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Chapter 1
Introduction to Dynamic Data Driven
Applications Systems

Erik Blasch, Dennis Bernstein, and Murali Rangaswamy

Abstract Dynamic Data Driven Application Systems (DDDAS) is a systems
design framework that focuses on developments that incorporate high-dimensional
physical models, run-time measurements, statistical methods, and computation
architectures. One of the foremost applications of DDDAS successes was environ-
mental assessment of natural disasters such as wild fire monitoring and volcanic
plume detection. Monitoring the atmosphere with DDDAS principles has evolved
into applications for space situational awareness, unmanned aerial vehicle (UAV)
design, and biomedical applications. Recent efforts reflect the digital age of infor-
mation management such as multimedia analysis, power grid control, and biohealth
concerns. Underlying a majority of the DDDAS developments are advances in sen-
sor design, signal processing and filtering, as well as computational architectures.
The book highlights some of these advances for the reader, with more information
available at the DDDAS society’s website: www.1dddas.org.

1.1 Introduction

The methods in the book capture the essence of DDDAS systems design. Invariably,
the DDDAS framework from Dr. Frederica Darema inspires many researchers for
engineering and science advances.

E. Blasch (�)
Air Force Office of Scientific Research, Air Force Research Laboratory, Arlington, VA, USA
e-mail: erik.blasch.1@us.af.mil

D. Bernstein
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA
e-mail: dsbaero@umich.edu

M. Rangaswamy
Air Force Research Laboratory, WPAFB, OH, USA
e-mail: murali.rangaswamy@us.af.mil

© Springer Nature Switzerland AG 2018
E. Blasch et al. (eds.), Handbook of Dynamic Data Driven Applications Systems,
https://doi.org/10.1007/978-3-319-95504-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95504-9_1&domain=pdf
http://www.1dddas.org
mailto:erik.blasch.1@us.af.mil
mailto:dsbaero@umich.edu
mailto:murali.rangaswamy@us.af.mil
https://doi.org/10.1007/978-3-319-95504-9_1


2 E. Blasch et al.

As articulated by Dr. Darema who pioneered the DDDAS paradigm [1, 2]:

in DDDAS instrumentation data and executing application models of these systems become
a dynamic feedback control loop, whereby measurement data are dynamically incorporated
into an executing model of the system in order to improve the accuracy of the model
(or simulation), or to speed-up the simulation, and in reverse the executing application
model controls the instrumentation process to guide the measurement process. DDDAS
presents opportunities to create new capabilities through more accurate understanding,
analysis, and prediction of the behavior of complex systems, be they natural, engineered,
or societal, and to create decision support methods which can have the accuracy of full-
scale simulations, as well as to create more efficient and effective instrumentation methods,
such as intelligent management of Big Data, and dynamic and adaptive management of
networked collections of heterogeneous sensors and controllers. DDDAS is a unifying
paradigm, bringing together computational and instrumentation aspects of an application
system, which extends the notion of Big Computing to span from the high-end to the real-
time data acquisition and control, and it’s a key methodology in managing and intelligently
exploiting Big Data.

DDDAS (Dynamic Data Driven Applications Systems), beginning in 1998 [3],
is a paradigm in which computation and instrumentation aspects of an application
system are dynamically integrated in a feedback control loop, in the sense that
instrumentation data can be dynamically incorporated into the executing model of
the application, and in reverse the executing model can control the instrumentation
[4]. Such approaches have shown to enable more accurate and faster modeling
and analysis of the characteristics and behaviors of a system. Methods based
on the DDDAS paradigm can exploit data in intelligent ways to provide new
capabilities, including decision support systems with the accuracy of full-scale
modeling, efficient data collection, resource management, and data mining.

The DDDAS paradigm, and opportunities and challenges in exploiting the
DDDAS paradigm have been discussed in a series of workshops, starting in 2000
from the National Science Foundation (NSF) [4]. The reports from these workshops,
identified new science and technology capabilities, inspired by and enabled through
the DDDAS paradigm. New capabilities include modeling approaches, algorithm
developments, systems software, and instrumentation methods, and well as the need
for synergistic multidisciplinary research among these areas [5]. DDDAS brings
together practitioners of application domains, researchers in mathematics, statistics,
electrical engineering, and computer sciences, as well as well as designers involved
in the development of instrumentation systems and methods. Through a series of
workshops, research efforts commenced to address the challenges and create new
frontiers. As shown through the increasing body of work, DDDAS is applicable to
many areas: such as (1) engineering: aerospace, biomedical, civil, electrical and
mechanical engineering, (2) systems: manufacturing, transportation, and energy
design, (3) science: environmental, weather, and climate science, as well as (4)
decision support: medical diagnosis and treatment, multimedia analysis, and cyber
security evaluation. This book presents examples of advances through DDDAS to
motivate future developers interested in the DDDAS paradigm.

The rest of the chapter helps the reader better understand DDDAS paradigm.
Section 1.2 discusses the aspects of DDDAS. Section 1.3 highlights the methods
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of estimation and assimilation for processing data. Section 1.4 includes DDDAS
methods. Section 1.5 provides a review of the major areas where DDDAS has been
applied in the last 20 years. Section 1.6 concludes with an overview of the book.

1.2 What Is DDDAS?

Consider an approaching hurricane. A meteorological model of the storm can
be constructed, but this has limited predictive value without knowledge of initial
conditions, boundary conditions, inputs, parameters, and states (such as velocities
and accelerations). In order to make predictions, data is needed to estimate unknown
quantities. Although the storm can be imaged at low resolution by satellite, mea-
surements by aircraft with high resolution are expensive and limited in range, and
therefore the size of the storm makes it impossible to obtain detailed measurements
over a large area.

In a scenario of this type, it may be possible to use the model to guide and
reconfigure the sensors so that the information content of the data is enhanced for the
ultimate objective of predicting the path and intensity of the storm. At the same time,
the data collected by the sensors enhances the accuracy of the model by providing
estimates of initial conditions, boundary conditions, inputs, parameters, and states.
The integration of on-line data with the off-line model creates a positive feedback
loop, where the model judiciously guides the sensor selection and data collection,
from which the sensor data improves the accuracy of the model.

The hurricane example illustrates the essence of Dynamic Data-Driven Applica-
tions Systems (DDDAS). DDDAS is a conceptual framework that synergistically
combines models and data in order to facilitate the analysis and prediction of
physical phenomena. In a broader context, DDDAS is a variation of adaptive state
estimation that uses a sensor reconfiguration loop as shown in Fig. 1.1 [6]. This
loop seeks to reconfigure the sensors in order to enhance the information content
of the measurements. The sensor reconfiguration is guided by the simulation of
the physical process. Consequently, the sensor reconfiguration is dynamic, and the
overall process is data driven.

The core of DDDAS is the data assimilation loop, which uses sensor data error
to drive the physical system simulation so that the trajectory of the simulation more
closely follows the trajectory of the physical system. The data assimilation loop
uses input data if input sensors are available. The innovative feature of DDDAS
is the additional sensor reconfiguration loop, which guides the physical sensors in
order to enhance the information content of the collected data. The data assimilation
and sensor reconfiguration feedback loops are computational rather than physical
feedback loops. The simulation guides the sensor reconfiguration and the collected
data, and in turn, improves the accuracy of the physical system simulation. This
“meta” positive feedback loop is the essence of DDDAS.
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Fig. 1.1 Dynamic Data-Driven Application Systems (DDDAS) feedback loop

Key aspects of DDDAS include the algorithmic and statistical methods that
incorporate the measurement data with that of the high-dimensional modeling and
simulation.

1.3 State Estimation and Data Assimilation

The goal of state estimation is to combine models with data in order to estimate
model states that are not directly measured. State estimation is a foundational area
of research in systems and control. Relevant techniques date from the 1960’s in the
form of the Kalman filter and the Luenberger observer. An observer is a model that
emulates the dynamics of a physical system and is driven by sensor data in order
to approximate unmeasured states. The Kalman filter is a stochastically optimal
observer that estimates unmeasured states. In large-scale physics applications,
such as applications involving structures or fluids, state estimation is called data
assimilation.

The Kalman filter was developed for linear systems. However, most real appli-
cations involve nonlinear dynamics, and the development of observers and filters
for nonlinear systems is a challenging problem that remains largely unsolved.
Numerous techniques, which can be described as suboptimal, ad hoc, application-
based, or approximate, have been developed, and many of these methods are widely
used. These techniques include the extended Kalman filter (EKF), ensemble Kalman
filter (EnKF), ensemble adjustment Kalman filter (EAKF), unscented Kalman filter
(UKF), stochastic integration filter (SIF), and particle filters (PF) [7, 8].
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1.3.1 DDDAS and Adaptive State Estimation

State estimation algorithms are based on prior information about the physical
system [9]. The information typically includes a model of the physical system as
well as knowledge of the initial state, inputs (such as disturbances), and sensor
noise. Likewise, stochastic representation, for example, as a statistical description
of the disturbances and sensor noise, is one method to process the information. An
adaptive state estimation algorithm may attempt to learn and update the information,
states, and parameters online.

DDDAS uses adaptation in a different sense. In particular, DDDAS seeks
to reconfigure the sensors during operation. Sensor reconfiguration, driven by
the model, enhances the information content of the measurements. The sensor
reconfiguration loop is shown in Fig. 1.1. Together, the integration of the data
assimilation loop and the sensor reconfiguration loop are central to methods using
DDDAS.

1.3.2 Does DDDAS Use Feedback Control?

DDDAS uses computational feedback, but not physical feedback. As Fig. 1.1 shows,
state estimation is a feedback process, where the sensor error corrects the simulation
of the physical system. The data assimilation feedback loop is implemented in
computation, and thus has no effect on the physical system.

DDDAS employs an additional feedback loop by reconfiguring the sensors
based on the sensor error data. The sensor reconfiguration feedback loop is also
computational, and thus does not affect the response of the physical system. In
contrast, feedback control uses physical inputs (such as forces and moments) in
order to affect the behavior of a physical system, such as an aircraft autopilot
that drives the control surfaces and modifies the aircraft trajectory. Consequently,
DDDAS employs two computational feedback loops, but does not use only physical
feedback control. The power of DDDAS to use simulated data from a high-
dimensional model to augment measurement systems for systems design to leverage
statistical methods, simulation, and computation architectures.

1.4 DDDAS Methods

The DDDAS framework, as it name implies, has been applied to many applications
where modeling and data collection are utilized in engineering and scientific
analysis. Hence, four attributes of DDDAS include: (1) instrumentation methods,
(2) real-world applications, (3) modeling and simulation, and (4) systems
software, as shown in Fig. 1.2.
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Fig. 1.2 DDDAS attributes

Instrumentation methods include multidomain components in real-world situa-
tions such as space sensors monitoring the atmosphere; avionics sensors detected
the air movements, computer vision detecting vehicles on a terrain road network,
as well as, water properties in the ocean. Complementing the application is high-
fidelity simulation models such as the space Global ionosphere–thermosphere
model (GITM) model, the National Climate Atmospheric Reference (NCAR)
model, ground-based vehicle traffic models, and oceanic radar scatter models.
Together the integration of the modeling and data collection requires software
systems to process the large data sources and model parameters. The coordination of
high-end with real-time computing requires new hardware and software approaches
in the fields of optimization, data flow, and architectures to being together modeling
and instrumentation methods for real world applications.

The key developments of the integration of the instrumentation, models, and
software to enable the development of DDDAS include: theory, algorithms,
and computation for which the book seeks to highlight. The theory includes
mathematical advances (e.g., retrospective cost modeling and information theoretic
inference); while the algorithms support new methods (e.g., ensemble Kalman filter,
Particle filter, optimization techniques). The computational considerations align
with the developments in the continuing networked society such as non-convex
optimization, data flow architectures, and systems design.
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Fig. 1.3 DDDAS challenges and processes

The challenges DDDAS seeks to advance include data modeling, context
processing, and content application. To bring together data, context and content
requires addressing issues in model fidelity, dimensions, and usability such as
how many parameters are needed for system control. When data is collected, it
needs to be preprocessed to determine whether its inherent information matches the
context. One example includes clutter reduction, sensor registration, and confuser
analysis in vehicle tracking. Finally, another key challenge is that of sampling, as
shown in Fig. 1.3. Sampling is the multiresolution needed to monitor the situation,
environment and network context to explain the content desired.

Three examples are presented in Fig. 1.4 which demonstrates DDDAS methods
applied to enhance awareness. The examples are air, space, and cyber exam-
ples where instrumentation, modeling, and software have been designed for real
platforms. On the left is weather modeling with nonlinear tracking methods
for unmanned aerial vehicle (UAV) flight routing. The middle includes multi-
domain robotics of space and ground vehicles with filtering methods for distributed
autonomous coordinated control. Finally, the cyber example comes from power
grids performance that integrates cyber physical systems (CPS) with the internet
of things (IoT).

1.5 DDDAS Research Areas of Historical Development

The concepts for DDDAS have developed for almost two decades starting with
an initial NSF workshop in 2000 that brought together researchers, engineers,
scientists and developers. The initial workshop focused on harnessing the power
of theory, modeling, sensing, and hardware advances to instantiate systems-level
opportunities. The explosion of DDDAS is demonstrated in the literature, as
shown in Fig. 1.5. The statistics from Fig. 1.5 only capture those papers that call
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Fig. 1.4 DDDAS awareness examples
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out DDDAS as the underlying paradigm; while many other papers have briefly
acknowledged DDDAS are not included in Fig. 1.5. There is a growing trend in
approaches using DDDAS, which is established through the DDDAS website.

Many forums have provided opportunities for showcasing advances in DDDAS.
The primary meetings that highlighted the advances include:

• IEEE International Parallel and Distributed Processing Symposium (IPDPS)
[10];

• International Conference on Computational Science (ICCS) [11]; and
• Winter Simulation Conference (WSC) [12].

The opportunities have expanded into engineering conferences:

• IEEE American Controls Conference (ACC) [13];
• ISIF International Conference on Information Fusion (Fusion) [14]; and
• AIAA Aviation [15].
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Fig. 1.6 DDDAS results (From: Report of the August 2010 Multi-Agency Workshop on
Info/Symbiotics/DDDAS: The power of Dynamic Data Driven Application Systems, AFOSR,
2010)

Other science forums include: Data Stream (STREAM), American Geophysical
Union (AGU), and Society for Industrial and Applied Mathematics (SIAM).

Along the way, there have been countless meetings and workshops with the first
archive being the Dynamic Data-driven Environmental Systems Science Conference
(DyDESS) (2014). DyDESS focused on scientific methods such as (1) Perspectives
from Ocean State Estimation, (b) Imaging Earth’s interior with active and passive
source seismic data, (3) Objective Detection of Lagrangian Vortices in Unsteady
Velocity Data, and (4) Data Assimilation and Controls for atmospheric mutiscale
dimensional processing. The DDDAS/InfoSymbiotics conference (2016) is the
genesis of this book.

Over the years, many researchers have embraced the DDDAS concept with
a variety of applications as shown in Fig. 1.6. Areas of interest shown in the
illustrations include data assimilation, UAV swarms, decision support, simulations,
and wildfire analysis; among others. The DDDAS community is dedicated to
showcasing scientific and technological advances in complex systems modeling and
instrumentation methods. The next section organizes many of the papers in the last
20 years into the areas of theory, methods, and design.

The history of DDDAS extends from two decades of developments. To organize
the diverse set of applications, we highlight three areas: (1) theory, (2) methods,
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and (3) designs. Key areas for theory are based in the scientific areas with
large data collections and complex models. Methods include various engineering
designs for various domains – space, air, and ground, where DDDAS supports
dynamic response and control. Finally, examples are presented that include elements
needed to support applications that require systems design and computational
architectures. Given the large size of the DDDAS literature, various taxonomies
could be highlighted; however, the organization is an effort to provide the reader
with the wide-ranging influence the DDDAS paradigm has had on the scientific,
development, and design communities.

1.5.1 Theory: Modeling and Analysis

The DDDAS paradigm began with enhancing the phenomenology of science
models such that measurement information would enhance the resulting model.
In 2003, key attributes included measurement information, data assimilation, and
adaptive sampling incorporated into multiphysics [16], ocean forecasting [17],
and atmospheric modeling [18]. An application that benefited from the DDDAS
principles using science models was oil well placement [19].

As the DDDAS methods showed promise in science applications, a key area
was in weather forecasting [20]. Researchers assessed tornado prediction [21],
hurricane data assimilation [96], climate analysis [22], and chemical transport
models [23]. Simultaneously, DDDAS began addressing theoretical uncertainty and
quantifying error minimization [24]. Years later, Ravela et al. [25] and others began
to use the information from weather forecasting (e.g., coherent fluid analysis) for
advances in applications controls for UAVs and aircraft routing.

Along with weather forecasting was another related application for wildfire
monitoring such as agent-based simulations for fire propagation modeling [26],
which is still valid today. A set of researchers, lead by Coen [27], continued
to use the DDDAS paradigm for inclusion of advanced physical models of
wildfire prediction with that of real-time sensing. Within the CAWFE R© (Coupled
Atmosphere-Wildland Fire Environment) modeling system, various sensors such
as the Visible Infrared Imaging Radiometer Suite (VIIRS), provided analysis of
smoke plume detection [28] in the United States. The wildfire assessment method
was extended to other geographic locations such as Europe [29]. Furthermore, fire
detection and mitigation sought to understand the management of water distribution
[30].

A recent example is that of volcanic ash detection by Bursik and Singla et al.
[31]. Atmospheric analysis can have impacts on commercial air transport, such as
the recent eruption in Iceland. The particulates in the air from the eruption could
have disastrous effects on combustion engines moving an aircraft through the sky.
Likewise, with the detection of changes in the weather content, environmental wind
context, and navigational data could be used to alter the air traffic management of
the networked skies. Advances in uncertainty quantification were incorporated into
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the ash movement modeling so as to prepare aviation for future events and provide
passenger safety [32]. Uncertainty quantification helps in estimate error reduction
in complex modeling and estimation methods [33].

Science applications also include areas for bio-sensing and analysis for medical
applications. One example is using image recognition for tracking human responses
to stress and expressions. Metaxas et al. [34] developed DDDAS methods using
image recognition and face tracking [35]. Other examples include using the sensing
to update models of humans in support of neurosurgery [36]. As a third example,
Oden et al. [37, 38] utilized DDDAS principles for laser treatment of cancer. In
each of these cases, DDDAS supported enhancements in medical treatment through
advanced modeling. Further DDDAS developments in this book include diagnostics,
chemical treatment, and pandemics.

1.5.2 Methods: Domain Applications

Building upon the DDDAS principles for science applications influenced another
area of development which moved from data assimilation analysis to that of control
and filtering. As highlighted earlier, an extension of the scientific modeling of the
air environment was extended to the atmospheric environment for space awareness.
Bernstein et al. [39] utilized the DDDAS principles for data assimilation using the
global ionosphere-thermosphere model (GITM). While it was a scientific analysis,
it moved the DDDAS community towards adaptive control and sensing. Simulations
were conducted to determine the effects of planetary circulation [40] and movement
of atmospheric elements [41]. A third example extends these developments for the
Retrospective Cost Model Refinement (RCMR) that includes modeling, sensing and
control [42]. The developments provide for advances in satellite protection, orbital
sensing, and understanding the far earth environment.

Protection of platforms, such as satellites, is also a key area for DDAS including
structural health monitoring (SHM). Farhat et al. [43] utilized the DDDAS
principles towards SHM of materials assessments of equipment, while Chang et
al. has followed with aircraft composite structures which is featured in the book.
Having an accurate model, with embedding sensing, supports real time response to
a dynamically changing environment. Additionally developments include reduced-
order modeling (ROM) such that the ensemble of models can be refined over
model parameters, uncertainty estimation, and sensing bias [44]. Oden et al. [45]
provided additional benefits of SHM for damage assessment and others highlighted
modeling updates that account for materials damage [46]. The book highlights
recent advancements in SHM using the DDDAS paradigm such as for aerospace
systems.

Recently, Wilcox and Allaire et al. [47] have utilized online/offline modeling
in support of self-aware vehicles which paves the way for autonomous systems.
Included in their research is a focus on the model dimensionality for operational
performance [48]. As a second example, Mohseni et al. has a wide variety of air
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and water autonomous systems and applied DDDAS for control and atmospheric
sensing [49]. The monitoring of the environment supported the health monitoring
of the vehicles with a changing environment. These developments have been
incorporated into the control of soaring vehicles [50]. The third example includes
onboard avionics to sense fault detection [51]. Varela et al. has led a group to bring
together the computations with that of electronics health assessment for safe flight
[52]. Typically, the theory employed for self-aware vehicles is in estimation.

To achieve the efforts in analysis over multiple domains requires the coordination
and estimation of the techniques. Using the ensemble Kalman filter, Sandu et al.
[53] addressed the computational aspects of data assimilation for aerosol in the
atmosphere while Ravela et al. [54] devised methods for air platform positioning.
Other methods looked at the methods to use in forecasting prediction [55]. If
the DDDAS methods are able to forecast the movements, they can be use field
alignment to estimate vehicle locations such as with quadrature information [56,
57]. Likewise, the fidelity of the parameters affects the estimation of model accuracy
[58], which enables a mixture of ensembles [59].

Estimation methods are elements of data fusion techniques. The integration of
measurements includes data, sensor, and information fusion. Information fusion
aligns well with the DDDAS principals [60]. Such an example is an array of
sensors for target detection and classification [61]. DDDAS hence can improve
pattern recognition [62] or classification especially if data analysis is completed
over features [63]. Recent methods have combined heterogeneous data in support of
nonlinear classification of moving objects using signal and pixel data [64].

Moving entity analysis includes object estimation. Hoffman et al. [65] used
DDDAS in analysis of hyperspectral data to gather relevant features of the moving
object. Fujimoto et al. [66] used these methods for ground vehicle analysis, while
others advanced the methods for multidimensional assignment in support of aerial
vehicle monitoring [67].

The DDDAS concept leverages models such as scene, roads, or other terrain
information. Context aware approaches were investigated [68], along with the need
to learn the measurement models [69]. These methods were furthered by the infor-
mation fusion community for context-enhanced information fusion which shows
how DDDAS techniques can improved tracking over many operating conditions for
robust performance [70].

Building on the theory and methods, efforts also include design.

1.5.3 Design: Systems and Architectures

The third section of the review includes systems architecture, energy networks,
systems design, and cyber network analysis, with recent efforts in cloud computing.
In the early methods of DDDAS, there was a need for scalable architectures and
agent-based systems where evaluated [71]. DDDAS showed promise for supply
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chain analysis to improve the logistic and movement of parts [72]. Likewise web-
based methods provide a use case for distributed simulations for computer data
streaming [73]. Web-based methods afford query languages for DDDAS designs
[74] and analysis [75].

The distributed aspects of network analysis were adapted and applied for
power system and energy analysis [76, 77]. Power analysis as a function of
microgrids can support the power and energy available for aircraft which requires an
adequate model of the energy distribution [78]. As for ground vehicles, the energy
consumption can be improved both locally for a car and globally for traffic [79].

The networks, whether power grids or equipment, demonstrate effective global
analysis can improve situation awareness for disaster management [80]. The systems
approach applied to smart cities and urban infrastructures supported assessment
of emissions on the climate [81]. Likewise, with the systems analysis, methods
can support the design of embedded electronics for signal processing [82]. These
methods were further analyzed for adaptive video stream processing [83, 84].

Recent trends have changed the network application to include communication
and cyber networks. While traditionally, DDDAS looked at these methods for web
services [85], DDDAS revised trust monitoring on a network [86], such that trust
and privacy relied on the trust analysis for sensing control and assignment [87].
Recent efforts include extending these and a comprehensive analysis of DDDAS
and the coordination of trust was explored by Blasch and Hariri et al. [88, 89].

Finally, the integration of DDDAS with computing has shown promise for
the advancement of systems and software solutions. Quality of Service (QoS)
optimization improved using DDDAS [90]. The use of a cloud-based system
was successful for real-time tracking of targets from Wide Area Motion Imagery
(WAMI) streaming data [91]. Another approach used cloud computing for cyber
physical systems (CPS) to manage the data streams between CPS networked devices
and those of sensors at the edge [92]. Darema et al. [93] combined these methods
in a review of the benefits of DDDAS in support of a variety of applications such as
distributed behavior model orchestration in cognitive internet of things (IoT).

1.6 Book Overview

This book emerged from the 2016 DDDAS workshop in Hartford Connecticut from
which presentations are available to support the written chapters on the DDDAS
website. The website also hosts some software methods and data to support the
DDDAS analysis. To overview some contributions, the table below briefly highlights
the chapter theory, simulation, data and application. The reader can use the table to
focus on those chapters where the theoretical content and application context is of
interest to their research and analysis.



14 E. Blasch et al.

T
he

or
y

Si
m

ul
at

io
n

D
at

a
A

pp
lic

at
io

n

M
ea

su
re

m
en

t
aw

ar
e:

A
ss

im
ila

ti
on

,u
nc

er
ta

in
ty

qu
an

ti
fic

at
io

n
T

ra
ct

ab
le

no
n-

G
au

ss
ia

n
re

pr
es

en
ta

ti
on

s
in

dy
na

m
ic

da
ta

dr
iv

en
co

he
re

nt
flu

id
m

ap
pi

ng

R
ed

uc
ed

or
de

r
m

od
el

in
g

w
ith

en
se

m
bl

e
fil

te
ri

ng
A

tm
os

ph
er

ic
pl

um
es

U
A

V
tr

ac
ki

ng
pl

um
e

de
te

ct
io

n
U

nm
an

ne
d

ae
ri

al
sy

st
em

s

D
yn

am
ic

da
ta

-d
ri

ve
n

ad
ap

ti
ve

ob
se

rv
at

io
ns

in
da

ta
as

si
m

ila
ti

on
fo

r
m

ul
ti

-s
ca

le
sy

st
em

s

In
fo

rm
at

io
n-

th
eo

re
tic

pa
rt

ic
le

fil
te

ri
ng

L
or

en
z

19
63

w
ea

th
er

da
ta

W
ea

th
er

au
gm

en
te

d
no

nl
in

ea
r

fli
gh

t
Se

ns
or

se
le

ct
io

n
in

dy
na

m
ic

fli
gh

t

D
yn

am
ic

da
ta

-d
ri

ve
n

un
ce

rt
ai

nt
y

qu
an

ti
fic

at
io

n
vi

a
ge

ne
ra

liz
ed

po
ly

no
m

ia
lC

ha
os

Po
ly

no
m

ia
lC

ha
os

an
d

G
M

M
un

ce
rt

ai
nt

y
qu

an
tifi

ca
tio

n
Sa

te
lli

te
tr

ac
ki

ng
Io

no
sp

he
re

-t
he

rm
os

ph
er

e
m

od
el

s
O

rb
ita

la
w

ar
en

es
s

Si
gn

al
s

aw
ar

e:
P

ro
ce

ss
es

m
on

it
or

in
g

To
w

ar
ds

le
ar

ni
ng

Sp
at

io
-t

em
po

ra
ld

at
a

st
re

am
re

la
ti

on
sh

ip
s

fo
r

fa
ilu

re
de

te
ct

io
n

in
av

io
ni

cs

D
ec

la
ra

tiv
e

da
ta

es
tim

at
io

n
an

d
le

ar
ni

ng
A

ir
pl

an
e

se
ns

or
da

ta
A

ir
cr

af
tw

ei
gh

t,
ai

rfl
ow

m
ea

su
re

m
en

ts
A

vi
on

ic
s

se
ns

or
fa

ilu
re

M
ar

ko
v

m
od

el
in

g
of

ti
m

e
se

ri
es

da
ta

vi
a

sp
ec

tr
al

an
al

ys
is

R
ed

uc
ed

-o
rd

er
M

ar
ko

v
m

od
el

in
g

w
m

ax
im

um
en

tr
op

y
pa

rt
iti

on
in

g

T
im

e-
se

ri
es

co
m

bu
st

io
n

m
od

el
in

g
G

as
,p

re
ss

ur
e,

te
m

pe
ra

tu
re

C
om

bu
st

io
n

en
gi

ne
di

ag
no

st
ic

s

D
yn

am
ic

sp
ac

e-
ti

m
e

m
od

el
fo

r
sy

nd
ro

m
ic

su
rv

ei
lla

nc
e

w
P

F
an

d
an

d
D

ir
ic

hl
et

P
ro

ce
s

Pa
rt

ic
le

fil
te

rs
w

ith
D

ir
ic

hl
et

pr
oc

es
se

s
B

io
he

al
th

ou
tb

re
ak

In
di

an
a

pu
bl

ic
he

al
th

em
er

ge
nc

y
su

rv
ei

lla
nc

e
sy

s
H

ea
lth

pr
ot

ec
tio

n

St
ru

ct
ur

es
aw

ar
e:

H
ea

lt
h

m
od

el
in

g
A

co
m

pu
ta

ti
on

al
St

ee
ri

ig
fr

am
ew

or
k

fo
r

la
rg

e-
sc

al
e

co
m

po
si

te
st

ru
ct

ur
es

V
ar

ia
tio

na
lm

ul
tis

ca
le

flu
id

st
ru

ct
ur

e
in

te
ra

ct
io

n
(F

SI
)

Is
og

eo
m

et
ir

c
A

na
ly

si
s

(I
G

A
)

ap
pr

oa
ch

lie
fin

ite
-e

le
m

en
t

m
od

el
in

g

St
ru

ct
ur

es
co

m
po

si
te

el
em

en
tr

el
at

io
n

ne
tw

or
k

w
ith

ul
tr

as
on

ic
se

ns
or

C
om

ps
iti

e
w

in
g

co
nt

ro
l

fo
r

ae
ro

dy
na

m
ic

fli
gh

t

In
te

lli
ge

nt
se

lf
-h

ea
lin

g
co

m
po

si
te

st
ru

ct
ur

e
us

in
g

pr
ed

ic
ti

ve
se

lf
-h

ea
lin

g

M
od

ifi
ed

be
am

th
eo

ry
St

ru
ct

ur
es

cr
ac

k
an

d
de

la
na

tio
n

he
al

in
g

D
ou

bl
e-

ca
nt

ile
ve

r
be

am
fr

ac
tu

re
an

d
he

al
in

g
te

st
St

ru
ct

ur
al

se
lf

-h
ea

lin
g



1 Introduction to Dynamic Data Driven Applications Systems 15

U
se

of
op

er
at

io
na

lly
fle

xi
bl

e
ro

bu
st

op
ti

m
iz

at
io

n
in

dy
na

m
ic

da
ta

dr
iv

en
ap

pl
ic

at
io

n
sy

st
em

s

B
ay

es
ia

n
co

pu
la

m
od

el
A

er
oe

st
ic

U
ns

te
ad

y,
V

or
te

x
la

tti
ce

m
et

ho
d

w
ith

Fi
ni

te
E

le
m

en
tm

od
el

(U
V

L
M

-F
E

M
)

Se
ns

or
st

ra
in

m
ea

su
re

m
en

ts
U

A
V

w
in

g
an

al
ys

is

E
nv

ir
on

m
en

ta
w

ar
e:

E
ar

th
,B

io
lo

gi
ca

la
nd

sp
ac

e
sy

st
em

s
T

ra
ns

fo
rm

in
g

w
ild

fir
e

de
te

ct
io

n
an

d
pr

ed
ic

ti
on

us
in

g
ne

w
an

d
un

de
ru

se
d

se
ns

or
an

d
da

ta
so

ur
ce

s
in

te
gr

at
ed

w
it

h
m

od
el

in
g

E
ns

em
bl

e
K

al
m

an
fil

te
r

w
ith

ad
ap

tiv
e

si
m

ul
at

io
n

in
vo

ca
tio

n
of

da
ta

C
ou

pl
ed

at
m

os
ph

er
e-

w
ild

la
nd

fir
e

en
vi

ro
nm

en
tm

od
el

in
g

to
ol

s

V
is

ib
le

In
fr

ar
ed

Im
ag

in
g

R
ad

io
m

et
er

Su
ite

(V
II

R
S)

sa
te

lli
te

da
ta

W
ild

fir
e

de
te

ct
io

n
an

d
pr

ed
ic

tio
n

D
D

D
A

S
fo

r
id

en
ti

fic
at

io
n

of
bi

om
ar

ke
rs

in
D

N
A

m
et

hy
la

ti
on

H
ie

ra
rc

hi
ca

lc
lu

st
er

in
g

fo
r

di
m

en
si

on
re

du
ct

io
n

D
N

A
se

qu
en

ci
ng

th
ro

ug
h

lo
cu

s
sc

or
e

in
fo

rm
at

io
n

G
E

O
D

at
aS

et
s

of
lu

ng
C

an
ce

r
B

io
m

ar
ke

rs
in

D
N

A
m

et
hy

la
tio

n
P

ho
to

m
et

ri
c

m
et

ho
d

fo
r

3D
re

co
ns

tr
uc

ti
on

of
sp

ac
e

ob
je

ct
Ph

ot
om

et
ri

c
st

er
eo

im
ag

in
g

us
in

g
st

ru
ct

ur
e

fr
om

m
ot

io
n

m
et

ho
ds

Sy
nt

he
tic

im
ag

es
ge

ne
ra

te
d

fr
om

ra
y-

tr
ac

er
en

gi
ne

L
ig

ht
D

et
ec

tio
n

an
d

R
an

gi
ng

(L
ID

A
R

)
R

es
id

en
ts

pa
ce

ob
je

ct
de

te
ct

io
n

Si
tu

at
io

n
aw

ar
e:

T
ra

ck
in

g
m

et
ho

ds
A

id
ed

op
ti

m
al

se
ar

ch
:

D
at

a-
dr

iv
en

ta
rg

et
pu

rs
ui

t
fr

om
on

-d
em

an
d

de
la

ye
d

bi
na

ry
ob

se
rv

at
io

ns

Sp
ar

se
G

au
ss

ia
n

m
ix

tu
re

m
od

el
w

/m
ix

ed
-i

nt
eg

er
pr

og
ra

m
m

in
g

Pa
rt

ia
lly

ob
se

rv
ab

ly
M

ar
ko

v
de

ci
si

on
pr

oc
es

se
s

fo
r

op
tim

al
se

ar
ch

U
na

tte
nd

ed
gr

ou
nd

se
ns

or
s

fo
r

ob
je

ct
es

tim
at

io
n

U
A

V
/A

G
V

co
or

di
na

tio
n

fo
r

su
rv

ei
lla

nc
e

O
pt

im
iz

at
io

n
of

ta
rg

et
tr

ac
ki

ng
w

it
h

a
se

ns
or

ne
tw

or
k

by
us

in
g

ex
pe

ct
ed

lik
el

ih
oo

d
m

ea
su

re
m

en
ts

In
fo

rm
at

io
n-

dr
iv

en
se

ns
or

qu
er

yi
ng

w
ith

en
tr

op
y

lik
el

ih
oo

d

Pa
rt

ic
le

fil
te

r
pr

ed
ic

tio
n

U
na

tte
nd

ed
gr

ou
nd

se
ns

or
s

fo
r

ob
je

ct
es

tim
at

io
n

Se
ns

or
ne

to
rk

m
an

ag
em

en
t

D
at

a-
dr

iv
en

pr
ed

ic
ti

on
of

co
nfi

de
nc

e
an

d
E

V
A

R
in

ti
m

e-
va

ry
in

g
da

ta
se

ts
w

it
h

on
lin

e-
co

m
pu

ta
bl

e
er

ro
r

bo
un

ds

E
nt

ro
pi

c
va

lu
e

at
ri

sk
w

/
re

al
-t

im
e

ad
ap

tiv
e

pr
ed

ic
tio

n
of

tim
e-

va
ry

in
g

an
d

ob
sc

ur
e

re
w

ar
ds

Pr
ed

ic
te

d
in

fo
rm

at
io

n
ga

in
w

m
ul

tip
la

ye
r

ba
nd

it
E

ur
op

ea
n

re
se

ar
ch

ar
ea

da
ta

:T
em

pe
ra

tu
re

,
w

in
df

al
l,

ra
in

,o
zo

ne

E
nv

ir
on

m
en

ta
la

w
ar

en
es

s

C
on

te
xt

aw
ar

e:
C

oo
rd

in
at

ed
co

nt
ro

l
D

D
D

A
S

fo
r

at
ta

ck
s

de
te

ct
io

n,
is

ol
at

io
n,

an
d

re
co

nfi
gu

ra
ti

on
of

co
nt

ro
ls

ys
te

m
s

D
D

D
A

S-
in

sp
ir

ed
an

om
al

y
is

ol
at

io
n

an
d

re
sp

on
se

N
on

lin
ea

r
th

re
e

ta
nk

L
ue

nb
er

ge
r

ob
se

rv
er

C
yb

er
at

ta
ck

s
m

od
el

in
g

C
yb

er
at

ta
ck

s
of

in
du

st
ri

al
co

nt
ro

ls
ys

te
m

s

(c
on

tin
ue

d)



16 E. Blasch et al.

T
he

or
y

Si
m

ul
at

io
n

D
at

a
A

pp
lic

at
io

n

A
pp

ro
xi

m
at

e
po

te
nt

ia
lg

am
e

ap
pr

oa
ch

fo
r

co
op

er
at

iv
e

se
ns

or
ne

tw
or

k
pl

an
ni

ng

In
fo

rm
at

io
n

th
eo

re
tic

m
et

ho
ds

G
am

e
th

eo
re

tic
ne

ig
hb

or
ut

ili
ty

L
or

en
z-

95
m

od
el

Se
ns

or
gr

id
w

ea
th

er
fo

re
ca

st
in

g

D
yn

am
ic

se
ns

or
-a

ct
or

in
te

ra
ct

io
ns

fo
r

pa
th

pl
an

ni
ng

in
an

un
ce

rt
ai

n
th

re
at

fie
ld

Fi
sh

er
in

fo
rm

at
io

n
th

eo
re

tic
m

et
ho

ds
A

ct
or

-d
ri

ve
n

se
ns

or
re

co
nfi

gu
ra

tio
n

in
th

re
at

fie
ld

G
ri

d-
ba

se
d

se
ns

or
fie

ld
W

ild
fir

es
,a

tm
os

ph
er

ic
co

nt
am

in
an

ts

E
ne

rg
y

aw
ar

e:
Po

w
er

sy
st

em
s

E
ne

rg
y-

aw
ar

e
dy

na
m

ic
da

ta
-d

ri
ve

n
di

st
ri

bu
te

d
tr

af
fic

si
m

ul
at

io
ns

K
in

em
at

ic
m

od
el

in
g

of
ve

hi
cl

es
w

ith
ce

llu
la

r
au

to
m

at
a

E
PA

M
O

to
r

V
eh

ic
le

E
m

is
si

on
s

Si
m

ul
at

or
(M

O
V

E
S)

m
od

el

Fe
de

ra
lH

ig
hw

ay
A

dm
in

is
tr

at
io

ns
N

ex
t

G
en

er
at

io
n

Si
m

ul
at

io
n

(N
G

SI
M

)
da

ta

V
eh

ic
le

em
is

si
on

s
m

on
ito

ri
ng

A
dy

na
m

ic
da

ta
-d

ri
ve

n
op

ti
m

iz
at

io
n

fr
am

ew
or

k
fo

r
de

m
an

d
si

de
m

an
ag

em
en

t
m

ic
ro

gr
id

s

L
oa

d
de

m
an

d
fr

om
w

in
d

tu
rb

in
es

,d
ie

se
l,

an
d

so
la

r
en

er
gy

op
tim

iz
at

io
n

In
te

rr
up

tio
n

lo
ad

m
an

ag
em

en
t(

IL
M

)
an

al
ys

is
Fl

or
id

a
A

ut
om

at
ed

W
ea

th
er

N
et

w
or

k
(F

A
W

N
)

da
ta

M
ic

ro
gr

id
C

O
2

em
is

si
on

s

D
yn

am
ic

da
ta

dr
iv

en
pa

rt
it

io
ni

ng
of

sm
ar

t
gr

id
us

in
g

le
ar

ni
ng

m
et

ho
ds

Fu
zz

y
lo

gi
c

m
ar

ke
t-

ba
se

d
op

tim
iz

at
io

n
G

ri
dL

A
B

-D
si

m
ul

at
io

n
IE

E
E

-1
3,

IE
E

E
-3

7
an

d
IE

E
E

-1
23

bu
s

te
st

fe
ed

er
s

R
en

ew
ab

le
en

er
gy

so
ur

ce
s

en
er

gy

P
ro

ce
ss

aw
ar

e:
Im

ag
e

an
d

vi
de

o
co

m
pu

tin
g

m
et

ho
ds

D
yn

am
ic

,d
at

a-
dr

iv
en

pr
oc

es
si

ng
of

m
ul

ti
sp

ec
tr

al
vi

de
o

st
re

am
s

G
au

ss
ia

n
m

ix
tu

re
m

od
el

pi
xe

l-
le

ve
lf

us
io

n
L

ig
ht

w
ei

gh
td

at
afl

ow
sp

ec
tr

al
ru

n-
tim

e
sy

st
em

m
od

el

H
yp

er
sp

ec
tr

al
ba

nd
su

bs
et

pr
oc

es
si

ng
M

ul
ti-

sp
ec

tr
al

im
ag

e
pr

oc
es

si
ng

L
ig

ht
fil

ed
im

ag
e

co
m

pr
es

si
on

Se
lf

-s
im

ila
ri

ty
ba

se
d

lig
ht

fie
ld

vi
de

o
en

co
di

ng
B

i-
di

re
ct

io
n

m
ot

io
n

es
tim

at
io

n
an

d
co

m
pe

ns
at

io
n

D
en

se
ca

m
er

a
ar

ra
y

im
ag

es
L

en
sl

et
-b

as
ed

an
d

ca
m

er
a

ar
ra

y
im

ag
e

pr
oc

es
si

ng
O

n
co

m
pr

es
si

on
of

m
ac

hi
ne

-d
er

iv
ed

co
nt

ex
t

se
ts

fo
r

fu
si

on
of

m
ul

ti
-m

od
al

se
ns

or
da

ta

G
ra

ph
-t

he
or

et
ic

pr
ob

le
m

of
m

ax
im

al
cl

iq
ue

en
um

er
at

io
n

D
-M

ar
ko

v
co

nt
ex

ts
et

co
m

pr
es

si
on

T
im

e-
se

ri
es

sy
m

bo
lic

dy
na

m
ic

fil
te

re
d

da
ta

C
on

te
xt

-b
as

ed
se

ns
or

da
ta

fo
r

su
rv

ei
lla

nc
e



1 Introduction to Dynamic Data Driven Applications Systems 17

C
yb

er
aw

ar
e:

Se
cu

ri
ty

an
d

co
m

pu
tin

g
sy

st
em

s
Si

m
ul

at
io

n-
ba

se
d

op
ti

m
iz

at
io

n
as

a
Se

rv
ic

e
fo

r
D

yn
am

ic
D

at
a-

dr
iv

en
A

pp
lic

at
io

ns
Sy

st
em

s

K
-g

re
ed

y
C

oo
rd

in
at

e
D

ec
en

t
(C

D
)

m
et

ho
d

Si
m

ul
at

io
n-

ba
se

d
op

tim
iz

at
io

n
as

a
se

rv
ic

e
D

yn
am

ic
tr

af
fic

lig
ht

co
nt

ro
l

C
lo

ud
-b

as
ed

la
rg

e
sc

al
e

di
sc

re
te

va
ri

ab
le

de
ci

si
on

de
ci

si
on

P
ri

va
cy

an
d

se
cu

ri
ty

is
su

es
in

D
D

D
A

S
sy

st
em

s
L

ap
la

ce
pe

rt
ur

ba
tio

n
an

al
ys

is
a-

di
ff

er
en

tia
lp

ri
va

cy
PR

E
D

IC
T

(P
ri

va
cy

an
d

se
cu

R
ity

en
ha

nc
in

g
dy

na
m

ic
in

fo
rm

at
io

n
co

lle
ct

io
n

an
d

m
on

iT
or

in
g)

D
at

a
st

re
am

co
lle

ct
io

n
of

m
ul

tim
ed

ia
da

ta
In

te
lli

ge
nt

da
ta

co
lle

ct
io

n

D
yn

am
ic

da
ta

dr
iv

en
ap

pl
ic

at
io

n
sy

st
em

s
(D

D
D

A
S)

fo
r

m
ul

ti
m

ed
ia

co
nt

en
t

an
al

ys
is

Q
ur

ey
-b

as
ed

da
ta

flo
w

ta
rg

et
de

te
ct

io
n

an
d

tr
ac

ki
ng

L
iv

e-
vi

de
o

co
m

pu
tin

g
(L

V
C

)
da

ta
ba

se
m

an
ag

em
en

t
sy

st
em

(L
V

C
-D

B
M

S)
sy

st
em

Pa
rk

in
g

lo
ti

m
ag

e
an

d
te

xt
da

ta
M

ul
tim

od
al

su
rv

ei
lla

nc
e

Sy
st

em
s

aw
ar

e:
C

om
bi

ne
d

de
si

gn
m

et
ho

ds
P

ar
ze

nW
in

do
w

s:
Si

m
pl

es
t

re
gu

la
ri

za
ti

on
al

go
ri

th
m

N
on

pa
ra

m
et

ri
c

le
as

t-
sq

ua
re

s
le

ar
ni

ng
G

au
ss

ia
n

se
ns

or
si

m
la

tio
n

So
na

r
se

ns
in

g,
St

uc
tu

re
s

ID
,F

in
an

ci
al

T
ra

na
sc

tio
ns

,
M

ed
ic

al
Ir

is
de

te
ct

io
n,

Io
no

sp
he

re

G
en

er
al

an
al

ys
is

fo
r

br
oa

d
en

gi
ne

er
in

g
sy

st
em

s

M
ul

ti
sc

al
e

D
D

D
A

S
fr

am
ew

or
k

fo
r

ae
ro

sp
ac

e
co

m
po

si
te

st
ru

ct
ur

es
w

it
h

em
ph

as
is

on
un

m
an

ne
d

ae
ri

al
ve

hi
cl

es

Is
og

eo
m

et
ri

c
A

na
ly

si
s

(I
G

A
)

an
d

fin
ite

el
em

en
tm

od
el

in
g

Su
rr

og
at

e
m

an
ag

em
en

t
fr

am
ew

or
k

of
be

am
di

sp
la

ce
m

en
t

St
ru

ct
ur

al
he

al
th

m
on

ito
ri

ng
da

ta
W

in
g

co
m

po
si

te
st

ur
ct

ur
es

A
dy

na
m

ic
da

ta
-d

ri
ve

n
st

oc
ha

st
ic

st
at

e-
aw

ar
en

es
s

fr
am

ew
or

k
fo

r
th

e
ne

xt
ge

ne
ra

ti
on

of
bi

o-
in

sp
ir

ed
fly

-b
y-

fe
el

ae
ro

sp
ac

e
ve

hi
cl

es

A
ut

oR
eg

re
ss

iv
e

po
ol

in
g

of
se

ns
or

da
ta

V
ec

to
r-

de
pe

nd
en

t
fu

nc
tio

na
lly

po
ol

ed
m

od
el

s
Pi

ez
oe

le
ct

ri
c

le
ad

-z
ir

co
na

te
tit

an
at

e
(P

Z
T

),
st

ra
in

ga
ug

es
,a

nd
te

m
p

se
ns

or
s

Fl
y-

by
-f

ee
la

er
os

pa
ce

ve
hi

cl
e



18 E. Blasch et al.

1.7 DDDAS Future

Three future areas of DDDAS include (1) data science learning, (2) autonomy
through adaptation, and (3) systems design with smart sensing – as shown in
Fig. 1.7.

Data movement and data science are future efforts aligned with the growth of
artificial intelligence (AI), machine learning, and deep networks. These growing
areas of interest follow from the recent trend in big data. The original DDDAS
paradigm calls out big data as an emerging theme that utilize algorithms, models,
and computation to harness data availability. Algorithms still need to be adapted to
the dynamic environment. For example, neural networks do interpolation through
modeling, but are not good at extrapolation to changing environments nor explana-
tion of resolved decisions. If, on the other hand, instrumentation methods capturing
data are integrated with high-dimensional modeling of the situation context, then
such constructs within AI can be realizable for design efforts.

Autonomy includes traditional vehicles [94] to recent data science methods such
as data at rest, data in motion, and data in use concepts. While the data concepts
(i.e., at rest, in motion, and in use) were promoted by the software community,
these labels were mostly for the movement of data and not the processing of the
data. The processing of the data, augmented with modeling can be a hallmark of
future autonomous systems. Autonomy at rest (AAR) leverages data science to
combine or fuse the data, while autonomy in motion (AIM) supports the interaction
among platforms such as UAVs. DDDAS is focused on autonomy in use (AIU).
Autonomous systems dynamically interact with the environment, so there is a need
for not only complex modeling, but also methods in which real-time distributed

Fig. 1.7 DDDAS future areas
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sensing updates the models. Together, modeling, sensing, and data movement are
future trends in DDDAS to achieve autonomous solutions.

The third growth area is in smart sensing through networked systems and soft-
ware, or architectures to move and process data with high performance computing
over a wide variety of sensors. The coordination of social modeling, internet of
things (IoT), cyber physical systems, and power grids require systems and software
developments to coordinate the dynamic data. The DDDAS efforts will expand
from DDDAS principles, while leveraging the developments in autonomy and
learning. Additionally, the sensing includes not only the data exploitation, but also
information collection, processing, fusion, and analysis [95].

Fundamental basic research in DDDAS will be gathered from, and contribute to,
scientific applications, mathematical foundations, and infrastructure architectures.
Specifically, advances in theory, methods, and design will continue to expand the
science and engineering from the DDDAS principles. The book highlights recent
accomplishments while future meetings will showcase emerging developments.

1.8 Summary

The book organizes DDDAS developments of the different areas (1.6) that are
prominent in DDDAS methods: theory, methods, and design. The first concept,
theory, discusses some of the key fundamental approaches researchers have used
including data assimilation, process modeling and filtering, and estimation. The
second concept, methods, includes key interactions between the theory and the use
cases such as structural analysis for structural health monitoring, systems control
for component processing, and image computing for situation evaluation. Finally,
the third concept, design, includes recent domain applications including situation
awareness through environmental assessment, energy awareness such as power
grids, and cyber awareness concerning privacy and security protections (Fig. 1.8).

The readers of this book should appreciate some of the DDDAS developments
to include theory such as object estimation, information fusion, and sensor man-
agement. The recent interest in UAVs provided a construct for methods including
command and control, swarm analysis, and structural health monitoring. Finally,
the basis of the applications are examples leveraging environmental science where
big data modeling extends from the DDDAS foundations in weather forecasting,
volcanic ash assessment, and wildfire monitoring. In the last two decades, DDDAS
has resulted in many systems currently used by academics, researchers, practition-
ers, and industrialists. This book helps to capture and organize these results for
the reader. The DDDAS community encourages any discussion, comments, and
contributions through the website: www.1dddas.org.

http://www.1dddas.org
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Fig. 1.8 DDDAS methods presented in the book

Acknowledgements This work is supported by the DDDAS program of the Air Force Office of
Scientific Research (AFOSR).

References

1. A. Aved, E. Blasch, Dynamic Data Driven Applications Systems (DDDAS) (2014). Website,
www.1dddas.org

2. F. Darema, Grid computing and beyond: the context of dynamic data driven applications
systems. Proc. IEEE 93(3), 692–697 (2005)

3. F. Darema, The Next Generation Program (1998), http://www.nsf.gov/pubs/1999/nsf998/
nsf998.htm

4. F. Darema, New software architecture for complex applications development and runtime
support, Int. J. High-Performance Computation, Special Issue on Programming Environments,
Clusters, and Computational Grids for Scientific Computing, Vol. 14, No. 3, (2000)

5. F. Darema, The next generation software program. Int. J. Parallel Prog. 33(2–3), 73–79 (June
2005). https://doi.org/10.1007/s10766-005-4785-6

6. D.S. Bernstein, A. Ridley, J. Cutler, A. Cohn, Transformative Advances in DDDAS with
Application to Space Weather Monitoring, Project Report, Univ. Michigan, 2015.

7. C. Yang, M. Bakich et al., Pose Angular-Aiding for Maneuvering Target Tracking, in
International Conference on Information Fusion, (2005)

8. J. Dunık, O. Straka, et al., Random-point-based filters: analysis and comparison in target
tracking. IEEE Trans. Aerosp. Electron. Syst. 51(2), 1403–1421 (2015)

9. E.P. Blasch, E. Bosse, D.A. Lambert, High-Level Information Fusion Management and Systems
Design Artech House, (2012)

10. F. Darema, The next generation software workshop – IPDPS’07, in IEEE International Parallel
and Distributed Processing Symposium (IPDPS) (2007)

11. F. Darema, Cyberinfrastructures of cyber-applications-systems. Procedia Comput. Sci. 1(1),
1287–1296 (2010). https://doi.org/10.1016/j.procs.2010.04.143

http://www.1dddas.org
http://www.nsf.gov/pubs/1999/nsf998/nsf998.htm
http://dx.doi.org/10.1007/s10766-005-4785-6
http://dx.doi.org/10.1016/j.procs.2010.04.143


1 Introduction to Dynamic Data Driven Applications Systems 21

12. A.R. Chaturvedi, Society of simulation approach to dynamic integration of simulations, in
IEEE Winter Simulation Conference (2006)

13. S. Sarkar, P. Chattopdhyay, A. Ray, S. Phoha, M. Levi, Alphabet size selection for symboliza-
tion of dynamic data-driven systems: an information-theoretic approach, in American Control
Conference (ACC) (2015) pp. 5194–5199

14. V. Maroulas, K. Kang, I.D. Schizas, M.W. Berry, A learning drift homotopy particle filter, in
International Conference on Information Fusion (2015) pp. 1930–1937

15. E. Blasch, Enhanced air operations using JView for an air-ground fused situation
awareness udop, in IEEE/AIAA Digital Avionics Systems Conference (DASC), 2013.
doi:https://doi.org/10.1109/DASC.2013.6712597

16. J. Michopoulos, Ddema: a data driven environment for multiphysics applications, in Interna-
tional Conference Computational Science (2003)

17. G. Carmichael, D.N. Daescu, A. Sandu, T. Chai, Computational aspects of chemical data
assimilation into atmosphere models, in International Conference Computational Science
(2003)

18. C. Evangelinos, R. Chang, P.F.J. Lermusiaux, N.M. Patrikalakis, Rapid real-time inter-
disciplinary ocean forecasting using adaptive sampling and adaptive modeling and legacy
codes: component ecapsulation using xml, in International Conference Computational Science
(2003)

19. M. Parashar, V. Matossian, W. Bangerth, H. Klie, B. Rutt, T. Kurc, U. Catalyurek, J. Saltz, M.F.
Wheeler, Towards dynamic data-driven optimization of oil well placement, in International
Conference Computational Science (2005)

20. B. Plale, D. Gannon, D. Reed, S. Graves, K. Droegemeier, B. Wilhelmson, M. Ramamurthy,
Towards dynamically adaptive weather analysis and forecasting in LEAD, in International
Conference Computational Science (2005)

21. T.B. Trafalis, I. Adrianto, M.B. Richman, Active learning with support vector machines for
tornado prediction, in International Conference Computational Science (2007)

22. L. Ramakrishnan, Y. Simmhan, B. Plale, Realization of dynamically adaptive weather analysis
and forecasting in LEAD: four years down the road, in International Conference Computa-
tional Science (2007)

23. L. Zhang, A. Sandu, Data assimilation in multiscale chemical transport models,in International
Conference Computational Science (2007)

24. N. Roy, H.-L. Choi, D. Gombos, J. Hansen, J. How, S. Park, Adaptive observation strategies
for forecast error minimization, in International Conference Computational Science (2007)

25. S. Ravela, Quantifying uncertainty for coherent structures. Procedia Comput. Sci. 9, 1187–
1196 (2012)

26. J. Michopoulos, P. Tsompanopoulou, E. Houstis, A. Joshi, Agent-based simulation of data-
driven fire propagation dynamics, in International Conference Computational Science (2004)

27. J. Mandel, J.D. Beezley, L.S. Bennethum, S. Chakraborty, J.L. Coen, C.C. Douglas, J. Hatcher,
M. Kim, A. Vodacek, A dynamic data driven wildland fire model, in International Conference
Computational Science (2007)

28. J.D. Beezley, S. Chakraborty, J.L. Coen, C.C. Douglas, J. Mandel, A. Vodacek, Z. Wang, Real-
time data driven wildland fire modeling, in International Conference Computational Science
(2008).

29. R. Rodriguez-Aseretto, M. Di Leo, A. Cortés, J.S. Miguel-Ayanz, A data-driven model for big
forest fires behavior prediction in Europe. Procedia Comput. Sci. 18, 186–1870 (2013)

30. L. Wang, D. Chen, W. Liu, Y. Ma, Y. Wu, Z. Deng, DDDAS-based parallel simulation of threat
Management for Urban Water Distribution Systems. Comput. Sci. Eng. 16(1), 8–17 (2014).
https://doi.org/10.1109/MCSE.2012.89

31. A.K. Patra, M.I. Bursik, J. Dehn, M. Jones, M. Pavolonis, E.B. Pitman, T. Singh, P. Singla, E.R.
Stefanescu, S. Pouget, P. Webley, Challenges in developing DDDAS based methodology for
volcanic ash hazard analysis – effect of numerical weather prediction variability and parameter
estimation. Procedia Comput. Sci. 18, 1871–1880 (2013)

http://dx.doi.org/10.1109/DASC.2013.6712597
http://dx.doi.org/10.1109/MCSE.2012.89


22 E. Blasch et al.

32. A.K. Patra, E.R. Stefanescu, R.M. Madankan, M.I. Bursik, E.B. Pitman, P. Singla, T. Singh, P.
Webley, Fast construction of surrogates for UQ central to DDDAS application to volcanic ash
transport. Procedia Comput. Sci. 29, 1227–1235 (2014)

33. V.H.V.S. Rao, A. Sandu, A posteriori error estimates for DDDAS inference problems. Procedia
Comput. Sci. 29, 1256–1265 (2014)

34. D. Metaxas, S. Venkataraman, C. Vogler, Image-based stress recognition using a model-based
dynamic face tracking system, International Conference Computational Science (2004)

35. D. Metaxas, G. Tsechpenakis, Z. Li, Y. Huang, A. Kanaujia, Dynamically adaptive tracking of
gestures and facial expressions, in International Conference Computational Science (2006)

36. A. Majumdar, A. Birnbaum, D. Choi, A. Trivedi, S.K. Warfield, K. Baldridge, P. Krysl, A
dynamic data driven grid system for intra-operative image guided neurosurgery, in Interna-
tional Conference Computational Science (2005)

37. J.T. Oden, K.R. Diller, C. Bajaj, J.C. Browne, J. Hazle, I. Babuska, J. Bass, L. Demkowicz,
Y. Feng, D. Fuentes, S. Prudhomme, M.N. Rylander, R. J. Stafford, Y. Zhang, Development
of a computational paradigm for laser treatment of cancer, in International Conference
Computational Science (2006)

38. C. Bajaj, J.T. Oden, K.R. Diller, J.C. Browne, J. Hazle, I. Babuska, J. Bass, L. Bidaut, L.
Demkowicz, A. Elliott, Y. Feng, D. Fuentes, B. Kwon, S. Prudhomme, R.J. Staord, Y. Zhang,
Using cyber-infrastructure for dynamic data driven laser treatment of cancer, in International
Conference Computational Science (2007)

39. I.S. Kim, J. Chandrasekar, A. Ridley, D.S. Bernstein, Data assimilation using the global
ionosphere-thermosphere model, in International Conference Computational Science (2006).

40. S. Ravela, J. Marshall, C. Hill, A. Wong, S. Stransky, Real-time observatory for laboratory
simulation of planetary circulation, in International Conference Computational Science pp.
1155–1162 (2007)

41. A.V. Morozov, A.J. Ridley, D.S. Bernstein, N. Collins, T.J. Hoar, J.L. Anderson, Data
assimilation and driver estimation for the global ionosphere–thermosphere model using the
ensemble adjustment Kalman filter. J. Atmos. Sol. Terr. Phys. 104, 126–136 (2013)

42. A.G. Burrell, A. Goel, A.J. Ridley, D.S. Bernstein, Correction of the photoelectron heating
efficiency within the global ionosphere-thermosphere model using retrospective cost model
refinement. J. Atmos. Sol. Terr. Phys. 104, pp. 1155–1162 (2015)

43. C. Farhat, J.G. Michopoulos, F.K. Chang, L.J. Guibas, A.J. Lew, Towards a dynamic data
driven system for structural and material health monitoring, in International Conference
Computational Science (2006)

44. J. Cortial, C. Farhat, L.J. Guibas, M. Rajashekhar, Time-parallel exploitation of reduced-order
modeling and sensor data reduction for structural and material health monitoring DDDAS, in
International Conference Computational Science (2007)

45. E.E. Prudencio, P.T. Bauman, D. Faghihi, J.T. Oden, K. Ravi-Chandar, S.V. Williams, A
dynamic data driven application system for real-time monitoring of stochastic damage.
Procedia Comput. Sci. 18, 2056–2065 (2013)

46. E.E. Prudencio, P.T. Bauman, D. Faghihi, K. Ravi-Chandar, J.T. Oden, A computa-
tional framework for dynamic data driven material damage control, based on Bayesian
inference and model selection. Int. J. Numer. Methods Eng. 102(3–4), 379–403 (2015).
https://doi.org/10.1002/nme.4669

47. D. Allaire, J. Chambers, R. Cowlagi, D. Kordonowy, M. Lecerf, L. Mainini, F. Ulker,
K. Willcox, A baseline offine/online DDDAS capability for self-aware aerospace vehicles.
Procedia Comput. Sci. 18, 1959–1968 (2013)

48. D. Allaire, D. Kordonowy, M. Lecerf, L. Mainini, K. Willcox, Multi-fidelity DDDAS methods
with application to a self-aware aerospace vehicle. Procedia Comput. Sci. 29, 1182–1192
(2014)

49. L. Peng, K. Mohseni, Sensor driven feedback for puff estimation using unmanned aerial
vehicles, in International Conference on Unmanned Aircraft Systems (ICUAS) (2014) pp 562–
569. doi:https://doi.org/10.1109/ICUAS.2014.6842298

http://dx.doi.org/10.1002/nme.4669
http://dx.doi.org/10.1109/ICUAS.2014.6842298


1 Introduction to Dynamic Data Driven Applications Systems 23

50. E. Blasch, P. Paces, P. Kostek, K. Kramer, Summary of avionics technologies. IEEE Aerosp.
Electron. Syst. Mag. 30(9), 6–11 (2015)

51. W. Silva, E.W. Frew, W. Shaw-Cortez, Implementing path planning and guidance layers for
dynamic soaring and persistence missions, in International Conference on Unmanned Aircraft
Systems (ICUAS) (2015) pp. 92–101. doi:https://doi.org/10.1109/ICUAS.2015.7152279

52. S. Imai, E. Blasch, A. Galli, F. Lee, C.A. Varela, Airplane flight safety using error-tolerant data
stream processing. IEEE Aerosp. Electron. Syst. Mag. 32(4), 4–17 (2017)

53. A. Sandu, W. Liao, G.R. Carmichael, D. Henze, J.H. Seinfeld, T. Chai, D. Daescu, Com-
putational aspects of data assimilation for aerosol dynamics, in International Conference
Computational Science (2004)

54. S. Ravela, Amplitude-position formulation of data assimilation, in International Conference
Computational Science (2006)

55. B. Jia, K.D. Pham, E. Blasch, D. Shen, Z. Wang, G. Chen, Cooperative space object tracking
using space-based optical sensors via consensus-based filters. IEEE Trans. Aerosp. Electron.
Syst. 52(3), 1908–1936 (2016)

56. S. Ravela, Two extensions of data assimilation by field alignment, in International Conference
Computational Science (2007)

57. P. Tagade, S. Ravela, On a quadratic information measure for data assimilation, in American
Control Conference (2014) pp. 598–603

58. T.C. Henderson, N. Boonsirisumpun, The impact of parameter estimation on model accuracy
assessment. Procedia Comput. Sci. 18, 1969–1978 (2013)

59. P. Tagade, H. Seybold, S. Ravela, Mixture ensembles for data assimilation in dynamic data-
driven environmental systems. Procedia Comput. Sci. 29, 1266–1276 (2014)

60. E.P. Blasch, Dynamic data driven applications system concept for information fusion. Procedia
Comput. Sci. 18, 1999–2007 (2013)

61. N. Virani, S. Marcks, S. Sarkar, K. Mukherjee, A. Ray, S. Phoha, Dynamic data driven sensor
array fusion for target detection and classification. Procedia Comput. Sci. 18, 2046–2055
(2013)

62. E. Blasch, G. Seetharaman, F. Darema, Dynamic data driven applications systems (DDDAS)
modeling for automatic target recognition. Proc. SPIE 8744 (2013)

63. B. Smith, P. Chattopadhyay, A. Ray, T.R. Damarla, Performance robustness of feature
extraction for target detection & classification, in IEEE American Control Conference (2014)

64. T. Chin, K. Xiong, E. Blasch, Nonlinear target tracking for threat detection using RSSI and
optical fusion, International Conference on Information Fusion (2015) pp. 1946–1953

65. B. Uzkent, M.J. Hoffman, A. Vodacek, J.P. Kerekes, B. Chen, Feature matching and adaptive
prediction models in an object tracking DDDAS. Procedia Comput. Sci. 18, 1939–1948
(2013)

66. R. Fujimoto, A. Guin, M. Hunter, H. Park, R. Kannan, G. Kanitkar, M. Milholen, S. Neal,
P. Pecher, A dynamic data driven application system for vehicle tracking. Procedia Comput.
Sci. 29, 1203–1215 (2014)

67. B. Uzkent, M.J. Hoffman, A. Vodacek, Integrating hyperspectral likelihoods in a multidimen-
sional assignment algorithm for aerial vehicle tracking. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 9(9), 4325–4333 (2016). https://doi.org/10.1109/JSTARS.2016.2560220

68. N. Nguyen, M.H.H. Khan, Context aware data acquisition framework for dynamic data
driven applications systems (DDDAS), in IEEE Military Communications Conference (2013)
pp. 334–341. doi:https://doi.org/10.1109/MILCOM.2013.65

69. N. Virani, J-W. Lee, S. Phoha, A. Ray, Learning context-aware measurement models, in
American Control Conference (ACC) (2015) pp. 4491–4496. doi:https://doi.org/10.1109/
ACC.2015.7172036

70. L. Snidaro, J. Garcia Herrero, J. Llinas, E. Blasch, Context-Enhanced Information Fusion:
Boosting Real-World Performance with Domain Knowledge (Springer, Cham, 2016)

71. A. Chaturvedi, J. Chi, S. Mehta, D. Dolk, SAMAS: scalable architecture for multi-resolution
agent-based simulation, in International Conference Computational Science (2004)

http://dx.doi.org/10.1109/ICUAS.2015.7152279
http://dx.doi.org/10.1109/JSTARS.2016.2560220
http://dx.doi.org/10.1109/MILCOM.2013.65
http://dx.doi.org/10.1109/ACC.2015.7172036


24 E. Blasch et al.

72. N. Koyuncu, S. Lee, K.K. Vasudevan, Y-J. Son, P. Sarfare, DDDAS-based multi-
fidelity simulation for online preventive maintenance scheduling in semiconductor supply
chain, in Winter Simulation Conference (2007) pp. 1915–1923. doi:https://doi.org/10.1109/
WSC.2007.4419819

73. A. Boukerche, F.M. Iwasaki, R.B. Araujo, E.B. Pizzolato, Web-Based Distributed Simu-
lations Visualization and Control with HLA and Web Services, 12th IEEE/ACM Interna-
tional Symposium on Distributed Simulation and Real-Time Applications (2008) pp. 17–23.
doi:https://doi.org/10.1109/DS-RT.2008.30

74. A.J. Aved, E. Blasch, Multi-INT query language for DDDAS designs. Procedia Comput. Sci.
51, 2518–2523 (2015)

75. E. Blasch, S. Phoha, Special issue: dynamic data-driven applications systems (DDDAS) con-
cepts in signal processing. J. Signal Proces. Syst. 24 May (2017). doi:https://doi.org/10.1007/
s11265-017-1253-7

76. E.H. Abed, N.S. Namachchivaya, T.J. Overbye, M.A. Pai, P.W. Sauer, A. Sussman, Data driven
power system operations, in International Conference Computational Science (2006)

77. N. Celik, A.E. Thanos, J.P. Saenz, DDDAMS-based dispatch control in power networks.
Procedia Comput. Sci. 18, 1899–1908 (2013)

78. E. Frew, B. Argrow, A. Houston, C. Weiss, J. Elston, An energy-aware airborne dynamic data-
driven application system for persistent sampling and surveillance. Procedia Comput. Sci. 18,
2008–2017 (2013)

79. S. Neal, R. Fujimoto, M. Hunter, Energy consumption of data driven traffic simulations,
in Winter Simulation Conference (WSC) (2016) pp. 1119–1130. doi:https://doi.org/10.1109/
WSC.2016.7822170

80. G.R. Madey, A.-L. Barabsi, N.V. Chawla, M. Gonzalez, D. Hachen, B. Lantz, A. Pawling, T.
Schoenharl, G. Szabo, P. Wang, P. Yan, Enhanced situational awareness: application of DDDAS
concepts to emergency and disaster management, in International Conference Computational
Science (2007)

81. R.M. Fujimoto, N. Celik, H. Damgacioglu, M. Hunter, D. Jin, Y-J. Son, J. Xu, Dynamic data
driven application systems for smart cities and urban infrastructures, in Winter Simulation
Conference (WSC) (2016) pp. 1143–1157. doi:https://doi.org/10.1109/WSC.2016.7822172

82. K. Sudusinghe, I. Cho, M. Van der Schaar, S.S. Bhattacharyya, Model based design envi-
ronment for data-driven embedded signal processing systems. Procedia Comput. Sci. 29,
1193–1202 (2014)

83. S. Chakravarthy, A. Aved, S. Shirvani, M. Annappa, E. Blasch, Adapting stream processing
framework for video analysis. Procedia Comput. Sci. 51, 2648–2657 (2015)

84. H. Li, K. Sudusinghe, Y. Liu, J. Yoon, M. Van Der Schaar, E. Blasch, S.S. Bhattacharyya,
Dynamic, data-driven processing of multispectral video streams. IEEE Aerosp. Electron. Syst.
Mag. 32, 50–57 (June 2017)

85. P. Chew, N. Chrisochoides, S. Gopalsamy, G. Heber, T. Ingraffea, E. Luke, J. Neto, K. Pingali,
A. Shih, B. Soni, P. Stodghill, D. Thompson, S. Vavasis, P. Wawrzynek, Computational science
simulations based on web services, in International Conference Computational Science (2003)

86. O. Onolaja, R. Bahsoon, G. Theodoropoulos, Conceptual framework for dynamic trust
monitoring and prediction. Procedia Comput. Sci. 1, 1241–1250 (2010)

87. L. Pournajaf, L. Xiong, V. Sunderam, Dynamic data driven crowd sensing task assignment.
Procedia Comput. Sci. 29, 1314–1323 (2014)

88. E. Blasch, Y. Al-Nashif, S. Hariri, Static versus dynamic data information fusion analysis using
DDDAS for cyber trust. Procedia Comput. Sci. 29, 1299–1313 (2014)

89. Y. Badr, S. Hariri, Y. Al-Nashif, E. Blasch, Resilient and trustworthy dynamic data-driven
application systems (DDDAS) Services for Crisis Management Environments. Procedia
Comput. Sci. 51, 2623–2637 (2015)

90. T. Chen, R. Bahsoon, G. Theodoropoulos, Dynamic qos optimization architecture for cloud-
based DDDAS. Procedia Comput. Sci. 18, 1881–1890 (2013)

http://dx.doi.org/10.1109/WSC.2007.4419819
http://dx.doi.org/10.1109/DS-RT.2008.30
http://dx.doi.org/10.1007/s11265-017-1253-7
http://dx.doi.org/10.1109/WSC.2016.7822170
http://dx.doi.org/10.1109/WSC.2016.7822172


1 Introduction to Dynamic Data Driven Applications Systems 25

91. R. Wu, B. Liu, Y. Chen, E. Blasch, H. Ling, G. Chen, A container-based elastic cloud
architecture for Pseudo real-time exploitation of wide area motion imagery (WAMI) stream. J.
Signal Proces. Syst. 88, 1–13 (2016). https://doi.org/10.1007/s11265-016-1206-6.

92. S. Shekar, Dynamic data driven cloud Systems for Cloud-Hosted CPS, in IEEE Inter-
national Conference on Cloud Engineering Workshop (IC2EW), (2016), pp. 195–197.
https://doi.org/10.1109/IC2EW.2016.38

93. C.-S. Li, F. Darema, V. Chang, Distributed behavior model orchestration in cognitive
internet of things solution. Enterp. Inf. Syst. 12, 414–434 (2017). https://doi.org/10.1080/
17517575.2017.1355984

94. G. Seetharaman, A. Lakhotia, et al., Unmanned vehicles come of age: the DARPA grand
challenge. IEEE Comput. Soc. Mag. 39(12), 26–29 (2006)

95. Y. Zheng, E. Blasch, Z. Liu, Multispectral Image Fusion and Colorization SPIE, Bellingham,
Washington (2018)

96. S. Ravela, K. Emanuel, D. McLaughlin, Data assimilation by field alignment. Physica. D.
230(1), 127–145 (2007)

http://dx.doi.org/10.1007/s11265-016-1206-6.
http://dx.doi.org/10.1109/IC2EW.2016.38
http://dx.doi.org/10.1080/17517575.2017.1355984


Part I
Measurement-Aware: Data Assimilation,

Uncertainty Quantification



Chapter 2
Tractable Non-Gaussian Representations
in Dynamic Data Driven Coherent Fluid
Mapping

Sai Ravela

Abstract This chapter discusses the elements of a Dynamic Data Driven
Applications System in the context of mapping coherent environmental fluids using
autonomous small unmanned aircraft. The application and and its underlying system
dynamics and optimization are presented along with three key ideas. The first is that
of a dynamically deformable reduced model, which enables efficacious prediction
by solving non-Gaussian problems associated with coherent fluids. The second
is the use of ensemble learning in nonlinear estimation, which mitigates model
errors in the form of bias, reduces sampling burdens in estimation whilst offering
direct state space adjustments for filtering and smoothing and producing compact
posterior ensembles. The third idea is the use of tractable variational information
theoretic inference in estimation that also requires minimal resampling and allows
for gradient-based inferences for non-Gaussian high-dimensional problems with
few samples.

2.1 Introduction

The existence of feedbacks between simulating and observing processes is a key
characteristic of the Dynamic Data Driven Applications Systems (DDDAS) wherein
predictions and their uncertainties control the observations/instrumentation and, in
reverse, measurements constrain models. The interaction is multifaceted; data can
entrain empirical models to augment physics-based counterparts, data may empiri-
cally parameterize numerical model inadequacies, or state and parameter estimation
may assimilate data. In turn, physical laws and numerical model simulations provide
constraints and prior beliefs for adaptive information gathering, active learning and
empirical model identification. In the DDDAS paradigm, the symbiosis between
simulations and observations extends across model (and sensor) fidelities; such
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Fig. 2.1 MIT Cooperative Autonomous Observing System at the Popocatepetl Volcano in an
experiment to gather and produce SO2 maps using sUAS for in-situ and remote sensing. Shown
here is an aircraft in flight, flight path and inversion for concentration, typical sensors, the aircraft
and press coverage

as reduced models derived from higher-fidelity models for efficacious realtime
operation and, in reverse, detailed models learned from local simple models to
handle dynamical regimes and variable conditions.

This chapter is concerned with the reconstruction of localized atmospheric
phenomena such as plumes, jets, vortices, using remote and in-situ sensors on
autonomous small Unmanned Aerial/Aircraft Systems (sUAS) to produce detailed
one-, two- and three-dimensional maps of the physical, chemical or biological
variables. The applications range from the study of benign but poorly understood
phenomena such as sea breeze fronts to hazardous ones such as volcanic plumes
and cyclones. Our DDDAS investigations produced the first autonomous plume
hopper [26] for convective and volcanic regimes, snapshots of this research at the
Popocatepetl volcano in Mexico as shown in Fig. 2.1.

2.1.1 Systems Dynamics and Optimization

DDDAS enables new “autonomous field instruments” for investigating poorly
understood phenomena in the atmosphere from the boundary layer to the strato-
sphere. A closer look at these applications reveals a common Systems Dynamics
Optimization (SDO) cycle, shown in Fig. 2.2. Detailed high-fidelity models, often
run offline, are reduced to predict and quantify uncertainty up to a short time
horizon in realtime, targeting supplementary data to assimilate with primary data
and, increasingly, by augmenting models with model parameterizations learned
from data.
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Fig. 2.2 The symbiosis of information transfer between a hierarchy of models reduced from
higher fidelity models to afford efficacious realtime prediction with uncertainty quantification and,
in reverse, from adaptively sampled data to models learned from larger data contexts using the
Dynamic Data Driven Applications Systems framework

This chapter highlights work that encompasses all elements of the DDDAS’
SDO cycle. This includes our Itzamna I9 aircraft series (see Fig. 2.1) that advances
the popular SkyWalker X8 that we first introduced for autonomous environmental
mapping. It includes instrumentation for imaging plumes using Infrared/Ultraviolet
(IR/UV) cameras, SkyCandy, an embedded platform design for running MES-
PAC (Model Estimation Sampling Planning and Control) stack. Additionally, new
algorithms were also developed for inference [27] reduced modeling [28], assimila-
tion [30], uncertainty quantification for coherent fluids [25] and smooth flows [37],
cooperative observation [5], non-linear high-dimensional inference approaches
using ensemble learning [32], tractable information theoretic learning [38] and,
more recently, manifold learning. These approaches extend easily to other problems
including two-point boundary value problems, receding horizon problems, and most
recently deep learning. These approaches have enabled broader applications such as
in animal biometrics and storm tracking [9, 42].

It is beyond the scope of this chapter to describe these algorithms in detail,
however, we focus here on the DDDAS study of volcanic plumes in Fig. 2.1 and
then describe two procedures for inference that can influence every element of
the DDDAS cycle. The inference approaches are reproduced from [32, 38] for this
handbook.

2.1.2 Dynamically Deformable Reduced Models

The DDDAS cycle in this application system (see Fig. 2.3) includes a novel reduced
model that assimilates remote and in-situ SO2 measurements to estimate plumes. A
key contribution is to develop fast dynamically deformable reduced models wherein
the mean state and bases describing the reduced model are treated as deformable
fields.

The pairwise mutual deformation between model snapshots is marginalized in a
correspondence-free manner to estimate the reduced model [25, 28]. The mean and
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Fig. 2.3 A dynamically deformable approach is used to adapt reduced models and plans from
high-fidelity simulations for sampling supplementary in-situ observations and assimilating them.
Here remote ultraviolet (UV) observation of SO2 are used to illustrate deformability [17]

bases also deform dynamically in the presence of remote observations. Using the
dynamic measurements, the reduced model continually adapts to changing shape
and structure of the observed coherent plume field.

A new formulation replaces the classical Karhunen-Loeve (KL) expansion xt =
x̄ + u�ηt , for a time mean x̄ (ensemble mean) and eigenvectors u, eigenvalues �
and reduced variable ηt (stochastic variable), with a deformable expansion x̂t = x̄ ◦
q+(u◦q)�ηt , where the deformation field q is estimated by from model predictions
and data [28]. Data assimilation also adjusts the reduced variable ηt online; this is a
novel formulation of the position-amplitude assimilation problem [30] for reduced
models. In the plume application, remote sensing of tracers is used to estimate
the deformation field q. The predictions from the reduced model with uncertainty
quantified serves as the basis for planning sampling paths to take supplementary in-
situ measurements to further estimate the reduced stochastic variable ηt (or �ηt ).

In Fig. 2.3, the high fidelity simulation initially produces a poor reduced model
(only the mean field is shown) and differs in amplitude and phase from the SO2
remote observations used. The sUAS plan for in-situ sensing using two independent
sampling paths is thus also initially poor. As the bases adapt in deformation space,
so do sampling plans because they are transported by the deformation field e.g.
through levelsets. These plans in turn enable more accurate in-situ information to
be gathered for assimilation into the reduced variable. The benefit of this process
is that it incorporates physics and data. Nevertheless, nonlinear approaches using
reduced model ensembles are also feasible using the methods discussed in the next
two sections.

2.1.3 Nonlinear High Dimensional Inference

Optimizing the performance of the closed DDDAS cycle and its loop elements
in such coherent fluid mapping systems can in general be viewed in terms of
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probabilistic inference for non-linear, high-dimensional systems with non-Gaussian
uncertainties. To see this, consider a dynamical system xt+�t = f (xt ,ut ;α), where
xt , xt+�t ∈ Rn is an n-dimensional discrete state vector and f (·, ·) is a possibly
non-linear model with ut as inputs. For simplicity, the model is illustrated without
“process noise”, utilizing instead the epistemic uncertainties of the initial conditions
as the primary source of uncertainty. Measurements y

t
′ ∈ Rm are assumed to be

related by a linear or linearized observation equation y
t
′ = Hx̂

t
′ + v

t
′ where x̂

t
′ is

the true but unknown state vector, H is a measurement process, and v
t
′ ∼ N (0,R)

the (additive) Gaussian measurement uncertainty.
Inference problems pertaining to state estimation are commonly solved for

distributions p(xt |y0:t ), p(x0|y0:t ), or p(x0:t |y0:t ) and parameter estimation using
p(α|y0:t ) [29], but unknown environmental inputs and observing system controls
are also of interest. Similarly, the adaptive sampling problem for supplementary
observations p(zt :t+k�t |y0:t ) can be studied as an inference problem, just as model
reduction discussed in the previous section. Here, we use sequential Bayesian state
estimation as an exemplar to illustrate the central issues.

Sequential Bayesian state estimation includes: (a) prediction, which uses a model
to propagate the state forward in time; (b) filtering, where the current model state
is updated recursively using experimental observations up to the current time; and
(c) smoothing, which uses the current observations to update the model state at
previous times. Approaches include classical schemes such as Kalman [14] filters
and smoothers, the Ensemble Kalman filter (EnKF) and smoother [11, 29], Particle
filter and smoother [2], and variants [6, 8].

However, the tractability of inference such as in high-dimensional numerical
model state spaces is challenging, as is the emergence of non-Gaussian uncertainties
in nonlinear processes, for example, as multimodal or heavy tailed distributions [23].
To compound matters, grossly inadequate environmental observations complicate
inference from data and models. Current practice offers two primary alternatives.
On the one hand are rank-reduced, localized or multiscale ensemble Kalman filters
and variants. These methods ease linearization issues and produce direct state
update equations. Recognizing the operational use of ensemble forecasts and the
methods by which they are generated, the direct adjustment of individual ensemble
members, often incorporating balance constraints and other dynamical sampling
procedures is beneficial. Nevertheless, the Gaussian assumption can be problematic,
for example, for localized phenomena [28, 30]. On the other hand, non-parametric
Bayesian inference, notably the Particle Filter [2], can be attractive for non-Gaussian
estimation but tractability in higher dimensions is challenging.

The DDDAS community recognizes that efficient high-dimensional non-
Gaussian estimation is essential in many applications. It would benefit
high-dimensional DDDAS applications if non-Gaussian variational inference was
possible, thus mitigating the need for extensive resampling whilst retaining the
advantage of direct state adjustment. Emerging approaches include kernel [15, 38]
and mixture density representations [1, 12, 34–36] in information-theoretic [38] and
classical formulations.
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In the remaining discussion of this chapter, using Bayesian sequential state
estimation as the exemplar of inference problems characteristic in the DDDAS
cycle, we describe two techniques that advance the state of the art. One key
observation from the approaches presented is that non-Gaussian inference that is
characteristic of non-linear problems can be tractably approached in a variational
information theoretic manner. A second key conclusion is that in the presence of
sparse samples, high dimensions and model error, minimum variance estimation
cannot be ignored. These conclusions are obtained by developing two types of
sequential solutions; the first using a mixture ensemble (particle mixture) filtering
framework with ensemble learning, and the second is a filtering solution using
information theoretic learning.

2.2 Ensemble Learning in Mixture Ensembles

The simplicity with which Gaussian Mixture Models (GMM) [20] apply to non-
Gaussian estimation makes them attractive for state estimation [1]. We are interested
in both the filtering and smoothing problems. For a Markov process, the recursive
nature of the estimation process allows us to consider the Bayesian “update” at
a single time instance, i.e. p(x | y) ∝ p(y | x)p(x). Non-Gaussian priors are
modeled as mixtures of Gaussians as defined by [20]

p(x; θ) =
M∑

m=1

αm N (x;μm,Pm). (2.1)

Here, the parameter θ includes M , the number of mixture components, αm =
p(zm) are the mixture weights representing the probability of a mixture element
zm, and N (x;μm,Pm) are multivariate normal distributions with means μm and
covariances Pm. The mixture weights are constrained by

∑M
m=1 αm = 1.

When high-dimensional coherent fluid models are simulated using an ensemble,
then any ensemble member xe has a finite probability of belonging to every other
mixture element in a GMM. This fact is modeled through a weight vector,

ωem = N (xe;μm,Pm)αm∑M
j=1 N (xe;μj ,P j )αj

(2.2)

The GMM parameters are typically estimated using Maximum Likelihood Esti-
mation (MLE)1 via the Expectation Maximization (EM) [20]together with model

1Maximum a posteriori (MAP) problem can also be solved.
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selection criteria. To calculate the mixture parameters, we first define Nm =∑N
e=1 ωem for an ensemble of size N , then determine

αm = Nm

N
; μm =

∑N
e=1 ωemxe

Nm
; Pm =

∑N
e=1 ωem

(
xe − μm

) (
xe − μm

)T

Nm
(2.3)

In time-dependent GMM-filtering, an ensemble is propagated, mixture parame-
ters are estimated and then a measurement update is applied to solve two inference
problems. The first for “state” p(x|y) that assesses the posterior means μam and

covariances Pam. Using K(P f
m) as a Kalman gain, then:
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The second step is “parameter estimation” αam = p(zm|y) ∝∑e p(y|xe)p(xe|zm)
α
f
m which yields the mixture weight update as a convolution of two Gaussians:
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The parametric posterior distribution is sampled to produce a new ensemble and the
filtering process repeats.

2.2.1 Mixture Ensemble Filter and Smoother

Seybold et al. show [32] that the GMM filter is inefficient because it requires explicit
synthesis of moments and it would be advantageous to perform the updates directly
in ensemble space. Several attempts have been made at ensemble formulations.
Bengtsson et al. [3] propose clustering and individual Kalman updates based on
cluster membership. Smith [34] uses EM with Bayes Information Criterion (BIC)
but projects the GMM onto an approximate posterior Gaussian distribution. Dovera
and Rossa [7] sample an index according to the posterior mixture weight and update
the corresponding ensemble member using EnKF. Frei and Kunsch [12] extend this
scheme by using balanced sampling to determine the ensemble member for update.
Although dimensionality issues could be reduced by these methods, managing
ensemble members’ associations with mixture elements is difficult. But, this is also
unnecessary. The mixture filter can be expressed as a compact ensemble transform
that needs no ad hoc association rules, and the posterior ensemble can be resampled
using effective sample size measures [2] akin to the particle filter.
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For the measurement update, there are two equations [32]. The first is a solution
to p(x|y) using the ensemble mean as a constraint, so that:

xae ≡ xe +
M∑

m=1

{K(Pm) (dem −Hωemxe)} (2.6)

where, dem = ωemy is without perturbed observations and dem = αmye is with
perturbed observations. This is different from Tagade’s earlier proposal [36].

The second equation is for the posterior weights, obtained by solving for
waem = p(zm|xe, y) ∝ p(y|xe)p(xe|zm)p(zm) analogously to Eq. 2.2. Note that

this implies a recursive weight update; waem ∝ p(y|xe)wfem. This is in essence
a Gaussian mixture particle filter. It can also be evaluated without explicitly
constituting covariances. The posterior ensemble and weights can be evaluated for
effective sample size [2] and resampled to avoid sample degeneracy.

Even more interestingly, the ensemble update is a compact transform [32]:

Aa = Af
M∑

m=1

�m ◦ (WN
m )

T = Af� (2.7)

Af is the forecast ensemble, Aa is the estimated ensemble and WN
m (1 : N, e) =

wem. The compact matrix � in ensemble size N × N in the sense of Evensen [11]
is a weakly nonlinear transformation of the prediction. This is the compact Mixture
Ensemble Filter (MEnF) that was not shown hitherto Seybold et al. [32] As a com-
pact ensemble transform, MEnF immediately enables the derivation of a fast mixture
ensemble smoother (MEnS) akin to EnKS [11]. Ravela and McLaughlin [29]
showed, the smoothing equation is a recursion so that fixed interval estimation is
of order O(L) for interval L via a forward-backward pass, and fixed-lag estimation
is of order O(1) via a first-in-first out queue. The MEnF/S shares the advantages
of a particle filter but enables direct ensemble adjustment without running into
dimensionality issues. This was a breakthrough in tractable inference by Seybold
et al. [32] and improved upon Tagade et al. solution [36].

2.3 Nonlinear Filtering Must Reduce Total Variance

Seybold et al. [32] also show that GMM-based filtering either explicitly or in
ensemble space becomes problematic in the presence of model error. Mixture
modes are statistically estimated and the total variance includes the variance of the
means which becomes significant as the number of mixture members increases.
Current GMM-based filters have no representation for this component. So, when
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Fig. 2.4 Bi-modal example depicts worsening GMM estimation error with bias because it does
not account for the variance of the means; for details see [32]

model error manifests as a bias relative to the GMM modes, convergence can be
extremely slow. A simple experiment shows that beyond a very small bias, GMM
performance is worse than the ensemble Kalman filter. In such a case, minimizing
overall variance cannot be ignored, especially if estimating estimation uncertainty is
also important. In general, non-Gaussian estimation cannot lose sight of minimizing
variance, particularly when the confidence in real-world models is low.

Seybold et al. [32] considered a bimodal prior with mean at zero. The modes are
positioned at μm = ±6σ with a variance of σ 2

m = 1 each of weight αm = 0.5,
as shown in Fig. 2.4a. Imagine now a measurement in between, dotted line. When
the measurement lies in between the two mixture modes, the system defines the
bias as 100% [32]. Consider the truth to be stationary and a measurement with
noise variance σ 2

r = 1. For comparison, a Kalman filter is compared with a prior
variance equal to the total variance of the GMM. Because truth is stationary, we
expect some convergence in the estimated mean and covariance for each filter.
The estimation error is tracked over five filtering iterations per trial repeatedly
over a large number of trials. The GMM on average performs far worse than the
EnKF. Figure 2.4b shows the average normalized RMS estimation error comparing
the Kalman estimate’s posterior mean, the GMM’s dominant mode, and its mean,
respectively, with truth. As shown by Seybold et al. [32], the convergence is also
much slower.

The slow convergence is because the total variance in GMM, which includes the
variance of the means, is not accounted. As a result, the filter converges slower under
bias and with a larger estimation error. The EnKF has a larger initial Kalman gain
and rapidly reduces overall variance. Clearly, as the modes fragment, GMM filter
will lose track of the total variance. This is particularly the case when model errors
are present, which is almost always in the real world. The question remains, how
can non-Gaussian Bayesian estimation also minimize total variance?
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2.4 Ensemble Learning with a Stacked Cascade

A hierarchical approach can accomplish global variance reduction where GMMs
targeted at different regularization scales are combined. In a variation of this idea,
an ensemble propagated to the filtering step is assumed to have an imprecise
distribution, modeled through a group of probability functions to handle multiple
objectives such as in this case for jointly tracking the local mode and reducing total
variance. Each objective function produces a weak estimator. For example, EnKF is
weak for non-Gaussianity while GMM cannot account for the variance of means.
The ensemble of estimators is used to learn in the framework of Ensemble Learning
to produce a better estimator than anyone alone.

A machine learning view of Bayesian estimators is as (nonlinear) regression
machines. Multiple regression machines form an ensemble of regression machines
and, here, we consider two ensemble transforms; Mg , the GMM, and Me, the
EnKF. In principle, a variety of methods are feasible. Seybold et al. [32] used
stacking [41] or stacked generalization, and cascaded generalization [13]. The
resulting estimator is called the Boosted Mixture Ensemble Filter (B-MEnF),
combines the two using the “stacked cascade” and outperforms either one.

Figure 2.5 depicts an iterative process for combining the two machines. At each
iteration, Stacking [41] combines the outputs. A Cascade Generalization [13] then
follows and continues to the next iteration. During stacking, the “meta-learner”
selects the outputs of the regression machine with the lower error to perturbed
measurements (the truth is unknown) [10]; a higher posterior probability criterion is
also applicable. Ideally, cascading continues till the model complexity of estimated
posterior ensemble GMMs no longer improves.

Stacking arguably reduces bias and cascading reduces variance. Using bootstrap
sampling of the ensemble with perturbed measurements prevents overfitting, which
is a conventional approach in many randomized learning problems.

Fig. 2.5 The Stacked-Cascade shown for a single iteration. Stacked generalization of Me and
Mg picks the ensemble member with lower posterior error. A cascade of stacked machines uses
perturbed observations for training and testing, and a bootstrap ensemble for training
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Fig. 2.6 An example of B-MEnF applied to the Lorenz-63 problem [32]. The results show
superior performance over GMM due to boosting, producing approximately the same error but
at a lower uncertainty

2.4.1 Application Example

We describe an identical twin experiment on a Lorenz-63 system [19] reproduced
from [32]. This system exhibits two characteristic attractors at very long timescales.
Even at the integration time scale used here, the distribution of ensemble members
is nongaussian [32].

Figure 2.6 presents the filter results in a 2D X-Z projection for EnKF (left
column), GMM (middle column) at the first assimilation (top) step and after nine
assimilation cycles (bottom). The right column shows the result of B-MEnF. The
predicted point cloud is in light gray and dark points depict the posterior point cloud.
Solid lines indicate probability contours. A red star marks truth.

A Gaussian model works well initially but, as the attractor structure becomes
nongaussian EnKF ensemble members disperse farther, suggesting that the GMM
better constrains the uncertainty over time. A convex combination of the two
smallest eigenvalues of the forecast error covariance regularizes EM to produce
reasonable GMM clusters, but there is sensitivity to the regularization parameter. As
the posterior ensemble point cluster depicts, filtering with Gaussian measurement
noise leaves (see Eq. 2.3) one dominant posterior mode and the remaining are
degenerate.
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Although all three estimators are comparable in error, however, without any
resampling whatsoever, B-MEnF produces posterior GMMs of lower complexity
than EnKF or GMM alone. B-MEnF tightens the ensemble better by drawing on
the local mode and overall variance. It allows non-Gaussian inference with minimal
re-sampling.

2.5 Information Theoretic Learning in Filtering

We continue seeking approaches to non-Gaussian variational inference mitigating
the need for extensive resampling whilst retaining the advantage of direct state
adjustment that the EnKF and variants provide. One way is by considering a more
general summary measure than variance or correlation. For example, kurtosis is
commonly used in Independent Component Analysis (ICA) to identify linear modes
for non-Gaussian variables. The mutual information, using Shannon’s definition
of entropy, is also a well known summary measure that is characterized by its
“distribution free” property. For non-Gaussian random variables it generalizes as
divergence from independence.

Thus, one might devise a mutual information measure using the joint and
marginal probabilities of measurements and states to synthesize filters and
smoothers. For example, Tomita et al. [39] have used a measure of mutual
information based on the Shannon entropy [33] to derive a linear and a non-linear
filter. Unfortunately, because it is difficult to calculate gradient terms directly from
the usual definition of mutual information, one must resort to sampling methods
making this approach intractable for many high dimensional applications.

Kapur [16] provides an inspiring generalization of entropy that unifies several
alternatives. He derives a cross-entropy quadratic measure alternative to Kullback-
Leibler divergence directly corresponding to the Bhattacharya measure. When
applied to calculating mutual information, one thus arrives at a quadratic measure
of mutual information, from which gradients can be calculated relatively easily thus
admitting an optimization framework for non-Gaussian inference. This was noted
early as an exciting development for Data Assimilation [24] and has been used in
feature extraction with other emerging applications in machine learning [18, 22, 40].

Tagade and Ravela [38] use Kapur’s quadratic mutual information on the
Lorenz-95 problem. The quadratic mutual information is interpreted in terms of
an information potential expressed by ensembles of model state or experimental
observations in a kernel density representation [21], following Torkkola [22, 40],
but can be approached using reproducing kernel Hilbert space (RKHS) also (which
we have not done here). The filtering problem is posed as maximization of the
approximated information potentials. The gradients of the information potentials
are obtained analytically to derive a filter. The proposed approach allows, similar
to MEnF/B-MEnF, for direct state adjustment for non-Gaussian inference. This is
discussed here with a double well example [35].
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2.5.1 Tractable Information Theoretic Approach

Consider the filtering problem and let x, y and x̂ denote the model state, experi-
mental observations and the estimate at the current time T respectively. Dropping
the time subscript, define an arbitrary (possibly non-linear) filter as:

x̂ = F(x, y). (2.8)

Our objective is to determine the mapping F(x, y) by maximizing Conditional
Mutual Information F̂ (x, y) = arg maxF(x,y) J (y; x̂|x). We call this a “Mutual
Information Filter” (MuIF).

To derive a tractable approach, we note that entropy is often used as a measure of
uncertainty [33], with the mutual information quantified using the Kullback-Leibler
measure for the cross entropy [4]. Though the Shannon entropy is the most widely
used measure of entropy, it is possible to use a wide array of different definitions of
entropy as pointed out by Kapur [16]. Renyi entropy [31] is obtained by relaxing
Shannon’s third axiom. For a random variable X, Renyi entropy of order α is
defined as:

Rα(X) = 1

1− α log
∫
(fX(x))α dx = Vα(X), (2.9)

where α > 0 and α 	= 1. In particular, Renyi entropy of order 2 and the associated
Quadratic Mutual Information is attractive. When α = 2, R2(X) is a quadratic
Renyi entropy, given by:

R2(X) = − log (V2(x)) , (2.10)

where V2(x) is quadratic information potential, which represents expected value of
the Probability Distribution Function (PDF) of x. Since the logarithm is a monotonic
function, entropy optimization can be achieved by optimizing V2(x). Further, as
R2(X) is a lower bound of the Shannon Entropy [22], quadratic Renyi entropy is
expected to be more efficient than the Shannon entropy for entropy maximization.

Following the definition of Renyi entropy, different measures of divergence and
associated mutual information are proposed in the literature [16]. In particular, the
Euclidean distance between the PDFs, given by

De(fX, gX) =
∫
(fX(x)− gX(x))2 dx. (2.11)

Kapur’s quadratic mutual information is given by

J (X;Y ) = De(fXY (x, y), fX(x)fY (y))

= VJ − 2VC + VM,
(2.12)

where, VJ and VM are the quadratic information potential of the joint and the
marginal PDFs, while VC is the cross information potential [22].
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Using a Parzen window estimation with the Gaussian kernel [21, 22, 24, 40],
G(x, �) with � = σ 2I typically, we may approximate any PDF to an arbitrary
accuracy [21]; inference is non-Gaussian. Using the convolution property of
Gaussian kernels and the Parzen window estimates of the PDFs, estimates of the
information potentials V̂J , and V̂C , and V̂M and their gradients may be readily
evaluated [38]. This is further sped up using hashing and indexing techniques to
retrieve close neighbors to evaluate these terms.

Tagade and Ravela [38] define an ensemble matrix of model predictions
A = [xi; i = 1, . . . , Ns] ∈ Rn×Ns , another for perturbed observations Z =
[zi; i = 1, . . . , Ns] ∈ Rm×Ns , with perturbed observation defined as zi = y + vi ,
where vi denotes a sample from the PDF of the measurement error. Using the
filter (2.8), an ensemble matrix of the estimated states, x̂ ∈ Rn, can similarly be
defined as: F = [F(xi , zi ); i = 1, . . . , Ns] ∈ Rn×Ns . The ensemble matrix F can
be populated to reinitialize the system dynamics. Tagade and Ravela [38] propose a
steepest-gradient-ascent, letting the solution at the current iteration be denoted by
F(x, z)k . Then,

F(x, z)k+1 = F(x, z)k + η∇J (z; x̂|x), (2.13)

where ∇ denotes the gradient, while η is a user defined step size. This evaluation
produces gradients of information potentials or information forces and can be
directly calculated. When F is suitably parameterized, for example x̂ = x+K(z−x),
then gradients with respect to the parameter can be estimated and updated instead
by evaluating J (z;K|x). In this linear example, K is akin to a Kalman gain, which
they call the information gain.

The application of MuIF to the filtering problem on Lorenz-95 by Tagade and
Ravela [38] is shown in Fig. 2.7. A comparison on the double well system [35] is

Fig. 2.7 A comparison of EnKF and MuIF on a Lorenz-95 problem [38] and a double well
problem [35]
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also shown. Its performance is comparable to mixtures, and can track the switching
well. We note that although the evaluation of mutual information can be expensive
considering all pairs of interactions between the model and observation samples,
the use of hashing techniques and indexing techniques have shown considerable
scalability. Such approximate inference is, we posit, promising for coherent fluid
mapping, especially when the ensemble sizes are relatively small. Further, Parzen
windowing is problematic in high dimensions, approaches based on RKHS can be
developed.

2.6 Application Example

The estimation methodology previously developed is applied to a key aspect of
the coherent fluid mapping problem, extending Sect. 2.1. The example illustrated
is of dynamically adapting sampling paths using tracer hot spots. This is posed as a
Bayesian estimation problem and illustrated using the B-MEnF approach.

The approach uses a DDDAS model hierarchy; the high fidelity model simulation
is reduced using the approach in Sect. 2.1, reduced model ensemble realizations pro-
duce an ensemble of wind-efficient sampling plans. These plans are adapted using
extrapolated remote tracer (e.g., SO2) measurements to sample tracer hot-spots,
which is important in hazardous plumes. Features are detected and extrapolated
from the current remotely sensed image, and assembled into a sampling time
window using a previously described [25, 26] approach. The targeted features and
prior ensemble of plans are fused, producing a posterior distribution of sampling
paths for an sUAS to execute that is both energy efficient and targets the tracer
features. This framework allows for further adaption during flight.

In Fig. 2.8, an initial ensemble of plans produced by only considering winds
depicts a downwind trajectories from the plume start to the right. The low, neutral
and high shear model regimes produce a non-Gaussian distribution, shown in
trajectories and shading. A mixture is an appropriate model in this case. The
measurements are specified as time extrapolated hotspots [25, 26]. Initial plans
are based on winds, but rather than replan, the model-driven sample plans are
dynamically adapted to incorporate tracer sampling preferences. The posterior flight
plan distribution is compact and convergence is rapid using B-MEnF. Similar results
are obtained with the mutual information filter.

2.7 Conclusions

We discussed the overall structure of DDDAS applications for mapping coherent
fluids and its loop elements. We described one application instance and focused
on a novel deformable reduced model that adapts with and is robust to non-
Gaussian errors. We then focused on nonlinear and non-Gaussian inference using
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Fig. 2.8 A prior ensemble of sample plans using only winds (top) is adapted with tracer
measurements to include hotspots (middle) to produce a posterior set of sampling plans (bottom).
The shading indicates sampling uncertainty

two approaches; a Boosted Mixture Ensemble filter (B-MEnF) and a Mutual
Information Filter (MuIF). We further discussed their application adapting sampling
plans.

Whilst mixture approaches seem promising for non-Gaussian estimation, they
actually perform worse than EnKF in the presence of bias. The absence of a total
variance objective is the culprit. The compact MEnF reduces dimensionality issues,
mitigates sampling problems and directly enables smoothing. B-MenF, a stacked-
cascade ensemble learner, reduces uncertainty better than either GMM or EnKF
alone and, in experiments here, it needed no resampling. We posit that Ensemble
Learning (analogous to multi-model ensembles) can be an efficient way to deal with
model error and bias in high-dimensional non-Gaussian systems.

Kapur’s quadratic mutual information is approximated using an ensemble-
based kernel-density estimate of model state and experimental observations. The
approximated quadratic mutual information is integrated with the steepest-gradient-
ascent algorithm to maximize the mutual information. The proposed algorithm is
depicted for Lorenz-95 model and the double well, outperforming EnKF and with
similar performance as a mixture approach.
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Chapter 3
Dynamic Data-Driven Adaptive
Observations in Data Assimilation
for Multi-scale Systems

Hoong C. Yeong, Ryne Beeson, N. Sri Namachchivaya, Nicolas Perkowski,
and Peter W. Sauer

Abstract This chapter considers several research topics that encompass the area of
Dynamic Data Driven Applications Systems (DDDAS), and describes the multidis-
ciplinary methods required for the analysis and prediction of complex systems. It
focuses on developing new algorithms and tools for the collection, assimilation and
harnessing of data by threading together ideas from random dynamical systems to
information theory. A general overview of the multi-scale signal and observation
processes, the multidisciplinary methods required for their analysis, and a new
particle filtering algorithm that combines homogenization with filtering theory are
presented. Importance sampling and control methods are then used as a basic
and flexible tool for the construction of the proposal density inherent in particle
filtering for approximating the real time filtering of chaotic signals. Finally the
chapter describes an information theoretic method, which follows naturally from
the expected uncertainty minimization criterion, for dynamic sensor selection in
filtering problems. It is compared with a strategy based on finite-time Lyapunov
exponents of the dynamical system, which provide insight into error growth due to
signal dynamics.
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3.1 Introduction

The focus of this chapter is based on the DDDAS paradigm that includes the conflu-
ence of three areas, namely random dynamical systems, control and estimation (data
assimilation), and information theory. Mathematical models are valuable tools for
understanding complex systems. However, these models are considerably uncertain.
The uncertainty can be attributed to: the inability of models to capture important
physical processes; inadequate use of observations to constrain and initialize the
models; and uncertainties in determining model updates. An emerging challenge
for inference and prediction of large-scale complex systems is to efficiently analyze
and assimilate the ever-increasing high dimensional data produced by the vast
number of engineered and natural systems. On the stochastic side, the crucial
field of modeling sub-grid scale phenomena has been increasingly moving towards
stochastic “parameterizations” [7]. The enormous complexity of the problems
continues to pose challenges for predicting interactions among the physical and
environmental systems. These unique challenges due to the interactions among
uncertainties, nonlinearities, and observations will be detailed in this chapter.

This chapter integrates ideas from random dynamical systems, homogenization
methods, nonlinear filtering and Markov Chain Monte Carlo methods to develop a
general collection of new mathematical techniques that dynamically assimilate new
data from observations for prediction. As we shall show, the concept of integrating
random dynamical systems, homogenization methods and nonlinear filtering always
sounds clear enough at a distance, but the closer one gets to the proofs, the vaguer
the subtleties of these interactions become. Key tools to explore these issues in a
canonical way are explained in [2, 4, 14, 16, 31]. Novel results, contributions and
their significance in three important areas of research within DDDAS are presented
below.

The content of this chapter is organized as follows. A general overview of
the multi-scale signal and observation processes, the multidisciplinary methods
required for their analysis, and relevant new results achieved in data assimilation for
coarse grained dynamics, are given in Sects. 3.2 and 3.3. The reduction technique,
examined in Sect. 3.2, entails an averaging result for the fast motion associated
with perturbed dynamics. The section overviews the well known results associated
with the martingle problem. Section 3.3 addresses the effects of the multiscale
signal and observation processes via the study of the Zakai equation. Section 3.3
describes a lower dimensional stochastic partial differential equation (PDE) (Zakai
type equation) that was constructed in a canonical way to addresses the effects
of the multiscale signal and observation processes and provide an example of
implementation on a toy problem. Finally Sect. 3.4 utilizes the Kullback-Leibler
divergence as a measure of information flow in adaptive sensing. The strategy is
suitable for quantifying the information by a future measurement with the goal of
reducing analysis uncertainty of the coarse grained signal. A methodology using
singular vectors of the linear tangent map is also employed as a tool for improving
analysis for model update.
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3.2 Dimensional Reduction and Homogenization

A general overview of the multiscale signal and observation processes and relevant
results achieved in DDDAS, the multidisciplinary methods required for their
analysis, and relevant new results achieved in data assimilation for the coarse
grained dynamics are presented in this section. The analytical core of this part of
the work is dimensional reduction. In large complex systems, non-linearities of the
governing physical processes allow energy transfer between different scales, and
many aspects of this complex behavior can be represented by stochastic models. In
such problems with scale separation, one of the most studied models of random
perturbations is represented by a diffusive Markov process {(Xεt , Zεt ); t ≥ 0}
whose semigroup of transition operators T ε is generated by L ε, a second order
elliptic (partial) differential operator as explained in [14]. Xε and Zε are the slow
and fast components of the system, respectively, and ε > 0 is the timescales
separation parameter – the ratio of the timescale of the fast dynamics to that
of the slow. Small ε indicates wide timescales separation between the slow and
fast components. On the slow timescale, high dimensional multi-scale stochastic
systems often behave like a smaller, reduced-order model (ROM); however, the
reduced-order model is not known a priori. In these problems, extracting coarse-
grained dynamics is at heart a problem of weak convergence of stochastic processes,
or more exactly weak convergence of the laws of Markov processes. One of the
preeminent modern frameworks for considering convergence of the laws of Markov
processes is that of the martingale problem [12, 41], which was used in [31, 32]
to develop the reduced models. These stochastically averaged, lower-dimensional
models are strictly valid only in the limit of infinitesimally small noise. Nonetheless,
they provide qualitatively useful results and are helpful in developing inexpensive
lower-dimensional computational models as shown in [34].

The starting point for the work presented here is the stochastic version of a (m+
n)-dimensional multi-scale dynamical system:

dXεt = b(Xεt , Zεt )dt + σ(Xεt , Zεt )dWt , (3.1a)

dZεt =
1

ε
f (Xεt , Z

ε
t )dt +

1√
ε
g(Xεt , Z

ε
t )dVt , (3.1b)

where Xε ∈ R
m and Zεt ∈ R

n are the slow and fast components, respectively, and
Wt ∈ R

k and Vt ∈ R
l are independent k- and l-dimensional standard Brownian

motions, respectively. The vector field and diffusion coefficients are b : Rm+n →
R
m, σ : Rm+n → R

m×k , f : Rm+n → R
n, g : Rm+n → R

n×l . All the functions
above are assumed to be Borel-measurable. For fixed x ∈ R

m at the fast timescale,
define

dZxt = f (x, Zxt )dt + g(x, Zxt )dVt .
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In other words, Zx is a version of Zε, the solution of (3.1b), with Xε = x fixed.
Assume that for all x ∈ R

m, Zx is ergodic and converges rapidly to its unique
stationary distribution p∞(x; ·).

The primary result of stochastic dimensional reduction is a self-contained
description of the coarse-grained dynamics without fully resolving the dynamics
described in the fast scale. It has been shown [36] that, as scaling parameter ε tends
to zero, the limiting process of Xε is a Markov process X with the generator L †:

L † =
m∑

i=1

bi(x)
∂

∂xi
+ 1

2

m∑

i,j=1

aij (x)
∂2

∂xi∂xj
, (3.2)

where

b(x) =
∫

Rn

b(x, z)p∞(x; dz), a(x) =
∫

Rn

(σσT )(x, z)p∞(x; dz)

are the homogenized drift and diffusion coefficients of the slow components. In
general, the limiting description of the coarse-grained dynamics will take values in
a reduced space (which in the setting of (3.1) is Rm ⊂ R

m×n). The geometry of the
reduced space can be found from the coarse-grained dynamics as shown in a series
of papers [32, 34] on stochastic dimensional reduction. In other words, when ε is
small, X behaves stochastically like Xε with the effects of the fast component Zε

averaged out. The results of [23] and chapter 5 of [6] provides dimensional reduction
in slow-fast systems driven by real and white noise, respectively, using a geometric
singular perturbation approach.

Consider the following simple signal model [37, 42] to illustrate the effect of
homogenization:

Ẋεt = −(Zεt )3 + sin(πt)+ cos(
√

2πt), Xε0 = x0 ∈ R, (3.3a)

dZεt = −
1

ε
(Zεt −Xεt )dt +

1√
ε
dVt , Zε0 = z0 ∈ R. (3.3b)

For a fixed Xεt = x, the solution of (3.3b) is the Ornstein-Uhlenbeck process with
stationary density

μ(z|x) = 1√
π

exp{−(z− x)2}, z ∈ R. (3.4)

As ε→ 0, one can show that [42] Xεt → Xt strongly, where Xt satisfies

Ẋt = −(Xt )3 − 3

2
Xt + sin(πt)+ cos(

√
2πt), X0 = x0, (3.5)

i.e. the dynamics of X is that of (3.3a) with Zε effects averaged w.r.t. the stationary
density (3.4).
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If we are only interested in studying the system behavior at the slow timescale,
i.e. in Xε, then, when timescales separation is large, X provides a good represen-
tation of the distribution without having to explicitly resolve the fast dynamics. In
the next Section, we describe the data assimilation procedure based on the reduced-
order dynamics of X.

3.3 Data Assimilation in Multi-scale Systems

Data assimilation involves blending information from observations of the actual
system states with information from dynamical models to estimate the system states.
Common features of observations data are: (i) complex structures – complexity in
relations between different parts of the data and the nature of the data itself; (ii)
noisy – measurements are inherently subject to random fluctuations; (iii) indirect
observations – the desired state is not directly observed. This section deals with
assimilation of such data in complex, multiscale systems using filtering theory.

Continuous time state estimation for linear stochastic systems is based on a
single unifying theme, namely that state estimation is equivalent to projection onto
a closed linear subspace generated by an observation process in a Hilbert space of
random variables. This formulation leads to optimal linear estimation and prediction
procedures, such as the Kalman-Bucy filter (see, for example, [5, 17]), which is
widely used in stochastic optimal control problems. In the nonlinear setting, state
estimation is equivalent to restricting the probability measure of the signal to the
space of information generated by the observation process. The resulting conditional
measure is governed by a stochastic partial differential equation (see, for example,
[5]), which in practice can be solved using numerical techniques. The results
presented here combines stochastic dimensional reduction and nonlinear filtering
theory to provide a rigorous theoretical framework for the development of lower
dimensional nonlinear filters for estimating coarse-grained dynamics in multi-scale
signals. In practice, stochastic integration approximation methods for the solution
of the nonlinear filtering problem have been developed, and can be categorized
into global and local methods. Global methods appproximate a probability density
function on the entire state space while local methods approximate filtered nonlinear
functions in local regions. In the numerical examples of this chapter, we use global
methods, a particle filter and the ensemble Kalman filter. For descriptions and
analyses of stochastic local methods and comparison with the ensemble Kalman
filter, see, for example [10].

The nonlinear filtering problem is framed by augmenting the dynamics of the
state (3.1) by an observation process Y ε. Information about the signal/state is
available only indirectly through sensors, modeled as h(x, z), corrupted by sensor
noise B:

Y εt =
∫ t

0
h(Xεs , Z

ε
s )ds + Bt (3.6)
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with Borel-measurable h : Rm+n → R
d and B is assumed to be a d-dimensional

standard Brownian motion that is independent of W and V . The only available
information about the signal/state of the system up to time t is contained in the

observation σ -field Y ε
t

def=σ {Y εs : 0 ≤ s ≤ t} of the observations at times s up to t .
This section describes some results for the best estimate of statistics of the slow state
Xεt based on the information contained in Y ε

t generated by the observation process
Y ε, which depends also on the fast process Zε. Since the fast process Zε rapidly
attains its invariant measure, standard averaging techniques suggest that as ε ↘ 0,
we should replace the dynamics of the slow process by X. In other words, we can
average out the effects of the fast process Zε and regard

{
Xt, t ≥ 0

}
as the reduced

dynamical model, to be utilized for filtering on a lower-dimensional space compared
to the original space of the multiscale signal. When filtering on the reduced space
for the signal, the corresponding averaged sensor function h should be utilized.
However, the true observation Y ε should still be used, because it may not be possible
to obtain “averaged” measurements in practice, and “averaged” measurements may
result in some loss of information.

Stochastic dimensional reduction and nonlinear filtering techniques were used in
[16, 35] to construct the reduced-order filter and show that it is close to the true filter
in the limit of wide timescale separation (small ε). Below, we briefly describe the
results, in terms of the density function as in [35]. The results of [16] are in terms
of filters (conditional expectation of continuous, bounded functions of the signal).

For A ∈ B(Rm), let πε,xt (A,Yε[0, t])
def=P{Xt ∈ A|Y ε

t } denote the conditional
probability of the homogenized process at time t , given observations up to time t .
The homogenized process generated by L † is combined with the actual observation
Y ε in defining the recursive stochastic PDE for the conditional density pt (·,Y ε

t ) for
πε,x· . Define h(x) = ∫ h(x, z)p∞(x, dz), where p∞(x, ·) is the invariant density for
the fast process with x fixed. Let

πεt (A,Yε[0, t]) =
∫

x∈A
pεt (x)dx =

∫
x∈A u

ε
t (x)dx∫

x∈Rn u
ε
t (x)dx

, (3.7)

where uεt (x) is governed by the stochastic PDE

duεt (x) = L †∗uεt (x)dt + h(x)uεt (x)dY εt , (3.8)

with uε0(x) = p0(x). We emphasize that πεt is not the standard nonlinear filter
introduced earlier, but is a “hybrid” entity derived by using the statistics of the
limiting process {Xt } together with the “non-limiting”/true observation process
{Y εt }. Using (3.8) and (3.7), it is shown in [35] that the x-marginal of the original
conditional density,

∫
Z pεt (·, z,Y ε

t ) dz, is close to the homogenized conditional
density pt (·,Y ε

t ). Similar results for the filter E[ϕ(Xt)|Y ε
t ], for bounded, contin-

uous functions ϕ on R
m, are obtained in [16], by invoking a dual representation of

the filtering equation and using existing probabilistic estimates to bound the error
between the true and homogenized filters.
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Remark 1 In most real applications, for example weather prediction models, the
observation and signal processes are within the same environment; hence signal and
sensor noises are correlated. Our work on the hybrid coarse grained filter πεt in
[16, 35] is in the uncorrelated signal and sensor noises setting, but is currently being
extended to the correlated noise setting.

This theory is enabled using an efficient class of filtering methods called particle
methods, which invoke sequential Monte Carlo and importance sampling techniques
(see, for example, [24, 37]) to recursively approximate the solution to the stochastic
PDE (3.8). Particle methods involve the simulation of a sample of independent
particles of the signal according to the signal’s stochastic law, and reweighting
and resampling particles to incorporate information from the observations. The
resulting sample represents the posterior conditional distribution of the signal given
observations. Based on the results for the homogenized filter, particle methods
and averaging techniques have been combined to approximate the hybrid filtering
equation solution in a multiscale setting, called the Homogenized Hybrid Particle
Filter (HHPF), developed in [37].

We apply the HHPF to the example given by (3.3a) and (3.3b) to illustrate its
potential for high-dimensional complex problems. To do so, we augment the signal
process with an following observation process Y εt = 1

2 (X
ε
t )

2 + Bt , which can be
written in differential form

dY εt = Xεt
{
−(Zεt )3 + sin(πt)+ cos(

√
2πt)

}
dt + dBt .

The averaged sensor function is

h(Xt) = −(Xt )4 − 3

2
(Xt )

2 + {sin(πt)+ cos(
√

2πt)}Xt .

The results from a particle filter and the HHPF are given in Fig. 3.1a, b, respectively.
Both results are also compared with the analytical solution (3.5). The sample
standard deviation are represented by the error bars. The time taken for these
simulations are 448 and 15 s respectively. The filter estimate in Fig. 3.1b is sparse
in time compared to that of Fig. 3.1a, because numerical integration in the HHPF
can be performed at a coarser timestep (slow timescale) than is required when
homogenization is not utilized (fast timescale). Hence, the dramatic decrease in
computation time.

In [25], particle methods are adapted for dynamical systems which are inherently
chaotic and for observations that are sparse in time. A control is superimposed
on the particle dynamics to drive particles to locations most representative of the
next available observations, while still trying to remain faithful to the original
signal dynamics. This control is obtained by minimizing a utility functional that
is quadratic in the relative distance of particle locations from the next observed
locations, and the control effort. An importance sampling step, in addition to that
for the observation likelihood, is required to realize the measure change needed to
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Fig. 3.1 Filter estimates for a particle filter (448 s) versus the HHPF (15 s). (a) PF estimate (red),
True signal (blue). (b) HHPF estimate (red), True signal (blue)

compensate for the addition of control in the signal dynamics. The control can be
interpreted as steering particles gradually toward locations indicated by the next
observation. The optimization also results in minimal weight variance for each
particle.

Evaluation of the optimal control is based on the Feynman-Kac representation
and Malliavin derivative, which can become computationally overwhelming for
nonlinear signals. However, the solution can be obtained explicitly for linear
systems. The linear control strategy is implemented as a suboptimal solution for
filtering a noisy version of the 3-dimensional Lorenz ’63 model [26] for nonperiodic
flow in atmospheric convection. The signal and observation processes are given as:

d

⎡

⎣
X1
t

X2
t

X3
t

⎤

⎦ =
⎡

⎣
−σ σ 0
ρ −1 0
0 0 −β

⎤

⎦

⎡

⎣
X1
t

X2
t

X3
t

⎤

⎦ dt +
⎡

⎣
0

−X1
t X

3
t

X1
t X

2
t

⎤

⎦ dt + α dWt (3.9a)

dYk = hXkdt + gdBk (3.9b)

We use the standard parameters σ = 10, ρ = 8/3, and β = 28 in the signal
equations. The signal and sensor noise is simulated as a vector of Gaussian random
numbers premultiplied by the following correlation matrices,

Q
def=ααT =

⎡

⎣
1 0.5 0.25

0.5 1 0.5
0.25 0.5 1

⎤

⎦ and R
def=ggT =

⎡

⎣
2 0 0
0 2 0
0 0 2

⎤

⎦

The sensor function is a 3 × 3 identity matrix, h
def=I3×3. Observations are recorded

every�t = 0.2, which corresponds to roughly 1/4 of the error doubling time for the
deterministic Lorenz ’63 system.



3 DDDA Observations in Data Assimilation 55

0 10 20 30 40 50 60 70 80
−20

0

20

0 10 20 30 40 50 60 70 80
−50

0

50

0 10 20 30 40 50 60 70 80
0

50

0 10 20 30 40 50 60 70 80
0

50

100
PF

(a)

0 10 20 30 40 50 60 70 80
−20

0

20

0 10 20 30 40 50 60 70 80
−50

0

50

0 10 20 30 40 50 60 70 80
0

50

0 10 20 30 40 50 60 70 80
0

20

40
cPF

(b)

Fig. 3.2 Particle filter estimates of 3 components of Lorenz ’63 system. RMSE, ||xt − x̂t ||2, is
shown in the bottom-most plots. (a) Particle filter without control. (b) Particle filter with control

The filtering results are shown in Fig. 3.2a, b. Implementation of the suboptimal
control was sufficient to ensure consistent tracking of the signal, even when the
inter-observations interval is large. The difference between the estimated state
x̂t = (X̂1

t , X̂
2
t , X̂

3
t ) and the true state xt = (X1

t , X
2
t , X

3
t ) of the system constitutes

the root-mean-square error (RMSE),
∥∥xt − x̂t

∥∥2, which is amplified in between
observations in chaotic systems that have positive Lyapunov exponents. The particle
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filter without any control can miss the transitions from one wing of the Lorenz
butterfly to the other, as can be seen in Fig. 3.2a. For the same initial sample,
Fig. 3.2b shows that the particle filter with the approximate linear control is able
to track transitions in the true signal.

The filtering algorithm described so far can be supplemented by a sensor design
scheme that extracts better observations (that contain the maximum amount of infor-
mation), which has the potential to further reduce the error in the analysis of the ini-
tial state for the forecast. Using information-theoretic formulations and information
flow, adaptive sensing can be designed to extract more information content at a given
observation time. Section 3.4 considers sensor selection with the goal of improving
the analysis at observation times, by looking at mutual information between
the signal and observation. Additionally, in chaotic systems, error growth and
uncertainty can be characterized by Lyapunov exponents. Specifically, for a chaotic
system, solutions settle near a subset of the state space, called an attractor. However,
state trajectories are sensitive to initial conditions, i.e. trajectories starting from
initial conditions that are close can deviate far apart in the future. This sensitivity to
initial conditions is characterized by (finite time) Lyapunov exponents. Observations
can potentially be improved by constructing a sensor function that is more sensitive
in unstable directions (directions corresponding to positive Lyapunov exponents).

3.4 Information-Theoretic Sensor Selection Strategy

This section proposes a method for selecting sensor models to collect data that
contain useful information for making predictions. With the emergence of sensing
concepts that capitalize upon the rapidly increasing availability of controllable
sensor degrees of freedom, ranging from sensor operating mode to physical control
of the platforms carrying the sensors, there is a need for new strategies for
information collection. Effort will be focused on sensor selection and placement
for environmental problems through construction of information theoretic utility
functions that contain essential information for the estimation problem – specifically
state uncertainty as quantified by conditional entropy. In this context, the sensor
selection task can be seen as choosing a sensor whose observations provide the
most information about the quantity that is being estimated.

The work on optimal sensor path/placement based on information theoretic
concepts that is presented here was initiated in [27]. Information-based sensor
optimization is not unfamiliar in dynamic estimation problems and has been studied,
see for example [1, 11, 15, 19, 29, 40, 43]. In [27], a sensor control scheme is
implemented in the update step of the nonlinear filtering algorithm for a single,
dynamic-sensor system. The control is determined by maximizing an information
utility function that quantifies the amount of information that observations con-
tribute to the filtering posterior. Here, we first consider information maximization
in the discrete-time filtering setting, as in [27], for the sensor selection problem.
The continuous-time setting is considered in Sect. 3.4.2 via an information flow
equation. For a general introduction to information theory, see for example [8].
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We describe the information maximization problem in this section by represent-
ing the signal as a single component X, without distinguishing different timescales.
Consider the discrete-time signal with observation

Xk+1 = b(Xk)+Wk, X0 = x0 ∈ R
m

Yk = hθk (Xk)+ Bk, Y0 = 0d×1,

where b : Rm→ R
m, h : Rm→ R

d ,Wk ∼ N (0,Q),Q ∈ R
m×m,Bk ∼ N (0, R),

R ∈ R
d×d , and θk is a “control” that allows us to modify the sensor function to

maximize the information utility at observation times.
Let p(xk|y0:k−1) and p(xk|y0:k; θk) denote the prior and posterior densities

respectively. The kth observation is modified via θk , such that we maximize the
information gained from the observation. Hence θk comes in as a parameter in the
posterior. θk can represent a modification on the sensor dynamics for moving sensors
or a sensor selection decision from an array of stationary sensors. [27] studies the
dynamic sensor problem while here we consider the sensor selection setting. The
control history θ 0:k−1 is implicitly included in the density notation by considering
that they are already incorporated in y0:k−1.

The information gain can be quantified by the Kullback-Leibler (KL) divergence
of the posterior and prior densities, DKL(p(xk|y0:k; θk)||p(xk|y0:k−1)), a “metric”
of the difference between the two densities. This KL divergence is dependent on
Yk , which is only available after θk has been determined. In order to use this KL
divergence to determine the optimal θk , this KL divergence is averaged over all
possible Yk based on the prior, which is the best knowledge of the distribution of
Xk before the posterior is obtained. Hence the posterior in the KL divergence is a
“virtual posterior”. The utility function that we propose is the following:

I (xk, y0:k; θk)def=
∫

Y
DKL(p(xk|y0:k; θk)||p(xk|y0:k−1)) p(yk|y0:k−1; θk)dyk,

(3.10)

where

p(yk|y0:k−1; θk) =
∫

X
p(yk|xk; θk)p(xk|y0:k−1)dxk (3.11)

is the density of the expected observation, given the prior. The optimal θk is
determined as

θ∗k = arg max
θ∈Θ I (xk, y0:k; θk),

where Θ is the set of admissible controls or the set of sensor arrays. The resulting
observation constructs a posterior that is far from the prior in the KL divergence
sense, but still obeys the signal dynamics specified by the prior.
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A simple application of Bayes’ Theorem relates the KL divergence to conditional
entropy of the signal given observation:

∫

Y
DKL(p(xk|y0:k; θk)||p(xk|y0:k−1)) p(yk|y0:k−1; θk)dyk

=
∫

Y

(∫

X
p(xk|y0:k; θk) log

p(xk|y0:k; θk)
p(xk|y0:k−1)

dxk

)
p(yk|y0:k−1; θk)dyk

= −
∫

X
p(xk|y0:k−1) logp(xk|y0:k−1)dxk

+
∫

Y

∫

X
p(xk|y0:k; θk) logp(xk|y0:k; θk)dxk p(yk|y0:k−1; θk)dyk

= H(Xk)−H(Xk|Yk; θk). (3.12)

Equation (3.12) is the difference between the entropy of Xk and the conditional
entropy of Xk given Yk . Hence, maximizing the KL divergence between the
posterior and prior is equivalent to minimizing the conditional entropy of signal
given observation. Note that the entropy of quantities at time k in (3.12) are averaged
over densities conditioned with respect to Y0:k−1, which are assumed known at time
k. This is the definition of entropy that we use in discrete time from here on.

The mutual information between Xk and Y0:k ,

−
∫

X ×Y
p(xk, y0:k; θk) log

p(xk)p(y0:k; θk)
p(xk, y0:k; θk) dxkdy0:k,

measures the error in assuming independence of signal and observations when they
are not. Equivalently, it is the amount of information that the observation contains
about the signal. Based on its definition, mutual information between signal and
observation should be equivalent to the difference in entropy of the signal and
conditional entropy of the signal given observation. It can be seen, via an application
of Bayes’ Theorem, that

−
∫

X×Y
p(xk, y0:k; θk) log

p(xk)p(y0:k; θk)
p(xk, y0:k; θk) dxkdy0:k = H(Xk)−H(Xk|Yk; θk)

(3.13a)

= H(Yk; θk)−H(Yk|Xk; θk)
(3.13b)

This gives another interpretation of the utility function (3.10): Relating (3.13)
to (3.12), maximizing KL divergence between the posterior and prior (3.10) is equiv-
alent to maximizing the mutual information between the signal and observation.
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By (3.12) or (3.13a), maximizing the information utility with respect to θ can be
achieved by minimizing the conditional entropy

H(Xk|Yk; θk) = −
∫

Y

∫

X
p(xk|y0:k; θk) logp(xk|y0:k; θk)dxk p(yk|y0:k−1; θk)dyk.

(3.14)

Unless the densities involved are explicitly known, H(Xk|Yk; θk) has to be approx-
imated computationally. An example of numerical approximation of such infor-
mation theoretic quantities is demonstrated in [9], where importance sampling
is utilized. This can be computationally intensive, considering samples of the
signal and observations have to be generated and their importance sampling weight
calculated appropriately according to (3.14). In addition, sampling of observations
has to be performed for different parametrizations of θ . However, in the linear
case, evaluation of (3.14) is simplified using Kalman filter statistics, as described
in Sect. 3.4.1.

Since KL divergence is a measure of the difference between two densities,
maximizing the KL divergence between the prior and posterior does not directly
lead to a better posterior density for signal estimation. For example, [43] shows
empirically for the linear Gaussian case that increasing or decreasing the posterior
error covariance relative to the prior’s both increase KL divergence, the latter which
is desired for signal estimation. Averaging the KL divergence over future observa-
tions in (3.10) is based on a different motivation, but it addresses this question. From
the interpretation (3.12), maximizing (3.10) is equivalent to minimizing uncertainty
of signal given observation, which gives a better posterior for signal estimation
compared to the prior. In the linear Gaussian case, this leads to minimizing the
determinant of the posterior error covariance explicitly.

3.4.1 The Linear Case

Consider the linear case, where the required densities are known Gaussians: The
posterior is given by the Kalman filter, while the density of expected observations,
based on (3.11), is determined from the observation likelihood and Kalman filter
prior.

Using (3.13a), the conditional entropy of Xk given Yk can be maximized by

θ∗k = arg min
θ∈Θ
∣∣P θk|0:k

∣∣,

P θk|0:k = Pk|0:k−1 − Pk|0:k−1(h
θ
k)
∗(R + hθkPk|0:k−1(h

θ
k)
∗)−1hθkPk|0:k−1,

(3.15)

where P θkk|0:k and Pk|0:k−1 are the Kalman filter posterior and prior error covariances,

respectively, and hθk is the sensor matrix at time k. Alternatively, using (3.13b), the
mutual information between Xk and Yk can be maximized by
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θ∗k = arg max
θ∈Θ

∣∣R + hθkPk|0:k−1(h
θ
k)
∗∣∣. (3.16)

This is the same as the criteria in [11].
In order to illustrate the relation between KL divergence/mutual information

maximization with the filtering procedure, we consider the linear Gaussian setting
with a specific family of sensor matrices. Specifically, for all k, let hθk ∈ R

m×m be
a matrix chosen according to our control θk , which takes values from an admissible
set Θ , defined as follows

Θ
def=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎢⎢⎣

1
0
...

0
0

⎤

⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎣

0
1
...

0
0

⎤

⎥⎥⎥⎥⎥⎦
, . . . ,

⎡

⎢⎢⎢⎢⎢⎣

0
0
...

1
0

⎤

⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤

⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= {e1, e2, . . . , em−1, em} (3.17)

The rule for constructing the sensor function is given as hθk
def=θk⊗ θk , which implies

that hθk will always be a zero matrix with one entry on the diagonal equal to 1.
The goal is to choose θk = ei∗ such that hθk = ei∗ ⊗ ei∗ maximizes information
gain based on (3.10). This is representative of an array of m sensors, of which each
sensor observes one component of the signal, and only one of the m sensors is to be
switched on at each observation time.

