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Abstract The term ‘epigenetic’ refers to all heritable alterations that occur in a
given gene function without having any change on the DeoxyriboNucleic Acid
(DNA) sequence. Epigenetic modifications play a crucial role in development
and differentiation of various diseases including cancer. The specific epigenetic
alteration that has garnered a great deal of attention is DNA methylation, i.e., the
addition of a methyl-group to cytosine. Recent studies have shown that different
tumor types have distinct methylation profiles. Identifying idiosyncratic DNA
methylation profiles of different tumor types and subtypes can provide invaluable
insights for accurate diagnosis, early detection, and tailoring of the related treatment
for cancer. In this study, our goal is to identify the informative genes (biomarkers)
whose methylation level change correlates with a specific cancer type or subtype. To
achieve this goal, we propose a novel high dimensional learning framework inspired
by the dynamic data driven application systems paradigm to identify the biomarkers,
determine the outlier(s) and improve the quality of the resultant disease detection.
The proposed framework starts with a principal component analysis (PCA) followed
by hierarchical clustering (HCL) of observations and determination of informative
genes based on the HCL predictions. The capabilities and performance of the
proposed framework are demonstrated using a DNA methylation dataset stored
in Gene Expression Omnibus (GEO) DataSets on lung cancer. The preliminary
results demonstrate that our framework outperforms the conventional clustering
algorithms with embedded dimension reduction methods, in its efficiency to identify
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informative genes and outliers, and removal of their contaminating effects at the
expense of reasonable computational cost.

12.1 Introduction

The term ‘epigenetic’ refers to all heritable alterations that occur in a given gene
function without having any change on the DNA sequence. Epigenetic modifica-
tions, i.e., DNA methylation and histone post-translational modifications, regulate
the transcription state of a gene, and play a crucial roles in cell differentiation
and proliferation [10, 22]. Accumulating evidence suggests that aberrant epigenetic
changes are affiliated with various diseases such as diabetes, schizophrenia, and
cancers [11, 12, 21]. Compared with genetic alterations, aberrant epigenetic mod-
ifications typically occur at an early-stage of disease. They can thus be reversed
given proper interventions. The study of epigenetics is emerging but fast-growing
field of science as epigenetic biomarker and therapies promise for the detection and
treatment of a broad array of diseases [9, 12]. One of the most important epigenetic
alteration is DNA methylation, i.e., the addition of a methyl-group to DNA. The
most prevalent DNA methylation is the covalent addition of a methyl group to the 5-
carbon position of the cytosine to form a 5-methylcytosine (5mC) occurring within
a CpG dinucleotide (a DNA sequence in which a cytosine and guanine nucleotide
appear consecutively). CpG methylation is commonly affiliated with gene silencing
and most abundant in heterochromatin regions.

Recent research has shown a significant interest in understanding of the corre-
lation between aberrant DNA methylation and cancer [12, 13, 21]. These studies
revealed that cancer cells have different methylation profiles from normal cells.
DNA methylation can not only be used to differentiate different tumor types, but
also to distinguish tumor subtypes [17, 24, 29]. Medical understanding of DNA
methylation and its implications in biology of cancer has significantly advanced
in the past years enabled by high-throughput DNA-sequencing-based methylation
analysis. Herein, data mining techniques for the collected high-throughput data play
an increasingly important role in extracting useful information for a wide range of
applications such as identifying cancer diagnosis and prognostic biomarkers.

