : 0] = 0. Then

|z| = RTZ(x̃, n) + (2e+1−n − 1) + 1 = fp+(RTZ(x̃, n), n) ∈ Z

and the lemma claims that (b) z is n-exact and (c) |R(z, n)| = fp+(RTZ(x̃, n), n)

for all R. Both claims follow trivially from Lemmas 4.19, 6.7, and 6.90.
In the remaining case, RTZ(x̃, n) < |z| < fp+(RTZ(x̃, n), n). By Lemma 4.20,

z is not n-exact, and (b) follows. The claim (c) will be derived from Lemma 6.104.
Note that if R̂ is defined as in Lemma 6.87, then

|R(z, n)| = −R(z, n) = R̂(−z, n) = R̂(|z|, n),

and (c) may be restated as follows:
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(c′) If any of the following conditions holds, then R̂(|z|, n) = fp+(RTZ(x̃, n), n),
and otherwise R̂(|z|, n) = RTZ(x̃, n):

– R̂ = RUP or R̂ = RAZ;
– R̂ = RDN or R̂ = RTZ and both of the following are true:

* x[e − n : 0] = 0;
* z ∈ Z;

– R̂ = RNA and at least one of the following is true:

* x[e − n] = 0;
* x[e − n−1 : 0] = 0 and z ∈ Z;

– R̂ = RNE and at least one of the following is true:

* x[e − n] = 0
* x[e + 1 − n] = x[e−n − 1 : 0] = 0 and z /∈ Z.

We invoke Lemma 6.104 with |z| and R̂ substituted for z and R, respectively.
This yields the following:

(c′′) If any of the following holds, then R̂(|z|, n) = fp+(RTZ(�|z|�, n), n), and
otherwise R̂(|z|, n) = RTZ(�|z|�, n):

– R̂ = RUP or R̂ = RAZ and at least one of the following is true:

* �|z|�[e − n : 0] = 0;
* z /∈ Z.

– R̂ = RNA and �|z|�[e − n] = 1
– R̂ = RNE, �|z|�[e − n] = 1, and at least one of the following is true:

* �|z|�[e − n−1 : 0] = 0;
* z /∈ Z;
* �|z|�[e + 1 − n] = 1;

We must show that (c′′) implies (c′).
Suppose f > 0. Then z /∈ Z and by Lemma 1.4,

x̃ = 2k − x − 1 = −�z� − 1 = �|z|�
and we may replace x̃ with �|z|� in (c′). Furthermore, |z|[e − n] = x̃[e − n], which
implies |z|[e − n] = x[e − n], and the claim (c′) follows trivially from (c′′).

In the final case, f = 0 and x[e − n : 0] = 0. Thus, |z| = x̃ + 1 and x̃[e − n :
0] < 2e+1−n − 1. Since

|z| = x̃ + 1

= 2e+1−nx̃[e : e + 1 − n] + x̃[e − n : 0] + 1

≤ 2e+1−n(2n − 1) + (2e+1−n − 2) + 1

= 2e+1 − 1,
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expo(z) = e. Since

|z|[e : e + 1 − n] =
⌊ |z|

2e+1−n

⌋
= x̃[e : e + 1 − n],

|z|[e + 1 − n] = x̃[e + 1 − n], which implies |z|[e + 1 − n] = x[e + 1 − n].
Lemma 6.16 implies RTZ(|z|, n) = RTZ(x̃, n), and again we may replace x̃ with
�|z|� in (c′). Furthermore,

|z|[e − n : 0] = |z| mod 2e+1−n = x̃[e − n : 0] + 1 = 2e+1−n − x[e − n : 0].

If x[e − n−1 : 0] = 0, then x[e − n] = 1and

|z|[e − n : 0] = 2e+1−n − x[e − n : 0] = 2e+1−n − 2e−n = 2e−n,

which implies |z|[e − n] = 1 and |z|[e − n−1 : 0] = 0. On the other hand, if
x[e − n−1 : 0] = 0, then x̃[e − n−1 : 0] < 2e−n − 1, which implies

|z|[e − n] = x̃[e − n] = x[e − n]

and

|z|[e − n−1 : 0] = x̃[e − n−1] + 1 = 0.

In either case, (c′) again follows easily from (c′′). ��

6.6 Denormal Rounding

As we saw in Sect. 5.3, in order for a number x to be representable as a denormal
in a format F , it must be (prec(F ) + expo(x) − expo(spn(F )))-exact. This suggests
the following definition of denormal rounding. Note that its arguments include the
format itself, both parameters of which are required to determine the precision of
the result.

Definition 6.10 Let F be a format and let x ∈ R, |x| < spn(F ).

drnd(x,R, F ) = R(x, prec(F ) + expo(x) − expo(spn(F )).

While the conciseness of this formula is appealing, its computation for small x

may involve negative-precision rounding, which has been observed to produce
unintuitive results. In particular,

prec(F ) + expo(x) − expo(spn(F )) ≤ 0
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⇔ expo(x) ≤ expo(spn(F )) − prec(F ) = (1 − bias(F )) − prec(F )

⇔ expo(x) < 2 − bias(F ) − prec(F ) = expo(spd(F ))

⇔ |x| < |spd(F )|.

We shall find, however (Lemma 6.108 below), that the results of rounding such tiny
values are not unexpected.

Naturally, denormal rounding inherits many of the properties of normal rounding.
It is not true in general that sgn(drnd(x,R, F )) = sgn(x) because a nonzero
denormal may be rounded to 0, but we do have the following analog of Lemma 6.87.

Lemma 6.106 Let F be a format and let x ∈ R, |x| < spn(F ). Let R be a common
rounding mode and let

R̂ =
⎧⎨
⎩

RDN if R = RUP
RUP if R = RDN
R otherwise.

Then

drnd(−x,R, F ) = −drnd(x, R̂, F ).

Proof This follows from Lemmas 6.87 and 4.5. ��
Definition 6.10 admits the following alternative formulation:

Lemma 6.107 Let F be a format and let x ∈ R, |x| < spn(F ). Let R be a common
rounding mode. Then

drnd(x,R, F ) = R(x + sgn(x)spn(F ), prec(F )) − sgn(x)spn(F ).

Proof Let p = prec(F ). We first consider the case x ≥ 0 and apply Lemma 6.97,
substituting spn(F ) for x, x for y, and p + expo(x) − expo(spn(F )) for k. Thus,

k′ = k + expo(spn(F )) − expo(x) = p > 1,

and spn(F ) is (k′ − 1)-exact by Lemma 4.10. Since

2expo(spn(F )) = spn(F ) ≤ spn(F ) + x < 2 · spn(F ) = 2expo(spn(F ))+1,

expo(spn(F ) + x) = expo(spn(F )) and therefore

k′′ = k + expo(spn(F ) + x) − expo(x) = p

as well. Thus, we have

spn(F ) + R(x, k) = R(spn(F ) + x, k′′)
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and

drnd(x,R, F ) = R(x, p + expo(x) − expo(spn(F )))

= R(x, k)

= R(spn(F ) + x, k′′) − spn(F )

= R(spn(F ) + x, n) − spn(F ).

The result may be extended to x < 0 by invoking Lemmas 6.87 and 6.106: if R̂ is
defined as in these lemmas, then

drnd(x,R, p, q) = −drnd(−x, R̂, p, q)

= −(R̂(−x + sgn(−x)spn(F ), p) − sgn(−x)spn(F ))

= −R̂(−x + sgn(−x)spn(F ), p) + sgn(−x)spn(F )

= R(x + sgn(x)spn(F ), p) − sgn(x)spn(F ).

��
We may now characterize the rounding of a denormal smaller than spd(F ):

Lemma 6.108 Let F be a format, x ∈ R, and R a common rounding mode.

(a) If 0 < x < 1
2 spd(F ), then

drnd(x,R, F ) =
{

spd(F ) if R ∈ {RAZ, RUP}
0 otherwise;

(b) If x = 1
2 spd(F ), then

drnd(x,R, F ) =
{

spd(F ) if R ∈ {RAZ, RNA, RUP}
0 otherwise;

(c) If 1
2 spd(F ) < x < spd(F ), then

drnd(x,R, F ) =
{

0 if R ∈ {RTZ, RDN}
spd(F ) otherwise.

Proof Let p = prec(F ), q = expw(F ), a = spn(F ) = 22−2q−1
and

b = fp+(a, p) = a + 2expo(spn(F ))+1−p = a + 23−2q−1−p = a + spd(F ).

By Lemma 6.107,

drnd(x,R, F ) = R(a + x, p) − a.
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Case 1: R = RAZ or R = RUP
By Lemma 6.21,

R(a + x, p) = RAZ(a + x, p) ≥ a + x > a,

and hence, by Lemmas 6.26 and 4.20,

RAZ(a + x, p) ≥ b.

On the other hand, since

b = a + spd(F ) > a + x,

Lemma 6.28 implies b ≥ RAZ(a + x, p), and therefore RAZ(a + x, p) = b, and

drnd(x,R, F ) = R(a + x, p) − a = b − a = spd(F ).

Case 2: R = RTZ or R = RDN
First note that by Lemma 4.24,

fp−(b, p) = fp−(fp+(a, p), p) = a.

Now by Lemma 6.3,

R(a + x, p) = RTZ(a + x, p) ≤ a + x < b,

and hence, by Lemmas 6.7 and 4.25,

RAZ(a + x, p) ≤ a.

On the other hand, Lemma 6.9 implies a ≤ RTZ(a + x, p), and therefore RTZ(a +
x, p) = a and

drnd(x,R, F ) = R(a + x, p) − a = a − a = 0.

Case 3: R = RNE or R = RNA
R(a + x, p) is either a or b, and hence drnd(x,R, F ) is either 0 or spn(F ),

respectively.
Since

|(a + x) − RAZ(a + x, p)| = b − (a + x) = spd(F ) − x

and

|(a + x) − RTZ(a + x, p)| = |(a + x) − a| = x,
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the claims (a) and (c) follow from Lemmas 6.45 and 6.63. For the proof of (c),
suppose x = 1

2 spd(F ). Then

a + x = 22−2q−1 + 22−2q−1−p = 22−2q−1
(1 + 2−p)

and sig(a + x) = 1 + 2−p. Thus, a + x is (p + 1)-exact but not p-exact. The case
R = RNA now follows from Lemma 6.54, and since b is not (p − 1)-exact, the case
R = RNE follows from Lemma 6.69. ��

As a consequence of Lemma 6.108 (a), for any given rounding mode, two
sufficiently small numbers produce the same rounded result.

Corollary 6.109 Let x ∈ R, y ∈ R. Let F be a format and R a common rounding
mode. If

0 < x <
1

2
spd(F )

and

0 < y <
1

2
spd(F ),

then

drnd(x,R, F ) = drnd(y,R, F ).

A denormal is always rounded to a representable number, which may be
denormal, 0, or the smallest representable normal.

Lemma 6.110 Let F be a format and let x ∈ R, |x| < spn(F ). Let R be a common
rounding mode. Then one of the following is true:

(a) drnd(x,R, F ) = 0;
(b) drnd(x,R, F ) = sgn(x)spn(F );
(c) drnd(x,R, F ) is representable as a denormal in F .

Proof By Lemmas 6.106 and 6.108, we may assume x ≥ spd(F ). Let p = prec(F ).
Then

expo(x) ≥ expo(spn(F )) = 2 − bias(F ) − p.

Since x < spn(F ) = 21−bias(F ), expo(x) ≤ −bias(F ), and

2 − p ≤ expo(x) + bias(F ) ≤ 0.

Let d = drnd(x,R, F ). By Lemma 6.89, d is (p + expo(x) − expo(spn(F )))-
exact. If expo(d) = expo(x), then d is representable as a denormal. If not, then
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Lemma 6.94 implies d = 2expo(x)+1. In this case, either expo(x) = −bias(F ) and

d = 21−bias(F ) = spn(F ),

or expo(x) + bias(F ) < 0 and

expo(d) + bias(F ) = 1 + expo(x) + bias(F ) ≤ 0,

which implies that d is representable as a denormal. ��
Lemma 6.111 If x is representable as a denormal in F and R is a common
rounding mode, then

drnd(x,R, F ) = x.

Proof Let p = prec(F ). By Definition 5.17, x is (p + expo(x) − expo(spn(F )))-
exact. Therefore, by Lemma 6.90,

drnd(x,R, F ) = R(x, p + expo(x) − expo(spn(F ))) = x.

��
Lemma 6.112 If F is a format, R is a common rounding mode, and x ∈ R with

2 − bias(F ) − prec(F ) ≤ expo(x) ≤ −bias(F ),

then drnd(x,R, F ) = x iff x is (expo(x) + bias(F ) + prec(F ) − 1)-exact.

Proof Suppose drnd(x,R, F ) = x. Since 0 < |x| < spn(F ), Lemma 6.110
guarantees that x is representable as a denormal, which implies that x is (expo(x)+
bias(F ) + prec(F ) − 1)-exact.

On the other hand, if x is (expo(x) + bias(F ) + prec(F ) − 1)-exact, then x is
representable by Definition 5.17 and drnd(x,R, F ) = x by Lemma 6.111. ��
Lemma 6.113 Let F be a format and let x ∈ R, |x| < spn(F ). Let a be
representable as a denormal in F and let R be a common rounding mode.

(a) If a ≥ x, then a ≥ drnd(x,R, F ).
(b) If a ≤ x, then a ≤ drnd(x,R, F ).

Proof By Lemma 6.108, we may assume |x| ≥ spd(F ). By Definition 5.17, a is
(prec(F ) + expo(x) − expo(spn(F )))-exact. The claim follows from Lemma 6.91.

��
The defining characteristics of the directed rounding modes are inherited by

denormal rounding.
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Lemma 6.114 Let F be a format and let x ∈ R, |x| < spn(F ).

(a) |drnd(x, RTZ, F )| ≤ |x|.
(b) |drnd(x, RAZ,F)| ≥ |x|.
(c) drnd(x, RDN, F ) ≤ x.
(d) drnd(x, RUP, F ) ≥ x.

Proof This is a consequence of Lemmas 6.108, 6.3, 6.21, and 6.86. ��
Denormal rounding error is bounded by the distance between successive repre-

sentable numbers (see Lemma 5.10).

Lemma 6.115 Let F be a format and let x ∈ R, |x| < spn(F ). Let R be a common
rounding mode. Then

|x − drnd(x,R, F )| < spd(F ).

Proof Again we may assume |x| ≥ spd(F ). Let p = prec(F ). By Lemma 6.93,

|x − drnd(x,R, F )| = |x − R(x, p + expo(x) − expo(spn(F )))|
< 2expo(x)+1−(p+expo(x)−expo(spn(F )))

= 2expo(spn(F ))−(p−1)

= spd(F ).

��
Naturally, denormal rounding to nearest returns the representable number that is

closest to its argument.

Lemma 6.116 Let F be a format and let x ∈ R, |x| < spn(F ). Let a be
representable as a denormal in F . Then

|x − drnd(x, RNE, F )| ≤ |x − a|

and

|x − drnd(x, RNA, F )| ≤ |x − a|.

Proof By Definition 5.17, a is (prec(F ) + expo(x) − expo(spn(F )))-exact. The
result follows from Lemmas 6.47 and 6.66. ��

The next lemma, which pertains to the detection of floating-point underflow,
warrants some motivation. Let x be the precise numerical result of an arithmetic
operation, to be rounded according to a mode R and encoded in a format F with
precision p. Most implementations first compute the value r = rnd(x,R, p), using
an internal format with a sufficiently wide exponent field to accommodate this result.
According to the x86 architectural definition, underflow occurs when |r| < spn(F ).
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If this occurs and the underflow mask is set, then the value d = dnrd(x,R, F ) is
computed and returned, and the underflow flag is set iff d = x.

There are, however, implementations that compute d directly in the event that
|u| < spn(F ), without computing r . The requirement of correctly setting the
underflow flag then presents a problem, since r may lie below the normal range
when d does not. Thus, for such an implementation, if |x| < |d| = spn(F ), then
extra logic is required to determine whether |r| < spn(F ). On the other hand, there
is no such ambiguity requiring extra logic for the case |d| < spn(F ), since the
following lemma guarantees that |r| < spn(F ) as well.

Lemma 6.117 Let F be a format and let x ∈ R, |x| < spn(F ). Let R be a common
rounding mode. If

|rnd(x,R, prec(F ))| = spn(F ),

then

|drnd(x,R, F )| = spn(F ).

Proof Note that the hypothesis implies |x| ≥ spd(F ). Let p = prec(F ). By
Lemma 6.94, expo(x) = expo(spn(F )) − 1, and hence

p + expo(x) − expo(spn(F ) = p − 1.

Since drnd(x,R, F ) = rnd(x,R, p + expo(x) − expo(spn(F ))), the claim follows
from Lemma 6.102 with m = p − 1 and n = p. ��

The final result of this section pertains to the setting of the precision flag in
the event of underflow and is relevant to the formal architectural specifications
discussed in Part IV: if d is exact, then so is r:

Lemma 6.118 Let F be a format and let x ∈ R, |x| < spn(F ). Let R be a common
rounding mode. If drnd(x,R, F ) = x, then rnd(x,R, prec(F )) = x.

Proof Let p = prec(F ). By Lemma 6.110, x is representable as a denormal in
F , which implies that x is (expo(x) + bias(F ) + p − 1)-exact. Since expo(x) <

expo(spn(F )) = 1 − bias(F ), expo(x) + bias(F ) + p − 1 < p. By Lemma 4.9, x

is p-exact, and the claim follows from Lemma 6.90. ��



Chapter 7
IEEE-Compliant Square Root

Many of the preceding results are propositions pertaining to real variables, which
are formalized by ACL2 events in which these variables are restricted to the
rational domain. Many of the lemmas of this chapter similarly apply to arbitrary
real numbers, but in light of our present focus, these results are formulated to
correspond more closely with their formal versions. Apart from the informal
discussion immediately below, the lemmas themselves contain no references to the
real numbers or the square root function.

Establishing IEEE compliance of a floating-point square root module entails
proving that the final value r computed for a given radicand x, rounding mode R,
and precision n satisfies

r = R(
√

x, n). (7.1)

We would like to formulate a proposition of rational arithmetic that is transparently
equivalent to (7.1). This requirement is satisfied by the following criterion:

For all positive rational numbers � and h, if �2 ≤ x ≤ h2, then

R(�, n) ≤ r ≤ R(h, n). (7.2)

Obviously, the monotonicity of rounding (Lemma 6.95) and of the square root
ensure that (7.1) implies (7.2). On the other hand, suppose that (7.2) holds.
According to Lemma 6.100, either

√
x is (n + 1)-exact (and, in particular, rational)

or for some ε > 0, R(y, n) = R(
√

x, n) for all y satisfying |y − √
x| < ε.

In either case, there exist � ∈ Q and h ∈ Q such that � ≤ √
x ≤ h and

R(�, n) = R(
√

x, n) = R(h, n). Since �2 ≤ x ≤ h2,

R(
√

x, n) = R(�, n) ≤ r ≤ R(h, n) = R(
√

x, n)

and hence r = R(
√

x, n).
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Thus, we would like to prove formally that (7.2) is satisfied by the value r

computed by a square root module of interest. For this purpose, it will be useful to
have a function that computes, for given x and n, a rational number q that satisfies

R(q, n) = R(
√

x, n). (7.3)

We shall define a conceptually simple (albeit computationally horrendous) rational
function (k)

√
x that serves this need. The definition is motivated by Lemma 6.101,

which guarantees that if we are able to arrange that

(k)
√

x = RTO(
√

x, k), (7.4)

where k ≥ n + 2, then (7.3) holds for q = (k)
√

x. Of course, (7.4) will not be our
formal definition of (k)

√
x, nor shall we prove any instance of (7.3). However, after

formulating the definition, we shall prove the following (Lemma 7.17):

For all positive rationals � and h and positive integers k and n, if �2 ≤ x ≤ h2

and k ≥ n + 2, then

R(�, n) ≤ R( (k)
√

x, n) ≤ R(h, n). (7.5)

Thus, in order to prove that a computed value r satisfies (7.2), it will suffice to
show that r = R( (k)

√
x, n) for some k ≥ n + 2. This is the strategy followed in the

correctness proof of Chap. 19.

7.1 Truncated Square Root

The first step toward the definition of (n)
√

x is the following recursive function, the
name of which is motivated by the unproven observation that for 1

4 ≤ x < 1,

rtz-sqrt(x, n) = RTZ(
√

x, n).

Definition 7.1 Let x ∈ R and n ∈ N. If n = 0, then rtz-sqrt(x, n) = 0 and if n > 0
and z = rtz-sqrt(x, n − 1), then

rtz-sqrt(x, n) =
{

z if (z + 2−n)2 > x

z + 2−n if (z + 2−n)2 ≤ x.

Lemma 7.1 Let x ∈ Q and n ∈ N. If x ≥ 1
4 , then

1

2
≤ rtz-sqrt(x, n) ≤ 1 − 2−n.
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Proof If n = 1, then rtz-sqrt(x, n) = 1
2 and the claim is trivial. Proceeding by

induction, let n > 1, z = rtz-sqrt(x, n − 1), and w = rtz(x, n), and assume that
1
2 ≤ z ≤ 1−21−n. If w = z, the claim follows trivially; otherwise, w = z+2−n and

1

2
≤ z < w = z + 2−n ≤ (1 − 21−n) + 2−n = 1 − 2−n.

��
Corollary 7.2 Let x ∈ Q n ∈ Z

+. If x ≥ 1
4 , then expo(rtz-sqrt(x, n)) = −1.

Lemma 7.3 Let x ∈ Q and n ∈ Z
+. If x ≥ 1

4 , then rtz-sqrt(x, n) is n-exact.

Proof The claim is trivial for n = 0. Let n > 1, z = rtz-sqrt(x, n − 1), and
w = rtz(x, n), and assume that z is (n − 1)-exact, i.e., 2n−1z ∈ Z. Then either
w = z and 2nw = 2(2n−1z) ∈ Z or

2nw = 2n(z + 2−n) = 2(2n−1z) + 1 ∈ Z.

��
Lemma 7.4 Let x ∈ Q and n ∈ N. Assume that 1

4 ≤ x < 1 and let w =
rtz-sqrt(x, n). Then w2 ≤ x < (w + 2−n)2.

Proof The claim is trivial for n = 0. Let n > 0, z = rtz-sqrt(x, n − 1), and assume
that z2 ≤ x < (z + 21−n)2. If x < (z + 2−n)2 and w = z, the claim is trivial.
Otherwise, x ≥ (z + 2−n), w = z + 2−n, and

w2 = (z + 2−n)2 ≤ x ≤ (z + 21−n)2 = (w + 2−n)2.

��
According to the next lemma, rtz-sqrt(x, n) is uniquely determined by the above

properties.

Lemma 7.5 Let x ∈ Q, a ∈ Q, and n ∈ Z
+. Assume that 1

4 ≤ x < 1 and a ≥ 1
2 . If

a is n-exact and a2 ≤ x < (a + 2−n)2, then a = rtz-sqrt(x, n).

Proof Let w = rtz-sqrt(x, n). If a < w, then by Lemma 4.20,

w ≥ fp+(a, n) = a + 2expo(a)+1−n ≥ a + 2−n,

which implies w2 ≥ (a + 2−n)2 > x, contradicting Lemma 7.4. But if a > w, then

a ≥ fp+(w, n) = w + 2−n,

and by Lemma 7.4, a2 ≥ (w + 2−n)2 > x, contradicting our hypothesis. ��
We have the following variation of Lemma 6.12.
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Lemma 7.6 Let x ∈ Q, m ∈ Z
+, and n ∈ Z

+. If x ≥ 1
4 and n ≥ m, then

RTZ(rtz-sqrt(x, n),m) = rtz-sqrt(x,m).

Proof The case m = n follows from Lemmas 6.8 and 7.3. We proceed by induction
on n − m. Let 1 < m ≤ n and assume that RTZ(rtz-sqrt(x, n),m) = rtz-sqrt(x,m).
Then by Lemma 6.12,

RTZ(rtz-sqrt(x, n),m − 1) = RTZ(RTZ(rtz-sqrt(x, n),m),m − 1)

= RTZ(rtz-sqrt(x,m),m − 1),

and we need only show that RTZ(rtz-sqrt(x,m),m − 1) = rtz-sqrt(x,m − 1). Let
w = rtz-sqrt(x,m) and z = rtz-sqrt(x,m − 1). If w = z, then w is (n − 1)-
exact by Lemma 7.3 and RTZ(w, n − 1) = w = z by Lemma 6.8. But otherwise,
w = z + 2−n, 2n−1z ∈ Z by Corollary 7.2, and hence, by Definition 6.1,

RTZ(w, n − 1) = 21−n�2n−1w�
= 21−n�2n−1(z + 2−n)�
= 21−n�2n−1z + 1�
= 21−n(2n−1z)

= z.

��

7.2 Odd-Rounded Square Root

The name of the following function is motivated by the (once again unproven)
observation that for 1

4 ≤ x < 1,

rto-sqrt(x, n) = RTO(
√

x, n).

Definition 7.2 Let x ∈ R and n ∈ Z
+, and let z = rtz-sqrt(x, n − 1). Then

rto-sqrt(x, n) =
{

z if x ≤ z2

z + 2−n if x > z2.

Lemma 7.7 Let x ∈ Q and n ∈ Z
+. If x ≥ 1

4 , then

1

2
≤ rto-sqrt(x, n) ≤ 1 − 2−n.
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Proof If n = 1, then rto-sqrt(x, n) = 1
2 and the claim is trivial. Let n > 1 and

z = rtz-sqrt(x, n − 1). By Lemma 7.1, 1
2 ≤ z < 1, which implies

1

2
≤ z ≤ rto-sqrt(x, n) ≤ z + 2−n ≤ (1 − 21−n) + 2−n = 1 − 2−n.

��
Corollary 7.8 Let x ∈ Q n ∈ Z

+. If x ≥ 1
4 , then expo(rto-sqrt(x, n)) = −1.

Lemma 7.9 Let x ∈ Q and n ∈ Z
+. If x ≥ 1

4 , then rto-sqrt(x, n) is n-exact.

Proof Let z = rtz-sqrt(x, n−1) and w = rto-sqrt(x, n). By Corollaries 7.2 and 7.8,
expo(z) = expo(w) = −1. By Lemma 7.3, 2n−1z ∈ Z. Consequently, since w is
either z or z + 2−n, 2nw ∈ Z, i.e., w is n-exact. ��
Lemma 7.10 Let x ∈ Q, m ∈ Z

+, and n ∈ N. Assume that 1
4 ≤ x < 1 and

2 ≤ n ≤ m. Then

rto(rto-sqrt(x,m), n) = rto-sqrt(x, n).

Proof We first consider the case n = m − 1. Let z1 = rtz-sqrt(x,m − 2), w1 =
rto-sqrt(x,m−1), z2 = rtz-sqrt(x,m−1), and w2 = rto-sqrt(x,m). We shall show
that rto(w2,m−1) = w1. Note that by Lemmas 7.2, 7.6, and 7.4, 1

2 ≤ z2
1 ≤ z2

2 ≤ x.

Case 1: z1 = z2 and z2
2 < x.

z1 = w1 = z2 = w2. Since w2 is (m−1)-exact, Lemma 6.74 implies rto(w2,m−
1) = w2 = w1.

Case 2: z1 = z2 and z2
2 < x.

Since w1 is (m − 2)-exact, Lemma 4.20 implies that w1 = z1 + 21−n is not
(m − 2)-exact; similarly, since w2 is (m − 1)-exact, w2 = z2 + 2−m is not (m − 1)-
exact. Therefore,

rto(w2,m − 1) = RTZ(w2,m − 2) + 21−n = z1 + 21−m = w1.

Case 3: z1 < z2 and z2
2 = x.

By Lemma 7.3, z1 is (m − 1)-exact and z2 is (m − 2)-exact. By Lemma 7.6,
z1 = RTZ(z2,m − 2) < z2, and it follows from Lemma 6.9 that z2 = z1 + 21−m.
Thus, w1 = z2 = w2 and by Lemma 6.74, rto(w2,m − 1) = w2 = w1.

Case 4: z1 < z2 and z2
2 < x.

In this case, w1 = z2 = z1 + 21−m and w2 = z2 + 2−m = z1 + 21−m + 2−m,
which is not (m − 2)-exact. Thus,

rto(w2,m − 1) = RTZ(w2,m − 2) + 21−m = z1 + 21−m = w1.



140 7 IEEE-Compliant Square Root

The proof is completed by induction on m. If m > n, then by Lemma 6.81,

rto(rto-sqrt(x,m), n) = rto(rto(rto-sqrt(x,m),m − 1), n)

= rto(rto-sqrt(x,m − 1), n)

= rto-sqrt(x, n). �

Lemma 7.11 Let x ∈ Q, � ∈ Q ,h ∈ Q, and n ∈ Z
+. Assume that 1

4 ≤ x < 1,
h > 0, and �2 ≤ x ≤ h2. Then

rto(�, n) ≤ rto-sqrt(x, n) ≤ rto(h, n).

Proof Let z = rtz-sqrt(x, n − 1) and w = rto-sqrt(x, n). Suppose z2 = x. Then
w = z, �2 ≤ x = w2, and hence � ≤ w. By Lemmas 6.79, 6.74, and 7.3,

rto(l, n) ≤ rto(w, n) = w.

Thus, we may assume z2 < x and w = z + 2−n. By Lemma 7.4, �2 ≤ x < w2,
and hence � < w = fp+(z, n − 1). It follows from Lemmas 6.3, 6.7, and 4.20 that
RTZ(�, n − 1) ≤ z. Therefore,

rto(�, n) ≤ RTZ(�, n − 1) + 21+expo(�)−n ≤ z + 2−n = w.

To prove the second inequality, we note that if h ≥ w, then by Lemmas 6.79,
6.74, and 7.3,

rto(h, n) ≥ rto(w, n) = w.

Therefore, we may assume that h < w. If z2 = x, then w = z, h2 ≥ x = w2, and
h ≥ w. Thus, by Lemma 7.4, z2 < x and w = z + 2−n = fp+(z, n − 1). Since
h2 ≥ x > z2, h > z. It follows from Lemma 6.9 that RTZ(h, n − 1) ≥ a. By
Lemma 4.20, h is not n-exact, and hence

rto(h, n) = RTZ(h, n − 1) + 2−n ≥ z + 2−n = w. �

Lemma 7.12 Let x ∈ Q, q ∈ Q, and n ∈ Z
+. Assume that 1

4 ≤ x < 1, q > 0, and
q is (n − 1)-exact. Then

(a) q2 < x ⇔ q < rto-sqrt(x, n);
(b) q2 > x ⇔ q > rto-sqrt(x, n).

Proof Let z = rtz-sqrt(x, n − 1) and w = rto-sqrt(x, n). If q2 > x, then by
Lemma 7.4, q2 > z2, so that q > z and by Lemma 4.20,

q ≥ z + 21−n > z + 2−n ≥ w.
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We may assume, therefore, that q2 ≤ x < (z + 2−n)2, and hence q < z + 2−n.
We must show that q < x2 iff q < w. By Lemma 4.20, q ≤ z. If q < z, then
q < x2 and q < w. If q = z = x2, then q = z = w. Finally, if q = z < x2, then
q = z < z + 2−n = w. ��

7.3 IEEE-Rounded Square Root

The desired approximation function is a simple generalization of rto-sqrt to arbitrary
positive rationals:

Definition 7.3 Let x ∈ Q and n ∈ Z
+ with x > 0. Let e =

⌊
expo(x)

2

⌋
+ 1. Then

(n)
√

x = 2erto-sqrt(2−2ex, n).

Lemma 7.13 Let x ∈ Q, x > 0, e =
⌊

expo(x)
2

⌋
+ 1, and x′ = 2−2ex. Then

1
4 ≤ x′ < 1.

Proof Since

expo(x)

2
− 1 <

⌊
expo(x)

2

⌋
≤ expo(x)

2
,

we have

expo(x) < 2

⌊
expo(x)

2

⌋
+ 2 = 2e

and

expo(x) ≥ 2

⌊
expo(x)

2

⌋
= 2e − 2.

By Lemma 4.6, −2 ≤ expo(x′) < 0 and the lemma follows. ��
Lemma 7.14 Let x ∈ Q and n ∈ Z

+. If 1
4 ≤ x < 1, then

(n)
√

x = rto-sqrt(x, n).

Proof Since expo(x) ∈ {−2,−1},
⌊

expo(x)
2

⌋
= −1 and e = 0. ��

Lemma 7.15 Let x ∈ Q and n ∈ Z
+ with x > 0. For all k ∈ Z,

(n)
√

22kx = 2k (n)
√

x.
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Proof Let x′ = 22kx, e =
⌊

expo(x)
2

⌋
+ 1, and

e′ =
⌊

expo(x′)
2

⌋
+ 1 =

⌊
expo(x)

2
+ k

⌋
+ 1 = e + k.

Then

(n)
√

x′ = 2e′
rto-sqrt(2−2e′

x′, n)

= 2e+krto-sqrt(2−2(e+k)22kx, n)

= 2k
(

2erto-sqrt(22ex, n)
)

= 2k (n)
√

x. �

Lemma 7.16 Let x ∈ Q, k ∈ N, m1 ∈ N, and n2 ∈ N with x > 0 and 2 < k + 2 ≤
m ≤ n and let R be a common rounding mode. Then

R( (m)
√

x, k) = R( (n)
√

x, k).

Proof Let e =
⌊

expo(x)
2

⌋
+ 1. By Definition 7.3 and Lemmas 7.11 and 6.80,

R( (m)
√

x, k) = R(2erto-sqrt(2−2ex,m), k)

= 2eR(rto-sqrt(2−2ex,m), k)

= 2eR(rto-sqrt(2−2ex, n), k)

= R(2erto-sqrt(2−2ex, n), k)

= R( (n)
√

x, k). �

The next lemma establishes the critical property of (k)
√

x discussed at the
beginning of this chapter.

Lemma 7.17 Let x ∈ Q, � ∈ Q, h ∈ Q n ∈ Z
+, and k ∈ Z

+. Assume that x > 0
h > 0, k ≥ n + 2, and �2 ≤ x ≤ h2. Let R be a common rounding mode. Then

R(�, n) ≤ R( (k)
√

x, n) ≤ R(h, n).

Proof Let e =
⌊

expo(x)
2

⌋
+ 1, x′ = 2−2ex, �′ = 2−e�, and h′ = 2−eh. By

Lemmas 7.13 and 7.11,

RTO(�′, k) ≤ rto-sqrt(x′, k) ≤ RTO(h′, k),

or

RTO(2−k�, k) ≤ 2−k (k)
√

x ≤ RTO(2−kh, k).
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By Lemma 6.80,

RTO(�, k) ≤ (k)
√

x ≤ RTO(h, k),

and by Lemma 6.101,

R(�, n) = R(RTO(�, k), n) ≤ R( (k)
√

x, n) ≤ R(RTO(h, k), n) = R(h, n). �

Our final lemma, which is also required for the proof of Chap. 19, warrants
some motivation. In practice, a typical implementation of a subtractive square
root algorithm produces a final truncated approximation q of the square root and
a remainder that provides a comparison between q2 and the radicand x. A final
rounded result r is derived from this approximation in accordance with a given
rounding mode R and precision n. In order to apply (7.5), we would like to show
that r = R( (k)

√
x, n) for some appropriate k. This may be done, for example, by

invoking Lemma 6.104 with q and (k)
√

x substituted for x and z, respectively. But
this requires showing that q = RTZ( (k)

√
x, n) and determining whether q = (k)

√
x.

Thus, we require a means of converting inequalities relating q2 and x to inequalities
relating q and (k)

√
x. This is achieved by the following:

Lemma 7.18 Let x ∈ Q, q ∈ Q, and n ∈ N. Assume that x > 0, q > 0, n > 1, and
q is (n − 1)-exact. Then

(a) q2 < x ⇔ q < (n)
√

x;
(b) q2 > x ⇔ q > (n)

√
x;

(c) q2 = x ⇔ q = (n)
√

x.

Proof Let e =
⌊

expo(x)
2

⌋
+ 1, x′ = 2−2ex, and q ′ = 2−eq. Then 1

4 ≤ x′ < 1 and
(n)
√

x = 2erto-sqrt(x′, n). By Lemma 7.12,

q2 < x ⇔ q ′2 < x′

⇔ q ′ < rto-sqrt(x′, n)

⇔ 2−eq < 2−e (n)
√

x

⇔ q < (n)
√

x.

The proof of (b) is similar, and (c) follows. ��

Corollary 7.19 Let x ∈ Q and n ∈ N with x > 0 and n > 1. If (n)
√

x is (n − 1)-
exact, then ( (n)

√
x)2 = x.

Proof Instantiate Lemma 7.18 with q = (n)
√

x. ��
Corollary 7.20 Let x ∈ Q, k ∈ N, n ∈ N, and m ∈ N with x > 0, k > 1, n > k,
and m > k. If (n)

√
x is (n − 1)-exact, then (m)

√
x = (n)

√
x.



144 7 IEEE-Compliant Square Root

Proof By Corollary 7.19, ( (n)
√

x)2 = x. The corollary again follows from
Lemma 7.18. ��

Lemma 7.18 is also critical in the detection of floating-point precision exceptions.
As described more fully in Sects. 12.5, 13.5, and 14.3, this exception is signaled
when an instruction returns a rounded result r that differs from the precise
mathematical value u of an operation. But in the case of the square root, the ACL2
formalization compares r to (p+2)

√
x rather than u = √

x, where p is the target
precision. This is justified by (c) above, from which it follows that r = √

x iff
r = (p+2)

√
x.



Part III
Implementation of Elementary Operations

The marvel of efficient and accurate arithmetic performed in silicon is the cul-
mination of several layers of technology and artistry. In the preceding chapters,
we discussed the primitive operations and schemes on which implementations of
arithmetic are based: bit manipulation, floating-point representation, and rounding.
The following chapters collect some of the commonly used algorithms and methods
that employ these primitives in implementing the elementary operations of addition,
multiplication, division, and square root extraction. The application of these meth-
ods in the design of a commercial floating-point unit will be illustrated in Part V.

Addition, the most basic of the arithmetic operations, is modeled at the level
of bit vectors in Chap. 8, applying the foregoing general theory. From the RTL
designer’s perspective, the implementation of integer addition is a relatively simple
problem. We limit our treatment of this topic, therefore, to a brief introduction,
focusing instead on some basic techniques commonly used in the construction of
floating-point adders. The opposite is true of multiplication: the design of an integer
multiplier presents a more interesting challenge than its application to floating-point
multiplication. Thus, in Chap. 9, we limit our attention to an analysis of the former,
based on the ubiquitous Booth algorithm [2].

Since division and square root extraction are implemented as sequences of these
simpler operations, we model them at the more abstract level of rational numbers,
treating addition and multiplication as primitives. Two general approaches form the
basis of most implementations of division: (1) digit recurrence, which generates
a fixed number of quotient bits on each iteration and subtracts a corresponding
multiple of the divisor from the current remainder, and (2) multiplicative methods
based on a convergent sequence of approximations of the reciprocal of the divisor
derived by Newton’s iterative method. Both approaches involve recurrence relations
that may be adapted to the computation of the square root, and each has been used
in a wide range of variations driven by application requirements and technological
constraints. In Chaps. 10 and 11, we present and analyze representative instances
of both.



Chapter 8
Addition

The problem of computer addition comprises two distinct tasks: (1) the design of
an integer adder, and (2) its application to the addition of floating-point numbers.
Integer addition is a nontrivial but relatively simple operation that can be performed
for ordinary bit-widths within a single clock cycle. Consequently, this operation is
generally treated by the RTL designer as a primitive operation to be implemented
by a logic synthesis tool. This amounts to a selection from a library of pre-defined
adder modules, based on width and timing requirements. Thus, our treatment of this
topic, Sect. 8.1, is limited to a brief introduction, focusing on basic concepts that
are relevant to later chapters. The remaining two sections of this chapter deal with
optimization techniques that are commonly used in the normalization and rounding
of floating-point sums.

8.1 Bit Vector Addition

In this section, we explore the gate-level implementation of bit vector addition. As a
first step, we consider the simple 2-gate module of Fig. 8.1, known as a half adder.
According to the first lemma below, the outputs of this module may be interpreted
as the 2-bit sum of its 1-bit inputs.

Lemma 8.1 If u and v are 1-bit vectors, then

u + v = {1’(u & v), 1’(u ^ v)}.

Proof The equation may be checked exhaustively, i.e., for all 4 possible combina-
tions of u and v. ��
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Fig. 8.1 Half adder

The propagate and generate vectors of two n-bit summands x and y are
defined as

p = x ^ y

and

g = x & y,

respectively. Obviously, these vectors may be computed by a circuit consisting of
n half adders, as shown in Fig. 8.2. The following lemma gives a reformulation of
x + y in terms of p and g.

Lemma 8.2 Given n ∈ N and n-bit vectors x and y, let p = x ^ y and g = x & y.
Then

x + y = p + 2g.

Proof By Lemmas 2.4 and 2.32,

x + y = x[n–1 : 0] + y[n–1 : 0]
= 2n–1(x[n–1] + y[n–1]) + x[n–2 : 0] + y[n–2 : 0].
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Fig. 8.2 Propagate and generate vectors

Appealing to induction, we may assume that

x[n–2 : 0] + y[n–2 : 0] = x[n–2 : 0] ^ y[n–2 : 0] + 2(x[n–2 : 0] & y[n–2 : 0]),

which reduces, by Lemma 3.6, to p[n–2 : 0] + 2g[n–2 : 0]. By Lemma 8.1,

x[n–1] + y[n–1] = {x[n–1] & y[n–1], x[n–1] ^ y[n–1]}
= {g[n–1], p[n–1]}
= 2g[n–1] + p[n–1].

Thus, by Lemma 2.32,

x + y = 2n–1(2g[n–1] + p[n–1]) + p[n–2 : 0] + 2g[n–2 : 0]
= 2(2n–1g[n–1] + g[n–2 : 0]) + (2n–1p[n–1] + p[n–2 : 0])
= 2g[n–1 : 0] + p[n–1 : 0]
= p + 2g.

��
In order to represent x + y as a single vector, we shall require a more complex

module, known as a full adder, composed of two half adders and an or-gate, as
shown in Fig. 8.3. The outputs of the full adder may be readily computed as

u ^ v ^ w
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Fig. 8.3 Full adder

and

u & v | (u ^ v) & w = u & v | u & w | v & w.

Its arithmetic functionality is characterized as follows.

Lemma 8.3 If u, v, and w are 1-bit vectors, then

u + v + w = {1’(u & v | u & w | v & v), 1’(u ^ v ^ w)}.

Proof The equation may be checked exhaustively, i.e., for all eight possible
combinations of u, v, and w. ��

Thus, a full adder computes the 2-bit sum of three 1-bit inputs. Replacing the
half adders of Fig. 8.2 with full adders results in the 3:2 compressor of Fig. 8.4, also
known as a carry-save adder, which reduces a sum of three vectors to a sum of two.

Lemma 8.4 Given n ∈ N and n-bit vectors x, y, and z, let

a = x ^ y ^ z

and

b = x & y | x & z | y & z.
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Fig. 8.4 3:2 compressor

Then

x + y + z = a + 2b.

Proof By Lemmas 2.4 and 2.32,

x + y + z

= x[n–1 : 0] + y[n–1 : 0] + z[n–1 : 0]
= 2n–1(x[n–1] + y[n–1] + z[n–1]) + x[n–2 : 0] + y[n–2 : 0] + z[n–2 : 0].

By induction, we may assume that

x[n–2 : 0] + y[n–2 : 0] + z[n–2 : 0] = a[n–2 : 0] + 2b[n–2 : 0],

and by Lemma 8.3,

x[n–1] + y[n–1] + z[n–1]
= 2(x[n–1] & y[n–1] | x[n–1] & z[n–1] | y[n–1] & z[n–1])

+x[n–1] ^ y[n–1] ^ z[n–1].

By Lemma 3.7,

x[n–1] ^ y[n–1] ^ z[n–1] = a[n–1]
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Fig. 8.5 Ripple-carry adder

and

x[n–1] & y[n–1] | x[n–1] & z[n–1] | y[n–1] & z[n–1] = b[n–1].
Thus, invoking Lemma 2.32, we have

x + y + z = 2n–1(2b[n−1] + a[n–1]) + a[n–2 : 0] + 2b[n–2 : 0]
= (2n–1a[n–1] + a[n–2 : 0]) + 2(2n–1b[n–1] + b[n–2 : 0])
= a[n–1 : 0] + 2b[n–1 :: 0]
= a + 2b.

��
The module displayed in Fig. 8.5 is constructed from the same hardware as the

3:2 compressor, but the third input z[k] of each adder is eliminated and replaced by
ck , the carry bit generated at index k − 1. The resulting circuit, known as a ripple-
carry adder (RCA), produces the sum x + y + c0 of two n-bit vectors x and y and
a carry-in bit c0, represented as a single n-bit vector s and a carry-out cn.

Lemma 8.5 Given n ∈ N, let x and y be n-bit vectors and let c0 = {0, 1}. For
k = 0, . . . , n − 1, let

ck+1 = x[k] & y[k] | x[k] & ck | y[k] & ck.

Let s be the n-bit vector defined by

s[k] = x[k] ^ y[k] ^ ck,
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for k = 0, . . . , n − 1. Then

x + y + c0 = {1’cn, n’s}.

Proof We shall show, by induction on k, that for 0 ≤ k ≤ n,

x[k–1 : 0] + y[k–1 : 0] + c0 = 2kck + s[k–1 : 0] = {1’ck, s[k–1 : 0]}.

The claim is trivial for k = 0; assume that it holds for some k, 0 ≤ k < n. Then by
Lemmas 2.32 and 8.3,

x[k : 0] + y[k : 0] + c0 = 2k(x[k] + y[k]) + x[k–1 : 0] + y[k–1 : 0]
= 2k(x[k] + y[k]) + 2kck + s[k–1 : 0]
= 2k(x[k] + y[k] + ck) + s[k–1 : 0]
= 2k{ck+1, s[k]} + s[k–1 : 0]
= 2k+1ck+1 + 2ks[k] + s[k–1 : 0]
= 2k+1ck+1 + s[k : 0].

��
Since the preceding carry bit ck−1 is required for the computation of ck and s[k],

and each full adder incurs two gate delays, the execution time of a RCA of width
n is 2n gate delays. In order to improve the efficiency of bit vector addition, some
degree of parallelism must be introduced in the computation of the carry bits.

Note that the recurrence formula of Lemma 8.5 may be written as

ck+1 = gk | pk & ck,

where

gk = x[k] & y[k]

and

pk = x[k] ^ y[k],

and successive carry bits may thus be computed as follows:

ck+2 = gk+1 | pk+1 & ck+1

= gk+1 | pk+1 & gk | pk+1 & pk & ck,

ck+3 = gk+2 | pk+2 & ck+2
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= gk+2 | pk+2 & gk+1 | pk+2 & pk+1 & gk | pk+2 & pk+1 & pk & ck,

ck+4 = gk+3 | pk+3 & ck+3

= gk+3 | pk+3 & gk+2 | pk+3 & pk+2 & gk+1 | pk+3 & pk+2 & pk+1 & gk |

pk+3 & pk+2 & pk+1 & pk & ck,

. . .

This observation is the basis of the design of a circuit known as a carry-look-
ahead adder (CLA), which computes the sum of two n-bit vectors in constant time,
independent of n. In fact, this may be achieved in as few as four gate delays:

(1) 1 gate delay to compute the generate and propagate bits, gk and pk;
(2) 2 gate delays to compute the carry bits ck , using the above equations;
(3) 1 gate delay to compute the sum bits, s[k] = x[k] ^ y[k] ^ ck .

However, this design is impractical for all but very small values of n, since the
number of gates required increases quadratically with n and the fan-in (number of
inputs to each gate) increases linearly. In practice, this technique is used only in very
narrow adders, which are connected in series to add wider vectors. The optimal
width of a link in such a chain is a function of the propagation delays and other
characteristics of the underlying technology, but the most common width is 4.

Example We shall construct an adder of width n = 4m, with the same interface as
the RCA of Lemma 8.5, as a series of m identical hardware modules. As displayed
in Fig. 8.6, for j = 0, . . . , m − 1, the inputs of the j th module are the 4-bit operand
slices x[4j + 3 : 4j ] and y[4j + 3 : 4j ] and the carry out c4j of the preceding
module. Its outputs are the corresponding slice of the sum, s[4j + 3 : 4j ], and the
carry-out c4j+4. The computation of this carry-out is based on the above expression
for ck+4. Substituting 4j for k, we may write this equation as

c4j+4 = Gj | Pj & c4j ,

where

Gj = g4j+3 | p4j+3 & g4j+2 | p4j+3 & p4j+2 & g4j+1 | p4j+3

& p4j+2 & p4j+1 & g4j

and

Pj = p4j+3 & p4j+2 & p4j+1 & p4j .

The module consists of four components, which perform the following compu-
tations:

(1) For k = 4j, . . . , 4j + 3, pk and gk are computed by a half adder.
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x[4m–1:4(m–1)]
y[4m–1:4(m–1)]
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c4m
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c8
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c4

s[3:0]

· · ·

Fig. 8.6 Carry-look-ahead adder

(2) Gj and Pj are derived from the outputs of (1).
(3) c4j+4 is derived from Gj , Pj , and c4j .
(4) s[4j + 3 : 4j ] is computed from the inputs by a 4-bit RCA or CLA.

Steps (1) and (2) are performed concurrently by each module during an initial period
of several gate delays. Steps (3) and (4) may then be performed by each module once
the carry-out of the preceding module is available. The critical feature of this design
is that successive carry bits are computed two gate delays apart, without waiting
for the adder outputs. Consequently, for large n, the total number of gate delays is
approximately 2m = n/2, an improvement over the RCA by a factor of 4.

8.2 Leading Zero Anticipation

We turn now to the problem of adding two numbers that are encoded in a floating-
point format. The following procedure represents a naive approach to the design of
a floating point adder:

1. Compare the exponent fields of the summands to determine the right shift
necessary to align the significands;

2. Perform the required right shift on the significand field that corresponds to the
lesser exponent;

3. Add (or subtract) the aligned significands, together with the appropriate rounding
constant;
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Assemble Result

Add/Subtract

Select PathLeft Shift Right Shift

Predict Leading 1 Compare Exponents
��

��

�

�

�

Fig. 8.7 Split-path adder

4. Determine the left shift required to normalize the result;
5. Perform the left shift and adjust the exponent accordingly;
6. Compute the final result by assembling the sign, exponent, and significand fields.

It is possible, however, to reduce the latency of floating-point addition by
executing some of these operations in parallel. While a large left shift may be
required (in the case of subtraction, if massive cancellation occurs), and a large
right shift may be required (if the exponents are vastly different), only one of these
possibilities will be realized for any given pair of inputs. Thus, as illustrated in
Fig. 8.7, an efficient adder typically includes two data paths, called the near and far
paths. On the near path, the sum is computed under the assumption that an effective
subtraction is to be performed and the exponents differ by at most 1. Thus, the
summands are aligned quickly, but time is allocated to Steps (4) and (5). On the
far path, which handles the remaining case, Steps (1) and (2) are time-consuming,
but the sum is easily normalized. A concurrent analysis of the exponents determines
which of these paths is actually used to produce the final result.

In order for the operation to be effectively pipelined without duplicating the adder
hardware, the paths must merge before the addition is performed. This is made
possible by a technique known as leading zero anticipation, which allows the left
shift (on the near path) to be determined, and perhaps even performed, in advance
of the subtraction. Consequently, steps (4) and (5) of the near path may be executed
concurrently with steps (1) and (2) of the far path. Meanwhile, the exponent analysis
is performed in time to select the inputs to the adder.

Subtraction of bit vectors is naturally implemented as an addition that is
guaranteed to overflow. Let a and b be n-bit vectors with s = a + b > 2n. Our
objective is to predict the location of the leading one of the sum, i.e, the greatest
i < n such that s[i] = 1, or expo(s[n − 1 : 0]). Although the precise computation
of this index is in general as complex as the addition itself, requiring an execution
time that is linear in n, a useful approximate solution may be obtained more quickly.
We shall compute, in constant time (independent of a, b, and n), a positive integer
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Fig. 8.8 Leading zero anticipation

w such that expo(s[n − 1 : 0]) is either expo(w) or expo(w) − 1. As we shall see in
Chap. 17, this technique may be combined with a leading zero counter that runs in
logarithmic time.

We begin with an informal motivating discussion; a formal solution is given by
Lemma 8.6 below. The technique is based on the propagate and generate vectors
discussed in Sect. 8.1, p = a ^ b and g = a & b. We also define the kill vector,
k = ~a & ~b. As illustrated in Fig. 8.8, for each index i, exactly one of p[i],
g[i], and k[i] is asserted, and we associate i with one of the symbols P , G, and K

accordingly, creating a string of symbols Σ = σn−1 . . . σ1σ0, where

σi =
⎧⎨
⎩

P if pi = 1
G if gi = 1
K if ki = 1.

We shall identify an index j such that the leading one of s[n − 1 : 0] occurs at
either j or j − 1. While the computation is actually performed in constant time, it is
instructive to view the search as a left-to-right traversal of Σ . Since the hypothesis
s > 2n implies a[n − 1] + b[n − 1] ≥ 1, we must have k[n − 1] = 0 and σn−1 is
either P or G. If σn−1 = P , then there must be a carry into index n − 1, resulting in
s[n − 1] = 0, and we may ignore this index and move to index n − 2. We continue
in this manner until we reach the first occurrence of the symbol G, which we find
at some index i. Thus, σn−1 = σn−2 = . . . = σi+1 = P and σi = G. If σi−1 is
either P or G, then the leading one of s must occur at either i or i − 1 depending on
whether a carry is produced at i − 1, and our search is concluded with index j = i.
But if σi−1 = K , then the traversal continues until we reach the index j at which
the final K in the string occurs, i.e., σi−1 = σj = K and σj−1 = K . In this case,
the leading one must occur at either j or j − 1, depending on whether a carry is
produced at j − 1.

Thus, we select j as the terminal index of the maximal prefix of the string of
the form P ∗GK∗ (0 or more P s, followed by a single G, followed by 0 or more
Ks). Clearly, this is the maximal i < n for which σiσi−1 is not one of the following
combinations: PP , PG, GK , or KK . But this may also be characterized as the
maximal i < n such that w[i] = 1, where

w[i] = ~
(
p[i] & p[i–1]) | (p[i] & g[i–1]) | (g[i] & k[i–1]) | (k[i] & k[i–1])
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= ~
(
(p[i] & (p[i–1] | g[i–1])) | ((g[i] | k[i]) & k[i–1]))

= ~
(
(p[i] & k[i–1]) | (p[i] & k[i–1]))

= ~(p[i] ^ k[i–1]),

that is, the leading one of the vector w = ~(p ^ 2k)[n–1 : 0].
A more rigorous version of this derivation follows.