Using either (3.15) or (3.16), and the Leibniz formula for matrix determinants,
the sensor selection strategy can be determined as: Choose θk = ei∗ if

Pi∗i∗
∑

p∈�m
sgn (p)

m∏

j=1,j 	=i∗
Rjpj

> Pii
∑

p∈�m
sgn (p)

m∏

j=1,j 	=i
Rjpj for all i = 1, 2, . . . , m, i 	= i∗,

(3.18)

where Pii is the iith diagonal element of the prior error covariance matrix, Rij is
the ij th element of the observation noise covariance matrix, and �m is the set of
m! permutations of the indices 1, . . . , m.

∑
p∈�m sgn (p)

∏m
j=1,j 	=i Rjpj is the ii

cofactor of R; that is, the determinant of R with row and column i removed. If the
observation noise is independent across components, i.e. R is diagonal, then (3.18)
becomes

Pi∗i∗
m∏

j 	=i∗
Rjj > Pii

m∏

j 	=i
Rjj ⇐⇒ Pi∗i∗

Pii

>

∏m
j 	=i Rjj∏m
j 	=i∗ Rjj

for all i = 1, 2, . . . , m, i 	= i∗, (3.19)
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i.e. component i∗ is selected for observation if the ratio of prior error of i∗ to
the prior error in other components is greater than the ratio of observation noise
in other components to observation noise in the ith component. This implies that
even if a component has large prior error, it will not be selected for observation if
its observation noise component is large relative to other components. The same
interpretation applies when the observation noise components are not independent,
as the ii cofactor of R in (3.18) is a measure of the magnitude of the observation
noise with the ith component removed.

3.4.2 Information Flow for the Coarse Grained Dynamics

In this section, we quantify the time evolution of uncertainty about the signal and
mutual information between signal and observation. The same information theoretic
concepts as in the discrete-time sensor selection problem are used, but now we will
revert to the continuous-time setting.

Consider the multiscale system (3.1), and (3.6). By the results presented in
Sect. 3.3, estimation of the coarse-grained dynamics of (3.1) can be performed using
the limiting R

m-process generated by L †. Hence, we utilize the reduced-order
filter that is given by the density pε(x) = uε(x)∫

X uε(ζ ) dζ
for multiscale estimation in

this subsection. We also denote the unconditioned density of limiting homogenized
process by ρ, i.e. the solution to the Fokker-Planck/forward Kolmogorov equation
with generator L †.

As discussed in the discrete-time segment of this section, the mutual information
I
ε

t (Xt ,Yε[0,t]) is equal to the Kullback-Leibler divergence between the joint distri-

bution of (Xt ,Yε[0,t]) and the product distribution of Xt and Yε[0,t]. It quantifies the

reduction in the uncertainty of Xt due the knowledge of Yε[0,t]. It can be thought of
as the observation-derived information on coarse grained dynamics in the reduced-
order filter at time t . I

ε

t ≡ 0 would imply that the observations up to time t are
completely useless for estimating Xt .

The mutual information flow equation for a diffusion process with no timescale
separation has been obtained in [30]. We determine the equivalent equation for the
multiscale setting, using the reduced-order filter of Sect. 3.3. Denote the entropy and
conditional entropy of the coarse-grained dynamics by

H
ρ

t (Xt )
def= − E

[
log ρt (Xt )

]
and H

uε

t (Xt |Yε[0,t])def= − E
[
log uεt (Xt )

]
,

where ρ is the solution of the Fokker-Planck equation with generator L † and
uε satisfies the stochastic PDE with generator L †, driven by Y ε, (3.8). We first
determine the time rates of change of the entropies. Define

l
ρ

t (x)
def= − log ρt (x) and l

uε

t (x)
def= − log uεt (x).
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For fixed x, we have

dl
ρ

t (x)

dt
= −L †ρt (x)

ρt (x)
and dl

uε

t (x) = −
L †uεt (x)

uεt (x)
dt − h∗(x)dY εt .

The results of [20] provide an extension of Itô’s lemma for when l
ρ

and l
uε

are
functions of the stochastic process X. We obtain

dl
ρ

t (Xt ) =
{
tr
(∇b(Xt )

)− 1

2
tr
((
σσ ∗
)
(Xt )

[
∇2 log ρt (Xt )

])}
dt

−
[
∇T log ρt (Xt )

] [(
σσ ∗
) 1

2 (Xt )dWt

]

and

dl
uε

t (Xt ) =
{
tr
(∇b(Xt )

)− 1

2
tr
((
σσ ∗
)
(Xt )

[
∇2 log uεt (Xt )

])}
dt

−
[
∇T log uεt (Xt )

] [(
σσ ∗
) 1

2 (Xt )dWt

]

+ 1

2

{∥∥h(Xεt , Zεt )− h(Xt )
∥∥2 − ∥∥h(Xεt , Zεt )

∥∥2
}
dt − h∗(Xt )dBt .

Taking the expected values, we obtain the respective rates of change of entropies:

dH
ρ

t (Xt )

dt
= E

[
tr
(∇b(Xt )

)]+ 1

2
E

[∥∥∥∥
(
σσ ∗
) 1

2 (Xt )∇ log ρt (Xt )

∥∥∥∥
2
]

(3.20)

and

dH
uε

t (Xt |Yε[0,t])
dt

= E
[
tr
(∇b(Xt )

)]
dt + 1

2
E

[∥∥∥∥
(
σσ ∗
) 1

2 (Xt )∇ log uεt (Xt )

∥∥∥∥
2
]
dt

+ 1

2
E

[∥∥h(Xεt , Zεt )− h(Xt )
∥∥2 − ∥∥h(Xεt , Zεt )

∥∥2
]
dt.

(3.21)
Let

H
pε

t (Xt |Yε[0,t])def= − E
[
logpεt (Xt )

] = Huε

t (Xt |Yε[0,t])+ E

[
log
∫

X
uεt (ζ ) dζ

]
.

(3.22)
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The normalizer of the conditional density is (see, for example, Lemma 3.29 of [5])

∫

X
uεt (ζ ) dζ = exp

{∫ t

0
ĥ
ε

s dY
ε
s −

1

2

∫ t

0

∥∥̂h
ε

s

∥∥2
ds

}
,

where ĥ
ε

s
def=E
[
h(Xt )

∣∣Y ε
t

]
. Then, (3.22) along with (3.21) gives us the rate of

change of conditional entropy for the coarse grained dynamics:

Lemma 1 Under conditions for existence of the limiting process generated by L †,
the rate of change of entropy of that limiting process is given by (3.20). Under
conditions for the filter convergence results of [16], the rate of change of the
conditional entropy of the limiting process given observations history is

dH
pε

t (Xt |Yε[0,t])
dt

= E
[
tr
(∇b(Xt )

)]+ 1

2
E

[∥∥∥∥
(
σσ ∗
) 1

2 (Xt )∇ logpεt (Xt )

∥∥∥∥
2
]

− 1

2

{
E

[∥∥h(Xεt , Zεt )− ĥ
ε

t

∥∥2
]
− E

[∥∥h(Xεt , Zεt )− h(Xt)
∥∥2
]}
.

(3.23)

Remark 2 H
ρ

t (Xt ) is the uncertainty in our knowledge about Xt on R
m. Equa-

tion (3.20) describes the time rate of change of this uncertainty. If the signal is
deterministic, then σσ ∗ ≡ 0 and the rate of change is equal to the expected value of
the trace of the gradient of the nonlinear vector field that governsX. The uncertainty
in this case is due to the error in the initial condition, so the expectation is taken with
respect to the density that has been propagated forward from the initial density by
the generator L † given by (3.2) (with σσ ∗ ≡ 0). For a small deviation δX0 from
an initial X0, the rate of change is given by

δẊt = ∇b(Xt )δXt ,

therefore, ∇b represents the growth rate of an initial error. At a fixed time t ,
tr
(∇b(Xt )

)
is equal to the sum of eigenvalues of ∇b(Xt ), which indicates the

growth or shrinkage of δXt from time t to a small δt ahead, a “volumetric change”.
In the conventional interpretation of the Fisher information, the second moment

of ∇ log ρ represents the sensitivity of ρ(X) to changes in X. In (3.20), ∇ log ρ
is stretched by the diffusion coeffient. The corresponding second moment can be
interpreted as the sensitivity of ρ to X, amplified by the diffusion effect, i.e. the
sensitivity of ρ to the stochastic effects of the signal dynamics. This contributes to
the growth in uncertainty about X due to diffusion in (3.20). In fact, [30] defines
this as the Fisher information.

Remark 3 H
pε

t (Xt |Yε[0,t]) is the uncertainty in our knowledge about Xt on R
m

given information from Yε[0,t]. Equation (3.23) contains the same terms as (3.20)
that capture uncertainty growth due to the signal dynamics. In addition, it contains
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a dissipative term, E

[∥∥h(Xεt , Zεt )− ĥ
ε

t

∥∥2
]
, due to information from the sensor

function. This contributes to a reduction in uncertainty growth. However, this
reduction is penalized by the fact that the homogenized sensor function h is used

in the reduced-order filter, in the form of the error E
[∥∥h(Xεt , Zεt )− h(Xt )

∥∥2
]
.

Recall that mutual information between the signal and observation is equivalent
to the reduction in uncertainty about the signal given observations, i.e. the difference
between the entropy and conditional entropy given observations. Hence, Lemma 1
leads to the following rate of change of mutual information:

Theorem 1 Under conditions for the filter convergence results of [16], the rate of
change of the mutual information between the limiting process (the coarse grained
dynamics) of the signal that is generated by L † and observations history is

dI
ε

t (Xt ,Yε[0,t])
dt

= 1

2

{
E

[∥∥h(Xεt , Zεt )− ĥ
ε

t

∥∥2
]
− E

[∥∥h(Xεt , Zεt )− h(Xt )
∥∥2
]}

− 1

2

{
E

[∥∥∥∥
(
σσ ∗
) 1

2 (Xt )∇ logpεt (Xt )

∥∥∥∥
2
]
− E

[∥∥∥∥
(
σσ ∗
) 1

2 (Xt )∇ log ρt (Xt )

∥∥∥∥
2
]}

(3.24)

Remark 4 Based on interpretations in Remarks 2 and 3, the right side of (3.24)
consists of an information growth rate from the sensor function and a dissipation rate
due to sensitivity of the conditional density to stochasticity of signal dynamics. The
information growth is penalized by the fact that the homogenized sensor function
is used in place of the true sensor function. As the filter estimate improves with

more observations, the difference between ĥ
ε

and h(Xε, Zε) should decrease, bar
the error due to homogenization, and information growth will decrease. A statistical
mechanics interpretation of information flow for the Kalman-Bucy filter is presented
in [28], providing a thermodynamic entropy analog to information flow within a
partially-observed linear system.

3.4.3 Finite-Time Lyapunov Exponents and Singular Vectors

In this section we make some preliminary connections between finite-time Lya-
punov exponents (FTLE) and singular vectors (SV), and the rate of entropy growth
given in Sect. 3.4.2. Lyapunov exponents describe the average asymptotic rate of
separation for initial conditions that start close to each other in a dynamical system.
Corresponding to each unique Lyapunov exponent is a linear subspace of the
tangent space, which is spanned by Lyapunov vectors [33] and [39]. The finite-
time equivalent definition provides the same geometric intuition, but is defined for
a finite interval of time; for example, in the data assimilation case, this would be
the time between observations. To define the FTLE and SV, we first recall that
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the fundamental matrix of a system, denoted as �t
def=Dϕ(t, ω, x), satisfies the

variational equation

dδXt = Df (ϕ(t, ω)x)δXtdt +Dg(ϕ(t, ω)x)δXt ◦ dWt ,

Xt = ϕ(t, ω)x is an integral curve of the flow ϕ for a specified initial condition
X0 = x and sample ω [2, 21]. For smooth and bounded f and g, the existence and
uniqueness of �t in the setting of random dynamical systems has been rigorously
justified by Arnold and Scheutzow [3]. The main point is that �t maps small
perturbations of the process Xt at time 0 to perturbations at time t . Formally,

δXt = �tδXo
Note that in the additive noise case (i.e. g a constant matrix), the Jacobian is

�t
def=Dϕ(t, ω, x) = X0 +

∫ t

0
Df (ϕ(s, ω)x)Dϕ(s, ω)ds,

and therefore this relation provides us with a direct procedure for computing �t
given initial condition X0 and the integrated solution Xt .

For a process Xt ∈ R
n, �t is an R

n×n matrix. Any matrix can be written in a
singular value decomposition (SVD). The SVD of �t is given as

�t = U�V ∗,

where U is a unitary matrix of left-singular vectors of �t and V a unitary matrix of
right-singular vectors. � is a diagonal matrix with non-negative elements along the
diagonal called singular values. The singular values are ordered: σ1 ≥ σ2 ≥ . . . ≥
σn ≥ 0. A key relationship between U,V and � is that they satisfy the normal
equations for �t ; that is �∗t �tV = V�2 and �t�∗t U = U�2. Consider now a
relation for the maximal finite-time Lyapunov exponent λtmax and associated vector
ξmax,

λtmax
def= 1

|t | log ||�tξmax||2 = . . . = 1

|t | log
√
< ξmax, V�2V ∗ξmax > (3.25)

For simplicity, assume σ1 is unique. Then this relation implies that the top finite-time
Lyapunov exponent is 1

|t | log σ1 and a perturbation in the direction of v1 (i.e. the first
column vector of V ) will be stretched more (if σ1 > 1) or contracted less (if σ1 < 1),
than any other unit vector, during the interval [0, t]. Importantly, the form of the
SVD also implies that perturbations in the v1 subspace of the domain will be mapped
to the subspace spanned by u1 in the codomain. This provides the motivation to
rewrite the SVD decomposition of �t as the following: �t =∑n

i σi · ui ⊗ vi .
The singular values and vectors provide rather sharp information regarding the

dynamical stretching that occurs during a time interval [0, t] along a solution Xt .
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This is in contrast to the entropy forms given in Sect. 3.4. For example, in (3.20)
the term, E

[
tr
(∇b(Xt )

)]
, accounts for the expected volumetric rate-of-change due

to the dynamical stretching, but does not explicitly provide the subspaces with fast-
growth. These specific subspaces are of interest in the adaptive observation process
and being able to explicitly identify them are of value, hence our motivation to
explore the use singular values and vectors.

3.4.4 Sensor Selection and the Lorenz 1963 Model

In this final section, we use the noisy version of the Lorenz 1963 model given
in (3.9a) as a testbed for exploring the effectiveness of sensor selection using
methods based on relative entropy and singular vectors. For the standard model
parameters given in Sect. 3.3, the deterministic version of the Lorenz 1963 model
has Lyapunov exponents with values 0.906, 0.0, and −14.572. The Lorenz model
is in fact chaotic, implied by the existence of the positive Lyapunov exponent and
bounded motion on an attractor.

We augment the observation process of (3.9b) so that the sensor function is

constructed according to hθk
def=θk ⊗ θk and θk is selected from the admissible control

set Θ defined in (3.17) (see the end of Sect. 3.4.1 for details). We will first describe
the criteria for sensor selection using relative entropy and singular vectors, then
provide some relations between the two criteria, and lastly present the numerical
setup and results. We end with some concluding remarks.

3.4.4.1 Sensor Selection with Kullback-Leibler Divergence

In the numerical results to follow, we will use the Ensemble Kalman Filter (EnKF)
[13]. The EnKF is a Monte Carlo based filter that uses ensemble integrations under
the full nonlinear dynamics, but assumes Gaussian statistics in the analysis scheme.
An analysis of the ensemble Kalman filter scheme can be found in [10]. Using this
filtering scheme, we apply the results given in Sect. 3.4.1 on choosing θk in the linear
Gaussian setting. For example, when our sensor noise is uniform, then (3.19) says
that we would choose θk = e1 = [1, 0, 0]T if

P1,1 > P2,2 and P1,1 > P3,3

Where Pi,i is the i-th diagonal entry of the prior error covariance, Pk|0:k−1. The
logic for choosing θk as a different element of Θ is similar.
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3.4.4.2 Sensor Selection with Singular Vectors

A criteria for choosing θk based on singular vectors can be framed using (3.25),
which says that the largest dynamical stretching during a finite time interval will
occur in the subspaced spanned by v1. These perturbations will be stretched by σ1
and mapped to the u1 subspace at time t . Hence, if one assumes that error is uniform
after observation k − 1 or if entropy growth due to the deterministic dynamics
dominates, then the best approach to reducing uncertainty due to dynamical
stretching is to choose θk = u1 at observation k. Therefore, in the numerical results
that follow, we use the following criteria in the singular vector case,

θk
def=ei where i = arg max |u1,i |, i ∈ {1, 2, 3},

where u1,i is the i-th entry of the u1 left-singular vector. Essentially, this choice of θk
is equivalent to an orthogonal projection first onto the subspace spanned by u1 and
then a truncation by performing a second orthogonal projection onto the subspace
of the canonical frame {ei} that corresponds to the largest entry of u1.

3.4.4.3 Influence of Singular Values in Discrete-Time,
Linear Gaussian Case

Before presenting the numerical results, we inspect the influence of the dynamical
stretching, given by the singular values and vectors in the linear Gaussian case.
Recall Eq. (3.13b), which provides the utility function to be maximized in terms of
difference in entropy and conditional entropy. In the linear Gaussian case, it can be
determined to be

I (Xk, Y0:k; θk) = log |R + hθkPk|0:k−1(h
θ
k)
∗| − log |R| (3.26)

We have used the strictly monotonic property of log to remove unnecessary scalings.
Assuming R to be invertible, we have

θ∗k = arg max
θk∈Θ

|I + hθkPk|0:k−1(h
θ
k)
∗R−1| (3.27)

The prior error covariance, Pk|0:k−1, is updated according to the following relation,

Pk|0:k−1 = �k,k−1Pk−1|0:k−1�
∗
k,k−1 +Q, (3.28)

where �k,k−1 = U�V ∗ is our tangent linear propagator from k − 1 to k and Q is
the signal error covariance. Since the determinant of a matrix is equivalent to the
product of it’s eigenvalues, we can substitute (3.28) into (3.27), yielding
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θ∗k = arg max
θk∈Θ

∏
(1+ λi)

where λi ∈ ρ(hθk
[
�k,k−1Pk−1|0:k−1�

∗
k,k−1 +Q

]
(hθk)

∗R−1),

where ρ(·) is the spectrum. Let R = cI , where c ∈ R \ {0} and I the identity
matrix, which is a reasonable assumption for most problems. We let ||Q|| <<
||�k,k−1Pk−1|0:k−1�

∗
k,k−1||; that is the stretching due to noise is small compared

to the influence of the deterministic dynamics. Next let the k − 1 posterior error
covariance be expressed in an eigendecomposition (also an SVD form) as

Pk−1|0:k−1 =
∑

i

λ̃i · Ẽi where Ẽi
def= ẽi ⊗ ẽi

We similarly write the SVD decomposition of �k,k−1 in a more compact notation
as

�k,k−1 =
∑

i

σi · Si where Si
def=ui ⊗ vi

Using these statements and the SVD decomposition of �k,k−1 yields,

θ∗k ≈ arg max
θk∈Θ

∏
(1+ λi) where λi ∈ ρ

⎛

⎝hθk

⎡

⎣
∑

i,j,k

σi λ̃j σk · SiẼj S∗k
⎤

⎦ (hθk)
∗
⎞

⎠

To see how singular values and KL divergence interact, we constrain the admissible

set of controls to be the left singular vectors; that is Θ
def={u1, u2, u3}. Then we have

θ∗k=ui where i= arg max
i∈{1,2,3}

λi and λi ∈ ρ
⎛

⎝σ 2
i

∑

j

λ̃j {< vi, ẽj >}2 · ui ⊗ ui
⎞

⎠

What is now clear, is that our KL divergence criteria should yield similar results to
orthogonal projection onto the subspace spanned by the leading left singular vector
when either: the posterior error at k − 1 is nearly uniform and/or the largest error
components at k − 1 are nearly aligned with v1 (the right singular vector associated
with σ1) and/or the dynamical stretching into the u1 subspace dominates any other
subspace complementary to u1 as well as signal and sensor noise.

3.4.4.4 Numerical Results

We now present the numerical results of our study. As mentioned, these results are
produced using the EnKF. The simulation parameters are: integration step size of
δt = 0.01 with a split RK4 method, an observation step size of �t = 40δt = 0.4,
a total simulation time of tf = 80.0, and the number of particles was Np = 4.
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Fig. 3.3 A comparison of sensor functions for a noisy Lorenz 1963 model with Uniform (blue)
and Non-Uniform (green) sensor noise. 500 trials of each case are simulated. The average root
mean square error (RMSE) distribution of runs is plotted for each and dashed lines represent the
quartiles of the distribution (the mean being the darker center dashed line)

The observation time update �t = 0.4 is roughly 1/2 of the error doubling time,
which is ∼ 0.77 time units. Because the Lorenz model has a positive Lyapunov
exponent of 0.906, one can expect a significant amount of the entropy growth
between observations due to dynamical stretching.

In Fig. 3.3, we will compare the statistical results from 500 trials of each of the
following four sensor cases and sensor covariances (to be given in (3.29)), for a total
of 4000 simulations.

Identity: hk
def=I3×3; the sensor function is the identity matrix and hence all states

are always observed. This provides us with a generous lower bound on
performance for normalized sensor functions.

KL: hθk ; is chosen according to the KL divergence criteria given in
Sect. 3.4.4.1.

SV: hθk ; is chosen according to the singular vector criteria presented in
Sect. 3.4.4.2.

Random: hk; is a zero matrix with one diagonal entry chosen randomly to be 1
at each observation k. This criteria provides some idea of how sensitive
the particular filtering problem is to well chosen sensor functions.
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Lastly, we will compare the effectiveness of these four sensor selections with
two different sensor covariances. Namely a Uniform and a Non-Uniform sensor
covariance given in (3.29). The numerical results are shown in Fig. 3.3, which shows
the distribution of RMSE from 500 experiments for each sensor selection criteria.
In each column, the vertical axis is RMSE, while the Uniform (blue) (left) and
Non-Uniform (green) (right) curves are the normalized distributions of RMSE for
uniform and non-uniform sensor noises, respectively. The dashed lines indicate the
respective quartiles.

R =
⎡

⎣
2 0 0
0 2 0
0 0 2

⎤

⎦

︸ ︷︷ ︸
Uniform

R =
⎡

⎣
0.5 0 0
0 4 0
0 0 0.5

⎤

⎦

︸ ︷︷ ︸
Non− Uniform

(3.29)

The Identity case shown in Fig. 3.3 provides us with a best case scenario for
the simulation trials. It is a full rank sensor matrix (i.e. rankHId = 3), whereas the
other three cases are rank 1. The average root mean square error (RMSE) for the
four sensor selection criteria under Uniform noise is:

Identity = 3.77, KL = 7.78, SV = 8.48, Random = 9.66

In the case of our Non-Uniform noise, the average RMSE is:

Identity = 3.21, KL = 7.62, SV = 9.02, Random = 9.91

In the Uniform noise case, both the sensor selections using KL divergence and
singular vectors outperform a random selection. On average, the KL divergence
does slightly better than the singular vectors criteria, which is a positive indication
of how our information centric formulation is able to account for uncertainty in error
at a time step k− 1 into the k observation selection. In the Non-Uniform noise case,
Fig. 3.3 and the RMSE values given above show that the performance of the KL
divergence criteria is not effected, but the singular vector criteria, which does not
account for corruption in the observation process, is strongly hindered.

3.5 Conclusions

In summary, engineered and natural systems of interest are of high dimension and
contains several scales. The current data are great in number, complex, often of
extremely high dimension, and frequently noisy. The bottleneck has been the lack
of availability of good statistical techniques that quickly and effectively extract
useful information and assimilate them in real time. This chapter presented new
information theory-based methods for the distributed collection and assimilation of
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data in a multiscale environment, in particular, results that deal with the measures of
the quality and variability of the data involved as well as collecting and assimilating
them. The second section described results on dimensional reduction driven by
either additive or multiplicative white noise. The third section dealt with the vital
issue of the curse of high dimension in data assimilation. Understanding how the
scaling interacts with filtering opened the bottleneck to overcome some of the
computational issues of large scale systems.

In the context of filtering applications, the reduced-order nonlinear filtering
equations [16, 24, 37] provided estimation of coarse-grained dynamics (slow
dynamics) without requiring explicit knowledge of the fast dynamics, hence
reducing computational complexities and information storage requirements. The
final section presented a sensor selection strategy intended to improve predictability
through mutual information between the signal and observation. In addition, a rate
of change of mutual information between the homogenized version of the signal
and real observations history is obtained. A strategy based on finite-time Lyapunov
exponents of the dynamical system was shown to provide clearer insight into error
growth due to signal dynamics and is computationally more efficient compared to
the mutual information method. Known connections between Lyapunov exponents
and dynamical entropy can be used to further the understanding of error growth
[22] and [38]. A numerical experiment using a noisy Lorenz ’63 model shows
the overall superiority of the mutual information approach while the finite-time
Lyapunov exponents approach performs well when sensor noise is uniform. The
information theoretic studies of [43] and [18] found different sensitivities of varying
orders of Renyi divergence (from 0 to 1, KL divergence corresponds to order 1) to
differences between densities. The effects of different orders of Renyi divergence
in the cost function of Sect. 3.4 on the sensor selection problem here remains to be
explored.
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Chapter 4
Dynamic Data-Driven Uncertainty
Quantification via Polynomial Chaos
for Space Situational Awareness

Richard Linares, Vivek Vittaldev, and Humberto C. Godinez

Abstract Knowledge of all space objects in orbit and the space environment is
collected and maintained by the Space Surveillance Network (SSN). This task is
becoming more difficult as the number of objects currently tracked increases due
to breakup events and improvements in sensor detection capabilities. The SSN
is tasked with maintaining information on over 22,000 objects, 1,100 of which
are active. In particular, low-Earth orbiting satellites are heavily influenced by
atmospheric drag which is difficult to model due to fluctuations in the upper
atmospheric density. These fluctuations are caused by variations in the Solar
energy flux which heats Earth’s atmosphere causing it to expand. This research
uses probabilistic models to characterize and account for the fluctuations in the
Earth’s atmosphere. By correctly estimating the fluctuations, our work contributes
to improving the ability to determine the likelihood of satellite collisions in space.

The main focus of this chapter is the application of a new Polynomial Chaos
based Uncertainty Quantification (UQ) approach for Space Situational Awareness
(SSA). The challenge of applying UQ to SSA is the long-term integration problem,
where simulations are used to forecast physics over long temporal and/or spatial
extrapolation intervals. This chapter applies a Polynomial Chaos (PC) expansion
and Gaussian Mixture Models (GMMs) in a hybrid fashion for UQ applied to
satellite tracking. This chapter uses the GMM-PC approach for orbital UQ and the
PC approach for atmospheric density UQ. Two different application examples are
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shown. The first example demonstrates the GMM-PC approach for orbital UQ for
a low Earth orbit satellite under the influence of atmospheric perturbations. The
second example demonstrates the PC approach for atmospheric density UQ, where
a physics-based model is used to capture the uncertainty of the atmospheric density
under uncertain Solar conditions. These two examples are not combined under this
work but the tools developed provide a framework for an unified understanding of
UQ for low Earth orbiting satellites.

4.1 Introduction

Recent events in space, including the collision of Russia’s Cosmos 2251 satellite
with Iridium 33 and China’s Feng Yun 1C anti-satellite demonstration, have stressed
the capabilities of the space community and its ability to provide accurate and
actionable impact probability estimates because of the additional debris objects
that were generated. For example, the Space Surveillance Network (SSN) has the
unique challenge of tracking more than 22,000 Space Objects (SOs) and providing
critical collision avoidance warnings to military, NASA, and commercial operators.
However, due to the large number of SOs and the limited number of sensors
available to track them, it is impossible to maintain persistent surveillance resulting
in large observation gaps [1]. This inherent latency in the catalog information results
in sparse observations and large propagation intervals between measurements
and close approaches. The large propagation intervals coupled with nonlinear
SO dynamics results in highly non-Gaussian probability distribution functions
(pdfs). In particular, satellites in Low-Earth Orbit (LEO) are heavily influenced
by atmospheric drag which is difficult to model [2]. Uncertainties in atmospheric
drag must be folded into estimation models to accurately represent the position
uncertainties for calculating impact probabilities or conjunction assessments (CA).
This process then separates naturally into a prediction and correction cycle, where
estimates are used to predict the orbital position at a future time and observations
are used to improve or correct these predictions while decreasing uncertainty.
The difficulty in this process lies in representing the non-Gaussian uncertainty
and accurately propagating it [3]. Accurate assessment of confidence in position
knowledge will be a significant improvement, particularly for the space situational
awareness (SSA) community. The contribution of this chapter is the application of
PC [4] and GMM-PC [5] to satellite tracking with upper atmospheric UQ.

A number of upper atmospheric models exist which can be classified as either
empirical or physics-based models [6, 7]. The current Air Force standard is the
High Accuracy Satellite Drag Model (HASDM) [8], which is an empirical model
based on observations of calibration satellites. These satellite observations are used
to determine atmospheric model parameters based on their orbit determination
solutions. Although the HASDM model is accurate for determining the current
state of the upper atmospheric environment, it has no forecasting capability which
limits its effectiveness for CA calculations. A number of physics-based models
exist, two of which are the Global Ionosphere-Thermosphere Model (GITM)
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[9] and the Thermosphere-Ionosphere-Electrodynamics General Circulation Model
(TIE-GCM) [6, 7]. These are physics-based models that solve the full Navier-
Stokes equations for density, velocity, and temperature for a number of neutral
and charged chemical species components. The improved modeling and prediction
capabilities of these models come at a high computational cost. The models are very
high-dimensional, solving Navier-Stokes equations over a discretized spatial grid
involving 2000–10,000 state variables and 12–20 inputs and internal parameters.
Satellite CA calculations usually involves long propagation intervals (3–8 days)
resulting in nonlinear transformation and non-Gaussian errors.

This nonlinearity and high-dimensionality results in the so-called curse of
dimensionality [10], where the combination of increasing problem dimension and
order of nonlinearity, causes the number of required evaluations to grow in a super-
linear manner. The curse of dimensionality as related to atmospheric models is a
difficulty that this chapter addresses. Additionally, CA requires full knowledge of
the probability density function (pdf) to calculate the impact probability as opposed
to traditional state estimation and data assimilation approaches which only require
the first two moments (mean and covariance). This chapter presents a new approach
that solves for the full pdf.

A common but computationally intensive method of propagating uncertainty is
the use of Monte Carlo (MC) simulations [11, 12]. Randomly generated samples
from the initial uncertainty distribution are propagated through the function of inter-
est. MC approaches require on the order of millions of propagations1 to generate
statistically valid UQ solutions. Parallelizing the computations on multiprocessor
central (CPUs) or on Graphics Processing Units (GPUs) reduces the runtime of
the simulations significantly [13–15] at the cost of increasing the difficulty of
implementation [16]. Reducing the number of sample points required for a result
with satisfactory confidence bounds is possible through importance sampling.
Although the computational cost can be prohibitive for most applications due to the
slow convergence, the generality of MC techniques makes them an ideal benchmark
to compare other methods.

A spectrum of techniques exists that propagate the state and uncertainty of
an initially Gaussian distribution through a nonlinear function, such as orbit
propagation [17]. Computational cost is traded for accuracy of the pdf. Using
the first order Taylor series expansion of the dynamics to linearly propagate the
covariance matrix lies on one extreme; while the MC simulation lies on the other
extreme of computational cost. Two techniques that occupy a range within this
spectrum of computational cost are Gaussian Mixture Models (GMMs) [18] and
Polynomial Chaos (PC) expansion [4].

GMMs can approximate any pdf using a weighted sum of Gaussian distributions
with the approximation improving in an L1-norm sense with increasing number
of elements [18]. When the initial distribution is Gaussian, the approximate GMM
for this case has spatially distributed means and each element has smaller variance

1This number is problem dependent.
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than that of the initial Gaussian distribution (i.e., differential entropy). Using
the GMM approximation, each Gaussian component is propagated through the
nonlinear function using State Transition Tensors (STTs) [19], sigma-point based
methods [20, 21], quadrature, or cubature2 [22–24]. Each element has a smaller
uncertainty than the initial Gaussian distribution at epoch and therefore, the Gaus-
sian assumption for each element should hold for propagation times that are at least
as long, or longer than the original distribution. The weighted sum of the Gaussian
elements after propagation approximates the resulting forecast pdf while having the
ability to approximate non-Gaussian distributions. GMMs have been successfully
used in many uncertainty propagation applications such as orbit estimation [25, 26],
orbit determination [27, 28], and conjunction assessment [29, 30].

The PC [4] approach uses orthogonal polynomial (OP) expansions as a surrogate
model for quantifying uncertainty. The most suited polynomial is chosen using the
Wiener-Askey scheme and depends on the initial uncertainty distribution [31]. It is
also possible to compute optimal orthogonal polynomials for arbitrary pdfs that are
not part of the Wiener-Askey scheme using arbitrary PC (aPC) [32]. For Gaussian
distributions, Hermite polynomials are the corresponding OPs [4, 31]. For the mul-
tidimensional case, the coefficients of the multivariate polynomials are computed
such that a mapping of the random variable from the initial time to the final time
is approximated. Once the polynomial coefficients are computed, sampling from
the PC polynomial approximation generally has a lower computational cost than a
full-blown MC run. The PC approach has been used in many fields for uncertainty
quantification of computationally intensive models [33–36]. In orbital mechanics,
PC has been previously used for uncertainty propagation [37, 38] and conjunction
assessment [39, 40].

Reference [5] used PC and GMM in a hybrid fashion to quantify state uncertainty
for spacecraft. Including a GMM with the PC (GMM-PC) was shown to reduce
the overall order required to achieve a desired accuracy. Reference [5] converted
the initial distribution into a GMM, and PC was used to propagate each of the
elements. Splitting the initial distribution into a GMM reduces the size of the
covariance associated with each element and therefore, lower order polynomials
can be used. The GMM-PC effectively reduces the function evaluations required for
accurately describing a non-Gaussian distribution that results from the propagation
of a state with an initial Gaussian distribution through a nonlinear function. The
current chapter uses the GMM-PC method, developed by Ref. [5], for the satellite
orbital UQ with atmospheric drag. Additionally, the PC method is used for UQ
applied to upper atmospheric models without splitting the initial uncertainty into a
GMM.

The organization of this chapter is as follows. First, the GMMs are discussed.
Next, the PC approach is outlined and discussed. Following this the GMM-PC
approach is discussed. Additionally, results are shown for simulated examples for
both orbital and atmospheric UQ. Finally, discussions and conclusions are provided.

2Multidimensional quadratures.
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4.2 Gaussian Mixture Models

A GMM approximates any PDF in an L1-distance sense by using a weighted sum
of Gaussian probability distribution functions [18].

p (x) =
N∑

i=1

αipg
(
x;μi ,Pi

)
(4.1)

where pg
(
x;μi ,Pi

)
is a multivariate Gaussian pdf with mean μi and covariance Pi ,

N is the number of Gaussian probability distribution functions, and αi is a positive
non-zero weight, which satisfies the following constraint:

N∑

i=1

αi = 1 (4.2)

where ∀αi > 0. For uncertainty propagation, the initial Gaussian distribution is split
into a GMM and each element is propagated through the nonlinear function. Stan-
dard Gaussian propagation techniques such as State Transition Matrices (STTs) [19]
or sigma-point methods [20, 21] are commonly used to approximate the Gaussian
elements post propagation. Although each element remains Gaussian, the weighted
sum forms a non-Gaussian approximation of the true distribution. Modifications of
this procedure exist, where the weights can be updated post-propagation [41] or the
elements can be further split into more elements or merged mid-propagation [25].
However, these modifications are not considered for this work.

Instead of forming a GMM approximation of the initial multivariate Gaussian
distribution, a univariate GMM library of the standard normal distribution is
formed [25, 27, 30, 42]. The univariate library is applied along a column of the
square-root factor of the covariance matrix in order to form a GMM approximation
of a multivariate Gaussian. The univariate splitting library has to be computed only
once and is stored in the form of a lookup table. Finding the univariate library is
converted to an optimization problem where the distance between the GMM and
the standard normal distribution is minimized. The L2 distance is used instead of
L1 because a closed-form solution exists for the L2 distance between a GMM and
a Gaussian distribution. A library where all the standard deviations in the split are
the same (homoscedastic), σ = √

1/N , and odd N up to 39 elements is used in
this work [43, 44]. With increasing N , σ decreases and therefore, the differential
entropy of each element decreases as seen in Fig. 4.1.

To apply the univariate splitting library to a multivariate Gaussian distribution
pG ∼ N (μ,P), the univariate splitting library is applied along a column of the
square-root S of the covariance matrix:

P = SST (4.3)
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For an n-dimensional state, the covariance matrix of each element after the split is:

Pi = [s1 . . . σ sk . . . sn] [s1 . . . σ sk . . . sn]T (4.4)

where sk is the desired column of S that the split is along. The means of the
multivariate GMM are:

μi = μ+ μisk (4.5)

where μi are the univariate library mixture split locations [43, 44]. If Cholesky
or spectral decomposition is used to generate S, the possible splitting options are
limited to 2n directions. However, it is possible to apply the univariate splitting
direction along any desired direction by generating a square-root matrix with one
column parallel to the input direction [45]. For extremely non-linear problems,
splitting along a single direction may not account for the entire non-linearity of
the problem. Therefore, splitting the initial multivariate distribution in multiple
directions is required in order to better approximate the non-Gaussian behavior post-
propagation [44, 46]. In such cases the splitting library can be applied recursively
as a tensor product to split along multiple directions.

4.3 Polynomial Chaos

The idea of PC originates from a chapter from Norbert Wiener [4], where the
term chaos is used to refer to uncertainty. This theory has been used frequently
for UQ and is now also being used in the Aerospace field [37, 39, 47–49]. In PC,
the uncertainty in variables through a transformation is represented by a series of
orthogonal polynomials
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Table 4.1 The Wiener-Askey scheme where α and β are pdf specific parameters [50]

Distribution type Density Polynomial Weight Range of x

Normal 1√
2π
e
−x2

2 Hermite e
−x2

2 [−∞,∞]
Uniform 1

2 Legendre 1 [−1, 1]
Beta (1−x)α(1+x)β

2α+β+1B(α+1,β+1)
Jacobi (1− x)α(1+ x)β [−1, 1]

Exponential e−x Laguerre e−x [0,∞]
Gamma xαe−x

�(α+1) Generalized laguerre xαe−x [0,∞]

u(ξ, t) =
∞∑

i=0

ci(t)�i(ξ) (4.6)

where u(ξ, t) is the output of interest. In Eq. (4.6) ξ is a random variable. The
orthogonal polynomials �i are defined by the following inner product in a Hilbert
space:

∫ ∞

−∞
�m(ξ)�n(ξ)w(ξ) = 0 (4.7)

Based on the distribution of the random variable, the orthogonal polynomial type
and weighing function,w(ξ) from Eq. (4.7), are chosen from the Weiner-Askey [31]
scheme found in Table 4.1.

Since most applications assume the initial distribution to be Gaussian, Hermite
polynomials are chosen according to the Wiener-Askey scheme. This chapter
applies the normalized probabilists Hermite polynomials where the weight function
is changed to:

w(ξ) = 1√
2π
e
−ξ2

2 (4.8)

The new weight function assumes that the distribution has a mean of 0 and a
standard deviation of 1, which effectively normalizes and improves the numerical
properties. The normalized Hermite polynomials can be found by using the
following recursive relation:

(n+ 1)! ×�n+1(ξ) = ξ�n(ξ)− n�n−1(ξ) (4.9)

where

�0 = 1 �1 = ξ (4.10)
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Fig. 4.2 Normalized
probabilists Hermite
polynomials
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Table 4.2 Two-dimensional
multivariate polynomials up
to order 2

Order Multi-index Multivariate polynomial

0 α0 = [0, 0] �α0(ξ) = 1

1 α1 = [1, 0] �α1(ξ) = �1(ξ1)

1 α2 = [0, 1] �α2(ξ) = �1(ξ2)

2 α3 = [2, 0] �α3(ξ) = �2(ξ1)

2 α4 = [0, 2] �α4(ξ) = �2(ξ2)

2 α5 = [1, 1] �α5(ξ) = �1(ξ1)�2(ξ1)

In reality, the infinite series from Eq. (4.6) is truncated at some order. The orthogonal
univariate Hermite polynomials up to order 5 can be seen in Fig. 4.2. The con-
junction problem depends on the full position and velocity of the satellite and is
therefore a multivariate problem that requires orthogonal multivariate polynomials.
Multivariate polynomials can be created using the multi-index notation. Two-
dimensional multivariate polynomials up to order 2 can be seen in Table 4.2. The
multivariate polynomial can then be written as:

u(ξ , t) =
L∑

i=0

ci(t)�αi(ξ) (4.11)

where L is given by

L = (n+ l)!
n!l! (4.12)

where n is the dimension of ξ and l is the maximum order of the truncated univariate
polynomial. A given order L̄ of the multivariate polynomial equals the sum of
the elements of the multi-index vector. If the output is also a vector function of
dimension n, u(ξ , t), n× L coefficients ci(t) have to be computed.

The final challenge is to determine the coefficients ci(t). The two major methods
used to determine these coefficients are the Intrusive method and the Non-intrusive
method. The intrusive method requires knowledge of the propagation function that
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determines the evolution of the random vector of inputs. This then results in a system
of equations that need to be solved for ci(t). The intrusive method cannot be used
with black-box dynamics, and therefore is not considered in this work. The non-
intrusive method does not require any knowledge of the propagation function. Given
that we can solve the system for a specified initial condition, we use the projection
property (Galerkin Projection) for approximating Eq. (4.11):

ci(t) =
∫
u(ξ, t)�i(ξ)p(ξ)dξ (4.13)

where p(ξ) is the pdf of ξ .
The coefficients in the non-intrusive method can be solved using either Least

Squares (LS), or a quadrature method. When LS is implemented, the initial states
are randomly sampled. If the quadrature method is used, the initial states are chosen
based on the node locations of the quadrature rule. The number of initial states to be
used can be vastly reduced by using Compressive Sampling (CS) when using LS,
and by using Sparse Grids (SG) when using the quadrature method. In this work,
the quadrature method is used with a Smolyak SG (SSG) [51]. The SSG uses fewer
grid points than a full tensor product quadrature as can be seen in Fig. 4.3. In the
quadrature method, a grid is generated with Nq node points, where each node has
a location ξn and weight qn associated with them. The coefficients ci(t) are then
found using the following summation:

ci(t) =
Nq∑

n=1

qnu(ξn, t)�αi(ξn) (4.14)

It should be noted that the node points are generated from a zero mean and identity
covariance matrix multivariate distribution for numerical accuracy. The initial points
are simply scaled to the actual mean and covariance inside the transformation
function u(ξ, t).

Fig. 4.3 Difference between
a full (red) and sparse (blue)
two-dimensional quadrature
grid
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4.4 Polynomial Chaos with Gaussian Mixture Models

Reference [5] developed the GMM-PC method and this section provides a brief
introduction to the method. Both PC and GMMs can represent non-Gaussian
distributions with lower computational cost than that of a full blown MC simulation.
However, they both have their limitations. The biggest problem with PC is the curse
of dimensionality. The number of coefficients required with increasing order and
increasing dimension for multivariate polynomials can be computed from Eq. (4.12)
and seen in Fig. 4.4a. The number of nodes where computation has to be carried
out also increases rapidly with increasing order and dimension as seen in Fig. 4.4b.
When GMMs are used for multivariate applications, the univariate library is applied
along one specified direction. Thus, the spectral direction along which the splitting
is carried out can play a very important role in the quality of the resulting non-
Gaussian distribution after a nonlinear transformation [30].

A combination of GMMs with PC results in a theory that can outperform each
of the separate theories due to them complementing each other [5]. This chapter
uses the GMM-PC approach for orbital UQ, while the PC approach is applied
to atmospheric density UQ providing the interaction between this two forms of
UQ. In the GMM-PC method, each of the mixture elements is represented by a
PC expansion. The GMMs splitting reduces the size of the distribution that each
PC expansion has to account for. This is analogous to reducing the range for
Taylor series expansion (TSE), or the Finite Element Method (FEM). Therefore, we
use more simple elements (lower order PC expansions) over smaller subdomains
(a GMM) to approximate the final non-Gaussian distribution over a larger domain.
The benefit can be seen in a very simple test case where an initial Gaussian distri-
bution of a state in polar coordinates is converted to Cartesian coordinates. Since
this transformation is non-linear, the resulting distribution becomes non-Gaussian.
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Fig. 4.4 Curse of Dimensionality with Polynomial Chaos. (a) Terms required for multivariate
polynomials. (b) Number nodes for a Smolyak grid
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Fig. 4.5 True distribution (blue) and approximated distribution (red) after conversion from
Polar coordinates to Cartesian coordinates. (a) Gaussian approximation using the Unscented
Transform. (b) Polynomial Chaos approximation. (c) GMM approximation with 3 elements. (d)
PC GMM approximation with 3 elements. (e) GMM approximation with 5 elements. (f) PC GMM
approximation with 5 elements

The true (MC) and approximated distributions can be seen in Fig. 4.5. The PC
approximation is much better than the strictly Gaussian approximation as can be
seen in Fig. 4.5a, b. Combining PC and GMM, however, results in a much lower
discrepancy between the MC and approximated distributions.



86 R. Linares et al.

4.5 Global Ionosphere-Thermosphere Model

The novel GMM-PC methods implemented for the problem of SSA (orbit estimation
and propagation). The major source of uncertainty in orbital propagation is the
ionosphere-thermosphere environment. Therefore, this work accurately characterize
the uncertainty in the ionosphere-thermosphere through the PC approach. For
this purpose, this work uses a physics-based model, the Global Ionosphere-
Thermosphere Model (GITM).

The Global Ionosphere-Thermosphere Model (GITM) [9] is a physics based
model that solves the full Navier-Stokes equations for density, velocity, and
temperature for a number of neutral and charged components. The model explicitly
solves for the neutral densities of O, O2, N(2D), N(2T ), N(4S), N2, NO, H ,
and He; and the ion species O+(4S), O+(2D), O+(2P), O+2 , N+, N+2 , NO+,
H+, and He+. It also contains chemistry between species of ions and neutrals,
ions and electrons, and neutral and neutrals. In addition, GITM self-consistently
solves for the neutral, ion, and electron temperature; the bulk horizontal neutral
winds; the vertical velocity of the individual species; and the ion and electron
velocities. To account for solar activity GITM can use F10.7 as a proxy EUV
spectrum measurements.

Some of the more important features of GITM are: adjustable resolution; non-
uniform grid in the altitude and latitude coordinates; the dynamics equations are
solved without the assumption of hydrostatic equilibrium; the advection is solved
for explicitly, so the time-step in GITM is approximately 2–4 s; the chemistry is
solved for explicitly, so there are no approximations of local chemical equilibrium;
the ability to choose different models of electric fields and particle precipitation
patterns; the ability to start from NRLMSISE-00 empirical model [6, 7] or the
international reference ionosphere (IRI) model [52] solutions; and the ability to use
a realistic (or ideal) magnetic field determined at the time of the model run. The
main parameter of interest is F10.7, which is a measure of the solar radio flux at
10.7 cm wavelength and is used as a proxy in GITM for solar activity. Figure 4.6
shows the F10.7 solar radio flux index from 1980 up to approximately 2011, where
the 11-year solar cycle is clearly visible in the high and low activity peaks.

4.6 Results

Two simulation studies are conducted, where the first case investigates the orbital
position UQ problem, while the second case investigates the atmospheric density
UQ problem. The first case uses the GMM-PC approach for the orbital position
UQ problem and the second case uses the PC approach (without GMM splitting)
to study the atmospheric density UQ problem. The results for these two cases are
discussed in this section.
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Fig. 4.6 F10.7

4.6.1 Orbital Uncertainty Quantification

In this section, a test simulation is carried out to investigate the validity of the
GMM-PC method develop by Ref. [5] for an orbital application. The non-linearity
of the orbital equations combined with the presence of perturbation such as the
atmosphere, make the orbital pdf non-Gaussian with increasing flight time. Thus,
this test case propagates a satellite in an almost circular LEO orbit at an altitude of
approximately 450 km, under the influence of atmospheric drag simulated using the
Jacchia-Bowman 2008 (JB2008) Empirical Thermospheric Density Model [53].

A Gaussian distribution was generated about an initial condition of the orbit.
A MC and a GMM-PC simulation was then carried out for 1 day (Fig. 4.7a)
and for 5 days (Fig. 4.7b). The simulation was only carried out as a planar
2-dimensional trajectory for simplicity, but can easily be extended to a full 3-
dimensional simulation in the future. As can be seen in the results found in Fig. 4.7,
the final distribution is highly non-Gaussian. However, the GMM-PC simulation
with orders of magnitude fewer runs is able to represent the final distribution well.
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Fig. 4.7 MC reults (blue) and PC GMM results (red) for the test orbit. (a) Distribution after a time
of flight of 1 day. (b) Distribution after a time of flight of 5 days

4.6.2 Initial Results for Atmospheric Density Forecasting

Low-Earth orbiting (LEO) satellites are heavily influenced by atmospheric drag,
which is very difficult to model accurately. One of the main sources of uncer-
tainty is input parameter uncertainty. These input parameters include F10.7, AP,
and solar wind parameters. These parameters are measured constantly and these
measurements are used to predict what these parameters will be in the future.
The predicted values are then used in the physics-based models to predict future
atmospheric conditions. Therefore, for the forward prediction of orbital uncertainty,
the uncertainty of the atmospheric density due to these parameters must be
characterized.

These simulation examples focus on using the PC technique for UQ of physics-
based atmospheric models. Unlike the last case this case just studies the use of PC
for UQ of the atmospheric density. The PC approach is used to quantify the forecast
uncertainty due to uncertainty in F10.7, Ap-index (a measure of the general level
of geomagnetic activity over the globe for a given day), and solar wind parameters.
The PC approach is used to preform UQ on future atmospheric conditions. As part of
this CA process, accurate and consistent UQ is required for the atmospheric models
used.

In this section, initial results for the PC UQ applied to the GITM model is
discussed. The goal here is to use a physics based atmospheric density model for
obtaining accurate density forecast to be used in conjunction assessments. The
GITM model has a number of input parameters that can be derived from observa-
tions but the model also needs forecasts of its inputs and these forecasted values may
be highly uncertain. Therefore, we look at the uncertainty in the forecasted density
based on the uncertainty of these inputs. The main input parameter that drives the
main dynamics in the GITM model is F10.7 (see Fig. 4.6). Two simulation cases
are considered here, the first case uses quiet solar condition model input parameters
and the second case uses active solar condition model input parameters. The first
case only considers F10.7 as an input parameter. While the second case considers
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Fig. 4.8 Uncertainty quantification for atmospheric density for Oct 21–26, 2002. (a) Case I: Mean
density. (b) Case I: Mean density uncertainty. (c) Case II: Mean density. (d) Case II: Mean density
uncertainty

uncertainty in F10.7, Interplanetary Magnetic Field (IMF) in GSM coordinates (nT)
(Bx , By , Bz), Solar Wind (km/s) Vx , and Hemispheric power HPI . The result for
this simulation are shown in Fig. 4.8. The time period for the simulations shown is
Oct 21–26, 2002.

For these simulations, parameters are modeled as constant during forecast
but random. In the first case, F10.7 is assumed to have a normal distribution
N (165.98, 8.342). For the first case, one dimensional quadrature points are used
as simulation ensembles and the PC model is fit using one dimensional Hermite
polynomials. The parameters for the second case are modeled as constant during
forecast but random. The random variables have the following distribution N (μ, P ),
with μ = [165.98,−1.45, 0.06,−0.5,−551.79, 38.07]T and the covariance given
by

P = diag
(
[8.332, 4.842, 4.102, 2.152, 105.12, 38.872]

)
(4.15)
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For the second case, the Smolyak Sparse Cubature are used as simulation ensembles
and fit to multi-dimensional Hermite polynomials. From the figure it is clear that
the uncertainty has a complex behavior across geographic locations. Moreover, the
difference in the test cases highlight the fact the Solar conditions can drastically
effect the model’s accuracy. From the figures it is seen that during storm conditions
(Fig. 4.8d) the uncertainty can be as large as 30% but only 5% during quiet times
(Fig. 4.8b).

4.7 Conclusion

The combination of Polynomial Chaos (PC) expansion with Gaussian Mixture
Models (GMMs) results in a framework than can efficiently capture the evolution of
an initially Gaussian distribution into a highly non-Gaussian distribution through a
non-linear transformation. This worked shows a Dynamic Data-Driven Applications
Systems (DDDAS) approach that can update UQ estimates based on observed data
of changing Solar conditions. In particular, F10.7, Ap-index (geomagnetic activity),
and Solar wind parameters from observational data can be used to develop a pdf
of expected atmospheric drag. Using an initial GMM reduces the domain covered
by the PC and thus, lower order polynomials can be used to get accurate results.
Increasing the order of the polynomials increases the computational load in an
exponential manner, while increasing the number of elements may result in a near
linear increase in the computational load. Increasing the polynomial order only
marginally increases the accuracy after a certain order.

This work applies the GMM-PC approach to the orbital Uncertainty Quantifica-
tion (UQ) problem. It was shown that the GMM-PC approach outperformed the
PC approach for the cases considered of Solar conditions. Additionally, the PC
approach was applied to physics-based atmospheric models. It was shown that
the uncertainty in atmospheric density models have a complex behavior across
geographic locations. The test cases shown in this work highlight the fact the Solar
conditions can drastically effect the model accuracy. The test cases showed that
during Solar storm conditions the uncertainty can be as large as 30% but only
5% during quiet times. This work provides initial results of the GMM-PC applied
to orbital propagation of uncertainty and the PC approach applied to atmospheric
density.
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Chapter 5
Towards Learning Spatio-Temporal Data
Stream Relationships for Failure
Detection in Avionics

Sida Chen, Shigeru Imai, Wennan Zhu, and Carlos A. Varela

Abstract Spatio-temporal data streams are often related in complex ways, for
example, while the airspeed that an aircraft attains in cruise phase depends on the
weight it carries, it also depends on many other factors. Some of these factors are
controllable such as engine inputs or the airframe’s angle of attack, while others
contextual, such as air density, or turbulence. It is therefore critical to develop
failure models that can help recognize errors in the data, such as an incorrect fuel
quantity, a malfunctioning pitot-static system, or other abnormal flight conditions.
In this paper, we extend our PILOTS programming language [1] to support machine
learning techniques that will help data scientists: (1) create parameterized failure
models from data and (2) continuously train a statistical model as new evidence
(data) arrives. The linear regression approach learns parameters of a linear model
to minimize least squares error for given training data. The Bayesian approach
classifies operating modes according to supervised offline training and can discover
new statistically significant modes online. As shown in Tuninter 1153 simulation
result, dynamic Bayes classifier finds discrete error states on the fly while the
error signatures approach requires every error state predefined. Using synthetic
data, we compare the accuracy, response time, and adaptability of these machine
learning techniques. Future dynamic data driven applications systems (DDDAS)
using machine learning can identify complex dynamic data-driven failure models,
which will in turn enable more accurate flight planning and control for emergency
conditions.

5.1 Introduction

Detecting and recognizing patterns from streaming data generated by multiple
aircraft sensors has become an important research area for flight safety. In the Air
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France flight 447 accident in 2009, iced pitot tubes caused an error in air speed data,
and the pilots failed to react correctly, leading to crash [2]. While there have been
advances in information fusion [3] and virtual modeling [4] for avionics control and
user warnings, there is still a need for further research in methods that allow for
fault detection and recovery techniques to be easily realized and implemented with
minimal risk of software errors. Using redundant information provided by different
sensors, this tragedy might have been avoided by using a Dynamic Data-Driven
Applications Systems (DDDAS) [5] approach based information from the avionics
models and sensor measurements. DDDAS can expand the flight safety envelope of
automation and support pilots with real-time decision making.

In some situations, detecting and recovering from sensor data errors is non-
trivial, even for human experts and flight assistant systems. In the Tuninter 1153
flight accident in 2005, the fuel quantity indicator of a different aircraft model
was installed, causing the instrument to display an incorrect amount of fuel, which
led to fuel exhaustion of the aircraft [6]. This accident might have been avoided
if the weight error could be detected by checking the relationship between lift
and weight during the flight cruise phase. Lift depends on airspeed, air density,
wing surface area, and coefficient of lift. The coefficient of lift itself depends on
the angle of attack and this relationship will change with different aircraft types.
Understanding such complex relationships from multiple sensor data streams is
critical to accurately detecting sensor faults. In this chapter, we propose using
machine learning techniques to estimate parameterized models of aircraft sensor
data relationships, and statistically determine aircraft operating modes.

Using offline training parameters and known relationships and models among
redundant streaming data from prior research, we have been able to detect and
correct for sensor data errors using actual flight accident data [7, 8]. However,
aircraft models might change due to significant aircraft emergencies, e.g. damage
to a wing or loss of engines. To get more accurate results, an online system should
be able to incrementally update model parameters, and detect new modes that may
not be in the offline training data set. The naïve Bayes classifier is a suitable method
for offline training and incremental learning, but needs to be extended to detect
previously unknown modes.

The Programming Language for spatiO-Temporal data Streaming applications
(PILOTS) was developed for run-time system fault detection and correction in
data streams, which is especially important for flight safety. PILOTS has evolved
gradually to date. The PILOTS programming language was first designed in
2012 and proposed the concept of error signatures [9]. Next, PILOTS included a
compiler and a runtime system [1] and then added error detection and correction
support to the compiler and the runtime [10]. Finally, PILOTS was applied to
data streams obtained from actual accidents, Air France 447 [2] and Tuninter
1153 [6], and confirmed the effectiveness of its error detection and correction
capabilities [7, 8, 11].

In this chapter, we extend PILOTS to support machine learning techniques
including linear regression for linear models, and Bayesian classification and
learning for dynamic models. Synthetic data streams are used to verify and compare
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these approaches. Using the X-Plane flight simulator [12], flight sensor data is
generated to train the relationship between angle of attack and coefficient of lift
during cruise phase. With the training results and the relationship between lift and
weight during cruise phase, PILOTS is able to detect and correct for weight data
errors using error functions and error signatures. The model is constructed using
a dynamic Bayes classifier for offline training and incremental online learning of
different modes, which also detects new modes as the streaming data switches to an
unknown pattern.

The rest of the chapter is organized as follows. Section 5.2 describes error
signature-based error detection and correction methods within the PILOTS pro-
gramming language and the architecture of its runtime system. Section 5.3 discusses
the design and implementation of the machine learning component in PILOTS.
Section 5.4 describes an instance of the machine learning component to estimate
parameters for a linear model using regression. Section 5.5 introduces the dynamic
Bayesian classification and online learning. Section 5.6 presents the methods and
results of the machine learning techniques using a case study of airplane weight
error detection and correction. Section 5.7 identifies related work. Finally we briefly
describe future research directions and conclude the paper in Sect. 5.8.

5.2 Background

PILOTS1 is a highly-declarative programming language that has been applied to
both the Air France 447 [2] and the Tuninter 1153 [6] accidents data, showing
that PILOTS was able to successfully detect the data errors in both cases [11], and
provide a potential method to warn of the error in the case of Air France 447 [8].

5.2.1 Error Detection and Correction Methods

Error functions are used to detect possible faults among redundant input stream
data. An error function should have the zero value if there is no error in the input
data, such as when the whole system is working in the normal mode.

For example, in the cruise phases of a flight, the lift equals the weight of the
airplane. The lift can also be calculated using other input data, including airframe’s
angle of attack, air density, temperature, pressure and air speed. In this case, an error
function could simply be defined as:

e(lif t, weight) = lif t − weight (5.1)

1All sample programs in this paper use v.0.3.2. PILOTS v.0.3.2 is available at http://wcl.cs.rpi.edu/
pilots.

http://wcl.cs.rpi.edu/pilots
http://wcl.cs.rpi.edu/pilots
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The lift in Eq. 5.1 is calculated using sensor input data. In the normal cruise phase
mode, the value of Eq. 5.1 should be zero. If there is an error in the weight indicator,
and the input weight data is lower than the real weight, Eq. 5.1 should be greater
than zero. Similarly, if the input weight data is higher than the real weight, Eq. 5.1
should be smaller than zero. Thus, the validity of the input data could be determined
from the value of the error function.

The values of input data are assumed to be sampled periodically from corre-
sponding spatio-temporal data streams. Thus, an error function e changes its value
as time proceeds and can be represented as e(t).

Error signatures An error signature is a constrained mathematical function pat-
tern that is used to capture the characteristics of an error function e(t). Using a vector
of constants K̄ = 〈k1, . . . , km〉, a function f (t, K̄), and a set of constraint predicates
P̄ = {p1(K̄), . . . , pl(K̄)}, where the error signature S(K̄, f (t, K̄), P̄ (K̄)) is
defined as follows:

S(f (t, K̄), P̄ (K̄)) � { f | p1(K̄) ∧ · · · ∧ pl(K̄)}. (5.2)

Mode likelihood vectors Given a vector of error signatures 〈S0, . . . , Sn〉, we
calculate δi(Si, t), the distance between the measured error function e(t) and each
error signature Si by:

δi(Si, t) = min
g(t)∈Si

∫ t

t−ω
|e(t)− g(t)|dt . (5.3)

where ω is the window size. Note that our convention is to capture “normal”
conditions as signature S0. The smaller the distance δi , the closer the raw data
is to the theoretical signature Si . Mode likelihood vector is defined as L(t) =
〈l0(t), l1(t), . . . , ln(t)〉 where each li (t) is designed as:

li (t) =
{

1, if δi(t) = 0
min{δ0(t),...,δn(t)}

δi (t)
, otherwise.

(5.4)

Mode estimation Using the mode likelihood vector, the final mode output is
estimated as follows. Observe that for each li ∈ L, 0 < li ≤ 1 where li
represents the ratio of the likelihood of signature Si being matched with respect
to the likelihood of the best signature.

Because of the formulation of L(t), the largest element lj will always be equal
to 1. Given a threshold τ ∈ (0, 1), the system checks for one likely candidate lj
that is sufficiently more likely than its successor lk by ensuring that lk ≤ τ . Thus,
element j is the most likely mode by choosing the error signature Sj . If j = 0 then
the system is in normal mode. If lk > τ , then regardless of the value of k, unknown
error mode (−1) is assumed.
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Error correction Whether or not a known error mode i is recoverable is appli-
cation and problem dependent. If there is a mathematical relationship between an
erroneous value and other independently measured values, the erroneous value can
be replaced by a new value estimated from the other independently measured values.

5.2.2 Spatio-Temporal Data Stream Processing System

Figure 5.1 shows the architecture of the PILOTS runtime system, which implements
the error detection and correction methods as described in Sect. 5.2.1. It consists of
three parts: the Data Selection, the Error Analyzer, and the Application Model mod-
ules. The Application Model obtains homogeneous data streams (d ′1, d ′2, . . . , d ′N)
from the Data Selection module, and then it generates outputs (o1, o2, . . . , oM )
and data errors (e1, e2, . . . , eL). The Data Selection module takes heterogeneous
incoming data streams (d1, d2, . . . , dN ) as inputs. Since this runtime is assumed to
be working on moving objects, the Data Selection module is aware of the current
location and time. Thus, it returns appropriate values to the Application Model by
selecting or interpolating data in time and location, depending on the data selection
method specified in the PILOTS program. The Error Analyzer collects the latest
ω error values from the Application Model and keeps analyzing errors based on
the error signatures. If it detects a recoverable error, then it replaces an erroneous
input with the estimated one by applying a corresponding estimation equation. The
Application Model computes the outputs based on the estimated inputs produced by
the Error Analyzer.

5.3 Design of Machine Learning Component

The PILOTS system can detect and correct for errors in data streams using models
that define the relations between data streams, for example the relationship between
wind speed, air speed, and ground speed. For non-trivial relations or relations with
unknown parameters, we introduce prediction functionality using machine learning
for PILOTS.

5.3.1 Prediction in PILOTS Programming Language

To support prediction in the PILOTS declarative language, a new data selec-
tion method predict is defined in addition to closest, euclidean, and
interpolate. Method predict (model, d ′i1 ,d ′i2 ,· · · ,d ′in ) takes the identifier
of the model as used for prediction as the first argument, model, and the data
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Fig. 5.1 Architecture of the PILOTS runtime system

program PredictionTest;
inputs

a,b (t) using closest (t);
c (t) using predict(linear_regression, a);

outputs
difference: b - c at every 1 sec;

end

Fig. 5.2 A simple PILOTS program example outputting error

streams, d ′i1 , d
′
i2
, · · · , d ′in , used for input as the following arguments. predict

method is implemented as an interface, accepting different machine learning models
including online models, offline models, regressors, and classifiers. Figure 5.2
shows a simple example PILOTS program PredictionTest, where a(t) and
b(t) are data streams retrieved by closest method meaning that the values of
a(t) and b(t) with closest timestamp t to current time are chosen. The predicted
data stream c(t) uses the prediction method with linear_regression as
a predictive model with a(t), retrieved by closest, as input stream to the
linear_regression. Assuming data streams a(t) and b(t) have a linear rela-
tionship, which is captured by the linear_regression, c(t) is the prediction
result of the linear_regression from a(t). The outputs section compares
c(t) with b(t) to produce pairwise difference between actual data (stream b) and
output of the linear_regression (stream c).
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Fig. 5.3 The updated PILOTS runtime architecture with machine learning components

5.3.2 Prediction in PILOTS Runtime

Figure 5.3 shows the updated PILOTS runtime system with the addition of machine
learning of models from data. To support the new prediction feature in PILOTS
language syntax, Data Selection is altered to support communication to outside
components through a socket. When Application Model requests p from Data
Selection module, it first computes the input vector x = [d ′i1d ′i2 · · · d ′in ]T using
data selection method defined for each di , and then sends model along with input
vector x to the Learning Engine where the prediction is made by requested model
using input vector x. The online Learning Engine updates the dynamic online
learning model for every prediction made and gives prediction result p back to
the Data Selection component, which sends the prediction result to the Application
Model as requested. The offline Learning Engine trains learning models using
three major parts: (1) training definition including learning hypothesis, learning
algorithm configuration, preprocessing methods and data file configuration; (2)
learning algorithms such as least squares, Bayesian classifier or others; (3) training
data, which refers to data stored in files. The other parts of the PILOTS runtime
system remain the same (see Fig. 5.1) to maintain backward compatibility.
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5.4 Data-Driven Learning of Linear Models

Linear regression is a well-studied and powerful tool for estimating inter-variable
relations in linear models. The equation for a linear regression model is

y = Xβ + ε

where

y =

⎛

⎜⎜⎜⎝

y1

y2
...

yn

⎞

⎟⎟⎟⎠ , X =

⎛

⎜⎜⎜⎝

x11 · · · x1m

x21 · · · x2m
...
. . .

...

xn1 · · · xnm

⎞

⎟⎟⎟⎠ , β =

⎛

⎜⎜⎜⎝

β1

β2
...

βm

⎞

⎟⎟⎟⎠ , ε =

⎛

⎜⎜⎜⎝

ε1

ε2
...

εn

⎞

⎟⎟⎟⎠

where yi is a dependent variable; xij is an independent variable; βi is the regression
coefficient; and εi is an error term.

5.4.1 Learning Algorithm

There are multiple methods to solve linear models. One of the learning algorithms
implemented in the PILOTS system is ordinary least squares, of which the target
is minimizing the square of the Euclidean norm ||y − Xβ||2 by finding the best
coefficient vector β̂

β̂ = arg min
β

||y −Xβ||2

Assuming the columns in X are linearly independent, β̂ is retrieved from the closed
form

β̂ = (XT X)−1XT y

5.4.2 Linear Model Accuracy

– Coefficient of determination: This metric is used to evaluate goodness of

regression model fitting on training set R2 = 1 −
∑
i (yi−ŷi )2∑
i (yi−ȳ)2 where yi is

measured/dependent variable, ŷi is estimated variable, and ȳ is the average of
all yi .
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– Root Mean Squared Error: This metric is used to evaluate the amount of error

produced by prediction on average RMSE =
√

1
n

∑n
i=1(yi − f̂ (xi))2 where f̂

is an estimator, xi is an independent variable vector [xi1 xi2 · · · xim]T .

5.5 Statistical Learning of Dynamic Models

Naïve Bayes classifiers [13, 14] are commonly used in supervised training and
classification. For continuous data, if the values of samples in each class are
assumed to be normally distributed, the classifiers are called Gaussian naïve Bayes
classifiers [15]. In the training phase, tagged samples of different classes are
processed to train the parameters of the classifier. The parameters include the mean
value, standard variance, and prior probability of each class. In the testing phase,
the trained Naive Bayes classifier decides the class of untagged input samples.

One limitation of the traditional naïve Bayes classifier is that the input samples
in the testing phase will only be classified into classes that appeared in the training
phase. If a sample of a previously unknown class appears, it will be classified into
one of the known classes, even if the probability that it belongs to that class is very
low. However, with dynamic stream data, new modes not in the training set could
occur in some complex situations. For example, if a Bayes classifier is trained to
recognize the “normal weight” and “underweight” modes of the weight indicator on
an airplane during flights, and a previously unknown mode “overweight” appears
in testing phase, the classifier will not be able to detect this new mode, but will
classify the samples to “normal weight” or “underweight” based on the value and
prior probability of the modes.

To tackle this limitation of the naïve Bayes classifier, we extend it into a dynamic
Bayes classifier that has two phases: (1) Offline: Supervised learning, which is
the same as Gaussian naïve Bayes classifiers. (2) Online: Unsupervised dynamic
incremental learning, that classifies samples in known modes, updates parameters
of the model, and create new modes for samples in previously unknown modes.
Because PILOTS focuses on processing stream data during flights and deciding the
normal or error operational modes of an airplane, the words “mode” and “class” are
used interchangeably and have the same meaning in this paper.

5.5.1 Offline Supervised Learning

5.5.1.1 Gaussian Naïve Bayes Classifiers

In a Gaussian naïve Bayes classifier [15], each input sample X is described by
a feature vector (x1, . . . , xn), and each sample is classified into a target class
y ∈ {y1, . . . , ym}. In this chapter, we consider samples of only one feature x, but
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the results can be generalized to n features. By Bayes’ theorem, the conditional
probability P(y|x) is:

P(y|x) = P(y)P (x|y)
P (x)

(5.5)

As the samples in each feature are assumed to be normally distributed, P(x|y) is
calculated by:

P(x|y) = 1√
2πσ 2

y

e
− (x−μy)2

2σ2
y (5.6)

where μy is the mean of the values in x associated with class y, and σy is the
standard deviation of the values in x associated with class y.

The corresponding classifier ŷ is:

ŷ = arg maxP(y|x) (5.7)

Because P(x) is the same for each class, ŷ is:

ŷ = arg maxP(y|x) = arg max P(y)P (x|y) (5.8)

5.5.1.2 Offline Learning Phase

In the offline supervised learning phase, input data tagged with mode labels are
processed by a Gaussian naïve Bayes classifier. The mean value μy , standard
deviation σy , and the prior probability P(y) of each mode y, are calculated by the
classifier, as in Fig. 5.4.

5.5.2 Dynamic Online Unsupervised Learning

5.5.2.1 Major and Minor Modes

To support dynamically changing modes during the online learning phase, the
concepts of major and minor modes are introduced. Major modes represent
statistically significant patterns and are generated during offline supervised learning
phase or converted from Minor modes during online learning phase. Minor modes
represent noise in data stream, and are created with unique mode identity (ID) during
online learning phase when a new sample isn’t in μ ± 2σ of any existing modes.
A minor mode can be converted into major mode, if the number of samples in a
minor mode exceeds certain threshold, which is used to diminish impact of noise
and distinguish actual patterns.
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Fig. 5.4 Online classification and incremental learning using dynamic Bayes classifier

5.5.2.2 Online Learning Phase

The process of dynamic online unsupervised learning is shown in Fig. 5.4. The
parameters of initial major modes are from the training results of the offline training
phase. As untagged samples are processed, if the value is withinμ±2σ of any major
mode, the sample will be classified by naive Bayes classifier, and the parameters are
incrementally updated. If the value is not within μ ± 2σ of any major mode, but is
within μ±2σ of a minor mode, it will be classified into the closest minor mode, and
the parameters of minor modes are updated accordingly. Finally, if the value of the
sample is not within μ ± 2σ of any major or minor mode, a new minor mode will
be created for this sample. σ of the new minor mode is initially set as the average
σ of the existing major modes. When the size of the minor mode is greater than a
threshold, we start to calculate and use the real σ of the minor mode. The reason is
that the σ might be biased if the number of samples is too small. Each time when
the parameters of a minor mode are updated, if the number of samples exceeds a
certain threshold, it will be upgraded into a major mode.

5.6 Case Study: Airplane Weight Estimation

To help prevent accidents caused by fuel quantity indicator errors such as the
Tuninter 1153 flight accident, we use the X-Plane flight simulator to generate flight
sensor data and simulate airplane weight error scenarios. With the synthetic data,
machine learning techniques are applied to infer airplane model parameters from
data, airplane weight error detection and actual weight estimation.
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5.6.1 Experimental Settings

5.6.1.1 Data Generation

X-Plane 9.7 is used to generate flying data of ATR72-500 in different altitudes, gross
weights and power settings. The data is split by selecting 3 flights’ 25 cruise phases,
1251 minutes in total, as training set, and a 20-minutes flight with 4 cruise phases as
testing set. The model is trained by 25 cruise phases in the training set and tested by
4 cruise phases in the testing set. To evaluate the PILOTS error detection accuracy
and effectiveness on various error ranges of overweight and underweight conditions,
the data is modified as following: To simulate stable overweight condition, weight
data in the range from 1 to 100 and 750 to 800 s is multiplied by 0.9; for the
underweight condition, weight data from 1025 to 1099 s is multiplied by 1.1 and
from 390 to 490 s is multiplied by 1.05; for the unstable overweight and underweight
conditions, weight data from 570 to 648 s is multiplied by normal deviates with
mean at 1 and standard deviation at 0.1, and weight data from 291 to 377 s is
multiplied with uniformly distributed random variables from uniform with range
from 0.9 to 1.1. The cruise phases of testing set lie between 5 to 164, 230 to 395, 470
to 688 and 780 to 1108 s. The weight data is visualized as “measured” in Fig. 5.10.

5.6.1.2 Implementation and Evaluation of Learning Algorithms

For learning algorithms, the Sci-Kit package is used for the implementation of least
squares algorithm and evaluation of the trained models.

5.6.2 Aerodynamic Model Parameter Estimation by Linear
Regression

Synthetic data with simple relationships is used to verify the integration of machine
learning approaches into PILOTS. In this example, simulated ATR-72 500 airplane
data is used for PILOTS to detect weight error and generate estimations of actual
weight in the data streams. The relation between coefficient of lift and angle of
attack is investigated and under certain assumptions about known variables, the
estimation of weight from angle of attack, ambient temperature, ambient pressure
and true air speed is made possible using linear regression by the PILOTS learning
component.



5 Learning Spatio-Temporal Relationships for Avionics 109

5.6.2.1 Assumption

To simulate and test linear regression implemented in PILOTS machine learning
component, we assume certain known variables. The following variables are
assumed to be correctly measured and known: gross weight W , ambient pressure
p, true airspeed v, wing surface area S, special gas constant for dry air R′, and
ambient temperature T .

5.6.2.2 Linear Regression Model

In cruise phase, when yaw, roll angles are close to zero and pitch is small, we assume
L = W , in which L is total lift and W is gross weight. Based on the assumption,
PILOTS estimates W by the lift equation:

W = L = 1

2
v2SρCl, (5.9)

where ρ is air density and Cl is coefficient of lift. From the ideal gas law, ρ = p
R′T

so replace ρ with p
R′T in Eq. 5.9 to get:

W = pv2SCl

2R′T
(5.10)

and by transforming Eq. 5.10, Cl , coefficient of lift could be represented by:

Cl = 2WR′T
pv2S

. (5.11)

Generally Cl depends on the shape of airfoil and the shape of an aircraft. To roughly
estimate Cl , the complex physical model is simplified using Thin-Airfoil theory,
which predicts a linear relationship [16] between coefficient of lift, Cl , and the angle
of attack, α, for low values of α, as shown in Fig. 5.5 between dashed vertical lines.
This relationship can be expressed as:

Cl = β1α + β2 + ε (5.12)

where ε is noise and α is known while β1 and β2 are distinct values for different
aircrafts. A linear model could be formulated as the following:

y = Xβ + ε (5.13)

y =

⎛

⎜⎜⎜⎝

Cl1
Cl2
...

Cln

⎞

⎟⎟⎟⎠ , Cli =
2WiR

′Ti
piv

2
i S

,X =

⎛

⎜⎜⎜⎝

α1 1
α2 1
...

αn 1

⎞

⎟⎟⎟⎠ , β =
(
β1

β2

)
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Fig. 5.5 Coefficient of lift as a function of angle of attack for a cambered airfoil. (Adapted from
https://en.wikipedia.org/wiki/Lift_coefficient)

Because each column in X is independent, the least squares method defined in
Sect. 5.4.1 is used to retrieve β̂, and predict Ŵ using the following equation:

Ŵ = pv2S(β̂1α + β̂2)

2R′T
(5.14)

which is substituted in the linear estimation of Cl , in Eq. 5.10.

5.6.3 Error Detection and Correction Using Error Signatures

5.6.3.1 PILOTS Program

The linear regression model is trained with synthetic data using training parameters
as shown in Fig. 5.6. data defines the training file including file type and schema
similar to Fig. 5.7 as an example, and constants used in features and labels;
preprocessing defines the preprocessing methods used on the training set; and
model contains functions for features, labels and training algorithms. The error
function e is given by Eq. 5.15 as the percentage of discrepancy between predicted
weight Ŵ and measured weight W . The vector of error signatures uses a threshold

https://en.wikipedia.org/wiki/Lift_coefficient
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{
"data":{

"file": ["training.csv"],
"type": "csv",
"header_type": "csvheader",
"schema": "schema.json",
"constants": {"S": 61.0, "R": 286.9}

},
"preprocessing":{

"unit_transformation": {"v":"m/s", "p":"pascal","t":"kelvin","w":"newton","a
":"radian"}

},
"model":{

"features": ["{a}"],
"labels": ["2*{w}/({v}**2*({p}/{R}/{t})*{S})"],
"algorithm":{
"id": "linear_regression",
"param": {},
"save_file": "regression.estimator"
}

}
}

Fig. 5.6 Offline training parameters for the linear regression model

{
"names": ["v","p","t","w","a"],
"units": ["knot","in_Hg","celsius","force_pound","degree"]

}

Fig. 5.7 Example data schema file

Table 5.1 Vector of error
signatures for weight
correction

Error signature

Mode Function Constraints

Normal e = k −0.035 < k < 0.035

Underweight e = k k > 0.035

Overweight e = k k < −0.035

of 3.5% because this number is more rigorous than the percentage of discrepancy
between error weight and actual weight in Tuninter 1153 accident, which is about
10%. A PILOTS program named WeightCorrection implementing the vector
of error signatures in Table 5.1 is shown in Fig. 5.8. If the error signature s1 or s2 is
detected, the program estimates weight using Eq. 5.14. The data selection module
computes v′, a′, p′, te′,w′ using data points with the closest time stamp, and uses a′
as an input matrix to predict cl′ using model the with id linear_regression.

e = W − Ŵ
W

(5.15)



112 S. Chen et al.

program WeightCorrection;
/* v = true air speed (m/s), a = angle of attack (Radian) */
/* p = pressure (Pa), te = temperature (K), w = gross weight (N) */
/* cl = coefficient of lift, R = 286.9 J/(kg K), S = 61(mˆ2)*/
inputs

v, a, p, te, w (t) using closest(t);
cl (t) using predict(linear_regression, a);

outputs
corrected_weight: w at every 1 sec;

errors
e: (w - p*(v*v)*61*cl/(2*286.9*te))/w;

signatures
s0(K): e = K, -0.035 < K < 0.035 ’’Normal’’;

’’thgiewrednU’’530.0>K,K=e:)K(1s
estimate w = p*(v*v)*61*cl/(2*286.9*te);

s2(K): e = K, K < - 0.035 ’’Overweight’’
estimate w = p*(v*v)*61*cl/(2*286.9*te);

end

Fig. 5.8 A declarative specification of WeightCorrection PILOTS program using error
signature

5.6.3.2 Error Detection

Evaluation Criteria: We evaluate the performance of error detection based on
accuracy and response time, which are defined as follows:

– Accuracy evalutes how accurately the algorithm determines the true mode.
Assuming the true mode transitionm(t) is known for t = 0, 1, 2, . . . , T , letm′(t)
for t = 0, 1, 2, . . . , T be the mode determined by the error detection algorithm.
We define accuracy(m,m′) = 1

T

∑T
t=0 p(t), where p(t) = 1 if m(t) = m′(t)

and p(t) = 0 otherwise.
– Maximum/Minimum/Average Response Time assesses how quickly the algo-

rithm reacts to mode changes. Let a tuple (ti , mi) represent a mode change point,
where the mode changes to mi at time ti . Let

M = {(t1,m1), (t2,m2), . . . , (tN ,mN)},

and

M ′ = {(t ′1,m′1), (t ′2,m′2), . . . , (t ′N ′ ,m′N ′)},

where M and M ′ are the sets of true mode changes and detected mode changes
respectively. For each i = 1 . . . N , PILOTS finds the smallest t ′j such that (ti ≤
t ′j ) ∧ (mi = m′j ); if not found, let t ′j be ti+1. The response time ri for the true
modemi is given by t ′j− ti . The maximum, minimum, and average response time

are defined by max1≤i≤N ri , min1≤i≤N ri , and 1
N

∑N
i=1 ri respectively.
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Fig. 5.9 The linear relation between angle of attack and coefficient of lift in cruise phase of
training set

Fig. 5.10 Error detection and correction using ω = 1, τ = 0.99 for X-Plane simulated data

5.6.3.3 Software Parameter Settings

See Sect. 5.6.1.1 for data generation. PILOTS program WeightCorrection in
Fig. 5.8 is executed with different combinations of window sizes ω ∈ {1, 2, 4, 8, 16}
and thresholds τ ∈ {0.2, 0.4, 0.6, 0.8, 0.99} to investigate the accuracy and average
response time.

5.6.3.4 Results

Figure 5.9 shows the training result of linear relationship between angle of attack
and coefficient of lift, where the learned parameters are β1 = 6.3888 and β2 =
0.3589. The evaluation of the trained model gives R2 = 0.9949, RMSE =
0.00794, showing a strong linear relationship with low in-sample error. Using
Eq. 5.9, we compute the training error between measured weight and estimated
weight, resulting in RMSE = 2687N .

Figure 5.10 shows the estimated weight and measured weight during the 18 min
flight where ω = 1 and τ = 0.99, the best among all combinations in accuracy and
response time. The PILOTS program can successfully detect and give estimated
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weight under overweight and underweight conditions in cruise phases, with root
mean squared error close to 1617N on average. The program performs the best
in system failure simulation regions where the weight drifts by 10% or 5%, and
performs well in random error simulation regions. The overall accuracy is 97.6%
and the minimum response time is 0 s; maximum response time is 84 s and the
average response time is 1.45 s. Outside cruise phase, the program does not estimate
weight properly as the assumption L = W does not hold.

5.6.4 Error Detection Using the Dynamic Bayes Classifier

5.6.4.1 PILOTS Program

We use Ŵ − W as the feature for the dynamic Bayes classifier. Estimated weight
is calculated by Eq. 5.9 using the method described in Sect. 5.6.2. The dynamic
Bayes classifier is trained with both “normal” (mode 0) and “underweight” (mode
1) tagged data in the offline learning phase as described in Experimental Settings.
Figure 5.11 shows the parameters setting for the offline training phase. data.file
is the input file for training. data.constants are parameters we used for
features. model.features are features for Bayes classifier. In this example, the
feature is the discrepancy between estimated weight Ŵ by Eq. 5.14 and measured
weight W . model.algorithm.param is the software parameters setting. A
PILOTS program shown in Fig. 5.12 named WeightErrorMode is used for the
online learning and classification to detect different weight error modes.

5.6.4.2 Mode Prediction Evaluation

We use the same evaluation criteria for major mode prediction: accuracy and
response time as in Sect. 5.6.3.2.

5.6.4.3 Experimental Settings

See Sect. 5.6.1.1 for data generation. We use the same testing data, and 8000 s
training data in cruise phase modified as follows: weight data in the range from 1526
to 3129 second are multiplied by 1.1 to simulate overweight mode. There are two
major modes in the tagged training data: mode 0 for normal status and mode 1 for
overweight status. For online learning, we set the threshold of the sample number
to turn a minor mode into a major mode to 100. The sample number threshold
for calculating σ of a new mode instead of using average σ is also set as 100.
Figure 5.13 shows the feature and tagged mode of training data.
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{
"data":{

"file": ["bayes_error_train.csv"],
"type": "csv",
"header_type": "csvheader",
"schema":"bayes_schema.json",
"constants": {"Beta_1": 6.38883559, "Beta_2": 0.35885757, "S": 61.0}

},
"preprocessing":{

"unit_transformation": {"v":"m/s", "p":"pascal","t":"kelvin","w":"newton","a
":"radian"}

},
"model":{

"features": ["({w}-0.5*({v}**2*({p}/286.9/{t})*{S})*({Beta_1}*{a}+{Beta_2}))
"],

"labels": ["{mode}"],
"algorithm": {

"id": "bayesonline",
"param": {"sigma_scale": 2, "threshold": 100},
"save_file": "bayes_online.estimator",
"serialize_function": "to_json",
"deserialize_function": "load_json"

}
}

}

Fig. 5.11 Offline training parameters for the dynamic Bayes classifier

program WeightErrorMode;
/* v = true air speed (m/s), a = angle of attack (Radian) */
/* p = pressure (Pa), te = temperature (K), w = gross weight (N) */
inputs

v, a, p, te, w (t) using closest(t);
mode (t) using predict(bayes, v, a, p, te, w);

outputs
estimated_mode: mode at every 1 sec;

end

Fig. 5.12 A declarative specification of the WeightErrorMode PILOTS program using the
dynamic Bayes classifier

5.6.4.4 Results

Figure 5.14 shows the results of weight error mode detection by dynamic Bayes
classifier. Using the same testing data as in Fig. 5.10, the dynamic Bayes classifier
successfully detects three major modes in the cruise phases: mode 0 for normal
status, mode 1 for underweight status, and mode 3 for overweight status. Mode 0
and mode 1 are major modes that appeared in the tagged training data, mode 3 is
a new major mode detected by the classifier during the online incremental learning
and prediction phase. Mode 2 and mode 4 to 24 are minor modes generated by
the noise and non-cruise phase data in the testing set. The accuracy of major mode
detection is 86.3% and the average response time is 3.43 s.
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Fig. 5.13 Weight error mode training data for the dynamic Bayes classifier

5.6.5 Comparison Between Error Signatures and Dynamic
Bayes Classifier

The average response time of the error signatures approach with 0.035 as threshold,
ω = 1, and τ = 0.99, is 58% shorter than that of the dynamic Bayes classifier,
and the error signatures approach is 11.3% more accurate than the dynamic Bayes
classifier. However, the dynamic Bayes classifier discovers discrete error states
dynamically and automatically while the error signatures approach is static, that
is, every signature must be predefined manually.

5.7 Related Work

Stream data processing has been an important technique in flight safety systems.
Fault detection, isolation, and reconfiguration (FDIR) has also been actively studied
in the control community [17]. The FDIR systems evaluate a set of residuals
(what we call error functions) to detect if a fault has occurred, then isolate
the type of the fault, and reconfigure the system to recover from the fault. To
alleviate the effect of noise on residuals, robust residual generation techniques,
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Fig. 5.14 Weight error mode detection using dynamic Bayes classifier

such as a Kalman Filter based approach [18], have been used. Error residuals
from different sources including ground speed, estimated wind speed, and propeller
speed, are used to successfully detect and isolate airspeed sensor faults [19]. In
some study, the residuals are not considered as binary value, but are assumed to
have different distributions according to different modes [20]. The false positive
and false negative detection rate of a FDIR method can be evaluated by several
statistical models [21, 22]. The PILOTS language was designed for spatio-temporal
data stream filtering, error detection and correction. PILOTS has been shown to
detect and recover from sensor errors using actual flight data from commercial
accidents [8]. The PILOTS framework enables users to implement fault detection
and correction with tens of lines of code to describe error conditions.

There have been many systems that combine data stream processing and data
base management, i.e., Data Stream Management Systems (DSMS). PLACE [23]
and Microsoft StreamInsight [24] are DSMS-based systems supporting spatio-
temporal streams. Also, the concept of the moving object data base (MODB) which
adds support for spatio-temporal data streaming to DSMS is discussed in [25].
Also, a DSMS-based traffic congestion estimation system has been proposed [26].
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These DSMS-based spatio-temporal stream management systems support general
continuous queries for multiple moving objects such as “Find all the cars running
within a diameter of X from a point Y in the past Z time”. Unlike these DSMS-
based systems which handle multiple spatio-temporal objects, a PILOTS program
is assumed to be moving and tries to extrapolate data that is relevant to the
current location and time. This approach narrows down the applicability of PILOTS;
however, users can more easily design error signatures to estimate data on the fly
thanks to the declarative programming approach.

In the context of big data processing, distributed, scalable, and fault-tolerant data
streaming systems have been widely used. Such systems include MillWheel [27],
Storm [28], and Spark Streaming [29]. Since these systems are expected to run over
many computer nodes, they are designed to continue producing correct results with
reasonably degraded performance even in the case of node failures. Unlike PILOTS,
they are not aware of application-level data failures. On the other hand, PILOTS
itself does not have any fault-tolerance mechanism to node failures.

Machine learning techniques have been widely used in stream data processing.
There is a multi-dimensional regression method for time-series data streams [30],
and a regression-based temporal pattern mining scheme for data streams [31].
Neural networks have been applied for supervised real-time learning and classifi-
cation [32], and unsupervised active mining methods could be used to estimate the
error of the model on new data streams [33]. In this chapter, we extend PILOTS
to support linear regression of stream data, and also combined offline supervised
learning and dynamic online incremental learning as implemented by the dynamic
Bayes classifier.

5.8 Discussion and Future Work

In this chapter, we extend the PILOTS programming language to support machine
learning techniques. A linear regression approach is applied to learn the relationship
between coefficient of lift and the angle of attack during flights. With the training
results, and models to calculate airplane weight during cruise phase, the PILOTS
program successfully detects and give estimated weight under underweight and
overweight conditions in simulated flight data by using error signatures. In this case,
we only consider possible weight errors, while other sensor data like airspeed needs
additional signatures to ensure its correctness. Using dynamic Bayes classifier, when
the system is trained by normal and underweight data, the PILOTS program is able
to detect a new mode when an overweight situation occurs in the online learning
phase. Error signatures and dynamic Bayes classifier both have their advantages
and limitations. Error signatures detect and correct for data errors, while dynamic
Bayes classifier only detects for data errors, but is not able to fix them. Dynamic
Bayes classifier detects statistically significant new modes during the online learning
phase, while error signatures can only detect pre-defined modes.
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Fig. 5.15 Another weight error mode detection using dynamic Bayes classifier

When using the dynamic Bayes classifier to detect weight error, we noticed
that the system not only detects “normal”, “underweight”, “overweight” modes,
but also classifies “5% overweight” and “15% overweight” as two different modes,
see Fig. 5.15. This information is useful if different strategies need to be taken for
different extent of weight errors, otherwise it would be unnecessarily misleading
to classify them into different modes. Thus, the dynamic Bayes classifier should
be adjusted to the requirements of various use cases. This would result in a semi-
supervised online learning approach.

Future work includes exploring distributed computing for large scale data
processing to get higher efficiency. For the dynamic Bayes classifier, it would
be helpful to involve human feedback in the online learning phase, especially
when a new mode is detected, to get more accurate classification parameters and
decision making. Techniques are needed to add error correction to the dynamic
Bayes classifier and learning. Take the weight error case for example, for any mode
except the normal mode, simply using the estimated weight instead of detected
weight as error correction. Machine learning techniques could also be used to learn
parameters in error signatures from data. Another possible direction is to combine
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logic programming and probabilistic programming, as in ProbLog [34], to help
analyze spatio-temporal stream data. Finally, uncertainty quantification [35] is an
important future direction to associate confidence to data and error estimations in
support of decision making.

Acknowledgements This research is partially supported by the DDDAS program of the Air Force
Office of Scientific Research, Grant No. FA9550-15-1-0214, NSF Grant No. 1462342, and a
Yamada Corporation Fellowship.

References

1. S. Imai, C.A. Varela, Programming spatio-temporal data streaming applications with high-
level specifications, in 3rd ACM SIGSPATIAL International Workshop on Querying and Mining
Uncertain Spatio-Temporal Data (QUeST) 2012, Redondo Beach, Nov 2012

2. Bureau d’Enquêtes et d’Analyses pour la Sécurité de l’Aviation Civile, Final Report: On the
accident on 1st June 2009 to the Airbus A330-203 registered F-GZCP operated by Air France
flight AF 447 Rio de Janeiro – Paris. https://www.bea.aero/fileadmin/documents/docspa/2009/
f-cp090601.en/pdf/f-cp090601.en.pdf. Accessed 15 Sept 2016

3. E.P. Blasch, D.A. Lambert, P. Valin, M.M. Kokar, J. Llinas, S. Das, C. Chong, E. Shahbazian,
High level information fusion (HLIF): survey of models, issues, and grand challenges. IEEE
Aerosp. Electron. Syst. Mag. 27(9), 4–20 (2012)

4. J.T. Oden, E.E. Prudencio, P.T. Bauman, Virtual model validation of complex multiscale
systems: applications to nonlinear elastostatics. Comput. Methods Appl. Mech. Eng. 266, 162–
184 (2013)

5. F. Darema, Dynamic data driven applications systems: a new paradigm for application simula-
tions and measurements, in Computational Science-ICCS 2004 (Springer, Berlin/Heidelberg,
2004), pp. 662–669

6. A.N. per la Sicurezza del Volo, Final report: accident involving ATR 72 aircraft registration
marks TS-LBB ditching off the coast of Capo Gallo (Palermo – Sicily), 6 Aug 2005. Accessed
31 Mar 2015

7. S. Imai, R. Klockowski, C.A. Varela, Self-healing spatio-temporal data streams using error
signatures, in 2nd International Conference on Big Data Science and Engineering (BDSE
2013), Sydney, Dec 2013

8. S. Imai, A. Galli, C.A. Varela, Dynamic data-driven avionics systems: inferring failure modes
from data streams, in Dynamic Data-Driven Application Systems (DDDAS 2015), Reykjavik,
June 2015

9. S. Imai, C.A. Varela, A programming model for spatio-temporal data streaming applications,
in Dynamic Data-Driven Application Systems (DDDAS 2012), Omaha, June 2012, pp. 1139–
1148

10. R.S. Klockowski, S. Imai, C. Rice, C.A. Varela, Autonomous data error detection and recovery
in streaming applications, in Proceedings of the International Conference on Computational
Science (ICCS 2013). Dynamic Data-Driven Application Systems (DDDAS 2013) Workshop,
May 2013, pp. 2036–2045

11. S. Imai, E. Blasch, A. Galli, W. Zhu, F. Lee, C.A. Varela, Airplane flight safety using error-
tolerant data stream processing. IEEE Aerosp. Electron. Syst. Mag. 32(4), 4–17 (2017)

12. Laminar Research, X-Plane. http://www.x-plane.com/. Accessed 15 Sept 2016
13. I. Rish, An empirical study of the naive Bayes classifier, in IJCAI 2001 workshop on empirical

methods in artificial intelligence, vol. 3 (IBM, New York, 2001), pp. 41–46
14. E.T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, Cam-

bridge, 2003)

https://www.bea.aero/fileadmin/documents/docspa/2009/f-cp090601.en/pdf/f-cp090601.en.pdf
https://www.bea.aero/fileadmin/documents/docspa/2009/f-cp090601.en/pdf/f-cp090601.en.pdf
http://www.x-plane.com/


5 Learning Spatio-Temporal Relationships for Avionics 121

15. G.H. John, P. Langley, Estimating continuous distributions in Bayesian classifiers, in Proceed-
ings of the Eleventh conference on Uncertainty in artificial intelligence (Morgan Kaufmann
Publishers Inc., 1995), pp. 338–345

16. J.D. Anderson Jr, Fundamentals of Aerodynamics (Tata McGraw-Hill Education, New York,
2010)

17. I. Hwang, S. Kim, Y. Kim, C.E. Seah, A survey of fault detection, isolation, and reconfiguration
methods. IEEE Trans. Control Syst. Technol. 18(3), 636–653 (2010)

18. T. Menke, P. Maybeck, Sensor/actuator failure detection in the Vista F-16 by multiple model
adaptive estimation. IEEE Trans. Aerosp. Electron. Syst. 31, 1218–1229 (1995)

19. S. Hansen, M. Blanke, Diagnosis of airspeed measurement faults for unmanned aerial vehicles.
IEEE Trans. Aerosp. Electron. Syst. 50, 224–239 (2014)

20. C. Svärd, M. Nyberg, E. Frisk, M. Krysander, Data-driven and adaptive statistical residual
evaluation for fault detection with an automotive application. Mech. Syst. Signal Process.
45(1), 170–192 (2014)

21. A. Zolghadri, Advanced model-based FDIR techniques for aerospace systems: today chal-
lenges and opportunities. Prog. Aerosp. Sci. 53, 18–29 (2012)

22. J. Marzat, H. Piet-Lahanier, F. Damongeot, E. Walter, Model-based fault diagnosis for
aerospace systems: a survey, in Proceedings of the Institution of Mechanical Engineers, Part
G: Journal of Aerospace Engineering, vol. 226, Jan 2012, pp. 1329–1360,

23. M.F. Mokbel, X. Xiong, W.G. Aref, M.A. Hammad, Continuous query processing of spatio-
temporal data streams in PLACE. GeoInformatica 9, 343–365 (2005)

24. M.H. Ali, B. Chandramouli, B.S. Raman, E. Katibah, Spatio-temporal stream processing in
Microsoft StreamInsight. IEEE Data Eng. Bull. 33(2), 69–74 (2010)

25. K. An, J. Kim, Moving objects management system supporting location data stream, in
Proceedings of the 4th WSEAS International Conference on Computational Intelligence, Man-
Machine Systems and Cybernetics, CIMMACS’05, Stevens Point, Wisconsin (World Scientific
and Engineering Academy and Society (WSEAS), 2005), pp. 99–104

26. S. Geisler, C. Quix, S. Schiffer, M. Jarke, An evaluation framework for traffic information
systems based on data streams, Trans. Res. Part C Emerging Technol. 23, 29–55 (2012)
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Chapter 6
Markov Modeling of Time Series via
Spectral Analysis for Detection of
Combustion Instabilities

Devesh K. Jha, Nurali Virani, and Asok Ray

Abstract Modeling of temporal patterns to infer generative models from measure-
ment data is critical for dynamic data-driven application systems (DDDAS). Markov
models are often used to capture temporal patterns in sequential data for statistical
learning applications. This chapter presents a methodology for reduced-order
Markov modeling of time-series data based has been used on spectral properties of
stochastic matrix and clustering of directed graphs. Instead of the common Hidden
Markov model (HMM)-inspired techniques, a symbolic dynamics-based approach
to infer an approximate generative Markov model for the data. The time-series
data is first symbolized by partitioning of the discrete-valued signal in continuous
domain. The size of temporal memory of the discretized symbol sequence is then
estimated using spectral properties of the stochastic matrix created from the symbol
sequence for a first-order Markov model of the symbol sequence. Then, a graphical
method is used to cluster the states of the corresponding high-order Markov model
to infer a reduced-size Markov model with a non-deterministic algebraic structure.
A Bayesian inference rule captures the parameters of the reduced-size Markov
model from the original model. The proposed idea is illustrated by creating Markov
models for pressure time-series data from a swirl stabilized combustor where some
controlled protocols are used to induce instability. Results demonstrate complexity
modeling of the underlying Markov model as the system operating condition
changes from stable to unstable which is useful in combustion applications such
as detection and control of thermo-acoustic instabilities.
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6.1 Motivation and Introduction

The underlying theory of symbolic time-series analysis (STSA) [1, 2] has led to
the development of signal representation tools in the paradigm of dynamic data-
driven application systems (DDDAS) [3, 4], where time series of sensor signals
are partitioned to obtain respective symbol strings. In general, STSA is a nonlinear
technique for representation of temporal patterns in sequential data, where the
underlying continuous attributes are projected onto a symbolic space. This step is
followed by identification of concise probabilistic patterns for compression of the
discretized information. Within this framework, finite-memory Markov models have
been shown to be a reasonable finite-memory approximation (or representation) of
systems with fading memory (e.g., engineering systems that exhibit stable orbits or
mixing) [5, 6].

Once the continuous data are discretized, the memory estimate for the discretized
sequence is used for compression as a finite-memory Markov process, which is
represented by a state transition matrix. The transition matrix is estimated by
a maximum likelihood estimator (MLE) under the assumption of infinite data
and uniform priors for all elements of the transition matrix. In contrast to the
probabilistic finite state automaton (PFSA)-based approach to infer a Markov model
for time-series data presented in [5–7], an alternative method has been proposed
in this chapter, where the constraints of the deterministic algebraic structure of
finite-state automata are relaxed to allow non-deterministic transitions for the PFSA
inferred from the time-series data. This task has been performed by making a
trade-off for lower complexity of the generated model (possibly) at the expense of
resolution loss. The proposed concept is validated for model inferencing using time-
series data from a swirl-stabilized combustor and identify the different stages of
the complex instability phenomenon from a completely data-driven perspective. We
also point-out to the changes in the model structure and their physical interpretations
based on the data from the process.

Hidden Markov Modeling (HMM) is the most-widely used statistical learning
tool for modeling time-series data [8] where the data is modeled as a Markov
process with unobserved states. The learning task is to infer the states and the
corresponding parameters of the Markov chain. In contrast to HMM, some other
non-linear techniques have also been proposed for Markov modeling of time-series
data where the states of the Markov chain are some collection of words of different
lengths which can be obtained from the time-series data up on projecting the data
to a discrete space with finite cardinality [5–7, 9, 10]. The common concept in
all these techniques, based on Markov modeling of discrete sequences, is that the
Markov chain is induced by probabilistic version of a deterministic FSA [5]. While
the PFSA-based inference provides a consistent, deterministic graph structure for
learning, the deterministic algebraic structure is generally redundant and can often
lead to large number of states in the induced Markov model. Merging the states of
the PFSA for dimensionality reduction is often inconsistent due to the algebraic
constraints [6]. Some other approaches for state aggregation in Markov chains
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could be found in [11–14]. However, these papers present aggregation of states in a
Markov chains; construction of the Markov chain from data is never considered.
It is important that these two problems (i.e., state merging and Markov chain
construction) be studied together for analysis of dynamic data-driven applications
systems (DDDAS) [3, 4]. Moreover, the optimal model selection is inspired by
wrapper-based techniques where he system searches for the best one in all the above
techniques as the similarity is measured between the Markov chains of different
dimensions obtained by merging certain parts of the state-space.

This chapter presents a Markov modeling technique for time-series data where
the size of temporal memory of the symbolic data is estimated by using the spectral
properties of a PFSA whose states are words of length one [15, 16]. Next the states
are merged and the deterministic algebraic properties associated with PFSA are
removed, where the states of the Markov chain is now some collection of words
from its alphabet of length estimated in the last step. The parameters of the reduced-
order Markov model are estimated using a Bayesian inference technique from
the parameters associated with the higher-order Markov model. The final model
obtained is a generative model for the data; however, some information is lost as
parts of the deterministic structure of a finite state automaton (FSA) are removed.
This approach is used to construct Markov models for pressure data obtained from
a combustion instability [17–19] phenomenon, which is a highly non-linear thermo-
acoustic process and very hard to model completely using first principles of physics.
This chapter addresses data-driven modeling for real-time detection of changes in
the underlying process. Specifically these data-driven models can assist prediction
and control of combustion instabilities and thus, allow for more reliable and efficient
operation of modern-day combustors such as those used in aircraft gas turbine
engines.

6.2 Background and Mathematical Preliminaries

Symbolic analysis of time-series data is a recent approach where continuous sensor
data are converted to symbol sequences via partitioning of the continuous domain [5,
20]. The dynamics of the symbols sequences are then modeled as a Probabilistic
Finite State Automata (PFSA), which is defined as follows:

Definition 1 (PFSA) A Probabilistic Finite State Automata (PFSA) is a tuple G =
(Q,A , δ,M) where

• Q is a finite set of states of the automata;
• A is a finite alphabet set of symbols a ∈ A ;
• δ : Q ×A → Q is the state transition function;
• M : Q ×A → [0, 1] is the |Q| × |A | emission matrix. The matrix M = [mij ]

is row stochastic such that mij is the probability of generating symbol aj from
state qi .
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For symbolic analysis of time-series data, a class of PFSAs called theD-Markov
machine have been proposed [5] as a sub-optimal but computationally efficient
approach to encode the dynamics of symbol sequences as a finite state machine.
For most stable and controlled engineering systems that tend to forget their initial
conditions, a finite length memory assumption is reasonable. The states of this
PFSA are words over A of length D (or less); and state transitions are described
by a sliding block code of memory D and anticipation length of one [21]. The
dynamics of this PFSA can both be described by the |Q| × |Q| state transition
matrix � or the |Q| × 1 state visit probability vector p. The alphabet size or the
level of coarse-graining of the continuous domain is driven by the resolution level
required to capture the dynamics of the system – domain knowledge or data-driven
partitioning techniques [22] can be used for this purpose. Estimating the depth of
historical influences, on the other hand, requires estimation of the decay-rate of the
memory of a dynamical system.

For systems with fading memory it is expected that the predictive influence of a
symbol progressively diminishes further into the future. Formally depth is defined
as follows:

Definition 2 (Depth) Let s = s1 . . . sksk+1sk+2 . . . be the observed symbol
sequence where each sj ∈ A ∀j ∈ N. Then, the depth of the process generating s is
defined as the length D such that:

Pr(sk|sk−1, . . . , s1) = Pr(sk|sk−1, . . . , sk−D) (6.1)

An accurate estimation of depth for the symbolic dynamical process is required for
the precise modeling of the underlying dynamics of the discrete sequence. Next an
information-theoretic metric is introduced, which is used for merging the states of
the Markov model later in next section.

Definition 3 (Kullback-Leibler Divergence) The Kullback-Leibler (K-L) diver-
gence of a discrete probability distribution P from another distribution P̃ is defined
as follows.

DKL(P ‖P̃ ) =
∑

x∈X
pX(x) log

(
pX(x)

p̃X(x)

)

It is noted that K-L divergence is not symmetric; however, it can be converted to
a symmetric distance as follows: d(P, P̃ ) = DKL(P ‖P̃ ) + DKL(P̃ ‖P). This is
defined as the K-L distance between the distributions P and P̃ .

This distance is used to determine the structure in the set of the states of the PFSA-
based Markov model whose states are words, over the alphabet of the PFSA, of
length equal to the depth estimated for the discretized sequence.
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Discretize the time-series data
and create 1st-order Markov model

Estimate memory of the discrete process using spectral analysis

Cluster states of the Markov model corresponding
to the estimated memory using hierarchical clustering

Estimate parameters of the reduced model

Fig. 6.1 Flowchart for the proposed reduced-order modeling

6.3 Proposed Approach

This section presents the details of the proposed approach for inferring a Markov
model from the time-series data. As discussed earlier, the first step is the discretiza-
tion of the time-series data to generate a discrete symbol sequence. It is possible
to optimize the symbolization of time-series using an optimization criterion and
the details are available in literature (e.g., see [17]). The data are discretized using
the unbiased principle of entropy maximization of the discrete sequence using
Maximum Entropy Partitioning (MEP) [23]. The proposed approach consists of
three critical steps and is also shown in Fig. 6.1 for pedagogical purposes.

• Estimate the approximate size of temporal memory (or order) of the symbol
sequence.

• Cluster the states of the high-order Markov model.
• Estimate the parameters of the reduced-order Markov model (i.e., the Transition

matrix).

Memory of the discrete sequence is estimated using a recently introduced method
based on the spectral analysis of the 1st order Markov model induced by a PFSA [15,
16]. The key ideas behind the three steps are explained next.
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6.3.1 Estimation of Reduced-Order Markov Model

Depth D of a symbol sequence has been redefined in [15] as the number of
time steps after which probability of current symbol is independent of any past
symbol i.e.:

Pr(sk|sk−n) = Pr(sk) ∀n > D (6.2)

Note that dependence in the proposed definition (Eq. 6.2) is evaluated on individual
past symbols using Pr(sk|sk−n) as opposed to the assessing dependence on words of
lengthD using Pr(sk|sk−1, . . . , sk−D). It is shown that if the observed process is for-
ward causal then observing any additional intermediate symbols sk−1, . . . , sk−n+1
cannot induce a dependence between sk and sk−n if it did not exist on individual
level.

Let � = [π(1)ij ] be the one-step transition probability matrix of the PFSA G

constructed from this symbol sequence i.e.

� = Pr(sk|sk−1) (6.3)

Then using the distance of the transition matrix after steps from the stationary point,
depth can be defined as a length D such that

∣∣trace
(
�n
)− trace

(
�∞)∣∣ ≤

J∑

j=2

∣∣λj
∣∣n < ε ∀n > D (6.4)

J is number of non-zero eigenvalues of �. Thus, the depth D of the symbol
sequence is estimated for a choice of ε by estimating the stochastic matrix for
the one-step PFSA. Next, another pass of data is done through the module to
estimate the PFSA parameters whose states are words over A of length D, i.e.,
� = Pr(sk|sk−1, . . . , sk−D).

The states of the reduced-order Markov model are then estimated by partitioning
the set of words over A of length D estimated in the last step. This is done by
using an agglomerative hierarchical clustering approach. The advantage of using
the hierarchical clustering approach is that it helps visualize the structure of the
set of the original states using an appropriate metric. Agglomerative hierarchical
clustering is a bottom-up clustering approach [24] that generates a sparse network
(e.g., a binary tree) of the state set Q (where |Q| = |A |D) by successive addition
of edges between the elements of Q. Initially, each of the states q1, q2, . . . , qn is in
its own cluster C1, C2, . . . , Cn where Ci ∈ C , which is the set of all clusters for
the hierarchical cluster tree. The distance between any two states, qi and qj , in Q
is measured by using the K-L distance between the symbol emission probabilities
conditioned on these states, i.e.,

d(qi, qj ) = DKL(Pr(A |qi)‖Pr(A |qj ))+DKL(Pr(A |qj )‖Pr(A |qi)) (6.5)
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In terms of the distance measured by Eq. (6.5), the pair of clusters that are nearest to
each other are merged and this step is repeated till only one cluster is left. The tree
structure displays the order of splits in the state set of the higher-order Markov
model and is used to aggregate the states close to each other. The set of states
clustered together could be obtained based on the number of final states required
in the final Markov model.

Remark 1 (Stopping Criterion for Merging) The stopping criterion for the algo-
rithm could be reached based on the modeling objective. In the absence of any
defined end objective, the criterion for stopping the algorithm could be found using
approaches like Minimum description length (MDL) for signal representation. If
stopping criterion corresponds to another end objective (e.g., class separability),
then a Bayesian inference rule could be used to arrive at a consistent cardinality of
clusters in Q. However, in this chapter, the algorithm is terminated by fixing the
desired number of states a priori. For a detailed discussion, interested readers are
referred to [17].

Remark 2 The final Markov model is a finite depth approximation of the original
time-series data. However, compared to the PFSA-based D-Markov machines
in [5, 6], the current aggregated model has a non-deterministic algebraic structure,
i.e., the same symbol emissions from a state can lead to different states. While this
leads to some information loss as compared to the models in [5, 6], this facilitates
compression of the size of the model as per the application requirements. For
example, even though the optimal model might require a higher finite memory
adding all words corresponding to that length might not be necessary to preserve
the statistical behavior or class separability. Furthermore, the aggregated model
would allow faster convergence rates for the symbol emission probabilities which
can be calculated using Glivenko-Cantelli theorem [25]. For a detailed discussion
interested readers are referred to [17].

6.3.2 Estimation of Parameters for the Reduced-Order Markov
Model

The parameters of the Markov model obtained after clustering the states of the
original PFSA with |A |D states is obtained using a Bayesian inference technique
using the parameters estimated for the PFSA. In this proposed approach, the state
transition matrix �, the emission matrix M , and the state probability vector p of
the original PFSA model G are available, along with the deterministic assignment
map f : Q → Q̃ of the state in Q (i.e., state set of original model) to one of the
state in Q̃ (i.e., state set of the reduced order model). Since the reduced order model
can represented by the tuple G̃ = (Q̃, �̃), where �̃ = [π̃ij ] is the state transition
matrix, a Bayesian inference technique is employed to infer the individual values of
transition probabilities π̃ij = Pr(q̃k+1 = j | q̃k = i) for all i, j ∈ Q̃.
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Fig. 6.2 Graphical models representing dependencies between the random variables

Let Qk be the random variable denoting the state of PFSA model at some time
step k ∈ N and Sk denotes the symbol emitted from that state, this probabilistic
emission process is governed by the emission matrix M . The state of the reduced
order model is obtained from a deterministic mapping of the state of the PFSA
model, thus the state of this model is also a random variable, which is denoted by
Q̃k = f (Qk). The Bayesian network representing the dependencies between these
variables is shown in the recursive as well as unrolled form in the Fig. 6.2. The
conditional density Pr(Q̃k = q̃ | Qk = q) can be evaluated by checking if state q
belongs to the state cluster q̃ and assigning the value of 1 if true, else assign it the
value of 0. Since it is known that Q̃ partitions the set Q, the conditional density is
well-defined. Thus, it can be written as

Pr(Q̃k = q̃ | Qk = q) = Iq̃ (q), (6.6)

where I is the indicator function with Iq̃ (q) = 1, if element q belongs to the set q̃,
else it is 0. The derivation of the Markov model Pr(Q̃k+1 | Q̃k) using Pr(Qk+1 |
Qk), stationary probability vector p, and assignment map f is shown ahead.

Pr(Q̃k+1 | Q̃k) =
∑

q∈Q
Pr(Q̃k+1,Qk+1 = q | Q̃k) (6.7)

(Marginalization)

=
∑

q∈Q
Pr(Qk+1 = q | Q̃k)Pr(Q̃k+1 | Qk+1 = q) (6.8)

(Factorization using Fig. 6.2)

=
∑

q∈Q
Pr(Qk+1 = q | Q̃k) IQ̃k+1

(q) (6.9)

(using (6.6))
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=
∑

q∈Q̃k+1

Pr(Qk+1 = q | Q̃k). (6.10)

where Pr(Qk+1 | Q̃k) is obtained from Bayes’ rule as

Pr(Qk+1 | Q̃k) = Pr(Q̃k | Qk+1)Pr(Qk+1)∑
q∈Q Pr(Q̃k | Qk+1 = q)Pr(Qk+1 = q)

. (6.11)

By following the steps to obtain (6.10),

Pr(Q̃k | Qk+1) =
∑

q∈Q̃k
Pr(Qk = q | Qk+1). (6.12)

where Pr(Qk | Qk+1) results from Bayes’ rule as

Pr(Qk | Qk+1) = Pr(Qk+1 | Qk)Pr(Qk)∑
q∈Q Pr(Qk+1 | Qk = q)Pr(Qk = q) . (6.13)

It is noted that, for the distribution Pr(Qk) and Pr(Qk+1), a stationary probability
p is available. Using Eqs. (6.10), (6.11), (6.12), and (6.13) together, one can easily
obtain the desired state transition matrix �̃ of the reduced order model. Once the
state cluster set Q̃ and state transition matrix �̃ are available, the reduced order
model is completely defined. The rest of the chapter will demonstrate the utility
of these models in a practical problem of modeling combustion instabilities from
time-series data.

6.4 Combustion Experiment Details

This section presents the experimental details for collecting data to analyze the
complex non-linear phenomena that occurs during the instability phenomena, in
a laboratory-scale combustor. A swirl-stabilized, lean-premixed, laboratory-scale
combustor was used to perform the experimental study. Figure 6.3 shows a
schematic drawing of the variable-length combustor. The combustor consists of
an inlet section, an injector, a combustion chamber, and an exhaust section. The
combustor chamber consists of an optically-accessible quartz section followed by a
variable length steel section.

High pressure air is delivered to the experiment from a compressor system after
passing through filters to remove any liquid or particles that might be present. The
air supply pressure is set to 180 psig using a dome pressure regulator. The air is
pre-heated to a maximum temperature of 250 ◦C by an 88 kW electric heater. The
fuel for this study is natural gas (approximately 95% methane). It is supplied to
the system at a pressure of 200 psig. The flow rates of the air and natural gas are
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Fig. 6.3 Schematic drawing of the test apparatus

Table 6.1 Operating
conditions

Parameters Value

Equivalence ratio 0.525, 0.55, 0.60, 0.65

Inlet velocity 25–50 m/s in 5 m/s increments

Combustor length 25–59 inch in 1 inch increments

measured by thermal mass flow meters. The desired equivalence ratio and mean
inlet velocity is set by adjusting these flow rates with needle valves. For fully
pre-mixed experiments (FPM), the fuel is injected far upstream of a choke plate
to prevent equivalence ratio fluctuations. For technically pre-mixed experiments
(TPM), fuel is injected in the injector section near the swirler. It mixes with air
over a short distance between the swirler and the injector exit. Tests were conducted
at a nominal combustor pressure of 1 atm over a range of operating conditions, as
listed in Table 6.1. Other details, which are reported in [4], are skipped for brevity.

6.5 Results and Discussion

This section presents details of the analyses completed by using the pressure time-
series data to infer the underlying reduced-order Markov model. Time-series data is
first normalized by subtracting the mean and dividing by the standard deviation of
its elements; this step corresponds to bias removal and variance normalization. Data
from engineering systems is typically oversampled to ensure that the underlying
dynamics can be captured. Due to coarse-graining from the symbolization process,
an over-sampled time-series may mask the true nature of the system dynamics in the
symbolic domain (e.g., occurrence of self loops and irrelevant spurious transitions
in the Markov chain). Time-series is first down-sampled to find the next crucial
observation. The first minimum of auto-correlation function generated from the
observed time-series is obtained to find the uncorrelated samples in time. The data
sets are then down-sampled by this lag. To avoid discarding significant amount of
data due to downsampling, down-sampled data using different initial conditions is
concatenated. Further details of this preprocessing can be found in [15].
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The continuous time-series data set is then partitioned using maximum entropy
partitioning (MEP), where the information rich regions of the data set are partitioned
finer and those with sparse information are partitioned coarser. In essence, each cell
in the partitioned data set contains approximately an equal number of data points
under MEP. A ternary alphabet with A = {0, 1, 2} has been used to symbolize the
continuous combustion instability data. As discussed in Sect. 6.4, sets of time-series
data from different phases have been analyzed, as the combustion process emerges
from stable through the transient to the unstable region.

Figure 6.4 demonstrates the observed changes in the behavior of the data as the
combustion operating condition changes from stable to unstable. As seen, there is
a change in the empirical distribution which changes from a unimodal-Gaussian to
a multi-modal Gaussian (bi-modal in Fig. 6.4) as the operating condition changes
from stable to unstable. Selected 150 samples of pressure data from the stable and
unstable phases each are analyzed and compared.

First, the expected size of temporal memory is compared during the two phases.
There are changes in the eigenvalue decomposition rate for the 1-step stochastic
matrix calculated from the data during the stable and unstable behavior, irrespective
of the combustor length and inlet velocity. During stable conditions, the eigenvalues
very quickly go to zero as compared to the unstable operating condition. This
suggests that the size of temporal memory of the discretized data increases as the
system move to the unstable operating condition. This indicates that under the stable
operating condition, the discretized data behaves as symbolic noise as the predictive
power of Markov models remain unaffected even if the order of the Markov model
is increased. On the other hand, the predictive power of the Markov models can be
increased by increasing the order of the Markov model during unstable operating
condition, indicating more deterministic behavior. An ε = 0.05 is chosen to
estimate the depth of the Markov models for both the stable and unstable phases.
Correspondingly, the depth was calculated as 2 and 3 for the stable and unstable
conditions (see Fig. 6.4).

The corresponding D(ε) is used to construct the Markov models next. First
a PFSA whose states are words over A of length D(ε) is created and the
corresponding maximum-likely parameters (M and �) are estimated. Then, the
hierarchical clustering algorithm using K-L distance is used to cluster and aggregate
the states. It is noted that individual models are created for every sample of data,
i.e., every sample is partitioned individually so that the symbols will have different
meaning for every sample. Consequently, each sample will have a different state-
space when viewed in the continuous domain. Thus, the mean behavior of the
samples is not shown during any operating regime as the state-space would be
inconsistent (even though the cardinality could be the same).

Figure 6.5 shows the hierarchical cluster tree that details the structure of the
state-space for the PFSA with depth D(ε) for a typical sample during stable and
unstable behavior. The cluster tree also suggests the symbolic noise behavior of the
data during the stable regime (the states are very close to each other based on the
K-L distance). However, clearly a coarse clustering of states in the model during
the unstable behavior would lead to significant information loss (as the states are
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Fig. 6.4 (a) Shows the change in the empirical density calculated for the pressure time-series data
as the process deviates from the stable operating condition to unstable operating condition; (b)
shows the spectral decomposition of the 1-step stochastic matrix for the data under stable and
unstable operating conditions

statistically different). However, to compare the two Markov models, the cardinality
of the final models are kept the same. The algorithm is terminated with 3 states in the
final Markov model during the stable as well as the unstable regime. The parameters
of the final Markov model are then estimated using the PFSA models of depthD(ε)
using the dynamic Bayesian network approach explained in Sect. 6.3.2.

Figure 6.6 presents some results to show the class separability and changes
in the Markov models as the states are aggregated. As the model is computed
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Fig. 6.5 (a) shows hierarchical cluster tree for the states of the original Markov model obtained
during stable combustion process; (b) shows the same during unstable behavior.

individually for every sample, comparing the stochastic matrices directly is not
consistent. Instead a measure is introduced to model the complexity of the Markov
model for every sample as follows: d = max

qi ,qj∈Q
d(qi, qj ) (where d is defined in

Eq. (6.5)). Essentially, the measure d represents the maximum divergence between
the symbol emission probabilities from the states of the Markov model created.
Then, the statistics of d obtained for the Markov models are compared during stable
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Fig. 6.6 (a) Shows the class separability with the original bigger model; (b) shows changes after
state aggregation

and unstable conditions. In Fig. 6.6a, it could be seen that the measure d is clearly
able to separate the stable and unstable conditions with the original model.

Figure 6.6b shows the results with the final aggregated model with just 3 states.
As seen in Fig. 6.6b, there is some information loss upon model reduction; however,
there is still good class separability. Another point to note is that while there is
significant change in the set with unstable operating condition, there isn’t much
change in the behavior of the measure during stable operating condition.
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6.6 Conclusions and Future Work

This chapter has presented a methodology for Markov modeling of time-series
data for dynamic data-driven applications systems (DDDAS) [3, 4]. The technical
approach is based on the concepts of symbolic dynamics, where the memory size of
the discretized time-series data is estimated to infer the equivalence class of states
based on KL distance. The proposed concepts have been tested on experimental
data from a swirl-stabilized combustor apparatus used to study unstable thermo-
acoustic phenomena during the combustion process. The proposed approach affords
the complexity of inferring the time-series data based on a Markov model. Use
of Bayesian methods to infer models with various end objectives (e.g., class
separability and clustering) is a topic of future research. Another important topic
of future work is consistency analysis of the spectral method for memory estimation
of the considered class of Markov models.
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Chapter 7
Dynamic Space-Time Model for
Syndromic Surveillance with Particle
Filters and Dirichlet Process

Hong Yan, Zhongqiang Zhang, and Jian Zou

Abstract Massive spatio-temporal data are challenging for statistical analysis due
to their low signal-to-noise ratios and high-dimensional spatio-temporal structure.
To resolve these issues, we propose a novel Dirichlet process particle filter (DPPF)
model. The Dirichlet process models a set of stochastic functions as probability
distributions for dimension reduction, and the particle filter is used to solve the
nonlinear filtering problem with sequential Monte Carlo steps where the data has
a low signal-to-noise ratio. Our data set is derived from surveillance data on
emergency visits for influenza-like and respiratory illness (from 2008 to 2010) from
the Indiana Public Health Emergency Surveillance System. The DPPF develops
a dynamic data-driven applications system (DDDAS) methodology for disease
outbreak detection. Numerical results show that our model significantly improves
the outbreak detection performance in real data analysis.

7.1 Background

Significant morbidity and mortality are potentially caused by communicable dis-
eases if not detected in time. The recent Ebola outbreak in West Africa has infected
more than 30,000 people and killed over 11,000 [6]. Enhancement of the ability
to model and predict disease outbreaks and hotspots could help to improve our
decision-making strategies, such as when to close schools and how to allocate
vaccines. With the development of modern technologies, it is imperative to collect
and analyze data from surveillance so that such communicable diseases can be
predicted and infection can be contained days or weeks before outbreaks.

Several syndromic surveillance systems have been put in use nationally in recent
years, such as the Center for Disease Control (CDC)’s BioSense program, Early
Aberration Response System (EARS) and Electronic Surveillance System for the
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Early Notification of Community-Based Epidemics (ESSENCE), as reviewed by
[4]. The data set used in this chapter is derived from emergency department (ED)
visits for influenza-like illness and respiratory illness in the Indiana Public Health
Emergency Surveillance System (PHESS). Indiana has the largest Health Informa-
tion Exchange, including a comprehensive coverage of individual information. The
data are collected in nearly real time, which means data can be obtained within
seconds with almost no delay in reporting.

In our analysis, we choose three-year visits data from 2008 to 2010. There are
several difficulties in analyzing the real surveillance data. First, the daily data in
three years contain both time and spatial covariates, with a dimension of 1096× 92
(1096 days and 92 counties). Second, the existing algorithms do not perform
well enough to accurately detect the outbreaks. For example, a huge number of
false alarms have been generated in outbreak detections using the existing CDC
algorithm. Thus, there is a need to develop a novel framework to achieve dimension
reduction and computational efficiency through dynamic data-driven applications
systems (DDDAS).

There are two important challenging issues that should be addressed: high-
dimension and low signal-to-noise ratio in a spatio-temporal dynamic structure.
Both of them have influences on the performance of outbreak detection. Many
existing spatio-temporal methods, e.g., [16, 22, 36], articulate variations associated
with covariate information and uncertainty quantification. Zou et al. [38] propose
a Bayesian framework incorporates Gaussian Markov random field and spatio-
temporal conditional autoregressive models. The framework allows timely outbreak
detections for syndromic surveillance systems, while providing a systematic means
for quantifying spatial and temporal uncertainty.

Application system DDDAS is a paradigm that dynamically inputs data to
improve outcome accuracy and algorithm efficiency. It is a popular topic and has
been employed to many applications [27–31, 35]. In this chapter, we propose a
novel hierarchal Bayesian framework to accommodate these two issues: by first
applying the method of Dirichlet process to cluster our data and then use a hidden
Markov model which is solved with a particle filter technique. The DDDAS-related
DPPF framework will be detailed in Sect. 7.2. The benefits of combining Dirichlet
process with particle filters are three-fold. First, the employment of Dirichlet process
achieves dimension reduction and automatic selection of number of spatial clusters
without the need of a pre-specified cluster number. Second, our model is semi-
parametric and incorporates spatial dependency through a DDDAS approach. Third,
as compared to traditional methods such as the Kalman filter, particle filters obtain
hidden variables effectively especially in our nonlinear model.

A Dirichlet process is a non-parametric Bayesian method which allows relax-
ation of the parametric assumption and significantly enhances model versatility.
In a clustering problem, the most salient advantage of Dirichlet process is the
automatic selection of the number of clusters, in contrast of being specified by the
experimenter than most existing machine learning methods, see [1, 3, 13, 15] and
more recent developments in [12] (stick-breaking processes), [10] (local Dirichlet
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process), [32] (nested Dirichlet process), and [34] (hierarchical Dirichlet processes).
Bayesian nonparametric spatial modeling with Dirichlet process has been applied to
many applications of spatio-temporal data analysis [7, 11, 17, 18, 24].

The main purpose of a Hidden Markov model (HMM) is to identify the hidden
states from observed dynamical data. HMM based methods have been widely used
for surveillance data, see [19, 23, 25, 26, 37]. To solve for the hidden states, one
can use stochastic filters, Kalman filter [21], particle filter or ensemble Kalman
filter [2, 5, 14, 33] develops MEnF filter by combining Gaussian mixture models
and ensemble filter. It achieves dimension and uncertainty reductions. Compared
to a traditional HMM, the employment of Dirichlet process achieves dimension
reduction and reduces the between-group dependency for filtering.

The rest of the chapter is organized as follows. In Sect. 7.2, we present our
proposed DPPF model and all methods. We apply the DPPF model to the real
data from the Indiana Public Health Emergency Surveillance System (PHESS) and
discuss the outbreak detection results in Sect. 7.3. Concluding remarks are discussed
in Sect. 7.4.

7.2 Methodology

This section presents our semi-parametric DPPF model which consists of two parts:
Dirichlet process and particle filters. An adjacency matrix is employed to further
accommodate the spatial information after clustering with the Dirichlet process.
Outbreak detection performance is measured by statistical process control charts.

Counts of discrete cases are usually assumed to be from a Poisson distribution. In
the influenza-like illness surveillance data, the number of syndrome counts within
each day in a certain spatial region is collected and the counts are assumed to follow
a Poisson distribution. Counts of the ith region on time t is denoted by yit , xi1t
is time stamp and xi2t represents day of the week. The spatial effect θi follows a
Dirichlet process and θi is for the region (county) i. The semi-parametric model is
as follows.

yit |θi ∼ Poisson(exp(β1xi1t+β2xi2t + θi)), i=1, . . . , n, t=1, . . . , T , (7.1)

θi |G ∼ G, i = 1, . . . , n, (7.2)

G|α,G0 ∼ DP(αG0), G0 = N (μ, �), α > 0, (7.3)

E[yλjl ,t ] = ξjt , λjl ∈ Cj , l = 1, . . . , nj , j = 1, . . . , m, (7.4)

ξ t = Aζ t + vt , ξ t , vt ∈ R
m, A ∈ R

m×m, (7.5)

ζ t = Dζ t−1 + ζ t−1(1−
ζ t−1

k
)+ wt , ζ t ,wt ∈ R

m, D ∈ R
m×m. (7.6)
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The set Cj = {λj1, λj2, . . . , λjnj } consists of all the indices of counties clustered
into the j th group from Dirichlet process (7.1), (7.2), and (7.3). After the clustering
using Dirichlet process (7.5), (7.2), and (7.3), data are aggregated by clusters to
obtain ξ t which serves as observations in the nonlinear filter (7.5) and (7.6). The
nonlinear filter finally estimates the hidden variable ζ t ∈ R

m on clusters.
Now we describe the computation of hyper-parameters, β, A, D, k and the

Gaussian noise vt ,wt from (7.5) and (7.6). The covariance matrix Q of wt is
diagonal and the covariance matrix R of vt is a compound symmetry covariance
matrix. Capacity is mimicked by parameter k with a large initial value. The basline
spatial effect of θi is a normal distribution G0 = N (μ, �). Both μ and � are
the mean and variance from a normal distribution which are assumed to have
informative priors μ ∼ N (μ0, �0) and � ∼ IW(a, b) respectively. IW(a, b) is
the inverse Wishart distribution with scale matrix a and degrees of freedom b. We
assume that the β’s are from a multivariate normal distribution β ∼ N (β0, �β). The
concentration parameter α > 0 is assumed to have a Gamma prior α ∼ �(a0, b0).
Both of the noises wt and vt are from normal distributions with wt ∼ N (0,Q) and
vt ∼ N (0, R) respectively. A maximum likelihood estimation (MLE) is used to
obtain initial estimations of A,D, k,Q and R.

7.2.1 Dirichlet Process

Compared to many traditional clustering algorithms, a Dirichlet process could
automatically obtain the number of clusters without a pre-specified number of
clusters. In the DPPF model, the spatial effect is assumed to be from a Dirichlet
process.

In (7.1), (7.2), and (7.3) the normal distribution G0 = N (μ, �) has mean
μ and a covariance �, both of which have informative priors μ ∼ N (μ0, �0)

and � ∼ IW(a, b) respectively. The distribution IW(a, b) is the inverse Wishart
distribution with scale matrix a and degrees of freedom b. We also assume that
the β’s obey a normal distribution β ∼ N (β0, �β). The concentration parameter
α > 0 is assumed to have a Gamma prior α ∼ �(a0, b0). Posterior distribution of
θi is given by

π(θi |θ1, . . . , θi−1, α,μ, �) = α

α + i − 1
G0(μ, �)

+ 1

α + i − 1

i−1∑

j=1

δθj (θi), i = 2, · · · ,m. (7.7)

A small α implies small probability that θi is a new value drawn randomly fromG0,
which leads to a small number (m) of distinct values of θ ; and a large α indicates
there will be more clusters, i.e., larger m.
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In practice, it often requires to choose “the best” from many clustering results
obtained from a Dirichlet processes. Thus, a rule is needed to select a optimal
clustering results from Dirichlet process since the clustering from Dirichlet process
is not unique due to the use of a sequential Markov Chain Monte Carlo. To this
end, we propose a preference-based selection principle, which fully utilizes all the
clustering information from the Dirichlet processes. Since the adjacency matrix
is not a well-known construct associated with a Dirichlet process, we define a
quantitative index, called the influential index and use it to find optimal clustering
results.