Clustering algorithms are powerful tools for identifying idiosyncratic DNA
methylation profile of different tumor types and subtypes. Basically, cluster analysis
groups similar data points into same groups. Amongst the clustering algorithms
presented in the literature, hierarchical clustering (HCL) is widely used for DNA
methylation analysis. Variants of HCL has also been applied to the analysis of
different DNA methylation patterns in different cancer types or subtypes. For
instance, [29] and [4] used agglomerative hierarchical clustering algorithm for
identification of aberrant DNA methylation profiles in lung cancer subtypes and
lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues,
respectively, while [28] performed a two-way hierarchical clustering analysis to
characterize the DNA methylation profiles for clear cell sarcoma of the kidney
and other pediatric renal tumors. While HCL is relatively easy to implement and
comes at the expense of low computational cost when compared to other clustering
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algorithms such as k-means, it is still a greedy algorithm and sensitive to outliers
(or influential data points). As most of the clustering algorithms, HCL assumes all
information to be equally important for clustering. This assumption, however, is
unlikely to be valid in most of real systems and causes HCL to mark a significant
number of points as outliers, which further necessitates an implementation of a
dimension reduction algorithm.

In DNA methylation analysis, the data is very complex with thousands of genes
being collected from a single patient making the determination of an informative
set of genes (biomarkers) crucial for accurate identification of cancer-related DNA
methylation profiles. To this end, several dimension reduction algorithms have been
proposed in the literature for the characterization of informative biomarkers. For
instance, the study [29] determined seven informative genes among 24 genes using
Mann-Whitney U-test, while [4] chose 500 genes with the highest variance from
thousands of genes. Another study implemented a two-way hierarchical clustering
to find out an informative loci [28].

In this study, we propose a dynamic data driven hierarchical clustering (3D-HCL)
framework motivated by the dynamic data driven application systems (DDDAS)
paradigm founded by Darema [7, 8]. The proposed 3D-HCL framework embodies
an HCL algorithm with a threefold capability to detect the outliers, identify the
set of informative biomarkers, and define the clusters in an efficient manner using
the newly measured data from the real system. 3D-HCL initializes with a principal
component analysis (PCA). Then the HCL is run as an application system and based
on the results of the HCL, an outlier detection score, a cluster membership score and
an informative locus score are calculated. Here, these scores steer the measurement
process (in our case, informative biomarkers) based on the results of the developed
clustering algorithm (HCL) for the next iteration. The bidirectional information flow
between HCL and the proposed scores continues until a termination condition is
satisfied. These scores are also used for real-time classification of new samples.
Based on the classification results, the orchestration module can call the biomarker
identification module to retrieve information from the new samples or add the
samples to the cluster structure.

In this study, our proposed DDDAS based framework addresses two major
issues in HCL for performing data analysis in large and complex datasets such
as DNA methylation. First, the performance of all clustering algorithms is highly
dependent on the performance of their embedded dimension reduction (feature
selection) algorithm. To the best of our knowledge, there does not exist a single
universal algorithm that promises reasonable results for all datasets. The literature
presents many dimension reduction algorithms for DNA methylation analysis whose
performance is dependent on the data utilized for analysis. Hence, a successful
implementation of a traditional HCL would require testing with several different
dimension reduction algorithms. However, our proposed 3D-HCL framework is
designed as generic so that it does not depend on such high numbers of dimension
reduction algorithms. While 3D-HCL is initialized with a dimension reduction
algorithm, the results are minimally affected by the selected initial set of informative
biomarkers. The proposed framework identifies the most informative loci at each
iteration, and these loci are updated based on the informative score calculated at each
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iteration. Second, HCL is sensitive to outliers and noise. In the literature, outliers
are also called as influential data points as they can affect the results obtained from
a clustering algorithm to a significant extent. In order to mitigate this impact of
outliers and make our 3D-HCL less sensitive to influential data points (i.e., outliers),
we further equipped our proposed framework with an outlier detection algorithm
based on a fast distance-based measure.