Lemma 8.6 Let a and b be n-bit vectors, where n ∈ Z
+, with s = a + b > 2n. Let

p = a ^ b, k = ~a[n−1 : 0] & ~b[n−1 : 0], and

w = ~(p ^ 2k)[n–1 : 0].

Then

expo(w) − 1 ≤ expo(s[n–1 : 0]) ≤ expo(w).

Proof We shall prove by induction on j that for 0 ≤ j < n, if

(a) w[n–1 : j + 1] = 0,
(b) s[n–1 : j + 1] = 0, and
(c) either a[j : 0] + b[j : 0] ≥ 2j+1 or k[j ] = 1,

then the above inequalities hold. Since these conditions are clearly satisfied by j =
n − 1, this is sufficient.

The case j = 0 is vacuously true, since (b) implies s[0] = s[n–1 : 0] = 0, and
therefore a[0] + b[0] = s[0] = 1, contradicting (c).

Assume that (a), (b), and (c) hold for some j , 0 < j < n. First suppose w[j ] = 1.
Then expo(w) = j and p[j ] = k[j–1]. If p[j ] = k[j–1] = 1, then

a[j : 0] + b[j : 0]
= 2j (a[j ] + b[j ]) + 2j−1(a[j–1] + b[j–1]) + a[j − 2 : 0] + b[j − 2 : 0]
= 2j + a[j − 2 : 0] + b[j − 2 : 0]
< 2j + 2j−1 + 2j−1

= 2j+1,

contradicting (c). Therefore, we must have p[j ] = k[j–1] = 0. Since p[j ] = 0,
either a[j ] = b[j ] = 0, in which case

s[n–1 : 0] = s[j : 0] = a[j–1 : 0] + b[j–1 : 0],

or a[j ] = b[j ] = 1, which implies



8.2 Leading Zero Anticipation 159

s[n–1 : 0] = s[j : 0] = (a[j : 0] + b[j : 0]) mod 2j+1

= (2j + a[j–1 : 0] + 2j + b[j–1 : 0]) mod 2j+1

= a[j–1 : 0] + b[j–1 : 0].

Since k[j–1] = 0, 2j−1 ≤ a[j–1 : 0]+b[j–1 : 0] < 2j+1, i.e, 2j–1 ≤ s[n–1 : 0] <

2j+1 and

expo(w) − 1 = j − 1 ≤ expo(s[n–1 : 0]) ≤ j = expo(w).

Now suppose w[j ] = 0. Then p[j ] = k[j–1]. We shall complete the induction
by showing that (a), (b), and (c) hold for j − 1.

(a) w[n–1 : j ] = 2w[n–1 : j + 1] + w[j ] = 0 + 0 = 0.
(c) This holds trivially if k[j–1] = 1, so we may assume k[j–1] = 0 and p[j ] = 1

Since k[j ] = 0, we must have a[j : 0] + b[j : 0] ≥ 2j+1. It follows that
a[j–1 : 0] + b[j–1 : 0] ≥ 2j , for otherwise

a[j : 0] + b[j : 0] = 2j (a[j ] + b[j ]) + a[j–1 : 0] + b[j–1 : 0]
= 2j + a[j–1 : 0] + b[j–1 : 0]
< 2j+1.

(b) We shall show that s[j : 0] < 2j . If p[j ] = 1 and k[j–1] = 0, then, as we have
shown, a[j–1 : 0] + b[j–1 : 0] ≥ 2j , and therefore

s[j : 0] = (a[j : 0] + b[j : 0]) mod 2j+1

= (2j + a[j–1 : 0] + b[j–1 : 0]) mod 2j+1

= (2j+1 + (a[j–1 : 0] + b[j–1 : 0] − 2j )) mod 2j+1

= (a[j–1 : 0] + b[j–1 : 0] − 2j ) < 2j .

But if p[j ] = 0 and k[j–1] = 1, then either k[j ] = 1 and

s[j : 0] = a[j : 0]+b[j : 0] = a[j −2 : 0]+b[j −2 : 0] < 2j−1 +2j−1 = 2j

or a[j ] = b[j ] = 1 and

s[j : 0] = (a[j : 0] + b[j : 0]) mod 2j+1

= (2j + a[j − 2 : 0] + 2j + b[j − 2 : 0]) mod 2j+1

= a[j − 2 : 0] + b[j − 2 : 0]
< 2j .
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In any case, s[j : 0] < 2j implies s[j ] = 0 and

s[n–1 : j ] = 2s[n–1 : j + 1] + s[j ] = 0.

��

8.3 Trailing Zero Anticipation

As we saw in Chap. 6, the process of rounding a bit vector often involves
determining its degree of exactness. For this purpose, therefore, it is also useful
to predict the trailing zeroes of a sum, i.e., the least index at which a one occurs.
The following lemmas provide methods for computing, in constant time, an integer
that has precisely the same trailing zeroes as the sum or difference of two given
operands.

The difference x − y of n-bit vectors x and y is naturally computed as a sum,
using the identity ~y[n–1 : 0] = 2n − y[n–1 : 0] − 1, which leads to the formula

(x − y)[n–1 : 0] = (x + ~y[n–1 : 0] + 1)[n–1 : 0].

Thus, we are also interested in computing the trailing one of an incremented sum.
This problem admits a particularly simple solution.

Lemma 8.7 Let a and b be n-bit vectors, where n ∈ N. For all k ∈ N, if k < n,
then

(a + b + 1)[k : 0] = 0 ⇔ ~(a ^ b)[k : 0] = 0.

Proof First we consider the case k = 0. By Corollary 2.7,

(a + b + 1)[0] = (a[0] + b[0] + 1)[0],

and exhaustive testing yields

(a[0] + b[0] + 1)[0] = ~(a[0] ^ b[0]).

Thus, by Lemmas 3.20 and 3.7,

~(a[0] ^ b[0]) = ~(a ^ b)[0] = (a + b + 1)[0].

We proceed by induction, assuming k > 0. Applying Lemma 2.33, we may
assume that

(a + b + 1)[0] = ~(a[0] ^ b[0]) = 0
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and need only show that

(a + b + 1)[k : 1] = 0 ⇔ ~(a[n–1 : 0] ^ b[n–1 : 0])[k : 1] = 0.

Let a′ = �a/2� and b′ = �b/2�. By inductive hypothesis,

(a′ + b′ + 1)[k–1 : 0] = 0 ⇔ ~(a′ ^ b′)[k–1 : 0] = 0.

By Lemmas 2.12, 3.19, and 3.6,

~(a ^ b)[k : 1] = ~(a[k : 1] ^ b[k : 1])
= ~(a′[k–1 : 0] ^ b′[k–1 : 0])
= ~(a′ ^ b′)[k–1 : 0].

Therefore, it suffices to show that

(a + b + 1)[k : 1] = (a′ + b′ + 1)[k–1 : 0].

Since

(a + b + 1)[0] = (a[0] + b[0] + 1)[0] = 0,

a[0] + b[0] + 1 is even, which implies a[0] + b[0] + 1 = 2. Thus,

a + b + 1 = (2a′ + a[0]) + (2b′ + b[0]) + 1 = 2(a′ + b′ + 1)

and by Lemma 2.14,

(a + b + 1)[k : 1] = (a′ + b′ + 1)[k − 1 : 0].

��
Our next lemma is applicable to both addition and subtraction, but involves a

somewhat more complicated computation.

Lemma 8.8 Let a and b be n-bit vectors, where n ∈ N, and let c ∈ {0, 1}. Let

τ = a ^ b ^ (2(a | b) | c).

Then for all k ∈ N, if k < n, then

(a + b + c)[k : 0] = 0 ⇔ τ [k : 0] = 0.

Proof Exhaustive testing yields

(a[0] + b[0] + c)[0] = a[0] ^ b[0] ^ c,
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and hence, by Corollary 2.7 and Lemmas 3.7, 2.29, and 2.23,

(a + b + 1)[0] = (a[0] + b[0] + 1)[0] = a[0] ^ b[0] ^ c = τ [0].

This establishes the case k = 0. We proceed by induction as in the proof of
Lemma 8.7. Again, by Lemma 2.33, we may assume that

(a + b + c)[0] = τ [0] = 0

and need only show that

(a + b + c)[k : 1] = 0 ⇔ τ [k : 1] = 0.

Let a′ = �a/2�, b′ = �b/2�, c′ = a[0] | b[0], and

τ ′ = a′ ^ b′ ^ (2(a′ | b′) | c′).

By inductive hypothesis,

(a′ + b′ + c′)[k–1 : 0] = 0 ⇔ τ ′[k–1 : 0] = 0.

By Lemmas 3.19 and 2.12,

τ [k : 1] = a[k : 1] ^ b[k : 1] ^ ((2(a | b))[k : 1]
= a′[k–1 : 0] ^ b′[k–1 : 0] ^ (a | b)[k–1 : 0].

The same lemmas in combination with Lemma 2.33, Corollary 3.11, and
Lemma 2.15, yield

(a | b)[k–1 : 0] = 2(a | b)[k–1 : 1] + (a | b)[0]
= 2(a | b)[k–1 : 1] + c′

= 2(a | b)[k–1 : 1] | c′

= 2(a′ | b′)[k–2 : 0] | c′

= (2(a′ | b′))[k–1 : 0] | c′

= (2(a′ | b′) | c′)[k–1 : 0].

Thus,

τ [k : 1] = a′[k–1 : 0] ^ b′[k–1 : 0] ^ (2(a′ | b′) | c′)[k–1 : 0] = τ ′[k–1 : 0],
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and it suffices to show that

(a + b + c)[k : 1] = (a′ + b′ + c′)[k–1 : 0].

Since

(a + b + c)[0] = (a[0] + b[0] + c)[0] = 0,

a[0] + b[0] + c is even, which implies a[0] + b[0] + c = 2(a[0] | b[0]) = 2c′.
Thus,

a + b + c = (2a′ + a[0]) + (2b′ + b[0]) + c = 2(a′ + b′ + c′)

and by Lemma 2.14,

(a + b + c)[k : 1] = (a′ + b′ + c′)[k − 1 : 0].

��



Chapter 9
Multiplication

While the RTL implementation of integer multiplication is more complex than that
of integer addition, the extended problem of floating-point multiplication does not
present any significant difficulties that have not already been addressed, and is, in
fact, much simpler than floating-point addition. The focus of this chapter, therefore,
is the multiplication of natural numbers. All of our results can be readily extended
to signed integers.

Let x ∈ N and y ∈ N. We shall refer to x and y as the multiplicand and the
multiplier, respectively. A natural approach to the computation of the product xy

begins with the bit-wise decomposition of the multiplier provided by Corollary 2.38:

y = (βw−1 · · ·β0)2 =
w−1∑
i=0

2iβi, (9.1)

where 0 ≤ y < 2w and for i = 0, . . . , w − 1, βi = y[i]. The product may then be
computed as

xy =
w−1∑
i=0

2iβix.

Thus, the computation is reduced to the summation of at most w nonzero terms,
called partial products, each of which is derived by an appropriate shift of x. In
practice, this summation is performed with the use of a tree of compressors similar
to the 3:2 compressor shown in Fig. 8.4, which reduces the number of addends to
2 so that only a single carry-propagate addition is involved in the computation of
the product. It is clear that two 3:2 compressors may be combined to form a 4:2
compressor, and that 2k−2 4:2 compressors may be used to reduce a sum of 2k terms
to 2k−1 in constant time. Consequently, the hardware needed to compress w terms
to two grows linearly with w, and the required time grows logarithmically.
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βi − −
y[i]

i

1 0 0 1 0 1 0 0 0 0 1 0

0 1 1 1 0 0 1 1 1 1 1 0

11 10 9 8 7 6 5 4 3 2 1 0

Fig. 9.1 Radix-2 Booth encoding of y = (011100111110)2

Naturally, any reduction in the number of partial products generated in a
multiplication would tend to reduce the latency of the operation. Most modern
multipliers achieve this objective through some version of a technique discovered by
A. D. Booth in the early days of computer arithmetic [2]. After a brief discussion of
Booth’s original algorithm (Sect. 9.1), we shall present a popular refinement known
as the radix-4 modified Booth algorithm [15] (Sect. 9.2), which limits the number of
partial products to half the multiplier width. Each of the three subsequent sections
contains a variant of this algorithm.

9.1 Radix-2 Booth Encoding

Booth encoding is based on the observation that if we allow −1, along with 0 and
1, as a value of the digit βi in (9.1), then the representation is no longer unique.
Thus, we may seek to minimize the number of nonzero digits and consequently the
number of partial products in the expression for xy, at the expense of introducing a
negation along with the shift of x in the case βi = −1.

In fact, as illustrated for a 12-bit vector y in Fig. 9.1, any maximal uninterrupted
sequence of 1s in the binary expansion of y,

y[k] = y[k+1] = . . . = y[�−1] = 1,

may be replaced with as few as two nonzero entries,

βk = −1, βk+1 = . . . = β�−1 = 0, β� = 1,

using the identity

�−1∑
i=k

2i = 2� − 2k.

Thus, the decomposition βi = y[i] is replaced by the formula

βi =
⎧⎨
⎩

1 if y[i] = 0 and y[i−1] = 1
−1 if y[i] = 1 and y[i−1] = 0

0 if y[i] = y[i−1],



9.2 Radix-4 Booth Encoding 167

or more simply,

βi = y[i−1] − y[i].

The correctness of this encoding is easily established: if y is an n-bit vector, then
since y[n] = y[−1] = 0,

n∑
i=0

2iβi =
n∑

i=0

2iy[i−1] −
n∑

i=0

2iy[i]

=
n−1∑
i=−1

2i+1y[i] −
n∑

i=0

2iy[i]

=
n∑

i=0

2i+1y[i] −
n∑

i=0

2iy[i]

=
n∑

i=0

2iy[i]

= y.

Clearly, the reduction in partial products afforded by this scheme is greatest for
arguments containing long strings of 1s, while in the worst case (alternating 0s
and 1s), all digits are nonzero, and of course, the number of such digits cannot
be predicted. Consequently, any benefit is limited to designs that generate and
accumulate partial products sequentially, as was common in early computing, when
execution speed was readily sacrificed to conserve die area. Modern multiplier
architectures, however, employ compression trees that combine the partial products
in a single cycle. An effective multiplier encoding scheme today must reduce the
depth of such a tree in a consistent and predictable way.

9.2 Radix-4 Booth Encoding

As a notational convenience, we shall assume that x and y are bit vectors of widths
n − 1 and 2m − 1, respectively. Our objective is an efficient computation of xy as
a sum of m partial products. Conceptually, the multiplier y is partitioned into m

2-bit slices, y[2i + 1 : 2i], i = 0, . . . , m − 1. We seek to define an integer digit θi

corresponding to each slice such that

y =
m−1∑
i=0

22iθi .
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−1
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2
1
1
0

θi

Fig. 9.2 Radix-4 Booth encoding

The standard radix-4 representation,

θi = 2y[2i+1] + y[2i] = y[2i + 1 : 2i],

offers no advantage over the ordinary binary representation, since the case θi = 3
effectively involves two partial products rather than one. Instead, we define θi as a
combination of two successive radix-2 Booth digits:

θi = 2β2i+1 + β2i

= 2(y[2i] − y[2i+1]) + (y[2i−1] − y[2i])
= y[2i−1] + y[2i] − 2y[2i+1].

Since β2i+1 and β2i cannot be nonzero and equal, these digits are confined to the
range −2 ≤ θi ≤ 2, and we have an expression for y as a sum of at most m nonzero
terms, each with absolute value a power of 2, as summarized in Fig. 9.2.

Definition 9.1 For y ∈ N and i ∈ N,

θi(y) = y[2i−1] + y[2i] − 2y[2i+1].

Lemma 9.1 If m ∈ Z
+ and y is a bit vector of width 2m − 1, then

y =
m−1∑
i=0

22iθi(y).

Proof We shall prove, by induction, that for 0 ≤ k ≤ m,

y[2k−1 : 0] =
k−1∑
i=0

22iθi + 22ky[2k−1],

where θi = θi(y). The claim is trivial for k = 0. Assuming that it holds for some
k < m, we have
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y[2k + 1 : 0] = 22ky[2k + 1 : 2k] + y[2k−1 : 0]

= 22k(2y[2k+1] + y[2k]) +
k−1∑
i=0

22iθi + 22ky[2k−1]

= 22k(2y[2k+1] + y[2k] + y[2k−1]) +
k−1∑
i=0

22iθi

= 22k(4y[2k+1] + θk) +
k−1∑
i=0

22iθi

=
k∑

i=0

22iθi + 22(k+1)y[2(k + 1)−1],

which completes the induction. In particular, substituting m for k, we have

y = y[2m−1 : 0] =
m−1∑
i=0

22iθi + 22my[2m−1] =
m−1∑
i=0

22iθi .

��
Our goal is to compute

xy = x

m−1∑
i=0

22iθi =
m−1∑
i=0

22ixθi .

Each term of this sum will correspond to a row in an array of m partial products
of width 2m + n, which are constructed by means of a 5-to-1 multiplexer. If θi ∈
{0, 1, 2}, then the ith term may be represented by the n-bit vector xθ shifted 2i bits
to the left. If θi ∈ {−1,−2}, then in place of xθ we use the complement

~(−xθ)[n − 1 : 0] = 2n + xθ − 1. (9.2)

The challenge in constructing the partial product array is to account for the
discrepancy between this and the desired value xθ .

Lemma 9.2 Let x and y be bit vectors of widths n − 1 and 2m − 1, respectively,
where m ∈ Z

+ and n ∈ Z
+. For i = 0, . . . , m − 1, let θi = θi(y),

σi =
{

0 if θi ≥ 0
1 if θi < 0,

σ̄i = 1 − σi,
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1 σ̄7 0 σ6

σ̄6 0 σ5

σ̄5 0 σ4

σ̄4 0 σ3

σ̄3 0 σ2

σ̄2 0 σ1

σ̄1 0 σ0

σ̄0

0 0 0 0 0 0
0 0 1 • • • • 0 0 0 0 0 0
0 0 1 • • • • 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 • • • •

0 0

0 0
0 0

0 0
0 0 0 0

0 0 0 0 0 0 1 • • • •
0 0 0 0 0 0 0 1 • • • •
0 0 0 0 0 0

0 0
0 0
0 0 0

0 0 0 0
0 0

0 0

0 0 0
0 0 0 0 0 0 0 0 1

•

0 0
0 0

0 0 0 0

• • • • •

• •
• •

• •
• •

• •
• • • • • •

Fig. 9.3 Radix-4 partial product array

Bi =
{

xθ if σi = 0
~(−xθ)[n − 1 : 0] if σi = 1,

and

ppi =
{ {2(m–1)’0, 1, σ̄0, n’B0} if i = 0

{2(m–i–1)’0, 1, σ̄i , n’Bi, 0, σi−1, 2(i–1)’0} if i > 0.

Then

2n +
m−1∑
i=0

ppi = 2n+2m + xy.

Proof As a visual aid, the array of partial products ppi is depicted for the case m =
8, n = 6 in Fig. 9.3. In order to understand the construction of this array, note that
according to (9.2), whenever σi = 1, we must correct for the discrepancy between
22iBi and 22ixθi by adding 22i and subtracting 22i+n. The addition is achieved
simply by the insertion of σi at index 2i of ppi+1. (This is not an issue for i = m−1
because y[2m−1] = 0, which implies θm−1 ≥ 0.) The subtraction may be viewed
as a two-step process. First, we insert 1s at indices 2i +n and 2i +n+ 1 of ppi . The
cumulative effect of this is merely a carry-out to index 2m + n. But the motivation
for this step is that the 1 at index 2i + n may now be subtracted off in the case
σi = 1. Thus, in the second step, we replace that 1 with σ̄i = 1 − σi .

This strategy underlies the present proof. According to the definitions of ppi and
σ̄i , the left-hand side of the conclusion of the lemma is

2n +
m−1∑
i=0

(
2n+1+2i + 2n+2i (1 − σi) + 22iBi

)
+

m−1∑
i=1

22(i−1)σi−1.

We first consider the constant terms of this sum:



9.2 Radix-4 Booth Encoding 171

1 σ̄7 0 σ6

σ̄6 0 σ5

σ̄5 0 σ4

σ̄4 0 σ3

σ̄3 0 σ2

σ̄2 0 σ1

σ̄1 0 σ0

σ̄0σ0σ0

• • • • 0 0 0 0
0 0 1 • • • • 0 0 0 0 0 0
0 0 1 • • • • 0 0 0 0 0 0
0 0 0 0 1 • • • 0 0 0 0
0 0 0 1 • • • • 0 0
0 0 0 0 0 0 1 • • • • 0 0
0 0 0 0 0 0 0 1 • • • •
0 0 0 0 0 0 0

• • 0 0 0 0 0 0
• • 0 0 0 0

0 0 • • 0 0
0 0 • • • 0 0
0 0 0 • • 0 0

0 0 0 0 • •
0 0

0 0

0 0

0 0 0 • •
0 0 0 0 0 0 • • • • • •

Fig. 9.4 Radix-4 partial product array (second version)

2n +
m−1∑
i=0

(2n+1+2i + 2n+2i ) = 2n

(
1 +

m−1∑
i=0

(22i+1 + 22i )

)

= 2n

⎛
⎝1 +

2m−1∑
j=0

2j

⎞
⎠

= 2n+2m.

Next, we observe that since σm−1 = 0, the final term of the sum may be rewritten as

m−1∑
i=1

22(i−1)σi−1 =
m−2∑
i=0

22iσi =
m−1∑
i=0

22iσi .

Thus, Lemma 9.1 yields

2n +
m−1∑
i=0

ppi = 2n+2m +
m−1∑
i=0

(−2n+2iσi + 22iBi) +
m−1∑
i=0

22iσi

= 2n+2m +
m−1∑
i=0

22i
(
Bi − (2n − 1)σi

)

= 2n+2m +
m−1∑
i=0

22ixθi

= 2n+2m + xy.

��
Note that computing a product as an application of Lemma 9.2 requires injecting

an extra bit into the partial product array at index n. This requirement can be
eliminated through a minor modification of the low-order entry pp0 as shown in
Fig. 9.4.
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Lemma 9.3 Let x and y be bit vectors of widths n − 1 and 2m − 1, respectively,
where m ∈ Z

+ and n ∈ Z
+. For i = 0, . . . , m − 1, let θi , σi , σ̄i , Bi , and ppi be as

defined as in Lemma 9.2 except that

pp0 = {(2m–3)’0, σ̄0, σ0, σ0, n’B0}.

Then

m−1∑
i=0

ppi ≡ xy (mod 2n+2m).

Proof The difference between the two definitions of pp0 is

(2n+2σ̄0 + 2n+1σ0 + 2nσ0) − (2n+1 + 2nσ̄0)

= 2n (4(1 − σ0) + 2σ0 + σ0 − 2 − (1 − σ0))

= 2n.

��
Another common minor optimization is in the determination of the sign bit σi .

Note that for i > 0, both σi and σi−1 are required in the construction of ppi . If we
define σi = y[2i + 1], then both of these required bits may be easily extracted from
the current slice y[2i+1 : 2i–1]. This may produce a different result in the case
θi = 0, but the overall sum is unchanged. This is the variation of the algorithm that
is used in the multiplier of Chap. 16:

Lemma 9.4 Let x and y be bit vectors of widths n − 1 and 2m − 1, respectively,
where m ∈ Z

+ and n ∈ Z
+. For i = 0, . . . , m − 1, let θi , σi , σ̄i , Bi , and ppi be as

defined as in Lemma 9.3 except that

σi = y[2i + 1].

Then

m−1∑
i=0

ppi ≡ xy (mod 2n+2m).

Proof It is easily checked that of the eight possible values of the slice y[2i+1 :
2i–1], the modification produces the same σi except when y[2i+1 : 2i–1] = (111)2,
in which case we have σi = 1 and Bi = 2n − 1, whereas the corresponding values
computed by the definitions of Lemma 9.2 are σ ′

i = B ′
i = 0. When this occurs, we
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must have 0 ≤ i < 2m − 1 and the affected partial products are ppi and ppi+1. If
i > 0, then the resulting change in ppi

22i
(
2nσ̄ ′

i + B ′
i

)− 22i
(
2nσ̄ ′

i + B ′
i

) = 22i
(
0 + (2n − 1)

)− 22i
(
2n + 0

)
= −22i ,

and if i = 0, the result is the same:

(
2n+2σ̄ ′

0 + 2n+1σ ′
0 + 2nσ ′

0 + B ′
0

)
−
(

2n+2σ̄0 + 2n+1σ0 + 2nσ0 + B0

)

=
(

0 + 2n+1 + 2n + (2n − 1)
)

−
(

2n+2 + 0 + 0 + 0
)

= −1

= −22i .

On the other hand, the change in ppi+1 is

22i (σ ′
i − σi) = 22i (1 − 0) = 22i .

Thus the net change in the sum is 0. ��

9.3 Encoding Carry-Save Sums

In the context of an iterative multiplication-based algorithm (such as the division and
square root algorithms of Chap. 10), it often occurs that the result of a multiplication
is used as the multiplier y in the next iteration. In this case, if the Booth encoding
of y can be derived directly from the carry-save representation produced by the
compression tree, then y need not be computed explicitly and the expensive final
step of carry-propagate addition may be avoided.

In this section, we shall assume once again that x is an (n − 1)-bit vector, but
now the multiplier to be encoded is expressed as a sum

y = a + b,

where a and b are bit vectors of width 2m − 2. As a consequence,

y ≤ (22m−2 − 1) + (22m−2 − 1) = 22m−1 − 2 < 22m−1.

Our objective is to encode y as a sequence of digits ψ0, . . . , ψm−1 and derive a
modified version of Lemma 9.3 with θi replaced by ψi . Examining the proofs of
Lemmas 9.2 and 9.3, we see that the relevant properties of θi are as follows:
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(1) y =∑m−1
i=0 22iθi ;

(2) θi ∈ {−2,−1, 0, 1, 2} for i = 0, . . . , m − 1;
(3) θm−1 ≥ 0.

We shall show that the same properties hold for the digits ψi , defined as follows.

Definition 9.2 Let a ∈ N, b ∈ N, c ∈ N, and d ∈ N. For all i ∈ N, let

ai = a[2i + 1 : 2i]
and

bi = b[2i + 1 : 2i],
and let γi and δi be defined recursively as follows: γ0 = 0, δ0 = 0, and for i > 0,

γi = ai−1[1] | bi−1[1]

and

δi = (ai−1[0] & bi−1[0] | ai−1[0] & γi−1[0] | bi−1[0] & γi−1[0])
&~(ai−1[1] ^ bi−1[1]).

Then for all i ∈ N,

ψi(a, b) = ai + bi + γi + δi − 4(γi+1 + δi+1).

Lemma 9.5 Let m ∈ Z
+ and y = a + b, where a and b are (2m − 2)-bit vectors.

Then

y =
m−1∑
i=0

22iψi(a, b).

Proof Let ψi = ψi(a, b, c, d) and let ai , bi , γi , and δi be as specified in
Definition 9.2. We shall prove, by induction, that for 0 ≤ k ≤ m,

a[2k–1 : 0] + b[2k–1 : 0] =
k–1∑
i=0

22iψi + 2k(γk + δk).

Assume that the statement holds for some k < m. Then

a[2k + 1 : 0] + b[2k + 1 : 0] = 2kak + a[2k–1 : 0] + 2kbk + b[2k–1 : 0]

= 2k(ak + bk) +
k−1∑
i=0

22iψi + 2k(γk + δk)
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= 2k(ak + bk + γk + δk) +
k−1∑
i=0

22iψi

= 2k(ψk + 4(γk+1 + δk+1)) +
k−1∑
i=0

22iψi

=
k∑

i=0

22iψi + 2k+1(γk+1 + δk+1).

Note that am−1 = bm−1 = 0 and therefore, as a consequence of Definition 9.2,
γm = δm = 0. Thus,

a + b = a[2m−1 : 0] + b[2m−1 : 0]

=
m−1∑
i=0

22iψi + 2m(γm + δm)

=
m−1∑
i=0

22iψi .

��
It is not obvious that the ψi lie within the prescribed range.

Lemma 9.6 Let a and b be (2m − 2)-bit vectors, where m ∈ Z
+. Then for i =

0, . . . , m − 1,

|ψi(a, b)| ≤ 2.

Proof Let ψi = ψi(a, b) and let ai , bi , γi , and δi be as specified in Definition 9.2.
Then

ψi = ai + bi + γi + δi − 4(γi+1 + δi+1),

where γi+1 and δi+1 are functions of ai , bi , and γi . Thus, we may express ψi as a
function of ai , bi , γi , and δi . The inequality may then be trivially verified for each
of the 4 · 4 · 2 · 2 = 64 possible sets of values of these arguments. ��

The remaining required property is trivial:

Lemma 9.7 If a and b be (2m − 2)-bit vectors, where m ∈ Z
+, then

ψm−1(a, b) ≥ 0.
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Proof According to Definition 9.2, am−1 = bm−1 = 0, γm = δm = 0, and hence
ψm−1 ≥ 0. ��

By the same arguments used in the proofs of Lemmas 9.2 and 9.3, we have the
following:

Lemma 9.8 Let m ∈ Z
+ and n ∈ Z

+. Let x be an (n − 1)-bit vector and let
y = a + b, where a and b are (2m − 2)-bit vectors. For i = 0, . . . , m − 1, let ppi

be as defined in Lemma 9.3 with θi(y) replaced by ψi(a, b). Then

m−1∑
i=0

ppi ≡ xy (mod 2n+2m).

9.4 Statically Encoded Multiplier Arrays

In a practical implementation of the algorithm of Sect. 9.2, although the Booth
digits θi are not actually computed arithmetically as suggested by the formula of
Lemma 9.1, some combinational logic is required to derive an encoding of each θi

from the corresponding multiplier bits y[2i+1 : 2i–1]. If the value of the multiplier
is known in advance, i.e., at design time, then these encoded values may be stored
instead of the multiplier itself, thereby saving the time and hardware associated with
the encoding logic. However, since the range of θi consists of 5 values, 3 bits are
required for each encoding, and therefore 3m bits in total, as compared to 2m bits
for unencoded multiplier. For a single multiplier, this is a negligible expense, but if
the multiplier is to be selected from a array of vectors, then the penalty incurred by
such static encoding could be a 50% increase in the size of a large ROM.

In this section, we present an alternative encoding scheme that involves 4 rather
than 5 encoded values, which allows 2-bit encodings and thereby eliminates any
increase in space incurred by statically encoded arrays. Again we assume that the
multiplicand x is an (n− 1)-bit vector, but the bound on the multiplier is weakened,
requiring only that

y ≤
m−1∑
i=0

22i+1 = 2

3
(22m − 1),

which implies that y is a 2m-bit vector. Under this scheme, the coefficients θi

are replaced with the values φi defined below. Note that the recursive nature of
this definition precludes parallel computation of the m values. Consequently, this
technique is not suitable for designs that require dynamic encoding.

The definition of φi involves a pair of mutually recursive auxiliary functions.
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Definition 9.3 For all y ∈ N and i ∈ N,

(a) μi(y) = y[2i + 1 : 2i] + χi(y);

(b) χi(y) =
{

1 if i > 0 and μi−1(y) ≥ 3
0 otherwise;

(c) φi(y) =
{−1 if μi[1 : 0] = 3

μi[1 : 0] if μi[1 : 0] = 3,
where μi = μi(y).

Thus, φi is limited to a set of 4 values, {−1, 0, 1, 2}, and in particular, the
second property of θi listed in Sect. 9.3 is satisfied. We shall establish the other
two properties as well. The proof that φm−1 ≥ 0 involves a nontrivial induction.

Lemma 9.9 Let y ∈ N and m ∈ N. If y ≤∑m−1
i=0 22i+1, then χm(y)=0.

Proof Let χi = χi(y) and μi = μi(y). More generally, we shall prove that for
0 ≤ k ≤ m, if y[2k–1 : 0] ≤ ∑k−1

i=0 22i+1, then χk = 0. Assuming that this
claim holds for some k < m and proceeding by induction, we must show that if
y[2k+1 : 0] ≤∑k

i=0 22i+1, then χk+1 = 0.
First, suppose that y[2k + 1 : 2k] ≤ 1. Then

μk = y[2k+1 : 2k] + χk ≤ 1 + 1 < 3,

and hence χk+1 = 0. Thus, we may assume y[2k + 1 : 2k] ≥ 2. Since

22ky[2k+1 : 2k] + y[2k–1 : 0] = y[2k+1 : 0]

≤
k∑

i=0

22i+1

= 22k+1 +
k−1∑
i=0

22i+1

< 22k+1 + 22k

= 22k · 3,

we must have y[2k+1 : 2k] = 2 and y[2k–1 : 0] ≤∑k−1
i=0 22i+1. Now, the inductive

hypothesis yields χk = 0. Hence,

μk = y[2k+1 : 2k] + χk = 2 + 0 < 3,

and once again, χk+1 = 0. ��
The desired result now follows from Lemma 9.9 and Definitions 9.3.

Corollary 9.10 If y ≤∑m−1
i=0 22i+1, then φm−1 ≥ 0.

Lemma 9.9 is also needed for the remaining required property of φi :
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Lemma 9.11 Let y ∈ N and m ∈ N. If y ≤∑m−1
i=0 22i+1, then

y =
m−1∑
i=0

22iφi(y).

Proof Let χi = χi(y), μi = μi(y), and φi = φi(y). First note that 4χi+1+φi = μi ,
for if μi = 3, then

4χi+1 + φi = 4 − 1 = 3,

and in all other cases,

4χi+1 + φi = 4μi[2] + μ[1 : 0] = μi.

We shall show that for k = 0, . . . , m,

y[2k–1 : 0] =
k−1∑
i=0

22iφi + 22kχk.

The claim is trivial for k = 0. For 0 ≤ k < m, by induction, we have

y[2k+1 : 0] = 22ky[2k+1 : 2k] + y[2k–1 : 0]

= 22ky[2k+1 : 2k] +
k−1∑
i=0

22iφi + 22kχk

= 22k(y[2k+1 : 2k] + χk) +
k−1∑
i=0

22iφi

= 22kμk +
k−1∑
i=0

22iφi

= 22k(4χk+1 + φk) +
k−1∑
i=0

22iφi

=
k∑

i=0

22iφi + 22(k+1)χk+1.

In particular, substituting m − 1 for k, we have

y = y[2m–1 : 0] =
m−1∑
i=0

22iφi + 22mχm =
m−1∑
i=0

22iφi .

��
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Thus, our multiplier y may be statically encoded as a vector of width 2m,

z = {μm−1[1 : 0], . . . , μ0[1 : 0]},

from which each φi may be readily recovered as

φi =
{−1 if z[2i+1 : 2i] = 3

μi[1 : 0] if z[2i+1 : 2i] = 3.

We may now conclude the following result. Note that as a further optimization,
the 5-to-1 multiplexer that produces the Bi of Lemma 9.2 is replaced with a 4-to-1
multiplexer.

Lemma 9.12 Let m ∈ Z
+ and n ∈ Z

+. Let x be a bit vector of width n − 1 and
let y ∈ N satisfy y ≤ ∑m−1

i=0 22i+1. For i = 0, . . . , m − 1, let ppi be as defined in
Lemma 9.3 with θi(y) replaced by φi(y). Then

m−1∑
i=0

ppi ≡ xy (mod 2n+2m).

9.5 Radix-8 Booth Encoding

A partition of the multiplier y into slices of three bits instead of two leads to a
decomposition

y =
∑

23iηi ,

where

ηi = 4β3i+2 + 2β3i+1 + β3i

= 4(y[3i+1] − y[3i+2]) + 2(y[3i] − y[3i+1]) + (y[3i–1] − y[3i])
= y[3i–1] + y[3i] + 2y[3i+1] − 4y[3i+2].

While the number of terms of this sum is only 1/3 (rather than 1/2) of the width of y,
the range of digits is now −4 ≤ ηi ≤ 4, and hence the value of each term is no longer
guaranteed to be a power of 2 in absolute value. Consequently, a multiplier based
on this radix-8 scheme generates fewer partial products than a radix-4 multiplier,
but the computation of each partial product is more complex. In particular, a partial
product corresponding to an encoding ηi = ±3 requires the computation of 3x, and
therefore a full addition.
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While radix-4 multiplication is more common, radix-8 may offer an advantage,
depending on the timing details of a hardware design. In a typical implementation,
the partial products are computed in one clock cycle and the compression tree is
executed in the next. If there is sufficient time during the first cycle to perform the
addition required for radix-8 encoding (which may be the case, for example, for
a low-precision operation), then this scheme is feasible. Since most of the silicon
area allocated to a multiplier is associated with the compression tree, the resulting
reduction in the number of partial products may represent a significant gain in
efficiency.

For the purpose of this analysis, which is otherwise quite similar to that of
Sect. 9.2, we shall assume that x and y are bit vectors of widths n − 2 and 3m − 1,
respectively.

Definition 9.4 For y ∈ N and i ∈ N,

ηi(y) = y[3i–1] + y[3i] + 2y[3i+1] − 4y[3i+2].

Lemma 9.13 Let y be a bit vector of width 23m−1, where m ∈ Z
+. Then

y =
m−1∑
i=0

23iηi(y).

Proof The proof is essentially the same as that of Lemma 9.1. We shall show by
induction that for 0 ≤ k ≤ m,

y[3k–1 : 0] =
k−1∑
i=0

23iηi + 23ky[3k–1],

where ηi = ηi(y). The claim is trivial for k = 0. Assuming that it holds for some
k < m, we have

y[3(k+1)–1 : 0] = y[3k+2 : 0]
= 23ky[3k+2 : 3k] + y[3k–1 : 0]

= 23k(4y[3k+2] + 2y[3k+1] + y[3k]) +
k−1∑
i=0

23iηi + 23ky[3k–1]

= 23k(4y[3k+2] + 2y[3k+1] + y[3k] + y[3k–1]) +
k−1∑
i=0

23iηi

= 23k(8y[3k+2] + ηk) +
k−1∑
i=0

23iηi

=
k∑

i=0

23iηi + 23(k+1)y[3(k + 1)−1],
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σ̄7 σ6

σ̄6 σ5

σ̄5 σ4

σ̄4 σ3

σ̄3 σ2

σ̄2 σ1

σ̄1 σ0

σ̄0σ0σ0σ0

• • • • 0 0 0 0 0 0 0 0
0 1 1 • • • • 0 0 0 0 0 0 0
0 0 1 1 • • • • 0 0 0 0 0 0 0 0
0 0 0 1 1 • • • 0 0 0 0 0 0 0

0 0 1 • • • • 0 0 0 0

0 0
0 0

0 0 0 0 0 0 0 1 1 • • • • 0
0 0 0 0 0 0

0 0

0 0
0 0

0 0 0 0
0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 • • • • 0 0

0 0 0 0 0 0 0 0

1 1 0 0
0 0

0 0
0 0

0 0

• • 0 0 0 0 0 0 0 0 0 0
• • 0 0 0 0 0 0 0 0

• • 0 0 0 0
• • • 0 0

• • 0 0
• • 0 0

• •
0 0 0 0 0 0 0 0 0 0 0 0 • • • • • •

Fig. 9.5 Radix-8 partial product array

which completes the induction. In particular, substituting m for k, we have

y = y[3m–1 : 0] =
m−1∑
i=0

23iηi + 23my[3m–1] =
m−1∑
i=0

23iηi .

��
The partial product array, as depicted in Fig. 9.5 for the case n = 6, m = 8,

consists of m bit vectors of width n + 3m. Its structure is quite similar to that of the
radix-4 array of Lemma 9.3, as its proof of correctness:

Lemma 9.14 Let x and y be bit vectors of widths n − 2 and 3m − 1, respectively,
where m ∈ Z

+ and n ∈ Z
+. For i = 0, . . . , m − 1, let ηi = ηi(y),

σi =
{

0 if ηi ≥ 0
1 if ηi < 0,

σ̄i = 1 − σi,

Bi =
{

ηix if σi = 0
~(−ηix)[n−1 : 0] if σi = 1,

and

ppi =
{ {(3m–4)’0, σ̄0, σ0, σ0, σ0, n’B0} if i = 0

{3(m–i–1)’0, 1, 1, σ̄i , n’Bi, 0, 0, σi−1, 3(i–1)’0} if i > 0.

Then

m−1∑
i=0

ppi ≡ xy (mod 2n+3m).
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Proof Note that Bi may be expressed as xηi + (2n − 1)σi . Thus,

pp0 = B0 + 2nσ0 + 2n+1σ0 + 2n+2σ0 + 2n+3(1–σ0)

= (
xη0 + (2n–1)σ0

)− 2nσ0 + 2n+3

= xη0 − σ0 + 2n+3

and for i > 0,

ppi = 23(i−1)σi−1 + 23iBi + 2n+3i (1–σi) + 2n+3i+1 + 2n+3i+2

= 23(i−1)σi−1 + 23i
(
xηi + (2n–1)σi

)+ 2n+3i (1–σi) + 2n+3i+1 + 2n+3i+2

= 23(i−1)σi−1 + 23ixηi − 23iσi + 2n+3(i+1) − 2n+3i .

Combining these expressions and noting that σm−1 = 0, we have

m−1∑
i=0

ppi

=
m−1∑
i=1

23(i−1)σi−1 +
m−1∑
i=0

xηi −
m−1∑
i=0

23iσi +
m−1∑
i=1

(2n+3(i+1)–2n+3i ) + 2n+3

=
m−2∑
i=0

23iσi + xy −
m−1∑
i=0

23iσi + 2n+3m

= xy + 2n+3m.

��



Chapter 10
SRT Division and Square Root

The simplest and most common approach to computer division is digit recurrence,
an iterative process whereby at each step, a multiple of the divisor is subtracted
from the current remainder and the quotient is updated accordingly by appending a
fixed number of bits k, determined by the underlying radix, r = 2k . Thus, quotient
convergence is linear, resulting in fairly high latencies of high-precision operations
for the most common radices, r = 2, 4, and 8.

Since division and square root lend themselves to similar recurrence formulas
for the remainder, the same methods are generally applicable to both operations.
An important class of algorithms for division and square root are grouped under
the name SRT, in recognition of the independent contributions of Sweeney[4],
Robertson[26], and Tocher[35] in the late 1950s. The common element is a table,
indexed by approximations of the divisor or root and the remainder, from which
an integer multiplier is extracted on each iteration. SRT dividers are ubiquitous
in contemporary microprocessor design and notoriously prone to implementation
error. They are, therefore, an important application of formal verification.

Elsewhere [31], we explore the sharing of SRT tables between division and
square root as an area-conserving optimization. Here we take a simpler approach
using separate tables, following [5]. The results of this chapter are the basis of the
floating-point division and square root designs of Chaps. 18 and 19.

10.1 SRT Division

Our objective is to compute an approximation of the quotient x
d

of given positive
rational numbers x and d. We shall assume that after an appropriate shift,
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d ≤ x < 2d, (10.1)

thereby confining the quotient to the interval [1, 2).
The computation is governed by a fixed power of 2, r ≥ 2, the radix of the

operation, which determines the number of bits contributed to the quotient on each
iteration. We shall construct a sequence of quotient digits qj ∈ Z, and the resulting
sequence of partial quotients,

Qj =
j∑

i=1

r1−iqi , (10.2)

which converges to x
d

. We also define the partial remainders,

Rj = rj−1(x − dQj ), (10.3)

which may be computed by the following recurrence relation:

Lemma 10.1 R0 = x
r

and for j ≥ 0, Rj+1 = rRj − qj+1d.

Proof The claim is trivial for j = 0, and by induction,

Rj+1 = rj (x − Qj+1d)

= rj
(
x − (Qj + r−j qj+1d)

)

= rj (x − Qjd) − qj+1d

= rRj − qj+1d.

��
The quotient digits are selected from a set of integers {−a, . . . , a}, where a is

chosen so that the redundancy factor

ρ = a

r − 1

satisfies

1

2
< ρ ≤ 1. (10.4)

The minimally redundant case a = r
2 minimizes the number of multiples of d that

must be computed, while the maximally redundant case a = r − 1 provides greater
flexibility in the selection of digits.
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The digits are selected with the goal of preserving the invariant

|Rj | ≤ ρd, (10.5)

or equivalently,

∣∣∣x
d

− Qj

∣∣∣ ≤ ρr1−j . (10.6)

This choice of bound is motivated by the observation that if

x

d
= lim

j→∞ Qj =
∞∑
i=1

r1−iqi ,

then

∣∣∣x
d

− Qj

∣∣∣ =
∣∣∣∣∣∣

∞∑
i=j+1

r1−iqi

∣∣∣∣∣∣ ≤ a

∞∑
i=j+1

r1−i = ar1−j

r − 1
= ρr1−j .

Thus, (10.6) is equivalent to convergence.
The invariant holds trivially for j = 0:

Lemma 10.2 R0 ≤ ρd.

Proof If r = 2, then a = 1, ρ = 1, and

R0 = x

2
< d = ρd.

Otherwise, r ≥ 4 and

R0 = x

r
<

2d

r
≤ d

2
< ρd.

��
For k ∈ {−a, . . . , a}, the selection interval [Lk(d), Uk(d)], defined by

Uk(d) = (k + ρ)d

and

Lk(d) = (k − ρ)d,

is so named because if the shifted partial remainder rRj lies in this interval, then
the invariant (10.5) may be preserved by choosing qj+1 = k:
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Lemma 10.3 If Lk(d) ≤ rRj ≤ Uk(d) and qj+1 = k, then |Rj+1| ≤ ρd.

Proof By Lemma 10.1,

Lk(d) ≤ rRj ≤ Uk(d) ⇒ (k − ρ)d ≤ rRj ≤ (k + ρ)d

⇒ −ρd ≤ rRj − kd ≤ ρd

⇒ −ρd ≤ Rj+1 ≤ ρd.

��
Thus, the existence of a root digit qj+1 that preserves (10.5) is guaranteed if the
selection intervals cover the entire range of rRj , i.e.,

[−rρd, rρd] ⊆
a⋃

k=−a

[Lk(j), Uk(j)] .

This is ensured by the following two lemmas. Note that the proof of the first accounts
for the bounds (10.4) imposed on ρ:

Lemma 10.4 For all k ∈ Z,

(a) Lk(d) < Lk+1(d) < Uk(d) < Uk+1(d);
(b) Uk(d) ≤ Lk+2(d).

Proof

(a) Lk+1(d) − Lk(d) = Uk+1(d) − Uk(d) = d > 0 and Uk(d) − Lk+1(d) =
(2ρ − 1)d > 0.

(b) Lk+2(d) − Uk(d) = 2(1 − ρ)d ≥ 0. ��
Lemma 10.5 Ua(d) = rρd and L−a(d) = −rρd.

Proof First note that

a + ρ = a(r − 1) + a

r − 1
= ar

r − 1
= rρ.

Thus, Ua(d) = (a + ρ)d = rρd and L−a(d) = (−a − ρ)d = −rρd. ��

In practice, the selection of a quotient digit that satisfies the hypothesis of
Lemma 10.3 is achieved by means of a set of comparison constants mk(d), −a <

k ≤ a, which satisfy Lk(d) < mk(d) ≤ Uk−1(d). Note that if −a < k < a,
then this condition, along with Lemma 10.4 (b), implies that mk(d) ≤ Uk−1(d) ≤
Lk+1(d) < mk+1(d), i.e., mk(d) is a strictly increasing function of k. As a matter of
convenience, we also define m−a(d) = −∞. If qj+1 is selected as the largest k for
which mk(d) ≤ rRj , then the required bound on |Rj+1| follows from Lemmas 10.3
and 10.5.
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Typically, however, the partial remainder Rj is represented in a redundant form,
i.e., as a sum or difference of two vectors, and therefore, such direct comparisons are
not possible. Instead, the comparisons are based on an approximation Aj of rRj ,
produced by a narrow adder applied to the leading bits of the component vectors
of Rj . Such an implementation is based on an integer parameter t , the number of
fractional bits of Aj , which determines the width of the adder and the accuracy of
the approximation.

In the SRT divider of Chap. 18, for example, rRj is represented in sign-digit
form, i.e., as a difference of two bit vectors, rRj = Pj −Nj , which are truncated to
t fractional bits and subtracted to produce an approximation

Aj = P
(t)
j − N

(t)
j ,

which satisfies

|Aj − rRj | < 2−t .

In a design that represents the shifted remainder as a sum rather than a difference,
rRj = Cj +Sj , the same error range may be effected by decrementing the truncated
sum, resulting in

Aj = C
(t)
j + S

(t)
j − 2−t .

In order to simplify the comparison with Aj , the constants mk(d) should be selected
to have as few fractional bits as possible. We need only assume, however, that mk(d)

has at most t fractional bits.

Lemma 10.6 Let t ∈ N. Let m−a(d) = −∞ and for −a < k ≤ a, let mk(d) ∈ Q

such that 2tmk(d) ∈ Z and

Lk(d) + 2−t ≤ mk(d) ≤ Uk−1(d).

Let j ∈ N and assume that |Rj | ≤ ρd. Let Aj ∈ Q such that 2tAj ∈ Z and

|Aj − rRj | < 2−t .

If qj+1 is the greatest k ∈ {−a, . . . , a} such that mk(d) ≤ Aj , then |Rj+1| ≤ ρd.

Proof Let q = qj+1. We shall show that Lq(d) ≤ rRj ≤ Uq(d) and invoke
Lemma 10.3. Since Lemma 10.5 ensures that L−a(d) ≤ rRj ≤ Ua(d), the required
bounds are reduced to

−a < q ≤ a ⇒ rRj ≥ Lq(d)

and

−a ≤ q < a ⇒ rRj ≤ Uq(d).
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But according to hypothesis, if −a < q ≤ a, then

Lq(d) ≤ mq(d) − 2−t ≤ Aj − 2−t < rRj

and if −a ≤ q < a, then mq+1(d) > Aj , which implies mq+1(d) ≥ Aj + 2−t , and
hence

Uq(d) ≥ mq+1(d) ≥ Aj + 2−t > rRj .

��
The parameter t must be large enough to ensure the existence of comparison

constants mk(d) that satisfy the hypothesis of Lemma 10.6, but should be as small as
possible in order to minimize the width of the adder that generates Aj . The number
of fractional bits of these constants is at most t (as required by the lemma) and
should be further reduced if possible in order to simplify the comparisons.

10.2 Minimally Redundant Radix-4 Division

As an example, we consider the case r = 4, a = 2 and ρ = 2
3 . This is a particularly

common instance of SRT division because multiplication of the divisor by each
element of the digit set {−2,−1, 0, 1, 2} may be performed as a simple shift of
d or its complement. A common technique for limiting the size of the table of
comparison constants is prescaling, whereby x and d are multiplied by the same
factor (thus preserving the quotient) in order to confine d to a small neighborhood
of 1. This allows the same four comparison constants mk , −1 ≤ k ≤ 2, to be used
for all values of d. In Chap. 18, we present an implementation based on an efficient
prescaling procedure that results in the bounds

63

64
≤ d ≤ 9

8
. (10.7)

According to Lemma 10.6, we must select a value of t for which there exist mk

such that 2tmk ∈ Z and

Lk(d) + 2−t ≤ mk ≤ Uk−1(d)

for all d satisfying (10.7). Let

Lk = max

(
Lk

(
63

64

)
, Lk

(
9

8

))

and

Uk = min

(
Uk

(
63

64

)
, Uk

(
9

8

))
.
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13
8

4
8 −3

8 −12
8 −∞

m2 m1 m0 m−1 m−2

Fig. 10.1 Comparison constants mk

Since Lk and Uk are linear functions of d, it follows from (10.7) that

Lk(d) ≤ Lk

and

Uk(d) ≥ Uk.

Our requirement, therefore, is reduced to

Lk + 2−t ≤ mk ≤ Uk−1, (10.8)

or

2tLk + 1 ≤ 2tmk ≤ 2tUk−1,

where 2tmk ∈ Z. Thus, we must select t to be large enough that there exists an
integer in the interval [2tLk + 1, 2tUk−1], i.e., that

�2tLk + 1� ≤ �2tUk−1�,

for −1 ≤ k ≤ 2. It is easily verified that Lk < Uk−1 for each k, which implies the
satisfiability of this constraint, and that the smallest solution is t = 3. Moreover,
(10.8) is satisfied for this value of t by the constants mk displayed in Fig. 10.1. (No
compliant set of constants exists with fewer than 3 fractional bits.) Thus, we have
the following instantiation of Lemma 10.6.which is the basis of the inductive proof
of convergence for the module of Chap. 18:

Lemma 10.7 Let r = 4 and a = 2 and let mk be as listed in Fig. 10.1 for −2 ≤
k ≤ 2. Assume that

63

64
≤ d ≤ 9

8
.

Let j ≥ 0 and assume that the following conditions hold:

(a) |Rj | ≤ 2
3d;

(b) Aj ∈ Q satisfies 8Aj ∈ Z and |Aj − 4Rj | < 1
8 ;

(c) qj+1 is the greatest k ∈ {−2, . . . , 2} such that mk ≤ Aj .

Then |Rj+1| ≤ 2
3d.
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10.3 Minimally Redundant Radix-8 Division

In a variant of the processor in which the above radix-4 divider is implemented,
the radix is increased to 8, thereby providing an extra quotient bit per iteration at
the expense of increased complexity. This version is also minimally redundant, with
a = 4 and ρ = 4

7 .
Prescaling of the divisor in this design would require a multiplier with 7 partial

products (as opposed to 3 in the radix-4 case), which was found to be infeasible with
respect to timing. Instead, we merely assume that

1

2
≤ d < 1. (10.9)

Consequently, the comparison constants are dependent on d. Specifically, they are
based on a partition of the range of d into 64 subintervals. Let

i =
⌊

128

(
d − 1

2

)⌋
,

so that 0 ≤ i < 64 and

1

2
+ i

128
≤ d <

1

2
+ i + 1

128
. (10.10)

The comparison constants are determined by i; that is, we define a set of constants
mk(i) for each of these intervals.

For −4 ≤ k ≤ 4, let

Lk(i) = max

(
Lk

(
1

2
+ i

128

)
, Lk

(
1

2
+ i + 1

128

))

and

Uk(i) = min

(
Uk

(
1

2
+ i

128

)
, Uk

(
1

2
+ i + 1

128

))
.