The influential index is calculated as follows. Denote the column summation of
the adjacency matrix M by S = {s1, s2, . . . , sn}, where n is the number of regions
and si = ∑n

j=1Mij . Here Mij is set to be 1/ni when regions i and j are adjacent
and otherwise 0, where ni is the number of neighbors of region i. After the Dirichlet
process, data are aggregated from the same cluster by adding all the elements from
M column-wise and row-wise, so that the same cluster has a unique label. In some
sense, sk is what the region k contributes to all its neighbors. Assume that there
are L clustering results from the Dirichlet process and in the lth clustering result,
there are cl clusters/groups, 1 ≤ l ≤ L. Denote the lth clustering result by Dl =
{τl1, τl2, . . . , τlcl }, 1 ≤ l ≤ L, where τlk contains all labels of regions in the kth
cluster of the lth clustering result. Then the selection is determined by the largest
value(s) of the influential index defined as:

Indl =
cl∑

k=1

|τlk|
∑

i∈τlk
si , 1 ≤ l ≤ L. (7.8)

where |τlk| is the number of elements in set τlk . If Indl for some 1 ≤ l ≤ L has the
largest value, then the lth clustering is used for later data processing.

7.2.2 Particle Filter

To model incidence rates after clustering through Dirichlet process, we employ a
particle filter, i.e., a number of independent random variables called particles are
used to estimate the hidden variables. The particles are sampled directly from the
state space, representing the posterior distribution. New observations are involved to
update the posterior probabilities and the system is propagated recursively according
to Bayesian rule.

Note the (7.5) and (7.6) have Markov linear observations. With a further
assumption on wt and vt as Gaussian random variables, the goals of the nonlinear
filter E[ζ t |ξ t ]’s for t = 1, 2, . . . , T are Gaussian which can be solved explicitly.
Even though this problem can be solved by the classical Kalman filter [20], our
model is nonlinear and the evaluation of nonlinear functional is a challenge even
with Gaussian parameters. We then use instead a particle filter technique to solve
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the problem, which is achieved by sequential Monte Carlo methods. In a sequential
Monte Carlo simulation, the prior and the posterior distributions are approximated
by discrete distributions. With a resampling technique, this particle filter is an
efficient implementation [9]. The recursive nature and relative low cost are the
advantages of a particle filter approach.

We assume that there are J particles. Then ζ t could be drawn from the posterior
distribution,

ζ t+1|ζ t , ξ t+1 ∼ N (μ, �), (7.9)

μ = �(Q−1g(ζ t )+ A′R−1ξ t+1), (7.10)

� = (Q−1 + A′R−1A)−1. (7.11)

In practice, the nonlinear functional of ζi,t+1 is evaluated by

E[f (ζ t+1)|ζ t , ξ t+1] ≈
J∑

j=1

f (ζ
(j)

t+1|ζ t , ξ t+1)p
(j)

t+1,

where ζ
(j)

t+1 are Monte Carlo samples (often called particles) and the weights p(j)t+1
can be obtained recursively:

p
(j)

t+1 ∝ p(j)t exp(−η(j)), j = 1, . . . , J.

η(j) = 1

2
(ξ t+1 − Ag(ζ (j)t )ᵀK−1(ξ t+1 − Ag(ζ (j)t )),

K = R + AQAᵀ,

where g(ζ t−1) = Dζ t−1 + ζ t−1(1−
ζ t−1

k
) as demonstrated in Eq. (7.6).

7.2.3 Evaluation of the Method

A popular statistical quality control chart – exponentially weighted moving average
(EWMA) control chart is employed to evaluate the proposed DPPF method. Control
charts are usually used to detect violations that depart from a specified center or
the sample center. Since the focus is on the detection of an outbreak of a certain
disease, the violations below the center line are not of interest for our surveillance
data analysis.

In practice, we would like an early signal for out-of-control process to indicate
an abnormality, and hence a dynamic indicator of a possible disease outbreak. Since
large control limits will result in an increase of out-of-control average run length
(ARL) for any shift and reduce the power of the chart, the results are reported in
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the EWMA chart with control limit up to 4σ . The 4σ threshold is selected for two
reasons. First, it may be difficult to detect the true positives if large control limits
is used, especially for true positive rate (TPR) and negative predictive value (NPV)
as the detection effectiveness decreases as control limit increases. Second, if control
limits are too large in the EWMA chart, it will result in large type II errors.

Outbreak detection performances are evaluated by comparing the detected results
with the true outbreaks. The benchmark set consists of the label of points that
identify the points as outbreaks or not. Points are defined as true positives if they
are outbreaks in both benchmark and EWMA detection results. True negatives are
regular periods that are not detected as outbreaks in EWMA. False positive and false
negative points are defined similarly. Five indices are reported, accuracy (ACC),
sensitivity (TPR), specificity (SPC), positive predictive value (PPV) and negative
predictive value (NPV).

7.3 Applications with Indiana Surveillance Data

The surveillance data of this study come from the Indiana Public Health Emergency
Surveillance System (PHESS). The dataset contains emergency department visits
for influenza-like illness and respiratory illness. There are about seven million
observations in the data set, ranging from 2008 to 2010. The DPPF model is
applied to the real data by first clustering through Dirichlet process and then
obtaining hidden variables by particle filters as described in Sect. 7.2. After the
Dirichlet process steps, the 92 counties in Indiana are clustered into 25 spatial
groups. As a comparison, we also consider another method involving the regional
labor market information as discussed in [39], which clusters the counties into 11
regions. Detection performance by our DPPF model is compared to the results by the
following three methods: (1) using the raw data with 92 counties; (2) using regional
labor market data with 11 regions; and (3) dimension reduced data by Dirichlet
process without filtering.

Time series plot of the 25 groups after Dirichlet process is in Fig. 7.1. The
highest value is around 670 days with the largest outbreak, which is in October,
2009. The CDC 2009–2010 influenza season report [8] confirms that the peak of
weekly percentage of visits for influenza like illness is indeed at the end of October,
2009. This peak is higher than all three previous flu seasons, as shown in Fig. 7.1.
Such a high peak will dominate the process and make it difficult to discover other
moderate and small outbreaks. The time series plot of filtered states is shown in
Fig. 7.2. The magnitudes of the filtered states are smaller than those of observations
and the overall shape of the latent states is similar to the raw data.

Figure 7.3 shows the clustering results for real data after the Dirichlet process.
Average incidence rate for each of the clusters is provided in a heat map, which is an
Indiana state map with 92 counties. Colors in the map present the average incidence
rate of each cluster for the corresponding season. The average value increases with
the darkness of the color, from white to dark red. The last season of 2009 has a
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Fig. 7.2 Time series plot for DPPF data

relatively dark color, which implies the high level of incidence rate during this time.
This period is the outbreak of the 2009 H1N1 activity.

To evaluate different methods in outbreak detection, we refer to the CDC’s
influenza season summary [8]: “the proportion of specimens testing positive for
influenza first exceeded 10% during the week ending January 12, 2008 (week 2),
peaked at 32% during the week ending February 9, 2008 (week 6), and declined to
<10% during the week ending April 19, 2008 (week 16). The proportion was above
10% positive for 14 consecutive weeks”. Thus we obtain the first outbreak from
01/12/2008 to 04/19/2008 (99 days).

According to the CDC report for the past decade, the flu peak month is usually
during December to March. However, the H1N1 pandemic during this period
complicated the situation and there were both common flu season and the H1N1
outbreak. The second outbreak period, which is also the H1N1 period, occurred
from 08/30/2009 to 12/12/2009 (104 days). We use the averaged value within each
cluster and each season for our analysis. By comparing the results spatially, we can
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Fig. 7.3 Indiana Surveillance Data Clustered by Dirichlet Process. Incidence rate of each cluster
is a standardized value and scaled to 0–1. Counties with darker color has higher relative incidence
rate. Grant county has the highest incidence rate and Franklin has the lowest incidence rate
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see that Grant county has the highest incidence rate and Franklin has the lowest
incidence rate. However, in seasons without severe outbreaks, such as the second
and third season in 2010, the differences of incidence rate are not significant. We
could narrow the time window to one month or even one week to discover more
detailed information. In this section, we show the clustering results in seasons for
an overall dynamics of the influenza-like illness. We also observe that the first
season of 2008 has relatively high incidences except for the highest peak. This
is again confirmed by the CDC 2007–2008 influenza-like illness seasonal report,
which implies there was an outbreak during the first flu season of 2008.

The filtered data from DPPF model is related with the values of model parameters
initially estimated from minimizing the negative log likelihood. For the matrix A
in (7.5), we define it as a simple tri-diagonal matrix with the same diagonal value and
same off diagonal non-zero value. The matrixD has a block tri-diagonal structure as
demonstrated in Fig. 7.4. This is motivated by mimicing the structure of a diffusion
matrix discretized from finite difference for Laplacian in a popular type of logistic
model. In our model, we have 25 groups and thus D is a 25 by 25 symmetric sparse
matrix with diagonal values at 4 and off-diagonals (dotted) at −1.

Figure 7.5 displays outbreak detection results using the real data. Five popular
performance measures in classification evaluation have been presented, and our
DPPF model shows advantages in almost all of them. Different type of indices show
different behaviors as the control limits increase. Generally speaking, for all the four
methods in this comparison, ACC, SPC and PPV increase as control limit increase
from 1σ to 4σ . For the other two indices, TPR and NPV show the decreasing trends.
Except for PPV, the detection precisions of our DPPF model are greater than 70%,
and could reach as high as more than 90%. The DPPF still performs the best even
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diagonal matrix)

for PPV, while all four methods have relatively low detection accuracy. Here we
limit the control limits up to 4σ . If the control limit is too large, most of the points
will stay within the limits, thus the EWMA chart fails to detect all the outbreaks.
This explains why there is a decreasing trend in TPR and NPV when control limits
increase.
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7.4 Conclusions and Future Work

To accommodate low signal-to-noise ratios and high-dimensional spatio-temporal
structure in health surveillance data, we propose a novel hierarchical Bayesian
framework that incorporates both spatial and temporal effects via Dirichlet pro-
cesses and particle filters. Our model (DPPF) is a data driven approach for spatio-
temporal dynamics with efficient dimension reduction which provides effective and
early detections of outbreaks. The DPPF achieves high accuracy with low signal-to-
noise ratio and detects small shifts in the data. Moreover, the computational cost of
the DPPF method is significantly lower than a Bayesian approach for the full data
dimension.

Since the independence and normality assumptions in statistical control charts
are often violated, the use of raw data to do outbreak detection with control charts
could be problematic. Our DPPF model is strategically strengthened using the
Dirichlet processes for dimension reduction without pre-specifing the number of
clusters and reducing the between-cluster spatial dependencies for filtering. The
non-parametric property of Dirichlet process enhances model flexibility and affords
dynamic data driven detections.

The particle filter provides hidden variable estimation. Compared to the tradi-
tional hidden Markov models for surveillance, our DPPF model makes it possible
for dynamic states estimation. The numerical results demonstrate that the proposed
methodology is effective in modeling and predicting the dynamic patterns of the
outbreak process.

The methodology presented here is naturally appealing for a wide range of
modeling problems. The DPPF framework will enable public health practitioners in
cases of the infeasibility and potential undesirability of likelihood-based inference
for massive spatio-temporal outbreak detection. Our parameter estimates are chosen
to achieve as close a match as possible, according to an optimal filtering framework,
between the observed and fitted values of selected statistical properties. Ongoing
research includes investigation of different setup of the filter models in our DPPF
framework, such as various A and D matrices.
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Chapter 8
A Computational Steering Framework
for Large-Scale Composite Structures

A. Korobenko, M.-C. Hsu, and Y. Bazilevs

Abstract Recent advances in simulation, optimization, structural health
monitoring, and high-performance computing create a unique opportunity to
combine the developments in these fields to formulate a Dynamic Data-Driven
Applications Systems (DDDAS) Interactive Structure Composite Element Relation
Network (DISCERN) framework. DISCERN consists of the following items
and features: a structural health monitoring (SHM) system, an advanced fluid-
structure interaction (FSI) simulation, and sensitivity analysis, optimization and
control software. High-performance computing (HPC) is employed to enhance
the efficiency and effectiveness of the system. The intended application of
the DISCERN framework is the analysis of medium-to-large-scale composite
structures. These include aerospace structures, such as military aircraft fuselage and
wings, helicopter blades, and unmanned aerial vehicles, and civil structures, such as
wind turbine blades and towers. The proposed DISCERN framework continuously
and dynamically integrates the SHM data into the FSI analysis of these structures.
This capability allows one to: (1) Shelter the structures from excessive stress levels
during operation; (2) Make informed decisions to perform structural maintenance
and repair; and (3) Predict the remaining fatigue life of the structure. The primal and
adjoint, time-dependent FSI formulations are presented. A simple control strategy
for FSI problems is formulated based on the information provided by the solution
of the primal and adjoint FSI problems. Such control strategies presented are useful
for computational steering simulations of interest in this work.
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8.1 Introduction

Dynamic Data-Driven Applications Systems (DDDAS) [19] is a framework in
which measurement data collected for a given physical system are used to dynam-
ically update a computational model of that system. Using measurement data,
the computational model geometry, boundary conditions, forcing, and material
parameters may be updated to better represent physical reality. At the same time,
the properly updated computational model is able to produce higher-fidelity outputs
for the quantities of interest for which measurements are not readily available. As
such, DDDAS is a framework in which measurement and simulation co-exist in a
symbiotic environment.

Recent developments in computational mechanics, optimization, structural
health monitoring (SHM), and high-performance computing (HPC) create a unique
opportunity to formulate a DDDAS framework wherein computational steering
can be used for the class of medium to large-scale structural applications [10]
(see Fig. 8.1 for an illustration). These include aerospace structures such as aircraft
fuselage and wings, helicopter blades, unmanned aerial vehicles, and civil structures
such as wind turbine blades and towers. Computational steering enables real-time
monitoring and control of structures to minimize fatigue loads, and thereby lengthen
structural life, prevent premature failure, and predict the onset of failure. There are
several well-known damage scenarios that occur in composite structures primarily
resulting from manufacturing. The ability to shelter these structures from excessive

Fig. 8.1 Illustration of the proposed DISCERN framework
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fatigue loading, in real time and under fully operational status, results in fewer hours
spent on structural maintenance and repair, and could ultimately lead to significant
cost savings. The computationally intensive components of this DDDAS framework
necessitate utilization of HPC.

Many applications of DDDAS involve not only updating of the computational
model on the basis of sensor data, but also adjustment of the model and physical
system input parameters to optimize a desired outcome. For example, in [30], the
authors developed and deployed a DDDAS framework for computational steering
of the laser-guided surgery for prostate cancer treatment. The temperature and
location of the laser were dynamically controlled to achieve maximum damage to
the cancerous tissue. In our case, we are interested in a DDDAS framework for
large-scale structures exposed to aerodynamic loading, such as aircraft fuselage and
wings, for which we call our methodology DDDAS Interactive Structure Composite
Element Relation Network (DISCERN).

As part of the DISCERN framework, we are interested in dynamically con-
trolling structures to ensure their operation in safe conditions, and to minimize
the onset and progression of structural damage. In most cases, the fluid–structure
interaction (FSI) [12] effect is important and needs to be included in the underlying
computational model. Furthermore, because the FSI effect is significant for damage
modeling, a successful dynamic control strategy for our application system must be
able to take FSI coupling into account. Such a dynamic control strategy for time-
dependent FSI, first proposed in [11], is described in this chapter. The proposed
control strategy is based on the simultaneous solution of the primal and adjoint
(or sometimes called dual) FSI problems. The solutions of both primal and adjoint
FSI problems are used to adjust the control parameters of the application system.
Because both primal and adjoint FSI problems involve coupling between the primal
and dual fluid and structural mechanics degrees of freedom, the control strategy
automatically takes FSI coupling into account.

In this book chapter we provide an overview of the DISCERN framework, which
consists of the following items and features: 1. Advanced simulation of composite
structures, aerodynamics, and FSI; 2. Sensitivity analysis, optimization and control
of structures in the presence of FSI; 3. SHM system; 4. Utilization of HPC. This
framework was first proposed in [10] and further developed in [11]. We also
present several computational examples that illustrate the utilization of the described
DISCERN framework.

8.2 Elements of the DDDAS Framework

8.2.1 Advanced Modeling of Structures, Aerodynamics,
and FSI

The structural mechanics is modeled using Isogeometric Analysis (IGA). IGA is
a recently introduced Finite Element Method (FEM)-like simulation methodology
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that relies on the basis function technology of Computer-Aided Design (CAD),
Computer Graphics (CG), and animation [3, 18, 23]. In IGA, the geometry and
computational solution fields are represented using the same functional description.
The most widely used discretization in IGA makes use of non-Uniform Rational B-
Splines (NURBS) [32], but other alternatives, such as T-splines [7, 38], are possible.
As a result of discretization, integration of structural design and computational
analysis is greatly simplified. This single representation of the geometry and solu-
tion fields allows for a simple integration of different software components needed
for different stages of modeling and simulation. IGA is an inherently higher-order
accurate technique. In addition, the basis functions in IGA are of higher continuity
than standard finite elements. This additional continuity is a distinguishing feature
of IGA and it is beneficial in many applications of computational mechanics (see,
e.g., [18]).

Composite structures of interest in this work (e.g., military aircraft fuselage
sections, helicopter blades, wings of the UAV, etc.), due to their nature, are
curved thin shells reinforced with structural stiffeners. As a result, to simulate
such structures at full scale and sufficient geometric detail, discretization of thin
shell theories are employed for computational efficiency, and are key to structural
modeling of composites. Isogeometric shell analysis was recently proposed in [15]
to address the shortcomings of standard finite element technology for thin shells.
It was found that the higher-order continuity (C1 and above) of the IGA basis
functions significantly improved per-degree-of-freedom accuracy and robustness
of thin shell discretizations as compared to the FEM. Furthermore, the increased
continuity of the IGA discretizations enabled the use of shell kinematics without
rotational degrees of freedom [16, 25], leading to further computational cost savings.
The isogeometric rotation-free Kirchhoff-Love shell formulation for structures
composed of multiple structural patches, called the Bending-Strip method, was
developed in [25] and applied to FSI of wind turbines in [8, 9, 21, 26]. Besides the
significant computational savings, the rotation-free shell discretization makes FSI
coupling simpler than for shells with rotational degrees of freedom. Further speed-
up of the structural computations may be obtained by implementing the structural
mechanics formulation on multicore processors and Graphics Processing Units
(GPU), which provide dense and enormous compute power suitable for deployment
in operational conditions.

The aerodynamics modeling is performed using a general-geometry FEM (and
IGA), time-dependent, 3D, incompressible Navier–Stokes solver developed by the
authors [12]. The methodology makes use of the Variational Multiscale (VMS) for-
mulation [1, 4], augmented with weakly enforced essential boundary conditions [5].
Weak boundary conditions improve the accuracy in the presence of marginally
resolved boundary layers and have similarities with wall-function technology. The
fluid mechanics equations are posed on a moving domain using the Arbitrary
Lagrangian-Eulerian (ALE) formulation [22]. As such, the method is called ALE-
VMS.

The ALE-VMS simulations incorporate FSI coupling, which assumes strong
coupling between the fluid and structure and employ Newton linearization. At
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Fig. 8.2 Wind-turbine FSI simulation at full scale from [26]. Blade passing the tower with
superposed air speed contours

the level of the Newton iteration, the implementation allows one to choose the
degree of coupling between the fluid and structure in the left-hand-side matrix
(interested reader is referred to [12] for more details). This leads to a hierarchy
of coupling techniques, which may be exploited for optimal efficiency for a given
application. However, the right-hand-side vector of the coupled equation system
is unchanged, which automatically guarantees convergence to a correctly coupled
solution independent of the degree of coupling in the left-hand-side matrix. Given
that the applications presented are in the aeroelastic regime, we are often able to
remove the non-standard coupling terms from the left-hand-side matrix without
degrading nonlinear convergence. This strategy was successfully employed in well-
validated simulations wind-turbine FSI (see Figs. 8.2 and 8.3).

8.2.2 Sensitivity Analysis, Optimization, and Control of
Structures

This section briefly describes the derivative-free sensitivity analysis and optimiza-
tion techniques that help “convert” the sensor and measurement data into useful
quantities (i.e., model inputs, such as location, size, and shape of the damaged zone
or a length scale parameter employed in a continuum damage model) needed for
advanced modeling of structures. Then, a detailed formulation for adjoint-based
control strategy for FSI applications is shown [11].

8.2.2.1 Derivative-Free Methods for Sensitivity Analysis and Optimization

The data from embedded sensors is used to quantify internal damage of the
structural system and provide input parameters to the structure modeled with IGA.
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Fig. 8.3 Wind-turbine FSI simulation at full scale from [26]. Aerodynamic torque history for the
FSI and rigid-blade simulation compared to experimental values

The damage is quantified as the local reduction in material strength, separation of
the composite layers, or disbonding of the joints, which are introduced into the
structural model as a modification in the material model or geometric/topological
parameters. These parameters will have error bounds, requiring sensitivity analysis
using efficient uncertainty quantification (UQ) tools to place confidence intervals
on simulation outputs. Such analysis may be performed using stochastic collocation
methods developed in [37, 40]. These methods have proven to be very efficient for
both computational solid mechanics and cardiovascular simulation problems [36],
offering significant savings over traditional Monte Carlo techniques, and are readily
extendable to the present application.

Each sensitivity analysis involves executing batches of independent simulations
using systematically chosen input conditions determined via collocation with a
sparse grid Smolyak algorithm [35]. Because the simulations may be launched inde-
pendently, parallel scalability is greatly enhanced. The results of such simulations
are used to compute probability density functions (pdfs) of the output quantities of
interest, from which confidence intervals and other relevant statistics are extracted.
For example, given the error bounds on input parameters (such as damage model
parameters and defect locations), it is possible, within the proposed DISCERN
framework, to place confidence intervals (90%, 95%, etc.) on output quantities
of interest, such as maximum blade deflection or the ratio of the internal stress
and material strength. The sensitivity results may be used to assess the degree of
importance of a given damage parameter versus the rest, and provide guidance for
non-destructive evaluation as to which damage parameters need to be estimated with
higher accuracy.
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Optimization of the composite damage model parameters may be performed
using the surrogate management framework (SMF) [2, 17, 28]. A recent extension
of this method has been developed to incorporate stochastic collocation for robust
design [37]. SMF is an efficient derivative-free method that relies on the use of
surrogate functions (or approximations) for improved efficiency of the optimization
algorithm. The SMF method consists of two parts, a search step for efficiency
and design space exploration, and a poll step to ensure mathematical convergence.
Constraints may be introduced into the optimization and control algorithm in a
straightforward fashion.

8.2.2.2 Adjoint-Based Control for FSI

This section describes the weak form of the coupled primal and adjoint FSI
equations, and develops a control algorithm based on the solution of both the primal
and adjoint FSI problem. The fluid is assumed to be viscous and incompressible.
The structure is modeled as a solid that is allowed to undergo large deformations.
The details of the control formulation are provided in what follows.

Primal FSI problem The weak form of the Navier–Stokes equations of incom-
pressible flows in the ALE framework may be stated as: find the fluid velocity u and
pressure p, such that for all δu and δp, the linear momentum and incompressibility
constraint test functions:

Bf ({δu, δp}, {u, p})− Ff ({δu, δp}) = 0, (8.1)

where the semilinear form Bf ({δu, δp}, {u, p}) is given by

Bf ({δu, δp}, {u, p}) =
∫

�f

δu · ρf
(
∂u
∂t
+ (u− û) · ∇u

)
d�−

∫

�f

∇ · δup d�

+
∫

�f

∇sδu : 2μf∇su d�+
∫

�f

δp∇ · u d�, (8.2)

and the linear functional Ff ({δu, δp}) contains body forces and surface traction.
Here, û is the velocity of the fluid mechanics domain, and ρf and μf are the density
and dynamic viscosity of the fluid.

The weak form of the structural mechanics equations in the Lagrangian
frame [13] may be stated as: find the structural displacement y, such that for
all δy, the linear-momentum test functions:

Bs({δy, y})− Fs(δy) = 0 (8.3)
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where the semilinear form Bs({δy, y}) is given by

Bs({δy, y}) =
∫

�s

δy · ρs d2y
dt2

d�+
∫

�s

∇Xδy : FS d� (8.4)

and the linear functional Fs(δy) contains body forces and surface tractions. Here, F
is the deformation gradient, S is the second Piola–Kirchhoff stress tensor, and ρs is
the structure density.

With these definitions, a coupled FSI problem may be compactly stated as: find
u, p, and y, such that for all δu, δp, and δy:

Bf ({δu, δp}, {u, p})− Ff ({δu, δp})+ Bs({δy, y})− Fs(δy) = 0. (8.5)

To ensure proper FSI coupling, the following auxiliary relationships hold at the
interface between the fluid and structure,

u = dy
dt

(8.6)

and

δu = δy, (8.7)

which state that the fluid and structural mechanics velocities and linear momentum
test functions are equal. The latter condition ensures that the tractions at the fluid-
structure interface are in equilibrium [12]. The fluid mechanics domain velocity
at the fluid-structure boundary equals to the velocity of the structure. In the fluid
mechanics domain interior, a smooth evolution of the structural velocity at the
interface is taken to have a well-posed FSI problem (e.g., one can employ the
equations of linear elastostatics subject to dynamic boundary conditions coming
from the structural displacement to update the kinematics, i.e. position and velocity,
of the fluid mesh [24]). However, the solution of the FSI problem should not depend
on a particular choice of the equation for fluid mesh motion.

Adjoint FSI problem The adjoint FSI problem in the weak form may be derived
directly from the coupled FSI formulation given by Eq. (8.5), following an abstract
technique from [30]. Assuming the fluid domain velocity is frozen during the
derivation, the following weak form of the adjoint FSI problem is: find u∗ and p∗,
the dual fluid velocity and pressure, and y∗, the dual structural displacement, such
that for all δu∗, δp∗, and δy∗:

B∗f ({δu∗, δp∗}, {u∗, p∗})−F ∗f ({δu∗, δp∗})+B∗s ({δy∗, y∗})−F ∗s (δy∗) = 0. (8.8)
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The semilinear forms for the adjoint fluid and structural mechanics problems are
given by

B∗f ({δu∗, δp∗}, {u∗, p∗}) =
∫

�f

δu∗ · ρf
(
−∂u∗

∂t
+ (u− û) · ∇u∗ + (∇u)u∗

)
d�

−
∫

�f

∇ · δu∗p∗ d�+
∫

�f

∇sδu∗ : 2μf∇su∗ d�+
∫

�f

δp∗∇ · u∗ d�

(8.9)

and

B∗s ({δy∗, y∗}) =
∫

�s

δy∗ · ρs d2y∗

dt2
d�+

∫

�s

∇Xδy∗ : D∇Xδy∗ d�, (8.10)

where the tangent stiffness tensor D is a function of the structural displacement y,
and is given in component form by

D = [DiJkL]
[DiJkL] = FiJCIJKLFkK + δikSJL. (8.11)

The linear functionals that drive the adjoint fluid and structural mechanics problems
are defined depending on the circumstances in which the adjoint problems are
employed.

To ensure proper adjoint FSI coupling, the following auxiliary relationships hold
at the fluid-structure interface,

u∗ = dy∗

dt
(8.12)

and

δu∗ = δy∗, (8.13)

which state that the fluid and structural mechanics dual velocities and liner
momentum test functions are equal. The latter condition leads to the equilibrium
of dual tractions.

The adjoint FSI formulation employed in this work is derived holding the
fluid domain velocity and position fixed. Otherwise, the adjoint FSI formulation
takes on a somewhat more complicated form (see, e.g., [33, 39]). However, as we
will illustrate with a numerical example, the proposed adjoint FSI formulation is
sufficient for its intended purpose.
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Adjoint-based control The primal and dual FSI problems are discretized and
solved using the techniques described earlier. Because the adjoint FSI equations
are linear, no Newton–Raphson iterations are necessary. Furthermore, we do not
have a dual mesh displacement variable in our formulation, so we do not compute
it. As such, the adjoint FSI problem is computationally less expensive than its primal
counterpart.

The discretized primal FSI equation system may be compactly written as

N(d)− Fc(c) = 0, (8.14)

where N(d) is a nonlinear function dimensioned by the number of degrees of
freedom employed in the FSI problem, d is a vector of discrete unknowns of the
FSI problem, Fc is a vector of applied discrete forces, and c is a vector of discrete,
adjustable time-dependent control parameters. The dimension of c depends on a
particular problem.

The discretized adjoint FSI equations may be compactly written as

L∗dd∗ − F∗d = 0, (8.15)

where L∗d is the left-hand-side matrix, d∗ is the vector of discrete dual unknowns, F∗d
is the vector of applied discrete forces of the adjoint FSI problem, and the subscript
d denotes the dependence of these objects on the solution of the primal FSI problem.

In Eq. (8.15), F∗d is computed as follows. Let g denote a vector of objective
functions in ones optimization or control application, and let ‖g‖w denote its
appropriate weighted norm. Then, the discrete forcing of the adjoint FSI problem is
given by

F∗d =
∂‖g‖w
∂d

. (8.16)

It may be shown that the gradient of the objective function with respect to the control
parameters may be expressed as follows (see, e.g., [14, 30]):

∂‖g‖w
∂c

= ∂Fc
∂c

· d∗ = ∂Fc
∂c

· [L∗d ]−1 ∂‖g‖w
∂d

. (8.17)

The objective-function gradient is used in the first-order gradient descent methods,
which can be used in the DISCERN framework. In these gradient descent methods
a typical update of the vector of control parameters c takes the form

ci+1 = ci − τi ∂‖g‖w
∂c

∣∣∣∣
i

, (8.18)

where i is the iteration counter, and τi is a real parameter that determines the step
size. Equation (8.18) states that the reduction in the objective function is expected if
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steps are taken in the direction of its gradient with respect to the control parameters.
The iterations given by Eq. (8.18) continue until a local (or global) minimum is
attained, or until the objective function is sufficiently reduced.

We use the gradient descent methods to develop a simple control strategy for FSI
problems. The time interval over which the FSI equations are solved is decomposed
into subintervals, and the control parameters are assumed to be constant in each
subinterval. Let tn and tn+1 denote the end points of the time interval of interest.
Then, the following five-step procedure is employed on the subinterval:

1. Set c = 0, and advance the primal FSI problem forward in time from tn to tn+1.
2. Given the primal FSI solution, advance the adjoint FSI problem backward in time

from tn+1 to tn.
3. Given the adjoint solution, compute the objective function gradient according to

Eq. (8.17).
4. Compute the control parameters according to Eq. (8.18).
5. Advance the primal FSI problem forward in time from tn and tn+1 using c from

Step 4.

The five-step procedure is repeated for the subsequent subintervals. Steps 4 and
5 may be repeated multiple times to ensure the desired reduction in the objective
function. However, one must keep in mind that the FSI problem is time-dependent,
and, to ensure that it is well posed, the change in the control parameter values from
one subinterval to the next may not be arbitrarily large. Techniques such as line
search may be employed to select the step size in Eq. (8.18).

To illustrate the adjoint-based control formulation, a 2D benchmark problem is
solved involving FSI of a thin elastic beam attached to a fixed, rigid block [6].
The problem setup is illustrated in Fig. 8.4. We first solve the problems using the
primal FSI formulation without control to establish a baseline solution. Vortices

Fig. 8.4 FSI of an elastic beam attached to a fixed, rigid square block. Problem setup
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Fig. 8.5 FSI of an elastic beam attached to a fixed, rigid square block. Contours of flow speed (in
cm/s) and deformation of the elastic beam for the baseline simulation

Fig. 8.6 FSI of an elastic beam attached to a fixed, rigid square block.The objective function is
defined as the squared L2-norm of the displacement vector, and the vertical control force is applied
uniformly at the tip of the beam

develop behind the rigid block and interact with the elastic bar, sending it into large-
amplitude oscillatory motion. Snapshots of the fluid pressure and nearly periodic,
large beam deformation may be seen shown in Fig. 8.5. To suppress the beam
deformation, for the next simulation, we apply a time-dependent force at the free
end of the beam. The force is restricted to act in the vertical direction, however,
its magnitude and sign are left as control parameters. The objective function is
the squared L2-norm of the displacement vector. The beam, control force, and
objective function are shown in Fig. 8.6. For this computation, the proposed five-
step procedure is employed at each time step, and Steps 4 and 5 are only executed
once. The step size τ is kept constant throughout the simulation. Simulation results
with control are shown in Figs. 8.7 and 8.8. Figure 8.7 shows the snapshots of the
primal and dual velocity and pressure solution at a time instant. Note that the beam
deformation is not as pronounced as in the case of the baseline solution without
control. Figure 8.8 shows the time history of the objective function and compares
it to the baseline solution. The control is clearly doing its job of keeping the beam
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Fig. 8.7 FSI of an elastic beam attached to a fixed, rigid square block. Primal and dual velocity
and pressure contours

Fig. 8.8 FSI of an elastic beam attached to a fixed, rigid square block. Left: comparison of the
time-dependent objective function for the simulations with and without control. Note that the beam
displacement, as measured by the objective function, is reduced significantly when the control is
employed. Right: time history of the control force

displacement very small compared to the baseline case. The time history of the
control force is also shown in Fig. 8.8. Because we “turn on” the control mechanism
at the time instant when the beam displacement is at its largest, the control force
grows very quickly to suppress it. Once the displacement is suppressed, the vertical
force exhibits much smoother behavior in time.
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8.2.3 The Structural Health Monitoring (SHM) System

The biggest modeling challenge is to use an output of a structural monitoring system
and “convert” it into a quantifiable structural damage that is used to update the
IGA simulation model. Another challenge is to enable the prediction of structural
response of the updated model and to estimate the remaining fatigue life of the
structure. This is known as the prognosis step of SHM.

The types of damage often encountered in composite blade structures, and
which are of interest here, are local buckling of composite fibers (in-plane and/or
out-of-plane fiber waviness), disbonding at the spar-panel adhesive, resin-starved
areas, and delamination of the sandwich panel. These specific defects are being
considered today as typical of aerospace and civil composite structures, and are
the subject of current research by several groups. Experimental investigations of
such phenomena are necessary to establish a reliable correspondence between the
recorded sensor/measurement data, the type, extent, and location of damage that
occurred, and how to build this information into an advanced computational model
of the structure.

The defect detection effort involves both ultrasonic sensor arrays and infrared
thermographic imaging. The ultrasonic sensor arrays consist of either bulk piezo-
electric transducers or the flexible Macro-Fiber Composite (MFC) transducers.
Both devices have been used extensively in a variety of projects involving damage
detection in composite structures in [20, 29, 31]. For damage detection and location,
the sensors are used in an Acoustic Emission (AE) (passive) mode, as well as in
an active mode of ultrasonic guided wave testing. In a passive mode, location of
active damage may be performed using the traditional triangulation of time-of-flight
information. In an active mode, several guided wave schemes may be employed,
including traditional pitch-catch schemes and more elaborated diffraction-based
schemes. In addition to the ultrasonic sensor array, large-field inspections may
be conducted by Infrared Thermographic methods aided by a statistical image
processing approach, recently developed in [27]. The statistical approach, which is
based on a Multivariate Outlier Analysis of the infrared thermographic images, was
recently proven to enhance the defect contrast in aerospace-type composite panels.

8.2.4 Utilization of HPC

The computational modules of the DDDAS framework are implemented in tradi-
tional HPC environments. However, multicore aspects of the current and evolving
HPC environments, including GPUs, and other potential accelerator architectures,
are also utilized in an effort to reach near real-time DDDAS performance. The
FSI software is parallel and uses the Message Passing Interface (MPI) library. The
SMF framework allows for a straightforward parallel implementation due to the
inherent independent nature of the simulations involved. The parallel FSI code uses
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the non-overlapping domain decomposition method for parallel implementation.
The Generalized Minimum Residual (GMRES) iterative algorithm [34] is used for
solving the underlying linear system of equations. The code has been thoroughly
profiled, using the Integrated Performance Monitoring (IPM) tool, for parallel
performance and load balance analysis, and shows good load balance and parallel
scaling.

8.3 Conclusions

A DDDAS framework for large-scale composite structures based on continually and
dynamically injected sensor data is proposed. The DDDAS Interactive Structure
Composite Element Relation Network (DISCERN) framework consists of several
parts, which include FSI simulation, sensitivity analysis, optimization and control
module, and an SHM system. The computational modules are implemented in
the HPC environment, which is essential for deployment of the framework on
real-life structures. The distinguishing features of the framework include: 1. IGA
of composite structures, which provides efficiency and higher-order accuracy for
thin shell analysis; 2. Stochastic collocation for uncertainty analysis and the SMF
method for optimization suitable for deployment on a very large numbers of
compute cores; 3. An SHM system, with a variety of ultrasonic and thermographic
imaging sensors, which is capable of accurately detecting typical failure modes of
aerospace and civil composite structures.

Primal and adjoint, fully coupled, time-dependent FSI formulations are pre-
sented. A simple control strategy based of the solution of the primal and adjoint FSI
problems is proposed. The performance of the control strategy is shown on a well-
known FSI benchmark problem. Such control strategies as presented in this chapter
are well suited for deployment as part of a DDDAS or computational steering
framework for applications involving FSI.
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Chapter 9
Development of Intelligent and Predictive
Self-Healing Composite Structures Using
Dynamic Data-Driven Applications
Systems

Mishal Thapa, Bodiuzzaman Jony, Sameer B. Mulani, and Samit Roy

Abstract The chapter presents an intelligent self-healing composite structures
design in fiber reinforced polymer (FRP) composites for predictive self-healing
using the Dynamic Data-Driven Applications Systems (DDDAS) paradigm through
damage prognosis and a non-autonomous self-healing protocol. The proposed intel-
ligent self-healing structural concept is composed of three inter-connected modules:
(1) a damage sensing module, (2) a damage-prognosis module, and (3) a self-healing
module. This chapter focuses on the development of the self-healing module of
the proposed intelligent self-healing structural system: repeatable self-healing of
FRP using thermoplastic healing agents and shape memory polymers (SMP) in FRP
composites structures. This self-healing mechanism is motivated by the bio-mimetic
process of ‘close then heal’ mechanism where the SMP complements the closing
of the cracks, and the thermoplastic healing agent performs the healing process.
For this purpose, double-cantilever beam (DCB) tests were carried out to quantify
the healing efficiency in terms of Mode-I interlaminar fracture toughness (GIc)
following the ASTM D5528-13 testing protocol and the healing efficiencies were
calculated for seven different healing cycles to assess the repeatability of the healing
mechanism. The tests showed promising healing efficiencies ranging from 58% to
73% regaining of virgin fracture toughness during the DCB tests. Fractography
analysis, using Scanning Electron Microscopy (SEM) and optical microscope, of the
fractured FRP composite specimens qualitatively visualizes the results to understand
the mechanisms responsible for the enhancement of healing efficiency.
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9.1 Introduction

The concept of Dynamic Data-Driven Applications Systems (DDDAS) refers to
the recursive process of evolving the mathematical model of a system by continu-
ously incorporating additional data from the measurement process of the system’s
response into the model [1]. One of the most common examples of DDDAS
paradigm is a series of Kalman Filters (KF) in which the KF is a convergence
observer in which the gain of the observer is constantly updated based on the
integrated difference between the actual measurements and those predicted from
a possibly uncertain model [2]. One of the areas that exhibit great potential for the
application of DDDAS paradigm is composites structural health monitoring (SHM)
and self-healing. The use of the DDDAS paradigm for structures includes a damage
prognosis model, damage-sensing analysis, and recursive self-healing followed by
the updates to the damage model.

Fiber-reinforced polymer (FRP) composites are now commonplace in the
aerospace, automotive, wind energy, marine, and sporting goods industries because
of their unparalleled specific mechanical properties (high specific strength and
stiffness) when compared to traditional engineering materials. However, these
benefits are susceptible to various types of manufacturing defects, e.g., fiber
misalignment, voids, thermal stresses due to the curing, as well as in-plane
laminated construction of the FRP system results in inherent vulnerability to out-
of-plane loadings such as those experienced under dynamic impact events. Along
with these manufacturing issues, there exist various thermal, hygrothermal, and
aging effects which could eventually lead to the formation of considerable internal
damage (macro and micro cracks) [3], and compromise the structural integrity
and service life [4] of laminated FRP structures. To minimize these drawbacks,
composite structures go through regular manual labor intensive inspection using
non-destructive testing (NDT) and evaluation (NDE). Based on the NDE results,
less extensively damaged parts may be repaired or replaced for the case of extensive
damage. However, detection, repair, and replacement processes result in a lengthy
downtime and high maintenance cost. In order to combat the drawbacks of damage
detection and repair in FRP composites, researchers have explored biologically
inspired self-healing concepts as an alternative to traditionally expensive repair
techniques.

Since the inception of self-healing concept about three decades ago [5], a variety
of self-healing methods have been developed and implemented in composites,
which can be broadly classified as autonomous and non-autonomous self-healing
[6]. Pre-embedded liquid resin delivery system is the basis of the autonomous
approach, where healing is performed automatically in response to the rupture or
damage in the composite. The autonomous approach employs either capillary tubes
or spherical capsules as storage vessels for the healing resin [7–20], followed by the
rupturing of the healing agent contained in a capillary tube or spherical capsules by
the progression of structural damage. This rupture of the healant container results in
the bleeding of the uncured resin which then reacts with the solid catalysts dispersed
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in the matrix material or mix with the liquid curing agent contained within the
matrix. Eventually, polymerization of liquid healing agent re-bonds the fracture
surfaces and “heals” the cracks, there by restoring the mechanical performance of
the FRP composite structure to an acceptable level. However, some of the major
disadvantages of the autonomous approach are: (1) the reliance on liquid resin
delivery system, (2) ensuring the survival of the healant container vessels during
the manufacturing process, (3) need for simultaneous crack propagation and rupture
of the healant containers [21], (4) difficulty in closing large cracks, (5) the reduction
in composite strength due to leftover empty vessels after healing that act as voids
and/or inclusions, and (6) repeatability of healing, once all the healing agents have
been consumed [22].

On the other hand, most of these drawbacks are absent in the proposed non-
autonomous self-healing process. There are two ways of achieving non-autonomous
healing, one is intrinsic healing where the matrix of the composite has the inherent
healing capability through thermal reaction [23, 24], hydrogen bonding [25, 26],
or molecular diffusion [27]. The second approach is the addition of mendable
thermoplastic additives to the matrix during the manufacturing stage. Upon damage
detection, healing is realized through thermoplastic melting and bonding of the
fracture surfaces by melted healant upon application of heat. This method has advan-
tages over other methods mentioned earlier in this chapter because of its simplicity
and repeatability, and it can be applied to a wide range of thermoset/thermoplastic
combinations as long as the polymers are compatible with each other [5].

Since their inception, both the autonomous and non-autonomous self-healing has
gained considerable success in terms of regaining their original “pristine” property.
Yet, most of these healing methods are difficult to control. Moreover, the studies of
coordination between the self-healing, damage assessment, control, and feedback
are also very limited.

All these factors highlight a need for a next-generation intelligent structure
[28] which can detect and assess the severity of the damage, and can initiate
the required healing based on that assessment. One of the primary challenges for
such a system is the capability of detecting the damage and starting the healing
process in time before the damage becomes irreparable. Therefore, the combination
of damage-sensing and self-healing subsystems demands a recursive algorithm
which is capable of incorporating the information of the micro-scale changes
identified by the sensing mechanism into a damage model to prognosticate the
threat of any probable macro-scale damage caused due to those changes. Using
the damage-sensing and self-healing approach, early initiation of damage can be
assessed, and ‘predictive self-healing’ can be performed by the triggering of healing
process at the right time and location before irreparable damage occurs. Such a
recursive algorithm based intelligent FRP composite system has been proposed
by the authors, incorporating the DDDAS paradigm with damage-sensing and
self-healing modules. The proposed system has predictive self-healing capability
through monitoring micro-scale changes and dynamically incorporating them into a
recursively updated damage prognosis model.
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9.1.1 Overview of the Proposed Intelligent Structure

The proposed intelligent self-healing structural concept is composed of a damage
sensing module, a damage-prognosis module, and a self-healing module as depicted
in the flowchart in Fig. 9.1. The damage-sensing module is based on a novel
guided-wave SHM technique which is implemented through an embedded active
multifunctional network of Macro-Fiber Composite (MFC, supplied by Smart
Material Corp.). The embedded damage-sensing system will use guided waves
coupled with a novel damage index called ‘Normalized Correlation Moment’ [29].
The system is able to detect the existence of damage, find the location of the damage,
and evaluate the severity of the damage. The Chapter describes methods to develop
the optimum self-healing module for an intelligent damage tolerant structure.
The ‘close-then-heal’ methodology [30] has been applied in this study, where
thermoplastic shape memory polymer (SMP) and caprolactone polymer (CAPA)
were used respectively for closing and healing the macro-cracks and delaminations
in FRP coupons by heating it above the glass transition temperature of the SMP. The
details of the double-cantilever beam test specimen fabrication, fracture analysis by
using scanning electron microscope (SEM), and the results obtained are presented
in the subsequent sections.

Fig. 9.1 DDDAS damage-tolerant intelligent self-healing concept flowchart
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9.2 Experimental Section

9.2.1 Double-Cantilever Beam (DCB) Test Specimen
Fabrication

9.2.1.1 Materials

Liquid two-part epoxy resin system SC-780 (di-glycidyl ether of Bisphenol-A epoxy
(DGEBA) and hardener agent) were obtained from Applied Poleramic, Inc. and
used as received. The toughened epoxy resin system (SC-780) was selected because
of its low temperature (37 ◦C) curing. Sixteen plies of unidirectional Uni-Web
IM7 carbon fiber (12 K) was used as the reinforcing material that was procured
from Soller Composites, LLC. The average diameter of the carbon fiber is 5.2 μm.
The healant CAPA 6506 [31] is supplied by Perstorp UK Limited in powder form.
CAPA is a high molecular weight 50,000 linear polyester derived from caprolactone
monomer, which has particle density of 1.1 g/cm3 and melting temperature of 58–
60◦C. The CAPA was selected as the healant because of its healing repeatability
[32]. Polyurethane based SMP [33] fibers were used to bring the macroscopic
crack surfaces closer to assist the molecular scale healing of CAPA. The SMP
was procured from SMP Technologies Inc. as 1.75 mm diameter filament and then
programmed and thinned (0.05 mm diameter) using additive manufacturing prior
to applying it in the FRP composite laminate. SMP was selected because of its
excellent capability of crack closing [32]. A flow-chart of the composite laminate
manufacturing process incorporating healing agents is shown in Fig. 9.2.

9.2.1.2 Manufacturing of DCB Test Specimens

The FRP composite laminate was prepared by hand lay-up procedure following
the ASTM D5528-13 standard [34] as shown in Fig. 9.2. Sixteen carbon fiber plies
(0.254 m× 0.254 m) were cut from the supplied unidirectional weaved carbon fiber

Fig. 9.2 Flowchart for manufacturing of DCB test specimens
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rolls and used for preparing the unidirectional laminate
(
00

16

)
. The 15 wt. % CAPA

(36.5 gm) was mixed with liquid SC-780 part A (200 gm) resin by shear mixer at
500 rpm for 15 min. SC-780 part B hardener (44 gm) was then added to the mixture
and mixed for another 15 min at same rpm. The mixed resin was used for hand layup
of the plies and a pre-crack was created on one side of the laminate by inserting
a 12.5 μm thick and 0.0635 m wide Polytetrafluoroethylene (PTFE film/DuPont
Teflon, Chemours Company) film at the mid-plane of the laminate. Also, the thinned
SMP filaments (3 gm) were sprinkled in the mid layer while laying up the laminate.
The final consolidation was performed using a programmable compression molding
machine by using the curing cycle at 37 ◦C for 2 h with 4.5 kN force. From each
laminate, six DCB specimens (0.21 m × 0.04 m × 0.005 m) with 0.04 m pre-crack,
were obtained by using a diamond saw and then a pair of piano hinges were bonded
to the pre-crack end of the specimens with the epoxy adhesive (Fig. 9.4) for proper
load alignment during testing.

9.2.2 Fracture and Healing Protocols

The DCB specimens were used to evaluate Mode-I interlaminar fracture toughness,
and healing performance by following the ASTM D5528-13 standard [34]. The DCB
specimens were loaded through the bonded hinges in quasi-static tension on a MTS
test machine load frame in displacement control method (2.5 mm/min) to induce
Mode-I fracture along the mid-ply interlaminar region. The initial pre-crack region
(a0) from the hinge-loading line to the interior PTFE film termination interface was
approximately 0.038 m. The loading was carried out until the crack propagated
to the 0.0254 m from the initial pre-crack end. Specimens were then unloaded
(25 mm/min) and removed from the MTS load-frame for healing. Time, load, and
cross-head displacement data were collected by using Q-test software. Healing was
accomplished by keeping the delaminated specimen in oven at 80 ◦C for 2 h and then
cooling at room temperature for next 24 h as shown in the flow-chart in Fig. 9.3.

9.2.3 Fracture Analysis

DDDAS includes the use of a system’s model to understand the underlying
physics. One of the methods of characterizing the physics of self-healing is fracture
toughness (crack resisting strength) in DCB test which is based on linear elastic
fracture and beam mechanics. The strain energy release rate, G[M / T2] can be
expressed in terms of the release of strain energy (dU) per unit of specimen width
for an infinitesimal increase in crack length (da) for a delamination growing self-
similarly under a constant displacement [35].

G = −1

b

dU

da
(9.1)
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Fig. 9.3 Healing protocol flowchart for mendable epoxy specimens

Fig. 9.4 (a) DCB test specimen geometry, (b) DCB test specimen in quasi-static tension with an
enlarged view of crack propagation (scale bar = 1.5 mm)

where U represents the total strain energy of the specimen, b is the width of the
specimen, and a is the delamination length, as depicted in Fig. 9.4a.

By assuming each arm of the DCB specimen as a cantilever beam and using
linear beam theory, the expression for the strain energy release rate of a perfectly
built-in (clamped at the delamination front) DCB is given by Eq. (9.2) where GIc

represents the Mode-I interlaminar fracture toughness.

GIc = 3Pδ

2ba
(9.2)

where P is the load, and δ is the load-point displacement, as illustrated in Fig. 9.4a.
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However, Eq. (9.2) overestimates the GIc as it assumes the beam is perfectly built
(no rotation occurs at the delamination front) [34] and neglects the contribution of
shear deformation and rotation at the delamination front [36]. To accommodate the
effect of this rotation and shear deformation in the DCB specimen, slightly longer
effective delamination, a + |Δ|, is assumed, where � is the crack length correction
factor to account the contributions from shear and rotation. The correction term,
�, is determined from the intercept of a least squares plot of the cube root
of compliance of the DCB specimen as a function of the delamination length.
Therefore, the modified beam theory (MBT) that accounts the rotation and shear
deformation is given as shown by Eq. (9.3) and was used in this study.

GIc = 3Pδ

2b (a + |�|) (9.3)

For the healing efficiency calculations, GVirgin
Ic is the average virgin (i.e.,

uncracked) critical strain energy release rate over a given delamination length and
GHealedIc is the average critical strain energy release rate over the same delamination
of a healed specimen.

The healing efficiency, ηGIc , is defined as the ability of a healed sample to recover
crack growth resistance [37].

ηGIc =
GHealedIc

G
Virgin
Ic

× 100% (9.4)

9.3 Results and Discussions

To demonstrate the DDDAS-based self-healing capability and repeatability, the
DCB fracture and healing test cycle as depicted in Fig. 9.3 were carried out seven
times on four replicate specimens. This section presents the results obtained from
these DCB tests as well as fractography analysis of the damaged specimens to
understand the fracture characteristics of the healed specimens.

9.3.1 Fracture Test Results

The load vs. cross-head displacement plot for four different DCB specimens
containing SMP and CAPA are shown in Fig. 9.5. As seen in Fig. 9.5a for virgin
specimens prior to healing, the load-displacement curves demonstrated a linear
increment of load until it reached a peak load. On further increasing the load,
an unstable growth of the crack was observed followed by a decrease in load
beyond peak load. Interestingly, different trends were observed after the peak load
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Table 9.1 Virgin specimen peak load characteristics

SPECIMEN Delamination length, a (mm) Peak load, Pmax (N)
Cross-head
Displacement, δ (mm)

1 52.39 216.46 9.04
2 46.03 239.13 7.90
3 49.00 228.24 11.64
4 47.29 214.53 10.95

even for specimens (Table 9.1) obtained from the same unidirectional laminate as
demonstrated by the sudden dip in load for Specimen-1 and Specimen-2 (Fig. 9.5a)
which indicates large sudden crack jump in the mid plane of the DCB specimen.

On the other hand, a complex oscillatory load-displacement pattern for
Specimen-3 and Specimen-4 was observed during the DCB tests. This pattern is
similar to stick-slip crack growth and refers to the transition between ductile (stable)
and brittle (unstable) crack growth [36]. The different trends of the specimens after
the peak load also suggests the different amount of energy required for the crack
propagation as well as the fracture toughness.

Once delamination has formed in the virgin specimen, the healing operation
was activated as depicted in Fig. 9.4 by placing the DCB specimens in an oven
at 80 ◦C for 2 h. During the healing process, the SMP became thermally activated
and helped in narrowing the gap between crack surfaces. In addition, the diffusion
of melted CAPA took place which was followed by polymerization and bonding
of the healants to the delamination crack surfaces upon cooling. Seven successive
DCB fracture tests were then carried out on the healed specimens to demonstrate
the healing capability and repeatability. As can be seen from Fig. 9.5b–h, the
load-displacement curve for all the specimens demonstrate linear behavior initially,
similar to what was observed for the virgin specimen. However, there was no
decrease in the load after the deviation from the linear trend as seen for the virgin
case, until the crack propagated 25.4 mm (one inch) from the pre-crack end. This
is attributed to the ductile characteristic of the thermoplastic rich zones which was
activated after heating at 80 ◦C. Here, it is to be noted that the melting temperature of
CAPA is 58–60 ◦C [31], hence the thermoplastic healants did not demonstrate this
ductile characteristic for the virgin specimens which was cured at 37 ◦C whereas
it demonstrated this behavior upon heating at 80 ◦C. The different trends of load-
displacement behavior for the healed specimens also suggest that the crack may
have propagated along a different path in a stable manner as compared with the
virgin fracture specimen.

After the completion of first healing cycle, the healing and fracture of the
specimens were performed six more times under similar conditions. However,
Fig. 9.5c–h showed a considerable variation of crack propagation and load for each
healing cycles. In these plots, lower peak load was clearly observed for Specimen-
2, and also the decreasing pattern after the peak load was observed. This suggests
a smaller fracture toughness and low resistance to crack propagation in the mid-
layer for Specimen-2 as compared to the other specimens which can be attributed
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Fig. 9.5 Changes in load versus cross-head displacement behavior for DCB specimens with
healing cycles. (a) Virgin, (b) First Heal, (c) Second Heal, (d) Third Heal, (e) Fourth Heal, (f)
Fifth Heal, (g) Sixth Heal, (h) Seventh Heal
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Fig. 9.6 Load vs. cross-head displacement for seven healing cycles including virgin fracture for
DCB Specimen-2

to the lack of sufficient healants or improper melting of healants in the cracked
plane. Nonetheless, the similar trends in the linear region and nearby location of
the separation of the linear trend for different specimens suggest the similar values
of GIc.

Furthermore, a summary of the load-displacement plot of Specimen-2 is provided
in Fig. 9.6 for seven healing cycles to demonstrate the healing repeatability as
described earlier. From this plot, it is evident that the stiffness of the healed
specimens is slightly lower than that of the virgin specimen. Similar trends in
the non-linear region from the second healing to seventh healing also indicate
the propagation of the crack along the same path in the mid-layer. Therefore, this
similarity among the load-displacement curves of the specimen for different healing
cycles provides good evidence of healing repeatability of thermoplastic healants.
Thermoplastic healant underwent only physical changes during the subsequent
healing cycles and no chemical reactions like the thermoset healants was involved,
which is one of the main reasons of healing repeatability [32].

9.3.2 Quantification of Healing Efficiency

The self-healing ability and repeatability over multiple cycles is further demon-
strated quantitatively by calculating the averaged critical fracture toughness that
marks the onset of delamination initiation. The average toughness is then used to
compute the average healing efficiency as given by Eq. (9.4) for four replicate
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Fig. 9.7 Bar chart showing average Mode-I interlaminar fracture toughness plotted as a function
of healing cycles

specimens as a function of healing cycles. Here, only the fracture toughness has
been used for the healing efficiency analysis since the delamination is a complex
phenomenon, and a quantitative evaluation of the effects of interlaminar fracture on
the strength properties are difficult. As can be seen from the bar chart in Fig. 9.7, the
average GIc value for the virgin specimen is 271.64 (J/m2) and the healing efficiency
shows a steady decline with the number of healing cycle, which is as expected.
The healing efficiency plot in Fig. 9.8 showed that a fracture healing efficiency of
73.33% was obtained after the first healing cycle compared with 58.20% after the
seventh healing cycle. This decrease in GIc and ηGIc with subsequent healing cycles
might be due to the breakage of SMP and CAPA fibrils with subsequent healing
as evident during the DCB test (Fig. 9.10c), as well as due to potential thermal
degradation of the thermoplastic healants with subsequent healing cycles at 80 ◦C
which is well above the melting temperature (i.e., 58–60 ◦C) of the CAPA particles.
Nonetheless, the healed specimens demonstrated good healing repeatability because
of the mendable nature of the thermoplastic healants and yielded more than 50%
healing efficiency even after the seventh fracture and healing cycle.

Furthermore, the coefficient of variation (COV), which is the ratio of the standard
deviation value to the mean value, was found to be less than 6% for GIc and less than
7% for ηGIc among all healing cycles. This suggested an excellent agreement in the
GIC and ηGIc values obtained from different specimens.
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Fig. 9.8 The average healing
efficiency (ηGIc) of the healed
specimens as a function of
healing cycle

9.3.3 Fractography Using Scanning Electron Microscopy
(SEM)

The SEM imaging analysis of the fracture surfaces of the healed specimens was
carried out to understand the mechanisms responsible for the healing as well as
degradation of the healing efficiency with subsequent healing cycles.

Presence of sufficient amount of healant in the fractured region is the most
important criteria for partially or fully regaining the virgin fracture toughness [38,
39]. The complex region with elastomeric behavior and fibrillations (as shown in
Fig. 9.9a) at the pre-crack end suggests the existence of the thermoplastic healant
in the crack plane. The highly irregular surface indicates the ductile fracture of
the healant and is responsible for the resistance to crack growth. In addition, the
uneven surface in Fig. 9.9b suggests crack tortuosity and crack deflection along
the thermoplastic rich zone which results in high fracture toughness for crack
propagation. Similarly, the plane surface near the far end of the crack in Fig. 9.9c
suggests crack growth along the matrix region with less resistance and also indicates
debonding of the fibers and matrix or interfacial debonding as one of the dominant
modes for failure. However, less evidence of broken carbon fibers suggestive of
absence of the fiber bridging from the SEM imaging. In fact, the damage propagates
preferentially along the mixture of thermoset and thermoplastic than propagating
through the fiber because of the lower requirement of fracture energy for crack
growth along the matrix rich mid-layer. Therefore, one way to obtain higher healing
efficiency is by choosing a tougher thermoplastic healant than currently used in this
research.

One of the reasons for the unstable crack growth and reduced healing efficiency
is due to the agglomeration of the thermoplastic healant as seen in Fig. 9.9d [36].
Therefore, the healing efficiency of the specimens can be increased if the thermo-
plastic healant with low melting temperature, low viscosity, and high diffusivity
is used. Also, uniform dispersion of the healant is another way of preventing the
agglomeration of the thermoplastic healant and increasing the healing efficiency.
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Fig. 9.9 The SEM images of the fracture surfaces of the healed specimens containing SMP and
CAPA. (a) Near pre-crack end, (b) In the middle-zone of crack region, (c) Near crack end, (d)
Cluster of CAPA+SMP

Furthermore, the ability of the healants to form a strong bond with the epoxy will
lead to higher healing performance.

The micrographic edge view of the crack region is provided in Fig. 9.10. For this
purpose, the edges of the virgin specimens were polished before the DCB tests were
carried out. The interfacial debonding and kinking of the cracks during propagation
along the matrix is clearly visible from the delaminated figure in Fig. 9.10b. In
addition, the thin thermoplastic fibrils that bridge the delamination surfaces and
offers resistance for crack growth can be clearly seen in Fig. 9.10c. These bridging
ligaments are suggestive of the plastic deformation of the healants and allow transfer
of interlaminar stress across the delamination crack. This, in turn, provides the
extrinsic toughening due to the lowering of the stress at the crack tip [40]. Finally,
the edge view of the healed specimen in Fig. 9.10d shows the repair of the crack
leaving behind very little sign of visible crack.
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Fig. 9.10 Optical image of delamination crack at 1.27 cm (0.5 in) from the pre-crack end for (a)
Virgin, (b) Delaminated, (c) White healant fibrils during DCB fracture, (d) Healed specimen with
no visible crack

9.3.4 Parametric Sensitivity Analysis

The results provided and discussed in this Chapter provide evidence of the good
healing ability and repeatability of thermoplastic SMP and CAPA as healing agents.
Work is currently underway to improve healing efficiency in terms of reducing the
healing time for specimens in the oven, and also the use of Macro-Fiber Composite
(MFC) piezo actuated heating system to replace the heating of the specimens in the
oven.

Based on the self-healing results, a parametric sensitivity study at different
time durations for heating of the specimens with SMP and CAPA in an oven
was assessed. To this end, manufacturing cycle was changed to get a finer and
homogenous mixture of the healants and also to prevent the formation of a cluster of
CAPA particles during manufacture. Preliminary results from the sensitivity study
are presented in Fig. 9.11a revealed that reducing healing time from 120 min to
20 min does not have any significant effect on the fracture behavior. Therefore,
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Fig. 9.11 (a) Load vs. crosshead displacement plot for different healing time for one DCB
specimen, (b) DCB specimen with attached MFC for healing

thermoplastic healants with much shorter heating time will ultimately offer substan-
tial lower power requirement for healing, and enhanced safety of the structure.

Furthermore, the possibility of achieving self-healing with the MFC actuated
heating system, rather than heating in an oven, is currently being explored. To
test MFC actuated healing ability, two MFCs (M2814-P1: 28 mm × 14 mm) are
attached on both, top and bottom surfaces of the specimen to provide sufficient
heat for the crack-region in the mid-layer as shown in Fig. 9.11b. This set up
will allow the MFCs to carry out healing with activation of SMP and melting of
the CAPA by sufficient heat generation through ultrasonic excitation. Although
the preliminary results are promising with this system, it will require additional
parametric sensitivity study to determine the effect of excitation voltage and
frequency on healing efficiency.

Development of dynamic data-driven damage modeling using finite element
analysis (FEA) of the DCB specimens is also being carried out to accurately model
damage initiation and progression, as well as the MFC actuated healing effect.
This FEA model will be a key part of the damage prognosis model inherent in the
DDDAS paradigm.

9.4 Concluding Remarks

To achieve an intelligent self-healing system for composite structures, a novel SHM
DDDAS paradigm is presented that combines a damage prognosis model, damage
sensing network, and self-healing mechanisms. The SHM DDDAS is able to sense
damage using sensors, which then updates the prognosis module and activates
the self-healing mechanism using an embedded MFC network. One of the main
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advantages of the SHM DDDAS approach is that it offers the predictive self-healing
to prevent the damage from becoming irreparable.

In this chapter, the self-healing capability of carbon fiber composites using
mendable thermoplastic healants was presented for repeated fracture/healing cycles.
The self-healing is performed by a two-step, ‘close then heal’ technique where the
SMP fibers help in bringing fracture surfaces of the macro-cracks close together,
followed by molecular scale healing with CAPA through melting, diffusion, poly-
merization, and adhesion to the fracture surfaces. The DCB test data for specimens
containing thermoplastic healants demonstrated that the fracture specimens were
able to regain their virgin critical fracture toughness by as much as 73% after the
first healing cycle. The results also showed that the self-healing was repeatable,
and a healing efficiency of 58% was obtained after the seventh healing cycle.
The healing mechanism of the thermoplastic healants was also evident from the
SEM and optical micrograph images where the ductile fracture of the thermoplastic
healants, fibril formation, tortuosity of the crack path, and the ligaments bridging
the crack surfaces were observed that are responsible for offering resistance to crack
propagation. These observations suggest the healing efficiency can be increased by
selecting thermoplastic healants with low melting temperature, low viscosity, and
high diffusivity, and ability to form strong adhesion to the fracture surfaces.

Furthermore, with the purpose of reducing the time and energy consumed
during self-healing of the Mode-I interlaminar fracture, a parametric study based
on varying time duration for heating the specimens was conducted. The results
show that it is feasible to achieve similar healing efficiency even with only 20–
30 min of heating. In addition, the healing of the fracture specimens with the MFC
actuated heating system, instead of oven heating, has shown great promise. Work
is currently underway to combine a damage sensing network and a dynamic data-
driven damage prognosis module with the intelligent self-healing system, where
initial developments have shown promising results.
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Chapter 10
Dynamic Data-Driven Approach for
Unmanned Aircraft Systems
and Aeroelastic Response Analysis

R. Kania, A. Kebbie-Anthony, X. Zhao, S. Azarm, and B. Balachandran

Abstract In this chapter, we will discuss how DDDAS ideas can be used to enhance
the autonomy of an unmanned system, while accounting for nonlinear behavior of
the system. Our approach is illustrated in the context of an unmanned aerial vehicle,
such as the joined wing SensorCraft. It will be shown as to how DDDAS can be used
to enhance the performance envelope as well as avoid aeroelastic instabilities, while
reducing the need for user input. The DDDAS methodology and its application to
this field for prediction are described in a framework that consists of an offline
component and an online component.

During the offline phase, user supplied mission objectives such as required
payload along with initial data such as weather forecasts and operation history
of the aircraft are used to simulate and optimize for creating a robust optimal
mission configuration, all prior to take-off of the SensorCraft. In this phase, with the
aeroelastic simulator, preliminary stability envelopes are constructed to determine
the flutter boundary of the aircraft with damage and without damage to the aircraft.
By using available simulation results, an initial meta-model is trained offline. During
the online phase, sensor data is to be acquired for the decision support process.
This data is to be filtered and then fused with the meta-model to achieve a fast
and reasonable estimate of the system response compared to that obtained from the
computationally expensive aeroelastic simulator. As the responses are estimated and
updated, they are evaluated based on the objectives so that optimal maneuvers can be
determined with assistance of a decision support system. The DDDAS framework
is composed of these three components, namely, the aeroelastic simulator, data-
driven prediction scheme, and decision support system. The aeroelastic simulation
is used to obtain information on the unmanned vehicle’s dynamic response and
this information is combined with sensor data for use in the online application of
a decision support system.
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10.1 Introduction

Uncertainty in physical responses and changes in environmental conditions will
always be limiting factors to reckon with for determining the performance of an
unmanned aerial vehicle (UAV) system. Additionally, several recent UAVs (e.g.,
SensorCraft) are being designed with long, thin wings, which make the aircraft
system more susceptible to aeroelastic instabilities. In order to increase flight
effectiveness, nonlinear aeroelasticity needs to be addressed in the design and
operation of such systems. In addition, instabilities and post-instability behavior
need to be taken into account as well. To utilize aeroelastic models effectively,
decisions need to be made optimally, given uncertainty in the environment.

A standard approach for addressing aeroelastic effects takes place in the design
phase. Linearized aeroelastic models, calibrated with experimental data, are used to
predict speeds at which the considered aircraft can experience flutter (oscillatory)
behavior. The aircraft design is considered safe to fly only when the maximum
operating speed of the aircraft is well below the minimum aeroelastic onset
speed [20]. Over the decades, studies of linearization methods have matured, and
these methods have been successfully utilized. More recently, machine learning
techniques have been applied to the problem of estimating the stability envelope
by having as inputs data from multiple models of various fidelity levels and
constructing a Support Vector Machine (SVM). Once trained, the SVM can be used
to predict which aeroelastic flight regime a given configuration will fall into. The
boundary between these classifications can be used to describe a flight envelope,
with aeroelastically stable operation on one side, and unstable operation on the
other [19]. Both linearized models and machine learning classifiers have the same
drawback in that they do not consider post-instability behavior. That is, they cannot
be used to predict the nature of the behavior following an aeroelastic instability and
cannot be used to make useful predictions after the onset of an instability.

The SensorCraft was conceived as a novel surveillance platform and a set of
design goals were put forth in 2002. These goals include flight durations upwards
of 40 hours with different flight regimes, and an aircraft with a number of integrated
sensors [24].

To meet the long flight duration objective, designers had to adopt atypical wing
structures which offer high efficiency. These structures fall into three categories,
namely, the Diamond Wing, Box Wing, and Strut- (Truss-) Braced Wing configura-
tions (Fig. 10.1) [5]. As shown in Fig. 10.1, in each one of the designs, the aircraft
has long and flexible wings that are reinforced with a strut or secondary wing.
Although increased length and flexibility are shown to improve efficiency, they
open the door to aeroelastic instabilities such as flutter that are typically avoided in
modern aircraft designs. Systems with flexible wings can exhibit complex, nonlinear
motions (e.g., [10]). Nonlinear aeroelasticity and the complex dependence of the
system behavior on the many determining factors make it difficult to predict and
almost impossible for a pilot (onboard or remote) to successfully navigate the
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Fig. 10.1 Various wing
designs for SensorCraft.
(Adapted from Cavallaro and
Demasi [5])

aircraft. So, these designs require a decision support system to help the pilot tailor
flight configuration options with considerations of nonlinear aeroelasticity.

With an observation platform, such as the SensorCraft, there are a number of
objectives that are sought with each mission. An operator would want to maximize
the amount and the quality of data collected. Taking the vehicle itself into account,
minimizing damage or maximizing the useful life of the aircraft may also be desired
goals to account for in a mission. The first priority of an observation platform will
likely be the maximization of data quality. Consider then a scenario where turbulent
conditions are detected in the flight path during a mission. Passing through such an
obstacle will certainly muddle any images or sensor readings and may even force
an object tracker to relocate its target. The alternative, however, is to maneuver
under, over, or around, if possible. Making a maneuver could have all of the same
negative effects. What then, is the operator to do in order to minimize disruptions
to the observations? This is where a decision support system can be invaluable. A
decision support system can be used to calculate the effect each maneuver, or non-
maneuver, will have on the objective and determine an optimal path forward, even
taking into consideration uncertainty in the environmental factors. Decision support
systems will be discussed in more detail later in this chapter, including an outline
for how to handle multiple competing mission goals.

Often, decisions are made while ignoring aeroelasticity because of the difficulty
in considering nonlinearity. However, as better performance and efficiency of
aircraft are sought, nonlinear physics becomes critical for making predictions
and dealing with system behavior. Therefore, nonlinear aeroelastic models are
required to capture dynamic instabilities such as flutter and associated limit-cycle
oscillations that can greatly reduce the operational lifetime of the aircraft. However,
these models are computationally expensive. Meta-models can be considered to
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approximate the nonlinear models, reducing the number of execution calls required
of the full aeroelastic simulations. In addition, worst-case scenarios for uncertainty
can be predicted in advance to produce an envelope inside which a safe unmanned
aircraft system (UAS) operation is possible. Then, as disturbances and changes
become realized in-flight, fewer scenarios need to be analyzed to determine optimal
maneuvers. Evaluating fewer scenarios allows for faster updating of the models to
real-time changes of the environment and suggested maneuvers to be better matched
to a current situation.

The work reported here has much in common with adaptive structural health
planning and monitoring research. Within the DDDAS [6] literature, structural
health monitoring of aircraft has been investigated and shown to benefit greatly from
it; for example, the studies of Farhat and Amsallem [7] and Allaire et al. [3]. The
common goal of these researchers is the prediction of failure in aircraft structures
and tailoring planned missions to best suit the remaining capabilities of the aircraft.
Online sensor readings can only be used to infer the current status of the aircraft’s
structural health. Conversely, simulations can accurately predict such failures before
they ever occur. However, the exact operating conditions of the aircraft cannot be
known beforehand. Once the conditions are known, a simulation will take time
to run. Generally, the accuracy of the simulated prediction will be related to the
computational time. With all of these tradeoffs, very accurate and timely failure
predictions become nearly impossible to achieve; so, safety margins must be added
to prevent system failure. The DDDAS paradigm provides one solution; that is, to
combine the above tools and get a faster and more accurate prediction.

The decision support system is shown in Fig. 10.2 as an input-output block.
From the viewpoint of a pilot or operator, the decision support system inputs are
the current system response and sensor readings from the aircraft and the outputs
are possible optimal solutions that will help maintain or lead to aeroelastically
stable flight. Internally, based on the available information, new simulations can
be performed to fill any gaps. Simulations of differing fidelity levels can be used
depending on the needs of the situation; for example, what accuracy is required
and how much time is available. The results are fused together with the data to
validate that the model can be used to accurately represent the UAS at the current
time and detect any sensors that may have failed and readings being obtained with

Fig. 10.2 Schematic of decision support system



10 Dynamic Data-Driven Approach for Unmanned Aircraft Systems. . . 197

insufficient accuracy. The fused response prediction is then used to optimize future
maneuvers. Again, multiple levels of fidelity, or robustness here, are available to
select for different situations. The final outputs are values of decision variables,
which provide optimized solutions. In the presence of multiple objectives, multiple
optimal decisions will be suggested and the pilot’s preference will be used to select
from among them.

The quintessential DDDAS framework has three components: theory, modeling
and simulation, and dynamic data. The theory is integral to the development of
the entire framework and one can use it to shape how simulations are carried out
and data modeling are constructed. Once the framework is established, there are
dynamic interactions between the simulations and the data driven modeling, and
the information that is generated from this interactive combination is used to make
system predictions. A fourth, as of yet unnamed, component is the application
system which contains and benefits from the DDDAS construct.

The implementation of DDDAS schemes, which combine the above components,
has been shown effective in a number of fields with the same general structure.
Problems that require timely solutions to intensive simulations in order to perform
an application in real time can be found in such areas as environmental analysis,
robotics, image processing, and embedded computing. Modeling of atmospheric
conditions, such as air currents is a well-known computationally intensive task that
is often delegated to super computers. During unfolding catastrophes such as wild
fires and the release of airborne contaminants, there is not sufficient time to run
a simulation and to act on its predictions. Benefits to weather forecasting have
been shown in the studies of Fisher et al. [8], prediction of the spread of wildfires
in Mandel et al. [18] and Rodriguez et al. [23], and the identification of airborne
contaminants [1, 2, 16]. Enhanced performance has been noted with vehicle system
applications, especially, for unmanned aerial vehicles [17, 21] and ground vehicles
[15]. Finally, in the field of image processing, target tracking, which requires fast
and accurate computations, has been aided through DDDAS [25]. This is by no
means a complete listing of the systems to which DDDAS has been successfully
applied, but it should serve to inform the reader of the breadth of this powerful
methodology. It should also be seen how the problem under consideration in this
chapter fits neatly into the range of other DDDAS applications.

The rest of the chapter is organized as follows. First, the structure of the DDDAS
framework is described, highlighting the interactions among the major components.
Then, the formalism behind the aeroelastic co-simulation is presented. After that,
the authors provide a section on the data-driven prediction framework. In it, the
use of online sensor data to supplement the co-simulation is detailed. Finally, the
authors explain the decision support system and how it can be used for data-driven
predictions.
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10.2 Framework

The framework for the DDDAS methodology discussed in this chapter is illustrated
in Fig. 10.3. Beginning in the offline phase, initial data that is provided by the
user, based on known or estimated operating conditions and mission parameters
is used to determine a number of aeroelastic simulations to perform. The results are
used to both determine a data-driven model for predicting system responses, and
to tailor an initial flight envelope for which an optimal mission plan can be found.
After the beginning of the mission or take-off, the operation shifts to the online
phase. Starting at the top of Fig. 10.3, in the online phase, sensor data is obtained
from sensors located on the SensorCraft and fused with current model predictions.
Further detail on how data fusion is performed is given in a later section. As with
the offline initial data, the now fused data is used to design a set of simulation
experiments. The data-driven model is updated to incorporate the new results. The
model is validated against holdout data, and analysis is performed to detect faulty
sensor measurements. The new predicted responses are then fused with incoming
data, and the cycle is repeated. Based on the data-driven model, optimization studies
are carried out to determine optimal maneuvers that are feasible with the predicted
aeroelastic response. The results are then provided to a pilot so that he/she may
make well informed decisions on how to proceed further with a maneuver.

Fig. 10.3 DDDAS framework for decision support system
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10.3 Aeroelastic Simulation

A central component of the proposed DDDAS framework that was mentioned
before is the aeroelastic simulation and the underlying basis for this simulation.
Generally speaking, aeroelasticity of a system such as the UAS includes structural
dynamics and aerodynamics and some form of coupling between them. The
structural dynamics depends on inertial effects, elastic effects, and the aerodynamic
loads acting on the structure. Reduced-order models developed by using methods
such as the finite element method can be used to study the structural dynamics
of a system. The aerodynamic forces can be obtained through computational fluid
dynamics and methods such as the unsteady, vortex lattice method. Once one has
constructed models to describe the structural dynamics and aerodynamics, it is
possible to recreate aeroelastic effects wherein the fluid flow exerts a force on the
considered UAS system, the UAS system responds to the loads, and the system
response in turn alters the fluid flow around it. Because of this naturally occurring
feedback, an aeroelastic simulation can be difficult and time consuming.

As shown in Fig. 10.2, in the envisioned decision support system, three fidelity-
level models are incorporated to capture static, dynamic, and aeroelastic responses
of the system. Given the modular nature of the approach, this approach is not limited
to these three models and other models could be used as well in the DDDAS
framework. When modeling fluid flows, one option is to use commercial solvers
meant for Computational Fluid Dynamics (CFD). In these solvers, it is common to
use a grid method, wherein one discretizes the flow field and numerically solves
the governing equations, such as the Navier-Stokes equations. In some of the
commercial packages, one can couple CFD with a structural solver allowing for
fluid-structure interactions to be studied. Although such methods are ubiquitous, it
has been shown that using instead, a grid-free vortex method provides sufficient
accuracy to predict forces on the scale that is sought here. One advantage of
vortex methods in the current study is the levels of fidelity available. As shown
in Fig. 10.2, lifting line theory in combination with a simple ground effect model
can be used to generate quite a fast, low accuracy estimate of the aerodynamic
forces by assuming the lifting surfaces form a one-dimensional line of vortices at
a given instant in time. Improvements can be made to the quasi-steady model by
considering a two-dimensional lattice of vortices in the method called the vortex
lattice method (VLM). As aeroelasticity responses are dynamic in nature, a model
in which one accounts for unsteady behavior as well would be appropriate. This
unsteady behavior can be captured by using the so-called unsteady, vortex lattice
method (UVLM). The UVLM scheme can be strongly coupled with a structural
model to create a co-simulation of aeroelastic dynamics, as done in the current
work as well as prior work of the group members (e.g., [22]). Co-simulation (e.g.,
[12]) here refers to the partitioning of a coupled system into subsystems that are
separately simulated (but numerically integrated) with a suitable exchange of states
at predefined time instances to account for the coupling.
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Fig. 10.4 Co-simulation process for a system in airflow: (a) wing in airflow, (b) partitioning, and
(c) co-simulation

In Fig. 10.4, the representative steps involved in the co-simulation process for a
SensorCraft wing in airflow are depicted. At the initial stage, the coupled system
(structure in airflow) is represented by the continuous system, wherein the state

vector is given by z(t) =
(

x(t)

y(t)

)
. Here x(t) and y(t) are the state vectors associated

with the structure and the velocity/pressure fields of airflow, respectively. In the
next stage of the co-simulation process, one partitions the dynamic system into two
subsystems as follows:

d

dt
z(t) = d

dt

(
x(t)

y(t)

)
=
(

f 1 (x(t), y(t))

f 2 (x(t), y(t))

)
⇒ ẋ(t)

ẏ(t)
= f 1 (x(t), y(t))

f 2 (x(t), y(t))
(10.1)

The final stage of the co-simulation process involves exchanging information
bi-directionally between the two subsystems. This is accomplished by using a
prediction to represent the unknown state vector in the different subsystems.
Therefore, to simulate the ẋ(t) subsystem, a prediction v(t) is needed for its y(t)
input. Similarly, to simulate the ẏ(t) system, a prediction u(t) is needed for its x(t)
input. After substituting the predictions into (10.1), the system can be written as

(
ẋ(t)

ẏ(t)

)
=
(

f 1 (x(t), v(t))

f 2 (u(t), y(t))

)
(10.2)

in which the structure’s state is simulated by using the predicted airflow states
and the airflow state is simulated by using the predicted structure states. Further
information on co-simulation of complex systems can be found in Kalmar-Nagy
and Stanciulescu [12].

The two subsystems are computational implementations of models intended
for the UAS structural dynamics and the aerodynamics. The first subsystem,
Simulator 1, is the UAS structural model. In Simulator 1, one utilizes the finite
element method (FEM) to simulate the motions of the representative SensorCraft
wings by using beam elements. The structural dynamics of the SensorCraft is
studied by using the mass and stiffness matrix along with the load vector. Here,
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Fig. 10.5 Beam
representation of joined-wing
aircraft wing

Fig. 10.6 Representative
aerodynamic mesh of full
joined-wing aircraft

geometric stiffness effects are also taken into account to study buckling. In Fig.
10.5, the beam representation of the right wing of a representative SensorCraft
is shown. The beam nodal points are represented by circles distributed along the
center lines of both wings. The mass of the wings is concentrated into point
masses collocated with the nodal points. The second subsystem, Simulator 2, is
used to simulate the aerodynamics. For Simulator 2, one utilizes the UVLM to
determine the aerodynamic loads acting on the representative SensorCraft. The
wake, considered to be vorticity-containing regions where viscous effects cannot
be ignored, is convected behind the aircraft. Through the convection of the wake,
the aerodynamic loads (lift and drag) for the system are estimated. The mesh used
for the aerodynamic model of the full joined-wing aircraft is shown in Fig. 10.6.
To capture the aerodynamic effects with the highest fidelity level, a very refined
mesh is used. A representative treatment of UVLM-FEM based co-simulation can
be found in the work Roccia et al. [22]. It is envisaged that in future efforts such
co-simulations will be coupled with experimental data obtained for flight systems
(e.g., [10]).



202 R. Kania et al.

When one obtains aeroelastic simulation results with this level of fidelity,
this does come at a high computational cost. Even with modern computing
enhancements such as parallelization and GPU computing, these computations
cannot be performed fast enough to enable real-time decision support. If they
could be performed sufficiently fast, simulations alone still lack information on
current flight conditions needed to relate their results to the physical system. Both
issues, speed and relevance of the provided information, can be addressed by using
online sensor data. A main thrust of the DDDAS paradigm is the integration of
simulation and sensor data to produce data with the accuracy of high fidelity
simulations and instantaneous information available from sensor data. The method
used in this work is described in the following section. Additionally, computations
can be algorithmically accelerated through approximation methods such as the
fast multipole method. An application of the fast multipole method to the above
described co-simulation is demonstrated in Kebbie-Anthony et al. [14].

10.4 Data-Driven Prediction Framework

A central feature of a DDDAS framework is dynamic data usage. In the last section,
the authors detailed the co-simulation method used to simulate UAS aeroelastic
responses. An important feature of the DDDAS paradigm is the use of dynamic data
modeling to offset the computational costs of complex physics simulators to allow
for real-time deployment. In this section, a dynamic data-driven prediction system
is presented. The authors combine the aeroelastic simulation results with dynamic
sensor data to support real-time decision making for a SensorCraft.

For the decision support system, it is crucial to have a fast and accurate system
prediction environment based on the current flight conditions. As mentioned in the
preceding section, simulations are used to estimate global system responses of the
entire system. The UVLM based simulations can be used to obtain an accurate
prediction of the system’s behavior. However, due to the computational expense, it
is impractical to use UVLM for online predictions. On the other hand, a low-fidelity
simulation, such as a VLM based simulation, can be executed to estimate global
system behavior in a timely manner, but with a decreased accuracy. Also available
during online performance are the numerous sensors embedded in every aircraft
(and more for a developing prototype) which can be used to obtain a continuous
stream of environmental and structural response data from the aircraft. Given that
most sensors can be used primarily to obtain measurements in regions spatially
local to them, there is an inherent information mismatch when using this sensor
data with spatially global simulation results. There is a need to develop a data-
driven prediction framework based on available simulation data and local sensor
data, with high computational efficiency and reasonable accuracy comparable to the
high-fidelity simulation.

Certain assumptions are made in this prediction framework. First, measurements
from sensors used in the framework refer to measurements of endogenous system
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Fig. 10.7 Data-driven prediction framework

properties, and the sensors are assumed to be used for measurements of local,
discretely located response data. It is assumed that each sensor is free of systematic
error but subject to independent random noise. The uncertainty level produced by
noise is assumed to be known as it can usually be found in a specification sheet
for any given sensor. Together, the sensor data and the available simulation data
are considered as training inputs for the model. Finally, the spatially global system
behavior at every location is assumed to be dependent on each other, or correlated,
since they share the exact same operating variables.

In Fig. 10.7, the authors illustrate the overall process of the data-driven prediction
framework. The training inputs, the sensor data, and the simulation data, are shown
at the top of the framework and these are used to construct the model. Through
this model, data are fused to make global predictions, for the considered operating
conditions. As with the DDDAS framework, the data-driven prediction system is
composed of an offline phase and online phase. Following Fig. 10.7 (see also Fig.
10.3), during the offline stage, a meta-model can be constructed based on available
simulation results. The next step is to capture pairwise statistical relationships
between each local response (associated with sensor location) and each global
response. During the online stage, the meta-model is used to make global estimates
of the aircraft performance for the current operating conditions. For local responses,
sensor measurements and the meta-model estimations are fused together based on
their levels of uncertainty. The next is to update the global prediction by utilizing
local and global statistical relationships constructed by utilizing a Bayesian Copula
model [11] during the offline stage. Finally, these updated global predictions are
fused with the meta-model for global predictions.
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10.5 Case Study

An aerodynamic case study of a joined-wing aircraft is used to demonstrate the
proposed prediction framework. In Fig. 10.8, the considered aircraft layout is shown.
The quantities of interest are the strains simulated at 14 different locations on the
aircraft. Out of the 14 locations, three locations have sensors that are used to measure
strain as is shown in Fig. 10.8. All three sensors are assumed to be susceptible
to noise with assumed distributions at varying levels. The operating conditions
considered are air density, freestream speed, and flight altitude. The VLM based
formulation is employed as the aerodynamic model for purposes of illustration. In
ongoing work, the UVLM based formulation is being used. This extension and more
details on a dynamic prediction framework can be found in Zhao et al. [26].

The aerodynamic case study is started with an offline stage. Gaussian regression
has been used to construct a meta-model, with training based on results obtained
through VLM simulations for 10 operating conditions (see Table 10.1). Sensor
locations are chosen to be at the root of the fore wing, near the wing joints, and
the vertical tail at points coincident with panel numbers 3, 7, and 11, respectively.
The spatial coincidence of the sensor locations and simulation model control points;
that is, the centers of the aerodynamic mesh panels, allows for the development of
pairwise statistical relationships between the model values at the sensor locations
and every other point. Correlation is established between every point where there
is a sensor and every other point in turn. With 14 locations being considered, and
3 sensors, 13 correlations need to be computed for each sensor for a total of 39

Fig. 10.8 VLM aerodynamic mesh of joined-wing aircraft lifting surface with representative
sensor locations
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Table 10.1 Ten operating conditions evaluated for training process

Training point number Flight speed (m/s) Air density (kg/m3) Altitude (m)

1 89.23 1.29 66.69
2 99.07 1.31 94.39
3 70.24 1.21 58.65
4 46.44 1.08 96.96
5 78.94 1.14 64.27
6 87.25 1.26 79.17
7 69.49 1.08 71.51
8 61.89 1.13 80.44
9 45.57 1.18 88.21
10 57.46 1.03 52.15

Table 10.2 Ten operating conditions evaluated for testing process

Test point number Flight speed (m/s) Air density (kg/m3) Altitude (m)

1 80.71 1.12 98.69
2 89.37 1.17 51.72
3 64.04 1.19 87.25
4 54.64 1.25 70.12
5 46.98 1.11 81.35
6 99.22 1.28 65.33
7 83.83 1.06 75.46
8 73.05 1.04 56.61
9 63.34 1.23 60.19
10 42.29 1.29 94.62

pairwise statistical relationships. Once the relationships have been characterized,
responses at any of the 14 locations can be inferred from sensor data at the 3 sensor
points.

Ten operating conditions were randomly generated to represent online operations
and validate the prediction accuracy, as shown in Table 10.2. A prediction based
solely on the meta-model is compared with the proposed approach, in which the
meta-model prediction and the simulated sensor data are fused. Both results are
compared with the VLM results at the ten operating conditions.

In Fig. 10.9, the authors show the prediction errors at the 14 locations. They
present the root mean squared error (RMSE) for the meta-model without sensor
fusion and the meta-model with the proposed sensor fusion in Fig. 10.9a. Note that
with the addition of more sensors, the RMSE is reduced at a majority of the 14
locations. At locations 12 and 14, the unadjusted meta-model has slightly lower
RMSE, but the difference is insignificant especially since there is improvement in
the STD. In Fig. 10.9b, the authors show that a more consistent reduction in the
standard deviations is achieved with additional sensors. The average RMSE and
standard deviation prediction errors at the 14 locations are presented in Table 10.3.
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Fig. 10.9 Normalized predictions for 14 location responses: (a) root mean square error (RMSE)
and (b) standard deviation (STD) comparisons

Table 10.3 Statistical prediction results comparison

Meta-model (MM) MM and sensor 1 MM and sensors 1, 2 MM and sensors 1, 2, 3

RMSE 2.56 1.79 1.32 1.37
STD 2.44 1.66 1.29 1.14

10.6 Decision Support

Now that the DDDAS framework for data driven predictions has been used to
determine a probability distribution for the current state estimate and future state
predictions, the next question is how can that information be used to make a flight
decision? This area of active research is addressed in this section.
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By using the state predictor, maneuvers can be evaluated for their poten-
tial impact on mission objectives and optimal maneuvers can be determined.
Computational assistance for pilots is especially important due to the aeroelastic
susceptibility of SensorCraft designs. Aeroelastic effects are highly nonlinear
making them particularly difficult to predict and all but nullifying the efficacy of
employing intuition for avoidance. For some applications, that may be acceptable,
but here, the price of failure is very steep. So even unlikely events that may only
occur in the tails of their probability distributions need to be in the forefront of
design considerations. The matter is further complicated when we consider that
a given mission may have multiple objectives. As stated at the introduction of
this chapter, maximizing data collection, maximizing quality of data, minimizing
aircraft damage, and maximizing aircraft operational lifetime are some of the
objectives that may figure into how decisions are made. Some of these clearly align
with each other. Minimizing damage and maximizing data quality, for example,
will most likely lead to many of the same choices since any damage to the aircraft
may damage the sensors or introduce noise into the measurements. Other objectives
could often be at odds with each other. Maximizing the operational lifetime of
the SensorCraft may interfere with the volume of data collected if the operator
is unwilling to take certain risks that could lead to the gathering of additional
data, and/or situations wherein there is excessive stress on the wings. Determining
which objectives take priority, when, and by how much is an important task that
can greatly affect the maneuvering behavior. Balancing optimality for multiple
competing objectives while maintaining a measure of feasibility for all of them is a
central function of the decision support system.

When uncertainty is introduced, due to measurement error, modeling error, and
so on, extra precautions need to be included in the decision making process. There
are two standard approaches for incorporating this uncertainty. The simplest and
most widespread, is to treat the problem as if it were deterministic, assuming that
any uncertain event will take on its most likely value and then optimize. When some
guarantee of feasibility is sought, the possible outcomes of the uncertain events are
enumerated and a robust solution, one that is insensitive to uncertainties, is found
that satisfies all of the constraints for all eventualities. In the case of an aircraft,
or really any system with controls, the optimization can benefit from separating
the decision variables into current decisions and future decisions. In a technique
developed for chemical plant design called flexible optimization [9], one considers
design variables that need to be determined before an uncertain event occurs and
operational variables as operations that can be determined after the occurrence.
After the event takes place, only one of its possible outcome scenarios can be
realized. The plant can be designed so that for each distinct scenario, a distinct
operation is optimized. The topic of operationally flexible robust optimization with
multiple objectives is elaborated upon in greater detail by Azarm and Lee [4]. A
method for searching for the worst case scenarios instead of doing an exhaustive
sweep has been investigated by Kania et al. [13].
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minimize
xd ,xop1,...,xopi ,...,xopI

E∀p
[
fm,i
(
xd, xopi, pi

)]
m = 1, . . . ,M

s.t. : gj,i
(
xd, xopi, pi

) ≤ 0 j = 1, . . . , J, i = 1, . . . , I
max∀p min

xop
max
j∈J gj,i

(
xd, xop, p

) ≤ 0

∀p : pl ≤ p ≤ pu; ∀pi : pl ≤ pi ≤ pu

(10.3)

where xd contains the design variables; xop contains the operational variables; p
contains the uncertain parameters; pl and pu contain the lower and upper bounds
of the uncertain parameters respectively; xopi contains the operational variables
corresponding to the ith discrete value of p; fm, i contains the mth objective function
evaluated at the ith discrete value of p; and gj, i contains the jth constraint evaluated
at the ith discrete value of p.

In Eq. (10.3), the authors show the general form of an optimization of M
objectives that is robust with operational flexibility to I possible scenarios of the
uncertain events pi. For each of these, there is a separate operational variable xopi

that is optimized, with only a single value of the design variables xd.
For the SensorCraft considered in this Chapter, this means that the system can be

designed for its operation during different types of missions, or preflight parameters
can be designed for uncertain events that might require distinct maneuvers. In
order to get the most performance out of the system while considering aeroelastic
instabilities, it is desired that each maneuver be optimized and guaranteed, within
some limits, to be feasible/stable. For updating the optimal solution, one frequently
requires a model that can be evaluated in a short time, but the cost of inaccuracy
(possible destruction of an aircraft) makes a high fidelity model desirable. Most
often, these two criteria are mutually exclusive. The DDDAS framework discussed
in the previous section allows for a method by using the accuracy of the nonlinear
aeroelastic simulation with the real-time sensor data to achieve a prediction that is
both fast and accurate. These properties mean that not only can the DDDAS based
decision support system be used to aid in the design, but it can also be employed
as a form of finite horizon controller. The data-driven prediction framework shows
how predictions can be made for aeroelastic stability in future time steps. Instead
of considering the design variables of flexible optimization to be of a different
nature than the operational variables, maneuvers can be treated as both. There is
a maneuver that must be taken at the current time, while the uncertain conditions
are unknown, and also a maneuver that should be taken later, after some of the
unknowns become known. These can have the same variables, but divided into now
and later.

Referring to Fig. 10.10, the lower block with outputs ŷt and ŷt+1 represent
the current and future aeroelastic state estimates in the data-driven prediction
system. These estimates are used in the decision support system to determine the
feasibility of tentative maneuvers. Maneuvers consist of decision variables x, with
the subscripts t and t + 1 denoting the current time step and the future time
step, respectively. The future maneuver xt + 1 is divided into I possible maneuvers
wherein the ith maneuver corresponds to the jth possible scenario for the uncertain
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Fig. 10.10 One-step
look-ahead decision support
based on state estimator and
predictor

event. By optimizing for time t and possible values for time t + 1 a one-step look
ahead method of decision support has been created. Each maneuver that is selected
to execute by the operator is optimal and feasible, and also chosen to enhance the
optimality and feasibility of the future maneuver.where x’s are state vectors, p’s
are uncertain parameters, y’s are system responses, and ŷ’s are system response
predictions. The subscript t corresponds to the current time during online operation,
with t + 1 representing estimates of a future time, and t− 1 being the previous time
step. The subscript i indicates which of the I possible outcome scenarios for the next
time step is being considered.

10.7 Concluding Remarks

In this chapter, a DDDAS framework for a decision support system has been devel-
oped to make use of aeroelastic simulation capabilities, system response predictions,
and optimization under uncertainty. By accelerating high-fidelity simulations with
an approximation method, such as the fast multipole method and using the proposed
data-driven prediction system, it is expected that prediction accuracy with sufficient
speed can be achieved for the needed decision making. With computationally
cheaper function evaluations, online optimization would be feasible. Additionally,
incorporating measures of robustness that take operational variables into account
would mean that the resulting decision support system can help pilots realize
efficient performance with thin, flexible wing aircraft such as the SensorCraft.
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Chapter 11
Transforming Wildfire Detection
and Prediction Using New
and Underused Sensor and Data Sources
Integrated with Modeling

Janice L. Coen, Wilfrid Schroeder, and Scott D. Rudlosky

Abstract Wildfire management relies upon prompt detection of new ignitions
and timely anticipation of a fire’s growth as influenced by local terrain, fuel
characteristics and condition, and weather, notably wind. Recent advances include
the Coupled Atmosphere-Wildland Fire Environment (CAWFE) modeling system,
which couples a numerical weather prediction model optimized for modeling fine-
scale airflows in complex terrain with fire behavior algorithms, capturing how the
fire “creates its own weather”, and ingests spatially refined (375-m pixels) satellite
active fire detection products from Visible Infrared Imaging Radiometer Suite
(VIIRS), igniting simulated fires ‘in progress’. Assuming regular fire mapping data,
this allows an accurate forecast of fire growth for the next 12–24 h; sequences of
these simulations may maintain a reasonable forecast of fire growth from detection it
until it is extinguished. However, accurately anticipating a fire’s growth is a difficult
forecasting challenge because of accumulating model error, stochastic processes,
and intervention (i.e., firefighting), data may be missing, and some conditions are
inherently less predictable. Here, we develop and apply algorithms (steered by other
data) to distill new and existing (but underutilized) sources of data on wildfire
detection and mapping, develop and apply algorithms to integrate asynchronous data
on wildfire detection and monitoring with coupled weather–wildland fire models,
and assess the improvement in wildfire detection time and forecasted fire growth.
We investigate the use of additional datasets from satellites with fire detection
algorithms and adjacent non-utilized passes of VIIRS to enhance simulations of the
2015 Canyon Creek Complex. These additional asynchronous data allowed 1–3 h
earlier fire detection by remote sensing, allowed forecasts to begin and be delivered
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much earlier, and introduced several additional simulations into the cycling forecast
of a three-day fire growth period. By updating the anticipated fire growth forecast
more frequently, these supplemental simulations improved fire growth forecast and
compensated where standard, scheduled observations were missing or obscured by
clouds.

11.1 Introduction

Wildfires are a costly natural hazard that presents a detection, monitoring, and
forecasting challenge. Lightning outbreaks may produce thousands of cloud-to-
ground strikes, leading to numerous ignitions. Historically, fires are indicated by
the appearance of smoke plumes and mapping data collected once nightly by
aircraft such as the National Infrared Operations (NIROPs), directed toward the
highest priority fires. Since 1999, satellite borne instruments such as the Moderate
Resolution Imagine Spectroradiometer (MODIS) [1, 2] have shown promise in fire
detection and indicating overall extent of large fires multiple times per day during
daytime and nighttime. More recent spaceborne instruments with finer resolution
such as the Visible and Infrared Imaging Radiometer Suite (VIIRS) [3] have
shown utility both in delineating fire extent at scales relevant for fire behavior
and detecting lower intensity and smaller fires. While available in near real time
through operational sites, integration with fire management and growth forecasting
operations continues.

Ignitions may lie stagnant until conditions become drier and windier, and then
grow rapidly in size and complexity in episodic runs that occur on a small proportion
of days. Operational forecasting of a fire’s growth still largely relies on kinematic
models (i.e., [4]) based on semi-empirical relationships between the rate of spread
of the leading edge of a fire (the flaming front) and environmental factors that
influence it including the terrain slope, fuel characteristics and moisture condition,
and wind, either from a nearby measurement or coarse atmospheric model diagnosis
or prediction. More recent research advances include improved modeling tools,
such as the CAWFE R© (Coupled Atmosphere-Wildland Fire Environment) modeling
system, which two-way couples a numerical weather prediction (NWP) model
optimized for modeling fine-scale airflows in complex terrain with fire behavior
algorithms, to more realistically model how wildfires unfold. CAWFE models the
weather in the fire environment at hundreds of meters (resolution finer than current
operational forecast models), the fire behavior, and its feedback to the weather –
notably producing fire-winds that further impact fire behavior.

However, accurately anticipating a fire’s growth is intrinsically a difficult
forecasting challenge because of nonlinearity, accumulating model error, stochastic
processes, and intervention (i.e., firefighting). Events can extend for weeks or even
months – much longer than a weather model forecast is valid, are impacted by
external factors such as firefighting, and contain processes such as the ignition of
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new fires by ember spotting that cannot be treated in a deterministic manner. By
integrating these tools, prior work suggested accurate forecasting of the unfolding
of a wildfire was within reach. It demonstrated that integrating CAWFE and the
12-hourly VIIRS active fire detection product, igniting fires ‘in progress’ using the
VIIRS fire mapping data, allowed accurate simulation of fire growth for at least the
next 12–24 h [5]. By applying sequences of these simulations, a practice referred to
in the weather prediction community as ‘cycling’, they suggested that this technique
could be used to maintain a good forecast of upcoming fire behavior from first
detection until the fire was extinguished.

Despite these scientific advances, challenges remain. As in many other complex
systems, weather forecasts are often performed in traditional ways with scheduled
forecasts and data collection, limited ingestion of data that are expected to be
available at initialization, and no steering between data and model. Data may be
missing, obscured, or incomplete while nonlinear models are prone to rapid error
accumulation. In fire applications, these are challenges: (i) remote and/or undetected
fire ignition sources and (ii) fast-moving and/or complex-behavior wildfires. The
first challenge is typically associated with lightning strikes in the western U.S.
creating smoldering fires that go undetected for days until a smoke plume is seen and
reported. In that case, early detection and early triggering of prediction systems is
key. The second challenge describes fires occurring during weather regimes where
predictability is very short, approximately a few hours. While VIIRS active fire
detection data is available in near real time at least every 12 h, observational gaps
may still exist, as substantial fire growth may occur between consecutive satellite
passes or data may be obscured by clouds, sun glint, or topography, negatively
impacting intelligence used for fire suppression and growth prediction. To address
the two challenges above, data from existing and new sensors must be used to
maximum benefit.

This work investigates how dynamic data driven application techniques that
employ new and existing underutilized wildfire detection and mapping data sources
tightly integrated with coupled weather-fire behavior modeling could transform
wildfire detection and prediction. Initially, the data supplementing the primary
VIIRS active fire detection product include additional data distilled from adjacent
underutilized VIIRS passes and remote sensing data from polar-orbiting satellites
with different resolution and revisit frequencies. We discuss these data, develop
and apply algorithms to integrate asynchronous data on wildfire detection and
monitoring with the CAWFE coupled weather–wildland fire model, and assess
the improvement in wildfire detection time and forecasted fire growth. These
methods and data have been used to enhance simulations of Oregon’s 2015 Canyon
Creek Complex, demonstrating the improvement due to incorporation of Dynamic
Data Driven Application System (DDDAS) techniques. Outcomes included faster
detection time, earlier forecasts enabling earlier response using the information, and
improved forecast skill throughout simulated periods.
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11.2 Background

11.2.1 Forecasting Approaches

As a forecasting problem, wildfires present numerous challenges. First, during a
long-lasting fire, a simulation initialized at ignition could lose most of its fidelity
before the time of active fire spread or period of interest due to error growth arising
from imperfect initialization data and model physics. Second, wildfires may grow
for weeks to months whereas weather forecast skill decreases rapidly with time, with
state-of-the-art synoptic-scale models essentially losing all skill after 12 days [6].
Thus, no single weather forecast can cover a long-lived event accurately. Moreover,
processes such as spotting, in which embers lofted by the fire may ignite new fires,
cannot be modeled deterministically and fire suppression can impact the fire growth,
requiring routine diagnostics and re-initialization.

To address the modeling issues, a new method [5] introduced a fire perime-
ter defined by VIIRS pixel-based fire detection data into CAWFE at a time
corresponding to the observation, allowed the fire to evolve, and compared the
simulated and observed fire extent at the time of the next VIIRS data (∼12 h
later). They found that simulations represented fire growth well for 12–24 h after
each initialization in comparison to later satellite passes but strayed from mapped
area with time, as expected. They proposed forecasts be done using a cycling
approach, in which a series of CAWFE simulations would be started at regular 12-
hourly intervals, initialized with cycled large-scale weather forecasts and the fire
location ‘in progress’ using successive VIIRS perimeters. They suggested that this
system could largely overcome the decrease in skill with time that a single forecast
would experience and could be used to predict even a long-lived fire’s extent from
first detection until extinction. Despite that major advancement, additional work is
required in order to determine the optimum cycling frequency and the net gain in
predictive skills resulting from additional observations and model invocation.

Alternative data assimilation approaches (e.g., [7]) to wildfire modeling propose
to use the Ensemble Kalman Filter technique, in which a suite of simulations with
slightly varying initial conditions is run, compared with mapped fire location, and
adjusted toward the observation. However, when applied to wildfires by varying the
fire location, the method fails to meet the criteria that the ensemble members be
independent. In addition, the computational cost of running dozens of simulations
is unnecessary. The method was developed to adjust intertwined atmospheric state
variables, but, as applied in coupled weather-fire models, the fire extent is essentially
an external forcing and no special handling to avoid unbalancing the model state is
needed. Instead, [5] showed that the extent of the observed fire, already in progress,
could simply be introduced into a weather simulation without making the simulation
become unstable. Other approaches have attempted to steer coupled weather-fire



11 Transforming Wildfire Detection and Prediction Using New. . . 219

model simulations by assimilating fuel moisture data from surface weather stations
[8]. The argument against such an approach is that compared to other environmental
factors such as wind, the fuel moisture impact is very weak [9] and, because
the fuel moisture data are extremely sparse, the actual spatial variability of fuel
moisture is unknown and not represented in the data. Moreover, when the event is
strongly forced – either by ambient winds or fire winds generated by ample fuels
and complex terrain – details of fuel composition, amount, and moisture are not
essential to capturing the event’s character [9]. Hence, our approach emphasizes
methodologies that keep the simulated weather and fire system up-to-date using
high frequency cycling triggered by the arrival of new data distilled with iterative
adaptive algorithms.

In practice, the idealized modeling scenario proposed by [5] could experience
both challenges and opportunities. For example, the weather regime could be more
unpredictable and 12-hourly updates on fire mapping data may not be frequent
enough to maintain skill. In addition, the routine fire mapping data might be missing
for the fire of interest because of cloud obscuration or other observation conditions
affecting data fidelity and/or availability (e.g., variable pixel resolution as a function
of observation angles, terrain or canopy obscuration, partial block-out zones due
to sun glint, sensor downtime). However, as noted, prior and subsequent VIIRS
overpasses may provide additional fire detection data, and additional sensors and
data products are coming online, such as the Landsat-8 active fire detection product
[10]. These factors form the basis of a dynamic-data-driven approach.

11.2.2 The 2015 Canyon Creek Wildfire Complex

Between 0500 UTC (12:00 AM) and 1100 UTC (4:00 AM) on August 12, 2015 a
lightning storm passing over the Malheur National Forest (NF) in eastern Oregon
ignited at least twelve new fires. These fires received initial attack but two – the
Berry Creek Fire in the Strawberry Mountain Wilderness and the Mason Springs
Fire in the Malheur NF – escaped. On August 14, prefrontal winds of 18 m s−1

(40 mph) drove the fires to the northeast, causing the two fires to merge forming
the Canyon Creek Complex and increasing the fire size from 242 ha (600 acres)
to 13,759 ha (34,000 acres). With the passage of a dry cold front, winds shifted
and drove the fire to the southeast into the Strawberry Wilderness (Fig. 11.1). The
complex was contained November 5, 2015, at 44,621 ha (110,261 acres).

Space borne observations providing either detection or mapping of the Canyon
Creek Complex include both VIIRS and Landsat-8 data and begin during the
lightning storm itself. These observations, which cluster around mid-night and early
afternoon, cover the first growth period, examined here, and extend throughout the
incident.
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Fig. 11.1 Canyon Creek Complex progression map. (Image courtesy of U.S.D.A. Forest Service
[Available at https://inciweb.nwcg.gov/incident/map/4495/24/48177/])

11.3 Methods

11.3.1 Wildland Fire Detection, Mapping, and Monitoring

Many wildfires continue to be reported by the detection of a smoke plume. Mapping
of fire extent is conducted by the National Infrared Operations (NIROPs) on high-
priority fires. This airborne mapping is limited to nighttime to maximize the thermal
contrast of the fire from its background and provides a single mosaic of the entire fire
perimeter per visit. Satellite-borne remote sensing instruments measure radiances
in the short wave and thermal infrared bands, which guide the delineation of near
real-time fire extent maps from individual satellite imagery. In contrast with visual
detection and airborne mapping, satellite borne instruments have the potential to
routinely detect and monitor wildfires worldwide.

11.3.1.1 The Visible and Infrared Imaging Radiometer Suite (VIIRS)

The VIIRS multispectral instrument lies aboard the Suomi National Polar-orbiting
Partnership (S-NPP), a preparatory mission to the upcoming Joint Polar Satellite
System (JPSS) [11]. The VIIRS land product suite includes two active fire detection
global data sets available at least every 12 h, namely: a baseline 750 m product
and a 375 m product using the higher resolution imager bands. Both detection

https://inciweb.nwcg.gov/incident/map/4495/24/48177/
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Fig. 11.2 Near-coincident VIIRS 375 m and National InfraRed Operations (NIROPS) active fire
mapping of the Rim Fire, CA, on 26 August 2013. NIROPS data include fire perimeter (solid blue
contour) and areas of intense heat (dashed blue polygons). VIIRS data describe actively burning
pixels with associated radiometric temperature color-coding

algorithms are built on the heritage MODIS fire product, using primarily the middle-
and thermal-infrared spectral data to detect sub-pixel fire activity associated with
biomass burning [3, 12]. Compared to other global data sets, the higher resolution
375 m VIIRS fire product enables early detection of fires as small as 5 m2 at night,
as well as improved mapping of large fires. The algorithm’s performance is largely
driven by the scene’s condition, to which detection tests are automatically adjusted
to avoid false alarms associated with other radiometrically bright features (e.g.,
clouds, sun-glint zones, highly reflective rooftops). Tuning is performed to balance
false alarm and omission error rates at global scales. Both VIIRS 750 m and 375 m
fire algorithms are currently running in near real-time for the U.S. at the USDA
Remote Sensing Applications Center. The VIIRS 375 m product has been validated
against airborne infrared data over western U.S. fires achieving comparable results
(Fig. 11.2).

The S-NPP/VIIRS sampling frequency is a function of latitude. Global wall-to-
wall coverage is achieved every 12 h, with nominal equator crossing times of 1:30
P.M. (ascending node) and 1:30 A.M. (descending node). Mid-latitudes are sampled
least twice a day, with some alternating days experiencing up to four observations
(two in the afternoon and two in the morning).
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Additional observations may sometimes be obtained from prior or subsequent
overpasses, which are each separated from the primary pass most optimal for
detection (i.e., closer to nadir) by the orbital period 102 min (corresponding to
∼14.11 orbits per day). Detection performance and thus whether useful data can be
obtained from these passes depends on the viewing conditions – observation angle
and thus pixel size, orientation of a fire on topography, and the presence of clouds
or solar illumination.

11.3.1.2 Landsat

Landsat-8 (launched in February 2013) carries the Operational Land Imager (OLI)
and Thermal Infrared Sensor (TIRS) [13]. Flying in a polar orbit, Landsat-8 has a
16-day revisit time and provides primarily daytime data, although data acquisition
may vary according to geographical orientation and science objectives or special
applications (e.g., on-demand nighttime acquisition in support of wildfire mapping).
Landsat-class data have been successfully demonstrated to detect actively burning
fires [14, 15]. The Landsat-8 active fire detection algorithm [10] builds upon
algorithms in those works using near infrared (≈0.8 μm) and shortwave infrared
(≈2.2 μm) to classify pixels containing an active fire.

11.3.2 Coupled Weather-Wildland Fire Modeling

The CAWFE R© (Coupled Atmosphere-Wildland Fire Environment) modeling sys-
tem combines a NWP model with a fire behavior module, allowing it to capture
atmospheric motions in complex terrain, the impact of spatially and temporally
varying weather on fire behavior, interactions of fire with the atmosphere, and the
impact of these feedbacks on fire behavior. It can simulate overall rate and direction
of spread and distinguishing characteristics of landscape-scale wildfires and, in
contrast to simpler models, provide deeper understanding of and capture distinctive
dynamic events and transitions in fire behavior.

The 3D meteorological Clark-Hall model (described in [16, 17]) in CAWFE
is non-hydrostatic and based on the Navier-Stokes equations of motion, a ther-
modynamic equation, and a conservation of mass equation using the anelastic
approximation. Vertically stretched terrain-following coordinates allow detailed
simulation of airflow at horizontal resolutions of hundreds of kilometers while
telescoping in to focus at approximately a hundred meters in complex terrain. The
outer of several interactive, nested modeling domains are initialized and boundary
conditions are updated with gridded atmospheric states from model forecasts or
analyses. The solution methods and options were designed to allow it to excel at
fine scales (100 s of m) in extremely complex terrain.
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CAWFE’s fire module, detailed in [18–20], is based on semi-empirical relation-
ships. A rate of spread formula [4] is used to estimate surface fire spread as a
function of terrain, fuel properties, and wind at the fire line, the latter of which may
be affected by the fire. It estimates post-frontal fuel consumption as per [21], to track
sensible and latent heat release from different fuel classes, and smoke particulate
release via an emission factor. A simple radiation treatment distributes sensible and
latent heat fluxes and particulates from the fire into the lowest atmospheric grid
levels, based on fire observations [22, 23]. A surface fire heat flux exceeding an
empirically defined threshold may ignite a crown fire, which is simulated to spread
through canopies at a rate given by other empirical relationships [24]. Weather and
fire are coupled so that the fire’s heat and water vapor fluxes alter the atmosphere’s
state, notably producing fire winds, and the evolving atmospheric state affects fire
behavior.

The weather model component has been used to simulate many meteorologi-
cal phenomena including precipitation formation, terrain-induced turbulence, and
windstorms. CAWFE simulations have been tested against in situ measurements and
incident team maps (2002 Big Elk Fire in Pinewood Springs, CO [18]), fires mapped
by airborne infrared instruments (the 2002 Troy Fire and the Santa Ana-driven 2006
Esperanza Wildfire, [9] (Fig. 11.3a) and VIIRS data (the 2012 High Park Fire [25]
(Fig. 11.3b) and the 2012 Little Bear Fire [5]). In contrast to simpler models, case
studies using CAWFE showed that, provided the atmospheric model can capture
the atmospheric flow, the distinguishing features of events – the overall spread rate,
direction, and fire behavior phenomena – can be modeled and distinctive dynamic
events and transitions in behavior, such as the splitting of fires into multiple heading
regions, the confluence of terrain, wind and fuel effects into blow-ups, fires drawn
up canyons orthogonal to the wind, fire whirls and inclined roll vortices, and the
transition to a running crown fire, can be captured.

Fig. 11.3 CAWFE simulations of the (a) 2006 Esperanza Fire near Cabazon, CA, reproduced from
Coen and Riggan (2014) and (b) 2012 High Park Fire near Fort Collins, CO, reproduced from Coen
and Schroeder (2015). The heat flux produced by the fire is shown in the color bar in each figure,
along with smoke (misty white field), and near surface wind speed and direction (vectors)
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11.4 Experiment Design and Results

Traditional approaches operate routinely at regular intervals at the simulation level –
input data is gathered, model simulation is launched, output is examined. Even using
the cycling approach of [5], new simulations are triggered on a regular schedule,
nominally each 12 h (or 24 h, if clouds obscure the scene), as new VIIRS data
become available.

Using a dynamic data-driven approach, we create an adaptive simulation invoca-
tion system based on the arrival of new fire detection data. By using asynchronous
data such as extra VIIRS passes, simulations can be initialized more frequently, so
that the most recent simulation is more current than a traditional approach would
provide and, unlike an older forecast that has accumulated error, should maintain
higher skill.

The National Centers for Environmental Prediction (NCEP) Final Operational
Global Analyses, prepared operationally every 6-h on a 1◦ × 1◦ grid were used to
provide initial conditions and later boundary conditions for the outermost domain of
a 72-h Weather Research and Forecasting (WRF) model simulation with two nested
domains with 30-km and 10-km horizontal spatial resolution, encompassing the
period 12 UTC August 13–12 UTC August 16. The WRF simulation dynamically
downscaled the atmospheric analyses to initialize and provide boundary conditions
for a sequence of CAWFE simulations.

11.4.1 Dynamic Data Driven Model Invocation

The CAWFE model was used to simulate a sequence of periods during the Canyon
Creek Complex over a domain centered on the Malheur NF of central Oregon using
four nested domains with horizontal resolutions of 10 km, 3.33 km, 1.11 km, and
370 m. CAWFE provided an updated simulation initiated twice daily at 0600 UTC
(11 PM) and 1800 UTC (11 AM). The spatial map of fuel models is given by
LANDFIRE (https://wwww.landfire.gov).

In each simulation, the fire was initialized in progress using the most recent active
fire detection data, either from Landsat-8, the standard VIIRS observation, or prior
or subsequent passes, where observations were successfully obtained. Simulations
of the weather, fire growth, and interactions between weather and fire were then
carried out until 12 UTC August 16, by which time this period of growth had
ended. In a standard approach, the experimental design supports the introduction
of standard 1:30 AM and 1:30 PM VIIRS observations. In this demonstration
of Dynamic Data Driven Model invocation, additional simulations are performed
introducing asynchronous observations from Landfire-8 and VIIRS observations
from prior or subsequent overpasses. Evaluations of the simulations were made
against later observations.

https://wwww.landfire.gov
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11.4.2 Results: Impact on Fire Detection

The August 12 3:07 A.M. VIIRS observation (Fig. 11.4a) had the potential to
provide an early indicator of ignition but lightning strikes either had not yet occurred
or had not yet become established, were impacted by rain, or under cloud cover,
and no active fire was detected. The first detection from remote sensing occurred
during the 11:43 AM Landsat-8 overpass (Fig. 11.4b), one of three observations
that occurred late morning to early afternoon on August 12. Landsat-8 detected
two ignitions. Soon after, at 12:53 PM, a VIIRS observation (Fig. 11.4c) detected
three fire starts – the additional fire start became the Mason Springs fire. A
VIIRS observation on the subsequent VIIRS pass at 2:30 PM (Fig. 11.4d) detected
these same three starts, amidst scattered clouds that could be obscuring other
ignitions. If approximately 2:30 PM is considered the time of the standard VIIRS
observation, by considering additional data sources (the Landsat-8 and 12:53 PM
VIIRS supplemental observations), detections were observed 1 h 10 min – 2 h 53 min
earlier than the standard detection time alone.

Approximately 12 h later, the Aug. 13 2:50 AM VIIRS nighttime observation
(Fig. 11.4e) detected four ignitions, the new start being the Berry Creek fire. (It
cannot be determined whether this was present at 2:30 PM, as clouds covered
this location.) Data from the subsequent VIIRS pass at 4:26 AM did not intersect
the modeling domain (Fig. 11.4f). Later that day, two close VIIRS observations
(centered at 12:36 PM (Fig. 11.5a) – a supplemental observation – and 2:12 PM
(Fig. 11.5b)) confirmed the four ignitions remained and showed slight growth only
on the Mason Springs Fire. Nearly 12 h later, the Aug. 14 nighttime observations
produced the standard observation at 2:32 AM (Fig. 11.5c), showing some growth
on the Mason Springs fire, and a pass at 4:09 AM (Fig. 11.5d) that produced no data.
Later that morning, a Landsat image covering some other part of Oregon could have
provided an update but did not intersect the modeling domain (Fig. 11.5e), leaving
an update to wait until the 1:55 PM standard VIIRS observation (Fig. 11.5f), which
showed the Mason Springs Fire had overrun the Berry Creek Fire during significant
growth to the northeast.

The next sequences of images contain two close in time VIIRS observations –
at Aug. 15 2:09 AM (Fig. 11.6a) and 3:51 AM (Fig. 11.6b). The prior indicates the
fire shifted directions and ran to the southeast. The second, a supplementary pass,
the indicated the fire’s run had ceased.

11.4.3 Results: Impact on Fire Prediction

Figure 11.7 shows a sequence of simulations that were performed with the 11 A.M.
August 13 CAWFE simulation, in which the wildfire was initialized with VIIRS
active fire detections at 12:36 P.M. (Fig. 11.7a) and 2:12 P.M. (Fig. 11.7b) on August
13 and 2:32 A.M. on August 14 (Fig. 11.6c). The first simulation, Expt. A, hints
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Fig. 11.4 Satellite active fire detection data over the innermost modeling domain. Each row
includes successful observations within the 3 h period encompassing the afternoon or nighttime
VIIRS observation. Light gray shading indicates cloud cover. Red-filled polygons indicate pixels
in which active fire has been detected. Charcoal indicates no data could be obtained. Dark red
indicates areas where in prior observations, active fire was detected. Titles indicate the observation
time; an orange box indicates an additional observations outside the standard twice-daily VIIRS
observation
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Fig. 11.5 Similar to Fig. 11.4, at later times
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Fig. 11.6 Similar to Figs. 11.4 and 11.5, at later times

Fig. 11.7 A sequence of three CAWFE simulations of the Canyon Creek Complex at times
(indicated on the x-axis) after 11 AM August 13. Fire extent in images highlighted by magenta
are the observed active fire detections.
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at the first rapid growth of the fire to the northeast by 26.9 h and the run to the
southeast by 39.2 h –features apparent in the last row, which shows the observations
at these times for comparison. As a supplemental simulation enabled by successfully
extracting a fire detection from the VIIRS pass preceding the standard detection, this
simulation would provide a heads up that active fire growth was imminent 1 h 36 min
earlier. The next simulation (Expt. B) supports and refines this prediction. The third
simulation (Expt. C), began with the supplemental observation nearly 12 h later,
further refines the simulation, restricting the overprediction of growth that Expts. A
and B showed through 17.2 h, and refining the prediction of growth episodes to the
northeast and southeast seen in the observations.

11.4.4 Integrated Results

We found that (1) incorporating other sensors (fire detection products from Landsat
8 and prior and subsequent VIIRS passes) enabled earlier fire detection and initiation
of simulations, making a forecast available 1.5–3 h earlier, and (2) considering prior
and subsequent VIIRS passes often could be used to launch additional simulations –
an additional 4, making 10 simulations possible.

11.5 Discussion

The detection and prediction of subsequent growth of wildland fires is time-sensitive
work of critical importance, upon which important management decisions are made
and resources based. Like many other applications, this is currently done in a
traditional manner with rigorous scheduling of routine, repeated modeling relying
on fixed detection algorithms and regular, periodic input data arrival. This work,
employing modeling, new sensors, and underutilized active fire detection data,
begins to explore the improvement DDDAS techniques make on wildland fire
detection and forecasting, highlighting the benefits toward mitigating the societal
impacts of a widespread natural hazard.

Prior work presented forecasting scenarios through which the new generation of
coupled weather fire models could provide a forecast throughout the life of a fire
using cycling techniques and regularly ingested active fire detection data, however
this was only the beginning.

In practice, it is more complex, as data may also be obscured by clouds, not
available, or have errors or gaps. In addition, errors exist in the weather forecast and
there are some situations with high uncertainty in which phenomena are predictable
over only short time periods. There are also opportunities – as “extra” data may be
available by prior or subsequent satellite passes or other sensors (and may help us
sustain a regular forecast).
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11.6 Conclusions

In this work, DDDAS techniques were applied to improve how wildland fires are
detected, mapped, and predicted in a specific case, the Canyon Creek wildfire
complex. As one of several improvements, DDDAS techniques were being used
to create an adaptive control system for seeking new data and invoking model
simulations based on their availability. By looking at a specific example, we
demonstrated how supplemental fire data outside the standard, routine forecast
schedule (e.g., Landsat 8/OLI or asynchronous S-NPP/VIIRS active fire detection
data) enabled remote sensing of fires to occur more frequently, possibly leading to
earlier detection, triggered earlier (and more frequent) dynamic data-driven model
invocation that led to simulation output that can be acted upon sooner and indicated
significant growth periods earlier, maintained better forecast accuracy, and can
compensate for the negative impacts of missing scheduled data. Specifically, it
could lead to earlier detection of fires, allowing more to be extinguished before
they become difficult to manage (a national security concern, as arsonists can
create multiple ignitions during conditions favorable for fire growth and all must
be detected early), and better forecasting throughout the fires’ lifetimes.

The work has broader implications as integrating data from new or underutilized
sensors and from an algorithmic perspective, the “go find the fire in the data”
step is equivalent to launching an additional measuring device or platform such
as a unmanned aerial system (UAS) or directing a sensor when to collect data.
The results could affect NWP and fire remote sensing and have broad application
across other fields, as simulations of natural systems. It also has broad application
across other forecasting systems, which are often nonlinear and suffer error buildup,
and are currently done in a traditional manner with rigorous scheduling of routine,
repeated modeling relying on fixed detection algorithms and regular, periodic input
data arrival.
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Chapter 12
Dynamic Data Driven Application
Systems for Identification of Biomarkers
in DNA Methylation

Haluk Damgacioglu, Emrah Celik, Chongli Yuan, and Nurcin Celik

Abstract The term ‘epigenetic’ refers to all heritable alterations that occur in a
given gene function without having any change on the DeoxyriboNucleic Acid
(DNA) sequence. Epigenetic modifications play a crucial role in development
and differentiation of various diseases including cancer. The specific epigenetic
alteration that has garnered a great deal of attention is DNA methylation, i.e., the
addition of a methyl-group to cytosine. Recent studies have shown that different
tumor types have distinct methylation profiles. Identifying idiosyncratic DNA
methylation profiles of different tumor types and subtypes can provide invaluable
insights for accurate diagnosis, early detection, and tailoring of the related treatment
for cancer. In this study, our goal is to identify the informative genes (biomarkers)
whose methylation level change correlates with a specific cancer type or subtype. To
achieve this goal, we propose a novel high dimensional learning framework inspired
by the dynamic data driven application systems paradigm to identify the biomarkers,
determine the outlier(s) and improve the quality of the resultant disease detection.
The proposed framework starts with a principal component analysis (PCA) followed
by hierarchical clustering (HCL) of observations and determination of informative
genes based on the HCL predictions. The capabilities and performance of the
proposed framework are demonstrated using a DNA methylation dataset stored
in Gene Expression Omnibus (GEO) DataSets on lung cancer. The preliminary
results demonstrate that our framework outperforms the conventional clustering
algorithms with embedded dimension reduction methods, in its efficiency to identify
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informative genes and outliers, and removal of their contaminating effects at the
expense of reasonable computational cost.

12.1 Introduction

The term ‘epigenetic’ refers to all heritable alterations that occur in a given gene
function without having any change on the DNA sequence. Epigenetic modifica-
tions, i.e., DNA methylation and histone post-translational modifications, regulate
the transcription state of a gene, and play a crucial roles in cell differentiation
and proliferation [10, 22]. Accumulating evidence suggests that aberrant epigenetic
changes are affiliated with various diseases such as diabetes, schizophrenia, and
cancers [11, 12, 21]. Compared with genetic alterations, aberrant epigenetic mod-
ifications typically occur at an early-stage of disease. They can thus be reversed
given proper interventions. The study of epigenetics is emerging but fast-growing
field of science as epigenetic biomarker and therapies promise for the detection and
treatment of a broad array of diseases [9, 12]. One of the most important epigenetic
alteration is DNA methylation, i.e., the addition of a methyl-group to DNA. The
most prevalent DNA methylation is the covalent addition of a methyl group to the 5-
carbon position of the cytosine to form a 5-methylcytosine (5mC) occurring within
a CpG dinucleotide (a DNA sequence in which a cytosine and guanine nucleotide
appear consecutively). CpG methylation is commonly affiliated with gene silencing
and most abundant in heterochromatin regions.

Recent research has shown a significant interest in understanding of the corre-
lation between aberrant DNA methylation and cancer [12, 13, 21]. These studies
revealed that cancer cells have different methylation profiles from normal cells.
DNA methylation can not only be used to differentiate different tumor types, but
also to distinguish tumor subtypes [17, 24, 29]. Medical understanding of DNA
methylation and its implications in biology of cancer has significantly advanced
in the past years enabled by high-throughput DNA-sequencing-based methylation
analysis. Herein, data mining techniques for the collected high-throughput data play
an increasingly important role in extracting useful information for a wide range of
applications such as identifying cancer diagnosis and prognostic biomarkers.

Clustering algorithms are powerful tools for identifying idiosyncratic DNA
methylation profile of different tumor types and subtypes. Basically, cluster analysis
groups similar data points into same groups. Amongst the clustering algorithms
presented in the literature, hierarchical clustering (HCL) is widely used for DNA
methylation analysis. Variants of HCL has also been applied to the analysis of
different DNA methylation patterns in different cancer types or subtypes. For
instance, [29] and [4] used agglomerative hierarchical clustering algorithm for
identification of aberrant DNA methylation profiles in lung cancer subtypes and
lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues,
respectively, while [28] performed a two-way hierarchical clustering analysis to
characterize the DNA methylation profiles for clear cell sarcoma of the kidney
and other pediatric renal tumors. While HCL is relatively easy to implement and
comes at the expense of low computational cost when compared to other clustering
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algorithms such as k-means, it is still a greedy algorithm and sensitive to outliers
(or influential data points). As most of the clustering algorithms, HCL assumes all
information to be equally important for clustering. This assumption, however, is
unlikely to be valid in most of real systems and causes HCL to mark a significant
number of points as outliers, which further necessitates an implementation of a
dimension reduction algorithm.

In DNA methylation analysis, the data is very complex with thousands of genes
being collected from a single patient making the determination of an informative
set of genes (biomarkers) crucial for accurate identification of cancer-related DNA
methylation profiles. To this end, several dimension reduction algorithms have been
proposed in the literature for the characterization of informative biomarkers. For
instance, the study [29] determined seven informative genes among 24 genes using
Mann-Whitney U-test, while [4] chose 500 genes with the highest variance from
thousands of genes. Another study implemented a two-way hierarchical clustering
to find out an informative loci [28].

In this study, we propose a dynamic data driven hierarchical clustering (3D-HCL)
framework motivated by the dynamic data driven application systems (DDDAS)
paradigm founded by Darema [7, 8]. The proposed 3D-HCL framework embodies
an HCL algorithm with a threefold capability to detect the outliers, identify the
set of informative biomarkers, and define the clusters in an efficient manner using
the newly measured data from the real system. 3D-HCL initializes with a principal
component analysis (PCA). Then the HCL is run as an application system and based
on the results of the HCL, an outlier detection score, a cluster membership score and
an informative locus score are calculated. Here, these scores steer the measurement
process (in our case, informative biomarkers) based on the results of the developed
clustering algorithm (HCL) for the next iteration. The bidirectional information flow
between HCL and the proposed scores continues until a termination condition is
satisfied. These scores are also used for real-time classification of new samples.
Based on the classification results, the orchestration module can call the biomarker
identification module to retrieve information from the new samples or add the
samples to the cluster structure.

In this study, our proposed DDDAS based framework addresses two major
issues in HCL for performing data analysis in large and complex datasets such
as DNA methylation. First, the performance of all clustering algorithms is highly
dependent on the performance of their embedded dimension reduction (feature
selection) algorithm. To the best of our knowledge, there does not exist a single
universal algorithm that promises reasonable results for all datasets. The literature
presents many dimension reduction algorithms for DNA methylation analysis whose
performance is dependent on the data utilized for analysis. Hence, a successful
implementation of a traditional HCL would require testing with several different
dimension reduction algorithms. However, our proposed 3D-HCL framework is
designed as generic so that it does not depend on such high numbers of dimension
reduction algorithms. While 3D-HCL is initialized with a dimension reduction
algorithm, the results are minimally affected by the selected initial set of informative
biomarkers. The proposed framework identifies the most informative loci at each
iteration, and these loci are updated based on the informative score calculated at each
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iteration. Second, HCL is sensitive to outliers and noise. In the literature, outliers
are also called as influential data points as they can affect the results obtained from
a clustering algorithm to a significant extent. In order to mitigate this impact of
outliers and make our 3D-HCL less sensitive to influential data points (i.e., outliers),
we further equipped our proposed framework with an outlier detection algorithm
based on a fast distance-based measure.

The proposed work is also novel in the eminent DDDAS literature. DDDAS has
its power in its ability to create a symbiotic feedback loop between the real system
and its application. Dynamic data obtained from the real system is incorporated
into an executing application where the application in turn steers the measurement
process of the real system. As such, DDDAS has been applied to a variety of
areas such as supply chain systems [3], distributed electric microgrids [23, 25–
27], smart energy management [15], data fusion analysis [2], transportation systems
[14], and surveillance and crowd control [19] amongst many others. This study
introduces a new dynamic data driven learning framework for identification of
informative biomarkers based on the DDDAS paradigm that not only provides
measures for detecting outliers but also presents an orchestration procedure for
the symbiotic feedback loop between the learning mechanism and the real system
application. Here, the performance of proposed 3D-HCL framework on learning
mechanism is tested on the lung cancer methylation data. Our results show that
the symbiotic feedback loop increases the accuracy of the learning mechanism by
updating informative biomarkers based on the information obtained from clustering
algorithm in the unsupervised training dataset and the real time classification results
of new samples.