The proposed work is also novel in the eminent DDDAS literature. DDDAS has
its power in its ability to create a symbiotic feedback loop between the real system
and its application. Dynamic data obtained from the real system is incorporated
into an executing application where the application in turn steers the measurement
process of the real system. As such, DDDAS has been applied to a variety of
areas such as supply chain systems [3], distributed electric microgrids [23, 25–
27], smart energy management [15], data fusion analysis [2], transportation systems
[14], and surveillance and crowd control [19] amongst many others. This study
introduces a new dynamic data driven learning framework for identification of
informative biomarkers based on the DDDAS paradigm that not only provides
measures for detecting outliers but also presents an orchestration procedure for
the symbiotic feedback loop between the learning mechanism and the real system
application. Here, the performance of proposed 3D-HCL framework on learning
mechanism is tested on the lung cancer methylation data. Our results show that
the symbiotic feedback loop increases the accuracy of the learning mechanism by
updating informative biomarkers based on the information obtained from clustering
algorithm in the unsupervised training dataset and the real time classification results
of new samples.

The proposed framework has been designed in a generic manner for wide
applicability in data system with various dimensionalities. The performance of
the proposed framework is demonstrated using real lung cancer DNA methylation
data obtained from GEO DataSets [4] where the results reveal that our proposed
framework outperforms the conventional HCL algorithm in differentiating lung
cancer tissues with 3% versus 33% error margins. Last but not least, this study
provides a validation for dynamic updating of massive databases for in vivo
DNA methylation analysis. In such an analysis, dynamically obtained data can be
processed fast in a computationally efficient way. To this end, our proposed DDDAS
3D-HCL can be considered as an online learning mechanism fed by dynamic and
big data as well as archival information.

12.2 DNA Methylation Data

Bisulfite treatment, also known as bisulfate conversion, is used to determine a DNA
methylation pattern. Bisulfite treatment converts unmethylated cytosines to uracil
while methylated residues remain unaffected [30]. Samples are then subject to
DNA sequencing to identify specific changes in the DNA sequence that can directly
inform the methylation level of a specific CpG site.
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Bisulfite conversion provides methylated and unmethylated intensities at the each
CpG sites to measure DNA methylation level. Beta value as defined in Eq. 12.1 is
commonly used to measure DNA methylation status.

βi = max (mi, 0)

max (mi, 0) + max (ui, 0) + α
(12.1)

In Eq. 12.1, mi and ui represent measured ith methylated and unmethylated
probe intensities, respectively. In order to avoid having negative values in probe
intensities, any negative values are reset to 0. To prevent probes with very low
expression levels from dominating results, an adjustment factor (α) is used. In this
study, α is set to 100 as recommended by [1]. The beta value ranges between 0
and 1. A value of zero means that every copy of the CpG island in the probe is
unmethylated, whereas a value of one indicates that all copies of the CpG site are
completely methylated.

12.3 Proposed DDDAS-Based Learning Framework
(3D-HCL)

The proposed DDDAS-based learning framework first identifies: (1) candidate
clusters of samples based on their DNA methylation levels and (2) informative
CpG regions (biomarkers) whose methylation level change correlates with specific
clusters (i.e., cancer type or subtype). The components of the proposed DDDAS-
based learning framework are explained in detail in this section (see Fig. 12.1 for
overview).

12.3.1 Initialization Algorithm: Principal Component Analysis

Principal component analysis (PCA) is a widely known dimension reduction algo-
rithm in the literature [5]. PCA performs dimensionality reduction by identifying
correlations in the data while preserving as much of the variance in the high

Fig. 12.1 Overview of the proposed DDDAS 3D-HCL framework
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dimension data as possible. PCA converts a set of correlated variables into a set
of linearly uncorrelated variables called principal components using orthogonal
transformation. The steps of the principal component analysis are explained below.

Let X is an n × m matrix consisting of m dimensional observation (in our case
loci) of n samples.

Step 1: Centralize the data by subtracting the mean of each variable (observation)
as shown below.

X̃ =
⎡
⎢⎣

x11 − X̄1 · · · x1m − X̄m

...
. . .