Once again, Lk(d) and Uk(d) are linear functions of d, and hence

Lk(d) ≤ Lk(i) and Uk(d) ≥ Uk(i). (10.11)

Thus, we seek t ∈ N and constants mk(i), where −3 ≤ k ≤ 4 and 0 ≤ i < 64, such
that 2tmk(i) ∈ Z and

Lk(i) + 2t ≤ mk(i) ≤ Uk−1(i). (10.12)
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By the same reasoning as used in the radix-4 case, a solution exists if and only if

�2tLk(i) + 1� ≤ �Uk−1(i)�
for all i. By direct computation, the minimal value for which this condition holds is
t = 6.

According to Lemma 10.5 (d), each constant satisfies

|mk(i)| < rρd < 8 · 4

7
< 5

and may therefore be represented with 10 bits, 4 integer and 6 fractional. It follows
that we can construct a table of size 64 × 8 × 10 = 5120 bits, from which the
appropriate 8 10-bit constants may be extracted according to the leading 6 bits of d.

But closer inspection reveals that the constants may be chosen to be independent
of the least significant bit of i with very few exceptions, an observation that may be
exploited effectively to reduce the table size by half. We shall define mk(i) according
to Fig. 10.2. Note that for a given value of i, the constants mk(i) are derived by
a table access based on the 5-bit value �i/2�, and require possible adjustment
according to the 6th bit only in the four cases i < 4.

Since these constants are readily shown to satisfy (10.12) for t = 6, we have the
following consequence of Lemma 10.6:

Lemma 10.8 Let r = 8 and a = 4 and let mk(i) be as listed in Fig. 10.2 for
−4 ≤ k ≤ 4, where

i =
⌊

128

(
d − 1

2

)⌋
.

Let j ≥ 0 and assume that the following conditions hold:

(a) |Rj | ≤ 4
7d;

(b) Aj ∈ Q satisfies 64Aj ∈ Z and |Aj − 8Rj | < 1
64 ;

(c) qj+1 is the greatest k ∈ {−4, . . . , 4} such that mk(i) ≤ Aj .

Then |Rj+1| ≤ 4
7d.

10.4 SRT Square Root

Let r be a fixed power of 2. Given a positive rational number x in the range 1
4 ≤ x <

1, our objective is to construct a sequence of root digits qj ∈ Z, and a corresponding
sequence of partial roots

Qj = 1 +
j∑

i=1

r−iqi , (10.13)

which converge to
√

x ∈ [ 1
2 , 1). Note that for all j ∈ N, rjQj ∈ Z.
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31 222/ / / /64 −32/64 −94/ / /64 −∞
30 218/ / / /64 −28/64 −94/ / /64 −∞
29 214/ / / /64 −28/64 −90/ / /64 −∞
28 212/ / / /64 −28/64 −90/ / /64 −∞
27 208/ / / /64 −28/64 −88/ / /64 −∞
26 204/ / / /64 −28/64 −86/ / /64 −∞
25 200/ / / /64 −28/64 −84/ / /64 −∞
24 198/ / / /64 −28/64 −84/ /

64 94 64 32 64 -158 64 -222

64 154 64 94 64 28 64 -154 64 -218

64 152 64 90 64 28 64 -152 64 -214

64 152 64 90 64 28 64 -152 64 -212

64 148 64 88 64 28 64 -148 64 -208

64 146 64 86 64 28 64 -146 64 -204

64 142 64 84 64 28 64 -142 64 -200

64 140 64 28 64 -140 64 -198/64 −∞
23 194/ / / /64 −28/64 −82/ / /64 −∞
22 190/ / / /64 −28/64 −82/ / /64 −∞
21 188/ / / /64 −28/64 −80/ / /64 −∞
20 184/ /

64 84

64 78/ /64 −24/64 −78/ /

64 138 64 82 64 28 64 -138 64 -194

64 136 64 82 64 28 64 -136 64 -190

64 134 64 80 64 28 64 -134 64 -188

64 132 64 24 64 -132 64 -184/64 −∞
19 180/ / / /64 −24/64 −76/ / /64 −∞
18 176/ / / /64 −24/64 −76/ / /64 −∞
17 173/ / / /64 −24/64 −72/ / /64 −∞
16 170/ / / /64 −24/64 −72/ /

64 128 64 76 64 24 64 -128 64 -180

64 126 64 76 64 24 64 -124 64 -176

64 124 64 73 64 24 64 -124 64 -172

64 120 64 72 64 24 64 -120 64 -170/64 −∞
15 166/ / / /64 −24/64 −70/ / /64 −∞
14 164/ / / /64 −24/64 −70/ / /64 −∞
13 160/ / / /64 −22/64 −68/

64 118 64 70 64 24 64 -118 64 -166

64 -162

64 68 64 -114/ /64 −∞
12 156/ / / /64 −22/64 −66/ / /64 −∞
11 152/ / / /64 −20/64 −64/ / /64 −∞
10 150/ / / /64 −20/64 −64/ / /64 −∞
9 146/ / / /64 −20/64 −62/ / /64 −∞
8 142/ / / /64 −20/64 −60/

64 116 64 70 64 24 64 -116

64 114 64 22 64 -158

64 112 64 66 64 22 64 -112 64 -156

64 108 64 64 64 20 64 -108 64 -152

64 106 64 64 64 20 64 -106 64 -148

64 104 64 62 64 20 64 -104 64 -144

64 102 64 60 64 20 64 -100/64 -141/64 −∞
7 139/ / / /64 −20/64 −60/ / /64 −∞
6 135/ / / /64 −18/64 −58/64 −96/ /64 −∞
5 132/ / / /64 −18/64 −56/64 −94/ /64 −∞
4 128/ / / /64 −18/64 −54/64 −90/ /64 −∞
3 125/ / / /64 −18/64 −54/64 −88/ /64 −∞
2 121/ / / /64 −16/64 −52/64 −86/ /64 −∞
1 118/64∗ 84/ / /64 −16/64 −50/64 −83/ /64∗ −∞
0 115/64∗ 82/

64 52

64 50/ /64 −16/64 −48/64 −81/

64 100 64 60 64 20 64 -98 64 -138

64 96 64 58 64 18 64 -134

64 94 64 56 64 18 64 -131

64 92 64 54 64 18 64 -127

64 90 64 54 64 18 64 -124

64 86 64 16 64 -120

64 50 64 16 64 -116

64 16 64 -112/64∗ −∞
�i/2� m4 m3 m2 m1 m0 m−1 m−2 m−3 m−4

∗ Exceptions: m4
113
64 , m−3 − 114

64 , m4
117
64 , m−3

64 158

(0) = (1) = (2) = (3) = − 117
64

Fig. 10.2 Comparison constants mk(i), where i =
⌊

128
(
d − 1

2

)⌋
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The digits are selected from a set {−a, . . . , a}, where a is again chosen so that the
redundancy factor ρ = a/(r − 1) satisfies (10.4). We define the partial remainders,

Rj = rj (x − Q2
j ), (10.14)

which are computed by the following recurrence relation:

Lemma 10.9 R0 = x − 1 and for j ≥ 0,

Rj+1 = rRj − qj+1(2Qj + r−(j+1)qj+1).

Proof The claim is trivial for j = 0, and by induction,

Rj+1 = rj+1(x − Q2
j+1)

= rj+1
(
x − (Qj + r−(j+1)qj+1)

2
)

= rj+1
(
x − (Q2

j + 2Qjr
−(j+1)qj+1 + r−2(j+1)q2

j+1)
)

= rj+1(x − Q2
j ) − rj+1(2Qjr

−(j+1)qj+1 + r−2j q2
j+1)

= rRj − qj+1(2Qj + r−(j+1)qj+1).

��
For j ≥ 0, let

B(j) = −2ρQj + ρ2r−j

and

B(j) = 2ρQj + ρ2r−j .

The root digits will be selected with the goal of preserving the invariant

B(j) ≤ Rj ≤ B(j). (10.15)

To motivate this choice of bounds, note that if

√
x = lim

j→∞ Qj = lim
j→∞

⎛
⎝1 +

j∑
i=1

r−iqi

⎞
⎠ = 1 +

∞∑
i=1

r−iqi ,

then

|√x − Qj | =
∣∣∣∣∣∣

∞∑
i=j+1

r−iqi

∣∣∣∣∣∣ ≤ a

∞∑
i=j+1

r−i = ar−j

r − 1
= ρr−j ,
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or

Qj − ρr−j ≤ √
x ≤ Qj + ρr−j .

Since

Qj = 1 +
j∑

i=1

r−iqi ≥ 1 −
j∑

i=1

r−ia = 1 − a(1 − r−j )

r − 1
= 1 − ρ + ρr−j ≥ ρr−j ,

this may be expressed in rational terms as

(Qj − ρr−j )2 ≤ x ≤ (Qj + ρr−j )2.

Thus, (10.15) is equivalent to convergence:

Lemma 10.10 For j ≥ 0,

(Qj − ρr−j )2 ≤ x ≤ (Qj + ρr−j )2 ⇔ B(j) ≤ Rj ≤ B(j).

Proof

(Qj − ρr−j )2 ≤ x ≤ (Qj + ρr−j )2

⇔ Q2
j − 2Qjρr−j + ρ2r−2j ≤ x ≤ Q2

j + 2Qjρr−j + ρ2r−2j

⇔ −2ρQj + ρ2r−j ≤ rj (x − Q2
j ) ≤ 2ρQj + ρ2r−j

⇔ B(j) ≤ Rj ≤ B(j).

��
Note that the invariant holds trivially for j = 0:

Lemma 10.11 B(0) ≤ R0 ≤ B(0).

Proof Since R0 = x − 1 and 1
4 ≤ x < 1, we have − 3

4 ≤ R0 < 0,

B(0) = −2ρQ0 + ρ2 = −2ρ + ρ2 = (ρ − 1)2 − 1 ≤
(

1

2
− 1

)2

− 1 = −3

4
≤ R0,

and

B(0) = 2ρQ0 + ρ2 = 2ρ + ρ2 ≥ 2 · 1

2
+ 1

2

2

= 5

4
> R0.

��



10.4 SRT Square Root 195

For j ≥ 0 and k ∈ {−a, . . . , a}, the selection interval [Lk(j), Uk(j)], defined by

Uk(j) = 2(k + ρ)Qj + (k + ρ)2r−(j+1) (10.16)

and

Lk(j) = 2(k − ρ)Qj + (k − ρ)2r−(j+1), (10.17)

is so named because if the shifted partial remainder rRj lies in this interval, then
the invariant (10.15) may be ensured by choosing qj+1 = k:

Lemma 10.12 Let j ≥ 0 and −a ≤ k ≤ a. If Lk(j) ≤ rRj ≤ Uk(j) and qj+1 =
k, then

B(j + 1) ≤ Rj+1 ≤ B(j + 1).

Proof By hypothesis and Lemma 10.9,

Rj+1 = rRj − 2Qjk − r−(j+1)k2

≤ Uk(j) − 2Qjk − r−(j+1)k2

= 2(k + ρ)Qj + (k + ρ)2r−(j+1) − 2Qjk − r−(j+1)k2

= 2ρQj + (2kρ + ρ2)r−(j+1)

= 2ρ(Qj+1 − r−(j+1)k) + (2kρ + ρ2)r−(j+1)

= 2ρQj+1 + ρ2r−(j+1)

= B(j + 1),

and similarly,

Rj+1 ≥ Lk(j) − 2Qjk − r−(j+1)k2

= 2(k − ρ)Qj + (k − ρ)2r−(j+1) − 2Qjk − r−(j+1)k2

= −2ρQj + (−2kρ + ρ2)r−(j+1)

= −2ρ(Qj+1 − r−(j+1)k) + (−2kρ + ρ2)r−(j+1)

= −2ρQj+1 + ρ2r−(j+1)

= B(j + 1).

��
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Thus, the existence of a root digit qj+1 that preserves (10.15) is guaranteed if the
selection intervals cover the entire range of rRj , i.e.,

[
rB(j), rB(j)

] ⊆
a⋃

k=−a

[Lk(j), Uk(j)] .

Unlike the corresponding intervals for division, the overlapping of successive
selection intervals for the square root depends on the choice of parameters, but the
following important property holds in the general case.

Lemma 10.13 For j ≥ 0, Ua(j) = rB(j) and L−a(j) = rB(j).

Proof As noted in the proof of Lemma 10.5, a + ρ = rρ. Thus,

Ua(j) = 2(a + ρ)Qj + (a + ρ)2r−(j+1) = 2rρQJ + rρ2r−j = rB(j)

and

L−a(j) = 2(−a − ρ)Qj + (−a − ρ)2r−(j+1) = −2rρQJ + rρ2r−j = rB(j).

��
We have the following analog of Lemma 10.6:

Lemma 10.14 Let j ∈ N, t ∈ N, and Aj ∈ Q. Let m−a(j) = −∞ and for
−a < k ≤ a, let mk(j) ∈ Q such that

2tmk(j) ∈ Z, (10.18)

Aj < mk(j) ⇒ rRj < mk(j), (10.19)

and

Aj ≥ mk(j) ⇒ rRj > mk(j) − 2−t . (10.20)

Let q = qj+1. Assume that q is the greatest k ∈ {−a, . . . , a} such that mk(j) ≤
Aj , and that

q = a ⇒ mq+1(j) ≤ Uq(j) (10.21)

and

q = −a ⇒ Lq(j) + 2−t ≤ mq(j). (10.22)

If B(j) ≤ Rj ≤ B(j), then B(j + 1) ≤ Rj+1 ≤ B(j + 1).
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Proof We shall show that Lq(j) ≤ rRj ≤ Uq(j) and invoke Lemma 10.12. Since
Lemma 10.13 ensures that L−a(j) ≤ rRj ≤ Ua(j), the required bounds are
reduced to

q = a ⇒ rRj ≤ Uq(j)

and

q = −a ⇒ rRj ≥ Lq(j).

But according to hypothesis, if q = a, then Aj < mq+1(j), which implies

rRj < mq+1(j) ≤ Uq(j),

and if q = −a, then Aj ≥ mq(j), which implies

rRj > mq(j) − 2−t ≥ (Lq(j) + 2−t ) − 2−t = Lq(j).

��
We note that the hypothesis of Lemma 10.14 is weaker than that of Lemma 10.6

in two respects:

(1) The explicit assumption that the parameter t represents the number of fractional
bits of the approximation Aj , i.e., that

2tAj ∈ Z (10.23)

and

|Aj − rRj | < 2−t , (10.24)

is replaced with (10.19) and (10.20). The reason for this is that we find that in
practice (see Lemma 19.4), (10.23) generally holds but (10.24) does not. Note
that in the context of (10.18) and (10.23), (10.19) and (10.20) together constitute
a weakening of (10.24).

As in the case of division, t should be as small as possible in order to
minimize the width of the adder required to produce Aj , and the number of
fractional bits of mk(j) should be further reduced if possible in order to simplify
the comparisons.

(2) Instead of the general assumption that

Lk(j) + 2−t ≤ mk(j) ≤ Uk(j) (10.25)

for all k, we have the special cases (10.21) and (10.22). Note that the selection
interval for mk(j) now depends on j , and in particular, on Qj . We shall find that
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in practice, (10.25) holds for all k for sufficiently large j (after Qj stabilizes),
but the first several iterations must be handled separately. (See the proof of
Lemma 10.15.)

10.5 Minimally Redundant Radix-4 Square Root

As an illustration, we once again consider the case r = 4, a = 2, ρ = 2
3 , which

is the basis of the design of Chap. 19. The problem of parameter optimization for
the square root is not as straightforward as for division, but it has been determined
experimentally that for this case, the required accuracy of the approximation Aj is
given by t = 5, with only 3 fractional bits needed for the comparison constants.

Since prescaling of the radicand is not feasible, the constants must depend on the
partial root Qj . Given j ≥ 0, let j ′ = min(j, 2) and let i be the integer defined
by Qj ′ = 1

2 + i
16 . We shall show that each partial root satisfies the invariant 1

2 ≤
Qj ≤ 1, so that 0 ≤ i ≤ 8. The constants, which are displayed in Fig. 10.3, depend
primarily on i and are therefore denoted as mk(i, j). In fact, as noted in the figure,
mk(i, j) is determined solely by i with the three exceptions m−1(0, j), m2(1, j),
and m−1(8, j). Also note that for fixed i and j ,

m−2(i, j) < m−1(i, j) < m0(i, j) < m1(i, j) < m2(i, j).

In Chap. 19, we shall prove that the implementation satisfies the invariant (10.15).
The proof will also establish the required bounds on the partial roots. The following
result will be the basis of the induction. Note that this induction is based on a slightly
different scheme from that used for division: each of Lemmas 10.7 and 10.8 derives
the conclusion that a set of properties hold for an index j + 1 from the assumption
that they hold for j , whereas the proof below requires the explicit assumption that
the desired properties hold for all indices between 0 and j .

Lemma 10.15 Let r = 4 and a = 2 and let mk(i, j) be as specified in Fig. 10.3.
Given j ≥ 0, suppose that the following conditions hold for all �, 0 ≤ � ≤ j :

(a) 1
2 ≤ Q� ≤ 1;

(b) B(�) ≤ R� ≤ B(�);

(c) Let �′ = min(�, 2) and i = 16
(
Q�′ − 1

2

)
. For all k ∈ {−1, . . . , 2}, A� ∈ Q

satisfies

A� < mk(i, �) ⇒ 4R� < mk(i, �)

and

A� ≥ mk(i, �) ⇒ 4R� > mk(i, �) − 1

32
,

and q�+1 is the greatest k ∈ {−2, . . . , 2} such that mk(i, �) ≤ A�.
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8

Fig. 10.3 Comparison constants mk(i, j)

Then (a) and (b) also hold for � = j + 1.

Proof

(a) If Qj = 1
2 , then

Rj = 4j

(
x − 1

4

)
≥ 0.

It follows that qj+1 ≥ 0, for otherwise

4Rj < Aj + 1

32
< m0(i, j) + 1

32
< 0.

Thus,

Qj+1 = Qj + 4−(j+1)qj+1 ≥ Qj = 1

2
.
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On the other hand, if Qj > 1
2 , then since 4jQj ∈ Z, Qj ≥ 1

2 + 4−j and

Qj+1 = Qj + 4−(j+1)qj+1 ≥ 1

2
+ 4−j + 4−(j+1)(−2) >

1

2
.

The proof of the upper bound is similar.

(b) To prove that B(j +1) ≤ Rj+1 ≤ B(j +1), we shall invoke Lemma 10.14. Let
q = qj+1. We need only show that

q < 2 ⇒ mq+1(i, j) ≤ Uq(j) (10.26)

and

q > −2 ⇒ Lq(j) + 1

32
≤ mq(i, j). (10.27)

First suppose j ≤ 2. If j = 0, then i = 8 and since mq(8, 0) ≤ A0, (c) implies

mq(8, 0) < 4R0 + 1

32
= 4(x − 1) + 1

32
<

1

32
,

which in turn implies q = q1 ∈ {−2,−1, 0}. If j = 1, then i ∈ {0, 4, 8}. Subject
to these constraints, (10.26) and (10.27) may be verified by direct computation
for all values of i, j , and q, since Uq(j) and Lq(j) are determined by

Qj = 1

2
+ i

16
.

Thus, we may assume j ≥ 3. To prove (10.26) and (10.27), it suffices to show
that for all k ∈ {−1, 0, 1, 2},

Lk(j) + 1

32
≤ mk(i, j) ≤ Uk−1(j). (10.28)

Since
∣∣∣∣∣∣

j∑
�=3

4−�q�

∣∣∣∣∣∣ < 2
∞∑

�=3

4−� = 2

3
4−2 = 1

24
,

we have the following bounds on Qj :

1

2
+ i

16
− 1

24
= 11

24
+ i

16
< Qj <

1

2
+ i

16
+ 1

24
= 13

24
+ i

16
. (10.29)
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For the case i = 1, a better upper bound is possible. In this case, Q2 = 9
16 , which

implies q1 = −2, q2 = 1, and Q1 = 1
2 . Since q2 < 2, we must have

4R1 < m2(0, 1) = 3

2

and

R1 = 4(x − Q2
1) = 4

(
x − 1

4

)
<

3

8
,

which implies x < 11
32 . It follows that q3 < 2, for otherwise

4R2 ≥ m2(1, 2) − 1

32
= 15

8
− 1

32
= 59

32
>

7

4
,

R2 = 42(x − Q2
2) = 16

(
x − 81

256

)
>

7

16
,

and therefore

x >
7

256
+ 81

256
= 11

32
,

a contradiction. Thus, q3 ≤ 1 and

Qj <
9

16
+ 4−3q3 + 2

∞∑
�=4

4−� ≤ 9

16
+ 4−3 + 2

3
· 4−3 = 113

192
.

Combining this with (10.29), along with the assumption that 1
2 ≤ Qj ≤ 1, we have

Qmin(i) < Qj < Qmax(i), where

Qmin(i) = max

(
1

2
,

11

24
+ i

16

)

and

Qmax(i) =
{

113
192 if i = 1

min
(

1, 13
24 + i

16

)
if i = 1.

Applying (10.16) and (10.17) with r = 4 and ρ = 2
3 , we conclude that for k > 0,

Uk−1(j) = 2Qj

(
k − 1 + 2

3

)
+ 4−(j+1)

(
k − 1 + 2

3

)2

> 2Qmin(i)

(
k − 1

3

)
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and

Lk(j)=2Qj

(
k − 2

3

)
+4−(j+1)

(
k − 2

3

)2

≤ 2Qmax(i)

(
k − 2

3

)
+ 1

256

(
k − 2

3

)2

,

and similarly, for k ≤ 0,

Uk−1(j) > 2Qmax(i)

(
k − 1

3

)

and

Lk(j) ≤ 2Qmin(i)

(
k − 2

3

)
+ 1

256

(
k − 2

3

)2

.

The required inequality (10.28) follows from these inequalities in all cases. ��



Chapter 11
FMA-Based Division

Multiplicative division algorithms are typically based on a sequence of approxima-
tions of the reciprocal of the divisor b, derived by the Newton-Raphson method.
Given a differentiable function f and a sufficiently accurate initial approximation
y0 of a root of the equation f (y) = 0, the Newton-Raphson recurrence formula

yk+1 = yk − f (yk)

f ′(yk)

computes a convergent sequence of approximations. For the case

f (y) = 1

y
− b,

this yields

yk+1 = yk +
1
yk

− b

1
y2
k

= yk(2 − byk). (11.1)

Since the relative error

1
b

− yk

1
b

= 1 − byk

satisfies

1 − byk+1 = 1 − byk(2 − byk) = (1 − byk)
2,
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the convergence is quadratic, i.e., the number of bits of accuracy of the approxima-
tion doubles with each iteration. This means that convergence is achieved in fewer
iterations than required by the digit-recurrence approach, but the complexity of each
iteration is greater. On the other hand, the hardware requirement may be minimized
by utilizing existing multiplication hardware.

The subject of this chapter is a multiplicative technique for floating-point division
that was developed for IBM RISC processors in the late 1980s and remains in
widespread use today. The initial approximation of the reciprocal of the divisor
is derived from tables in read-only memory. The sequence of Newton-Raphson
refinements of this approximation is interleaved with a sequence of refinements
of the quotient. Central to this process is a hardware fused multiplication-addition
(FMA) operation, which is assumed to be implemented in support of the standard
FMA machine instructions. The significance of this operation is that it has the effect
of performing two arithmetic operations with a single rounding, and is therefore
both more efficient and more accurate than two separate instructions.

Implementations of this method are generally slower than those based, for
example, on the SRT algorithms of Chap. 10, but have the advantage of lower
hardware requirements. In fact, the computations are typically performed by either
microcode or software.

We shall present proofs of correctness of two representative algorithms based
on this approach, which operate on single- and double-precision floating-point
numbers, respectively. The inputs to each are a pair of operands, a and b, and a
rounding mode, R. The operands are p-exact real numbers in the interval [1, 2),
where p = 24 or 53. R may be any of the IEEE rounding modes, although since R
is applied here only to positive arguments, there is no distinction between RTZ and
RDN. The returned value, as specified by IEEE 754 (see Fig. II.1 in Part II), is the
rounded quotient R( a

b
, p).

The algorithms are based on two primitive functions, which are assumed to be
implemented in hardware:

1. A function rcp24, which computes a 24-exact approximation of the reciprocal
of a 24-exact number in the interval [1, 2) with relative error bounded by 2−23.
The definition of rcp24, which is based on table reference and interpolation, is
presented in Sect. 11.1.

2. An atomic FMA operation, which computes the rounded value R(xy + z, p) for
p-exact operands x, y, and z and any IEEE rounding mode R. No restriction is
imposed on the exponents of the operands.

The relevant theory, which is largely based on the work of Markstein [18] and
Harrison [7], is developed in Sects. 11.2 and 11.3. The algorithms are presented
in Sect. 11.4 along with proofs of their correctness.
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11.1 Reciprocal Approximation

We shall define a function rcp24 that computes an approximation of the reciprocal
of a 24-exact number b, 1 ≤ b < 2, by the method of minimax quadratic
interpolation [24]. The computation is based on a partition of the interval [1, 2) into
2k subintervals, Ii = [1 + 2−ki, 1 + 2−k(i + 1)), where 0 ≤ i < 2k , and a quadratic
function defined on each subinterval. Thus, if b ∈ Ii and x = b − (1 + 2−ki) is its
offset within that subinterval, then the approximation is computed as

1

b
≈ C0 + C1x + C2x

2

and rounded to 24 bits, where the coefficients Cj = Cj (i) are read from tables
in read-only memory indexed by i, which have been designed to minimize the
maximum error over each subinterval. Naturally, the value of k and the precisions
of the coefficients are chosen to be as small as possible while providing the desired
accuracy of the approximation.

For our present purpose, it has been determined that k = 7 and coefficients C0,
C1, and C2 of bit-widths 27, 17, and 12, respectively, are sufficient. The resulting
tables, which are displayed in Figs. 11.1, 11.2 and 11.3, occupy 27(27+17+12)/8 =
896 bytes of ROM. Since the reciprocal function is positive, decreasing, and convex,
C0 > 0, C1 < 0, and C2 > 0. Furthermore, each coefficient satisfies |Cj | < 1,
i.e., all bits are fractional. Note that the table entries are represented with the radix
points and the sign of C1 omitted. That is, the displayed values are 227C0, −217C1,
and 212C2, all in hexadecimal notation. The approximation is computed as follows:

Definition 11.1 Given a 24-exact number b, 1 ≤ b < 2, let i = �27(b − 1)� and
x = b − (1 + 2−7i). Then

rcp24(b) = RNE(C0(i) + C1(i)x + C2(i)x
2, 24),

where C0(i), C1(i), and C2(i) are defined as shown in Figs. 11.1, 11.2, and 11.3.

For details pertaining to the construction of such tables and the hardware imple-
mentation of the computation of Definition 11.1, the reader is referred to [24]. For
our purpose, the following properties of rcp24 are readily verified by straightforward
exhaustive computation, without appealing to the derivation of the tables or the
underlying theory:

Lemma 11.1 If b is 24-exact, 1 ≤ b < 2, and y0 = rcp24(b), then 1
2 < y0 ≤ 1 and

|1 − by0| < 2−23.
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Fig. 11.1 227C0(i), 0 ≤ i < 27
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11.2 Quotient Refinement

The first step of each algorithm is the computation of an initial approximation y0 of
1
b

as an application of the function rcp24. An initial approximation of the quotient
a
b

is then computed as

q0 = RNE(ay0, p).

The accuracy of q0 may be derived from that of y0:

Lemma 11.2 Let a > 0, b > 0, and p > 1. Assume that |1 − by| ≤ ε, and let
q = RNE(ay, p). Then ∣∣∣∣1 − b

a
q

∣∣∣∣ ≤ ε + 2−p(1 + ε).

Proof Since

∣∣∣∣1 − b

a
ay

∣∣∣∣ = |1 − by| ≤ ε

and

|ay − q| ≤ 2−pa|y| ≤ 2−p a

b
(1 + ε),
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∣∣∣∣1 − b

a
q

∣∣∣∣ ≤
∣∣∣∣1 − b

a
ay

∣∣∣∣+ b

a
|ay − q| ≤ ε + 2−p(1 + ε).

��
Each of the initial values y0 and q0 undergoes a series of refinements, culminating

in the final rounded quotient q. Each refinement qk+1 of the quotient is computed
from the preceding approximation qk and the current reciprocal approximation y as
follows:

rk = RNE(a − bqk, p)

qk+1 = RNE(qk + rky, p)

In the final step, the input rounding mode R is used instead of RNE:

rk = RNE(a − bqk, p)

q = R(qk + rky, p)

Our main lemma, due to Markstein [18], ensures that the final quotient is correctly
rounded under certain assumptions pertaining to the accuracy of the reciprocal and
quotient approximations from which it is derived.

Lemma 11.3 Let a, b, y, and q be p-exact, where p > 1, 1 ≤ a < 2, and 1 ≤ b <

2. Assume that the following inequalities hold:

(i) | a
b

− q| < 2e+1−p, where e =
{

0 if a > b

−1 if a ≤ b;
(ii) |1 − by| < 2−p.

Let r = a − bq. Then r is p-exact, and for any IEEE rounding mode R,

R(q + ry, p) = R
(a

b
, p
)

.

Proof We may assume r = 0, for otherwise a
b

= q = q + ry and the claim holds
trivially. We may also assume a = b, for otherwise,

|1 − q| =
∣∣∣a
b

− q

∣∣∣ < 2e+1−p = 2−p

implies q = 1 = a
b

and r = 0. It follows from the bounds on a and b that e =
expo( a

b
). We shall show that e = expo(q) as well.

If a > b, then

a

b
≥ b + 21−p

b
= 1 + 21−p

b
> 1 + 2−p

and

q >
a

b
− 2e+1−p = a

b
− 21−p > 1 + 2−p − 21−p = 1 − 2−p,



11.2 Quotient Refinement 209

which implies q ≥ 1. On the other hand,

q <
a

b
+ 21−p ≤ 2 − 21−p + 21−p = 2,

and hence, expo(q) = 0 = e.
Similarly, if a < b, then

a

b
≥ 1

2 − 21−p
= (1 − 2−p) + 2−p

2 − 21−p
= 1

2
+ 2−p−1

1 − 2−p
>

1

2
+ 2−p−1

and

q >
a

b
− 2e+1−p = a

b
− 2−p >

1

2
+ 2−p−1 − 2−p = 1

2
− 2−p−1,

which implies q ≥ 1
2 . On the other hand,

a

b
≤ a

a + 21−p
= 1 − 21−p

a + 21−p
≤ 1 − 21−p

2
= 1 − 2−p,

q <
a

b
+ 2−p < 1 − 2−p + 2−p = 1,

and expo(q) = −1 = e.
To establish p-exactness of r , since

|r| = b

∣∣∣a
b

− q

∣∣∣ < 2 · 2e+1−p = 2e+2−p,

either r = 0 or expo(r) ≤ e + 1 − p, and it suffices to show that

2p−1−(e+1−p)r = 22p−2−er = 22p−2−ea − 22p−2−ebq ∈ Z.

Since a is p-exact, expo(a) = 0, and 2p − 2 − e ≥ 2p − 2 ≥ p − 1, 22p−2−ea ∈ Z;
since b and q are p-exact, expo(b) = 0, and expo(q) ≥ e,

22p−2−ebq = (2p−1b)(2p−1−eq) ∈ Z.

For the proof of the second claim, we shall focus on the case r > 0; the case
r < 0 is similar. Let q ′ = q + 2e+1−p. The quotient a

b
lies in the interval (q, q ′),

and its rounded value is either q or q ′. For the directed rounding modes (RUP,
RDN, and RTZ), we need only show that q + ry also belongs to this interval, i.e.,
ry < 21+e−p. Since a

b
= q + r

b
, this condition may be expressed as

r

b
< 2e+1−p ⇒ ry < 2e+1−p, (11.2)
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or

2p−1−er < b ⇒ 2p−1−er <
1

y
.

Since (ii) implies

1

y
= b

by
>

b

1 + 2−p
,

this will follow from

2p−1−er < b ⇒ 2p−1−er ≤ b

1 + 2−p
.

If b > 1, then since 2p−1−er and b are both p-exact and expo(b) = 0, we have

2p−1−er < b ⇒ 2p−1−er ≤ b − 21−p,

and it will suffice to show that

b − 21−p ≤ b

1 + 2−p
,

but this reduces to b ≤ 2 + 21−p, and we have assumed that b < 2.
On the other hand, if b = 1, then

2p−1−er < 1 ⇒ 2p−1−er ≤ 1 − 2−p,

and we need only show that

1 − 2−p ≤ 1

1 + 2−p
,

which is trivial.
For the remaining case, R = RNE, the proof may be completed by showing that

a
b

and q + ry lie on the same side of the midpoint m = q + 2e−p of the interval
(q, q ′). Note that a

b
= m is impossible, for if this were true, then since a = a

b
· b

is p-exact, Lemma 4.14 would imply that a
b

= m is also p-exact, but this is not the
case. Thus, we must show that

r

b
< 2e−p ⇒ ry < 2e−p (11.3)

and

r

b
> 2e−p ⇒ ry > 2e−p (11.4)
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The proof of (11.3) is the same as that of (11.2), and we may similarly show
that (11.4) is a consequence of

b + 21−p ≥ b

1 − 2−p
.

But this is equivalent to b ≤ 2 − 21−p, which follows from the assumptions that b

is p-exact and b < 2. ��
IEEE-compliance of the algorithms of interest will be proved as applications of

Lemma 11.3 by establishing the two hypotheses (i) and (ii) for appropriate values
of y and q.

The next lemma consists of two results. The first specifies the accuracy of an
intermediate quotient approximation1; the second addresses the final approximation,
supplying the first inequality (i) required by Lemma 11.3.

Lemma 11.4 Let 1 ≤ a < 2, 1 ≤ b < 2, and p > 0. Assume that |1 − by| ≤ ε and
|1 − b

a
q0| ≤ δ. Let r = RNE(a − bq0, p) and q = RNE(q0 + ry, p). Then

∣∣∣∣1 − b

a
q

∣∣∣∣ ≤ 2−p + (1 + 2−p)δε + 2−pδ(1 + ε) + 2−2pδ(1 + ε).

If δε + 2−pδ(1 + ε) < 2−p−1, then

∣∣∣q − a

b

∣∣∣ < 2e+1−p,

where e =
{

0 if a > b

−1 if a ≤ b.

Proof Let u = 1 − by, v = 1 − b
a
q0, r ′ = av = a − bq0, and q ′ = q0 + ry. Then

q0 + r ′y = a

b
(1 − v) + av

b
(1 − u) = a

b
(1 − uv)

and

q ′ = q0 + r ′y + (r − r ′)y = a

b
(1 − uv) + (r − r ′)y,

where

|(r − r ′)y| ≤ 2−p|r ′y| ≤ 2−p · aδ · 1

b
(1 + ε) = a

b
· 2−pδ(1 + ε).

1The first result is not used in the analysis of the algorithms presented in Sect. 11.4, each of which
involves only two quotient approximations.
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Thus,

q ′ ≤ a

b
(1 + δε) + a

b
· 2−pδ(1 + ε)

and
∣∣∣q ′ − a

b

∣∣∣ ≤ a

b
(δε + 2−pδ(1 + ε)).

For the proof of the first claim, we have

∣∣∣q − a

b

∣∣∣ ≤ |q − q ′| +
∣∣∣q ′ − a

b

∣∣∣
≤ 2−pq ′ +

∣∣∣q ′ − a

b

∣∣∣
≤ a

b
(2−p(1 + δε) + 2−2pδ(1 + ε) + δε + 2−pδ(1 + ε))

= a

b
(2−p + (1 + 2−p)δε + ·2−pδ(1 + ε) + ·2−2pδ(1 + ε)).

For the proof of the second claim, since a
b

≤ 2e+1, we have

∣∣∣q ′ − a

b

∣∣∣ ≤ 2e+1(δε + 2−pδ(1 + ε)) < 2e+12−p−1 = 2e−p

and
∣∣∣q − a

b

∣∣∣ ≤ |q − q ′| +
∣∣∣q ′ − a

b

∣∣∣ < 2expo(q ′)−p + 2e−p.

If expo(q ′) ≤ e, then the claim follows trivially. Thus, we may assume that
expo(q ′) > e. But then

2e+1 ≤ q ′ = a

b
+
(
q ′ − a

b

)
< 2e+1 + 2e−p

implies q = 2e+1. It follows that a
b

≤ q ≤ q ′ and

∣∣∣q − a

b

∣∣∣ =≤
∣∣∣q ′ − a

b

∣∣∣ < 2e−p.

��
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11.3 Reciprocal Refinement

A refinement yk+1 of a given reciprocal approximation yk may be derived according
to (11.1) in two steps:

ek = RNE(1 − byk, p)

yk+1 = RNE(yk + ekyk, p)

Alternatively, as illustrated by the double precision algorithm of Sect. 11.4, an
approximation may be computed from the preceding two approximations as follows.
This results in lower accuracy but allows the two steps to be executed in parallel:

ek+1 = RNE(1 − byk+1, p)

yk+2 = RNE(yk + ekyk+1, p)

The following lemma may be applied to either of these computations.

Lemma 11.5 Assume that |1 − by1| ≤ ε1 and |1 − by2| ≤ ε2. Let e1 = RNE(1 −
by1, p), and y3 = RNE(y′

3, p), where y′
3 = y1 + e1y2 and p > 0. Let

ε′
3 = ε1(ε2 + 2−p(1 + ε2)).

and

ε3 = ε′
3 + 2−p(1 + ε′

3).

Then (a) |1 − by′
3| ≤ ε′

3 and (b) |1 − by3| ≤ ε3.

Proof Let u1 = 1 − by1 and u2 = 1 − by2. Then |u1| < ε1, |u2| < ε2, and

e1 = (1 − by1)(1 + v) = e1(1 + v),

where |v| ≤ 2−p. Thus,

|1 − by′
3| = |1 − b(e1y2 + y1)|

= |(1 − by1) − e1(by2)|
= |u1 − u1(1 + v)(1 − u2)|
= |u1(u2 + v(u2 − 1))|
≤ ε′

3

and

|1 − by3| ≤ |1 − by′
3| + b|y3 − y′

3| ≤ ε′
3 + 2−p|by′

3| ≤ ε′
3 + 2−p(1 + ε′

3) = ε3.

��
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The inequality (b) of Lemma 11.5 provides a significantly reduced error bound
for a refined reciprocal approximation y3 as long as the bounds ε1 and ε2 for the
earlier approximations y1 and y2 are large in comparison to 2−p. To establish the
bound 2−p for the final approximation as required by Lemma 11.3, we shall use
the inequality (a), pertaining to the corresponding unrounded value, in conjunction
with the following additional lemma, which is a variation by Harrison [7] of
another result of Markstein [18]. In practice, the application of this lemma involves
explicitly checking a small number of excluded cases.

Lemma 11.6 Let b be p-exact. Assume that y = RNE(y′, p) and |1 − by′| ≤
ε′ < 2−p−1. Let d = �22pε′�. Then |1 − by| < 2−p, with the possible exceptions
b = 2 − 21−pk, k = 1, . . . , d.

Proof If b = 1, then |1 − y′| < 2−p−1 implies y = 1 and |1 − by| = 0. Thus we
may assume b > 1, and therefore b ≥ 1 + 21−p. Consequently,

y′ ≤ 1

b
(1 + 2−p−1) <

1 + 2−p−1

1 + 21−p
< 1,

and it follows that |y − y′| ≤ 2expo(y′)−p ≤ 2−p−1. Since

|1 − by′| ≤ ε′ = 2−2p22pε′ ≤ 2−2pd,

and apart from the allowed exceptions, b < 2 − 21−pd, we have

|1 − by| ≤ |1 − by′| + b|y − y′| < 2−2pd + (2 − 21−pd)2−p−1 = 2−p.

��

11.4 Examples

The single-precision algorithm is given by the following sequence of operations.
The spacing of the steps is intended to denote groups of operations that may be
executed in parallel. Note that the rounding mode RNE is used for all intermediate
steps and the input mode R is used for the final step.

Definition 11.2 q = divsp(a, b,R) is the result of the following sequence of
computations:

y0 = rcp24(b)

q0 = RNE(ay0, 24)

e0 = RNE(1 − by0, 24)
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y1 = RNE(y0 + e0y0, 24)

r0 = RNE(a − bq0, 24)

q1 = RNE(q0 + r0y1, 24)

r1 = RNE(a − bq1, 24)

q = R(q1 + r1y1, 24)

The following lemma, which has been verified by exhaustive computation, will
be used in conjunction with Lemma 11.6 in the proof of Theorem 11.1.

Lemma 11.7 For k = 1, . . . , 7, let b = 2 − 2−23k. If y3 is computed as in
Definition 11.2, then |1 − by3| < 2−24.

Theorem 11.1 Let a and b be 24-exact with 1 ≤ a < 2 and 1 ≤ b < 2. If R is an
IEEE rounding mode and q = divsp(a, b,R), then

q = R
(a

b
, 24
)

.

Proof According to Lemma 11.3, we need only establish the inequalities (ii) |1 −
by3| < 2−24 and (i) | a

b
− q1| < 2e−23, where e is defined as in the lemma.

Let

ε0 = 2−23,

ε′
1 = ε0(ε0 + 2−24(1 + ε0)),

ε1 = ε′
1 + 2−24(1 + ε′

1),

y′
1 = y0 + e0y0,

and d = �248ε′
1�.

By Lemma 11.1, |1 − by0| ≤ ε0. By Lemma 11.5 (under the substitutions of y0 for
both y1 and y2, ε0 for both ε1 and ε2, and y′

1 for y′
3), |1−by′

1| ≤ ε′
1 and |1−by1| ≤ ε1.

It is easily verified by direct computation that ε′
1 < 2−25 and d = 6. The required

inequality (ii) then follows from Lemmas 11.6 and 11.7.
Let δ0 = ε0 + 2−24(1 + ε0). By Lemma 11.2,

∣∣∣∣1 − b

a
q0

∣∣∣∣ ≤ δ0.
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Since δ0ε1 + 2−24δ0(1 + ε1) < 2−25 (by direct computation), we may apply
Lemma 11.4 (substituting y1, q0, ε1, and δ0 for y, q2, ε, and δ, respectively) to
conclude that (i) holds as well. ��

The double-precision algorithm follows:

Definition 11.3 q = divdp(a, b,R) is the result of the following sequence of
computations:

y0 = rcp24(RTZ(b, 24))

q0 = RNE(ay0, 53)

e0 = RNE(1 − by0, 53)

r0 = RNE(a − bq0, 53)

y1 = RNE(y0 + e0y0, 53)

e1 = RNE(1 − by1, 53)

y2 = RNE(y0 + e0y1, 53)

q1 = RNE(q0 + r0y1, 53)

y3 = RNE(y1 + e1y2, 53)

r1 = RNE(a − bq1, 53)

q = R(q1 + r1y3, 53)

Note that in this case, the initial approximation is based on a truncation of the
denominator, which increases its relative error2:

Lemma 11.8 If b is 53-exact, 1 ≤ b < 2, and y0 = rcp24(RTZ(b, 24)), then

|1 − by0| ≤ 2−22.

Proof Let b0 = RTZ(b, 24). Then b0 ≤ b < b0 + 2−23 and by Lemma 11.8,

|1 − by0| ≤ |1 − b0y0| + |y0(b − b0)| ≤ 2−23 + 2−23 = 2−22.

��

2By exhaustive computation, we could establish an error bound slightly less than 1.5 · 2−23, which
would reduce the number of special cases to be checked from 1027 to 573, but the bound 2−22 is
sufficient for the proof of Theorem 11.2.
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The relative error of the final reciprocal approximation must be computed explicitly
in 1027 cases:

Lemma 11.9 For k = 1, . . . , 1027, let b = 2 − 2−52k. If y1 is computed as in
Definition 11.3, then |1 − by1| < 2−53.

Theorem 11.2 Let a and b be 53-exact with 1 ≤ a < 2 and 1 ≤ b < 2. If R is an
IEEE rounding mode and q = divdp(a, b,R), then

q = R
(a

b
, 53
)

.

Proof Applying Lemma 11.3 once again, we need only establish the two inequali-
ties (ii) |1 − by1| < 2−53 and (i) | a

b
− q1| < 2e−52.

Let

ε0 = 2−22,

ε′
1 = ε0(ε0 + 2−53(1 + ε0)),

ε1 = ε′
1 + 2−53(1 + ε′

1),

ε′
2 = ε0(ε1 + 2−53(1 + ε1)),

ε2 = ε′
2 + 2−53(1 + ε′

2),

ε′
3 = ε1(ε2 + 2−53(1 + ε2)),

y′
3 = y1 + e1y2,

and d = �2106ε′
3�.

Let b0 = RTZ(b, 24). Then b0 ≤ b < b0 + 2−23 and by Lemma 11.8,

|1 − by0| ≤ |1 − b0y0| + |y0(b − b0)| ≤ 2−23 + 2−23 = ε0.

By Lemma 11.8, |1 − by0| ≤ ε0. By repeated applications of Lemma 11.5, |1 −
by1| ≤ ε1, |1 − by2| ≤ ε2, and |1 − by′

3| ≤ ε′
3. It is easily verified by direct

computation that ε′
3 < 2−54 and d = 1027, and (ii) follows from Lemmas 11.6

and 11.9.
Let δ0 = ε0 + 2−53(1 + ε0). Direct computation yields δ0ε1 + 2−53δ0(1 + ε1) <

2−54, and (i) again follows from Lemma 11.4. ��



Part IV
Comparative Architectures:

SSE, x87, and Arm

While the principle of correct rounding defines the value of an arithmetic operation
under normal conditions, there are a variety of exceptional cases that require special
consideration, including invalid and denormal operands, overflow, underflow, and
inexact results. Since the advent of floating-point hardware, there has been general
agreement on the desirability of an industry standard for exception handling in order
to ensure consistent results across all computing platforms. This was the objective
of the original IEEE floating-point specification, Standard 754-1985[8], which was
developed in parallel with Intel’s x87 instruction set, the first “IEEE-compliant”
architecture. In the 1990s, a number of competing floating-point architectures
emerged. Among these are the Streaming SIMD (single instruction, multiple data)
Extensions, or SSE instructions, which were added by Intel to support multimedia
and graphics applications. Of equal importance is the Arm family of reduced
instruction set computing architectures, which has dominated the mobile device
market.

Unfortunately, these newer architectures did not strictly adhere to IEEE-
prescribed behavior. For example, in the event of trapped overflow or underflow,
754-1985 dictates the return of a result generated from the rounded value by a
specified shift into the normal range, intended to allow the trap handler to perform
scaled arithmetic. This feature of the x87 instructions was not replicated in later
architectures, which typically do not return any value in this case.

In 2008, IEEE issued an updated version of Standard 754 [9]. Although it is
claimed that “numerical results and exceptions are uniquely determined” by the
new standard, an apparent conflicting objective is to accommodate the diverse
architectural behaviors that arose in the interim. Consequently, it exhibits a number
of ambiguities and deficiencies pertaining, for example, to the detection and
handling of underflow, the response to a denormal operand, the order of precedence
of the pre-computation conditions, the precedence of operands when more than one
is a NaN, and the interaction of exceptions reported by the component operations
of a SIMD instruction. Each of these issues has been resolved independently by the
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architectures mentioned above with inconsistent results. Consequently, no single
standard can possibly serve the needs of a designer or verifier of an implementation
of a particular architecture, for which strict backward compatibility is a necessity.

The ACL2 RTL library addresses this problem for the three floating-point
architectures of interest—SSE, x87, and Arm—by providing formal executable
specifications of the primary elementary arithmetic operations: addition, multipli-
cation, division, square root extraction, and fused multiplication-addition (FMA).
These specifications are presented informally but in complete detail in the following
chapters. We begin with the SSE instructions (Chap. 12), which have the most com-
monality with the other two. In our presentation of the x87 and Arm specifications
(Chaps. 13 and 14), we emphasize their points of departure from SSE behavior.



Chapter 12
SSE Floating-Point Instructions

The SSE floating-point instructions were introduced by Intel in 1998 and have
continually expanded ever since. They operate on single-precision or double-
precision data (Definition 5.3) residing in the 128-bit XMM registers or the 256-bit
YMM registers. Some SSE instructions are packed, i.e., they partition their operands
into several floating-point encodings to be processed in parallel; others are scalar,
performing a single operation, usually on data residing in the low-order bits of their
register arguments. The specifications presented in this chapter apply to both scalar
and packed instructions that perform the operations of addition, multiplication,
division, square root extraction, and FMA.

A single dedicated 16-bit register, the MXCSR, controls and records the response
to exceptional conditions that arise during the execution of SSE floating-point
operations and controls the rounding of floating-point values.

12.1 SSE Control and Status Register

The MXCSR bits are named as displayed in Fig. 12.1.

• The least significant six bits are the exception flags, corresponding to the pre-
computation exceptions, invalid operand (IE), denormal operand (DE), and
division by zero (ZE); and the post-computation exceptions, overflow (OE),
underflow (UE), and inexact result (PE).

• Bit 6 is the denormal-as-zero bit, which, if set, coerces all denormal inputs to
±0.

• Bits 12:7 are the exception masks corresponding to the flags, which determine
whether an exceptional condition results in the return of a default value or the
generation of an exception.

© Springer Nature Switzerland AG 2019
D. M. Russinoff, Formal Verification of Floating-Point Hardware Design,
https://doi.org/10.1007/978-3-319-95513-1_12
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Fig. 12.1 MXCSR: SSE floating-point control and status register

Encoding Rounding mode

00 RNE

01 RDN

10 RUP

11 RTZ

Table 12.1 x86 rounding control

• Bits 14:13 form the rounding control field, which encodes a rounding mode as
displayed in Table 12.1.

• Bit 15 is the force-to-zero bit, which, if set, coerces any denormal output to ±0.

12.2 Overview of SSE Floating-Point Exceptions

When an exceptional floating-point condition is detected during the execution of an
SSE instruction, one of the exception flags MXCSR[5:0] may be set. If a flag is set
and the exception is unmasked, i.e., the corresponding mask bit in MXCSR[12:7]
is 0, then execution of the instruction is terminated, no value is written to the
destination, and control is passed to a trap handling routine. If the exception is
masked, then depending on the exceptional condition, either the instruction proceeds
normally or a default value is returned, allowing execution of the program to
proceed. For a packed instruction, if any of the component operations results in
an unmasked exception, then no result is written for any operation. Otherwise, a
result is written for each operation.

Instruction execution consists of three phases: pre-computation, computation,
and post-computation. The exceptional conditions are partitioned into two classes,
which are detected during the first and third of these phases. The following
procedure is followed by both packed and scalar SSE floating-point instructions.
Note that in the case of a packed instruction, the procedure is complicated by the
requirement of parallel execution:

• Pre-Computation (Sect. 12.3): The operands of each operation are examined in
parallel for a set of conditions, some of which result in the setting of a flag, IE,
DE, or ZE. If a flag is set and the corresponding mask is clear, then execution is
terminated for all operations and no value is written to the destination. Otherwise,
for each operation, either a QNaN is selected as a default value (but not yet
written), or the computation proceeds.
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• Computation (Sect. 12.4): Unless an unmasked exception is detected during the
pre-computation phase, for each operation that has not terminated, a computation
is performed. If the value is infinite or 0, then a result is determined (but not yet
written). Otherwise, execution proceeds.

• Post-Computation (Sect. 12.5): For each remaining operation, the computed
value is rounded and the result is examined for a set of conditions, which may
result in the setting of one or two of the flags OE, UE, and PE. If a flag is set and
the corresponding mask bit is 1, then a result is determined. If a flag is set by any
operation and the corresponding mask bit is 0, then an exception is generated and
no value is written to the destination for any operation. Otherwise, the result that
has been determined for each operation is written.

These three phases and the pre- and post-computation SSE exceptions are
discussed in detail in the following sections.

12.3 Pre-computation Exceptions

The first step in the execution of any SSE floating-point instruction, before any
exception checking is performed, is to examine the DAZ bit of MXCSR. If this bit
is set, then any denormal operand is replaced by a zero of the same sign.

The conditions that may cause an exception flag to be set, or the operation to
be terminated with a QNaN value, or both, prior to an SSE computation are as
follows:

• SNaN operand: IE is set and the operation is terminated. If the first NaN operand
is a QNaN, then the value is that operand; if the first NaN operand is an SNaN,
then the value is that operand converted to a QNaN. For this purpose, in the case
of an FMA a · b + c, the operands are ordered as a, b, c.

• QNaN operand and no SNaN operand: No flag is set, but the operation is
terminated. The value is the first NaN operand.

• Undefined Operation: IE is set, the operation is terminated, and the value is the
real indefinite QNaN (Definition 5.23). The operands for which this condition
holds depends on the operation:

– Addition: Two infinities with opposite signs;
– Subtraction: Two infinities with the same sign;
– Multiplication: Any infinity and any zero;
– Division: Any two infinities or any two zeroes;
– Square root extraction: Any operand with negative sign, excluding negative

zero;
– Multiply-accumulate: A product of an infinity and a zero (with no restriction

on the other operand), or a product of an infinity and any non-NaN added to
an infinity with sign opposite to that of the product.
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Exception or
termination
condition

QNaN result
(masked case)Flag set

SNaN operand IE QNaNized
operand

QNaN operand None Operand

Undefined
operation

IE Indefinite QNaN

Zero exception ZE None

Denormal
operand

DE None

Table 12.2 SSE pre-computation exceptions

• A division operation with any zero as divisor and any finite numerical dividend:
ZE is set, but the operation proceeds (resulting in an infinity) unless an unmasked
exception occurs.

• Any denormal operand (with DAZ = 0) and none of the above conditions: DE
is set, but the numerical computation proceeds unless an unmasked exception
occurs.

Note that these conditions are prioritized in the order listed: if any condition holds
for a given operation, then any other of lower priority is ignored for that operation.
For a packed instruction, all operands are examined in parallel for pre-computation
exception conditions. Consequently, it is possible for different flags to be set for
different operations.

If any exception flag is set during this process and the corresponding mask bit
is clear, then all operations are terminated before any computation is performed, no
result is written to the destination, and an exception is generated.

If an operation of a packed instruction is terminated with a default value, the
value is not written to the destination until execution of the instruction is completed,
since no value is written in the event of an unmasked post-computation exception.

The setting of status flags and the default values are summarized in Table 12.2.

12.4 Computation

Unless terminated in response to a pre-computation exceptional condition, each
operation of an SSE arithmetic instruction computes an unrounded value, which
is then processed according to the contents of the MCXSR and the floating-point
format of the instruction as described below. In the case of a packed instruction,
all operations for which a default QNaN value has not been determined in the pre-
computation stage are similarly processed in parallel.