The proposed framework has been designed in a generic manner for wide
applicability in data system with various dimensionalities. The performance of
the proposed framework is demonstrated using real lung cancer DNA methylation
data obtained from GEO DataSets [4] where the results reveal that our proposed
framework outperforms the conventional HCL algorithm in differentiating lung
cancer tissues with 3% versus 33% error margins. Last but not least, this study
provides a validation for dynamic updating of massive databases for in vivo
DNA methylation analysis. In such an analysis, dynamically obtained data can be
processed fast in a computationally efficient way. To this end, our proposed DDDAS
3D-HCL can be considered as an online learning mechanism fed by dynamic and
big data as well as archival information.

12.2 DNA Methylation Data

Bisulfite treatment, also known as bisulfate conversion, is used to determine a DNA
methylation pattern. Bisulfite treatment converts unmethylated cytosines to uracil
while methylated residues remain unaffected [30]. Samples are then subject to
DNA sequencing to identify specific changes in the DNA sequence that can directly
inform the methylation level of a specific CpG site.
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Bisulfite conversion provides methylated and unmethylated intensities at the each
CpG sites to measure DNA methylation level. Beta value as defined in Eq. 12.1 is
commonly used to measure DNA methylation status.

βi = max (mi, 0)

max (mi, 0)+max (ui, 0)+ α (12.1)

In Eq. 12.1, mi and ui represent measured ith methylated and unmethylated
probe intensities, respectively. In order to avoid having negative values in probe
intensities, any negative values are reset to 0. To prevent probes with very low
expression levels from dominating results, an adjustment factor (α) is used. In this
study, α is set to 100 as recommended by [1]. The beta value ranges between 0
and 1. A value of zero means that every copy of the CpG island in the probe is
unmethylated, whereas a value of one indicates that all copies of the CpG site are
completely methylated.

12.3 Proposed DDDAS-Based Learning Framework
(3D-HCL)

The proposed DDDAS-based learning framework first identifies: (1) candidate
clusters of samples based on their DNA methylation levels and (2) informative
CpG regions (biomarkers) whose methylation level change correlates with specific
clusters (i.e., cancer type or subtype). The components of the proposed DDDAS-
based learning framework are explained in detail in this section (see Fig. 12.1 for
overview).

12.3.1 Initialization Algorithm: Principal Component Analysis

Principal component analysis (PCA) is a widely known dimension reduction algo-
rithm in the literature [5]. PCA performs dimensionality reduction by identifying
correlations in the data while preserving as much of the variance in the high

Fig. 12.1 Overview of the proposed DDDAS 3D-HCL framework



238 H. Damgacioglu et al.

dimension data as possible. PCA converts a set of correlated variables into a set
of linearly uncorrelated variables called principal components using orthogonal
transformation. The steps of the principal component analysis are explained below.

Let X is an n × m matrix consisting of m dimensional observation (in our case
loci) of n samples.

Step 1: Centralize the data by subtracting the mean of each variable (observation)
as shown below.

X̃ =
⎡

⎢⎣
x11 − X̄1 · · · x1m − X̄m

...
. . .

...

xn1 − X̄1 · · · xnm − X̄m

⎤

⎥⎦ (12.2)

Here, xij is the data for sample i and observation j , X̄j is the mean of variable j
and X̃ is the centralized data matrix.

Step 2: Compute the covariance matrix C from X̃ by using:

C = 1

m
X̃T X̃ (12.3)

Step 3: Calculate the eigenvectors and the eigenvalues by solving the following
equation for each variable

C × ui = λi × ui (12.4)

In the equation above ui represents the ith eigenvector and λi corresponds to the
ith eigenvalue. Also, each pair of eigenvector must satisfy the following conditions.
These conditions ensure that the eigenvectors are orthogonal to each other.

uTi × uj = 1 if i = j (12.5)

uTi × uj = 0 if i 	= j (12.6)

The eigenvalues of C shows how much variance is explained by corresponding
eigenvector. In dimensionality reduction, the first p eigenvectors which correspond
to the largest p eigenvalues are used instead of an n×m matrix.

12.3.2 Clustering Algorithm: Hierarchical Clustering

Hierarchical clustering (HCL) is a widely used clustering algorithm in DNA
methylation analysis to identify the DNA methylation profiles affiliated with certain
cancer subtypes [4, 28, 29]. The “bottom-up” approach (agglomerative) and the
“top down” (divisive) approach are the main strategies in HCL. In agglomerative,
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each data point starts in its own cluster, and pairs of clusters are merged until
only one cluster remains, while in divisive, all data points belong to one cluster
at the beginning, and they are split until each of them is in its own cluster. The
agglomerative approach is more commonly applied in the literature as it is generally
faster than the divisive approach in terms of computational complexity. However,
it should be noted that the HCL may still perform worse in terms of solution
quality as the merges in agglomerative and the splits in divisive are both determined
using a greedy algorithm. Additionally, HCL provides good and understandable
visualization for users, and unlike other commonly used algorithms such as k-
means, HCL does not require a prior knowledge of number of clusters. Due to these
reasons, hierarchical agglomerative clustering is adopted as a learning mechanism in
this study. For brevity, HCL abbreviation is also used for hierarchical agglomerative
clustering in the rest of the paper.

As discussed above, HCL starts with having each observation in a separate
cluster, then repeatedly merges the closest pair of clusters until only one cluster
is left. In this work, we base the merging operation on an average linkage where the
closest pair of clusters are identified as in the following equation.

Davg
(
Ci, Cj

) = 1

|Ci |
∣∣Cj
∣∣
∑

x∈Ci

∑

y∈Cj
dxy (12.7)

In Eq. 12.7, Davg
(
Ci, Cj

)
shows the average link (distance) between cluster i

and cluster j , |Ci | represents the cardinality of cluster i and dxy shows the distance
between data point x and point y. Since the DNA methylation levels for all probes
are properly scaled using the βi values, Euclidean distance (as shown in Eq. 12.8) is
used without any standardization method as a distance metric.

dij =
√√√√
∑

g∈θ

(
β
g
i − βgj

)2
(12.8)

In Eq. 12.8, βgi is the beta value of probe g of point i and θ is the set of infor-
mative probes. HCL builds a tree-based hierarchical representation (dendrogram)
using the Eqs. 12.7 and 12.8 and clusters are obtained by cutting the dendrogram at
a desired level.

12.3.3 Orchestration Procedure: Cluster Membership Score
Based Algorithm

In clustering problems, cluster assignments are made on the basis of a similarity
measure, Euclidean distance in our case. Even if the clusters are formed based on
the measure, the similarity measure may not answer such detailed questions related
with the results of clustering algorithm, such as labeling, determining right number
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of clusters, detecting outliers or border points, etc. To this end, in this study, we
propose a cluster membership score that shows the membership degree of a point to
a cluster. The cluster membership score is developed based on the definition of an
uncertainty classification measure proposed by [6, 18] for a probabilistic distance
clustering algorithm. Here, we adapt the definition of uncertainty classification
measure to HCL for better understanding of the clusters. The cluster membership
score is explained in detail below.

Let d
(
i, Cj

)
is the average of distances between observation i and observations

assigned to cluster j .

Definition 1 Let mi is the cluster membership measure of observation i. It is
the harmonic mean of the distances

{
d
(
x, Cj

) : j ∈ {1, . . . , k}} divided by their
geometric mean.

mi = k
⎛

⎝
k∏

j=1

ρj (i)

⎞

⎠

1
k

where ρj (i) =
∏
u	=j d

(
i, Cj

)

∑k
v=1
∏
t 	=v d (i, Ct )

(12.9)

The proposed score is ranging from 0 to 1. A value of zero indicates that the
point is certainly a member of a cluster whereas a value of one shows the current
information do not explain the membership of a point.

Definition 2 LetMj denotes the cluster validation score for given cluster structure.
The cluster validation score is the mean of the cluster membership scores of data
points assigned to the corresponding cluster.

Mj =
∑
i∈Cj mi∣∣Cj
∣∣ (12.10)

Based on the definition of cluster membership score, the low values of Mj

indicate that cluster j is explained and separated well from the other clusters with
the given information (in our case, identified set of informative CpG regions). This
score is designed to help orchestration of the information flow between hierarchical
clustering, and outlier detection algorithm and dimension reduction algorithm. Also,
it determines when the framework will be terminated.

12.3.4 Outlier Detection Algorithm

Outliers can arise from DNA methylation data due to measurement errors and/or the
dynamic nature in epigenetic mechanisms. Identification of outliers can eliminate
their contaminating effect on the methylation data and tremendously increase the
performance of clustering algorithm. Because of greedy mechanism used in merging
clusters, HCL is sensitive to outliers and it can result in ‘trivial’ clusters. To this
end, outlier detection and removal are important tasks to improve the performance
of clustering algorithm in DNA methylation analysis.
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Outliers (or influential points) can be defined as data points, distant from the
remainder of the data points. HCL can result in meaningless clusters due to outliers
(an example is shown in Results Section). In this study, we propose fast distance
measure for detecting outliers. This measure is designed by assuming that while
normal data points have a dense neighborhood whereas outliers are far apart from
their neighbors and thus have a less dense neighborhood.

Let oi represents the outlier score of data point i. It is number of points that are
closer than distance p.

oi =
N∑

j=1

δ
(
dij , p

)
(12.11)

In Eq. 12.11, δ
(
dij , p

)
is a function such that it is 1 if dij ≤ p and it is 0, if

otherwise. The data points with small oi values are considered as outliers. Here,
oi values are highly dependent on the parameter p. Small p values can find that
all points are normal while large p can mark normal points as outliers. Therefore,
selection of p is very important. In this study, p is determined as average of distance
between data points. Other outlier detection algorithms, similar with the proposed
one in this study, can be found in the literature [20].

12.3.5 Dimension Reduction Algorithm: Locus Information
Score Based Algorithm

In conventional application of HCL on a high-dimensional space, dimension
reduction algorithm (or feature selection algorithm) finds a set of informative
attributes and then HCL forms clusters based on this set. However, since the results
of any clustering algorithm are highly dependent on selected attributes, HCL can
fail in most of the real systems especially for dynamic, complex systems such
as a DNA sequence. Also, PCA has two important drawbacks. First, since PCA
performs dimensionality reduction using orthogonal transformation, it complicates
the identification biomarkers associated with diseases in DNA methylation analysis.
Second, PCA does not take into account the contaminating effect of outliers in
determining the principal components. To address these issues, we developed a
locus informative score inspired by [16].

Let Inf jl denotes the information score of locus l for the cluster j . Based on the
cluster structure found by HCL, it is calculated as follows.

Inf
j
l =

∣∣μi∈Cj
(
βli

)− μt /∈Cj
(
βlt
)∣∣

σi∈Cj
(
βli

)+ σt /∈Cj
(
βlt
) (12.12)

In Eq. 12.12, βli is the beta value of locus l for sample (point) i, and μ and σ are
the mean and standard deviation for the given set of beta values, respectively. The
higher Inf jl scores mean that the locus l is informative to differentiate the cluster j
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from the other clusters. In this study, if Inf jl is greater than 1 for any cluster, the
locus l is considered as an informative biomarker.

12.4 Results and Discussion

In this work, the capabilities and performance of the proposed DDDAS-based
framework are demonstrated using lung cancer DNA methylation data obtained
from the Gene Expression Omnibus (GEO) repository at the National Center for
Biotechnology Information archives with accession number GSE16559 [4]. In this
section, we first demonstrate each step of our framework to build groups of samples
with related methylation profiles on the training dataset. Then, we show how to
incorporate test data into the 3D-HCL and correlate test results with 3D-HCL
predictions.

12.4.1 Learning from Training Data

The training dataset used in our experiments is a part of larger data and consists
of 33 samples and two clusters, namely Non-malignant pulmonary and lung
adenocarcinoma. At the initialization step of the proposed learning framework, PCA
is applied to all 1505 probes with DNA different methylation levels for all samples.
When the number of variables (in our case, number of probes) is larger than the
number of samples, PCA reduces the dimensionality to, the number of samples
(at best). In this specific example, PCA results in 32 components without loss of
information. To select the initial set of informative biomarkers, we start by looking
at the cumulate variance explained by a set of principal components (Fig. 12.2).

Fig. 12.2 Cumulative variance explained by a set of principal components
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Fig. 12.3 Dendrogram obtained from HCL (Solution 1)

Fig. 12.4 Outlier score of each data point

As shown in Fig. 12.2, the first few components have the largest variance among
all components. In fact, while the first three components retain 60% of the original
variance, the last 19 components are only able to explain 10% of the variation of the
original data. Because some variance is expected in the original DNA methylation
dataset due to the contained outliers; in this work, the components that explains 90%
of the variance (13 of them) are chosen to initialize the framework.

Next, hierarchical clustering was run with the distance matrix calculated based on
the components found by PCA using the Eq. 12.8. Figure 12.3 illustrates the dendro-
gram obtained from HCL. As shown in the Fig. 12.3, HCL could not find any mean-
ingful clusters. Similar results were recorded when using conventional approach
that incorporated PCA as a dimension reduction algorithm and HCL as a clustering
algorithm. Error rate of this conventional approach was also recorded as 33%.

In the solution, cluster 2 has only one member which is sample 28. In this
example, since cluster validation score for cluster 2 was zero and the cardinality
of cluster was one, an outlier score of each data point was calculated based on the
current distance matrix and shown in Fig. 12.4.
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Fig. 12.5 The results of HCL in Solution 2, Solution 3, and Solution 4

The outlier score of point 28 is zero, meaning that there is no point closer to
the point 28 than p, mean of the distance matrix. The point was marked as outlier
and removed from distance matrix. Then, HCL was applied to the 32 samples. It
should be noted here that after outlier removal, the points were re-indexed based
on their position with respect to outlier point index. In Solution 2, HCL resulted in
more meaningful clusters with error rate of 18% as shown in Fig. 12.5a. Since the
cluster validation scores of both clusters were less than 0.8, the outlier removing
algorithm was not executed. Next, the informative probes were determined based
on the cluster formation obtained Solution 2 using the Eq. 12.12. The distance
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Fig. 12.6 Cluster validation scores

matrix was re-calculated with respect to the new set of informative probes and HCL
was applied to the new distance matrix. The result of the algorithm was shown
in Fig. 12.5b. Here, the error rate was down to 3.03% and the cluster validation
scores of cluster 1 and cluster 2 were down to 0.36 and 0.65, respectively. The same
procedure is repeated to obtain Solution 3 where the results are shown in Fig. 12.5c.
While Solution 4 presents the same clustering formation as was in Solution 3, cluster
validation scores are better for both clusters in Solution 4 due to an updated set of
informative biomarkers. Since the same solutions were obtained in consecutive runs,
the algorithm is terminated.

The cluster validation scores of both clusters in each run were illustrated in
Fig. 12.6. It is expected that cluster validation score decreases after each run with
updating the set of informative probes based on the obtained clusters. However, the
validation scores of clusters in Solution 1 were smaller than the those in Solution 2.
Here, in Solution 1, cluster 2 consists of only point 28 which is far from the other
data points and obviously, the cluster validation score is 0 for cluster 2. Also, since
the point 28 is far from the points, in Solution 1, the cluster validation score of
cluster 1 was smaller than other solutions. This issue can be explained as the effect
of influential points on the cluster validation score that the users should bear in mind.

After the recursive procedure is terminated, there is one more step to finalize
the solution. In this step, the outlier(s) was re-assigned to the closest cluster based
on the results of HCL. The closest cluster is the one that has the minimum average
distance between outlier and the points assigned to corresponding cluster. The result
after the finalization step was represented in Fig. 12.7. The error rate is 3.03%, the
proposed procedure mis-assigned only point 8 (non-malignant pulmonary) to the
lung adenocarcinoma cluster.
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Fig. 12.7 Solution after finalization step

The proposed dynamic data driven high dimensional learning framework clusters
the samples and identifies the biomarkers associated with these clusters. The
proposed framework results in 72 probes that help classify the new samples without
having to conduct a complete analysis. The original data and identified informative
probes were represented in Fig. 12.8a, b, respectively.

12.4.2 Learning from Test Data

The discriminative model obtained from learning algorithm based on the training
dataset eases the classification of the test data without running the learning
algorithm. This is the main motivation of the most of the learning algorithms
proposed in the literature. However, especially in high dimensional data, training
dataset may not reflect all of the different groups that are possible within the system
(in our case, cancer types and subtypes) causing the discriminative model outputting
incorrect predictions when used with the test data. For example, in unsupervised
DNA methylation analysis, the biomarkers identified using a dimension reduction
algorithm and a discriminative model (cluster structure in our case) are heavily
dependent on each other and thus training dataset can mislead the results of a
discriminative model. Here, we conduct two sets of experiments where in the
first set of experiments, we demonstrate the capabilities of 3D-HCL in real-time
classification of the test data, then in the second set of experiments, we show the
performance of our framework in the updating of the discriminative model with
respect to test data predictions in the case that training data do not reflect the true
representation of the new samples. In the first set of experiments, we classify the
8 non-malignant pulmonary samples where the results of 3D-HCL are shown in
Fig. 12.9.

Figure 12.9 shows the distance between each sample in the training set and the
newly obtained sample. As seen in Fig. 12.9, the new samples except sample 4
have similar DNA methylation profiles based on the biomarkers identified using
the discriminative model. Here, the orchestration module calculates mi and decides
the class of each new sample i without running the clustering algorithm. The cluster
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Fig. 12.8 Original data and identified informative probes
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Fig. 12.9 Classification of 8 non-malignant pulmonary samples
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Fig. 12.10 Classification of 12 pleural mesothelioma samples

membership of the samples except sample 4 is smaller than 0.2 which means that
the identified biomarkers explain the class of these samples. However, membership
score of sample 4 is quite high (approximately 0.85). This shows that this sample
can be considered as an outlier or can come from a different cluster that has not been
considered in training dataset. Since this data point is far from all of the samples in
both the training and test datasets, it is marked as an outlier. Our outlier detection
algorithm also classifies the point as an outlier with respect to its oi score.

In the second experiment, the test dataset includes 12 pleural mesothelioma sam-
ples which have not been considered in the training dataset. Similar to Figs. 12.9 and
12.10 shows the dissimilarity value between the pleural mesothelioma samples, and
the non-malignant pulmonary and lung adenocarcinoma samples. Here, mi values
of the samples in this test dataset are approximately 0.90. Here the orchestration
module decides that all these samples belong to a different cluster since these
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Fig. 12.11 Identified informative biomarkers after new test data

samples have similar DNA methylation profiles based on the identified biomarkers.
Then, to identify the new set of biomarkers that separates these samples from
the samples in the training dataset, the locus informative score (see Eq. 12.12) is
calculated for each locus assuming that the samples in the new dataset belong to
a new cluster. Based on inf jl values, 42 additional loci are labeled as informative
biomarkers. The results of updated learning model are represented in Fig. 12.11. The
results show that the symbiotic feedback loop increases the accuracy of the learning
mechanism by updating informative biomarkers based on the information obtained
from the test data. As such, the accuracy of the updated learning model is 97.78%.

12.5 Conclusion

In this work, a dynamic data driven applications systems (DDDAS) high dimen-
sional learning framework, namely 3D-HCL, is introduced for identifying idiosyn-
cratic DNA methylation profile of different tumor types and/or subtypes. The
proposed framework is composed of five algorithms, (1) principal component
analysis that initializes the framework by determining initial set of informative
biomarkers, (2) hierarchical clustering algorithm that clusters the points (samples)
into groups which represent cancer types or subtypes, (3) outlier detection algorithm
that finds outliers and removes their contaminating effect on the input of HCL, (4)
informative probe selection procedure which identifies the biomarkers associated
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with clusters obtained by learning mechanism, and (5) orchestration procedure that
coordinates the information flow between HCL and outlier detection algorithm and
informative probe selection procedure based on the designed cluster membership
score. The performance of the proposed framework was demonstrated using real
lung cancer data obtained from GEO database [4]. The performance of the proposed
DDDAS-based recursive procedure is noted as very promising on the case study in
terms of detecting outliers and removing their contaminating effect, finding mean-
ingful clusters, and identifying biomarkers. In particular, in the selected dataset,
traditional HCL results in approximately 33% error and fails to identify meaningful
clusters. Our improved iterative procedure, however successfully differentiates the
non-malignant pulmonary and lung adenocarcinoma with 3% error and identifies an
aberrant DNA methylation profile associated with these cancer types. Interestingly,
we observed that outliers have a significant effect on dimension reduction by
misleading the determination of informative genes. Our proposed procedure is also
able to detect and remove the outliers from the methylation dataset to minimize
their potential contamination. Collectively, the proposed framework paves the way
towards analyzing complex DNA methylation data using data driven learning
mechanisms.

The future venues of this work involves itself with the testing of the proposed
algorithm using datasets collected from a larger number of patients. The outcome
of these studies will further validate the capability and performance of the DDDAS
learning algorithm while improving its accuracy. In this study, a threshold based
algorithm is developed based on designed informative locus score so that the pre-
defined threshold value can affect the identification of informative biomarkers.
Here, an optimal mechanism or automatic fine-tuning mechanisms for the threshold
parameter can be investigated. Lastly, in its current form, the hierarchical clustering
algorithm expects the number of clusters as a pre-determined parameter. The future
work will focus on the exploration of a cluster membership score that will help
optimize the number of clusters used in run-time.

The proposed 3D-HCL framework is tested on a real lung cancer DNA methyla-
tion dataset. As demonstrated in Sect. 12.4 the feedback loop between the clustering
and identification of biomarkers provides more accurate results of aberrant DNA
methylation profiles associated with cancer. The results of this study show that
DDDAS based methodologies can provide invaluable insight into accurate cancer
diagnosis, early detection, and treatment tailoring especially the research in the
analysis of time-course data, and complex and comprehensive studies involving very
large number of genes and samples such as Human Genome Project. In time-course
methylation analysis, the proposed 3D-HCL framework can be further investigated
to identify groups of biomarkers whose expressions are not stable over time, and
then classify the new samples based on these identified biomarkers by steering the
timing of data collection. In conclusion, this study highlights that DDDAS based
learning methodologies offer not only more accurate results but also more efficient
experimental designs for analyzing and understanding of genetic and epigenetic
blueprint in the complex and comprehensive projects.
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Chapter 13
Photometric Stereopsis for 3D
Reconstruction of Space Objects

Xue Iuan Wong, Manoranjan Majji, and Puneet Singla

Abstract The use of photometric stereopsis approaches to estimate the geometry
of a resident space object (RSO) from image data is detailed. The set of algorithms
and methods for shape estimation form an integral element of a Dynamic Data
Driven Application System (DDDAS) for enhancing space situational awareness,
where, sensor tasking and scheduling operations are carried out based upon the
RSO orbital and geometric attributes, as estimated from terrestrial and space-
based sensor systems. Techniques for estimating the relative motion between
successive frames using image features are used for data alignment before surface
normal estimation. Mathematical models of photometry and imaging physics are
exploited to infer the surface normals from images of the target object under varied
illumination conditions. Synthetic images generated from physics based ray-tracing
engine are used to demonstrate the utility of the proposed algorithms.The proposed
framework results in a estimates of the surface shape of the target object, which
can subsequently used in forward models for prediction, data assimilation and
subsequent sensor tasking operations. Sensitivity analysis is used to quantify the
uncertainty of reconstructed surface.

13.1 Introduction

Space situation awareness (SSA), including space surveillance and characterization
of all space objects and environments, is critical for national and economic security.
SSA is the ability to detect, track and characterize passive and active space objects.
In light of the large number of resident space objects, (RSOs, > 20,000) and the
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generally accepted notion that our knowledge about the number and nature of most
of the objects is severely limited to none, an unmet and urgent need exists for
accurate tracking and characterization of RSOs. In addition to orbit parameters,
RSO shape and size attributes are necessary to characterize long term evolution
of the orbital states, especially for objects in the low and mid Earth orbital regimes.
Dynamic Data Driven Application Systems (DDDAS) provide an important avenue
to monitor resident space objects, by enabling mechanisms to infer their shape,
state and number, and simultaneously providing a data driven feedback loop about
which future measurements are to be made to maintain the RSO uncertainties
in the catalog below acceptable threshold values. Such a framework comprises
of an interplay between various algorithms and methods, catering to different
SSA products. Figure 13.1 provides a notional overview of such a system called
INFOrmation and Resource Management (INFORM) conceived by the authors for
SSA applications.

An important aspect of space exploration and situational awareness involves the
characterization of surface geometry of space objects. Surface geometry estimates
are then utilized by the forward models for uncertainty propagation and subsequent
resource allocation operations for catalogue maintenance, conjunction assessment
and other SSA product generation. While astronomers are more interested in
measuring the geometry of natural space objects such as asteroid and planetoids, the
measurement of man-made objects such as spacecraft enable better characterization
of resident space objects of interest in space situational awareness applications.

Common methods applied in space object’s surface measurement are based
on stereo vision [22], laser scanning [6], and photoclinometry [26]. Traditional
methods of binocular stereopsis [11, 32] estimate the 3D shape of an object by
triangulating image feature correspondences from two or more images obtained
from viewpoints. Determination of pixel correspondences across multiple images

Fig. 13.1 INFORM framework: A DDDAS for SSA applications
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is accomplished by extracting feature points in images and matching with the aid
of descriptors. Binocular stereopsis or its multiview counterparts cannot provide
a dense surface reconstruction of bland, textureless surfaces. An example for
application of stereopsis in surface measurement is the Chinese Chang-E II lunar
probe mission [22]. A series of images taken during the lunar probe landing process
are used to recover 3D map of the landing zone. In this process, the measurements
at different position but roughly along the same direction are used in conjunction
with an adaptive Markov field algorithm [29] to recover pixel correspondences
for dense surface reconstruction. In addition to being computationally expensive,
multiview stereo techniques require high resolution imagery to establish feature
correspondences. In RSO images with ground or space based telescopes, it is
difficult to acquire images at high resolution with a finite depth of field. Light
Detection and Ranging (LIDAR) is a time of flight measurement system that scans
a collimated LASER to obtain range measurements. Ḃeing a reliable approach for
surface scanning, LIDARs are widely used in space missions. For example, the
measurement of Mercury’s terrain in MESSENGER mission were obtained through
LIDAR [6]. The need for specialized instrumentation obviates the use of LIDARs
for shape estimation of RSOs.

Photoclinometry, also known as “shape from shading” is an approach for
estimating surface shape of space objects. Unlike the other methods discussed
previously, shape from shading does not directly measure surface geometry but
estimates surface slope. The central idea behind photoclinometry is to infer shape
by exploiting the dependence of surface slope on the intensity gradient of the
surface in an image. Light reflection on a surface is governed by the reflectance
model, or photometric function, which is a function of the geometry, surface
material properties, and illumination (light polarity, wave length, incidence angle,
etc.). Surface geometry given by the gradient may be parameterized in terms of
the azimuth and polar angles with respect to a body fixed coordinate system.
Since photoclinometry has an intensity measurement for each surface point, the
estimates of surface slope from single image is an underdetermined problem. In
order to solve surface gradient from the given information, photoclinometry defines
additional constraints such as brightness and smoothness to provide regularity for
the estimation problem. Given the illumination condition and an image that captures
the reflected light of a surface, photoclinometry estimates surface gradients based on
a reflectance model. Surface gradients are then integrated to estimate local surface
geometry. The advantage of photoclinometry is the capability of reconstructing
a high resolution surface with a finite set of images of comparable resolution.
However, due to the requirement of constraint equations, photoclinometry can
only estimate local geometry of a smooth surface up to certain accuracy. Practical
applications utilize it as a source of auxiliary information for data assimilation with
other measurements of surface geometry.

Photometric stereo [15] uses image observations of an object from various
illumination conditions to deduce the shape and reflectance characteristics of the
object. Similar to shape from shading, photometric stereo infers surface gradients
from reflectance model and light measurements. In comparison to photoclinometry,
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photometric stereo does not require the definition of extra constraint equations to
make this inference. Additional image requirements made with the same relative
pose under variant illumination conditions are used in lieu of the photoclinometry
constraints. Photometric stereo provides better accuracy in estimating surface
gradients. In SSA applications, where the telescope observations of a target are
available, it becomes the method of choice for shape estimation and forms the
basis for shape estimation in the INFORM DDDAS framework. Photometric stereo
has the same disadvantage as photoclinometry in terms of the fact that only
surface gradients are estimated. Surface shape has to be estimated through spatial
integration, which suffers from quality degradation when surface discontinuities
exist. Thus for mapping applications, photometric stereo technique is less practical
as compared to traditional texture based stereo technique. Image observations of
an object also carry relative pose information. Structure from motion algorithms
provides the basis for deriving relative pose estimates from image features. To
this end, we ask the following question: given a sequence of images of a space
object, how do we utilize photometric stereo to provide high resolution surface
reconstructions along with camera relative pose estimates?

Application of photometric stereo has been confined to controlled laboratory
environment, owing to various limitations. First, photometric stereo requires a
controlled illumination environment. In various outdoor environments, lighting is
usually uncontrollable [1, 40]. In the space environment however, the Sun is the
predominant light source, with known reference location.

A key challenge associated with photometric stereo is related to establishing
pixel correspondences. Within the controlled environment where there is no rel-
ative motion between camera and object, pixel correspondences can be directly
established by comparing pixel entries uniformly across different frames. In case
of uncontrollable environment, when the object is allowed to move relative to the
camera, this assumption is violated and one cannot assign contiguous pixel patches
to belong to the same parts of the object across different frames. To solve this
problem, multi-view photometric stereo [13] introduces the concepts from the multi-
view stereo [34] to first estimate a rough surface and then iteratively optimize
a cost function based upon the error between the estimate surface normal and
depth gradient. Method proposed by Higo [14] attempts to solve for both object
shape and normal vector simultaneously by posing an optimization problem that
estimates a best fitting surface to attain to photometric consistency. Another multi-
view stereo method developed by Zhou [41] focuses on materials with isotropic
reflection (identical diffuse constant). A set of iso-depth contours [2] are first
estimated from images and the 3D position of a sparse set of surface points are
determined through the application of structure from motion methods. A complete
surface reconstruction is then accomplished by propagating depth from determined
surface points along the iso-depth contour. Passive photometric stereo [21] also
makes use of structure from motion methods to first determine set of sparse surface
points. Instead of propagating depth from surface points, they estimate a piecewise
planar surface and then iteratively corrects this surface until it converges.
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The INFORM based DDDAS approach for shape estimation is similar to Zhou’s
method [41] and passive photometric stereo [21]. It utilizes structure from motion
methods to estimate a sparse set of surface points. Estimation of an iso-contour line
is not necessary in our formulation. Further, the assumption of isotropic surface is
also relaxed. We also obviate the necessity to construct a piecewise linear surfaces
for iterative corrections. The INFORM based DDDAS method to estimate RSO
surface geometry starts by applying structure from motion methods to detect a set of
surface points in object space. This accomplishes sparse 3D reconstruction of these
surface points. Each of these surface points are projected back into images to recover
their reflected intensity along different illumination directions. Photometric stereo
is then applied to estimate their surface normals. By assuming distance between two
adjacent pixels is small, we then utilize the surface normal estimates to broadcast
depth value among the adjacent pixels with finite difference approach. The process
of propagating surface point and estimating the local normal vector is repeated until
all pixels with valid measurements are traversed. To this end, the algorithm consists
of three main steps. (1) Estimating the initial surface point with structure from
motion and feature correspondences, (2) Estimating surface normal of aligned pixel
patches using photometric stereo, and (3) Estimating dense surface using the depth
propagation algorithm. Note that the proposed method does not solve large scale
optimization problem iteratively. The surface propagation process being a local
function is amenable to parallelization. Therefore, the proposed algorithm is more
computationally efficient when compared to most of the multi-view photometric
stereo algorithms including passive photometric stereo. The proposed algorithm also
does not assume isotropic surface. Therefore, it is more general when compared to
Zhou’s method [41].

The rest of this chapter is organized as follows. Section 13.2 provides the problem
statement. Introduction to photometric stereo is given in Sect. 13.3 and a brief
summary of structure from motion method is provided in Sect. 13.4. Section 13.5
develops an algorithm to implement the photometric stereo to estimate 3D surface
of RSOs. Section 13.6 details the experiment results. Section 13.7 draws the
conclusions on the DDDAS approach.

13.2 Problem Statement and Background

Technical details of the problem statement involving photometric stereopsis are
discussed in this section. Assume that sun is the only light source and that the
reflected light from planets are neglected. Reflected light from the natural or man-
made space object is captured by the imaging system. The sensor system includes
a digital imager with appropriate optical elements for imaging process. A similar
sensor system for SSA applications is considered by Jia et al. [18]. It is of interest to
obtain a 3D reconstruction of the RSO surface from a set of images obtained under
different illumination conditions.
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Fig. 13.2 Coordinate systems and geometry of the problem

Photometric stereopsis process mainly comprises of three major components,
namely the light source, the object, and the observer. To develop mathematical
model associated with imaging process, an inertial frame denoted by I is defined
as shown in Fig. 13.2. It is assumed that a point light source with known position
with respect to inertia frame is used as the source for the imaging process. Assume
that distance between light source and object is large when compared to the size
of object, such that object’s surface is illuminated by a source at infinity along the
vector ws . The reflected light ray then arrives at object’s surface and is assumed to
have identical illumination direction over the entire workspace.

Due to the relative motion, object experiences translation and rotation relative
to the light source and the observer. Therefore, the light incidence direction with
respect to object’s surface varies from frame to frame. Assume the object is rotating
about its own center of gravity with a rotational velocity of ωo. The relative
orientation ROS is then computed by integrating the following equation with initial
attitude, ROS(t0):

ṘOS(t) = −[ωo×]ROS(t) (13.1)

[ωo×] is the cross product matrix [33]. The light incidence direction, ws , on the
object’s surface is given in the O frame by the equation:

ws(t) = RTOS(t)
pO
|pO | (13.2)

where pO is position of the object O with respect to the source S expressed in the
object coordinate system.

Consider an observer C, orbiting the object O be described by the vector pc, the
vector wc represents the line of sight from the observer to the object. Observation
of the object is projected on a 3D image frame that is aligned with the coordinate
system that is affixed C. We assume that the sensor is located at the observer, with
its axes aligned with the coordinates of the observer.
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Fig. 13.3 Simplified model of telescopic lens system

Assume that there is a telescopic lens attached to the camera, or a camera
with a small field of view. In such optical systems such as telephoto lens, the
rays of reflected light from the object to the image are parallel to each other.
The light transport physics in the telephoto optics is markedly different from
traditional camera systems, where a pin-hole projection model is found to be
more appropriate [11]. Telephoto optics are more aptly modeled by utilizing an
orthographic projection model.

The telescopic lens model in Fig. 13.3 shows that an orthographic projection
simplifies the process of image formation as a close approximation to telescopic
lens system. To this end, we assume an orthographic projection model is suitable
for SSA applications of interest in this Chapter.

13.3 Photometric Stereo

13.3.1 Formulation

Based on the geometry of the image formation process, we now provide a brief
introduction to photometric stereopsis. Assuming a Lambertian reflectance model
for the surface [30], the relationship between incidence light direction, ws and
reflected radiance, lr is given as:

lr = kd lsnx · ws (13.3)

where nx = [nx, ny, nz] represents the surface normal vector, kd is the Lambertian
reflectance coefficient, and ls represents the incidence light radiance. Using the
Lambertian reflection model, the magnitude of reflected radiance, lr , is written as:

lr = kd ls(nxws,x + nzws,y + nzws,z), ws = [ws,x, ws,y, ws,z] (13.4)
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Dividing lr with ls we define the normalized radiance, |l| (or the gain of the
reflection process) as:

|l| = lr

ls
= kd(nxws,x + nzws,y + nzws,z) (13.5)

This can be written as:

|l| = kd [ws,x, ws,y, ws,z][nx, ny, nz]T (13.6)

Given at least three measurements of lr at different incidence illumination
directions, one can solve for components of kdn in Eq. 13.6 using a system of
linear equations. Assuming we have k number of measurements; the linear system
of equations is given as:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

|l|1
|l|2
.

.

.

|l|k

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ws,x,1 ws,y,1 ws,z,1

ws,x,2 ws,y,2 ws,z,2

.

.

.

ws,x,k ws,y,k ws,z,k

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎣
kdnx

kdny

kdnz

⎤

⎦ (13.7)

Equation 13.7 can be written in the matrix form as:

l = Ws[kdnx] (13.8)

where l ∈ R
k×1, Ws ∈ R

k×3. The vector [kdnx] is given by the following least
squares solution:

[kdnx] = (WT
s MWs)

−1WT
s Ml (13.9)

where M is a weight matrix. Note that the Lambertian model follows a cosine
distribution when incidence angle is less than π/2 rad. It will truncated at zero for
any incidence angle larger than π/2 rad. However, 0 intensity does not necessarily a
product of incidence angle larger or equal to π/2. It could be a result of shadowing
or masking. Therefore, we exclude measurements of zero intensity from applying
to photometric stereo.

Knowing that the normal vector is a unit vector, n is therefore normalized
direction vector of [kdn], and kd is its length. The reflectance coefficient kd can
therefore be simultaneously estimated.

n = [kdn]
|[kdn]| (13.10)

kd = |[kdn]| (13.11)
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Photometric stereo estimates the surface normal with the least squares solution.
Therefore, more consistent measurements leads to a more accurate solution. How-
ever, photometric stereo solution is undefined when the coefficient matrix Ws is of
rank less than 3. This frequently implies that all of the ws lie on the same plane.
When all the measurements are distributed on a plane, we do not have enough
information to correctly estimate the normal vector for each surface point. In the
present INFORM framework, which is a DDDAS for shape estimation of RSOs, the
principal light source is the Sun. Variation of intensity of the reflected light is caused
by the relative pose of the RSO with respect to the light source. In the event that the
relative pose is invariant through the imaging process, the coefficient matrix ceases
loses rank. Photometric stereopsis, therefore relies heavily on the observability of
the normal vector for each image pixel.

13.3.2 Modified Photometric Stereo

Solving surface normal with linear least square is a simple and elegant approach.
However, the solution of the least squares problem involves the use of redundant
parameterization of the normal vector components along with the coupling of the
reflectance coefficient. Minimal parameterization of the normal vector in terms of
azimuth angle and the polar angle is written in Eq. 13.12 as

nx =
[
sin(ξ)sin(�) cos(ξ)sin(�) cos(�)

]
(13.12)

where ξ is azimuth angle, and � is polar angle measured in terms of body frame
coordinate. Using the definition of the normal vector of Eq. 13.12 and substituting
it into the Lambertian model, we get:

|l| = kd
(
ws,xsin(ξ)sin(�)+ ws,ycos(ξ)sin(�)+ ws,zcos(�)

)
(13.13)

We use the Gaussian Least Square differential Correction (GLSDC) algorithm [7]
as the non-linear least square solver in this problem to solve for the unknown
diffusivity constant, polar angle and azimuth angle. The state vector containing these
three unknown is defined as follows:

x = [ kd � ξ
]

An interation process for estimating the elements of the state vector x in the GLSDC
is setup to minimize the error functional

�yk = l− l̂(x̂k) (13.14)
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where vector l is intensity measurement, and l̂(x̂) is predicted intensity vector solved
with estimated parameter vector x̂. If the error vector is larger then a given threshold,
a differential correction to estimate parameters is applied as:

x̂k+1 = x̂k +�xk (13.15)

�xk = (HT
k Hk)

−1HT
k �y (13.16)

The Jacobian matrix of the Lambertian model with respect to each unknown term is
solved about the previous estimated state x̂k as:

Hk =
[
∂|l|
∂kd

∂|l|
∂�

∂|l|
∂ξ

]

x̂k
(13.17)

∂|l|
∂kd

= ws,xsin(ξ)sin(�)+ ws,ycos(ξ)sin(�)+ ws,zcos(�)
∂|l|
∂�

= kd(ws,xsin(ξ)cos(�)+ ws,ycos(ξ)cos(�)− ws,zsin(�))
∂|l|
∂ξ

= kd(ws,xcos(ξ)sin(�)− ws,ysin(ξ)sin(�))

Differential corrections of Eq. 13.15 are applied until the norm of the error vector
�yk of Eq. 13.14 drops below a pre-defined threshold value or the error change
between two successive iterations gets small. Do note that when the polar angle is
equal to zero, term ∂|l|

∂ξ
is equal to zero as well. This indicates that we lose observ-

ability on the azimuth angle when polar angle is equal to zero. Losing observability
in azimuth angle does not affect the final solution, but causes singularity when
solving correction term with Eq. 13.16. A simple solution to avoid such a problem
is to drop the terms related to azimuth angle when polar angle equals zero:

H =
⎧
⎨

⎩

[
∂|l|
∂kd

∂|l|
∂�

∂|l|
∂ξ

]
� 	= 0[

∂|l|
∂kd

∂|l|
∂�

]
� = 0

(13.18)

An appropriate choice for the measurement sensitivity matrix can be when the
estimated value is sufficiently small, near convergence. Modified photometric stereo
is different from original photometric stereo in terms of usage of the non-linear
model and the parametrization of normal vector. Given identical measurement sets
and using the Lambertian surface assumption, both algorithms yield the same result.
Therefore, if computing predicted uncertainty is not required, it is unnecessary to
replace original photometric stereo with modified photometric stereo. The point of
using modified photometric stereo is to remedy the fact that normal vector directly
estimated from original photometric stereo is subject to unit vector constraint, which
makes the uncertainty calculations more complex as compared to the two angle
parametrization.
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Without explicitly relying on the surface normal’s unit vector constraint as in
traditional photometric stereo, modified photometric stereo is also compatible with
more complex photometric function such as the Lunar-Lambert model traditionally
applied in photoclinometric methods. In this Chapter, we focuses on developing
a framework that has the flexibility in choice of the photometric function, and
therefore will restrict our discussions to Lambertian model. However, we note
that proposed algorithm is also compatible with other photometric functions, and
it is expected to yield better estimation results when applying better choice of
photometric functions for various surfaces.

13.3.3 Surface Reconstruction and Depth Estimation

After solving for the normal vector for each pixel on an image, we obtain a normal
map that indicates the local normal vector. Rendering of normal map allows to
reconstruct appearance of the object at different illumination conditions under fixed
view-point direction. For INFORM framework and its utility in the DDDAS for
SSA product generation, a 3D surface map is desired. To recover a 3D surface from
normal map, a common method is to integrate the surface gradient [9, 20]. Defining
two components of the surface gradient as:

p = ∂z

∂x

q = ∂z

∂y

where p and q indicate surface gradient along x and y direction, respectively. The
normal vector is related to surface gradient through:

n = [p, q, 1]√
p2 + q2 + 1

Therefore, surface gradient may be recovered from the normal vector estimates by
making use of the following relationships:

p = nx

nz
(13.19a)

q = ny

nz
(13.19b)

Assume that position x and y of a surface point are available in the object space.
The depth of each surface point is then propagated from adjacent surface point the
using finite difference operator given as follows:
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zu,v = 1
4 ((zu+1,v − (pu+1,v+pu,v)δx

2 )

+(zu−1,v + (pu−1,v+pu,v)δx
2 )

+(zu,v+1 − (qu,v+1+qu,v)δy
2 )

+(zu,v−1 + (qu,v−1+qu,v)δy
2 ))

(13.20)

where δx and δy are the deflection along x, y directions on the surface.
If the surface is smooth, following the integrability constraint (Eq. 13.21),

propagation of depth from each direction should return identical results.

∂2z

∂x∂y
= ∂2z

∂y∂x
(13.21)

Assumption of integrability will only work on a smooth surface. In most real
objects, there are surface discontinuity that leads to violation of this assumption.
Propagating the depth value across discontinuous sections leads to erroneous surface
reconstruction. Therefore, it is essential to identify surface discontinuities before
proceeding to the integration.

Wang [38] proposes to detect discontinuities using three subsequent operations.
First, the angles between a pixel and four of its adjacent pixels are computed
to establish a threshold to detect a discontinuity. A non-photorealistic (NPR)
camera [31] (a method to re-render an image in a non-photorealistic way but
to represent a boundary or occlusion) is then applied to input images for depth
edge detection. Finally, feature detection techniques are applied on color coded
normal map (Rendering an image by coloring each element in normal vector with
RGB color) to detect discontinuity in color gradients. Once the discontinuities are
detected, reconstruction process will simply have to avoid them during integration
to resolve error caused by discontinuity.

Another solution to this problem is to integrate the normal map by imposing
integrability constraints through regularization [16]. A quadratic regularization
proposed by Horn [16] is to search for a surface that minimizes the following
function:

ε(ẑ) =
∫ ∫

[ ẑ(x, y)− [p, q]]2dxdy (13.22)

where ẑ is the estimated depth. Equation 13.22 can be approximated by the
following discrete form:

ε(ẑ)=
∑∑[

zu+1,v−zu,v
δx

−pu+1,v+pu,v
2

]2

+
[
zu,v+1−zu,v

δy
−qu,v+1 + qu,v

2

]2

(13.23)

Minimizing Eq. 13.23 in Euler form by setting  ε = 0 leads to the following
expression:
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zu,v = zu+1,v + zu−1,v + zu,v+1 + zu,v−1

4
− pu+1,v + pu,v + qu,v+1 + qu,v

8
(13.24)

Since all depth values are unavailable initially, Eq. 13.24 sets initial depth to zero
and updates the estimated surface iteratively. An improved scheme of this method
to include boundary conditions, and an extension into other regularization method
is proposed by Horn [16].

Integrating surface normals to derive a depth estimate is an open research
problem in computer graphics. This is because most of the proposed methods can
not effectively deal with a surface discontinuity, due to the limited information about
an object’s surface with observations from a single view-point direction. In this
chapter, we propose to reconstruct surface by sequentially solving the photometric
stereo and normal vector integration problems. This requires accurate estimates
of both normal vector and surface point location to proceed. Our solution to this
problem depends on the fact that we have a sparse set of surface points with known
positions distributed on the object’s surface. Let each of these surface points serve
as reference points and broadcast the depth value toward entire surface. If there is
discontinuity detected along path of propagation, we will simply stop going any
further and let other broadcast processes estimate the location of surface point
from other sides of the discontinuity. This method allow us to bypass some of
the discontinuities in the surface. Although there is no guarantee that proposed
method uniformly resolves issues associated with surface discontinuities due to
the information available, this method allows us to minimize the error in surface
reconstruction.

Having introduced photometric stereo for estimation of surface normals from
a sequence of images captured under different illumination directions, we have
looked at a modified photometric stereo that allows more efficient computation of
the sensitivity terms. This forms an integral element of shape estimation methods
in INFORM SSA framework. However, until this point, we have assumed that
the relative motion between camera and object is stationary. Therefore, there is
no problem in establishing pixel correspondences. In realistic situations, relative
motion always exists and therefore establishing pixel correspondences can be fairly
difficult. In order to solve this problem, we will first introduce structure from motion
methods that allow the recovery of relative pose estimates in addition to rough shape.
Rough shape estimation process form sparse feature correspondences is known as
sparse stereo.

13.4 Photometric Stereo in Motion

To resolve the issue of relative motion between the camera and the object, we
now develop a framework that combines structure from motion algorithms with
photometric stereo. There are two stages of the photometric stereo in motion
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Fig. 13.4 A flow chart for proposed photometric stereo in motion algorithm

algorithm. An initialization stage for estimating the initial condition for the relative
pose. This is followed by a propagation stage for estimating the dense 3D surface.
During the initialization stage, Scale Invariant Feature Transformation (SIFT) [23]
is first applied to detect a set of feature points in the reference image. Each of
this feature is then tracked over subsequent sequence with the KanadeLucasTomasi
(KLT) tracker [24] to form set of feature tracks. Object space coordinates and
the orientation of each image frame with respect to reference image frame are
estimated by the application of structure from motion methods on corresponding
feature tracks. During our study, a factorization method [36] is being applied as
the structure from motion method that provide relative pose and sparse structure
estimation. Normal vector of each surface points is then estimated with photometric
stereo by using intensity of feature track as input. Set of estimated surface points
with the normal vector now defines the initial conditions for the propagation stage.

The propagation stage defines pixels with known object space coordinates and
associated normal vector as base pixels, and defines their adjacent pixels that are
without either position or normal vector as forward pixels. During propagation,
each surface point are propagated spatially to these forward pixels from the base
pixel with finite difference method that will be introduced in subsequent discussion.
Projecting propagated surface points onto each image with the orthographic model
recovers their measured reflected intensity in the image frame. Knowing the pixel
value of the projected surface point, photometric stereo is then applied to estimate
normal vector from all forward pixels. With both normal vector and location in
object space determined, a forward pixel is now updated to be a base pixel. The
propagation process is repeated until there are no valid pixels (pixel value > 0) in
the image. A flow chart summarizing this algorithm is given in Fig. 13.4.
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Note that for each frame in the image sequence, the proposed algorithm does
not require any iteration process at the pixel level or surface level. We also do not
require expensive pre-computations, therefore we conclude our proposed algorithm
yields better computational efficiency in comparison to other algorithms. Since
photometric stereo is solved explicitly at each pixel location, there no necessity to
assume an isotropic surface.

Propagation of the surface points for orthographic projected image assuming unit
distance between surface points corresponding to two adjacent pixels, required us to
assume that surface slope remain constant in between two adjacent surface points:

zu+1,v = zu,v + ∂zu,v

∂u
du (13.25)

Surface slope is recovered using sparse Eq. 13.19. During its application, the
term nz in normal vector can be close to zero and may lead to errors in computing
the correct surface slope. When this condition occurs, the propagation process is
stopped.

We assume unit distance between pixels, therefore du = dv = 1. Since
this number does not indicate real displacement between surface points, the
reconstructed surface has scale ambiguity. Proposed method can sequentially update
surface point location and surface point normal vector at each pixels from any pixel
that has valid surface point and normal vector information. Note that this process
is highly parallelizable and depth corresponding to various pixel patches may be
inferred simulataneously.

13.5 Covariance Analysis

To predict the precision of reconstruction, a commonly used technique is to evaluate
the uncertainty of estimated result by considering error and noise introduced from
different sources. The method for computing error covariance in this research is
based on sensitivity analysis of each participated algorithm.

Figure 13.5 is a roadmap for uncertainty propagation of proposed algorithms, that
form a key element of the DDDAS. It illustrates propagation of uncertainty from one
module to another. Since outputs of one algorithm form inputs to other algorithms,
the uncertainty analysis can be inferred as the sensitivity of the algorithm’s output
with respect to input uncertainty. The remainder of this section derives the sensitivity
analysis of each component, starting from raw sensor noise and ultimately compute
the error covariance of reconstructed surface. Note that the error covariance of
feature track, and Factorization’s shape and motion matrix are derived in a parallel
paper by the authors [39].
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Fig. 13.5 Covariance analysis flowchart. Starting form the error covariance of feature track(�m),
it is propagated to the covariance of camera pose (�q) and the covariance of initial surface point
(�pc ) through structure from motion method. Error covariance of the normal vector(�n) is a
function of the covariance of the measurement intensity(�l), and covariance of the camera pose.
Uncertainty of measured intensity is related to the image noise covariance(�i), and error caused
by projection of surface points on image plane. Uncertainty of surface points and normal vector is
propagated toward other surface points through surface propagation process

13.5.1 Raw Sensor Noise and the Intensity Uncertainty

Raw sensor noise includes image noise and the uncertainty associated with the
uncertainty of the camera’s intrinsic parameters. The orthgraphic projection model
has image noise alone. The perspective projection model has uncertainties associ-
ated with both image and camera intrinsic parameters. Intrinsic parameter uncer-
tainty may be obtained from the camera calibration process [4].

Image noise is measured with Immerkaer’s method [17], which estimates the
image noise variance by taking the difference of two Laplacian of the images. It
can be shown that the estimation of noise using this method involves a convolution
operation with the following kernel:

C =
⎡

⎣
1 −2 1
−2 4 −2
1 −2 1

⎤

⎦ (13.26)

A global image noise standard deviation is then computed by:

σi =
√
π

2

1

6(w − 2)(h− 2)

∑
|l(x, y) ∗ C| (13.27)
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where w and h are the width and height of the image. To obtain local intensity
variance, w and h with size of a local window are used. These calculations initialize
the covariance analysis of subsequent image operations.

13.5.2 Covariance of the Normal Vector Estimates

Using our definition of modified photometric stereo, uncertainties of the estimated
polar angle and azimuth angle are first computed. Covariance of the normal vector
is then solved using these parameters. Equation 13.16 therefore directly serves as
the sensitivity of estimated parameters, with respect to the variation of intensity.

Other than intensity, estimation of the normal vector and diffuse constant kd also
depend on light source direction. Light source direction corresponding to each frame
is estimated from image frame orientation with respect to the reference frame. Since
the light source depends on estimated value carrying uncertainty, it is also a random
variable. It is necessary to compute the sensitivity of the estimated parameter with
respect to the light source direction. Using Eq. 13.16 that solves for the sensitivity
of the parameter with respect to the intensity variation, sensitivity with respect to
the light source direction is calculated using following expressions:

∂x
∂wi

= ∂x
∂|l|

∂|l|
∂wi

(13.28)

∂|l|
∂wi

= kdn (13.29)

∂x
∂|l| = (H

T H)−1HT (13.30)

where matrix H is the Jacobian matrix obtained using Eq. 13.18. Error covariance
of the estimated surface’s azimuth angle and polar angle, along with diffuse constant
are then approximated using the following expression:

�x =
[
H ∂x

∂wi

] [
�l 0
0 �wi

] [
HT ∂x

∂wi

T
]T

(13.31)

where �wi is uncertainty covariance of light source direction and �l is uncertainty
covariance of measurement intensity. During the propagation phase, �l will has
to consider uncertainty caused by error in estimated camera frame orientation and
error in the propagated surface depth. This is because we use this information to
acquire the intensity by the back projection technique. Sensitivity of the intensity
with respect to camera frame orientation and surface depth can be modeled by using
local intensity gradient. However, since there is no guarantee that the projection
error is small enough for approximating the local sensitivity information, we use
an unscented transform [19] to approximate the intensity measurement uncertainty.
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We assume that there is an error in estimating the camera pose and the surface
point location. It result in an error in the projection coordinates on the image
plane and then causes subsequent error in intensity measurements. Since there is an
intensity measurement corresponding to each image plane coordinate, the variance
of measurement intensity can be measured as the intensity variation within a region
bounded by an area specified by projected image plane location error. The projected
image plane location error is estimated by first selecting a set of sigma points, and
solving for their projected coordinates on the image. Bounding areas are computed
as a rectangle with length equal to maximum distance between projected sigma
points.

Light source direction is transformed by utilizing the rotational matrix R(i) at
ith frame. Since orientation of the camera is estimated through factorization, results
from out recent research provide the corresponding estimation error covariance �q.
Where, orientation of the camera at each frame is parametrized using the Classical
Rodrigoues Parameters (CRP),q = [q1, q2, q3]T [33]. The rotation matrix in terms
of CRP is written as:

R = 1√
1+ qT q

⎡

⎣
1+ q2

1 − q2
2 − q2

3 2(q1q2 + q3) 2(q1q3 − q2)

2(q1q2 − q3) 1− q2
1 + q2

2 − q2
3 2(q2q3 + q1)

2(q1q3 + q2) 2(q2q3 − q1) 1− q2
1 − q2

2 + q2
3

⎤

⎦

(13.32)

Each image frame is a measurement of object at different orientation. Collecting
all n measurement frames into a vector q:

q = [q(1), q(2), . . . , q(n)] (13.33)

where q(j) indicates the CRP of the j th frame. The light source direction w(n)i at
each frame expressed in terms of the image space coordinate using the rotational
matrix R(n) and light source direction expressed in the reference frame w(0)i is
written as:

w(n)i = R(n)w(0)i
Substituting into Eq. 13.32 and taking partial derivatives leads to:

∂wi,x

∂q
= ∂

∂q
R11(q)w

0
i,x +

∂

∂q
R12(q)w

0
i,y +

∂

∂q
R13(q)w

0
i,z (13.34)

∂wi,y

∂q
= ∂

∂q
R21(q)w

0
i,x +

∂

∂q
R22(q)w

0
i,y +

∂

∂q
R23(q)w

0
i,z (13.35)

∂wi,z

∂q
= ∂

∂q
R31(q)w

0
i,x +

∂

∂q
R32(q)w

0
i,y +

∂

∂q
R33(q)w

0
i,z (13.36)
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The partial derivative of each rotation matrix elements with respect to CRPs
are computed from Eq. 13.32. Error covariance of the light source direction is then
propagated from the uncertainty of estimated camera orientation CRP using:

�wi =
∂wi
∂q

�q
∂wi
∂q

T

(13.37)

where ∂wi
∂q

is a matrix with each element computed from Eqs. 13.34, 13.35, 13.36,
and �q is computed from the uncertainty analysis of the corresponding camera
pose estimation algorithm. Since the camera orientation at different frames may
be assumed to be uncorrelated with each other, error covariance is computed
independently for each frame.

Given the uncertainty in estimated normal vector’s azimuth angle and polar
angle, the normal vector uncertainty is computed from the local sensitivity of
Eq. 13.12 as:

�n =
[
∂n
∂�

∂n
∂ξ

] [ σ 2
� σ�,ξ

σ�,ξ σ 2
ξ

] [
∂n
∂�

∂n
∂ξ

]T
(13.38)

∂n
∂�

= [ sin(ξ)cos(�) cos(ξ)cos(�) sin(�) ]

∂n
∂ξ
= [ cos(ξ)sin(�) −sin(ξ)sin(�) 0

]

where σ� and σξ are the standard deviations of the estimated polar angle and
azimuth angle. Since the angles are correlated, the correlation term σ�,ξ does not
equal to zero, these elements are extracted from �X computed by Eq. 13.31. Note
that when � = 0, we do not have an estimate of ξ and therefore we assume normal
vector in this case is not a function of ξ , such that term ∂nx

∂ξ
is equal to zero.

13.5.3 Error Covariance of the Surface Points

As outlined in the introduction, our reconstruction process uses the estimates of
the normal vectors to propagate the surface points in order to estimate a densely
reconstructed surface. Surface points propagation of orthographic configuration
only solve for depth, while coordinate along x and y direction are deterministic. The
propagation of surface depth along the x direction leads to the following equation:

zu+1,v = zu,v + nx

nz
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Sensitivity of the propagated depth is solved using:

δzu+1,v =
[

1 1
nz
−nx
n2
z

] [
δzu,v δnx δnz

]T
(13.39)

Error estimate of the depth can thus be computed using the covariance written as:

σ 2
z,u+1,v =

[
1 1
nz
−nx
n2
z

]
⎡

⎣
σ 2
z,u,v 0 0
0 σ 2

n,x σn,xz

0 σn,xz σ
2
n,z

⎤

⎦

⎡

⎢⎣
1
1
nz

−nx
n2
z

⎤

⎥⎦ (13.40)

where the elements σ 2
n,x , σn,xz, and σ 2

n,z of Eq. 13.40 are computed from estimated
normal vector error covariance calculations outlined earlier.

Estimation of the error covariance not only serves as a measure of estimation
accuracy, but may also be used as criteria for terminating the surface propagation
process. Estimated covariance is computed following the surface point location
and normal vector carried out for each pixel. Therefore, uncertainty estimates are
available during the propagation process. Since surface propagation is a numerical
integration process, error from the previous step is accumulated to subsequent
steps. In order to avoid propagating error into the future that leads to larger error,
the propagation process on a surface points may be terminated when the error
covariance exceeds a certain threshold.

13.6 Simulation and Experiment

Experimental measurement data sets to evaluate the proposed algorithms are
generated by using a ray tracer based imaging engine called Space Object Light
Attribute Rendering (SOLAR) System. This SOLAR system allows us to implement
physically plausible reflectance models of object’s surface, along with physical
optical systems for realistic camera projection and image formation emulations.
The SOLAR system is based on an in-house ray tracing engine. Inter-reflection,
light refraction, optical elements modeling, etc. are implemented as software blocks
in the renderer. Since ray tracer renders a scene by explicitly tracing the path
of light incident on each pixel of camera from the scene, it is computationally
expensive when compared to commonly used rasterization techniques applied in
computer graphics engines such as OpenGL [27] and DirectX [10]. However, ray
tracer engine is more suitable for applications, where physically consistent image
formation is important over real time rendering. Therefore, we utilize this engine to
generate measurement data for demonstration of our algorithms that utilize space
information.

Measurement data sets from two object models are synthesized for demonstration
purposes. The Itokawa asteroid model [3] is rendered to provide measurements of
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natural space object with diffuse surface. The Apollo-Soyuz [5] spacecraft model
is implemented to provide measurements of a high specular man-made object with
surface discontinuity. The Itokawa model has richer surface feature in comparison
to the Apollo model. This allows factorization method to has better performance
on Itokawa model. In case of the Apollo model, we assume the existence of
painted fiducials on the surface, such that it is able to provide some feature points
over a large but smooth surface. Each of the object models are rendered under
three different conditions to evaluate the performance of the proposed algorithms.
First, both objects are rendered with pure Lambertian model and relative motion
between camera and object is held stationary. Subsequent emulation scenario
renders both Apollo and Itokawa models using pure Lambertian model, while
camera-object relative motion is not stationary to evaluate the performance of
proposed photometric stereo in motion algorithms. For the third set of experiments,
we use the Oren-Nayar model [28] to render the Itokawa model and generate
its synthetic measurement. The Apollo model is rendering with Torrance-Sparrow
model [37]. Both of these models are considered as physically plausible reflectance
model. While the Oren-Nayar model is a diffuse reflection model for rough surfaces,
Torrance-Sparrow is a specular reflection model. This experiment is to evaluate the
performance of proposed algorithms when using Lambertian model to approximate
more complex and realistic light reflection.

A focused Newtonian telescope model without lens aberrations is implemented
in the SOLAR system as the optics attached to the camera to validate assumption of
orthographic projection.

13.6.1 Stationary Observation of Lambertian Surface

We use the case of no relative motion between the observer and the object to provide
a baseline understanding of photometric stereo performance when ideal conditions
are satisfied perfectly (i.e., stationary relative pose during measurement, light source
direction at each frame is perfectly known and object is isotropic Lambertian
surface). It is assumed that the object is located at inertia frame origin, with the
camera frame’s negative z axis pointing toward the object centroid. It is assumed that
the light source is initially oriented along the direction of wi,0 = [0, 0.707, 0.707]
and rotated about z axis for 2π rad over 10 frames.

Three out of ten measurements of Apollo model are shown in Fig. 13.6.
Since camera-object relative pose remains constant throughout measurement

sequence, we can directly implement photometric stereo to estimate normal vector
at each pixel. A collection of normal vectors for each pixel is stored as a normal
map. The normal vectors are colored by following the Blue-Green-Red (BGR) color
channel scheme for visualization purposes (Fig. 13.7). Values in x direction are
plotted as blue, while the values in y and z directions are plotted in green and
red, respectively. The intensity of each color is the magnitude of normal vector
component. Since colors do not have negative value, we plot a positive normal map



274 X. I. Wong et al.

Fig. 13.6 3 out of 10 measurements of Apollo model, (a) wi = [0, 0.707107, 0.707107], (b) wi =
[0.353553,−0.612372, 0.707107], (c) wi = [−0.612372, 0.353553, 0.707107]

Fig. 13.7 A comparison of true positive normal map and photometric stereo estimate positive
normal map

Fig. 13.8 A comparison of true negative normal map and photometric stereo estimate negative
normal map

that plots only the positive component in a normal vector, and a negative normal
map that plots only the negative components of a normal vector (Fig. 13.8).

For better comparison between estimate and true normal map, we define an
error function that governs the error between the two normal vector as 1 minus
the absolute value of dot product of estimate normal vector, nest and true normal,
nt :

e = 1− |nest · nt | (13.41)

Error of estimated normal vector computed by Eq. 13.41 are visualized as a color
map in Fig. 13.9. A visual inspection of the error color map shows that the maximum
error is about 0.08 located at regions near the edges of the object. It also shows that
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Fig. 13.9 Normal vector estimation error map

Fig. 13.10 Estimated object surface through normal map integration at different view directions

the surfaces that are oriented along the camera bore-sight have small errors. This
experiment result demonstrates that under the ideal conditions, photometric stereo
is able to provide good estimates of the surface normal.

Estimation of surface geometry in this experiment is accomplished by integrating
surface normal along the surface, starting from an arbitrary initial point with a
positive surface depth value.

Figure 13.10 shows estimated surface for the various view of the Apollo model.
From these plots, we can infer that the surface estimated from the normal map
integration can provide accurate results in areas with smaller surface discontinuities.
Automated means of detecting continuous regions in an image remains a research
challenge.

Following a similar procedure, we have the estimated normal map for Itokawa
model. The normal maps are shown in Figs. 13.11 and 13.12. Normal vector error
map is plotted in Fig. 13.13. It is evident that the error levels are equivalent to those
of the Apollo model.

Figure 13.14 are snapshots of various views of the estimate surface of Itokawa
computed by integrating surface normal map. The estimate surface is poorer than
that of the Apollo due to the lack of observability of surface normal at different
locations along the edge. On the other hand, the estimated Itokawa surface does not
suffer from errors caused by surface discontinuity.
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Fig. 13.11 A comparison of true positive normal map and photometric stereo estimated positive
normal map

Fig. 13.12 A comparison of true negative normal map and photometric stereo estimated negative
normal map

Fig. 13.13 Normal vector estimation error map
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Fig. 13.14 Estimated object surface through normal map integration along different view points

Fig. 13.15 3 out of 50 measurements of Apollo model in motion. (a) wc = [0, 0.0,−1], (b) wc =
[−0.1508,−0.1431,−0.9781], (c) wc = [0.1525, 0.1025,−0.9830]

Experimental results of this section show that traditional photometric stereo is
able to provide good estimates of the surface normal. Surface geometry is then
estimated by integrating the estimated surface normal to produce a model for surface
geometry.

13.6.2 Observation of Lambertian Surface from
Non-stationary View Point

When relative motion between the camera and object is no longer stationary, tradi-
tional photometric stereo is not directly applicable. This experiment is to evaluate
performance of our photometric stereo in motion approach under assumption that
the surface reflectance is Lambertian in nature.

Figure 13.15 show 3 out of 50 measurements of Apollo model. Illumination
direction is aligned with view direction in this case because light source is assumed
to be affixed in the camera frame. Note that this assumption is not necessary and that
the light source direction is free to move around. Set of feature points extracted by
SIFT and tracked by KLT tracker in this case are plotted as yellow dots in Fig. 13.16.
The red ellipse located at the end of each feature track in Fig. 13.16 are estimated
feature track error covariance bound of last feature point in a track. Theses are
computed using methods developed by the authors in a related recent research [39].

Feature tracks are supplied to the Factorization algorithm for computing relative
pose of each frame. To demonstrate the performance of Factorization, a comparison
of estimated orientation with respect to the true camera orientation is shown in
Fig. 13.17. Each red and blue dot plotted in Fig. 13.17 indicate the view direction
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Fig. 13.16 Feature tracks as input to structure from motion method, red ellipse at the end of each
track are estiamted uncertainty covariance bound of feature track

Fig. 13.17 A comparison of
factorization estimated
camera orientation (red dot)
and true camera
orientation(blue dot) after
translated into view direction
relative to object

from camera to the object plotted in object fixed frame. This plot shows that factor-
ization method is able to estimate camera orientation with reasonably accuracy.

Using the initial condition provided by the Factorization method, we use the
method developed in this work to estimate a surface and normal map for the Apollo
model. Estimation results are rendered in Figs. 13.18, 13.19, and 13.20.

The estimated surface in Fig. 13.18 shows that proposed method can provide a
reasonable estimate of the surface geometry. Estimation errors incurred in Fig. 13.18
are relatively large when compared to result in Fig. 13.10. This is attributed to the
fact that the proposed method works under the non ideal conditions, where the
original photometric stereo are not applicable. The reconstructed surface also shows
that the proposed method is able to resolve the surface discontinuity issue by making
use of additional information from motion alignment of matching pixel patches.
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Fig. 13.18 A side to side comparison of estimated space craft surface(front) to true object
surface(back). A scaling parameter determined empirically is applied to the estimated surface so
that we can compare the estimated surface and true surface in same scale

Fig. 13.19 A comparison of true positive normal map and estimated positive normal map of
spacecraft model

Fig. 13.20 A comparison of true negative normal map and estimated negative normal map of
spacecraft model



280 X. I. Wong et al.

Fig. 13.21 Estimated normal vector uncertainty standard deviation (a) direction map (b) magni-
tude map of spacecraft model

A comparison of estimated normal vectors in Figs. 13.19 and 13.20 demonstrates
that estimation of surface normal is generally accurate over a large fraction of the
surface. Large errors in surface normal estimation occur near the edge of surface
segments. This is caused by the error in object points to image projection as the
variation of intensity near such region are large, owing to poor observability of depth
in orthographic projection.

In addition to the estimation of surface geometry and surface normals, we also
derive methods to compute the covariance associated with both the estimates.
For visualization purposes, estimation error variance is first translated to standard
deviation, and plotted as a color map. In case of the normal vector uncertainty,
a direction map and a magnitude map are plotted separately. The direction map
indicates the distribution of error in x, y, and z direction within a normal vector.
A magnitude map is used to indicate the magnitude of uncertainty of corresponded
pixel. Since surface depth is a scalar variable, the surface depth standard deviation
map only plots the estimated standard deviation of surface depth value.

Figure 13.21 shows the estimated standard deviation of the estimated normal
vector. The direction map indicates that a large fraction of the uncertainty in
estimated normal vector is distributed along the direction with minimum magnitude.
While the magnitude map indicates large estimation error are concentrated around
region closed to the edge. This is equivalent to loss of observability and similar
to Fig. 13.22. Figure 13.22 is the estimated standard deviation of the surface depth
estimates, patch like distribution of surface depth uncertainty correspond to pixel
patches used by the depth estimation algorithm. A poor starting solution depth
therefore is propagated to the patch that is computed from that solution.

After examining the performance of the proposed algorithm on a man-made
object, we now repeat the experiments on Itokawa asteroid that represents natural
space object without surface discontinuity. Three out of a total of 50 input images
for Itokawa experiment are shown in Fig. 13.23. Estimated Itokawa surface is shown
in Fig. 13.24.

Comparing the estimated surface of Itokawa through proposed method in
Fig. 13.24 and from original photometric stereo in Fig. 13.10, we see that estimation
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Fig. 13.22 Estimate surface depth standard deviation map of spacecraft model

Fig. 13.23 3 out of 50 measurements of Itokawa model in motion. (a) wc = [0, 0.0,−1], (b) wc =
[−0.1508,−0.1431,−0.9781], (c) wc = [0.1525, 0.1025,−0.9830]

result in case of the motion stereo algorithm is actually better. This can be attributed
to the use of large number of observations that yield better observability and
improved imaging geometry. This experiment also shows that the concept of using
multiple initial surface points estimated from structure from motion method, and
then propagated for constructing a dense surface with photometric stereo is indeed
feasible.

A comparison of estimation results in Figs. 13.25 and 13.26 shows that the
estimation of normal vector with proposed approach fairs better for semi-convex
geometries that have contiguous regions. Estimated uncertainties result are graphi-
cally rendered in Figs. 13.27 and 13.28.

This set of experiments demonstrate the application of the proposed algorithm in
estimating the surface geometry of both man-made and natural objects. Experimen-
tal results indicate that performance of proposed approach on a continuous surface
is better than performance on a surface with discontinuities. These algorithms
demonstrate optimism as elements of the INFORM framework to derive RSO shape
estimates as a part of the DDDAS for SSA applications.
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Fig. 13.24 A side to side comparison of empirically scaled Itokawa surface estimates (front) with
true object surface (back)

Fig. 13.25 A comparison of true positive normal map and estimated positive normal map of an
asteroid model

Fig. 13.26 A comparison of true negative normal map and estimated negative normal map of an
asteroid model
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Fig. 13.27 Standard deviation of the estimated normal vector (a) direction map (b) magnitude
map

Fig. 13.28 Estimate surface depth standard deviation map of asteroid model

13.6.3 Observation of Non-Lambertian Surface from
Non-stationary View Point

After demonstrating the utility of the proposed algorithms in reconstructing the
Lambert surface, we now move on to evaluate the performance of proposed
algorithm in reconstruction of non-Lambertian surface.

Man-made space objects are usually coated with materials that have high
reflectance in order to reflect heat from radiation. Based on this fact, it is natural
to assume that most of the man-made space objects have high specular reflection.
Therefore, their reflectance should be modeled with specular reflection models. The
Torrance-Sparrow model is considered a physics based specular reflectance model,
although it is not as comprehensive as other methods such as HTSG model [12].

Given a set of measurements of Apollo model rendered by Torrance Sparrow
model in Fig. 13.29, it is desired to estimate the shape of the object of interest. Direct
application of the photometric stereo on measurements with specular component
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Fig. 13.29 3 out of 100 measurements of Apollo model in motion, (a) specular component is
clearly brighter than diffuse component. (b–c) specular component is not captured because camera
direction is off from specular peak direction

Fig. 13.30 A side to side comparison of empirically scaled estimate Apollo surface (front) to true
object surface (back) with measurement rendered with Torrance Sparrow model

will result large error in the estimated normal vector. Therefore, measurements with
specular components will need to be removed before the estimation of the normal
vector. Since the specular reflection is concentrated around specular peak direction,
when there are sufficient number of measurements, the specular component can
be removed as outliers. In this experiment, we use RANdom SAmple Consensus
(RANSAC) algorithm [8] to search for outlier measurements with specular com-
ponent and reject them. A downside of using RANSAC is that large amount of
measurements are required in order to detect specular reflection. Therefore, we
increase the number of image measurements to 100 frames in this experiment.
Once the measurements with specular reflections are removed, remaining images
are assumed to be purely diffuse and photometric stereo in motion algorithm is
applied to estimate the surface geometry.

Figures 13.30, 13.31, 13.32, 13.33, and 13.34 are the depth estimation results
of the Apollo model from measurements with specular reflection. Reconstruction
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Fig. 13.31 A comparison of true positive normal map and estimated positive normal map of
spacecraft model rendered with specular reflection

Fig. 13.32 A comparison of true negative normal map and estimated negative normal map of
spacecraft model rendered with specular reflection

Fig. 13.33 Standard deviation of the estimated normal vectors uncertainty (a) direction map
(b) magnitude map if spacecraft model with specular reflection surface

shows that the estimation result is relatively poor in comparison to the estimates
obtained from the idealized case where the reflectance is a pure Lambertian surface.
This is because RANSAC cannot remove all the measurement hypotheses that
have specularity. Developing a better method to remove specular reflection has
been a active study in the research community. Methods such as SUV color
space transform [25] and specular free image [35] are developed for this purpose.
However, most of these methods require color information. Man-made spacecraft
are typically textureless and theses methods are not directly applicable. Currently,
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Fig. 13.34 Estimate surface depth standard deviation map of spacecraft model with specular
reflection

Fig. 13.35 3 out of 50 measurements of Itokawa model rendered by Oren Nayar model

removing specular with RANSAC remains the most popular method that applicable
to general surface.

Natural space objects such as asteroid generally have a relatively diffuse surface,
while carrying weak directional reflection properties like specular reflection. Oren-
Nayar model [28] is a diffuse model that is developed to model such weak
directionally diffuse reflection on a rough surface. The Lambertian approach can
serve as an approximation to Oren-Nayar surface when surface roughness is
removed. Therefore, we are directly supplying measurement generated from Oren-
Nayar model into proposed algorithm for surface estimation.

Figure 13.35 shows a subset of input images for Itokawa model rendered from
the Oren-Nayar model. Estimation result obtained by using this data set is shown in
Figs. 13.36, 13.37, 13.38, 13.39, and 13.40.

Results of estimation of the surface of the Itokawa model rendered with
Oren-Nayar reflectance model show that its estimation accuracy is as good as mea-
surement rendered with Lambertian model. The fact that the model reconstruction
operations using the algorithms developed here are modestly robust to reflectance
model forms a basis of optimism towards the applicability of the proposed approach
to reconstruct the surfaces of weekly specular object from image data. Since the true
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Fig. 13.36 A side to side comparison of empirically scaled Itokawa surface estimates (front) with
true object surface (back) with measurement rendered with Oren-Nayar model

Fig. 13.37 A comparison of true positive normal map and estimated negative normal map of
asteroid model rendered with Oren-Nayar model

reflectance characteristics are generally unknown, the approaches discussed here-in
as a part of the DDDAS for SSA applications seems promising.

13.7 Conclusion

A photometric stereopsis in motion approach for space object dense surface recon-
struction based on structure from motion and photometric stereo is discussed in this
Chapter. It forms an integral component of the RSO shape estimation algorithms
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Fig. 13.38 A comparison of true negative normal map and estimated negative normal map of
asteroid model rendered with Oren-Nayar model

Fig. 13.39 Estimated normal vector uncertainty standard deviation (a) direction map (b) magni-
tude map of asteroid model rendered with physical reflection model

Fig. 13.40 Estimate surface depth standard deviation map of asteroid model with physical
reflection
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in an innovative INFORM framework that is DDDAS for SSA applications.
Emulation experiments utilizing two different geometry models, each representing
a man-made and natural RSO are used to demonstrate the utility of photometric
stereopsis algorithms under non-ideal illumination, surface reflectance and relative
motion conditions. Experimental results show that the algorithms discussed are
capable of providing valid surface geometry estimates even when the assumption
of diffuse surface is not exactly valid. It is shown that the use of photometry
for shape estimation provides an alternative to textured based stereopsis solutions
that fail to produce any reconstruction in bland surfaces. Experiment results also
demonstrate that the concept of using structure from motion for initialization, and
then iteratively switching between surface propagation and photometric stereo is
a feasible approach for dense surface reconstruction when relative motion exists
between the object and the observer.

Acknowledgements This work is based upon work supported by the AFOSR grant FA9550-15-
1-0313. Drs. Erik Blasch, Sai Ravella and Frederica Darema are acknowledged for the technical
discussions. The authors are also grateful to the inputs of the anonymous reviewers. Their inputs
enhanced the quality of the chapter extensively.

References

1. J. Ackermann, F. Langguth, S. Fuhrmann, M. Goesele, Photometric stereo for outdoor web-
cams, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Providence,
2012) pp. 262–269. https://doi.org/10.1109/CVPR.2012.6247684

2. N. Alldrin, D. Kriegman, Toward reconstructing surfaces with arbitrary isotropic reflectance:
A stratified photometric stereo approach, in IEEE 11th International Conference on Computer
Vision (ICCV), Rio de Janeiro, 2007 pp. 1–8. https://doi.org/10.1109/ICCV.2007.4408881

3. O. Barnouin, H.E. Kahn, Amica images with geometry backplanes v1.0. hay-a-amica-3-
amicageom-v1.0 (2012). http://sbn.psi.edu/pds/resource/amicageom.html

4. Bouguet, J-Y., Camera calibration toolbox for matlab (2004). http://www.vision.caltech.edu/
bouguetj/calib_doc/index.html.

5. M. Carbajal, Apollo Soyuz (2009). http://nasa3d.arc.nasa.gov/detail/apollo-soyuz-c
6. J.F. Cavanaugh, J.C. Smith, X. Sun, A.E. Bartels, L Ramos-Izquierdo, D.J. Krebs, J.E.

McGarry, R. Trunzo, A.M. Novo-Gradac, J.L. Britt et al., The mercury laser altimeter
instrument for the messenger mission, in The Messenger Mission to Mercury (Springer, New
York, 2007), pp. 451–479

7. J.L. Crassidis, J.L. Junkins, Optimal Estimation of Dynamic Systems (CRC Press, Hoboken,
2011)

8. M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395
(1981). http://doi.acm.org/10.1145/358669.358692

9. R.T. Frankot, R. Chellappa, A method for enforcing integrability in shape from shading
algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 439–451 (1988)

10. K. Gray, Microsoft DirectX 9 Programmable Graphics Pipeline (Microsoft Press, Redmond,
2003)

11. R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University
Press, Cambridge, 2003)

https://doi.org/10.1109/CVPR.2012.6247684
https://doi.org/10.1109/ICCV.2007.4408881
http://sbn.psi.edu/pds/resource/amicageom.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://nasa3d.arc.nasa.gov/detail/apollo-soyuz-c
http://doi.acm.org/10.1145/358669.358692


290 X. I. Wong et al.

12. X.D. He, K.E. Torrance, F.X. Sillion, D.P. Greenberg, A comprehensive physical model for
light reflection, in Proceedings of the 18th Annual Conference on Computer Graphics and
Interactive Techniques, Las Vegas, 1991

13. C. Hernandez, G. Vogiatzis, R. Cipolla, Multiview potometric stereo. IEEE Trans. Pattern Anal.
Mach. Intell. 30(3), 548–554 (2008)

14. T. Higo, Y. Matsushita, N. Joshi, K. Ikeuchi, A hand-held photometric stereo camera for 3-d
modeling, in IEEE 12th International Conference on Computer Vision, Kyoto, 2009, pp. 1234–
1241. https://doi.org/10.1109/ICCV.2009.5459331

15. B. Horn, Obtaining Shape from Shading Information (McGraw-Hill, New York, 1975)
16. B.K. Horn, M.J.Brooks, The variational approach to shape from shading. Comput. Vis. Graph.

Image Process. 33(2), 174–208 (1986)
17. J. Immerkaer, Fast noise variance estimation. Comput. Vis. Image Underst. 64(2), 300–302

(1996)
18. B. Jia, K.D. Pham, E. Blasch, D. Shen, Z. Wang, G. Chen, Cooperative space object tracking

using space-based optical sensors via consensus-based filters. IEEE Trans. Aerosp. Electron.
Syst. 52(3), 1908–1936 (2016)

19. S.J. Julier, J.K. Uhlmann, New extension of the Kalman filter to nonlinear systems, in
AeroSense’97, International Society for Optics and Photonics, Orlando, 1997, pp. 182–193

20. R. Klette, K. Schluens, Height data from gradient maps, in Photonics East’96, International
Society for Optics and Photonics, 1996, pp. 204–215

21. J. Lim, J. Ho, M.H. Yang, D. Kriegman, Passive photometric stereo from motion, in Tenth
IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 2, Beijing, 2005,
pp. 1635–1642. https://doi.org/10.1109/ICCV.2005.185

22. Z. Liu, W. Wan, M. Peng, Q. Zhao, B. Xu, B. Liu, Y. Liu, K. Di, L. Li, T. Yu, B. Wang, J. Zhou,
H. Chen, Remote sensing mapping and localization techniques for teleoperation of chang’e-3
rover. J. Remote Sen. 18(5), 971–980 (2014)

23. D. Lowe, Object recognition from local scale-invariant features, in Proceedings of the Seventh
IEEE International Conference on Computer Vision, 1999, vol. 2, Kerkyra, 1999, pp. 1150–
1157. https://doi.org/10.1109/ICCV.1999.790410

24. B.D. Lucas, T. Kanade, An iterative image registration technique with an application to stereo
vision. IJCAI 81, Vancouver, Canada, (1981)

25. S.P. Mallick, T.E. Zickler, D.J. Kriegman, P.N. Belhumeur, Beyond lambert: Reconstructing
specular surface using color, in Computer Vision and Pattern Recognition, San Diego, CA
(IEEE, 2005)

26. A.S. McEwen, Photometric functions for photoclinometry and other applications. Icarus 92(2),
298–311 (1991)

27. A. OpenGL, M. Woo, J. Neider, T. Davis, OpenGL Programming Guide, Orlando, FL
(Addison-Wesley, Reading, 1999)

28. M. Oren, S.K. Nayar, Generalization of Lambert’s reflectance model, in Proceedings of 21st
Annual Conference on Computer Graphics and Interactive Technique, Orlando, (ACM, 1994)

29. M. Peng, K. Di, Z. Liu, Adaptive Markov random field model for dense matching of deep space
stereo images. J. Remote Sens. 18(1), 77–89 (2014)

30. M. Pharr, G. Humphreys, Physically Based Rendering: From Theory to Implementation
(Morgan Kaufmann, Amsterdam, 2004)

31. R. Raskar, K.H. Tan, R. Feris, J. Yu, M. Turk, Non-photorealistic camera: depth edge detection
and stylized rendering using multi-flash imaging, in ACM Transactions on Graphics (TOG)
(ACM, New York, 2004), pp. 679–688

32. D. Scharstein, R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspon-
dence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)

33. H. Schaub, J.L. Junkins, Analytical Mechanics of Space Systems (AIAA, Reston, 2003)
34. S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, R. Szeliski, A comparison and evaluation

of multi-view stereo reconstruction algorithms, in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, New York City, (IEEE, 2006)

35. R.T. Tan, K. Nishino, K. Ikeuchi, Separating reflection component based on chromaticity and
noise analysis. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1373–1379 (2004)

https://doi.org/10.1109/ICCV.2009.5459331
https://doi.org/10.1109/ICCV.2005.185
https://doi.org/10.1109/ICCV.1999.790410


13 Photometric Stereopsis for 3D Reconstruction of Space Objects 291

36. C. Tomasi, T. Kanade, Shape and motion from image streams under orthography: a factoriza-
tion method. Int. J. Comput. Vis. 9(2), 137–154 (1992)

37. K.E. Torrance, E.M. Sparrow, Theory for off-specular reflection from roughened surface. J.
Opt. Soc. Am. 57(9), 1105–1114 (1967)

38. Y. Wang, J. Bu, N. Li, M. Song, P. Tan, Detecting discontinuities for surface reconstruction, in
21st International Conference on Pattern Recognition (ICPR), Tsukuba Science City, (IEEE,
2012), pp. 2108–2111

39. X.I. Wong, M. Majji. Uncertainty Quantification of Lucas Kanade Feature Track and Appli-
cation to Visual Odometry. Computer Vision and Pattern Recognition Workshops (CVPRW),
Honolulu, HI, 2017 IEEE Conference on. IEEE, 2017.

40. L.F. Yu, S.K. Yeung, Y.W. Tai, D. Terzopoulos, T. Chan, Outdoor photometric stereo, in
IEEE International Conference on Computational Photography (ICCP), Jiuzhai, 2013, pp. 1–
8. https://doi.org/10.1109/ICCPhot.2013.6528306

41. Z. Zhou, Z. Wu, P. Tan, Multi-view photometric stereo with spatially varying isotropic
materials, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland,
(IEEE, 2013), pp. 1482–1489

https://doi.org/10.1109/ICCPhot.2013.6528306


Part V
Situation Aware: Tracking Methods



Chapter 14
Aided Optimal Search: Data-Driven
Target Pursuit from On-Demand Delayed
Binary Observations

Luca Carlone, Allan Axelrod, Sertac Karaman, and Girish Chowdhary

Abstract We consider the following search problem: an autonomous robot (the
searcher) needs to locate and reach a target moving in a field scattered with
Unattended Ground Sensors (UGS). The searcher has very limited information
about the target: (i) it has an initial distribution (the prior) describing the probability
of the target being at a given location at the initial time, and (ii) it can interrogate
nearby sensors; each sensor records a binary measurement, describing whether or
not the target passed in the proximity of the sensor at some point in time. Then
the goal for the searcher is to estimate the trajectory of the target, and plan a
maneuver that allows reducing the uncertainty about the current target state. We
refer to this problem as aided optimal search, in that the search process is aided by
an external infrastructure (the ground sensors). The paper adopts a Dynamic Data-
Driven Appplications Systems (DDDAS) paradigm, in which the data collected by
the searcher is used to update the belief on the trajectory of the target, and the
searcher actively steers the measurement process to improve its knowledge about
the location of the target. In particular, we make two main contributions. The first
regards the target trajectory estimation. We show how to perform optimal Bayesian
inference from binary measurements using a Gaussian Mixture Model (GMM).
One of the main insights is that parameterizing the GMM in the information
filter (inverse covariance) form allows huge computational savings: the information
matrix of each mixture component is a very sparse (block-tridiagonal) matrix, which
allows us to deal with a GMM with thousands of components in a fraction of
a second. The second contribution regards planning: we propose a Mixed-Integer
Programming (MIP) approach to plan the optimal searcher path, which minimizes
the uncertainty about the position of the target. The key idea here is the use of
sampling to decouple the complexity of the MIP from the length of the trajectory of
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the target. We demonstrate the proposed strategy in extensive simulations, reporting
statistics about success rate and computational time for different scenarios and target
motion models. The proposed search strategy largely outperforms greedy strategies
(e.g., visiting the most likely target position).

14.1 Introduction

Unmanned robots are being widely adopted for social and civil applications.
Unmanned Aerial Vehicles (UAVs), for instance, are finding applications in mon-
itoring and surveillance, disaster response, inspection, precision agriculture, and
entertainment. The motivations behind the use of these vehicles are manifold: they
are small, agile, and relatively inexpensive. Moreover, in military applications,
UAVs enable the human operator to lead the mission without being exposed to
unnecessary risks. In most of the mentioned applications, however, the UAV is
teleoperated, i.e., the human operator supplies low level controls to guide the robot,
which has very limited autonomy. A higher degree of autonomy would be very
desirable, in order to alleviate the workload on the human operator, to reduce the
amount of training needed to operate the vehicles, and to unleash applications
involving the simultaneous use of multiple robots.

This paper pushes the boundary of autonomous operation in a search task: an
autonomous robot (the searcher) needs to search for and reach a target moving in
a field scattered with Unattended Ground Sensors (UGS). In order to complete this
task, the searcher has to collect information about the motion of the target, and has
to exercise decision making to decide on the best search strategy. The search task
has important applications in a Urban Search and Rescue (USAR) setting, where
the goal is to locate and provide support to a victim as quickly as possible. Other
applications include tracking of ground vehicles in a road network using UAVs [2,
59], and intruder detection and tracking in security scenarios.

Target search is a data-driven task: while in principle it is possible to carefully
model the dynamics of the target, the uncertainty in the model structure and
parameters would lead to a quick error accumulation between the predicted and the
actual target location. The only way to reduce this uncertainty is to collect sensor
data about the state of the target. In this sense, our search problem must be addressed
within the DDDAS paradigm [27, 28], since it requires integrating prior knowledge
about the target (i.e., its motion model) with the sensor data dynamically sampled
from the ground sensors. Within the DDDAS paradigm we face two challenges: the
first is how to optimally fuse the prior information about the target with the newly
available sensor data; and the second is how to choose the sensor data which is more
informative to localize the target. In the following we provide a detailed description
of our problem setup.

We consider a challenging setup in which the searcher has very limited informa-
tion about a fast-moving target: (i) it has an initial distribution (the prior) describing
the probability of the target being at a given location at the initial time, and (ii) it can
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Fig. 14.1 A target moves in a field of unattended ground sensors (UGS). Each UGS records if the
target passed within a sensing radius (r , dotted blue circles) from the sensor position at some point
in time. For instance, sensor i, at position si , records a detection of the target at time τ = {1, . . . , t},
where t is the current time. A searcher is deployed in the same region with the goal of locating the
target. The searcher has prior knowledge on the state of the target at the initial time (y1) and
can interrogate sensors within a communication radius (rc, solid green circle) around its current
location (xt )

interrogate nearby sensors; each sensor records a binary measurement, describing
whether or not the target passed in the proximity of the sensor at some point in
time. A graphical representation of the problem is given in Fig. 14.1. This setup is
realistic when the robot operates in a field scattered with inexpensive, low-power
UGS: these sensors can detect the target via seismic, acoustic, infrared, and optical
sensing [11], and can operate continuously for extended periods of time, without
any maintenance. On the other hand, our setup makes target search particularly
challenging: (i) the searcher has to actively gather data, i.e., data is made available
on-demand: in this sense the problem is close to sensor selection [44], while having
the extra complexity of the sensor selection being connected to the location of
the searcher (it can only interrogate sensors within a sensing radius); and (ii) the
searcher receives delayed measurements of the target state: for instance, the searcher
may visit a sensor at time t and the sensor returns a detection of the target at time
τ < t . Moreover, these measurements are binary in nature (“detection” or “no
detection”), making the estimation of the target trajectory a particularly challenging
instance of recursive optimal estimation; and (iii) finally, the computation of the
optimal search strategy involves complex decision making that has to ponder the
advantage in visiting a given sensor and has to respect the dynamics of the searcher.
In this sense, the search problem falls in the class of Partially Observably Markov
Decision Processes (POMDPs), which are intractable in general.
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Contribution We provide two main contributions. The first addresses optimal
target trajectory estimation. While most related work on optimal search considers
relatively simple instance of Bayesian inference to estimate the posterior of the
target state, our setup (with delayed measurements) requires to estimate the entire
trajectory of the target which leads to a high-dimensional estimation problem (also
known as trajectory smoothing). We show that when the dynamics of the target
are described by a linear Gaussian model, and modeling the prior at the initial
time as a Gaussian Mixture Model (GMM), we can perform optimal Bayesian
estimation from binary measurements in closed form. Similarly to other applications
of GMMs to Bayesian estimation [6, 65], the number of mixture components in our
model quickly grows over time. However, we show that parametrizing the GMM
in information (inverse covariance) form leads to a sparse GMM (i.e., a GMM in
which the information matrices are very sparse). This insight enables us to perform
optimal estimation using thousands of mixture components in a fraction of a second.
We also discuss two alternatives to perform GMM reduction when the number of
components becomes too large.

The second contribution regards the design of a search strategy that minimizes
the uncertainty about the state of the target. We first formulate a finite-horizon
optimal control problem, which involves the target posterior distribution. Then we
take a particle-based approximation of the posterior, which allows us to phrase
the problem as a mixed-integer convex program (MIP). While solving a mixed-
integer programming is NP-hard, efficient implementations of branch-and-bound
techniques exist, allowing us to solve problems with many sensors (≈100) and long
horizons (≈50 steps). A key idea in our approach is to use a different representation
of the trajectory posterior in the estimation and in the planning part. For estimation,
we use a Gaussian Mixture Model, which allows optimal inference and can easily
deal with large uncertainty about the target state (on the other hand, the use of a
particle filter for trajectory estimation would lead to particle depletion [66]). For
planning, instead, we use a sampling-based posterior, which leads to a convex
problem and can be more easily attacked using standard solvers.

As a further contribution, we provide a thorough numerical evaluation of the
proposed approach, for different performance characteristics of the target (i.e.,
speed, agility) and increasing uncertainty in the initial target state, comparing
it against a greedy planner which always moves towards the most likely target
location. Empirical evidence confirms that our approach largely outperforms the
greedy baseline.

Paper organization Section 14.2 reviews related literature, while Sect. 14.3 pro-
vides preliminaries and notation. Section 14.4 formalizes our problem setup.
Section 14.5 describes a sparse Gaussian Mixture Model for optimal trajectory
smoothing. Section 14.6 discusses a MIP-based search strategy. Section 14.7 reports
numerical results. Section 14.8 concludes the paper.
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14.2 Related Work

The first body of related work is the literature on optimal search (OS). In OS a
searcher needs to plan a path that allows detecting one or more targets in a known
environment. OS is also known as “one-sided search” in that the target is static or
moves according to some policy which is independent on the state of the searcher.
OS played an important role in maritime warfare [48]; we refer the reader to [67]
for a general overview. OS is usually formulated over a graph in which vertices are
potential positions of the searcher and the target, while edges denote traversability
between locations. Therefore, the goal of the search strategy is to minimize the
expected time before the target is detected or to maximize the detection probability
in presence of false detections [45]. Assaf and Zamir [7] study a box-searching
problem (one or more targets are hidden in boxes and the searcher can inspect any
of them), in which one disregards searcher’s motion, and show that visiting the most
probable target location is the optimal search strategy. On the other hand, when the
searcher cannot “teleport”, the problem, also referred to as the optimal path search
problem, has been shown to be NP-complete even when the target is stationary [69].
Washburn [72] presents an iterative forward-and-backward algorithm. Eagle [31]
proposes a dynamic programming approach, while branch and bound is used
in [32]. Bourgault et al. [15, 16] consider single or multiple searchers moving
in a continuous obstacle-free environment; they propose a Bayesian approach to
predict the target state, and use an optimal control formulation to drive the searcher
towards a static or drifting target. Lau et al. [52, 53] consider a search problem
in a discretized indoor environment with multiple stationary targets; a dynamic
programming approach is given in [52], while branch and bound is adopted in [53].
Sato et al. [62] extend the branch-and-bound approach [53] to consider a resource-
constrained searcher moving in a discretized 3D space. Hollinger et al. [38] consider
a search problem with multiple searchers, and use submodularity to establish per-
formance guarantees when sequentially computing search policies across the team.

The second body of related work is the literature on pursuit evasion (PE). In
PE, a pursuer chases an evader, which actively tries to avoid capture (for this reason
PE is also known as “adversarial search” or “worst-case search”). PE is usually
formulated over a graph and it is assumed that both the pursuer and the evader
have exact knowledge of the position of the players at each time step (e.g., the
cops-and-robbers game [3]). The case in which the players can observe each other
position only if they are at the same vertex is known as the hunter-and-rabbit
game [1]. The case in which the players have local visibility (i.e., can only see
the adversary when it is close enough) has been considered in [40, 41]. Related
work also investigates PE problems in continuous space, where the position of
the players is not confined to the nodes of a graph. A popular PE problem in the
continuous domain is the lion-and-man game [5], in which the players move in the
2D quadrant. The lion-and-man game has been also studied in a limited-sensing
setup, in which the pursuers can only detect the evader within a given distance, and
the evader moves only if the pursuer is nearby [14]. PE in polygonal environments
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with limited visibility is considered in [35]. Shen et al. [63], Blasch et al. [12], and
Jia et al. [43] consider extensions to three-dimensional PE games. PE is related to
the literature on differential games, which also considers the dynamics of pursuer
and evader, see e.g., the homicidal chauffeur game and the general overview in [9].
An excellent survey on PE and OS is given in [25].

Our search problem can be also formulated as a partially observable Markov
decision process (POMDP). In that case, the state of the POMDP includes both
the state of the searcher and the state of the target (a POMDP model of the search
problem is given in [38]). The actions in the corresponding POMDP would only
control the motion of the searcher, while the observations correspond to detections
of the target. The POMDP would then reward the searcher for visiting the same
locations as the target. POMDP are intractable in general [46], although sampling-
based approaches [8, 57, 64], and belief compression [60] enabled the solution
of relatively large POMDPs. In the context of target search, the computational
cost soon becomes impractical when searching over a large environment [38]. A
related literature is also the one on belief space planning in robotics, where a
robot looks for a suitable motion strategy in order to drive its belief (posterior
distribution over the state of the robot and possibly the external world) towards a
desired state. Recent work considers belief space planning in continuous domain;
Bai et al. [8] use sampling to update an initial policy. Platt et al. [58] use linear
quadratic regulation (LQR) to compute locally optimal policies. Erez and Smart [33]
use an extended Kalman Filter (EKF) and a Gaussian Mixture Model for the belief
and applied local optimization techniques for planning. Van den Berg et al. [70]
relax assumptions about the measurements collected over the planning horizon,
while Indelman et al. [39] investigate belief space planning within a smoothing and
mapping framework.

Another set of related works is the one in the area of unattended ground
sensors (UGS) and DDDAS. The literature on sensor networks is very broad and an
extensive review is outside the scope of this work; we refer the interested reader
to [24] for an historical perspective. We limit our review to few related works,
including the work of Duarte and Hu [30] and Blasch et al. [11], discussing how
to use a sensor network to classify moving vehicles, and the works on target pursuit
in a road network instrumented with UGS [20, 21, 49–51]. Choi and How [23] and
Choi et al. [22] investigate the sensor targeting problem, in which a set of sensors
must be deployed to observe a phenomenon of interest. Casbeer et al. [17] and
Ahmed et al. [2] investigate Bayesian estimation to localize a moving target in a
road network from UGS detections. Blasch et al. [10] consider different metrics
for sensor scheduling, in order to observe a moving target. Niu and Varshney [56]
study maximum likelihood estimation of the target position from quantized data.
Krishnamoorthy et al. [49] study the problem of capturing an intruder in a road
network using an UAV and propose a backward recursive scheme to construct the
set of UAV locations from which capture is guaranteed. Krishnamoorthy et al. [50]
analyze the optimal worst-case time to capture an intruder on a Manhattan grid.
Chen et al. [20, 21] compute intruder pursuit policies on road networks using
decision trees. Krishnamoorthy et al. [51] and Casbeer et al. [18] provide conditions
and policies under which intruder capture is guaranteed. While the problem setup in
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these works is very close to the one presented in our paper, a key difference is that
our intruder search is performed in a continuous space, rather than in a discrete road
network. Fujimoto et al. [34] propose a DDDAS system for vehicles tracking from
live images, and discuss an architecture to implement a sense-predict-adapt DDDAS
cycle. DDDAS approaches have also been considered for tracking different dynamic
phenomena, including water contaminants [29], wildfires [55], and hurricanes [4].

Other related problems The problem at hand also intersects other lines of
research. We mention them for completeness, and refer the reader to the cor-
responding papers for details. In Informative Path Planning problems, the goal
is to plan a path that maximizes some information-collection objective, possibly
under additional constraints such as path length or total time limit; recent literature
includes polylogarithmic approximations [54], sampling-based methods [47], and
branch and bound [37]. In Prize-collecting Traveling Salesman problems (TSP) an
agent moves on a graph: each node has a price for visiting it and a penalty for not
visiting it; then the goal is to find a tour that obtains at least a given profit, while
minimizing the length of the tour and the penalty for not visiting some nodes [13].
In the orienteering problem an agent has to reach a given node in a graph, while
visiting as many nodes as possible along the way, such that the path is shorter than
a given bound; recent literature includes guaranteed approximations [19], and MIP-
based algorithms [71]. A variant of the orienteering problem is the optimal tourist
problem [73] in which the reward collected at a node is a function of the time spent
at that node.

Novelty and challenges Despite the large amount of related work in OS and
PE, few key features make our setup unique. The first feature is the presence
of the unattended ground sensors. Rather then using just onboard sensors, the
searcher can collect measurements using an infrastructure of sensors scattered in
the environment. For this reason we refer to our problem as aided optimal search.
The sensor measurements are delayed in the sense that they provide information
on past states of the target. This requires more sophisticated search policies for two
reasons. First, the searcher has to reason over the entire trajectory of the target, rather
than on its current state. Computationally, this means that the state of the target (for
both estimation and planning) is high-dimensional and grows over time. This rules
out dynamic programming and POMDP approaches, which are known to be slow
even in standard instances of optimal search [38, 52]. Second, the possibility of
measuring past states creates complex interdependence among the reward collected
when visiting different locations in the environment. For instance, consider the case
in which a searcher inspects an environment consisting of two areas (say A and B)
separated by a single narrow passage. If the searcher knows that the target started
in the area A, a single measurement at a UGS located at the narrow passage can
radically change the interest of the searcher towards visiting the entire area B.

The second feature of our setup is that, contrarily to most literature on optimal
search and UGS, our searcher operates in continuous space and we want to enforce
motion constraints (e.g., dynamics, speed limits) during the computation of the
search strategy. This makes the formulation more realistic and enables extensions
which also take into account resource constraints (e.g., time, fuel) for the searcher.
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14.3 Notation and Preliminaries

Vector norms and matrices We use the symbol In to denote the n × n identity
matrix; we denote with 0n×m the n × m matrix of zeros. The Euclidean norm
of a vector x is denoted with ‖x‖2; we also use the following norms: ‖x‖∞ .=
maxi=1,...,n |xi | (�∞-norm); ‖x‖1

.=∑i=1,...,n |xi | (�1-norm).

Multivariate Gaussian Distributions We use the notation NP (x;μ,�) to denote
a d-dimensional multivariate Gaussian with mean μ ∈ R

d and covariance matrix
� ∈ R

d×d :

NP (x;μ,�) = det(�)− 1
2

(2π)
d
2

exp

{
−1

2
(x − μ)T�−1(x − μ)

}
(14.1)

When convenient, we parametrize the multivariate Gaussian in information form:

N (x; η,�) = det(�)
1
2

(2π)
d
2

exp

{
−1

2
(x −�−1η)T�(x −�−1η)

}
(14.2)

where the matrix � is called the information matrix and η is the information
vector. It can be readily seen that whenever �,� are positive definite, the
descriptions (14.1) and (14.2) are equivalent, and are related by:

NP (x;μ,�) = N (x;�−1μ,�−1) (14.3)

which tells that the information matrix is the inverse of the covariance, � = �−1,
and μ = � η = �−1η. To denote that a random vector x is Normally distributed
we write x ∼ NP (μ,�) or x ∼ N (η,�).

Gaussian Mixture Model (GMM) A GMM is a probability density function (pdf)
described by the following expression:

MP (x; {μj , Pj , αj }mj=1) =
m∑

j=1

αjNP (x;μj , Pj ) (14.4)

where m is the number of mixture components, and αj are the mixture coefficients,
with

∑m
j=1 αj = 1. It is usually assumed that αj ≥ 0, which, together with∑m

j=1 αj = 1, guarantees that (14.4) is a valid pdf. However, one can allow for
negative αj as long as the pdf remains positive everywhere [74].

Assuming P1, . . . , Pm to be positive definite, we can equivalently parametrize
the GMM in information form, as follows:

M (x; {ηj ,�j , αj }mj=1) =
m∑

j=1

αjN (x; ηj ,�j ) (14.5)
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which is the same as (14.4) for �j = P−1
j > 0, and ηj = �j μj , j = 1, . . . , m.

To denote that a random vector x is distributed according to a GMM we write x ∼
M ({ηj ,�j , αj }mj=1). A GMM is said to be sparse, if �j , j = 1, . . . , m are sparse
matrices.

14.4 Problem Statement

The target A target moves in a planar region R and we call pyt ∈ R
2 and vyt ∈ R

2

the position and the velocity of the target at time t , respectively. Therefore, yt
.=

[pyt vyt ] ∈ R
4 is the state of the target at time t . We assume that the dynamics of the

target are described by the following process model:

yt+1 = Ayt + wt (14.6)

where A ∈ R
4×4 is a known matrix, and wt ∈ R

4 is a random vector. This
model, for instance, encompasses a velocity random walk in which the target applies
unknown (stochastic) accelerations. We assume that wt is Normally distributed:
wt ∼ N (0,�w). The process model can be equivalently written in terms of
transition probability:

P (yt+1|yt ) = N (yt+1 − Ayt ; 0,�w) (14.7)

We also assume that we are given a prior distribution of the target state at the
initial time:

y1 ∼M ({η1,j , �1,j , α1,j }mj=1) (14.8)

for m ≥ 1 and some known η1,j , �1,j , α1,j , j = 1, . . . , m. For instance, we
can assume that y1 is distributed according to a single Gaussian (m = 1) with
large covariance, or we can use multiple components, corresponding to multiple
hypotheses on the initial state of the target. Modeling the prior as a GMM is indeed
a mild assumption as GMM can approximate generic continuous pdfs with arbitrary
accuracy [65].

In this chapter, we are interested in the trajectory of the target. Therefore,
rather than estimating the most recent state yt , our goal is to compute a posterior
distribution over the following vector:

y1:t =
⎡

⎢⎣
y1
...

yt

⎤

⎥⎦ ∈ R
4t (14.9)
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The sensors The region in which the target is moving is scattered with N

unattended ground sensors (UGS), see Fig. 14.1. The position of the sensors is
denoted as si ∈ R

2, i = 1, . . . , N . We assume that, when interrogated at time
t , a sensor i ∈ {1, . . . , N} provides a time-stamped binary measurement zt . The
measurement is described by the tuple zt = (i, τ, b), where i is the unique identifier
of the sensor, b ∈ {0, 1} is the binary reading, and τ ∈ {1, . . . , t} is a time stamp. A
value z1

t
.= (i, τ, b = 1) indicates that the target was in the proximity of sensor i at

time τ ; more precisely, we have a detection when the target passed within a sensing
radius r from the sensor. On the other hand, z0

t
.= (i, τ, b = 0) indicates that the

target never passed near sensor i.

The searcher We assume that the motion of the searcher is governed by the
following (deterministic) linear dynamics:

xt+1 = Axxt + Bxut (14.10)

where xt ∈ R
4 is the pursuer state, including its 2D position and velocity, ut ∈ R

2

is the control action, and Ax and Bx are given matrices of suitable dimensions.
In practice, (14.10) represents a double integrator, in which at each time step the
pursuer decides its acceleration commands ut . We consider a realistic scenario in
which the controls are bounded, i.e.,

‖ut‖ ≤ Ū , ∀ t (14.11)

where Ū is a given upper bound. We also assume that the maximum velocity of the
pursuer is limited, i.e.,

‖Sxt‖ ≤ S̄, ∀ t (14.12)

where S̄ is a given speed limit, and the matrix S ∈ R
2×4 extracts the 2D velocity

from the state vector xt .
The searcher knows the position of the sensors si ∈ R

2, i = 1, . . . , N and can
interrogate a sensor within a communication radius rc from its current position.
More precisely, a measurement is received from sensor i at time t , if and only if:

‖Pxt − si‖ ≤ rc (14.13)

where P ∈ R
2×4 extracts the 2D position from the state xt .

14.5 Target Trajectory Estimation Via Sparse Gaussian
Mixture Model

This section describes our approach to estimate the trajectory of the target from
binary measurements. The proposed approach is based on Bayesian smoothing:
at each time step the posterior is predicted using the process model (14.7); then,
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binary measurements (if available) are included in the posterior in the update
step. More formally, denoting with Z1:t all the measurements collected till time
t , our incremental smoother computes the posterior probability P (y1:t+1|Z1:t+1)

by updating the posterior at the previous time step P (y1:t |Z1:t ). Section 14.5.1
describes the prediction phase. Section 14.5.2 discusses the measurement update.

14.5.1 Prediction

The prediction phase computes the prior distribution at time t + 1, i.e.,
P (y1:t+1|Z1:t ), from the posterior at time t , i.e., P (y1:t |Z1:t ), and the transition
probability P (yt+1|yt ). The following relations are general and independent on the
choice of the prior and transition probabilities:

P (y1:t+1|Z1:t ) = P (y1:t , yt+1|Z1:t ) = (using the chain rule)

P (yt+1|y1:t , Z1:t )P (y1:t |Z1:t ) = (using the Markov property)

P (yt+1|yt )P (y1:t |Z1:t ) (14.14)

The previous equation shows that the prior distribution can be computed as a product
of the posterior at the previous time and the transition probability. Note that we
operate in a smoothing framework, hence we do not marginalize out past states as
in standard Bayesian filtering.

Let us assume that our probability prior at time t is a GMM with m mixture
components:

P (y1:t |Z1:t ) =M (y1:t ; {ηt,j , �t,j , αt,j }mj=1) (14.15)

Substituting our choice of priori (14.15) and transition probability (14.7) in (14.14),
we demonstrate that (see Appendix A for a complete derivation):

P (y1:t+1|Z1:t ) =M (y1:t+1; {η̄t+1,j , �̄t+1,j , ᾱt+1,j }mj=1) (14.16)

where η̄t+1,j , �̄t+1,j , and ᾱt+1,j are computed as:

η̄t+1,j = ST
1:t ηt,j

�̄t+1,j = ST
1:t�t,j S1:t + ST

t :t+1�
wSt :t+1

ᾱt+1,j = αt,j
(14.17)

and the matrices S1:t ∈ R
4t×4(t+1) and St :t+1 ∈ R

4×4(t+1) are defined such that:

S1:t y1:t+1 = y1:t St :t+1 y1:t+1 = yt+1 − Ayt (14.18)
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Fig. 14.2 The prediction of the information matrix of each mixture component in (14.17)
preserves a block tridiagonal structure of the information matrices. In particular, it is possible
to see that the matrix S1:t in (14.18) can be written explicitly as S1:t = [I4t 04t×4]; therefore the
product ST

1:t�t,j S1:t only adds rows and columns of zeros to the matrix �t,j (each white block in
the figure denote a 4×4 zero matrix, while the blue blocks may contain nonzero entries). Similarly,
we note that St :t+1 in (14.18) can be written as St :t+1 = [04×4(t−1) − A I4], which implies that
the product ST

t :t+1�
wSt :t+1 is zero everywhere except the four bottom-right blocks

Note that the prediction step in (14.16) can be implemented efficiently, even for
large number of mixture components, since S1:t and St :t+1 have few nonzero entries
and the term ST

t :t+1�
wSt :t+1 can be pre-calculated (it is independent on the mixture

component). Therefore, if �t,j is a sparse matrix, also �̄t+1,j is sparse, for j =
1, . . . , m. More precisely, the prediction produces block-tridiagonal matrices, see
Fig. 14.2.

14.5.2 Update

The update phase computes the posterior distribution at time t + 1, i.e.,
P (y1:t+1|Z1:t+1), from the prior at time t + 1, i.e., P (y1:t+1|Z1:t ), and the
measurement likelihood P (zt+1|y1:t+1). The following relations are general and
independent on the choice of the prior and likelihood function:

P (y1:t+1|Z1:t+1) = P (y1:t+1|Z1:t , zt+1) = (using the Bayes rule)

P (zt+1|Z1:t , y1:t+1)P (y1:t+1|Z1:t )∫
P (zt+1|Z1:t , y1:t+1)P (y1:t+1|Z1:t ) dy1:t+1

= (using the Markov property)

P (zt+1|y1:t+1)P (y1:t+1|Z1:t )∫
P (zt+1|y1:t+1)P (y1:t+1|Z1:t ) dy1:t+1

(14.19)

The first step towards the computation of the posterior distribution is to define
the likelihood function for our problem.

Measurement Likelihood We first recall that pyτ is the position of the target at
time τ ∈ {1, . . . , t}, and we introduce a sparse matrix Uτ ∈ R

2×4t that is such that:

Uτy1:t = pyτ (14.20)



14 Aided Optimal Search 307

In Sect. 14.4 we gave a deterministic description of the measurements. We have a
detection at sensor i if:

‖Uτy1:t − si‖ ≤ r (14.21)

at some time τ ∈ {1, . . . , t}. In this Section, we conveniently give a probabilistic
description of the binary measurements: the probability of the target being detected
at time τ is a continuous function of its distance from the target. More formally, the
likelihood of a detection (b = 1), time-stamped with τ , at sensor i, is:

P

(
z1
t |y1:t

)
= P (b = 1|yτ , si) = exp

{
−‖Uτy1:t − si‖2

r2

}
(14.22)

Eq. (14.22) describes the likelihood of a detection, given the target trajectory y1:t .
The model in (14.22) states that the sensor detects the target with probability 1 when
Uτy1:t = pyτ = si (i.e., when the target position at time τ coincides with the sensor
position si), while the probability decays exponentially fast when the target moves
farther from the sensor position. While this model makes intuitive sense (i.e., the
chance of detecting the target quickly decays when the target is far from the sensor),
the key advantage of using this model is that it enables a closed-form computation of
the Bayesian update, as shown later in this section. A similar observation is reported
in [42], which uses binary measurements within a Kalman filter; in hindsight, our
approach is an extension of the filter presented in [42] to a full smoothing setup.

Using the detection probability (14.22), we write the probability of having no
detections (b = 0) from sensor i at time τ as:

P

(
z0
t |y1:t

)
= 1− P

(
z1
t |y1:t

)
(14.23)

We use the symbol “zt” to denote a generic binary measurement, while we use z1
t

and z0
t when distinguishing the outcome of the measurement is important. While

the two outcomes may appear similar, they impact the update phase presented in the
rest of this section in a very different manner, since they are described by different
likelihood functions. Note that the subscript “t” in zt denotes the time at which
the estimator becomes “aware” of the new measurement (i.e., when the searcher
interrogates the sensor), and this is different in general from the detection time τ .

We now show that if the prior is a GMM – as in our case, see (14.16) – and the
likelihood functions are the ones described in (14.22) and (14.23), then the posterior
probability remains a GMM. The update equations change depending on whether
the measurement has b = 1 (detection) or b = 0 (no detection). We discuss the two
cases separately in the following.

Detection (b = 1) When the searcher acquires a measurement z1
t = (i, τ, b = 1),

the expression of the measurement likelihood is described in Eq. (14.22). Substitut-
ing (14.14) and (14.22) into (14.19) we prove that (derivation in Appendix B):

P (y1:t+1|Z1:t+1) =M (y1:t+1; {ηt+1,j , �t+1,j , αt+1,j }mj=1) (14.24)



308 L. Carlone et al.

where ηt+1,j , �t+1,j , and αt+1,j are computed as:

ηt+1,j = η̄t+1,j + UT
τ
si
r

�t+1,j = �̄t+1,j + 1
r2U

T
τ Uτ

αt+1,j = ᾱt,j βt+1,j∑m
j=1 ᾱt,j βt+1,j

(14.25)

and the scalars βt+1,j are computed by evaluating a Normal distribution at si :

βt+1,j = NP (si;Uτ �̄−1
t+1,j η̄t+1,j , Uτ �̄

−1
t+1,jU

T
τ + r2) (14.26)

Note that an efficient implementation would not perform matrix inversions to
compute (14.26), but would rather resort to a sparse linear system solver.

No detection (b = 0) The case in which the sensor did not detect the target, i.e.,
z0
t = (i, τ, b = 0), is different from the detection case in a subtle way. In the

derivation, the main different lies in the expression of the measurement likelihood.
Substituting (14.14) and (14.23) into (14.19) we can demonstrate that the posterior
probability is given by (cf. Appendix B):

P (y1:t+1|Z1:t+1) = M (y1:t+1; {η+t+1,j , �
+
t+1,j , α

+
t+1,j }mj=1)+

M (y1:t+1; {η−t+1,j , �
−
t+1,j , α

−
t+1,j }mj=1)

(14.27)

where η+t+1,j , �+t+1,j , α+t+1,j , η−t+1,j , �−t+1,j , α−t+1,j are computed as follows:

η+t+1,j = η̄t+1,j

�+t+1,j = �̄t+1,j

α+t+1,j = ᾱt,j

1−∑m
j=1 ᾱt,j γt+1,j

η−t+1,j = η̄t+1,j + UT
τ
si
r

�−t+1,j = �̄t+1,j + 1
r2U

T
τ Uτ

α−t+1,j = −ᾱt,j γt+1,j

1−∑m
j=1 ᾱt,j γt+1,j

(14.28)

and the terms γt+1,j can be computed as follows:

γt+1,j = 2πr2 βt+1,j (14.29)

where βt+1,j is defined as in (14.26). Note that each “no detection” event doubles
the number of mixture components, as can be seen from (14.27).

We conclude by observing that the update step does not alter the sparsity
structure of the information matrices of each Gaussian component. In Eq. (14.28),
the components labeled with “+” have the same information matrix of the prediction
step, while the sum in the expression of the “−” components (which is the same
appearing in (14.25)) only adds nonzero diagonal blocks, as shown in Fig. 14.3.

GMM Reduction So far we showed how to perform efficient trajectory smoothing
in information form. Our approach enables fast computation by leveraging sparse
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Fig. 14.3 The update step in our smoother preserves the sparsity structure of the information
matrix of each mixture component. In particular, the matrix 1

r2U
T
τ Uτ , appearing in the update

Eq. (14.25) is a block diagonal matrix with a single nonzero diagonal block in position τ

matrix manipulation and it is parsimonious in terms of memory consumption as the
number of nonzero entries in each information matrix grows linearly in the length
of the trajectory (since the matrices are block tridiagonal) rather than quadratically
(as it would happen when performing smoothing in covariance form).

Despite these advantages, the number of GMM components keeps increasing
whenever we include a “no detection” measurement in our estimator. Therefore,
it is of interest to devise strategies to reduce the number of components when
their number exceeds a given upper bound (for instance, in our tests, we limit the
number of mixture components to m = 104). The literature on GMM reduction
offers three main families of approaches to approximate a given GMM with one
having a smaller number of mixture components. We give a high-level overview
here, while we refer the reader to [26, 61] for a comprehensive treatment. The first
approach is pruning and consisting of simply discarding components whose weights
αt,j are small (e.g., αt,j ≤ 10−5). The second approach is based on merging and
consists in replacing two or more mixture components in the original GMM with a
single “merged” component; the parameters describing the “merged” components
are usually computed via iterative optimization. The third approach is based on
sampling: when the original GMM becomes too large, we sample from it and we
fit a GMM with less components to the samples (fitting a GMM to a set of samples
can be performed via Expectation-Maximization [36, §8.5]). While reduction via
merging or sampling are feasible in our context, a naive implementation of these
techniques would not preserve the sparsity of the information matrices.

For our experiments we test two alternative approaches to limit the growth of
the mixture components. The first approach is very simple yet effective: since the
number of mixture components only grows when we incorporate a “no detection”
measurement, we avoid including these measurements after we reach the allowed
number of mixture components. The second approach is based on sampling; how-
ever, rather than sampling the entire target trajectory and fitting a high-dimensional
GMM (this would lead to large dense information matrices), we only sample the
current target state, say at time t and fit a 4-dimensional GMM. This is the same as
“re-initializing” the smoother, which starts with a new GMM (with a small number
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of components) at time t , and produces a sparse GMM posterior after time t . While
this solution is computationally efficient, it implies that we “forget” the trajectory
before time t ; and hence, we cannot incorporate delayed measurements regarding
the state of the target before time t . In both approaches, we also prune mixture
components with very small weights.

14.6 Ground-Sensor-Aided Search Via Mixed-Integer
Convex Programming

This section describes a search strategy to minimize the uncertainty about the
target location over a finite time horizon. We provide a general formulation of the
optimal search in Sect. 14.6.1. Then we provide a sampling-based approximation
in Sect. 14.6.2: this approximation leads to a mixed-integer convex program, which
can be solved reliably (at least for medium-sized problems) using standard solvers.

14.6.1 Ground-Sensor-Aided Optimal Search

We consider a receding-horizon planner in which the searcher has to plan the
optimal motion for L look-ahead steps, starting from its current state x̄t . Recalling
that P (y1:t |Z1:t ) is the posterior over the target trajectory at time t , the receding-
horizon planner minimizes the uncertainty associated to the target posterior at the
end of the time horizon, namely P (y1:t+L|Z1:t+L) while satisfying the motion
dynamics (14.10), the acceleration limit (14.11) and the speed limit (14.12).

We observe that the measurements collected during the future look-ahead steps
are unknown: the searcher does not know a priori whether a given sensor detected
the target or not. Related work tackles the detection ambiguity issue by taking
the optimistic assumption that future measurements will be in agreement with the
current belief [58], or by trying to reason probabilistically over the outcome of future
measurements [39, 70]. In our formulation, we take the conservative assumption that
the searcher always obtains a “no detection” from each sensor interrogated during
the L lookahead steps. This choice has the advantage that the plan remains optimal
as long as the searcher does not get an actual detection. In practice, this means that
the searcher only needs to re-plan its trajectory after getting a new detection (which
happens rarely at the beginning of the search1), or when the current plan have been
executed.

1In practice, the most challenging part of the problem is indeed the initial phase of the search in
which the uncertainty about the target is large and most of the interrogated sensors are far from the
actual trajectory of the target.
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Let us assume that f (·) is a function that takes a probability distribution as input
and returns a measure of the uncertainty in the distribution; for instance, f (·) can
be the trace of the covariance of the distribution, the determinant of the covariance,
or the entropy. Then, our search problem is phrased as an optimization problem
(detailed explanation follows):

min
xt ,...,xt+L,
ut ,...,ut+L,

P1:t ,...,P1:t+L

f ( P1:t+L )

subject to
(initial searcher state at time t) xt = x̄t
(searcher dynamics, Eq. 14.10) xτ+1 = Axxτ + Bxuτ
(max searcher speed, Eq. 14.12) ‖Sxτ‖ ≤ S̄
(max searcher acc., Eq. 14.11) ‖uτ‖ ≤ Ū

(initial target posterior at time t) P1:t = P (y1:t |Z1:t )
(target posterior evolution) P1:τ+1 = B(P1:τ , z0

τ )

(measurements) z0
τ = (i, τ, 0) if ‖Pxτ − si‖ ≤ rc
∀τ = t, . . . , t + L , ∀i = 1, . . . , N

(14.30)

The optimization variables are the future controls ut :t+L, the future searcher states
xt :t+L, and the future target posteriors P1:t , . . . ,P1:t+L. The objective rewards the
minimization of the uncertainty of the target posterior at the end of the horizon
P1:t+L. The first four constraints regard the searcher. The constraint xt = x̄t
enforces that the initial state of the searcher matches the actual searcher state at the
time of planning, i.e., x̄t . The subsequent constraints enforce dynamics and motion
constraints, as per Eqs. (14.10), (14.11), and (14.12). The last set of constraints
describes the evolution of the target trajectory posterior over the time horizon.
The constraint P1:t = P (y1:t |Z1:t ) fixes the initial condition for the posterior
P1:t , i.e., at planning time t the posterior P1:t has to match the actual target
trajectory posterior P (y1:t |Z1:t ) (this is the GMM that we estimated in Sect. 14.5).
In the constraint P1:τ+1 = B(P1:τ , z0

τ ), the function B(P1:τ , z0
τ ) represents a

Bayesian smoother (as the one presented in Sect. 14.5): the smoother takes as input
the posterior at time τ and the measurements z0

τ and returns the posterior at the next
time τ + 1. Note that B(·, ·) is a deterministic function, and indeed the evolution
of the posterior is deterministic, given the measurements. The last constraint (z0

τ =
(i, τ, 0) if ‖Pxτ − si‖ ≤ rc) states that a measurement z0

τ = (i, τ, 0) becomes
available, whenever sensor i (at position si) is within the communication radius from
the searcher position at time τ (i.e., Pxτ ), cf. with Eq. (14.13). The communication
constraint is the key interface between the searcher and the target, and indeed it is
the only way in which the searcher can modify the evolution of the target posterior.
Problem (14.30) is a deterministic optimization problem (the stochasticity about
future measurements has been removed by assuming future measurements to be “no
detections”).
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Remark 1 (Challenges in the general formulation (14.30)) Two main aspects
in (14.30) make it a particularly complex optimization problem. The first issue
is that the posterior P1:τ (which is an optimization variable) is an infinite
dimensional object in general. This issue is mitigated when a finite-dimensional
parametrization of the posterior is adopted, as we did in Sect. 14.5. In that case, the
actual optimization variables are the parameters (information matrix, information
vector, and weight) of each component in the GMM; moreover, the Bayesian
smoother B(·, ·) can be written explicitly using the prediction Eq. (14.17) and the
update Eq. (14.25). However, also in this case, the Bayesian smoother leads to
nonconvex equality constraints, making the resulting optimization hard to solve
globally. In the next section we circumvent this issue by adopting a sampling-
based approximation of the posterior. The second issue is connected with the “if”
statement that controls the acquisition of future measurements. In the next section
we introduce binary variables to model the fact that a measurement from sensor i
is acquired only when the searcher is within communication radius from the sensor
position si .

14.6.2 Sampling-Based Aided Search via Convex
Mixed-Integer Programming

In this section we approximate the posterior about the trajectory of the target with a
set of K weighted samples, as commonly done in particle filtering. More formally,
we approximate the posterior at time t as:

P (y1:t |Z1:t ) ≈
K∑

k=1

ω̄
(k)
t δ(y1:t − ȳ(k)1:t ), (14.31)

where δ(·) denotes the Dirac delta function, ȳ(k)1:t ∈ R
4t is the k-th trajectory

hypothesis, and the weights ω̄(k)t are such that ω̄(k)t ≥ 0,∀k, and
∑K
k=1 ω̄

(k)
t = 1.

Each sample ȳ(k)1:t represents a potential trajectory of the target. In practice, we
compute the sample-based posterior (14.31) by sampling our sparse GMM (this can
be done via acceptance-rejection sampling as shown in the experimental section).

The sample-based approximation (14.31) allows rewriting problem (14.30) as:

min
xt ,...,xt+L,ut ,...,ut+L,

ω
(k)
t ,...,ω

(k)
t+L,y

(k)
1:t ,...,y

(k)
1:t+L,∀k

f ( ω
(k)
t+L, y

(k)
1:t+L )

subject to
(searcher constraints) xt = x̄t , xτ+1 = Axxτ + Bxuτ , ‖Sxτ ‖ ≤ S̄ , ‖uτ ‖ ≤ Ū

(target posterior at time t) {ω(k)t , y
(k)
1:t }Kk=1 = {ω̄(k)t , ȳ

(k)
1:t }Kk=1

(target posterior evolution) {ω(k)
τ+1, y

(k)
1:τ+1}Kk=1 = B({ω(k)τ , y

(k)
1:τ }Kk=1, z

0
τ )

(measurements) z0
τ = (i, τ, 0) if ‖Pxτ − si‖ ≤ rc
∀τ = t, . . . , t + L , ∀i = 1, . . . , N

(14.32)
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The only difference between (14.32) and (14.30) is that we substituted the posterior
P1:τ with its sample-based parametrization {ω(k)τ , y

(k)
1:τ }Kk=1, which is now part of

our optimization variables; with slight abuse of notation we kept the same symbols
for the objective function f (·) and for the smoother B(·, ·), while these functions
will be implemented in a different way when using the sample-based approximation.

Our goal in this section is to reformulate the objective function f (·) as a convex
function, and the Bayesian smoother B(·, ·) and the “if” statement as convex
constraints. Since all other constraints in (14.32) are already convex, this would
make our search problem a convex program, which can be solved globally; the price
to pay for convexity is that our reformulation requires the introduction of binary
variables.

Bayesian recursion as a convex constraint In our sample-based approximation,
the Bayesian smoother B(·, ·) leads to a simple constraint on the evolution of the
weights in the particle filter.

We can write explicitly the Bayesian recursion for our particle filter as [68, §4.2]
(for all samples k = 1, . . . , K):

{
y
(k)
1:τ+1 = Ay

(k)
1:τ + w̄τ (particle prediction)

ω
(k)
τ+1 = ω

(k)
τ P

(
z0
τ |y(k)1:τ

)
(weight update)

(14.33)

where w̄t is a realization of the random noisewt ∼ N (0,�w), while P
(
z0
τ |y(k)1:τ

)
is

the likelihood of the measurement z0
τ given the k-th particle trajectory y(k)1:τ . Note that

if no measurement is acquired (i.e., when the searcher cannot interrogate a sensor),
the weights remain unchanged:

ω
(k)
τ+1 = ω(k)τ k = 1, . . . , K (14.34)

Before substituting the Bayesian smoother (14.33), in (14.32), we note that after
sampling the realization of the noise w̄τ , Eq. (14.33) uniquely defines the future
evolution of the particles y(k)1:τ for all τ = t + 1, . . . , t + L. Therefore, we can pre-

compute the trajectories y(k)1:τ and the measurement likelihood P

(
z0
τ |y(k)1:τ

)
before-

hand; in particular, for each sensor i and for each sample k, we precompute the
likelihood of receiving a “no detection” from sensor i, by evaluating the likelihood
function (14.23) at y(k)1:τ . Let us use the shorthand p(k)i for the resulting likelihoods:

p
(k)
iτ = P

(
z0
τ |y(k)1:τ

)
(14.35)
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Therefore, we can now rewrite (14.32) as:

min
xt ,...,xt+L,ut ,...,ut+L,

ω
(k)
t ,...,ω

(k)
t+L,y

(k)
1:t ,...,y

(k)
1:t+L,∀k

f ( ω
(k)
t+L, y

(k)
1:t+L )

subject to
(searcher constraints) xt = x̄t , xτ+1 = Axxτ + Bxuτ , ‖Sxτ ‖ ≤ S̄ , ‖uτ ‖ ≤ Ū

(target posterior at time t) {ω(k)t , y
(k)
1:t }Kk=1 = {ω̄(k)t , ȳ

(k)
1:t }Kk=1

(target posterior evolution) y(k)1:τ+1 = Ay(k)1:τ + w̄t
ω
(k)
τ+1 = ω(k)τ p

(k)
iτ

if ‖Pxτ−si‖≤rc
ω
(k)
τ+1 = ω(k)τ if ‖Pxτ−si‖≥rc
∀τ=t,...,t+L , i=1,...,N, , k=1,...,K

(14.36)

Note that the “if” statements allow applying a different weight update depending
on whether or not we got a measurement from sensor i, according to (14.33)
and (14.34).

As remarked above, the evolution of y(k)1:τ for all τ = t + 1, . . . , t +L is uniquely
defined (i.e., we have no way of changing it using our control actions), hence we can
safely remove y(k)1:τ from the optimization, and pre-compute the terminal state y(k)1:t+L
which appears in the objective; let us call this terminal state as ȳ(k)1:t+L to denote that

it is known and let us drop the constraints related to y(k)1:τ from (14.36):

min
xt ,...,xt+L,ut ,...,ut+L,

ω
(k)
t ,...,ω

(k)
t+L

f ( ω
(k)
t+L, ȳ

(k)
1:t+L )

subject to
(searcher constraints) xt = x̄t , xτ+1 = Axxτ + Bxuτ , ‖Sxτ‖ ≤ S̄ , ‖uτ‖ ≤ Ū
(weights at time t) ω(k)t = ω̄(k)t ,

(weights evolution) ω(k)τ+1 = ω(k)τ p
(k)
iτ

if ‖Pxτ−si‖≤rc
ω
(k)
τ+1 = ω(k)τ if ‖Pxτ−si‖≥rc

∀τ=t,...,t+L , i=1,...,N, , k=1,...,K

(14.37)

So far, by using a sample-based approximation, we rephrased the original prob-
lem (14.30), including infinite dimensional pdfs, into one with simpler constraints,
in which the action of the searcher on the evolution of the target posterior is captured
by the weights associated to each sample.