...

xn1 − X̄1 · · · xnm − X̄m

⎤
⎥⎦ (12.2)

Here, xij is the data for sample i and observation j , X̄j is the mean of variable j

and X̃ is the centralized data matrix.
Step 2: Compute the covariance matrix C from X̃ by using:

C = 1

m
X̃T X̃ (12.3)

Step 3: Calculate the eigenvectors and the eigenvalues by solving the following
equation for each variable

C × ui = λi × ui (12.4)

In the equation above ui represents the ith eigenvector and λi corresponds to the
ith eigenvalue. Also, each pair of eigenvector must satisfy the following conditions.
These conditions ensure that the eigenvectors are orthogonal to each other.

uT
i × uj = 1 if i = j (12.5)

uT
i × uj = 0 if i �= j (12.6)

The eigenvalues of C shows how much variance is explained by corresponding
eigenvector. In dimensionality reduction, the first p eigenvectors which correspond
to the largest p eigenvalues are used instead of an n × m matrix.

12.3.2 Clustering Algorithm: Hierarchical Clustering

Hierarchical clustering (HCL) is a widely used clustering algorithm in DNA
methylation analysis to identify the DNA methylation profiles affiliated with certain
cancer subtypes [4, 28, 29]. The “bottom-up” approach (agglomerative) and the
“top down” (divisive) approach are the main strategies in HCL. In agglomerative,
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each data point starts in its own cluster, and pairs of clusters are merged until
only one cluster remains, while in divisive, all data points belong to one cluster
at the beginning, and they are split until each of them is in its own cluster. The
agglomerative approach is more commonly applied in the literature as it is generally
faster than the divisive approach in terms of computational complexity. However,
it should be noted that the HCL may still perform worse in terms of solution
quality as the merges in agglomerative and the splits in divisive are both determined
using a greedy algorithm. Additionally, HCL provides good and understandable
visualization for users, and unlike other commonly used algorithms such as k-
means, HCL does not require a prior knowledge of number of clusters. Due to these
reasons, hierarchical agglomerative clustering is adopted as a learning mechanism in
this study. For brevity, HCL abbreviation is also used for hierarchical agglomerative
clustering in the rest of the paper.

As discussed above, HCL starts with having each observation in a separate
cluster, then repeatedly merges the closest pair of clusters until only one cluster
is left. In this work, we base the merging operation on an average linkage where the
closest pair of clusters are identified as in the following equation.

Davg

(
Ci, Cj

) = 1

|Ci |
∣∣Cj

∣∣
∑
x∈Ci

∑
y∈Cj

dxy (12.7)

In Eq. 12.7, Davg

(
Ci, Cj

)
shows the average link (distance) between cluster i

and cluster j , |Ci | represents the cardinality of cluster i and dxy shows the distance
between data point x and point y. Since the DNA methylation levels for all probes
are properly scaled using the βi values, Euclidean distance (as shown in Eq. 12.8) is
used without any standardization method as a distance metric.

dij =
√√√√∑

g∈θ

(
β

g
i − β

g
j

)2
(12.8)

In Eq. 12.8, β
g
i is the beta value of probe g of point i and θ is the set of infor-

mative probes. HCL builds a tree-based hierarchical representation (dendrogram)
using the Eqs. 12.7 and 12.8 and clusters are obtained by cutting the dendrogram at
a desired level.

12.3.3 Orchestration Procedure: Cluster Membership Score
Based Algorithm

In clustering problems, cluster assignments are made on the basis of a similarity
measure, Euclidean distance in our case. Even if the clusters are formed based on
the measure, the similarity measure may not answer such detailed questions related
with the results of clustering algorithm, such as labeling, determining right number
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of clusters, detecting outliers or border points, etc. To this end, in this study, we
propose a cluster membership score that shows the membership degree of a point to
a cluster. The cluster membership score is developed based on the definition of an
uncertainty classification measure proposed by [6, 18] for a probabilistic distance
clustering algorithm. Here, we adapt the definition of uncertainty classification
measure to HCL for better understanding of the clusters. The cluster membership
score is explained in detail below.

Let d
(
i, Cj

)
is the average of distances between observation i and observations

assigned to cluster j .