For each of these operations, a value is computed. If this value is infinite or 0,
then no flags are set and the sign of the result is determined by the signs of the
operands and the rounding mode R = MXCSR[14 : 13]:
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• Infinity: The result is an infinity with sign determined according to the opera-
tion:

– Addition: The sign of the infinite operand or operands.
– Subtraction: The sign of the minuend if it is infinite, and otherwise the inverse

of the sign of the subtrahend.
– Multiplication or division: The product (xor) of the signs of the operands.
– Square root: The sign of the operand, which must be positive.
– Multiply-accumulate: The sign of the addend if it is infinite, and otherwise the

product (xor) of the signs of the factors.

• Zero: The result is a zero with sign determined according to the operation:

– Addition: The sign of operands if they agree; if not, then negative if R =
RDN, and otherwise positive.

– Subtraction: The sign of the minuend if it is the inverse of that of the
subtrahend; if not, then negative if R = RDN, and otherwise positive.

– Multiplication or division: The product (xor) of the signs of the operands.
– Square root: The sign of the operand.
– Multiply-accumulate: The product of the signs of the factors if it agrees with

that of the addend; if not, then negative if R = RDN, and otherwise positive.

Otherwise, execution proceeds to the next phase with the unrounded computed
value, which is finite and nonzero.

12.5 Post-Computation Exceptions

The procedure described in this section is applied in the same way to all opera-
tions under consideration. For each operation that reaches this phase, the precise
mathematical result (which, of course, need not be computed explicitly by an
implementation) is a finite nonzero value u, which is rounded according to the
rounding mode R and the precision p of the data format F , producing a value
r = rnd(u,R, p). This value is subjected to the following case analysis, which may
result in the setting of one or more exception flags. If any operation produces an
unmasked exception, no result is written for any operation. Otherwise, a final result
is written for each operation.

• Overflow (r is above the normal range of the target format, i.e., |r| > lpn(F )):
In all cases, OE is set.

– Masked Overflow (OM = 1):
PE is set. The final result, which is valid only if PM = 1, depends on R and

the sign of r .
If (a) R = RNE, (b) R = RUP and r > 0, or (c) R = RDN and r < 0,

then the final result is an infinity with the sign of r .
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Otherwise, the result is the encoding of the maximum normal value for the
target format, ±lpn(F ), with the sign of r .

– Unmasked Overflow (OM = 0):
No final result is returned. If r = u, then PE is set.

• Underflow (r is below the normal range, i.e., 0 < |r| < spn(F )):

– Masked Underflow (UM = 1):
If FTZ = 1, then UE and PE are set. The final result, which is valid only if

PM = 1, is a zero with the sign of r .
If FTZ = 0, then u is rounded again to produce d = drnd(u,R, F ), which

may be a denormal value, 0, or the smallest normal, ±spn(F ). If d = u, then
both UE and PE are set; otherwise, neither flag is modified. The final result,
which is valid unless PE is set and PM = 1, is the encoding of d, with the sign
of u if d = 0.

– Unmasked Underflow (UM = 0):
UE is set. No final result is returned. If the r = u, then PE is set.

• Normal Case (r is within the normal range, i.e., spn(F ) ≤ |r| ≤ lpn(F )):
If r = u, then PE is set. The final result, which is valid unless PE is set and

PM = 1, is the normal encoding of r .

Thus, PE indicates either that the rounded result is an inexact approximation of
an intermediate result, or that some other value has been written to the destination.
In the case of masked underflow, it may not be obvious that the behavior described
above is consistent with the definition of the auxiliary ACL2 function sse-round,
which sets PE if either r = u or d = u. However, Lemma 6.118 guarantees that if
the first inequality holds, then so does the second.

Also note there is one case in which underflow occurs and UE is not modified:
UM = 1 and the unrounded value is returned as a denormal.
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x87 Instructions

The x87 instruction set was Intel’s first floating-point architecture, introduced in
1981 with the 8087 hardware coprocessor. The architecture provides an array of
eight 80-bit data registers, which is managed as a circular stack. Each numerical
operand is located either in an x87 data register or in memory and is interpreted
according to one of the data formats defined by Definition 5.3. Data register contents
are always interpreted according to the double extended precision format (EP).
Memory operands may be encoded in the single (SP), double (DP), or double
extended precision format. Numerical results are written only to the data registers
in the EP format. The architecture also provides distinct 16-bit control and status
registers, the FCW and the FSW, corresponding to the single SSE register MXCSR.

The x87 instructions have largely been replaced by the newer SSE architecture,
but remain important for applications that require high-precision computations.
Our analysis of these instructions benefits from two simplifications relative to the
SSE architecture: all instructions are scalar and there is no FMA instruction. Thus,
every instruction to be considered here performs a single operation on one or two
operands.

13.1 x87 Control Word

The x87 control word, FCW, allows software to manage the precision and rounding
of floating-point operations and to control the response to exceptional conditions
that may arise during their execution.

The control word bits are named as shown in Fig. 13.1. The least significant
six bits are the exception masks, which represent the same classes of exceptional
conditions that are encoded in the MXCSR: invalid operand (IM), denormal
operand (DM), division by zero (ZM), overflow (OM), underflow (UM), and inexact
result (PM).
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Fig. 13.1 x87 control word

Encoding Precision

00 24

01

10 53

11 64

Table 13.1 x87 precision control

The 2-bit RC field FCW[11:10] encodes a rounding mode according to the same
scheme used for the SSE instructions (Table 12.1).

The control word also includes a 2-bit PC field FCW[9:8], which controls the
precision of rounded results. These results are written only to x87 data registers in
the EP format, but they are rounded to 24, 32, or 64 bits of precision as determined
Table 13.1.

The remaining six bits of FCW are unused. The five bits FCW[15:13] and
FCW[7:6] are reserved: any attempt to alter them is ignored. Bit 6 is always set;
the other four are always clear. FCW[12], labelled Y and known as the infinity bit,
may be read or written by software but its value has no pre-defined meaning. This
bit was used in interpreting floating-point infinities in pre-386 processors, but is now
obsolete.

Note that the x87 control word contains neither a denormal-as-zero (DAZ) bit
nor a force-to-zero (FTZ) bit.

13.2 x87 Status Word

The x87 status word, FSW[15:0], is used by hardware to record exceptional and
other conditions that arise during the execution of x87 instructions. It also contains
a pointer to the top of the x87 data register stack. The status word bits, as shown in
Fig. 13.2, are as follows:

• Exception flags: The least significant seven bits, FSW[6:0], are the exception
flags. The six bits FSW[5:0] correspond to the mask bits FCW[5:0] and record
exceptional conditions of the six types listed in Sect. 13.1. Bit 6, labelled SF, is
set by hardware to indicate a stack fault, which may occur during access of the
instruction operands (stack underflow) or destination register (stack overflow)
prior to execution of the instruction. There is no mask bit in FCW corresponding
to SF. Whenever hardware sets SF, it also sets IE.
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Fig. 13.2 x87 status word

• Exception summary: Bit 7 is the exception summary bit ES, indicating an
unmasked exception. In fact, this bit is redundant: ES = 1 if and only if at least
one of the exception flags FSW[5:0] is set with the corresponding mask bit in
FCW[5:0] clear. This invariant is strictly maintained by hardware.

• Condition codes: Bits 8, 9, 10, and 14 are the condition codes, C0, C1, C2,
and C3, which are modified by x87 instructions. The elementary arithmetic
instructions only modify C1, which is cleared by default and set in the event
that an instruction returns a result that is larger in absolute value than its precise
mathematical value, i.e., the value has been rounded away from 0 or replaced by
an infinity.

• Stack top: The three bits FSW[13:11] encode a pointer to the top of the x87 data
stack.

• Busy bit: Bit 15 is included only for backward compatibility with the 8087, in
which it indicated that the floating-point coprocessor was busy. It is architec-
turally defined to have the same value as ES.

13.3 Overview of x87 Exceptions

An essential difference between x87 and SSE exceptions is that when an unmasked
exceptional condition is detected during execution of an x87 instruction, the
exception summary (ES) bit and busy bit (B) are set along with the indicated
exception flag, but the exception itself is postponed until the next x87 instruction is
encountered. That is, whenever an x87 instruction is initiated, other than the control
instructions, the ES bit is examined and if set, execution is aborted and an exception
is generated.

In the case of an unmasked pre-computation exception, execution is terminated
and, as in the SSE case, no value is written to the destination. For an unmasked
post-computation exception, however, in a departure from SSE behavior, execution
proceeds and a value is written.

Another distinctive feature of the x87 architecture is the SF flag. The data stack is
examined upon initiation of any instruction that requires access to the stack. When
a stack fault is detected, SF is set along with IE. If IM = 0, then ES and B are set as
well and execution is terminated; otherwise, the real indefinite QNaN is written to
the destination. Thus, a stack fault may be viewed as a pre-computation exceptional
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condition with priority over all others. However, we shall view the stack access as
well as the initial check of ES as extraneous to the execution of an instruction and
exclude these features from our formal model.

Thus, we have the following two phases of execution:

• Pre-Computation: The operands are examined for a set of conditions, some
of which result in the setting of a flag, IE, DE, or ZE. If a flag is set and
the corresponding mask bit, IM, DM, or ZM, is clear, then ES and B are set,
execution is terminated, and no value is written to the destination. If no unmasked
exception is detected, then either a QNaN is written to the destination or the
computation proceeds.

• Computation: Unless execution terminates during the pre-computation phase, a
computation is performed. If the value is infinite or 0, then a result is written to
the destination. Otherwise, execution proceeds.

• Post-Computation: The computed result is rounded and examined for a set of
conditions, which may result in the setting of one or two of the flags OE, UE,
and PE. If a flag is set and the corresponding mask bit, OM, UM, or PM, is clear,
then ES and B are set. In any case, a value is written to the destination.

13.4 Pre-computation Exceptions

In addition to those already noted, there are three differences between x87 and SSE
pre-computation exceptions:

• Unsupported operand: This class of encodings does not exist in the SSE formats.
This condition has priority over all other pre-computation exceptions (with the
exception of the stack fault). If an unsupported operand (see Definition 5.6) is
detected, then IE is set. If IM = 0, then ES and B set as well and execution is
terminated; otherwise the real indefinite QNaN is written to the destination.

• NaN operand: For an SNaN or a QNaN input, the priorities and the setting of IE
are the same as for SSE instructions, but there are differences in the computation
of the default value. First, any SP or DP NaN operand is converted to the EP
format by inserting the integer bit and appending the appropriate number of 0s.

In the case of two NaN operands, the order of the operands is irrelevant. If
the operands are distinct NaNs, then the one with the greater significand field is
selected, but if the significand fields coincide, then the zero sign field is selected.

• Pseudo-denormal operands (Definition 5.13): This is another class of encodings
that does not exist in the SSE formats. A pseudo-denormal operand triggers a
denormal exception in the same way as a denormal operand (and in the event of
a masked denormal exception, its value is computed by the same formula).
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13.5 Post-Computation Exceptions

In the absence of an unmasked exception, the computational and post-computational
behavior of the x87 instructions is the same as that of the corresponding SSE
instructions with FTZ = 0, except that (a) results are rounded to the precision
specified in the FCW and encoded in the double extended precision format, and
(b) if a result if rounded away from 0 or replaced by an infinity, then the condition
code C1 is set, and otherwise C1 is cleared.

Here we describe the response of an x87 instruction to an unmasked post-
computation exceptional condition. We assume that the computation produces a
finite nonzero value u, which is rounded according to the rounding mode R and
the precision p indicated by the FCW, producing a value r = rnd(u,R, p). If r

lies outside the normal range, then the objective is to return a normal encoding of
a shifted version r ′ of r from which r can be recovered, and which may be used
in computations performed by the trap handler. The shift is intended to produce a
result near the center of the normal range in order to minimize the chance of further
overflow or underflow.

• Unmasked overflow (|r| > lpn(EP ) and OM = 0): OE, ES, and B are set.
Let r ′ = 2−3·213

r . If r ′ is still above the normal range, then the final result is
an infinity with the sign of r; PE and C1 are set.

Otherwise, the final result is the normal encoding of r ′. In this case, PE is set
only if r = u. If |r| > |u|, then C1 is set; otherwise, C1 is cleared.

• Unmasked underflow (0 < |r| < spn(EP ) and UM = 0): UE, ES, and B are set.
Let r ′ = 23·213

r . If r ′ is still below the normal range, then the final result is a
zero with the sign of r; PE is set and C1 is cleared.

Otherwise, the final result is the normal encoding of r ′. In this case, PE is set
only if r = u. If |r| > |u|, then C1 is set; otherwise, C1 is cleared.

• Unmasked precision exception: The only effect of PM is that if PE is set and PM
= 0, then ES and B are set.
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Arm Floating-Point Instructions

The first Arm Floating-Point Accelerator, which appeared in 1993, resembled
the x87 coprocessor in its use of an 80-bit EP register file. This was succeeded
by the Vector Floating-Point (VFP) architecture, which included 64-bit registers
implementing the single-, double-, and half-precision data formats. The NEON
Advanced SIMD extension later added 128-bit instructions for media and signal
processing applications.

The elementary arithmetic floating-point instructions of the Arm architecture
are similar to the corresponding SSE instructions, including both scalar and vector
(SIMD) versions. The behavior described in this chapter is common to the VFP and
NEON elementary arithmetic instructions. Both architectures provide a floating-
point status and control register, FPSCR, similar to the SSE MXCSR. A significant
difference between SSE and Arm, however, is that the FPSCR does not include
exception masks—all instructions are effectively masked. Consequently, an Arm
instruction always executes to completion and returns a data result, and there is
no interaction between the component operations of a SIMD instruction of the
sort described in Sect. 12.2. However, the FPSCR does contain trap enable bits
corresponding to the flags. If the trap enable bit is set when an exceptional condition
occurs, then upon of completion of the instruction, hardware passes control to a trap
handler instead of setting the flag.

Since the operations of a SIMD instruction behave independently, we shall
confine our attention to the behavior of scalar instructions. The specifications of
the instructions presented in this section are formalized by a set of three ACL2
functions, which belong to the library books/rtl in the ACL2 repository [13]:

• arm-binary-spec(op, a, b, FPSCR, F )

• arm-sqrt-spec(a, FPSCR, F )

• arm-fma-spec(a, b, c, FPSCR, F )
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Each of these functions takes one or more operands (single-, double-, or half-
precision floating-point encodings), the initial contents of the FPSCR register, and
the data format F of the instruction, SP, DP, or HP. The function arm-binary-spec,
which applies to the four binary arithmetic operations, takes an additional argument,
op, representing the operation (ADD, SUB, MUL, or DIV). Each function returns
two values: the data result and the final value of the FPSCR.

In Chaps. 16–19, we shall present a set of floating-point modules that have
been implemented in an Arm processor. The above functions are the basis of the
statements of correctness of these modules.

14.1 Floating-Point Status and Control Register

The FPSCR bits that are relevant to the instructions of interest are named as
displayed in Fig. 14.1.

• Bits 4:0 and 7 are the cumulative exception flags for invalid operand (IOC),
division by zero (DZC), overflow (OFC), underflow (UFC), inexact result (IXC),
and denormal operand (IDE),

• Bits 12:8 and 15 are the trap enables corresponding to the flags, which determine
whether, in the event of exceptional condition, the flag is set by hardware or
control is passed to a trap handler. On an implementation that does not support
exception trapping, these bits are held at 0.

• Bits 23:22 form the rounding control field (RC), which encodes a rounding mode
as displayed in Table 14.1. Note the difference between this encoding and that of
Table 12.1.

• Bit 24 is the force-to-zero bit (FZ), which, if set, coerces both denormal inputs
and (except in the half-precision case—see Sect. 14.3) denormal results to ±0.
Thus, this bit plays the roles of both the DAZ and FTZ bits of the SSE MXCSR
(Sect. 12.1).

• Bit 25 is the default NaN bit (DN). If asserted, any NaN result of an instruction
is replaced by the real indefinite QNaN (Definition 5.23).
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Fig. 14.1 FPSCR: Arm floating-point status and control register
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Encoding Rounding mode

00 RNE

01 RUP

10 RDN

11 RTZ

Table 14.1 Arm rounding control

14.2 Pre-computation Exceptions

The floating-point pre-computation behavior of the Arm architecture is formalized
by three functions:

• arm-binary-pre-comp(op, a, b, FPSCR, F )

• arm-sqrt-pre-comp(a, FPSCR, F )

• arm-fma-pre-comp(a, b, c, FPSCR, F )

Each of these returns an optional data value and an updated FPSCR. If a data value
is returned, then execution is terminated; otherwise the computation proceeds.

We have noted that in the Arm architecture, a pre-computation exception
never prevents the return of a value, and an exception flag is not set unless the
corresponding trap enable is clear. The other departures from SSE pre-computation
exception handling are in the setting of the denormal flag, the returned value in the
case of a NaN operand, and the precedence of an undefined operation over a QNaN
operand. Note, however, that the only case in which an undefined operation and a
NaN operand can simultaneously occur is an FMA operation with a product of an
infinity and a zero with a NaN addend.

The conditions that may cause an exception flag to be set, or the operation to be
terminated with a QNaN value, or both, prior to an Arm floating-point computation
are as follows:

• Denormal operand: If FZ = 1, then the operand is forced to ±0 and, unless the
format is HP, IDC is asserted; otherwise, neither of these actions is taken. The
setting of other flags is based on the result of this step. Note that a denormal
exception is not suppressed by another exceptional condition; it is possible for
two flags to be set.

• SNaN operand: IOC is set. If DN = 1, then the real indefinite QNaN is returned
(Definition 5.23). Otherwise, the first SNaN operand is converted to a QNaN and
returned. For this purpose, in the case of an FMA a + b · c, the operands are
ordered as a, b, c.

• Undefined Operation: The conditions are as specified in Sect. 12.3. IOC is set
and the real indefinite QNaN is returned.

• QNaN operand and no SNaN operand or undefined operation: If DN = 1, then
the real indefinite QNaN is returned. Otherwise, the first NaN operand is returned
(with FMA operands ordered as in the SNaN case).

• A division operation with any zero as divisor and any finite numerical dividend:
IDZ is set, but the operation proceeds (resulting in an infinity).
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14.3 Post-Computation Exceptions

If a final result is not produced during the pre-computation phase, then control is
passed to one of the following, which computes an unrounded value:

• arm-binary-comp(op, a, b, FPSCR, F )

• arm-sqrt-comp(a, FPSCR, F )

• arm-fma-comp(a, b, c, FPSCR, F )

If the computed value is infinite or 0, then execution is terminated. No flags are set
and the sign of the result is determined by the signs of the operands and the rounding
mode R = FPSCR[23 : 22] as described in Sect. 12.4.

Otherwise, the precise mathematical result of the operation is a finite nonzero
value u. This value is passed to the common function

arm-post-comp(u, FPSCR, F ),

which performs the rounding and detects exceptions as described below. Note that
in addition to the absence of exception masks, there are several departures from SSE
behavior in the detection and handling of underflow.

Unless u is a denormal, it is rounded according to the rounding mode R and
the precision p of the data format f , producing a value r = rnd(u,R, p). The
returned value and the setting of exception flags are determined by the following
case analysis. In all cases, the setting of a flag is understood to be contingent on the
value of the corresponding trap enable bit, except in a certain case of underflow as
noted below.

• Overflow (r is above the normal range of the target format, i.e., |r| > lpn(F )):
In all cases, OFC and IXC are set. The result depends on R and the sign of r .
If (a) R = RNE, (b) R = RUP and r > 0, or (c) R = RDN and r < 0, then

the final result is an infinity with the sign of r .
Otherwise, the result is the encoding of the maximum normal value for the

target format, ±lpn(F ), with the sign of r .
• Underflow, which is detected before rounding (u is below the normal range, i.e.,

0 < |u| < spn(F )):
If FZ = 1 and F is SP or DP, then UFC is set. (IXC is not set.) UFE is ignored

in this case, and FZ is ignored if F is HP. The final result is a zero with the sign
of u.

If FZ = 0 or F is HP, then u is rounded to produce d = drnd(u,R, F ), which
may be a denormal value, 0, or the smallest normal, ±spn(F ). If d = u, then
both UFC and IXC are set; otherwise, neither flag is modified. The final result is
the encoding of d, with the sign of u if d = 0.

• Normal Case (u and r are both within the normal range):
If r = u, then IXC is set. The final result is the normal encoding of r .



Part V
Formal Verification of RTL Designs

The practical significance of the foregoing development is its utility in bringing
mathematical analysis and interactive theorem proving to bear on the formal verifi-
cation of floating-point RTL designs, thereby addressing the inherent limitations
of more automatic methods. As a vehicle for combining theorem proving with
sequential logic equivalence checking, we have identified a modeling language,
essentially a limited subset of C augmented by several C++ class templates. Among
these are the register class templates of Algorithmic C [19], an ANSI standard
library intended for system and hardware design. The language provides a means
of representing a Verilog design in a form that is more compact, abstract, and
amenable to formal analysis. It is designed to support a functional programming
style, which we have exploited by implementing a translator to the logical language
of the ACL2 theorem prover [13]. This provides a path to mechanical verification
of the correctness of a model with respect to a high-level formal specification of
correctness of the sort presented in Part IV.

Our verification methodology is diagrammed in Fig. V.1. Ideally, the C model
is produced in collaboration between a floating-point architect and a verification
engineer, in advance of the RTL design. This allows algorithmic bugs to be detected
earlier in the design process than is possible with traditional verification methods,
which ordinarily cannot begin until stable RTL is available. A special-purpose parser
produces the ACL2 translation as well as a more readable pseudocode version,
which serves as documentation. The model may be tested through simulation in both
C and ACL2, and formally verified by ACL2. The RTL is developed in parallel with
the correctness proof. Once the RTL and the proof are both in place, the verification
process is completed by sequential logic equivalence checking with a commercial
tool, such as Hector [34] or SLEC [20]. This methodology has been used by
architects, designers, and verification engineers at Intel and Arm in the specification
and formal verification of arithmetic algorithms and their implementations.

In Chap. 15, we summarize the features of the modeling language and its transla-
tion to ACL2. The remaining chapters illustrate the methodology with applications
to the floating-point operations of multiplication, addition, FMA, division, and
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Fig. V.1 Verification methodology

square root extraction, as implemented in the FPU of an Arm Cortex-A class high-
end processor. In each case, the corresponding Verilog module has been modeled in
our C++ subset, with a code reduction of approximately 85%, and equivalence has
been verified with SLEC. The pseudocode versions of the models are included as
an appendix. Each model has been translated to ACL2 and mechanically verified to
conform to the relevant behavioral specification of Chap. 14. Each of these chapters
contains a comprehensive mathematical exposition covering all arithmetic details
of the corresponding proof. The remaining relatively trivial aspects of correctness,
pertaining to pre-computation exceptions and non-computational special cases, are
omitted here but included in the ACL2 proof scripts, which reside in the directory
books/projects/arm/ of the ACL2 repository [13].



Chapter 15
The Modeling Language

The design of our modeling language—its features as well as the restrictions that
we impose on it—is driven by the following goals:

• Documentation: C++ is a natural candidate in view of its versatility and
widespread use in system modeling. For our purpose as a specification language,
we require a subset that is simple enough to allow a clear and easily understood
semantic definition, but sufficiently expressive for detailed encoding of complex
arithmetic algorithms.

• RTL modeling and equivalence checking: This is the motivation for incorporating
the Algorithmic C data types, which model integer and fixed-point registers of
arbitrary width and provide the basic bit manipulation features of Verilog, thereby
closing the gap between an algorithm and its RTL implementation and easing the
burden of equivalence checking. All language features are supported by both
Hector [34] and SLEC [20].

• Formal analysis: The objectives of mathematical analysis and translation to
ACL2 dictate an applicative programming paradigm, which we promote by
eliminating side-effects, replacing the pointers and reference parameters of C++
with other suitable extensions.

The construction of a model in this language is generally a compromise between
two opposing objectives. On the one hand, a higher-level model is more susceptible
to mathematical analysis and allows a simpler correctness proof. On the other
hand, successful equivalence checking of a complex design generally requires
a significant amount of proof decomposition, using techniques that depend on
structural similarities between the model and the design. As a rule of thumb,
the model should be as abstract as possible while performing the same essential
computations as the design.
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The language is supported by a special-purpose parser, written in C++ and based
on Flex and Bison [16], that performs the following functions:

• Following a check to ensure that a model conforms to the prescribed restrictions,
a pseudocode version is generated for the purpose of documentation. This is
intended to be more readable than the executable code, especially the arcane
syntax of C++ methods. In particular, expressions pertaining to the register
classes are replaced with a bit vector notation that is more familiar to Verilog
programmers.

• An S-expression representation of the model is generated. This is a first step
toward translation to ACL2, which is completed by a translation program written
in ACL2 itself.

The parser and ACL2 translator reside in the directory books/projects/rac/
of the ACL2 repository. Each of the designs presented in the sequel corresponds
to a subdirectory of books/projects/arm/ containing the C++ model, its
pseudocode version, the ACL2 translation, and the proof script, which formalizes
the proof presented here. The pseudocode models are also collected in an appendix
to this book for reference.

The present chapter summarizes the features of the language, assuming a basic
understanding of C. For a more thorough treatment of the register classes of Algo-
rithmic C, the reader is referred to [19]. The description of the translator (Sect. 15.6)
presupposes familiarity with ACL2 and is not a prerequisite for subsequent chapters.

15.1 Language Overview

Program Structure

A program in our language consists of a sequence of elements of the following three
varieties. These may appear in any order, except that an element may not refer to
another that follows it in the sequence.

• Type declarations, constructed with the standard C keywords typedef,
struct, and enum, each of which associates a type with an identifier.

• Global constant declarations, each of which associates a new constant with an
identifier, a type, and a value. Note that global variables are not permitted.

• Function definitions, one of which has special status as the top-level function: its
arguments are the inputs of the model, and its return value comprises the outputs.
All other functions are called, directly or indirectly, by the top-level function.
Recursion (including mutual recursion) is disallowed.
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Data Types

All program data are of the following types.

• Three basic numerical types: boolean values (bool), unsigned integers (uint),
and signed integers (int).

• The standard C composite types: arrays, structures (struct), and enumeration
(enum) types. Note that since pointers are disallowed, C arrays may not occur as
function parameters

• Two class templates of the C++ Standard Template Library [10], both of which
are intended to compensate for the absence of pointers and reference parameters:
the array template, which allows arrays to be passed by value, and the tuple
template, which provides the effect of multiple-valued functions.

• Integer and fixed-point register types: support for the register class templates of
Algorithmic C [19] is provided.

Statements

The body of a function is composed of statements of the following forms:

• Local variable and constant declarations: Note that a program constant may be
either global (declared at the top level) or local (declared within the body of a
function), while all variables are local.

• Assignments: In another departure from standard C, assignments, which are
classified as statements, are distinct from expressions, which may occur only
within statements of the forms listed here.

• The standard C control statements corresponding to the keywords if,
if. . .else, for, switch, and return (under the limitations specified in
Sect. 15.5).

• Statement blocks: arbitrary sequences of statements delineated by “{” and “}”.
• Assertions, indicated by the keyword assert. An assertion has no semantic

import, but may signal a run-time error in either C++ or ACL2.
• Type declarations: As in standard C, data types may be declared globally or

locally.

Functions

A function definition consists of the following components:

• A return type, which may be a simple type or an array or tuple class. Since
functions are free of side-effects, every function returns a value; the keyword
void may not appear in lieu of a return type.
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• An identifier, the name of the function.
• A list of formal parameters, each of which is represented simply by a type and an

identifier, with no qualifiers. In particular, reference parameters are disallowed.
• A statement block, the body of the function.

15.2 Parameter Passing

The stipulation that function parameters are passed only by value dictates that native
C arrays may be used only as global constants and in instances where an array is
used only locally by a function. The effect of passing arrays as value parameters is
achieved by means of the standard C++ array class template.

As an illustration of its use, suppose that we define a function as follows:

array<int, 8> Sum8(array<int, 8> a, array<int, 8> b) {
for (uint i=0; i<8; i++) {
a[i] += b[i];

}
return a;

}

If a and b are variables of type array<int, 8>, then the result of the assignment

b = Sum8(a, b);

which does not affect the value of a, is that each entry of the array b is incremented
by the corresponding entry of a.

Aside from the restriction on parameter passing, there is no semantic difference
between ordinary C arrays and instances of an array template class. The pseu-
docode printer, therefore, simply converts array objects to C arrays and prints the
above definition as follows:

int[8] Sum8(int a[8], int b[8]) {
for (uint i=0; i<8; i++) {

a[i] += b[i];
}
return a;

}

The effect of multiple-valued functions is achieved through the tuple class
template. While the same effect could be achieved by means of an ordinary struct
return type, this feature provides a convenient means of simultaneously assigning
the components of a returned value to local variables of the caller.

For example, the following function performs integer division and returns a
quotient and remainder as a tuple:
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tuple<uint, uint> Divide(m uint, n uint) {
assert(n != 0);
uint quot = 0, rem = m;
while (rem >= n) {

quot++;
rem -= n;

}
return tuple<uint, uint>(quot, rem);

}

A call to this function has the following syntax:

uint q, r;
tie(q, r) = Divide(23, 5);

The pseudocode printer provides a slightly simpler syntax, printing the above
definition as

<uint, uint> Divide(m uint, n uint) {
assert(n != 0);
uint quot = 0, rem = m;
while (rem >= n) {

quot++;
rem -= n;

}
return <quot, rem>;

}

and the invocation as

uint q, r;
<q, r> = Divide(23, 5);

Note that our use of the tuple template is intended only for the purpose of
parameter-passing and is not recognized by the parser in any other context.

15.3 Registers

The language includes the signed and unsigned integer and fixed-point register
class templates of Algorithmic C, which are fully documented on the Mentor
Graphics Web site [19]. The unsigned integer registers are the simplest of these
and are generally sufficient for modeling any RTL design. The other classes,
while not strictly necessary, are sometimes useful in documenting the intended
meaning of a register and their more complicated semantics may be convenient in
performing arithmetic computations. In the models of Chaps. 16–19, we use signed
and unsigned integer registers, but avoid the fixed-point classes.
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The register class templates may be instantiated as follows:

• ac_int<n, false> and ac_int<n, true>: unsigned and signed integer
types of width n, where n may be any positive integer;

• ac_fixed<n, m, false> and ac_fixed<n, m, true>: unsigned
and signed fixed-point register types of width n with m integer bits, where n

may be any positive integer and m is any integer.

By convention, we use the names uin, sin, ufnim, and sfnim for the
register types ac_int<n, false>, _int<n, true>, ac_fixed<n, m,
false>, and ac_fixed<n, m, true>, respectively. These types are expected
to be declared as needed at the beginning of a program, as in the following examples:

typedef ac_int<96, false> ui96;
typedef ac_int<48, true> si48;
typedef ac_fixed<64, 4, false> uf64i4;
typedef ac_fixed<32, 16, false> uf32i16;

A register is associated with two values: a raw value, which is a bit vector of the
same width as the register, and an integer or rational interpreted value. The latter
is used when a register is evaluated as an argument of an arithmetic operation or
assigned to another variable; the former is used in all other contexts. The interpreted
value is derived from the raw value according to the register’s type as follows:

• uin (unsigned integer): The interpreted value is the same as the raw value, an
integer in the interval [0, 2n).

• sin (signed integer): A signed version of uin, with the leading bit interpreted
as the sign. Thus, the represented range is the interval of integers [−2n−1, 2n−1).

• ufnim (unsigned fixed-point): Interpreted with an implicit binary point follow-
ing the most significant m bits. The represented values are rational numbers of
the form 2m−nk, where k is an integer and 0 ≤ k < 2m.

• sfnim (signed fixed-point): A signed version of ufnim, representing rational
numbers of the form 2m−nk, where −2m−1 ≤ k < 2m−1.

Thus, the interpreted value of a register of any of these types is related to its raw
value r according to Definitions 2.4, 2.5, and 2.7, which are collected here for
reference:

• ui(r) = r;

• si(r, n) =
{

r if r < 2n−1

r − 2n if r ≥ 2n−1.
;

• uf (r, n,m) = 2m−nui(r) = 2m−nr;

• sf (r, n,m) = 2m−nsi(r, n) =
{

2m−nr if r < 2n−1

2m−nr − 2m if r ≥ 2n−1,
.

As discussed in Sect. 2.5, while the width n of a register must be positive, there is
no restriction on the number m of integer bits of a fixed-point register. If m > n,
then the interpreted value is an integer with m−n trailing zeroes; if m < 0, then the
interpreted value is a fraction with −m leading zeroes.
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The Algorithmic C register types include a bit select operator and slice read and
write methods. Bit selection is independent of the register type (signed vs. unsigned,
integer vs. fixed-point) and uses the familiar syntax. Thus, a bit x[i] of a register x

may be extracted or assigned in the natural way. The syntax of bit slices is less
straightforward. The slice read method slc requires a constant template parameter
indicating the width of the slice and a variable argument that represents the base
index. Thus,

x.slc<4>(n)

determines the slice of x of width 4 based at index n, which is rendered in
pseudocode as

x[n+3:n].

The value of this method is an integer register (independent of whether the register
is integer or fixed-point) with the same width parameter as the method and the same
sign parameter as the operand. Thus, the numerical value of a slice is a signed or
unsigned integer according to the type of the register from which it is extracted.

A bit slice is modified by a method of two arguments, the base index and an
integer register containing the value to be written. The width of the slice is not
specified explicitly, but rather is inferred from the type of the second argument. For
example, the assignment

x.set_slc(n, ui4(6))

replaces the slice of x of width 4 based at index n with the value 6 (binary 0110),
and is represented in pseudocode as

x[n+3:n] = 6.

15.4 Arithmetic

The following numerical operators are inherited from native C:

• The unary arithmetic operators + and - and the binary arithmetic operators +, -,
*, and /.

• The shift operators, << and >>.
• The modulus operator, %.
• The bit-wise logical unary complement operator ~ and binary operators &, |, and
^.

• The binary boolean-valued arithmetic relational operators <, >, <=, >=, ==, and
!=.

• The boolean unary operator ! and binary operators && and ||.
• The ternary conditional operator ?.

These operators are extended to integer and fixed-point registers under the restric-
tions specified in [19]. In addition to these restrictions, we disallow the application
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of the division operator (/) to fixed-point arguments. When a register occurs as an
argument of an arithmetic or relational operator, its interpreted value is used; when
it occurs as an argument of a logical operator, its raw value is used.

Assignment statements may use the basic assignment operator = or any of the
assignment operators corresponding to the binary arithmetic and logical operators
listed above: +=, *=, &=, etc. An application of either of the unary arithmetic
operators ++ and -- of C (which are not recognized as operators, i.e., may not
occur within an expression), is also admitted as an assignment statement. When a
numerical value is assigned to a register, it is truncated by discarding fractional and
integer bits as required to fit into the register format, as specified in [19].

Arithmetic operations on registers are unbounded and performed with absolute
precision. This is consistent with the semantics of ACL2, which is based on
unbounded rational arithmetic. However, special care must be taken with arithmetic
performed on native C integer data, the inherent limitations of which are not
addressed by the ACL2 translator. It is the responsibility of the programmer to avoid
arithmetic overflow and match the simpler semantics of ACL2, i.e., to ensure that
the results of all such computations and the values of all assignments lie within the
bounds of the relevant data formats.

On the other hand, precision may be lost through assignment. When the result of
a computation is assigned to an integer or fixed-point register, the least significant
fractional bits and most significant integer bits are discarded as necessary for the
result to fit into the target format.

15.5 Control Restrictions

The syntax of control statements is constrained in order to minimize the difficulty
of translating from an imperative to a functional programming paradigm. Thus, the
only control statements supported are those listed in Sect. 15.1. In particular, while
and do. . . while are not included. Moreover, a number of restrictions are imposed
on the supported constructs.

As described in Sect. 15.6, the ACL2 translator converts a for loop to an
auxiliary recursive function. In order for this function to be admitted into the ACL2
logic, the prover must be able to establish that execution of the function always
terminates. To guarantee that this proof succeeds, we require a for loop to have the
form

for (init; test; update) { ... }

under the following restrictions:

• init is either a variable assignment

var = val
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or a declaration

type var = val

where var is the loop variable, val is a numerical expression, and type is either
uint or int.

• test is either a comparison between the loop variable and a numerical expression
of the form var op limit, where op is <, <=, >, or >=, or a conjunction of the form
test1 && test2, where test1 is such a comparison.

• update is an assignment to the loop variable var. The combination of test
and update must guarantee termination of the loop. The translator derives a
:measure declaration from test, which is used to establish the admissibility
of the generated recursive function.

Neither break nor continue may occur in a for loop. In some cases, the loop
test may be used to achieve the functionality of break. For example, instead of

for (uint i=0; i<N; i++) {
if (expr) break;
...

}

we may write

for (uint i=0; i<N && !expr; i++) {
...

}

The ACL2 translator converts a switch statement to the Lisp case macro. We
require that each case of a switch have one of two forms:

case label: stmt1 . . . stmtk
default: stmt1 . . . stmtk

where

(1) if k > 1, then break does not occur in any stmti for i < k, and
(2) if k > 0, then except for the final case of the statement, stmtk is break.

Further restrictions are imposed on the placement of return statements. We
require every function body to be a statement block that recursively satisfies the
following conditions:

(1) The statement block consists of a non-empty sequence of statements;
(2) None of these statements except the final one contains a return statement;
(3) The final statement of the block is either a return statement or an if. . .else

statement of which each branch is a statement block satisfying all three of these
conditions.
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15.6 Translation to ACL2

Translation of a C++ model to ACL2 is performed in two steps: (1) the parser
generates a representation of the model as a set of S-expressions, and (2) an ACL2
program converts this representation to an ACL2 program.

Most of the recognized C primitives correspond naturally to built-in ACL2
functions. The rest are implemented by a set of functions defined in an RTL library
book that is included in any book generated by the translator. These include the
following:

• AG and AS extract and set entries of arrays, which are implemented in ACL2 as
association lists;

• BITN, BITS, SETBITN, and SETBITS access and set bits and slices of bit
vectors;

• LOG=, LOG<>, LOG<, LOG>, LOG<=, and LOG>= are boolean comparators
corresponding to the C operators ==, !=, <, etc., based on the values 1 and 0
instead of the Lisp symbols T and NIL;

• LOGIOR1, LOGAND1, and LOGNOT1 are boolean functions similarly corre-
sponding to the C operators ||, &&, and !;

• IF1 is a macro with the semantics of IF, except that it compares its first
argument to 0 instead of NIL.

The S-expression generated by the parser for a function definition has the form

(DEFUNC name (arg1 . . . argk) body)

where name is the name of the function, arg1, . . . , argk are its formal parameters,
and body is an S-expression derived from its body, which is assumed to be
a statement block. The parser generates an S-expression for each statement as
follows:

• Statement block: (BLOCK stmt1 . . . stmtk).
• Simple assignment: (ASSIGN var term).
• Multiple-value assignment: (MV-ASSIGN (var1 . . . vark) term), where term

corresponds to a call to a multiple-valued function.
• Variable or constant declaration: (DECLARE var term) or (ARRAY var term),

where term is optional.
• Conditional branch: (IF term left right), where left is a block and right is either

a block or NIL.
• Return statement: (RETURN term).
• For loop: (FOR (init test update) body), where init is a declaration or an

assignment, test is a term, update is an assignment, and body is a statement block.
• Switch statement: (switch test (lab1 . stmts1) . . . (labk . stmtsk)), where labi is

either an integer or a list of integers and stmtsi is a list of statements.
• Assertion: (ASSERT fn term), where fn is the name of the function in which the

assertion occurs and term is a term that is expected to have a nonzero value.
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Note that variable types are not explicitly preserved in the translation. Instead, they
are used by the parser to inform the translation of terms. Consider, for example, the
statement block

{ sf8i2 x = -145;
ui8 y = 100, z = 3;
z = y[4:2] * x; }

In the evaluation of the expression on the right side of the final assignment, the type
of x dictates that its value is interpreted as a signed rational with 6 fractional bits,
and according to the type of y and z, their assigned values must be truncated to 8
integer bits. Thus, the above code produces the following S-expression:

(BLOCK (DECLARE X (BITS (* -145 (EXPT 2 6)) 7 0))
(LIST (DECLARE Y (BITS 100 7 0))

(DECLARE Z (BITS 3 7 0)))
(ASSIGN Z

(BITS (FL (* (BITS Y 4 2)
(/ (SI 8 X) (EXPT 2 6))))

7 0)))

The translation is completed by an ACL2 program that operates on the output of
the parser. The overall strategy of this program is to convert the body of a function
to a nest of LET, LET*, and MV-LET terms. For each statement in the body, the
translator generates the following:

• ins: a list of the variables whose values (prior to execution of the statement) are
read by the statement;

• outs: a list of the variables (non-local to the statement) that are written by the
statement;

• term: an expression of which (a) the unbound variables are ins, and (b) the value
is a multiple value consisting of the updated values of the variables of outs, or a
single value if outs is a singleton.

Each statement except the last corresponds to a level of the nest in which the
variables of outs are bound to the value of term, except that as an optimization
to improve readability, adjacent LETs are combined into a single LET or LET*
whenever possible. The term of the final statement of the body becomes the body of
the nest.

As a trivial (and nonsensical) example, the C++ code that generates the pseu-
docode function

uint foo(uint x, uint y, uint z) {
uint u = y + z, v = u * x;
<x, y, z> = bar(u, v);
y = x > y ? 2 * u : v;
if (x >= 0) {
u = 2*u;

}
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else {
v = 3 * u;

}
if (x < y) {
return u;

}
else {
return y + v;
}

}

also generates the corresponding ACL2 function

(DEFUN FOO (X Y Z)
(LET* ((U (+ Y Z)) (V (* U X)))
(MV-LET (X Y Z) (BAR U V)
(LET ((Y (IF1 (LOG> X Y) (* 2 U) V)))

(MV-LET (V U)
(IF1 (LOG>= X 0)

(MV V (* 2 U))
(MV (* 3 U) U))

(IF1 (LOG< X Y) U (+ Y V)))))))

Assertions, which do not affect any program variables, are handled specially. An
assertion (ASSERT fn term) results in a binding of the dummy variable ASSERT
to the value (IN-FUNCTION fn term), where IN-FUNCTION is a macro that
throws an error if the value of term is 0, with a message indicating the function in
which the error occurred.

In addition to the top-level ACL2 function corresponding to a C++ function, a
separate recursive function is generated for each for loop. Its returned values are
those of the non-local variables that are assigned within the loop. Its arguments
include these variables, along with any variables that are required in the execution
of the loop, as well as any variables that occur in the loop initialization or test. The
construction of this function is similar to that of the top-level function, but the final
statement of the loop body is not treated specially. Instead, the body of the nest of
bindings is a recursive call in which the loop variable is replaced by its updated
value. The resulting term becomes the left branch of an IF expression, of which the
right branch is simply the returned variable (if there is only one) or a multiple value
consisting of the returned variables (if there are more than one). The test of the IF
is the test of the loop.

For example, the function

uint baz(uint x, uint y, uint z) {
uint u = y + z, v = u * x;
for (uint i=0; i<u && u < v; i+=2) {
v--;
for (int j=5; j>=-3; j--) {
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assert(v > 0);
u = x + 3 * u;

}
}
return u + v;

}

generates three ACL2 functions:

(DEFUN BAZ-LOOP-0 (J V X U)
(DECLARE (XARGS :MEASURE (NFIX (- J (1- -3)))))
(IF (AND (INTEGERP J) (>= J -3))

(LET ((ASSERT (IN-FUNCTION BAZ (> V 0)))
(U (+ X (* 3 U))))
(BAZ-LOOP-0 (- J 1) V X U))

U))

(DEFUN BAZ-LOOP-1 (I X V U)
(DECLARE (XARGS :MEASURE (NFIX (- U I))))
(IF (AND (INTEGERP I) (INTEGERP U) (INTEGERP V)

(AND (< I U) (< U V)))
(LET* ((V (- V 1)) (U (BAZ-LOOP-0 5 V X U)))

(BAZ-LOOP-1 (+ I 2) X V U))
(MV V U)))

(DEFUN BAZ (X Y Z)
(LET* ((U (+ Y Z)) (V (* U X)))

(MV-LET (V U)
(BAZ-LOOP-1 0 X V U)
(+ U V))))
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Double-Precision Multiplication

The first illustration of our verification methodology is a proof of correctness of
a double-precision floating-point multiplier that supports both the binary FMUL
instruction and the ternary FMA. In a typical implementation of the latter, addition
is combined with multiplication in a single pipeline by inserting the addend into
the multiplier’s compression tree as an additional partial product. The resulting
FMA latency is somewhat greater than that of a simple multiplication but less than
two successive operations. One drawback of this integrated approach is that the
computation cannot be initiated until all three operands are available. Another is
that in order to conserve area, hardware is typically shared with the operations of
pure multiplication and addition, each of which is implemented as a degenerate case
of FMA, resulting in increased latencies.

The Arm floating-point design team has pursued the alternative scheme of two
distinct operations. Of course, the primary benefit of the FMA instruction is that it
performs these operations with a single rounding. Thus, the multiplier produces an
unrounded full 106-bit product, which is passed to the adder. The resulting FMA
latency is not optimal, but in practice, this operation usually does not occur in
isolation [17]. More often, the result of one FMA is passed as an operand to another
in the computation of a sum of products x1y1 + . . . + xnyn, such as a dot product.
In this situation, our scheme allows the products to be computed independently and
overlapped with the sums, resulting in a lower overall latency.

In this chapter and the next, we state and prove specifications of correctness
of a multiplier and an adder pertaining to pure double-precision multiplication
and addition, respectively, as well as the support for FMA provided by each. The
multiplier is represented by the module fmul64 of Appendix B, the pseudocode
version of a C++ program that was derived from a Verilog RTL design. Functional
equivalence between the model and the RTL has been established with SLEC [20].
The model is significantly more compact and readable than the RTL, consisting
of 20 kb of code as compared to 140 kb. This reduction is in part a reflection of
the more concise syntax of C, but was primarily achieved through the elimination
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of timing and other optimizations. On the other hand, the essential computations
performed by the RTL are replicated in the model in order to facilitate the
equivalence check. As usual, this involved some experimentation. For example, the
multiplier uses a compression tree to reduce a sum of 29 partial products to a pair of
vectors, which are then added. In an initial version of the model, this was replaced
by a simple sum, but the resulting burden on the tool proved unmanageable. In the
final version, the entire tree, consisting of 27 3:2 compressors, is replicated by the
function compress.

In a similar experiment, the function CLZ53, which counts the leading zeroes
of a 53-bit vector in logarithmic time by a clever iterative process, was replaced by
a simpler and more transparent linear-time version. In this case, the tool was able
to manage the complexity of the equivalence check, but the overall execution time
suffered markedly, increasing from 2 min to 22 min, and the more faithful version
was ultimately used.

Sections 16.1–16.3 discuss the parameters of fmul64 and the computation of
the product and the unrounded sum. Here we limit our analysis to the case of two
nonzero numerical operands, as the remaining cases, involving a NaN, an infinity,
or a zero operand, are handled trivially by the auxiliary function specialCase.
In Sects. 16.4 and 16.5, we apply these results to the FMA and FMUL cases,
respectively. The results of Sect. 16.4 will be combined with those of Chap. 17 to
establish the correctness of the FMA operation.

Notation In our analysis of C models in this and subsequent chapters, we adopt
the convention of using italics to denote the mathematical function represented by
a function of the model as well as the numerical value of a program variable or
expression. If x is a variable of a signed integer register type, then x, occurring
either in isolation or as an argument of an arithmetic operation, is understood to
represent the interpreted value.

16.1 Parameters

The inputs of fmul64 are as follows:

• ui64 opa, opb: Double-precision encodings of the operands.
• bool fz, dn: The FZ and DN fields of the FPSCR (Sect. 14.1).
• ui2 rmode: The RC field of the FPSCR, a 2-bit encoding of an IEEE rounding

mode (Table 14.1), which we shall denote as R.
• bool fma: An indication that the operation is FMA rather than FMUL.

Our assumption that opa represents a nonzero numerical value means that opa[62 :
52] < 211 − 1, opa[62 : 0] = 0, and if fz = 1 then opa[62 : 52] = 0; the same
restrictions apply to opb.
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The following results are returned:

• ui117 D: The data result. In the FMUL case, the double-precision result is
D[63 : 0], with D[116 : 64] = 0; in the FMA case, D[116] is the sign, D[115 :
105] is the biased exponent, and D[104 : 0] is the mantissa.

• ui8 flags: The exception flags, FPSCR[7 : 0]. We use the mnemonics
defined in Fig. 14.1 to refer to the bits of this vector.

• bool piz: An indication of a product of an infinity and a zero, producing the
default NaN. Valid only for FMA.

• bool inz: An indication that the result is an infinity, a NaN, or a zero. Valid
only for FMA.

• bool expOvfl: An indication that the exponent of the product is too large to
be represented in the 11-bit format. Valid only for FMA when inz = 0.

Among the local variables computed by fmul64 are the sign, exponent, and
mantissa fields of the operands:

signa = opa[63], signb = opb[63];
expa = opa[62 : 52], expb = opb[62 : 52];
mana = opa[51 : 0], manb = opb[51 : 0].
We make the following additional definitions:

sA =
{

252 + mana if expa > 0
mana if expa = 0

sB =
{

252 + manb if expb > 0
manb if expb = 0

eA =
{

expa − (210 − 1) if expa > 0
1 − (210 − 1) if expa = 0

eB =
{

expb − (210 − 1) if expb > 0
1 − (210 − 1) if expb = 0

As a simple restatement of the definition of decode (Definition 5.16) incorporating
the above definitions, the numerical values of the operands are

A = (−1)signa2eA−52sA = decode(opa, DP) (16.1)

and

B = (−1)signb2eB−52sB = decode(opb, DP). (16.2)
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16.2 Booth Multiplier

The 53 × 53 integer multiplier, as represented by the function computeProduct,
operates on mana and manb and takes as additional parameters boolean indications
of the conditions expa = 0 and expb = 0. It returns the product of sA and sB .

Lemma 16.1 prod = sA · sB .

Proof The proof is based on a straightforward application of Corollary 9.4 under
the substitutions n = 53, m = 27, x = mana, and y = manb, which yields

pp[0] +
26∑
i=1

22(i−1)pp[i] mod 2106 = mana · manb.

In order to account for the leading integer bits of sA and sB , computeProduct inserts
two additional terms, ia[100 : 0] and ib[101 : 0], defined by

ia[100 : 0] =
{

249manb if expa = 0
0 if expa = 0,

ib[100 : 0] =
{

249mana if expb = 0
0 if expb = 0,

and

ib[101] =
{

0 if expa = expb = 0
1 otherwise,

each shifted left by 3 bits. The resulting sum is readily seen to satisfy

pp[0] +
26∑
i=1

22(i−1)pp[i] + 252(ia + ib) mod 2106 = sA · sB.

The function compress reduces the 29-term sum on the left to a sum of two terms,
ppa and ppb, by means of 27 3:2 compressors. The equivalence of these two sums
may be established by 27 simple (although tedious) applications of Lemma 8.4.
Thus,

prod = ppa + ppb mod 2106

= pp[0] +
26∑
i=1

22(i−1)pp[i] + 23(ia + ib) mod 2106

= sA · sB.

��
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Corollary 16.2 |AB| = 2eA+eB−104prod.

Proof This follows from (16.1), (16.2), and Lemma 16.1. ��

16.3 Unrounded Product

The design represents exponents internally in a 12-bit signed integer format with a
bias of −1, which simplifies exponent addition while admitting simple conversion
to and from the standard DP exponent format. The C model uses the 12-bit signed
integer register type si12 to encode exponents in this format. The function expInt
converts an 11-bit DP exponent to internal form. For example, the value encoded by
the variable expaInt is expaInt + 1 (where expaInt is its interpreted value). Thus,
according to the following lemma, the encoded value is eA:

Lemma 16.3

(a) expaInt = eA − 1;
(b) expbInt = eB − 1.

Proof If expa = 0, then expInt(expa) = 1 + 211 + 210 and

expaInt = si(expInt(expa), 12)

= 1 + 211 + 210 − 212

= 1 − 210

= eA − 1.

Similarly, if expa = 0 and expa[10] = 0, then expInt(expa) = expa + 211 + 210 and

expaInt = si(expInt(expa), 12)

= expa + 211 + 210 − 212

= expa − 210

= eA − 1.

On the other hand, if expa[10] = 1, then expInt(expa) = expa − 210 and again,

expaInt = si(expInt(expa), 12) = expa − 210 = eA − 1.

The same proof applies to (b). ��
The internal representation of the sum eA + eB is expProdInt:
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Lemma 16.4

(a) expProdInt = eA + eB − 1;
(b) expBiasedZero = 1 ⇔ eA + eB + (210 − 1) = 0;
(c) expBiasedNeg = 1 ⇔ eA + eB + (210 − 1) < 0.

Proof By Lemma 16.3,

expProdInt ≡ expaInt + expbInt + 1

≡ (eA − 1) + (eB − 1) + 1

≡ eA + eB − 1 (mod 212).

Thus, to prove (a), according to Lemma 2.50, we need only show that −211 ≤
eA + eB − 1 < 211. But this follows from the definitions of eA and eB and the
assumptions 0 ≤ expa ≤ 211 − 2 and 0 ≤ expb ≤ 211 − 2.

The claims (b) and (c) follow trivially. ��
Depending on the sign of the biased sum eA+eB +(210 −1), one of the functions

rightShft and leftShft is called to perform a shift of the product. If eA + eB + (210 −
1) ≤ 0, then rightShft computes the required shift amount as the value of the local
variable expDeficit:

Lemma 16.5 If eA + eB + (210 − 1) ≤ 0, then

expDeficit =
{

210 − 1 if expa = expb = 0
1 − (eA + eB + 210 − 1) otherwise.

Proof The case expa = expb = 0 is trivial.
If both expa > 0 and expb > 0, then

expDeficit = (210 − 1 − expa) + (210 − 1 − expb) + 1 + 1 mod 210

= −eA − eB + 2 mod 210.

But if expa = 0 and expb > 0, then

expDeficit = (210 − 1) + (210 − 1 − expb) + 1 mod 210

= (210 − 1 − 1) + (210 − expb − 1) + 2 mod 210

= −eA − eB + 2 mod 210,

and the same is true if expb = 0 and expa > 0. Thus, in all cases,

expDeficit = −eA − eB + 2 mod 210 = 1 − (eA + eB + 210 − 1) mod 210,

and we need only show that 0 ≤ 1 − (eA + eB + 210 − 1) < 210. But by hypothesis,

1 − (eA + eB + 210 − 1) ≥ 1,
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and since eA ≥ 1 − (210 − 1) and eB ≥ 1 − (210 − 1),

1 − (eA + eB + 210 − 1) ≤ 1 − (1 − (210 − 1)+ 1 − (210 − 1)+ 210 − 1) = 210 − 2.