Uncertainty minimization as a convex objective In this section we provide a
more explicit expression for the uncertainty metric f (·) in the objective of (14.37).
In particular, we select f (·) to be the trace of the covariance of the posterior of the
target position at the end of the horizon. Since we approximated our posterior using
a weighted set of samples, the resulting sample covariance (remembering that, for
any τ ∈ {1 . . . , t}, Uτ is a matrix that extracts the position at time τ from the target
state) is:



14 Aided Optimal Search 315

cov(Ut+Ly1:t+L) = Ut+Lcov(y1:t+L)UT
t+L =

K∑

k=1

ω
(k)
t+L(Ut+Lȳ

(k)
1:t+L−Ut+Lμ1:t+L)(Ut+Lȳ(k)1:t+L−Ut+Lμ1:t+L)T

where μ1:t+L = ∑K
k=1 ω

(k)
t+Lȳ

(k)
1:t+L is the sample mean. The trace of the sample

covariance is:

tr

(
K∑

k=1

ω
(k)
t+L(Ut+Lȳ

(k)
1:t+L−Ut+Lμ1:t+L)(Ut+Lȳ(k)1:t+L−Ut+Lμ1:t+L)T

)
=

K∑

k=1

ω
(k)
t+L‖Ut+Lȳ(k)1:t+L−Ut+Lμ1:t+L‖2

(14.38)

The function in (14.38) is not convex in ω(k)t+L since also μ1:t+L depends on the
weights at the end of the horizon. To avoid this nonconvexity, we compute the
sample mean using the initial sample weights ω̄(k)t , rather then the ones at time
t + L:

μ̄1:t+L =
K∑

k=1

ω̄
(k)
t ȳ

(k)
1:t+L (14.39)

This approximation is motivated by computational considerations (i.e., it leads to a
convex objective), and it is empirically shown to lead to effective search policies.
Moreover, it has the advantage that the square in (14.38) can be precomputed before
the optimization. To simplify notation, we define the following scalars, which are
computed before planning:

dk
.= ‖Ut+Lȳ(k)1:t+L − Ut+Lμ̄1:t+L‖2 k = 1, . . . , K. (14.40)

Roughly speaking, dk represents the squared distance between the position of the
k-th sample trajectory at time t + L and the sample mean. Using the expression of
the trace of the covariance (14.38) and the definition of dk in (14.40), our objective
function becomes:

f ( ω
(k)
t+L, ȳ

(k)
1:t+L ) =

K∑

k=1

ω
(k)
t+Ldk (14.41)

which is a linear function of the unknown weights.
Substituting the objective (14.41) in (14.37) and applying the change of variables

v
(k)
τ = log(ω(k)τ ), we get:
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min
xt ,...,xt+L,ut ,...,ut+L,

v
(k)
t ,...,v

(k)
t+L

∑K
k=1 exp(v(k)t+L)dk

subject to
(searcher constraints) xt = x̄t , xτ+1 = Axxτ + Bxuτ , ‖Sxτ‖ ≤ S̄ , ‖uτ‖ ≤ Ū
(weights at time t) v(k)t = log ω̄(k)t
(weights evolution) v(k)τ+1 = v(k)τ + logp(k)iτ if ‖Pxτ−si‖≤rc

v
(k)
τ+1 = v(k)τ if ‖Pxτ−si‖≥rc
∀τ=t,...,t+L , i=1,...,N, , k=1,...,K

(14.42)

which is now a convex problem, except the “if” conditions which appear in
the constraints. Recall that x̄t , dk , ω̄

(k)
t , p(k)iτ , are known quantities, while the

optimization variables are now the future searcher control and state, and the
logarithm of the weights, i.e., v(k)t , . . . , v

(k)
t+L.

Writing the “if” statements using binary variables So far, we showed how
to compute our search strategy by solving the optimization problem (14.42).
Problem (14.42) is convex, although it includes “if” statements which depend on
some of the optimization variables (i.e., the searcher position Pxτ ). These kind of
constraints cannot be directly fed to a standard solver, hence in this section we show
how to write them in a more explicit form by using binary variables.

Let us introduce a set of integer variables biτ , such that, if biτ = 1, then the
searcher is within communication radius from sensor i at time τ , or biτ = 0
otherwise. Using biτ , we can rewrite the two constraints which include the “if”
statements in (14.42) using a single equality constraint:

v
(k)
τ+1 = v(k)τ + biτ logp(k)iτ (14.43)

When biτ = 1 we have a measurement from sensor i, hence we apply the update
v
(k)
τ+1 = v(k)τ + logp(k)iτ , otherwise Eq. (14.43) reduces to v(k)τ+1 = v(k)τ .

Now we only remain to enforce that biτ = 1 if and only if the searcher is within
a distance rc from sensor i. We enforce this condition by adding the following
constraint to our optimization problem:

‖Pxτ − si‖ ≤ rc + (1− biτ )M (14.44)

where M ∈ R is a large constant. In (14.44), when biτ = 1 the constraint becomes
‖Pxτ − si‖ ≤ rc, while for biτ = 0 the constraint (14.44) vanishes, since the
right-hand side is made arbitrarily large by M . Therefore, whenever ‖Pxτ − si‖ ≥
rc, the only way to satisfy the constraint (14.44) is to set biτ = 0: this is exactly
the desired behavior in which biτ must be zero whenever ‖Pxτ − si‖ ≥ rc, i.e.,
when the searcher position is further than rc from the sensor. Conversely, whenever
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‖Pxτ − si‖ ≤ rc the optimization encourages biτ to be one, since this yields a
smaller objective.2

We are now ready to provide the final statement of our finite-horizon search
strategy. By substituting the condition (14.43) in place of the two constraints with
the “if” statement in (14.42), and by adding the extra constraint (14.44), we get:

min
xt ,...,xt+L,ut ,...,ut+L,

v
(k)
t ,...,v

(k)
t+L

biτ ,i=1,...,N,τ=1,...,L

∑K
k=1 exp(v(k)t+L)dk

subject to
(searcher constraints) xt = x̄t , xτ+1 = Axxτ + Bxuτ , ‖Sxτ‖ ≤ S̄ , ‖uτ‖ ≤ Ū
(weights at time t) v(k)t = log ω̄(k)t
(weights evolution) v(k)τ+1 = v(k)τ + biτ logp(k)iτ

‖Pxτ − si‖ ≤ rc + (1− biτ )M
∀τ=t,...,t+L , i=1,...,N, , k=1,...,K

(14.45)

Problem (14.45) is a mixed-integer convex problem, with L · N binary variables,
where N is the number of sensors and L is the number of look-ahead steps in the
horizon. The following remark provides a more intuitive explanation of the search
strategy resulting from (14.45).

Remark 2 (Intuitive Explanation of Problem (14.45)) In problem (14.45) the target
trajectory posterior is represented as a set of weighted samples. The objective
function in (14.45) rewards the minimization of the weights of the samples. In
particular, the objective rewards minimizing weights of samples having large dk .
From (14.40), dk is essentially the (squared) distance of the terminal position of
the particle from the mean. Therefore, the objective tries to minimize the weight of
samples that fall far from the mean, hence trying to reduce the spread of the target
position posterior. In order to reduce the weight of a sample k, the optimization
encourages many binary variables biτ to be one (this will decrease v(k)τ+1, since

p
(k)
iτ ≤ 1 and logp(k)iτ ≤ 0). However, biτ = 1 which can only happen if the searcher

is close enough to sensor i. Therefore, problem (14.45) rewards the searcher to pass
in proximity of the sensors, while respecting the motion constraints of the searcher.

Further Computational Remarks So far we have been agnostic about the type of
norms used to measure distances. While an intuitive choice if the Euclidean norm,
computational reasons suggest otherwise. If we use the �1 or the �∞ norm, all the
constraints in (14.45) become linear constraints. Moreover, if we use the first-order
expansion exp(v(k)t+L) ≈ const + v

(k)
t+L, then also the objective becomes a linear

function. Using these two linear approximations, we rephrase (14.45) as a mixed-
integer linear program (MILP), for which fast specialized solvers exist.

2When biτ = 1, the weight update is v(k)τ+1 = v(k)τ + logp(k)iτ ≤ v(k)τ (recall: p(k)iτ ≤ 1 hence logp(k)iτ
is negative), leading to a smaller objective.
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14.7 Numerical Experiments

The numerical results in this section show that the proposed approach can effectively
reduce the uncertainty about the target location and has a higher success rate
in finding the target, compared to a greedy strategy. The section is organized as
follows. Section 14.7.1 describes the simulation scenario. Section 14.7.2 provides
implementation details for the tested algorithms. Section 14.7.3 describes a typical
simulation outcome, that highlights the key features of the proposed approach,
compared to a greedy strategy. Section 14.7.4 reports the results of a Monte Carlo
analysis, providing statistics regarding the performance of the proposed approach
for different motion profiles of the target (i.e., changing maximum speed, agility)
and increasing uncertainty on the initial target state.

14.7.1 The Scenario

The scenario in which the search takes place is a square region R of size 500 m ×
500 m. Unattended ground sensors are uniformly spaced within R. We consider a
scenario with 100 sensors, each one having sensing radius r = 20 m (Fig. 14.4).

The searcher successfully accomplishes its task if it is able to localize the target
before it escapes the region R and before a maximum time T̄ is elapsed (we set
T̄ = 100). A target is localized when the uncertainty on its current position is below
a given threshold. In particular, the current position covariance �̄ can be computed
from our Gaussian Mixture model M ({ηt,j , �t,j , αt,j }mj=1) as:

�̄ =
m∑

j=1

αt,j

(
Ut�

−1
t,j U

−1
t + Ut(μt,j − μ̄)(μt,j − μ̄)TUT

t

)
(14.46)

Fig. 14.4 Test scenario: the target (in red) moves in a square region R. The region contains
uniformly spaced ground sensors (cyan dots); the sensing radius of each sensor is shown as a
circle. The position of the searcher (in green) is randomly drawn within R; the searcher has
an initial distribution on the target position, shown as a background color (light yellow denotes
high probability, blue is low probability). (a) unimodal initial distribution, (b) multimodal initial
distribution.
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where Ut ∈ R
2×4t is the matrix that extracts the position at time t from the state,

as defined in (14.20), μt,j = �−1
t,j ηt,j is the mean of each mixture component, and

μ̄ = ∑m
j=1 αt,jμt,j is the mean of the GMM. Note that we never invert �t,j : we

rather solve sparse (tridiagonal) linear systems, which makes the cost of computing
the covariance (14.46) negligible. Therefore the target is said to be localized if the
marginal position standard deviation (i.e., the square root of the diagonal entries of
�̄) falls below a threshold that we set to be equal to half of the sensing radius of the
sensors:

σ̄
.=
√

max(diag
(
�̄
)
) ≤ r/2 (14.47)

The searcher dynamics is described by a double integrator, with maximum speed
bounded by S̄ = 10m/s and maximum acceleration bounded by Ū = 5 m/s2. The
searcher starts with zero velocity and its initial position is randomly drawn within R.
The searcher is provided with an initial distribution over the target state (Fig. 14.4).
The initial target posterior is a Gaussian with zero mean and information matrix
�1 (more details below). The communication radius rc (the distance at which the
searcher can interrogate a sensor) is set to rc = 20 m.

The target initial state is drawn according to the initial distribution y1 ∼
N (0,�1). In particular, we set �1 = blkdiag((σ 1

p)
2I2, (σ

1
v )

2I2), where σ 1
p and σ 1

v

are the standard deviations of the initial target position and velocity, respectively.
The nominal values for these parameters are:

σ 1
p = 20 m , σ 1

v = κv
S̄

3
(14.48)

where κv is a constant parameter, called the speed factor. The condition σ 1
v = κvS̄/3

guarantees that with high probability (within 3σ from the mean), the velocity of
the target is smaller than κv times the velocity of the pursuer. Since the capture
must happen before the target escapes the region R, considering high target speed
(comparable to the one of the searcher, i.e., κv = 1) makes the problem extremely
challenging.3 The target follows the motion model (14.6) with:

A =
[

I2 I2�t

0 I2

]
(14.49)

where �t is a time step (conventionally set to 1). In (14.6), wt ∼ N (0,�w) and
�w = blkdiag((σwp )

2I2, (σ
w
v )

2I2). The matrix �w is related to the “agility” of the
target: when the entries of this matrix are small, the target movesat constant speed,

3Think about the extreme case in which the target and the searcher have the same speed: then if
the target moves in the opposite direction with respect to the searcher position, no search strategy
can make the searcher reach the target before it escapes the region R.



320 L. Carlone et al.

Fig. 14.5 Target motion profiles: examples of target trajectories obtained from the motion
model (14.6) for different speed (κv) and agility factors (κa). Each figure shows 10 realizations
of the (random) target trajectory, starting from the center of the scenario. (a) Low speed, Low
agility κv = 0.3, κa = 0.01. (b) High speed, Low agility κv = 1, κa = 0.01. (c) Low speed, High
agility κv = 0.3, κa = 0.2

while when the entries are large, the target applies aggressive (random) accelerations
at each time step. We set

σwp = 0.1 m , σwv = κa σ 1
v (14.50)

where κv is a constant parameter, called the agility factor.
A visual understanding of the impact of the parameters κv and κa on the

target trajectory is provided by Fig. 14.5. Figure 14.5 shows 10 realizations of the
(random) target trajectory for different values of these parameters; for the sake of
visualization all trajectories start at the origin and are simulated for 100 time steps.
Fig. 14.5b shows a scenario in which the speed factor κv is large and the agility
factor κa is small; in this case, the target tends to move quickly (due to the large
initial speed) along straight trajectories (a small κa implies that the target only makes
small adjustments at each time step). On the other hand, Fig. 14.5c shows a scenario
in which κv is small, and κa is large; in this case the trajectory can be very irregular,
with sudden changes in direction. We note that in both cases most of the trajectories
escape the scenario within the first 100 time steps (we only display the portion of
trajectory within the region R), and for this reason we set the maximum time to be
T̄ = 100. In this section we consider κv = 0.3 and κa = 0.01, while we investigate
the effect of these parameters on the search results in Sect. 14.7.4.

14.7.2 The Algorithms: Implementation Details

Proposed approach The GMM-based estimation of Sect. 14.5 is implemented in
Matlab, which can efficiently solve sparse linear systems. We set m = 104 as
maximum number of mixture components in the GMM. After this quota is reached,
the estimator does not accept “no detection” measurements (i.e., the belief is
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predicted but not updated). We also prune mixture components with weight smaller
than 10−5. From this distribution, we draw K = 500 samples to be used in the
MIP (14.45). The linear version of the MIP (14.45) is solved using IBM CPLEX
and returns a set of controls for the next L lookahead steps. We use a time horizon
of L = 40. After the search strategy is computed, the robot follows the planned
trajectory until a detection occurs (the plan remains valid until we get a detection,
see Sect. 14.6.2). When a detection occurs, the plan is recomputed. We impose an
upper bound on the central processor unit (CPU) time required by the MIP: after
300 s, if the MIP has not returned an optimal solution we interrupt the optimization
and use the current solution.

Greedy approach We benchmark the proposed approach against a greedy algo-
rithm that tries to reach the most likely position of the target. The estimation part of
the greedy approach is still based on the GMM model, with minor changes discussed
later in this section. From the GMM, we compute the maximum likelihood target
position by discretizing the environment in 10 × 10 m cells and by evaluating the
GMM at the center of each cell. The cell position attaining the maximum probability
value is chosen to be the maximum likelihood estimate; we denote the maximum
likelihood estimate with xG . In order to plan a path that reaches xG as quickly as
possible, we solve the following convex program:

min
xt ,...,xt+L,ut ,...,ut+L

∑t+L
τ=t ‖xτ − xG ‖

subject to
(searcher constraints) xt = x̄t , xτ+1 = Axxτ + Bxuτ , ‖Sxτ‖ ≤ S̄ , ‖uτ‖ ≤ Ū

∀τ=t,...,t+L
(14.51)

which computes a path over an horizon L that minimizes the distance from the
goal location ‖xτ − xG ‖, while satisfying the motion constraints for the searcher.
Also in this case we choose L = 40 and we set the searcher dynamics and the
speed and acceleration bounds as discussed in the previous section. Since the cost
of solving (14.51) is negligible, we apply the greedy approach in a Model Predictive
Control fashion: at each step we replan the optimal trajectory and we only apply the
first control action.

From the estimation standpoint, a major difference between the proposed
approach and the greedy one lies in the reduction scheme we use for the GMM.
In our approach, we bound the number of GMM components by rejecting “no
detection” measurements; this strategy, however, would not work for the greedy
strategy: consider the case in which the searcher already reached the maximum
GMM components quota (104 components). Then, if the estimator is not allowed
to include new measurements, the maximum likelihood estimate xG tends to remain
in the same location, leading the searcher to be stuck at xG , even when the target
was not found at that location. For this reason, in the greedy approach we use a
sampling-based GMM reduction, as described in Sect. 14.5. In particular, we apply
this reduction scheme after the quota of m = 104 mixture components is reached.
After sampling this large mixture, we fit a smaller one with 10 components. Also in
this case, we prune components with weight smaller than 10−5.
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Fig. 14.6 Snapshots taken during different phases of the search. (a1) trajectory planned by the
proposed approach (yellow line) at the beginning of the search. (b1) trajectory executed till time
t = 30 (green), trajectory still to be executed (yellow), and posterior distribution. (c1) first
detection at time t = 37 and newly planned trajectory by the proposed approach (yellow line).
(d1) trajectory executed till time t = 51, right before the searcher intersects the target. (a2)–(d2)
trajectory executed by the greedy approach (green line) and peak of the posterior (black square)

14.7.3 A Typical Result

A typical outcome of our search strategy is reported in Fig. 14.6a1–d1. The figures
show the initial position of the searcher (green circle, on the top right), the posterior
over the current target position (figure background color), and the planned trajectory
(in yellow). Figure 14.6a1 shows the trajectory planned by the proposed approach at
the start of the search. Figure 14.6b1 shows the execution of the planned trajectory
till time t = 30 (green), while the trajectory still to be executed if shown in yellow.
Figure 14.6c1 shows the change in the target posterior after the first detection
(at time t = 37) and the newly planned trajectory (yellow line). Figure 14.6d1
trajectory executed till time t = 51, right before the searcher intersects the target.
A natural behavior emerges from our MIP search: the plan leads the searcher to
circle around the peak of the distribution; since the searcher does not know in which
direction the target is heading, the smartest strategy is to circle around the initial
target location, and interrogate sensors in that area, so to gain intelligence on which
direction the target took. Note that the searcher cleverly prefers to follow a wavy
path in order to visit as many sensors as possible.

For comparison, we report the initial outcome of the execution of the greedy
strategy in Fig. 14.6a2–d2; each figure reports the peak of the position posterior
(maximum likelihood estimate) as a black square. The greedy searcher directly
points towards the peak of the posterior, and, in doing so, it spreads the probability



14 Aided Optimal Search 323

0
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 600 10 20 30 40 50 60

0.5

1

1.5

(b) nr. of GMM components(a) Estimation [s] (c) Sampling time [s] (d) Planning time [s]

0

1000

2000

3000

4000

0

0.1

0.2

0.3

0.4

0

100

200

300

400

Fig. 14.7 Timing results. The x-axis reports the time steps of the simulation, the y-axis reports:
(a) time required to perform recursive estimation (GMM prediction and update) at each time step.
(b) number of GMM components at each time step. (c) time required to sample the GMM to
produce the samples used in the MIP formulation (14.45). (d) time required to solve the MIP
program (14.45) using CPLEX. In all plots, time is expressed in seconds

distribution, increasing the entropy of the resulting posterior (Fig. 14.6b2). After
that, the greedy searcher points towards the next peak and again, by visiting
the peak, it “splits” the posterior (Fig. 14.6c2); the overall results of the greedy
strategy is the creation of multiple distant trajectory hypotheses, which soon become
extremely hard to follow for the searcher. The advantage of the proposed approach
is twofold: first, it is aware of the sensors, hence leading the searcher to visit as
many sensors as possible along the path; second, it considers the posterior over the
entire trajectory of the target; on the other hand, the greedy approach only uses the
posterior about the latest target position.

We report the timing for each aspect of the proposed approach in Fig. 14.7
for a typical execution (more statistics are reported in the next section). Our
estimation model is very efficient as shown in Fig. 14.7a: our non-optimized Matlab
implementation can perform estimation over a GMM with thousands mixture
components in around a second; the corresponding number of components is given
in Fig. 14.7b. Figure 14.7c shows the time required to sample the GMM to produce
the trajectory hypotheses used in the MIP (14.45). The sampling time is usually
small since sampling can be parallelized (parfor loop in Matlab) and only requires
sparse matrix-vector operations thanks to the sparsity of our GMM model. Finally,
Fig. 14.7d shows the time required to solve the MIP (14.45); this is the dominant cost
of our approach. The two peaks correspond to the two times the searcher solves the
MIP: during the execution of the plan no further computation is needed. Usually the
first peak is smaller, since the target trajectory hypotheses only cross few sensors and
the optimizer quickly determines that there is no advantage in visiting the remaining
sensors (hence it sets the corresponding binary variables to zero). While planning
is computational intensive, it has to be executed only occasionally and usually 2–4
optimizations suffice to localize the target.



324 L. Carlone et al.

0 100 200 300 0 100 200 300
Target Position Uncertainty

0

10

20

nr
. T

es
ts

Target Position Uncertainty

0

10

20

nr
. T

es
ts

0

0.5

1

(a) Nominal results (b) proposed (c) greedy

Lo
ca

liz
at

io
n 

re
su

lts

proposed
greedy

Loc Esc Max

Fig. 14.8 (a) Percentage of runs in which the target was localized (“Loc” bar), escaped the region
R (“Esc” bar), or was not found before the time limit (“Max” bar). The bar plot compares the
proposed approach (blue) against the greedy approach (red). Histograms of the position uncertainty
of the target at the end of the test for (b) the proposed approach and (c) the greedy approach

14.7.4 Monte Carlo Analysis

In this section, we provide quantitative results to assess the performance of the pro-
posed approach in large-scale simulated experiments. We compute statistics about
timing and performance of our approach in scenarios of increasing complexity.

Success rates and timing We consider the simulation setup of Sect. 14.7.1, with
nominal values for the speed and agility factors (κv = 0.3, κa = 0.01). We run 30
Monte Carlo simulations and in each simulation we record whether: (i) the target
was localized (label: Loc), (ii) it escaped the region R (label: Esc), or (iii) the
maximum time T̄ elapsed (label: Max). We also consider the target localized when it
is within the sensing radius of the searcher. Figure 14.8a shows the histogram of the
simulation outcomes comparing the proposed approach against the greedy search.
In nominal conditions, the proposed approach can correctly localize the target in
more than 90% of the tests, while the greedy approach only localizes the target
in 60% of the runs. In particular, in all tests the proposed approach was able to
localize the target in the allotted time. In few runs the target was able to escape: we
are considering challenging scenarios with quickly moving targets and unfortunate
extractions of the initial target state can result in large target speeds. Figure 14.8b,
c give further insights on the performance of the two approaches, showing the
histogram of the target uncertainty σ̄ at the end of the runs. The histogram Fig. 14.8b
confirms that in most tests, the proposed approach is able to correctly reduce the
uncertainty on the target location. On the other hand, Fig. 14.8c shows that in many
runs the greedy search leads to very poor estimation of the target location. The mean
estimation time, averaged over the 30 runs, is around 0.22 s, while the maximum
estimation time is 12.40 s (with 1.46 · 104 mixture components); average planning
time is 39.51 s while the maximum matches our upper bound (300 s).

Increasing target speed In this section, we consider more challenging scenarios,
with increasing target speed, showing that the performance of the proposed approach
degrades gracefully when the complexity of the search instance increases; on the



14 Aided Optimal Search 325

0

Low Medium High Low Medium High

100

200

300

400

(a) target speed (b) target agility (c) initial target uncertainty

T
ar

ge
t U

nc
er

ta
in

ty

Greedy
Proposed

0

100

200

300

T
ar

ge
t U

nc
er

ta
in

ty

Greedy
Proposed

Low Medium High

0

50

100

150

200

250

T
ar

ge
t U

nc
er

ta
in

ty

Greedy
Proposed

Fig. 14.9 Statistics about the terminal target position uncertainty, comparing the proposed
approach against a greedy search strategy. Statistics are computed over 30 Monte Carlo runs. The
figures provide statistics for increasing (a) target speed, (b) target agility, and (c) initial uncertainty
about the target state

other hand, we will see that the performance of a greedy search quickly becomes
unacceptable. As mentioned in Sect. 14.7.1 the target speed is controlled by the
speed factor κv . Figure 14.9a shows the box plot of the target uncertainty σ̄ (at the
end of the runs) for increasing target speed (Low: κv = 1

3 , Medium: κv = 1
2 , High:

κv = 1). In the box plot, the central line indicates the median, and the bottom and
top edges of the box indicate the 25th and 75th percentiles, respectively. The size of
the box produced by the proposed approach remains small, confirming that in most
tests our search strategy is able to localize the target. On the other hand, the box of
the target uncertainty quickly increases with increasing target speed when using a
greedy search.

Increasing target agility As mentioned in Sect. 14.7.1 the target agility is con-
trolled by the agility factor κa . Figure 14.9b shows the box plot of the target
uncertainty σ̄ (at the end of the runs) for increasing target agility (Low: κa = 0.03,
Medium: κa = 0.1, High: κa = 0.2). The size of the box produced by the proposed
approach increases gracefully for increasing target agility, confirming that in most
tests our search strategy is able to localize the target. On the other hand, the box of
the target uncertainty quickly increases with increasing target agility when using a
greedy search.

Increasing target initial uncertainty We present a final set of tests in which we
increase the complexity of the search by making the initial distribution over the
target location multimodal, as shown in Fig. 14.4b. Figure 14.9c shows the box
plot of the target uncertainty σ̄ (at the end of the runs) for increasing initial target
uncertainty (Low: 1 mode, Medium: 2 modes, High: 3 modes). To generate the
initial target distribution we set one mode at the center of the scenario (as done
in the previous tests): from this mode we generate the initial state of the target.
Then we add further modes having mean position uniformly drawn in the square
R. The searcher only has access to the GMM being the sum of all these modes:
this corrresponds to the case in which the prior knowledge about the target position
is unreliable and includes multiple (possibly inaccurate) hypotheses. The median
target uncertainty remains fairly constant for the proposed approach, confirming that
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in most of the runs the target is localized; the size of the box increases gracefully
with the number of modes in the initial target distribution. On the other hand, the
median target uncertainty quickly increases when using the greedy approach.

14.8 Conclusion

We considered an aided optimal search problem in which a searcher has to find a
target moving in a 2D field scattered with unattended ground sensors. The searcher
is “blind” in the sense that it cannot directly detect the target, and it has to leverage
opportunistic information gathered by the UGS in its communication range. Each
UGS records a binary measurement which indicates whether the target passed in its
neighborhood or not; moreover, the UGS records a timestamp at which the last
detection occurred. This setup is challenging for two reasons. First, the sensors
possibly provide information about past states of the target, hence requiring the
searcher to reason over the entire trajectory of the target rather than on its current
location. Computationally, the estimation of the target trajectory is an inference
problem over a large continuous state space. The second challenge is connected
to the fact that the searcher can only interrogate sensors within its communication
range. Therefore, the searcher has to devise effective motion policies that are
opportunistic in visiting sensors which are informative to estimate the current
location of the target.

We adopt a Dynamic Data-Driven Applications Systems (DDDAS) paradigm, in
which the data collected by the searcher is used to update the belief on the trajectory
of the target, and the searcher actively steers the measurement process to improve its
knowledge about the location of the target. More specifically, we propose two main
contributions that address these two challenges. The first contribution is a sparse
Gaussian Mixture Model to perform optimal Bayesian estimation over the trajectory
of the target. We show that parameterizing the GMM in information (inverse
covariance) form leads to a sparse GMM, enabling estimation over GMM with
thousands of mixture components in a fraction of a second. The second contribution
regards decision making. We propose a finite-horizon planning approach that
computes the optimal searcher trajectory that minimizes the uncertainty about the
target location. By using a sampling-based approximation, this search strategy leads
to a mixed-integer convex program, which can be solved in reasonable time in
small and medium instances. We validate the proposed contributions in extensive
simulations including Monte Carlo runs testing the performance of our approach
against a greedy search for increasing target speed and agility, and increasing
uncertainty about the initial target location.

This work opens different avenues for future work. From the theoretical stand-
point, it is interesting to devise sufficient conditions (e.g., maximum target speed
or agility) to guarantee that the target is localized, or to derive upper bounds on the
optimal search time. From the algorithmic standpoint, it is interesting to substitute
the MIP-based search with possibly suboptimal but more efficient search techniques.
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Finally, another interesting avenue for future work includes testing the proposed
approach in realistic search problems using a setup similar to the one described
in [2].

A Prediction Equations

In this section we derive the equations for the prediction phase of our incremental
smoother. We start with a lemma, which will be useful to simplify the derivation
later on.

Lemma 1 (From measurement to state space) Given a multivariate Gaussian
N (Ax; η,�), with A ∈ R

d×d and full rank, then the multivariate Gaussian can
be written equivalently as:

N (Ax; η,�) = N (x;ATη,AT�A) (14.52)

Proof. We prove the claim by inspection. We write explicitly the right-hand side
of (14.52) as:

N (x;ATη,AT�A) = k exp

{
− 1

2 [x − (AT�A)−1ATη]T×

(AT�A)[x − (AT�A)−1ATη]
}
=

k exp

{
− 1

2

[
xT(AT�A)x − 2ηTAx + ηTA(AT�A)−1ATη

]}
(14.53)

From the fact that A is square and full rank (hence invertible), the previous
simplifies to:

k exp

{
− 1

2

[
(Ax)T�(Ax)− 2ηTAx + ηT�−1η

]}
=

k exp

{
− 1

2

[
(Ax −�−1η)T�(Ax −�−1η)

]}
= N (Ax; η,�)

(14.54)

which proves the claim. "#
We can now focus on the derivation of the prediction equations. Let us start from

the general prediction Eq. (14.14):

P (y1:t+1|Z1:t ) = P (yt+1|yt )P (y1:t |Z1:t ) (14.55)

Substituting our choice of prior probability (14.15) and transition probability (14.7),
we get:



328 L. Carlone et al.

P (y1:t+1|Z1:t ) = N (yt+1 − Ayt ; 0,�w)M (y1:t ; {ηt,j , �t,j , αt,j }mj=1) =
N (yt+1 − Ayt ; 0,�w)

∑m
j=1 αt,jN (y1:t ; ηt,j , �t,j ) =∑m

j=1 αt,jN (yt+1 − Ayt ; 0,�w)N (y1:t ; ηt,j , �t,j )
(14.56)

Now we use the definition of S1:t and St :t+1, given in (14.18), which we substitute
in (14.56):

P (y1:t+1|Z1:t ) =∑m
j=1 αt,jN (St :t+1y1:t+1; 0,�w)N (S1:t y1:t+1; ηt,j , �t,j )

(14.57)
We can develop each summand as follows:

N (St :t+1y1:t+1; 0,�w)N (S1:t y1:t+1; ηt,j , �t,j ) =
[det(�w) det(�t,j )]

1
2

(2π)
4(t+1)

2
exp

{
− 1

2

([
S1:t
St :t+1

]
y1:t+1 −

[
�−1
t,j ηt,j

0

])T

l×
[
�t,j 0

0 �w

]([
S1:t
St :t+1

]
y1:t+1 −

[
�−1
t,j ηt,j

0

])}
=

N

([
S1:t
St :t+1

]
y1:t+1;

[
ηt,j

0

]
,

[
�t,j 0

0 �w

])

(14.58)

Noting that the matrix

[
S1:t
St :t+1

]
is square and full rank, we apply Lemma 1 and

simplify the previous expression as:

N (St :t+1y1:t+1; 0,�w)N (S1:t y1:t+1; ηt,j , �t,j ) =
N (y1:t+1; ST

1:t ηt,j , ST
1:t�t,j S1:t + ST

t :t+1�t,j St :t+1)
(14.59)

Substituting (14.59) back into (14.57), we obtain:

P (y1:t+1|Z1:t ) =∑m
j=1 αt,jN (y1:t+1; ST

1:t ηt,j , ST
1:t�t,j S1:t + ST

t :t+1�t,j St :t+1)

(14.60)
which coincides with Eqs. (14.16) and (14.17).

B Update Equations

In this section we derive the equations for the update phase of our incremental
smoother. We start with a lemma, which will be useful to simplify the derivation
later on.

Lemma 2 (Update in Information Form) Given two multivariate Gaussians
N (x; η̄, �̄) and N (Ax; ηa,�a), with x ∈ R

d and A ∈ R
da×d (full row rank,



14 Aided Optimal Search 329

da ≤ d), then the following equality holds:

N (Ax; ηa,�a)N (x; η̄, �̄) = κN (x; η̄ + ATηa, �̄+ AT�aA) (14.61)

where κ is a constant independent on x.

Proof. We prove the claim by inspection. We write explicitly the left-hand side
of (14.61) as:

N (Ax; ηa,�a)N (x; η̄, �̄) = det(�̄)
1
2

(2π)
d
2

det(�a)
1
2

(2π)
da
2
×

exp

{
− 1

2

[
(Ax −�−1

a ηa)
T�a(Ax −�−1

a ηa)+ (x − �̄−1η̄)T�̄(x − �̄−1η̄)

]}
=

(developing the squares and introducingκto denote constant factors)

κ × exp

{
− 1

2

[
xT(�̄+AT�aA)x−2xT(η̄+ATηa)+ ηT

a�
−1
a ηa + η̄T�̄−1η̄

]}
=

(including constants at the exponent inκ)

κ × exp

{
− 1

2

[
xT(�̄+ AT�aA)x − 2xT(η̄ + ATηa)

]}
=

(reincluding more convenient constants at the exponent)

κ × exp

{
− 1

2

[
xT(�̄+ AT�aA)x − 2xT(η̄ + ATηa)+

(η̄ + ATηa)
T(�̄+ AT�aA)

−1(η̄ + ATηa)

]}
=

(isolating the Gaussian term, up to constant)
κ ×N (x; η̄ + ATηa, �̄+ AT�aA)

(14.62)
A simple way to explicitly compute the constant κ is to observe that:

∫
N (Ax; ηa,�a)N (x; η̄, �̄)dx = (14.63)

∫
κ ×N (x; η̄ + ATηa, �̄+ AT�aA)dx = κ (14.64)

Hence κ is the result of a convolution of two Gaussian distributions, which can be
computed as [68, page 209]

κ = NP (�
−1
a ηa;A�̄−1η̄, A�̄−1AT +�−1

a ) (14.65)

and this concludes the proof. "#
Detection (bit = 1) Let us start from the general update Eq. (14.19):

P (y1:t+1|Z1:t+1) = P (zt+1|y1:t+1)P (y1:t+1|Z1:t )∫
P (zt+1|y1:t+1)P (y1:t+1|Z1:t ) dy1:t+1

(14.66)
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Let us focus on the term P (zt+1|y1:t+1)P (y1:t+1|Z1:t ). First of all, we rewrite the
measurement likelihood as:

P (bit = 1|y1:t ) = exp

{
−‖p

y
τit
−si‖2

r2

}
=

exp
{
−‖U1:t+1y1:t+1−si‖2

r2

}
= 1

γ
N (U1:t+1y1:t+1 ; sir2 ,

1
r2 )

(14.67)

which stresses the fact that the measurement likelihood can be seen as a “scaled”
multivariate Gaussian, with γ being the normalization factor (the expression of this
term is irrelevant for the subsequent derivation). Let us now substitute the prior
probability (14.16) and the measurement likelihood (14.67) in (14.66):

P(zt+1|y1:t+1)P(y1:t+1|Z1:t )∫
P(zt+1|y1:t+1)P(y1:t+1|Z1:t )dy1:t+1

=
1
γ
N (U1:t+1y1:t+1 ; si

r2
, 1
r2
)
∑m
j=1 ᾱt+1,jN (y1:t+1 ; η̄t+1,j ,�̄t+1,j )

∫ 1
γ
N (U1:t+1y1:t+1 ; si

r2
, 1
r2
)
∑m
j=1 ᾱt+1,jN (y1:t+1 ; η̄t+1,j ,�̄t+1,j )dy1:t+1

=
N (U1:t+1y1:t+1 ; si

r2
, 1
r2
)
∑m
j=1 ᾱt+1,jN (y1:t+1 ; η̄t+1,j ,�̄t+1,j )

∫
N (U1:t+1y1:t+1 ; si

r2
, 1
r2
)
∑m
j=1 ᾱt+1,jN (y1:t+1 ; η̄t+1,j ,�̄t+1,j )dy1:t+1

=
∑m
j=1 ᾱt+1,jN (U1:t+1y1:t+1 ; si

r2
, 1
r2
)N (y1:t+1 ; η̄t+1,j ,�̄t+1,j )

∫ ∑m
j=1 ᾱt+1,jN (U1:t+1y1:t+1 ; si

r2
, 1
r2
)N (y1:t+1 ; η̄t+1,j ,�̄t+1,j )dy1:t+1

which, using Lemma 2, becomes:

∑m
j=1 ᾱt+1,j βt+1,j N (y1:t+1 ; ηt+1,j ,�t+1,j )∫ ∑m

j=1 ᾱt+1,j βt+1,j N (y1:t+1 ; ηt+1,j ,�t+1,j )dy1:t+1
(14.68)

where ηt+1,j and �t+1,j are defined as in (14.25). Observing that the integral of
each Gaussian at the denominator of (14.68) is one, the previous simplifies to

(
ᾱt+1,j βt+1,j∑m
j=1 ᾱt+1,j βt+1,j

)
N (y1:t+1 ; ηt+1,j , �t+1,j ) (14.69)

which matches the expression of (14.25).

No detection (bit = 0) In this case, the measurement likelihood is:

P (bit = 0|y1:t ) = 1− exp

{
−‖p

y
τit
−si‖2

r2

}
= 1− 1

γ
N (U1:t+1y1:t+1 ; sir2 ,

1
r2 )

(14.70)
where γ = 2πr2 (this is the inverse of the normalization factor of the Gaussian).

Let us now substitute the prior probability (14.16) and the measurement likeli-
hood (14.70) in (14.66):
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P(zt+1|y1:t+1)P(y1:t+1|Z1:t )∫
P(zt+1|y1:t+1)P(y1:t+1|Z1:t )dy1:t+1

=
(1− 1

γ
N (U1:t+1y1:t+1 ; si

r2
, 1
r2
))
∑m
j=1 ᾱt+1,jN (y1:t+1 ; η̄t+1,j ,�̄t+1,j )

∫
(1− 1

γ
N (U1:t+1y1:t+1 ; si

r2
, 1
r2
))
∑m
j=1 ᾱt+1,jN (y1:t+1 ; η̄t+1,j ,�̄t+1,j )dy1:t+1

=

(integral of the GMM at the denominator is 1)

(1− 1
γ
N (U1:t+1y1:t+1 ; si

r2
, 1
r2
))
∑m
j=1 ᾱt+1,jN (y1:t+1 ; η̄t+1,j ,�̄t+1,j )

1−∑m
j=1 ᾱt+1,j

1
γ

∫
N (U1:t+1y1:t+1 ; si

r2
, 1
r2
)N (y1:t+1 ; η̄t+1,j ,�̄t+1,j )dy1:t+1

=

(from the definition ofβt+1,j )

(1− 1
γ
N (U1:t+1y1:t+1 ; si

r2
, 1
r2
)
∑m
j=1 ᾱt+1,jN (y1:t+1 ; η̄t+1,j ,�̄t+1,j )

1−∑m
j=1 ᾱt+1,j

1
γ
βt+1,j

=
∑m
j=1 ᾱt+1,jN (y1:t+1 ; η̄t+1,j ,�̄t+1,j )

1−∑m
j=1 ᾱt+1,j

1
γ
βt+1,j

−
∑m
j=1 ᾱt+1,j

1
γ
N (U1:t+1y1:t+1 ; si

r2
, 1
r2
)N (y1:t+1 ; η̄t+1,j ,�̄t+1,j )

1−∑m
j=1 ᾱt+1,j

1
γ
βt+1,j

=

(note that gamma does not simplify)

∑m
j=1 ᾱt+1,jN (y1:t+1 ; η̄t+1,j ,�̄t+1,j )

1−∑m
j=1 ᾱt+1,j

1
γ
βt+1,j

−
∑m
j=1 ᾱt+1,j

1
γ
N (U1:t+1y1:t+1 ; si

r2
, 1
r2
)N (y1:t+1 ; η̄t+1,j ,�̄t+1,j )

1−∑m
j=1 ᾱt+1,j

1
γ
βt+1,j

=

(using Lemma 2 in each term of the second sum)

∑m
j=1 ᾱt+1,j

1−∑m
j=1 ᾱt+1,j

1
γ
βt+1,j

N (y1:t+1 ; η̄t+1,j , �̄t+1,j )+
∑m
j=1−ᾱt+1,j

1
γ
βt+1,j

1−∑m
j=1 ᾱt+1,j

1
γ
βt+1,j

N (y1:t+1 ; η̄t+1,j + UT
1:t+1

si
r2 , �̄t+1,j + 1

r2U
T
1:t+1U1:t+1)

which coincides with (14.25).
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Chapter 15
Optimization of Multi-target Tracking
Within a Sensor Network Via
Information Guided Clustering

Alexander A. Soderlund and Mrinal Kumar

Abstract This work presents a new algorithm for rapid and efficient clustering
of sensing nodes within a heterogeneous wireless sensor network. The objective
is to enable optimal sensor allocation for localization uncertainty reduction in
multi-target tracking. The proposed algorithm is built on three metrics: (i) sens-
ing feasibility; (ii) measurement quality to maximize information utility; and,
(iii) communication cost to minimize data routing time. The derived cluster is
employed as the search-space for optimal sensor allocation via maximizing the
uncertainty reduction of the expected probability distribution over a target’s state-
space. Theoretical analysis is used to show advantage of the proposed method in
terms of information utility over the widely used Euclidean distance based clustering
approach. The analysis is verified via simulated target tracking examples, in terms
of metrics of information utility and computational expenditure. Simulations also
reveal relationships between sensor field density and the extent of information gain
over competing methods.

15.1 Introduction

Autonomous target tracking is a multifaceted problem that involves many phases
of computational operations working in succession to generate an accurate target
state estimate (e.g., position, velocity, etc.) in real-time. The quantity of interest
at any given time is the target’s state probability density function, also referred
to as its belief state. Target-tracking in the Bayesian framework involves the
following two-step recursion [1]: (i) propagation of the target’s belief state through
its assumed dynamics model to a future point where sensor input is anticipated;
and (ii) assimilating received sensor data to update the propagated belief state,
typically in a step of Bayesian information fusion. Autonomous execution of this
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recursive cycling through the target’s prior and posterior belief states (output of
steps (i) and (ii), respectively) within a wireless sensor network (WSN) has become
an emerging topic of research interest in recent years. In particular, there is emphasis
on improving the information fusion step by optimizing the incoming measurements
of the target via optimal sensor selection [2–8].

The practice of incorporating sensors’ data within a distributed sensor network
to localize a moving target’s position was demonstrated by Dommermuth [9], who
implemented the closest point of approach (CPA) method to track a low-flying
aircraft with a low number (4–5) of acoustic sensors for a set number of network
configurations. This method was improved upon by the work of Yang et al. [10]
who enhanced the CPA method to successfully predict a target’s location within
a randomized sensor configuration, albeit still with a small number of sensors. In
expanding the challenge of target tracking to a field comprised of hundreds of
sensors, a sensor selection optimization performed on the full network is neither
computationally efficient nor effective [11] as valuable target detections are lost
while appointing and activating sensing nodes. To maintain tracking feasibility in
real-time, it is necessary to create a manageable subset of sensors (a cluster) from
which the optimal sensor(s) can then be selected to make target measurements.

“Clustering”1 is itself a form of sensor selection, where potential clusters in
their simplest form are derived from sensor-target proximity [11–13] which activate
a subset of the WSN (active sensors can observe a target inside its sensing
radius, passive sensors cannot). This activation approach is essentially based on the
Euclidean distance between the sensor and the target and is referred to here as the
Euclidean Clustering Algorithm2 (ECA) in the sequel.

In the literature, clustering methods are largely dependent on the nature of the
wireless sensor network being used. These methods differ in processing structure
(centralized vs. distributed), sensor type (homogeneous vs. heterogeneous) and
cluster-head location (static vs dynamic) [14]. Successful target tracking in a WSN
was demonstrated by Yang and Sikdar [15] with the use of static clusters, where
the leader nodes are established at the outset of the tracking operation. In an
architecture like this, the static leader nodes may fail, resulting in the loss of event-
monitoring within an entire cluster. Moreover, there are occasions where the target
travels along discontinuous cluster boundaries or into areas not covered within
clusters’ perimeters. This boundary problem was addressed by Wang et al. [16] by
introducing a hybrid clustering approach that, while still keeping the fundamental
architecture of static clusters, allowed for on-demand dynamic clusters to form when
a target approached a static boundary and accompany the target to the next static
cluster. A system architecture composed entirely of dynamic clusters, while more

1The use of the term differs throughout the literature. In this study, “clustering” only pertains the
act of reducing the set of potential nodes for further sensor selection.
2“ECA” is used as an umbrella term for clustering procedures that prioritize chosen sensors’
proximity to predicted target positions. Obviously, not all proximity-based methods are identical
and vary depending on the application.
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computationally intensive, forms updated sensor clusters as the target belief-state
evolves through the environment. In the WSN architecture used in this work, a single
optimal sensor selected on expected information gain performance is designated as
a dynamic cluster-head, also known as a leader node, that performs measurement
acquisition and consequent routing of the target data back to a designated processing
base station (known as a sensor-to-sink data transfer).

Sensor selection based on predicted information utility has been demonstrated
previously. Zhao et al. [17] implemented dynamic clustering under the information
driven sensor querying (IDSQ) approach, where the selection of dynamic cluster-
heads are constrained on potential information utility contribution (Mahalanobis
distance to the target belief distribution) and communication cost from data-routing
(measured by Euclidean distance between communicating sensors). The approach
was applied to the tracking of a single target in a two-dimensional field of wireless
sensors using IDSQ while treating the entire sensor set as a single cluster. This
was modified further by performing cluster-head selection based on the information
gain provided by optimizing the mutual information between the posterior and prior
target beliefs [2]. Tharmarasa et al. [6] clustered bearing-only sensor sets predicated
on predicted information gain due to each sensor’s probability of detection, and a
similar procedure was employed by Hernandez et al. [3] in a Euclidean distance-
based sensor redeployment scheme. There is also precedent for clustering sensors
with energy consumption considerations in concordance with target localization, as
was done by Qian et al. [18], and Zou and Chakrabarty [5].

All clustering and sensor selection methods discussed thus far are essentially
procedures rooted in tradeoffs made between tracking performance and computa-
tional efficacy. If this latter concern were removed, the Exhaustive Search method
introduced by Kaplan [19] was designed to serve as a baseline approach upon which
practical selection schemes would be compared. This method iterates through all
possible subsets of a bearing-only WSN that would yield the global minimum
in terms of the Mean Square positional error of the target, and was shown to
be computationally NP-hard. Kaplan’s nearly-optimal variation of this exhaustive
search, the Global Node Selection (GNS) method, was modified by Capponi et
al. [20] for areal proximity sensors that minimized the predicted Cramér-Rao Lower
Bound (CRLB) of the posterior target belief state. A computationally exhaustive
search (CES) method inspired by GNS will be treated as a baseline against which
we compare this work’s computational and uncertainty reduction performance.

This review of literature suggests that a well-designed sensor clustering algo-
rithm must account for several factors simultaneously, namely, cost incurred
from data-routing (such as communication bandwidth and transmit time) [21, 22],
information utility potential [2, 6, 7, 17], and target detection feasibility [5, 23, 24].
The contribution of this work is the design and demonstration of a multi-phase
sensor clustering method that accounts for the above described clustering factors
within a centralized and heterogeneous WSN. Its objective is to achieve provably
lower target state uncertainty (or higher information utility) compared to that of the
Euclidean distance approach while also maintaining low computational expenditure.
Named Information-Guided Rapid Clustering Algorithm (IGRCA), it relies on
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available sensor location and activation data, predicted target distribution parameters
and a directed data routing network that results in rapidly computed feasibility,
information utility, and routing time metrics. The new clustering approach is
compared (analytically as well as through numerical simulations) with the cluster
of closest sensors in tracking applications involving a variety of sensor densities
and number of targets being tracked. It is shown to be superior in terms of state
uncertainty reduction and comparable in computational expenditure.

The work proceeds as follows: Sect. 15.2 describes the target tracking oper-
ation within a centralized dynamic prediction-based WSN through the use of
Euclidean distance-based clusters. Section 15.3 describes the mathematical basis
and implementation of a comprehensive clustering algorithm that improves upon the
Euclidean method within a heterogeneous wireless sensor set. This is followed by
the optimization of an information theoretic metric, namely, the expected differential
entropy to identify the optimal sensor from among the cluster to be tasked with the
measurement. Section 15.4 describes the measurement model and target dynamics
within an extended Kalman filter (EKF) tracking framework. Section 15.5 presents
rigorous theoretical analysis to demonstrate the advantage of IGRCA over the
closest-sensor approach in terms of information utility. Numerical simulations are
presented in Sect. 15.6 to support the analysis. Performance of IGRCA is evaluated
and compared with nearest-neighbor Euclidean approach and the computationally
exhaustive search in terms of multiple metrics, including information gain, target
state uncertainty reduction, and algorithm running time. Tracking of multiple
simultaneous targets with nonlinear dynamics is considered, but it is assumed in
these simulations that data association is not required (e.g., representing a scenario
involving friendly targets that identify themselves). Conclusions and directions for
future research are given in Sect. 15.7.

15.2 Target Tracking and Motivating Problem

The goal of minimizing uncertainty whilst tracking a moving target within a WSN
comprised of n sensing nodes presents an assortment of issues, e.g. a majority of
the sensors will not be able to make a measurement of the target (either it does
not lie in the sensor’s field or is out of its sensing range). Of the subset of sensors
where a measurement is possible (a subset of k nodes where k ≤ n), it requires
the optimization of an appropriate cost function over the space of the entire feasible
set in order to identify the sensor that provides the most information gain. This
process involves a computational burden of order O(k) and underscores the need for
clustering: valuable computation time can be saved by running the sensor-selection
procedure over a reduced sensor set, while also enabling increased frequency of
measurements to be made throughout the tracking duration. This study considers
both optimization problems, namely: (1) the cluster formation step, followed by, (2)
the identification of the optimal sensor within the cluster. The information guided
rapid clustering algorithm (IGRCA) follows a three stage selection process in the
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following order: sensing feasibility, information utility, and communication cost.
Results provided in Sect. 15.6 display the benefits of this process in terms of quality
of measurements, or, more directly, in terms of reduction in target uncertainty. The
focus of this study is to design the IGRCA and demonstrate its benefits, whereby
all tracking simulations that require the data fusion operation use the extended
Kalman filter due to its overall simplicity, minimal processing requirements and
low number of required data fields (target state and covariance). First, we formulate
in Sect. 15.2.1 the fundamental problem to be solved in terms of tracking a single
target within a WSN environment. In Sect. 15.2.2, this problem is solved with the
application of a general Euclidean clustering algorithm (ECA). The shortcomings
of this algorithm are exploited to derive the merits of the IGRCA, which attempts to
solve the identical hypothetical tracking problem in Sect. 15.3.

15.2.1 Problem Formulation

Consider a target maneuvering through a two-dimensional environment containing
a set of wirelessly-connected sensors (see Fig. 15.1a). This sensor set, comprised of
n nodes (hundreds to thousands), [25] is represented as

W = {S1, S2, S3, . . . Si, . . . , Sn} (15.1)

The current time instant is labeled k − 1. Motion of each target is assumed to be
governed by a discrete time dynamics model:

xk = f(xk−1)+ vk−1 (15.2)

where the system process noise vk−1 is assumed to possess a zero-mean multivariate
Gaussian distribution vk−1 ∼ N (0,Qk−1). A general sensor model (in terms of
modality) is represented by the following relationship,

zk = hk(xk)+ wk (15.3)

where the sensor noise is also assumed to be Gaussian: wk ∼ N (0,Rk). The
probability density function of a target’s state, commonly referred to as its belief
state, is parameterized using a Gaussian density function with the mean-covariance
pair (x+k−1, P+k−1). In this notation, the superscript “+” denotes posterior values, i.e.,
the mean and covariance conditioned on all sensor information available up to time
k−1. The prior belief parameters at time k can be obtained via propagation through
the dynamics model given above and are denoted as (x̂k , P̂k). Within the network
W there are m ≤ n sensing nodes which can feasibly observe the target at the next
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Fig. 15.1 (a) Complete wireless sensor set W tasked with tracking a target. Filled markers
represent sensors where a measurement is feasible. (b) Zoomed-in view illustrating a range sensor
SE (blue circle) with sensing vector pE has two optimal locations (orange circles) at a distance d
away from the target mean
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timestep k. The inclusion of data from any one of these feasible sensors, Si , will
result in a posterior belief state (x+i,k , P+i,k) and the set of possible posterior matrices
corresponding to each feasible sensor is represented as:

Pk = {P+1,k,P+2,k, . . . ,P+i,k, . . .P
+
m,k}

The fundamental sensor selection problem is the identification of the sensor node S∗
whose measurement corresponds to the maximum information gain of the resulting
posterior covariance P+∗,k (measured via metrics such as differential entropy or
Fisher Information). Of course, the construction of such a set with advantageous
computational and quality constraints (i.e., routing time and statistical relevance) is
the primary focus of this work.

As this one-step lookahead approach needs to dictate a sensing decision based
on predicted dynamics before the target arrives at its position at time k, a
computationally-rapid state estimation scheme must be run at time k − 1. The
Extended Kalman Filter (EKF) [1] has been adopted due to its efficiency and ease
of implementation. The EKF estimates the state under a Bayesian framework that
involves a two-step recursion: (i) propagation of the target’s current belief state
through a linearized dynamics model to a future point where a measurement is
anticipated, resulting in the prior state belief; and (ii) fusion of the received sensor
information with this prior belief to update the state to a posterior belief state. These
two steps are detailed in Sects. 15.2.1.1 and 15.2.1.2 respectively.

The above problem has been adapted within the EKF paradigm by employing
linearized versions of fk and hk , which are obtained from their corresponding first-

order Taylor series expansions, involving Jacobian matrices Fk = ∂fk
∂x

∣∣∣∣
(xk−1)

and

Hk = ∂hk
∂x

∣∣∣∣
x̂k

, both evaluated at the prior belief mean x̂k . The use of the EKF relies

on the assumption that the propagated state is close to the true state (x̂k ≈ xk). The
filter proceeds as follows:

15.2.1.1 Prediction

In the EKF framework, given the current belief represented by the posterior state
estimate and error covariance, (x+k−1,P+k−1) the predicted prior belief at time k is
given by:

x̂k = fk(x
+
k−1) (15.4)

with its associated prior state covariance matrix

P̂k = FkP
+
k−1FTk +Qk, where Fk(x̂k) = ∂fk

∂x

∣∣∣∣
(xk−1)

(15.5)
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15.2.1.2 Update

The measurement model is linearized about the predicted prior mean:

z̃k = Hk x̂k + wk, where Hk(x̂k) = ∂hk
∂x

∣∣∣∣
x̂k

(15.6)

and used to construct the Kalman gain:

Kk = P̂kHk(x̂k)T [Hk(x̂k)P̂kHk(x̂k)T + Rk]−1 (15.7)

The fusion step results in the following update equations, resulting in the final
posterior belief state and covariance at time k.

x+k = x̂k +Kk(zk − hk(x̂k)) (15.8)

P+k = (I−KkHk(x̂k))P̂k (15.9)

A processing node within the WSN (the base station) is responsible for computing
Eqs.(15.4), (15.5), (15.6), (15.7), (15.8) and (15.9), where the choice of Hk(x̂k) in
the measurement model is dependent on the output type hk of the optimally chosen
sensor (detailed in Sect. 15.3.4).

Within this recursive EKF framework of alternating predictions and updates,
we will attempt to estimate the state of the target with reduced uncertainty. This
requires a predictive solution to the sensor selection problem by way of optimizing
on expected information-theoretic measures. The solution given via application of
the ECA will be demonstrated in the next section, following a brief review of sensor
network architecture.

15.2.2 Motivation: The Euclidean Cluster

Recall that each member of the wireless heterogeneous sensor network W is a node
capable of sensing, where each sensor Si is defined by its two-dimensional position
Si = [Sx,i , Sy,i]T , measurement output type (relative bearing of target, relative
range to target, etc.), and sensing field of view �i . The following assumptions are
made regarding the sensors within W :

1. Node locations Si are uniformly distributed within a square sensing field of area
�T = [ω × ω] m2.

2. Maximum sensing range ρi (in meters) and angular range ψi (in radians) are
identical for each sensor, but sensor orientation is uniformly randomized between
[0, 2π ] for simplicity.
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The assumptions above do not limit the scope of the methodology developed in this
work and are made primarily for the sake of simplicity. Given assumptions (1) and
(2), the probability pf that an observation of the target is feasible by m sensors at
any point in a dense field can be related by the Poisson distribution, shown by Sikdar
and Yang [15]:

pf =
m∑

i=0

e
−λ
(
ψ
2 πρ

2
)

(λ
(
ψ
2 πρ
)2
)i

i! (15.10)

which treats target detection as being affected by field density λ, the number of
nodes per unit area, and sensor characteristics. Note that the use of the Poisson
distribution is somewhat arbitrary and motivated largely by its historical success
in similar contexts. In scenarios where successful detection depends on complex
interactions among the target(s), potential sensors and their respective environments,
more advancements are needed for accurately capturing the probability of detection.

The general form of the closest-sensor cluster operates by considering the group
of one or more sensing nodes S∗i that lie closest in terms of Euclidean distance
to the target’s predicted point of approach [3, 9, 11–14, 14, 15, 20]. As it may be
computationally prohibitive to iterate over all elements of W , the field is sorted into
a subset based on a Euclidean distance metric from the propagated mean x̂k . Let the
relative position vector between the propagated state mean x̂k and position Si be

pki = x̂k − Si (15.11)

The Euclidean cluster Ek ⊆ W constructed at time step k is composed of t ≤ n
sensors

Ek = {S1, S2, S3, . . . , Si, . . . , St }, ∀ |pki | ≤ ρi (15.12)

where t is a user-defined value that can vary between 1 and the maximum number of
feasible sensors. Ek is obtained from Steps 1–8 of the Euclidean clustering algorithm
(ECA), tabulated in Algorithm 1. A visual example of the ECA output cluster is
displayed in Fig. 15.2.

The ECA is non-optimal, as the sensing nodes within Ek may not be in
position to make a measurement (field of view �i is not considered in the cluster
selection). In practice, the primary advantage of using Ek for sensor selection is its
computationally efficient assembly, but this quick generation also makes the cluster
prone to (i) target-loss [16], a rare instance where Ek is entirely made up of infeasible
sensors and the target proceeds unobserved, and (ii) the loss in higher potential
information gain [2, 17] due to superior sensors lying at advantageous orientations
to the propagated belief state but not with appropriately-small Euclidean distances
to be clustered using Algorithm 1. This effect will be more ostensibly studied in
Sect. 15.5. To avoid track loss, sensing feasibility is the first issue addressed in the
construction of the IGRCA.
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Fig. 15.2 Cluster of sensors
Ek selected based on
sensor-target proximity. The
faded markers in the
Euclidean set represent
infeasible sensors

x [m]

30

30 40 50 60 70

40

50

60

70

y 
[m

]

Target Mean
Target Covariance
Range Sensor
Bearing Sensor

Algorithm 1 Euclidean clustering algorithm

1: Given the current state of the target, xk−1 and Pk−1 compute the prior belief values x̂k and P̂k
at the next time-step k.

2: while t < n do
3: Iterate through W \Ek and return closest sensor SE with Eq. (15.12).
4: t ← t + 1.
5: Ek ← Ek ∪ SE .
6: end while
7: if The number of elements of Ek is 0, return prior as posterior then
8: Go to step 1.
9: else

10: Iterate through Ek and perform simulated measurements at time k to compute expected
entropy Hi with Eq. (15.19) for each sensor.

11: Determine the optimal sensor S∗i by identifying the minimal expected entropy H ∗i .
12: Route the current belief data to S∗i .
13: S∗i performs a measurement and routes the information back to the base station for data

aggregation and fusion.
14: end if
15: Repeat step 1.

15.3 Information Guided Rapid Clustering Algorithm

To achieve the dual goal of maintaining low localization error while also avoid-
ing loss of target tracks, a new clustering algorithm is developed here that is
computationally comparable to the Euclidean approach in real-time target tracking
scenarios. This method, called the Information Guided Rapid Clustering Algorithm
(IGRCA), is composed of three sequential clustering steps that include sensing
feasibility (Sect. 15.3.1), information utility (Sect. 15.3.2), and communication cost
(Sect. 15.3.3). This clustering procedure culminates in a final optimal sensor
selection step (Sect. 15.3.4) that tasks a chosen node with observing the target.
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While the principles underlying the IGRCA construction in this section mention the
single target tracking case for clarity, the IGRCA is easily adaptable to the multiple
target scenarios analyzed in Sect. 15.6.

15.3.1 Sensing Feasibility

Recall that the current time label is (k − 1) and optimal sensor selection is required
for the next time step, labeled k. The IGRCA initially considers only nodes within
the WSN W that can feasibly sense the target. This requires, at every propagated
step, an updated Region of Feasibility constructed as

�k = �1 ∪�2 ∪ . . . �i ∪ · · · ∪�m where x̂k ∈ int(�i)

where int(�i) represents the interior of a circular sector within the Euclidean plane
�T , defined by radius ρi and central angle ψi with sensor location Si at its origin.
A binary value is attached to all nodes within W whose field of view �i was
included in the creation of �k , akin to the binary proximity sensors demonstrated
previously [23]. The resulting cluster satisfying the feasibility condition comprises
of m ≤ n elements Fk ⊆ W at time step k, and is constructed as

Fk = {S1, S2, S3, . . . , Si, . . . , Sm}, ∀ �i ∈ �k (15.13)

Generation of the set Fk (call it the feasibility cluster) requires O(n) operations. The
cluster Fk guarantees a feasible measurement at time step k, except of-course, when
the predicted target location is outside the field of view of every sensor Si ∈ W .
See Fig. 15.6a for an example of the feasibility cluster in Sect. 15.3.5.

15.3.1.1 A Note on Feasibility

For the sensor types introduced below in Sect. 15.3.2.2 (Radar, Sonar, direction of
arrival (DOA), etc.), previous target-tracking studies, e.g. Refs. [6, 26] have adopted
a so-called Swerling I model which, while a target lies in the sensor’s field of
view, performs a measurement with probabilistic target detection as opposed to the
binary detection discussed above in Sect. 15.3.1. While implementing a simulated
probability of detection for each measurement provides a more realistic target
tracking scenario, it does not affect the credibility of a direct algorithm comparison,
which is the primary focus of this work. However, it should be noted that the
detrimental effect on a sensor’s ability to observe a target due to the sensor’s
operating distance (see Ref. [27]) is retained in the the measurement noise variance
model in Sect. 15.4.2.
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15.3.2 Information Utility

While the cluster Fk ensures that a measurement will take place at time step k, it
provides no guarantee regarding information utility. The second stage of selection
seeks to retain the sensor nodes with the greatest “potential to reduce uncertainty of
the target’s posterior belief state” at time k. This is loosely referred to as information
utility. The potential information utility of each node is revealed by incorporating
two sensor-specific measures: (i.) the Mahalanobis distance to the propagated (prior)
state belief at time k, and (ii.) the mode (range, bearing, etc.) that dictates the
appropriate measurement model and output type. These criteria are detailed further
in Sects. 15.3.2.1 and 15.3.2.2, respectively. The cluster resulting from application
of ranking each sensor within Fk by information utility (see Fig. 15.6b) is referred
to as Qk (“the quality cluster”).

15.3.2.1 Mahalanobis Distance

Given a probability distribution in 'N with known mean and covariance, the
unitless Mahalanobis distance is a scalar measure of the “statistical relevance”
of a point to the said belief distribution [28]. This metric, defined in Eq. (15.14)
below, is computed easily given the sample point p and the distribution mean μ and
covariance �,

M =
√
(p− μ)T �−1(p− μ) (15.14)

In an object-sensing application, treating the sensor as the sample point from the
target’s state distribution will express this “relevance” as the sensor’s informa-
tion utility regarding a target state update, and geometrically represents a closer
alignment of the relative position vector between the mean and the sensor with
respect to the eigen-directions of the target’s uncertainty covariance matrix. In the
current application, only static “positional sensors” are used (e.g. those measuring
range and bearing). On the other hand, the target’s belief state is jointly composed
of its four-dimensional state-vector, x = [x, ẋ, y, ẏ]T , which of-course, also
includes velocity components. Thus the target’s full-state prior distribution at time
step k is N (x̂k , P̂k), parameterized by a four-dimensional mean vector and a four-
dimensional covariance ellipsoid. Therefore, in order to reconcile the positional
sensors with the target’s belief state, we use only the so-called positional restrictions

of (x̂k , P̂k), denoted by x̂kpos = [x̂k, ŷk]T and P̂kpos =
[
σ 2
kx
σkxy

σkxy σ
2
ky

]
. For each sensor

location Si within the feasibility cluster Fk at time step k, the Mahalanobis distance
from Eq. (15.14) is translated to:

Mk
i =
√
(Si − x̂kpos)

T P̂−1
kpos
(Si − x̂kpos) (15.15)
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Essentially, a given sensor’s Mahalanobis distance from the target’s propagated
positional belief state is equivalent to the number of standard deviations away
the sensor’s two-dimensional location is from the propagated (prior) mean target
position, x̂pos. The positional covariance P̂pos as defined above can be geometrically
represented by an ellipse of eccentricity e and body-fixed principal axes that are
aligned along the eigenvectors of P̂pos, namely, λλλ1 and λλλ2, originating from the
target mean position, x̂pos: see Fig. 15.1b. Consider the relative sensing angle, θ ,
defined as the angle between the major axis of the prior belief covariance ellipse,
λλλ1, and the sensor-target relative position vector (pki from Eq. (15.11)):

θ = arccos

(
pki · λλλ1

|pki | |λλλ1|

)
, θ ∈

[
−π

2
,
π

2

]
(15.16)

Note that the Mahalanobis distance defined in Eq. (15.15) is related to the relative
sensing angle: for a range sensor at Euclidean distance d from the mean, the sensing
locations with minimum Mahalanobis distance lie alongλλλ1 (shown as orange circles
in Fig. 15.1b), i.e., where the angle θ is minimized.

Mahalanobis distance is simply a measure of a sensor’s geometric relation to a
belief state, but in the special instance where a sensor’s output relays a constraint on
that belief state (i.e., a range or bearing of the target) then the Mahalanobis metric is
synonymous with information utility [29]. Two points that are equidistant from the
mean may have a corresponding Mahalanobis metric that differ by several orders
of magnitude, depending on the respective vectors’ alignments to the uncertainty
distribution’s major axis’ eigenvector. In the scenario shown in Fig. 15.3, range
sensors A and B are physically equidistant from the target mean. However, because
sensor A has a more favorable relative sensing angle than sensor B, it is closer to
the target in terms of Mahalanobis distance than sensor B. It consequently provides
greater uncertainty reduction along the major axis of the prior covariance, and would
be chosen over sensor B in a direct Mahalanobis distance comparison.

15.3.2.2 Sensing Mode and Quality Cluster Creation

A sensor’s modality (range, bearing etc.) is a primary factor that affects the selection
process. Unlike the range sensors shown in Fig. 15.3 which provide a relative
distance measurement along its sensing vector p, bearing sensors sense along an
axis orthogonal to p and output the angle of the received signal. As a result of
this orthogonality, the Mahalanobis distance for bearing sensors is computed with a
belief state covariance P̂kpos rotated by 90◦ in the body-fixed reference frame. In the

inertial frame, this is expressed as P̂Bearing
kpos

=
[
σ 2
ky

−σkxy
−σkxy σ 2

kx

]
.

Due to the difference in measurement models, observations incorporated from
range and bearing sensors at the same Mahalanobis distance do not, in general,
gain equal amounts of information after the update stage (Eqs. (15.6), (15.7), (15.8)
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Fig. 15.3 Sensor selection between sensors A and B results in differing updated error ellipses.
Rays extending from the sensors represent their respective fields of view

and (15.9)). When evaluated in terms of the differential entropy of the posterior
density (an information metric that indicates a distribution’s level of randomness,
formally defined below in Sect. 15.3.4), it is apparent that there is a belief-state
dependent Mahalanobis. The crossover value is actually:

MC =
( Rb

Rr
√
λ1λ2

) 1
2

where Rr
Rb

is the ratio of range to bearing sensor noise variance. Bearing sensors
selected with a lower Mahalanobis metric than MC tend to offer greater information
utility (i.e., a smaller differential entropy) than any range sensor available in the
Mahalanobis interval [0,MC). Figure 15.4 depicts the relation between a given
sensor’s Mahalanobis distance, modality (red square or blue dot), and the expected
differential entropy resulting from that sensor’s measurement.

Thus, in order to implement the “information utility clustering” step, each
member node of the feasible cluster Fk is initially ranked by their Mahalanobis
distance, Mk

i , relative to the propagated target prior density. This Mahalanobis-
ranked set is then sorted via sensing modality, where all bearing sensors with
Mahalanobis metric lower than the crossover values Mk

i < MC take precedence,
succeeded by Mahalanobis-sorted range sensors. From this ranked set F̃k , a user-
defined number of sensors (�) is retained, producing the quality cluster Qk ⊆ F̃k

of � ≤ m elements:

Qk = {S1, S2, S3, . . . , Si, . . . , S�}, such that Mk
i ≤ Mk

L (15.17)
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Fig. 15.4 Effect of sensor modality (range and bearing sensors are blue dots and red squares,
respectively) and Mahalanobis distance on Expected Differential Entropy. A prior positional
uncertainty ellipse with area of 10π m2 is considered at two eccentricities of e = 0 and e = 0.9,
respectively

where Mk
L is a time-varying Mahalanobis distance upper bound and is an outcome

of what nodes are available at the time of clustering, which depends on the size of
sensors retained, �. While this limit on retained nodes is open for further on-line
optimization, in the interests of computational overhead the implementation of a
node density-based limit has been found to provide adequate results.

15.3.3 Communication Cost

The final clustering step, designed to reduce the computational cost of routing
information from a sensor to a processing node (and vice versa), is applied to the
quality set Qk . In this context, the computational cost (also known as the cost
of delay [30] between the sensor and sink) is represented as the routing time, τk ,
required to activate a sensor Si at the look-ahead timestep k based on the predicted
target positional mean x̂k . The routing time is computed as τk = 2νϕi , where ν
is the transmission rate (in bps) for all sensors within the network W and ϕi is
the minimum (and time-invariant) number of communication links to complete the
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sensor-to-sink data transfer. Given a network topology of W with n nodes and z
communication links, the shortest paths [31] between a single-source processing
node (the base station) and every possible sensing node in a graph of weighted
edges (treated here as Euclidean distances between communicating sensors) can
be computed with Dijkstra’s algorithm [32]. Since the optimal routing time from
one communicating node to another in a WSN is driven by the minimally required
number of links between the two nodes rather than the shortest distance, a modified
Dijkstra’s algorithm (see Algorithm 2) was implemented to construct a final cluster
Ck . An example of an optimally-routed path is shown in Fig. 15.5, where five
communication links are required to reach the base station.

Algorithm 2 Modified Dijkstra’s algorithm
1: Initialize V ← W as the set of sensors.
2: for all Si ∈ V . do
3: ϕi ← 1 {Minimum transmissions possible}.
4: d[Si ] ← ∞ {Distance from sink to sensor}.
5: end for
6: while V not ∅ do
7: Find sensor Si ∈ V with minimum d[Si ].
8: Remove Si from V .
9: Initialize Y as neighboring sensor set of Si .

10: for all sensor y ∈ Y do
11: if d[Si ] + d[Si, y] < d[y] then
12: d[y] ← d[Si ] + d[Si, y]
13: return ϕy ← ϕi + 1
14: {Increment communication chain}
15: end if
16: end for
17: end while

Algorithm 2 has a computational running time of O((n + z) ln(n)), where z is
the number of possible communication links. All optimal routing times are sensor-
dependent and computed off-line. Successful operation of Algorithm 2 scales well
for practical sensor densities and communication ranges; a useful advantage given
the network density may not be known a priori in a realistic tracking scenario. After
returning the shortest number of links ϕi for each node within Qk , the cost cluster
of r ≤ � elements Ck ⊆ Qk at time step k is constructed as

Ck = {S1, S2, S3, . . . Si, . . . , Sr }, ∀ ϕi ≤ ϕL (15.18)

Analogous to the creation of the quality cluster Qk , Ck is generated by the retention
of a user-defined number of r sensors within Qk that will potentially make the
measurement. Hence, the bound ϕL is a time-varying value. An example of the final
rapid cluster Ck is presented in Fig. 15.6c.
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Fig. 15.5 Data transfer from
sensor to sink within a W of
125 sensors. (ϕ = 5 message
links)
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15.3.4 Final Optimal Sensor Selection

Once the IGRCA cluster has been constructed, the optimal sensor from this set
must be identified which will ultimately be tasked with making the measurement
of the target at time step k. The objective is to select the sensor that will result
in the “least” posterior uncertainty. This is obviously “awkward” because posterior
densities at time k would require sensor measurements at that time, which has not
yet occurred. In implementing the one-step lookahead procedure employed with
the IDSQ approach (as in Ref. [17]), we compute the expected differential entropy
of the simulated posterior target belief state as an information utility measure to
predict the optimal sensor S∗. Measured in bits, this scalar metric measures the
level of randomness within a distribution. In a target tracking application, sensors
with measurements that result in a lower differential entropy of a posterior density
represent greater reduction in uncertainty. Letting P+k be the simulated posterior
covariance of dimension n with look-ahead posterior mean x+k , the differential
entropy of a Gaussian distribution is defined as:

H(N (x+k ,P+k )) =
1

2
log2
[
(2π exp)n

∣∣P+k
∣∣ ] (15.19)

The sensor S∗ responsible for the minimum differential entropy within the final
cluster Ck of r nodes is selected as the measurement-taking leader node for the next
timestep k.
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Fig. 15.6 (a) Sensor subset
Fk generated with
Eq. (15.13). (b) Sensor subset
Qk generated with
Eq. (15.17). The remaining
range and combined sensors
tend along the major axis of
the error ellipse, while
bearing sensors lie along the
minor axis. (c) The final
output of the IGRCA Ck
retains the cost-effective
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15.3.4.1 A Note on the Use of Two Separate Information Gain Metrics

We point out that from above, the Mahalanobis distance was used as the information
theoretic metric to construct the sensor cluster Qk , whereas a different metric,
namely differential entropy, was utilized to identify the optimal sensor S∗k from
within the cluster Qk . A criticism of this approach is that given its direct mapping to
target uncertainty reduction, differential entropy and not the Mahalanobis distance,
represents a better choice for creating the quality cluster (Qk) in Sect. 15.3.2. It
should be noted that Mahalanobis distance and the expected differential entropy
convey two different pieces of information utility: While the Mahalanobis metric
simply predicts the geometric advantage of a given sensor (via distance and
orientation to the greatest axis of uncertainty), the simulated differential entropy
measures the effect that a given sensor’s measurement would have on the resulting
belief state. The predicted Mahalanobis distance only has to evaluate Eq. (15.15) for
each sensor, as opposed to the predicted differential entropy that must make use of
each sensor’s measurement model and algebraically manipulate Eqs. (15.6), (15.7)
and (15.9) to achieve an analytical expression for Eq. (15.19) given the prior
covariance. For the measurement and variance models we outline further down
in Sect. 15.4.2, it was empirically determined that the average additional time
expended (when compared to the average Mahalanobis computation time) to assign
expected differential entropy values to a group of feasible sensors grows linearly
with the cluster size. Thus, the use of the Mahalanobis distance as an information
utility metric is beneficial to rapidly clustering large numbers of sensors that favor
uncertainty reduction while differential entropy operates as an additional utility
metric on a final reduced set.

15.3.5 Procedure of the IGRCA

The step-wise procedure that constructs the final sensor cluster Ck from the full
wireless sensor network W (presented in Fig. 15.1a) is outlined in Algorithm 3. The
algorithm can be summarized in terms of generation of the following sequence of
nested sensor sets at time k:

W︸︷︷︸
WSN (Fig. 15.1a)

⊇ Fk︸︷︷︸
Feasible Set (Fig. 15.6a)

⊃ Qk︸︷︷︸
Utility Set (Fig. 15.6b)

⊃ Ck︸︷︷︸
IGRCA Output(Fig. 15.6c)

An alternative is to rank each feasible sensor Si according to an objective function
value (see Zhao et al. [17]) as follows

�k(Si) = α1Mk
i + α2ϕ

k
i , where α1 + α2 = 1
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where at every time step k the final cluster is constructed by ranking each node
within Fk by �k and retaining a user-specified r nodes with the lowest objective
values �k . While this method allows for simultaneous consideration of both
information utility and routing cost at the time of clustering, it was determined that
the subset approach is more cost-effective and results in near-identical overall target
uncertainty reduction.

Algorithm 3 Information guided rapid clustering algorithm
1: Compute the optimal routing paths via Algorithm 2.
2: Given the current state of the target xk−1 and Pk−1 compute the prior belief values x̂k and P̂k

at the next time-step k.
3: Iterate through W and return Fk with Eq. (15.13).
4: if The number of elements of Fk is 0, return prior as posterior then
5: Go to step 1.
6: else
7: Iterate through Fk and return Qk with Eq. (15.17).
8: Reorder Fk into F̃k .
9: Iterate through Qk and return Ck with Eq. (15.18).

10: Iterate through Ck and perform simulated measurements at time k to compute expected
entropy Hi with Eq. (15.19) for each sensor.

11: Determine the optimal sensor S∗ by identifying the minimal expected entropy H ∗k .
12: Route the current belief data to S∗.
13: S∗ performs a measurement and routes the information back to the base station for data

aggregation and fusion.
14: end if
15: Repeat step 2.

15.4 Target Dynamics and Sensor Measurement Models

In this section, the dynamics and measurement models laid out in Sect. 15.2.1 are
specified for the specialized case of multiple maneuvering targets being tracked with
the measurements generated by the activated nodes of a wireless sensor network.
These models are implemented in the succeeding information utility analysis given
in Sect. 15.5 and in the simulation studies discussed in Sect. 15.6.

15.4.1 System Model

For tracking applications, it is advantageous for the sensor-selection algorithm to
account for sudden directional shifts in a target’s trajectory as it maneuvers within
the sensing environment. Consider a state-space χ partitioned into two regions (χ =
χ1 ∪ χ2) defined below:
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1. The comprehensive sensing boundary of the wireless sensor network W of n
sensors, defined as χ1 = {�1 ∪�2 ∪�3, . . . �n−1 ∪�n ∪�T }, where �T is the
user-defined test area (in m2) that the set W is responsible for covering.

2. The portion of χ in which the target cannot be sensed, defined as χ2 = χ \ χ1.

Each member of the partition (here χ1 and χ2) admits a unique set of system
dynamics equations, defined by their corresponding state transition matrices A1
and A2, thereby resulting in a piecewise affine system (a switching state system)
[33, 34]. To simulate this behavior, a switching function was introduced by Olfati-
Saber and Sandell [35] into the system dynamics that applies an orthogonal force to
the target at the time step in which it escapes, redirecting it back into the sensor field.
This allows for the tracking of agents with unpredictable path-deviation or obstacle-
avoidance behavior within a bounded environment. In the simulations presented
in Sect. 15.6, the base station is able to predict when an object will encounter a
switch in its trajectory, and will account for an object’s new dynamics in the prior
state prediction. The target position dictates the state transition dynamics into two
models, one for inside and the other for outside the sensor field. A binary switching
function with scalar input η that represents a component of the target position vector
η ∈ {xt , yt } enables switching between these modes

�(η) =
{

1, if η ≥ 0

−1, otherwise

We extend the above definition to include a user-defined boundary distance a:

μ(η) = �((a − ω)+ η)+ �(a − η)
2

,

where a target may exit the boundaries of the test area�T for a where “a” represents
the distance from the origin (along the x or y directions) within the test area a before
encountering an orthogonal direction shift from the switching matrix:

M(x) =
[
μ(x) 0

0 μ(y)

]
.

The linearized state transition form of Eq. (15.2) is now defined as

F(x) = M(x)⊗ A1 + (I2 −M(x))⊗ A2,

where,⊗ denotes the Kronecker Product, A1 =
[

1 �T
0 1

]
(applied when [xt , yt ]T ∈

X1) and A2 =
[

1 �T

−�T c1 1−�T c2

]
(applied when [xt , yt ]T ∈ X2) with user-

defined constants a, c1, c2 > 0, and step-size in time �T . Equation (15.2) becomes
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xk+1 = F(xk)xk + Bvk (15.20)

where B = I2 ⊗
[
�T 2σq

2
�T σq

]
with process noise variance σ 2

q . Equation (15.20) is

used to generate the target trajectories with randomized initial states described in
the results section below (Sects. 15.6.3 and 15.6.3.3).

15.4.2 Measurement Model

We consider a heterogeneous wireless sensor network comprised of both bearing-
only (i.e., passive sonar [36, 37] and Angle-of-Arrival antenna arrays [38, 39]) and
range-only (i.e., radar [40] or acoustic amplitude [2]) sensors. The output of each
sensor-type is a function of the relative position between the sensor Si = [Sx,i Sy,i]
and the target’s location:

hk(xk) =
⎧
⎨

⎩

√
x̃2
k + ỹ2

k for range sensor

arctan ỹk
x̃k

for bearing sensor
(15.21)

where x̃k = xk − Sx,i and ỹk = yk − Sy,i are the predicted relative positions
and angle between the sensing node and the target at time k. The Jacobians of
these measurement models (see Refs. [40, 41] for the derivation of range-only and
bearing-only models, respectively) are

Hk(x̂k) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
x̃k√
x̃2
k+ỹ2

k

0 ỹk√
x̃2
k+ỹ2

k

0

]
, (range sensor)

[
−ỹk
x̃2
k+ỹ2

k

0 x̃k
x̃2
k+ỹ2

k

0

]
, (bearing sensor)

(15.22)

In addition to the measurement matrices, the noise variance Rki (dk) for each sensor
i is related to its relative position to the target, based on the received signal strength
model [8, 29, 42, 43] (present in acoustic amplitude and sonar sensors) which is
a function of the sensor’s distance d away from the target at time k, an amplifying
constant κ and an additional randomized error ri ∼ Gamma(rα, rβ), ri << d which
represents inherent mechanical error made during observation.

Rki (dk) = κ
(
dk + ri

)
(15.23)

Measurements routed to the base station also carry an attached binary mode value
to indicate whether the data carries a relative distance or bearing value.
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# =
{

0 for range sensor

1 for bearing sensor
(15.24)

This allows the base station to compute Eqs.(15.7), (15.8) and (15.9) with the correct
measurement and noise forms.

15.5 Analysis

As outlined in Sect. 15.3.2, two characteristics are key in sensor selection: (i) relative
location to the target and (ii) sensing modality. In this section, we rigorously
lay out the relationship between a sensor’s relative position to the target and
the potential information gain from its measurement. The analysis presented here
supports IGRCA’s use of Mahalanobis distance as the information metric for sensor
clustering. The range sensor is considered first, followed by an extension to bearing
sensors. First, we clarify our notation in regards to frame of reference and state an
information gain result that is well known.

15.5.1 Frame of Reference

Recall that in this work we are concerned only with “positional sensors”
(range/bearing measurements), whereby the developments below use positional
restrictions of the mean vector and covariance matrix, defined in Sect. 15.3.2.1 as

x̂pos = [x̂, ŷ]T and P̂pos =
[
σ 2
x σxy

σxy σ
2
y

]
. In the sequel, this covariance matrix is

described within a “body-fixed frame” with the target position at the origin, i.e.

x̂pos = [0, 0]T and P̂pos =
[
λ1 0
0 λ2

]
. This transformation from the inertial reference

frame is performed such that the greatest eigenvalue of the positional covariance
matrix e1 correlates to the eigenvector of the major axis of the uncertainty ellipse
within the inertial frame,λ1λ1λ1 (see Fig. 15.1b for both reference frames). Analogously,
the relative position vector in the inertial frame (used in Eq. (15.22)), p = [x̃, ỹ]T
is redefined within this principal axis coordinate system as p = [p1, p2]T .

Lemma 1 Consider a target with positional mean and covariance x̂pos and P̂pos
respectively, and a range sensor SE with position SE and relative sensing vector
pE = SE − x̂pos at a distance ‖pE‖ = d from the target. Sensor locations that
provide optimal target uncertainty reduction lie along the principal major axis e1 of
P̂pos.

Proof The following result is well known and interested readers may refer to
Appendix C.5 of Zhao’s and Guibas’ work in [29].
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The amount of uncertainty reduction along a sensing axis pE is directly
proportional to the predicted information gain, represented geometrically by the
reduction in volume of the uncertainty hyperellipsoid

I ∝ det
(
P̂
)− det

(
P+
)

(15.25)

A range sensor (blue circle in Fig. 15.1b) provides measurement information
z parallel to the sensing vector pE . The surface area of the resulting updated
covariance P̂+pos is lowest if pE originates from the points of optimal information
gain (orange circles in Fig. 15.1b) which lie along the uncertainty ellipse’s longest
axis (e1) [44]. "#

Before presenting further results, additional notation and definitions are needed.
Consider Lemma 1 applied to a uniformly distributed sensor field. A range sensor
obtained as the outcome of optimization of Euclidean distance is represented as SE
with relative vector SE from the expected target position x̂pos. It is represented in the
body-fixed frame as pE = [p1, p2]T with a Euclidean distance d = √

pE · pE
from the expected target mean. Its squared Mahalanobis distance SE from the target
pdf is then:

M2
E = pTE P̂−1

pos pE = 1

λ1λ2
[λ2p

2
1 + λ1p

2
2] (15.26)

Next, consider a circle of radius d circumscribed by the sensing vector pE around
the mean position x̂pos. Depending on the quadrant in which SE lies, its position
vector pE can be mapped to a new (hypothetical) location pQ that has a shorter
projection lQ to the major axis vector e1 than that of the original projection (lE) from
pE . A shorter projection coincides with higher information gain (see Lemma 1).
Figure 15.7 illustrates four possible locations (red circles) for the sensor SE , and
the respective rotational paths (pink sectors) wherein a resulting rotation of pE
anywhere within the sector will entail a shorter projection to the major axis. The
direction of rotation applied to sensing vector pE and the nearest major axis vertex
is quadrant-dependent, as specified in (15.27). The angle of SE with respect to major
axis, θE , is always measured from the major axis to pE . Similarly, the angle θQ of
the resulting vector, pQ, is also measured from the nearest major axis. For simplicity,
let γ = θE − θQ.

R3 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
cos γ sin γ

− sin γ cos γ

]
, for γ ∈ Quadrants I or III

[
cos γ − sin γ

sin γ cos γ

]
, for γ ∈ Quadrants II or IV

(15.27)

Lemma 2 Let a range sensor SE at distance d from the target mean position,
x̂pos, and relative angle γ with respect to the major axis of the target’s positional
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Fig. 15.7 Possible SE
locations in all four quadrants
are depicted each with an
associated circular sector
(pink path) where a lower
Mahalanobis distance resides.
In the first quadrant case,
EE = EQ but MQ < ME

covariance, e1, be selected as the optimal sensor via the ECA algorithm. Let the
corresponding Mahalanobis distance w.r.t. the target pdf be ME . If θE 	= 0, SE
subtends an arc, L, of radius d on to e1 along which Mahalanobis distance from
the target pdf is less than or equal to ME and another range sensor SQ with
corresponding Mahalanobis distance MQ, if placed on this arc, would be preferred
over SE by IGRCA.

Proof MQ ≤ ME is shown below in the first quadrant case, with the vector pE
described in polar form as (d, θE), where θE ∈ [0, π

2 ]. A clockwise rotation of pE
through an angle of γ ∈ [0, θE], will yield the following rotated sensing vector

pQ = R3pE =
[
p1 cos γ + p2 sin γ
−p1 sin γ + p2 cos γ

]
(15.28)

and the polar conversions of p1 = d cos θE and p2 = d sin θE restate M2
E as:

M2
E =

d2

λ1λ2
[λ2 cos2 θE + λ1 sin2 θE] (15.29)

The squared Mahalanobis distance M2
Q = pTQP̂−1

pospQ in the body-fixed form of
Eq. (15.26) is done with the substitution of pQ = R3pE in Eq. (15.28):

M2
Q =

1

λ1λ2
[λ2p

2
1 cos2 γ + 2λ2p1p2 sin γ cos γ

+ λ2p
2
1 sin2 γ + λ1p

1
2 sin2 γ

− 2λ1p1p2 sin γ cos γ + λ1p
2
2 cos2 γ ]

and with the polar conversion
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M2
Q =

d2

λ1λ2
[λ2(cos2 γ cos2 θE + sin2 γ sin2 θE)

+ (λ2 − λ1)

2
sin 2γ sin 2θE

+ λ1(cos2 γ sin2 θE + sin2 γ cos2 θE)]

The desired inequality M2
Q ≤ M2

E is shown by noting that

[λ2(cos2 γ cos2 θE + sin2 γ sin2 θE)+ (λ2 − λ1)

2
sin 2γ sin 2θE

+ λ1(cos2 γ sin2(θE)+ sin2 γ cos2 θE)]
≤ [λ2 cos2 θE + λ1 sin2 θE]

which reduces to

λ2 ≤ λ2 cos2 θE + λ1 sin2 θE (15.30)

We combine the above with an expression of eccentricity in terms of the covariance
eigenvalues, e2 = 1− λ2

λ1
to get

1 ≤ cos2 θE + sin2 θE

(1− e2)
(15.31)

By the definition of Lemma 2, the rotated sensing vector pQ will have a resulting
relative angle θQ ≤ θE . Since θQ = θE if and only if γ = 0, the nontrivial result
provides the following relation:

θQ < θE =⇒ MQ < ME (15.32)

"#
As expected, the quantities in Eq. (15.31) are equal when the eccentricity is zero.
The proof is similar for γ in quadrant cases II − IV , and the conclusions are the
same: for e 	= 0, pE can be rotated to a vector pQ that has a shorter projection lQ to
the major axis vector e1 than that of the sensing vector pE , with a lower Mahalanobis
distance (see Eq. (15.32) and Fig. 15.7). There are two instances where pE and pQ
are the same vector:

1. Eccentricity of uncertainty ellipse is zero.
2. The closest Euclidean point already lies along the major principal axis: polar

points (d,0), and (d,π )

The following lemma concerns sensors at points located within the first quadrant
of the body-fixed reference frame.
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Lemma 3 Consider two sensors SE and SQ on a circular arc of radius d at
Mahalanobis distance ME and MQ from the target state pdf. Then

MQ < ME =⇒ θQ < θE (15.33)

where, θE and θQ are the angular positions of SE and SQ respectively, measured
from the major axis.

Proof We are given two points in the first quadrant described by (d,θE) and (d,θQ)
and assume that condition M2

Q < M2
E . Using Eq. (15.29) from Lemma 2, M2

Q < M2
E

becomes:

λ2 cos2 θQ + λ1 sin2 θQ < λ2 cos2 θE + λ1 sin2 θE

substituting λ2 = λ1z where z = (1− e2),

= z cos2 θQ + sin2 θQ < z cos2 θE + sin2 θE

= z1+ cos 2θQ
2

+ 1+ cos 2θQ
2

< z
1+ cos 2θE

2
+ 1+ cos 2θE

2

= z (cos u− cos v) < (cos u− cos v) , with u = 2θQ and v = 2θE

which holds if u < v. Thus, MQ < ME =⇒ θQ < θE as 0 ≤ z < 1. "#
Theorem 1 Consider two sensors SE and SQ at polar coordinates (d, θE) and
(d, θQ) respectively in the body-fixed reference frame. If their Mahalanobis distance
from the target state-pdf is ME and MQ respectively, then

θQ < θE ⇐⇒ MQ < ME (15.34)

Proof Combining Lemmas 2 and 3 results in Eq. (15.34) (applicable within the first
quadrant). "#
While Lemma 3 may seem redundant to Lemma 2 in its construction, it is
crucially different in what knowledge is assumed for their respective proofs. As
the Mahalanobis distance metric implicitly contains both Euclidean distance and
relative angle information (such as γ for each sensor), the if and only if statement
provided by Eq.(15.34) allows an algorithm supplied with Mahalanobis distance
information to sort sensors in terms of information optimality, as demonstrated by
Lemma 4 below.

Lemma 4 Given two range sensors SE and SQ at positions described by (d,θE)
and (d,θQ) in the first quadrant such that θQ < θE , the expected Fisher Information
of SQ is greater than that of SE , i.e.

θQ < θE =⇒ IQ > I E
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Proof The measurement error variances RE and RQ of sensors SE and SQ
respectively are each assumed to be κr(d + r0)3 The target’s prior covariance with
body-fixed principal axes is represented as the diagonal matrix:

P̂ =

⎡

⎢⎢⎣

λ1 0 0 0
0 λ3 0 0
0 0 λ2 0
0 0 0 λ4

⎤

⎥⎥⎦ (15.35)

and the resulting the Kalman gain from Eq. (15.7) becomes:

K =

⎡

⎢⎢⎢⎢⎣

dp1λ1

λ1p
2
1+λ2p

2
2+d2κr (d+r0)
0

dp2λ2

λ1p
2
1+λ2p

2
2+d2κr (d+r0)
0

⎤

⎥⎥⎥⎥⎦

Thus the posterior covariance can be obtained from Eq. (15.9) as

P+ =

⎡

⎢⎢⎢⎢⎢⎣

λ1(λ2p
2
2+d2κr (d+r0))

λ1p
2
1+λ2p

2
2+d2κr (d+r0) 0 −λ1λ2p1p2

λ1p
2
1+λ2p

2
2+d2κr (d+r0) 0

0 λ3 0 0
−λ1λ2p1p2

λ1p
2
1+λ2p

2
2+d2κr (d+r0) 0

λ2(λ1p
2
1+d2κr (d+r0))

λ1p
2
1+λ2p

2
2+d2κr (d+r0) 0

0 0 0 λ4

⎤

⎥⎥⎥⎥⎥⎦

leads to the predicted Fisher Information metric (defined as the determinant of the
inverse of the posterior covariance) I ≡ det((P+k )−1

)

I = λ1p
2
1 + λ2p

2
2 + d2κr(d + r0)

λ1λ2λ3λ4d2κr(d + r0) (15.36)

where, p1 = d cos θ and p2 = d sin θ . Since λ2 = λ1(1 − e2), Eq. (15.36) can be
rephrased as

I (e, θ) = κr(d + r0)+ λ1(cos2 θ + (1− e2) sin2 θ)

κr(d + r0)λ2
1λ3λ4(1− e2)

(15.37)

i.e. the Fisher Information can be treated as a bivariate function of the positional
covariance eccentricity (e) and the relative sensing angle, θ (Fig. 15.8). In order to
compare the Fisher Information of any two sensors, hold the eccentricity value of

3For simplicity, the error term r0 is a positive constant, r0 << d.
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Fig. 15.8 Fisher Information I surfaces (blue and red), generated by a range and bearing sensor
respectively, are assumed to lie 1 m from the target. From this distance, each sensor type observes
belief state distributions at varying eccentricities and sensing angles

the target distribution as a constant and take the partial derivative of I with respect
to θ :

∂I

∂θ
= sin 2θ(−e2)

κr (d + r0)λ1λ3λ4(1− e2)
≤ 0, ∀θ ∈ (0, π

2
)

Hence, for targets with non-circular distributions (e 	= 0) and for nonnegative sensor
white-noise r0:

θE > θQ =⇒ IQ > I E

"#
Theorem 2 Given a common sensor field, a cluster Q of n sensors derived from the
IGRCA will provide greater or equal information gain than any Euclidean cluster
E of equal number.

n∑

i

I i
Q ≥

n∑

i

I i
E

Where I i is the Fisher Information provided by sensor Si .
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Proof Reorder clusters E and Q according to ascending Mahalanobis distance,
such that

E = {E1, E2, E3, . . . , Ei, . . . , En},
where ME1 ≤ ME2 . . .MEn−1 ≤ MEn

and

Q = {Q1, Q2, Q3, . . . , Qi, . . . , Qn},
where MQ1 ≤ MQ2 . . .MQn−1 ≤ MQn

Consider an arbitrary sensor pair (Ei,Qi) where i ∈ {1, 2, . . . , n}. The
information gain for Qi is greater than or equal to Ei based on the following
arguments:

• Theorem 1 guarantees that MQi < MEi ⇐⇒ θQi < θEi , and thus the sensor
with the minimal Mahalanobis distance also has optimized relative angle and
distance.

• Lemma 4 guarantees that θQi < θEi =⇒ I Ei < IQi .
• Lemma 1 guarantees that a higher Fisher Information metric is proportional to a

higher uncertainty reduction in the target distribution’s positional belief state.

Thus, the optimal sensor will always lie within the IGRCA cluster Q. As both E
and Q are constructed on sorting sensors by increasing Euclidean and Mahalanobis
distance respectively, then extending this inequality to the entire cluster of n sensors
by selecting any pair of sensors without replacement and comparing them directly
on information gain, the resulting sum of Fisher information for each cluster yields
the following inequality:

n∑

i

I i
Q ≥

n∑

i

I i
E

"#

15.5.2 Extension to Bearing Sensors

Theorem 2 can easily be extended to bearing sensors. The corresponding optimal
locations are found along the minor axis (e2) of the uncertainty ellipse, as bearing
sensors provide a measurement orthogonal to a range sensor’s sensing axis. Due
to the difference in measurement models, Lemma 4 is adapted into Corollary 1 as
follows.
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Corollary 1 Given two bearing sensors SE and SQ in the first quadrant described
by (d,θE) and (d,θQ) and the condition θQ > θE , then the Fisher Information
provided by SQ is greater than that of SE .

θQ > θE =⇒ IQ > I E

Proof Implementing the bearing model with variance amplification factor κb in
Eq. (15.21), the Kalman gain becomes

K =

⎡

⎢⎢⎢⎢⎢⎣

−p2λ1(p
2
1+p2

2)

λ2p
2
1+λ1p

2
2+(p2

1+p2
2)

2κb(d+r0)
0

p1λ2(p
2
1+p2

2)

λ2p
2
1+λ1p

2
2+(p2

1+p2
2)

2κb(d+r0)
0

⎤

⎥⎥⎥⎥⎥⎦

and resulting Fisher information metric I ≡ det
(
(P+k )−1

)
, using the same

substitutions (p1 = d cos θ , p2 = d sin θ and λ2 = λ1(1 − e2)) outlined above:

I = λ1(1− e2)(cos2 θ + sin2 θ)+ d2κb(d + r0)
λ2

1λ3λ4(1− e2)d2κb(d + r0)
> 0 (15.38)

for θ ∈ (0, π2 ) and partial derivative with respect to θ :

∂I

∂θ
= sin 2θ(e2)

κb(d + r0)d2λ1λ3λ4(1− e2)
≥ 0, ∀θ ∈ (0, π

2
)

"#
The preceding section has demonstrated that regardless of the sensor-type selected,
the use of the Mahalanobis metric will always yield an information gain greater
than or equal to its Euclidean counterpart. This effect is borne out in the probability
surfaces described in Sect. 15.6.2 below.

15.6 Simulation Results

In this section, we evaluate the proposed IGRCA algorithm through three separate
numerical simulation tests. The first test (Sect. 15.6.2) compares IGRCA with ECA
at a large number of test target locations in the domain of interest. Algorithms
are evaluated in terms of the probability of providing greater information gain,
and the strict inequality in favor of IGRCA is confirmed. Both point-wise and
cumulative estimates over the test area are computed, which demonstrate the
superior information gain IGRCA provides over a large number of simulated target
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positions. The second test (Sect. 15.6.3) compares the performance of IGRCA and
ECA with a globally exhaustive algorithm (CES) in terms of cumulative target state
uncertainty in multi-target tracking. Three targets, each with dynamics described in
Sect. 15.4.1 are considered. The final test (Sect. 15.6.3.3) displays the response of
the three algorithms to an increasing number of targets, measured in both cumulative
target state uncertainty and average computational time. These tests require the
definition of several performance metrics, given below.

15.6.1 Performance Metrics

1. Fisher Information: The determinant of the Fisher Information matrix, I ,
provides a direct measure of information gain from the update step. Recall
that the information utility metrics of Sect. 15.3.2, namely sensor modality and
Mahalanobis distance are aimed at reducing target state uncertainty, represented
by the covariance Pk . It is known that the determinant of the Fisher information
matrix, I = det (P−1

k ), which is nothing but the volume form of the inverse of
the Gaussian updated belief uncertainty [29], is a scalar measure of information
gain. Therefore, it is used here to compare the outcome of measurement updates
in target tracking via ECA and IGRCA.

2. Algorithm Win Probability (AWP): Given a general target location in the
sensing field, the IGRCA Algorithm Win Probability is defined as the probability
that the IGRCA cluster C provides information gain (I ) strictly greater than the
ECA cluster E . Let the optimal sensor resulting from IGRCA and ECA be SR and
SE , respectively with corresponding information gains IR and IE . Of-course,
if the target’s prior positional covariance is circular (e = 0), the Mahalanobis
and Euclidean distances are equivalent (Mk

i = |pki |), causing both clustering
algorithms to return identical clusters assuming all nodes are feasible (F = W ),
such that IR = IE . In the more general case however, i.e. for e 	= 0,
IR ≥ IE . On the basis of these observations, we conduct a Monte Carlo
simulation by drawing prior positional covariance ellipse eccentricity samples,
{ej }Nj=1 ∼ Unif ([0, 1]), to estimate the probability that IGRCA information
gain is strictly greater than ECA information gain at a given target location in the
sensing field:

AWP(xt , yt ) = P (I R > I E | x = xt , y = yt ) = 1

N

N∑

i=1

αi (15.39)

where, (xt , yt ) is a generic target location in the sensing field and αi is a binary
success indicator for when the optimal sensor lies only within the IGRCA cluster:

αi =
{

1, if S∗ ∈ C \ (C ∩ E )

0, otherwise
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Eq. (15.39) can also be used to determine a scalar cumulative measure (Cumula-
tive Win Probability, or, CWP) by sweeping over target locations over the entire
sensing domain:

CWP = P (I R > I E) = 1 − P (I R = I E)

= 1 −
∑

i,j

P
(
I R = I E | x = xi, y = yj

)
P(x = xi, y = yj )

(15.40)

where, the theorem of total probability is used to obtain Eq. (15.40). The
arguments of the preceding expressions are reversed (i.e., I E > I R) to
calculate the AWP and CWP of the ECA.

3. Trace of the Posterior Cramér-Rao Lower Bound: A scalar value that
indicates the overall amount of uncertainty for multiple target states. Sect. 15.3.2
and Fig. 15.3 both illustrate the reduction in positional uncertainty of a target
as an acceptable metric for a sensor’s utility. The posterior Cramér-Rao Lower
Bound (PCRLB) [45–47] for a Gaussian distribution with a posterior Fisher
Information matrix I is defined as J = I −1. To extend this measure to the
full state vector and for M independently maneuvering targets described by the
dynamics in Eq. (15.20), a scalar metric that corresponds to the overall amount
of state uncertainty for the target set (from Ref. [6]) is given by

trace(J−1
k ) =

M∑

i=1

trace(Ptk) (15.41)

where

J−1
k =

⎡

⎢⎣
P1
k
. . .

PMk

⎤

⎥⎦ (15.42)

is the block-diagonal matrix comprised of posterior covariance matrices for each
target at time k: Pik , where i = 1, . . . ,M . Over the course of a multi-target track-
ing application, a clustering algorithm that produces lower trace(J−1

k ) values
indicates superior performance in regards to information utility. In this work, the
identities of the targets in Sects. 15.6.3 and 15.6.3.3 below were assumed to be
known throughout each simulation run, i.e. perfect data-association is assumed.

4. Algorithm Run Time: In tracking scenarios involving maneuvering targets with
dynamic behavior, it is beneficial to implement a sensor-selection algorithm that
is computationally efficient in (a) target propagation and construction of sensor
clusters, (b) determination of the optimal sensor, and (c) sending/receiving target
information throughout the network. These parts are represented, respectively, as
cluster creation time, ζk , sensor selection time, βk , and routing time, τk , in wall-
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clock seconds. The algorithm run time (ξk) is comprised of all computing and
routing time expended to track a target for a single timestep k, ξk = ζk+βk+τk .

(a) Cluster creation time ζk is the execution time of steps 1–8 of Algorithm 3
for the IGRCA and Algorithm 1 for the ECA.

(b) Sensor selection time βk is the execution time of steps 9–10 of Algorithm 3
for the IGRCA and steps 9–11 of Algorithm 1 for the ECA.

(c) Routing time τk is the routing time derived from the number of links, ϕ,
required to transmit information between the base station and a sensor, and
was defined above in Sect. 15.3.3. In practice, this routing time is much lower
than the required update frequency, τk , f−1

Update.

Note that expanding the tracking application to account for a total number of
targets M yields a higher total algorithm run time per round of measurements,

such that
M∑
t=1

ξ tk =
M∑
t=1

ζ tk +
M∑
t=1

βtk +
M∑
t=1

τ tk . As the base station computes and

transmits information sequentially, ξ tk > ξ t−1
k > · · · > ξ1

k . In the scenario
where ξ tk > f−1

Update, the base station recognizes that targets {t, t + 1, . . . ,M}
will not be measured at time k before the next series of updates begin for time
k + 1. To account for this, targets are ranked into an ordered set Tk at the end of
each round of data fusion (time k) by the trace of their corresponding posterior
covariance matrices:

Tk = {T1, T2, T3, . . . , Ti, . . . , TM},

where trace(P1
k) ≥ trace(P2

k) . . . trace(P
M−1
k ) ≥ trace(PMk ). Targets with

higher uncertainty are prioritized for measurement in the next round (time step
k + 1) of measurements.

15.6.2 Algorithm Win Probability: Simulation

IGRCA has an advantage in terms of directly accounting for information utility
in relatively sparse fields where the target’s uncertainty ellipse is elongated, such
that the role of Mahalanobis distance to the target distribution becomes important.
To verify this, AWP (Eq. (15.39)) was computed over target locations within a
discretized sample space �T = [100 × 100]m2 with a resolution of 1 m (total
of 104 test points). Two sensor fields densities of 100 and 1000 range-only sensing
nodes were uniformly distributed over �T .

The Algorithm Win Probabilities (Eq. (15.39)) of both clustering methods over
each possible target position [xt , yt ]T ∈ �T and at varying sensor densities are
depicted as a surface plot over the test domain in Fig. 15.9. Each location on the
2D test plane is mapped according to an “Algorithm Win Indicator” value where
positive values represent the IGRCA AWP at the location. Conversely, negative
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Fig. 15.9 Uniformly distributed sensor sets W and their corresponding algorithm win probability
maps. Dots represent sensor locations. The “Algorithm Win Indicator” shows the AWP value on
each location for each clustering method. Positive values correspond to IGRCA superiority and
negative values to the ECA. (a) Sparse sensor field. (b) Dense sensor field
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values on the surface plot represent ECA AWP. The surfaces indicate that regardless
of sensor density, IGRCA is strictly better than ECA in regions of the test domain
where sensors (white dots) are sparse. While AWP describes algorithmic superiority
on a micro level, the CWP (Eq. (15.40)) provides a macro picture and is shown
for all four cases (accounting for sensor distribution and clustering algorithm) are
displayed in the titles of Fig. 15.9a, b. It is interesting to note that for a given type
of sensor distribution, the CWP appears to be largely invariant with sensor density.
The reason behind this is not clear at this point and is the subject of further research.

15.6.3 Multiple Target Tracking

Target localization uncertainty results were compiled for IGRCA, ECA and the CES
(Computationally Exhaustive Search) method. To determine the globally optimal
sensor in terms of predicted uncertainty reduction via CES,4 each feasible sensor
within Fk is iterated over with a predictive Fisher information computation and an
associated trace of the PCRLB. In the absence of lost target tracks, the uncertainty
reduction (trace(J−1

k )) provided by CES operates as a lower baseline for the
aforementioned clustering methods to be compared against.

15.6.3.1 Comparative Posterior CRLB: Various Sensor Densities

To test scalability at varying sensor field densities (see Eq. (15.10)), ten separate
uniformly distributed WSN’s, each with a base station housed at [−1 −1]T m, were
generated for each simulation of one hundred multi-target tracking simulations,
ranging from a sparse 100 sensor set to a dense field of 1000 nodes that provides the
algorithms with increased parity in regards to sensor feasibility. Each simulation
was comprised of three targets maneuvering simultaneously over a test area of
�T = [100 × 100]m2. Each sensor was assigned a randomized sensing mode
and orientation at the start of simulation. The initial state of target i, where
i = 1, 2, 3, xi0 = [xi0 yi0 ẋi0 ẏi0]T , was initialized at the start of each
simulation with initial position and velocity components randomized according
to: {xi0, yi0} ∼ Unif ([0, 100])m and {ẋi0, ẏi0} ∼ Unif ([−10, 10])m/s. A
maximum communication range of 25 m was assumed for each sensor, according
to the 802.11b wireless communication standard, along with an angular range of
π radians for the field of view and sensing range of ρi = 25 m. For the dynamics
introduced in Sect. 15.4.1, values of �T = 0.01 s, c1 = 0.75, c2 = 1, σq = 5
were used. The base station queried the sensor set for updated measurements of all
targets at a constant rate fUpdate = 10 Hz, and each tracking scenario was performed

4This study utilizes an exhaustive search to locate a single optimal sensor, as opposed to a
conventional graph neuron set.
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Fig. 15.10 Example run of three simulated targets being tracked with the IGRCA approach over
the course of 30 s

over the course of 30 s. An example of a multi-target run is presented in Fig. 15.10.
As expected from the construction of subsets Qk and Ck , the IGRCA tends to
favor sensors closer to the base station (housed near the origin of sensing grid) and
along the target’s major uncertainty axis. Regardless of sensor density, the IGRCA
consistently produced significantly lower posterior trace(J−1

k ) relative to ECA.
In environments with a low number of available sensors, the IGRCA performed
comparably with CES, as the optimal sensor is often collected in the quality filter
step of Algorithm 3. At a higher sensor density, the CES algorithm significantly
outperforms both IGRCA and ECA in maintaining a lower posterior trace(J−1

k ) (as
expected, at a higher computational cost). The mean (over all targets) trace(J−1

k )

among all runs is presented for two sensor fields in Fig. 15.11.
Therefore, as far as minimization of target uncertainty is concerned, IGRCA

significantly outperforms ECA and is on par with CES for moderate sensing field
densities. Of course, this study does not consider computational expenditure, which
is studied next, including a study of how algorithm performance varies with an
increasing number of targets.

15.6.3.2 Computational Expenditure

The algorithm run time (ξk), including its various components, i.e. clustering (ζk),
selection (βk) and routing (τk) times defined in Sect. 15.6.1 were compiled and
averaged over one hundred randomized tracking scenarios for a varying number
of targets (M = 1, . . . , 6): see Fig. 15.12. As expected, CES is unambiguously
the most expensive, regardless of target number. The bulk of its algorithm run
time lies in its clustering stage (ζk), as it must iterate through card(F ) feasible
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Fig. 15.12 Comparison of algorithm run times per timestep

sensors and perform expensive matrix inversions per each node. In contrast, the
IGRCA’s use of Mahalanobis distance as a utility metric, while not as proficient
as Fisher Information in regards to uncertainty reduction, requires much fewer
computational steps. Furthermore, the cost “filtering” via C allows the IGRCA
to benefit from consistently lower routing times, further reducing its algorithm
run time, even with an initial overhead cost included for running Algorithm 2 at
the start of each tracking simulation. Across all tracking scenarios, the ECA is
superior to the IGRCA and CES in computational expenses. If this computational
cost surpasses the measurement update limit, the ability of a centralized tracking
network to maintain low target state uncertainty is negatively impacted as pertinent
information regarding the object is not available for data fusion. Section 15.6.3.3
below reveals the resulting overall localization uncertainty when total algorithmic
run time induces the loss of measurement updates.

15.6.3.3 Comparative Posterior CRLB: Various Number of Targets

To determine the effect of an increasing number of targets on (a) algorithm
run time ξk (measured in seconds), and (b) overall level of target uncertainty
(measured in trace(J−1

k )), six scenarios were considered with an increasing number
of simultaneously maneuvering of targets (M = 1, . . . , 6). One hundred simulations
were performed on each case with every target’s initial state x̂0 randomized at the
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Fig. 15.13 Comparison of clustering methods with overall target uncertainty and number of
tracked objects. Simulations were performed on a uniformly distributed field of 400 sensors

start of each run. A sensor field of 400 uniformly distributed heterogeneous nodes
was used and the results are shown in Fig. 15.13.

Note that in all cases, the ECA incurs the highest values of trace(J−1
k ), due

to its comparably lower information utility subset of sensors. This reduced quality
is a direct result of (i) infeasible sensors that were added to the cluster, lowering
the chances to select the optimal sensor, and (ii) the sensors were not clustered
based on any information theoretic measure comparable to Mahalanobis distance or
expected differential entropy. For a small number of targets, CES returns the lowest
uncertainty as expected, because it performs a rigorous search for the optimal sensor
for each target. However, as the number of targets increases, the computational
load underlying the maximization of sensor utility can rise to the point where the
search for optimal sensors cannot be completed before the next measurement is
due, i.e. ξ tk > f−1

Update. Consequently, the cumulative uncertainty among all targets
can grow as the clustering algorithm starts missing measurement updates due to
incomplete computations. This is typically not a problem for ECA (computationally
least expensive), but can rapidly become a concern for CES (most expensive) as it
starts missing an increasing number of measurement updates, causing uncertainty
to grow. For the IGRCA and CES, algorithm run time is largely dependent on
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Table 15.1 Computation: average fraction of timesteps where missed measurement occurred

Algorithm M = 1 M = 2 M = 3 M = 4 M = 5 M = 6

IGRCA (mean tracks lost) 0 0 0 0 0 0.0143

ECA (mean tracks lost) 0 0 0 0 0 0

CES (mean tracks lost) 0 0 0 0.0032 0.0675 0.3685

the number of feasible sensors (clustering time ζk) and position of the target,
which influences routing time (τk). Table 15.1 displays the average frequency of

missed measurements over the course of a run, in
fUpdate∗(#Missed Meas.)

Simulation Time . The update
frequency was set at fUpdate = 10 Hz.

When the number of targets is small (≤3), the tracking performance of all
three algorithms is unaffected and as mentioned above, CES and IGRCA provide
comparable trace(J−1

k ), both significantly better than ECA. For six targets, CES
misses at least one target measurement roughly 36% of the time. The consequences
are noted in Fig. 15.13, where the total target uncertainty for CES exceeds that of the
IGRCA for a limited time. It was found through additional simulations that when
M = 8, the IGRCA method outperforms the CES for the entirety of the simulation.

15.7 Conclusion

This work presents a nested sensor clustering algorithm with the aim of minimizing
target uncertainty in multiple target tracking applications within a wireless sensor
field. The overall approach is to increase “sensor utility” (as characterized by the
Mahalanobis distance), while also keeping computational overhead under control.
It is rigorously shown that the new information guided algorithm outperforms the
Euclidean clustering algorithm in terms of information utility, which is based purely
on the distance of the target(s) from available sensors. At the same time, numerical
simulations reveal that the new approach is on par with globally exhaustive searches
(e.g., CES) in terms of target uncertainty reduction, which can be computationally
prohibitive as the number of targets increase. Future work will focus on improv-
ing the proposed method by accounting for unpredictable target dynamics, data
association complications, and implementing measurement reception error with
probabilistic message loss.
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Chapter 16
Data-Driven Prediction of Confidence for
EVAR in Time-Varying Datasets

Allan Axelrod, Luca Carlone, Girish Chowdhary, and Sertac Karaman

Abstract The key challenge for Dynamic Data Driven Applications Systems
(DDDAS) operating in time-varying environments is to predict when the learned
model may lose relevance. If the learned model loses relevance, then the
autonomous system is at risk of making wrong decisions. The Entropic Value
at Risk (EVAR) is a computationally efficient and coherent risk measure that can
be utilized to quantify this model relevance. The value of EVAR is calculated with
respect to an assumed confidence value; e.g., a 90% confidence may be desired for
robust decision-making. Without a model on the confidence value directly, there is
no guarantee that EVAR calculations will reflect the uncertainty present in dynamic
real-world environments. In this paper, we present a Bayesian model and learning
algorithms to predict the state-dependent confidence necessary for calculating the
EVAR in time-varying datasets. We discuss applications of the data-driven EVAR
to a monitoring problem, in which a DDDAS agent has to chose a set of sensing
locations in order to maximize the expected EVAR of the acquired data. In this way,
the DDDAS agent can learn a model on an underlying phenomenon of interest by
prioritizing the areas where the model is most likely incorrect but highly valued. We
empirically demonstrate the efficacy of the presented model and learning algorithms
on five real-world datasets. We show that, overall, the EVAR-Real-time Adative
Prediction of Time-varying and Obscure Rewards (EVAR-RAPTOR) algorithm
outperforms EVAR-Predicted Information Gain* (EVAR-PIG*) as well as naive
searches such as random and sequential search across these five real-world datasets.

A. Axelrod (�) · G. Chowdhary
Coordinated Science Lab, University of Illinois at Urbana-Champaign, Urbana, IL, USA
e-mail: allana2@illinois.edu; girishc@illinois.edu

L. Carlone · S. Karaman
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: lcarlone@mit.edu; sertac@mit.edu

© Springer Nature Switzerland AG 2018
E. Blasch et al. (eds.), Handbook of Dynamic Data Driven Applications Systems,
https://doi.org/10.1007/978-3-319-95504-9_16

381

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95504-9_16&domain=pdf
mailto:allana2@illinois.edu
mailto:girishc@illinois.edu
mailto:lcarlone@mit.edu
mailto:sertac@mit.edu
https://doi.org/10.1007/978-3-319-95504-9_16


382 A. Axelrod et al.

16.1 Introduction

Dynamic Data Driven Applications Systems (DDDAS) must select actions that
are appropriate to the environment in which they operate [1–3]. Yet, without
precise knowledge of the environment, DDDAS are at risk of selecting suboptimal
actions. Many autonomy and adaptive control architectures utilize online learning
to improve system’s environmental model. However, in time-varying environments,
learned models may lose relevance over time. The key challenge facing DDDAS
in time-varying environments is therefore to predict and quantify how quickly
environmental models lose relevance, and to take appropriate data-gathering actions
that minimizes the risk of making wrong decisions due to inaccurate environmental
models. In order to address these challenges, we must first answer what uncertainty
measure best captures changes in the environment and design data-driven stochastic
models that define how this uncertainty measure evolves over time.

In this Chapter, our goal is to lay the modeling and algorithmic foundations
for DDDAS to predict the risk of making the wrong decision in the face of time
variations. We use an exploration problem as a motivating example: our DDDAS
agent is operating in a field with N sensing locations which are measuring some
underlying time-varying phenomenon of interest (e.g., temperature, rainfall). Due
to sensing constraints, the agent can only acquire information from κ < N of these
sensing locations at each time step. Therefore, the goal of the agent is to learn a
predictive model that can help identify the subset of sensing locations which are
most likely to help the agent maintain an up-to-date model of the environment. If the
agent could determine the predictive model, then the risk of the agent overestimating
in a time-varying environment can be proactively mitigated.

In quantifying predictive uncertainty, it is natural to use variance (VAR) or
distribution tail probabilities. While such measures describe an expected distance
of a sample from the mean of the current stochastic model, neither address how the
stochastic model changes as a result of new observations. By contrast, uncertainty
measures such as the information gain [4], the entropic value at risk (EVAR) [5], and
the conditional value at risk (CVAR) [6] all describe uncertainty in how the model
will change due to new observations.

While both CVAR and EVAR provide an intuitive bound on how the expectation
of our model changes due to new observations, EVAR is more computationally
efficient than CVAR and is the tightest upper bound on CVAR when both have the
same confidence γ [5]. As we will show, EVAR can also incorporate the information
gain, and so we examine EVAR as a comprehensive measure of the uncertainty.

Our main contribution is a Bayesian model and learning algorithms for predicting
the spatio-temporal evolution of the EVAR (in our running example, this is our risk
of over-estimation at each sensing location). We first present a generalization of
the Poisson Exposure Distribution (Ped) [7, 8], which we call the Poisson exposure
process (Pep). Then, we use Pep to model the evolution of the information gain term
in the EVAR.
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The Pep is a useful form of the Lévy process because it has the same domain as
the information gain term in EVAR and because it has an analytical Bayesian update;
moreover, we can establish probabilistic accuracy guarantees on the corresponding
information gain estimate. which we show affords probabilistic accuracy guaran-
tees. The key advantage of the Pep is that it allows us to overcome the assumption of
identically distributed samples utilized in algorithms such as Predicted Information
Gain (PIG) [9]. We develop an EVAR-variant of our Real-time Adaptive Prediction
of Time-varying and Obscure Rewards (RAPTOR) algorithm [10] called (EVAR-
RAPTOR). We show that the EVAR-RAPTOR algorithm outperforms the EVAR
exploration variant of PIG, as well as sequential and random search, in simulations
over four real-world datasets.

The rest of this paper is structured as follows. Section 16.2 provides preliminary
concepts and formally introduces the information gain and the EVAR. Section 16.3
presents our problem formulation, tailoring it to an exploration problem (analogous
to steering for DDDAS). Moreover, it presents our Pep-based model for the
evolution of the information gain and, by extension, of the EVAR. Section 16.4
gives practical algorithms to predict the EVAR and established formal performance
guarantees for them. Section 16.5 compares the proposed algorithms against related
approaches. Section 16.6 concludes the chapter.

16.2 Preliminaries

This section reviews relevant probabilistic inequalities (Sect. 16.2.1), properties of
Lévy processes (Sect. 16.2.2), and the definition of information gain (Sect. 16.2.3)
which is used in the definition of the entropic value at risk (Sect. 16.2.4).

16.2.1 Probabilistic Inequalities

Here we review the Chebyshev inequality (Lemma 1) and the Bienaymé-Chebyshev
inequality (Lemma 2).

Lemma 1 (Chebyshev Inequality [11]) Let the random variables Z(t1), . . . ,

Z(tn) ∈ [0,+∞) be independent trials. Let Z̄ = ∑n
j=1 Z(tj ) and μ = E(Z̄).

Then for any k > 0,

Pr(|Z̄ − μ| ≥ k) ≤ VAR(Z̄)

k2 . (16.1)

The Chebyshev inequality in Lemma 1 is defined in terms of the summation of
random variables. Hence, a sampling bound obtained directly from the Chebyshev
inequality bounds the cumulative error between all expected and sampled random
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variable values, rather than the error of an individual sample. In contrast, the
Bienaymé-Chebyshev inequality, reviewed in Lemma 2 below, provides a bound
on individual samples.

Lemma 2 (Bienaymé-Chebyshev Inequality [11]) Let the random variables
Z(t1), . . . , Z(tn) ∈ [0,+∞) be independent and identically distributed trials. Let
Z̄ = 1

n

∑n
j=1 Z(tj ) and μ = E(Z̄). Then with k > 0,

Pr
(∣∣Z̄ − μ∣∣ ≥ k) ≤ VAR(Z̄)

nk2 . (16.2)

In the rest of this work, we are going to use similar inequalities to quantify how
well the system is able to predict the information gain at a given sensing location.
The guarantees offered by the Bienaymé-Chebyshev inequality are desirable,
namely it provides error bounds on the next sample. One limitation, however, lies in
the fact that the samples are required to be identically distributed; this is undesirable
in this context, since we want to study time-varying distributions that are sampled
over time. In Sect. 16.4 we extend the Bienaymé-Chebyshev inequality to account
for non-identically distributed samples.

16.2.2 Lévy Process

Here, we review the properties of Levy processes and how these properties allow
the information gain to be modeled as a random variable. A Levy process Z for the
random variable Z has the following properties for incrementsΔZ(Δt) > 0 [12]:

1. Z has independent and stationary increments,
2. ΔZ(0) = 0 with probability one,
3. ∀ k > 0 and ∀ Δt > 0, lim

Δt→0
f (ΔZ(Δt) > k) = 0.

Property 2 is crucial as it shows that a Lévy process can incorporate deterministic
realizations of a stochastic process. To briefly illustrate this, let’s say that we observe
a realization of ΔZ. At the time of the observation, the value Δt becomes 0,
while the value of Δt had formerly been positive prior to the observation. Then,
by Property 2,ΔZ(Δt) whenΔt = 0 is deterministic, whileΔZ(Δt) whenΔt > 0
is stochastic.

16.2.3 Information Gain and Exploration

Exploration can be viewed as an information-collecting task, hence a means of
quantifying the information collected is essential to guide decision-making for
exploration. Exploration strategies conventionally use some form of the posterior
variance [13–17] or the information-entropy [18–24] to quantify the information
gained by a given action. While both strategies make intuitive sense, they are
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mathematically imprecise descriptors of the information gain which, due to a
theorem of uniqueness in information theory [4], is defined as

I (P (Y )||P0(Y )) =
∫

P(Y ),P0(Y )

P (y) ln
P(y)

P0(y)
dy. (16.3)

Here, Y is a random variable, P0(Y ) is a given prior distribution, P(Y ) is the
posterior distribution (after the exploration action is undertaken), and P(Y ) ,
P0(Y ) (i.e., P(Y ) is absolutely continuous with respect to P0(Y )) which means that
P0(Y = c) = 0 implies that P(Y = c) = 0.

16.2.4 Entropic Value at Risk (EVAR) Risk Measure

A risk measure assigns a real value to a random variable Y that quantifies the uncer-
tainty associated with a variable. Examples of risk measures include value-at-risk
(VaR), variance (VAR), and Conditional Value at Risk (CVAR). Ahmadi-Javid [5]
introduced the Entropic Value at Risk (EVAR) measure that addresses computational
and coherency shortcomings of VAR and CVAR.

The EVAR of a real-valued random variable Y , with confidence level 1−γ (with
γ ∈ (0, 1]), is defined as

EVAR1−γ (Y )
.= inf
θ>0
{θ−1 ln

(
EP0

[
eθY
]
/γ
)
} . (16.4)

The importance of the EVAR lies in the fact that, with confidence level 1 − γ , it
upper bounds the value of the posterior expectation [5]:

EVAR1−γ (Y ) = sup
P(Y ),P0(Y )

I (P (Y )||P0(Y ))≤− ln(γ )

{EP (Y )}. (16.5)

Therefore, predicting the EVAR would help to upper-bound uncertainty in a time-
varying environment. The Donsker-Varadhan variational formula is used to prove
the dual form of EVAR and will be useful to defining a data-driven EVAR. Hence,
we use the Donsker-Varadhan variational formula.

Lemma 3 (Donsker-Varadhan Variational Formula (In Lemma 3.1 of [5]))

ln
(
EP0[eX]

) = sup
P,P0

{EP [X] − I
(
P(x)||P0(x)

)}. (16.6)

In this work, we will be using the following form of Lemma 3,

ln
(
EP0[eX]

)+ I(P(x)||P0(x)
) = sup

P,P0

{EP [X]}. (16.7)
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16.3 Formulation: Exploration as Multi-play N-Armed
Restless Bandits

In this Chapter, we consider the following exploration problem: there exists a set of
N sensing locations in a spatial domain from which we may observe a time-varying
phenomenon. We denote the set of all sensing locations as Ω

.= {1, . . . , N}. In
particular, each sensing location i ∈ Ω is associated to a stochastic process Yi that
we want to estimate. At each time t , sensor i observes a sample yi(t) of the process
Yi . However, due to resource constraints (e.g., cost), we cannot acquire samples
from all the N sensors but only from a subset of them, i.e., we can only observe
the outcome of κ ≤ N sensors, where κ is a given upper bound. Therefore, the
problem we address in this Chapter is learning how to select the subset ofΩ , having
cardinality κ , where the phenomena Yi exhibit the greatest change, as quantified by
EVAR. Note that while for clarity of presentation we tailor our problem formulation
to a sensing task, the formulation can be extended to model risk-aware applications
in mobile robotics, or asset selection in portfolio optimization.

16.3.1 Multi-play N-Armed Restless Bandit Formulation

In our formulation, we focus on the exploration task, where only κ ofN ≥ κ sensing
locations may be sampled at any given time instant t (episode) within the sensor set
Ω . Feedback from the selected subset of sensors S %(t) ⊂ Ω is used to update
the models of each time-varying process Yi . We also associate a second stochastic
process to each sensing location, which models the evolution of the information gain
at each location. We denote this information gain process with the symbol Zi , for
all i ∈ Ω . For simplicity, each sensor location i ∈ Ω is assumed to be statistically
independent.

Similar to previous work [10, 25–28] we model the exploration problem as a
multi-play N-armed restless bandit problem. In this formulation, each arm of the
bandit corresponds to a sensor i ∈ Ω . Therefore, the overall goal is to select the best
set of κ bandit arms such that some measure on exploration reward is optimized. We
call S %(t) the set of sensing locations (arms) selected at time t .

The key difference with respect to our previous work is that we learn to select the
subset of arms with the most entropic value at risk (EVAR), rather than selecting the
subset with the largest information gain [10, 25–27]. Intuitively, since the sensing
locations observe time-varying phenomena, the EVAR at a given location changes
over time. Therefore, our goal is to use a data-driven approach that can dynamically
learn which sensing location is best to sample.

More formally, the objective of our exploration policy is to maximize the total
EVAR obtained in each episode of the exploration task. This can be achieved by
visiting the sensing locations which are expected to have the most EVAR:
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S %(t)
.= argmax

S⊂Ω
∑
i∈S E

[
EVAR1−γi (Yi)

]

subject to Card(S ) = κ,
(16.8)

where Card(·) denotes the cardinality of a set. In Sect. 16.4 we go one step further
and we provide probabilistic bounds that assess the quality of our EVAR estimate
at each location. This allows discussing when the “informed policy” of Eq. (16.8)
is expected to perform better than a naive policy (e.g., random or sequential sensor
selection).

16.3.2 Data-Driven EVAR

Conventionally, EVAR is calculated using an assumed confidence level γ . However,
for time-varying environments, it is critical that a data-driven confidence level be
implemented. To reach a data-driven confidence γ for EVAR, we will first present
an equivalent form of EVAR by adding the constraint (I (P (Y )||P0(Y ) ≤ − ln(γ ).)
from (16.5) to the Donsker-Varadhan variational formula in Lemma 3; i.e.,

EVAR1−γ (Y ) = ln
(
EP0

[
eY
])
− ln(γ ) = sup

P(Y ),P0(Y )
I (P (Y )||P0(Y ))≤− ln(γ )

EP [Y ]. (16.9)

We will next show that (16.7) is the lower-bound case of EVAR across all confidence
levels γ . We define the lower-bound confidence γ % ≤ γ as

γ %
.= e−I (P (Y )||P0(Y )) ≤ γ. (16.10)

We insert γ % into (16.9) to yield

EVAR1−γ %(Y ) = ln
(
EP0

[
eY
])
− ln(γ %) ≤ EVAR1−γ (Y ). (16.11)

We include explicit definition of γ % into the previous equation to obtain

EVAR1−γ %(Y ) = ln
(
EP0

[
eY
])
+ I (P (Y )||P0(Y )), (16.12)

which is equivalent to (16.7).

16.3.2.1 Requirement for Predicting Data-Driven EVAR

It is now clear that, in order to predict the data-driven EVAR1−γ % , we need to learn
a model of the information gain I (P (Y )||P0(Y )). In the following section we show
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how to model the information gain as a Lévy process Z = I (P (Y )||P0(Y )); since
in our case we have N processes (one for each sensing location), we define Zi =
I (P (Yi)||P0(Yi)), and, we rewrite the policy (16.8) as:

S %(t)
.= argmax

S⊂Ω
∑
i∈S
(
E

[
Zi

]
+ ln

(
EP0(e

Yi )
))

subject to Card(S ) = κ,
(16.13)

16.3.3 Modeling the Information Gain

The data received as yi ∼ Yi from the selected subset of sensors, S %(t), informs
our model on the data process Yi . Similarly, the information gain zi of the data yi
informs our model on the information process Zi . Formally, we use the following
hierarchical model, with additional discussion on this model in the beginning of
Sect. 16.5.3,

yi ∼ Yi
zi ∼ Zi |yi . (16.14)

We model Zi as a stochastic variable to form a predictive model on what the
information gain of our next sample will be at location i. In Sect. 16.3.3.2 we
describe the stochastic model that we use to describe the evolution of Zi . Our
model is based on the Poisson Exposure Distribution (Ped), which we recall
in Sect. 16.3.3.1.

16.3.3.1 Poisson Exposure Distribution (Ped) Likelihood

The Ped was introduced by [7] to model a continuous and monotonically increasing
output resulting from a Poisson-distributed input. Since the Ped likelihood has a
similar domain to the information gain and its expectation equivalently represents
the average information gain used in [9], the Ped likelihood will be integral in
forming a comparable baseline algorithm.

Definition 1 The probability density function of the Ped is defined as

f (z) = CΛ Λze−Λ

�(z+ 1)
, (16.15)

where Λ > 0 is the distribution mean, CΛ is the normalizing constant, z ∈ R is the
random variable, and � is the gamma function.

Moreover, the Ped has an analytical Bayesian update using the Gamma distribu-
tion, which models the parameter Λ.
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Fact 1 The Gamma distribution is a conjugate prior of the Ped such that

G(Λ|α + z, β + 1) ∝ Ped (z|Λ)G (Λ|α, β) . (16.16)

where G(Λ|α, β) is the Gamma distribution with shape parameter α and rate
parameter β.

Proof See Proposition 1 in [10] for details.

16.3.3.2 Poisson Exposure Process (Pep) Model

Since we are interested in modeling a time-varying information gain at each sensing
location in our environment, we must generalize the Ped to incorporate time as a
dependent argument. The hidden Markov model (HMM) for the Ped as proposed
in [7] parallels our problem where we cannot observe so-called informative events
arriving at each location. However, we depart from [7] to extend the Ped to model
phenomena that are dependent upon non-constant time intervals.