Definition 1 Let mi is the cluster membership measure of observation i. It is
the harmonic mean of the distances

{
d

(
x, Cj

) : j ∈ {1, . . . , k}} divided by their
geometric mean.

mi = k

⎛
⎝

k∏
j=1

ρj (i)

⎞
⎠

1
k

where ρj (i) =
∏

u�=j d
(
i, Cj

)
∑k

v=1
∏

t �=v d (i, Ct )
(12.9)

The proposed score is ranging from 0 to 1. A value of zero indicates that the
point is certainly a member of a cluster whereas a value of one shows the current
information do not explain the membership of a point.

Definition 2 Let Mj denotes the cluster validation score for given cluster structure.
The cluster validation score is the mean of the cluster membership scores of data
points assigned to the corresponding cluster.

Mj =
∑

i∈Cj
mi∣∣Cj

∣∣ (12.10)

Based on the definition of cluster membership score, the low values of Mj

indicate that cluster j is explained and separated well from the other clusters with
the given information (in our case, identified set of informative CpG regions). This
score is designed to help orchestration of the information flow between hierarchical
clustering, and outlier detection algorithm and dimension reduction algorithm. Also,
it determines when the framework will be terminated.

12.3.4 Outlier Detection Algorithm

Outliers can arise from DNA methylation data due to measurement errors and/or the
dynamic nature in epigenetic mechanisms. Identification of outliers can eliminate
their contaminating effect on the methylation data and tremendously increase the
performance of clustering algorithm. Because of greedy mechanism used in merging
clusters, HCL is sensitive to outliers and it can result in ‘trivial’ clusters. To this
end, outlier detection and removal are important tasks to improve the performance
of clustering algorithm in DNA methylation analysis.
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Outliers (or influential points) can be defined as data points, distant from the
remainder of the data points. HCL can result in meaningless clusters due to outliers
(an example is shown in Results Section). In this study, we propose fast distance
measure for detecting outliers. This measure is designed by assuming that while
normal data points have a dense neighborhood whereas outliers are far apart from
their neighbors and thus have a less dense neighborhood.

Let oi represents the outlier score of data point i. It is number of points that are
closer than distance p.

oi =
N∑

j=1

δ
(
dij , p

)
(12.11)

In Eq. 12.11, δ
(
dij , p

)
is a function such that it is 1 if dij ≤ p and it is 0, if

otherwise. The data points with small oi values are considered as outliers. Here,
oi values are highly dependent on the parameter p. Small p values can find that
all points are normal while large p can mark normal points as outliers. Therefore,
selection of p is very important. In this study, p is determined as average of distance
between data points. Other outlier detection algorithms, similar with the proposed
one in this study, can be found in the literature [20].

12.3.5 Dimension Reduction Algorithm: Locus Information
Score Based Algorithm

In conventional application of HCL on a high-dimensional space, dimension
reduction algorithm (or feature selection algorithm) finds a set of informative
attributes and then HCL forms clusters based on this set. However, since the results
of any clustering algorithm are highly dependent on selected attributes, HCL can
fail in most of the real systems especially for dynamic, complex systems such
as a DNA sequence. Also, PCA has two important drawbacks. First, since PCA
performs dimensionality reduction using orthogonal transformation, it complicates
the identification biomarkers associated with diseases in DNA methylation analysis.
Second, PCA does not take into account the contaminating effect of outliers in
determining the principal components. To address these issues, we developed a
locus informative score inspired by [16].

Let Inf
j
l denotes the information score of locus l for the cluster j . Based on the

cluster structure found by HCL, it is calculated as follows.

Inf
j
l =

∣∣μi∈Cj

(
βl

i

) − μt /∈Cj

(
βl

t

)∣∣
σi∈Cj

(
βl

i

) + σt /∈Cj

(
βl

t

) (12.12)

In Eq. 12.12, βl
i is the beta value of locus l for sample (point) i, and μ and σ are

the mean and standard deviation for the given set of beta values, respectively. The
higher Inf

j
l scores mean that the locus l is informative to differentiate the cluster j
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from the other clusters. In this study, if Inf
j
l is greater than 1 for any cluster, the

locus l is considered as an informative biomarker.