��
When the biased sum is positive and at least one of the operands is denormal, a
normalizing left shift may be performed. In this case, the function CLZ53 counts
the leading zeroes of the product:

Lemma 16.6 If s is a nonzero 53-bit vector, then CLZ53(s) = 52 − expo(s).

Proof The value of the local variable x is 211s. After k iterations of the for loop,
the value of n is 26−k and the low n entries of z[i] and c[i] are as follows: Let xi

be the ith slice of x of width 2k , i.e., xi = x[2k(i + 1)−1 : 2ki], and if xi = 0, let
Li be the number of leading zeroes of xi , i.e., Li = 2k − expo(xi) − 1. Then for
0 ≤ i < n,

(a) z[i] = 1 ⇔ xi = 0;
(b) z[i] = 0 ⇒ c[i] = Li .

It is easy to see that these properties hold for k = 0, and the invariance may be
established by a simple inductive argument. Thus, when k = 6, x0 = x[63 : 0] =
x = 0, z[0] = 0, and the returned value is

c[0] = 63 − expo(x) = 63 − (expo(s) + 11) = 52 − expo(s).

��
The left shift amount is determined by leftShft according to the value of the local
variable expDiffInt:

Lemma 16.7 If eA + eB + (210 − 1) > 0, then

expDiffInt = eA + eB − clz − 1.

Proof By Lemma 16.3,

expDiffInt ≡ (eA − 1) + (eB − 1) − clz + 1 ≡ eA + eB − clz − 1 mod 212.

Since 0 ≤ clz ≤ 52 and

2 − 210 ≤ eA + eB ≤ (211 − 2) − (210 − 1) + (211 − 2) − (210 − 1) = 211 − 2,

−211 ≤ eA + eB − clz − 1 < 211 and the claim follows from Lemma 2.50. ��
Along with the shifted product, leftShft and rightShft also return the resulting

exponent expShftInt. The following observations are easily verified:
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Lemma 16.8

(a) expShftInt ≥ −210;
(b) expZero = 1 ⇔ expShftInt = −210;
(c) expMax = 1 ⇔ expShftInt = 210 − 2;
(d) expInf = 1 ⇔ expShftInt = 210 − 1;
(e) expGTinf = 1 ⇔ expShftInt > 210 − 1;

The additional value expInc indicates an overflow condition requiring that
expShftInt be incremented. We define

eP = expShftInt + expInc + 1, (16.3)

so that expShftInt + expInc is the internal representation of eP . It follows from
Lemma 16.8 (a) that eP + (210 − 1) ≥ 0. It is a consequence of the following
lemma that eP + (210 − 1) = 0 iff the product is subnormal.

Lemma 16.9

(a) If eP + (210 − 1) > 0, then stkFMA = 0 and

|AB| = 2eP (1 + 2−105frac105);

(b) If eP + (210 − 1) = 0, then

2−52−(210−1)frac105[104 : 52] ≤ |AB| < 2−52−(210−1)(frac105[104 : 52] + 1)

and

|AB| = 2−52−(210−1)frac105[104 : 52] ⇔ frac105[51 : 0] = stkFMA = 0.

Proof The proof is a case analysis based on the sign of the biased exponent sum:
Case 1: eA + eB + (210 − 1) ≤ 0.

In this case, the function rightShft is called. We have expShftInt = −210 and
eP + (210 − 1) = −210 + expInc + 1 + (210 − 1) = expInc.

If expDeficit ≥ 64, then shift ≥ 62, and otherwise shift = expDeficit. Thus, by
Lemma 16.5, shift > 0.

We also have stkMaskFMA = 2shift − 1,

stkFMA = 0 ⇔ prod[shift−2 : 0] = 0 ⇔ prod0[shift−1 : 0] = 0,

and

frac105 = prod0[106 : shift][104 : 0] =
{

prod0[106 : shift] if shift > 1
prod0[105 : shift] if shift = 1.

Case 1.1: expDeficit > 54.
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It follows that shift > 54, which implies

frac105[104 : 52] = 0,

frac105[51 : 0] = prod0[106 : shift],

and

eP + (210 − 1) = expInc = 0.

Since AB = 0, prod = 0, and it follows that frac105[51 : 0] and stkFMA are not
both 0. Thus, we need only show that |AB| < 2−52−(210−1). By Corollary 16.2, it
suffices to show that eA + eB ≤ −54 − (210 − 1). If expa = expb = 0, then

eA + eB = 1 − (210 − 1) + 1 − (210 − 1) < −54 − (210 − 1).

Otherwise, Lemma 16.5 implies

eA + eB = 1 − (210 − 1) − expDeficit ≤ 1 − (210 − 1) − 55 = −54 − (210 − 1).

Case 1.2: expDeficit ≤ 54.
Thus,

shift = expDeficit = 1 − (eA + eB + 210 − 1) ≤ 54.

Case 1.2.1: prod[105] = shift = 1.
In this case, eP + (210 − 1) = expInc = 1. Since

1 − (eA + eB + 210 − 1) = shift = 1,

eA + eB + 210 − 1 = 0, which implies eP = eA + eB + 1. Furthermore, prodShft =
prod, frac105 = prod[104 : 0], and by Corollary 16.2,

|AB| = 2eA+eB−104prod

= 2eA+eB−104(2105 + frac105)

= 2eA+eB+1(1 + 2−105frac105)

= 2eP (1 + 2−105frac105).

Case 1.2.2: prod[105] = 0 or shift > 1.
In this case, eP + (210 − 1) = expInc = 0 and we must establish the claims of

(b). By Corollary 16.2,

|AB| = 2eA+eB−104prod
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= 2eA+eB−105prod0

= 2eA+eB−105
(

2shift+52prod0[106:shift+52] + prod0[shift+51:0]
)

= 2−52−(210−1)
(

prod0[106:shift+52] + 2−(shift+52)prod0[shift+51:0]
)

.

If shift > 1, then

frac105[104 : 52] = prod0[106 : shift][104 : 52] = prod0[106 : shift + 52],
and otherwise, prod0[106] = prod[105] = 0 and

frac105[104 : 52] = prod0[105 : shift][104 : 52]
= prod0[105 : shift + 52]
= prod0[106 : shift + 52].

Thus,

|AB| = 2−52−(210−1)
(

frac105[104 : 52] + 2−(shift+52)prod0[shift + 51 : 0]
)

,

where

0 ≤ 2−(shift+52)prod0[shift + 51 : 0] < 2−(shift+52)2shift+52 = 1

and

|AB| = 2−52−(210−1)frac105[104 : 52]
⇔ prod0[shift + 51 : 0] = 0

⇔ prod0[shift + 51 : shift] = prod0[shift−1 : 0] = 0

⇔ frac105[51 : 0] = stkFMA = 0.

Case 2: eA + eB + (210 − 1) > 0.
In this case, the function leftShft is called. First note that we cannot have expa =

expb = 0, for this would imply

eA + eB + (210 − 1) = 1 − (210 − 1) + 1 − (210 − 1) + (210 − 1) = 3 − 210 < 0.

Thus,

clz =
⎧⎨
⎩

CLZ53(mana) if expa = 0
CLZ53(manb) if expb = 0
0 otherwise.
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It follows from Lemma 16.6 that expo(sA) + expo(sA) = 104 − clz, and hence
expo(prod) is either 104 − clz or 105 − clz.

By Lemma 16.5,

expDiffBiasedZero = 1 ⇔ eA +eB −clz−1 = −210 ⇔ eA +eB + (210 −1) = clz,

expDiffBiasedNeg = 1 ⇔ eA + eB − clz − 1 < −210 ⇔ eA + eB + (210 − 1) < clz,

and

expDiffBiasedPos = 1 ⇔ eA + eB + (210 − 1) > clz.

Case 2.1: eA + eB + (210 − 1) > clz.
In this case,

eP = expShftInt + expInc + 1

= expDiffInt + expInc + 1

= eA + eB − clz + expInc,

eP + (210 − 1) = eA + eB + (210 − 1) − clz + expInc > 0,

and we must show that |AB| = 2eP (1 + 2−105frac105).
Since shift = clz,

expo(prodShft) = expo(prod) + clz ∈ {104, 105},

ovflMask = 263−clz, and

expInc = mulOvf = prod[105 − clz] = prodShft[105].

Suppose expInc = 0. Then expo(prodShft) = 104,

frac105 = (2prodShft)[104 : 0] = 2prodShft[103 : 0],

and

|AB| = 2eA+eB−104prod

= 2eA+eB−clz−104prodShft

= 2eA+eB−clz−104(2104 + prodShft[103 : 0])
= 2eA+eB−clz(1 + 2−105frac105)

= 2eP (1 + 2−105frac105).
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On the other hand, if expInc = 1, then expo(prodShft) = 105,

frac105 = prodShft[104 : 0],
and

|AB| = 2eA+eB−104prod

= 2eA+eB−clz−104prodShft

= 2eA+eB−clz−104(2105 + prodShft[104 : 0])
= 2eA+eB−clz+1(1 + 2−105frac105)

= 2eP (1 + 2−105frac105).

Case 2.2: eA + eB + (210 − 1) = clz.
In this case, clz > 0, shift = clz − 1, and

mulOvf = prod[105 − shift] = prod[106 − clz] = 0,

expo(prodShft) = expo(2clz−1prod) ∈ {103, 104},

expInc = sub2Norm = prod[104 − shift] = prodShft[104],

|AB| = 2eA+eB−104prod = 2clz−(210−1)−10421−clzprodShft = 2−102−210
prodShft,

frac105 = (2prodShft)[104 : 0] = 2prodShft[103 : 0],
and

eP = expShftInt + expInc + 1 = −210 + expInc + 1.

Case 2.2.1: expInc = 1.
Since eP + (210 − 1) = expInc > 0, we must show that

|AB| = 2eP (1 + 2−105frac105).

But since prodShft[104] = expInc = 1, expo(prodShft) = 104 and

|AB| = 2−102−210
prodShft

= 2−102−210
(2104 + prodShft[103 : 0])

= 22−210
(1 + 2−104prodShft[103 : 0])

= 2eP (1 + 2−105frac105).

Case 2.2.2: expInc = 0.
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Now eP + (210 −1) = expInc = 0 and we must establish the claims of (b). Since
prodShft[104] = expInc = 0, expo(prodShft) = 103 and

frac105 = 2prodShft[103 : 0] = 2prodShft.

We have shift = clz − 1 = eA + eB + 210 − 2, and hence

|AB| = 2eA+eB−104prod

= 2shift+2−210−104prod

= 2−102−210
(2shiftprod)

= 2−102−210
prodShft

= 2−103−210
frac105

= 2−103−210
(252frac105[104 : 52] + frac105[51 : 0])

= 2−52−(210−1)(frac105[104 : 52] + 2−52frac105[51 : 0]).

Since 0 ≤ 2−52frac105[51 : 0] < 1 and stkFMA = 0, the desired result follows.
Case 2.3: eA + eB + (210 − 1) < clz.

The product is left-shifted by shift = expProdM1Int mod 26, where

expProdM1Int = expInt(expa) + expInt(expb) mod 212 = eA + eB − 2 mod 212.

Thus,

shift = eA + eB − 2 mod 26 = eA + eB + 210 − 2 mod 26.

By assumption, eA +eB +210 −1 > 0 and eA +eB +210 −1 < clz ≤ 52. Therefore,
0 ≤ eA + eB + 210 − 2 < 64 and, as in Case 2.2.2, shift = eA + eB + 210 − 2.
Furthermore, since shift < clz − 1,

expo(prodShft) = shift + expo(prod) < (clz − 1) + (105 − clz) = 104,

expInc = mulOvfl = prod[105 − shift] = 0,

eP + (210 − 1) = expShftInt + expInc + 1 + (210 − 1)

= −210 + 0 + 1 + (210 − 1)

= 0,
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and once again,

frac105 = 2prodShft[103 : 0] = 2prodShft.

The proof is completed in Case 2.2.2. ��
Lemma 16.10 eP + (210 − 1) = exp11 + 211 · expGTinf + expInc.

Proof We consider the possible values of the leading 2 bits of expShftInt: Case 1:
expShftInt[11 : 10] = 0.

exp11 = expShftInt + 210,

expGTinf = 0,

and

eP + (210 − 1) = (expShftInt + expInc + 1) + (210 − 1)

= expShftInt + 210 + expInc

= exp11 + 211 · expGTinf + expInc.

Case 2: expShftInt[11 : 10] = 1.

exp11 = expShftInt − 210,

expGTinf = 1,

and

eP + (210 − 1) = (expShftInt + expInc + 1) + (210 − 1)

= expShftInt + 210 + expInc

= exp11 + 211 · expGTinf + expInc.

Case 3: expShftInt[11 : 10] = 2.
This is precluded by Lemma 16.8. Case 4: expShftInt[11 : 10] = 3.

exp11 = expShftInt − 211 − 210 = expShftInt − 212 + 210,

expGTinf = 0,

and

eP + (210 − 1) = (expShftInt − 212 + expInc + 1) + (210 − 1)
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= expShftInt − 212 + 210 + expInc

= exp11 + 211 · expGTinf + expInc.

��

16.4 FMA Support

Collecting the results of the preceding sections, we have the following main
result for the FMA case, which justifies the adder input assumptions postulated in
Sect. 17.1.

Lemma 16.11 Let opa, opb, fz, dn, and rmode be bit vectors of widths 64, 64, 1, 1,
and 2, respectively, and let fma = 1. Assume that if fz = 0, then each of opa and opb
is a normal or a denormal DP encoding, and if fz = 1, then each is a normal. Let

A = decode(opa, DP),

B = decode(opa, DP,

and

〈D, flags, piz, inz, expOvfl〉 = fmul64(opa, opb, fz, dn, rmode, fma).

The following conditions hold:

(a) piz = inz = 0.
(b) flags is an 8-bit vector with flags[k] = 0 for all k = IXC.
(c) D is a 117-bit vector with D[116] = 1 ⇔ AB < 0.
(d) If expOvfl = 1, then

(i) |AB| ≥ 2210+1;
(ii) flags[IXC] = 0.

(e) If expOvfl = 0 and D[115 : 105] > 0, then

(i) |AB| = 2D[115:105]−(210−1)(1 + 2−105D[104 : 0]);
(ii) flags[IXC] = 0.

(f) If expOvfl = D[115 : 105] = 0, then

(i) 2−53−(210−1)D[104 : 52] ≤ |AB| < 2−52−(210−1)(D[104 : 52] + 1);
(ii) |AB| = 2−52−(210−1)D[104 : 52] ⇔ D[51 : 0] = flags[IXC] = 0.

Proof (a), (b), and (c) are trivial.
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If expOvfl = 1, then either (1) expGTinf = 1, which implies eP +(210−1) ≥ 211,
or (2) expInf = expInc = 1, which implies eP + (210 − 1) = (211 − 1) + 1 = 211.
Thus, eP ≥ 211 − (210 − 1) = 210 + 1 and (d) follows from Lemma 16.9 (a).

If expOvfl = 0, then expGTinf = 0 and

D[115 : 105] = exp11 + expInc = eP + (210 − 1).

Since D[104 : 0] = frac105 and flags[IDC] = stkFMA, (e) and (f) follow from
Lemma 16.9 (a). ��

The remaining special cases are characterized by the following result. We omit
the proof, which is a straightforward case analysis based on the definition of fmul64
that has been mechanically checked.

Lemma 16.12 Let opa, opb, fz, dn, and rmode be bit vectors of widths 64, 64, 1, 1,
and 2, respectively, and let fma = 1. Assume that at least one of opa and opb is a
NaN, an infinity, a zero, or a denormal with fz = 1. Let

〈D, flags, piz, inz, expOvfl〉 = fmul64(opa, opb, fz, dn, rmode, fma).

The following conditions hold:

(a) piz = 1 ⇔ either opa and opb is an infinity and the other is either a zero or a
denormal with fz = 1.

(b) inz = 1.
(c) expOvfl = 0.
(d) flags is an 8-bit vector with

(i) flags[IOC] = 1 ⇔ either opa or opb is an SNaN or piz = 1;
(ii) flags[IDC] = 1 ⇔ either opa or opb is a denormal and fz = 1;

(iii) flags[k] = 0 for all k /∈ {IOC, IDC}.
(e) D is a 117-bit vector with D[52 : 0] = 0 and

(i) If piz = 1, then D[116 : 53] is the real indefinite QNaN;
(ii) If either opa or opb is an SNaN, then D[116 : 53] is the first SNaN;

(iii) If neither opa or opb is an SNaN but at least one is a QNaN, then D[116 :
53] is the first QNaN;

(iv) If piz = 0, neither opa nor opb is a NaN, and at least one is an infinity,
then D[116 : 53] is an infinity with D[116] = opa[63]ˆopb[63];

(v) In the remaining case D[116 : 53] is a zero with D[116] =
opa[63]ˆopb[63].
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16.5 Rounded Product and FMUL

In the FMUL case, rounding begins with the computation of the sticky, guard, and
least significant bits of the product:

Lemma 16.13

(a) stk = 0 ⇔ frac105[51 : 0] = stkFMA = 0;
(b) grd = frac105[52];
(c) lsb = frac105[53].

We refer to the case analysis of the proof of Lemma 16.9.
Case 1: eA + eB + (210 − 1) ≤ 0.

(a) If shift ≤ 55, then stkMask = 252+shift − 1, stkMask[106 : 1] = 251+shift −
1, and

stk = 0 ⇔ prod[50 + shift : 0] = 0.

But if shift > 55, then stkMask = 2107−1, stk = 1, prod[50+shift : 0] = prod = 0,
and the same equivalence holds. Thus,

stk = 0 ⇔ prod[50 + shift : 0] = 0

⇔ prod0[51 + shift : 0] = 0

⇔ prod0[51 + shift : shift] = prod0[shift−1 : 0] = 0

⇔ frac105[51 : 0] = stkFMA = 0.

(b) For k ≥ 0,

grdMask[k] = 1 ⇔ stkMask[106 : 52][k] = 0 and stkMask[105 : 51][k] = 1

⇔ stkMask[52 + k] = 0 and stkMask[51 + k] = 1

⇔ 52 + k = 52 + shift

⇔ k = shift.

Thus, grdMask = 2shift and

grd = 1 ⇔ prod[105 : 51][shift] = 1

⇔ prod[51 + shift] = 1

⇔ prod0[52 + shift] = 1

⇔ frac105[52] = 1.

(c) is similar to (b).



270 16 Double-Precision Multiplication

Case 2: eA + eB + (210 − 1) > 0.
Recall that in this case, stkFMA = 0.
(a) Clearly, stkMask = 252−shift − 1. If mulOvf = 1, then

stk = 0 ⇔ prod[51 − shift : 0] = 0

⇔ prodShft[51 : 0] = 0

⇔ frac105[51 : 0] = 0,

and if mulOvf = 0, then

stk = 0 ⇔ prod[50 − shift : 0] = 0

⇔ prodShft[50 : 0] = 0

⇔ frac105[51 : 0] = 0.

(b) We have ovfMask = 263−shift and

grdMask = ovfMask[63 : 11] = 252−shift.

If mulOvf = 1, then

grd = 1 ⇔ prod[52 − shift] = 1

⇔ prodShft[52] = 1

⇔ frac105[52] = 1,

and if mulOvf = 0, then

grd = 1 ⇔ prod[51 − shift] = 1

⇔ prodShft[51] = 1

⇔ frac105[52] = 1.

(c) is similar to (b). ��
The following allows us to replace the disjunction of expInc and expRndInc,

which appears in the RTL, with their sum:

Lemma 16.14 If expInc = 1, then expRndInc = 0.

Proof Suppose expInc = expRndInc = 1. Then fracUnrnd = 252 − 1. We again
refer to the proof of Lemma 16.9.
Case 1: Note that

prod ≤ (253 − 1)2 = 2106 − 254 + 1 < 2106 − 253.



16.5 Rounded Product and FMUL 271

Since expInc = 1, prod[105] = shift = 1. We have frac105 = prod[104 : 0] and

fracUnrnd = frac105[104 : 53] = prod[104 : 53] = 252 − 1.

Thus, prod[105 : 53] = 253 − 1 and

prod ≥ 253(253 − 1) = 2106 − 253,

a contradiction.
Case 2: Note that prod ≤ (253 − 1)(253−clz − 1).
Case 2.1: In this case, shift = clz,

prodShft = 2clzprod ≤ 2clz(253 − 1)(253−clz − 1)

= 2106 − 253+clz − 253 + 2clz < 2106 − 253,

expInc = prodShft[105] = 1, frac105 = prodShft[104 : 0], and

fracUnrnd = frac105[104 : 53] = prodShft[104 : 53] = 252 − 1.

It follows that prodShft[105 : 53] = 253 − 1 and

prodShft ≥ 253(253 − 1) = 2106 − 253,

a contradiction.
Case 2.2: In this case, clz > 0, shift = clz − 1,

prodShft = 2clz−1prod

≤ 2clz−1(253 − 1)(253−clz − 1)

= 2105 − 252+clz − 252 + 2clz−1

< 2105 − 252,

expInc = prodShft[104] = 1, frac105 = (2prodShft)[104 : 0], and

fracUnrnd = frac105[104 : 53]
= (2prodShft)[104 : 53]
= prodShft[103 : 52]
= 252 − 1.

It follows that prodShft[104 : 52] = 253 − 1 and

prodShft ≥ 252(253 − 1) = 2105 − 252,

a contradiction.
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Case 2.3: In this case, expo(prodShft) < 104, which implies

mulOvf = prodShft[105] = 0

and

sub2Norm = prodShft[104] = 0,

contradicting expInc = 1. ��
We define

R′ =
⎧⎨
⎩

RDN if R = RUP and sign = 1
RUP if R = RDN and sign = 1
R otherwise.

Then by Lemma 6.87,

R(AB, 53) =
{ R′(|AB|, 53) if sign = 0

−R′(|AB|, 53) if sign = 1.
(16.4)

If AB is subnormal, i.e., |AB| < spn(DP), then denormal rounding is applied
instead:

drnd(AB,R, DP) =
{

drnd(AB,R′, DP) if sign = 0
−drnd(AB,R′, DP) if sign = 1.

(16.5)

Lemma 16.15 |AB| < spn(DP) ⇔ eP + (210 − 1) = 0.

Proof This is an immediate consequence of Lemma 16.9. ��
The next two lemmas correspond to the normal and subnormal cases:

Lemma 16.16 Assume that |AB| ≥ spn(DP) and let r = R(AB, 53).

(a) r = AB ⇔ stk = grd = 0;
(b) |r| = 2eP −52+expRndInc(252 + fracRnd).

Proof We shall invoke Lemma 6.104 with the substitutions n = 53,

x = 253 + frac105[104 : 52],

z = 253−ep |AB|,

and replacing R with R′. By Lemma 16.9 (a),

z = 253(1 + 2−105frac105)
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= 253 + 2−52frac105

= 253 + 2−52(252frac105[104 : 52] + frac105[51 : 0])
= x + 2−52frac105[51 : 0].

Thus, �z� = x and by Lemmas 16.9 (a) and 16.13 (a),

z ∈ Z ⇔ frac105[51 : 0] = 0 ⇔ stk = 0.

Since e = expo(x) = 53, according to Definition 6.1,

RTZ(x, 53) = 2�2−1x� = 2(252 + frac105[104 : 53]) = 2(252 + fracUnrnd)

and by Definition 4.3,

fp+(RTZ(x, 53), 53) = 2(252 + fracUnrnd) + 2 = 2(252 + fracP1).

By Lemma 16.13 (b) and(c),

x[e − n : 0] = x[e − n] = x[0] = frac105[52] = grd

and

x[e − n+1] = x[1] = frac105[53] = lsb.

By a straightforward case analysis, the conditions under which R′(z, 53) =
fp+(RTZ(x, 53), 53), according to Lemma 6.104, are equivalent to the conditions
for rndUp = 1.

Thus, (a) follows from Lemma 6.104. For the proof of (b), we consider the
following cases.

If rndUp = 0, then expRndInc = 0 and

R′(z, 53) = RTZ(x, 53)

= 2(252 + fracUnrnd)

= 2(252 + fracRnd).

If rndUp = 1, then

R′(z, 53) = fp+(RTZ(x, 53), 53)

= 2(252 + fracP1).

In the latter case, if fracP1 < 252, then expRndInc = 0 and

R′(z, 53) = 2(252 + fracRnd),
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and otherwise, fracP1 = 252, fracRnd = 0, expRndInc = 1, and

R′(z, 53) = 2(252 + 252) = 4(252) = 4(252 + fracRnd).

Thus, in all cases,

R′(253−eP |AB|, 53) = R′(z, 53) = 21+expRndInc(252 + fracRnd)

and by Eq. (16.4),

|r| = R′(|AB|, 53) = 2eP −52+expRndInc(252 + fracRnd).

��
Lemma 16.17 Assume |AB| < spn(DP) and let d = drnd(AB,R, DP).

(a) d = AB ⇔ stk = grd = 0;

(b) |d| =
{

21−(210−1)(1 + 2−52fracRnd) if expRndInc = 1

2−51−(210−1)fracRnd if expRndInc = 0.

Proof We shall invoke Lemma 6.104 with the substitutions n = 53,

x = 253 + frac105[104 : 52],

z = 252+(210−1)(|AB| + 21−(210−1)),

and replacing R with R′. By Lemma 16.9 (b),

frac105[104 : 52] ≤ 252+(210−1)|AB| < frac105[104 : 52] + 1,

and hence,

x = 253 +
⌊

252+(210−1)|AB|
⌋

=
⌊

253 + 252+(210−1)|AB|
⌋

= �z�.

By Lemmas 16.9 (b) and 16.13 (a),

z ∈ Z ⇔ frac105[51 : 0] = stkFMA = 0 ⇔ stk = 0.

As in the proof of Lemma 16.16,

R′(z, 53) = z ⇔ stk = grd = 0

and

R′(z, 53) = 21+expRndInc(252 + fracRnd),



16.5 Rounded Product and FMUL 275

which implies

R′(|AB| + 21−(210−1), 53) = 2−52−(210−1)R′(z, 53)

= 2−52−(210−1)21+expRndInc(252 + fracRnd)

= 2−51−(210−1)+expRndInc(252 + fracRnd).

By Eq. (16.5) and Lemma 6.107,

|d| = drnd(|AB|,R′, DP) = R′(|AB| + 21−(210−1)), 53) − 21−(210−1),

and (a) follows easily. To complete the proof of (b), we note that if expRndInc = 1,
then fracRnd = 0 and

|d| = 22−(210−1) − 21−(210−1) = 21−(210−1) = 21−(210−1)(1 + 2−52fracRnd),

and if expRndInc = 0, then

|d| = 2−51−(210−1)(252 + fracRnd) − 21−(210−1) = 2−51−(210−1)fracRnd.

��
Lemma 16.18

(a) |R(AB, 53)| < spn(DP) ⇔ underflow = 1.
(b) |R(AB, 53)| > lpn(DP) ⇔ overflow = 1.

Proof

(a) By Lemma 16.8 (b) and Eq. (16.3),

eP + (210 − 1) = 0 ⇔ expShftInt = −210 and expInc = 0

⇔ expZero = 1 and expInc = 0

⇔ underflow = 1.

(b) We may assume |AB| > spn(DP), and hence eP + (210 − 1) > 0. By
Lemma 16.16, expo(R(AB, 53)) = eP + expRndInc. The claim follows from
Eq. (16.3) and Lemmas 16.8 and 16.14.

��
Lemma 16.19 Assume that |AB| ≥ spn(DP) and let r = R(AB, 53) ≤ lpn(DP).
Then

D = nencode(r, DP).
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Proof By Lemmas 16.16 and 16.10,

expo(r) = eP + expRndInc

= exp11 + 211 · expGTinf + expInc − (210 − 1) + expRndInc

≤ expo(lpn(DP))

= 210 − 1,

which implies expGTinf = 0 and

|r| = 2eP +expRndInc(1 + 2−52fracRnd)

= 2exp11++expInc−(210−1)+expRndInc(1 + 2−52fracRnd)

= 2expRnd−(210−1)(1 + 2−52fracRnd).

It is clear that

sign =
{

0 if r > 0
1 if r < 0,

and the claim follows from Definition 5.8 and Lemma 5.2. ��
Lemma 16.20 Assume |AB| < spn(DP) and fz = 0. Let d = drnd(AB,R, DP).

(a) If d = 0, then D = zencode(sign, DP);
(b) If |d| = spn(DP), then D = nencode(d, DP);
(c) If 0 < |d| < spn(DP), then D = dencode(d, DP).

Proof By Lemma 16.10, exp11 = expInc = 0, and hence expRnd = expRndInc. If
d = 0, then we must have expRnd = fracRnd = 0, and (a) follows trivially, while
the cases expRnd = 1 and expRnd = 0 correspond (b) and (c), respectively. ��

Our correctness theorem for FMUL matches the behavior of the top-level
function fmul64 with the specification function arm-binary-spec of Chap. 14. The
arguments of the latter are a binary operation (ADD, SUB, MUL, or DIV), two
operands, the initial FPSCR, and a FP format, and its returned values are the data
result and the updated FPSCR. To account for the different interface of fmul64,
the FZ, DN, and rounding control bits are extracted from the FPSCR, which is
ultimately combined with the flags output.

For the trivial cases involving a zero, infinity, or NaN operand, the proof is a
straightforward comparison of the function specialCase of the model with the spec-
ification functions arm-binary-pre-comp and arm-binary-comp. For the remaining
computational case, the theorem similarly follows from a simple comparison of
fmul64 and arm-post-comp and the application of Lemmas 16.16–16.20.
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Theorem 16.1 Let opa and opb be 64-bit vectors, let Rin be a 32-bit vector with
fz = Rin[24], dn = Rin[25], and rmode = Rin[23 : 22], and let fma = 0. Let

〈Dspec, Rspec〉 = arm-binary-spec(MUL, opa, opb, Rin, DP)

and

〈D, flags, piz, inz, expOvfl〉 = fmul64(opa, opb, fz, dn, rmode, fma).

Then D[63 : 0] = Dspec and Rin | flags = Rspec.



Chapter 17
Double-Precision Addition and FMA

The double-precision addition module fadd64 supports both the binary FADD
instruction and, in concert with the multiplier, the ternary FMA instruction. Thus,
both operands may be simple DP encodings, or one of them may be an unrounded
product in the format of the data output of fmul64 as described in Chap. 16.

As is evident in the pseudocode version of the adder displayed in Appendix C,
the technique of leading zero anticipation (LZA) of Sect. 8.2 is central to its
design. While the timing details of the RTL are largely obscured in the model,
the computation is performed in two cycles. In the first cycle, the LZA logic is
executed concurrently with the right shift and the addition, which is followed by
the normalizing left shift. (In this design, the left shift is not performed in advance
of the addition as suggested by Fig. 8.7.) Exponent computation, rounding, and the
detection of post-computation exceptions are done in the second cycle.

The trivial cases of NaN and infinite inputs and a zero sum are handled by
separate logic, represented in the model by the function checkSpecial. We shall
limit our attention here to the more interesting case of two numerical operands with
a nonzero sum.

17.1 Parameters and Input Assumptions

The inputs of fadd64 include the following:

• ui64 opa: A double-precision encoding of the first operand.
• ui117 opp: A 117-bit representation of the second operand. In the FMA case,

as seen in Chap. 16, the multiplier produces a 106-bit product, and therefore, the
width of the mantissa field of this operand is 105 rather than 52. In the FADD
case, the most significant 64 bits form a DP encoding of the operand and the
low 53 bits are 0. The name of this operand is intended to suggest its relation
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to the product in the FMA case and to avoid name conflict with the operands of
fmul64.

• bool fz, dn: The FZ and DN fields of the FPSCR (Sect. 14.1).
• ui2 rmode: The RC field of the FPSCR, a 2-bit encoding of an IEEE rounding

mode (Table 14.1), which we shall denote as R.
• bool fma: An indication of an FMA operation.

The remaining inputs are generated by the multiplier in the FMA case and are
ignored in the FADD case:

• bool expOvfl: An indication that the exponent of the product exceeds the
normal 11-bit range.

• ui8 mulExcp: A vector representing the exceptional conditions reported by
the multiplier, corresponding to FPSCR[7 : 0]. This is the flags output of fmul64.
We use the mnemonics defined in Fig. 14.1 to refer to the bits of this vector.
Recall that the inexact indication mulExcp[IXC] does not indicate an exception,
but rather that the product is subnormal, the 105-bit mantissa field of opp has
been right-shifted in order to produce a zero exponent field, and at least one
nonzero bit has been shifted out.

• bool inz: An indication that the multiplier output is an infinity, a NaN, or a
zero.

• bool piz: An indication that the multiplier operands were an infinity and a
zero.

Two results are returned by fadd64:

• ui64 D: The double-precision data result.
• ui8 flags: The exception flags.

The local variables include the following:

• The sign, exponent, and mantissa fields of the operands, with the mantissa of opa
zero-extended to 105 bits to match that of opp; the mantissa of opa is coerced to
0 if the exponent field is 0 and fz = 1, and the same holds for opp if fma = 0:

signa = opa[63], signp = opp[116]
expa = opa[62 : 52], expp = opp[115 : 105]
fraca =

{
0 if expa = 0 and fz = 1
253 · opa[51 : 0] otherwise

fracp =
{

0 if expp = 0, fz = 1, and fma = 0
opp[104 : 0] otherwise

• The significand of each operand, formed by appending a zero bit to the mantissa
and prepending an integer bit:

siga =
{

2106 + 2·fraca if expa > 0
2 · fraca if expa = 0
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sigp =
{

2106 + 2 · fracp if expp > 0
2 · fracp if expp = 0

The reason for appending the zero is to avoid loss of accuracy in the near case in
the event of a 1-bit right shift (see the proof of Lemma 17.7).

• Qualified versions of mulExcps[IXC] and expOvfl:

mulStk =
{

mulExcps[IXC] if fma = 1
0 if fma = 0,

mulOvfl =
{

expOvfl if fma = 1 and inz = 0
0 otherwise.

The design implicitly utilizes a floating-point format with an 11-bit biased
exponent and a 107-bit significand with explicit integer bit. For the purpose of
decoding values represented in this format, given bit vectors b, e, and s (representing
sign, exponent, and significand, respectively), we define

δ(e, s) =
{

2e−(210−1)−106s if e > 0

21−(210−1)−106s if e = 0

and

�(b, e, s) =
{

δ(e, s) if b = 0
−δ(e, s) if b = 0.

In the event that opa is a numerical encoding, i.e., expa < 211 − 1, we define A to
be its value, possibly forced to zero:

A = �(signa, expa, siga) =
{

0 if fz = 1 and expa = 0
decode(opa, DP) otherwise.

P will denote the value represented by the second operand. In the FADD case, if
opp[116 : 53] is a numerical encoding, the we define P by the same formula as A:

P = �(signp, expp, sigp)

=
{

0 if fz = 1 and expp = 0
decode(opp[116 : 53], DP) otherwise.

In the FMA case, we assume that opp and related inputs are supplied by the
multiplier, i.e.,

〈opp, mulExcps, piz, inz, mulOvfl〉 = fmul64(opb, opc, fz, dn, rmode, fma),



282 17 Double-Precision Addition and FMA

where opb and opc are DP encodings. In the event that both are numerical, we define

B = decode(opb, DP),

C = decode(opc, DP),

and

P = BC.

The following properties hold in general:

Lemma 17.1 Assume that if fma = 0, then opp[116 : 53] is numerical, and if
fma = 1, then opb and opc are numerical.

(a) If P = 0, then signp = 1 ⇔ P < 0.
(b) If mulOvfl = 1, then

|P | ≥ 2210+1;
mulStk = 0.

(c) If mulOvfl = 0 and expp > 0, then

P = �(signp, expp, sigp);
mulStk = 0.

(d) If mulOvfl = 0 and expp = 0, then

δ(expp, sigp(−53)) ≤ |P | < δ(expp, sigp(−53) + 253);
δ(expp, sigp(−53)) = |P | ⇔ sigp[52 : 0] = mulStk = 0;

Proof In the case fma = 0, (a) holds trivially and

mulOvfl = mulStk = opp[52 : 0] = 0.

Thus, (b) holds vacuously and (c) is true by definition. If expp = 0, then by
Lemma 2.15,

sigp[52 : 0] = (2fracp)[52 : 0] = 2fracp[51 : 0] = 2opp[51 : 0] = 0,

and by Definition 1.5 and Lemma 4.15,

sigp(−53) = 253
⌊

sigp

253

⌋
= sigp.

Thus, (d) reduces to P = δ(expp, sigp), which again holds by definition.
In the case fma = 1, we invoke Lemmas 16.11 and 16.12, substituting opb, opc,

opp, mulExcps, and P for opa, opb, D, flags, and AB, respectively. First suppose
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P = 0. Lemma 16.12 yields

mulOvfl = expOvfl = 0,

mulStk = mulExcps[IXC] = 0,

opp[52 : 0] = 0,

and by Lemma 16.12(c)(v), opp[115 : 53] = 0. It follows that

expp = sigp = P = 0,

and (c) holds trivially.
If P = 0, then Lemma 16.11 applies and (a) and (b) follow immediately. If

expp > 0, then by Lemma 16.11(e),

δ(expp, sigp) = 2expp−(210−1)−106sigp

= 2opp[115:105−(210−1)−106(2106 + 2opp[104 : 0])
= 2opp[115:105−(210−1)(1 + 2−105opp[104 : 0])
= |P |,

and (c) follows. If expp = 0, then

sigp(−53) = 253
⌊

sigp

253

⌋
= 253

⌊
opp[104 : 0]

253

⌋
= 253opp[104 : 52],

and (d) similarly follows from Lemma 16.11(f). ��
We shall focus on the case of numerical operands with a nonzero sum. This is

precisely the complement of the case in which the function checkSpecial sets the
variable isSpecial:

Lemma 17.2 isSpecial = 1 ⇔ any of the following conditions holds:

(a) fma = 0 and either opa or opp[116 : 53] is non-numerical;
(b) fma = 1 and either opa, opb, or opc is non-numerical;
(c) A + P = 0.

Proof It is clear by inspection of the definitions of opaz and the local variables of
checkSpecial that opa is non-numerical iff any of the variables opaInf, opaQnan, and
opaSnan is set, and that A = 0 iff opaZero is set. In the case fma = 0, opp[116 : 53]
and P are analogously related to oppInf, oppQnan, oppSnan, and oppZero. In the
case fma = 1, by examining the same definitions and Lemma 16.12, it is easily seen
that at least one of opb and opc is non-numerical iff any of the variables oppInf,
oppQnan, and oppSnan is set, and again that P = 0 iff oppZero is set.



284 17 Double-Precision Addition and FMA

Thus, we may assume that all operands are numerical and that A and P are
not both 0, and we must show that A + P = 0 iff the following conditions hold:
expa = expp, fraca = fracp, signa = signp, and mulovfl = mulStk = 0. We shall
derive this equivalence from Lemma 17.1

By Lemma 17.1(a) and (b), we may assume that signa = signp and mulOvfl = 0.
If expp > 0, then by Lemma 17.1(c), mulStk = 0 and

A + P = 0 ⇔ δ(expa, siga) = δ(expp, sigp),

and it is easily shown that the latter equation holds iff expa = expp and fraca =
fracp. Thus, we may assume that expp = 0 and appeal to Lemma 17.1(d).

If sigp[52 : 0] = mulStk = 0, then

|P | = δ(expp, sigp(−53)) = δ(expp, sigp)

and the claim follows as in the case expp > 0. In the remaining case, either mulStk =
1 or fraca = fracp, and

δ(0, sigp(−53)) < |P | < δ(expp, sigp(−53) + 253),

where

δ(0, sigp(−53)) = 21−(210−1)−106253
⌊

sigp

253

⌋
= 2−52−(210−1)

⌊
sigp

253

⌋

and

δ(0, sigp(−53) + 253) = 2−52−(210−1)

(⌊
sigp

253

⌋
+ 1

)
.

This implies 252+(210−1)|P | /∈ Z. On the other hand,

252+(210−1)|A| = 252+(210−1)δ(0, siga) = 2−53siga = 2opa[51 : 0] ∈ Z,

and hence A + P = 0. ��
The analysis to follow, through Lemma 17.26 of Sect. 17.7, will be based on

the input conditions prescribed above along with the additional assumption that
isSpecial = 0. In the lemmas of Sects. 17.2–17.6, we shall further assume that
mulOvfl = 0. The case mulOvfl = 1 will be handled specially in the proof of the
main result of Sect. 17.7.
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17.2 Alignment

Prior to the addition, the significands are aligned by a right shift of the significand
corresponding to the lesser exponent. The design follows the convention of employ-
ing two parallel data paths, near and far. The near path is used when the signs are
opposite and the exponents differ by at most 1. This is the condition under which
massive cancellation may occur.

Lemma 17.3 near = 1 ⇔ signa = signp and |expa − expp| ≤ 1.

Proof Since

exppP1 = (expp + 1) mod 212 = expp + 1,

expaEQexppP1 = 1 ⇔ expa = expp + 1.

Similarly

exppEQexpaP1 = 1 ⇔ expp = expa + 1,

and the claim follows. ��
By definition, signl and expl are the sign and exponent fields of the larger

operand. We shall also define signs and exps to be the corresponding fields of
the smaller. This selection is based on the variable oppGEopa, which requires
justification:

Lemma 17.4 oppGEopa = 1 ⇔ |P | ≥ |A|.
Proof If expa ≤ expp and siga ≤ sigp, then oppGEopa = 1 and

siga = siga(−53) ≤ sigp(−53),

which implies

|A| = δ(expa, siga) ≤ δ(expa, sigp(−53)) ≤ δ(expp, sigp(−53)) ≤ |P |.

If expp ≤ expa and sigp < siga, then oppGEopa = 0, and since

sigp(−53) < siga = siga(−53),

sigp(−53) ≤ siga − 253,

and

|P | < δ(expp, sigp(−53) + 253) ≤ δ(expp, siga) ≤ δ(expa, siga) = |A|.
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In the remaining case, expa and expp are positive and distinct. If expa > expp,
then oppGEopa = 0 and

|P | = δ(expp, sigp)

< δ(expp, 2107)

≤ δ(expa − 1, 2107)

= δ(expa, 2106)

≤ δ(expa, siga)

= |A|,

and similarly, if expa < expp, then oppGEopa = 1 and |A| < |P |. ��
As an immediate consequence, signl represents the sign of the sum:

Lemma 17.5 signl =
{

0 if |A + P | > 0
1 if |A + P | < 0.

In the far case with opposite signs, both significands are shifted left by 1 bit to
facilitate rounding, and the exponent must be adjusted accordingly. We define

expl′ =
{

expl − 1 if far = 1 and signa = signp
expl otherwise.

The resulting significands are sigaPrime and sigpPrime, which we shall denote as
siga′ and sigp′. The one that corresponds to the larger operand is the value of sigl.
The other is the value of sigs, which is shifted right to produce sigShft:

Lemma 17.6

(a) sigShft = �2−expDiff sigs�;
(b) shiftOut = 1 ⇔ sigShft = 2−expDiff sigs.

Proof If expDiff < 128, then rshift = expDiff and the lemma is trivial. If expDiff ≥
128, then rshift ≥ 112,

sigShft = �2−rshiftsigs� = 0 = �2−expDiff sigs�,

and

shiftOut = 1 ⇔ sigs = 0 ⇔ sigShft = 2−expDiff sigs.

��
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Lemma 17.7 near = 1 ⇒ shiftOut = 0.

Proof By Lemma 17.3, expdiff ∈ {0, 1}. Since sigs[0] = 0, sigs is even and
2−expDiff sigs ∈ Z. The claim follows from Lemma 17.6. ��
Lemma 17.8 shiftOut = 1 ⇒ sigShft + 21−expDiff ≤ 2−expDiff sigs ≤ sigShft + 1 −
21−expDiff .

Proof Let k = sigs mod 2expDiff = 0. Then

sigs = �2−expDiff sigs�2expDiff + k = sigShft · 2expDiff + k,

or

2−expDiff sigs = sigShft + 2−expDiff k.

Since sigs is even, k is even, and hence 2 ≤ k ≤ 2expDiff − 2, or

21−expDiff ≤ 2−expDiff k ≤ 1 − 21−expDiff ,

and the lemma follows. ��

17.3 Addition

Next we establish error bounds for the sum. We first consider the case in which there
is no error in the approximation of the product:

Lemma 17.9 Assume that either expp > 0 or mulStk = sigp[52 : 0] = 0.

(a) δ(expl′, sum) ≤ |A + P | < δ(expl′, sum + 1);
(b) δ(expl′, sum) = |A + P | ⇔ stk = 0.

Proof First suppose signa = signp. Then usa = 0 and sum = sigl + sigShft, and

|A + P | = δ(expl′, sigl) + δ(expl′, 2−expDiff sigs)

= δ(expl′, sigl + 2−expDiff sigs).

If shiftOut = 0, then stk = mulStk = 0 and by Lemma 17.6, δ(expl′, sum) =
|A + P |.

On the other hand, if shiftOut = 1, then stk = 1 and by Lemma 17.8,

sum < sigl + 2−expDiff sigs ≤ sum + 1 − 21−expDiff ,
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which implies

δ(expl′, sum) < |A + P | ≤ δ(expl′, sum + 1 − 21−expDiff ) < δ(expl′, sum + 1).

In the remaining case, signa = signp and

|A + P | = δ(expl′, sigl − 2−expDiff sigs).

Suppose shiftOut = 1. Then stk = 1, far = 1, cin = 0, and

sum = sigl − sigShft − 1.

By Lemma 17.8,

sum + 21−expDiff ≤ sigl − 2−expDiff sigs ≤ sum + 1 − 21−expDiff .

Thus,

δ(expl′, sum)+δ(expl′, 21−expDiff )≤|A+P |≤δ(expl′, sum + 1)−δ(expl′, 21−expDiff )

and the lemma follows trivially.
But if shiftOut = 0, then stk = 0 and cin = 1. By Lemma 17.6,

sum = sigl − sigShft = sigl − 2−expDiff sigs,

and hence

δ(expl′, sum) = δ(expl′, sigl − 2−expDiff sigs) = |A + P |.

��
In the case of an approximation error, there is a loss of precision of the sum:

Lemma 17.10 Assume that expp = 0 and either mulStk = 1 or sigp[52 : 0] = 0.

(a) δ(expl′, sum(−53)) < |A + P | < δ(expl′, sum(−53) + 253);
(b) Either stk = 1 or sum[52 : 0] = 0.

Proof Suppose first that oppGEopa = 1. Then expa = expp = expp′ = expl =
expl′ = 0, sigl = sigp′ = sigp, sigs = siga′ = siga, and shiftOut = 0.

If signa = signp, then |A + P | = |A| + |P | and sum = siga + sigp. Since
siga[53 : 0] = 0,

δ(expl′, sum(−53)) = δ(0, siga) + δ(0, sigp(−53))

< |A| + |P |
< δ(0, siga) + δ(0, sigp(−53) + 253)
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= δ(expl′, sum(−53) + 253).

On the other hand, if signa = signp, then sum = sigp − siga, sum(−53) =
sigp(−53) − siga and the same results follow similarly.

Thus, sum = sigp ± siga. If stk = 0, then mulStk = 0, sigp[52 : 0] = 0 and
siga[52 : 0] = 0, and it follows that sum[52 : 0] = 0.

Now suppose oppGEopa = 0. In this case, sigl = siga′ sigs = sigp′, and
sigShft = �2−expDiff sigp′�.

If signa = signp, then |A + P | = |A| + |P |, expl′ = expl = expa, siga′ = siga,
sigp′ = sigp, and sum = siga + �2−expDiff sigp�. We invoke Lemma 1.30 with the
substitutions k = 53, n = expDiff , and x = sigp. Part (a) of the lemma yields

�2−expDiff sigp�(−53) =
⌊ x

2k

⌋(−n) ≤ x(−n)

2k
= 2−expDiff sigp(−53),

which implies

δ(expl′, sum(−53)) = δ(expa, siga) + δ(expa, �2−expDiff sigp�(−53))

≤ δ(expa, siga) + δ(expa, 2−expDiff sigp(−53))

= |A| + δ(0, sigp(−53))

< |A| + |P |.

Part (b) yields

2−expDiff
(

sigp(−53) + 253
)

= x〈n〉 + 2n

2k

≤
⌊ x

2k

⌋〈n〉 + 2n

= �2−expDiff sigp�(−53) + 253,

which implies

δ(expl′, sum〈n〉 + 253) = δ(expa, siga) + δ(expa, �2−expDiff sigp�(−53) + 253)

≥ δ(expa, siga) + δ(expa, 2−expDiff (sigp(−53) + 253))

= |A| + δ(0, sigp(−53) + 253)

> |A| + |P |.

On the other hand, suppose signa = signp. Then |A + P | = |A| − |P |.
Let x = 2106+(210−1)−1|P |, so that δ(0, x) = |P |, and let
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n =
{

expa − 2 if expa > 1
0 if expa ≤ 1.

A straightforward case analysis shows that

2−expDiff sigp′ = 2−nsigp

and

δ(expl′, 2−nx) = δ(0, x).

Since

δ(0, sigp(−53)) < δ(0, x) < δ(0, sigp(−53) + 253),

253
⌊

sigp

253

⌋
= sigp(−53) < x < sigp(−53) + 253 = 253

(⌊
sigp

253

⌋
+ 1

)

and
⌊

sigp

253

⌋
<

x

253 <

⌊
sigp

253

⌋
+ 1,

which implies 2−53x /∈ Z and
⌊

2−53x
⌋ = ⌊2−53sigp

⌋
.

We shall show that

sum(−53) = (siga′ − 2−nx)(−53).

If cin = 1, then shiftOut = mulStk = 0. It follows that sigp[52 : 0] = 0, i.e.,
2−53sigp /∈ Z. Consequently,

⌊
− sigp

2n+53

⌋
= −

⌊
sigp

2n+53

⌋
− 1 = −

⌊ x

2n+53

⌋
− 1 =

⌊
− x

2n+53

⌋
,

which implies (−2−nsigp)(−53) = (−2−nx)(−53). Since shiftOut = 0,

sum = siga′ − �2−expDiff sigp′� = siga′ − 2−expDiff sigp′ = siga′ − 2−nsigp,

and

sum(−53) = (siga′ − 2−nsigp)(−53)

= siga′ + (−2−nsigp)(−53)

= siga′ + (−2−nx)(−53)
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= (siga′ − 2−nx)(−53).

For the case cin = 0, we invoke Lemma 1.31 to n and x along with y = sigp and
k = 53. This yields

(−�2−nsigp� − 1)(−53) = (−2−nx)(−53).

Thus, if cin = 0, then

sum = siga′ − �2−expDiff sigp′� − 1 = siga′ − �2−nsigp� − 1

and

sum(−53) = siga′(−53) + (−�2−nsigp� − 1)(−53)

= siga′ + (−2−nx)(−53)

= (siga′ − 2−nx)(−53),

as in the case cin = 1.
This equation is equivalent to

sum(−53) ≤ siga′ − 2−nx < sum(−53) + 253.

In fact, both inequalities are strict, for otherwise

2−nx = siga′ − sum(−53)

and

x

253
= 2n

(
siga′

253
−
⌊ sum

253

⌋)
∈ Z.

Thus,

δ(expl′, sum(−53)) < δ(expl′, siga′) − δ(expl′, 2−nx) < δ(expl′, sum(−53) + 253),

where

δ(expl′, siga′) = δ(expa, siga) = |A|

and

δ(expl′, 2−nx) = δ(0, x) = |P |.
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Thus, if stk = 0, then mulStk = shiftOut = 0 and sum = siga′ ± sigShft, where
sigShft = 2−nsigp for some n ≥ 0. Since siga′[52 : 0] = 0 and

(2−nsigp)[52 : 0] = 2−nsigp[52 + n : 0] = 0,

sum[52 : 0] = 0. ��

17.4 Leading Zero Anticipation

The near case may involve cancellation, requiring a normalizing left shift of the
sum. The exponent of the sum is estimated in advance of the addition by the method
of leading zero anticipation described in Sect. 8.2. Given two 128-bit vectors, the
function LZA128 computes a vector with an exponent that is either equal to or one
less than that of the 128-bit sum and passes that vector to the leading zero counter
CLZ128. This is a 128-bit version of the function CLZ53, which we analyzed in
Sect. 16.3.

Lemma 17.11 If x is a 128-bit vector and x = 0, then

CLZ128(x) = 127 − expo(x).

Proof The proof is essentially the same as that of Lemma 16.6. ��
Lemma 17.12 If a and b are 128-bit vectors with s = a + b > 2128, then

127 − LZA128(a, b) ≤ expo(s[127 : 0]) ≤ 128 − LZA128(a, b).

Proof Let p, k, and w be as defined in the body of LZA128. Applying Lemma 8.6
with n = 128, we have

0 ≤ expo(w) − 1 ≤ expo(s[127 : 0]) ≤ expo(w),

and the claim follows from Lemma 17.11. ��
We shall also require the following two basic properties of LZA128.

Lemma 17.13 If a and b are 128-bit vectors, then LZA128(a, b) > 0.

Proof According to the definition of LZA128,

LZA128(a, b) = CLZ128
(⌊w

2

⌋)
,

where w is a 128-bit vector. By Lemma 17.11,

CLZ128
(⌊w

2

⌋)
= 127 − expo

(⌊w

2

⌋)
≥ 127 − 126 = 1.

��
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Lemma 17.14 Let a, b, a′, and b′ be 128-bit vectors and let � = LZA128(a, b). If
a′[i] = a[i] and b′[i] = b[i] for all i ≥ 127 − �, then LZA128(a′, b′) = �.

Proof Let w be as defined in the body of LZA128 and let x = ⌊
w
2

⌋
. Let w′ and x′

be the corresponding values for a′ and b′. By Lemma 17.11, expo(x) = 127 − �.
Thus, a′[i] = a[i] and b′[i] = b[i] for all i ≥ expo(x). It follows that w′[i] = w[i]
for all i ≥ expo(x) + 1, and x′[i] = x[i] for all i ≥ expo(x), which implies
expo(x′) = expo(x), and hence LZA128(a′, b′) = 127 − expo(x′) = �. ��

We apply these results to the output of the adder:

Lemma 17.15 If near = 1 and exps = 0, then

106 − lza ≤ expo(sum) ≤ 107 − lza.