Definition 2 The probability density function of the Pep is defined as

f (z|Λ(t)) = CΛ(t) (Λ(t))
ze−Λ(t)

�(z+ 1)
, (16.17)

where Λ(t) is the time-varying mean, CΛ(t) is the normalizing constant, and z ∈ R

is the random variable. A Pep is called homogeneous if d
dt
Λ(t) = λ ∀ t , otherwise

the Pep is called inhomogeneous.

In [7], the maximum likelihood estimate of the Poisson exposure distribution, and
therefore the Pep by extension, was found to be highly nonlinear. However, as
Definition 2 mathematically is similar in form to the Poisson process in (16.17), we
show that the conjugate prior of the Pep is identical to that of the Poisson process as
shown in Fact 2.

Fact 2 The gamma distribution is a conjugate prior of the homogeneous Poisson
exposure process (Pep) such that

G(λt |α + z, β + t) ∝ Pep (z|λt)G (λt |α, β) . (16.18)

Proof See Corollary 5.1 in [10] for details.

16.4 Algorithms and Probabilistic Guarantees

While Facts 1 and 2 provide a simple analytical update for the homogeneous Pep,
we still need to demonstrate conditions when the homogeneous Pep model will
be provably accurate. Until we have a provably accurate regression, we cannot
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rely on information-driven (informed) exploration using the Pep. Hence, we adopt
the strategy of uninformed-to-informed exploration, where we start performing
the exploration task with a sequential search strategy (an uninformed policy) and
transition to an informed policy once provable accuracy guarantees are available.

To prove probabilistic accuracy guarantees, we leverage the Chebyshev and
Bienaymé-Chebyshev inequalities. The guarantees offered by the Bienaymé-
Chebyshev inequality are desirable, namely that we now have error bounds on
the next sample. Moreover, the independent and identically distributed condition
is satisfactory for time-invariant distributions such as the Ped, which we show in
Sect. 16.4.1. However, we are also interested in error bounds for our next sample in a
time-varying environment. Therefore, we theoretically derive incremental variable
changes (which are ideally suited for the homogeneous Pep) for the Chebyshev
inequality, hence relaxing the assumption of identically distributed samples.

16.4.1 The Time-Invariant Case: Ped-Based Exploration

The regression in the Predicted Information Gain (PIG) algorithm [9] calculates the
information gain for a sensing location i as the expectation of the random variable
Zi which models our belief over the information gain at each location:

E[Zi] = 1

ni

ni∑

j=1

Zi(tj ) (16.19)

where (16.19) is a time-invariant expectation. As only the expectation in (16.19)
is used to drive the PIG algorithm to explore, we may equivalently use the Ped
regression from Fact 1 in place of (16.19). As in our prior work in the prediction of
the information gain [26, 27], we must modify the PIG algorithm from [9] into PIG*
to facilitate a fair comparison to RAPTOR. In this work, we further modify PIG* to
become EVAR-PIG* (Algorithm 1) to facilitate a fair comparison with our proposed
algorithm, EVAR-RAPTOR (Algorithm 2). To provide a probabilistic bound for
the Ped analytical update of PIG* shown in Fact 1, we leverage the Bienaymé-
Chebyshev inequality.

Theorem 3 (Chebyshev Inequality for PIG, k = �) Let Z(t1), . . . , Z(tn) be
independent and identically distributed Poisson exposure distribution trials. Let
Z̄(tn) = 1

n

∑n
j=1 Z(tj ) and Λ = E[Z̄(tn)]. Then,

Pr
(|Z̄ −Λ| ≥ Λ) ≤ 1

nΛ
. (16.20)

Proof This proof proceeds along the line of the proof of Theorem 5, but where
k = λ and noting that β = n.
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Using the results from Theorem 3, we develop an uninformed-to-informed explo-
ration bound for PIG in Corollary 1.

Corollary 1 (Accuracy Bound for PIG, k = �) If the environment statistics
are time-invariant, then, given an accuracy threshold 0 < c ≤ 1, it holds
Pr
(|Z̄ −Λ| ≥ Λ) < c if the following condition is satisfied:

nb >
1

Λbc
, with b = argmax

i

1

niΛi
, (16.21)

where ni is the number of samples at location i and Λi is the Ped mean.

Proof This proof proceeds along the line of the proof of Corollary 2, but where the
left hand side is Pr(|Z̄ −Λ| ≥ Λ) and β = n.

Algorithm 1 EVAR-PIG*
Input: sensor set Ω = {1, . . . , N}, subset size κ
Initialize (αi , βi ,Λi, ni)← 0 ∀ i
for each time t and for each sensor i do

E[EVAR1−γ %i ] ← Λi + ln
(
Eni

[
ecY
])

if Corollary 1 then
S (t)← (16.13)

else
S (t)← Sequential sampling

end if
if i ∈ S (t) and ni=1 then

Initialize belief on Yi
else

Update belief on Yi (16.38) ∀ i ∈ S (t)

if min
i
ni ≥ 2 then

Update belief Λi (16.16) ∀ i ∈ S (t)

end if
end if
ni ← ni + 1 ∀ i ∈ S (t)

end for

Corollary 1 is the accuracy condition that we implement for the uninformed-
to-informed variant of the PIG algorithm, shown in Algorithm 1. Note that the
informed exploration variant of PIG is simply Algorithm 1 for this class of
bandit problems when the accuracy threshold is assumed to be satisfied upon the
initialization of the PIG algorithm [9].
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16.4.2 The Time-Varying Case: Pep-Based Exploration

Since Corollary 1 is only valid in an environment with time-invariant statistics,
we are compelled to develop an analogous result which is valid in time-varying
environments. Before we derive probability bounds for the Pep, we briefly review
the properties of a Lévy process [12] for the increment ΔZ(Δt) > 0 in the random
variable Z:

1. ΔZ has independent and stationary increments,
2. ΔZ(0) = 0 with probability one,
3. ∀ a > 0 and ∀ Δt > 0, lim

Δt→0
P(ΔZ(Δt) > a) = 0.

The above properties are used in Theorem 5 and Corollary 2 below.

Lemma 4 (Chebyshev Inequality) [11], k = λ Let ΔZ(t1), . . . , ΔZ(tn) > 0 be
independent Poisson exposure process increments so that Pr(ΔZ(ti)) = pi . Let
Z̄(tn) =∑n

j=1ΔZ(tj ) and Λ(tn − t1) = λβ = E[Z(tn)]. Then,

Pr
(|Z̄ − λβ| ≥ λ) ≤ 1

λ
. (16.22)

Since we are using a homogeneous Pep with stationary increments, we may
extend Lemma 4 to provide a sequential-in-time bound as shown in Lemma 5.

Lemma 5 (Time Inequality, k = λ) Let ΔZ(t1), . . . , ΔZ(tn) > 0 be indepen-
dent Poisson exposure process increments so that Pr(ΔZ(ti)) = pi . Let Z̄(tn) =
1
tn

∑n
j=1ΔZ(tj ) and d

dt
Λ(Δt) = λ = E[Z̄(tn)]. Then,

Pr
(|Z̄ − λ| ≥ λ) ≤ 1

λβ
. (16.23)

Proof From Lemma 1, we know that

Pr(|Z̄ − μ| ≥ k) ≤ V ar(Z)

k2
. (16.24)

Inserting the mean and variance of our gamma distribution model on homogeneous
Pep into (16.24) yields

Pr(|Z̄ − α

β
| ≥ k) ≤

α
β2

k2
, (16.25)

which simplifies to

Pr(|Z̄ − λβ| ≥ k) ≤ λ

βk2 . (16.26)
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In assigning, λ = k, we resolve the proof.

Pr(|Z̄ − λβ| ≥ λ) ≤ 1

λβ
. (16.27)

We now consider a so-called bi-homogeneous Pep withΛ(Δt,Δn) = λtn, where λ
is the information gain per unit-time per sample (i.e., d

dt
d
dn
Λ(t, n) = λ ∀ t, n > 0).

We further propose a gamma posterior distribution model for the bi-homogeneous
Pep under consideration as

G

(
λ | αi = α(i,1) + α(i,2)

2
, βi = β(i,1)β(i,2)

)
, (16.28)

where an analytical update for the parameters is given in Fact 4.

Fact 4 The parameters for the proposed gamma distribution in (16.28) are
analytically updated such that

G
(
λΔt |α(i,1) + z, β(i,1) +Δt

) ∝ Pep (z|λΔt)G (λΔt |α(i,1), β(i,1)
)

G
(
λΔn|α(i,2) + z, β(i,2) +Δn

) ∝ Pep (z|λΔn)G (λΔn|α(i,2), β(i,2)
) (16.29)

Proof The proof follows directly from Fact 2.

A key benefit of the bi-homogeneous Pep here is that we can derive a tighter
inequality which does not require identically distributed samples, as stated in
Theorem 5.

Theorem 5 (Chebyshev Inequality for RAPTOR, k = λ
3
4 ) Let ΔZ(t1), . . . ,

ΔZ(tn) > 0 be independent Poisson exposure process increments. Let Z̄(tn) =
1
ntn

∑n
j=1ΔZ(tj ) and d

dt
d
dn
Λ(Δt,Δn) = λ = E[Z̄(tn)]. Then,

Pr
(∣∣Z̄ − λ∣∣ ≥ λ 3

4

)
≤ 1√

αβ
= 1√

αn(tn − t1) , (16.30)

where α and β are both defined in (16.28).

Proof From Chebyshev’s inequality, we know that

Pr(|Z̄ − μ| ≥ k) ≤ VAR(Z̄)

k2 . (16.31)

Inserting the mean (λ = α
β
) and variance ( α

β2 ) of our gamma distribution model on
homogeneous Pep into (16.31) yields

Pr(|Z̄ − λ| ≥ k) ≤
α
(β)2

k2 , (16.32)
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which simplifies to

Pr(|Z̄ − λ| ≥ k) ≤ λ

βk2 . (16.33)

In assigning, k = λ
3
4 and noting that β = n(tn − t1) due to (16.28), we resolve the

proof:

Pr(|Z̄ − λβ| ≥ λ 3
4 ) ≤ 1√

αβ
= 1√

αn(tn − t1) . (16.34)

Remark 1 (On the selection of k in Theorem 5) We select k in terms of λ such that:
(1) the error bound is constant and (2) the probability bound decreases with the total
sampling time, number of samples, and increase in information gain. This limits the
selection of k to λ with an exponent between 1

2 to 1, non-inclusive.

While our sample and time inequality in Theorem 5 provides an error bound
for learning a single bi-homogeneous Pep, it does not yet provide a condition for
the transition between uninformed and informed exploration across all bandit arms.
This is given in the following corollary.

Corollary 2 (Accuracy Bound for RAPTOR) If the environment statistics
are time-varying, then, given an accuracy threshold 0 < c ≤ 1, it holds

Pr
(
|Z̄ − λ| ≥ λ 3

4

)
< c if the following conditions are satisfied:

tnb > t1b +
1

nbαbc2
, and

1√
αbβb

< c (16.35)

where b = argmax
i

1√
αiβi

, ni is the number of samples at location i, αi is the

total increase in the information gain at location i, and βi is the total duration
that location i has been observed.

Proof When the right-hand side of (16.34) is between 1 and 0, we have meaningful
guarantees on the error of our regression; i.e., when

1√
αbβb

< c, (16.36)

where 0 < c ≤ 1 and β = n(tn − t1). Then meaningful guarantees are available at
a sensing location i when

tni > t1i +
1

niαic2
. (16.37)



16 Data-Driven Prediction of Confidence for EVAR in Time-Varying Datasets 395

Consequently, meaningful guarantees are available across the entire sensing domain
once tni > t1i + 1

nbαbc
2 , where b = argmax

i

1
niαic

2 .

The bound in Theorem 5 extends the Chebyshev inequality such that a result
analogous to the Bienaymé-Chebyshev inequality is achieved, but where samples
need not be identically distributed. Moreover, guarantees on the bi-homogeneous
Pep regression by Theorem 5 provide a principled condition for transitioning from
uninformed exploration to informed exploration in Corollary 2.

Algorithm 2 EVAR-RAPTOR
Input: sensor set Ω = {1, . . . , N}, subset size κ
Initialize (αi , βi , λi , ni ,Δti)← 0 ∀ i
for each epoch at time t and for each sensor i do

E[Zi |Δti,Δni ] ← λiΔtiΔni + Zi(tni )+ ln
(
Eni

[
ecY
])

if Corollary 2 then
S (t)← (16.13)

else
S (t)← Sequential sampling

end if
if i ∈ S (t) and ni=1 then

Initialize belief on Yi
else

Update belief on Yi (16.38) ∀ i ∈ ηt
if min

i
ni ≥ 2 then

Update belief λi (16.29) ∀ i ∈ ηt
end if

end if
ni ← ni + 1 ∀ i ∈ S (t)

Δti ← Δti + 1 ∀ i ∈ S (t)

end for

16.5 Experimental Evaluation

The empirical results in this section quantify the advantage of our proposed risk-
aware strategy. The risk-aware performance of each algorithm is assessed in terms
of the maximum available EVAR at each time step of the simulation; this maximum
value is assessed in an omniscient post-processing of the data.

16.5.1 Evaluation Setup

For our experiments, we use the Intel Berkeley temperature dataset [29], the
European Research Area (ERA) temperature dataset [30], the Ireland windspeed
dataset [31], the Washington rainfall dataset [32], and the Clean Air Status and
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Fig. 16.1 Both the Intel (indoor) and ERA (outdoor) temperature datasets are shown. (a) The Intel
research lab in Figure 16.1a shows 54 sensors, but the data file from [29] has 58 sensor feeds in
their data file. Due to sensor quality constraints, we use 52 of the 58 sensor feeds. The temperature
is recorded in Celsius. (b) The magnitude, in Celsius, of anomalies in the European Research Area
(ERA) interim datset, relative to the means of the ERA-interim dataset for the year 2010 is shown
[34]

Trends Network (CASTNet) Ozone concentration dataset [33]. Each dataset reports
the evolution of an environmental variable (e.g., temperature) at N geographic
locations.

The Intel Temperature dataset contains the temperature measured (in Celsius)
of the Intel lab at Berkeley between February 29th and April 5th of 2004 [29]. Due to
quality of the recorded data, and to the presence of short or corrupted sensor feeds,
we use approximately 5 days worth of data across 52 sensor feeds; i.e., N = 52.

The European Research Area (ERA) temperature dataset contains the mea-
sured temperature at an altitude of 2 meters around the world. We use data between
January 1st 2011 to January 1st 2014 [30]. We limited our analysis to 50 randomly
selected sensor feeds and a subset size of 6; i.e., N = 50 and κ = 6 (Fig. 16.1).

The Ireland windspeed dataset contains measured windspeed (in meters per
second) at 12 stations across Ireland between 1961–1978 [31]. We use all 12 sensing
stations for experimentation and a subset size of 2; i.e., N = 12 and κ = 2.

The Washington rainfall dataset (in millimeters) has 272 sensing locations
across Washington state from 1949–1994 [32]. We use 25 locations, since not all
areas received rain, and a subset size of 2; i.e., N = 25 and κ = 2 (Figs. 16.2
and 16.3).

The CASTNet ozone dataset (in parts per billion) has 80 operational sensing
locations, of which we use N = 60 locations based on the duration of data available
at each site. The dataset reports the 8-h daily maximum ozone concentrations which
were compressed and missing entries in the monthly dataset were filled using the
average concentration for that year [33]. As the dataset is originally based on the 8-
h maximum concentrations of ozone, this dataset particularly suits the use of EVAR
as an uncertainty measure. The CASTNet data used spans 16.5 years, from halfway
through 1995 to the end of 2011.

We create additional simulated datasets, by applying a scaling factor d to each
random variable in the five real-world datasets mentioned above. The original
data, which would have been paired with a scaling factor of d = 1 resulted in
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Fig. 16.2 The Ireland windspeed (left) and Washington rainfall (right) datasets are shown. (a) The
Windspeed in Ireland was measured in knots and on an hourly basis at 12 sensing stations between
the years 1961–1978. (b) The Washington rainfall dataset records rainfall in centimeters. The data
was recorded between 1949 and 1994 on a daily basis. The 272 sensors are denoted by the asterisks
on the map

computational memory shortages due to the large values of eY , and were therefore
excluded. However, scalings ranging from d = 10−5 and d = 10−1 were usable on
a machine with 8GB of RAM.

16.5.2 Assumptions on Prior and Posterior Distributions

The environmental variables Yi are modeled using a normal distribution at each
sensing location i. For each sample received, we calculate the frequentist variance
σ 2
i of the normal distribution. Using the calculated variance, we apply the following

Bayesian update for the normal distribution

μ(p,i) =
ni
σ 2
i

μ(P00,i) + yi

σ 2
(P00,i)

ni
σ 2
i

+ σ−2
(P00,i)

andσ 2
P0
=
(
σ−2

ni
+ σ−2

P0

)−1

, (16.38)

where μ(p,i) is the posterior mean, μ(p0,i) is the prior mean, σ 2
(p,i) is the posterior

variance, σ 2
(p0,i)

is the prior variance, and yi is the sample mean [35]. The
information gain of the posterior normal distribution is then computed as
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Fig. 16.3 An example of the CASTNET Ozone concentration dataset, with data in parts per
billion, is shown above [33]

I (P (Y )||P0(Y )) = 0.5

[
ln

(
σ 2
P0

σ 2
P

)
+ tr

[(
σ 2

P0

)−1
σ 2

P

]
− 1

+ (μP − μP0

)T (
σ 2

P0

)−1 (
μP − μP0

) ]
, (16.39)

where 1 is the dimensionality of the data which we use for experiments [36]. We
then calculated the EVAR as

EVAR1−γ % = ln
(
EP0(e

dY )
)
+ I (P (dY )||P0(dY )), (16.40)

where γ % = e−I (P (dY )||P0(dY )) is the lower bound of γ and d is the scaling
parameter.
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16.5.3 EVAR-Seeking Algorithms and Results

This section discusses the performance of the proposed learning algorithm, EVAR-
RAPTOR (Algorithm 2). To ensure clarity, we briefly state the impact of scaling our
random variable Y on EVAR1−γ %(Y ). From (16.40), we see that EVAR1−γ %(Y ) is
calculated using an expectation on eY using a prior belief P0(Y ) and the information
gain I (P ||P0). We outline the properties of both parts of EVAR1−γ %(Y ) below.

The expectation, itself, on the prior belief EP0[eY ] is not a random variable. By
contrast, when only the prior P0 is known for the information gain I (P ||P0), then
the information gain becomes a conditional expectation on a function of a random
variable; i.e., I (P ||P0|P0) = EP [ln

(
P
P0

)|P0], where a conditional expectation
is a random variable. Unlike the expected value based on the prior belief, the
information gain is also scale-invariant. As a result, the information gain is a scale-
invariant random variable. Moreover, each different scaling d applied to our random
variable Y serves to transition from EVAR1−γ %(Y ) being dominated by the prior
belief EP0[eY ] to being dominated by the information gain I (P ||P0).

While in (16.40) a change in the scaling parameter d affects the value of
ln
(
E
[
edY
])

, it does not affect the value of the information gain, I (P (dY )||P0(dY ))

[37]. As ln
(
E
[
edY
])

is an expectation based on the prior in (16.38), it is determinis-
tic and given. Hence, as the scaling parameter d increases, the proportion of EVAR
that is stochastic decreases. Resultantly, if the regression for the information gain
is accurate, then we should see a consistent EVAR prediction performance across a
range of values for the scaling parameter d across all datasets.

Although sequential and random sampling methods allocate statistically even
sensing effort, their performance is highly inconsistent across the five datasets. This
motivates the use of information-driven approaches to predict EVAR; i.e., EVAR-
PIG* and EVAR-RAPTOR. It is immediately clear from Figs. 16.4, 16.5, 16.6, 16.7
and 16.8 that both EVAR-PIG* and EVAR-RAPTOR outpeform sequential and
random sampling across all five datasets and variable scalings. It is important to
emphasize that the regressions and derived bounds used for (16.39) distinguish
the empirical performance of EVAR-PIG* and EVAR-RAPTOR. Since, overall,
EVAR-RAPTOR outperforms all baseline algorithms across the five datasets and
all scalings, we conclude that the bi-homogeneous Pep regression is the key reason
for the performance increase.

However, a single contradictory result in Fig. 16.7a shows that EVAR-PIG*
outperforms EVAR-RAPTOR for a particular set of conditions in the Washington
rainfall dataset; i.e., a scaling of d = 10−1, subset κ = 2 and set N = 25. It
is worth noting that it is known that RAPTOR outperforms PIG* in predicting
the information gain; this, in combination with the fact that the information gain
is scale-invariant, means that the difference in performance is largely due to
the expected values of the prior belief; i.e., that the EVAR of the Washington
rainfall dataset is mostly stationary when a scaling of d = 10−1 is used. This
helps to explain why EVAR-PIG* also has performance closely matching that of
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Fig. 16.4 The EVAR-RAPTOR algorithm outperforms all baselines and has the most consistent
performance across all scalings of the Intel temperature dataset. (a) Regret of scaling d = 10−1.
(b Regret of scaling d = 10−2. (c) Regret of scaling d = 10−3. (d) Regret of scaling d = 10−4.
(e) Regret of scaling d = 10−5. (f) Regret of each scaling

Fig. 16.5 The EVAR-RAPTOR algorithm outperforms all baselines and has the most consistent
performance across all scalings of the ERA daily temperature dataset. (a) Regret of scaling
d = 10−1. (b) Regret of scaling d = 10−2. (c) Regret of scaling d = 10−3. (d) Regret of scaling
d = 10−4. (e) Regret of scaling d = 10−5. (f) Regret of each scaling

EVAR-RAPTOR when the scaling is changed to d = 10−2 in Fig. 16.7b, but then
EVAR-PIG* becomes steadily less competitive as the scaling decreases further,
remembering that the scaling affects the stochasticity of EVAR.
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Fig. 16.6 The EVAR-RAPTOR algorithm outperforms all baselines and has the most consistent
performance across all scalings of the Ireland windspeed dataset. (a) Regret of scaling d = 10−1.
(b) Regret of scaling d = 10−2. (c) Regret of scaling d = 10−3. (d) Regret of scaling d = 10−4.
(e) Regret of scaling d = 10−5. (f) Regret of each scaling

Fig. 16.7 The EVAR-RAPTOR algorithm has the most consistent performance across all scalings
of the Washington rainfall dataset, but is outperformed by EVAR-PIG* only at the scaling of
d = 10−1. This result is more thoroughly discussed in Sect. 16.5.3. (a) Regret of scaling d = 10−1.
(b) Regret of scaling d = 10−2. (c) Regret of scaling d = 10−3. (d) Regret of scaling d = 10−4.
(e) Regret of scaling d = 10−5. (f) Regret of each scaling
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Fig. 16.8 The EVAR-RAPTOR algorithm outperforms all baselines and has the most consistent
performance across all scalings of the CASTNet ozone dataset. (a) Regret of scaling d = 10−1.
(b) Regret of scaling d = 10−2. (c) Regret of scaling d = 10−3. (d) Regret of scaling d = 10−4.
(e) Regret of scaling d = 10−5. (f) Regret of each scaling

In summary, EVAR-PIG* appears to be about as good, if not better, than random
and sequential sampling. However, the performance of EVAR-PIG* is inconsistent
across the scaling d. On the other hand, EVAR-RAPTOR outperforms all baselines
and is consistent in performance, despite changes in the scaling parameter d.

16.6 Conclusion

In the context of steering a DDDAS system, we mitigate the risk of data-driven
models losing relevance in time-varying environments as quantified by the entropic
value at risk (EVAR), which helps to quantify how a model changes as a result of
new observations. While EVAR is conventionally calculated with a predetermined
confidence value γ , here we use a data-driven approach to determine γ . Moreover,
we propose the EVAR-RAPTOR algorithm which learns to predict the EVAR
available at different sensing locations with probabilistic accuracy guarantees. These
probabilistic guarantees allow us to accurately learn and predict (EVAR) values in
real-world datasets, even when the random environmental variable is scaled by a
constant. Empirical results on four real-world datasets demonstrate empirically that
EVAR-RAPTOR has consistently superior performance in predicting EVAR values
for data generated by time-varying distributions.
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Chapter 17
DDDAS for Attack Detection and
Isolation of Control Systems

Luis Francisco Combita, Jairo Alonso Giraldo, Alvaro A. Cardenas,
and Nicanor Quijano

Abstract In the last decade, the security of control systems has become a research
priority. Attack detection, isolation and reconfiguration are necessary to maintain
a control system safe, even in the presence of attacks. In this work, we exploit
some tools from fault-tolerant control systems and analyze them under a security
framework leveraging the insights from Dynamic Data Driven Applications Systems
(DDDAS). In particular, we propose DDDAS Anomaly Isolation and Response
(DDDAS-AIR), an architecture for secure control systems that relies on simulations
of the physical system to help us reconfigure the sensors in order to mitigate the
impact of the attack. This chapter demonstrates the proposed mechanisms with a
three-tanks system under attack, and shows how the evaluation of traditional fault-
detection systems needs to be reconsidered for attacks instead of natural faults.

17.1 Introduction

The widespread adoption of embedded sensors is giving us new opportunities to
measure and understand the dynamic behavior of physical systems. To leverage
these new opportunities, DDDAS [1] has emerged as a new paradigm to dynamically
combine data from a variety of sources, augment data with simulations, and obtain
more accurate predictions and precise controls. DDDAS has proven to be useful in
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diverse applications that include industrial control [2], risk management [3], social
networks [4], controls of swarms [5], microgrid control [6], and dispatch control in
power networks [7].

Recently, the DDDAS paradigm has also been incorporated in cyber-security
and privacy studies [8–11]. While computer security research initially focused on
security mechanisms to prevent attacks, it is now accepted that preventing attacks
is not enough, and systems need to detect and respond to attacks. Detecting and
responding automatically to attacks is particularly important in control systems
because they are required to send real-time continuous control actions to maintain
the safety of the system. If an attacker takes partial control of a system, a failure
to respond automatically in real-time can have severe negative consequences such
as destruction of equipment or even loss of life. In the literature, researchers
have focused their attention mostly on preventive actions that aim to decrease the
likelihood of attacks by reducing vulnerabilities. Surprisingly, little attention has
been given to isolation and reconfiguration in the presence of adversaries, where
the objective is to identify the location of the attack and generate actions that
mitigate and neutralize the attacks, thus reducing its impact over the system [12].
The DDDAS paradigm is particularly well-suited to help us model the problem of
detecting and responding to attacks against control systems because by definition,
the paradigm encourages developers to think in terms of how to use models
of the physical system to guide the data acquisition, how data acquisition can
change the operation and simulation of the models, and in particular, on how to
dynamically reconfigure the control system based on the outputs of computation,
model simulations, and sensor inputs.

Leveraging these characteristics, in this chapter we propose a DDDAS-inspired
Anomaly Isolation and Response (DDDAS-AIR) architecture and analysis for the
security of control systems. DDDAS-AIR can run the simulation of the physical
system under control and the output of these computations can then lead us to
reclassify sensors, actuators, and controllers as more trustworthy or less trustworthy.
Our DDDAS-AIR algorithm can dynamically reconfigure the selection of sensors
that are trusted, creating synthetic data to mitigate the lack of missing sensor
observations in order to drive the system to a safe place. In particular, in this
Chapter, we start by exploring classical notions of fault detection and isolation in
control systems, and then show how to study them under adversarial conditions by
proposing new attack models and metrics of performance.

17.2 Problem Formulation

Consider the linear, time-invariant, discrete-time system described by

x(k + 1) = Ax(k)+ Bu(k)
y(k) = Cx(k), (17.1)
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where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, x(k) ∈ R

n represents the state of the
system, u(k) ∈ R

m represents the input of the system, and y(k) ∈ R
p represents

the output of the system. This representation [13] can be used to describe the
dynamic behavior of industrial processes, where u(k) is designed to ensure that
y(k) converges to a desired reference r∗(k) under certain conditions.

17.2.1 Cyber-Attacks in Control Systems

Integrity attacks denote the types of cyber-attacks where a set of sensors or actuators
are compromised, which allow attackers to inject arbitrary values [14]. Equation
(17.1) can be extended to include these two types of attacks as follows

x(k + 1) = Ax(k)+ Bu(k)+ Fafa(k)
ya(k) = Cx(k)+ Fsfs(k), (17.2)

where Fa ∈ R
n×m, Fs ∈ R

p×n, fa ∈ R
m represents false data injection on

actuators, ya(k) ∈ R
p represents the compromised sensor measurement, and

fs ∈ R
p represents false data injection on sensors.

Attacks on sensors consist on replacing y(k) (the real sensor measurement) with
ya(k) = y(k) + Fsfs(k) (any data value output from the sensor), i.e. a new input
the attack fs(k), is added to the system. Attacks on actuators consist on modifying
the input of the plant (the control signal sent to the process by the controller or
the Programmable Logic Controller) adding a new input, the attack fa(k). This
modification affects directly the action that the actuators may execute.

Integrity attacks and faults on control systems share some similarities in that the
sensor or control signals change from the real values and become less trustworthy;
however, while faults are typically random and non-strategic, cyber-attacks are
strategic, more deceptive, and potentially more dangerous for the safety of the
system. The objective of the attacker can be economical profit, stealing private
information, or causing malfunction or safety hazards in a control process. The
differences between attacks and faults are significant, and as a consequence we
cannot use directly the existing tools from the fault detection literature to detect
attacks. In this Chapter, we show a new way to analyze and compare traditional
fault-detection systems considering the adversarial nature of attacks.

17.3 DDDAS Anomaly Isolation and Response

In order to design attack-resilient systems, we need to (i) detect that an attack is
taking place; (ii) identify (isolate) the attacked device(s); and (iii) reconfigure the
system and/or change its operation to mitigate the attack (e.g., replace the sensed
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measurements by their estimate [15]). In this work we aim to design novel strategies
for attack detection, isolation and reconfiguration by extending concepts from fault
detection and isolation theory [16].

In particular, motivated by the DDDAs paradigm [1], we propose a new
DDDAS Anomaly Isolation and Response (DDDAS-AIR) architecture to increase
the resiliency of control systems, as illustrated in Fig. 17.1. The architecture has an
anomaly detection module that uses the sensor values from the field and compares
them to the simulation of the system. If there are errors between the results from
the simulation and the values from the field, then DDDAS-AIR will reconfigure the
controller to operate in a more conservative (an potentially expensive) way while
at the same time asking for more data (from potentially more expensive sensors) to
confirm or reject the anomaly.

Physical
Process
(Plant)

Actuators Sensors

Controller

Simulation

vk zk

yk

uk

yk−1

ŷk

Anomaly Detection
(ignore bad

sensors,
reconfigure
simulation)

rk

Dynamically
Request

More Data
from Other
Systems

Reconcile
Data

Reconfigure
Controller

(account for bad
actuators)

Fig. 17.1 The components of DDDAS-AIR (in blue) have an anomaly detection module that
compares the sensor values from the field and compares them to the simulation of the system.
If there are errors between them then it will reconfigure the controller to operate in a more
conservative (and potentially expensive way) while at the same time asking for more data (from
potentially more expensive sensors) to confirm or reject the anomaly
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17.3.1 Anomaly Detection

Anomaly detection mechanisms are used to detect unexpected system behavior.
There are two important techniques to detect anomalies: Fault Detection, Isolation
and Reconfiguration (FDIR) and Data Stream Management Systems (DSMS).
FDIR is commonly used in the control community to develop Fault-Tolerant
Control Systems. DSMS are predominant on transportation systems [17]. This
approach is based on the utilization of the logical redundancy that exists between
fault-independent sensor data. However, not all control systems have this kind
of redundancy on sensors, and this is the reason why analytical redundancy is
developed instead. Analytical redundancy uses mathematical models to simulate
the physical system and then uses the simulation results to compare them to sensor
values received form the process.

Anomaly detection using analytical redundancy is composed by two parts: (i)
residual generation and (ii) decision making. One of the most common ways to
obtain residuals is by comparing the measurement y(k) with its estimated ŷ(k),
such that r(k) = |y(k) − ŷ(k)|, where the absolute value is calculated element-
wise. Residuals are close to zero when there is no difference between the actual
system measurement and the values obtained from the estimation. These residuals
can be different to zero due to faults, noise, attacks, and modeling errors. A stateless
decision-making module produces an alert when the residuals are greater than a
specific threshold τ :

D(k) =
{

1, if r(k) > τ

0, if r(k) ≤ τ.

The estimated system can be obtained using an estimator, which requires both the
input and the output of the system. In addition, it is required that the system state
is fully observable, i.e., the information of all state variables can be derived from
the output and the input of the system, in a finite time. The basic idea behind these
kind of observers or filter-based approaches is to estimate the outputs of the system
from the measurements by using either Luenberger Observers (LO) in deterministic
scenarios or Kalman filters in stochastic scenarios.

The Luenberger observer can be described by:

z(k + 1) = Az(k)+ Bu(k)+ L(y(k)− Cz(k))
ŷ(k) = Cz(k), (17.3)

where z(k) ∈ R
n is the estimated state vector, L is the estimator gain, and A, B, C

from (17.1) are the matrices used to describe the dynamical behavior of the plant.
The idea behind Luenberger observers is to add a weighting of the error between the
output y(k) and the estimated output Cz(k) to the state equation in order to ensure
that the estimation error converges to zero. In order to simplify the notation (without
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loss of generality), the rest of the Chapter will focus on systems where C = I , i.e.,
all the states are measurable; however, results can be easily extended to the case
where C 	= I .

Let us define the estimation error as e(k) = x(k) − z(k). In the presence of an
attack, the estimation error can be described by

e(k + 1) = (A− LC)e(k)+ Fafa(k),

where it is clear that, if there is no anomaly and the matrix Ā = A − LC has all
eigenvalues inside the unit circle, then e(k) converges to zero as k tends to∞.

The residual r(k + 1) = ya(k + 1) − ŷ(k + 1) in the presence of the two types
of attacks described above, when the matrix C is an identity matrix I , is given by

r(k + 1) = (A− L)r(k)+ Fafa(k)+ Fsfs(k + 1)− (A− L)Fsfs(k).

Let us define δ(k) = Fafa(k)+ Fsfs(k + 1)− (A− L)Fsfs(k) so that

r(k + 1) = (A− L)r(k)+ δ(k).

Solving the difference equation we obtain

r(k) = (A− L)kr(0)+
k−1∑

m=0

(A− L)k−m−1δ(m).

Note that if (A− L) have all eigenvalues inside the unit circle, the estimation error
will converge to a linear combination of the cumulative effect of δ(m) over time.

In this work, we assume that only sensor attacks take place in the system, and
no more than one sensor is attacked simultaneously. The residuals under attack are
given by

r(k + 1) = |ya(k + 1)− ŷ(k + 1)|
= |x(k + 1)+ Fsfs(k + 1)− z(k + 1)|
= |e(k + 1)+ Fsfs(k + 1)|.

Clearly, the presence of anomalies can cause r(k) to be greater than τ and we can
detect attacks, but it depends on the appropriate selection of τ .

17.3.2 Anomaly Isolation

Anomaly detection only indicates that there is an attack, but it does not necessarily
identify which particular device is sending the misleading data. To identify the
compromised devices, we can use anomaly isolation ideas. There are several
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isolation proposals in the literature, and in this chapter we focus on the use of
structured residuals. Structured residuals are obtained via the design of observers
that are insensitive to some specific disturbances such as Unknown Input Observers
(UIOs). The Unknown Input Observer (UIO) is a generalization of the LO [16]. A
full-order observer is defined as:

w(k + 1) = Fw(k)+ T Bu(k)+K12y
a(k)

z(k) = w(k)+Hya(k), (17.4)

where z(k) ∈ R
n is the estimated state vector, and w(k) ∈ R

n is the state vector
of this full-order observer, which is computed by the linear transformation w(k) =
T x(k). F , T , and K12 are matrices that must be designed such the unknown input
fa or fs is decoupled from the other inputs, and other design requirements.

In the system described by (17.2) there are anomalies on sensors and actuators.
In this Chapter, we focus our attention on anomalies in sensors, i.e., fa = 0.
Combining the observer in (17.4) with the system in (17.2), the estimation error
e(k) = x(k)− z(k) is governed by the equation:

e(k + 1) = [A−HCA−K1C]e(k)+ [(A−HCA−K1C)− F ]w(k)
+ [(I −HC)− T ]Bu(k)+ [(A−HCA−K1C)H −K2]ya(k)
− K1Fsfs(k)−HFsfs(k + 1).

(17.5)
If the following equations hold:

T = I −HC, F = TA−K1C, K2 = FH, K12 = K1 +K2, (17.6)

then the estimation error dynamic is given by

e(k + 1) = Fe(k)−K1Fsfs(k)−HFsfs(k + 1), (17.7)

and the magnitude of the residual is given by

r(k) = |Ce(k)+ Fsfs(k)|. (17.8)

Notice from (17.7) that if all eigenvalues of F are inside unit circle, the estimation
error converges to a linear combination of the attack (similar to the LO).

Now, in order to identify the location of the attack, it is necessary to design p
residual calculators, where the j th rj (k) does not depend on the sensor j . As a
consequence, it is possible to combine all the rj (k) and determine in which one the
attack occurred. For instance, let us consider 3 sensors. If sensor 1 is compromised,
the residuals in 1 will be 0, but in 2 and 3 will be different from zero, which indicates
that the attack was not in 2 and 3. Therefore, the same conditions described above
in (17.6) should be satisfied for each residual calculator, where all matrices omit the
j th row. Readers are urged to read [16] for more insights on fault isolation.
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17.4 Obtaining a Simulation Model

The design of Luenberger and Unknown Input Observers requires a mathematical
model to describe the dynamical behavior of the controlled system. Roughly
speaking, there are two ways to obtain these models, using first-principles, or
learning them from datasets. In a first-principles approach, engineers use physical
laws to describe the dynamic evolution of a system. This is not always a practical
approach because a formal definition of a system takes more resources and in some
large and complex processes, this would be practically infeasible. Learning the
behavior of the system based on inputs and outputs is a more general and practical
approach, and also matches the DDDAS philosophy of refining models based on
sensor data.

One of the main challenges from learning a state-space system from input-output
data of the control system is that the selection of the model order is not obvious. In
this work, we assume that the order system parameter is known a priori. This fact is
important because, higher order models increase the complexity of the model, and
it is known that there is a trade-off between model complexity versus accuracy [18].

The models of the systems can be input-output descriptions or space-state
representations. The UIOs are usually designed from a state-space description of
the system. The identification based on subspace methods produces directly a
state-space representation from input-output data. These methods use concepts and
algorithms from numerical linear algebra. In addition to this, subspace algorithms
are not iterative and therefore there are not convergence problems, which also
reduces the execution time of the algorithms. The main idea of identification-based
on subspace methods algorithms is to use the input-output observations to estimate
the state of the system, then to define a value for the order of the system, and finally
to use linear algebra to determine the space-state matrices that are the parameters of
the system in this representation.

17.5 Case Study

17.5.1 Description of the System

In order to illustrate the DDDAS-AIR framework, an example is shown with a
nonlinear three-tanks system with two pumps as actuators to drive water into the
tanks [19]. The output variables of the system are the water level in each one of the
tanks. These variables are measured with one sensor for each tank. The schematic
diagram of the system is shown in Fig. 17.2.

The control system objective is to reach a desired water level by adjusting the
amount of inlet water in the two tanks. The dynamical behavior of the system
(assuming L1 > L3 > L2) is given by a set of three first order nonlinear differential
equations, as follows
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Fig. 17.2 Three tanks system Pump 1 Pump 2

L1 L2L3

Table 17.1 Parameter values of the three tank system

Parameter Symbol Value

Tank cross sectional area S 0.0154 m2

Cross sectional area inter-tanks Sn 5× 10−5 m2

Inter-tanks outflow coefficient μ13 = μ32 0.5

Emptying outflow coefficient μ20 0.6

Maximum flow rate Qi max (i ∈ [1 2]) 1.5× 10−4 m3 s−1

Maximum level Lj max (j ∈ [1 2 3]) 0.62 m

S
d

dt
L1(t) = Q1(t)− q13(t),

S
d

dt
L2(t) = Q2(t)+ q32(t)− q20(t),

S
d

dt
L3(t) = q13(t)− q32(t),

q13(t) = μ13 Sn sgn [L1(t)− L3(t)]
√

2 g L1(t)− L3(t),

q32(t) = μ32 Sn sgn [L3(t)− L2(t)]
√

2 g L3(t)− L2(t),

q20(t) = μ20 Sn
√

2 g L2(t),

(17.9)

where q13(t) represents the water flow-rate from tank 1 to tank 3, q32(t) represents
the water flow-rate from tank 3 to tank 2, q20(t) represents the water flow-rate of
tank 2 draining the water out of the system, Q1(t) and Q2(t) represents the input
water flow-rate to tanks 1 and 2 respectively,L1(t),L2(t), andL3(t) are the levels of
the tanks 1, 2, and 3 respectively, S represents the cross sectional area of the tanks,
Sn represents the cross sectional area of the pipes between tanks, μ13 represents the
outflow coefficient from tank 1 to tank 3, μ32 represents the outflow coefficient from
tank 3 to tank 2, and μ20 represents the outflow coefficient of tank 2 emptying.

The parameter values of the three tanks system are shown in Table 17.1.
The operation point of the system is given by

L1oper = 0.4 m , L2oper = 0.2 m , L3oper = 0.3 m ,
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Fig. 17.3 Response of the closed loop control system without attacks, the outputs exhibit
overshoots and undershoots as a consequence of a change in the other reference input

where Ljoper (j ∈ [1, 2, 3]) represents the level of tank j , and

Q1oper = 3.5018× 10−5 m3 s−1 , Q2oper = 3.1838× 10−5 m3 s−1 ,

whereQioper (i ∈ [1, 2]) represents the input flow rates needed to reach the required
levels, when the system does not have any disturbance.

The system is managed using a PI controller that aims to take the levels L1 and
L2 to some desired references R1 and R2 respectively. This closed-loop controlled
system is strongly coupled, i.e., changes on each input have an effect on the three
outputs. Figure 17.3 shows the controlled system outputs, without any attack.

17.5.2 Obtaining the Model System from I/O Data

As we showed before, there is an exact mathematical model description of the
system as described in (17.9). However, we can linearize that set of equations around
the operation point described by Ljoper (j ∈ [1, 2, 3]) and Qioper (i ∈ [1, 2]) to
obtain a set of three linear first order differential equations that can be arranged in a
continuous-state representation given by

ẋc(t) = Acxc(t)+ Bcuc(t)
yc(t) = Ccxc(t), (17.10)

where the subindex c means that is a continuous-time model of the system.
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If we have input/output system data, we can obtain an approximation of the
state representation of the system in discrete-time, which would be equivalent to
the discretization of (17.10) with sampling time Ts [20]. Ts can be determined from
the elapsed time between two consecutive input/output data, and the obtained model
have the shape of (17.1), using subspace identification techniques and a similarity
transformation, with

A =
⎡

⎣
0.9899 0.0005 0.0098
0.0004 0.9804 0.0095
0.0108 0.0107 0.9784

⎤

⎦ ,

B =
⎡

⎣
60.1584 0.1660
−0.3848 60.1895

0.4138 0.1935

⎤

⎦ , (17.11)

C =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

and Ts = 1 s.

17.5.3 Detection of Sensor Attacks

Anomaly detection leverages LO or UIO to simulate the evolution of the process
to specific inputs, and then uses the expected results to compare them with sensor
information. As explained previously, UIOs are designed to be insensible to one
anomaly, and for this reason they use less information of the plant to obtain the
estimation. As a consequence, the error between the true value of the variable and
its estimation through UIOs is larger than through LO.

Figure 17.4 illustrates the effects of sensor attacks. It is important to note that
measurements from the three tank levels are available, but only two of them are
controllable because there are only two control inputs on the plant. The purpose of
the attacker is to modify the level of the tanks, which in the worst case can lead to
an overflow of the tanks. The attacks in this Chapter focus on the modification of
the true information of the sensors of the plant, i.e., the true values of the water level
on the tanks of the plant. Examples of these attacks and their effect on the outputs
of the plant are shown in Fig. 17.4.

The attack to sensor 1 subtracts a constant value to the sensor during the attack
time interval, and the effect on the output of the system is an increment of the water
level in tank 1.

The attack on sensor 2 is a triangular deviation (in time) from the real value and
the false value. The effect of this attack is to produce a triangular-shaped change
rate in the output variable. This type of attack is more difficult to detect than the
abrupt square-shaped attack in sensor 1.
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The model described in (17.1) with parameters defined in (17.11) is used to
design a LO and a set of UIOs. These observers are used to evaluate the residual
of the system-states. The residual between the output system variables and their
expected values obtained from the LO and the UIOs simulations without attacks
is illustrated in Fig. 17.5, which shows the residual for the three water level of the
system obtained with LO. Figure 17.6 shows the residual for the three water level
of the system obtained with UIOs. In these figure, it is clear that the absolute value
of the residual for UIOs is greater than the absolute value of the residual for LO. As
a consequence of the residuals from UIOs are larger than from LO, there are larger
attacks that remain undetected when UIOs are used to detect attacks than when a
LO is used. For this reason, a better detection of attacks can be achieved using LOs.

The result of the detection process is shown in Fig. 17.7. The anomaly detection
system generates an alert when one or more attacks are detected, and is “off” when
no attacks are detected. The detection is “on” (alert) when the residual between the
sensor value and its estimated value are greater than a threshold. Only when attacks
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are larger than the threshold difference between the output of the system and the
estimated output, will they be detected. This fact can be used by an attacker, whom
can then design attacks that cannot be detected.

The parametric plots in Fig. 17.7 are calculated by comparing the system outputs
under attack ya(k)with the reference output yref (k) from the system without attack.

Let Δ be the impact metric defined by
∑kf
k=0 ‖yref (k) − ya(k)‖ for all the time of

the simulation kf . In the same way, let E[Tf a] be the Expected Time Between
False Alarms (TMBFA) that can be obtained for different τ . Recall that increasing
τ decreases the number of false alarms, but it allows an attacker to inject stronger
attacks that will take longer to be detected. Figure 17.8 illustrates the trade-off
between false alarms and impact of the attack for LO and UIOs using the metric
proposed in [21].

Figure 17.8 is one of the fundamental contributions of the DDDAS-AIR
approach, because it clearly shows a comparison of traditional fault-detection
algorithms against attacks (not random faults). Figure 17.8 shows why LO models
should be used as a first line of defense against attacks instead of relying only on
UIOs. While in traditional Fault-Detection theory UIOs are used by themselves to
isolate faults (without the need of LOs), when attacks are considered, there is a need
to have LOs as a first line of defense, because they limit the impact of undetected
attackers in the system far more than UIOs, as illustrated in Fig. 17.8.

Clearly, using LO decreases the adversary effects in the system, but using LOs
alone would not enable us to identify the source of the attack. LO could be used
for systems with very small number of sensors or systems that shut down in the
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presence of an attack. On the other hand, UIO allows an attacker to launch stronger
attacks, but when detected, it will be able to identify the source of the attack and
take specific actions. These results suggest that a good strategy to reduce the impact
of sensor attacks on control systems is to use LO and then UIOs.

17.5.4 Isolation of Sensor Attacks

The knowledge about the existence of an attack is not enough to develop adequate
actions to mitigate the effect of the attacks. Therefore, it is necessary in addition to
the detection of attacks, to know the place where the attack occurs. This mechanism
is known as the isolation of the attack. This procedure is based in the UIOs [16], and
these results are shown in Fig. 17.9. The top part of Fig. 17.9 shows that the attack
is detected on sensor 1 (not sensors 2 or 3), while the bottom part shows that the
attack is coming from sensor 2 (not sensors 1 or 3). These results also show that for
our selected thresholds, the Attack Isolation system for sensor 1 has no false alarms,
while the Attack Isolation system for sensor 2 has intermittent false alarms. The
reason for this phenomenon is because the model obtained from data for output 1 is
more accurate than the model obtained for output 2. Having said that, in both cases
the duration of false alarms is short when compared with the alert duration when
under attack.
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Fig. 17.9 The dotted blue line depicts the isolation of attacks. Top figure shows the attack
detection on sensor 1. Bottom figure shows the attack detection on sensor 2. The red line shows
the attacks applied to each sensor of the system

17.6 Conclusions and Future Work

In this chapter, we have presented an overall framework for attack detection,
isolation, and response, called DDDAS-AIR. The results demonstrate the
differences between detection and isolation, and the comparative approaches
between fault detection and attack detection. In particular, the primary contribution
of this chapter is an illustration of how attack-detection needs LOs as a first line of
defense, and relies on UIOs once an attack has been detected. While in traditional
Fault-Detection theory UIOs are used by themselves to isolate faults (without the
need of LOs), when considering attacks a LO is needed as a first line of defense,
because they limit the impact of undetected attacks in the system far more than
UIOs, as illustrated in Fig. 17.8.

In future work we will analyze the next major step of our framework: attack
response. Our preliminary results suggest that when attacks are detected on sensors,
the attacks can be isolated and then used together with the simulation of the system
to estimate the missing values. In future work we will also consider attacks to
actuators.
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Chapter 18
Approximate Local Utility Design for
Potential Game Approach to Cooperative
Sensor Network Planning

Su-Jin Lee and Han-Lim Choi

Abstract This paper addresses information-based sensing point selection from a
set of candidate sensing locations, which determines a set of measurement points
maximizing the mutual information between the sensor measurements and the
variables of interest. A potential game approach has been applied to implementing
distributed decision making for cooperative sensor planning. When a sensor network
consists of a large number of sensing agents, the local utility function for a sensing
agent requires a lot of computation, because the local utility function depends on the
other agents decisions while each sensing agent is inherently faced with limitations
in both its communication and computational capabilities. Accordingly, a local
utility function for each agent should be approximated to accommodate limitations
in information gathering and processing. We propose an approximation method of a
local utility function using only a part of the decisions of other agents. The part of the
decisions that each agent considers is called the neighboring set for the agent. The
error induced by the approximation is also analyzed, and to keep the error small we
propose a neighbor selection algorithm that choose the neighbor set for each agent
in a greedy way. The selection algorithm is based on the information structure of
measurement variables taken by the agents. We illustrate the approximation method
and the neighbor selection algorithm through a numerical simulation on simplified
weather forecasting.

18.1 Introduction

A sensor network consists of a large number of sensing agents, which communicate
with other agents in a network or a central station. Each sensor node generally
has its own processing unit and a power unit. In some cases, an agent can have a
mobile unit so that it moves to the specified location to take measurements. The
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data about the variables of interest through the measurements taken by sensor nodes
are delivered into other agents or a central unit to analyze the data and extract
information of the sensed environment. A sensor network extends the ability to
gather information to a larger area, however each agent also has limitations in
resources such as communication bandwidth, computation capability, and available
energy. To prolong the operation time of sensing agents, it is important to find out the
sensing locations for a sensor network that give the maximum information about the
variables of interest. Here, Dynamic Data Driven Applications Systems (DDDAS)
concept can be applied to steer the agents of a sensor network and take efficient
measurements [1, 9]. DDDAS illustrates a paradigm where a system incorporates
data obtained from simulation into the control of the system to improve the ability
for sensors to gather information efficiently. This sensor network planning problem
can be formulated as an optimization problem maximizing mutual information
between the measurement variables and the variables of interest in various contexts
[5, 11, 13, 14].

To make a sensor network scalable, the the distributed/decentralized imple-
mentation of the optimization problem is needed. There are two main research
directions aimed at designing the procedure finding out the most informative
sensing locations. The two directions can be differentiated by the number of
solving a local optimization problem for each agent until obtaining a solution.
One way can be described as a single run algorithm such as local greedy and
sequential greedy decisions [14, 20], which obtain the sub-optimal solution after
solving the local optimal problem only once. While these algorithms are simple to
implement and especially a sequential greedy algorithm guarantees the worst-case
performance when the objective function satisfies submodularity, they are subject
to some limitations. Since each agent selects the sensing locations by solving only
one problem, these single run algorithms cannot fully take advantage of possible
information flows, and thus the decisions can be arbitrary suboptimal. Also, the
mutual information in general does not satisfy the submodularity, specifically for
a weather forecast. The other direction is an iterative algorithm which generates a
sequence of solutions to converge to an approximate optimal solution [5, 12, 13].
An iterative method solves the optimization problem approximately at first, and
then more accurately with updated set of information as the iterations progress [3].
A game-theoretic method is one of the iterative algorithms, which finds a solution
through a decision making process called a repeated game, i.e., the same set of
games being played over and over again until converged to a solution. Especially, a
potential game approach provides a systematic framework for designing distributed
implementation of multiagent systems and many learning algorithms to converges
to an optimal solution [16, 18].

In [7], we addressed the distributed implementation of a sensor network planning
by applying a potential-game approach. Potential games have been applied to many
engineering problems, due to their desirable static (e.g., existence of a pure strategy
Nash equilibrium) and dynamic properties (e.g., convergence to a Nash equilibrium
with simple learning algorithms) [4, 18]. Since a potential game formulates the
centralized optimization into distributed version by considering each decision maker
as a player in a game, the multiagent systems can be easily transformed to the game
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formation and implemented in a distributed way. The formulation of a multiagent
problem as a potential game consists of two steps: (1) game design in which the
the agents are selfish entities and possible actions are defined and (2) learning
design which involves specifying a distributed learning algorithm that lead to a
desirable collective behavior of the system [11]. For game design, we proposed the
conditional mutual information of the measurement variables conditioned on the
other agents’ decisions as a local utility function for each agent. This conditional
mutual information is shown to be aligned with the global objective function for a
sensor network. The system-wide objective is maximizing the mutual information
between the whole sensor selection and the variables of interest. For a learning
algorithm, the joint strategy fictitious play (JSFP) is adopted. With two design steps
we showed that the potential game approach for distributed cooperative sensing
provides better performance than other distributed/decentralized decision making
algorithms, such as the local greedy and the sequential greedy algorithms, through
the numerical examples of weather forecast and target tracking.

However, the computation of the local utility function for each agent requires a
lot of resources. This computational burden results in part from the complexity of
the local utility function itself, and in part from the dependency of the function on all
of the agents decisions. To reduce the computational burden, an approximate local
utility that only depends on the neighboring agents’ decisions was suggested and
investigated [5]. Since it is not possible for each agent to know the decisions from
the other agents actions for a sensor network consisting of a large number of sensors,
this approximate local utility function also enables us to improve communication
efficiency. As a result, the local utility function for each agent is computed by
considering only the actions of its neighboring agents. Here, the neighboring agents
for each agent are defined by a set of agents that are located within a prespecified
distance from the agent. When selecting neighboring agents for each agent, the
correlation between the measurement variables is not considered at all. However,
in some cases, such as a weather forecast example the measurements taken at close
locations have little correlation with each other. Thus, the optimality gap of the
potential game with the neighboring agents is larger than the potential game with
the full information about the other agents and even the sequential greedy algorithm
because the error incurred by neglecting the correlated variables is not negligible.

This work presents an approximation method for computing local utility function
to address this computational problem and provide a good performance comparing
to the previous work. We propose a greedy neighbor selection algorithm to consider
correlation structure of the information space in which the cooperative sensing
decision is made. The greedy selection algorithm for each agent adds a neighboring
agent one by one, which has maximum mutual information about the variables of
interest conditioned on the measurement variables of the agent and its pre-selected
neighbors. With the determined neighbor set for each agent, we also propose a
similar approximation method for computing a local utility function to the previous
work. A numerical example on idealized weather forecasting is presented, showing
that the approximation utility functions depending on the neighbor set selected by
the proposed algorithm outperform the approximation method with the neighboring
agents which are located close in Euclidean distance.
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18.2 Background

The primary task of a sensor network is to gather information from a physical envi-
ronment in order to estimate the verification variables. The verification variables
xv are the variables of interest that we want to know. They are a part of the state
variables representing the physical environment and cannot be observed directly
through the measurements.

In a problem of our concern, we assume that the physical environment can be
represented with a finite set of measurable states, xS = {xs1 , . . . , xsn} and the ver-
ification variables xv in spatial-temporal space. The subscript S = {s1, s2, . . . , sn}
denotes the set of sensing locations for a sensor network, and is referred to as a
search space S for a sensor network, and xs represents the state variable at the
sensing location s ∈ S . Sensors make measurements of the states in the search
space corrupted with some noise, vs as shown in the measurement model,

zs = xs + vs. (18.1)

Since the verification variables xv are correlated with the states in the search space
by a joint probability distribution, sensor measurements are correlated with the
verification variables and have information about them.

A sensor network planning problem can be rephrased as selecting the state
variables to take measurements out of the search space, so that the amount of
information about the verification variables is maximized.

18.2.1 Information Measures

The amount of information about a random variable is equivalent to the uncertainty
involved in the random variables of the states. Entropy is a widely used measure for
the quantification of the uncertainty, computed in terms of a probability distribution
of a random variable. With the entropy, mutual information is derived to measure
the reduction in the uncertainty of the state variables, and will be adopted as an
objective function for evaluating the expected performance of measurements to be
taken by a sensor network.

18.2.1.1 Entropy

The entropy of a continuous random variable x, referred to as differential entropy,
is defined as the negative expected value of the logarithm of the probability density
function fx(x) of the random variable x [8].

Definition 1 The entropy H(x) of a continuous random variable x with probability
density function fx(x) is defined as
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H(x) � −Ex
[
log fx(x)

] = −
∫

S

fx(x) log fx(x)dx (18.2)

where Ex[·] denotes expectation over x, and S is the support of the random variable
x, which represents the set where fx(x) > 0.

As shown in the above definition of entropy, entropy is not dependent on the value
of x itself but rather than depends on the shape of the distribution fx(x).

The definition of entropy for a single random variable extends to the the entropy
of a random vector x consisting several random variables x1, x2, . . . , xn using the
multiple integral.

H(x) = H(x1, x2, . . . , xn)

=
∫

S

fx(x1, . . . , xn) log (fx(x1, . . . , xn)) dx1 . . . dxn. (18.3)

where fx(x1, . . . , xn) is the joint probability density function of the random vector
x = [x1, . . . , xn]T . Specifically, if x is a Gaussian random vector with mean μx and
covariance matrix P(x) � E[(x− μx)(x− μx)

T ], then its entropy is expressed as

H(x) = n

2
log(2πe)+ 1

2
log(|P(x)|). (18.4)

As stated above, the entropy depends only on the shape of the distribution, thus
results in a function of the determinant of the covariance matrix |P(x)| only.

The conditional entropy for a single random variable is defined as

H(x|z) = Ez [H(x|z = z)]
= −

∫

Sz

fx(z)

∫

Sx|z
fx|z(x|z) log(fx|z(x|z))dxdz

= −
∫

Sz

∫

Sx|z
fx,z(x, z) log(fx|z(x|z))dxdz

H(x|z) is an expected entropy of the conditional distribution taken over all possible
values of z. It represents a measure of uncertainty that will remain in x on the
average before the specific value of z is given. Likewise, the conditional entropy
of a Gaussian random vector can be represented by a function of the determinant
of the conditional covariance matrix. When two random vectors x = [x1, . . . , xn]T ,
z = [z1, . . . , zm]T have a multivariate normal distribution, the conditional random
vector x conditioned on the other random vector z also have a multivariate normal
distribution. Thus

H(x|z) = n

2
log(2πe)+ 1

2
log(|P(x|z)|). (18.5)
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Here, the conditional covariance matrix for a Gaussian can be computed as

P(x|z) = P(x)− P(x, z)P−1(x)P (z, x). (18.6)

P(x, z) represents the covariance between x and z and is defined by P(x, z) �
E[(x−μx)(z−μz)

T ]. With the notation of conditional entropy and the product rule
of probabilities, the following chain rule is derived.

H(x, z) = H(z)+H(x|z) = H(x)+H(z|x). (18.7)

That is, the measure of the uncertainty contained in two random vectors is the sum
of the uncertainty of one random vector and the uncertainty of the other random
vector conditioned on the first one. The chain rule for entropy can be expressed in
terms of individual random variables as

H(x, z) = H(x1)+H(x2|x1)+ · · · +H(xn|x1, . . . , xn−1)

+ H(z1|x)+H(z2|x, z1)+ · · · +H(zm|x, z1, . . . , zm−1). (18.8)

18.2.1.2 Mutual Information

Mutual information represents the amount of information contained in one random
variable about the other random variable. Specifically, It quantifies the amount of
the uncertainty reduction in one random variable x due to the observation of the
other random variable z, thus it can be represented by the difference between the
entropy of a random variable and its conditional entropy conditioned on the other
random variable.

I(x; z) = H(x)−H(x|z) (18.9)

By the chain rule of the entropy in (18.7), the mutual information can be shown to
be commutative.

I(x; z) = H(x)−H(x|z) = H(x)− (H(x, z)−H(z))
= H(z)−H(z|x) = I(z; x) (18.10)

It means that the mutual information contained in random variable x about random
variable z is equal to the information contained in z about x. Thus the mutual
information can be thought of a measure of the mutual dependency between two
random variables. Another form of mutual information uses the expectation from
the second equality in (18.10).

I(x; z) = H(x)+H(z)−H(x, z) = E

[
log

(
px,z(x, z)

px(x)pz(z)

)]
(18.11)
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The mutual information between two random vectors x ∈ R
n and z ∈ R

m is defined
in the same way, and holds the chain rule as well.

I(x; z) = I(x1; z)+ I(x2; z|x1)+ · · · + I(xn; z|x1, . . . , xn−1)

= I(z1; x)+ I(z2; x|z1)+ · · · + I(zm; x|z1, . . . , zm−1). (18.12)

When the two random vectors are jointly Gaussian, the mutual information can
be expressed with covariance matrix using (18.4) and (18.5)

I(x; z) = 1

2
log(|P(x)|)− 1

2
log(|P(x|z)|). (18.13)

In case of two Gaussian random variables, the correlation between two random
variables is enough to represent the mutual information.

I(x; z) = 1

2
log

( |P(x)|
|P(x|z)|

)
= 1

2
log

(
P(x)

P (x)− P(x, z)2/P (z)

)

= −1

2
log
(

1− ρ2
x,z

)
(18.14)

where ρ2
x,z � P(x,z)2

P(x)P (z) is the correlation of x and z, and has the value between
−1 and 1. To derive a theorem for the subsequent Sections, a property of mutual
information related to three random variables is given [13]

I(x; y|z)− I(x; y) = I(x; z|y)− I(x; z)

= I(z; y|x)− I(z; y) (18.15)

18.2.2 Game-Theoretic Architecture

Potential games are applied to many engineering optimization problems (such as
cooperative control and resource allocation problems) due to their static (existence
of Nash equilibrium) and dynamic good property (simple learning algorithm). This
section provides the required game-theoretic background to develop the results in
the Chapter.

18.2.2.1 Strategic Form Game

A finite game in strategic form consists of three components [10]. First of all there
is a finite set of players N = {1, 2, . . . , N}, and each player selects one of actions
from the strategy space, Ai , for each player i ∈ N . Lastly, a player receives
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the utility after all the players select their own actions, which is represented as
a utility function ui : A → R, for each player i ∈ N . With these elements, a
finite strategic form game instance is defined by the tuple 〈N , {Ai}i∈N , {ui}i∈N 〉.
In this setting, each player has a preference structure over the actions that the player
can select, according to its utility function ui . A joint strategy space of a game is
denoted by a N -fold Cartesian product of every action set A = ∏i∈N Ai , which
represents a set of all possible combinations of actions for all players to choose.
a = (a1, a2, . . . , aN) ∈ A is the collection of strategies of all players, called a
strategy profile, where ai ∈ Ai denotes the strategy chosen by player i ∈ N . For
notational convenience, the strategy space can be expressed as a = (ai, a−i ), where
a−i = (a1, . . . , ai−1, ai+1, . . . , aN) denotes the collection of actions of players
other than player i.

A utility function ui for player i reflects a preference of player i over its possible
actions Ai . Given other players’ actions, each player would try to maximize the
payoff, selecting an action that gives the maximum payoff. If every player selects the
action with the maximum payoff assuming that other player’s actions do not change
and the chosen action is consistent with the belief that other players assumed about
the player’s action, and it is also true for all the players, then there is no reason
for every player to change his action in this strategy profile. It follows a solution
concept in a non-cooperative game, a Nash equilibrium. Formally, a strategy profile
a∗ ∈ A is a (pure) Nash equilibrium if

ui(a
∗
i , a

∗−i ) ≥ ui(ai, a∗−i ) (18.16)

for every ai ∈ Ai and every player i ∈ N . A Nash equilibrium is a strategy profile
in which no player can improve its utility by deviating unilaterally from its profile.

18.2.2.2 Potential Game

A potential game is a non-cooperative game in which the incentive of the players
changing their actions can be expressed by a single function, called the potential
function, which corresponds the global objective of a system in many engineering
problems. That the player tries to maximize its utility is equivalent to maximizing
the global objective for a system [19]. Formally, a finite non-cooperative game G =
〈N , {Ai}i∈N , {ui}i∈N 〉 is a potential game if there exists a scalar function φ : A→
R such that

ui(a
′
i , a−i )− ui(a′′i , a−i ) = φ(a′i , a−i )− φ(a′′i , a−i ) (18.17)

for every i ∈ N , a′i , a′′i ∈ Ai , a−i ∈ A−i . The function φ is referred to as a
potential function of the game G. The property of a potential game in (18.17) is
called perfect alignment between the potential function and the player’s local utility
functions. This means that the amount of the change in the global objective caused
by the unilateral change in one of the actions is equal the change in the local utility
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function of the corresponding agent. This results in two important properties of
potential games. First, a potential game guarantees the existence of pure strategy
Nash equilibrium. Since the joint strategy space is finite, there always exists at
least one maximum value of the potential function. This strategy profile maximizing
the potential function locally or globally is a pure Nash equilibrium. Hence, every
potential game possesses at least one pure Nash equilibrium. The second important
property is about the dynamics of a game. Many learning algorithms for finding out
a Nash equilibrium in potential games are established and proven to have guaranteed
asymptotic convergence to a Nash equilibrium [17].

18.3 Sensor Network Planning as a Potential Game

The goal of sensor network planning problems is to find out the optimal sensing
locations that maximizes the mutual information between the verification variables
and the measurements taken at those locations. In [7], we proposed a potential game
formulation for distributed sensor network planning problem. Each sensing agent is
considered as a player of the game and the action set of an agent is a search space for
each sensor. For a local utility we showed that the local objective function defined
by the conditional mutual information of an agent conditioned on the other agents’
sensing decisions lead to a potential game, with the potential function being the
original mutual information.

18.3.1 Cooperative Sensor Planning for Maximum
Information

In this Chapter, we consider a sensor targeting problem where a network of N
mobile sensing agents deployed in a relatively large domain (see Fig. 18.1). A
mobile sensing agent is a vehicle carrying sensors on it, an unmanned aerial vehicle
(UAV) is one example. The whole search space for a sensor network is divided up
into small sensing regions1 to which each sensing agent is designated and within
each region the agent selects sensing points; Si ⊂ S denotes the search space for
a sensing agent i and we consider the region to be finite dimensional in the spatial
and/or temporal space.

In a cooperative sensing problem, a sensor network tries to obtain a meaningful
information about the verification variables through the measurements taken by the

1The search region for an agent can be overlapped with other agents. In a sensor management
problem, sensors are spatially installed at fixed positions and the goal is to determine which sensor
node to turn ON/OFF. Then, the search space selecting a sensor node to turn on can be considered
as the whole search space, that is, all the positions at which the sensors are installed.
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Fig. 18.1 A deployment of a sensor network in a search space. Each sensing agent is designated to
a prespecified sensing region which is assumed to be finite dimensional. The sensing agent select
the future sensing locations within the designated search space [7]

sensors, so that the verification variables are estimated with sufficient accuracy.
Since the sensor network has limited resources, the sensor network should select
the set of sensing points that gives the information about the verification variables as
much as possible to reduce the number of measurements. Therefore, the cooperative
sensing problem can be stated as selecting the most informative set of sensing
points over the search space S . The informativeness about the variables of interest
xv through measurements zs1:N can be quantified using mutual information. Here,
the subscript s1:N = {s1, . . . , sN } denotes the set of the sensing locations for N
sensors and i-th sensing location si is selected from its designated region Si , that is
si ∈ Si . zs1:N = [zs1 , . . . , zsN ] is the random vector that represents the measurement
variables taken at the locations s1:N ⊂ S . Therefore, the mathematical formulation
of the cooperative sensing problem can be given by the optimization that seeks to
find out the set of sensing points, s1:N that gives the maximum mutual information
about the variables of interest xv .

s∗1:N = arg max
s1:N :si∈Si

I(xv; zs1:N ) (18.18)

The sensor network planning problem is a combinatorial optimization problem.
To find out the optimal solution, we need to search for a combinatorial number
of candidate sets of sensing locations. Some distributed decision architecture
have been proposed to solve this computational complexity. Greedy strategies are
often adopted due to their simple implementation. Although the greedy algorithms
provide a good result, they are still subject to some limitations. Since the greedy
strategies obtain a solution with a single run of an optimization problem for each
agent, it is not possible to improve their solution performance by communicating
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Algorithm 1 Learning algorithm (ui, Fi)
1: Choose the strategy using local greedy strategy
2: while Convergence Criteria not satisfied do
3: for i ∈ {1, . . . , N} do
4: Perform local optimization at each agent i
5: Update the strategy according to the update rule, si (t) = Fi(s(0), . . . , s(t − 1); ui)
6: end for
7: end while

agents’ decisions. Game theoretic architecture provides a systematic iterative
framework for considering other agents’ decisions.

18.3.2 Sensor Selection as Potential Game

To formulate a sensor planning problem as a strategic form game, each sensing agent
is considered as a player in a game who tries to maximize its local utility function,
ũi (si , s−i ), where si is the set of sensing locations for sensor i, and s−i represents the
set of sensing locations other than sensor i’s selections. In [7], we previously showed
that the conditional mutual information of sensor i’s measurements conditioned on
the other agents sensing decisions leads to a potential game with a global objective
function

φ(si , s−i ) = I(xv; zsi , zs−i ) = I(xv; zs1:N ). (18.19)

The local utility function can be represented by

ui(si , s−i ) = I(xv; zsi |zs−i ) (18.20)

The solution of the designed potential game can be obtained by using a repeated
game. At each stage of the game, each agent updates its decision based on the other
agents’ decisions up to the previous stages. With some randomness and the local
optimization process, each agent either keeps its previous decision unchanged or
selects the action of maximum payoff. The general structure of learning algorithms
is summarized in Algorithm 1.

The selection rule Fi determines the specific learning algorithm. Among many
learning rules, we adopted a joint strategy fictitious play (JSFP) [18]. In JSFP, each
player assumes that other players play randomly according to the joint empirical
frequencies, f−i (s−i; t), which represents the frequency with which all players but
i have selected a joint action profile s−i up to stage t − 1. In local optimization step
at each stage, a player computes the expected local utility for action si ∈ Si with
the joint action model of its opponents given by

ui(si , f−i (t)) = Ef−i (t) [ui(si , s−i )] (18.21)
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In [18], the predicted utilities ui(si , f−i (t)) for each si ∈ Si can be expressed with
a simple recursion rule

ui(si , f−i (t)) = 1

t

t−1∑

τ=0

ui(si , s−i (τ ))

= t

t + 1
ui(si; t)+ 1

t + 1
ui(si , s−i (t)),

We showed that the JSFP for a sensor network planning problem can be converged
to a Nash equilibrium by using [18, Theorem 2.1] and specifying the termination
condition of the algorithm and demonstrated the efficiency of Nash equilibrium
solutions through the weather forecast example in [7].

The equation for the local utility function shows that it requires the decisions of
all of the agents, results in large computation and communication costs, especially
the required computation grows exponentially in case of using a particle filter for
estimating the target states. Thus we need to approximate the local utility function.

18.4 Approximate Local Utility Design

In the game-theoretic formulation, the conditional mutual information of an agent
conditioned on the other agents’ decisions defines a local utility function for each
agent. Rewriting the local utility function (18.20) in a backward scheme,

ui(si , s−i ) = I(xv; zsi |zs−i ) = H(zsi |zs−i )−H(zsi |xv, zs−i ) (18.22)

In this section, we propose an approximation method to lessen the computational
burden of obtaining the local utility function. The method is to modify the form of
the local utility function itself simply by removing some of conditioning variables,
which represent the decisions of other agents.

18.4.1 Neighbors with Correlation

We propose the approximation method for computing the local utility function
which limits the number of the conditioning variables, not using all of the
decisions from a sensor network. Removing some of the conditioning variables is
accomplished by using the correlation structure of the information space, making
the local utility function depend on the part of the decisions.

ũi (si , sNi ) = I(xv; zsi |zsNi
) (18.23)
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where sNi is the set of the measurement selections correlated with sensing agent
i’s decision, referred to as a neighbor set of sensing agent i and zsNi

denotes the
corresponding measurement variables. The neighbor set sNi is a subset of s−i .
To reduce the computation, the neighbor set should be a strict subset of s−i . We
quantify the error incurred by the approximation and arrange the error bound into
the following lemma.

Lemma 18.1 Let Δui denote the difference between the approximate local utility
for sensor i and the true value of (18.20), then

Δui = c1(s−i )− I(xv; zs−Ni |zsi∪sNi
)

= c2(s−i )+ I(zsi∪sNi
; zs−Ni )− I(zsi∪sNi

; zs−Ni |xv) (18.24)

where s−Ni � s1:N \ {si ∪ sNi } is the set of the sensing locations that sensor i does
not consider in computing its approximate utility, and c1(s−i ), c2(s−i ) encompass
the terms that are constant with respect to the i-th sensing agents selection.

Proof The conditional mutual information of (18.20) and (18.23) can be expanded
using chain rule (18.12)

ΔUi = I(xv; zsi |zsNi
)− I(xv; zsi |zs−i )

= [I(xv; zs1:N )− I(xv; zsNi
)− I(xv; zs−Ni |zsi∪sNi

)]
−[I(xv; zs1:N )− I(xv; zs−i )].

Cancelling out common terms results in the first equation in (18.24) and rewriting
the third term using (18.15)

ΔUi = I(xv; zs−i )− I(xv; zsNi
)− I(xv; zs−Ni )+ I(zsi∪sNi

; zs−Ni )

− I(zsi∪sNi
; zs−Ni |xv)

= c(s−i )+ I(zsi , zsNi
; zs−Ni )− I(zsi , zsNi

; zs−Ni |xv).

Remark 18.2 When it is assumed that the measurement variables are conditionally
independent given the verification variable, the error of the approximate local utility
can be simplifed as

ΔUi = c(s−i )+ I(zsi∪sNi
; zs−Ni ) (18.25)

The conditional independence makes the last term in (18.24) be zero, then the
error can be represented with a mutual information between the sensing selections
related with sensing agent i and the others. In this case, the sensing locations that
are correlated with sensing agent i’s search space are selected as a neighbor set of
sensing agent i regardless of the verification variables. For example, this is the case
for a target tracking example.
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Remark 18.3 In a non-cooperative game, each agent tries to maximize its own
payoff with the other agents’ decisions fixed. Thus, adding a constant to the utility
function for the fixed other agents’ actions has no effect on the decision of the
agent. In (18.24), the common term c1(s−i ) and c2(s−i ) for all the strategies of
agent i doesn’t affect the preference structure of sensing agent i [4]. Note that a
Nash equilibrium is defined in terms of payoff differences for varying actions of
each agent, suggesting that games with identical preference structure share the same
equilibrium sets. Thus, if the term that depends on the selection of agent i is zero,
the game with approximate local utility functions will have the same equilibrium
sets with the game with the true value of (18.20).

18.4.2 Determination of the Neighbor Set

The error incurred by the approximation of the local utility function can be
considered in two ways. In the first equation of (18.24), the error is represented
as the mutual information between the verification variables and the measurement
variables of which is not in the neighbor set of agent i. If after conditioning on
the measurement selections of sensing agent i and its neighbors, the measurement
variables at s−Ni have little information about the target variables, the error becomes
small enough to approximate the local utility function with sufficient accuracy. That
is, the measurement variables at s−Ni have no new information about the verification
variables other than the measurements at si and sNi .

In the other way, the error is the difference between the prior mutual information
and the posterior mutual information conditioning on the target states as shown in
the second equation of (18.24). It amounts to the mutual information of the variables
at si ∪ sNi and s−Ni projected onto the subspace generated by the target states [21].

To make the error sufficiently small, it is important to decide which measurement
variables be included in the neighbor set for each agent. In most of the cases, the
measurement variables taken at the close locations are correlated with each other,
and in contrast the measurements taken at the distant locations from sensing agent
i’s search space have little correlation with agent i’s selection. Thus, each sensing
agent can approximate its utility function by considering the neighbor set consisted
of the sensing agent close to each agent. However, in weather forecast example,
there is no connection between the closeness in Euclidean distance and correlation
among variables. Weather dynamics is highly nonlinear and thus the neighbor set
should be chosen in different way to the usual cases. For a weather forecast example,
the sequential greedy scheme is proposed. Every sensing agent conducts the greedy
scheme to determine its neighbor set. The algorithm is simply adding sensing agents
in sequence, choosing the next sensor which has maximum mutual information
about the target states conditioned on the measurement variables of a sensing agent’s
search space and its pre-selected neighbors. Using the first error bound in (18.24),
the algorithm greedily selects the next sensing agent j that maximizes:
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Algorithm 2 Neighbors selection algorithm for weather forecast example(i, P0 =
P(zS−i ), Pv = P(zS−i |xv))
1: sNi

:= ∅
2: s−Ni

:= sS1:N \ sSi
3: for j ∈ {1, . . . , n} do
4: for y ∈ s−Ni

do

5: Δy = log( P0(zy )
Pt (zy )

)

6: end for
7: y∗ = arg maxy∈s−Ni

Δy

8: sNi
:= sNi

∪ y∗
9: s−Ni

:= s−Ni
\ y∗

10: P0 = P0(zs−Ni
)− P0(zs−Ni

, zy∗ )P0(zy∗ , zs−Ni
)/P0(zy∗ )

11: Pv = Pv(zs−Ni
)− Pv(zs−Ni

, zy∗ )Pv(zy∗ , zs−Ni
)/Pv(zy∗ )

12: end for

I(zsj ; xv|zsi∪sNi
) = H(zsj |zsi∪sNi

)−H(zsj |zsi∪sNi
, xv). (18.26)

In Algorithm 2, we outlines the greedy neighbor selection algorithm.
If we leave out the measurement variables that have little correlation with sensor

is selection, we can approximate the local utility function with a small error. This
approximation reduces the burden of computation significantly, however it cannot
be showed that the approximate local utility function satisfies the alignment with
the global objective, thus we cannot say that the game with the approximate local
utility function is a potential game. The performance of the game with the proposed
local utility function should be studied in future work.

18.4.3 Computation Time Analysis

The main burden for the computation of utility functions is caused by conditioning
variables the decisions from all of the agents. For a multivariate normal distribution,
a local utility function (18.20) is rewritten using the backward scheme [6] and the
mutual information for a Gaussian variables (18.13) with additive white Gaussian
measurement noise,

ui(si , s−i ) = I(xv; zsi |zs−i ) = H(zsi |zs−i )−H(zsi |xv, zs−i )

= 1

2
log |P(zsi |zs−i )| −

1

2
log |P(zsi |xv, zs−i )|

= 1

2
log
∣∣∣P(zsi )− P(xsi , xs−i )P (zs−i )

−1P(xs−i , xsi )

∣∣∣

−1

2
log
∣∣∣P(zsi |xv)− P(xsi , xs−i |xv)P (zs−i |xv)−1P(xs−i , xsi |xv)

∣∣∣
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where P(zs) = P(xs) + Rs, P(zs|xv) = P(xs|xv) + Rs denote the covariance
matrices of measurement variables at sensing selections s, and Rs denotes the
measurement noise covariance. As shown above, the most time-consuming term
is the computation of the inverse of matrices relating to the other agents’ decisions
in obtaining a local utility function. Inversion of n × n symmetric positive matrix
requires approximately 2

3n
3 floating-point operations [2], and thus computation time

for the conditional mutual information increases proportional to the cubic of the
number of sensing agents (O(N3)). For a large sensor network, the computation of
a utility function for an agent becomes intractable. However, the approximate local
utility function depending on the neighbor sensing agents’ decisions ensures that
the computation time of a utility function for each agent stays within fixed limits as
there are limited number of neighbors around each agent.

18.5 Numerical Example

A sensor targeting example for weather forecast is presented to demonstrate the
validity of the proposed local utility function and the selection algorithm of the
neighboring set. In Sect. 18.5.1 we describe a sensor targeting problem for weather
forecast. In Sect. 18.5.2 we compare the performance of the approximate local utility
function with other algorithms.

18.5.1 Sensor Targeting for Weather Forecast

The proposed game-theoretic method is demonstrated on a sensor targeting example
for weather forecast using Lorenz-95 model. The Lorenz-95 model [15] is an
idealized chaos model that is implemented for the initial verification of numerical
weather prediction. In this example, we adopt a same sensor targeting scenario as
[6], in which a 2-D extension of the original 1-D Lorenz-95 model was developed
and used. The 2-D model represents the global weather dynamics of the midlatitude
region of the northern hemisphere as follows [7]:

ẏij =
(
yi+1,j − yi−2,j

)
yi−1,j + 2

3

(
yi,j+1 − yi,j−2

)
yi,j−1 − yij + ȳ,

(i = 1, . . . , Lon, j = 1, . . . , Lat ) (18.27)

where yij denotes a scalar meteorological quantity, such as vorticity or temperature,
at the ith longitudinal and j th latitudinal grid point, and each of which corresponds
to the state variable at the point. At the sensing location ij the measurement model
is given by

zij = yij + vij
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where vij is additive sensing noise, with vij ∼ N (0, Rij ) for all possible sensing
locations. In the weather forecast, the agent takes measurements of meteorological
quantities directly corrupted with some noise. The size of the whole region is Lon =
36 longitudinal and Lat = 9 latitudinal grid points, which are corresponds to 694 ×
694 km.

The sensor targeting problem for the weather forecast can be rephrased as
selecting the most informative sensing locations in the predefined search region
at ts = 0.05 (equivalent to 6 h) to reduce the uncertainty in the verification
variables. The verification variables correspond to y in the verification region at the
verification time tv = 0.55 (equivalently to 66 h). While unattended ground sensors
of size 93 is already deployed and takes measurements every 6 h, the decision
should be made to choose additional sensing locations for mobile sensing agents,
such as UAVs at ts . Using the Ensemble square root filter [22] with the above
weather dynamics, the joint probability distribution of the measurement variables at
ts and the verification variables at tv can be approximated by a multivariate Gaussian
distribution obtained from the samples of the filter (See [6] for more detail setting
of the problem). With the covariance matrix of the measurement variables and the
verification variables P(xS1:N ∪ xv), the problem can be treated as a static sensor
selection problem in which decides where to make measurements out of a finite
set of candidate locations. The backward scheme proposed in [6] is utilized to
calculate the mutual information of the global objective function, which is proven
to be efficient in computing the impact of each measurement variables combinations
on the uncertainty reduction (18.18).

I(xv; zs) = I(zs; xv) = H(zs)−H(zs|xv)
= 1

2
log(|P(zs)|)− 1

2
log(|P(zs|xv)|)

= 1

2
log (|P(xs)+Rs|)−1

2
log (|P(xs|xv)+Rs|) . (18.28)

For the given covariance matrix P(xS1:N ∪ xv) obtained from the ensemble square
root filter, the two covariance matrices P(xS1:N |xv) and P(xS1:N ) are computed prior
to the selection process. The unconditioned covariance matrix for the measurement
variables P(xS1:N ) is formed by simply removing the rows and columns correspond-
ing to the verification variables from P(xS1:N ∪ xv). The conditional covariance
matrix P(xS1:N |xv) is computed by conditioning P(xS1:N ) on the verification
variables xv . Once these two covariance matrices are obtained, then the selection
process for each sensing agent is equivalent to the selection of corresponding
principal submatrix and calculation of determinants.

In a potential game each agent computes the local utility function defined by
the conditional mutual information between the measurement selection and the
verification variables conditioned on the other agents’ action. We calculate the local
utility using the backward scheme as the mutual information of the global objective.
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ui(si , s−i ) = I(xv; zsi |zs−i ) = I(zsi ; xv|zs−i )

= H(zsi |zs−i )−H(zsi |xv, zs−i )

= 1

2
log
(∣∣P(zsi |zs−i )

∣∣)− 1

2
log
(∣∣P(zsi |xv, zs−i )

∣∣) (18.29)

Here, we should calculate the two matrices P(zSi |zs−i ) and P(zSi |xv, zs−i ) over the
search space of agent i before optimizing the agent’s selection. For the obtained
covariance matrices P(xS1:N |xv) and P(xS1:N ) from the backward scheme the two
conditional covariance matrices P(zSi |zs−i ) and P(zSi |xv, zs−i ) are computed by
conditioning on the other agents’ sensing selections respectively. If the number of
sensing points each agent selects is one, then the covariance matrix for one sensing
point become a scalar which is a corresponding diagonal elements in the matrix.

The approximate local utility is computed in the same way of computing the local
utility (18.29) with the exception of the conditioning variables. The conditioning
variables are reduced to the neighboring measurements instead of all the other
agents’ decisions.

ũi (si , sNi ) = I(zsi ; xv|zsNi
)

= H(zsi |zsNi
)−H(zsi |xv, zsNi

)

= 1

2
log
(∣∣∣P(zsi |zsNi

)

∣∣∣
)
− 1

2
log
(∣∣∣P(zsi |xv, zsNi

)

∣∣∣
)

(18.30)

18.5.2 Comparative Results

The proposed game-theoretic method using approximation of the local utility has
been tested for three different sensing topologies – nine sensors in 3 × 2 format
in two different search spaces, and fifteen sensors in 2× 3 format in larger region
than the first and second cases, as described in Table 18.1. An oceanic region of size
12 × 9 (in longitude× latitude) is considered as a potential search region, among
which the whole search space S1:N is chosen and each agent is assigned its own
sensing region Si separated from the other agents.

Si ∩ Sj = ∅, ∀i 	= j

Table 18.1 Topology of
example cases (a × b: a grids
in longitude, b grids in
latitude)

Case N ni S1:N Si
1 9 1 9 × 6 3 × 2

2 9 1 9 × 6 3 × 2

3 15 1 10 × 9 2 × 3
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The number of sensing locations for each agent is set to be one for all the cases as
in [7], because the global optimal solution cannot be obtained in tractable time. We
compare the proposed method to seven different strategies:

• Global optimal: The global optimal solution for the cooperative sensor network
planning problem in (18.18) is obtained by exhaustive search.

• Local greedy: Local greedy strategy maximizes the mutual information of its
own selection as shown in below

max I(zsi ; xv).

• Sequential greedy: Each agent select the sensing location which gives the
maximum mutual information conditioned on the preceding agents’ decisions.

max I(zsi ; xv|zs1:i−1)

• Iterative greedy: Agents make decisions based on the latest outcome with the
same local utility function as (18.20). The decisions are made iteratively.

• JSFP w/ inertia: Implementation of Algorithm 1 of [7] with inertia, i.e., an agent
is reluctant to change its action to a better one with some probability (in this
example, with probability α = 0.3 an agent chooses a better action)

• JSFP w/o inertia: Implementation of Algorithm 1 of [7] without inertia.
• Approximate JSFP with 2-hop neighborhood w/ inertia: Iterative process with

local utility functions defined as (18.23). In this strategy, the neighbors are
determined in terms of multi-hop in inter-agent communication.

• Approximate JSFP with correlation based neighborhood w/ inertia: Iterative
process with local utility functions defined as (18.23). The neighbors are
determined by Algorithm 2 using the correlation structure of the search space.

The resulting objective values for the seven different strategies are given in
Table 18.2, and the histories of objective values in the iterative procedure are shown
in Fig. 18.2. The results for iterative algorithms with inertia are obtained from
Monte-Carlo simulation and represent average objective values. Case 3 is different
from the other two cases in that a larger sensor network is considered, and the global
optimal solution cannot be obtained in tractable time. However, from the examples

Table 18.2 Objective values
for seven different strategies

Strategy Case 1 Case 2 Case 3

Global optimal 2.1556 1.7563 N/A

Local greedy 1.9136 1.6668 2.3105

Sequential greedy 1.9739 1.6959 2.6131

JSFP-full w/o inertia 2.1424 1.7427 2.8337

JSFP-full w/ inertia 2.1487 1.7479 2.8886

JSFP-appr 2 hop w/ inertia 2.1401 1.7026 2.7087

JSFP-appr corr w/ inertia 2.1400 1.7519 2.8292
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Fig. 18.2 Histories of objective values with stage count for three cases

of small sensor networks we consider that the optimal solution of the third case
may be close to the JSFP with full information. Thus, we can consider the objective
value for the JSFP with full information as a lower bound for the optimal solution.
For case 1 and 3, the results for the iterative greedy method also are added to verify
the previous result and compare the method with the proposed algorithm.

Before addressing the results of the proposed method, we verify some trends
that is already shown in [7]. The JSFP solutions converge to a solution which is
better than ones from the greedy algorithms. The iterative greedy method does not
converge and its unstable solution is lower than the JSFP solutions as shown in Case
1 and Case 3. As our previous work, we consider the sequential greedy solution as
a baseline for comparing the performance of different strategies, since it guarantees
the worst-case performance in polynomial time, even though the guarantee is
applied to the problems in which the objective functions satisfy some conditions.
Unfortunately, the mutual information for weather forecasting does not satisfy those
conditions, however the sequential greedy algorithm gives better solution than a
simple local greedy method. First, note that the proposed method for finding out
an approximate solution should give an objective value higher than sequential
greedy algorithm’s solutions. The JSFP with approximate local utility functions also
presents a better performance than the sequential greedy strategy. The approximate
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local utility function based on the correlation always gives a better solution than
the ones depending on the actions of the neighbors selected by physical distance.
In all cases, the objective value for the approximate JSFP with correlation based
neighborhood is close to the JSFP with full information. The important thing to
note here is that the number of conditioning variables used for computing the utility
functions is half of the JSFP with full information. As mentioned in Sect. 18.4.3,
the computation time for the conditional mutual information increases proportional
to the cubic of the conditioning variables. Therefore, the computation time for
the approximate local utility function is reduced by a factor of approximately 8.
However, the convergence time for the JSFP with approximation takes more time
than the JSFP with full information. For the cases with small networks (Case 1
and Case 2) the difference between the convergence time is small, however a larger
sensor network needs more time to converge with the approximate utility than with
the exact utility function. The analysis of convergence time will be future work.

18.6 Conclusion

We presented an approximation method for computing the local utility function
for a sensor network planning problem formulated as a potential game to find out
the optimal sensing points selection in tractable time. A local utility function of
each agent that depends on the neighboring measurement variables is presented,
and a neighbor selection algorithm is proposed to keep the error induced by the
approximation small. A sensor targeting example for weather forecast demonstrated
that a potential game formulation with the approximation local utility function
gives good performance close to a potential game with full information and results
in a better solution than previous work [5] in which the approximation local
utility function depending on the neighboring agents’ actions was proposed but the
neighboring agents are specified in terms of physical distance.
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Chapter 19
Dynamic Sensor-Actor Interactions for
Path-Planning in a Threat Field

Benjamin S. Cooper and Raghvendra V. Cowlagi

Abstract We consider the problem of planning the path of a vehicle, which we
refer to as the actor, to traverse a threat field with minimum threat exposure. The
threat field is an unknown, time-invariant, and strictly positive scalar field defined on
a compact 2D spatial domain – the actor’s workspace. The threat field is estimated
by a network of mobile sensors that can measure the threat field pointwise at their
locations. All measurements are noisy. The objective is to determine a path for the
actor to reach a desired goal with minimum risk, which is a measure sensitive not
only to the threat exposure itself, but also to the uncertainty therein. A novelty of this
problem setup is that the actor can communicate with the sensor network and request
that the sensors position themselves such that the actor’s risk is minimized. Future
applications of this problem setup include, for example, delivery (by an actor) of
emergency supplies to a remote location that lies within/beyond a region afflicted by
wildfire or atmospheric contaminants (the threat field). We formulate this problem
on a grid defined on the actor’s workspace, which defines a topological graph G.
The threat field is assumed to be finitely parameterized by coefficients of spatial
basis functions. Least squares estimates of these parameters are constructed using
measurements from the sensors and the actor. Whereas edge transitions in the graph
G are deterministic, the transition costs depend on the threat field estimates, and
are deterministic but unknown. The actor and the sensors interact iteratively. At
each iteration, Dijkstra’s algorithm is used to determine a minimum risk path in the
graph G for the actor. Next, a set of grid points “near” this path are identified as
points of interest. Finally, the next set of sensor locations is determined to maximize
the confidence of threat field estimates on these points of interest, the threat field
estimate is accordingly updated, and the iteration repeats. We explore the effect of
initial sensor placement on the convergence of the iterative planner-sensor as well
as discuss convergence properties with respect to the relative number of parameters
and sensors available.
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19.1 Introduction

An expanding variety of applications drives the need for autonomy of unmanned
aerial and terrestrial vehicles. There are two major components of vehicular
autonomy: (1) sensing and situational awareness in the vehicle’s environment, and
(2) motion-planning and control to achieve autonomous motion in this environment.
These two components can be identified with the observer/estimator and the
controller subsystems, respectively, in a traditional control systems framework.
Mirroring a common practice in control systems design, a “principle of separation”
between these two components is often assumed, as evident from discussions in
textbooks on autonomous mobile vehicles, e.g., [31]. The separation entails that
the collection and processing of sensor data is independent of the specific motion-
planning problem at hand. In this paper, we study a specific motion-planning
problem and a sensor setup where the removal of such separation between the two
components of autonomy can be beneficial.

We address planar path-planning for a mobile vehicle, which we call the actor
vehicle, to traverse a compact planar workspace W with minimum exposure to
a spatially varying scalar field, which we call the threat field. The values taken
by the threat field over W are estimated by a finite number of sensors that can
take pointwise measurements of the threat field. We study the problem of sensor
placement. However, in a departure from the typical approach of placing sensors
to determine an optimal estimate of the threat field, we study sensor placement
to optimize the actor’s performance. By explicitly relating the problem of sensor
placement to the actor’s motion-planning problem, we remove the separation
between the sensing and planning components. This problem setup also reflects a
growing research interest in distributed autonomy, where a heterogeneous team of
mobile vehicles collaboratively executes a common task.

19.1.1 Literature Review

Different facets of the proposed problem are addressed in different domains of
the literature. The primary domains include path- and motion-planning under
uncertainty, sensor management, and parameter estimation of a distributed process,
while additional insights are provided by the literature in the areas of simultaneous
localization and mapping (SLAM), target tracking and localization, planning for
stochastic systems, optimal design of experiments, and distributed control systems.

The literature on sensor management addresses optimal placement of sensors
to estimate distributed processes [17, 33], including the atmospheric dispersal of
gases [11], the spread of volcanic ash [23], and the identification and control of
structural vibrations [29]. Guidance and coordination strategies for mobile sensors
are also discussed [12, 24, 25] for envisioned implementations using teams of
unmanned aerial, terrestrial, or underwater vehicles (UXVs).
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A typical performance metric used to characterize optimal sensor placement is
maximum information, or equivalently, minimum entropy [9]. Maximization of a
characteristic, such as the determinant, the trace, or the largest eigenvalue, of the
Fisher information matrix (FIM) is another frequently used performance metric.
Other metrics include the classical least squared error in parameter estimates,
mutual information, Battacharya coefficients, Hellinger distance, and Kullback-
Lieber divergence [9, 17, 27].

Examples of integrated approaches to estimation and control, which disregard
the aforementioned separation principle, are found in the literature on guidance and
coordination strategies for mobile sensor networks to maximize an information met-
ric. In particular, target tracking and localization are widely addressed applications
of mobile sensor networks [1, 13, 25]. A distinction between task- and information-
driven performance metrics for parameter estimation is discussed in Ref. [18], which
concludes that for a specific task such as target tracking, a task-specific performance
metric (e.g., squared tracking error) is beneficial.

The literature on motion-planning and control for mobile vehicles encompasses
several major approaches. Applications of optimal control theory are widely
discussed for vehicle guidance [3, 7], including numerical methods for trajectory
optimization [5, 14]. These methods are difficult to apply in situations involving
several state constraints, such as obstacles in the vehicle’s environment. The robotics
literature addresses this issue by geometric path-planning algorithms based on
workspace grids or cell decompositions [6, 28] and visibility roadmaps [22]. Within
the last two decades, randomized sampling-based methods including probabilistic
roadmaps (PRM) [16], and rapidly exploring random trees (RRT) [15, 20] have
addressed efficient motion-planning in large dimensional configuration- or state
spaces.

Motion-planning under uncertainty is typically formulated as a Markov Decision
Process (MDP) or a partially observable MDP (POMDP), and can be solved using
dynamic programming (DP) [4]. Unfortunately, a naïve implementation of DP is,
in general, computationally intractable for practical applications. To this end, belief
space roadmaps are discussed for motion-planning under uncertainty [2, 30]. Typical
sources of uncertainty in motion-planning include motion uncertainty due to vehicle
modeling errors, uncertainty in the vehicle’s states due to measurement noise, and
uncertainty in the environment map [19], the latter of discussed in the proposed
work. The literature on simultaneous localization and mapping (SLAM) algorithms
addresses [8, 21] the simultaneous reduction in uncertainty in the environment map
and in the vehicle’s state, by estimating parameters that describe environmental
features. SLAM methods may also involve planning, typically formulated as an
MDP [8] that reflects the uncertainties in the map and in the vehicle state.
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19.1.2 Proposed Work and Contributions

We consider the problem of planning the path of a vehicle, which we refer to
as the actor, to traverse a threat field with minimum threat exposure. The threat
field is an unknown, time-invariant, and strictly positive scalar field defined on
a compact 2D spatial domain W . The threat field is estimated by a network of
mobile sensors that can measure the threat field pointwise at their locations. All
measurements are noisy. The objective is to determine a path for the actor to reach
a desired goal with minimum expected threat exposure over the estimated path.
A novelty of this problem setup is we seek sensor placements that minimize the
actor’s expected threat exposure. Future applications of this problem setup include,
for example, delivery (by an actor) of emergency supplies to a remote location that
lies within/beyond a region afflicted by wildfire or atmospheric contaminants (the
threat field).

We formulate this problem on a grid defined on the actor’s workspace, which
defines a topological graph G. The threat field is assumed to be finitely parame-
terized by coefficients of spatial basis functions. Least squares estimates of these
parameters are constructed using measurements from the sensors and the actor.
Whereas edge transitions in the graph G are deterministic, the transition costs
depend on the threat field estimates, and are therefore deterministic but unknown.
The sensor locations change iteratively. At each iteration, Dijkstra’s algorithm is
used to determine a path with minimum threat exposure in the graph G for the actor.
Next, a set of grid points “near” this path are identified as points of interest. Finally,
the next set of sensor locations is determined to maximize the confidence of threat
field estimates on these points of interest, the threat field estimate is accordingly
updated, and the iteration repeats.

The contributions of this Chapter are as follows. The Chapter breaks new
ground in dynamic data-driven autonomy, in that an explicit bidirectional interaction
between a path-planning algorithm and a sensor network are separate from the
actor vehicle. Prior works in the literature have focused either on the problem
of finding paths with minimum expected threat exposure (e.g. [26]) or on the
problem of distributed estimation of a spatio-temporally varying scalar field (e.g.
[12, 23]). To the best of the authors’ knowledge, this paper is the first to consider
an “orchestration” of a sensor network using graphical methods to acquire measure-
ments most relevant to a concurrent path-planning problem. A prior work [32] has
considered such “orchestration” of an onboard sensor, namely, gimbaled pointing of
an electro-optical/infrared camera. We focus on autonomy (namely, path-planning
on a grid) and a simple implementation of mobile sensor networks (namely, least-
squares estimation of a finitely parameterized field) to emphasize the interactions
between these entities. The proposed work includes the study of a heuristic method
to determine a domain of the actor’s interest for guiding sensor placement. We study
the iterative process that results from the computation of this domain, the subsequent
sensor placement, and replanning by the actor with newly acquired sensor data.
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The rest of the Chapter is organized as follows. In Sect. 19.2, we introduce the
main elements of the problem. In Sect. 19.3 we describe a dynamic actor-sensor
interaction that results in a sensor placement strategy. In Sect. 19.4, we illustrate
examples of the proposed reconfiguration strategy, and present numerical simulation
results to discuss convergence of the actor-sensor interactions. We conclude the
Chapter in Sect. 19.5 with comments about the future work.

19.2 Problem Formulation

Let W ⊂ R
2 be a closed square region, called the workspace, in which the actor

and the sensors move. In this workspace, we formulate a grid consisting of N2
G

uniformly placed in NG rows and NG columns. The coordinates in a prespecified
Cartesian coordinate axis system of the ith grid point are denoted by xi , for each
i = 1, . . . , N2

G. We consider a strictly positive scalar field c :W → R
2
>0, called the

threat field, which represents unfavorable regions with higher intensity. The actor is
assumed to traverse grid points according to a “4−connectivity rule,” i.e., the actor
can traverse from the ith grid point to immediately adjacent grid points in the same
row or the same column. In this Chapter, we neglect vehicle kinematic and dynamic
constraints that can restrict this motion, while noting that such constraints can in
the future be incorporated in the proposed grid-world problem setup [10]. We also
assume that the actor vehicle has no uncertainties in localization or in motion on
the grid: i.e., the current grid-point location of the actor is known, and the effect of
moving to an adjacent grid-point is deterministic.

The actor’s motion-planning problem is formulated as a graph search problem.
To this end, we define a graph G = (V ,E),where each vertex in V is uniquely asso-
ciated with a grid point, and labeled with superscripts as v1, v2, . . . , vN

2
G . The edge

set E is defined as the set of pairs of vertices associated with adjacent grid points.
Edge transition costs are assigned by a scalar function ḡ : E→ R

2
>0 defined as

ḡ((vi, vj )) = c(xj ), (19.1)

for each pair i, j ∈ {1, . . . , N2
G}, such that (vi, vj ) ∈ E.

A path in the graph G between two prespecified vertices vis and vig is a sequence
v = (v0, v1, . . . , vP ), without repetition, of successively adjacent vertices with
v0 = vis and vP = vig . Note that indices of vertices in this sequence are denoted
using subscripts. The cost J̄ (v) ∈ R

2
>0 of this path is the sum of transition costs

of each edge in the path, i.e., J̄ (v) = ∑P
k=1 ḡ((vk−1, vk)). The actor’s motion-

planning problem is now formulated as the problem of finding a path with minimum
cost between the actor’s initial location at grid point is ∈ {1, . . . , N2

G} and a
destination grid point ig ∈ {1, . . . , N2

G}.
Uncertainty in the actor’s motion-planning problem arises from uncertainty in

the knowledge of the threat field. That is to say, edge transitions in the graph G are
deterministic, but the transition costs, which depend on the threat field estimates,
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are unknown but estimated through measurements. We assume that the threat field
is finitely parameterized as

c(x) =
NP∑

n=1

θnφn(x) = Φ(x)Θ, (19.2)

where φn : W → R
2 are prespecified spatial basis functions, Φ(x) :=

[φ1(x) φ2(x) . . . φNP(x) ], and Θ := [ θ1 θ2 . . . θNP ]T. We assume that a finite
number NS of sensors take pointwise measurements to estimate the parameter
vector Θ. These sensors are assumed to be located at grid points, and the set
of these grid points is denoted by s = {s1, s2, . . . , sNS} ⊂ {1, . . . , N2

G}. The
measurement taken by each sensor is zk := c(xsk )+ ηk, where ηk ∼ N (0, σ 2

k ), for
each k = 1, . . . , NS. Finally, we assume that the number of sensors is “small,” i.e.,
NS , N2

G.
The actor can avail of the estimates of the threat field parameters, and therefore

the actor’s motion-planning problem is reformulated by considering estimated edge
transition costs based on the measured threat field, via Eq. (19.1). Informally, the
problem of interest in this Chapter is then defined as follows.

Problem 19.1 Find a set of sensor locations s := {s∗1 , s∗2 , . . . , s∗NS
} ⊂ {1, . . . , N2

G},
and a path v∗ in the graph G with minimum expected cost.

Note that this problem involves an explicit dependence between the sensor
locations and the actor’s motion-planning problem. It is an open research question
to determine whether a set of sensor locations that optimizes a typical performance
metric (e.g., trace of the FIM), also minimizes the expected cost of the actor’s
path. The solution of Problem 19.1 may require the formulation of a new sensor
placement strategy. In what follows, we present a preliminary investigation of these
issues based on simulation experiments.

19.3 Actor-Driven Sensor Reconfiguration

For a given set s0 of sensor locations, let Θ̂s0 and Ps0 denote the mean and covariance
matrix of the least squares estimate of the parameter Θ. Precisely:

Θ̂s0 := HL(s0)z, (19.3)

Ps0 := (HT(s0)R
−1H(s0))

−1. (19.4)

Here R = diag(σ 2
1 , . . . , σ

2
NS
) is the measurement error covariance matrix, z =

[z1 . . . zNS]T, and H(s0) is defined as

H(s0) :=
[
ΦT(xs1,0) Φ

T(xs2,0) . . . Φ
T(xsNS,0

)
]T
.
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The expected cost J (v) = E[J̄ (v)] of a path v = (v0, v1, . . . , vP ) in G then
follows from Eq. (19.1):

J (v) :=
P∑

k=1

E[ḡ((vk−1, vk))] =
P∑

k=1

Φ(xk)Θ̂s0 .

For the given set s0 of sensor locations, the actor’s motion-planning problem of
finding a path v∗s0

in G with minimum expected cost can be solved using a standard
path optimization algorithm such as Dijkstra’s algorithm [4].

The main innovation in the proposed work is that we seek to solve Problem 19.1
by the following iterative approach. At each iteration, numbered by � = 0, 1, . . . ,
we attempt to find a new set s� of sensor locations, and an associated path v∗s� in G
with minimum expected cost, such that

lim
�→∞J (v∗s� ) = J̄ (v∗), (19.5)

where v∗ is the true optimal path. The process of finding the set s� based on the
actor’s optimal path v∗s�−1

in the previous iteration is called sensor reconfiguration.
A formal proof of the existence of the limit and convergence in Eq. (19.5) is

beyond the scope of this Chapter. In what follows, we investigate a heuristic sensor
reconfiguration strategy, and study the results of simulation experiments with this
strategy.

We assume that the basis functions φn, n = 1, . . . , NP, are Gaussian functions of
the form φn(x) := 1√

(2π)k |�n|
exp(− 1

2 · (x− x̄n)T�−1
n (x− x̄n)), where�n is positive

semi-definite and x̄n ∈ W are prespecified for each n = 1, . . . , NP and in our
workspace, k = 2. Whereas these basis functions do not have compact support in
R

2, we identify the region {x : ‖x− x̄n‖ ≤ 3
√|�n|}∩W as the region of significant

support for the basis function φn. This region of significant support simply reflects
the rapidly decaying influence of a single basis function in the global workspace.
The proposed sensor reconfiguration strategy is then described in the algorithm in
Fig. 19.1.

The conceptual rationale for this algorithm is that the subregion in the workspace
W “of interest” to the actor is relatively small. Therefore, the regions of significant
support of a small number of basis functions may suffice to cover this region of
the actor’s interest. These basis functions are identified in Line 3 of the algorithm
in Fig. 19.1. Consequently, sensors may be placed to reduce the estimation errors
of the parameters associated with these basis functions, at the expense of tolerating
higher estimation errors in other parameters. Specifically, these parameters are θni ,
where i ∈ {1, 2, . . . , NQ}, as defined in Line 3.

The method of sensor placement within the smaller subregion WQ identified in
Line 3 is a topic of ongoing research. For the simulation experiments reported in
this Chapter, we choose s� (Line 4) by arbitrarily selecting NS unique grid points
within the subregion WQ.
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Heuristic Iterative Algorithm for Path-Domain Threat Estimation

procedure Initialize
1: Set initial sensor placement s0 ⊂ {1, . . . , N2

G}.

2: Execute Dijkstra’s algorithm to determine v∗
s0 .

3: Set iteration counter � = 1.

procedure Main
1: Initialize
2: while ¬StopCondition do
3: Identify a minimal set {n1, n2, . . . , nNQ}, with NQ � NP, such that the union

WQ ⊆ W of significant support regions of the basis functions φn1 , . . . , φnNQ
covers all of the grid points associated with the path v∗

s�−1
.

4: Place sensors at grid points in the set s� ⊂ {1, . . . , N2
G} such that xs ∈ WQ for

each s ∈ s�.

5: Execute Dijkstra’s algorithm to determine v∗
s�

.
6: Increment iteration counter � = � + 1, and evaluate StopCondition.

Fig. 19.1 Pseudo-code for a heuristic iterative algorithm to solve Problem 19.1

The stopping criteria for this algorithm, denoted by the boolean variable
StopCondition in Lines 2 and 6 in Fig. 19.1, are user-specified, and depend
on the properties of convergence of the limit in Eq. (19.5), if such properties are
known. For the simulation experiments reported in this Chapter, we adopt the simple
criterion of reaching a prespecified maximum number of iterations.

19.4 Results and Discussion of Numerical Simulation
Experiments

The set of simulation experiments reported in this section are all performed
assuming a square workspace W = [−1, 1] × [−1, 1]. As previously stated, the
threat field basis functions are set to be Gaussian functions. The locations of “peaks”
x̄n of these Gaussian functions are assigned to ensure uniform separation between
peaks, and coverage of the workspace W . The values for νn are obtained for each
experiment by sampling uniform distributions over W and [0, ( 2

NP
)2], respectively,

for each n = 1, . . . , NP. The true values of the parameters θn are obtained for each
experiment by sampling the normal distribution N (0, 1). The number of grid points
is fixed at N2

G = 400. The number of parameters NP is varied between 1 and 50 for
different experiments. Figure 19.2 illustrates an example of a threat field overlaid
with grid points, with NP = 25.

Next, we discuss the observed effects of naïve sensor placement strategies for
initializing the algorithm in Fig. 19.1. For this discussion, the true threat field is
the same as illustrated in Fig. 19.2. For this field, the true optimal path is shown
for reference in Fig. 19.3. To compare the actor’s paths resulting from the proposed
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Fig. 19.2 (Left) The Grid-world overlaid with the true threat field. Sensors can occupy any of the
grid point positions. The start and goal locations are marked as red circles (the start location is
at the bottom-left). (Right) 3D visualization of true threat field where height indicates severity or
intensity of threat

Fig. 19.3 A threat field consisting of a summation of NP = 25 parameters or 25 2D Gaussian
peaks. The minimum threat exposure path, shown in connected white circles, is determined as a
ground-truth reference, using the true threat field
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Fig. 19.4 Estimated threat field and resultant actor’s path with minimum expected cost in the
initialization stage of the proposed algorithm, with uniformly-spaced sensor placement: S(Left)
NS = 20. and (Right) NS = 25

algorithm to the true optimal path, we define the incurred cost of the actor’s path as
the cost computed using the true field values.

We are interested in situations where the number of sensors NS is comparable
to the number of threat field parameters NP. Figure 19.4 illustrates the estimated
threat field when sensors are initially placed at uniformly spaced locations in the
workspace. The threat field parameter estimates here are “corrected,” such that if the
nth term on the diagonal of the covariance matrix Ps0 is larger than a prespecified
threshold, then the parameter estimate θ̂n is set to zero. With NS = 20 < NP, all of
the resulting parameter estimates are zero (left image in Fig. 19.4). WithNS = 25 =
NP, only two of the resulting parameter estimates are non-zero (i.e., only two out of
NP = 25 elements of the diagonal of matrix Ps0 are below the threshold). However,
there is a significant difference in the incurred costs of the actor’s path.

Similar results of initialization are observed for other placement strategies.
Specifically, Fig. 19.5 illustrates the estimated threat field when sensor placements
are initially clustered near the actor’s start location. Figure 19.6 illustrates the
estimated threat field when sensor are placed in a “diagonal strafing” configuration
as indicated.

These initialization examples indicate significant differences in the incurred cost
of the initial path of the actor for different sensor placements. Next, we discuss
the iterative sensor reconfiguration proposed in the algorithm in Fig. 19.1. An
objective of this discussion is to study whether the initial sensor placement affects
the convergence properties of the proposed algorithm. Figure 19.7 illustrates the
application of the proposed algorithm, with sensor locations (NS = 25) and actor
paths at several intermediate iterations (the iteration number is denoted �). This
example indicates a convergence of the sensor placement locations and of the
actor’s path. Note also that the sensor placement shown in Fig. 19.7h results in a
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Fig. 19.5 Estimated threat field and resultant actor’s path with minimum expected cost in the
initialization stage of the proposed algorithm, with sensor placement clustered near the actor’s
start location: (Left) NS = 20. (Right) NS = 25

Fig. 19.6 Estimated threat field and resultant actor’s path with minimum expected cost in the
initialization stage of the proposed algorithm, with sensor placement in a “diagonal strafing”
configuration: (Left) NS = 20. (Right) NS = 25

worse1 threat field estimate compared to that obtained by the “diagonal strafing”
placement shown in Fig. 19.6. However, the incurred cost of the actor’s path is lower
with the sensor placement in Fig. 19.7h. This observation corroborates the premise
of the proposed work that actor-driven sensor placement strategies may result in
performance improvements for the actor, as compared to a separated, information-
driven sensor placement strategy.

In what follows, we discuss issues related to convergence and optimality (i.e.,
comparison of the incurred cost with the cost of the true optimal path).

1As quantified by the trace of the estimation error covariance matrix P.
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We conducted simulation experiments involving the application of the algorithm
in Fig. 19.1 with different combinations of NP and NS to observe the convergence
behavior of this algorithm. Figure 19.8 shows a summary of results of these
experiments for every pair (NP, NS) for NP ∈ {1, 4, 9, 16, 25, 36, 49}, and NS ∈
{1, 2, . . . , 60}. The following three types of behaviors of the proposed algorithm
are observed.

1. Practical convergence to the true optimal path: The incurred costs of paths
found in Line 5 of the algorithm in Fig. 19.1 converge to within a “small” interval
of the cost of the true optimal path. This is the desired ideal behavior of the
algorithm. This behavior is typically observed in the reported simulations when
NP is relatively small and NS ≥ NP. In Fig. 19.9, the pairs (NP, NS) at which
this behavior is observed are indicated by green-colored circles. This behavior is

Fig. 19.7 Illustration of the application of the proposed algorithm, with indications of the sensor
placement and actor’s path with minimum expected cost at several intermediate iterations. (a)
� = 1. (b) � = 2. (c) � = 3. (d) � = 4. (e) � = 7. (f) � = 8. (g) � = 9. (h) � = 10
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Fig. 19.7 (continued)

observed to be independent of the initial sensor placement strategy. Figure 19.9
illustrates an example of the iterative and convergent changes in expected and
incurred costs of the actor’s path.

2. Convergence to a sub-optimal path: The incurred costs of paths found in
Line 5 of the proposed algorithm converge to a value significantly different
from the cost of the true optimal path. This behavior is typically observed in
the reported simulations when the number of parameters is relatively large. In
Fig. 19.9, the pairs (NP, NS) at which this behavior is observed are indicated
by red-colored asterisk marks. Figures 19.10 and 19.11 illustrate example of the
iterative and convergent changes in expected and incurred costs of the actor’s
path. As indicated in Fig. 19.11, the difference between the true optimal cost and
the incurred cost at which the proposed algorithm converges can be large.



Fig. 19.8 Summary of observed convergence behavior of the proposed algorithm for various pairs
(NP, NS)

Fig. 19.9 An example illustrating practical convergence of the actor’s incurred cost to the true
optimal cost. Here, NP = 16 and NS = 21



Fig. 19.10 An example illustrating convergence of the actor’s incurred cost to a suboptimal value.
Here, NP = 36 and NS = 22

Fig. 19.11 An example illustrating convergence of the actor’s incurred cost to a suboptimal value.
Here, NP = 16 and NS = 28



460 B. S. Cooper and R. V. Cowlagi

Fig. 19.12 An example illustrating non-convergent behavior of the proposed algorithm. Here,
NP = 9 and NS = 2

3. Non-convergence or bounded oscillations: The incurred costs of paths found
in Line 5 of the proposed algorithm do not converge, but they may oscillate
in a bounded interval containing the cost of the true optimal path. These two
behaviors are typically observed in the reported simulations whenNP is relatively
small and NS < NP. In Fig. 19.9, the pairs (NP, NS) at which this behavior
is observed are indicated by red-colored cross marks and blue-colored circles.
Figure 19.12 illustrates an example of the iterative and non-convergent changes
in expected and incurred costs of the actor’s path. Figure 19.13 illustrates an
example of the iterative changes in expected and incurred costs with bounded
oscillations.

The first two behavior types are acceptable, especially if the sub-optimality
of the incurred or expected costs of the actor in the second behavior type can
be theoretically bounded. At this time, we do not have such bounds available.
Instead, we conducted another set of experiments to observe such sub-optimality
as a function of the number of sensors and the number of parameters. Figure 19.14
shows a summary of the results of these experiments for every pair (NP, NS)

for NP ∈ {1, 4, 9, 16, 25, 36, 49}, and NS ∈ {1, 2, . . . , 60}. For each pair, five
experiments were conducted with different true parameter values. Figure 19.14
indicates the percentage difference between the incurred cost of the actor’s path, as
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Fig. 19.13 An example illustrating bounded oscillations of the actor’s incurred cost near the true
optimal cost. Here, NP = 16 and NS = 9

Fig. 19.14 Summary of observed sub-optimality of actor paths resulting from the proposed
algorithm for various pairs (NP, NS)
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determined by the proposed algorithm after 30 iterations, and the true optimal cost.
The map indicated in Fig. 19.14 is obtained after interpolating values for (NP, NS)

pairs where experiments were not conducted.
The salient observations from Fig. 19.14 are as follows.

1. The observed sub-optimality is typically less than 10% in the region NS ≥ NP.

2. The worst cases of sub-optimality typically occur when NS is significantly
smaller than NP.

3. The occurrences of the second type of behavior of the proposed algorithm (i.e.
convergence to a sub-optimal path) are more frequent whenNP is relatively large
(specifically, greater than 25 in these experiments).

4. In the region NS < NP close to the line NS = NP, convergence to sub-
optimal paths is frequently observed. Furthermore, the observed sub-optimality
is typically less than 20%.

The last observation is of particular interest: when NS < NP, a poor estimate (as
measured by the trace of the estimation error covariance matrix) of the threat field
is obtained, but the proposed algorithm can place these sensors such that the actor’s
motion-planning problem can yet be solved without significant sub-optimality. For
example, withNP = 36 and withNS as low as 20, no more than 10% sub-optimality
was observed in the actor’s path.

19.5 Conclusions

In this Chapter, we discussed a motion-planning problem where the decision-
making entity, namely, the actor, is allowed to influence the placement of sensors
that provide measurements in the actor’s environment. We proposed a specific and
heuristic algorithm to change sensor placements iteratively, and in conjunction
with the solution of the motion-planning problem. The premise of the proposed
approach is that an actor-driven sensor placement sensor placement strategy can
improve the actor’s performance compared to a typical strategy that places sensors to
maximize the information collected. We presented results of simulation experiments
with the proposed algorithm. The salient observations were of different types of
convergence behaviors of the proposed algorithm, including non-convergence, and
of varying levels of sub-optimality of the resultant paths, with different pairs of
(NS, NP). Future work includes the theoretical characterization of regions in the
(NS, NP) plane where the proposed algorithm can be shown to converge, and of sub-
optimality bounds in these regions. The characterization of the actor’s performance
improvements with the proposed dynamic actor-sensor interactions in comparison
with a information-maximizing sensor placement strategy is also of interest.

Current and future work includes addressing the issue of non-convergence
through modification of the least squares estimator, adding stopping criteria based
on the sensor repositioning, and identifying relevant subdomain for sensor place-
ment via spatial correlation techniques.
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Part VII
Energy-Aware: Power Systems



Chapter 20
Energy-Aware Dynamic Data-Driven
Distributed Traffic Simulation for Energy
and Emissions Reduction

Michael Hunter, Aradhya Biswas, Bhargava Chilukuri, Angshuman Guin,
Richard Fujimoto, Randall Guensler, Jorge Laval, Haobing Liu, SaBra Neal,
Philip Pecher, and Michael Rodgers

Abstract The Chapter describes an approach of the dynamic data-driven appli-
cations systems (DDDAS) paradigm to reduce fuel consumption and emissions in
surface transportation systems. The approach includes algorithms and distributed
simulations to predict space-time trajectories of onroad vehicles. Given historical
and real-time measurement data from the road network, computation resources
residing in the vehicle generate speed/acceleration profiles used to estimate fuel
consumption and emissions. These predictions are used to suggest energy-efficient
routes to the driver. Because many components of the envisioned DDDAS system
operate on mobile computing devices, a distributed computing architecture and
energy-efficient middleware and simulations are proposed to maximize battery life.
Energy and emissions modeling and mobile client power measurements are also
discussed.

20.1 Introduction

According to the US Energy Information Administration, motor gasoline fuel
consumption comprised 29% of all energy carbon dioxide emissions in the U.S. in
2015 [1]. One approach to help reduce the significant source of energy consumption
and pollution is to provide drivers with information and travel recommendations
in real time to facilitate energy efficient travel decisions. This chapter describes an
energy aware DDDAS based system architecture implemented on mobile computing
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devices that offers the potential to provide up-to-date, adaptive assessments of
emissions and fuel consumption based on dynamic data.

Dynamic Data Driven Applications Systems (DDDAS) continuously monitor,
analyze, and adapt operational systems in order to better assess and/or optimize their
behavior or improve the monitoring system [2]. DDDAS has been applied to many
areas including natural disaster management, transportation and manufacturing,
among others [3–5]. This chapter describes recent results in developing DDDAS
technologies and applying them to transportation system management. Prior work
in this multi-year study focused on the development of data-driven distributed sim-
ulation techniques and applications of the DDDAS paradigm to traffic management
problems to address congestion issues [6, 7]. The results described here focus on
using DDDAS to reduce emission and fuel consumption.

The ubiquity of mobile computing devices such as smart phones and in-
vehicle devices make them an attractive platform for realizing DDDAS-based
traveler-assistance systems. In such systems, drivers’ smartphones act as traffic
condition sensors and can serve as computation engines in addition to displaying
information to the user. However, the performance and power limitations of mobile
processors are a significant concern. While mobile platforms continue to improve
in performance and battery life, battery management and performance will remain
an issue for some time. Alternatively, fully-vehicle-embedded systems are able
to provide ample computational performance and practically unlimited power, but
sacrifice the versatility of the full-mobile platform, particularly limiting the system’s
usefulness in multi-mode travel. Hence, power-aware mobile systems management
will remain a critical issue, motivating the need for efficient algorithms and careful
management of communications without sacrificing accuracy.

Figure 20.1 depicts the overall approach that is envisioned. The objective of the
system is to provide the driver with information regarding fuel-efficient, emission-
friendly routes. To achieve this goal, the driver first supplies the intended destination
(and origin if different from the driver’s current location) to the client computer, in
this case, a smartphone (Step 1 in Fig. 20.1). The client identifies potential routes
for the indicated origin-destination pair and then computes the predicted vehicle
space-time trajectory (i.e., second-by-second vehicle position-speed-time) along
each potential route (Step 2). Next, fuel consumption and emissions are determined
for each route (Step 3). Finally, the driver is presented with the route alternatives,
along with corresponding travel times, fuel consumption, and emissions values
(Step 4), for use in route decision making.

To accomplish these tasks cached on the phone are requisite background data,
such as maps and historical traffic information. In addition, as approximately 75%
of travel is repetitive, the client maintains subscriptions to a base set of relevant
dynamic online data sources for typical travel routes (home-to-work, home-to-
school, etc.) (see Fig. 20.1). The smartphone requests supplemental data from one
or more online data sources for those links not in the maintained cached data.
Historic and dynamic data are stored in a space-time memory within a maintained
server as will be discussed later. In-client simulation or statistical models determine
high-resolution vehicle trajectories. The system currently utilizes two approaches.
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Fig. 20.1 System architecture for computing fuel-efficient, emission-friendly routes

In most cases, a “Bayesian Inference” (conditional probability) model based on
historic and near-real time trajectory data is used. In cases where exceptional road
conditions exist, such as the presence of a recent accident or unexpected road
blockage, sufficient reliable data for the Bayesian model may not be available.
In these instances, a microscopic traffic simulation supplements the historical
projections. In either case, real-time traffic information is continually updated and
passed to clients as needed to improve predictions.

The MOtor Vehicle Emissions Simulator (MOVES) Matrix modeling approach
[8] is applied to vehicle trajectories to compute second-by-second or link-based fuel
consumption and emissions. The methodology takes into account vehicle-specific
information such as vehicle classification and model year, and roadway-specific
information such as road classification and roadway grade. The specific elements
required for these MOVES-Matrix client-level calculations are cached on the mobile
device and periodically updated from the server.

Finally, a distributed simulation middleware termed the Green Runtime Infras-
tructure (G-RTI) provides communications services to interconnect these compo-
nents. The design of both the middleware and client computations seek to maximize
battery life. The concurrent and temporally-evolving data streams requested by the
clients motivate the use of a dynamic space-time memory (STM) data structure
on the server. The STM contains the historical information about network element
performance over time that are used in the simulation modeling of route alternatives.

This chapter provides an overview of the envisioned approach. The first section
presents the two approaches to predict the vehicle trajectory over its route: (1) a
cellular automata-based microscopic traffic simulation and (2) a Bayesian inference
model from data. Next is a discussion of energy consumption and emissions
modeling. Finally, the power-aware system architecture is presented, along with
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communication and computation tradeoffs. Specifically described is the G-RTI
development supporting the deployment of the proposed DDDAS system on energy-
constrained devices.

20.2 Research Components: Models and Architecture

20.2.1 Cellular Automata Modeling

Cellular Automata (CA) models were first proposed by Von Neumann in 1952 [9].
Their popularity in traffic flow simulation increased after Nagel and Schreckenberg
proposed simple rules to replicate traffic dynamics on transportation networks in
1992 [10]. Their simple rule-based design enabled efficient simulation of large-scale
networks. Since then, various versions of CA-based methods have been developed
for traffic flow modeling.

The kinematic wave (KW) model is a popular traffic flow model based on the
classical hydrodynamic theory of Lighthill, Witham [11] and Richards [12]. The
KW model is a scalar conservation law for the density of vehicles on a road
supplemented with a fundamental diagram that gives flow as a function of local
traffic density. The KW model is the simplest traffic flow model able to capture
congestion dynamics such as the propagation of stop-and-go waves in traffic.

Daganzo [13] showed that a particular CA model gives vehicle trajectories as
predicted by the kinematic wave model with a triangular fundamental diagram.
We implement the CA model in the CA-Simulation application and extend the CA
model to include multiple vehicle classes, their bounded accelerations, and lane
changing.

As with all microscopic models, our CA-Simulation application needs traffic
data, geometric data, control data, driver behavior data, etc. (see Fig. 20.2) to

Fig. 20.2 CA-simulation input data collections
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simulate the traffic dynamics of each vehicle. In the CA-simulation, each lane of
the roadway section is discretized spatially; i.e., divided longitudinally into cells of
jam-spacing length (that is a cell length is set as the length of a single vehicle plus the
gap to the next vehicle, in breakdown (stop) conditions). A vehicle occupies a single
cell and its position and speed are updated in discrete time steps. The current CA-
simulation models three classes of vehicles; passenger cars, high performance cars
(i.e., higher acceleration), and trucks. Class-specific vehicle kinematics models are
used to predict vehicle accelerations as a function of the speed when unobstructed
by the leading vehicle. The lane-changing model implemented in this application
is based on velocity incentive, i.e., vehicles change lanes if they perceive an
improvement to their speeds due to the lane-changing maneuver. The pseudocode
given below describes the CA-simulation steps in more detail.

20.2.2 Methodology

In CA models, a vehicle occupies one or multiple cells of the matrix (link)
depending on the desired resolution of speed and position updates (needless to say,
single vehicle-single cell models require fewer computations than the single vehicle-
multiple cell models). In this research, a single vehicle-single cell model is used (for
maximum computational efficiency) with a cell size (�x) of 22 ft and time step (�t)
of 1.2 s, i.e. the speed increment (�x/�t) of 12.5 miles per hour (mph). Thus, for
a roadway with a speed limit of 50 mph, the free flow speed for a vehicle is 4 cells
(50 mph/12.5 mph), i.e. the vehicle can move up to 4 cells during the next time step.
Thus, the current speed of a vehicle is represented in terms of the number of cells it
can reach in the next time step.

The CA-Simulation application has three vehicle classes, passenger cars, high
performance cars, and trucks and implements their class-specific acceleration
models (also called bounded accelerations). The acceleration model is a linearly
decreasing function of speed with class-specific values for the intercept and the
slope. A vehicle’s current velocity is used to determine the acceleration rate from
the model to determine its velocity in the next time step, i.e., the number of cells
a vehicle can move in the next step. For example, if a vehicle is stopped, it cannot
attain its free flow speed in the next time step but will require multiple time steps. In
this implementation, trucks have the lowest acceleration rates and high performance
vehicles the highest.

Lane changing is implemented in the CA-Simulation based on the velocity
incentive, i.e., perceived velocity improvement due to the lane changing maneuver.
At every time step, each vehicle will first estimate its “desired speed” (i.e. the
maximum speed allowed on the roadway or the highest speed the vehicle may
achieve without exceeding the maximum speed) in the next time step using its
current speed and the class-specific acceleration model. Then, it will check the
location of the preceding vehicle to determine if it can achieve its desired speed.
If the desired speed cannot be achieved, it will check for the possibility of a lane
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Fig. 20.3 Sample cellular automata results

change maneuver to improve its speed. The vehicle position and speed are updated
every time step until the user defined termination criteria is achieved.

Figure 20.3 shows sample vehicle trajectory in space and time from the CA-
simulation (without bounded acceleration) which closely represents the traffic
dynamics on a signalized corridor. The horizontal axis is time, and the vertical axis
vehicle position along the test corridor.

The CA modeling approach has several drawbacks in the context of the current
application, including requiring a significant quantity of input data to drive the
model and that the model is computationally complex. Also, the CA approach
requires simulation of all the vehicles on the corridor to obtain the trajectory
prediction of the client vehicle, necessary for the client energy consumption and
emissions estimates. The Bayesian inference approach seeks to provide client
trajectory predication with fewer data demands, focusing on the client trajectory
without direct simulation of the other corridor vehicles. Thus, for the client
application the CA-simulation may be limited to non-recurrent congestion scenarios
such as accidents where the Bayesian inference approach may be insufficient.

20.2.3 Bayesian Inference Approach

The Bayesian Inference approach seeks to utilize historic and near-real time data
to construct a predicted trajectory of the client. In the current implementation,
the Bayesian Inference approach implementation is on a segment-by-segment
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basis, where a segment consists of the section of roadway between two adjacent
intersections and the downstream intersection. The overall vehicle trajectory is then
the accumulation of the predicted vehicle trajectories over each traversed segment.
In this current effort only arterial corridors are considered, although other segment
definitions could be considered, such as between freeway ramp junctions. In the
least-informed approach, trajectory prediction uses simple averaging or sampling
of the segment historic or near-real time data. However, alternatives are explored
where a given segment trajectory prediction may be conditioned on other predicted
or near-real time behavior such as stopping (e.g., was the vehicle predicted to stop at
an upstream intersection?), path similarity (e.g., sample only vehicles with similar
upstream or downstream routes), or other trip variables.

Implementation In the implementation of the Bayesian Inference models, a
routing table defines what road segments a given vehicle will traverse for a given
route, in time order. An example of a routing table is R = [4, 3, 2], where the
numbers encode roadway segments. The routes are determined based on the driver
input origin-destination pair.

In several of the prediction models, a trail (also, called history, window, or sub-
sequence in other literature) of realized random variables is used in the prediction
of the vehicle trajectory for a segment. For example, if a vehicle is predicted
to stop at a segment intersection the likelihood of stopping at the downstream
segment intersection will be conditioned on the realization of a stop at the upstream
intersection. In some prediction models, the trail is multidimensional and contains
multiple random variables (stops and time at crawl speed, for example). The key
type in each model defines the random variable(s) used for the respective model.

The variable segment_trail (−k) expresses a past trail of segment identifiers of
length k, up to, but not including the current segment. For example, an instance of
segment_trail (−2) for Segment 3 may be [1, 2, 3]. In other words, the vehicle has
traversed Segments 1 and 2 and now needs information about its potential behavior
on Segment 3, conditioned on its previous path. As another example an instance
of segment_trail (+2) for Segment 3 may be [3, 4, 5]. In other words, the vehicle
will traverse Segments 4 and 5 in the future, and now some information about its
potential behavior on Segment 3 is desired, conditioned on its future path.

Different models may use different trail lengths, referred to here as a lag; this
is sometimes referred to as depth and order. For instance, we may condition the
likelihood of stopping on a given segment by the predicted stopping on the previous
k segments. In the subsequent discussions, M(k) will refer to a Markovian predictor
that has a lag of k. Although most of the investigated random processes are unlikely
to be memoryless, in this effort models are referred to as being Markovian by
collapsing the current trail into the current state, even if the Markov property is
still violated for lower lag values. Hash tables are used for some of the models,
which are keyed by the exact match of the trail (of some random variable(s) over
a window of size lag). Currently the returned value is a mean value obtained from
observations in the training set that share the same trail.



474 M. Hunter et al.

The current prediction models make use of a kinematics tuple in the for-
mat <mean running time, mean running speed, mean crawl time, mean crawl
speed > (abbreviated in variable format as <tr, vr, tc, vc>), defined below:

• Mean crawl time refers to the average time the vehicle spends on a segment at a
speed of less than 5 mph, including time stopped.