12.4 Results and Discussion

In this work, the capabilities and performance of the proposed DDDAS-based
framework are demonstrated using lung cancer DNA methylation data obtained
from the Gene Expression Omnibus (GEO) repository at the National Center for
Biotechnology Information archives with accession number GSE16559 [4]. In this
section, we first demonstrate each step of our framework to build groups of samples
with related methylation profiles on the training dataset. Then, we show how to
incorporate test data into the 3D-HCL and correlate test results with 3D-HCL
predictions.

12.4.1 Learning from Training Data

The training dataset used in our experiments is a part of larger data and consists
of 33 samples and two clusters, namely Non-malignant pulmonary and lung
adenocarcinoma. At the initialization step of the proposed learning framework, PCA
is applied to all 1505 probes with DNA different methylation levels for all samples.
When the number of variables (in our case, number of probes) is larger than the
number of samples, PCA reduces the dimensionality to, the number of samples
(at best). In this specific example, PCA results in 32 components without loss of
information. To select the initial set of informative biomarkers, we start by looking
at the cumulate variance explained by a set of principal components (Fig. 12.2).

Fig. 12.2 Cumulative variance explained by a set of principal components
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Fig. 12.3 Dendrogram obtained from HCL (Solution 1)

Fig. 12.4 Outlier score of each data point

As shown in Fig. 12.2, the first few components have the largest variance among
all components. In fact, while the first three components retain 60% of the original
variance, the last 19 components are only able to explain 10% of the variation of the
original data. Because some variance is expected in the original DNA methylation
dataset due to the contained outliers; in this work, the components that explains 90%
of the variance (13 of them) are chosen to initialize the framework.

Next, hierarchical clustering was run with the distance matrix calculated based on
the components found by PCA using the Eq. 12.8. Figure 12.3 illustrates the dendro-
gram obtained from HCL. As shown in the Fig. 12.3, HCL could not find any mean-
ingful clusters. Similar results were recorded when using conventional approach
that incorporated PCA as a dimension reduction algorithm and HCL as a clustering
algorithm. Error rate of this conventional approach was also recorded as 33%.

In the solution, cluster 2 has only one member which is sample 28. In this
example, since cluster validation score for cluster 2 was zero and the cardinality
of cluster was one, an outlier score of each data point was calculated based on the
current distance matrix and shown in Fig. 12.4.
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Fig. 12.5 The results of HCL in Solution 2, Solution 3, and Solution 4

The outlier score of point 28 is zero, meaning that there is no point closer to
the point 28 than p, mean of the distance matrix. The point was marked as outlier
and removed from distance matrix. Then, HCL was applied to the 32 samples. It
should be noted here that after outlier removal, the points were re-indexed based
on their position with respect to outlier point index. In Solution 2, HCL resulted in
more meaningful clusters with error rate of 18% as shown in Fig. 12.5a. Since the
cluster validation scores of both clusters were less than 0.8, the outlier removing
algorithm was not executed. Next, the informative probes were determined based
on the cluster formation obtained Solution 2 using the Eq. 12.12. The distance
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Fig. 12.6 Cluster validation scores

matrix was re-calculated with respect to the new set of informative probes and HCL
was applied to the new distance matrix. The result of the algorithm was shown
in Fig. 12.5b. Here, the error rate was down to 3.03% and the cluster validation
scores of cluster 1 and cluster 2 were down to 0.36 and 0.65, respectively. The same
procedure is repeated to obtain Solution 3 where the results are shown in Fig. 12.5c.
While Solution 4 presents the same clustering formation as was in Solution 3, cluster
validation scores are better for both clusters in Solution 4 due to an updated set of
informative biomarkers. Since the same solutions were obtained in consecutive runs,
the algorithm is terminated.