Proof The hypothesis implies that

rshift = expDiff = |expa − expp| ∈ {0, 1}
and

sigShft = 2−rshiftsigs =
{

sigs if expa[0] = expp[0]
1
2 sigs if expa[0] = expp[0].

It also implies stk = 0, and therefore δ(expl′, sum) = |A + P | = 0, which implies
sum = 0. Furthermore, cin = 1, which implies sum = sigl − sigShft.

Let s = in1LZA + in2LZA. By inspection, in1LZA = 221sigl, in2LZA = 2128 −
221sigShft − 1 = ops, and

s = 2128 + 221(sigl − sigShft) − 1 = 2128 + 221sum − 1.

Let in1LZA′ = in1LZA + 1, lza′ = LZA128(in1LZA′, in2LZA), and s′ = in1LZA′ +
in2LZA = 2128 + 221sum. Then s′ > 2128, s′[127 : 0] = s′ mod 2128 = 221sum and
by Lemma 17.12,

127 − lza′ ≤ expo(221sum) ≤ 128 − lza′,

or

106 − lza′ ≤ expo(sum) ≤ 107 − lza′,

and we need only show lza′ = lza. But since in1LZA[0] = 0, in1LZA′[i] =
in1LZA[i] for all i > 0 and since

127 − lza′ = (107 − lza′) + 10 ≥ expo(sum) > 0,

this follows from Lemma 17.14. ��
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17.5 Normalization

In the near case, if the anticipated number of leading zeroes is less than the exponent
of the larger operand, then it becomes the shift amount and the exponent is adjusted
accordingly. Otherwise, the shift is limited by the exponent, which is then reduced to
0. We have estimates for the exponent of the shifted sum in both cases. The estimates
also apply to the far case.

Lemma 17.16

(a) sumShft = 2lshiftsum;
(b) expShft > 0 ⇒ expo(sumShft) ≥ 106;
(c) expShft = 0 ⇒ expo(sumShft) ≤ 106.

Proof

(a) Since sumShft = (2lshiftsum) mod 2108, we need only show that 2lshiftsum <

2108, i.e., lshift+expo(sum) < 108. This holds trivially if far = 1, since lshift =
0. If far = 0, then lshift ≤ lza and Lemma 17.15 applies.

(b) First suppose far = 1. If signa = signp, then

sumShft = sum = sigl + sigShft ≥ sigl ≥ 2106

and

expo(sumShft) ≥ 106.

But if signa = signp, then

sumShft = sum = sigl − sigShft − 1 + cin,

where sigl ≥ 2107 and sigShft = �2−expDiff sigs�. If exps > 0, then expDiff =
expl − exps ≥ 2, sigs < 2108, and sigShft < 2106. If exps = 0, then expDiff =
expl − exps − 1 ≥ 1, sigs < 2107, and again sigShft < 2106. Thus,

sumShft > 2107 − 2106 − 1 = 2106 − 1,

i.e., sumShft ≥ 2106.
In the remaining case, far = 0 and lshft = lza < expl. By Lemma 17.13,

expl > 1, which implies exps > 0, and Lemma 17.12 yields

expo(sumShft) = lshift + expo(sum) = lza + expo(sum) ≥ 106.

(c) If far = 1, then expShft = 0 implies usa = expl = 0 and

sumShft = sum = sigs + sigl < 2106 + 2106 = 2107.
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Thus, we may assume far = 0, and hence lza ≥ expl. If expl ≤ 1, then lshift = 0
and

sumShft = sum ≤ sigl < 2107.

But if expl > 1, then exps > 0, lshift = expl−1 ≤ lza−1, and by Lemma 17.12,

expo(sumShft) = lshift + expo(sum) ≤ lza − 1 + expo(sum) ≤ 106.

��
The accuracy of the sum, as given by Lemmas 17.9 and 17.10, is preserved by the
normalization.

Lemma 17.17 Assume that either expp > 0 or mulStk = sigp[52 : 0] = 0.

(a) δ(expShft, sumShft) ≤ |A + P | < δ(expShft, sumShft + 1);
(b) δ(expShft, sumShft) = |A + P | ⇔ stk = 0.

Proof If far = 1, then expShft = expl′, sumShft = sum, and the lemma follows
from Lemma 17.9. Thus, we may assume far = 0, which implies expl′ = expl, and
the lemma will follow from Lemma 17.9 once we prove the following two claims:

(1) δ(expShft, sumShft) = δ(expl, sum).
(2) If stk = 1, then δ(expShft, sumShft + 1) = δ(expl, sum + 1).

Note that if stk = 1, then since expDiff ≤ 1 and sigs[0] = 0, Lemma 17.6 implies

sigShft = �2−expDiff sigs� = 2−expDiff sigs,

and hence shiftOut = 0, which implies mulStk = 1, expp = 0, and expl = expa ≤ 1.
Suppose lza < expl. Then lshift = lza, expShft = expl − lza > 0, sumShft =

2lzasum, and

δ(expl, sum) = 2expl−(210−1)−106sum

= 2expl−lza−(210−1)−1062lzasum

= 2expShft−(210−1)−106sumShft

= δ(expShft, sumShft).

If stk = 1, then lza < expl ≤ 1, which implies = lshift = lza = 0, expShft = expl,
and sumShft = sum.

Finally, suppose lza ≥ expl. Then expShft = 0. We may assume expl > 0, for
otherwise lshift = 0, expShft = expl, and sumShft = sum. Thus, lshift = expl − 1
and

δ(expShft, sumShft) = δ(0, 2expl−1sum)
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= 21−(210−1)−1062expl−1sum

= 2expl−(210−1)−106sum

= δ(expl, sum).

if stk = 1, then lshift = expl − 1 = 0, which implies sumShft = sum and

δ(expShft, sumShft + 1) = δ(0, sum + 1) = δ(1, sum + 1) = δ(expl, sum + 1).

��
The following estimate holds in all cases:

Lemma 17.18

(a) δ(expShft, sumShft(−53)) ≤ |A + P | < δ(expShft, sumShft(−53) + 253);
(b) δ(expShft, sumShft(−53)) = |A + P | ⇔ sumShft[52 : 0] = stk = 0.

Proof If expp > 0 or mulStk = sigp[52 : 0] = 0, then the lemma is a weakening
of Lemma 17.17. In the remaining case, lshift = 0, and therefore sum = sumShft. If
far = 1, then expShft = expl′; if far = 0, then expl′ = expl ≤ 1 and expShft ≤ expl.
In either case, the lemma follows from Lemma 17.10. ��

17.6 Rounding

For the purpose of rounding, we distinguish between the overflow case, in which
the exponent of the shifted sum has the maximum value of 107, and the normal
case. Rounding is performed for both cases before that exponent is known, and the
appropriate result is selected later.

Rounding involves a possible increment of sumShft at the index of the least
significant bit of the rounded result. For both the overflow and normal cases, we
compute a set of masks for extracting the lsb and the guard and sticky bits, which
determine whether the increment occurs. These masks are actually applied to the
unshifted sum as the shift is being performed.

Lemma 17.19

(a) lOvfl = sumShft[55];
(b) gOvfl = sumShft[54];
(c) sOvfl = 0 ⇔ sumShft[53 : 0] = stk = 0;
(d) lNorm = sumShft[54];
(e) gNorm = sumShft[53];
(f) sNorm = 0 ⇔ sumShft[52 : 0] = stk = 0.

Proof We shall prove (a) and (c); the proofs of the other claims are similar.
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(a) If lshift ≤ 55, then

lOvfl = sum & lOvflMask = sum & 255−lshift = sum[55−lshift] = sumShft[55].

On the other hand, if lshift > 55, then

lOvfl = 0 = sumShft[55].

(c) We shall show that sum & sOvflMask = 0 ⇔ sumShft[53 : 0] = 0. If lshift ≤
53, then

sum & sOvflMask = 0 ⇔ sum &

⌊
254 − 1

2lshift

⌋
= 0

⇔ sum & (254−lshift − 1) = 0

⇔ sum[53 − lshift : 0] = 0

⇔ sumShft[53 : 0] = 0.

But if lshift > 53, then

sum & sOvflMask = sum & 0 = 0 = sumShft[53 : 0].
��

Since the rounder operates on the absolute value of the sum, the rounding mode R
must be adjusted. We define

R′ =
⎧⎨
⎩

RDN if R = RUP and signOut = 1
RUP if R = RDN and signOut = 1
R otherwise.

Lemma 17.20

(a) R(A + P, 53) =
{ R′(|A + P |, 53) if signl = 0

−R′(|A + P |, 53) if signl = 1;
(b) drnd(A + P,R, DP) =

{
drnd(A + P,R′, DP) if signl = 0

−drnd(A + P,R′, DP) if signl = 1.

Proof This follows from the above definition, the definition of signOut, and
Lemma 17.5. ��

We begin with the case expShft > 0. By Lemma 17.16, expo(sumShft) is either
107 or 106. For both cases, we apply Lemma 6.104 to show that |A+P | is correctly
rounded.
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Lemma 17.21 Assume expShft > 0.

(a) If expo(sumShft) = 107, then |A + P | ≥ spn(DP),

R′(|A + P |, 53) = 2expShft−(210−1)−51sumOvfl

and

R′(|A + P |, 53) = |A + P | ⇔ gOvfl = sOvfl = 0.

(b) If expo(sumShft) = 106, then |A + P | ≥ spn(DP),

R′(|A + P |, 53) = 2expShft−(210−1)−52sumNorm

and

R′(|A + P |, 53) = |A + P | ⇔ gNorm = sNorm = 0.

Proof We instantiate Lemma 6.104 with n = 53,

z = 253+(210−1)−expShft|A + P |,

and

x =
⌊

sumShft

253

⌋
.

Upon expanding the definition of δ, Lemma 17.18 yields

x ≤ z < x + 1

and

x = z ⇔ sumShft[52 : 0] = stk = 0.

Thus, x = �z� and z ∈ Z ⇔ sumShft[52 : 0] = stk = 0.
Let e = expo(x) = expo(RTZ(x, n)) = expo(sumShft) − 53 ∈ {53, 54}. Then

RTZ(x, 53) = 2e−52x[e : e − 52]

and by definition,

fp+(RTZ(x, 53), 53) = RTZ(x, 53) + 2e−52 = 2e−52(x[e : e − 52] + 1).
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Consider the case expo(sumShft) = 107 and e = 54. The lower bound on |A + P |
follows from Lemma 17.18. According to Lemmas 6.104 (b) and 17.19 and the
definition of incOvfl,

R′(z, 53) =
{

RTZ(x, 53) if incOvfl = 0
fp+(RTZ(x, 53), 53) if incOvfl = 1

= 2e−52(x[e : e − 52] + incOvfl)

= 22(sumShft[107 : 55] + incOvfl)

= 22(sumUnrnd[53 : 1] + incOvfl)

= 22sumOvfl,

or

R′(|A + P |, 53) = 2expShft−(210−1)−51sumOvfl.

Moreover, by Lemmas 6.104 (a) and 17.19,

R′(|A + P |, 53) = |A + P |
⇔ z is 53-exact

⇔ x[1 : 0]]sumShft[54 : 53] = 0 and sumShft[52 : 0] = stk = 0

⇔ gOvfl = sOvfl = 0.

The case e = 106 is similar, with incOvfl, sumOvfl, gOvfl, and sOvfl replaced by
incNorm, sumNorm, gNorm, and sNorm. ��

If expShft = 0, then expo(sumShft) ≤ 106. If expo(sumShft) = 106, then the sum
has overflowed to the normal range and we again apply Lemma 6.104. Otherwise,
the sum is denormal and we apply Lemma 6.108.

Lemma 17.22 Assume expShft = 0.

(a) If expo(sumShft) = 106, then |A + P | ≥ spn(DP),

R′(|A + P |, 53) = 2−210−50sumNorm,

and

R′(|A + P |, 53) = |A + P | ⇔ gNorm = sNorm = 0.

(b) If expo(sumShft) < 106, then |A + P | < spn(DP),

drnd(|A + P |,R′, DP) = 2−210−50sumNorm
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and

drnd(|A + P |,R′, DP) = |A + P | ⇔ gNorm = sNorm = 0.

Proof Following the proof of Lemma 17.21 with expShft replaced by 1, let

z = 251+210 |A + P |.
Once again, x = �2−53sumShft� = �z�, z ∈ Z ⇔ sumShft[52 : 0] = stk = 0, and
e = expo(x) = expo(sumShft) − 53. The proof for the case expo(sumShft) = 106
is the same as that of Lemma 17.21. For expo(sumShft) < 106, we consider the
subcases expo(sumShft) ≥ 54 and expo(sumShft) < 54 separately.

For expo(sumShft) ≥ 54, we have e ≥ 1 and we repeat the proof for
expo(sumShft) = 106 with n = e instead of n = 53. This yields

R′(|A + P |, e) = 2−210−50sumNorm,

and

R′(|A + P |, e) = |A + P | ⇔ gNorm = sNorm = 0.

But by definition,

drnd(|A + P |,R, DP) = R(|A + P |, 53 + expo(|A + P |) − expo(spn(DP))),

where

53 + expo(|A + P |) − expo(spn(DP)) = 53 + (e − 210 − 51) − (2 − 210) = e.

For the case expo(sumShft) < 54, since

expo(|A + P |) = e − 210 − 51 < −210 − 50,

|A + P | < 2−210−50 = spd(DP)

and we may invoke Lemma 6.108. Note that since expo(sumShft) = e + 53 < 54,
sumUnrnd = sumShft[107 : 54] = 0 and sumNorm = incNorm. Thus,

2−210−50sumNorm =
{

spd(DP) if incNorm = 1
0 if incNorm = 0.

The proof is completed by a straightforward case analysis. Suppose, for example,

|A + P | >
1

2
spd(DP) = 2−210−51.
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Then e = 0, expo(sumShft) = 53, and gNorm = sumShft[53] = 1. Furthermore,
since

|A + P | > 2−210−51 = δ(0, 253) = δ(expShft, sumShft(−53)),

Lemma 17.18(b) implies sNorm = 1. According to the definition of incNorm, it
follows that incNorm = 1 ⇔ R′ = RNE or R′ = RUP and the desired result
follows from Lemma 6.108 (c). The cases |A+P | = 1

2 spd(DP) and 0 < |A+P | <
1
2 spd(DP) are similar. ��

In the overflow case, double overflow occurs if rounding results in an additional
exponent increment. The next three lemmas pertain to the implications of overflow
and double overflow, which are indicated by the variables ovfl and ovfl2.

Lemma 17.23 If expo(sumShft) = 107, then

(a) ovfl2 = 0 ⇒ expo(sumOvfl) = 52;
(b) ovfl2 = 1 ⇒ sumOvfl = 253;
(c) Either ovfl2 = 1 or ovfl = 1.

Proof (a) and (b) are trivial. To prove (c), suppose ovfl2 = ovfl = 0. Since
sumUnrnd[53] = sumShft[107] = 1 and sumNorm[53] = ovfl = 0, we must have
sumUnrnd[53 : 0] = 254 − 1 and incNorm = 1. But then sumUnrnd[53 : 1] =
253 − 1, and since ovfl2 = 0, we must also have incOvfl = 0.

Suppose rndDir = rndInf . Since incNorm = 1, either gNorm = 1 or sNorm = 1.
But this implies sOvfl = 1, contradicting incOvfl = 0.

In the remaining case, rndDir = rndNear. Since incNorm = 1, gNorm = 1,
which implies sOvfl = 1. Furthermore, gOvfl = sumShft[54] = sumUnrnd[0] = 1,
again contradicting incOvfl = 0. ��
Lemma 17.24 If expo(sumShft) = 106, then

(a) ovfl2 = 0;
(b) ovfl = 0 ⇒ expo(sumNorm) = 52;
(c) ovfl = 1 ⇒ sumNorm = 253, sumOvfl = 252, gOvfl = 1, and either gNorm = 1

or sNorm = 1.

Proof (a) and (b) are trivial. To prove (c), suppose ovfl = sumNorm[53] = 1. Then
sumUnrnd = 253 − 1, incNorm = 1, and sumNorm = 253. Since sumUnrnd =
253 − 1, gOvfl = sumUnrnd[0] = 1. Since incNorm = 1, rndDir is either rndNear
or rndInf , and either gNorm = 1 or sNorm = 1. It follows that sOvfl = 1, which
implies incOvfl = 1, and hence sumOvfl = 252. ��
Lemma 17.25 If expo(sumShft) < 106, then

(a) ovfl2 = ovfl = 0;
(b) sumNorm ≤ 252.

Proof Both claims are trivial. ��
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17.7 Correctness Theorems

Our first objective is to relate the function fadd64 with the specification function
arm-post-comp of Sect. 14.3, which takes an unrounded value, an initial FPSCR
state, and a floating-point format, and returns a rounded result and the updated
FPSCR. We shall show that the data value D computed by fadd64, which is the
concatenation of the fields signOut, expOut, and fracOut, and the post-computation
exception flags, R[IXC], R[UFC], and R[OFC], match the corresponding values
returned by arm-post-comp. The two correctness theorems corresponding to FADD
and FMA follow easily from this result:

Lemma 17.26 Let Rin be a 32-bit vector with Rin[12 : 10] = 0 and let fz =
Rin[24], dn = Rin[25] and rmode = Rin[23 : 22]. Let

〈D, flags〉 = fadd64(opa, opp, fz, dn, rmode, fma, inz, piz, expOvfl, mulExcps)

and

〈Dspec, Rspec〉 = arm-post-comp(A + P,Rin, DP).

Then D = Dspec and for k = IXC, UFC, and OFC, (flags | Rin)[k] = Rspec[k].
Proof Note that the two functions fadd64 and arm-post-comp are similarly struc-
tured, treating the overflow, underflow, and normal cases in that order.
Case 1: Overflow

The arm-post-comp overflow condition is |R(A+P, 53)| > lpn(DP), which may
be expressed as expo(R(A + P, 53)) ≥ 210, and that of fadd64 is infOrMax = 1.
Once these conditions are shown to be equivalent, the comparison for this case is
trivial.
Subcase 1.1: mulOvfl = 1.

In this case, infOrMax = 1. Since expp[11] = 1, expp ≥ 211, which implies
sigp ≥ 2106 and

|P | ≥ δ(expp, sigp(−53)) ≥ 2211−(210−1)−106+106 = 2210+1.

On the other hand, since expa ≤ 211 − 2 and siga < 2107,

|A| = δ(expa, siga) < 2211−2−(210−1)−106+107 = 2210
.

Consequently, |A + P | ≥ |P | − |A| > 2210+1 − 2210 = 2210
and

expo(R(A + P, 53)) ≥ expo(A + P) ≥ 210.
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Thus, we may assume mulOvfl = 0 and Lemmas 17.3–17.25 apply. We may
also assume that expShft > 0; otherwise, both conditions are clearly false. By
Lemma 17.16, expo(sumShft) ≥ 106.

In order to simplify the definition of infOrMax, we note that if expShft = 2047,
then since

expShft ≤ expl = max(expa, expp),

our assumptions imply fma = 1 and expp = 2047, and therefore opplong = 1.
Subcase 1.2: expo(sumShft) = 107.

If ovfl2 = 1, then by Lemmas 17.21 and 17.23,

expo(R(A + P, 53)) = expShft − (210 − 1) − 51 + 53 = expShft − 210 + 3

and

expo(R(A + P, 53)) ≥ 210 ⇔ expShft ≥ 211 − 3 ⇔ infOrMax = 1.

Similarly, if ovfl2 = 0, then ovfl1 = 1,

expo(R(A + P, 53)) = expShft − (210 − 1) − 51 + 52 = expShft − 210 + 2,

and

expo(R(A + P, 53)) ≥ 210 ⇔ expShft ≥ 211 − 2 ⇔ infOrMax = 1.

Subcase 1.3: expo(sumShft) = 106.
If ovfl = 1, then by Lemmas 17.21 and 17.24,

expo(R(A + P, 53)) = expShft − (210 − 1) − 52 + 53 = expShft − 210 + 2

and

expo(R(A + P, 53)) ≥ 210 ⇔ expShft ≥ 211 − 2 ⇔ infOrMax = 1.

But if ovfl = 0, then

expo(R(A + P, 53)) = expShft − (210 − 1) − 52 + 52 = expShft − 210 + 1

and

expo(R(A + P, 53)) ≥ 210 ⇔ expShft ≥ 211 − 1 ⇔ infOrMax = 1.

Case 2: Underflow
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The arm-post-comp underflow condition is |A + P | < spn(DP), or expo(A +
P) < 2 − 210, and that of fadd64 is tiny = 1. Once again, we must establish the
equivalence of these conditions. By Lemma 17.18

expo(A + P) = expo(δ(expShft, sumShft)),

and it follows from Lemma 17.16 that

expo(A + P) < 2 − 210 ⇔ expo(sumShft) < 106

⇔ expo(sumNorm) < 52

⇔ tiny = 1.

If fz = 1, then R[UFC] = 1, the data result is a 0 with the sign of A + P , and
the theorem holds trivially. In the remaining case, according to the specification, the
sum is rounded to d = drnd(A + P,R, DP) and if d = A + P , then R[UFC] =
R[IXC] = 1. Since the sign of the result is correctly represented by signl, we need
only show that |d| is correctly encoded by exp and frac. By Lemma 17.22, |d| =
2−210−50sumNorm.
Subcase 2.1: sumNorm[52] = 1.

By Lemma 17.25, sumNorm = 252, which implies |d| = 22−210 = spn(DP),
expOut = 1, and fracOut = 0. Thus, D is a normal encoding and the encoded
absolute value is

2expOut−(210−1)(1 + 2−52fracOut) = 21−(210−1) = 22−210 = |d|.

By Lemma 17.22, |d| = |A + P | ⇔ gNorm = sNorm = 0, which is the condition
under which R[UFC] and R[IXC] are not set.
Subcase 2.2: sumNorm[52] = 0.

In this case, sumNorm < 252, expOut = 0, and fracOut = sumNorm. Thus, D is
a denormal encoding and the encoded absolute value is

21−(210−1)−52fracOut = 2−210−50sumNorm = |d|.

Correctness of the flags follows as in Subcase 2.1.
Case 3: A + P and R(A + P) are both within the normal range.

In this case, expShft ≥ 106, the specified value of D is the normal encoding of
r = R(A + P, 53), and R[IXC] is set when r = A + P . Again, since it is clear that
the sign of the sum is correctly represented by signl, we need only show that |r| is
correctly encoded by the exponent and mantissa fields, i.e.,

|r| = 2expOut−(210−1)(1 + 2−52fracOut).

Subcase 3.1: ovfl2 = 1.
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In this case, expOut = expShft + 2 and fracOut = 0. By Lemmas 17.23 and
17.24, expo(sumShft) = 107 and sumOvfl = 253. By Lemma 17.21,

|r| = 2expShft−(210−1)−51253

= 2expShft+2−(210−1)

= 2expOut−(210−1)(1 + 2−52fracOut)

and r = A + P ⇔ gOvfl = sOvfl = 0, which is the condition under which R[IXC]
is not set.
Subcase 3.2: ovfl2 = 0 and ovfl = 1.

If expo(sumShft) = 107, then by Lemma 17.23, expo(sumOvfl) = 52 and

sumOvfl = 252 + sumOvfl[51 : 0] = 252 + fracOut.

Since expShft > 0, expOut = expShft + 1, and by Lemma 17.21,

|r| = 2expShft−(210−1)−51sumOvfl

= 2expShft+1−(210−1)(2−52sumOvfl)

= 2expOut−(210−1)(1 + 2−52fracOut)

and r = A + P ⇔ gOvfl = sOvfl = 0, which is the condition under which R[IXC]
is not set.

On the other hand, if expo(sumShft) = 106, then by Lemma 17.24, sumNorm =
253, gOvfl = 1, and either gNorm = 1 or sNorm = 1. If expShft > 0, then expOut =
expShft + 1, and by Lemma 17.21,

|r| = 2expShft−(210−1)−52sumNorm

= 2expShft+1−(210−1)

= 2expOut−(210−1)(1 + 2−52fracOut).

Similarly, if expShft = 0, then by Lemma 17.22,

|r| = 21−(210−1)−52sumNorm

= 2expShft−(210−1)−52253

= 22−(210−1)

= 2expOut−(210−1)(1 + 2−52fracOut).
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In either case, since either gNorm = 1 or sNorm = 1, r = A + P , and since
gOvfl = 1, R[IXC] is set.
Subcase 3.3: ovfl2 = ovfl = 0.

By Lemmas 17.23 and 17.24, expo(sumShft) = 106 and expo(sumNorm) = 52.
Since fracOut = sumNorm[51 : 0],

sumNorm = 252 + sumNorm[51 : 0] = 252(1 + 2−52fracOut).

If expo(expShft) > 0, then expOut = expShft, and by Lemma 17.21,

|r| = 2expShft−(210−1)−52sumNorm = 2expOut−(210−1)(1 + 2−52fracOut).

Similarly, if expo(expShft) = 0, then expOut = 1, and by Lemma 17.22,

|r| = 21−(210−1)−52sumNorm = 2expOut−(210−1)(1 + 2−52fracOut).

In either case, r = A + P ⇔ gNorm = sNorm = 0, which is the condition under
which R[IXC] is not set. ��

We have the following correctness theorem for FADD. For the case of numerical
operands with a nonzero sum, the behavior of the data result and the post-
computation exception flags follow from Lemma 17.26. The behavior of the
pre-computation flags and the remaining special cases are readily verified by a
straightforward case analysis comparing fadd64 with the specification function arm-
binary-spec:

Theorem 17.1 Let

〈Dspec, Rspec〉 = arm-binary-spec(ADD, opa, opp[116 : 53], Rin, DP),

where opa is a 64-bit vector, opp is a 117-bit vector with opp[52 : 0] = 0, and Rin

is a 32-bit vector. Let

〈D,R〉 = fadd64(opa, opp, fz, dn, rmode, fma, inz, piz, mulOvfl, mulExcps),

where fz = Rin[24], dn = Rin[25], rmode = Rin[23 : 22], fma = 0, and inz, piz,
mulOvfl, and mulExcps are arbitrary.

Then D = Dspec and Rin | flags = Rspec.

According to the following theorem, FMA is correctly implemented by a
combination of fadd64 and fmul64. This similarly follows from Lemmas 17.26,
16.11, and 16.12 and a comparison of these functions with arm-fma-spec:

Theorem 17.2 Let

〈Dspec, Rspec〉 = arm-fma-spec(opa, opb, opc, Rin, DP),
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where opa, opb, and opc are 64-bit vectors and Rin is a 32-bit vector. Let

〈opp, mulExcps, piz, inz, mulOvfl〉 = fmul64(opb, opc, fz, dn, rmode, fma),

where fz = Rin[24], dn = Rin[25], rmode = Rin[23 : 22], and fma = 1. Let

〈D, flags〉 = fadd64(opa, opp, fz, dn, rmode, fma, inz, piz, mulOvfl, mulExcps).

Then D = Dspec and Rin | flags = Rspec.



Chapter 18
Multi-Precision Radix-4 SRT Division

Unlike the dedicated double-precision multiplier and adder described in the preced-
ing two chapters, a single module of our FPU performs floating-point division and
square root extraction at all three precisions: double, single, and half. This module is
modeled, however, by two separate functions, fdiv64 and fsqrt64, the first of
which, displayed in Appendix D, is the subject of this chapter. This function is based
on the implementation of the minimally redundant radix-4 case of SRT division that
is addressed by Lemma 10.7 of Sect. 10.2.

The iterative phase of the algorithm is naturally modeled in C as a for loop.
As usual, successful equivalence checking between the model and the RTL requires
faithful modeling of the essential computations, which in this case means that the
partial remainder and quotient must be replicated precisely at each iteration. With
the goal of minimizing latency, the RTL executes three iterations on each cycle, and
in order to achieve this, different approximations are used for the iterations within
a cycle. Consequently, each iteration of the for loop corresponds to a cycle, i.e.,
three iterations of the algorithm rather than one.

18.1 Overview

The input parameters of the top-level function fdiv64 are as follows:

• ui64 opa, opb: Encodings of the dividend and divisor, respectively. For
formats SP and HP, the operands reside in the low-order bits.

• ui2 fmt: A 2-bit encoding of a floating-point format (DP = 2, SP = 1, HP =
0).

• bool fz, dn: The FZ and DN fields of the FPSCR (Sect. 14.1).
• ui2 rmode: The RC field of the FPSCR, a 2-bit encoding of an IEEE rounding

mode (Table 14.1), which we shall denote as R.
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Two results are returned:

• ui64 D: The data result. For fmt = SP (resp., HP), D[31 : 0] (resp., D[15 : 0])
holds the data, and the higher bits are 0.

• ui8 flags: The exception flags, FPSCR[7 : 0]. We use the mnemonics
defined in Fig. 14.1 to refer to the bits of this vector.

We also define the following values:

• The operand values, A = decode(opa, fmt) and B = decode(opb, fmt);

• The precision of the operation, p =
⎧⎨
⎩

11 if fmt = HP
24 if fmt = SP
53 if f mt = DP ;

• The exponent width, e =
⎧⎨
⎩

5 if fmt = HP
8 if fmt = SP
11 if fmt = DP;

• The exponent bias = 2e−1 − 1;

The initial phase of fdiv64 handles the early termination cases, in which at
least one operand is a zero, a NaN, or an infinity. Since these cases are trivial, we
shall focus on the remaining computational case, in which each operand is either a
denormal that is not forced to 0 or normal.

Before entering the for loop, the operands are normalized if necessary and
prescaled according to (10.7), and the first iteration of the algorithm of Sect. 10.1
is executed. Since each of the N iterations of the loop corresponds to an RTL cycle
in which three iterations of the algorithm are executed, the number of iterations of
the algorithm is 3N + 1.

Notation For each variable that is updated within the for loop, we shall use the
subscript j to denote the value produced by the j th iteration of the algorithm.

In particular, the value of the j th quotient digit is qj . Once we define the prescaled
values x and d of A and B, the partial quotients Qj and remainders Rj will also
be defined, according to (10.2) and (10.3). The partial remainder is represented in
redundant signed-digit form by RP and RN, 59-bit vectors with 3 implicit integer
bits. That is, we shall show that

256Rj ≡ RPj − RNj (mod 259). (18.1)

To see that 3 integer bits are sufficient to represent the full range of remainders, note
that the bounds on d (10.7) together with Lemma 10.7(a) yield

|Rj | ≤ 2

3
d ≤ 2

3
· 9

8
= 3

4
(18.2)

and hence |4Rj | ≤ 3.
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The partial quotient is also represented in redundant signed-digit form, by the
vectors QP and QN, each consisting of 54 fractional bits. The integer bits of the
quotient are not explicitly stored. Thus, we shall show that

4j−1(Qj − q1) = QPj − QNj . (18.3)

As specified in Lemma 10.7, the derivation of the quotient digit qj+1 is based on
an approximation Aj of the remainder Rj , which is compared with the constants of
Fig. 10.1. As is typical of SRT designs, when the (j + 1)st iteration is either the first
or the second iteration of a cycle, Aj is derived from the leading bits of RPj and
RNj , in this case by means of a 6-bit adder. In order to satisfy timing constraints,
however, when the (j +1)st iteration is the third iteration of a cycle, Aj is computed
in two steps directly from RPj−1, RNj−1, and qj , before RPj and RNj are available.
The analysis of this critical feature of the design appears in the proof of Lemma 18.5.

18.2 Pre-processing

The function normalize performs a mantissa shift for each denormal operand,
using the same auxiliary function CLZ53 as the multiplier of Chap. 16. The values
computed by normalize, representing the operand significands and the predicted
exponent of the result, satisfy the following:

Lemma 18.1

(a) siga = 252sig(A);
(b) sigb = 252sig(B);

(c)
∣∣A
B

∣∣ = 2expDiff−bias
(

siga
sigb

)
.

Proof It is clear that 252 ≤ siga < 253 and |A| = 2expaShft−bias−52siga: if opa is
normal this is trivial, and the denormal case follows from Lemma 16.6. It follows
that siga = 252sig(A). The analogous results hold for B. Thus,

∣∣∣∣AB
∣∣∣∣ = 2expaShft−expbShft

(
siga

sigb

)
,

where

expaShft − expbShft = (expaShft − expbShft + bias) − bias = expDiff − bias. �

Before entering the iterative phase, the operands are prescaled by a multiplier M

based on the three most significant fractional bits of sig(B), i.e.,

sigb[51 : 49] = �8(sig(B) − 1�.
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+ 1
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+ 0

+ 0 + 1

+ 1

+ 1

2 = + 1

M

Fig. 18.1 Prescaling multiplier M

The values of M corresponding to the eight possible values of this index are
displayed in Fig. 18.1 as a sum of powers of 2. These terms will correspond to the
partial products in the multiplication of M by both sigb and siga.

We define

d = M
sig(B)

2
(18.4)

and

x =
{

M
sig(A)

2 if sig(A) ≥ sig(B)
Msig(A) if sig(A) < sig(B).

(18.5)

Qj and Rj are now defined by (10.2) and (10.3).
We verify the required bounds on d and x:

Lemma 18.2 63
64 ≤ d ≤ 9

8 and d ≤ x < 2d.

Proof The bounds on d may be established for each value of sigb[51 : 49] =
�8(sig(B) − 1)� separately. For example, if sigb[51 : 49] = 3, then 3 ≤ 8(sig(B) −
1) < 4, or

11

8
≤ sig(B) <

3

2
.
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In this case, M = 3
2 , and according to (18.4), d = 3

4 sig(B) and

63

64
<

33

32
= 3

4
· 11

8
≤ d ≤ 3

4
· 3

2
= 9

8
.

The other seven cases are similar.
To derive the bounds on x, note that if sig(A) ≥ sig(B), then x = d ·

sig(A)/sig(B), where 1 ≤ sig(A)/sig(B) < 2, and the claim follows. Similarly,
if sig(A) < sig(B), then x = 2d · sig(A)/sig(B), where 1

2 ≤ sig(A)/sig(B) < 1.
��

In addition to the prescaling, the function prescale performs the first iteration
of the algorithm, returning a non-redundant representation of d, a signed-digit
redundant representation of the partial remainder R1, the digit q1, and the biased
exponent expQ of the unrounded quotient. Note that QP1 = QN1 = 0, which is
consistent with Eqs. (18.3) and (10.2).

Lemma 18.3

(a) 256d = div;
(b) q1 is the greatest k ∈ {−2, . . . , 2} such that mk ≤ A0, for some A0 ∈ Q that

satisfies 8A ∈ Z and |A0 − 4R0| < 1
8 .

(c) |R1| ≤ 2
3d;

(d) 256R1 = RP1 − RN1 and RP1[52 − p : 0] = RN1[52 − p : 0] = 0;
(e)

∣∣A
B

∣∣ = 2expQ−bias
(

x
d

)
.

Proof

(a) The table of Fig. 18.1 expresses the prescaling multiplier as a sum M = t1+t2+
t3, where t1 ∈ {0, 1

4 , 1
2 }, t2 ∈ {0, 1

8 , 1
2 }, and t3 = 1. Referring to the definition

of prescale, we see that for each value of sigb[51 : 49], and for i ∈ {1, 2, 3},
divi = 8tisigb. Thus,

div1 + div2 + div3 = 8(t1 + t2 + t3)sigb = 8Msigb = 255Msig(B) = 256d.

Since div1[55] = div2[55] = 0, only a 0 bit is shifted out in the construction of
divCar and the sum is preserved by the 3:2 compressor. Thus,

div = divSum + divCar = 256d.

(b) Let A0 = 1
8 remBits. First, we must show that |A0 − 4R0| < 1

8 , i.e., |remBits −
32R0| = |remBits − 8x| < 1. By the same argument as used above,

remSum + remCar = 255Msig(A) =
{

256x if sig(A) ≥ sig(B)
255x if sig(A) < sig(B).
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Suppose sig(A) < sig(B). Then 252remBits = 252remSum[55 : 52] +
252remCar[55 : 52] and by case analysis on remSum[51] and remCar[51],

|252remBits − (remSum + remCar)| = |252remBits − 255x| < 252,

or |remBits − 8x| < 1.
Similarly, in the case sig(A) ≥ sig(B), we have |253remBits − 256x| < 253

and reach the same conclusion.
To prove the second claim, note that according to the definition of prescale,

since 8m2 = 13,

q1 =
{

2 if 8m2 ≤ remBits

1 if 8m2 > remBits.

Therefore, it suffices to show that 8m1 ≤ remBits. But

remBits > 8x − 1 ≥ 8d − 1 ≥ 8 · 63

64
− 1 > 4 = 8m1.

(c) This follows from (b), (10.2), and Lemma 10.7 with j = 0.
(d) RP1 − RN1 = 256x − q1div = 256(4R0 − q1d) = 256R1, and it follows from

siga[52 − p : 0] = sigb[52 − p : 0] = 0 that RP1[52 − p : 0] = RN1[52 − p :
0] = 0.

(e) Since Lemma 18.1 (c) holds prior to execution of prescale, during which expDiff
is decremented just in case siga < sigb, we need only observe that, according
to (18.4) and (18.5),

x

d
=
{

siga
sigb if siga ≥ sigb
2siga
sigb if siga < sigb. �

Lemma 18.4 For 1 ≤ j ≤ 3N + 1, 256Rj ∈ Z.

Proof This follows from Eqs. (10.2) and (10.3) and Lemma 18.3(a). ��

18.3 Iterative Phase

Lemma 18.5 The following conditions hold for all j , 1 ≤ j ≤ 3N + 1:

(a) qj is the greatest k ∈ {−2, . . . , 2} such that mk ≤ Aj−1, for some Aj−1 ∈ Q

that satisfies 8Aj−1 ∈ Z and |Aj−1 − 4Rj−1| < 1
8 .

(b) |Rj | ≤ 2
3d;

(c) 256Rj ≡ RPj − RNj (mod 259) and RPj [52 − p : 0] = RNj [52 − p : 0] = 0;
(d) 4j−1(Qj − q1) = QPj − QNj .
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Proof The proof proceeds by induction on j . For the case j = 1, (a), (b), and (c) are
stated in Lemma 18.3, and (d) holds trivially, since Q1 = q1 and QP1 = QN1 = 0.
Let 1 ≤ j ≤ 3N . We assume the lemma holds for all � such that 1 ≤ � ≤ j and
show that it holds for j + 1.

(a) The quotient digit qj+1 is computed as nextDigit(remS6j+1), where remS6j+1
is a 6-bit vector computed by one of the functions iter1, iter2, and iter3.
It is readily verified that the digit returned by nextDigit is the greatest k ∈
{−2, . . . , 2} such that 8mk ≤ si(remS6j+1, 6). Let Aj = 1

8 si(remS6j+1, 6).
We need only show that |Aj − 4Rj | < 1

8 .
When iteration j + 1 occurs as either the first or second iteration of a cycle,

nextDigit is called with

remS6j+1 = RPj [56 : 51] − RNj [56 : 51] mod 26.

In this case, we invoke Lemma 2.54 with

X = RPj [56 : 0] − RNj [56 : 0] ≡ 256Rj (mod 257),

Y = 251(RPj [56 : 51] − RNj [56 : 51]) ≡ 251remS6j+1 (mod 257),

and n = 57. Since |X − Y | = |RPj [50 : 0] − RNj [50 : 0]| < 251 and

|256Rj | ≤ 254 · 3 = 256 − 254 < 256 − |X − Y |,

si(X mod 257, 57) = 256Rj ,

|si(X mod 257, 57) − si(Y mod 257, 57)| = |256Rj − si(251remS6j+1, 57)|
= |X − Y |
< 251,

and division by 251 yields

|4Rj − Aj | =
∣∣∣∣4Rj − 1

8
si(remS6j+1, 6)

∣∣∣∣ < 1

8
.

When iteration j + 1 is the third iteration of a cycle, the construction of
remS6j+1 involves two successive approximations, computed as by-products of
the two preceding iterations. The first iteration of the cycle computes, along
with a redundant representation of Rj−1, the 9-bit sum

RS9j−1 = RPj−1[56 : 48] − RNj−1[56 : 48] mod 29,
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representing an approximation of 4Rj−1. Let

R = 4RPj−1 − 4RNj−1

and

R̃ = 250(RPj−1[58 : 48] − RNj−1[58 : 48]).

Then

R ≡ 258Rj−1 (mod 259),

RS9j−1 ≡ 2−50R̃ (mod 29),

and

|R − R̃| = |4(RPj−1[47 : 0] − RNj−1[47 : 0])| < 250.

The second iteration computes (in parallel with a redundant representation of
Rj ) the 7-bit sum RS7j , derived from RS9j−1 and qj and representing an
approximation of Rj . In the third iteration, nextDigit is called with remS6j+1 =
RS7j [6 : 1].

Let

D = −qj div

and

D̃ =
{−qj div if qj ≤ 0

−qj div − 1 if qj > 0

Clearly, 0 ≤ D − D̃ ≤ 1. Let S = �2−51R̃� + �2−51D̃� + c, where

c =
{

0 if R̃[50] = D̃[50] = 0
1 otherwise.

Now

RS7j = (RS9j−1 + �2−50D̃� + 1) mod 27

= (2−50R̃ + �2−50D̃� + 1) mod 27

=
(
(2�2−51R̃� + R̃[50]) + (2�2−51D̃� + D̃[50]) + 1

)
mod 27
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and therefore, by Lemma 1.21,

remS6j+1 = RS7j [6 : 1]

=
⌊

1

2
RS7j

⌋

=
(

�2−51R̃� + �2−51D̃� +
⌊

1

2
(R̃[50] + D̃[50] + 1)

⌋)
mod 26

= S mod 26.

We shall invoke Lemma 2.54 with X = R + D, Y = 251S, and n = 57. Thus,

X ≡ 258Rj−1 − qj div = 256(4Rj−1 − qjd) = 256Rj (mod 259)

so that once again, si(X mod 257, 57) = 256Rj , and

si(Y mod 257, 57) = si(251S mod 257, 57)

= 251si(S mod 26, 6)

= 251si(remS6j+1, 6).

Since

R̃ = 251�2−51R̃� + R̃[50 : 0] = 251�2−51R̃� + 250R̃[50]

and

D̃ = 251�2−51D̃� + D̃[50 : 0] = 251�2−51F̃ � + 250D̃[50] + D̃[49 : 0],

R̃ + D̃ − 251S = 250(R̃[50] + D̃[50] − 2c) + D̃[49 : 0].

By considering all possible combinations of R̃[50] and D̃[50] and the range of
values 0 ≤ D̃[49 : 0] < 250, it follows that |R̃ + D̃ − 251S| < 250. Thus,

|X − Y | = |R + D − 251S|
≤ |R̃ + D̃ − 251S| + |R − R̃| + |D − D̃)|
< 250 + (250 − 1) + 1

= 251,

which implies

|si(X mod 257, 57)−si(Y mod 257, 57)| = |256Rj−251si(remS6j+1, 6)| < 251,
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and

|4Rj − Aj | =
∣∣∣∣4Rj − 1

8
si(remS6j+1, 6)

∣∣∣∣ < 1

8
.

(b) This follows from (a) and Lemma 10.7.
(c) By induction and the definition of nextRem,

RPj+1[52 − p : 0] = RNj+1[52 − p : 0] = 0;

we must show that 256Rj+1 ≡ RPj+1 − RNj+1 (mod 259).
We refer to the local variables of nextRem. Let

ε =
{

0 if qj+1 ≤ 0
1 if qj+1 > 0.

Since

div[58 : 53 − p] = div[56 : 53 − p] = 2p+3d,

it is clear that for all values of qj+1,

divMultj+1[58 : 53 − p] ≡ −qj+1div[58 : 53 − p] − ε

= −2p+3qj+1d − ε (mod 2p+6).

ss Since RPj [52 − p : 0] = RNj [52 − p : 0] = 0, Lemma 1.18 implies

253−p
(
(RP4j+1[58 : 53 − p] − RN4j+1[58 : 53 − p]) mod 2p+6

)

=
(

253−p(RP4j+1[58 : 53 − p] − RN4j+1[58 : 53 − p])
)

mod 259

= (RP4j+1 − RN4j+1) mod 259

= (
4(RPj − RNj )

)
mod 259

= (258Rj ) mod 259

= 253−p
(
(2p+5Rj) mod 2p+6

)
,

or

RP4j+1[58 : 53 − p] − RN4j+1[58 : 53 − p] ≡ 2p+5Rj (mod 2p+6).

By Lemma 8.4,
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˜sumj+1[58 : 53–p] + 2carj+1[58 : 53–p]
= RP4j+1[58 : 53–p] + ~RN4j+1[58 : 53–p] + divMultj+1[58 : 53–p]
≡ RP4j+1[58 : 53–p] − RN4j+1[58 : 53–p] − 1 + divMultj+1[58 : 53–p]
≡ 2p+5Rj − 1 − 2p+3qj+1d − ε

≡ 2p+3(4Rj − qj+1d) − 1 − ε

≡ 2p+3Rj+1 − 1 − ε (mod 2p+6).

Now

(RPj+1 − RNj+1) mod 259

=
(

253−p(RPj+1[58 : 53 − p] − RNj+1[58 : 53 − p])
)

mod 259

= 253−p
(
(RPj+1[58 : 53 − p] − RNj+1[58 : 53 − p]) mod 2p+6

)
,

where

RPj+1[58 : 53 − p] = 2RPj+1[58 : 54 − p] + RPj+1[53 − p]
= 2carj+1[57 : 53 − p] + ε

= 2(carj+1[58 : 53 − p] mod 2p+5) + ε

= (2carj+1[58 : 53 − p]) mod 2p+6) + ε

and

−RNj+1[58 : 53 − p] = −sumj+1[58 : 53 − p]
≡ ˜sumj+1[58 : 53 − p] + 1 (mod 2p+6).

Thus,

(RPj+1 − RNj+1) mod 259

= 253−p
(
(2carj+1[58 : 53 − p]+ε+˜sumj+1[58 : 53 − p]+1) mod 2p+6

)

= 253−p
(
(2p+3Rj+1 − 1 − ε + ε + 1) mod 2p+6

)

= 253−p
(
(2p+3Rj+1) mod 2p+6

)

= (256Rj+1) mod 259.

(d) This is a simple consequence of (10.2), the definition of nextQuot, and
induction. ��
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We have the following error bound for the final quotient:

Lemma 18.6
∣∣Q − x

d

∣∣ ≤ 2
3 · 2−6N .

Proof This is an immediate consequence of Lemma 18.5 (b) with j = 3N + 1
and (10.3). ��

18.4 Post-Processing and Rounding

Notation In discussing the final loop variable values RP3N+1, RN3N+1, QP3N+1,
and QN3N+1, the subscript may be omitted. We shall similarly abbreviate the final
quotient Q3N+1 and remainder R3N+1 as Q and R.

The rounder selects one of two values returned by computeQ: the truncated
quotient Qtrunc or the incremented truncated quotient Qinc. The third value of
computeQ is an indication of inexactness, stk.

In the trivial case of division by a power of 2, the quotient is exact and Qtrunc is
selected:

Lemma 18.7 Assume divPow2 = 1.

(a) 2p · x
d

∈ Z;
(b) Qtrunc ≡ 2p · x

d
(mod 2p);

(c) stk = 0.

Proof In this case, sig(B) = 1 and by Definitions (18.4) and (18.5),

2p · x

d
= 2psig(A) ∈ Z.

By Lemma 5.1 (c),

sig(A) = 1 + 21−pmana,

and hence,

2p · x

d
= 2psig(A) = 2p + 2mana = 2p + Qtrunc ≡ Qtrunc (mod 2p).

By definition, stk = 0. ��
We turn to the usual case divPow2 = 0:

Lemma 18.8 Assume divPow2 = 0.

(a) Qtrunc ≡ ⌊2p · x
d

⌋
(mod 2p);

(b) Qinc ≡ ⌊2p · x
d

⌋+ 2 (mod 2p).
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Proof We consider the execution of computeQ(QP, QN, RP, RN, fmt, false).
It is clear that

Q0 ≡ QP − QN − 1 (mod 254) (18.6)

and

Q1inc ≡ QP − QN + inc (mod 254). (18.7)

We would like to show that

Q1 ≡ QP − QN (mod 254) (18.8)

and

Q0inc ≡ QP − QN − 1 + inc (mod 254). (18.9)

But it is clear that the same congruences do hold modulo 8, and therefore we need
only show that

⌊
Q1

8

⌋
≡
⌊

QP − QN

8

⌋
(mod 251) (18.10)

and
⌊

Q0inc

8

⌋
≡
⌊

QP − QN − 1 + inc

8

⌋
(mod 251), (18.11)

for then

Q1 = 8

⌊
Q1

8

⌋
+ Q1 mod 8

≡ 8

⌊
QP − QN

8

⌋
+ (QP − QN) mod 8

= QP − QN (mod 254),

and an analogous argument yields (18.9). We shall appeal to the simple observation
that for integers z, k, �, and n, if 0 < k ≤ � ≤ n, then

⌊
z + k

n

⌋
=
{⌊

z
n

⌋
if z + k mod n ≥ k⌊

z+�
n

⌋
if z + k mod n < k.

(18.12)
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For the proof of (18.10), we instantiate (18.12) with z = QP − QN − 1, k = 1,
� = 1 + inc, and n = 8. If QP − QN mod 8 = 0, i.e, z + k mod n < k, then

⌊
QP − QN

8

⌋
=
⌊

z + k

n

⌋
=
⌊

z + �

n

⌋
=
⌊

QP − QN + inc

8

⌋

and according to the definition of Q1,

⌊
Q1

8

⌋
mod 251 = Q1[53 : 3]

= Q1inc[53 : 3]
= (QP − QN + inc)[53 : 3]

=
⌊

QP − QN + inc

8

⌋
mod 251

=
⌊

QP − QN

8

⌋
mod 251.

In the remaining case,

⌊
QP − QN

8

⌋
=
⌊

z + k

n

⌋
=
⌊ z

n

⌋
=
⌊

QP − QN − 1

8

⌋

and
⌊

Q1

8

⌋
mod 251 =

⌊
Q0

8

⌋
mod 251

=
⌊

QP − QN − 1

8

⌋
mod 251

=
⌊

QP − QN

8

⌋
mod 251.

For the proof of (18.11), we instantiate (18.12) with z = QP − QN − 1, k = inc,
� = 1 + inc, and n = 8. If QP − QN + inc − 1 mod 8 < inc, i.e, z + k mod n < k,
then

⌊
QP − QN + inc − 1

8

⌋
=
⌊

z + k

n

⌋
=
⌊

z + �

n

⌋
=
⌊

QP − QN + inc

8

⌋

and according to the definitions of Q0inc and inc,

⌊
Q0inc

8

⌋
mod 251 = Q0inc[53 : 3]



18.4 Post-Processing and Rounding 323

= Q1inc[53 : 3]
= (QP − QN + inc)[53 : 3]

=
⌊

QP − QN + inc

8

⌋
mod 251

=
⌊

QP − QN + inc − 1

8

⌋
mod 251.

Otherwise,

⌊
QP − QN + inc − 1

8

⌋
=
⌊

z + k

n

⌋
=
⌊ z

n

⌋
=
⌊

QP − QN − 1

8

⌋

and
⌊

Q0inc

8

⌋
mod 251 =

⌊
Q0

8

⌋
mod 251

=
⌊

QP − QN − 1

8

⌋
mod 251

=
⌊

QP − QN + inc − 1

8

⌋
mod 251.

Next, the sign of the final remainder is used to select either Q1 and Q1inc
or Q0 and Q0inc. By Lemma 18.5 (c), rem = 256R mod 259. It follows from
Lemma 18.5 (b) that remZero = 1 ⇔ R = 0 and 256R = si(rem, 59), which
implies remSign = 0 ⇔ R ≥ 0.

By Lemma 18.6, |26NQ − 26N x
d
| < 1. If R ≥ 0, then

26NQ ≤ 26N x

d
< 26NQ + 1,

i.e.,

⌊
26N x

d

⌋
= 26NQ,

and cin = 1. Thus,

Q01 = Q1 ≡ QP − QN ≡ 26NQ =
⌊

26N x

d

⌋
(mod 26N)

and

Q01inc = Q1inc ≡ QP − QN + inc ≡ 26NQ + inc =
⌊

26N x

d

⌋
+ inc (mod 26N).
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But if R < 0, then

26NQ − 1 < 26N x

d
< 26NQ,

⌊
26N x

d

⌋
= 26NQ − 1,

cin = 0, and we have the same result:

Q01 = Q0 ≡ QP − QN − 1 ≡ 26NQ − 1 =
⌊

26N x

d

⌋
(mod 26N)

and

Q01inc = Q0inc ≡ QP − QN − 1 + inc

≡ 26NQ − 1 + inc

=
⌊

26N x

d

⌋
+ inc (mod 26N).

Finally, we consider the data format. If fmt = SP, then 6N = 24 = p, inc = 2,

Qtrunc = Q01 ≡
⌊

26N x

d

⌋
(mod 2p),

and

Qinc = Q01inc ≡
⌊

26N x

d

⌋
+ 2 (mod 2p).

If fmt = SP, then 6N = p + 1, inc = 4,

Qtrunc =
⌊

Q01

2

⌋
≡
⌊⌊

26N x
d

⌋
2

⌋
=
⌊

26N x

d

⌋
(mod 2p),

and

Qinc =
⌊

Q01inc

2

⌋
≡
⌊⌊

26N x
d

⌋+ 4

2

⌋
=
⌊

26N x

d

⌋
+ 2 (mod 2p). �

Lemma 18.9 stk = 0 ⇔ 2p · x
d

∈ Z.

Proof We may assume divPow2 = 0. As we observed in the proof of Lemma 18.8,
remZero = 1 ⇔ R = 0, and therefore,

stk = 0 ⇔ R = 0 ⇔ 26N x

d
= 26NQ ⇔ 26N x

d
∈ Z.
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If fmt = SP, then 6N = p and there is nothing further to prove, but in the other
cases, 6N = p + 1, and we must show that if 2p+1 · x

d
∈ Z, then 2p x

d
∈ Z.

Suppose this implication does not hold. Then 2p+1 · x
d

must be an odd integer
a and 2p+1x = ad. According to Eqs. (18.4) and (18.5), either 2p+1sig(A) =
a · sig(B) or 2p+2sig(A) = a · sig(B). In either case, a · sig(B) is an even integer,
which we may denote as 2c. There exist integers k and b, k ≥ 0 and b odd, such that
sig(B) = 2−kb. But then ab = 2k+1c, where a and b are odd, a contradiction. ��

Since the rounder operates on the absolute value of the sum, the rounding mode
R must be adjusted. We define

R′ =
⎧⎨
⎩

RDN if R = RUP and A
B

< 0
RUP if R = RDN and A

B
< 0

R otherwise.