• Mean crawl speed refers to the average speed of the vehicle on the segment while
its speed is less than 5 mph.

• Mean running time and mean running speed are defined in terms of the velocity
complement (over 5 mph) of the preceding definitions, respectively.

It is important to distinguish these categories to generate accurate predictions of
emissions. A vehicle trajectory is constructed by accumulating the predicted speeds
vi for time Δti, for all i over trip duration T. Where vi is the speed over Δti at time
step ti of the total trip time T. Thus, the sum of Δti over all i is T. For example,
the predicted segment vehicle trajectory represented by kinematic tuple <22, 35, 12,
3> would be the vehicle traveling at 35 mph for 22 s followed by 3 mph for 12 s. The
next traversed segment’s kinematic tuple represents the next portion of the vehicle
trip.

Global Segment Estimation This method seeks to predict vehicle trajectories using
the global (historic) average travel times and speeds of prior vehicles that traverse
a segment during a similar time period (e.g., peak travel period data). During the
training phase, the kinematics tuple is updated for each observed segment. There
is no further conditioning; the key consists solely of the segment identification
number (id). During the training phase, the data structure being populated is
segment_to_kinematics_tuple, which is keyed by segment id and has values <tr,
vr, tc, vc>. During the testing phase, a vehicle’s segment routing table is supplied
to the prediction model in its sequential ordering. To produce a trajectory for each
segment the segments kinematics tuple is retrieved, i.e., the mean running speed and
the mean running time, followed by the mean crawl speed and the mean crawl time.
The trip trajectory is then constructed through the accumulation of the individual
segment trajectories.

Local(n) Segment Estimation This method is similar to the Global Segment
Estimation, although it reduces data needs by using only the data from the n-most-
recent vehicles to traverse the segment, rather than all historical data. During the
training phase, the predicted kinematics tuple is estimated from the preceding n
vehicles that traversed each particular segment. The segment_to_kinematics_tuple
is again keyed by segment id and also has floating point values <tr, vr, tc, vc>.
During the testing phase, the vehicle trip trajectory is then constructed in the same
manner as in the Global Segment Estimation, however, using the Local(n) Segment
Estimation kinematics tuples.

Segment M(−k) Estimation This method seeks to improve the prediction for a
client vehicle by sampling only those vehicles that travel the same k prior segments.
During the training phase, the kinematics tuple <tr, vr, tc, vc > over the considered
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segment is estimated for each segment trail of lag k. An example (for k = 2)
is <[1, 2, 3]> which means that the vehicle has traversed Segment 1 and 2; the
relevant segment for the kinematics information extraction and tuple update is
Segment 3, as this is the last element (i.e., the segment of interest) in the segment
trail. The data structure is segment_trail_to_kinematics_tuple, which is keyed by
segment_trail(k) (a vector) and has values <tr, vr, tc, vc > (i.e., the kinematics tuple).
During the testing phase, the segment routing table of each tested vehicle is supplied
to the prediction model. The vehicle trip trajectory is then constructed in the same
manner as in the Global Segment Estimation, however, using the Segment M(−k)
Estimation kinematics tuples.

Segment M(+k) Estimation Ignoring Stops This is identical to the previous model,
with the exception that the conditioning for each segment occurs over the future
routing table. For example (if k = 2), [3, 4, 5] supplied as a key from a test vehicle
means that we wish to obtain the kinematics tuple for Segment 3 given that the
vehicle will traverse Segments 4 and 5 immediately thereafter.

Segment M(−k) Estimation Including Stops Here stop information, is included in
the conditioning, attempting to further improve prediction by not only conditioning
on similar paths but also on similar stop histories on those paths. During the
training phase, the kinematics tuple < tr, vr, tc, vc > over the considered segment
is estimated for each stopped-segment trail of lag k. An example (for k = 2) is
<[1, 2, 3], [true, false]>, which means that the vehicle has traversed Segment 1
and 2, and has stopped in Segment 1 (the first element of the stop list is true),
but not Segment 2 (the second element is false); the relevant segment for the
kinematics information extraction and tuple update is Segment 3, as this is the
last element (i.e., the segment of interest) in the segment trail. The data structure
is segment_stop_trail_to_kinematics_tuple, which is keyed by <segment_trail(k),
stopped_trail(k) > (each of these is a vector) and has values <tr, vr, tc, vc>. During
the testing phase, the segment routing table along with the stop history of each
tested vehicle is supplied to the prediction model. The dimensionality of the input is
larger as the conditioning occurs over not only the visited segments, but also the stop
history of the visited segments. Upon querying, only the point estimates generated
from the training set that share the exact segment trail and stop history of the visited
segments are considered. During the testing phase, the vehicle trip trajectory is then
constructed in the same manner as in the Global Segment Estimation.

Evaluation For the evaluation of these models, we used the Federal Highway
Administrations Next Generation Simulation (NGSIM) data. This data contains
high-resolution vehicle trajectory data collected for enhancing existing traffic flow
models and developing new microscopic models [14]. The current efforts utilize
NGSIM data collected on the Peachtree Street in Atlanta, Georgia, between 10th
Street and 14th Street. The section is approximately 2100 ft in length, with five
intersections and two to three arterial through lanes in each direction. Figure 20.4
depicts the section. The speed limit on this corridor is 35 mph with multiple
midblock driveways. The data were collected from 4:00 p.m. to 4:15 p.m. on
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Fig. 20.4 Peachtree street from 10th street to 14th street (Map data: Google, 2018)

November 8, 2006, at a resolution of 10 frames per second. These data provide
complete coverage of all vehicle trajectories on this section of roadway, during
the specified time, resulting in one of the most robust data sets available. In the
current evaluation of the models, only NGSIM vehicle trip trajectories that cover
the entirety of all segments traversed are considered. This avoids the complication
of incomplete trajectories in the tables. Most of these trajectories have [1, 2, 3, 4,
5]-realized segment routing tables (i.e., the entire corridor is visited). Future efforts
will expand to include vehicles that with partial segment data.

The NGSIM data was used to “train” the model (to establish conditional perfor-
mance distributions), allowing each model to run and predict vehicle trajectories.
While robust, the NGSIM is limited in size so this effort does not reserve a subset
of the data for comparison to the predictions. Current efforts are limited to a
comparison of the quality of the prediction with the training data. However, ongoing
efforts are using simulated data sets and probe vehicle data to further explore the
robustness of the predicted trajectories.

Data Preprocessing The NGSIM data were first loaded into client memory by using
a table data structure. To provide the segment prediction models with the required
point estimates, dictionaries are first populated to map segment identifiers to mean
velocities and mean travel times. The latter is calculated by counting the number
of rows (in the table) along each specific segment id, for each vehicle id (each
row corresponds to a tenth-of-a-second). Further, the minimum and maximum y-
coordinates for each segment are extracted from the dataset.

Vehicle Trajectory Generation Before control is given to the main training and
testing loops, the predicted and actual trajectory containers, as well as the Markov
tables are initialized. In the first main loop structure, the first and last row for each
considered vehicle in the NGSIM data are first obtained. The direction of travel and
all visited intersections along a trajectory are saved for each vehicle. The relevant
Markov tables are populated and the actual trajectory is stored in a container. As
mentioned previously, the kinematics tuple is the central piece of information used
for the models. It contains point estimates for the stop duration, the stop velocity,
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Fig. 20.5 Flow graph of
trajectory generation
procedure for a single
segment

the running duration, and the running velocity. The trajectories are built segment-
by-segment. The following subroutine shows how this is accomplished for a given
segment. The inputs are kinematics, the kinematics tuple, and trajectory, a reference
to the working trajectory being built. Figure 20.5 shows how the trajectories are
generated for a specific segment using the variable names from the kinematics tuple.

First, the trajectory is augmented, for each tenth-of-a-second (0.1 s) timestep,
with the displacement values inferred from the run speed point estimate of the
kinematics tuple (vr) over the expected run duration (tr). Second, the vehicle’s
trajectory is extended with the crawl movement over the expected crawl duration.
The model assumes that vehicles first travel in an unobstructed fashion, and then
slow down in response to intersection queues. For each tenth-of-a-second within
each interval, the procedure takes the last accumulated displacement that was
appended and adds the next value to it. In this case, the value is based upon the
historical travel speeds (vr and vc) across the segment. Both crawling and running
could occur on the same segment. Further, the stopping speed (i.e., speed less than
5 mph) is inferred from historical information across that segment.

Figure 20.6 shows the observed NGSIM trajectory of Vehicle 17 in red, along
with the predicted trajectories for Vehicle 17; the line colors for the respective
prediction models may be decoded by the included legend.

The accumulated displacement of the vehicle is plotted against the elapsed travel
time. The given vehicle traversed all five segments of the data set. The predicted
trajectories appear to capture the overall behavior of Vehicle 17 from 40 s to 120 s.
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Fig. 20.6 Actual and predicted trajectories in the space-time diagram

The underpredicted crawl duration, during the first 20 s, in Segment 1 results in
overestimation of the displacement throughout the trajectory (for all the models).
The deceleration curves of the actual trajectory are relatively smooth compared to
the predicted trajectories. Future research is aimed at resolving both these issues:
the accurate modeling of intersection stop times, as well as the smoothing of the
deceleration curves.

20.3 Energy and Emission Modeling with MOVES-Matrix

MOVES-Matrix is a high performance vehicle fuel and emission modeling system
based entirely on the U.S. Environmental Protection Agencies’ MOtor Vehicle
Emissions Simulator (MOVES) model [15]. To develop the MOVES-Matrix,
MOVES was run more than one hundred thousand times to obtain multiple arrays
of emission rates for all combinations of MOVES input variables, including engine
load bins, vehicle types, model age, fuel types, calendar year, temperature, humidity,
fuel supplies, and the regional inspection and maintenance strategy. These emission
rates are stored in MOVES-Matrix. Use of MOVES Matrix allows for significant
decrease in computational time (approximately 200 times faster) required to deter-
mine fuel and emissions for a vehicle trip while generating the exact same results
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Fig. 20.7 Raw speed and smoothed speed

as MOVES (the regulatory emission model approved by the U.S. Environmental
Protection Agency (USEPA)) [15]. More details on setup and implementation of
MOVES-Matrix can be found in [8].

Before energy and emissions calculations are undertaken, the vehicle trajectory
data are pre-processed to filter out any unrealistic speed fluctuations. A Savitzky-
Golay filter [16] is applied to smooth the observed vehicle traces. For every
frame, the current frame, the previous 15 frames, and the following 15 frames
(1 frame = 0.1 s) are fitted with least-squares cubic function. From the function,
the speed value of the current frame is then calculated. Figure 20.7 shows the
example of the raw and smoothed speed data. Here, NGSIM data were again
used. The derivative of smoothed speed in each second is then taken to calculate
acceleration. Figure 20.8 shows an example of the raw acceleration and the
derivative acceleration. The smoothed speed and derivative acceleration are used
for emission calculation to avoid over-estimation of vehicle engine power due to
data fluctuations.

Figure 20.9a shows an example of second-by-second speed in mph from one
vehicle trajectory, and associated NOx emission rates in grams per second. Higher
speed and acceleration activities are related to higher power demand, and, thus, a
higher emission rate. Figure 20.9b–d represent cumulative sorted NOx emissions,
CO emissions, and fuel consumptions by time from trajectories of 550 vehicles
(46,833 s) recorded in Atlanta NGSIM data. This data implies that 88% of NOx,
90% of CO emissions, and 65% of fuel consumptions are from 40% of operation
time, which is related with high engine power. As seen it is of critical importance
to estimate vehicle speed and acceleration for fuel consumption and emission
prediction. This need drives the development of a client simulation capable of
predicting trajectory data.
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Fig. 20.8 Raw acceleration
and derivative of smoothed
speed for acceleration

Fig. 20.9 Fuel consumption and emissions results. (a) Second-by-second speed and NOx rate,
(b) Cumulative sorted NOx emissions by time, (c) Cumulative sorted CO emissions by time, (d)
Cumulative sorted fuel use by time
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20.4 Distributed Simulation Middleware

The envisioned distributed simulation system includes multiple simulating entities
exchanging data and synchronizing as needed. Middleware is needed to support
hand held devices such as smartphones, in-vehicle computers, computing systems
operating on mobile platforms such as drones, and centralized servers, as well as
sensors, databases, and other resources that all need to interact with one another.
Distributed simulation middleware provides the services to interconnect these
elements. A well-known example of an approach to defining distributed simulation
middleware services is the High Level Architecture (IEEE 1516). Major services
of the required distributed simulation middleware include system management,
communication, and synchronization.

In contrast to traditional distributed simulations, the DDDAS paradigm used here
includes energy-constrained devices such as smartphones and computers executing
on drones. Therefore, it introduces new requirements to the development of the
simulation middleware services. Energy efficient middleware not only allows for
a longer usability of the simulation system elements, but also allows for easier
penetration of such systems among existing technologies.

The project identified three main avenues for energy optimization in an energy
efficient middleware. First, in time management services, an energy efficient
synchronization algorithm could significantly reduce energy consumption [17]. The
second avenue is an energy efficient data distribution management algorithm [18].
The third component is an applications program interface (API) for the simula-
tion middleware services that supports application-controlled energy optimization.
Cooperation between the middleware and application is required so that tradeoffs
such as that between energy consumption and latency can be made in a way that is
consistent with application requirements. The API supports application controlled
tunable energy-efficient algorithms (e.g., data aggregation and energy optimized
data subscription).

The Green Run Time Infrastructure (G-RTI) is an energy efficient distributed
simulation middleware that exploits these three approaches. Apart from being
energy efficient, other major considerations in the development of G-RTI were
that it should be able to scale to support a large number of clients (perhaps
tens of thousands or more) and a wide range of applications written in different
programming languages and running on different operating systems and networks.

20.4.1 G-RTI Architecture

To address these considerations, G-RTI was developed using a client-server archi-
tecture. The interface between G-RTI and the clients is web-based. A web-based
implementation supports a wide array of client types, as any device that is able
to make an HTTP request (e.g., Internet of Things devices) can potentially be a



482 M. Hunter et al.

Fig. 20.10 High-level depiction of the Green Run Time Infrastructure (G-RTI) architecture

G-RTI client. It also eases client side development because it imposes few design
restrictions. Support for different types of networks such as the Internet, small
private networks, and ad hoc networks is easily provided. The backend allows for
easy integration of existing applications with the G-RTI controller.

As shown in Fig. 20.10, the current G-RTI implementation utilizes an Apache
webserver [19] as well as a CppCMS based controller [20]. Both of these open-
source software systems are widely used and are known to scale. CppCMS provides
a high performance framework for the development of the bulk of the G-RTI
code, shown in the right half of the box labeled “Server” in Fig. 20.10. G-RTI
supports “pull-based” data communications through a query service and “push-
based” communications through a pub-sub (publish-subscribe) communications
mechanism. Data aggregation mechanisms are used to help reduce energy con-
sumption, as discussed later. To understand the breakdown of the energy consumed
by a distributed simulation, or in other words to attribute the energy consumed by
different components of the distributed simulation, the energy profiling techniques
such as that described in [21] can be used.

20.4.2 Energy Consumption Measurements

An experimental study using the G-RTI client-server architecture was conducted
to develop a better understanding of energy consumption issues in distributed
simulations. For this study, a cellular automata traffic simulation based on [22]
was developed, and configured to model the NGSIM section of Peachtree Street
in midtown Atlanta. The simulation was executed on the client, a cellular phone.
In addition, a simulation of the same area based on a queueing network model was
also developed to provide an additional point of comparison. The queueing network
simulation uses an event-driven time advance mechanism in contrast to the cellular
automata model that is time-stepped.
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The experimental setup consisted of an Android R© smartphone (Google Nexus R©
5), running Android 5.1 as the client, and a Lenovo ThinkPad R© running Ubuntu
14.04, as the G-RTI server. All the communications in the experiments were
conducted using 802.11n Wi-Fi over public Wi-Fi access points. The client runs
a multithreaded Native Android application with the simulation developed in C and
communication using Volley, an HTTP Android library. The Trepn R© application
developed by Qualcomm was used to measure energy and power consumption of
the client machine.

An initial set of data-driven simulation experiments were conducted using the
traffic simulations executing on the phone streaming data to and from the server.
The first set of experiments show the power utilized for data communications alone.
Specifically, the power consumed by the DDDAS application sending and receiving
a stream of data was measured. The data stream pertains to vehicles in the traffic
network, and includes an identification number and x and y position coordinates
of individual vehicles. The parameter that was varied is the frequency that update
messages are sent and received. At each update point, the data for all the vehicles
are placed into a single message, and sent to/from the embedded traffic simulation
executing on the client.

Figure 20.11 shows the average power consumption (energy per unit time)
observed in sending and receiving data continuously (effectively no time between
update points) and at intervals of 0.01 s and 0.1 s. These data illustrate that power
consumption for data communications is substantial, and not surprisingly, greatly
affected by the frequency of communication. Power consumption includes a static
component that is expended even when there is no communication, and a dynamic

Fig. 20.11 Data streaming power
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Fig. 20.12 Embedded simulation power (a) varying traffic arrival rate. (b) varying size

component that is proportional to the amount of communications that takes place.
Figure 20.11 illustrates the amount of power consumed including both of these
components. The power consumed on the client both to send and receive data are
shown in Fig. 20.11. It is seen that the power needed to send data is approximately
five times larger than that required to receive data.

The second set of experiments examined the power consumed by the two
traffic simulation applications installed on the Android R© phone and run under
the conditions that no data streaming is occurring. Experiments were conducted
to compare the power drawn by the cellular automata and discrete event queuing
network simulation. Figure 20.12a shows the average power drawn by both the
discrete event simulation and the cellular automata model under different vehicle
arrival rates: 1/30, 1/ 15, and 1/5 (vehicles per second).

The power consumed by the two simulators is comparable for different vehicle
arrival rates, although the cellular automata model draws somewhat less power
than the queuing model as the arrival rate of vehicles into the system increases.
However, one should point out that power consumption quantifies the amount of
energy consumed per unit time, not the total amount of energy expended by the
computation. While the cellular automata model draws slightly less power, it takes
more time to simulate the same scenario compared to the queueing network model,
resulting in greater total energy consumption and a greater draw on the phone’s
battery. This is because the cellular automata must update the state of every cell in
the traffic network at each time step, whereas in the queuing model, only vehicles
at the front of each queue area are processed during each event time in the system.
Figure 20.12b shows that as we increase the network size the cellular automata
model consumes more power than the queueing model because the cellular automata
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model must touch every vehicle in the system, consuming more power to update the
network state because larger networks allow more vehicles to reside in the system.

In comparing Figs. 20.11 and 20.12a, these measurements show that the power
drawn to stream data is much larger than the power that is needed to run the embed-
ded simulations. One should note, however, that these experiments correspond to a
relatively small transportation network. When simulating much larger networks the
amount of power consumed by the simulations relative to that for communications
may be different.

Finally, one approach to reducing energy consumption was evaluated. If the
simulation must send a stream of update messages to the server, one could aggregate
several messages into a single message, and send one larger message rather than
a sequence of smaller messages. This approach, termed message aggregation, is
commonly used in distributed systems in order to reduce communication overheads.
Message aggregation comes at the cost of increasing latency as some messages must
be held at the sender in a buffer while the data is being accumulated, rather than
immediately sending the data to the receiver. A set of experiments were conducted
to consider the impact of aggregation on energy consumption.

In each experimental run, the number of updates, and the size of the data in each
update remains constant and the only variable is the number of updates aggregated
to form a message. In these experiments the application executed the cellular
automata based traffic simulation; and in addition the application also aggregated
and sends messages. The amount of energy consumed per byte of transmitted data
was measured. Figure 20.13 shows the results of this experiment. As expected,
an initial reduction in the energy consumed is observed as message aggregation
increases. This is because fewer messages are sent, thereby reducing the energy
consumed to process the message and send overhead information such as message
headers. However, an inflection point is reached and the energy consumed per byte
of data starts increasing beyond a certain level of aggregation. This is because
the operating system will automatically divide large messages into packets, and

Fig. 20.13 Effect of message aggregation on client energy consumption
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transmit each packet as a separate unit of data. Thus, from the standpoint of energy
consumption, data aggregation is only effective up to the maximum data packet size
used by the underlying operating system.

20.5 Concluding Comments and Future Work

Transportation systems can clearly benefit from exploiting the DDDAS paradigm
because unexpected events such as crashes and unpredicted demand-induced con-
gestion require real-time response to adapt to changing conditions. While the
concern in many situations is increased travel time and delay, the system described
here illustrate how DDDAS can also reduce emissions and fuel consumption.

Current research involves investigations concerning several of the topics
described in this chapter. Given the discrete position and velocity measurements
possible with the cellular automata models, efforts are underway to identify
potential improvements to the CA methods and also appropriate post processing
techniques to replicate the vehicle trajectories. Investigations are also ongoing
concerning issues such as potential biases that may result from excluding vehicles
that traverse only a portion of the corridor from the Bayesian approaches. Enhanced
smoothing methods are being developed for trajectory analysis and extrapolation
methods are being developed for incomplete trip traces (e.g., those vehicles that
enter Peachtree Street via one of the side roads). In addition, on-going work
is exploring the energy usage of the different simulation methods and various
potential implementations of a given method. A particular area of investigation
is energy usage with increased scale of the simulation models. Another area of
research concerns using deep learning methods to predict one or more relevant
factors for the generation of trajectories.
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Chapter 21
A Dynamic Data-Driven Optimization
Framework for Demand Side
Management in Microgrids

Haluk Damgacioglu, Mehrad Bastani, and Nurcin Celik

Abstract The efficient utilization of distributed generation resources (DGs) and
demand side management (DSM) in large-scale power systems play a crucial role
in satisfying and controlling electricity demand through an economically viable
and environmentally friendly way. However, uncertainties in power generation from
DGs, variations in load demand, and conflicts in objectives (emission, cost, etc.)
pose major challenges to determine the optimal operation planning of microgrids.
In this chapter, we propose a dynamic data-driven multi-objective optimization
model for a day-ahead operation planning for microgrids, integrating interruption
load management (ILM) as a DSM program, while collectively considering the
total cost and emissions as objective functions. The proposed model includes
three modules that interact with each other: (1) a simulation module that captures
the behavior of operating components such as solar panels, wind turbines, etc.
and provides the data for the optimization model; (2) an optimization module
that determines the optimal operational plan, which includes utilization of diesel
generators, purchased electricity from utility and interrupted load, considering
cost and emissions objective functions using ε-constraint method; and (3) a rule-
based real-time decision making module that adapts the operation plan from the
optimization model based on dynamic data from the microgrid and sends the revised
plan back to the microgrid. The capabilities and performance of the proposed
dynamic data-driven optimization framework are demonstrated through a case study
of a typical electrical power system. The resultant operation plan is quite promising
regarding total cost and CO2 emission.
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21.1 Introduction

The concept of microgrids emerged from a rapid increase of distributed resource
units in the form of distributed generation (DG) units. A microgrid is a localized
group of electricity sources and loads that can operate either connected to the
main grid or isolated. While a microgrid can buy electricity from the main grid
in connected mode, in an isolated mode, it has to satisfy the demand of the entire
microgrid using its energy sources [12]. Moreover, utilization of renewable energy
combined with distributed generation in microgrids has become vitally important to
reduce greenhouse gas emissions due to rapidly growing electricity consumption.
Microgrids typically employ a variety of DG resources such as solar arrays,
wind turbines, and diesel generators. The diversity of energy resources promises
adequately reliable, and economically viable power generation for customers.
However, increasing the penetration level of the individual DGs in a microgrid also
brings about challenges that require complex mechanisms for operation planning
since power generation from solar panels and wind turbines heavily depends
on weather conditions. Furthermore, the intermittency and stochastic nature of
renewable energies has become the major obstacle to large market penetration of
renewable energies [25] that can cause energy shortages during energy peak demand
periods.

Energy shortage can cause minor or severe failures in power networks, which
can lead to significant and irrecoverable costs. One possible way to overcome the
energy shortage issue is to use fast-responding generators (diesel generators) or
buying energy from the main grid; however, this solution might be expensive and
generate a large amount of greenhouse gas. Alternatively, an advanced demand
side management (DSM) program can be implemented to adjust the controllable
loads to match the available power generation during energy shortage. Demand side
management (DSM) programs provide the most practical way to control energy
consumption on the customer side of the load [16] and promise a cheaper and more
effective way to keep supply and demand balanced.

Another challenge is the non-linearities in cost and emission functions of thermal
generators, which increase the complexity of the problem. The aforementioned
challenges make the operation planning in a microgrid challenging and create a
necessity for complex models that consider not only the utilization of renewable
energy and a DSM programs, but also conflicting objectives such as total cost and
carbon dioxide emission.

In this Chapter, we present a novel, dynamic data-driven multi-objective opti-
mization model (DDD-MOM) for determining the detailed real-time operation
planning of a microgrid. The proposed model is inspired by the dynamic data-driven
applications systems (DDDAS) paradigm founded by [5, 6] that entails the ability
to create a symbiotic feedback loop between the incorporation of the dynamic data
in an application system (i.e., bi-objective optimization model in our case) and,
in reverse, the ability to steer the measurement process of the real system (i.e.,
response of the real system in this study). Here, the ultimate goal of the DDDAS
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paradigm may be summarized as: to make application systems more robust by
adding more accurate yet efficient modeling and simulation capabilities through a
symbiotic feedback loop. DDDAS is a promising and emerging framework which
has been applied to a variety of areas such as supply chain systems [4], distributed
self-healing electric microgrids [23, 24], electric load dispatching [22], operation
planning of a microgrid [21], data fusion analysis [3], smart energy management
[10] transportation systems [9], and surveillance and crowd control [13] amongst
many others.

Our proposed DDD-MOM approach consists of a simulation model, a bi-
objective optimization model, and a rule-based real-time decision making module.
In the simulation model, the hourly electricity prices are modeled based on historical
data using the Bayesian Information Criteria (BIC) method. Solar and wind power
generations are simulated using the data from the environmental sensors (i.e., solar
radiation, wind speed, ambient temperature), and the load behavior of each demand
point is mimicked based on peak demand and power factor. After the components
of the microgrid under the aforementioned conditions is simulated considering the
system uncertainties by the simulation model, the bi-objective optimization model
is formulated to find the Pareto Frontier solutions in terms of total cost and emission
using the ε-constraint method. Once the Pareto Frontier is obtained, the best
compromise solution is selected among knee solutions which are the preferred trade-
off solutions in the Pareto Frontier [20]. Based on the best compromise solution, the
operation plan, which includes utilization of diesel generators, purchased electricity
from utility, and interrupted load, is determined and sent to the microgrid. In the
final stage of the proposed framework, a rule-based real-time decision-making
module adapts the operation plan obtained from the optimization model with respect
to real-time dynamic data collected from the microgrid. The capabilities of the
proposed framework are demonstrated via a connected synthetic microgrid that has
50 load points, and solar, wind and diesel generators. The proposed framework
can be employed to any microgrid that has similarly distributed energy resources
by importing the necessary characteristics such as solar capacity, wind turbine
capacity, diesel generator characteristics, historical main grid prices, and historical
load information.

21.2 Proposed Framework

The proposed DDD-MOM framework aims to determine the (near-) optimal and
robust operation planning for microgrids, including demand side management and
utilization of diesel generators, in an economically and environmentally friendly
way, considering uncertainties of renewable power generation and load demand.
The overview of the proposed approach is shown in Fig. 21.1 where the components
of the proposed approach are explained in detail in the following subsections.
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Fig. 21.1 Proposed DDD-MOM approach applied to a considered microgrid

21.2.1 Simulation Module

The simulation module creates a valuable imitation of the operation of different
microgrid components while capturing uncertainty associated with these compo-
nents. In this study, load demand, solar power generation, wind power generation,
and hourly electricity prices are simulated as the microgrid operating components.
Since the other components, including diesel generators and DSM program, are
controllable components, they are utilized only in the optimization model.

Demand The demand data in this study is assumed to follow the microgrid system
from [24]. Particularly, the forecasted hourly demand of each building (Fit ) is a
function of peak demand (PDi) and power factor (PFit ) of the building i at a
time t . In this study, power factors are determined based on customer type; values
are collected from [18] for residential customers and from [24] for commercial and
industrial customers. A Gaussian distribution is assumed in modeling the demand
uncertainty with 5% standard deviation as used in [26]. The calculation of load
demand for each hour and building is shown in (21.1).

Fit ∼ N
(
μit,σi

)
where μi =

N∑

i=1

PDi × PFit and σi = 0.05μi (21.1)

Solar The power generation from solar panels depends on panel characteristics
such as solar irradiance and ambient temperature as shown in (21.2), (21.3)
and (21.4). In these equations, the hourly solar generation (Sout ) is a function of
fill factor (FF), which is a constant related to panel characteristics, voltage (V) and
current (I). Voltage and current are associated with attributes of solar panel and
cell temperature (Tc) calculated by the term Ta + (Tn−20)

0.8 · SI where Ta is ambient
temperature, Tn is a nominal cell temperature and SI is the solar irradiance.

Sout = FF · V · I (21.2)



21 A Dynamic Data-Driven Optimization Framework for Demand Side. . . 493

V = Voc − kv [Tc − 25] (21.3)

I = SI · (Isc + ki [Tc − 25]) (21.4)

Wind The power generation from wind turbines is calculated by a piecewise
function that is dependent on wind speed (vw) at the site and the parameters of
the power performance curve which are rated power (Pw), cut-in speed (vci), cut-
off speed (vco) and rated speed (vr ). Total output power generated from the wind
turbine (Wout ) is computed as follows.

Wout =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if vw < vd

Pw × vw−vci
vr−vci if vci ≤ vw ≤ vr

Pw if vr ≤ vw ≤ vco
0 if vw ≥ vco

(21.5)

Price The price of electricity from the main grid is modeled using historical data
from [17]. In this study, it is assumed that hourly electricity prices for an entire
month follow a similar pattern. In the calculation of prices, the data for the entire
month are taken into account for each hour. Here, we analyze several distributions
including: Weilbull, Gamma, etc. using the maximum likelihood estimation. After
our analysis of the historical data, an inverse Gaussian distribution is determined as
the best-fit distribution to explain hourly prices using the Bayesian Information Cri-
teria [11, 19]. The probability density function of the inverse Gaussian distribution
is given in (21.6).

f (x;μ, λ) =
[

λ

2πx3

] 1
2

exp

(
−λ (x − μ)2

2μ2x

)
(21.6)

In Eq. 21.6, x is the random variable (electricity price in our case), μ is the
distribution mean and λ is the shape parameter. As λ increases, the distribution
tends toward the Gaussian distribution. In this study, based on the historical data
obtained from [17], the parameters of the Inverse Gaussian distribution are estimated
using maximum likelihood estimation procedure. Then these parameters are used to
generate electricity prices in the simulation model.

21.2.2 Optimization Module

After obtaining the load demand for each building, solar and wind power gen-
eration available, and hourly electricity prices from the simulation module, the
optimization module minimizes the cost and emission by determining utilization
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Table 21.1 Notation used in bi-objective optimization model

Indices

i Buildings i ∈ {1, · · · , I }
t Hours t ∈ {1, · · · , 24}
j Diesel generators j ∈ {1, · · · , J }
k Segments k ∈ {1, 2}
Parameters

Fit Forecasted load of building i at time t

Dt Demand at time t after solar and wind generation

PGminj Minimum amount of electricity that can be produced by generator j

RIit Interruption rate ($/kW) (dependent on type of customer)

CSj Slope of cost function for generation unit j

CIj Intercept of cost function for generation unit j

ESkj Slope of emission function for generation unit j at segment k

EIj Emission value for PGminj

GRrj Reference for energy generation where r ∈ {1, · · · , k + 1}
Ulb Minimum amount that can be bought from utility

Uub Maximum amount that can be bought from utility

Ur Energy rate (price) from utility

Variables

gkjt Energy produced by diesel generator g at time t and segment k

ukjt Binary variable for the intercept of generator j at time t and segment k

xit Amount of interruption of building i at time t

bt Amount of electricity bought from utility

vt Binary variable for electricity from utility

of diesel generators, the amount of electricity that is bought from utility, and the
schedule of interruptible load under the interruptible load management (ILM).
ILM, as an incentive based DSM program, which attempts to decrease the energy
consumption of buildings during the peak demand; however, the energy providers
must pay the interruption incentives to consumers to encourage them to partic-
ipate in this program. In our study, a bi-objective optimization model is for-
mulated to minimize the cost and emission. It should be noted that quadratic
cost and emission functions of diesel generators are linearized using an upper
piecewise linear approximation method [14]. While the cost function can be
represented with one linear curve, the emission function can be written by two linear
curves called segments. The notation used in the model is shown in Table 21.1
and the model is represented in (21.7), (21.8), (21.9), (21.10), (21.11), (21.12),
(21.13), (21.14), (21.15), (21.16), (21.17), (21.18) and (21.19).
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Objective functions:

Min z1 =
24∑

t=1

[ I∑

i=1

xitRIit +
J∑

j=1

(
ujtCIj +

2∑

k=1

gkjtCSj

)

+ UlbUrvt + (bt − Ulb) Ur
] (21.7)

Min z2 =
24∑

t=1

J∑

j=1

2∑

k=1

gkjtES
k
j + ujtEIj (21.8)

Subject to:

Dt =
I∑

i=1

Fit − St −Wt (21.9)

Dt −
I∑

i=1

xit ≤
J∑

j=1

[
2∑

k=1

gkjt + u1
j tPG

min
j

]
+ bt , ∀t (21.10)

gkjt ≤
(
GRk+1

j −GRkj
)
ukjt ∀j, t and k = 1 (21.11)

uk+1
j t ≤ ukjt where k = 1 (21.12)

(
GRk+1

j −GRkj
)
− gskjt ≤ M

(
1− uk+1

j t

)
∀j, t and k = 1 (21.13)

xit ≤ 0.3 · Fit ∀i, t (21.14)

24∑

t=1

xit ≤ 0.02
24∑

t=1

Fit ∀i (21.15)

bt ≥ Ulb · vt (21.16)

bt ≤ Uub · vt (21.17)

ukjt , yit , vt ∈ {0, 1} (21.18)

xit , gjt , g
k
jt , bt ≥ 0 (21.19)
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Equation (21.7) denotes the first objective function that minimizes the total cost
including interruption cost

∑24
t=1
∑I
i=1 xitRIit , linearized form of diesel generators

cost (
∑J
j=1
∑24
t=1 uijCIj + gjtCSj ), and electricity cost (

∑24
t=1 UlbUrvt + (bt −

Ulb)Ur) that is bought from the utility. Equation (21.8) minimizes theCO2 emission
of diesel generators.

In the constraint set, Eq. (21.9) defines the desired demand at time t , which
is the summation over time of forecasted loads minus generated energy from
wind and solar at time t . Equation (21.10) prevents the model from exceeding
the desired demand at time t . Since the linearized form of the emission
function includes two segments, (21.11), (21.12) and (21.13) ensure that the
model does not assign any value to the second segment before fulfilling
the first segment. Equations (21.14) and (21.15) ensure that the amount of
interruption for each building satisfies hourly and daily by regulations for ILM.
Equations (21.16) and (21.17) show the upper and lower limit of the energy that
can be bought from utility. Finally, (21.18) and (21.19) are sign constraints.
The optimization model (Eqs. (21.7) (21.8), (21.9), (21.10), (21.11), (21.12),
(21.13), (21.14), (21.15), (21.16), (21.17), (21.18) and (21.19)) is a generic model
and it can be applied in any microgrid with the corresponding parameters obtained
from the microgrid and ILM program. In this Chapter, ε-constraint method is used
to obtain the Pareto Frontier for the proposed mathematical model.

21.2.3 ε-Constraint Method for Multi-objective Optimization

In this Chapter, ε-constraint method, first proposed by [15], is used to solve the
bi-objective optimization model. In order to implement the ε-constraint method in
the optimization problem described in Sect. 21.2.2, the optimization problem is first
solved for each objective function separately to find the minimum and maximum
value for each objective function (pay-off table). Next, the secondary objective
function is added to the optimization model as a constraint and the optimization
problem is formulated as a single objective optimization problem (based on the
primary objective). In this work, the total operation cost is selected as the primary
objective and the emission function is determined as the secondary objective. Based
on the pay-off table, the range of the secondary objective function is divided into
n equal intervals. Then, the new optimization problem that minimizes the total
operation cost is solved for n different right hand side and left hand side values
of constrained emission function in order to obtain n Pareto Frontier solutions
(Fig. 21.2).
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Fig. 21.2 ε-constraint method for bi-objective optimization

Fig. 21.3 Rule-based real time decision making module for microgrid operational planning

21.2.4 Real-Time Decision Making Module

Load demand and generation from solar panels and wind turbines cannot be
forecasted precisely, so the optimal solution based on simulation results requires
modifications in order to adapt the solution to real-time data gathered from the
microgrid. However, these modifications should satisfy the constraints without
significantly harming the optimal solution. Within this context, we propose a rule-
based real-time decision-making module (RTDM) that makes myopic decisions
based on the real-time data from microgrid considering both cost and emission as
it steps through time. The proposed rule-based RTDM is responsible for decisions
regarding utilization of diesel generators, ILM and amount of electricity that will be
bought from main grid (Fig. 21.3). It should be noted that the method is terminated
if �Dt = 0 at any checkpoints.

21.3 Experiments and Results

In order to present the capabilities and performance of the proposed approach, a
case study of a synthetic microgrid was carried out. The microgrid analyzed in
this work includes 50 buildings composed of 35 residential, 10 commercial, and 5
industrial type of load profiles, solar panels that have a capacity of 10 MW in total, 3
wind turbines, and 7 diesel generators from 4 different types (see Table 21.3 for the
types of generators). The characteristics of the solar panel and wind turbines used
in this study are shown in Table 21.2. Here, the attributes of the diesel generators
are obtained from the study [1]. Then, variable cost and emissions values for each
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Table 21.2 Attributes of the
wind turbines and solar
panels [2]

Solar panel

Attribute Value

Open circuit voltage 21.98 V

Short circuit current 5.32 A

Voltage temperature coefficient 14.4 mV/◦C
Current temperature coefficient 1.22 mA/◦C
Nominal cell operating temperature 43◦C
Fill factor 0.17

Wind turbine

Attribute Value

Turbine capacity 3000 kW

Cut-in speed 4 (m/s)

Cut-out speed 25 (m/s)

Rated speed 16 (m/s)

Table 21.3 Attributes of the diesel generators

Thermal generators

Attribute Type I Type II Type III Type IV

Number of generators 2 2 1 2

Minimum power generation 50 40 30 20

Maximum power generation 300 250 175 120

Fixed cost 16.52 12.02 9.89 7.47

Variable cost coefficient 0.0224 0.0229 0.0235 0.0223

Emission for minimum power generation 0.88 0.76 1.01 0.66

Emission coefficient for segment I 0.0277 0.0214 0.0277 0.0195

Emission coefficient for segment II 0.0599 0.0432 0.0459 0.0364

diesel generator type are linearized using a piecewise linear approximation method.
The obtained values for diesel generators are shown in Table 21.3.

As mentioned earlier, due to weather changes and variations in customers’ load
profiles, the operation plans will be different for any day of a year. However, it is
commonly believed that, changes within a season have minimal impact. Therefore,
in this study, we present results of DDD-MOM for the two best representative days
of each season, which are July 15th for summer and January 15th for winter. Here,
the simulation model determines the hourly forecasted demand for each building
and hourly solar and wind generation according to the data shown in Tables 21.2
and 21.3. It should be noted that weather data is obtained from the Florida
Automated Weather Network (FAWN) subsidiary of the University of Florida [7],
and winter and summer electricity prices are determined using an Inverse Gaussian
distribution where parameters are estimated based on the historical data. Then the
simulation results are sent to the bi-objective optimization model. The optimization
model is solved for each objective function to construct the pay-off table shown in
Table 21.4.
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Table 21.4 Resulted pay-off table for Bi-objective optimization model

Summer Cost Emission Winter Cost Emission

Cost 1320.59$ 6.71 kg Cost 1077.07$ 5.39 kg

Emission 2597.00$ 4.78 kg Emission 2218.76$ 3.51 kg

In this study, the cost function is selected as the primary objective function.
Then the emission function is embedded into the model as a constraint as shown
in Eq. (21.20).

24∑

t=1

J∑

j=1

2∑

k=1

gkjtES
k
j + ujtEIj ≥ εiter (21.20)

In Eq. (21.20), εiter represents the right-hand value of ε-constraint for each
iteration. In this study, in the ε-constraint method, the emission function ranges
([4.78, 6.71] for summer and [3.51, 5.39] for winter) are divided into 100 intervals.
Here, the ε1 values for summer and winter are 4.78 and 3, 51, respectively. In each
iteration, these values are increased by approximately 0.019 for both summer and
winter. Then, the optimization problem for minimizing the cost is solved for every
ε value by using AMPL (A Mathematical Programming Language, [8]) software.
Each iteration in ε-constraint method takes about 0.7 s on a computer with i7
processor and 16 GB RAM. Based on the results of the optimization problem, the
Pareto Frontier is obtained and represented in Fig. 21.4. Then, the best compromise
solution is selected by determining the knee-of-the-curve solutions which are the
preferred trade-off solutions in the Pareto Frontier [20]. Since our primary objective
here is to minimize the cost, the knee solutions, better in terms of total cost, are
chosen as the best compromise solutions for winter and summer.

Based on the selected solutions, the optimal operation plans for summer and
winter are demonstrated in Fig. 21.5. It should be noticed that in both cases, there
is unused generator capacity, showing that the microgrid has enough resources for
electricity generation. In fact, even during the peak hours in summer, the utilization
of generator type I, which has the highest capacity, does not exceed 60% in total.
From Fig. 21.5, it can be understood that in winter, the microgrid does not need
electricity from main grid, while in summer, the microgrid buys electricity from
the main grid for four hours a day. However, during these hours, the microgrid
can produce its own energy. The results also demonstrate that the total amount of
interrupted electricity is very small for both seasons; meaning that the microgrid
can satisfy the customers in terms of their electricity production. Finally, although
the generation from renewable energy sources in summer is almost twice as the
generation from renewable energy sources in winter, the higher demand in summer
causes more cost and more emissions compared to those of winter.

In the next step, DDD-MOM collects the real-time data from microgrid and
performs RTDM to adapt the best compromise solution from optimization module
based on these data. In this study, real-time microgrid data is simulated using
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Fig. 21.4 Resulting Pareto Frontier from multi-objective optimization model. (a) Summer. (b)
Winter

slightly different parameters from the parameters that are used in the simulation
module. The results of RTDM are demonstrated in Fig. 21.6. As can be seen in
Fig. 21.6, the changes in the cost function value between the optimization module
solution and RTDM solution reach at most a level of 0.9% and 0.6% in summer
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Fig. 21.5 Operation plan of best compromise solutions. (a) Winter. (b) Summer

and winter, respectively. The differences in the emission values obtained from the
optimization model and actual case are smaller than 0.4% and 0.6% in winter
and summer, respectively. Hence, it can be concluded that the results obtained
from the optimization model are robust in terms of cost and emission objectives
against uncertainties of power generation from renewable energy resources and load
demand in real-time operation.
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Fig. 21.6 Result of the RTDM module. (a) Winter. (b) Summer

21.4 Conclusion

In this Chapter, we propose a dynamic, data driven multi-objective optimization
model (DDD-MOM) for the operation planning of a microgrid. The proposed
framework consists of three main modules including data simulation, bi-objective
optimization model, and a real-time decision-making module. First, the simu-
lation module takes historical data and mimics the behavior of components of
the microgrid, considering uncertainties associated with power generation from
distributed energy resources and load demand. In the next step, the results of the
simulation and linearized form of the quadratic cost and emission functions of
diesel generators are imported into the bi-objective optimization model. Then, the
biobjective optimization model is solved using an ε-constraint method to obtain
the best compromise solution. In the last module, the rule-based real-time decision-
making module modifies the solution obtained from the optimization module to
finalize the operation plan based on dynamic data from the microgrid to satisfy all
operational constraints. The performance of the proposed approach is demonstrated
through a synthetic microgrid that includes solar panels, wind turbines, and four
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types of diesel generators. The results have shown that DDD-MOM can provide the
real time hourly operation plan of a microgrid without harming the feasibility and
optimal solution obtained from the optimization model. Our proposed approach is
designed in a generic manner that can be implemented in any microgrid with similar
types of DGs. In future works, storage devices, such as batteries, and maintenance
periods of diesel generators can be considered in order to make the proposed
approach more applicable to the wide variety of energy sources in an electrical grid
system.
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Chapter 22
Dynamic Data Driven Partitioning
of Smart Grid Using Learning Methods

Antonia Nasiakou, Miltiadis Alamaniotis, Lefteri H. Tsoukalas,
and Manolis Vavalis

Abstract A plethora of energy management opportunities has emerged for elec-
tricity consumers and producers by way of the transition from the current grid
infrastructure to a smart grid. The aim of this chapter is to present a new dynamic
data-driven applications systems (DDDAS) methodology for partitioning the smart
distribution grid based on dynamically varying data. In particular, the proposed
methodology uses the k-means algorithm for performing partitioning and a fuzzy
decision making method for increasing power efficiency and reliability. The network
is divided into a set of “similar” subnetworks; where the subnetworks are comprised
of residential customers (i.e., residencies) who share the same characteristics
pertaining to the energy needs but not necessarily the same geographic vicinity or
belong to the same grid node. A fuzzy logic method is used to make decisions on
which partitions could be offered energy at lower prices available from Renewable
Energy Sources (RES). Various scenarios based on the GridLAB-D simulation
platform exhibits how the operation of the smart grid is affected from the partition
of the distribution grid. The illustrative example utilizes the IEEE-13, IEEE-37 and
IEEE-123 bus test feeders in the experiments from a distribution grid composing
3004 residencies and both conventional and distributed generators.

22.1 Introduction

The primary goal of both transmission and distribution networks is to retain stable,
reliable and efficient operations in routine and emergency situations. An anomaly or
disruption in the operation of the electricity network could be mitigated through
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advances in robust decision making mechanisms. Those mechanisms enable the
electricity network to react in an efficient way to various types of disturbances. For
instance, a huge disturbance in electricity network could be handled by partitioning
it, and subsequently targeting at isolating the problem to prevent diffusion in the
whole grid. Further, the delivery of electricity has to be non-stop, so that the isolation
of the disturbance, aided bypartitioning methods, could be conducted in an efficient
way.

In particular, the authors in this study propose a dynamic data driven partitioning
of the smart distribution grid focusing on introducing renewable energy sources
(RES) in the electricity network and subsequently reducing the wasted energy
produced by RES [1]. RES belong to the wide area of the Distributed Energy
Sources (DES), with an increasing number of energy companies using emerging
RES power systems. The utilities exploiting the features provided by the RES, thus
being, more reliable and viable in the energy market. Occasionally, several studies
relying on dynamic data driven adaptive simulation techniques have been conducted
in order to find the best way to install and integrate RES into the electricity network
[1].

The DDDAS concept entails “the ability to dynamically incorporate data into
an executing application simulation, and in reverse, the ability of applications to
dynamically steer measurement processes”, creating application simulations that
can dynamically accept and respond to ‘online’ field data and measurements and/or
control such measurements paradigm which was presented by Darema in [2]. The
creation of a microgrid into the power grid is one of the most widely used and most
safest methods to integrate RES into the power grid. For example, in order to reduce
the $9B cost of satisfying the demand for its installations, the US could adopt RES
following a two stage decision making method for reducing its cost as proposed in
[3]. A set of microgrids, equipped with RES and distributed communications, could
provide energy resources to meet the level of demand satisfaction. The proposed
method is based on a DDDAS, allows a simulation model retrieving data from
a specific database to dynamically predict the system’s reaction under particular
conditions. Moreover, in [4], a DDDAS approach is proposed for operation planning
of microgrids. It consists of three main components: (a) a database with information
about the state of the power network (total demand, market price) and weather
conditions, (b) a simulation platform used to simulate the microgrid and (c) a
multi-objective optimization problem. Based on the DDDAS concept, the authors
in [5], (similar to [4]), propose a novel framework which consists of three main
components associated with (a) information about the grid and the weather,
(b) an agent based simulation platform and (c) an optimization algorithm. The
goal of the study was to develop of a framework for microgrids focusing on
the minimization of the computation time of the resource allocation and on the
optimization of the operational cost. Additionally, in [6, 7], the authors developed
a DDDAS framework for the power network to solve the economic load dispatch
problem.

In [8], a DDDAS method is used in health monitoring. To increase data for a set of
sensors for the surveillance and crowd control through an efficient way is conducted
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Fig. 22.1 Cost of electricity in Dollars per kWh

via a dynamic data driven adaptive multi-scale simulation framework proposed
in [9]. In [10], the authors focus on retaining a balance between dynamic data
driven solutions and static solutions. In [11], the authors formulate the prediction
of wide-area motion imagery data as a DDDAS problem. DDDAS applications are
of paramount importance because they provide accurate analysis and predictions,
more reliable and efficient outcomes, and more accurate controls [12].

In general, the RES, because of their stochasticity and the high installation cost,
offer their produced energy at higher prices than the conventional generators (see
Fig. 22.1.). Therefore, much of the generated energy may be wasted or stored to
batteries due to the fact that the consumers would prefer to buy energy at lower
prices than at RES prices. The proposed DDDAS methodology tries to minimize the
wasted energy by allowing specific consumers, which belong to the same partition,
to buy the potential available energy at lower prices.

In this study, the market is organized as a double auction market [13]. Both
producers and consumer appliances submit their bids for a specific time period into
the market framework. More specifically, once the submission period ends, the bids
of both appliances and producers are sorted, from highest to lowest price and from
lowest to highest price, respectively. The aggregation of the quantities combined
with the sorted prices provides the final curve for both producers and appliances.
The clearing price and the clearing quantity correspond to the intersection point of
the appliances’ and producers’ curve. The clearing price in which the market offers
the clearing quantity is the highest price that a buyer prefers to pay for energy and
the lowest price that a seller prefers to sell its produced energy.

In Figs. 22.2 and 22.3, the most widely used scenarios of how the market
calculated the clearing quantity and the clearing price are depicted. In this study,
we consider that the sellers are the producers and the buyers are the appliances. In
particular, Fig. 22.2 depicts the marginal seller case, where the seller offers part of its
produced energy. In that case, the clearing price of the market is the bid price of the
marginal seller. The clearing quantity is the aggregation of all the buyers’ quantities
which submit bids with the bid price be higher than the bid price of the marginal
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Fig. 22.2 Marginal seller
case [14]

Fig. 22.3 Marginal buyer
case [14]

seller. In Fig. 22.3, the exact opposite case, known as marginal buyer, is depicted.
However, there are cases where the clearing quantity is less than the overall demand,
despite the fact that the offered energy that is also the produced energy, is enough
to meet the energy requirements of the buyers. In this third case, the buyers, in our
case the appliances of all the residencies in the distribution grid that prefer to buy
energy at lower than the clearing price, are not included in the market dispatch. So
if the overall demand is not satisfied by the market, some appliances won’t be in
operation for the particular time instance. In other words, these appliances may stay
idle and operate in a next clearing of the market framework.

The proposed methodology consists of two phases: the first performs the grid
partitioning using input data representing the information pertained to the current
state of the power grid. The second phase corresponds to the use of a fuzzy
logic decision making method [15–17]. Regarding the partitioning procedure, it
is driven by three dynamic factors: (i) the aggregated power demand /total load
of the residencies attached to a particular node of the distribution grid, (ii) the
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average value of a factor for each node of the grid, called schedule skew (each
appliance is characterized by this factor), that indicates the estimated time in
seconds the householder “starts” their consumption in a given time interval, and (iii)
the aggregated number of appliances in operation at each node of the distribution
grid each particular time. For comparison purposes, in this study, the proposed
methodology is applied every 1 h and every 4 h. It is worth mentioning in that
point, that the methodology may not be executed, for example, exactly every 1 h. It
may be executed every 55 min, or every 70 min. Therefore, there is a time window,
where the methodology takes place. Actually, this is due to the synchronization of
the core module, the most significant module of the GridLAB-D platform.

The fuzzy decision making method uses information regarding the partitions,
the number of appliances in operation and the satisfaction of the overall demand.
The output of this method is the portioned groups, i.e. the nodes of the distribution
grid, which will be the recipient of offered benefits (usually in the form of price
incentives); such that the stability of the power grid is also ensured. The two phases
of the proposed methodology are:

• The k-means [18] clustering algorithm is utilized to partition the distribution grid
using the dynamically driven data from each node. The number of clusters is
selected arbitrary; it is set to 3. A distribution grid consists of various nodes; the
ones that can handle load and the ones that are used for connectionpurposes. The
input data for the proposed partitioning procedure is associated with the nodes in
which residencies are attached and in particular the available information, such
as the load associated with each of these nodes.

• A fuzzy logic rule based decision making method is utilized. The fuzzy decision
making method is applied when the partitioning procedure ends and when the
clearing quantity of the under consideration time interval is not enough to satisfy
the overall demand during a particular time interval. In other words, when the
demand is satisfied with the quantity provided by the market framework, the
fuzzy logic method is not applied. Therefore, the energy produced by RES that
is not being dispatched will be offered at a lower price to the appliances of the
partition which is selected by the fuzzy logic decision making method. The RES
continues to offer their produced energy at lower prices at the selected partition
since the demand isnot satisfied from the market.

Going back to the primary goal of this study, after the clearing of the market,
appliances that are forced not to operate because their bidding price is lower
than the clearing price should not work. Based on that fact, we propose a novel
methodology where energy provided by RES that may be wasted, could be sold in
a specific partition at a lower price. So, appliances that otherwise should stay idle,
with respect to our proposed methodology, they can operate by buying energy at
a lower price than the clearing price and closer to their preferred bidding price.
More than that, the excessive energy from the RES is not wasted. Therefore,
the current study presents our initial efforts to develop a novel methodology for
implementing a DDDAS-based smart grid power management method. DDDAS is
beneficial for a time-limited partitioning of the power grid becauseof its dynamic
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and evolving nature. The grid is identified as a highly complex system whose
modeling is extremely difficult, and as a result data-driven methods are appropriate
for its management. In particular, the DDDAS paradigm is efficient for processing
the monitored data and subsequently promote respective decisions leading to
safe and efficient operation of the power grid. The proposed methodology which
makes use of two intelligent tools, the k-means and a fuzzy inference system for
intelligent management of the distribution grid based on dynamic driven data during
a simulation. Moreover, it implements an elitist approach where the grid is divided
into partitions, and at the end only one of them is selected. Both partition and
selection procedures are dynamically driven and depend on the current conditions of
the grid. The partitioning of the power grid is conducted in such a way that in each
partition the nodes have similar energy consumption patterns. Moreover, in each run
the selected partition by the fuzzy logic method consists of different nodes.

The rest of this Chapter is organized as follows. In the next Section, the two
tools, i.e., k-means and the fuzzy logic decision making method, are presented in
detail. In Sects. 22.3 and 22.4, the simulation configuration and results are presented
respectively. Concluding remarks and future plans can be found in Sect. 22.5.

22.2 Methodology

22.2.1 k-Means Partitioning Algorithm

Clustering algorithms belong to the class of unsupervised learning methods. In the
power grid research field, the load is commonly used for the grid partitioning using
the k-means [19] algorithm. The ultimate goal of each partitioning algorithm is
to divide the data points of a particular data set into clusters-partitions where the
members of the same partition have similar characteristics while the members of
different partitions have different characteristics. The k-means algorithm consists
of two stages; (a) the determination of a set of k initial clusters that are randomly
selected, and (b) the assignment of each data point to the nearest cluster center
according to the values of a distance measure. The k-means algorithm aims at
minimizing the function in Eq. (22.1).

E =
∑k

i=1

∑
p∈Xi

‖ p − ci‖2 (22.1)

where p is a data point from the data set and ci is a cluster centroid.
The k-means algorithm uses the Euclidean distance for the calculation of the

distance between each data point of the data set and the cluster center. In this study,
the Minkowski distance [20] is utilized. The k-means algorithm runs periodically
until the error criterion defined by Eq. (22.1) converges to a predefined threshold.
In particular the algorithm converges, when there are no differences between the
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cluster centers along two sequentially runs of the algorithm. The steps of the k-
means algorithm that are conducted in each run are given below:

1. k data points are selected randomly to be the initial cluster centers,
2. repeat the following steps until the error criterion converges to the threshold

(a) Assign each data point to the closest cluster center by Eq. (22.2)
(b) Recompute the new cluster centers

Si
(t) =

{
xp :‖ xp −mi(t)‖2 ≤‖ xp −mj (t)‖2

}
∀j, 1 ≤ j ≤ k (22.2)

In this study, the calculation of the distance between each data point and the
cluster center is based on the Minkowski distance as it is defined in Eq. (22.3).

d (x, y) =
(∑n−1

i=0
|xi − yi |p

)1/p

(22.3)

There are some special cases for the Minkowski distance. In particular, when
p= 1, the distance is known as the Manhattan distance and when p= 2, the distance
is the known Euclidean distance.

22.2.2 Fuzzy Logic Decision Making Model

Once the partitioning procedure ends, a fuzzy logic decision making method is
utilized to decide which of the partitions may be selected in order the appliances of
that partition to benefit from the lower prices of the RES. The produced RES energy
is offered at lower prices in the case that their energy is not being dispatched by the
market. A fuzzy logic inference system (FIS) consists of four main components, the
fuzzifier, the rules, the inference and the defuzzifier. The proposed FIS, utilized in
this study, uses as input:

• the load of all the appliances attached to each node that are indicated as
cluster centers after the partitioning procedure, named Load. Each node that
accommodates residencies can potentially be one of the next cluster centers. The
corresponding variable has three fuzzy sets; LOW, MEDIUM and HIGH.

• an index Devices_ON which indicates the aggregated number of appliances in
operation of the nodes which are the cluster centers at the particular time that
the proposed methodology is applied. The corresponding variable has two fuzzy
sets; LOW and HIGH.

• an index, named Satisfaction, with values from 0 to 2, which indicates whether
the demand is satisfied or not. A value in the range [0 1] corresponds to the
satisfaction of the overall demand while a value in the range [1 2] corresponds to
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the un-satisfaction of the demand. The former is indicated as SATISFY while the
latter is indicated as NO_SATISFY.

The Satisfaction index is the ratio of the clearing quantity of the current bidding
period to the total appliances’ quantity. On one hand, if it is greater than 1, then the
demand is satisfied and the value of the index is the inverse value of this ratio. On
the other hand, if it is lower than 1, then the ratio’s value is normalized between 1
and 2. If the new value is greater than 2 then the index’s value is set equal to 2 and
if the normalized value is lower than 1 then the normalized value is accumulated by
1. The FIS implements the following fuzzy rules for associating the input variables
Load, Satisfaction and Devices_ON to the output variable Priority:

• IF Load is LOW and Satisfaction is SATISFY and Devices_ON is LOW, THEN
Priority is LOW

• IF Load is LOW and Satisfaction is NO_SATISFY and Devices_ON is LOW,
THEN Priority is LOW

• IF Load is MEDIUM and Satisfaction is SATISFY and Devices_ON is LOW,
THEN Priority is LOW

• IF Load is MEDIUM and Satisfaction is NO_SATISFY and Devices_ON is
LOW, THEN Priority is MEDIUM

• IF Load is HIGH and Satisfaction is SATISFY and Devices_ON is LOW, THEN
Priority is LOW

• IF Load is HIGH and Satisfaction is NO_SATISFY and Devices_ON is LOW,
THEN Priority is HIGH

• IF Load is LOW and Satisfaction is SATISFY and Devices_ON is HIGH, THEN
Priority is LOW

• IF Load is LOW and Satisfaction is NO_SATISFY and Devices_ON is HIGH,
THEN Priority is MEDIUM

• IF Load is MEDIUM and Satisfaction is SATISFY and Devices_ON is HIGH,
THEN Priority is MEDIUM

• IF Load is MEDIUM and Satisfaction is NO_SATISFY and Devices_ON is
HIGH, THEN Priority is HIGH

• IF Load is HIGH and Satisfaction is SATISFY and Devices_ON is HIGH, THEN
Priority is MEDIUM

• IF Load is HIGH and Satisfaction is NO_SATISFY and Devices_ON is HIGH,
THEN Priority is HIGH

The output variable Priority indicates which of the partitions is selected over
the other partitions to utilize the energy offered from RES at lower prices than
their offered price. The membership functions for all the input variables, i.e., Load,
Satisfaction, and Devices_ON are based on the triangular form as depicted in Figs.
22.4, 22.5 and 22.6; respectively The Priority variable is also based on the triangular
form shown in Fig. 22.7. It is worth mentioning in that point that the Fuzzy Inference
System runs independently for each partition (see Fig. 22.8), and the partition with
the highest value of the variable Priority is selected.
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Fig. 22.4 Membership function of the Load input variable

Fig. 22.5 Membership function of the Satisfaction input variable

The proposed DDDAS methodology is executed iteratively until the simulation
time ends. More specifically, in each run of the proposed methodology, the
aggregated total load, the aggregated number of appliances in operation, the factor
schedule skew, the Satisfaction index and the number of clusters are needed for the
execution of the proposed methodology (partitioning and fuzzy logic procedures).
The data points used by the k-means algorithm is 2-D. One dimension corresponds
to the sum of the aggregated total load with the schedule skew factor while the
second dimension corresponds to the number of appliances in operation. In other
words, the first dimension is associated with the load at a specific node and the
second dimension with the number of appliances of the same node that need the
specific amount of load.
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Fig. 22.6 Membership function of the Devices_ON input variable

Fig. 22.7 Membership function of the Priority output variable

Fig. 22.8 Architecture of the fuzzy logic inference system
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Table 22.1 Capacities-prices of the generators

Generators Price Max capacity (kW)

Solar panel (116,000 sf) 0.11$/kWh 1917
Wind turbine (GE_25MW, GE_25MW, SYNC_SMALL) 0.10$/kWh 5500
Transmission G1 0.07$/kWh 3300
Transmission G2 0.07$/kWh 3000
Transmission G3 0.07$/kWh 3000

It is worth noting that in the GridLAB-D [21] only the thermostatically controlled
appliances submit their bids in the market through the controller object; the
aggregated total load which is used in the partitioning procedure, is the total load of
all the appliances in a residency. The fuzzy logic decision making method provides
the partition which can benefit from lower prices. The price of produced by the RES
energy is defined to be 50% lower than the initial one. We made this assumption
because in most of the cases, the clearing price of the market framework is the
bid price of one of the producers (0.07$/kWh). In our case, this price is based on
conventional natural-gas based generators (See Table 22.1). So, if we reduce the
price of RES by 50%, the new price (approx. 0.05$/kWh; 50% lower of the average
price of RES) is lower than the clearing price and probably is closer to the preferred
by the appliances’ price. Therefore, the final price, that the appliances are called to
pay for, is the average value of two prices; the price when they belong to the selected
partition and they buy energy at the price offered by the RES, and the price when
they are satisfied from the market framework.

22.3 Simulations Configuration

For demonstrating the capabilities of the proposed DDDAS methodology, test cases
are designed and implemented. The test cases are conducted using the GridLAB-
D [21] simulation platform. A DDDAS intelligent simulation engine combines
two libraries; the dlib library1 and the fuzzylite2 library. The former provides the
implementation of the k-means algorithm while the latter provides a C++ based
library for the development and the design of fuzzy logic controllers. Three test
feeders, the IEEE-13, IEEE-37 and the IEEE-123 [22] are utilized for creating the
simulation model test cases presented in this study (see Fig. 22.9).

The simulation model is composed of 3004 residencies, 4 solar panels, 3
wind turbines and 3 conventional natural gas based generators. Each residency
can accommodate four individuals and it consists of non-responsive loads, like
a refrigerator and responsive loads, like a HVAC (heating, ventilating/ventilation,

1http://dlib.net/ml.html
2http://www.fuzzylite.com/

http://dlib.net/ml.html
http://www.fuzzylite.com
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Fig. 22.9 The under consideration distribution power grid

and air conditioning) [HVAC] system and a water heater. The responsive loads
participate in the market using the demand response technique provided by the
GridLAB-D. Each RES or conventional generator act as a different energy provider
with his own offer price.

The Transactivec ontroller or controller [23], object of market module, imple-
ments the demand response technique by submitting on behalf of the appliances the
offers in the market. Moreover, the resident is responsible to set his desired setpoints
at the thermostatically controlled appliances. The refrigerator, which belongs to
the non-responsive loads, is designed through the ZIPload, object of residential
module. For the appliances modelled by utilizing the ZIPload object, the schedule
object of the GridLAB-D is used to provide the energy requirements of the appliance
for the overall simulation time. The participation of the refrigerator in the market
framework is achieved through the stub_bidder, object of market module. Its main
features are the fixed price and the quantity which actually reflects the energy
requirements of the appliance.

Regarding the generators, both transmission and distributed generators are
simulated. The distributed generators are associated with RES such as solar panels
and three wind turbines. Four solar panels of total area 116,000 sf are simulated.
The max output of the three wind turbines is 5500 kW, while the max output of the
solar panel area is 1917 kW. For simulation purposes, we use two different types
of wind turbines; the GE_25 MW and the GENERIC_SYNC_SMALL, and details
about their configuration and their parameters can be found at the GridLAB-D’s user
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guide3. Table 22.1 depicts the operating costs for each type of generator including
the max power output as well.

The stub_bidder object of the market module, is designed to submit the offers
in the market on behalf of the conventional generators. It is characterized by the
fixed price and the fixed quantity during the simulation. Regarding the distributed
generators (the associated objects are developed in generators module of GridLAB-
D), they participate in the market through the generator_controller, object of the
market module. The price in that case is also fixed, but the bidding quantity depends
on the weather conditions. For the weather data, the WA-SEATTE.tmy2 file contains
weather information for the Seattle, Washington.

22.4 Simulation Results

For assessing the validity and the reliability of the proposed DDDAS methodology,
various simulations are conducted whose results are presented in this section. For
comparison purposes, we are going to present, compare and analyze the simulation
results of the three cases: (Case I) when the proposed methodology is applied every
1 h, and ii) when it is not applied (Case II). Moreover, for proving the dynamic
nature of the proposed methodology, we run more simulations by varying the time
that the proposed methodology is executed. In particular, we are going to analyze
and compare the results when the proposed methodology is applied every 1 h
(Case I), every 4 h (Case III) and when it is not applied (Case II).

For all of the presented test cases, the simulation time is 24 h, and the simulation
day is 08/01/2000. Both producers and appliances can submit their bids in the
market framework every 15 min. The clearing price and the clearing quantity are
available when the bidding period expires. Regarding the proposed methodology,
every hour or every 4 h, information about the state of the distribution grid
regarding the load, the schedule_skew, the number of appliances in operation and
the satisfaction of the demand are available to be utilized.

Table 22.2 presents the average total load of each partition, for each particular
time the fuzzy logic procedure is executed. The partitions that are selected from the
fuzzy logic decision making method are presented in bold font. The information
depicted in the Table 22.2 corresponds to the Case I. It is worth mentioning in
that point, that the whole procedure takes place every 1 h, but the fuzzy logic
methodology takes place when the demand of the residential consumers is not fully
satisfied. Because of that in the Table 22.2 the results are depicted every 2 h.

In Figs. 22.10 and 22.11, the HVAC load of two residencies that buy energy
at lower prices is depicted. Moreover, for comparison purposes, the HVAC load
of the residency when our methodology is not applied (Case II) is also presented.
The x-axis and the y-axis correspond to the simulation time and the HVAC load

3http://www.gridlabd.org/documents/doxygen/1.1/files.html

http://www.gridlabd.org/documents/doxygen/1.1/files.html
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Table 22.2 The average load
for the partitions for each run
where the fuzzy logic
decision making method
takes place

Time Partition #1 Partition #2 Partition #3

2:00 am 26.82 167.25 61.52
4:00 am 165.62 26.44 41.01
6:00 am 115.67 31.98 49.94
8:00 am 203.2 26.16 127.57
10:00 am 7.74 16.94 65.63
12:00 pm 8.68 20.70 5.27
2:00 pm 4.44 64.80 15.23
4:00 pm 17.14 110.57 28.28
6:00 pm 94.58 138.26 25.39
8:00 pm 27.31 160.25 69.16
10:00 pm 78.22 161.60 78.60
12:00 am 30.46 149.94 90.28

Fig. 22.10 HVAC load for a residency that benefits from the lower prices in some time intervals
when the partitioning process is taking place every 1 h

(in kW) of the residency respectively. It is clear that the HVAC system works
more frequently in the case of applying the proposed methodology (Case I). We
choose the HVAC system to show the effect of the proposed DDDAS methodology
to the operation of the distribution grid because it needs more energy to meet its
consumption requirements and operates more frequently as compared with the other
thermostatically controlled appliances. The HVAC system and the water heater are
the only appliances of which their operation is adjusted by configuring the setpoints.
Moreover, it is observed that the operation of the HVAC system is shifted from the
on-peak hours to the off-peak hours.

In Fig. 22.12, the clearing quantity for a whole day in both cases I and II is
presented. The blue line corresponds to the Case I while the red dots to the Case II.
We can observe that the clearing quantity in the Case I is higher, especially during
the hours where the proposed methodology is applied. The results associated with
the total load of each residency of the Figs. 22.10 and 22.11 of both the Cases I
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Fig. 22.11 HVAC load for a residency that benefits from the lower prices in some time intervals
when the DDDAS proposed methodology is taking place every 1 h

Fig. 22.12 Clearing quantity offered by the market for the Case I and Case II

Table 22.3 Comparison of the cost and the load of a residency in two case studies

Case I Case II

Total load (kWh)/cost ($\kWh) Residency Fig. 22.10 7464 / 0.061 7176 / 0.07
Residency Fig. 22.11 5184 / 0.058 4584 / 0.07

and II are depicted in Table 22.3. It is shown that the proposed methodology gives
the opportunity to the residential consumers to buy energy at lower prices. More
specifically, the consumer that belongs to the cluster selected by the fuzzy logic
decision making method can buy one kWh at 0.061$ instead of 0.07$. This price is
the average price for the 24 h of the simulation.

As mentioned in the introduction, despite the fact that the offered energy, both
from the conventional generators and RES, is enough to satisfy the overall demand;
the clearing price allows only the appliances that bid in a price equal or higher than
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Fig. 22.13 Clearing quantity, buyers’ (or appliances’) total quantity and sellers’ (or generators’)
total quantity regarding the Case I and Case II

the clearing price to buy energy. So, in this study, we run the simulation with the
opportunity of the appliances to stay idle because of the high clearing price until
they can buy energy at lower prices.

In Fig. 22.13, it is clear that despite the fact that there is wasted or undispatched
energy, this amount of energy is comparatively less. The market framework offers
less energy than the produced one, because that some amount of energy is offered at
higher prices, especially when this part of energy offered by RES. It is observable,
that the clearing quantity when the proposed methodology is applied is closer to the
supply curve (sellers’ total quantity in Fig. 22.13). Therefore, the amount of wasted
energy is lower. So, less amount of energy can be stored in the batteries.

In Figs. 22.14, 22.15 and 22.16, the results associated with Case I are presented.
More specifically, each sub figure corresponds to a specific hour during the
simulation while each point in each sub figure corresponds to one node of the
distribution grid. The points depicted with red circles are associated with the nodes,
that is the appliances, that are selected from the proposed methodology to buy
energy at lower prices. The green square and blue rhombus points represent the
nodes of the other two partitions. The Fig. 22.14 corresponds to the time interval
02:00 to 08:00 (early morning, off peak demand) with each sub figure from left to
right to be associated with a specific hour with 2 h time interval. Note that as time
increase, more nodes are able to buy energy at lower prices.

Regarding Figs. 22.15 and 22.16, the results associated with the time interval
10:00 to 16:00 (daytime) and 18:00 to 24:00 (nighttime), respectively, are shown.
It is clear from the figures that the nodes that belong to the selected each time
partition are not the same. However, in some cases there are nodes that belong to
two consecutive runs of the proposed methodology are of the selected partition.
Therefore, the residencies that will be privileged to buy energy at lower prices
supplied by the RES in some cases are the same but in most of them, differ. So,
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Fig. 22.14 The every 2 h results starting from 02:00–08:00 when the proposed methodology is
applied every 2 h. The red circle points indicate the nodes that are selected to buy energy at lower
prices

we can point out that there are few residencies that are excluded from the benefits
provided.

For experimental reasons and for presenting the flexibility of the proposed
dynamic data driven methodology, the time of execution of the both the partitioning
procedure and the fuzzy logic decision making method has changed from 1 h (Case
I) to 4 h (Case III). In fact, the average total load of each partition for each run
and the partition that is selected (bold font) from the fuzzy logic decision making
method are presented. Moreover, it is clear, that in most of the cases, the partition
with the biggest average total load is chosen from the fuzzy logic decision making
method.

As it is mentioned in the beginning of this Chapter, the information associated
with the total load of each residency is dynamically driven during the simulation.
Due to the fact that in each simulation, the proposed methodology may not be
executed exactly at the same time, we observe that the sum of the average total
load of all of the three partitions at 4:00 am in Tables 22.2 and 22.4 differ.

In Fig. 22.17, the clearing quantity of both Case I (every hour) and Case III (every
4 h) is depicted. It could be noticed that the amount of the demand satisfied when
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Fig. 22.15 The every 2 h results starting from 10:00 am when the proposed methodology is
applied every 2 h. The red circle points indicate the nodes that are selected to buy energy at lower
prices

the methodology is applied every 4 h is higher. This is due to the fact that the RES
offer their energy in lower prices for longer time (4 h in that case)thus more demand
is satisfied.

This is also shown in Table 22.5, where the aggregated clearing quantity of all the
cases (Case I, II and III) is depicted. It is also observed that the percentage of the non
satisfied power, when the proposed methodology is applied, is at lower levels in Case
III. As it is appeared, the amount of demand that is satisfied is higher. Moreover, it
is satisfied at a lower than the cleared price, while there is also a reduction in the
lost energy that it is produced by the RES.

In Fig. 22.18, the simulation results of Case III are presented. The points depicted
with red circles are associated with the nodes that are selected from the proposed
methodology to buy energy at lower prices. The green square and blue rhombus
points represent the nodes for the other two partitions. It is observed that the second
phase of the proposed methodology is applied three times. It is clear that even in the
case where the partitioning procedure is taking place every 4 h, the residencies, that
are selected to buy energy at lower prices vary.
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Fig. 22.16 The every 2 h results starting from 18:00–24:00 when the proposed methodology is
applied every 2 h. The red circle points indicate the nodes that are selected to buy energy at lower
prices

Table 22.4 The average load
for the runs where the
proposed methodology is
applied every 4 h

Time Partition #1 Partition #2 Partition #3

4:00 am 75.21 485.67 19.22
2:00 pm 53.46 23.08 7.66
6:00 pm 85.039 12.65 34.41

22.5 Conclusion

The current work presents our efforts to develop a DDDAS methodology for
implementing a smart grid management method. The proposed methodology which
makes use of two intelligent tools, namely, the k-means clustering method and a
fuzzy decision making method to provide intelligent management of the distribution
grid. In particular, it implements an elitist approach where the grid is partitioned into
clusters and one of them is selected to benefit of buying energy generated by RES
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Fig. 22.17 Clearing quantity offered by the market for the Case I and the Case III

Table 22.5 The aggregated clearing quantity in MW and the percentage of the unsatisfied
demand demonstrated the 24 h of the simulation in the case where the methodology is not applied
(Case II), is applied every 1 h (Case I) and every 4 h (Case III)

Case I Case II Case III

Clearing quantity (MW) 942 855 946
% of non satisfied demand 7.28% 15.84% 6.88%

at a lower price. Both the partition and selection procedures are dynamically driven
and depend on the current grid conditions. The number of clusters used by the k-
means algorithm is user-defined, but in our future plans we are planning to use the
available information of the grid to decide the number of clusters.

With respect to test results, we observed that the proposed methodology min-
imizes the wasted energy and satisfies a higher number of residential consumers
as compared to cases when no partitioning is performed. The dynamic partitioning
process takes place every 1 h or 4 h with different nodes at each time be privileged
to buy energy offered (RES) at lower prices. Overall it is concluded from the results,
that the methodology achieves a reduction in the amount of wasted energy generated
by RES.

In the future DDDAS paradigms will play a significant role in the efficient man-
agement of the power grid. The advent of smart grid technologies together with the
advances in big data processing will demand the utilization of DDDAS paradigm to
promote efficient decision making pertained to power grid management.Regarding
the grid partitioning method the prospectives of DDDAS contains grid partitioning
that is performed at time intervals defined by the grid itself (not every 2 h as we do in
this work), and dynamically defining the size and number of partitions. Furthermore,
DDDAS will promote automated partition with the grid taking into consideration
power state data as well market state data.
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Fig. 22.18 The results for the time interval 4:00 am, 12:00 pm and 6:00 pm when the proposed
methodology is applied every 4 h. The red circle points indicate the nodes that are selected to buy
energy at lower prices
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Chapter 23
Design of a Dynamic Data-Driven System
for Multispectral Video Processing

Honglei Li, Yanzhou Liu, Kishan Sudusinghe, Jinsung Yoon, Erik Blasch,
Mihaela van der Schaar, and Shuvra S. Bhattacharyya

Abstract Driven by recent advances in video capture technology, multispectral
video analytics is gaining increased interest due to its potential to exploit increased
spectral resolution and diversity across sets of multispectral bands. In this chapter,
methods are developed for integrated band subset selection and video processing
parameter optimization in multispectral video processing. The methods are designed
to systematically trade off processing requirements and accuracy, as well as to
maximize accuracy for a given set of processed bands. Using the proposed methods
together with the Dynamic Data Driven Applications Systems (DDDAS) paradigm,
dynamic constraints and measurements can be incorporated into embedded software
adaptation in real-time, bandwidth-constrained applications. While the methods
developed in the chapter are demonstrated concretely in the context of background
subtraction, the underlying approach is more general and can be adapted to other
video analysis solutions.
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23.1 Introduction

Recent advances in multispectral video capture technology along with system
design trade-offs introduced by these advances present new challenges and oppor-
tunities in the area of dynamic data driven applications systems (DDDAS) for video
analytics. The additional spectral bands available in multispectral video streams
offer the potential for more accurate knowledge extraction, but also increase costs
associated with real-time processing, energy consumption, and storage require-
ments. In this chapter, we develop data-driven models and methods that address
these trade-offs to systematically perform design optimization of multispectral
video processing systems. For concreteness, we develop and demonstrate these
methods in the context of a specific video processing application—that of back-
ground subtraction, which is widely-used in many application areas that require
automated detection of moving targets.

More specifically, background subtraction is investigated for multispectral video
streams in our recently developed system design framework for dynamic, data-
driven video processing using lightweight dataflow (LD) techniques. LD is a
model-based methodology and accompanying set of application programming
interfaces (APIs) for design and implementation of embedded signal, image, and
video processing systems [13, 16]. The design framework developed in this chapter,
called LDspectral, provides systematic optimization of relevant trade-offs in real-
time implementation of multispectral video processing systems. Capabilities in
LDspectral derive a sequence of increasing subsets of the given multispectral bands
that correspond to the subsets to process when increasing amounts of computational
resources or energy consumption budget are available. The objective is to enable
strategic, dynamic selection across the available bands based on constraints imposed
by the given operational scenario.

Jointly with the selection of band subsets, methods are presented to opti-
mize background subtraction parameters for multispectral processing. The targeted
parameters include the type of data fusion strategy (pixel-level or feature-level)
to employ across bands; weighting coefficients for pixel-level fusion; and pooling
thresholds for feature-level fusion.

In addition to providing methods to adapt video processing configurations in
response to dynamically changing operational constraints, the novel approach to
parameterization and configuration optimization leads to more accurate background
subtraction on a relevant data set as compared to previously developed techniques
for multispectral background subtraction.

In the methods developed in this chapter, we model and optimize video process-
ing trade-offs across algorithm and implementation aspects through the DDDAS
paradigm. Using the DDDAS paradigm, LDspectral is designed to apply perfor-
mance data that is collected through execution time instrumentation, and adapt
video processing configurations dynamically according to their trade-off models,
and according to constraints on real-time performance.
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While the methods developed in the chapter are demonstrated concretely in the
context of background subtraction, the underlying approach is more general and can
be adapted to other video analysis situtations.

The remainder of this chapter is organized as follows. Section 23.2 introduces
background and related work in multispectral video processing. In Sect. 23.3,
we provide an introduction to the LDspectral system and discuss the specific
problems in optimized, DDDAS-based video processing that it is designed to
address. Sections 23.4, 23.5, and 23.6 present details of the proposed models and
methods for addressing the applications in LDspectral. Section 23.7 discusses our
experimental setup for demonstrating and assessing these new methods, and reports
on the experimental results. Finally, Sect. 23.8 summarizes the contributions, and
outlines directions for future work that are motivated by the developments in the
chapter.

23.2 Related Work

Multispectral sensor technology is used in a variety of applications for monitoring
and surveillance in ground and air environments, such as land cover classification,
and thermal mapping. Multispectral images typically cover three to ten spectral
bands that range from near infrared to visible light. In recent years, advances in
sensor technology have helped to increase the effectiveness and decrease the cost
of multispectral imaging systems, and make these systems practical to employ in an
increasing variety of applications (e.g., see [7]).

Like hyperspectral imaging, multispectral imaging provides increased spectral
discrimination compared to traditional imaging methods. However, multispectral
imaging systems employ much fewer spectral bands—in the range of 3 to about
10—while hyperspectral imaging systems can involve hundreds, thousands or
even more bands [7]. In addition to being more numerous, the bands employed
in hyperspectral imaging systems also have narrower bandwidths. Although the
contributions of this chapter are introduced in the context of multispectral imaging
systems, they have the potential for adaptation to hyperspectral systems. Investigat-
ing such adaptations is a useful direction for future work.

In the extraction of knowledge from the diverse channels provided by multi-
spectral and hyperspectral imaging sensors, image fusion is an important class
of algorithms. Liu et al. present a comparative study of different multiresolution
algorithms for image fusion [9]. Bhateja et al. develop a non-subsampled contourlet
transform approach for multispectral image fusion in medical applications [4]. Wei
et al. propose an image fusion method for multispectral and hyperspectral images
that is based on a sparse representation, and results in less spectral error and
spectral distortion compared to related fusion techniques [18]. Chen et al. develop
an approach for fusing low-spatial-resolution hyperspectral images and high-
spatial-resolution multispectral images of the same scene using pan-sharpening
methods [6].
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Benezeth et al. have performed an extensive experimental investigation on
the application of multispectral video processing to the detection of moving
objects [3]. Benezeth’s contributions also include a publicly available dataset
with foreground truth for experimenting with multispectral background subtraction
techniques. Uzkent, Hoffman, and Vodacek have developed a DDDAS frame-
work for controlling hyperspectral data collection [17]. Sobral et al. proposed an
online stochastic tensor decomposition algorithm for robust background subtraction.
Sobral’s results demonstrate that red-green-blue (RGB) features are not sufficient
to handle color saturation, illumination variations and problems due to shadows,
while incorporating six visible spectral bands together with one near-infra-red band
helps to address these limitations [14]. Reddy et al. present a multispectral video
visualization method, and propose in this context a fusion technique to retain color,
texture, relative luminance and sharpness [11]. Recently, Aved et al. [1] applied a
difference criteria to weight hyperspectral bands.

The distinguishing aspects of the contributions in this chapter compared to the
related work include the (1) focus on integrating DDDAS methods into trade-
off optimization between accuracy and real-time performance in multispectral
video processing systems, and (2) emphasis on supporting flexible optimization
involving the subset of available multispectral bands that is processed, and the
associated algorithm and dataflow configurations. The design methodologies and
tools developed in this chapter are largely complementary to the methods surveyed
above in the area of image fusion, and in our experimental evaluation (Sect. 23.7),
we apply the dataset mentioned above that has been introduced by Benezeth et al.

23.3 Lightweight Dataflow (LD) Spectral

As motivated in Sect. 23.1, this chapter develops new capabilities in LDspectral,
which is a software tool for optimized design and implementation of multispectral
video processing systems. The objective of LDspectral is to enable efficient,
dynamic processing across the available bands based on constraints imposed by the
given operational scenario, and instrumentation data collected from the underlying
embedded platform.

In the class of DDDAS-driven video processing systems that is targeted by
LDspectral, the input data comes from a set Z = {B1, B2, . . . , BN }, where N is
the total number of available spectral bands. The multispectral image stream with
this number of bands is processed by a given dataflow graph G = (V ,E), where
V is the set of graph vertices (actors), which correspond to functional modules,
and E is the set of edges. Each edge e ∈ E corresponds to a first-in-first-out
(FIFO) communication channel that buffers data as it passes from the output of
one actor to the input of another. The actors and edges in G have associated
sets of parameters Pv and Pe, respectively. Parameters of an edge may include a
Boolean “activation parameter”, in the spirit of Boolean parametric dataflow [2].
Such activation parameters allow edges to be enabled and disabled. In this context,
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disabling an edge means effectively removing the associated connection (between
the edge’s source and sink actors) from the graph. Such use of dynamic parameter
adjustment can be used to configure dataflow within the system model.

We assume a given constraintCr (in units of time) on execution time performance
for a particular video processing scenario. The run-time system for video processing
is equipped with instrumentation for periodically determining the execution time
performance of the current video processing configuration. The problem addressed
by LDspectral is to select the subset S ∈ 2Z of spectral bands to store and process,
and an assignment of valid parameter values for all dataflow graph parameters in
(Pv ∪Pe) such that video processing accuracy is maximized subject to the real-time
constraint specified by Cr . Here, 2Z denotes the power set of Z.

The LDspectral tool addresses novel video processing design spaces introduced
by multispectral image acquisition technology. It enables efficient experimentation
and data-driven optimization of video processing configurations for multispectral
video analytics. The remainder of this chapter discusses details on design opti-
mization models and methods employed in LDspectral, and demonstrates the tool
through a case study involving background subtraction for moving object detection.

23.4 Run-Time System Model

Figure 23.1 shows a block diagram of the run-time system model that is targeted
by LDspectral. We refer to this model as the LDspectral Run-time System Model
(LRSM). In the LRSM, Dataflow Configuration Profiles refer to performance
profiles of alternative actor configurations. These profiles provide estimates of accu-
racy and execution time for alternative algorithmic configurations associated with
selected functional modules in the given video processing application system. The
profiles are determined at design time, through simulation or through instrumented
execution on the targeted embedded platform.

Similarly, the Subset Selection Profiles provide estimates of trade-offs between
accuracy and execution time for different subsets of spectral bands. Each entry in
this collection of profiling data corresponds to a subset S ∈ 2Z of the available
spectral bands, and provides estimates of the achievable accuracy and the execution
time cost when subset S is used as input for the core video processing functionality
(and the remaining bands (Z − S) are discarded or ignored). In the current version
of LDspectral, one subset is selected for each cardinality value in the range of
1, 2, . . . , N , where N is the total number of available bands in the multispectral
sensor subsystem. An entry is then stored within the Subset Selection Profiles for
each of these selected subsets. Methods used to select and evaluate these subsets are
discussed further in Sect. 23.6.

The Subset Selection Profiles and Dataflow Configuration Profiles are used at
run-time to adapt algorithmic and dataflow parameters associated with the core
video processing functionality of the targeted embedded system. The core function-
ality is represented by the block in Fig. 23.1 labeled Band Subset Processing (BSP).
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Fig. 23.1 Block diagram of the LDspectral run-time system model (LRSM)

Details about the BSP subsystem are discussed in Sect. 23.5. The dynamic, data-
driven adaptation of system parameters in the LRSM is performed by the blocks
in Fig. 23.1 that are labeled Dataflow Parameter Reconfiguration and Band Subset
Selection. Dataflow Parameter Reconfiguration is performed using techniques that
involve parameterized dataflow [5] and Boolean parametric dataflow [2]. The Band
Subset Selection block takes as input design time information provided by the Subset
Selection Profiles, and run-time information derived from Performance (execution
time) Instrumentation. Band Subset Selection produces as output the subset σ(i) ∈
2Z of multispectral bands that are to be processed in the next iteration i of LRSM
execution. This subset is taken from among the entries in the Subset Selection
Profiles as the band subset that provides the highest accuracy while satisfying the
current Operational Constraint Cr .

23.5 Band Subset Processing

This section details the BSP subsystem, which was introduced in Sect. 23.1 as one of
the blocks in Fig. 23.1. A dataflow representation of the BSP subsystem is illustrated
in Fig. 23.2, including pixel-level fusion (PLF) and feature-level fusion (FLF) [8].

The BSP subsystem in LDspectral is designed through integrated used of the
lightweight dataflow environment (LIDE) and OpenCV. LIDE is a model-based tool
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Fig. 23.2 Dataflow representation of the band subset processing (BSP) subsystem shown in
Fig. 23.1

for design and implementation of embedded software and firmware using coarse-
grained dataflow representations [13, 16]. OpenCV is a computer vision software
framework that includes a large library of software components for video processing
(e.g., see [10]). In the integrated use of LIDE and OpenCV employed in BSP,
actors in LIDE incorporate calls to relevant OpenCV functions that perform selected
image/video processing operations. The OpenCV approach provides an efficient
means for integrating model-based system design techniques with the large library
of image/video processing implementations in OpenCV.

As shown in Fig. 23.1, the BSP subsystem consists of several actors. The
Input Interface actor provides an interface for accessing and operating on input
image frames for a given invocation I of the BSP subsystem. These input frames
correspond to the selected subset of spectral bands that are to be accessed during
invocation I .

The Background Subtraction actor computes an initial background subtraction
result that is further refined in later stages of the BSP subsystem. The core
operation applied by this actor is carried out by the OpenCV function called
BackgroundSubtractorMOG2, which applies a Gaussian Mixture Model
(GMM) [15, 19, 20].

The Foreground Filter actor is used to remove noise from the output of the
Background Subtraction actor. Such noise can result from the moving of background
objects, such as trees that are shaken by the wind. The Foreground Filter actor
applies two morphological operations—erosion and dilation—through their imple-
mentations in OpenCV. The erosion function removes objects in the foreground that
are smaller than the filter-size (a parameter of the BSP subsystem), while the dilation
function corrects distortion at foreground object boundaries that results from the
erosion operation.
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The Foreground Binarization actor takes the output of the foreground filter,
and converts it into a binary form, where each pixel is classified as being either
a foreground or background pixel. The Foreground Binarization actor applies
a threshold that is determined empirically (off-line) to optimize classification
accuracy. In BSP, the OpenCV function called cvThreshold is employed for
foreground binarization.

The BSP subsystem provides two different fusion methods—PLF and FLF—to
fuse the individual images from different bands in the subset of selected bands. PLF
is applied to the input image before applying background subtraction, while FLF is
applied to the result of preliminary background subtraction from each band. Using
the configurable dataflow capabilities in the BSP subsystem (represented by the
dashed edges in Fig. 23.2), designers or the LDspectral run-time system can select
flexibly between PLF and FLF.

For a band subset with two elements, a “pairwise band combination” parameter α
is used to configure PLF in the BSP subsystem. The value of αmust be a real number
in the range [0, 1]. The parameter α is used to configure the fusion operation by:

y = α × x1 + (1− α)× x2, (23.1)

where x1 and x2 are two corresponding pixel values (at the same image coordinates)
in the two input bands, and y is the pixel value at same coordinate in the output.

This fusion approach is extended to band subsets having arbitrary size N using
an N -dimensional vector α(N) = (α1, α2, . . . , αN), where

∑
i αi = 1. A vector

α(N) of this form is referred to a PLF weight vector. When subsets of bands are
constructed incrementally, as they are constructed in LDspectral, the vectors {α(N)}
can be computed efficiently using grid search. More details about the grid search
approach employed in this work are provided in Sect. 23.6.

Following [3], we apply a pooling strategy for FLF:

Zt(s) =
{

1
∑
i Yi,t (s) > ρ

0 otherwise
, (23.2)

where Yi,t represents the input image for fusion at frame t and spectral band i; Zt
represents the t th output frame derived by FLF; and ρ, called the majority parameter,
provides a threshold for the fusion operation. The symbol s in Eq. 23.2 represents a
given pixel index. The value of ρ ranges from 1 (a logical OR operation) to the total
number bands (a logical AND operation). Each binary pixel value Zt(s) in the fused
result represents a prediction about whether the pixel corresponds to foreground (1)
or background (0).

23.6 Band Subset Selection

As described in Sect. 23.4, the Subset Selection Profiles in Fig. 23.1 are derived
at design time to provide a set, called bandseq, of strategic multispectral input
configurations (subsets of the available multispectral bands) that are made available
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to the LRSM for dynamic, data-driven adaptation. We first discuss the approach
used in LDspectral for deriving Subset Selection Profiles based on PLF, and then
the approach is extended to incorporate both PLF and FLF.

The derived set of Subset Selection Profiles bandseq contains one carefully-
selected subset of bands for each cardinality value in the range of 1, 2, . . . , Nb,
where Nb is the total number of available bands in the multispectral sensor
subsystem. Thus, bandseq can be viewed as a sequence or array whose ith element is
the subset of selected bands that has cardinality i. Along with each subset of bands,
an optimized PLF weight vector is derived to heuristically maximize the accuracy
of PLF for the associated subset of bands.

Algorithm 1 provides a pseudocode sketch of the algorithm employed in
LDspectral to derive the Subset Selection Profiles bandseq along with the array
of associated PLF weight vectors alpha. For each i, bandseq[i] is derived to be
an i-element set of selected multispectral bands. The algorithm presented here is
a greedy algorithm in that for each j = 2, 3, . . . , Nb, bandseq[j ] is derived by
extending bandseq[j−1]with one band from (bands−bandseq[j−1]), where bands
represents the complete set of available bands in the multispectral video processing
system. Thus, bandseq[j ][k] = bandseq[j − 1][k] for k < j .

The weight vector for each bandseq[j ] is derived using the constraint that:

alpha[j ][k] = g × alpha[j − 1][k] for k < j, and some coefficient g ∈ [0, 1].
(23.3)

A grid search is then performed, using a training dataset for evaluation, to
optimize the value of g. This evaluation, represented by the call to evaluateBSP in
Algorithm 1, is performed by invoking the BSP subsystem (Fig. 23.2) on all images
in the training dataset to assess the average accuracy using the given band subset
and PLF weights. Accuracy evaluation is performed in terms of the harmonic mean
performance measure Fmeasure. The average Fmeasure computed across the training
set is returned from the call to evaluateBSP. The F metric is discussed in more detail
in Sect. 23.7.4.

Since the components of alpha[j − 1] sum to 1 (see Sect. 23.5) and the
components of alpha[j ] must also sum to 1, the last component of alpha[j ] can
be derived during the grid search as

alpha[j ][j ] = (1− g). (23.4)

The constraint in Eq. 23.3 is imposed during the search process to reduce the
search complexity. Investigating efficient ways to relax this constraint and achieve
more thorough search, while keeping the overall time required for optimization in
an acceptable range, is a useful direction for future work.

In our experiments, we use a grid spacing (the gridspacing parameter in
Algorithm 1) of 0.1.
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Algorithm 1
parameter Nb: number of available spectral bands
parameter bands: set of spectral bands
parameter gridspacing: granularity for grid search
output bandseq[Nb]: sequence of selected bands
output alpha[Nb]: weight vectors for band subsets
unprocessed = bands
processed = ∅
for i = 1; i ≤ Nb; i++ do
fM = −1
for u ∈ unprocessed do
S = processed

⋃{u}
for g = 0; g ≤ 1; g+ =gridspacing do
w = ((g × alpha[i − 1]), (1− g))
fm = evaluateBSP(S,w)
if fm > fM then
u = u
w = w

bandseq[i] = u
alpha[i] = w
measure[i] = fM
unprocessed − = {u}
processed + = {u}

Algorithm 1 is adapted for FLF by configuring the dataflow in the BSP subsystem
to perform fusion at the feature level, and replacing the grid search to optimize PLF
weights with a grid search to optimize the majority threshold ρ (see Eq. 23.2). This
is a relatively straightforward replacement of one kind of grid search with another
grid search having a similar form. We omit the details for brevity. This replacement
allows us derive an optimized sequence of band subsets using FLF along with an
accuracy-optimizing majority value rho[i] for each subset cardinality i.

LDspectral Band Subset Selection (LBSS) operates by first applying both Algo-
rithm 1 and the adapted version of Algorithm 1 that employs FLF instead of PLF. We
refer to the resulting band subsets (bandseq outputs) as βplf and βflf , respectively.
Similarly, the resulting average accuracy results (measure outputs) are denotedMplf

and Mflf , respectively.
Then for each band subset cardinality i ∈ {2, 3, . . . , Nb}, LBSS selects either

βplf [i] (along with the associated weight vector alpha[i]) or βflf [i] (along with
the associated majority value rho[i]) depending on whether Mplf [i] ≥ Mflf [i] or
Mplf [i] < Mflf [i], respectively. For i = 1, there is no fusion involved so the
singleton subset selected by LBSS is simply equal to the common value of βplf [1]
and βflf [1].
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23.7 Experimental Results

23.7.1 Experimental Setup

Multispectral video sequences used for training and testing in our experiments
were obtained from a multispectral dataset published by Benezeth et al. [3]. The
parts of this dataset that we used include foreground truth to enable assessment of
background subtraction accuracy.

The video data in this dataset was acquired from a commercial multispectral
camera, the FD-1665-MS from FluxData, Inc. The dataset incorporates 7 bands in
total, including 6 different channels in the visible spectrum (B1 through B6) with
wavelengths ranging from 400 to 700 nm, and one near-infrared band (B7) with a
wavelength in the range of 700 to 1000 nm.

We used 1,102 multispectral images from the dataset described above. We
divided this set of images into 735 images (approximately 2/3) for training and 367
images for testing.

Our experiments were performed using a desktop computer equipped with a
3.10 GHz Intel i5-2400 CPU, 4GB RAM, and the Ubuntu 15.10 LTS operating
system. Results from these experiments are discussed in Sects. 23.7.4 and 23.7.5.

23.7.2 Accuracy Metric

We use the harmonic mean performance measure Fmeasure as the primary metric
to evaluate system accuracy. This metric is used widely in the literature to assess
accuracy in object detection contexts (e.g., see [12]). The Fmeasure metric is defined
as:

Fmeasure = 2× recall× precision

recall+ precision
, (23.5)

where precision and recall are defined by:

precision = nc

nf
, and recall = nc

ng
,

where nc is the number of correctly classified foreground pixels, nf is the number
of pixels classified as foreground, and ng is the number of foreground pixels in the
ground truth.
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Fig. 23.3 An example from Benezeth’s dataset that is used to illustrate the techniques for fusion
and background subtraction that are employed in LDspectral: the scene, 7 bands, and foreground
fused image

23.7.3 Example Images

Figure 23.3 shows a composite (all-band) scene; 7 different images corresponding
to single-band foreground results on the 7 available multispectral bands; and the
foreground result that is derived by LDspectral using background subtraction along
with PLF across all 7 bands. This scene is selected here from Benezeth’s dataset
as an example to illustrate techniques for fusion and background subtraction that
are employed in LDspectral. The foreground fusion result derived by LDspectral is
shown in the image at the bottom right corner of Fig. 23.3.

Examination of these images shows that performing background subtraction
in conjunction with image fusion yields more accurate results compared to the
results of performing background subtraction on individual bands in isolation—for
example, the hollow portions in the single band results are largely filled in within
the fused result.

While it is intuitively clear and concretely illustrated in the example of Fig. 23.3
that fusion can significantly improve accuracy, the overall objective of LDspectral is
to enable efficient, dynamic adaptation across video processing configurations that
trade-off accuracy and real-time performance subject to operational constraints. The
utility of LDspectral for performing such trade-off optimization is demonstrated in
the remainder of this section.
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Fig. 23.4 Accuracy results for different one- and two-band subsets using LDspectral with both
PLF and FLF. In each off-diagonal table entry, the top value corresponds to PLF, and the bottom
value corresponds to FLF

23.7.4 Accuracy Evaluation

Figure 23.4 shows foreground accuracy results for all possible one- and two-band
subsets for both PLF and FLF. The results shown here are derived using search
processes within the LBSS algorithm presented in Sect. 23.6. Each off-diagonal
table entry in Fig. 23.4 consists of two values that are stacked vertically—the top
value corresponds to PLF and the bottom value to FLF. The entries on the diagonal
correspond to singleton (one-band) subsets, while each off-diagonal entry at row i

and column j represents the two-band subset {Bi, Bj }. The values in the table are
the average Fmeasure values computed across the training part of our multispectral
dataset. The boldface values in Fig. 23.4 show the accuracy values for FLF in cases
where FLF achieves higher accuracy than PLF.

These results show that FLF achieves higher accuracy compared to PLF in
only a small fraction of the evaluated band subsets. Furthermore, as we show in
Sect. 23.7.5, FLF requires significantly higher execution time on our experimental
platform compared to PLF. Thus, for the remaining experiments reported in this
section (Sect. 23.7.2), we “turn off” or disable FLF in LBSS so that only weight-
optimized configurations of PLF are considered. However, the option of enabling
FLF in LBSS may be useful in general for other target platforms, such as platforms
that have more parallelism available to speed up the performance of the FLF-enabled
BSP dataflow graph.

From the results in Fig. 23.4, we also see that when the number of bands increases
from one to two, a significant improvement in accuracy results. This helps to confirm
and quantify the utility of maintaining progressively larger subsets of spectral bands
as alternative configurations for dynamic adaptation in LDspectral.
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Fig. 23.5 Results of incremental band subset construction using the LBSS algorithm in LDspec-
tral

Figure 23.5 shows the results of incremental band subset construction using the
LBSS algorithm in LDspectral. The columns correspond to progressively larger
subsets of bands that are derived by LBSS, while the rows correspond to individual
bands that are incrementally added and evaluated in the search process. For example,
the entry corresponding to Row 3 and Column 1-4-6 shows the best accuracy
achieved (across all PLF configurations that are evaluated through grid search) for
the band subset {B1, B3, B4, B6}.

The boldface values in Fig. 23.5 correspond to the best configurations represented
in the corresponding columns. These are the configurations that are “picked up” by
the search process in LBSS. For example, band B6 exhibits the best accuracy when
combined with bands B1, B4 (the tie here with band B5 is broken arbitrarily or
based on less significant digits that are not shown in the table), and thus, the union
{B1, B4, B6} of these two subsets is taken as the best 3-element subset. This subset
is then represented in the next column of the table (labeled 1-4-6).

The results in Fig. 23.5 are shown based on the band subset {B1, B4} as a starting
point—i.e., as the initial two-band sequence that defines the first column of data in
the table. This pair of bands is selected because it corresponds to the best two-band
PLF results in Fig. 23.4, and as motivated above, we have disabled FLF in LBSS for
this part of the experimental evaluation.

From the results in Fig. 23.5, we see that, as expected, Fmeasure increases as
the cardinality of the set of selected bands increases. The improvement is larger
at first (when constructing smaller band subsets), and then becomes smaller when
constructing larger subsets. These trends are important as they influence trade-
offs between the increased accuracy provided by processing additional bands and
the increased computational cost incurred by such processing. The execution time
aspects of these trade-offs are investigated in Sect. 23.7.5.

Figure 23.6 shows the improvement in accuracy provided by LDspectral com-
pared to related methods reported in the literature that are evaluated on the same
multispectral dataset. These results are for the full set of (7) available multispectral
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Fig. 23.6 Accuracy improvement compared with results from [3] using the same multispectral
dataset

Fig. 23.7 Variation in execution time for different numbers of processed bands and different
fusion modes. The units of execution time in this table are milliseconds/frame

bands. The Fmeasure value is improved by 7.1% through methods in LDspectral.
This is a relatively large improvement given that an upper bound on the achievable
improvement (represented by Fmeasure= 1) is (1− 0.897)/0.897 = 11.4%. Factors
that contribute to this improvement include the integrated use in LDspectral of a
GMM model for PLF, and the grid search optimization of the PLF configurations.

23.7.5 Execution Time Evaluation

Figure 23.7 shows the variation in execution time for different numbers of processed
bands and different fusion modes. These results are given in terms of milliseconds
per video frame that are required to execute the BSP dataflow graph (Fig. 23.2).
The columns in the table correspond to different band subset sizes. The first column
corresponds to the execution time required for BSP when only one spectral band is
involved, and hence no fusion is performed. Thus, the execution times reported in
both rows are the same for the first column.

The execution times reported in Fig. 23.7 are obtained by averaging over ten
iterations through the training dataset for a band subset of each given cardinality.
These results demonstrate that the execution time of FLF exhibits a significantly
more rapid increase compared to PLF as the number of bands increases. For
example, from the trends shown in Fig. 23.7, we see that the execution time required
to perform FLF on 2 bands exceeds the time required to perform PLF on 6
bands. The results further highlight the need for careful, joint selection of fusion
configurations and band subsets in a system that is geared toward optimizing trade-
offs between accuracy and real-time performance.
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23.8 Conclusions

In this chapter, we have developed new methods for integrated band subset
selection and video processing parameter optimization in LDspectral, which is a
software tool for model-based system design, prototyping, and optimization of
data-driven, multispectral video processing systems. LDspectral is developed for
optimization in the context of novel video processing design spaces introduced by
multispectral image acquisition techniques. The methods developed in this chapter
enable experimentation with and optimization of data-driven video processing for
DDDAS. The methods are demonstrated in terms of accuracy and execution time
using a case study involving background subtraction, and a relevant multispectral
data set for this application.

Useful directions for future work include adapting the developed methods and
tools to video analysis contexts other than background subtraction, and to hyper-
spectral video processing systems; further improving the search process involved
in optimizing weights for pixel-level fusion; and experimenting with other kinds of
target platforms, such as applications that are based on graphics processing units or
field-programmable gate arrays.
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Chapter 24
Light Field Image Compression

Li Li and Zhu Li

The light field image, also known as the plenoptic image, contains the information
about not only the intensity of light in a scene but also the direction of the light rays
in space. Since the light field image contains very rich photometric and geometric
information, it will have very widespread application in the future. For example,
immersive content capture for virtual and mixed reality presentation or depth from
light field for auto driving applications. To be more specific, a light field image
can be enhanced with physical models for an autonomous decision making process,
which is also an important task of the Dynamic Data Driven Applications Systems
(DDDAS) [11]. Besides, the rich geometry and photometric information contained
in the light field can be updated with real-time measurements, which is a focus of
DDDAS such as smart city related image and video processing tasks. However, to
make the light field images easier to be utilized, one of the most important tasks is
to compress the light field images efficiently so they can be easily distributed over
the current communication infrastructure.

Typically, there are two kinds of light field images [16]. One kind is the lenslet-
based light field image. The other kind is the camera-array-based light field image.
These two kinds of light field images are captured using various equipment and
thus contain totally different characteristics. The data collected can be processed
with methods to provide real time imagery. In this chapter, we will give a detailed
description of the state-of-the-art compression methods for these two kinds of light
field images to be considered when included in a DDDAS system.
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24.1 Lenslet-Based Light Field Image Compression

Generally speaking, a lenslet-based light field image (LFI) is acquired with a
plenoptic camera, which places an array of micro-lenses in front of a conventional
image sensor. The light beams coming from the object with various angles are firstly
refracted through the microlens array. Then they will be captured by the traditional
2-D image sensor to generate the raw sensor data of the LFI. A simple example of
the typical light field capture system is shown in Fig. 24.1.

In a lenslet-based LFI, each micro-lens works as an individual small low
resolution image camera conveying a particular perspective of the object in slightly
different angles. The raw sensor data will then be converted into the LFI after
demosaicing, devignetting, and data structure conversion. As shown in Fig. 24.2,
the light field Toolbox v0.4 [23] can convert the raw sensor data generated by the
commercial light field camera Lytro Illum in Fig. 24.2a into the light field structure
as shown in Fig. 24.2b. In Fig. 24.2b, each rectangle represents a 2-D view obtained
from the contributions of all micro-lenses of the camera. From Fig. 24.2b, the LFI
is actually with 4-D information including not only the spatial information (similar
to 2-D images) but also the angular information (different views).

Object
Main lens

Photosensor

Microlens
array

Fig. 24.1 Conceptual schematic of a light field camera

Fig. 24.2 Example of the raw sensor data and its corresponding LFI data. (a) Plenoptic camera
raw sensor data after demosaicing and devignetting. (b) Light-field data structure
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Since the LFI records the light rays of a scene of interest, it can naturally
provide the benefits of rendering new views not only for the changed viewpoint
but also for the changed focal point. Recently, especially due to the emergence of
the commercial light field cameras, the LFI is becoming a more and more attractive
solution to 3-D imaging and sensing. However, the widespread use of the LFI is
still restricted by its massive size. Since the LFI is with 4-D information, even if the
spatial resolution of one view is quite small, the raw data of a LFI with hundreds
of views is still very large. For example, the resolution of a raw LFI generated by
Lytro Illum [30] containing the captured field of light information is 7728 × 5368
pixels. Besides the huge image size, since the LFI is generated from a micro-lens
array, its characteristic is entirely different from the general 2-D image as shown in
Fig. 24.2a, which makes it even harder to compress.

There are typically three kinds of methods to compress the lenslet-based LFI
making full use of the classic image/video coding standards, such as JPEG [38],
H.264/AVC [39], and H.265/HEVC [36]. The first kind of methods, called as the
self-similarity based LFI compression [9], tries to compress the LFI using the
commonly used image compression standards. The second kind of methods, named
as the pseudo sequence based LFI compression [24], attempts to decompose the LFI
into multiple views and tries to utilize the inter prediction in video coding standards
to exploit the temporal correlations among various views. The third kind of methods
is to use the dictionary learning [27] to compress the lenslet based LFI. In all these
methods, there are also some choices for us to abandon some of the views and
synthesize them in the decoder since the number of views is really too dense for
compression [25]. By removing some views, more bitrate is saved but the choices
of the abandoned views remain an open problem. In the following subsections, we
will give a basic overview and analysis of all those methods.

24.1.1 Self-Similarity Based Light Field Image Compression

Since the LFI can be considered as a sequence of 2-D frames, a simple coding
approach by using a regular 2-D video encoder, such as High Efficiency Video Cod-
ing (HEVC), can be also used. In this sense, the inherent cross-correlation between
neighboring micro-images in the LFI can be seen as a type of spatial redundancy,
referred to as “self-similarity”. A typical example of the “self-similarity” is shown
in Fig. 24.3. As can be seen from Fig. 24.3, the “self-similarity” mode or image-B
coder [17, 18] is in fact very similar to the intra block copy mode [42] in the HEVC
screen content extension [41].

Just as illustrated in Fig. 24.3, under a self-similarity based LFI encoder, all the
previously coded areas of the current picture will be searched to find the best match.
The commonly used distortion metrics such as Sum of the Absolute Difference
(SAD) and Sum of the Square Difference (SSD) can be used during the searching
process. As a result, the chosen block becomes the candidate block and the relative
position between the two blocks is defined as a self-similarity vector. Under the
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Fig. 24.3 A typical example of the “self-similarity”

Coder
Control

Transform
& Quant.

Intra-Picture
Prediction

DeQuant. &
Inv. Transform

Entropy
coder

Deblocking &
SAO Filters

–

Self-similarity
Compensation

Self-similarity
Estimation

Fig. 24.4 The self-similarity mode combined with the HEVC intra encoder

standard based coding framework, the self-similarity vector can be coded in a
similar way as the motion vector except for some temporal candidates.

One of the advantages of the self-similarity based LFI encoder is that it can
be easily combined with the standard based image/video coding framework [7]. A
typical example of the self-similarity mode combined with the HEVC intra encoder
is shown in Fig. 24.4 [9]. In Fig. 24.4, The self-similarity estimation module is used
to derive the self-similarity vector by searching the block one after another in the
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Fig. 24.5 Bi-predicted self-similarity compensation

previously coded areas. And the self-similarity compensation module is used to
obtain the most similar block according to the self-similarity vector. Each coding
block in the LFI will choose to use the intra mode or the self-similarity mode based
on the rate distortion optimization (RDO) to achieve the optimal performance.

The above discussion only gives an example on the uni-predicted self-similarity
compensation. Motivated by the bi-directional motion estimation and motion com-
pensation in the video coding framework, it is also very natural to use bi-predicted
self-similarity compensation [8]. As its name implies, the candidate of a bi-predicted
self-similarity compensation can be derived from a linear combination of two blocks
within the same searching window. To be more specific, the first candidate is
given by the best matching block during the uni-predicted self-similarity estimation
and the second candidate is selected by jointly searching the first and the second
candidates. A typical example of the bi-predicted self-similarity compensation is
shown in Fig. 24.5.

Besides using one or two blocks to perform self-similarity compensation, the
local linear embedding which employs multiple blocks can also be applied to predict
the current block [28]. The essence of the local linear embedding based method is to
obtain a linear combination of the K-nearest neighboring (K-NN) blocks to estimate
the current block. To find the linear coefficients, the local linear embedding obtains
the coefficients by solving a least-squares problem with a constraint on the sum of
the coefficient that has to be 1. Also, to save the bits to transmit the coefficients,
template matching is used to obtain the coefficients. As shown in Fig. 24.6, the
search window W will be used for searching the K-NN template patches that
represents the lowest matching error with template C. Then the linear coefficients
will be optimized to make the linear combinations of the K best template matches
approximate the template C. Finally, the current block P will be predicted using
the same linear coefficients using the square blocks associated with each template
patch.
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Search window W

C

P

Fig. 24.6 Local linear embedding based self-similarity compensation

Fig. 24.7 Tiling the raw light field as a pseudo sequence

24.1.2 Pseudo-sequence Based Light Field Image Compression

The “self-similarity” is one kind of correlation that can be exploited to improve the
LFI compression efficiency. Since the light field is actually with 4-D information, it
can also be decomposed into a pseudo sequence. In this way, the well designed inter
prediction coding tools in video coding standards can be fully utilized to improve
the coding efficiency. As shown in Fig. 24.7, the light field can be decomposed
into multiple sub-images to organize a pseudo sequence [29]. From the earliest
methods, the 3-D Discrete Cosine Transform (DCT) [1] and 3-D Discrete Wavelet
Transform (DWT) [2] are used to exploit the correlations among various views and
improve the coding efficiency. Later, results show that the video coding standards
based framework such as H.264/AVC and HEVC are able to better exploit the
data redundancy in both spatial and directional domain. In the following, we will
introduce the 2-D hierarchical coding structure in detail since it is the state-of-the-
art compression method [37] for the LFI especially in the low bitrate case [20, 21].
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Fig. 24.8 This figure depicts the 13× 13 views (excluding the 4 corner views) to be compressed.
The views are assigned picture order count 0–164 shown in the figure. The views are divided into
four quadrants

24.1.2.1 The 2-D Hierarchical Coding Structure

Within the DDDAS framework, there are many methods, algorithms, and statistical
methods to provide real-time computation methods [3, 45]. Among all the image
and video compression methods, the hierarchical coding structure is able to provide
substantial performance improvements in typical video sequences. For the LFI with
4-D information, the decomposed multiple sub-images can be naturally organized
into a 2-D coding structure. Since the four corner views may not be beneficial for
the overall LFI quality, they are usually deleted from the original coding structure.
As a typical example, the LFI generated by Lytro can be decomposed into 165 views
and organized into the 2-D coding structure as shown in Fig. 24.8. Then each view
is assigned a picture order count (POC) from 0 to 164. In the scheme, the center
view is assigned POC 0 and coded as an intra frame since it is with the highest
correlation with the other frames. The other views are assigned the POC from top
left to bottom right and coded as inter frames. Note that the picture order count here
is just a symbol to represent each view instead of the display order in usual videos.

In the 1-D hierarchical coding structure [33], both the coding order and reference
frame management are carefully designed to optimize the R-D performance.
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Fig. 24.9 The 1-D hierarchical coding structure with GOP size 16

Under the 2-D hierarchical coding structure, these two key factors should also be
considered to improve the LFI coding efficiency. In the 1-D hierarchical coding
structure, the depth first coding order is used to achieve very good R-D performance
as well as very small reference buffer size. For example, as shown in Fig. 24.9, the
encoding order of 1-D hierarchical coding structure with group of pictures GOP size
16 is 0, 16, 8, 4, 2, 1, 3, 6, 5, 7, 12, 10, 9, 11, 14, 13, 15. And the minimum size of
the reference buffer is 5.

The situation in 2-D hierarchical coding structure is quite similar. To reduce
the reference buffer size as much as possible, all the frames are divided into four
quadrants as shown in Fig. 24.8. Then each quadrant is coded in clockwise order
from the top left, the top right, the bottom right, to the bottom left. In this way, except
for the views in the border of the two quadrants, each quadrant can be considered as
an independent one. Therefore, the reference frames belonging to only one quadrant
can be pop out of the reference frame buffer as soon as possible to keep a relatively
small reference buffer without influencing the coding efficiency.

Inside each quadrant, the depth first coding order will be used for both the
horizontal and vertical directions to make full use of the correlations among various
views. Take the top left quadrant as an example. The detailed encoding order can
be seen from Fig. 24.10. In Fig. 24.10, the number inside each rectangle means the
encoding order of each view. In both horizontal and vertical directions, the encoding
order of 0, 6, 3, 5, 4, 2, 1 will be followed. To be more specific, the 0th row and the
0th column will first be encoded. Then according to the hierarchical coding structure
in the vertical direction, the 6th row will be coded and followed by the 3rd row.
Finally, the 5th, 4th, 2nd, and 1st row will be coded sequentially. Inside each row or
column, the order of 0, 6, 3, 5, 4, 2, 1 will also be used. It should also be noted that
to guarantee the smallest reference buffer size, the coding order of the other three
quadrants will be symmetrical to that of the top left quadrant. To be more specific,
the encoding order for each row of the top right and bottom right quadrants will be
from right to left, and the encoding order for various rows of the bottom right and
bottom left quadrants will be from bottom to top. Take the row with frames 19, 20,
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Fig. 24.10 The coding order of the top left quadrant

21, 22, 23, 24 as an example, the encoding order of the row will be from right to
left as 24, 21, 23, 22, 20, 19. In this way, the frame 24 will only need to be stored in
the reference buffer for the frame 23 and thus such a scheme can keep the reference
frame buffer as small as possible.

Besides the encoding order, the reference frame management is also important
for the R-D performance. As also shown in Fig. 24.8, all the views are divided into
four groups according to their frequencies to be referenced. The frequency means
the times a reference frame can be referenced by other frames.

• The frames with the red block. This kind of frames is the most frequently
referenced frames. They are always stored in the reference buffer until the end of
encoding of the current quadrant. All the frames including the to-be-encoded red
block frames in the current quadrant can take the red block frames as references.
In the current quadrant, the existence of these frames can guarantee that all the
frames have a good prediction.

• The frames with the green block. This kind of frames is the second most
frequently referenced frames. They will be referenced by the frames belonging
to the current row in the same quadrant. For example, besides the red frames, the
frame 26 can also take the frames 25 and 28 as references.

• The frames with the yellow block. This kind of frames will only be referenced by
the frame encoded immediately after them in the same quadrant. For example,
the frame 27 can take the frame 26 as a reference.
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• The frames with the black block. This kind of frames such as the frame 27 belongs
to the non-reference frames.

It should be noted that the method uses a row-based coding order, to save
the reference buffer size, where the vertical references are much less than the
horizontal references for most frames. For example, when encoding the frame 29,
the immediate above frame 16 is unavailable under the proposed 2-D hierarchical
coding structure.

In the following, the reference buffer size will be analyzed for such a 2-D
hierarchical coding structure. In the top left quadrant, according to careful analysis,
the maximum number of reference frames appears when encoding the non-reference
frames such as the frame 27. For frame 27, not only the eight frequently used
red reference frames should be stored in the reference buffer, but also the frames
26 and 28. Therefore, a maximum of 10 reference frames are needed for the top
left quadrant. For the top right and bottom right quadrants, the situation is more
complicated. As HEVC provides the constraint that the reference frames of the
next frame can only be chosen from the reference frames of the current frame and
the current frame itself [34], the frames 77 and 80 should always be stored in the
reference buffer because they will be used as the reference frames for the bottom
left quadrant. Therefore, a maximum of 12 reference frames are needed for the top
right and bottom right quadrants. The situation of the bottom left quadrant is the
same as that of the top left quadrant, for which a maximum of 10 reference frames
are needed. Therefore, in summary, the reference buffer size needed for encoding
the entire pseudo sequence is 12.

24.1.2.2 The Distance Based Reference Frame Selection and Motion
Vector Scaling

According to the analysis in the last subsection, the maximum number of reference
frames is 12. If all these reference frames are applied for both list0 and list1,
the encoder will traverse all the reference frames to obtain the best prediction
block, which may increase the encoding complexity dramatically. Besides, the
large reference index introduced by a large number of reference frames may also
increase the overhead bits. Therefore, in this section, a distance based reference
frame selection algorithm is introduced to reduce the overhead bits and decrease
the encoding complexity. Then since the spatial positions of various views may
also have influences on the motion vector (MV) scaling process in the merge and
advanced motion vector prediction modes, a spatial-coordinates-based MV scaling
is introduced to further improve the coding efficiency.

In the 1-D hierarchical coding structure, the frames with the smaller POC
differences are put in a relatively earlier position of the reference lists since they are
nearer to the current frame and have larger possibilities to be referenced. However,
in the proposed 2-D hierarchical coding structure, the POC is just a symbol to
represent each view so the POC difference cannot reflect the distance between two
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frames. For example, as shown in Fig. 24.8, the POC difference between the frames
18 and 6 is 12, which is larger than the POC difference between the frames 18
and 15. However, the distance between the frames 18 and 6 is much smaller than
that between the frames 18 and 15. Therefore, the distances among various views
need to be calculated before selecting the suitable reference frames. In this work,
a coordinate system is established to derive the spatial coordinates of all the views
and then the spatial coordinates are used to calculate the distances among various
views. The spatial coordinate of the most top left position of Fig. 24.8 is set as
(0, 0), and the right and down directions are set as positive. For example, the spatial
coordinates of the frame 0 and the frame 1 is (6, 6) and (1, 0), respectively. Then
the correspondence between the POC and the spatial coordinate of each frame (x, y)
can be derived as follows.

x =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

6 if POC = 0
POC%13 else if POC ≤ 11

(POC + 1)%13 else if POC ≤ 82
(POC + 2)%13 else if POC ≤ 153
(POC + 3)%13 otherwise

(24.1)

y =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

6 if POC = 0
POC/13 else if POC ≤ 11

(POC + 1)/13 else if POC ≤ 82
(POC + 2)/13 else if POC ≤ 153
(POC + 3)/13 otherwise

(24.2)

After the spatial coordinates are determined, the distance between the frames
(x1, y1) and (x2, y2) can be easily calculated through the Euclidean distance.

d =
√
(x1 − x2)2 + (y1 − y2)2 (24.3)

Using Eqs. (24.1), (24.2), and (24.3) can construct both the list0 and list1
according to the distances between the current frame and its reference frames. In
the 1-D hierarchical coding structure, the forward (smaller POC compared with
the current frame) and backward (larger POC compared with the current frame)
reference frames are put into list0 and list1, respectively. Similarly, under the 2-
D hierarchical coding structure, we should first define the forward and backward
directions. In this work, the above frames are all treated as the forward frames, and
the below frames are all treated as the backward frames. For example, for frame 17,
the frames 1 to 16 are considered as the forward frames, and all the other frames
including the frame 0 are considered as the backward frames. According to the
above introduction, the totally available reference frames for the frame 17 are frames
16, 15, 6, 3, 38, 41, 44, 77, 80, and 0. If we set the number of reference frames in
both lists as 4, according to the distances between the current frame and its reference



558 L. Li and Z. Li

a b

Fig. 24.11 Distance based MV scaling. (a) Spatial case. (b) Temporal case

frames in increasing order, the reference frames in list0 will be 16, 6, 15, and 3, and
the reference frames in list1 will be 44, 41, 0, and 80.

Besides the reference frame selection, the spatial coordinates may also have
significant influences on the MV scaling operations in both merge [12] and advanced
motion vector prediction modes. The MV scaling operations are performed when the
spatial neighboring blocks or temporal co-located blocks are pointing to a different
reference frame from the current block. The MV scaling can be divided into two
kinds: the spatial and temporal MV scaling. In 2-D hierarchical coding structure, we
should perform MV scaling based on the distance in x and y directions separately
instead of POC.

The detailed processes are presented in Fig. 24.11. For the spatial case, the spatial
coordinate of the current frame is (x0, y0), the spatial coordinate of the current
reference frame is (x1, y1), and the spatial coordinate of the reference frame of the
neighboring block is (x2, y2). The MV of the current block is (MV1,x,MV1,y), and
the MV of the neighboring block is (MV2,x,MV2,y). Assuming that the motions
among various frames are uniform, the spatial MV scaling process can be derived
as follows.

MV1,x = MV2,x

x2 − x0
× (x1 − x0) (24.4)

MV1,y = MV2,y

y2 − y0
× (y1 − y0) (24.5)

For the temporal case, except for the current frame and its reference frame,
there are temporal co-located frame and its corresponding reference frame whose
spatial coordinates are (x3, y3) and (x2, y2), respectively. The MV of the current
block is (MV1,x,MV1,y), and the MV of the co-located block is (MV2,x,MV2,y).
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Assuming that the motions among various frames are uniform, the temporal MV
scaling process can be derived as follows.

MV1,x = MV2,x

x2 − x3
× (x1 − x0) (24.6)

MV1,y = MV2,y

y2 − y3
× (y1 − y0) (24.7)

24.1.3 Dictionary Learning Based Light Field Image
Compression

Dictionary learning [26] is a very popular method aiming at finding a sparse
representation of the original signal by expressing it as a linear combination of
only a few atoms from an over-complete dictionary. The most important part in
dictionary learning is to obtain the over-complete dictionary so that the signal will
be accurately represented by using the smallest possible number of atoms. The over-
complete DCT and DWT can be both used as the dictionaries [32]. However, it was
shown that the dictionary from the signal itself [31] for a specific application will
yield better results.

Given the set of N input signals {yi}i=1,2,...,N , where each signal yi contains n
data samples, yi = [y(1) y(2) . . . y(n)]T , corresponds to a vectorized block or
macro-pixel (the macro-pixel corresponds to a microlens). The proposed method
represents the input matrix Y = [y1 y2 . . . yN ], of size n × N , using a reduced
number of atoms from the dictionary �, of size n × d, where d is the number
of atoms in the dictionary. The atoms are selected using the sparse matrix X =
[x1 x2 . . . xN ], of size d×N , where each sparse vector xi , of length d, is constrained
to have a sparsity s so that xi is combining only s nonzero elements from �.

The dictionary problem can then be formulated as

arg min
�,X

||Y −�X||2F s.t. ||xi ||0 ≤ s ∀ i (24.8)

where ||·|| is the Frobenius norm. There are also some works trying to use the L2
norm instead of Frobenius norm [27]. A wide variety of iterative algorithms [5] can
be used to solve the non-convex problem. Among them, an Online Sparse Dictionary
Learning (OSDL) algorithm [35] is very suitable for this case. The OSDL algorithm
builds structured dictionaries based on the so-called double-sparsity model, which
combines a fixed base dictionary φ with an adaptable sparse component A, i.e.,
� = φA. The OSDL approach allows for working with larger datasets and it is
shown to have a faster convergence rate over traditional dictionary learning methods.

The dictionary problem can then be rewritten using OSDL as follows.
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arg min
φ,X

||Y − φAX||2F s.t. ||xi ||0 ≤ s ∀ i
∣∣∣∣aj
∣∣∣∣

0 = v ∀ j (24.9)

where v is the sparsity for A, and the base dictionary φ consists of cropped fully
separable wavelets, enabling a multi-scale analysis.

To apply the dictionary learning based method to the compression, it will be
better to take the bitrate of the nonzero coefficients into consideration. A novel intra
prediction mode is developed by combining rate distortion optimization with online
sparse dictionary learning. Specifically, the input signal Y is reconstructed as Ŷ =
[ŷ1 ŷ2 . . . ˆyN ] = φAX, where only the nonzero elements found inX are transmitted
to the decoder using their positions in X and their values. Therefore, the following
information needs to be transmitted to the decoder:

• the positions of the nonzero coefficients, denoted by Pnonz, which will be
losslessly encoded to guarantee an accurate reconstruction of the input signal.

• the nonzero coefficient values in the coefficient matrix, denoted by Xnonz, which
will be first quantized and then coded using Context Adaptive Binary Arithmetic
Coding (CABAC).

Considering the bits of the positions and values of the nonzero coefficients. The
dictionary learning problem is finally formulated as

arg min
φ,X

||Y − φAX||2F + λRDL s.t. ||xi ||0 ≤ s ∀ i
∣∣∣∣aj
∣∣∣∣

0 = v ∀ j (24.10)

The bits RDL are the sum of the bits of the positions and values of the nonzero
coefficients.

RDL = RP + RX (24.11)

where RP and RX are the number of bits needed to code the Pnonz and Xnonz,
respectively. The two components are estimated using the following two formulas
in the RDO process.

RP = α1 ·Nm (24.12)

RX = α2 · q + β2 (24.13)

where α1 is the parameter which depends on the sparsity level s and the length of
the coefficients vectors d, computed as α1 = s∗ log2(d). The (α2, β2) is the pair of
parameters of the least square regression line used to encode the coefficients. Nm is
the number of vectors from Xnonz transmitted to the decoder.

Three typical compression methods have been introduced above. A summary
comparison of these methods is shown in Table 24.1. The self-similarity based
method demonstrates the lowest complexity but also with lower compression
efficiency as compared with the other methods. The pseudo-sequence based method
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Table 24.1 A summary comparison of the lenslet-based light field image compression

Complexity Compression efficiency Quality variance

Self-similarity Low Low Low

Pseudo-sequence High High High

Dictionary learning Medium Medium Low

shows the highest compression efficiency but also has the highest complexity since
the flexible inter partitions in HEVC are used. The dictionary based method has
medium compression efficiency and medium complexity. The users can choose to
use different compression methods according to the applications.

24.2 Camera-Array Based Light Field Image Compression

The lenslet based LFI sacrifices the spatial resolution to improve the view resolution.
Therefore, it is not easy to improve the spatial resolution of each view for the
lenslet based LFI. The camera-array based LFI can simultaneously with high spatial
resolution and view resolution. For example, the newest dataset from JPEG-Pleno
is with 101 views horizontally and 21 views vertically. For each view, it is with
3840× 2160 spatial resolution.

Just because the camera-array based LFI demonstrates high view resolution and
also spatial resolution, the compression requirement of the camera-array based LFI
is even more serious as compared with the lenslet based LFI. For a camera-array
based LFI, it is always acquired through the dense camera array devices as shown in
Fig. 24.12. Various dense camera arrays can have totally different characteristics.
Based on the characteristics of the devices, the dense camera-array based LFI
compression can be also divided into two groups. One group of the methods tries
to deal with the case where different cameras can be treated as one camera with
obvious affine or perspective motions. The other group of the methods attempts to
handle the situation in which the cameras are mostly with translational motions.

24.2.1 The Compression of the Dense Camera-Array with
Obvious Perspective Motions

Similar to the lenslet based LFI, the dense camera-array based LFI is also with
4-D information. Therefore, it is very natural to also apply the 2-D hierarchical
coding structure to the dense camera-array to improve the coding efficiency. For
the dense camera-array with obvious perspective motions, the number of views is
usually not too much. In [10], the 4 × 4 camera array is taken as an example to
explain the detailed coding algorithm. The 2-D hierarchical coding structure will
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Fig. 24.12 The typical dense camera array devices

Fig. 24.13 2-D hierarchical
coding structure for the dense
camera array

first be introduced and then the global perspective motion model and local affine
motion model will be introduced to improve the performance.

24.2.1.1 The 2-D Hierarchical Coding Structure

The frame coding coder and frame types of the 16 views are shown in Fig. 24.13.
The frame encoding order is designed following the hierarchical approach suggested
by Schwarz et al. [33] in order to code the views efficiently. The method of
precedence chosen is weighted on the frame location relative to the light field
capture. The top-left frame is the initial frame for the encoder and is the only frame
that uses intra-prediction. The heaviest weight is given to the other corners and
outside frames, whereas the center frames are given the lowest precedence. The
reasoning for this is due to the fact that most of the information stored in the center
frames is redundant with the exception of obscured objects in the scene and/or
occlusions. The parallax phenomenon has been shown to have a direct impact on
these occlusions and has a greater effect on objects closer to the camera source. This
parallax can be seen more apparent later when the global perspective motion model
results are displayed. It should also be noted that all the previous coded frames
can be used as the reference frames of the current frame to exploit the correlations
among various frames as much as possible.
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Besides the benefits of the flexible encoding order, the 2-D hierarchical structure
also provides the benefit to code each frame with a more reasonable quantization
parameter (QP) to further optimize the R-D performance. As shown in Fig. 24.13,
four hierarchical layers are used in the 2-D hierarchical coding structure. For
different hierarchical layers, since the influence of the frame distortions on the
following frames will be quite different from each other, the QPs of various frames
should also be set according to the influence of the frame distortions. According to
some experiences, the QPs of layer 1, 2, and 3 are set as the QP of the intra frame
plus 2, 4, and 8, respectively.

24.2.1.2 Global Perspective Model

The global affine or perspective motion model has once been developed to character-
ize the global complex motions [40, 43]. To calculate the global perspective model
between two neighboring frames, two methods are provided below with different
trade-offs between the prediction accuracy and the computational complexity. The
first one is the direct calculation method using the intrinsic and extrinsic matrices.
The second one is the key-points matching based methods.

The direct calculation method allows the reference frame prediction to be
expanded to other frames by using a global space frame transform. An under-
standing of relative camera positions in the sequence is required in order to match
subsequent frames with the correct camera. This method leverages the encoding
order previously stated to predict the next frame in the sequence using a reference
frame.