The cluster validation scores of both clusters in each run were illustrated in
Fig. 12.6. It is expected that cluster validation score decreases after each run with
updating the set of informative probes based on the obtained clusters. However, the
validation scores of clusters in Solution 1 were smaller than the those in Solution 2.
Here, in Solution 1, cluster 2 consists of only point 28 which is far from the other
data points and obviously, the cluster validation score is 0 for cluster 2. Also, since
the point 28 is far from the points, in Solution 1, the cluster validation score of
cluster 1 was smaller than other solutions. This issue can be explained as the effect
of influential points on the cluster validation score that the users should bear in mind.

After the recursive procedure is terminated, there is one more step to finalize
the solution. In this step, the outlier(s) was re-assigned to the closest cluster based
on the results of HCL. The closest cluster is the one that has the minimum average
distance between outlier and the points assigned to corresponding cluster. The result
after the finalization step was represented in Fig. 12.7. The error rate is 3.03%, the
proposed procedure mis-assigned only point 8 (non-malignant pulmonary) to the
lung adenocarcinoma cluster.
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Fig. 12.7 Solution after finalization step

The proposed dynamic data driven high dimensional learning framework clusters
the samples and identifies the biomarkers associated with these clusters. The
proposed framework results in 72 probes that help classify the new samples without
having to conduct a complete analysis. The original data and identified informative
probes were represented in Fig. 12.8a, b, respectively.

12.4.2 Learning from Test Data

The discriminative model obtained from learning algorithm based on the training
dataset eases the classification of the test data without running the learning
algorithm. This is the main motivation of the most of the learning algorithms
proposed in the literature. However, especially in high dimensional data, training
dataset may not reflect all of the different groups that are possible within the system
(in our case, cancer types and subtypes) causing the discriminative model outputting
incorrect predictions when used with the test data. For example, in unsupervised
DNA methylation analysis, the biomarkers identified using a dimension reduction
algorithm and a discriminative model (cluster structure in our case) are heavily
dependent on each other and thus training dataset can mislead the results of a
discriminative model. Here, we conduct two sets of experiments where in the
first set of experiments, we demonstrate the capabilities of 3D-HCL in real-time
classification of the test data, then in the second set of experiments, we show the
performance of our framework in the updating of the discriminative model with
respect to test data predictions in the case that training data do not reflect the true
representation of the new samples. In the first set of experiments, we classify the
8 non-malignant pulmonary samples where the results of 3D-HCL are shown in
Fig. 12.9.

Figure 12.9 shows the distance between each sample in the training set and the
newly obtained sample. As seen in Fig. 12.9, the new samples except sample 4
have similar DNA methylation profiles based on the biomarkers identified using
the discriminative model. Here, the orchestration module calculates mi and decides
the class of each new sample i without running the clustering algorithm. The cluster
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Fig. 12.8 Original data and identified informative probes
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Fig. 12.9 Classification of 8 non-malignant pulmonary samples
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Fig. 12.10 Classification of 12 pleural mesothelioma samples

membership of the samples except sample 4 is smaller than 0.2 which means that
the identified biomarkers explain the class of these samples. However, membership
score of sample 4 is quite high (approximately 0.85). This shows that this sample
can be considered as an outlier or can come from a different cluster that has not been
considered in training dataset. Since this data point is far from all of the samples in
both the training and test datasets, it is marked as an outlier. Our outlier detection
algorithm also classifies the point as an outlier with respect to its oi score.