Lemma 18.10

(a) x
d

is p-exact ⇔ inx = 0;
(b) R′ (2p x

d
, p
) ≡ 2Qrnd[p−2 : 0] (mod 2p).

Proof We instantiate Lemma 6.104 with z = 2p x
d

and n = e = expo(z) = p. Note
that by Lemma 18.8, Qtrunc[p−1 : 0] = �2p x

d
�[p−1 : 0].

(a) By Lemma 18.9, stk = 0 ⇔ 2p x
d

∈ Z. Thus, by Lemma 6.104 (a) and the
definition of rounder,

2p x

d
is p-exact ⇔ Qtrunc[0] =

⌊
2p x

d

⌋
[0] = stk = 0 ⇔ inx = 0.

(b) First suppose that none of the conditions listed in Lemma 6.104 (b) holds. It is
clear from the definition of rounder that in this case, Qrnd = Qtrunc[53 : 1].
Thus,

R′ (2p x

d
, p
)

= RTZ
(⌊

2p x

d

⌋
, p
)

= 2
⌊

2p x

d

⌋
[p : 1]

≡ 2
⌊

2p x

d

⌋
[p−1 : 1]

= 2Qtrunc[p−1 : 1]
= 2Qrnd[p−2 : 0] (mod 2p).

In the remaining case, Qrnd = Qinc[53 : 1]. Furthermore, either stk = 1 or
Qtrunc[0] = 1, which implies divPow2 = 0, and therefore Lemma 18.8 applies.
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Thus,

R′ (2p x

d
, p
)

= fp+ (RTZ
(⌊

2p x

d

⌋
, p
)

, p
)

= RTZ
(⌊

2p x

d

⌋
, p
)

+ 2

= 2
⌊

2p x

d

⌋
[p : 1] + 2

≡
⌊

2p x

d

⌋
−
⌊

2p x

d

⌋
[0] + 2

≡ Qinc − Qinc[0]
≡ 2Qinc[p−1 : 1]
= 2Qrnd[p−2 : 0] (mod 2p). �

The design is simplified by the observation that the quotient is never rounded up
to a power of 2:

Lemma 18.11 R′ (2p x
d
, p
) ≤ 2p+1 − 2.

Proof It will suffice to show that 2p x
d

≤ 2p+1 − 2, or x
d

≤ 2 − 21−p.
If sig(A) ≥ sig(B), then by Eqs. 18.4 and 18.5,

x

d
= sig(A)

sig(B)
≤ 2 − 21−p

1
= 2 − 21−p.

If sig(A) < sig(B), then

x

d
= 2sig(A)

sig(B)
≤ 2(sig(B) − 21−p)

sig(B)
= 2 − 22−p

sig(B)
< 2 − 21−p. �

We consider the normal and subnormal cases separately:

Lemma 18.12 If
∣∣A
B

∣∣ ≥ spn(fmt), then

(a) R′ (∣∣A
B

∣∣ , p) = ∣∣A
B

∣∣⇔ inx = 0;
(b) R′ (∣∣A

B

∣∣ , p) = 2expQ−bias−(p−1)(2p−1 + Qrnd[p−2 : 0]).
Proof

(a) This follows from Lemma 18.10 (a):

R′
(∣∣∣∣AB

∣∣∣∣ , p
)

=
∣∣∣∣AB
∣∣∣∣⇔

∣∣∣∣AB
∣∣∣∣ is p-exact ⇔ x

d
is p-exact ⇔ inx = 0.

(b) By Lemma 18.11, expo
(R′ (2p x

d
, p
)) = p, and by Lemma 18.10 (b),

R′ (2p x

d
, p
)

= 2p + R′ (2p x

d
, p
)

mod 2p = 2p + 2Qrnd[p−2 : 0]
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and by Lemma 18.3 (e),

R′
(∣∣∣∣AB

∣∣∣∣ , p
)

= 2expQ−bias−pR′ (2p x

d
, p
)

= 2expQ−bias−(p−1)(2p−1 + Qrnd[p−2 : 0]). �

For the subnormal case, we appeal to Lemmas 6.104 and 6.108:

Lemma 18.13 If
∣∣A
B

∣∣ < spn(fmt), then

(a) drnd
(∣∣A

B

∣∣ ,R′, fmt
) = ∣∣A

B

∣∣⇔ inxDen = 0;
(b) drnd

(∣∣A
B

∣∣ ,R′, fmt
) = 21−bias−(p−1)QrndDen[p−1 : 0].

Proof According to the definition of rounder,

QDen = 2p +
⌊

2p x

d

⌋
mod 2p =

⌊
2p x

d

⌋
,

Qshft = �2−shftQDen� =
⌊

2p−shft x

d

⌋
,

and

stkDen = 0 ⇔ Qshft = 2−shftQDen and QDen = 2p x

d

⇔ Qshft = 2p−shft x

d
.

By Lemma 18.3 (e),

expo

(
A

B

)
= expQ − bias < expo(spn(fmt)) = 1 − bias,

and hence expQ ≤ 0.
Case 1: expQ > 1 − p.

In this case, shft = 1 − expQ < p. We shall invoke Lemma 6.104 with

n = p − shft = p + expQ − 1 > 0

and

z = 2p−shft x

d
= 2p−(1−expQ) x

d
= 2n x

d
.

Note that Qshft = �z�. By Definition 6.10,

drnd

(∣∣∣∣AB
∣∣∣∣ ,R′, fmt

)
= R′

(∣∣∣∣AB
∣∣∣∣ , p + expo

(
A

B

)
− expo(spn(fmt))

)
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= R′
(∣∣∣∣AB

∣∣∣∣ , p + (expQ − bias) − (1 − bias)

)

= R′
(∣∣∣∣AB

∣∣∣∣ , n
)

.

(a) This now follows from Lemmas 6.104 (a) and 18.3 (e):

drnd

(∣∣∣∣AB
∣∣∣∣ ,R′, fmt

)
=
∣∣∣∣AB
∣∣∣∣ ⇔ R′

(∣∣∣∣AB
∣∣∣∣ , n
)

=
∣∣∣∣AB
∣∣∣∣

⇔ 2n x

d
∈ Z and Qshft[0] =

⌊
2n x

d

⌋
[0] = 0

⇔ stkDen = grdDen = 0

⇔ inxDen = 0.

(b) If none of the conditions listed in Lemma 6.104 (b) holds, then it is clear from
the definition of rounder that QrndDen = Qshft[53 : 1], and therefore

R′ (2n x

d
, n
)

= RTZ(Qshft, n) = 2Qshft[n : 1] = 2QrndDen[p−1 : 0].

Otherwise, QrndDen = Qshft[53 : 1] + 1 and

R′ (2n x

d
, n
)

= fp+(RTZ(Qshft, n), n)

= RTZ(Qshft, n) + 2

= 2(Qshft[n : 1] + 1)

= 2QrndDen[p−1 : 0].

Thus, by Lemma 18.3,

R′
(∣∣∣∣AB

∣∣∣∣ , n
)

= 2expQ−bias−nR′ (2n x

d
, n
)

= 2expQ−bias−(p+expQ−1)2QrndDen[p−1 : 0]
= 21−bias−(p−1)QrndDen[p−1 : 0].

Case 2: expQ ≤ 1 − p.
In this case, p − shft ≤ 0, and therefore Qshft < 2. By Lemma 18.3,

∣∣∣∣AB
∣∣∣∣ < 2expQ−bias+1 ≤ 22−p−bias = spd(fmt).



18.4 Post-Processing and Rounding 329

(a) Either drnd
(∣∣A

B

∣∣ ,R′, fmt
) ≥ spd(fmt) or drnd

(∣∣A
B

∣∣ ,R′, fmt
) = 0. Thus,

drnd

(∣∣∣∣AB
∣∣∣∣ ,R′, fmt

)
=
∣∣∣∣AB
∣∣∣∣

and we must show inxDen = 1.
If inxDen = 0, then stkDen = Qshft[0] = 0. But if stkDen = 0, then as

noted above, Qshft = 2p−shft x
d

= 0, which implies Qshft = Qshft[0] = 1.
(b) Since Qshft ≤ 1, lsbDen = Qshft[1] = 0 and

grdDen = Qshft[0] = 1 ⇔ Qshft =
⌊

2p−shft x

d

⌋
≥ 1

⇔ p − shft = 0

⇔
∣∣∣∣AB
∣∣∣∣ ≥ 1

2
spd(fmt).

We invoke Lemma 6.108, considering the three cases of the lemma
separately.

Suppose, for example,
∣∣A
B

∣∣ > 1
2 spd(fmt). Then grdDen = stkDen = 1. If

R′ = RNE or R′ = RUP, then by Lemma 6.108 (c), drnd
(∣∣A

B

∣∣ ,R′, fmt
) =

spd(fmt), and according to the definition of round, QrndDen = Qshft[53 : 1] +
1 = 1, which implies

21−bias−(p−1)QrndDen[p−1 : 0] = 21−bias−(p−1) = spd(fmt)

as well. But if R′ = RTZ or R′ = RDN, then drnd
(∣∣A

B

∣∣ ,R′, fmt
) = 0,

QrndDen = Qshft[53 : 1] = 0, and the claim again holds.
The other two cases are similar. ��

Our correctness theorem for division is similar to that of multiplication (The-
orem 16.1), matching the behavior of the top-level function fdiv64 with the
specification function arm-binary-spec. The proof is an extensive but entirely
straightforward case analysis involving nothing more than inspection of the two
functions and Lemmas 18.12 and 18.13.

Theorem 18.1 Let

〈Dspec, Rspec〉 = arm-binary-spec(DIV, opa, opb, Rin, fmt),

where fmt ∈ {DP, SP, HP}, opa and opb are 64-bit vectors, and Rin is a 32-bit
vector, and let

〈D, flags〉 = fdiv64(opa, opb, fmt, Rin[24], Rin[25], Rin[23 : 22]).

Then D = Dspec and Rin | flags = Rspec.



Chapter 19
Multi-Precision Radix-4 SRT Square
Root

Finally, we present the function fsqrt64, which performs double-, single-, and
half-precision square root extraction. This function, which is listed in Appendix E, is
based on an implementation of the minimally redundant radix-4 case of SRT square
root extraction characterized by Lemma 10.15 of Sect. 10.5. As noted in Chap. 18,
it is derived from the same RTL module as the function fdiv64. The design shares
hardware between the two operations for post-processing; therefore, the auxiliary
functions computeQ, rounder, and final are shared by the two models.

The iterative phases, on the other hand, are implemented separately. Since the
computation that updates the partial remainder is more complicated for the square
root, two iterations of this algorithm rather than three are performed on each clock
cycle. The resulting timing constraints do not require different approximations for
the iterations within a cycle. This allows a simplification of the structure of the
model: an iteration of the main for loop of fsqrt64 corresponds to a single
iteration of the algorithm rather than a cycle. Since the first iteration of the algorithm
is once again executed before the loop is entered and the loop variable j ranges from
1 to N − 1, the number of iterations of the algorithm is N .

Notation The notational conventions established in Chap. 18 remain in force. Thus,
for a variable that is assigned values within the main for loop, we shall use the
subscript j to denote its value after j −1 iterations of the loop, i.e., after j iterations
of the algorithm. When the subscript is omitted from a loop variable, it is understood
to be N , corresponding to the final value. We shall similarly abbreviate the final
quotient QN and remainder RN as Q and R.

19.1 Pre-processing

The input and output parameters of fsqrt64 are the same as those of fdiv64,
except that the second operand, opb, is not present. Once again, the initial phase
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of this function handles the trivial early termination cases, in which the operand
is a zero, a NaN, an infinity, a negative value, or a power of 2. We shall focus on
the remaining case, in which the operand is either a positive denormal that is not
forced to 0 or a positive normal. The operand value A, precision p, exponent width
e, exponent bias bias, and rounding mode R are defined as in Sect. 18.1.

The function normalize performs a mantissa shift in the case of a denormal
operand and returns values that satisfy the following. Note that while tighter bounds
on the root exponent expQ could be achieved, those given are sufficient to preclude
overflow and underflow:

Lemma 19.1

(a) 252 ≤ siga < 253 and siga[52 − p : 0] = 0;
(b) A = 2expShft−bias−52siga;

(c) expQ =
⌊

expShft+bias
2

⌋
and 0 < expQ < 2e − 2.

Proof This is easily proved by inspection of the definition of normalize. ��
We define

x =
{

sig(A)
4 if expShft is odd

sig(A)
2 if expShft is even.

Clearly 1
4 ≤ x < 1, as required by the algorithm of Sect. 10.5. Since we have

defined x and qj for 1 ≤ j ≤ N , the definitions of the partial roots and remainders
Qj and Rj for 0 ≤ j ≤ N are given by Eqs. (10.13) and (10.14).

The algorithm computes an approximation of
√

x, which is related to the desired
final result

√
A according to the following:

Lemma 19.2 A = 22(expQ−bias+1)x.

Proof If expShft is odd, then

expQ = expShft + bias

2
= expShft − bias

2
+ bias

and

A = (2expShft−bias+2)(2−54siga) = 2
2
(

expShft−bias
2 +1

)
x = 22(expQ−bias+1)x.

If expShft is even, then

expQ = expShft + bias − 1

2
= expShft − bias + 1

2
+ bias − 1
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and

A = (2expShft−bias+1)(2−53siga) = 2
2
(

expShft−bias+1
2

)
x = 22(expQ−bias+1)x.

��
The remaining iterations are performed within the for loop by the functions

nextDigit, nextRem, and nextRoot.
The first iteration is performed by the function firstIter, the values of which

satisfy the following:

Lemma 19.3

(a) q1 is the greatest k ∈ {−2, . . . , 2} such that mk(8, 0) ≤ A0;
(b) 254(Q1 − 1) = QP1 − QN1 and QP1[51 : 0] = QN1[51 : 0] = 0;
(c) 255R1 = RP1 − RN1 and RP1[52 − p : 0] = RN1[52 − p : 0] = 0;

Proof We shall consider the case in which expShft is odd and siga[51] = 1; the
other three cases are similar.

(a) Since q1 = −1, we must show that m−1(8, 0) ≤ 4R0 < m0(8, 0), where
R0 = x − 1. But since 252 + 251 ≤ siga < 253 and x = 2−54siga, 3

8 ≤ x < 1
2

and

m−1(8, 0) = −5

2
≤ 4(x − 1) < −2 < −1 = m0(8, 0).

(b) Q1 = 1 + 4−1(−1) = 3
4 and QP1 − QN1 = 0 − 252 = 254( 3

4 − 1).
(c) RP1 = 23siga+258 +257 = 259 +257(x −1) = 257R0 and RN1 = 253 +259 −

256 = 259 −2537. By Lemma 19.1 (a), RP1[52−p : 0] = RN1[52−p : 0] = 0,
and by (10.14),

R1 = 4R0 − (−1)(2(1) + 4−1(−1)) = 4R0 − 7

4
= 2−55(RP1 − RN1).

��

19.2 Iterative Phase

The remainder approximation Aj of Lemma 10.15 is defined by

Aj =
{

4R0 if j = 0
1
8 si(RS7j , 7) if 1 ≤ j ≤ N.
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Aj and Rj are related according to the comparison constants of Fig. 10.3 of
Sect. 10.4 as specified by the following lemma:

Lemma 19.4 The following conditions hold for all j , 1 ≤ j ≤ N :

(a) If j ′ = min(j − 1, 2) and i = 16
(
Qj ′ − 1

2

)
, then qj is the greatest k ∈

{−2, . . . , 2} such that mk(i, j − 1) ≤ Aj−1;
(b) For all k ∈ {−1, . . . , 2},

Aj−1 < mk(i, j − 1) ⇒ 4Rj−1 < mk(i, j − 1)

and

Aj−1 ≥ mk(i, j − 1) ⇒ 4Rj−1 > mk(i, j − 1) − 1

32
;

(c) B(j) ≤ Rj ≤ B(j);
(d) 1

2 ≤ Qj ≤ 1;
(e) 254(Qj − 1) = QPj − QNj and QPj [53 − 2j : 0] = QNj [53 − 2j : 0] = 0;
(f) 255Rj ∈ Z, 255Rj ≡ RPj − RNj (mod 259) and RPj [52 −p : 0] = RNj [52 −

p : 0] = 0.

Proof We first consider the case j = 1. We have Qj ′ = Q0 = 1 and i = 8. Since
A0 = 4R0, (b) holds trivially and (a), (e), and (f) correspond to Lemma 19.3 (a),
(b), and (c); (c) and (d) then follow from Lemma 10.15.

Let 1 ≤ j < N and assume that the lemma holds for all �, 1 ≤ � ≤ j . We shall
show that all claims hold for j + 1:

(a) First note that the value ij computed by fsqrt64 coincides with the value i

defined above: If j = 1, then this is clear from the definition of firstIter, and if
j ≥ 2, then

ij=i2=i1 +q2=16

(
Q1 − 1

2

)
+q2=16

(
Q1 + 4−2q2 − 1

2

)
=16

(
Q2 − 1

2

)
.

Now consider the computation of nextDigit(RPj , RNj , i, j).
Recall that Aj = 1

8 si(RS7, 7). It is clear from the definition of nextDigit that
qj+1 is the greatest k such that 8mk(i, j) ≤ si(RS7, 7), or mk(i, j) ≤ Aj .

(b) We must show that for all k,

Aj < mk(i, j) ⇒ 4Rj < mk(i, j)

and

Aj ≥ mk(i, j) ⇒ 4Rj > mk(i, j) − 1

32
.
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We shall invoke Lemma 2.54 with

X = RP4 − RN4 ≡ 4(RPj − RNj ) ≡ 4(255Rj ) = 257Rj (mod 259)

and

Y = 250y,

where

y = RP4[58 : 50] − RN4[58 : 50].

Let X̄ = X mod 259, Ȳ = Y mod 259, and ȳ = y mod 29. By Lemmas 1.18
and 2.52,

si(Ȳ , 59) = si(250ȳ, 59) = 250si(ȳ, 9).

Since

|Rj | ≤ B(j) = 2 · 2

3
Qj +

(
2

3

)2

4−j ≤ 4

3
+ 1

9
< 2 − 2−7,

|257Rj | < 258 − 250, which implies 257Rj = si(X̄, 59). Thus, the hypothesis
of the lemma is satisfied and we may conclude that

|257Rj − 250si(ȳ, 9)| = |si(X̄, 59) − si(Ȳ , 59)

= |X − Y |
= |RP4[49 : 0] − RN4[49 : 0]|
< 250.

It is clear by a case analysis on RP4[50] and RN4[50] that RS8[7 : 0] = ȳ[8 : 1],
and it follows that RS7 = ȳ[8 : 2]. Consequently, for m ∈ Z,

si(RS7, 7) ≥ m ⇔ si(ȳ, 9) ≥ 4m.

Thus,

Aj < mk(i, j) ⇒ si(RS7, 7) < 8mk(i, j)

⇒ si(ȳ, 9) < 32mk(i, j)

⇒ si(ȳ, 9) ≤ 32mk(i, j) − 1

⇒ 257Rj < 250(32mk(i, j) − 1) + 250 = 255mk(i, j)

⇒ 4Rj < mk(i, j).
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Similarly,

Aj ≥ mk(i, j) ⇒ si(RS7, 7) ≥ 8mk(i, j)

⇒ si(ȳ, 9) ≥ 32mk(i, j)

⇒ 257Rj > 25032mk(i, j) − 250 = 255
(

mk(i, j) − 1

32

)

⇒ 4Rj > mk(i, j) − 1

32
.

(c) This follows from Lemma 10.15, as does (d).
(e) This follows from Eq. (10.13) and the definition of nextRoot.
(f) Consider the computation of nextRem(RPj , RNj , QPj , QNj , qj+1, j, fmt).

Let D = 2Qj + 4−(j+1)qj+1. Then (10.14) may be written as Rj+1 =
4Rj − qj+1D. Clearly,

Dcar − Dsum = 256 + 4QPj − 4QNj + 253−2j qj+1

= 256 + 256(Qj − 1) + 2552−2−2j qj+1

= 255
(

2Qj + 4−(j+1)qj+1

)

= 255D,

and

RP4 − RP4 ≡ 4(RPj − RNj ) ≡ 2554Rj (mod 259).

If qj+1 = 0, then the claim holds trivially:

RPj+1 − RNj+1 = RP4 − RP4 ≡ 2554Rj = 255Rj+1 (mod 259).

Suppose qj+1 = 0. Then

DQcar − DQsum = −qj+1(Dcar − Dsum) = −255qj+1D.

As a notational convenience, for a 59-bit vector V , let V ′ = V [58 : 53 − p].
Note that if V [52 − p : 0] = 0, then V ′ = 2p−53V . Clearly, this holds for the
vectors DQcar, DQsum, RP4, and RN4.

Now according to the definitions of sum1 and car1,

~sum1′ = ~RN4′ ^ RP4′ ^ DQcar′

and

car1′ = 2(~RN4′ & RP4′ | (~RN4′ | RP4′) & DQcar′),
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which implies car1′ + ~sum1′ = RP4′ + ~RN4′ + DQcar′, and

car1′ − sum1′ ≡ car1′ + ~sum1′ + 1

≡ RP4′ + ~RN4′ + DQcar′ + 1

≡ RP4′ − RN4′ + DQcar′ (mod 2p+6).

Similarly,

car2′ + ~sum2′ ≡ ~sum1′ + car1′ + ~DQsum′ + 1

≡ ~sum1′ + car1′ − DQsum′ (mod 2p+6)

and

car2′ − sum2′ ≡ car2′ + ~sum2′ + 1

≡ ~sum1′ + car1′ − DQsum′ + 1

≡ car1′ − sum1′ − DQsum′

≡ (RP4′ − RN4′) + (DQcar′ − DQsum′)

≡ 2p−532554Rj − 255qj+1D

= 2p+2Rj+1 (mod 2p+6).

But

RPj+1 − RNj+1 = 253−pcar2′ − 253−psum2′ ≡ 255Rj+1 (mod 259).

��

19.3 Post-Processing and Rounding

In comparison to division, post-processing of the square root is simplified by
the absence of underflow and overflow (Lemma 19.1 (c)), but has the minor
complication that the result may round up to a power of 2.

On the other hand, the formal proof of correctness is significantly complicated
by the limitations of the ACL2 logic, in which the square root function cannot
be explicitly defined. Thus, the ACL2 specification of this operation, instead of
referring directly to the desired rounded result R(

√
A,p), is expressed in terms

R(
(p+2)

√
A,p), where (p+2)

√
A is the (p + 2)-bit approximation of the square root

discussed in Chap. 7.
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However, in order to establish the required bound on the approximation error
of the final root Q, it will be necessary to base our analysis instead on the value
(2N+1)

√
A, with (2N+1)-bit accuracy, where 2N+1 is either p+2 or p+3 depending

on the data format. This is justified by Lemma 7.16, which ensures that

R(
(p+2)

√
A,p) = R(

(2N+1)
√

A,p).

The rounder actually produces a rounding of (2N+1)
√

x, which is related to the
desired result as follows:

Lemma 19.5 (2N+1)
√

A = 2expQ−bias+1 (2N+1)
√

x.

Proof This follows from Lemmas 19.2 and 7.15. ��
Lemma 19.6

(a) (Q − 2
3 4−N)2 ≤ x ≤ (Q + 2

3 4−N)2;
(b) | (2N+1)

√
x − Q| < 2−2N .

Proof (a) is a consequence of Lemmas 19.4 (c) and 10.10. It follows that

(Q − 4−N)2 < x < (Q + 4−N)2,

and (b) will follow from Lemma 7.18 once we show that Q − 4−N and Q + 4−N

are both 2N -exact.
Since Q − 4−N < 1, expo(Q − 4−N) ≤ −1 and since 4NQ ∈ Z,

22N−1−expo(Q−4−N)(Q − 4−N) = 2−1−expo(Q−4−N)4−N(Q − 4−N) ∈ Z,

i.e., Q − 4−N is 2N -exact. To draw the same conclusion about Q + 4−N , it will
suffice to show that Q + 4−N ≤ 1.

Since x < 1 and x is p-exact, we have (Q − 4−N)2 < x ≤ 1 − 2−p < (1 −
2−p−1)2. Thus, Q− 4−N < 1 − 2−p−1 and Q < 1 − 2−p−1 + 2−2N ≤ 1. It follows
that Q ≤ 1 − 4−N , i.e., Q + 4−N ≤ 1. ��
Lemma 19.7 (2N+1)

√
x < 1 − 2−p−1 and Q ≤ 1 − 2−p−1.

Proof As we have noted, x < (1 − 2−p−1)2. The bound on (2N+1)
√

x follows from
Lemma 7.18. To establish the bound on Q, first suppose fmt = SP. Then 2N = p+1
and by Lemma 19.6,

Q < (2N+1)
√

x + 2−p−1 < 1,

and hence Q ≤ 1 − 2−2N = 1 − 2−p−1. On the other hand, if fmt = SP, then
2N = p + 2 and

Q < (2N+1)
√

x + 2−p−2 < 1 − 2−p−1 + 2−p−2 = 1 − 2−p−2,

which again implies Q ≤ 1 − 2−p−1. ��
Once again, the rounder selects one of two values that are returned by computeQ:
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Lemma 19.8

(a) Qtrunc ≡ ⌊2p+1 (2N+1)
√

x
⌋

(mod 2p);
(b) Qinc ≡ ⌊2p+1 (2N+1)

√
x
⌋+ 2 (mod 2p).

Proof The proof closely follows that of Lemma 18.8. Equations (18.6)–(18.9) hold
as in the division case, and once again, the sign of the final remainder is used to
select either Q1 and Q1inc or Q0 and Q0inc.

It follows from Lemma 19.4 that rem = 256 R mod 259, and therefore, by (10.14)
and Lemma 7.18,

remSign = 0 ⇔ R ≥ 0 ⇔ (2N+1)
√

x ≥ Q

and

remZero = 1 ⇔ R = 0 ⇔ (2N+1)
√

x = Q.

By Lemma 19.6, |22NQ − 22N (2N+1)
√

x| < 1. If R ≥ 0, then

22NQ ≤ 22N (2N+1)
√

x < 22NQ + 1,

i.e.,

⌊
22N (2N+1)

√
x
⌋

= 22NQ,

and cin = 1. Thus,

Q01 = Q1 ≡ QP − QN ≡ 22NQ =
⌊

22N (2N+1)
√

x
⌋

(mod 22N)

and

Q01inc = Q1inc ≡ QP − QN + inc

≡ 22NQ + inc

=
⌊

22N (2N+1)
√

x
⌋

+ inc (mod 22N).

But if R < 0, then

22NQ − 1 < 22N (2N+1)
√

x < 22NQ,

⌊
22N (2N+1)

√
x
⌋

= 22NQ − 1,

cin = 0, and we have the same result:

Q01 = Q0 ≡ QP − QN − 1 ≡ 22NQ − 1 =
⌊

22N (2N+1)
√

x
⌋

(mod 22N)
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and

Q01inc = Q0inc ≡ QP − QN − 1 + inc

≡ 22NQ − 1 + inc

=
⌊

22N (2N+1)
√

x
⌋

+ inc (mod 22N).

Finally, we consider the data format. If fmt = SP, then 2N = p + 1, inc = 2,

Qtrunc ≡ Q01 ≡
⌊

22N (2N+1)
√

x
⌋

=
⌊

2p+1 (2N+1)
√

x
⌋

(mod 2p),

and

Qinc ≡ Q01inc ≡
⌊

22N (2N+1)
√

x
⌋

+ 2 =
⌊

2p+1 (2N+1)
√

x
⌋

+ 2 (mod 2p).

If fmt = SP, then 2N = 26 = p + 2, inc = 4,

Qtrunc ≡
⌊

Q01

2

⌋
≡
⌊⌊

22N (2N+1)
√

x
⌋

2

⌋

=
⌊

22N−1 (2N+1)
√

x
⌋

=
⌊

2p+1 (2N+1)
√

x
⌋

(mod 2p),

and

Qinc ≡
⌊

Q01inc

2

⌋
≡
⌊⌊

22N (2N+1)
√

x
⌋+ 4

2

⌋

=
⌊

22N−1 (2N+1)
√

x
⌋

+ 2

=
⌊

2p+1 (2N+1)
√

x
⌋

+ 2 (mod 2p).

��
The function computeQ also returns an indication of inexactness:

Lemma 19.9 stk = 0 ⇔ 2p+1 (2N+1)
√

x ∈ Z.

Proof As observed above, remZero = 1 ⇔ (2N+1)
√

x = Q, and therefore,

stk = 0 ⇔ 22N (2N+1)
√

x = 22NQ ⇔ 22N (2N+1)
√

x ∈ Z.

Since 2N is either p + 1 or p + 2, it suffices to show that if 2N = p + 2 and
22N · (2N+1)

√
x ∈ Z, then 2p+1 (2N+1)

√
x ∈ Z.
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Suppose this implication does not hold. Then (2N+1)
√

x is 2N -exact, and by
Corollary 7.19, ( (2N+1)

√
x)2 = x. Furthermore, 22N · (2N+1)

√
x is an odd integer. But

this implies that (22N · (2N+1)
√

x)2 = 22p+4x is an odd integer, which is impossible,
since 2p+1x is an integer. ��
Lemma 19.10

(a) (2N+1)
√

x is p-exact ⇔ inx = 0;
(b) R (2p+1 (2N+1)

√
x, p

) ≡ 2Qrnd[p−2 : 0] (mod 2p).

Proof The proof may be derived from that of Lemma 18.10 simply by replacing
2p x

d
with 2p+1 (2N+1)

√
x. ��

It is not difficult to show that (2N+1)
√

x rounds up to 1 only if the rounding mode
is RUP and x has the maximum value 1 − 2−p. For timing reasons, however, the
implementation instead makes this determination by observing that the sequence of
root digits satisfies conditions that imply that the final root has its maximum value,
1 − 2−p−1. In this event, the variable expInc is set, causing expQ to be incremented:

Lemma 19.11 The following are equivalent:

(a) R( (2N+1)
√

x, p) = 1;
(b) R = RUP and x = 1 − 2−p;
(c) R = RUP and Q = 1 − 2−p−1;
(d) expInc = 1.

Proof Since (2N+1)
√

x < 1 − 2−p−1, R( (2N+1)
√

x, p) < 1 unless R = RUP.
If x = 1 − 2−p, then x > (1 − 2−p)2 and by Lemma 7.18, (2N+1)

√
x > 1 − 2−p,

which implies RUP( (2N+1)
√

x, p) = 1. Conversely, if x = 1 − 2−p, then since x

is p-exact, x ≤ 1 − 21−p < (1 − 2−p)2, which implies (2N+1)
√

x < 1 − 2−p and
RUP( (2N+1)

√
x, p) ≤ 1 − 2−p.

If Q = 1 − 2−p−1, then (2N+1)
√

x > 1 − 2−p−1 − 2−2N ≥ 1 − 2−p and
RUP( (2N+1)

√
x, p) = 1. Otherwise, Q < 1−2−p−1, which implies Q ≤ 1−2−p−1−

2−2N and by Lemma 19.6(a),

x ≤
(

Q + 2

3
· 4−N

)2

≤
(

1 − 2−p−1 − 1

3
· 2−2N

)2

< 1 − 2−p.

Regarding (d), it is clear that expInc = 1 iff the following conditions hold: opa
is normal, R = RUP and

qj =
⎧⎨
⎩

0 if j < N

−1 if j = N and fmt = SP
−2 if j = N and fmt = SP.

Suppose expInc = 1. Then by (10.13) and the definition of N ,

Q =
{

1 − 4−N = 1 − 22N = 1 − 2−p−1 if fmt = SP
1 − 2 · 4−N = 1 − 21−2N = 1 − 2−p−1 if fmt = SP.
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Conversely, suppose RUP( (2N+1)
√

x, p) = 1. Then opa must be normal, for if opa
were denormal, then x would be (p − 1)-exact, contradicting x = 1 − 2−p.

We shall show by induction on j that qj = 0 for 1 ≤ j < N . Let 0 ≤ j < N − 1
and assume that q1 = . . . qj = 0. Then Qj = 1,

Rj = 4j (x − Q2
j ) = 4j (1 − 2−p − 1) = −22j−p,

and

4Rj = −22j+2−p ≥ −22(N−2)+2−p = −22N−(p+2) ≥ −1 = m0(8, j).

By Lemma 18.5(a), we also have Aj ≥ m0(8, j), and consequently qj+1 ≥ 0. But
since Qj+1 ≤ 1, this implies qj+1 = 0.

Thus, QN−1 = 1 and Q = 1 + 4−NqN = 1 − 2−p−1, which implies

qN = −22N−p−1 =
{−1 if fmt = SP

−2 if fmt = SP.

��
We have an analog of Lemma 18.12, but since underflow cannot occur, we need

no analog of Lemma 18.13:

Lemma 19.12

(a) R(
(2N+1)

√
A,p) = (2N+1)

√
A ⇔ inx = 0;

(b) R(
(2N+1)

√
A,p) = 2expRnd−bias−(p−1)(2p−1 + Qrnd[p−2 : 0]).

Proof

(a) This follows from Lemmas 19.5 and 19.10 (a):

R(
(2N+1)

√
A,p) = (2N+1)

√
A ⇔ (2N+1)

√
A is p-exact

⇔ (2N+1)
√

x is p-exact

⇔ inx = 0.

(b) First suppose R( (2N+1)
√

x, p) < 1. Then

expo(R(2p+1 (2N+1)
√

x, p)) = expo(2p+1 (2N+1)
√

x) = p + 1 − 1 = p.

Therefore, by Lemma 19.10 (b),

R(2p+1 (2N+1)
√

x, p)=2p +R(2p+1 (2N+1)
√

x, p) mod 2p=2p + 2Qrnd[p−2 : 0]

and by Lemmas 19.5 and 19.11,

R(
(2N+1)

√
A,p) = 2expQ−bias+1−(p+1)R(2p+1 (2N+1)

√
x, p)

= 2expRnd−bias+1−(p+1)R(2p+1 (2N+1)
√

x, p)
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= 2expRnd−bias−(p−1)(2p−1 + Qrnd[p−2 : 0]).

In the remaining special case, R( (2N+1)
√

x, p) = 1 and by Lemma 19.10 (b),

2Qrnd[p−2 : 0] = R(2p+1 (2N+1)
√

x, p) mod 2p = 2p+1 mod 2p = 0.

According to Lemma 19.11, expInc = 1, and therefore

(2N+1)
√

A = 2expQ−bias+1 (2N+1)
√

x

= 2(expRnd−1)−bias+1 (2N+1)
√

x

= 2expRnd−bias (2N+1)
√

x

and

R(
(2N+1)

√
A,p) = 2expRnd−biasR( (2N+1)

√
x, p)

= 2expRnd−bias−(p−1)(2p−1 + Qrnd[p−2 : 0]).

��
The statement and proof of our correctness theorem are quite similar to those of

Theorem 18.1, although simplified by the absence of overflow and underflow:

Theorem 19.1 Let

〈Dspec, Rspec〉 = arm-sqrt-spec(opa, Rin, fmt),

where opa is a 64-bit vector, Rin is a 32-bit vector, and fmt ∈ {DP, SP, HP}, and let

〈D, flags〉 = fsqrt64(opa, fmt, Rin[24], Rin[25], Rin[23 : 22]).

Then D = Dspec and Rin | flags = Rspec.



Appendices

These appendices contain the pseudocode versions of the RTL models of Chaps.
16–19.

A Common Code

// This section contains constant declarations and utility functions that are
// shared by modules of subsequent sections.

// Formats:

enum Format {HP, SP, DP};

// Data classes:

enum Class {ZERO, INF, SNAN, QNAN, NORM, DENORM};

// Rounding modes:

const ui2 rmodeNear = 0, rmodeUP = 1, rmodeDN = 2 rmodeZero = 3;

// Flags:

const uint IDC = 7, IXC = 4, UFC = 3, OFC = 2, DZC = 1, IOC = 0;

// Extract operand components, apply FZ, identify data class,
// and record denormal exception:

<bool, ui11, ui52, Class, ui8> analyze(ui64 op, Format fmt, bool fz, ui8 flags){

// Extract fields:
bool sign;
ui11 exp;
ui52 man, manMSB;
bool expIsMax;
switch (fmt) {
case DP:
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sign = op[63];
exp = op[62:52];
expIsMax = exp == 0x7FF;
man = op[51:0];
manMSB = 0x8000000000000;
break;

case SP:
sign = op[31];
exp = op[30:23];
expIsMax = exp == 0xFF;
man = op[22:0];
manMSB = 0x400000;
break;

case HP:
sign = op[15];
exp = op[14:10];
expIsMax = exp == 0x1F;
man = op[9:0];
manMSB = 0x200;

}

// Classify:
Class c;
if (expIsMax) { // NaN or infinity

if (man == 0) {
c = INF;

}
else if (man & manMSB) {

c = QNAN;
}
else {

c = SNAN;
}

}
else if (exp == 0) { // zero or denormal

if (man == 0) {
c = ZERO;

}
else if (fz) {

c = ZERO;
if (fmt != HP) {

flags[IDC] = 1; // denormal exception
}

}
else {

c = DENORM;
}

}
else { // normal

c = NORM;
}
return <sign, exp, man, c, flags>;

}

// Count leading zeroes of a nonzero 53-bit vector.
// After k iterations of the loop, where 0 <= k <= 6, the value of n is 2^(6-k)
// and the low n entries of z and c are as follows:
// Consider the partition of x into n bit slices of width 2^k. For 0 <= i < n,
// the i^th slice is x[2^k*(i+1)-1:2^k*i]. Let L(i) be the number of leading
// zeroes of this slice. Then
// z[i] = 1 <=> L(i) = 2^k;
// L(i) < 2^k => c[i] = L(i).
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ui6 CLZ53(ui53 m) {
ui64 x = 0;
x[63:11] = m;
bool z[64];
ui6 c[64];
for (uint i = 0; i < 64; i++) {

z[i] = !x[i];
c[i] = 0;

}
uint n = 64;
for (uint k = 0; k < 6; k++) {

n = n / 2; // n = 2^(5-k)
for (uint i = 0; i < n; i++) {

c[i] = z[2 * i + 1] ? c[2 * i] : c[2 * i + 1];
c[i][k] = z[2 * i + 1];
z[i] = z[2 * i + 1] && z[2 * i];

}
}
return c[0];

}

// A 128-bit version, used by fadd64:

ui7 CLZ128(ui128 x) {
bool z[128];
ui7 c[128];
for (uint i = 0; i < 128; i++) {
z[i] = !x[i];
c[i] = 0;

}
uint n = 128;
for (uint k = 0; k < 7; k++) {
n = n / 2;
for (uint i = 0; i < n; i++) {

c[i] = z[2 * i + 1] ? c[2 * i] : c[2 * i + 1];
c[i][k] = z[2 * i + 1];
z[i] = z[2 * i + 1] && z[2 * i];

}
}
return c[0];

}

B Double-Precision Multiplication

// Handle the special case of a zero, infinity, or NaN operand:

<ui117, ui8, bool, bool, bool>

specialCase(ui64 opa, ui64 opb, Class classa, Class classb,

bool dn, bool fma, ui8 flags) {

ui117 D = 0;

ui64 zero = 0;

zero[63] = opa[63] ^ opb[63];

ui64 infinity = 0x7FF0000000000000 | zero;

ui64 manMSB = 0x8000000000000;

ui64 defNaN = 0x7FF8000000000000;

bool piz = false;
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if (classa == SNAN) {

D = dn ? defNaN : fma ? opa : opa | manMSB;

flags[IOC] = 1; // invalid operand

}

else if (classb == SNAN) {

D = dn ? defNaN : fma ? opb : opb | manMSB;

flags[IOC] = 1; // invalid operand

}

else if (classa == QNAN) {

D = dn ? defNaN : opa;

}

else if (classb == QNAN) {

D = dn ? defNaN : opb;

}

else if (classa == INF && classb == ZERO ||

classb == INF && classa == ZERO) {

D = defNaN;

piz = true;

flags[IOC] = 1; // invalid operand

}

else if (classa == INF || classb == INF) {

D = infinity;

}

else if (classa == ZERO || classb == ZERO) {

D = zero;

}

if (fma) {

D <<= 53;

}

bool inz = true, expGTinf = false;

return <D, flags, piz, inz, expGTinf>;

}

// Compress the sum of 29 products to redundant form, using 27 3-2 compressors.

// Since the final sum is a 106-bit vector, the RTL limits every intermediate

// result to 106 bits. The C model, however, in order to simplify the proof,

// does not. This discrepancy does not affect the equivalence proof.

// For compressors receiving three inputs at the same time, t, the sum output

// emerges after 2 XOR delays (i.e. t+2) and the carry output after the

// equivalent of 1 XOR delay from a cgen cell (i.e. t+1).

// For compressors receiving two inputs at time t, and the third input at time

// t+1 (i.e. 1 XOR delay later), the sum and carry outputs both emerge at time

// t+2. These timings are exploited to build reduction trees with minimum-depth

// logic.

<ui115, ui115> compress3to2(ui115 x, ui115 y, ui115 z) {

ui115 sum = x ^ y ^ z;

ui115 car = x & y | x & z | y & z;

return <sum, car>;

}

<ui106, ui106> compress(ui57 pp[27], ui52 ia, ui53 ib) {

// Time 0:

ui59 t0fa0a = pp[0], t0fa0b = pp[1], t0fa0c = pp[2] << 2, t2pp0s, t1pp0c;

<t2pp0s, t1pp0c> = compress3to2(t0fa0a, t0fa0b, t0fa0c);

ui61 t0fa1a = pp[3], t0fa1b = pp[4] << 2, t0fa1c = pp[5] << 4, t2pp1s, t1pp1c;

<t2pp1s, t1pp1c> = compress3to2(t0fa1a, t0fa1b, t0fa1c);

ui61 t0fa2a = pp[6], t0fa2b = pp[7] << 2, t0fa2c = pp[8] << 4, t2pp2s, t1pp2c;

<t2pp2s, t1pp2c> = compress3to2(t0fa2a, t0fa2b, t0fa2c);

ui61 t0fa3a = pp[9], t0fa3b = pp[10] << 2, t0fa3c = pp[11] << 4, t2pp3s, t1pp3c;

<t2pp3s,t1pp3c> = compress3to2(t0fa3a, t0fa3b, t0fa3c);

ui61 t0fa4a = pp[12], t0fa4b = pp[13] << 2, t0fa4c = pp[14] << 4, t2pp4s, t1pp4c;
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<t2pp4s, t1pp4c> = compress3to2(t0fa4a, t0fa4b, t0fa4c);

ui61 t0fa5a = pp[15], t0fa5b = pp[16] << 2, t0fa5c = pp[17] << 4, t2pp5s, t1pp5c;

<t2pp5s, t1pp5c> = compress3to2(t0fa5a, t0fa5b, t0fa5c);

ui61 t0fa6a = pp[18], t0fa6b = pp[19] << 2, t0fa6c = pp[20] << 4, t2pp6s, t1pp6c;

<t2pp6s, t1pp6c> = compress3to2(t0fa6a, t0fa6b, t0fa6c);

ui61 t0fa7a = pp[21], t0fa7b = pp[22] << 2, t0fa7c = pp[23] << 4, t2pp7s, t1pp7c;

<t2pp7s, t1pp7c> = compress3to2(t0fa7a, t0fa7b, t0fa7c);

ui61 t0fa8a = pp[24], t0fa8b = pp[25] << 2, t0fa8c = pp[26] << 4, t2pp8s, t1pp8c;

<t2pp8s, t1pp8c> = compress3to2(t0fa8a, t0fa8b, t0fa8c);

// Time 1:

ui71 t1fa0a = t1pp0c, t1fa0b = t1pp1c << 4, t1fa0c = t1pp2c << 10, t3pp0s, t2pp0c;

<t3pp0s, t2pp0c> = compress3to2(t1fa0a, t1fa0b, t1fa0c);

ui73 t1fa1a = t1pp3c, t1fa1b = t1pp4c << 6, t1fa1c = t1pp5c << 12, t3pp1s, t2pp1c;

<t3pp1s, t2pp1c> = compress3to2(t1fa1a, t1fa1b, t1fa1c);

ui73 t1fa2a = t1pp6c, t1fa2b = t1pp7c << 6, t1fa2c = t1pp8c << 12, t3pp2s, t2pp2c;

<t3pp2s, t2pp2c> = compress3to2(t1fa2a, t1fa2b, t1fa2c);

// Time 2:

ui71 t2fa0a = t2pp0s, t2fa0b = t2pp1s << 4, t2fa0c = t2pp2s << 10, t4pp0s, t3pp0c;

<t4pp0s, t3pp0c> = compress3to2(t2fa0a, t2fa0b, t2fa0c);

ui73 t2fa1a = t2pp3s, t2fa1b = t2pp4s << 6, t2fa1c = t2pp5s << 12, t4pp1s, t3pp1c;

<t4pp1s, t3pp1c> = compress3to2(t2fa1a, t2fa1b, t2fa1c);

ui73 t2fa2a = t2pp6s, t2fa2b = t2pp7s << 6, t2fa2c = t2pp8s << 12, t4pp2s, t3pp2c;

<t4pp2s, t3pp2c> = compress3to2(t2fa2a, t2fa2b, t2fa2c);

ui107 t2fa3a = t2pp0c, t2fa3b = t2pp1c << 16, t2fa3c = t2pp2c << 34, t4pp3s, t3pp3c;

<t4pp3s, t3pp3c> = compress3to2(t2fa3a, t2fa3b, t2fa3c);

// Time 3:

ui107 t3fa0a = t3pp0s, t3fa0b = t3pp1s << 16, t3fa0c = t3pp2s << 34, t5pp0s, t4pp0c;

<t5pp0s, t4pp0c> = compress3to2(t3fa0a, t3fa0b, t3fa0c);

ui107 t3fa1a = t3pp0c, t3fa1b = t3pp1c << 16, t3fa1c = t3pp2c << 34, t5pp1s, t4pp1c;

<t5pp1s, t4pp1c> = compress3to2(t3fa1a, t3fa1b, t3fa1c);

ui107 t3fa2a = ia << 49, t3fa2b = ib << 49, t3fa2c = t3pp3c, t4pp4s, t4pp2c;

<t4pp4s, t4pp2c> = compress3to2(t3fa2a, t3fa2b, t3fa2c);

// Time 4:

ui109 t4fa0a = t4pp2c << 2, t4fa0b = t4pp1c, t4fa0c = t4pp0c, t6pp0s, t5pp0c;

<t6pp0s, t5pp0c> = compress3to2(t4fa0a, t4fa0b, t4fa0c);

ui110 t4fa1a = t4pp4s << 3, t4fa1b = t4pp0s, t4fa1c = t4pp1s << 16, t6pp1s, t5pp1c;

<t6pp1s, t5pp1c> = compress3to2(t4fa1a, t4fa1b, t4fa1c);

// Time 5:

ui111 t5fa0a = t5pp0s, t5fa0b = t5pp1s, t5fa0c = t5pp0c << 2, t7pp0s, t6pp0c;

<t7pp0s, t6pp0c> = compress3to2(t5fa0a, t5fa0b, t5fa0c);

ui110 t5fa1a = t4pp2s << 33, t5fa1b = t4pp3s << 1, t5falc = t5pp1c, t6pp2s, t6pp1c;

<t6pp2s, t6pp1c> = compress3to2(t5fa1a, t5fa1b, t5fa1c);

// Time 6:

ui111 t6fa0a = t6pp0s << 2, t6fa0b = t6pp1s, t6fa0c = t6pp2s << 1, t8pp0s, t7pp0c;

<t8pp0s, t7pp0c> = compress3to2(t6fa0a, t6fa0b, t6fa0c);

// Time 7:

ui112 t7fa0a = t7pp0s, t7fa0b = t7pp0c, t7fa0c = t6pp0c << 1, t9pp0s, t7pp1c;

<t9pp0s, t7pp1c> = compress3to2(t7fa0a, t7fa0b, t7fa0c);

// Time 8:

ui114 t8fa1a = t7pp1c << 2, t8fa1b = t6pp1c << 2, t8fa1c = t8pp0s, t9pp1s, t9pp0c;

<t9pp1s, t9pp0c> = compress3to2(t8fa1a, t8fa1b, t8fa1c);

// Time 9:

ui115 t9fa1a = t9pp0s << 1, t9fa1b = t9pp1s, t9fa1c = t9pp0c << 1, t11pp0s, t10pp0c;

<t11pp0s, t10pp0c> = compress3to2(t9fa1a, t9fa1b, t9fa1c);

ui115 ppa = t11pp0s;
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ui116 ppb = t10pp0c << 1;

return <ppa, ppb>;

}

// Booth multiplier:

ui106 computeProduct(ui52 mana, ui52 manb, bool expaZero, bool expbZero) {

ui57 pp[27]; // partial product array

ui55 multiplier = manb;

multiplier <<= 1;

for (uint i = 0; i < 27; i++) {

ui3 slice = multiplier[2 * i + 2:2 * i];

bool sign = slice[2], signLast = slice[0];

int enc = slice[0] + slice[1] - 2 * slice[2];

ui53 mux;

switch (enc) {

case 0:

mux = 0;

break;

case 1:

case -1:

mux = mana;

break;

case 2:

case -2:

mux = mana << 1;

}

if (sign) {

mux = ~mux;

}

if (i == 0) {

pp[i][52:0] = mux;

pp[i][53] = sign;

pp[i][54] = sign;

pp[i][55] = !sign;

pp[i][56] = 0;

}

else {

pp[i][0] = signLast;

pp[i][1] = 0;

pp[i][54:2] = mux;

pp[i][55] = !sign;

pp[i][56] = i < 26;

}

}

ui52 ia = expaZero ? 0 : manb;

ui53 ib = expbZero ? 0 : mana;

ib[52] = !expaZero && !expbZero;

ui106 ppa, ppb;

<ppa, ppb> = compress(pp, ia, ib);

return ppa + ppb;

}

// The design uses an internal exponent format: 12-bit signed integer with

// bias -1. This function computes the internal representation of a biased

// 11-bit exponent, with 0 replaced by 1:

si12 expInt(ui11 expBiased) {

ui12 expInt;

expInt[11] = !expBiased[10];

expInt[10] = !expBiased[10];

expInt[9:1] = expBiased[9:1];

expInt[0] = expBiased[0] || expBiased == 0;

return expInt;

}
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// Perform right shift if biased sum of exponents is 0 or negative:

<si12, bool, ui105, bool, bool, bool, bool>

rightShft(ui11 expa, ui11 expb, ui106 prod) {

// Difference between 1 and biased sum of exponents:

ui10 expDeficit = ~expa + ~expb + 1 + (expa != 0 && expb != 0);

// If expDeficit >= 64, it may be replaced by 63 or 62:

ui6 shift = expDeficit;

if (expDeficit[9:6] != 0) {

shift[5:1] = 31;

}

// Shifted product and fraction:

ui107 prod0 = 0;

prod0[106:1] = prod;

ui106 prodShft = prod0 >> shift;

ui105 frac105 = prodShft[104:0];

si12 expShftInt = -0x400;

bool expInc = prod[105] && (shift == 1);

// Rounding bits:

ui63 stkMaskFMA = 0;

for (uint i = 0; i < shift; i++) {

stkMaskFMA[i] = 1;

}

bool stkFMA = (prod & (stkMaskFMA >> 1)) != 0;

ui107 stkMask = 0xFFFFFFFFFFFFF;

stkMask[106:52] = stkMaskFMA[54:0];

bool stk = (prod & stkMask[106:1]) != 0;

ui55 grdMask = ~stkMask[106:52] & stkMask[105:51];

bool grd = (grdMask & prod[105:51]) != 0;

ui54 lsbMask = grdMask[53:0];

bool lsb = (lsbMask & prod[105:52]) != 0;

return <expShftInt, expInc, frac105, stkFMA, lsb, grd, stk>;

}

// Perform left shift if leading zero count is positive and biased sum

// of exponents is greater than 1:

<si12, bool, ui105, bool, bool, bool, bool>

leftShft(ui11 expa, ui11 expb, ui106 prod, ui6 clz) {

// Internal representations of operand exponents:

si12 expaInt = expInt(expa), expbInt = expInt(expb);

// expProdInt - clz:

si12 expDiffInt = expaInt + expbInt - clz + 1;

si12 expProdM1Int = expaInt + expbInt;

// Sign of biased sum of exponents:

bool expDiffBiasedZero = expDiffInt == -0x400;

bool expDiffBiasedNeg = expDiffInt < -0x400;

bool expDiffBiasedPos = !expDiffBiasedZero && !expDiffBiasedNeg;

// Shift amount:

ui6 shift = expDiffBiasedZero ? clz - 1 :

expDiffBiasedPos ? clz : expProdM1Int;

// Shifted product and adjusted exponent:

ui106 prodShft = prod << shift;

si12 expShftInt = expDiffBiasedPos ? expDiffInt : -0x400;
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// Check for multiplication overflow:

ui64 ovfMask = 0x8000000000000000 >> shift;

bool mulOvf = (ovfMask & prod[105:42]) != 0;

bool sub2Norm = ((ovfMask >> 1) & prod[104:42]) != 0;

ui105 frac105 = prodShft[104:0];

if (!mulOvf) {

frac105 <<= 1;

}

// Condition for incrementing exponent:

bool expInc = mulOvf || expDiffBiasedZero && sub2Norm;

// Rounding bits:

ui52 stkMask = 0xFFFFFFFFFFFFF >> shift;

bool stk = mulOvf ? (stkMask & prod) != 0 : ((stkMask >> 1) & prod) != 0;

ui53 grdMask = ovfMask[63:11];

bool grd = mulOvf ? (grdMask & prod) != 0 : ((grdMask >> 1) & prod) != 0;

ui54 lsbMask = ovfMask[63:10];

bool lsb = mulOvf ? (lsbMask & prod) != 0 : ((lsbMask >> 1) & prod) != 0;

return <expShftInt, expInc, frac105, 0, lsb, grd, stk>;

}

// Inputs of fmul64:

// opa[63:0], opb[63:0]: sign 63, exponent 62:52, mantissa 51:0

// fz: force denormals to 0

// dn: replace NaN operand with default

// mode[1:0]: encoding of rounding mode

// fma: boolean indication of FMA rather than FMUL

// Outputs of fmul64:

// D[116:0]: For FMUL, data result is D[63:0];

// for FMA, sign 116, exponent 115:105, mantissa 104:0

// flags[7:0]: exception flags

// piz: product of infinity and zero (valid for FMA only)

// inz: result is infinity, NaN, or zero (valid for FMA only)

// expOvfl: implicit exponent bit 11 (valid for FMA when inz = 0)

<ui117, ui8, bool, bool, bool>

fmul64(ui64 opa, ui64 opb, bool fz, bool dn, ui2 rmode, bool fma) {

// Analyze operands and process special cases:

bool signa, signb; // operand signs

ui11 expa, expb; // operand exponents

ui52 mana, manb; // operand mantissas

Class classa, classb; // operand classes

ui8 flags = 0; // exception flags

<signa, expa, mana, classa> = analyze(opa, DP, fz, flags);

<signb, expb, manb, classb> = analyze(opb, DP, fz, flags);

// Detect early exit:

if (classa == ZERO || classa == INF || classa == SNAN || classa == QNAN ||

classb == ZERO || classb == INF || classb == SNAN || classb == QNAN) {

return specialCase(opa, opb, classa, classb, dn, fma, flags);

}

else {

// Leading zero count:

ui6 clz = 0;

if (expa == 0) {

clz |= CLZ53(mana);

}

if (expb == 0) {

clz |= CLZ53(manb);

}
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// Product of significands:

ui106 prod = computeProduct(mana, manb, expa == 0, expb == 0);

// Internal representations of operand exponents and their sum:

si12 expaInt = expInt(expa), expbInt = expInt(expb);

si12 expProdInt = expaInt + expbInt + 1;

// Biased sum of exponents is 0, negative:

bool expBiasedZero = expProdInt == -0x400;

bool expBiasedNeg = expProdInt < -0x400;

// If biased sum is 0 or negative, a right shift is required.