In the second experiment, the test dataset includes 12 pleural mesothelioma sam-
ples which have not been considered in the training dataset. Similar to Figs. 12.9 and
12.10 shows the dissimilarity value between the pleural mesothelioma samples, and
the non-malignant pulmonary and lung adenocarcinoma samples. Here, mi values
of the samples in this test dataset are approximately 0.90. Here the orchestration
module decides that all these samples belong to a different cluster since these
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Fig. 12.11 Identified informative biomarkers after new test data

samples have similar DNA methylation profiles based on the identified biomarkers.
Then, to identify the new set of biomarkers that separates these samples from
the samples in the training dataset, the locus informative score (see Eq. 12.12) is
calculated for each locus assuming that the samples in the new dataset belong to
a new cluster. Based on inf

j
l values, 42 additional loci are labeled as informative

biomarkers. The results of updated learning model are represented in Fig. 12.11. The
results show that the symbiotic feedback loop increases the accuracy of the learning
mechanism by updating informative biomarkers based on the information obtained
from the test data. As such, the accuracy of the updated learning model is 97.78%.

12.5 Conclusion

In this work, a dynamic data driven applications systems (DDDAS) high dimen-
sional learning framework, namely 3D-HCL, is introduced for identifying idiosyn-
cratic DNA methylation profile of different tumor types and/or subtypes. The
proposed framework is composed of five algorithms, (1) principal component
analysis that initializes the framework by determining initial set of informative
biomarkers, (2) hierarchical clustering algorithm that clusters the points (samples)
into groups which represent cancer types or subtypes, (3) outlier detection algorithm
that finds outliers and removes their contaminating effect on the input of HCL, (4)
informative probe selection procedure which identifies the biomarkers associated
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with clusters obtained by learning mechanism, and (5) orchestration procedure that
coordinates the information flow between HCL and outlier detection algorithm and
informative probe selection procedure based on the designed cluster membership
score. The performance of the proposed framework was demonstrated using real
lung cancer data obtained from GEO database [4]. The performance of the proposed
DDDAS-based recursive procedure is noted as very promising on the case study in
terms of detecting outliers and removing their contaminating effect, finding mean-
ingful clusters, and identifying biomarkers. In particular, in the selected dataset,
traditional HCL results in approximately 33% error and fails to identify meaningful
clusters. Our improved iterative procedure, however successfully differentiates the
non-malignant pulmonary and lung adenocarcinoma with 3% error and identifies an
aberrant DNA methylation profile associated with these cancer types. Interestingly,
we observed that outliers have a significant effect on dimension reduction by
misleading the determination of informative genes. Our proposed procedure is also
able to detect and remove the outliers from the methylation dataset to minimize
their potential contamination. Collectively, the proposed framework paves the way
towards analyzing complex DNA methylation data using data driven learning
mechanisms.

The future venues of this work involves itself with the testing of the proposed
algorithm using datasets collected from a larger number of patients. The outcome
of these studies will further validate the capability and performance of the DDDAS
learning algorithm while improving its accuracy. In this study, a threshold based
algorithm is developed based on designed informative locus score so that the pre-
defined threshold value can affect the identification of informative biomarkers.
Here, an optimal mechanism or automatic fine-tuning mechanisms for the threshold
parameter can be investigated. Lastly, in its current form, the hierarchical clustering
algorithm expects the number of clusters as a pre-determined parameter. The future
work will focus on the exploration of a cluster membership score that will help
optimize the number of clusters used in run-time.

The proposed 3D-HCL framework is tested on a real lung cancer DNA methyla-
tion dataset. As demonstrated in Sect. 12.4 the feedback loop between the clustering
and identification of biomarkers provides more accurate results of aberrant DNA
methylation profiles associated with cancer. The results of this study show that
DDDAS based methodologies can provide invaluable insight into accurate cancer
diagnosis, early detection, and treatment tailoring especially the research in the
analysis of time-course data, and complex and comprehensive studies involving very
large number of genes and samples such as Human Genome Project. In time-course
methylation analysis, the proposed 3D-HCL framework can be further investigated
to identify groups of biomarkers whose expressions are not stable over time, and
then classify the new samples based on these identified biomarkers by steering the
timing of data collection. In conclusion, this study highlights that DDDAS based
learning methodologies offer not only more accurate results but also more efficient
experimental designs for analyzing and understanding of genetic and epigenetic
blueprint in the complex and comprehensive projects.
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