// Otherwise, a left shift (possibly 0) is performed.

// Iin both cases, we compute the following quantities:

si12 expShftInt; // expShftInt + expInc is internal representation

bool expInc; // of exponent of shifted product

ui105 frac105; // fraction to be returned for FMA

bool stkFMA; // sticky bit for FMA

bool lsb, grd, stk; // lsb, guard, and sticky bits for FMUL

if (expBiasedZero || expBiasedNeg) {

<expShftInt, expInc, frac105, stkFMA> = rightShft(expa, expb, prod);

}

else {

<expShftInt, expInc, frac105, stkFMA> = leftShft(expa, expb, prod, clz);

}

// Important values of (pre-increment) exponent:

bool expZero = expShftInt == -0x400;

bool expMax = expShftInt == 0x3FE;

bool expInf = expShftInt == 0x3FF;

bool expGTinf = expShftInt >= 0x400;

// Convert exponent to biased form:

ui11 exp11 = expShftInt;

exp11[10] = !exp11[10];

// Sign of product:

bool sign = signa ^ signb;

if (fma) { // FMA case

ui117 D;

D[116] = sign;

if (expInc && !expInf) {

D[115:105] = exp11 + 1;

}

else {

D[115:105] = exp11;

}

D[104:0] = frac105;

flags[IXC] = stkFMA;

bool piz = false, inz = false;

bool expOvfl = expGTinf || expInf && expInc;

return <D, flags, piz, inz, expOvfl>;

}

else { // FMUL case

ui64 D = 0;

D[63] = sign;

bool rndUp = rmode == rmodeNear && grd && (lsb || stk) ||

rmode == rmodeUP && !sign && (grd || stk) ||

rmode == rmodeDN && sign && (grd || stk);

ui52 fracUnrnd = frac105[104:53];

ui53 fracP1 = fracUnrnd + 1;

ui52 fracRnd = rndUp ? fracP1[51:0] : fracUnrnd;
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bool expRndInc = rndUp && fracP1[52];

ui11 expRnd = expInc || expRndInc ? exp11 + 1 : exp11;

bool underflow = expZero && !expInc;

bool overflow = expGTinf || expInf || expMax && (expInc || expRndInc);

if (overflow) {

flags[IXC] = 1;

flags[OFC] = 1;

if (rmode == rmodeUP && sign || rmode == rmodeDN && !sign ||

rmode == rmodeZero) {

D[62:0] = 0x7FEFFFFFFFFFFFFF;

}

else {

D[62:0] = 0x7FF0000000000000;

}

}

else if (underflow) {

if (fz) {

flags[UFC] = 1;

}

else {

if (grd || stk) {

flags[UFC] = 1;

flags[IXC] = 1;

}

D[51:0] = fracRnd;

D[62:52] = expRnd;

}

}

else {

if (grd || stk) {

flags[IXC] = 1;

}

D[51:0] = fracRnd;

D[62:52] = expRnd;

}

return <D, flags, false, false, false>;

}

}

}

C Double-Precision Addition with FMA

// Rounding direction:

enum RndDir {rndNear, rndZero, rndInf};

RndDir computeRndDir(ui2 rmode, bool sign) {

if (rmode == rmodeNear) {

return rndNear;

}

else if (rmode == rmodeZero || rmode == rmodeUP && sign || rmode == rmodeDN && !sign) {

return rndZero;

}

else {

return rndInf;

}

}

// Components of 117-bit operand:

bool sign(ui117 op) {

return op[116];
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}

ui11 expnt(ui117 op) {

return op[115:105];

}

ui105 frac(ui117 op) {

return op[104:0];

}

// Apply FZ to denormal operands:

<ui117, ui8> checkDenorm(ui117 op, ui8 flags, bool fz) {

if (fz && expnt(op) == 0 && frac(op) != 0) {

op[104:0] = 0;

flags[IDC] = 1;

}

return <op, flags>;

}

// Identify special case (NaN or infinity operand, invalid op, or zero sum) and

// if detected, return data result and updated flags:

<bool, ui64, ui8>

checkSpecial(ui117 opa, ui117 opp, bool fz, bool dn, ui2 rmode,

bool oppLong,

bool mulOvfl, bool piz, bool mulStk, ui8 flags) {

bool signa = sign(opa), signp = sign(opp);

ui11 expa = expnt(opa), expp = expnt(opp);

ui105 fraca = frac(opa), fracp = frac(opp);

bool opaZero = (expa == 0) && (fraca == 0);

bool opaInf = (expa == 0x7FF) && (fraca == 0);

bool opaNan = (expa == 0x7FF) && (fraca != 0);

bool opaQnan = opaNan && fraca[104];

bool opaSnan = opaNan && !fraca[104];

bool oppZero = (expp == 0) && (fracp == 0) && !mulOvfl && !mulStk;

bool oppInf = (expp == 0x7FF) && (fracp == 0) && !oppLong;

bool oppNan = (expp == 0x7FF) && (fracp != 0) && !oppLong;

bool oppQnan = oppNan && fracp[104];

bool oppSnan = oppNan && !fracp[104];

ui64 DefNan = 0x7FF8000000000000;

bool isSpecial = false;

ui64 D = 0;

if (opaSnan) {

isSpecial = true;

D = dn ? DefNan : opa[116:53] | 0x0008000000000000;

flags[IOC] = 1; // invalid operand

}

else if (piz) {

isSpecial = true;

D = DefNan;

// IOC is already set in mulExcps, so needn’t be set here

}

else if (oppSnan) {

isSpecial = true;

D = dn ? DefNan : opp[116:53] | 0x0008000000000000;

flags[IOC] = 1; // invalid operand

}

else if (opaQnan) {

isSpecial = true;

D = dn ? DefNan : opa[116:53];

}

else if (oppQnan) {
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isSpecial = true;

D = dn ? DefNan : opp[116:53];

}

else if (opaInf) {

isSpecial = true;

if (oppInf && signa != signp) {

D = DefNan;

flags[IOC] = 1; // invalid operand

}

else {

D = opa[116:53];

}

}

else if (oppInf) {

isSpecial = true;

D = opp[116:53];

}

else if (opaZero && oppZero && signa == signp) {

isSpecial = true;

D[63] = signa;

}

else if (expa == expp && fraca == fracp && !mulOvfl && !mulStk && signa != signp) {

isSpecial = true;

if (rmode == rmodeDN) {

D[63] = 1;

}

}

return <isSpecial, D, flags>;

}

// Determine near or far path:

bool isFar(ui11 expa, ui11 expp, bool usa) {

ui12 expaP1 = expa + 1;

ui12 exppP1 = expp + 1;

bool isNear = usa && (expa == expp || expa == exppP1 || expp == expaP1);

return !isNear;

}

// Compute sum and return absolute value, sticky bit, and sign:

<ui108, bool, bool> add(ui117 opa, ui117 opp, bool far, bool usa, bool mulStk) {

bool signa = sign(opa), signp = sign(opp);

ui11 expa = expnt(opa), expp = expnt(opp);

ui105 fraca = frac(opa), fracp = frac(opp), fracl, fracs;

bool oppGEopa = expp > expa || expp == expa && fracp >= fraca;

// Construct significands, padding with a zero at the top to allow for overflow

// in the far case, and a zero at the bottom to allow for a 1-bit right shift on

// the near path:

ui108 siga = 0;

siga[106] = expa != 0;

siga[105:1] = fraca;

ui108 sigp = 0;

sigp[106] = expp != 0;

sigp[105:1] = fracp;

// In the case far && !usa, the leading 1 of the sum or difference is at bit 107

// or 106. The LZA is designed so that the same is true of the shifted sum in

// the near case. In order to for this hold in the case far && usa, we perform

// a 1-bit left shift:

ui108 sigaPrime = siga, sigpPrime = sigp;

if (far && usa) {

sigaPrime <<= 1;

sigpPrime <<= 1;

}



Appendices 357

// Compare the operands and determine the exponent difference for the right shift

// of the smaller one. For this purpose, the exponent of a subnormal operand is

// taken to be 1 rather than 0:

bool signl; // sign of the result

ui108 sigl, sigs; // significands of larger and smaller operands

ui12 expDiff;

if (oppGEopa) {

signl = signp;

sigl = sigpPrime;

sigs = sigaPrime;

if (expa == 0 && expp != 0) {

expDiff = expp - expa - 1;

}

else {

expDiff = expp - expa;

}

}

else {

signl = signa;

sigl = sigaPrime;

sigs = sigpPrime;

if (expp == 0 && expa != 0) {

expDiff = expa - expp - 1;

}

else {

expDiff = expa - expp;

}

}

// If the right shift exceeds the significand width, its value is uninteresting.

// Therefore, we can collapse the 8 bits expDiff[11:4] to 3 bits as follows:

ui7 rshift = expDiff[6:0];

if (expDiff[11:7] != 0) {

rshift |= 0x70;

}

ui108 sigShft = sigs >> rshift;

bool shiftOut = (sigShft << rshift) != sigs;

// Compute the sum or difference and the sticky bit. In the case of subtraction,

// if either (a) sigs = sigp and mulStk = 1 or (b) a nonzero value has been shifted

// out, then the computed difference is an overestimate rather then an underestimate.

// In this event, we decrement the difference by eliminating the carry-in:

bool cin = usa && !(mulStk && !oppGEopa || far && shiftOut);

ui108 ops = usa ? ~sigShft : sigShft;

ui108 sum = sigl + ops + cin;

bool stk = mulStk || far && shiftOut;

return <sum, stk, signl>;

}

// Count leading zeroes of a + b, where a and b are 128-bit vectors,

// under these assumptions:

// (1) the 128-bit sum is not 0;

// (2) the addition produces a carry-out

// The result may be an overestimate by 1:

ui7 LZA128(ui128 a, ui128 b) {

// Let n be index of the lsb of the maximal prefix of the form P*GK*
// (where P is propagate, G is generate, K is kill). Then n > 0 and

// the index of the leading 1 of the sum is either n or n-1.

// Construct a vector w that has its leading 1 at index n:

ui128 p = a ^ b;

ui128 k = ~a & ~b;
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// w[i] = ~z[i], where

// z[i] = (p[i] & p[i-1]) | (p[i] & g[i-1]) | (g[i] & k[i-1]) | (k[i] & k[i-1])

// = (p[i] & (p[i-1] | g[i-1])) | ((g[i] | k[i]) & k[i-1])

// = (p[i] & ~k[i-1]) | (~p[i] & k[i-1])

// = p[i] ^ k[i-1]

ui128 w = ~(p ^ (k << 1));

// Now the number of leading zeroes of w is either equal to the number of

// leading zeroes of the sum or 1 less, so we pad it with an extra leading zero:

return CLZ128(w >> 1);

}

// Compute leading zero count of the difference in the near case:

ui7 computeLZA(ui117 opa, ui117 opp) {

ui128 in1LZA = 0, in2LZA = 0;

ui11 expa = expnt(opa), expp = expnt(opp);

ui105 fraca = frac(opa), fracp = frac(opp), fracl, fracs;

bool oppGEopa = expp > expa || expp == expa && fracp >= fraca;

if (oppGEopa) {

fracl = fracp;

fracs = fraca;

}

else {

fracl = fraca;

fracs = fracp;

}

in1LZA[127] = 1;

in1LZA[126:22] = fracl;

if (expp[0] == expa[0]) {

in2LZA = (1 << 22) - 1;

in2LZA[126:22] = ~fracs;

}

else {

in2LZA = (1 << 21) - 1;

in2LZA[125:21] = ~fracs;

in2LZA[127] = 1;

}

return LZA128(in1LZA, in2LZA);

}

// Compute left shift and adjusted exponent:

<ui7, ui12> computeLshift(ui117 opa, ui117 opp, bool far, bool usa) {

ui11 expa = expnt(opa), expp = expnt(opp);

ui12 expl = expa >= expp ? expa : expp;

ui7 lshift; // left shift

ui12 expShft; // adjusted exponent

ui7 lza = computeLZA(opa, opp);

if (far) {

lshift = 0;

expShft = usa ? expl - 1 : expl;

}

else if (lza < expl) {

lshift = lza;

expShft = expl - lza;

}

else {

lshift = expl == 0 ? 0 : expl - 1;

expShft = 0;

}

return <lshift, expShft>;

}



Appendices 359

// The rounding increments and inexact bits for the overflow and non-overflow cases

// are computed during the left shift. This is done by applying lsb, guard, and

// sticky masks to the unshifted sum. Thus, the masks must be right-shifted by the

// left shift amount. This may be done as soon as the shift amount is known:

<bool, bool, bool, bool> rndInfo(ui108 sum, bool stk, ui7 lshift, RndDir rndDir) {

// lsb, guard, and sticky masks:

ui56 lOvflMask = 0x80000000000000 >> lshift;

ui55 gOvflMask = lOvflMask >> 1;

ui54 sOvflMask = 0x3FFFFFFFFFFFFF >> lshift;

ui55 lNormMask = lOvflMask >> 1;

ui54 gNormMask = lOvflMask >> 2;

ui53 sNormMask = sOvflMask >> 1;

// lsb, guard, and sticky bits:

bool lOvfl = (sum & lOvflMask) != 0;

bool gOvfl = (sum & gOvflMask) != 0;

bool sOvfl = (sum & sOvflMask) != 0 || stk;

bool lNorm = (sum & lNormMask) != 0;

bool gNorm = (sum & gNormMask) != 0;

bool sNorm = (sum & sNormMask) != 0 || stk;

// rounding increments;

bool incOvfl = (rndDir == rndNear) && gOvfl && (lOvfl || sOvfl) ||

(rndDir == rndInf) && (gOvfl || sOvfl);

bool incNorm = (rndDir == rndNear) && gNorm && (lNorm || sNorm) ||

(rndDir == rndInf) && (gNorm || sNorm);

// inexact bits:

bool inxOvfl = gOvfl || sOvfl;

bool inxNorm = gNorm || sNorm;

return <incOvfl, incNorm, inxOvfl, inxNorm>;

}

// Inputs of fadd64:

// opa[63:0]: sign 63, exponent 62:52, mantissa 51:0

// opp[116:0]: sign 116, exponent 115:105, mantissa 104:0

// fz, dn, rmode: FPSCR components

// fma: fused mul-add

// inz: multiplier output is infinity, NaN, or zero

// piz: multiplier computes inf * 0 and returns DefNan

// expOvfl: bit 11 of opp exponent from multiplier

// mulExcps[7:0]: exception flags from multiplier

// Outputs of fadd64:

// D[63:0]: data result

// flags[7:0]: exception flags

<ui64, ui8>

fadd64(ui64 opa, ui117 opp, bool fz, bool dn, ui2 rmode, bool fma, bool inz,

bool piz, bool expOvfl, ui8 mulExcps) {

ui64 D; // data result

ui8 flags = 0; // initialize flags

// An fma with a NaN, infinity, or zero from the multiplier is treated as

// an ordinary add:

bool oppLong = fma && !inz;

// expOvfl is qualified by oppLong:

bool mulOvfl = oppLong && expOvfl;

// piz is qualified by fma:

piz = fma && piz;
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// In fma case, mulExcps[IXC] is sticky bit from multiplier:

bool mulStk = mulExcps[IXC] && oppLong;

// In fma case, copy flags from multiplier, ignoring mulExcps[IXC] when

// it is sticky bit:

if (fma) {

flags = mulExcps;

flags[IXC] = flags[IXC] && !oppLong;

}

// opa extended to 117 bits:

ui117 opax = 0;

opax[116:53] = opa;

// Apply FZ to denormal operands:

ui117 opaz, oppz;

<opaz, flags> = checkDenorm(opax, flags, fz);

if (!fma) {

<oppz, flags> = checkDenorm(opp, flags, fz);

}

else {

oppz = opp;

}

// NaN or infinity operand, invalid op, or zero sum:

bool isSpecial;

<isSpecial, D, flags> =

checkSpecial(opaz, oppz, fz, dn rmode, oppLong, mulOvfl, piz, mulStk, flags);

if (isSpecial) {

return <D, flags>;

}

// Nonzero sum:

else {

// Unlike signs:

bool usa = sign(opaz) != sign(oppz);

// Far path (unlike signs and exponents within 1):

bool far = isFar(expnt(opaz), expnt(oppz), usa);

// Perform right shift and compute sum:

ui108 sum;

bool stk, signl;

<sum, stk, signl> = add(opaz, oppz, far, usa, mulStk);

// Compute left shift and adjusted exponent (concurrent with addition):

ui7 lshift;

ui12 expShft;

<lshift, expShft> = computeLshift(opaz, oppz, far, usa);

// Perform the left shift:

ui108 sumShft = sum << lshift;

// Sign of result:

bool signOut = mulOvfl ? sign(opp) : signl;

// Rounding direction:

RndDir rndDir = computeRndDir(rmode, signOut);

// Compute rounding increments and inexact bits while shifting is performed:

bool incOvfl, incNorm, inxOvfl, inxNorm;

<incOvfl, incNorm, inxOvfl, inxNorm> = rndInfo(sum, stk, lshift, rndDir);

// Rounding may be done as soon as the shifted sum is available:

ui54 sumUnrnd = sumShft[107:54]; // unrounded sum, with 2 integer bits

ui54 sumNorm = sumUnrnd + incNorm; // rounded sum, assuming no overflow

ui54 sumOvfl = sumUnrnd[53:1] + incOvfl; // rounded sum, assuming overflow
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// Case analysis:

bool tiny = !sumUnrnd[53] && !sumUnrnd[52]; // unrounded sum is subnormal

bool ovfl = sumNorm[53]; // overflow

bool ovfl2 = (sumUnrnd[53:1] == ((1 << 53) - 1)) && incOvfl; // double overflow

bool infOrMax = expShft == 0x7FE && (ovfl || ovfl2) || expShft == 0x7FD && ovfl2 ||

expShft == 0x7FF && oppLong || mulOvfl; // rounded sum is supernormal

// Computation of final result and exception flags:

ui11 expOut;

ui52 fracOut;

if (infOrMax) { // supernormal rounded result

if (rndDir == rndZero) { // return largest normal

expOut = 0x7FE;

fracOut = 0xFFFFFFFFFFFFF;

}

else { // return infinity

expOut = 0x7FF;

fracOut = 0;

}

flags[OFC] = 1; // overflow

flags[IXC] = 1; // inexact

}

else if (tiny) { // subnormal unrounded result

if (fz) { // flush to zero

expOut = 0;

fracOut = 0;

flags[UFC] = 1; // underflow but not inexact

}

else if (sumNorm[52]) { // rounded up to normal

expOut = 1;

fracOut = 0;

flags[UFC] = 1; // underflow

flags[IXC] = 1; // inexact

}

else {// rounded result is subnormal

expOut = expShft; // expOut = 0

fracOut = sumNorm[51:0];

if (inxNorm) {

flags[UFC] = 1; // underflow

flags[IXC] = 1; // inexact

}

}

}

else if (ovfl2) { // double overflow

expOut = expShft + 2;

fracOut = 0;

flags[IXC] = flags[IXC] || inxOvfl; // inexact

}

else if (ovfl) { // overflow or double overflow of subnormal

expOut = expShft == 0 ? 2 : expShft + 1;

fracOut = sumOvfl[51:0];

flags[IXC] = flags[IXC] || inxOvfl; // inexact

}

else { // overflow of subnormal

expOut = expShft == 0 && sumNorm[52] ? 1 : expShft;

fracOut = sumNorm[51:0];

flags[IXC] = flags[IXC] || inxNorm; // inexact

}

D[63] = signOut;

D[62:52] = expOut;

D[51:0] = fracOut;

return <D, flags>;

}

}
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D Multi-Precision Radix-4 Division

// Compute Q, incremented Q, and sticky bit (shared with fsqrt64):

<ui53, ui53, bool> computeQ(ui54 QP, ui54 QN, ui59 RP, ui59 RN, ui2 fmt, bool isSqrt) {

// Sign of remainder:

ui59 rem = RP + ~RN + 1;

bool remSign = rem[58];

bool remZero = (RP ^ RN) == 0;

// If the remainder is negative, then the quotient must be decremented. This is

// achieved by eliminating the carry-in bit:

bool cin = !remSign;

// If the sum is to be rounded up, then a rounding increment is added. Note that

// the position of the increment is the lsb of the result. For fdiv, this is bit 1

// for SP and bit 2 for DP and HP; for fsqrt, it is the opposite:

bool lsbIs2 = isSqrt == (fmt == SP);

ui3 inc = lsbIs2 ? 4 : 2;

// RTL computes 4 sums in parallel with the rounding increment:

// Q0 cin = 0, inc = 0

// Q0inc cin = 0, inc > 0

// Q1 cin = 1, inc = 0

// Q1inc cin = 1, inc > 0

// Two adders are used to compute Q0 and Q1inc; the other sums are derived from these.

// The simplest sum is Q0:

ui54 Q0 = QP + ~QN;

// In order to compute Q1inc, inc is added in via a 3-2 compressor.

ui54 QN1inc = QP ^ ~QN ^ inc;

ui54 QP1inc = (QP & ~QN | (QP | ~QN) & inc) << 1;

ui54 Q1inc = QP1inc + QN1inc + 1;

// For the other two sums, first we compute the bottom 3 bits:

ui3 Q1Low = QP[2:0] + ~QN[2:0] + 1;

ui3 Q0incLow = QP1inc[2:0] + QN1inc[2:0];

ui54 Q1 = Q1Low;

ui54 Q0inc = Q0incLow;

// The upper bits are just copied (note the difference between fdiv and fsqrt):

if (Q1 == 0) {

Q1[53:3] = Q1inc[53:3];

}

else {

Q1[53:3] = Q0[53:3];

}

if (Q0inc <= 1 || Q0inc <= 3 && lsbIs2) {

Q0inc[53:3] = Q1inc[53:3];

}

else {

Q0inc[53:3] = Q0[53:3];

}

// When cin is finally available, the following selections are made:

ui54 Q01 = cin ? Q1 : Q0;

ui54 Q01inc = cin ? Q1inc : Q0inc;

// Discard the extra bit if present:

ui53 Qtrunc = lsbIs2 ? Q01 >> 1 : Q01;

ui53 Qinc = lsbIs2 ? Q01inc >> 1 : Q01inc;

return <Qtrunc, Qinc, !remZero>;

}

// Right-shift a 64-bit vector:
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<ui64, bool> rShft64(ui64 x, ui6 s) {

ui64 xs = x >> s;

bool stk = x != (xs << s);

return <xs, stk>;

}

// Compute rounded result for both normal and denormal cases (shared with fsqrt64):

<ui53, bool, ui53, bool>

rounder(ui53 Qtrunc, ui53 Qinc, bool stk, bool sign, si13 expQ, ui2 rmode, ui2 fmt) {

// Rounding decision for normal case:

bool lsb = Qtrunc[1], grd = Qtrunc[0];

ui53 Qrnd;

if ((rmode == rmodeNear) && grd && (lsb || stk) ||

(rmode == rmodeUP) && !sign && (grd || stk) ||

(rmode == rmodeDN) && sign && (grd || stk)) {

Qrnd = Qinc[53:1];

}

else {

Qrnd = Qtrunc[53:1];

}

bool inx = grd || stk;

// Right-shifted quotient and rounding decision for subnormal case:

ui64 QDen = 0; // Insert integer bit

switch (fmt) {

case DP:

QDen[53] = 1;

QDen[52:0] = Qtrunc[52:0];

break;

case SP:

QDen[24] = 1;

QDen[23:0] = Qtrunc[23:0];

break;

case HP:

QDen[11] = 1;

QDen[10:0] = Qtrunc[10:0];

}

ui12 shft12 = 1 - expQ; // shift is at most 63

ui6 shft = shft12 >= 64 ? 63 : shft12;

bool lsbDen, grdDen, stkDen;

ui64 Qshft;

<Qshft, stkDen> = rShft64(QDen, shft);

lsbDen = Qshft[1];

grdDen = Qshft[0];

stkDen = stkDen || stk;

ui54 QrndDen;

if ((rmode == rmodeNear) && grdDen && (lsbDen || stkDen) ||

(rmode == rmodeUP) && !sign && (grdDen || stkDen) ||

(rmode == rmodeDN) && sign && (grdDen || stkDen)) {

QrndDen = Qshft[53:1] + 1;

}

else {

QrndDen = Qshft[53:1];

}

bool inxDen = grdDen || stkDen;

return <Qrnd, inx, QrndDen, inxDen>;

}

// Final result (shared with fsqrt64):

<ui64, ui8>

final(ui53 Qrnd, bool inx, ui53 QrndDen, bool inxDen, bool sign,

si13 expQ, ui2 rmode, bool fz, ui2 fmt, ui8 flags) {

// Selection of infinity or max normal for overflow case:

bool selMaxNorm = rmode == rmodeDN && !sign ||

rmode == rmodeUP && sign ||

rmode == rmodeZero;
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ui64 D = 0; // data result

switch (fmt) {

case DP:

D[63] = sign;

if (expQ >= 0x7FF) { // overflow

if (selMaxNorm) {

D[62:52] = 0x7FE;

D[51:0] = 0xFFFFFFFFFFFFF;

}

else {

D[62:52] = 0x7FF;

D[51:0] = 0;

}

flags[OFC] = 1; // overflow

flags[IXC] = 1; // inexact

}

else if (expQ <= 0) { // subnormal

if (fz) {

flags[UFC] = 1; // underflow but not inexact

}

else {

ui11 exp = QrndDen[52];

D[62:52] = exp;

D[51:0] = QrndDen[51:0];

flags[IXC] = flags[IXC] || inxDen;

flags[UFC] = flags[UFC] || inxDen;

}

}

else { // normal

D[62:52] = expQ;

D[51:0] = Qrnd[51:0];

flags[IXC] = flags[IXC] || inx;

}

break;

case SP:

D[31] = sign;

if (expQ >= 0xFF) { // overflow

if (selMaxNorm) {

D[30:23] = 0xFE;

D[22:0] = 0x7FFFFF;

}

else {

D[30:23] = 0xFF;

D[22:0] = 0;

}

flags[OFC] = 1; // overflow

flags[IXC] = 1; // inexact

}

else if (expQ <= 0) { // subnormal

if (fz) {

flags[UFC] = 1; // underflow but not inexact

}

else {

ui8 exp = QrndDen[23];

D[30:23] = exp;

D[22:0] = QrndDen[22:0];

flags[IXC] = flags[IXC] || inxDen;

flags[UFC] = flags[UFC] || inxDen;

}

}

else { // normal

D[30:23] = expQ;

D[22:0] = Qrnd[22:0];

flags[IXC] = flags[IXC] || inx;

}

break;

case HP:

D[15] = sign;

if (expQ >= 0x1F) { // overflow

if (selMaxNorm) {
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D[14:10] = 0x1E;

D[9:0] = 0x3FF;

}

else {

D[14:10] = 0x1F;

D[9:0] = 0;

}

flags[OFC] = 1; // overflow

flags[IXC] = 1; // inexact

}

else if (expQ <= 0) { // subnormal

if (fz) {

flags[UFC] = 1; // underflow but not inexact

}

else {

ui5 exp = QrndDen[10];

D[14:10] = exp;

D[9:0] = QrndDen[9:0];

flags[IXC] = flags[IXC] || inxDen;

flags[UFC] = flags[UFC] || inxDen;

}

}

else {

D[14:10] = expQ;

D[9:0] = Qrnd[9:0];

flags[IXC] = flags[IXC] || inx;

}

break;

}

return <D, flags>;

}

// Zero, infinity, or NaN:

<ui64, ui8>

specialCase(bool sign, ui64 opa, ui64 opb, Class classa, Class classb,

ui2 fmt, bool dn, ui8 flags) {

bool isSpecial = false;

ui64 D = 0;

ui64 aNan, bNan, manMSB, infinity, defNaN, zero = 0;

switch (fmt) {

case DP:

aNan = opa[63:0];

bNan = opb[63:0];

zero[63] = sign;

infinity = 0x7FF0000000000000;

manMSB = 0x8000000000000;

break;

case SP:

aNan = opa[31:0];

bNan = opb[31:0];

zero[31] = sign;

infinity = 0x7F800000;

manMSB = 0x400000;

break;

case HP:

aNan = opa[15:0];

bNan = opb[15:0];

zero[15] = sign;

infinity = 0x7C00;

manMSB = 0x200;

break;

}

defNaN = infinity | manMSB;

if (classa == SNAN) {

D = dn ? defNaN : aNan | manMSB;

flags[IOC] = 1; // invalid operand

}

else if (classb == SNAN) {

D = dn ? defNaN : bNan | manMSB;
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flags[IOC] = 1; // invalid operand

}

else if (classa == QNAN) {

D = dn ? defNaN : aNan;

}

else if (classb == QNAN) {

D = dn ? defNaN : bNan;

}

else if (classa == INF) {

if (classb == INF) {

D = defNaN;

flags[IOC] = 1; // invalid operand

}

else {

D = infinity | zero;

}

}

else if (classb == INF) {

D = zero;

}

else if (classa == ZERO) {

if (classb == ZERO) {

D = defNaN;

flags[IOC] = 1; // invalid operand

}

else {

D = zero;

}

}

else if (classb == ZERO) {

D = infinity | zero;

flags[DZC] = 1; // division by 0

}

return <D, flags>;

}

// Normalize denormal operands and compute exponent difference:

<ui53, ui53, si13> normalize(ui11 expa, ui11 expb, ui52 mana, ui52 manb, ui2 fmt) {

ui53 siga = 0, sigb = 0;

uint bias;

switch (fmt) {

case DP:

siga = mana;

sigb = manb;

bias = 0x3FF;

break;

case SP:

siga[51:29] = mana;

sigb[51:29] = manb;

bias = 0x7F;

break;

case HP:

siga[51:42] = mana;

sigb[51:42] = manb;

bias = 0xF;

}

si13 expaShft, expbShft;

if (expa == 0) {

ui6 clz = CLZ53(siga);

siga <<= clz;

expaShft = 1 - clz;

}

else {

siga[52] = 1;

expaShft = expa;

}

if (expb == 0) {

ui6 clz = CLZ53(sigb);

sigb <<= clz;
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expbShft = 1 - clz;

}

else {

sigb[52] = 1;

expbShft = expb;

}

si13 expDiff = expaShft - expbShft + bias;

return <siga, sigb, expDiff>;

}

// Prescale the divisor d and the dividend x = 4R0.

// Use the redundant form of x to compute q1.

// Convert d and x to non-redundant form.

// Shift x 1 bit if necessary to ensure that the quotient is in [1, 2) and

// decrement the quotient exponent accordingly.

// Return d along with q1*d and x, which are the sum and carry vectors of R1,

// and the quotient exponent.

<ui57, ui59, ui59, si13, int> prescale(ui56 siga, ui56 sigb, si13 expDiff) {

ui56 div1, div2, div3, divSum, divCar;

if (!sigb[51] && (sigb[50] || !sigb[49])) {

div1 = sigb << 2;

}

else if (!sigb[50] && (sigb[51] || sigb[49])) {

div1 = sigb << 1;

}

else {

div1 = 0;

}

if (!sigb[51] && !sigb[50]) {

div2 = sigb << 2;

}

else if ((sigb[51] || sigb[50]) && !sigb[49] || sigb[51] && sigb[50]) {

div2 = sigb;

}

else {

div2 = 0;

}

div3 = sigb << 3;

divSum = div1 ^ div2 ^ div3;

divCar = (div1 & div2 | div1 & div3 | div2 & div3) << 1;

ui57 div = divSum + divCar;

// Prescale the dividend using the same scaling factor:

ui56 rem1, rem2, rem3, remSum, remCar;

if (!sigb[51] && (sigb[50] || !sigb[49])) {

rem1 = siga << 2;

}

else if (!sigb[50] && (sigb[51] || sigb[49])) {

rem1 = siga << 1;

}

else {

rem1 = 0;

}

if (!sigb[51] && !sigb[50]) {

rem2 = siga << 2;

}

else if ((sigb[51] || sigb[50]) && !sigb[49] || sigb[51] && sigb[50]) {

rem2 = siga;

}

else {

rem2 = 0;

}

rem3 = siga << 3;

remSum = rem1 ^ rem2 ^ rem3;

remCar = (rem1 & rem2 | rem1 & rem3 | rem2 & rem3) << 1;

// Compare siga and sigb:

ui53 sigaBar = ~siga;

ui54 sigCmp = sigb + sigaBar;
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bool sigaLTsigb = sigCmp[53];

// Compute 5-bit approximation of scaled dividend:

ui5 remCarBits, remSumBits;

bool remCin;

if (sigaLTsigb) {

remCarBits = remCar[55:52];

remSumBits = remSum[55:52];

remCin = remCar[51] || remSum[51];

}

else {

remCarBits = remCar[55:53];

remSumBits = remSum[55:53];

remCin = remCar[52] || remSum[52];

}

ui5 remBits = remCarBits + remSumBits + remCin;

// q1 = 2 if remBits[4:0] >= 13, otherwise q1 = 1:

int q1 = remBits[4] || remBits[3] && remBits[2] & (remBits[1] || remBits[0]) ? 2 : 1;

// Carry vector of R1 and exponent of the quotient:

ui59 RP = remSum + remCar;

if (sigaLTsigb) {

RP <<= 1;

expDiff--;

}

// sum vector of R1:

ui59 RN = 0;

if (q1 == 2) {

RN[57:1] = div;

}

else {

RN[56:0] = div;

}

return <div, RP, RN, expDiff, q1>;

}

// Derive the next quotient digit qi+1 from a 6-bit approximation of the remainder Ri:

iint nextDigit(ui6 remS6) {

// remS6 >= 13:

if (!remS6[5] && (remS6[4] || (remS6[3] && remS6[2] && (remS6[1] || remS6[0])))) {

return 2;

}

// remS6 >= 4

else if (!remS6[5] && (remS6[3] || remS6[2])) {

return 1;

}

// remS6 >= -3

else if (!remS6[5] ||

remS6[5] && remS6[4] && remS6[3] && remS6[2] && (remS6[1] || remS6[0])) {

return 0;

}

// remS6 >= -12

else if (remS6[4] && (remS6[3] || remS6[2])) {

return -1;

}

else {

return -2;

}

}

// Derive the next remainder Ri+1 from the remainder Ri, quotient digit qi+1,

// and divisor:
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<ui59, ui59> nextRem(ui59 RP, ui59 RN, ui59 div, int q, ui2 fmt) {

ui59 divMult = div;

switch (q) {

case 2:

divMult <<= 1;

divMult = ~divMult;

break;

case 1:

divMult = ~divMult;

break;

case 0:

divMult = 0;

break;

case -1:

break;

case -2:

divMult <<= 1;

}

ui59 RP4 = RP << 2;

ui59 RN4 = RN << 2;

ui59 sum = RN4 ^ RP4 ^ divMult;

ui59 car = ~RN4 & RP4 | (~RN4 | RP4) & divMult;

ui59 car2 = car << 1;

switch (fmt) {

case DP:

RP = car2;

RP[0] = q > 0;

RN = sum;

break;

case SP:

RP[58:29] = car2[58:29];

RP[29] = q > 0;

RN[58:29] = sum[58:29];

break;

case HP:

RP[58:42] = car2[58:42];

RP[42] = q > 0;

RN[58:42] = sum[58:42];

}

return <RP, RN>;

}

// Update signed-digit quotient with next digit:

<ui54, ui54> nextQuot(ui54 QP, ui54 QN, int q) {

QP <<= 2;

QN <<= 2;

if (q >= 0) {

QP[1:0] = q;

}

else {

QN[1:0] = -q;

}

return <QP, QN>;

}

// In each of the three iterations of a cycle, the next quotient

digit and remainder

// (in redundant form) are computed. The remainder upon

entering the cycle is Ri.

// The quotient digits and remainders computed in the cycle are

qi1, qi2, qi3, Ri1,

// Ri2, Ri3. The remainders are redundantly represented by RPi*
and RNi*.

// In the first iteration, two approximations of Ri1 are

returned along with qi1, RPi1,

// and RNi1:

// (1) a 6-bit sum Ri1S6, which is used in the second iteration

to compute qi2;
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// (2) a 9-bit sum Ri1S9, which is used in the second iteration

in combination with the

// divisor to compute a 7-bit approximation of Ri2, used

in the third iteration to

// compute qi3.

<int, ui59, ui59, ui6, ui9> iter1(ui59 RPi, ui59 RNi, ui57 div, ui2 fmt) {

ui6 RiS6 = RPi[56:51] + ~RNi[56:51] + 1;

int qi1 = nextDigit(RiS6);

ui59 RPi1, RNi1;

<RPi1, RNi1> = nextRem(RPi, RNi, div, qi1, fmt);

ui6 Ri1S6 = RPi1[56:51] + ~RNi1[56:51] + 1;

ui9 Ri1S9 = RPi1[56:48] + ~RNi1[56:48] + 1;

return <qi1, RPi1, RNi1, Ri1S6, Ri1S9>;

}

// In the second iteration, a 7-bit non-redundant approximation of Ri2 is returned

// along with qi2, RPi2, and RNi2:

<int, ui59, ui59, ui7>

iter2(ui59 RPi1, ui59 RNi1, ui6 Ri1S6, ui9 Ri1S9, ui57 div, ui2 fmt) {

int qi2 = nextDigit(Ri1S6);

ui59 RPi2, RNi2;

<RPi2, RNi2> = nextRem(RPi1, RNi1, div, qi2, fmt);

ui7 divShft7;

switch (qi2) {

case 2:

divShft7 = ~div[55:49];

break;

case 1:

divShft7 = ~div[56:50];

break;

case 0:

divShft7 = 0;

break;

case -1:

divShft7 = div[56:50];

break;

case -2:

divShft7 = div[55:49];

}

ui7 Ri2S7 = Ri1S9[6:0] + divShft7 + 1;

return <qi2, RPi2, RNi2, Ri2S7>;

}

// The third iteration returns qi3, RPi3, and RNi3:

<int, ui59, ui59> iter3(ui59 RPi2, ui59 RNi2, ui7 Ri2S7, ui57 div, ui2 fmt) {

int qi3 = nextDigit(Ri2S7[6:1]);

ui59 RPi3, RNi3;

<RPi3, RNi3> = nextRem(RPi2, RNi2, div, qi3, fmt);

return <qi3, RPi3, RNi3>;

}

<ui64, ui8> fdiv64(ui64 opa, ui64 opb, ui2 fmt, bool fz, bool dn, ui2 rmode) {

// Analyze operands and process special cases:

bool signa, signb; // operand signs

ui11 expa, expb; // operand exponents

ui52 mana, manb; // operand mantissas

Class classa, classb; // operand classes

ui8 flags = 0; // exception flags

tie(signa, expa, mana, classa, flags) = analyze(opa, fmt, fz, flags);

tie(signb, expb, manb, classb, flags) = analyze(opb, fmt, fz, flags);

bool sign = signa ^ signb; // sign of quotient

// Detect early exit:

if (classa == ZERO || classa == INF || classa == SNAN || classa == QNAN ||

classb == ZERO || classb == INF || classb == SNAN || classb == QNAN) {

return specialCase(sign, opa, opb, classa, classb, fmt, dn, flags);
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}

else {

// Detect division by a power of 2:

bool divPow2 = classa == NORM && classb == NORM && manb == 0;

// Normalize denormals and compute exponent difference:

ui53 siga, sigb; // significands

si13 expDiff; // exponent difference

<siga, sigb, expDiff> = normalize(expa, expb, mana, manb, fmt);

ui57 div; // non-redundant prescaled divisor

ui59 RP, RN; // redundant prescaled remainder

ui54 QP = 0, QN = 0; // redundant quotient

si13 expQ; // quotient exponent

int q; // quotient digit

// Prescale divisor and remainder

<div, RP, RN, expQ> = prescale(siga, sigb, expDiff);

ui5 N; // number of cycles in the iterative phase

if (divPow2) {

N = 0;

}

else {

switch (fmt) {

case DP:

N = 9;

break;

case SP:

N = 4;

break;

case HP:

N = 2;

}

}

for (uint i = 0; i < N; i++) { // ith cycle, consisting of 3 iterations

// 1st iteration:

ui6 RS6; // 6-bit approximation of remainder

ui9 RS9; // 9-bit approximation of remainder

<q, RP, RN, RS6> = iter1(RP, RN, div, fmt);

<QP, QN> = nextQuot(QP, QN, q);

// 2nd iteration:

ui7 RS7;

<q, RP, RN, RS7> = iter2(RP, RN, RS6, RS9, div, fmt);

<QP, QN> = nextQuot(QP, QN, q);

// 3rd iteration:

<q, RP, RN> = iter3(RP, RN, RS7, div, fmt);

<QP, QN> = nextQuot(QP, QN, q);

}

// Assimilate quotient:

ui53 Qtrunc, Qinc; // Non-redundant quotient and incremented quotient

bool stk; // sticky bit

if (divPow2) {

Qtrunc = mana << 1;

stk = 0;

}

else {

<Qtrunc, Qinc, stk> = computeQ(QP, QN, RP, RN, fmt, false);

}

// Round:

ui53 Qrnd, QrndDen;

bool inx, inxDen;

<Qrnd, inx, QrndDen, inxDen> = rounder(Qtrunc, Qinc, stk, sign, expQ, rmode, fmt);

// Compute exceptions and assemble final result:
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return final(Qrnd, inx, QrndDen, inxDen, sign, expQ, rmode, fz, fmt, flags);

}

}

E Multi-Precision Radix-4 Square Root

// Zero, infinity, NaN, or negative operand:

<ui64, ui8> specialCase(bool signa, ui64 opa, Class classa, ui2 fmt, bool dn, ui8 flags) {

ui64 D = 0;

ui64 aTrunc, manMSB, defNaN, zero = 0;

switch (fmt) {

case DP:

aTrunc = opa[63:0];

zero[63] = signa;

defNaN = 0x7FF8000000000000;

manMSB = 0x8000000000000;

break;

case SP:

aTrunc = opa[31:0];

zero[31] = signa;

defNaN = 0x7FC00000;

manMSB = 0x400000;

break;

case HP:

aTrunc = opa[15:0];

zero[15] = signa;

defNaN = 0x7E00;

manMSB = 0x200;

break;

}

if (classa == SNAN) {

D = dn ? defNaN : aTrunc | manMSB;

flags[IOC] = 1;

}

else if (classa == QNAN) {

D = dn ? defNaN : aTrunc;

}

else if (classa == ZERO) {

D = zero;

}

else if (signa) {

D = defNaN;

flags[IOC] = 1;

}

else {

D = aTrunc;

}

return <D, flags>;

}

// Normalize denormal operand and compute predicted result exponent:

<ui53, si13, ui11> normalize(si13 expa, ui52 mana, ui2 fmt) {

ui53 siga = 0;

uint bias;

switch (fmt) {

case DP:

siga = mana;

bias = 0x3FF;

break;

case SP:
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siga[51:29] = mana;

bias = 0x7F;

break;

case HP:

siga[51:42] = mana;

bias = 0xF;

}

if (expa == 0) {

ui6 clz = CLZ53(siga);

siga <<= clz;

expa = 1 - clz;

}

else {

siga[52] = 1;

}

ui12 expQ = expa + bias;

return <siga, expa, expQ[11:1]>;

}

// Power of 2:

<ui64, ui8> sqrtPow2(ui11 expQ, bool expOdd, ui2 rmode, ui2 fmt) {

ui64 D = 0;

ui8 flags = 0;

uint manWidth;

ui52 manSqrt2;

switch (fmt) {

case DP:

manWidth = 52;

manSqrt2 = rmode == rmodeNear || rmode == rmodeUP ? 0x6A09E667F3BCD : 0x6A09E667F3BCC;

break;

case SP:

manWidth = 23;

manSqrt2 = rmode == rmodeUP ? 0x3504F4 : 0x3504F3;

break;

case HP:

manWidth = 10;

manSqrt2 = rmode == rmodeUP ? 0x5A9 : 0x5A8;

break;

}

if (!expOdd) {

D = manSqrt2;

flags[IXC] = 1;

}

D[manWidth + 10:manWidth] = expQ;

return <D, flags>;

}

// First iteration:

<ui59, ui59, ui54, int, uint> firstIter(ui53 siga, bool expOdd) {

ui59 RP = 0, RN = 0;

ui54 QN = 0;

int q;

uint i;

if (expOdd) {

// x = siga/4 = .01xxx...

// R0 = x - 1 = 1111.01xxx...

// RP = 4*R0 = 1101.xxx...

RP[58:56] = 6;

RP[55:3] = siga;

if (siga[51]) {

// -5/2 <= 4*R0 < -2

q = -1;

QN[53:52] = 1; // .01000...

// R1 = 4*R0 - (-1) * (2*Q0 + (-1)/4) = 4*R0 + 7/4

// RN = -7/4 = 1110.0100..

RN[58:53] = 0x39;



374 Appendices

i = 4;

}

else {

// 4*R0 < -5/2

q = -2;

QN[53:52] = 2; // .10000...

// R1 = 4*R0 - (-2) * (2*Q0 + (-2)/4) = 4*R0 + 3

// RN = -3 = 1101.00...

RN[58:55] = 0xD; // 1110.0100...

i = 0; // Q1 = 0.1000

}

}

else { // expa even

// x = siga/2 = .1xxx...

// R0 = x - 1 = 1111.1xxx...

// RP = 4*R0 = 111x.xx...

RP[58:57] = 3;

RP[56:4] = siga;

if (siga[51]) {

// -1 <= 4*R0 < 0

q = 0;

// QN = 0

// R1 = 4*R0 = RP, RN = 0

i = 8; // Q1 = 1.0000

}

else {

// -2 <= 4*R0 < -1

q = -1;

QN[53:52] = 1;// .01000...

// R1 = 4*R0 - (-1) * (2*Q0 + (-1)/4) = 4*R0 + 7/4

// RN = -7/4 = 1110.0100...

RN[58:53] = 0x39;

i = 4; // Q1 = 0.1100

}

}

return <RP, RN, QN, q, i>;

}

// Derive the next quotient digit q_(j+1) from the root interval i and remainder R_j:

int nextDigit(ui59 RP, ui59 RN, uint i, uint j) {

ui59 RP4 = RP << 2, RN4 = RN << 2;

ui8 RS8 = RP4[58:51] + ~RN4[58:51] + (RP4[50] || !RN4[50]);

si7 RS7 = RS8[7:1];

si7 mp2, mp1, mz0, mn1;

switch (i) {

case 0: mp2 = 12; mp1 = 4; mz0 = -4; mn1 = j == 1 ? -11 : -12; break;

case 1: mp2 = j == 2 ? 15 : 13; mp1 = 4; mz0 = -4; mn1 = -13; break;

case 2: mp2 = 15; mp1 = 4; mz0 = -4; mn1 = -15; break;

case 3: mp2 = 16; mp1 = 6; mz0 = -6; mn1 = -16; break;

case 4: mp2 = 18; mp1 = 6; mz0 = -6; mn1 = -18; break;

case 5: mp2 = 20; mp1 = 8; mz0 = -6; mn1 = -20; break;

case 6: mp2 = 20; mp1 = 8; mz0 = -8; mn1 = -20; break;

case 7: mp2 = 22; mp1 = 8; mz0 = -8; mn1 = -22; break;

case 8: mp2 = 24; mp1 = 8; mz0 = -8; mn1 = -24;

}

int q;

if (RS7 >= mp2) {

q = 2;

}

else if (RS7 >= mp1) {

q = 1;

}

else if (RS7 >= mz0) {

q = 0;

}

else if (RS7 >= mn1) {

q = -1;
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}

else {

q = -2;

}

return q;

}

// Derive the next remainder R_(j+1) from the remainder R_j and the quotient digit q_(j+1):

<ui59, ui59> nextRem(ui59 RP, ui59 RN, ui54 QP, ui54 QN, int q, uint j, ui2 fmt) {

// Dcar - Dsum = D = 2 * Q_j + 4^(-(j+1)) * q_(j+1):

ui59 Dcar = 0, Dsum = 0;

Dcar[56] = 1; // integer bit, implicit in QP

Dcar[55:2] = QP;

Dsum[55:2] = QN;

if (q > 0) {

Dcar[53 - 2 * j + 1:53 - 2 * j] = q;

}

else if (q < 0) {

Dsum[53 - 2 * j + 1:53 - 2 * j] = -q;

}

// DQcar - DQsum = -q_(j+1) * D:

ui59 DQcar, DQsum;

switch (q) {

case 1:

DQcar = Dsum;

DQsum = Dcar;

break;

case 2:

DQcar = Dsum << 1;

DQsum = Dcar << 1;

break;

case -1:

DQcar = Dcar;

DQsum = Dsum;

break;

case -2:

DQcar = Dcar << 1;

DQsum = Dsum << 1;

}

// RP4 - RN4 = 4 * R_j:

ui59 RP4 = RP << 2, RN4 = RN << 2;

// car1 - sum1 = RP4 - RN4 + DQcar = 4 * R + DQcar:

ui59 sum1 = RN4 ^ RP4 ^ DQcar;

ui59 car1 = (~RN4 & RP4 | (~RN4 | RP4) & DQcar) << 1;

if (fmt == HP) {

car1[42] = 0;

}

else if (fmt == SP) {

car1[29] = 0;

}

// car2 - sum2 = car1 - sum1 - DQsum

// = 4 * R_j + DQcar - DQsum

// = 4 * R_j - q_(j+1) * D

// = 4 * R_j - q_(j+1) * (2*Q<_j + 4^(-(j+1)) * q_(j+1)):

ui59 sum2 = sum1 ^ car1 ^ ~DQsum;

ui59 car2 = (~sum1 & car1 | (~sum1 | car1) & ~DQsum) << 1;

if (q == 0) {

return <RP4, RN4>;

}

else {

switch (fmt) {

case DP:
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car2[0] = 1;

RP = car2;

RN = sum2;

break;

case SP:

car2[29] = 1;

RP[58:29] = car2[58:29];

RN[58:29] = sum2[58:29];

break;

case HP:

car2[42] = 1;

RP[58:42] = car2[58:42];

RN[58:42] = sum2[58:42];

}

return <RP, RN>;

}

}

// Update signed-digit quotient with next digit q_(j+1):

<ui54, ui54> nextRoot(ui54 QP, ui54 QN, int q, uint j) {

if (q > 0) {

QP[52 - 2 * j + 1:52 - 2 * j] = q;

}

else if (q < 0) {

QN[52 - 2 * j + 1:52 - 2 * j] = -q;

}

return <QP, QN>;

}

<ui64, ui8> fsqrt64(ui64 opa, ui2 fmt, bool fz, bool dn, ui2 rmode) {

bool signa; // operand signs

ui11 expa; // operand exponents

ui52 mana; // operand mantissas

Class classa; // operand classes

ui8 flags = 0; // exception flags

<signa, expa, mana, classa> = analyze(opa, fmt, fz, flags);

// Detect early exit:

if (classa == ZERO || classa == INF || classa == SNAN || classa == QNAN || signa) {

return specialCase(signa, opa, classa, fmt, dn, flags);

}

else {

bool expInc = classa == NORM && rmode == rmodeUP;

// Normalize denormal and compute predicted result exponent:

ui53 siga; // significand

si13 expShft; // adjusted exponent

ui11 expQ; // predicted result exponent

<siga, expShft, expQ> = normalize(expa, mana, fmt);

bool expOdd = expShft[0]; // parity of adjusted exponent

if (classa == NORM && mana == 0) { // power of 2

return sqrtPow2(expQ, expOdd, rmode, fmt);

}

else {

ui59 RP, RN; // redundant remainder

ui54 QP, QN; // redundant root

int q; // root digit;

uint i; // root interval, 0 <= i <= 8

// First iteration:

<RP, RN, QN, q> = firstIter(siga, expOdd);

QP = 0;

expInc &= QN == 0;

ui5 N; // number of iterations
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switch (fmt) {

case DP:

N = 27;

break;

case SP:

N = 13;

break;

case HP:

N = 6;

}

for (uint j = 1; j < N; j++) {

q = nextDigit(RP, RN, i, j);

if (j == 1) {

i = i + q;

}

<RP, RN> = nextRem(RP, RN, QP, QN, q, j, fmt);

<QP, QN> = nextRoot(QP, QN, q, j);

expInc &= j < N - 1 ? q == 0 : fmt == SP ? q == -2 : q == -1;

}

ui11 expRnd = expInc ? expQ + 1 : expQ;

// Assimilate root:

switch (fmt) { // first move to low bits

case HP:

QP = QP[53:42];

QN = QN[53:42];

break;

case SP:

QP = QP[53:28];

QN = QN[53:28];

break;

}

ui53 Qtrunc, Qinc; // Non-redundant quotient and incremented quotient

bool stk; // sticky bit

<Qtrunc, Qinc, stk> = computeQ(QP, QN, RP, RN, fmt, true);

// Round:

ui53 Qrnd, QrndDen;

bool inx, inxDen;

<Qrnd, inx, QrndDen, inxDen> = rounder(Qtrunc, Qinc, stk, 0, expRnd, rmode, fmt);

// Compute exceptions and assemble final result:

return final(Qrnd, inx, QrndDen, inxDen, 0, expRnd, rmode, fz, fmt, flags);

}

}

}
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post-computation exceptions, 225–226
pre-computation exceptions, 223–224
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Trailing zero anticipation, 163, 160–163
Truncation, 12–15
Two’s complement, 33

U
Underflow, 78
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x87 instructions
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Zero encoding, 69
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