The direct calculation approach involves leveraging the intrinsic and extrinsic
parameters of the camera to reconstruct camera views for frame prediction. The
intrinsic matrix provides a transformation from camera coordinates to image
coordinates using translation, scaling, and shearing as follows.

K =
⎡

⎣
fx s x0

0 fy y0

0 0 1

⎤

⎦ (24.14)

The intrinsic matrix K includes x-axis focal length fx , y-axis focal length fy , axis
skew s, x-axis offset x0, and y-axis offset y0. The second matrix used to calibrate
the camera is the extrinsic matrix. This matrix describes the transformation from
camera coordinates to world coordinates.

Q =
⎡

⎣
r1,1 r1,2 r1,3 t1

r2,1 r2,2 r2,3 t2

r3,1 r3,2 r3,3 t3

⎤

⎦ (24.15)
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The extrinsic matrix Q includes the rotation and the translational matrices about
the x, y, and z axis. The intrinsic matrix K and extrinsic matrix Q can then form a
transformation from world coordinate to one perspective.

⎡

⎣
xi

yi

1

⎤

⎦ = siKiQi

⎡

⎢⎢⎣

xw

yw

zw

1

⎤

⎥⎥⎦ (24.16)

In (24.16), xi and yi are the perspective shifted image coordinates, xw, yw, and zw
are the world coordinates, si is a scaling factor, Ki is the intrinsic matrix, Qi is the
extrinsic matrix.

Then the perspective transformation, which uses geometric properties to relate
planar surfaces to one another, is derived to transform the coordinates from one
perspective to the next. This does not use any motion estimation algorithms and can
be solved using matrix operations as long as the translation and rotation vectors are
known for each camera pose. The perspective transform can be easily derived as
follows.

⎡

⎣
xi

yi

wi

⎤

⎦ =
⎡

⎣
c1 c2 c3

c4 c5 c6

c7 c8 1

⎤

⎦

⎡

⎣
xj

yj

1

⎤

⎦ (24.17)

Note that (24.17) is a projection using translation, rotation, and scaling parameters
that are contained in a previously calculated camera intrinsic and extrinsic matrix
from calibration. As can be seen from (24.17), there are 8 unknown coefficients,
they will be coded using 32 bits per coefficient.

A comparison of the predicted frame versus the actual frame is achieved by
visualizing the residual as shown in Fig. 24.14. The residual produces a Peak Signal-
to-Noise Ratio (PSNR) value of 21dB which can be seen by the abundance of
white pixels in the image. The parallax effect is evident in this approach and the
objects closer to the camera exhibit more adherent noise. For this reason, the global
homography transformation is optimal for planar surfaces that are in the far-field
range. Although this approach only exhibits marginal PSNR gains, this is a relatively
fast operation due to only the matrix operation performed on the frame.

In the feature matching based method, the homography matrix estimation is
calculated using random sample consensus (RANSAC) and speeded up robust
features (SURF) [4] of the two known frames. The iterative feature matching process
provides an estimated homography result based on back projection from one view
to another. The SURF method allows features to be extracted from the two reference
frames and then the features are matched using key-points which can be observed
in Fig. 24.15. Because of the abundance of key-points yielding erroneous matches,
RANSAC is used to filter out the outliers. Once the appropriate key-points are
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Fig. 24.14 Residue of the stitched image using the direct homography projection

Fig. 24.15 SURF extraction and matching

mapped, the resulting projection can be achieved by averaging the key-point vectors
to approximate the translation, rotation, and scaling.

As shown in Fig. 24.16, the residual of the RANSAC/SURF method yields a
PSNR of 23dB, which is 2dB higher compared with the direct calculation method.
This gain hints at the possibility that the provided camera parameters are not
calculated as precisely needed for the direct calculation method. Although the
RANSAC/SURF estimation yields slightly better results, it should be noted that the
algorithm estimation time increased by a factor of 150 times. This is a consequence
of the iterative method inherent of the RANSAC algorithm.

24.2.1.3 Local Four-Parameter Affine Motion Model

Originally, the local affine model [13] includes the six degrees of freedom (6-DOF)
to solve camera motions such as camera track, boom, pan, tilt, zoom, and roll. The
six parameters of the affine motion model are reduced to four parameters by Li et al.
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Fig. 24.16 Residual of the predicted frame using SURF feature matching

[19] to get a better balance between the model accuracy and the number of header
bits. The four-parameter affine motion model is also applied here to code the LFI to
try to achieve better coding efficiency. Also, since the camera lens is calibrated and
stationary relative to the camera sensor, the four-parameter affine motion model can
be better approximated to the camera and object motions for the LFI.

The use of the four-parameter affine motion model allows the complexity of the
local affine model to decrease substantially by reducing the calculations by 1/3
compared with the six-parameter affine motion model. As shown in Fig. 24.17,
since four parameters are needed for the local transformation, two MVs in the top
left corner and top right corner are used to represent the four parameters within
a given block of pixels. These MVs are used to interpolate the reference block
to the encoded block and are needed to transmit to the decoder to reconstruct the
block. Similar to the newest video coding standard HEVC, two MV determination
methods, e.g., advanced affine motion vector determination method and affine
model merge, are applied to determine the two MVs more efficiently. More detailed
information about the proposed four-parameter affine motion model can be found in
[19].

24.2.2 The Compression of the Dense Camera-Array with
Translational Motions

From the data provided by the JPEG standardization group, this kind of camera-
array based light field is always very dense. As we have mentioned above, the size of
the dense camera-array can be as high as 101×21. Since each view of the light field
is also with very high resolution, it is not easy to directly apply the 2-D hierarchical
coding structure due to the quite large memory needed to store all the reference
views. Therefore, a segmented 2-D hierarchical coding structure is designed here to
reduce the reference buffer size while maintaining the coding efficiency.
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Fig. 24.17 Representation of
the local four-parameter
affine motion model

Fig. 24.18 Segmented 2-D hierarchical coding structure

A segmented 2-D hierarchical coding structure can be seen from Fig. 24.18. All
the views are divided into overlapped segments to reduce the buffer size as shown
in Fig. 24.18. Each small square represents a view and each colored square means
a segment cut from the segment. The array direction means the encoding order of
each segment to save the reference buffer size as much as possible.

Except for the 2-D hierarchical structure, it is also suggested to design a large
background frame [6, 44] for all the views since they are all with very simple
translational motions. The background is composed of the common parts of all the
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views. The background frame can be encoded with very high quality and used as a
long term reference frame for all the views. Such a scheme will absolutely provide
some benefits to the coding performance.

Some compression methods have been introduced above for the multi-camera
light field compression. Overall, not many papers document the compression of the
multi-camera LFI. Since the multi-camera LFI is really with large size and lots of
redundancy, more efforts are appreciated in this topic.

24.3 Conclusion

In this chapter, we have investigated various methods on light field image compres-
sion. We mainly focus on two kinds of light field images: the lenslet based light
field image and the camera array based light field image. For each kind, we have
discussed several representative strategies and methods.

Despite the fast development in the light field image compression, the current
compression ratio is still far from enough. In the future, we may need to consider
some kinds of the light field display technologies [14, 15] to better exploit the
correlations among various views to improve the coding performance. Also, the
correlations among various views and frames for the future light field video
compression will be even more complex, we will need some more advanced
methods to compress them efficiently, for example, deep learning based super-
resolving techniques [22] for light field images. Current efforts are to explore the
algorithms as a DDDAS method to find a satisfactory compression ratio based on the
measurements for the light field image or video, the rich geometry and photometric
information contained in the light field will enable many new capabilities to the
DDDAS related image and video applications.
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On Compression of Machine-Derived
Context Sets for Fusion of Multi-modal
Sensor Data

Nurali Virani, Shashi Phoha, and Asok Ray

Abstract Dynamic data-driven applications systems (DDDAS) operate on a sens-
ing infrastructure for multi-modal measurement, communications, and computa-
tion, through which they perceive and control the evolution of physical dynamic
processes. Sensors of different modalities are subject to contextually variable per-
formance under varying operational conditions. Unsupervised learning algorithms
have been recently developed to extract the operational context set from multi-
modal sensor data. A context set represents the set of all natural or man-made
factors, which along with the state of the system, completely condition the mea-
surements from sensors observing the system. The desirable property of conditional
independence of observations given the state-context pair enables tractable fusion
of disparate information sources. In this chapter, we address a crucial problem
associated with unsupervised context learning of reducing the cardinality of the
context set. Since, the machine-derived context set can have a large number of
elements, we propose a graph-theoretic approach and a subset selection approach
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for the controlled reduction of contexts to obtain a context set of lower cardinality.
We also derive an upper bound on the error introduced by the compression. These
proposed approaches are validated with data collected in field experiments with
unattended ground sensors for border-crossing target classification.

25.1 Introduction

Dynamic data-driven applications systems (DDDAS) rely on information from a
multitude of sensors to assess the state of any observed system [1]. A DDDAS
system can not only observe and control states of a physical system, but also adapt
the sensing system to obtain better understanding of the system. It is well known
that the measurements from the (possibly) multi-modal sources of information
are affected not only by the state, but also by the operational conditions around
the system [2]. These natural or man-made factors are known as context in
literature [3–6]. For example, soil moisture, soil porosity, and ground temperature
are contexts for seismic sensors, whereas wind speed and air temperature are those
for acoustic sensors. Physics-based analytical models try to capture some of the
contextual effects in great detail, but they need accurate estimates of several time-
varying environmental parameters. On the other hand, there have been efforts to
develop data-driven models for unsupervised discovery of contexts from sensor
data. The complexity and accuracy of context-aware DDDAS in state estimation
and measurement system adaptation is directly affected by the size of the context set
obtained from data-driven or physics-based techniques. This chapter will focus on
unsupervised data-driven learning of context with a specific emphasis on techniques
to compress the set of contexts and also to understand the effect of this compression.
The compression enables to ensure real-time implementation of DDDAS without
significantly affecting the performance, such as accuracy of the system.

Recently, in [5] the notion of context was mathematically formalized to enable
machines to learn from data and then use context in decision-making. However in
[3], context was defined as a parameter which along with user-defined state set of the
system completely conditions the measurements. Unlike several existing contextual
reasoning frameworks, where context is usually associated with a specific modality,
proposing context as the enabler of conditional independence unifies the notion of
context across all modalities in the system. Bayesian fusion uses the likelihood
of a new measurement given all previous measurements from other sensors to
correctly obtain the posterior density. A Bayesian process can become intractable
for systems which have more than a couple of sensors. Thus, context enables
tractable fusion of multi-modal sensors without relying on the possibly incorrect
assumption of conditional independence given only the system state (Naïve Bayes
assumption). Unsupervised learning of context using clustering as well as density-
estimation based approaches have been reported in literature. These approaches
either focused on single sensor systems, such as ground penetrating radars in [4]
or video sensors in [7], or it is just assumed that the machine-derived context would
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provide conditional independence in measurements given the state-context pair [5].
However, the nonparametric density-estimation approach for context learning in [3]
guarantees that given any user-defined state and machine-defined context pair, the
conditional independence property holds true.

The size of context set directly affects the memory required and computation time
of the context-aware decision-making approaches for sensor selection [8], tracking
[9], multi-modal fusion [6], and pattern recognition [5]. In wireless sensor network
applications, such as border surveillance, where power, memory, and execution time
are severely constrained, we need to be able to restrict the size of context sets
to enable tractable execution of context-aware approaches on resource-constrained
platforms. Thus, in this work, we explore different approaches for context set
compression. The context learning approach in [3] relies on a convex optimization
formulation using the concept of kernel-based density estimation [10, 11]. Thus,
adding any explicit sparsity constraint makes the problem nonconvex and hard to
solve. Moreover, enforcing strict sparsity constraint on the solution can severely
affect the performance of the solution as model order and accuracy are known
to be competing objectives [12] and one might have to repeat the nonconvex
optimization several times before obtaining a solution with acceptable error. This
motivates the need for augmenting the original convex optimization formulation
with a separate compression step in which the additional maximum error incurred
is directly controlled.

This chapter will first review some important aspects of the original optimization
problem in Sect. 25.2. The main objective of the chapter is to introduce two
distinct techniques to compress the set of contexts and quantify the effect of this
compression on the accuracy of the density estimate. The first proposed technique
uses the classical graph-theoretic problem of maximal clique enumeration [13]
for compression of context sets by using a depth-first search strategy [14]. The
second technique presents a subset-selection approach and establishes a relation
of the compression ratio with the upper bound on the additional error incurred by
compression on the density estimate. These techniques are explained in Sect. 25.3.
The techniques developed in this work are validated using data collected in field
experiments from a border surveillance testbed with two geophones to classify
whether a human target is walking or running. Finally in Sect. 25.5, the concluding
remarks are presented.

25.2 Learning Context from Data

Data-driven modeling of context has been only recently explored in the field of
machine learning to enhance the process of information fusion. Unsupervised learn-
ing methods using k-means and modularity-based clustering have been reported for
obtaining modality-specific context sets [5]. Density estimation has also been used
for learning context from data. A parametric approach for context learning to obtain
Gaussian mixture models was presented in [4], whereas a nonparametric approach
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using kernel-based regression was proposed in [3]. In this section, we first present
a definition of context, which mathematically formalizes this widely-used notion of
context, and then we review some existing methods to derive context sets from data.

Definition 25.2.1 (Context and Context Set [3]) Suppose that the measure-
ments Y1 and Y2 take values in Y1 and Y2, respectively. Suppose that the state X
takes values from a finite set X . Then, a nonempty finite set C (X) is called
the context set and each element c ∈ C (X) of the set is called a context, if the
measurements Y1 and Y2 are mutually independent conditioned on the state-context
pair (x, c) for all x ∈X and for all c ∈ C (X).

According to this definition, the following relation holds:

p(Y1, Y2 | X, c) = p1(Y1 | X, c)p2(Y2 | X, c) for all c ∈ C (X). (25.1)

Here, the left-hand side of (25.1) denotes the conditional density of (Y1, Y2) given
(X, c), and the right-hand side gives the product of conditional densities of Y1
and Y2 given (X, c). The Definition 25.2.1 enables to obtain a single context set
from multi-modal sensor data, when the measurement space Y1 and Y2 corresponds
to heterogeneous sensors. In order to generate a context set C (x) for each x ∈ X ,
so that (25.1) holds, kernel-based density estimation [10] was used in [3].

The problem of obtaining all contexts, which satisfy the relation in (25.1), is
nontrivial and the concept to pose it as a nonparametric mixture modeling problem
was first proposed in [3]. In view of Definition 25.2.1, the measurement likelihood
function is of the form

p(Y1, Y2 | X) =
∑

c∈C (X)
πc(X)p(Y1, Y2 | X, c)

=
∑

c∈C (X)
πc(X)p1(Y1 | X, c)p2(Y2 | X, c), (25.2)

where πc(X) is the prior probability that, conditioned on the state X, the true
context is c. In order to estimate this likelihood model, the conditional density was
represented as the following mixture model

p(Y1, Y2 | X) =
∑

c∈C (X)
πc(X)K1

(
s
(c)
1 (X), Y1

)
K2
(
s
(c)
2 (X), Y2

)
, (25.3)

where the prior probability πc(X) denotes the weight of the component correspond-
ing to context c in the context set C (X) and the component is represented by the
product of kernel functions Ki : Yi × Yi → R for i = 1, 2. Also, s(c)i (X) ∈ Yi is a
support vector [10] obtained by solving the kernel regression problem using training
data consisting of the triples (Y1, Y2, X). Thus, the problem of learning a context
set was reduced to that of identifying support vectors of a regression problem. The
details of this technique are available in [3]. The context set identified by regression
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Fig. 25.1 Concept of context set compression. (a) Maximal clique enumeration. (b) Subset
selection

has error bounded above by an insensitivity parameter, which is chosen by the user.
Although, one can use this error margin parameter to indirectly influence the size of
context set, there is no explicit relationship for the set cardinality with the chosen
error margin. Thus, the main contribution of the chapter is explained in the next
section, which enables controlled compression of context sets.

25.3 Cardinality Reduction of Context Sets

This section will explain the two proposed techniques for cardinality reduction of
context sets, as shown in Fig. 25.1, using the maximal clique enumeration algorithm
from graph theory and a simple subset selection approach. These techniques assume
that the density estimation step for unsupervised context learning has already been
solved and the resulting density estimate is used in both of these techniques.

25.3.1 Graph-Theoretic Compression

In graph theory, a clique is a complete subgraph and it is maximal, if it is not
contained in a bigger clique. Maximal clique enumeration (MCE) is a classical
problem in graph theory, which was addressed in detail in [13, 14] using depth-first
search strategy. We use the MCE concept to identify all machine-derived contexts
whose effect on sensor measurements is almost identical. The context set is used as
the vertex set of a weighted graph and the edge weights denote the pairwise distance
between contextual observation densities. The MCE-based context set compression
approach is explained next.



576 N. Virani et al.

Algorithm 1: Context set compression by maximal clique enumeration
Input: Observation densities p(Y | X,L) and threshold ε.
Output: Context set C (X).

1 for all x ∈ X do
2 Compute weight matrix W(x);
3 Gx,ε =ConstructGraph(W(x), ε);
4 M =MCE(Gx,ε);
5 C (x) =Minterms(M ).

Let l1, l2, . . . , l|L (x)| denote the distinct machine-derived contexts for the state
x ∈ X before compression and let c denote an element of the compressed context
set C (x) for the state x ∈ X . The algorithm defines a weight matrix W(x) =
[wij (x)] ∈ R

|L (x)|×|L (x)| by

wij (x) = d
(
p(Y | X = x, L = li ), p(Y | X = x, L = lj )

)

for x ∈ X and i, j = 1, . . . , |L (x)|, where Y = (Y1, Y2, . . . , YN) is the
concatenated measurement from all sensors. Here, denoted by d(·, ·) is a distance
function on the space of observation densities, such as symmetric Kullback-Leibler
divergence [15] or the Bhattacharyya distance [16]. For a chosen positive real
number ε, let Gx,ε denote the ε-context graph for state x ∈ X , which is defined
by the tuple (L (x),E (x, ε)), where the vertex set L (x) represents the set of all
machine-derived contexts corresponding to the state x ∈ X and the edge set is
given as

E (x, ε) = {(li , lj ) ∈ L (x)2 : wij (x) ≤ ε, i, j = 1, . . . , |L (x)|}

for each x ∈X . The graph Gx,ε is constructed in the ConstructGraph function.
The edge set E (x, ε) represents all pairs of context whose measurement densities are
at most distance ε away from each other. This graph Gx,ε is then processed by the
Maximal Clique Enumeration function, which implements the depth-first
search strategy given in [14], to obtain the set of all maximal cliques denoted by
M . Each maximal clique is a subset of the context set consisting of contexts which
are all mutually at most distance ε away from each other. The maximal cliques will
form a set cover of the set L (x) (i.e., union of maximal cliques equals the complete
set), but they can end up being overlapping, thus, denoting each clique as a context
can lead to the loss of the desired conditional independence property. Moreover,
it is known that for an n-vertex graph, the maximum number of maximal cliques
is given by 3n/3 [17], thus, the resulting context set might become exponentially
larger. Hence, the function Minterms(M ) uses the method in [18] to evaluate
all minterms of M (i.e., nonempty set differences and intersections formed by the
members of M ) to obtain a mutually exclusive and exhaustive collection C (x) of
cliques that partition the set L (x); for example, Minterms({{1, 2, 3, 5}, {2, 4}})
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gives {{1, 3, 5}, {2}, {4}}. These steps are given in the Algorithm 1, which lead to
the construction of the compressed context set denoted by C (X).

Each element c ∈ C (X) of the context set is a collection of the machine-defined
contexts l ∈ L (X). The corresponding contextual observation density and prior
distribution need to be derived for the compressed context set. We will first assign
values to p(c | X, l) as follows:

p(c | X, l) =
{

1, if l ∈ c
0, otherwise.

(25.4)

In (25.4), the conditional density is well-defined as C (X) is a partition of L (X)

and it will assume the value of 1 for only one c ∈ C (X). Now, we can compute the
prior density using (25.4) as follows:

p(c|X) =
∑

l∈L (X)

p(c | X, l)p(l | X) =
∑

l∈c
p(l | X), (25.5)

where p(l|X) is the state-dependent prior probability of the machine-defined context
which is known. The observation density can be shown to be given accurately by
the mixture model

p(Y | X, c) =
∑

li∈c

p(li | X)
p(c | X) p(Y | X, li). (25.6)

The overall model complexity stays the same as the number of mixture components
still remain the same. In order to reduce the model complexity, we define the
observation density p(Y | X, c) = p(Y | X, l∗), where, l∗ is an element in c.
Theorem 25.3.1 derives an approach to choose l∗ and provides the bound for the
error induced by this process.

Theorem 25.3.1 (Bound for error introduced in compression by clique enumer-
ation) If the distance function d used in Algorithm 1 is symmetric Kullback-Leibler
divergence (sKL), then for any fixed threshold ε > 0, the error induced by defining
p(Y | X, c) = p(Y | X, l∗) for some l∗ ∈ c is upper-bounded by the value

ε

(
1 − p(l∗|X)

p(c|X)
)

, which is strictly less than ε. This error bound is minimized for

l∗ = arg maxl∈c p(l | X).
Proof At first, a known result from literature will be shown and then, we will use it
to prove the theorem. Let p0 denote a mixture model with component densities f 0

i

and weights π0
i for i ∈ {1, . . . , n0}, and similarly p1 denotes another mixture model

with n1 components. The convexity upper bound on KL-divergence [15] is given by
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KL(p0 ‖ p1) ≤
n0∑

i=1

n1∑

j=1

π0
i π

1
j KL(f 0

i ‖ f 1
j )

=⇒ d(p0, p1) ≤
n0∑

i=1

n1∑

j=1

π0
i π

1
j d(f

0
i , f

1
j ), (25.7)

since, d(p0, p1) = sKL(p0, p1) = KL(p0 ‖ p1) + KL(p1 ‖ p0). Let us consider
p0 to be the density from (25.6) with π0

i = p(li |X)
p(c|X) , f 0

i = p(Y | X, li), and n0 =
|c|, and assign p1 = p(Y |X, l∗), i.e., π1

j = 1, if lj = l∗, π1
j = 0, otherwise.

Using (25.7) and substituting for the mixture models, we get

d(p0, p1) ≤
|c|∑

li=1

π0
i d(p(Y | X, li), p(Y | X, l∗)) =

∑

li∈c\{l∗}
π0
i d(p(Y | X, li), p(Y | X, l∗))

using that l∗ belongs to c and the positive definiteness property of the distance
function. Since we know that ε is the distance threshold and clique c consists only
of elements l, whose observations densities are at most ε away from each other, we
obtain d(p0, p1) ≤∑li∈c\{l∗} π

0
i ε. Substituting the values for π0

i and using (25.5),
we will obtain the desired result as follows:

d(p0, p1) ≤ ε
∑

li∈c\{l∗}

p(li | X)
p(c | X) = ε

(
1− p(l∗ | X)

p(c | X)
)
. (25.8)

Since l∗ belongs to c, we have p(l∗|X) ≤ p(c|X). Thus, we verify that d(p0, p1)

is indeed less than ε and the error bound is minimized for l∗ = arg maxl∈c
p(l | X). "#

The Theorem shows us that, if we choose acceptable level of error (ε), then we
can use it as the graph threshold in the function ConstructGraph of Algorithm 1.
The two limitations of this approach are that: (i) the compression level is not known
a priori, and (ii) the computations have to be redone if we decide to change the value
of ε. In order to alleviate these two issues, we will look at another approach called
subset selection.

25.3.2 Compression by Subset Selection

In the subset selection approach, we directly choose the size of the desired
compressed context set (say k) and not the acceptable error. The proposed approach
is to select a set of k distinct contexts from the machine-derived context set L (X)
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and assign those to a compressed context set Ck(X). Thus, we will end up with
Ck(X) � L (X) for k < |L (X)|. This section explains the approach to select the
subset and derive a bound on the error introduced by subset selection.

Let us denote C̄k(X) as the relative complement of Ck(X) with respect to L (X),
given by C̄k(X) = L (X) \ Ck(X). We consider that the set Ck(X) is constructed
by arbitrary selection of any k elements from the set L (X). Theorem 25.3.2 will
derive a bound for the error introduced by subset selection and provides a technique
to choose the subset in a systematic way.

Theorem 25.3.2 (Bound for error introduced in compression by subset selec-
tion) Let pL (Y | X) be the density estimated using the machine-derived context
set L (X) for the state X, which is given as

pL (Y | X) =
∑

i∈L (X)

αiKX(Y, yi), (25.9)

whereKX(·, ·) is a kernel function and αi is the context prior probability associated
with the context i ∈ L (X). If Ck(X) denotes a subset of machine-derived context
set L (X) consisting of k elements, such that

∑
i∈Ck(X) αi > 0, then the density

estimate obtained using this subset is given as

pC (Y | X) =
∑

i∈Ck(X)
α̃iKX(Y, yi), (25.10)

where α̃i = αi∑
i∈Ck(X)

αi
is the associated prior. The upper bound of the supremum

norm of error in density estimation due to subset selection is proportional to the
sum of context priors from the set C̄k(X), i.e., L (X) \ Ck(X). In other words,

‖pC (Y | X)− pL (Y | X)‖∞ ≤ βX
∑

i∈C̄k(X)
αi (25.11)

where βX ∈ R satisfies 0 ≤ KX(·, ·) ≤ βX <∞.

Proof Using (25.9) and (25.10), after some algebraic manipulations one can show
that the difference in estimates for any y ∈ Y is given as

pC (y | X)−pL (y | X) = 1∑
l∈Ck(X) αl

( ∑

i∈Ck(X)

∑

j∈C̄k(X)
αiαj

(
KX(y, yi)−KX(y, yj )

))
.

The supremum norm in this setting of continuous functions is given as

‖pC (Y | X)− pL (Y | X)‖∞ = sup
y∈Y

∣∣pC (y | X)− pL (y | X)
∣∣.
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Using absolute homogeneity and triangle inequality property for the norm, we
obtain

‖pC (Y | X)− pL (Y | X)‖∞ ≤ 1∑
l∈Ck (X)

αl

( ∑

i∈Ck(X)

j∈C̄k(X)

αiαj sup
y∈Y

∣∣KX(y, yi)−KX(y, yj )
∣∣
)

≤ 1∑
l∈Ck (X)

αl

( ∑

i∈Ck(X)

∑

j∈C̄k(X)

αiαjβX

)
.

Since βX is the maximum value assumed by the nonnegative-valued kernels. Thus,
we obtain the desired result,

‖pC (Y | X)− pL (Y | X)‖∞ ≤ βX
∑

j∈C̄k(X)
αj . "#

Remark 25.3.1 (Optimal k-subset) Since the error upper bound is directly propor-
tional to (1 − ∑i∈Ck(X) αi), the k-subset with minimum error bound is one for
which

∑
i∈Ck(X) αi is maximum. Thus, if the elements in the context set L (X)

are sorted in descending order of their priors p(li | X), i.e., αi , then the best
subset C ∗

k (X) corresponds to the first k elements of this sorted sequence. The
corresponding error upper bound is βX(1−∑j∈C ∗

k (X)
αj ).

Remark 25.3.2 (Optimal choice of k) Without loss of generality, we can assume
that α1 ≥ α2 ≥ · · · ≥ α|L (X)| represents the sorted sequence of context priors.
If the error upper bound for a k-subset for any k ∈ {1, 2, . . . , |L (X)|} is denoted
by ek , then ek = βX(1 −∑k

j=1 αj ) using result in Remark 25.3.1. We can verify
that, the sequence {ek} is monotonically decreasing with e|L (X)| = 0. These values
represent the accuracy of representation of the density. If in certain application we
also have a model complexity function g(k), then we can trade-off accuracy with
complexity using a criterion, such as Akaike Information Criterion [12], to find the
optimal value of k, which minimizes the chosen criterion.

The error bound derived in Theorem 25.3.2 is usually conservative, but this
conservative analysis leads to a simple expression for ek , which can readily be
evaluated for all k ∈ {1, 2, . . . , |L (X)|}. Unlike the technique in Sect. 25.3.1, the
subset selection approach can give a relationship of subset size or compression ratio
with maximum error in estimation, which in turn can lead to choosing appropriate
compression as shown in Remark 25.3.2. However, the subset selection approach
directly ignores the contexts with low priors and does not use information of
overlap/distance between individual components, which might not be desirable for
certain applications.

This section presented two techniques for compression of context sets along with
the main results of the upper bound of error due to approximation. The error bound
evaluated in first approach was in terms of statistical distance functions, whereas in
second case we derive a more intuitive bound in terms of the supremum norm. In
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the next section, we will use these techniques for cardinality reduction of context
sets derived from multiple seismic sensor data for a target classification problem.

25.4 Experiments and Results

The procedure and results of experimental validation of the context set compression
techniques are presented in this section. We conducted field experiments to collect
data from unattended ground sensors, such as seismic, acoustic, and passive infrared
sensors, for a border-crossing target detection and classification problem. In this
study, we use time-series data from two different seismic sensors which were
separated by 7 m and the target is passing almost parallel to the line joining the
two sensors at various distances between 2 to 8 m. The hypothesis set consists of
human target walking (x = 1) and human target running (x = 2) class and the goal
is to classify the activity of the target using data from both the seismic sensors, as
shown in Fig. 25.2.

The dataset consists of 110 runs for walking and 118 runs for running. We
partition the sample into a training set and testing set consisting of 60% and 40%
of the data respectively. All results are generated for 10 different partitions of
the sample and average results are available for the different steps. In the first
step, low-dimensional features are extracted from time-series data using symbolic
dynamic filtering (SDF) [19]. In SDF, we partition the measurement space into
several regions and assign a symbol to each region. The set of these symbols is
known as the alphabet. Bias is removed from the measurement time-series data to
make it zero-mean and it is also normalized to have unit variance to remove the
effect of target distance on signal amplitude. The resulting time-series data is then
represented by a symbol sequence and the statistics of evolution of this sequence is
represented by a D-Markov model [20]. In this analysis, we used alphabet size of 6
and depth D of 2, resulting in a D-Markov model of 7 states after state-splitting
and state-merging. The left eigenvector of state transition matrix of the D-Markov
model corresponding to the eigenvalue of 1 is the stationary state probability vector,
which is used as a low-dimensional feature vector for each time-series data. The
details on the D-Markov model construction and feature extraction techniques are
given in [20].

The second step is of unsupervised context learning which uses nonparametric
density estimation for obtaining machine-derived context sets from kernel-based
mixture models as shown in Sect. 25.2. The density estimation process is used for
computing the joint likelihood of obtaining a feature Y1 from seismic sensor 1 and
a feature Y2 from seismic sensor 2, given that the state is X. The kernels used in
the mixture modeling process are Gaussian with diagonal covariance matrix having

identical entries, i.e., Ki(y, yi) = (2πγ )−di/2exp(− (y−yi )T(y−yi )
2γ 2 ), where di is the

dimensionality of feature Yi for i = 1, 2 and γ is the kernel shape parameter. Using
γ = 0.01, the resulting context sets for state 1 have cardinality (i.e., number of
elements in the set) has mean 14.80 and standard deviation 1.47, whereas for state
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Fig. 25.2 Seismic sensor time series data for walking and running classes

2, the cardinality has mean 20.60 and standard deviation 1.65. The analysis uses
maximum likelihood decision rule for classification that gives state estimate as

x̂ = arg max
x∈X

p(Y1, Y2 | x) = arg max
x∈X

∑

c∈C (x)
p(c|x)p(Y1, Y2 | x, c). (25.12)

For the machine-derived context set with γ = 0.01, the classification accuracy was
99.78% on average using the decision rule in (25.12).

In the third step, we use the two proposed context set cardinality reduction
techniques to obtain the compressed context sets. In the maximal clique enumeration
(MCE) technique, the contextual observation densities are multivariate Gaussian
distributions with mean μi(x) and identical covariance matrix �γ (x), which is
parametrized by the kernel shape parameter γ , thus p(Y | X = x, L = li ) ∼
N (μi(x),�γ (x)). In order to construct the weight matrix, we use the closed form
expression of the Bhattacharyya distance for Gaussian densities [16], given as

wij (x) = d
(
p(Y | X = x, L = li ), p(Y | X = x, L = lj )

)
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Fig. 25.3 Mean and range of cardinality of the compressed context set. (a) MCE for x = 1. (b)
Subset selection for x = 1. (c) MCE for x = 2. (d) Subset selection for x = 2

= 1

8
(μi(x)− μj (x))T�γ (x)

−1(μi(x)− μj (x)) (25.13)

for i, j = 1, 2, . . . , |L (x)|. The threshold parameter ε to be used in the
ConstructGraph function of the MCE approach is varied from 10−3 to 101 in
15 equal steps in the log scale. For the graph obtained from the ConstructGraph
function, we perform the maximal clique enumeration process and compute
minterms of the obtained set of cliques. Note that as threshold increases, the
cardinality of the compressed set shows a nonmonotonic reducing trend in
Fig. 25.3a, c as number of cliques need not reduce monotonically with reduction
of the edge set of the graph. The Minterms procedure ensures by definition
that the number of cliques in the resulting set is upper-bounded by cardinality of
the machine defined context set, that is, |C (x)| ≤ |L (x)| for all x ∈ X , thus,
we will get some compression. The classification performance summary using
compressed context sets using MCE is given in Fig. 25.4a. The results show that
for ε = 100.42 = 2.68, the mean cardinality of context sets is |C (1)| = 7.8 and
|C (2)| = 13.9, where the average classification accuracy is same as the full context
set. This result demonstrates that cardinality reduction need not significantly affect
the class performance. However, reducing cardinality further by increasing ε leads
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Fig. 25.4 Mean and range of classification accuracy with compressed context sets. (a) MCE.
(b) Subset selection

to significant deterioration in performance in this case. Cross-validation can be used
to choose the appropriate value for the threshold ε.

In the subset selection approach, the maximum size of the subset, denoted by k,
is varied from 2 to 16. If the original context set is smaller than the chosen set size,
we do not perform any other computation, else we choose the best k-subset using
Remark 25.3.1. Thus, Fig. 25.3b, d shows a monotonic trend of context set size with
the chosen parameter k. The classification performance shows an increasing trend
with the size of context set. For k = 8, the performance is 99.56% and for k > 8, the
performance is as good as the original set. Thus, compression of context sets can be
achieved by subset selection techniques as well. A suitable context set size can be
chosen by using cross-validation, if classification accuracy is the selection criterion,
else one can use the method outlined in Remark 25.3.2 to choose context set size.
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25.5 Conclusion

This chapter presents two different approaches to control the size of context sets
in an unsupervised learning setting. Learning approaches with density estimation
to obtain machine-defined context set from multi-modal sensor data is reviewed
in this chapter and the resulting density estimate is used in both the proposed
approaches. One approach relies on the graph-theoretic concept of maximal clique
enumeration to identify contexts which affect the sensor data in a similar way
and it creates approximate equivalence classes of the machine-defined contexts.
The upper bound of error introduced by this compression was identified. A subset
selection approach is also presented in this chapter and the upper bound of error
introduced by subset selection is derived. In this approach, the prior probabilities
over context played an important role to obtain the best subset. We could derive a
conservative relation between the error upper bound and cardinality of the context
set. These approaches were then used with seismic sensor data collected in field
experiments for walking-type classification of border crossing targets. The results
validate that these techniques are indeed useful for compression of context sets
and can maintain similar classification performance with a much smaller context
set. In future, an agglomerative clustering approach that can provide an estimate
of the error introduced by compression will be explored to find a computationally
inexpensive approach to allow representation of data from all relevant regions in the
measurement space.
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Chapter 26
Simulation-Based Optimization as a
Service for Dynamic Data-Driven
Applications Systems

Yi Li, Shashank Shekhar, Yevgeniy Vorobeychik, Xenofon Koutsoukos,
and Aniruddha Gokhale

Abstract Dynamic data-driven applications systems (DDDAS) must be adaptive in
the face of highly fluctuating and uncertain environments. An important means to
such adaptability is through the use of simulation models which can be leveraged
for dynamic decision support. To provide high quality decision support, one can use
simulations in an optimization loop to derive the best values of system parameters
for a given system state particularly when the system has too many parameters and
traditional means to optimize the outcomes are intractable. To that end, simulation-
based optimization methods have emerged to enable optimization in the context of
complex, black-box simulations thereby obviating the need for specific and accurate
model information, such as gradient computation. An important challenge in using
simulation-based optimization is optimizing the decision parameters. However, to
ensure scalability and real-time decision support, one must be able to rapidly
deploy simulation-based optimization in a way that makes the best use of available
computing resources given the time and budget constraints. To address these
needs, we propose a cloud-based framework for simulation-based optimization as
a service (SBOaaS) to enable a flexible and highly parallelizable dynamic decision
support for such environments. We illustrate the framework by using it to design a
dynamic traffic light control system through simulation-based optimizations using
the Simulation of Urban Mobility (SUMO) traffic simulation model that adjusts to
the observed vehicle flow.
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26.1 Introduction

Critical cyber-physical infrastructures, such as the national power grid, transporta-
tion network [40] and smart cities [10], are large-scale and complex systems that
illustrate highly dynamic and uncertain operations, significant heterogeneity in the
end systems, network protocols and technologies, as well as software systems
that support the system operations. In such systems, human intervention becomes
infeasible to handle problems stemming from cyber-physical events such as failures
or deliberate attacks.

Dynamic data driven applications systems (DDDAS) [11] principles are a
promising approach to address the need to manage and control the next genera-
tion of cyber-physical systems. DDDAS prescribes a data-driven model learning
process of real-world systems and subsequently simulating these models within a
decision support system to control the system behavior and maintaining its intended
trajectory. The use of simulations in decision support is fundamental as a means to
enable dynamic data-driven decision support in a wide array of systems [2, 6, 13].
However, the success of any DDDAS approach depends on its ability to learn and
simulate models of the target system. In turn, the quality of the learned models will
determine how effectively the real-world system can be managed and controlled.

With the advent of data-acquisition technology in the past decade, using simula-
tion-based optimizations provides a low cost alternative to emulation of physical
phenomena including stochastic processes and solving optimal control problems in
dynamic systems as has been demonstrated in many industrial applications [16, 17,
21, 30]. To provide high quality decision support, one can use simulations in an
optimization loop to derive good values of system parameters for a given system
state, particularly when the system has too many parameters and traditional means
to optimize the outcomes are either intractable or infeasible (for example, if gradient
information is not available or is hard to compute). To that end, simulation-based
optimization methods have emerged as a means to optimize complex, black-box
systems thereby obviating the need for specific and accurate model information,
such as gradient computation.

Despite this promise, traditional simulation-based approaches without dynamic
data driven capabilities are not able to synchronize with real-world conditions,
which often results in inaccurate prediction and failure of system control. To that
end, DDDAS, as an innovative paradigm for real-time computer simulations, serves
to effectively overcome setbacks in traditional simulation approaches. Two key
challenges emerge in this context. First, although simulation-based optimization
has become an important subject in various areas to solve large scale problems,
simulations sometimes are extremely complex and require tremendous computing
power. Second, even with DDDAS as an enabling paradigm, simulation-based
optimization methods are not intended for anytime use, and do not account for
real-time constraints and associated trade-offs between solution quality and time
to decision, which may be critical considerations for the systems that utilize these
approaches for control.
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Cloud computing provides an economical solution for individuals and organiza-
tions with limited resources to execute compute-intensive tasks, which has become
a highly demanded utility due to the advantages of potentially unlimited computing
power that is available on-demand, affordable cost of services without incurring any
capital and operation expenditures, elasticity of resources, and its ability to autoscale
on demand. Thus, cloud-based simulation services have opened up new avenues to
address the challenges stemming from simulation-based optimizations.

To address the known challenges with simulation-based optimizations while
exploiting emerging computing paradigms, we have developed a cloud-based frame-
work that provides a simulation-based optimization as a service (SBOaaS), in which
real-time considerations are explicitly accounted for making optimal use of limited
but parallel computational resources in order to obtain the best answer within the
given time constraints. Specifically, in this chapter we present a generic optimization
process for deploying simulation-based optimization on a cloud architecture. Our
framework consists of (a) the implementation of SBOaaS which, for a given
optimization problem, describes how to decompose the input problem into a group
of parallel simulations and efficiently use the existing computing power; and (b) an
anytime parallel simulation-based optimization approach, which admits significant
flexibility in both time and computational resource constraints to obtain the best (but
possibly suboptimal) solutions given the available resources and time constraints on
decisions.

We describe the SBOaaS framework concretely using an optimal control problem
in the decentralized feedback control scenario for a traffic light. To validate our
ideas and provide a platform to realize SBOaaS, we leverage our prior work on
simulation-as-a-service (SIMaaS) [37], which is a cloud-based simulation frame-
work to manage multiple simulation instances on a distributed system. The traffic
light simulations use the Simulation of Urban Mobility (SUMO) [4] simulator to
implement the traffic light controller logic and evaluate our optimization algorithm.

The rest of the paper is organized as follows: Sect. 26.2 provides an overview
of our simulation-based optimization as a service concept; Sect. 26.3 describes
the algorithms behind realizing SBOaaS particularly in the context of anytime
computations; Sect. 26.4 describes the system architecture we have developed to
deploy SBOaaS; Sect. 26.5 verifies our claims in an application; Sect. 26.6 compares
our work to related efforts; and finally Sect. 26.7 describes concluding remarks
alluding to future work.

26.2 Problem Statement and Overview of SBOaaS

In this Section, we use a motivational case study to develop the problem statement
we have formulated and solved in this chapter. To that end we first present a traffic
light control system as an example of a real-world system where the high-quality
configuration of a traffic light controller requires an iterative black-box optimization
process based on data-driven model simulations. Owing to the high demand for
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resources and real time performance constraints, such a capability requires cloud
computing resources. For that purpose, we designed and implemented SBOaaS, a
framework for simulation-based optimization as a service. This section presents key
features and a case study illustrating the key challenges that SBOaaS should address.

26.2.1 Motivating Case Study: Dynamic Traffic Light Control
System

To formulate the problem statement, we use a dynamic traffic light control scenario
as our motivating example. In this scenario, each intersection traffic light controller
switches its traffic light phases according to the observed vehicle flow. In general,
a traffic light phase is related to a collection of lanes dominated by such a phase;
if the number of waiting vehicles in the lanes related to the current phase is small
and the number of waiting vehicles in the lanes related to the next phase is large,
the controller will switch the traffic light phase. Figure 26.1 provides a visual
demonstration of the controller logic.

Formally, a feedback controller has a predefined phase sequence (p0, . . . , pn).
For each phase pi , mi is the minimum interval;Mi is the maximal interval; qi is the
average queue length of the lanes related to the ith phase; and θi is the threshold on
the queue length of lanes blocked in the ith phase. If t is the current time point, the
control logic is as depicted in Algorithm 1.

Algorithm 1 Feedback controller
1: Current Phase P := p0, t ′ := t , i := 0.
2: loop
3: inext := (i + 1) mod n
4: if t − t ′ > mi then
5: if Reach to the maximum interval, t − t ′ = Mi then
6: Switch phase, P = pinext , i = inext
7: else if Find the congestion, qi < θi, qinext ≥ θinext then
8: Switch phase, P = pinext , i = inext
9: end if

10: end if
11: end loop

The controller must solve an optimization problem as follows: for a given
vehicle flow of an area in a certain time period and a set of controlled intersections
I {I0, . . . , Im}, find the optimal thresholds (Θ0, . . . , Θm), where Θi = (θ0, . . . θni )

are the thresholds of the ith intersection.
The scenario with a single intersection with similar control logic has been

discussed in many prior research efforts, e.g., [23]. However, the situation becomes
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Fig. 26.1 The control logic for feedback controllers. (a) Non-feedback controllers have a fixed
interval between two phases. (b,c) Feedback controllers dynamically change the interval according
to the length of their vehicle queues

much more complicated when generalizing the controller model to cases with
multiple intersections and correspondingly multiple traffic lights. Many factors,
such as densities of vehicle flows and topological structures of road networks, may
affect the outcomes of such road systems, which leads to the issue of defining the
model describing the interactions among the intersections.
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26.2.2 DDDAS-Specific Problem Statement and the SBOaaS
Approach

Examples, such as the traffic light for multiple intersections, say, in a city downtown,
pose significant challenges due to the compute-intensive nature of the solution
approach. Moreover, the dynamic nature of traffic patterns (e.g., morning and
evening rush hour versus afternoon and night hours) will require periodically
recomputing the optimal parameters, which further complicates the problem and
its demands on resources.

Two fundamental problems exist in this realm. First, it is likely that the DDDAS
feedback loop may have access to only black box models of the dynamic systems,
yet will require that the DDDAS infrastructure obtain optimal parameters to be used
in the DDDAS feedback loop. Second, the significantly compute intensive nature
of the solution approaches makes it infeasible to deploy such model simulations.
Rather, there is a need for elastic computing capabilities. Thus, the DDDAS problem
we solve in this chapter can be posed as: (a) How to obtain the optimal parameters,
and (b) How to elastically scale the compute resources as the computational needs
of the solution approach dynamically changes?

This chapter solves this fundamental problem using the following duo of
synergistic approaches: First, we use simulations in an optimization loop to derive
the best values of system parameters for a given system state, particularly when the
system has too many parameters and traditional means to optimize the outcomes are
intractable. The approach is called simulation-based optimization. To address the
need for elastic resources, we exploit Cloud computing as the means to address
these needs and provide a framework to realize what we call Simulation-based
Optimization-as-a-Service (SBOaaS).

Figure 26.2 visually represents how SBOaaS can be used to deploy the dynamic
traffic light control system with online simulation-based optimizations. The control
system is a closed loop, periodically receiving the real time distribution of vehicle
flows – which represents the dynamic and data-driven traits of DDDAS – running
multiple simulations in parallel to find the optimal thresholds, and sending the
feedback to the traffic light controllers – which represents the closing of the loop
in DDDAS.

26.2.3 Key Features of SBOaaS

The following represent the key features of SBOaaS.

• A cloud-based solution for parallel execution of multiple simulations. Apply-
ing computationally expensive online simulation-based optimizations is usually
time consuming and often fails to address the real-time constraints of appli-
cations. Moreover, for stochastic simulation models, every simulation process



26 Simulation-Based Optimization as a Service for Dynamic Data-Driven. . . 595

Fig. 26.2 SBOaaS for dynamic traffic light control system

can vary and yield different results. To analyze the temporal properties of a
stochastic system, a large number of simulation tasks must be executed to
obtain the probability distribution of simulation results. Thus, the simulation
service must be able to execute multiple simulations in parallel. To overcome
this problem, we present a cloud-based approach, which is an orchestration
middleware that enables users to deploy DDDAS applications to the platforms
of different cloud service providers without considering platform differences.
It integrates the simulation manager, which has the capability to spawn and
execute simulations in parallel, and a result aggregation component that can use
several different aggregation strategies to recycle the results from the terminated
simulations. A web-based interface is also implemented, which allows users to
customize both the simulation model and the input parameters, as well as to
monitor the optimization process. Section 26.4 delves into the details of our
system architecture.

• Generic problem decomposition schemes for large scale discrete variable
decision problems. In simulation-based optimization, the results of simulations
are often quite different depending on the input parameters supplied to the model.
To find the optimal solution, the search space sometimes can be extremely large
making such large-scale problems intractable to naïve brute force search. In this
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situation, even parallel computations do not help. In our framework, a collection
of generic problem decomposition schemes based on coordinate descent methods
is demonstrated, which not only provides an efficient way to parallelize the
optimal decision problems with discrete variable domains, but also has the
ability to execute anytime optimizations providing a flexible balance between
fast response and solution quality.

• The ability to decouple simulation-based problem designs from the prob-
lem decomposition schemes. For traditional model-based, online learning and
simulation approaches in DDDAS, developers usually must face and maintain
several parts of the system at different levels simultaneously. For example, there
is domain-specific knowledge to setup and deploy the simulation environments,
different parallelism approaches for various optimization tasks, and system
management for regular maintenance. Such a method is not a good practice
for a developer team that expects rapid deployment on available resources.
SBOaaS leverages a Linux container-based infrastructure which aims to create
an abstraction layer that helps decouple simulation-based problem designs from
the problem decomposition schemes. The layered approach allows domain
experts to encapsulate the simulation environment in a container, while devel-
opers design the parallelism process according to the pre-defined interface and
system administrators simply combine both parts to run an optimization without
knowing the implementation details. Moreover, such an approach provides low
runtime overhead, negligible setup and tear down costs when deploying the
simulations on computing nodes, and fast data exchange among cluster hosts
with incremental updates.

26.3 Anytime Optimization Using Parallel Greedy Algorithm

We now describe our approach, which estimates the value of an objective, measured
using simulation runs, for a given setting of input variables. In order to use this in
optimizations, one must run this process for many inputs, aiming to choose the best
input vector in terms of the objective value. Since such optimization routines can
be extremely time consuming, they may be of limited utility in dynamic control
environments in which real-time decision constraints impose severe limits on the
time allocated for simulation-based optimization.

We present several anytime simulation-based optimization algorithms used in
our framework which ensure that the optimization process returns the best solution
found thus far to the controller even if it is interrupted before it converges. The key
feature of these algorithms is that they are directly parallelizable thereby allowing
us to implement them using a cloud-based platform that we have developed and
described below.

Consider a single target optimization problem described below,

min
x
f (x),
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where x = (x1, x2, . . . , xn) is a vector of decision variables. In our setting, f (x)
is not known directly but can be evaluated by simulations for a given x. If f is
stochastic and we wish to minimize the expectation, we can estimate the expectation
by running multiple simulations for a given x and taking the sample average. Since
such a generalization is direct, we assume henceforth that simulations produce a
deterministic evaluation of f (x). We further assume that the domain of variables xi
is discrete. This too is a mild assumption since a continuous, bounded domain can
be discretized arbitrarily finely. We developed a framework for anytime simulation-
based optimization as a service by making use of a coordinate greedy algorithm.

26.3.1 Coordinate Greedy

Coordinate Greedy is a heuristic optimization method which minimizes the function
value one variable at a time. The Sequential coordinate greedy (SCG) framework is
shown in Algorithm 2.

Algorithm 2 Sequential coordinate greedy (f , x(0))

1: input problem f , initial state x(0) = (x(0)0 , ..., x
(0)
n ) ∈ R

n

2: output x(∗) = arg min
x

f (x)

3: Set p← 0
4: repeat
5: for i ← 1, ..., n do
6: x

(p+1)
i ← arg min

xi

f (x
(p+1)
1 , ..., x

(p+1)
i−1 , xi , x

(p)

i+1, ..., x
(p)
n )

7: end for
8: until termination test satisfied

In each iteration, SCG updates one input variable of f by solving the sub-
problem:

f
(p)
i = min

x
f (x

(p+1)
1 , . . . , x

(p+1)
i−1 , x, x

(p)

i+1, . . . , x
(p)
n )

For the discrete variable domain problem, it converges to the local optimum f ∗
when there is no further improvement found in one iteration (∃P∀i, f (P )(x0) =
f (P )(xi)). Similarly, stochastic coordinate greedy selects one variable uniformly
at random instead of following the vector order in each iteration. Shalev-Shwartz
and Tewari [36] provide the best known convergence bounds for the stochastic
coordinate greedy method.

To parallelize the SCG, in each step consisting of evaluation of a single
component xi , the framework tries to activate multiple simulations for all possible
values in the variable domain. The process keeps running until it is suspended by
users or reaches a local optimum, in either case returning the best solution found at
that point.
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26.3.2 K-Coordinate Greedy

With increasing problem dimensionality even the fast coordinate greedy approach
becomes expensive. Limited by the degree of parallelism in the basic coordinate
greedy scheme, for larger scale problems the traditional coordinate greedy cannot
fully utilize the provided computing power.
K-Coordinate Greedy is an algorithm that adds another parallelization level to

coordinate greedy to accelerate the rate of convergence of the optimization process,
as described in Algorithm 3.

Algorithm 3 K Coordinate greedy(f , x(0), k)

1: input problem f , initial state x(0) = (x(0)0 , ..., x
(0)
n ) ∈ R

n, parallelism degree k
2: output x(∗) = arg min

x
f (x)

3: Set p← 0
4: repeat
5: Choose index set, I (p) = {i(p)0 , i

(p)

1 , ..., i
(p)
k }

6: In parallel on k
7: x

(p+1)
i ← arg min

xi

f (x
(p)

1 , ..., xi , ..., x
(p)
n ), i ∈ I (p)

8: until termination test satisfied

It initially chooses K , the number of variables to update, according to the
available computing resources. In each iteration, it chooses a subset of K variables
and optimizes these in parallel using the same update as the coordinate greedy
algorithm.

Different parallelism modes do affect the performance and behaviors of K-
coordinate greedy. Synchronous K-coordinate greedy synchronizes frequently
across all K partitions at certain points in time, which ensures that all updates
are shared across all processors before further computation occurs, while the
asynchronous one assumes the variable vector x can be accessible to each processor,
and available for reading and updating at anytime. Because of eliminating the
requirement of consistent information across computing nodes, asynchronous
algorithms are supposed to have better performance in practice, while the behaviors
of synchronous algorithms are more predictable and easier to analyze. Both
synchronous and asynchronous K-coordinate greedy methods are included and
evaluated in our framework.

26.3.3 Adaptive K-Coordinate Greedy

Unlike coordinate greedy,K-coordinate greedy cannot guarantee convergence to the
local optimum. The risk of divergence of the algorithm might increase when there
are too many correlated features in the variable vector, which also makes it difficult
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to define the termination test. In this section, we present the adaptive K-coordinate
greedy method that tries to address these limitations.

Adaptive K-coordinate greedy is a hybrid approach of combining coordinate
greedy and K-coordinate greedy, as illustrated by Algorithm 4, which is supposed
to speed up the rate of convergence in early stages, and avoid the correlation
problems when it gets close to the local optimum. We improve the greedy process
by continuously reducing K as the time taken by the algorithm to find the next sub-
optimal solution. By decreasing the value of K , the optimization process will be
less likely to select correlated features thereby avoiding divergence. WhenK equals
one, the algorithm is exactly the stochastic coordinate greedy algorithm, which has
a well-defined termination condition and convergence guarantees.

Algorithm 4 Adaptive K coordinate greedy(f , x(0), k0)

1: input problem f , initial state x(0) = (x(0)0 , ..., x
(0)
n ) ∈ R

n, initial parallelism degree k0

2: output x(∗) = arg min
x

f (x)

3: Set p← 0,�t ← 0
4: repeat
5: k← k0 ∗ exp(−�t/T )
6: Choose index set, I (p) = {i(p)0 , i

(p)

1 , ..., i
(p)
k }

7: In parallel on k processors
8: x

(p+1)
i ← arg min

xi

f (x
(p)

1 , ..., xi , ..., x
(p)
n ), i ∈ I (p)

9: if find a better solution then
10: �t ← 0
11: else
12: Increase �t
13: end if
14: until termination test satisfied

26.4 System Architecture

The cloud based SBOaaS architecture is based on our existing framework called
SIMaaS (simulation-as-a-service) [37]. We enhanced the SIMaaS architecture to
account for various modes that SBOaaS has to operate in. In addition, we added
a new scheduling policy based on the SBOaaS requirements. The architecture is
composed of both design time and runtime components that are described in this
section.
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Fig. 26.3 System architecture

26.4.1 Runtime Architecture

Figure 26.3 illustrates the key components of SBOaaS. Since SBOaaS is based
on SIMaaS, the SIMaaS Manager (SM) is at the core of the framework and
is responsible for coordinating other components, handling user requests and
decision-making. SM’s pluggable architecture allows it to switch between various
virtualization technologies and scheduling policies. The original SIMaaS framework
comprised a deadline-based scheduler where the number of simulation tasks to
execute was known a priori. However, in the current work, the simulation count
is not known a priori and additional constraints are introduced for synchronous and
asynchronous modes that requires relaxation of system-level deadline constraints
in favor of resource optimization based on the intermediate results. Thus, we
introduced a greedy scheduling policy that leverages the intermediate results to
maximize performance of the optimization algorithm and saturates the resources
to minimize under utilization.

The simulation cloud deploys on a host cluster constructed by using the
Docker [26] container virtualization technology. A Docker host can run multiple
Docker containers, each representing a single computational node in the cloud
system. Each simulation-based optimization task runs in a single container. The
entire life cycle is managed by the Container Manager (CM) shown in Fig. 26.3.
CM supports different virtualization technologies such as Kernel-based Virtual
Machine (KVM), however, due to its low startup and tear-down duration, we opted
for Docker containers. The role of the CM includes management of hosts, execution,
tear-down and deployment of the containers. The CM also maintains a registry of
Docker images submitted at design time (explained in Sect. 26.4.2).
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Another key component of SBOaaS is the Result Aggregator (RA) which is
responsible for collecting results from the simulation containers after they finish
their tasks. It also performs result aggregation and informs the SM. The aggregator
applies a message queue such that it does not get overloaded with simultaneously
finishing simulation tasks. Based on the different aggregation requirements for
SBOaaS compared to SIMaaS, we developed sync and async modes for the RA.

• ASync Aggregator. The asynchronous aggregator informs the SM as soon as
the client aggregator logic aggregates the intermediate results based on the
completed simulation task. The SM in turn replaces the old simulation instance
and hence keeps the allocated resources 100% utilized.

• Sync Aggregator. Sync aggregator waits for all the simulation tasks to complete
from the current cycle and invokes the client aggregation logic to obtain the
intermediate result such that the next set of tasks can be executed. This helps
in initializing the next cycle with the base result. However, this also results in
resource under-utilization.

The final piece in the runtime architecture is the Performance Monitor (PM)
which works with the CM to collect performance metrics from the host cluster and
periodically informs the SM for decision making.

26.4.2 Design Time Architecture

The application designer interacts with the SBOaaS interface at design time to pro-
vide the configuration, executables and aggregation logic. The designer enters a list
of configuration properties using a template that includes the execution command
for the simulation task, the expected runtime input parameters, and desired resources
among others. The designer also provides the simulation executable in the form of
a container image which is uploaded by the system to the image registry and later
deployed on the hosts by the CM during runtime. Please note that the first iteration of
the simulation tasks incurs an additional deployment cost due to the image download
time. The cost can be avoided by scheduling the simulation jobs a priori.

Another key role of the designer is to provide the aggregation logic using the
SBOaaS aggregator template which is hooked to the Result Aggregator (RA). In
this work, the aggregation logic is the optimization algorithm. However, this may
vary from one use case to another.

26.4.3 User Interaction Framework

The SBOaaS interface resides on a light-weight web framework to interact with
the system designers, users or APIs and also to provide the result to the invoker.
If the deadline is not immediate, users can provide the runtime parameters using
web forms and collect the result from the download link returned by the simulation
manager (SM) from the web server.
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Fig. 26.4 System interaction

In a typical system, the manual steps are eliminated with the use of APIs.
Figure 26.4 depicts how the SBOaaS interacts with the real world and provides
solutions to the optimization problems. Another server labeled as SBOaaS FrontEnd
receives runtime parameters for the simulation based optimization in the form of
aggregated sensor data. This FrontEnd invokes RESTful (i.e., REpresentational
State Transfer (REST)) Application Programming Interfaces (APIs) from the
SBOaaS interface to start a simulation job. Once the job is completed, the results
are collected by the SBOaaS FrontEnd and actuation is performed based on the
optimization results.

26.5 Evaluation

26.5.1 Online Simulation-Based Optimization for Dynamic
Traffic Light Control System

26.5.1.1 Environment

The simulation environment is defined according to the dynamic traffic light control
scenario described in Sect. 26.2. To simulate the controlled traffic flow, we employ
a simulation suite called SUMO [4] (short for “Simulation of Urban MObility”).
SUMO is an open source, highly portable, microscopic road traffic simulation
package designed to handle large road networks. SUMO also provides a Traffic
Control Interface (TraCI) to let external controllers control the traffic. In our work,
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we use a Python script to control the simulation through TraCI and implement our
control algorithm. The experiment environment is encapsulated into a Docker image
in order to be distributed among the computing nodes through SBOaaS.

Our framework was deployed on NSF Chameleon cloud services, which is a
cloud platform funded by National Science Foundation (NSF), providing such a
large-scale platform to the research community allowing them to explore trans-
formative concepts in deeply programmable cloud services, design, and core
technologies. In the experiments, we created a distribution system with 8 computing
nodes and 384 cores.

The input data are the map of the Vanderbilt University campus including all
exogenously specified parameters (phase sequences and min-max intervals) and
the corresponding vehicle flows in a morning scenario based on observations of
road sensors. Nine intersections were selected to deploy the feedback controllers.
In addition, we only consider two phases for each intersection to have dynamic
intervals, which means there are two thresholds for each intersection that need to be
optimized. Thus, for the 9 intersections, the optimization problem dimension is 18.
We consider the variable domain {1, . . . , 20} and use the vehicle average speed to
measure performance.

26.5.1.2 Experiment 1

We first evaluate the performance of anytime optimization methods used in SBOaaS.
The experiments ran until either the local optimum is found or the deadline (7000 s)
is reached (K-coordinate greedy does not check convergence because there is no
well-defined termination test).

26.5.1.3 Results

The experiment results can be seen in Fig. 26.5, which shows the simulation
outcome (average vehicle speed) as a function of the running time of the opti-
mization process. Figure 26.5a, b, respectively, compare the coordinate greedy
algorithm (Algorithm 2) to both K-coordinate greedy algorithm (Algorithm 3) and
adaptive K-coordinate greedy algorithm (Algorithm 4). The optimization process
is significantly accelerated by the variable-level parallelism. In general, both K-
coordinate greedy and adaptive K-coordinate have the same rate of convergence.
However, Fig. 26.5c, d indicate that K-coordinate greedy failed to converge within
the deadline while the adaptive K-coordinate greedy found the local optimum. The
asynchronous algorithm has better performance, and a “smoother” curve than the
synchronized one, which means better anytime response for returning sub-optimal
solutions.
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26.5.1.4 Experiment 2

Figure 26.6 illustrates the control processes of DDDAS with traditional simulation-
based optimization and anytime simulation-based optimization. For the current
observation, the former one gets and updates the optimum control parameters at

Fig. 26.5 Comparison between coordinate greedy, synchronized/asynchronous K-coordinate
greedy, as well as synchronized/asynchronous adaptive K-coordinate greedy decentralized solu-
tions. The vertical axis represents the simulation outcome (average vehicle speed, m/s) and the
horizon axis represents the running time (s) that time SBOaaS takes to find an optimal solution for
the car speeds
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Fig. 26.5 (continued)

the end of the optimization process, while the latter one can continuously refresh
the control parameters. We now compare both approaches. In this experiment, one
simulation was run to simulate the morning scenario with real world parameters.
We also start the optimization service simultaneously with the initial road vehicle
flow observations, and periodically updated the corresponding sub-optimal control
parameters with the real-time line. We used the asynchronous adaptiveK-coordinate
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Fig. 26.6 (a) DDDAS with traditional simulation-based optimization (b) DDDAS with anytime
simulation-based optimization

greedy algorithm and only consider the first optimization period, which is from
7:00 am to 7:30 am (asynchronous adaptive K-coordinate greedy converged within
30 min. according to the last experiment). We considered several different periods
for updating control parameters.

26.5.1.5 Results

Period Overall average vehicle speed (m/s)

Baseline 8.703

1 s 9.961

5 min 9.918

10 min 9.566

The experimental results can be seen in Fig. 26.7, which shows the average
instantaneous vehicle velocity in the simulation area as a function of real time
and the overall average speed as given by the table. The baseline is the situation
that the “real world” run without control parameters updating, which is the
behavior of DDDAS with traditional simulation-based optimization. In Fig. 26.7, the
instantaneous outcomes of the tested optimization methods do not show significant
differences at the early stage. As the process of optimization finds better and
better sub-optimal control parameters, the anytime optimization services gradually
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Fig. 26.7 The result of experiment 2

improve the outcomes. From the overall performance, the optimization processes
with shorter updating intervals gained better outcomes, but got less improvements.
Limited by technologies and costs, a real world DDDAS usually will need to choose
a suitable updating frequency by considering its marginal benefits.

26.5.2 System Evaluation

We measured the system metrics to validate its robustness and evaluated the
overhead. The testbed was setup in accordance with the architecture shown in
Fig. 26.3. The SIMaaS Manager and the Result Aggregator were deployed on the
same machine. Eight simulation hosts were added to the setup each having 48
cores. Two experiments were performed to assess the performance when the system
is running in both synchronous and asynchronous modes. Each experiment was
performed for 90 min durations.

26.5.2.1 Result

The results of the experiments are illustrated in Fig. 26.8. We observed that during
the 90 min duration, 2,520 simulations were performed in synchronous mode and
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Fig. 26.8 Comparison of system utilization vs completed simulation count. (a) Sync Mode.
(b) Async Mode
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Fig. 26.9 Execution time

11,037 in asynchronous mode. The higher number of simulations for asynchronous
mode is expected as the goal is to fully utilize the available servers. Figure 26.8 also
displays the utilization metrics of the management server. In both the modes, the
CPU and network utilization is less than 1%. The memory utilization is around 3%
for asynchronous mode and around 7% for synchronous mode. Even though we see
an initial upward trend in memory utilization due to auditing of simulation tasks,
it stabilizes towards the end of the experiment because of the cleanup operations
running periodically to clear the old simulation containers. We also observe that the
spikes in CPU and network usage is low when the simulation tasks are scheduled
and when they finish. These results demonstrate that our architecture is robust with
low overhead.

Figure 26.9 is the scatter plot for the simulation task execution times for both
the modes. We see periodicity in the number of simulation tasks completing in
the two modes. There are stragglers in the system which has higher impact on the
synchronous mode compared to asynchronous mode as all the tasks of the next
cycle have to wait for few stragglers to perform execution. In future, straggler
management policies will be implemented which will significantly benefit the
synchronous mode.
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26.6 Related Work

26.6.1 Coordinate Greedy Algorithm

Coordinate Greedy is one of the class of Coordinate Descent (CD) algorithms.
Because of the simplicity of the CD approach and its acceptable performance in
many situations, CD methods have a long history for solving various optimization
problems [35, 38]. However, the apparent lack of sophistication made CD unpopular
in the research field at the end of the last century [41]. Most of the works at that time
focused on the convergence properties. Bertsekas and Tsitsiklis [5] first considered
the convergence properties for parallel CD methods. Luo and Tseng [24, 25] proved
that the convergence of CD methods for twice differentiable convex functions is at
least linear.

As various applications have yielded a wide array of optimization problems for
which CD algorithms are competitive, the situation has changed in recent years. One
crucial reason is that CD algorithms usually can be modified and improved to fit all
kinds of problem backgrounds, which can also be easily modified to adapt them
well to modern computer architectures. Niu [28] presented a lock free parallel CD
algorithm based on traditional stochastic gradient descent. Bradley [7] developed
a parallel coordinate descent algorithm for minimizing L1 regularized losses and
proved its convergence bounds. Recently, numerous efforts demonstrated that CD
methods can be adapted to address problems within many fields, including machine
learning [18, 19], statistics [15, 20] and many other applications [33, 34].

In distributed systems, parallel CD methods are often implemented using
the concept of parameter servers which usually focus on machine learning and
neural network [12, 22, 43]. Compared with previous works, SBOaaS combines
asynchronous CD algorithms with a container-based simulation framework [42],
which is specifically designed for simulation-based optimization problems.

26.6.2 Cloud-Based Services for Simulations and DDDAS
Applications

mJADES [32] is a Java-based simulation engine that can automatically acquire
resources from various cloud providers and perform simulations on virtual
machines. This approach is similar to ours in spawning simulations, however,
the objective is different and it does not provide aggregation-based optimization
logic. DEXSim [8] is another simulation framework based on distributed systems
principles that can provide two-level parallelism by accounting for CPU threads
and availability of multiple systems. On the other hand, SBOaaS relies on the
Linux kernel for scheduling of container processes to avail multiple CPU cores
on the physical server. Another cloud middleware is the RESTful interoperability
simulation environment (RISE) [1] which applies RESTful services for remote
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management of simulation server using Android-based hand held devices. The user
interaction framework of SBOaaS explained in Sect. 26.4.3 also applies RESTful
APIs for user interaction and management of services. In addition, the SBOaaS
architecture utilizes Linux containers which allows quick startup and tear down
alleviating the need to maintain a Virtual Machine (VM) pool, thus providing
performance benefits compared to these works.

Resilient DDDAS-As-A Service (rDaaS) [3] is a cloud-based trustworthy and
resilient infrastructure for developing secure crisis management systems using
DDDAS principles of instrumentation, continuous monitoring and adaptation. The
rDaaS architecture’s goal is to align the cloud technology required for providing
crisis management system in accordance with DDDAS paradigm by combining
the design and runtime stages. Similar to rDaaS, SBOaaS leverages the DDDAS
paradigm to provide cloud services, however, the objective of SBOaaS is to solve
optimization problems using cloud based simulations and the methodology requires
managing cloud resources at scale as the number of application instances required
by SBOaaS is much larger compared to rDaaS. Nguyen and Khan [27] describe a
framework for supporting DDDAS applications in cloud that proactively performs
resource optimization and allocates resources when the sampling rate of the DDDAS
application changes. This work does not consider the virtualization layer present on
the cloud servers and the effects of co-location of multiple different jobs, in contrast,
SBOaaS considers the virtualizaton overhead imposed by Docker containers and
optimizes the resources for all the scheduled jobs [42].

26.6.3 Traffic Light Optimal Control Problem

Fundamentally, a traffic light control problem is a form of scheduling problems for
switching control actions on stochastic hybrid systems. Various models have been
well-studied. A decision tree model with Rolling Horizon Dynamic Programming
was presented by Porche [31]. The approach based on multi-objective Maxed
Integer Linear Programming formulation was proposed by Dujardin [14]. A Markov
Decision Process approach was proposed in Yu and Recker [44] and Reinforcement
Learning was used in Thorpe [39]. Choi [9] implemented a first-order Sugeno
fuzzy model and integrated it into a fuzzy logic controller, while an Infinitesimal
Perturbation Analysis approach, using a Stochastic Flow Model to represent the
queue content dynamic of road at an intersection was presented by Panayiotou [29].

However, to find the optimal control parameters for a traffic light system via close
loop simulations is still a big challenge due to its high computational complexity and
the requirement on real time reactions. In this chapter, we illustrate that SBOaaS is
a suitable framework to address such issues.
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26.7 Conclusions

In the chapter, we presented a framework for simulation-based optimization as a
service, which is a fundamental facility for DDDAS. We proposed a system archi-
tecture of our framework, and anytime optimization approaches including several
coordinate descent method algorithms for solving simulation-based optimization
problems in parallel. Then, we presented the dynamic traffic light control system as
a case study. Finally, we evaluated both our anytime optimization algorithms and
the online closed loop pattern.
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Chapter 27
Privacy and Security Issues in DDDAS
Systems

Li Xiong, Vaidy Sunderam, Liyue Fan, Slawomir Goryczka,
and Layla Pournajaf

Abstract With the rapidly increasing prevalence of the DDDAS paradigm, privacy
and security issues have come to the forefront. In the measurement, feedback, and
control phases of dynamic data driven adaptive systems, protecting data integrity
(security) and inferred sensitive information (privacy) from inadvertent release
or malicious attack is crucial. The PREDICT (Privacy and secuRity Enhanc-
ing Dynamic Information Collection and moniToring) project investigates secure
dynamic and adaptive techniques for distributed data collection and fusion, sam-
pling and monitoring, and data modeling that preserve privacy and integrity. These
approaches deliver provable guarantees of privacy and security while ensuring
high fidelity, and complement encryption-based techniques. Application scenarios
include health surveillance data release, traffic analysis, situation awareness and
monitoring, and fleet tracking.

27.1 Introduction

New technological tools are being developed that facilitate the continuous collection
and analysis of information in novel and sophisticated ways. Applications based on
participatory sensing [5, 26] are becoming ubiquitous and utilize data in important
and valuable ways. At the same time, the Dynamic Data Driven Applications
Systems (DDDAS) paradigm [3, 8, 9] established in the last decade offers the
promise of augmenting the effectiveness of such data collection and analysis.
DDDAS entails a synergistic feedback loop between application simulations and
data collection, in which data are dynamically integrated into an executing simula-
tion to augment or complement the application model, and, conversely the executing
simulation steers the data collection processes of the application system. However,
in DDDAS systems, the dimensions of privacy and security to protect sensitive data
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are assuming tremendous importance. Incorporating such attributes into DDDAS
platforms will significantly enhance their value and usefulness for transformative
applications in a variety of domains.

In distributed data systems, encryption is commonly used to secure data, but
it is both restrictive and incomplete. Encryption does not allow constructive data
use without divulging content, and does not explicitly protect against disclosure
of location or identity of data sources or data subjects. Privacy techniques provide
a viable solution: privacy-preserving methods modify data in such a manner that
critical attributes are obscured, while presenting meaningful data with a high
level of utility to applications. The overall objective of the PREDICT project is
to build a holistic framework that applies DDDAS concepts for feedback-driven
dynamic information collection/monitoring with provable data privacy and data
integrity guarantees. Our approach uses a combination of perturbation, aggregation,
and cloaking to enable controlled information gathering and dissemination while
preserving data integrity and privacy. As a result, confidentiality is preserved,
while simultaneously making available valid high fidelity data to enable use by
applications [3, 32, 37, 40].

• Challenges and Potential Advances. Data perturbation and aggregation are two
main techniques used for privacy-preserving data release, but they introduce
error. Therefore one of the main research challenges is to accomplish these
transformations with very high fidelity and low error, such that the released
data is still highly useful. Moreover, it is necessary to guarantee that released
or disseminated data is indeed secure and private, necessitating strong provable
mechanisms. Another challenge concerns second order issues; inferred informa-
tion may be used by adversaries to compromise security and privacy, therefore
robust techniques that protect against indirect analysis must be developed. Last
but not least, some scenarios including battlefields or hostile environments may
be untrustworthy, necessitating communication protocols and aggregation/fusion
[24, 25] that are safe in untrusted settings.

• DDDAS Motivated Solutions. The PREDICT project extends the base DDDAS
mechanism to use feedback loops from both estimates and previous observations
to dynamically control the collection, aggregation and perturbation of data (in
terms of frequency and values) in real-time to optimally balance error and privacy
(control). In addition, it incorporates dynamic data modeling with uncertainty
quantification for both single- and multidimensional data. In mobile participatory
sensing settings, our work develops cloaking mechanisms with feedback loops
and 2-phase task assignment to optimize target coverage while ensuring location
privacy of data contributors (task management). In addition, techniques are
included to protect against inferred information by adversaries who have access
to external or sequence data by using adaptive feedback.

The PREDICT model is a generalized concept that uses DDDAS principles to
guarantee privacy and security of both data and data providers. The PREDICT
approach allows valuable (processed) data to be made available to authorized enti-
ties, without divulging data components, individual values, or provider information.
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Many applications in health surveillance, traffic analysis, situation awareness and
monitoring, flash crowd control and fleet tracking benefit from these methods.

27.2 Background

The DDDAS paradigm is useful in numerous settings; our focus is on scenarios in
which data is collected across many distributed, typically autonomous entities, but
must be fused and analyzed by users or applications, with either explicit or implicit
feedback driving subsequent collection and integration processes. Below we provide
several examples:

• Syndromic Surveillance. The terrorist attacks in 2001, various disease outbreaks
such as the 2009 outbreak of H1N1 Flu [1] and the recent outbreak in Germany
of E.coli [2] have prompted much attention in syndromic surveillance systems
[6, 41, 43]. Such systems seek to use health data in real time for early detection
of large-scale disease outbreaks and bioterrorism attacks. Different statistical
algorithms can be applied for detecting outbreaks, once a threshold number of
early symptomatic cases or suspicious pattern is identified. Traditional syndromic
surveillance systems mainly rely on health data from clinical and emergency
room encounters. The recent proliferation of wireless and mobile technologies
provides the opportunity for individuals to produce continuous streams of data
about themselves (self surveillance [32]). A vast amount of data can be captured,
such as detailed information about individuals’ physical activities, locations
(e.g., through text messages), and physiological responses (e.g., through small
sensors).

In the existing syndromic surveillance systems and research conducted to
date, issues of privacy and confidentiality of the individuals (data subjects) as
well as the sheer volume of the data have been known to hamper researchers’
efforts. With dynamic feedback loops coupled with privacy protection, data can
be anonymized to preserve individual privacy and then injected to real time
simulations using diffusion models to simulate and predict the outbreak patterns.
The predicted patterns in turn can be used to steer further data collection (e.g.,
from regions with increased risks) as well as for prevention and intervention
purposes.

• Intelligence Data Collection. As recent events demonstrate, numerous situations
exist where intelligence gathering is performed in crowd settings both non-
deliberately by the general public and by principals who are anonymously
embedded in the crowds. A canonical example is an uprising in a major city under
hostile governmental control – the general public uses smart devices to report on
various field data (third party surveillance [32]), but there may also be agents
among the crowd, reporting similar data using similar media (e.g., Twitter) to
avoid identification. In such situations, central agencies (or the distributed agent
network) desire to dynamically steer the data collection through feedback loops
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(e.g., directing agents to specific data collection locations or requesting finer-
grained data). A feedback loop may also take place on open media and it is
important to protect the identity and location of the agents (data contributors).

27.3 Overview and Goals

Most existing surveillance systems have focused on analytical and modeling
methods, with little attention to dynamic feedback loops and privacy requirements.
In parallel, typical privacy protection techniques today [12, 13, 20] deal with
static and persistent data or the video content [23] but are not sufficient in the
surveillance systems where high-volume, complex data are acquired dynamically.
New mechanisms are needed urgently to support privacy enhancing dynamic
data monitoring with feedback loops while maintaining provable and quantifiable
privacy guarantees and data integrity guarantees.

In this chapter, we present an overview of our ongoing project PREDICT (Privacy
and secuRity Enhancing Dynamic Information Collection and moniToring). The
overall aim of the project is to develop a framework with algorithms and mecha-
nisms for privacy and security enhanced dynamic data collection, aggregation, and
analysis with feedback loops, which will be valuable in situations such as the ones
outlined above. We discuss each of our research thrusts with research challenges
and potential solutions, and report some preliminary results.

Figure 27.1 depicts an architectural overview of PREDICT. The key innovation
of PREDICT is the privacy enhanced feedback loops between data collection, data
aggregation, and data modeling. The dynamic approach that leverages real time pre-
dictive data models and feedback loops to steer further data collection and privacy
mechanisms is crucial to both enhance privacy and address the big data problem in
real time surveillance systems. Implementing these feedback loops presents several
unique challenges: (1) how to design the feedback control mechanisms for the

Fig. 27.1 PREDICT overview
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privacy preserving data collection and aggregation while minimizing the privacy
risk of data subjects and maximizing data integrity; (2) how to model and guarantee
data integrity in the presence of perturbations introduced by the privacy mechanisms
in addition to measurement uncertainty; and (3) how to guarantee the privacy of data
contributors in the feedback loops when there is no trusted aggregator as the data
contributors are mutually untrusted. Our project consists of the following major
focus areas:

• Privacy Preserving Data Collection and Aggregation with Feedback Control.
Sensitive data streams are collected, aggregated, and perturbed at selected
time points to formally guarantee state-of-the-art differential privacy for data
subjects. We are designing a number of feedback loops to control the collection,
aggregation, and perturbation process, including collection assignment (how
to collect), sampling (when to aggregate), grouping (how to aggregate), and
perturbation (how to perturb), based on feedback from previously observed
aggregates and predictions as well as the privacy and integrity requirements from
executing applications.

• Dynamic Data Modeling and Uncertainty Quantification. Aggregated and per-
turbed data streams are injected into predictive data models, which in turn correct
the predictive data model. Data integrity is investigated in the presence of data
perturbation introduced by the privacy protection mechanisms.

• Secure Data Aggregation and Feedback Control without Trusted Aggregator.
While the privacy preserving data collection and aggregation can be implemented
either by a centralized trusted aggregator or a decentralized group of data
contributors, the decentralized case introduces additional privacy concerns of the
data contributors (in addition to the data subjects). Decentralized mechanisms are
developed to allow data contributors to securely aggregate their data with per-
turbations and receive feedback from applications without disclosing additional
information to other data contributors.

By proactively building privacy into the design of a DDDAS, privacy protections
are integrated directly into the DDDAS loop. The effect is to minimize the
unnecessary collection and uses of personal data by the system and guarantee the
anonymized participation of individuals in the system. The PREDICT project will
produce a suite of algorithms and mechanisms that enhance privacy for DDDAS,
and have significant impact in enabling and promoting confidence and trust in
surveillance systems for critical applications in a variety of application domains.
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27.4 Conceptual PREDICT Model

27.4.1 System Model

We consider a dynamic set of data contributors who are participating and contribut-
ing their own data (self surveillance) or other data (third party surveillance) in a
surveillance system. We use data subjects to refer to the individuals represented in
the collected data, which are the same as data contributors in the self surveillance
case. We consider two system models: centralized model and decentralized model,
depending on whether or not there is a trusted aggregator. In both models, there
is an untrusted application or application run by an untrusted party for analysis
and modeling (e.g., disease outbreak detection or intelligence analysis). Privacy
preserving data collection and aggregation with feedback control, and dynamic data
modeling and uncertainty quantification are applicable to both the centralized and
decentralized models, while secure data aggregation and feedback control in the
absence of a trusted aggregator is only applicable to the decentralized model.

• Centralized model with a trusted aggregator. In the centralized model, the trusted
aggregator (e.g., Centers for Disease Control and Prevention (CDC) offices in the
syndromic surveillance scenario) collects the data, aggregates them, performs
appropriate data perturbation, and outputs perturbed aggregates with privacy
guarantee, which can be in turn used for modeling and predictive studies. In
the feedback loops, the trusted aggregator receives the control from the running
application for further data collection, aggregation, and perturbation.

• Decentralized model without a trusted aggregator. In some scenarios, a trusted
aggregator is not available. The data contributors need to perform aggregations
and perturbations among themselves if needed and submit the aggregated result
to the untrusted aggregator or the application directly. In the feedback loops,
control is sent to individual contributors as well.

27.4.2 Privacy Model

Privacy of Data Subjects In both centralized and decentralized models, we need
to protect the privacy of data subjects represented in the collected data. We assume
the end application and end users are untrusted – they may passively observe
information to infer sensitive values of the data subjects. Further the analysis
results may be shared with other untrusted parties. So our goal is to provide a
provable privacy guarantee such that the end application will not learn anything
about participating users in the system and whether they participated in the data
collection.
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Traditional approaches such as removing identifying attributes, generalizing or
perturbing individual attribute values, have been shown to be susceptible to various
attacks [20]. We use the state-of-the-art differential privacy [12, 13, 33] as our
privacy model, which gives a strong and provable privacy guarantee. Differential
privacy requires that the output of an aggregation or computation should not change
significantly even if a single data subject had opted out of the data collection.
Therefore, this assures an individual that any privacy breach will not be a result of
presence of her record in the collected data. Formally, differential privacy is defined
as follows.

Definition 1 (α-Differential privacy[11, 33]) A randomized mechanism A satis-
fies unbounded α-differential privacy if for any neighboring databases D1 and D2
whereD1 can be obtained fromD2 by either adding or removing one tuple, and any
possible output set S, Pr[A (D1) ∈ S] ≤ eαP r[A (D2) ∈ S].

A common mechanism to achieve differential privacy for a single aggregated
value is Laplace perturbation (LPA) [12], which adds systematically calibrated
Laplace noise to the aggregates. Given an aggregate query Q, the global sensitiv-
ity [14] of Q, denoted by �Q, measures the sensitivity of the query result Q(D) if
a data subject had opted out. In order to achieve α-differential privacy, the LPA
mechanism returns Q(D) + N in place of the original result Q(D), where N
is a random noise of Laplace distribution Lap(�Q/α) with a probability density
function Pr(x) = α

2�Q
e−|x|α/�Q [14].

Any sequence of aggregations from the same set of data subjects that each
provides differential privacy in isolation also provides differential privacy in
sequence (with accumulated privacy cost), known as sequential composition [36]. If
a sequence of aggregations is conducted on disjoint data subjects, the privacy cost
does not accumulate, but depends only on the worst guarantee of all aggregations,
known as parallel composition.

Privacy of Data Contributors in Decentralized Model In our decentralized
system model with no trusted aggregator, the privacy of the data contributors need
to be protected from the aggregator and other data contributors. We assume data
contributors are either semi-honest – follows the protocol correctly but may pas-
sively observe information to infer sensitive information of other data contributors
or data subjects, or malicious – can lie about the values being reported, but otherwise
follows the protocol correctly. As in general cryptographic solutions, we make
an assumption that at least a fraction of data contributors (e.g., a majority) are
semi-honest. The remaining data contributors and the aggregator can be arbitrarily
malicious.

In the feedback phase, our goal is to ensure that each contributor learns only
whether and what data is being requested or collected from her and no additional
information about whether and what data is collected from other contributors. In
the data aggregation phase, our goal is to ensure the data aggregator or participating
data contributors can only learn the aggregates and no additional information about
the private data contributed by other data contributors, in addition to ensuring
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differential privacy of the aggregates for the data subjects. We use the notion of
secure multi-party computation (SMC) for this purpose [10, 27, 34]. In a multi-
party computation protocol, a set of parties wish to jointly compute a function of
their private data inputs. The protocol is secure if the parties learn only the result of
the function but nothing else.

27.5 PREDICT Framework: Technical Approaches and
Results

27.5.1 Privacy Preserving Data Collection and Data
Aggregation with Feedback Control

The key idea in PREDICT is to use feedback loops from estimates and predictions
based on previously observed aggregates and predictive models to dynamically
control the collection, aggregation, and perturbation process. We briefly describe
feedback control, including data collection (how to collect), the sampling rate (when
to aggregate), aggregation grouping (how to aggregate), perturbation level (how
much to perturb).

Dynamic data collection assignment The first feedback loop is to control how to
collect data. When multiple individual data contributors are available for collecting
data (third party surveillance), the aggregator can coordinate the data collection
process such that data collection coverage is maximized and data collection cost
is minimized. Since we need to protect the identity as well as location privacy for
individual data contributors, they can query the central aggregator for data collection
tasks anonymously using cloaked locations.

We have designed stochastic optimization algorithms for coordinated data col-
lection assignment [21]. The goal is to optimally assign individual data contributors
for data collection tasks (i.e., points of interest) based on feedback and data integrity
requirements from applications as well as the cloaked (uncertain) locations of
individual data contributors. The optimization goals may include maximizing data
collection coverage, maximizing data integrity guarantee, and minimizing data
collection cost (e.g., distance traveled by individual data contributors).

We have developed a technique based on cloaked locations to perform task
assignment in an efficient manner, while protecting the privacy of participant
locations [22]. In our scheme, a tasking server performs a first-approximation
task assignment based on cloaked (uncertain) participant locations. This yields
the feedback to participants who then perform local refinement, based on the true
knowledge of their current locations and feedback data on the server’s estimation of
target subsets assigned to them. Our preliminary experiments show that this scheme
achieves cost-coverage levels that are comparable to the baseline, while ensuring
location privacy of participants. We are currently extending our work to situations
with dynamic targets.
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Fig. 27.2 Sampling control using feedback

Once the data are collected via the above mechanism (which protects locations
of data contributors), the next central challenge of applying differential privacy
for continuous data monitoring is how to minimize privacy cost by avoiding
unnecessary aggregations and perturbations. Ideally, we should only compute the
aggregates for desired regions at desired time points to preserve privacy cost, and
hence preserve data integrity.

Sampling Control using Error Feedback We first study how to dynamically
monitor a pre-defined aggregate with sampling control. The key question is when
to compute the aggregate (when to sample) such that the data dynamics can be
accurately captured while maintaining the accumulated privacy cost below a given
privacy bound α. Figure 27.2 illustrates the idea of sampling control using feedback.
It shows an original aggregate data stream, traffic count, with different dynamics at
different time periods. It also shows a desired aggregation strategy with different
query rate or sampling rate at different time periods. We observe that the number of
queries per time unit (sampling rate) increases at day 55, adapting to the significant
fluctuations exhibited by the traffic count, and it drops beyond day 100, when
there is little variation among the aggregated values. Ideally, the sampling control
mechanism will achieve such dynamic and adaptive behavior. While this is intuitive,
it is not a trivial task due to the inherent uncertainty of input data streams. The
underlying dynamics of the aggregated data can not be observed directly and need
to be carefully modeled. In addition, the raw aggregated data is not accessible to the
application or feedback control mechanism due to privacy protections.

PREDICT uses an adaptive sampling controller that adjusts the sampling rate
based on the feedback. The feedback is defined as the relative error between the a
posteriori estimate and the a priori estimate at a particular time step. Note that the
posterior estimate is only available when a noisy observation is sampled from the
input stream at time step kn. Thus no error is defined at non-sampling points. The
model error measures how well the internal predictive model describes current data
dynamics, supposing the a posteriori estimate x̂kn is close to the true value. We may
infer that data is going through rapid changes if the error Ekn increases with time. In
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response, the controller in our system will detect the errors and adjust the sampling
rate accordingly. Given the model error as feedback, we adopt a PID (Proportional-
Integral-Derivative) controller for the sampling control [15, 18].

Aggregation Control using Prediction Feedback The LPA based privacy mecha-
nism is sensitive to the density of the data, e.g. an aggregated statistic from a sparse
region will incur a higher relative error compared with a dense region with the
same amount of perturbation. On the other hand, if we group multiple cells and
compute the aggregate for a partition, the count for each cell has to be estimated
assuming certain distribution of the data points in the partition. The dominant
approach in histogram literature is making the uniform distribution assumption,
where the frequencies of records in the bucket are assumed to be the same and equal
to the average of the actual frequencies [30]. The uniform distrbution introduces an
approximation error. Ideally, when the density reaches a certain level, we may wish
to have a finer grained statistic for the sub-regions. In other scenarios, we may wish
to have a finer grained statistic when there are variances or uneven distributions
in the region. In our information collection scenario, once the crowd center is
identified for an uprising, it may be desired to collect more fine-grained data around
the borders of the crowd to monitor how the crowd moves. Therefore PREDICT
uses aggregation control in the multidimensional data space based on predicted data
values to jointly minimize privacy cost and the noise introduced by the perturbation
and the approximation. Building on our prior work [42], PREDICT uses predictions
or estimates from applications and applies partitioning strategies based on k-d trees,
binary space partitioning (BSP) and quad-trees to dynamically partition the multi-
dimensional data space based on the predicted state such that data will be aggregated
from similar sub-cubes.

Perturbation Control using Error Feedback We also attempt to dynamically
determine the level of perturbation for each partition using the feedback of the model
error and the uncertainty requirement of the application. If the model error is high,
which suggests significant data dynamics, the perturbation control mechanism can
adjust the perturbation level so that a more precise aggregate with less noise can be
obtained at the next sampling point.

In addition, applications may impose an uncertainty bound or requirement for
a perturbed aggregate. In such cases, a perturbation with minimum privacy budget
required is invoked in order to satisfy the uncertainty requirement while minimizing
the overall privacy cost. In general, when there is no specified integrity requirement,
we can consider the overall privacy bound as a resource or budget, and model the
perturbation control problem as an online resource allocation problem, which we
plan to explore in the future.
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27.5.2 Dynamic Data Modeling with Uncertainty
Quantification

An essential component that enables the feedback loop is the data modeling that
provides real-time model-based prediction and correction based on the sampled or
observed aggregates. The key challenge is how to model the data in the presence
of perturbation error injected by the LPA privacy mechanism. Thus, the PREDICT
project explores robust data assimilation and spatial interpolation techniques for
estimating the current state of the system using sampled aggregates with uncertainty
quantification in real time.

Data Modeling in Time Domain In order to model perturbed aggregates in the
time domain, we have applied several filtering (or data assimilation) techniques.
Data assimilation [4, 31] is a general approach in which observations (or pertur-
bations in our context) of the current (and possibly, past) state of a system are
combined with the results from a prediction model (the forecast) to produce an
analysis, which is considered ‘the best’ estimate of the current state of the system.
The model is then advanced in time and its result becomes the forecast in the next
analysis cycle.

In our design, the prediction, is released at a non-sampling point, while the
correction, i.e. posterior estimate based on the noisy observation and prediction,
is released at a sampling point. We adopt a constant process model for a single
pre-defined aggregate which is given by xk+1 = xk + ω where k is the discrete
time index and ω is a white Gaussian noise p(ω) ∼ N(0,Q) with variance Q. The
observed aggregate is perturbed by the Laplace mechanism and can be modeled by
zk = xk + ν where ν is a Laplacian noise which follows p(ν) ∼ Lap(0, λ) with λ
being the magnitude parameter determined by differential privacy mechanism.

Since the measurement noise is non-Gaussian, the posterior density cannot be
analytically determined without a Gaussian assumption about the measurement
noise. We adopted two solutions to the posterior estimation challenge. One is to
approximate the Laplace noise with a Gaussian noise, which can be then solved
by the classic Kalman Filter [31]. The other is to simulate the posterior density
function via Monte Carlo methods based on the Sampling-Importance-Resampling
(SIR) particle filter. Detailed descriptions of these approaches are reported in our
recent paper [15].

Preliminary Results We have completed the design of a framework with Filtering
and Adaptive Sampling for monitoring single time-series to address the challenge
of sampling control using error feedback, and to model data in the time domain.
We performed a set of experiments using the Kalman Filter and Particle Filter
in combination with PID based sampling control on synthetic datasets as well as
real traffic monitoring and flu datasets. Our approaches consistently outperform the
baseline Laplace perturbation algorithm and the state-of-the-art Discrete Fourier
Transform (DFT) based algorithm [38], which can be only applied in batch
processing settings rather than real-time settings. For more detailed results and a
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demonstration description, please refer to [15, 18, 19]. We also extended the work
to multi-dimensional time-series with spatial partitioning techniques [16, 17].

Data Modeling in Multi-Dimensional Data Space The spatial dependencies
or homogeneities of neighborhood characteristics legitimize the use of spatial
interpolation methods to predict values for specified spatial locations using a limited
number of sample data aggregates at nearby locations. In general, this is also
applicable in the multi-dimensional data space. We are currently exploring both
deterministic and stochastic methods, and in particular, two commonly adapted
interpolators, Inverse Distance Weighting (IDW) and Kriging.

A widely used deterministic interpolation method is Inverse Distance Weighting
(IDW). It is a local exact interpolator that interpolates values based only on the
surrounding measured values of the interpolating location and functions of the
inverse distances between the interpolating location and locations of the surrounding
sample. On the other hand, stochastic methods, such as Kriging [39], interpolate
values not only based on the surrounding data values, but also based on the
overall autocorrelation calculated by applying statistical models to all the known
data points. Because of this, not only do stochastic methods have the capability
of producing a prediction surface, but they also provide some measure of the
certainty or accuracy of the predictions. We are analyzing detailed interpolation
algorithms based on Kriging with uncertainty quantifications [7] and incorporating
these approaches into the PREDICT framework.

27.5.3 Secure Data Aggregation and Feedback Control
Without Trusted Aggregator

In our decentralized system model with no trusted aggregator, the privacy of data
contributors need to be protected from the aggregator and other data contributors.
Such protection needs to be maintained in the entire feedback loop, i.e. both the
feedback control phase and the data aggregation phase.

Secure Feedback Control In the feedback phase, our goal is to ensure that each
contributor learns only whether and what data is being requested or collected from
her and no additional information about whether and what data is collected at other
contributors. Depending on the current data model, applications may need to send
feedback to individual data contributors, e.g. to collect more crowd data in certain
geographic locations in the intelligence collection for city uprising scenario, without
disclosing the control command to other data contributors or entities in the network.

A simple idea we are investigating is based on public key encryption. The data
contributors send their public keys to the application as they contribute their data.
The application can in turn encrypt individual feedback control commands using
corresponding public keys such that the contributor who is intended to receive
the control commands can decrypt the message and follow the command for
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future data collection. We are also exploring other potential crypto and secure
computation mechanisms and study the effectiveness of their relative performance
and functionality.

Secure Data Aggregation In the data aggregation phase, our goal is to ensure
the data aggregator or participating data contributors can only learn the aggregates
and no additional information about the private data contributed by other data
contributors, in addition to ensuring differential privacy of the aggregates for the
data subjects. The problem can be formulated as a secure multiparty computation
(SMC) or distributed privacy preserving data sharing problem [27, 34], in which a
set of parties jointly computes a function of their private data inputs such that the
parties learn only the result of the function but nothing else.

In addition to leveraging existing SMC protocols, one particular challenge for
secure data aggregation is that when the collected data involves personal data, where
the aggregates need to be perturbed (as described earlier) to protect the privacy
of data subjects. Suppose a set of n semi-honest data collectors need to compute
a perturbed sum to satisfy α-differential privacy. If we have one data contributor
generate a Laplace noise and add it to the secure sum result, the sum will be
disclosed to this contributor. Thus, the perturbation needs to be distributed as well.
Our goal is to minimize the total noise added to the result, and ensure that each data
contributor generates a noise such that the summation of the noise is sufficient to
achieve α-differential privacy.

Preliminary Results We have designed several SMC protocols for various pri-
vacy preserving aggregation and analytical tasks [28, 35]. We also conducted a
comprehensive comparative study for the secure sum problem with differential
privacy [29]. We studied several secure multiparty computation schemes: Shamir’s
secret sharing, perturbation-based, and various encryption schemes. Differential
privacy of the final result is achieved by distributed Laplace perturbation mechanism
(DLPA). Partial random noise is generated by all participants, which draw random
variables from Gamma or Gaussian distributions, such that the aggregated noise
follows Laplace distribution to satisfy differential privacy. We also introduced a new
efficient distributed noise generation scheme with partial noise drawn from Laplace
distributions and performed studies on these protocols to compare complexity,
security characteristics, and scalability both analytically and experimentally in real
distributed environments [29].

27.6 Conclusion

This chapter describes the PREDICT framework for privacy and security enhanced
dynamic information collection and monitoring with feedback loops. Our key
contributions are: (1) mechanisms for privacy preserving data aggregation with
perturbations that can simultaneously achieve condensed data representation and
privacy protection; (2) a dynamic privacy preserving approach that leverages real
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time predictive data models and feedback loops to drive iterative data collection
– valuable in big data and real time surveillance systems; (3) a mechanism for
monitoring single time-series with differential privacy; and (4) prototype secure
aggregation schemes with differential privacy for data collection when there is
no trusted aggregator. This chapter described the use of the DDDAS paradigm to
enhance privacy and security by utilizing effective dynamic data-driven systems
approaches to achieve differential privacy, prepare for timely responses, and monitor
system performance. Future work will address secure and private situational
awareness in dynamic environments, private information retrieval, and data fusion
techniques in DDDAS systems.
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Chapter 28
Dynamic Data Driven Application
Systems (DDDAS) for Multimedia
Content Analysis

Erik Blasch, Alex Aved, and Shuvra S. Bhattacharyya

Abstract With ubiquitous data acquired from sensors, there is an ever increasing
ability to abstract content from the environment. Multimedia content exists in
many data forms such as surveillance data from video, reports from documents
and twitter, and signals from systems. Current discussions revolve around dynamic
data-driven applications systems (DDDAS), big data, cyber-physical systems, and
Internet of things (IoT); each of which requires data modeling. Key elements
include a computing environment that should match the application, time horizon,
and queries for which the data is needed. In this chapter, we discuss the DDDAS
paradigm of sensor measurements, statistical processing, environmental modeling,
and software implementation to deliver content on demand, given the context of
the environment. DDDAS provides a framework to control the information flow
for rapid decision making, model updating, and being prepared for the unexpected
query. Experimental results demonstrate the DDDAS-based Live Video Computing
DataBase Modeling approach to allow data discovery, model updates, and query-
based flexibility for awareness of unknown situations.

28.1 Introduction

Dynamic-Data Driven Applications Systems (DDDAS) require system-level
coordination between applications modeling, measurement systems, statistical
algorithms, and software methods. Applications modeling include physical,
geometrical, or relational models that support control techniques that utilize
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Fig. 28.1 Elements of
Dynamic Data-Driven
Application Systems
(DDDAS) concept

streaming data to update the theoretical, data, and systems-level models as shown in
Fig. 28.1. The application composes scenarios which include elements of designing
systems for challenging situations to handle uncertainty. Data includes the models
(e.g., theory) and signals (e.g., measurements) which are incorporated into statistical
analysis. The software methods include techniques to manage the data for real-time
performance such as streaming dataflow architectures for information management.
Finally, as with most data-to-application designs, there is need for visualization
and user-input that supports metrics and refinement actions such as model updates.
This chapter focuses on dataflow modeling which allows discovery and analysis for
model updates.

DDDAS has a rich history in many application for which different information
computing solutions have been reported. Given the wealth of capabilities, some
of the key developments include: health monitoring, object tracking, object clas-
sification, cyber analysis, and systems coordination. The orchestration of these
applications supports actionable information for user support from component-level
control to system-level information fusion. For the review that follows (Table 28.1),
we focus on recent developments as to the extent of DDDAS implementations.

A historical example of DDDAS success includes Health Monitoring. A typical
example includes component-level analysis of parts such as the performance of
a aircraft wing during disturbances [1]. The DDDAS methods include theoretical
performance models matched against sensor measurements such as stress and strain,
useful for aircraft performance [2] for which failure modes can be detected [3].
Using the component-level analysis, these results can be used for UAV swarm
analysis [4] and network health mentoring [5].

A common example of DDDAS techniques includes multiple object tracking.
Object tracking using the DDDAS approach has been applied to hyperspectral
data [6], single video [7], and multiple cameras [8]. Using the adaptive streaming
of video data [9] provides an interface between visual surveillance [10] and user
analysis [11]. Advanced methods include the drift homotopy particle filter [12] for
Network Selection and Tracking [13].

In support of analysis of tracking, there are also examples for data analysis
for classification. Tracking methods include combinations with classification and
identification [14]. Examples include DDDAS solutions for fusion techniques for
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Table 28.1 DDDAS instantiations

Model Measurement Application Ref

Health monitoring Aircraft Piezo-electric wing UAV flights [1–5]
Tracking Kinematic Radar Surveillance [6–13]
Classification Shape Visual Detection [14–17]
Architecture Software Networked sensors Dataflow [18–26]
Cyber-physical Patterns Cyber attacks Security [27–29]
Environment Natural Energy Power, wind [30–34]

object classification from an array of sensors [15] for object recognition [16]. Using
the data available, spectrum information can be used through DDDAS for enhanced
object analysis [17].

The various techniques of DDDAS require software solutions to enable dis-
tributed processing, big data analytics, and model coordination. Software develop-
ments include middleware [18], cloud techniques [19], and dataflow architectures
[20]. Methods for parallelization support variational inference problems [21] as
well as multi-objective design optimization [22]. Our result focused on multimedia
database for context analysis which we extend here. Multimedia constructs include
content (data), entities (features), and scenes (context). Context enhanced infor-
mation fusion examples include imagery [23], user queries [24], text and tracking
[25] and content-based image retrieval (CBIR). The multiple applications of fusion
require resource management [26] to facilitate the ability of the user-defined queries
to be determined from the information management system.

In the support of the network of sensors and software architectures, there is a
growing support to cyber-physical system analysis. Recent examples include cyber
trust analytics [27], services for crisis management [28], and security and privacy of
networks [29] which can use a variety of data analytics techniques.

As with DDDAS, there is a need to understand how the sensor measurements,
dataflow, and application relate to the environment of the application. Inherently the
environment model provides context-aware capabilities [30]. Key examples include
analysis of air flow of wind models affecting control [31, 32]. The analysis of
the wind flow can detect plumes [33] as well as power sources of systems [34].
These monitoring applications of DDDAS are important in this research as related
to the streaming video processing that can be affected by power and line-of-sight
obstructions (Table 28.1).

Using these concepts from DDDAS, we seek to use context environment data
in analysis of multimedia content of user queries, video streaming processing,
and object tracking. We build on our previous work in DDDAS to explore data
analysis for tracking and identification techniques [35] and query-based multimedia
processing [36].

The remainder of this Chapter proceeds as follows. Section 28.2 describes
multimedia context analysis to support the unexpected query and Sect. 28.3 focuses
on data to support modeling of reality. Section 28.4 describes data-oriented and
analytical models. Section 28.5 presents the live video computing database manage-
ment system (LVCDBMS) starting with examples. Section 28.6 draws conclusions.
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28.2 Multimedia Analysis

Information fusion has been applied to many applications. One commonly
accepted model is the approach (shown in Fig. 28.2) as a common processing
framework for the cognitive, information, and physical domains [37]. The levels
(L) determine the processing in the system such as L0 data registration, L1 object
tracking and identification assessment [38], L2 situation awareness activity analysis,
[39], and L3 impact assessment [40]. The complementary control levels are: L4
sensor management, L5 user refinement and L6 mission (SUM) management [41].
Together, these levels of processing could be represented in a DDDAS framework.

Human-machine interaction (HMI) incorporates decision support, human
centered design, and user augmentation. In each of these approaches, a user interacts
with the system for which DDDAS would enable system analysis, model updates,
and queries as shown in Fig. 28.3. If we use information fusion as an example,
kinematic models support estimation of the incoming physical data for object
tracking. Likewise, semantic models process the human-derived queries. The data is
fused using a statistical method such as Bayes’ rule for a given software architecture
for query-based responses.

Utilization of contextual information by a machine includes the database system,
the sensor type (e.g., video), the context data, the extracted features (e.g., the
object), and the scenes (e.g., the environment). These operating conditions of the
sensor, object, and environment need to established together to support information
exploitation and contextual analysis [42]. The software architecture includes a
database, services, and methods of access. To process multimedia queries, modeling

Fig. 28.2 Information fusion physical, information, and cognitive domains
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Fig. 28.3 Man-machine systems operation for DDDAS query-based analysis

is needed to provide context which is fundamental to the Qualia-based Exploitation
of Sensing Technology (QuEST) concept [43].

28.2.1 QuEST

QuEST is a new approach to situational assessment (processes that are used
to achieve situational awareness), situation understanding (comprehension of the
meaning of the data as integrated with individual’s goals. It is the “so what” of the
data), or sensemaking (“a motivated, continuous effort to understand connections
which can be among people, places, and events in order to anticipate their
trajectories and act effectively” [44]) for decision quality.

Three processes are defined in QuEST:

• QuEST agent processes implement blended dual process cognitive models
(have both artificial conscious and artificial subconscious/intuition processes) for
situational assessment.

• QuEST artificially conscious processes all are constrained by the fundamental
laws of the QUEST Theory of Consciousness (structural coherence, situation
based, simulation / cognitively decoupled).

• QuEST subconscious/intuition processes do not use working memory and
thus considered autonomous (do not require consciousness to act). Current
approaches to data-driven artificial intelligence provide a wide range of options
for implementing instantiations of capturing experiential knowledge used by
these processes.
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QuEST is developing a ‘Theory of Knowledge’ – to provide the foundations to
understand what an agent or group of agents can know to support machine learning
and human-computer decision making. QuEST seeks principles on which a belief
or theory is based. The three tenets are:

• Structurally Coherent – the conscious representation has to have enough mutual
information with physical reality to facilitate interaction with the world in a
stable, consistent and useful manner (e.g., learned predictable explanations, links,
and outcomes).

• Situated Conceptualization – the fundamental units of conscious deliberation
are situation entities (e.g., context-based gists, time/space/multi-modality repre-
sentations, and plausible narratives).

• Cognitively Decoupled – the conscious representation is a hypothetical expla-
nation of the present, past or imagined future, it is a simulation which is not a
posting of sensor data (e.g., exformation and conceptual combination to generate
a new meaning).

Three related ideas from tenets include compression, exformation, and events.
Compression encodes an infinite number of stimuli into a single quale (e.g., low
bandwidth 50 bits/sec) for interaction. Events in situations may be communicated
to another agent as an event potential akin to an evoked potential (i.e., brain
response to a cognitive stimulus). Finally, exformation (pattern completion inferring
mechanism) affords a conscious representation. The conscious representation is
blended with data-driven processing. The deliberation using that representation
complements the conventional data-based representation with the ability to incor-
porate context. Context can either be stored or inferred by situating the hypothetical
representation to generate a cohesive narrative of the sensed data.

Together, the situated coherent experience extends processing, exploitation, and
dissemination of information. For processing, it is the formation of structured and
coherent understanding of collected data. For exploitation, it is the conceptualization
of the situation. Finally, for dissemination, the reported results are appended by
experiences where the pre-experienced or by imagined interpretations.

QuEST is exploring the concepts such as DDDAS that shed insights into the
current models for sensing-based situation reasoning, exploitation-based decision
making, and technology-based information analysis. A key issue is solving the
unexpected query.

28.2.2 Unexpected Query

One contemporary issue for query-based multimedia analytics is determining the
unexpected query. In many cases, the user has a notion of the scene content and the
expected analytics desired (such as tracking vehicles on roads). Future systems must
be able to answer, and or provide updates on an unexpected result. As an example
of a possible solution, Hendricks et al., [45] develop three systems to meet the
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challenge. It is a group of systems evaluating an analysis for knowledge reasoning.
An example of an unexpected query is asking for something not stored in a semantic
or model data base. Using the context of related information, responses to the
unexpected query can be provided. The three systems designed [45] include a video
system, a semantic library, and a method to link the video analytics to the stored
semantic descriptions. However the results come from only previously learned
information that combines data and models through semantic queries. Inherent in
the approach is a method needed for measuring the similarity of context through
adjacency of relations.

While solving the unexpected query is a difficult problem, methods for enhancing
the opportunities comes from multi-media data such as that of video supporting
text and text supporting video. Another option is transfer learning [46]. In transfer
learning, the domain requires learning the probability distribution functions for
modeling as well as applying them to the task such as labeling and then matching
features to labels.

28.3 Multimedia Contextual Reality

Future human-machine designs require the balance between automation and auton-
omy. For automation, systems designs require the user to input desired requests
such as the rules for object detection, activity analysis, and situation results. For
autonomy, the goal is to allow the machine to discover attributes of the scene and
report techniques to the user. The challenge comes when the situation is unknown
and that the models of reality have also not been completely modeled. Typical video
processing techniques assume limited human involvement; however most video
technology is employed for use by an analyst (automation) or for mission objectives
(autonomy). The definitions of autonomy and automation are:

• Automation: The system functions with no/little human operator involvement,
however the system performance is limited to the specific actions it has been
designed to do. Typically these are well-defined tasks that have predetermined
responses, i.e. rule-based responses. (Note: we rather suggest Data Driven AI)

• Autonomy: Systems which have a set of intelligence-based capabilities that
allow it to respond to situations that were not pre-programmed or anticipated in
the design (i.e., decision-based responses). Autonomous systems have a degree of
self-government, self-directed behavior (with the human’s proxy for decisions)
[47].

For automation, we organize the functions for estimation as those supporting
queries. The system estimates events as states in time, whereas users denote activ-
ities which are semantically described intervals of situation-based relationships.
Activities are thus composed on multiple events. Event-recognition is dependent
on analyst involvement as the enormous amounts of activities are not semantically
exhaustibly defined by a machine [48]. The techniques for autonomy include control
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functions such as those supporting the data-base management system (DBMS) to
include resource management, data storage, and indexing. The use of automation
and autonomy provide the processing that affords decisions to data [49]. The real
world consists of sensor, environment, and object (SET) operating conditions that
need to be assessed for the user [50] to determine the unexpected query.

In our previous analysis, we identified challenges that come from discovering the
unexpected queries. The problem is that autonomy also has to understand reality in
order to update the user on the outputs of the system. The assumptions from analysis
of multimedia context includes: (1) Problems Statement is precise, (2) Data can be
acquired, (3) Data/Evidence can be integrated, (4) Decisions are reproducible, (5)
Decisions are actionable, and (6) Error quantified.

Being aware of a situation can help guide DDDAS systems, but it might also
constrain the results. Thus modeling the situation includes multiple representations
of fidelity. For many situations, reality is understood and the proper reaction is
known – such as expecting cars to be at road intersections. This requires awareness
of the environment or the context of information. The challenge is when the reality
is unknown and the proper awareness of the environment is unknown. Figure 28.4
showcases the four cases from the unknown-known perception versus reality.

When reality is unknown and the environment is unknown, it requires learning
and analysis to deal with the high degree of uncertainty and complexity. When
the reality is unknown and the proper mode is understood, such a situation can be
overcome with diagnostics such as object classification. DDDAS requires contextual
modeling to address the common assumptions to relate perceived data to from
the unknown reality to the known reality. Thus, there is a need for data-driven,
knowledge-driven, and context-driven approaches to solve the unexpected query.

Fig. 28.4 Known versus unknown for perception versus reality
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• Data-driven implies that the assumption that the error can be quantified and that
data can be acquired which moves from the unknown-unknown to the unknown
reality, but known modeling.

• Knowledge-driven is based on the fact that the problem is specific (such as
object tracking) and that decisions are actionable.

• Context-driven brings together both data and knowledge. Fusing data helps to
move from the unknown reality to the known reality – such as removing false
assertions. Likewise, decisions that are reproducible help to verify from the
unknown perceptions to the known perceptions as the data is related through
the appropriate model.

Here we focus on the assumption that actions and decisions are reproducible
from the models.

28.4 Modeling for Multimedia Content

Modeling has many approaches from analytical, experimental, or processing. Many
of these approaches focus on the data such as collections of experiments which map
results from data to modeling instances. A current question for DDDAS is the types
of modeling approaches for which we combine physical modeling (e.g., theoretical)
with data modeling (i.e., software).

Multimedia context is established through content (data) which has been termed
content-based image retrieval (CBIR) or query by image content (QBIC) [51].
CBIR systems facilitate retrieval by accommodating a variety of query methods,
to include query by example, sketching an image by hand, random browsing,
text search (i.e., keyword, speech/voice recognition) and hierarchical navigation
by category [52]. Two modeling types that are interrelated include data-oriented
modeling and analytical modeling.

28.4.1 Data Oriented Models (Cyber)

Modeling and management of data and model-based representation of computation
to be performed on data are important aspects to take into account in the design and
understanding of DDDAS for multimedia content analysis.

A data model provides common definitions and formats so that different applica-
tions and systems can communicate data effectively. Careful consideration of data
models is important in multimedia content analysis, which by definition involves
heterogeneous forms of data, and also in many cases involves heterogeneous formats
for the same basic form of data (e.g., different compression formats for images).
Various research efforts have explored the development and application of data
modeling techniques for multimedia systems (e.g., see [53–55]).
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Fig. 28.5 Examples of commonly-used data structures

Data structures to efficiently store and manipulate multimedia data content are
also critical in design and integration of multimedia content analysis systems. For
example, use of common data structures can facilitate the efficient exchange of
content and extracted information. Figure 28.5 illustrates several data structures
that are commonly used in multimedia systems. Typical methods for a single
measurement system include a stack where data is stored and retrieved in a common
location. An array helps to align data in different locations for ease of access. If the
data is distributed, a linked-list can help associate information. Current techniques
are based on a hash table to rapid storage, access, and retrieval.

Dataflow is a form of model-based design that is useful in the design and
implementation of hardware and software for complex multimedia systems [56].
In this context, dataflow can be viewed as a model of computation in which
applications are represented as directed graphs that correspond to block diagrams
for signal and information processing. Individual dataflow processing blocks, called
actors, execute in a data-driven manner, which means that they can be invoked
whenever they have sufficient data on their inputs, and sufficient empty space
on their outputs to support their associated computations. Where and when (on
which processors and at what times) actors in a dataflow graph get executed are
determined by a scheduler, which is developed or synthesized as part of the process
of implementing a dataflow graph on a particular platform. This separation of
concerns between scheduling and behavioral specification is an important aspect
of dataflow-based design, and leads to powerful capabilities for design verification
and optimization. For more details on dataflow techniques for multimedia systems
and other forms of signal and information processing systems, we refer the reader
to [57]. Combined with a dataflow method, there is a need for the physical model.
Hence, what is stored and accessed has to be related to the application.
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Fig. 28.6 Physical modeling types

28.4.2 Analytical Models (Physical)

Analytical modeling of physical data typically comes from an empirical investi-
gation of the environment and the regressing on the results as shown in Fig. 28.6.
Such an empirical model is then supported by a theoretical model. For typical object
tracking, this is a kinematic model of the object movement [58]. However, behaviors
can be non-typical such as monitoring a car or vehicle against the physical and
social norms. Thus, models need to be updated based on emergent behavior and
ad-hoc updates such as determine the unexpected query. Here we seek to combine
theses approaches to performance DDDAS model updating. A related concept is
cyber-physical modeling.

28.4.3 Cyber-Physical Models

DDDAS is closely associated with sensor and software systems. Loosely defined,
the cyber-physical approach includes the combination of the software (e.g., cyber)
and hardware (e.g. physical) could be a form of cyber-physical systems analysis.
Video tracking has been associated with privacy, distributed processing and connec-
tions to CPS. Data should be in a format so as to curate the data and metadata for
analysis for a combination of cyber and physical analysis. Thus, the collaboration of
distributed computational elements would be used to control the physical entities.

With image captioning, there is a need for query analysis from sensors. To
measure performance, there is a need for credit assignment on how to select models
that support improved control. One way to assign credit is on the how the current
action relates to the previous result. To exploit the concept, we need to let the CPS
explore its environment from which policies can be adapted to model the update.
One such example for a temporal query credit assignment is that of low-frame rate
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systems from which understanding the video methods could alter the processing
analysis [59]. Various methods could be done in autonomy by the system or by
outputting the processing evaluation to the user for analysis [60].

Using DDDAS concept with data-oriented models, analytical models, and cyber-
physical concepts, we present use case to explore activity analysis for processing of
streaming video data.

28.5 Results: Activity Analysis

In order to develop a multimedia content analysis, the goal is to utilize both the
known modeling as well as allow the system to discover unknown relationships.
These unknown expectations should be developed from a combination of physical
modeling, computational data-oriented processing, and contextual reasoning [61].
In order to investigate such an analysis, the live-video computing (LVC) database
management system (LVC-DBMS) system is allowed to stream data from which
statistical analysis is done by varying the sample rate, detection size, and activity
analysis.

28.5.1 Interface

In order to provide queries for the analysis, an interface was designed to allow a
user to select the tracking results for object detection by varying the sample rate,
detection size, and activity analysis. These queries were generally defined such
that the analysis would afford some unexpected queries to be processed for model
updates (e.g., person detection outside the parking lot). Figure 28.7 shows the LVDB
concept and Fig. 28.8 shows the query interface.

The LVC-DBMS uses a query optimizer and associated execution environment
that is designed for the LVC environment [36]. It performs query optimization at
runtime, taking a new query and finding any possible overlap with the existing
queries in the system and rewriting the new query in order to minimize duplicate
subexpressions and optimize the utilization of the query execution engine (Fig.
28.7). Using the LVC environment interface (Fig. 28.8) and implemented in the
LVC-DBMS prototype reduce query execution overhead by merging the physical
algebra query trees. The merging of query trees is done through context associations.
To facilitate the performance evaluation and the impact of the query optimization,
a query cost metric (credit assignment) was derived and used to update modeling
performance results.
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Fig. 28.7 Process flow of LVBDMS

Using the LVC-DBMS, a relationship was established for the scene content from
text analysis (shown in Fig. 28.9). Two videos were selected from the DARPA
Video and Image Retrieval and Analysis Tool (VIRAT) data set of related scene
characteristics and the goal was intelligent situation analysis. The first is that of
a parking lot and the second is a parking lot located near an intersection. In
the first case, the modeling is known as people get in and out their cars. In the
second scenario, there is the expectation that people normally enter and exit the car,
however, there is a need for the system to discover new information.

28.5.2 Case 1: Intersection

In the first scenario, a video was selected that had both the parking lot as well as
background clutter from the road. With the cars traveling at the intersection and
people entering their cars in the streaming video (Fig. 28.10), a stable count rate is
maintained at the intersection as shown in Fig. 28.11.
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Fig. 28.8 The query-based interface

Fig. 28.9 Multimedia (text, video) query relations
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Fig. 28.10 Case 1:
Intersection with road traffic,
mostly vehicle maneuvers
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Fig. 28.11 Intersection activity recognition for different sampling rates for a fixed object size
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28.5.3 Case 2: Parking Lot

In the second scenario, there are many people moving in and out of the cars in
unexpected fashion, so the object count is higher for the activity detection. As
an example, in the Fig. 28.12, when the parking lot is viewed there is detection
from the car and person while variations in the scene clutter are also a result of the
scene complexity. Open queries were run on different sampling rates (computation)
and object sizes (image processing). As the object size query is increased, then the
update rate is not as distinguishing (Fig. 28.13). Thus, for real-time analysis when
bandwidth limitations exist, then the analytics could be subsampled without loss of
performance analysis.

The second analysis uses counts of activities that were analyzed for the size and
frequency intervals from which the sampling was conducted. In Fig. 28.14, it is
shown that the frequency interval of analysis for different object sizes has the ability
to distinguish new activities. For the object size, there is a difference in the count
which establishes the need for a query-based system to determine the object size (in
relation to the resolution of the image) and the selection of the sampling rate.

Fig. 28.12 Case 2: Parking
Lot: Clutter and object
detection with people
entering/exiting scene
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Fig. 28.13 Varying the update rate of the analysis

It is noted that the jump in the object count, from time step 150, indicates when
the significant number of activities happens. Thus, the absolute count is not the key
feature, but the relative change in the number of objects in the image. The analytics
highlight that to get the unexpected query; there is a need for dynamically varying
the detector size and sampling rate.

28.6 Conclusions

The paper focused the DDDAS concept for multimedia analysis which includes
both video tracking and query-based analytics. Large scale multimedia applications
will require dynamic data-driven applications systems (DDDAS) approaches to
bring together context, activity, and query analysis. The live-video computing
(LVC) database management system was used to explore unexpected queries for
model updates. The system provides context-aware, query-aware, and activity-
aware analysis both on the object size (application) and sampling rate (computation)
for data-oriented and analytical modeling updates. Results demonstrate the need for
open queries to determine unexpected situations in which defined queries cannot
determine all activities within a scene. The DDDAS approach is being used for
combinations of multimedia data sources [62], semantic and video queries [48],
analysis of patterns [63], and object tracking [64] for analytical model updates.
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Fig. 28.14 Activity results from the parking lot by varying the sampling rate and object size
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Chapter 29
Parzen Windows: Simplest
Regularization Algorithm

Jing Peng and Peng Zhang

Abstract Nonparametric learning methods such as Parzen Windows have been
applied to a variety of density estimation and classification problems. In this chapter
we derive a “simplest” regularization algorithm and establish its close relationship
with Parzen Windows. We derive the finite sample error bound for the “simplest”
regularization algorithm. Because of the close relationship between the “simplest”
algorithm and Parzen Windows, this analysis provides interesting insight to Parzen
Windows from the view point of learning theory. Our work is a realization of the
design principle of dynamic data driven applications system (DDDAS) introduced
in Chapter 1. Finally, we provide empirical results on the performance of the
“simplest” regularization algorithm (Parzen Windows) and other methods such as
nearest neighbor classifiers, and the regularization algorithm on a number of real
data sets. These results corroborate well our theoretical analysis.

29.1 Introduction

Learning from examples, or supervised learning, refers to the task of constructing a
predictive model from a set of training examples in the form of input-output pairs.
The resulting model is used to predict the output value of a test input. Examples
include regression, where output values are continuous, and classification, where
output values are discrete. There are other learning paradigms such as clustering
and reinforcement learning. This chapter focuses on supervised learning.

It is argued that a good predictive model is the one that generalizes well over
future unseen data [40]. In general, the problem is ill-posed [39, 40]. To mitigate
the unknown data problem, one can build predictive models by exploiting ideas
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developed in regularization theory [39, 40]. That is, a predictive model can be
constructed by simultaneously minimizing an empirical error on the sample data
and controlling the complexity of the model. The most relevant to this work is the
regularization algorithm described in [30], among others [14, 23, 24, 33, 35, 40, 46].

Other widely used techniques such as Parzen Windows and nearest neighbors
however do not require optimization [7, 13, 15, 21, 28]. These techniques build a
predictive model by estimating class conditional probabilities from the sample data,
and then select the class having the maximum class probability. Parzen Windows
and nearest neighbors have several attractive properties. For example, they produce
continuous and overlapping, rather than fixed, neighborhoods and use a different
neighborhood for each individual query so that all points in the neighborhood are
close to the query. Furthermore, empirical evaluation shows that these methods are
rather robust in a variety of classification problems [2, 11, 12, 16, 20, 21, 29].

Theoretically, it is known that in the asymptotic limit, the probability estimates
by these methods converge to the true unknown probabilities [7, 15]. Thus, the
classifier based on the estimated probabilities will converge to the optimal Bayes
decision rule. Also, a well-known observation is that at least half of the classification
information in an infinite data set resides in the nearest neighbor. However, when
the training sample size is limited, little systematic work has been carried out
on generalization performance. The known generalization performance for these
methods are typically obtained empirically. While empirical analysis can be justified
statistically, which only provides limited insights into algorithms’ performance.

In this chapter, we address the problem implied by the above discussions by
first deriving an algorithm that approximates the regularization algorithm (RA)
proposed in [30]. The regularization algorithm requires matrix inversion, while our
approximation does not. We call the resulting algorithm Simplest Regularization
algorithm, denoted by SR. This is particularly useful for on-board processing,
where resources are limited. Dynamic-data driven applications systems (DDDAS)
approaches focus on the combination of modeling, measurements statistical analy-
sis, and software. Successful applications of the DDDAS principle can be found
in [1, 3–5]. By addressing the computational requirements such as reducing
matrix inversions, using statistical analysis to reduce overfitting, and reporting for
increasing classification accuracy; efficient approximate learning is proposed for
robust performance, which is a realization of the design principle envisioned in
DDDAS. We also establish an error bound for the SR method based on the error
bound for the RA given finite samples. Finally we show that SR is closely related
to Parzen Windows, thereby providing insight into the performance of the Parzen
Windows classifier as well as nearest neighbor methods in finite settings. Thus, the
Chapter contributions are:

1. Derive the simplest regularization algorithm and establishing its relation to
Parzen Windows; and

2. Establish an error bound for the SR classifier and providing conditions under
which the method may not perform well.
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The rest of the chapter is organized as follows. Section 29.2 describes
research related to this work. Section 29.3 introduces the regularization learning
algorithm, and the corresponding error analysis. Section 29.4 derives the simplest
regularization algorithm based on the analysis of the learning algorithm described
in Sect. 29.4. Section 29.5 introduces our main result: finite sample error bound for
the simplest regularization algorithm. Section 29.6 analyses the tradeoff between
approximation and sample errors in terms of regularization constant. Section 29.7
discusses computational complexity of the proposed technique. Section 29.8
demonstrates a close relationship between the simplest regularization algorithm
and Parzen Windows, thereby providing insights into characteristics of Parzen
Windows classifiers. Section 29.9 provides experimental results that validate our
theoretical analysis. Finally, Sect. 29.10 summaries our contributions and points out
future research directions.

29.2 Related Work

Work in statistical learning theory [9, 40] provides a framework for analyzing error
bounds for predictive models given a finite sample data set. The error bound for such
a model usually contains two parts: the approximation error (bias), and the sample
error (variance). While a general approximation error bound is established [9, 30,
34], these bounds are infinite, unless the smoothness of the regression function fρ
(see below) matches the smoothness of the chosen kernel.

The regularized least squares methods has been studied for a long time, under
different names. In statistics, ridge regression [18] has been very popular for solving
badly conditioned linear regression problems. After Tikhonov published his book
[39], it was realized that ridge regression uses the regularization term in Tikhonov’s
sense. In the 1980s, weight decay was proposed to help prune unimportant neural
network connections, and was soon recognized that weight decay is equivalent to
ridge regression [17].

In [27], the relationship was established between kernel principal component
analysis and spectral cut-off regularization. It was shown that the regularization
parameter in spectral cut-off analysis represents exactly the number of principal
components to retain for kernel principal component analysis.

A generalized regularized least squares algorithm was proposed in [23]. In this
algorithm, regularization is restricted to part of the input space. The rationale is that
in a well defined part of the input space, regularization is unnecessary. Experimental
results showed that the algorithm is effective.

Recently, regularization is applied to penalize solutions away from a predefined
subspace [45]. The motivation is that searching for a solution in a predefined
subspace may result in loss of discriminant information. Allowing search to take
place in the original space increases the flexibility of resulting solutions. A potential
drawback is an increase in computation.
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More recently, potential function rules are investigated extensively in a very
closely related work [37]. It is shown that under appropriate conditions potential
function rules are equivalent to the Bayes decision rule. It introduces classifiers
based on potential functions and establishes generalization performance on these
classifiers. For a given input, the class potential measures on average how close the
input is to examples in that class. The measure in many ways is quite similar to the
nearest neighbor rule, where each neighborhood is the entire class. When classifiers
based on potential functions are estimated from training data, they are closely
related to the approximate regularized least squares algorithm proposed in this
chapter. Also, experimental results show very competitive performance registered
by potential function classifiers.

We note that the concept of margin is also closely related to regularization, that is,
the larger the margin, the less complex a classifier, resulting in better generalization
[22, 31, 41, 44]. Various large margin learning algorithms have been developed
that show very competitive performance [6, 11, 19, 25, 32, 38, 43]. We focus on
regularized least squares algorithms in this chapter.

29.3 Regularized Least Squares Method

In the framework of statistical learning theory, regularized least squares methods
have been revisited in [30], and discussed in [14] as regularization networks. Most
recently, error bounds for these techniques given a finite sample data set were
developed in [10]. Here we briefly summarize the theory.

Let X be a compact domain in Euclidean space and Y = R. Also let

z = {(x1, y1), · · · , (xm, ym)} (29.1)

be a set of m training examples drawn from X × Y according to a (unknown)
probability measure ρ on X × Y .

The regularization algorithm minimizes the following regularized functional:

1

m

m∑

i=1

(yi − f (xi))2 + λ‖f ‖2
k, (29.2)

where λ is the regularization parameter, and ‖f ‖2
k the norm in the hypothesis space

Hk induced by the kernel function k. A variety of kernel functions can be used. In
this work, we focus on the Gaussian kernel

k(x, x′) = e−‖x−x
′‖2

σ2 , (29.3)

where σ denotes the kernel width parameter.
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It is shown that the minimizer of Eq. (29.2) exists [30]. Furthermore, the
minimizer is unique and given by

fRA(x) =
m∑

i=1

cik(x, xi), (29.4)

where the coefficients cis can be computed by solving the following key system of
linear equations

(λmI +K)c = y, (29.5)

where Kij = k(xi, xj ) is the kernel matrix. Matrix (λmI + K) should possess a
good condition number. Thus, there should be no numerical problem in computing
(λmI +K)−1.

Let fρ be the true input-output function defined by fρ(x) =
∫
Y
dρ(y|x), where

ρ(y|x) is the conditional probability measure on Y [9, 30]. It is shown that [9, 30]

∫
(fRA − fρ)2dρX ≤ A(λ)+ S(λ), (29.6)

where ρX is the marginal probability measure on X,

A(λ) = λ1/2‖L−
1
4

k fρ‖2 (29.7)

represents the approximation error in this context, and

S(λ) = 32M2(λ+ Ck)2
λ2

v∗(m, δ) (29.8)

represents the sample error. Here Lk is an operator defined as

Lkf (x) =
∫

X

f (x′)k(x, x′)dρX. (29.9)

Note that the Gaussian kernel (29.3) is generally a smooth function, and the
eigenvalues of Lk decay exponentially fast. This requires the target function fρ to
be smooth as well. Otherwise, A(λ), as defined in (29.7), may be infinite.

In (29.8), M is a positive constant, which is chosen to satisfy |f (x) − y| ≤ M ,
and v∗(m, δ) is the unique solution of m4 v

3 − ln( 4m
δ
)v − cv = 0, where cv > 0 is a

constant. Ck is defined by:

Ck = max{1, sup
x,t∈X

|k(x, t)|}, (29.10)

where k(x, t) is a kernel function, and for the Gaussian kernel, Ck = 1.
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More recently, an improved error analysis has been proposed based on Shannon
sampling [34]. Sharper bounds are obtained using McDiarmid inequalities [26, 42]
and by replacing covering number arguments by integral operator estimates. While
these improved bounds can applied to both L2 and reproducing kernel Hilbert
spaces, the major shortcoming remains, as we shall see later.

Finding the optimal solution of the RA is equivalent to finding the best tradeoff
between A(λ) and S(λ) for given training data. That is, to minimize S(λ) + A(λ)
over λ > 0. There is a unique solution – a best λ choice in theory [10]. In real
applications, we usually find λ values through cross-validation.

29.4 Approximate Regularized Least Squares

In this section we derive our simplest regularization algorithm. In the discussion,
we use the ∞-norm for both matrices and vectors. Also for the sake of simplicity,
we use the notation ‖ · ‖ to represent the ∞-norm in the following discussion. This
norm, however, should not be confused with the norm used in the previous sections.

Lemma 1 Let B = K − I , where K is the kernel matrix Kij = k(xi, xj ), k is the
Gaussian kernel (29.3), and I is the identity matrix of proper size. If

λ >
‖B‖ − 1

m
, (29.11)

we have

(K + λmI)−1 =
∞∑

i=0

(−1)id−i−1Bi,

where d = 1+ λm.

Proof

‖d−1B‖ = d−1‖B‖ = ‖B‖
(1+ λm) <

‖B‖
(1+ ‖B‖ − 1)

= 1.

Using B = K − I , we can write (K + λmI) = dI + B = d(I + d−1B). We
have that (K + λmI)−1 = d−1(I + d−1B)−1. When ‖d−1B‖ < 1, it follows that
(the Neumann series) (I + d−1B)−1 =∑∞

i=0(−1)id−iBi . Thus, (λmI +K)−1 =∑∞
i=0(−1)id−i−1Bi . "#

Let

ĉ = d−1y. (29.12)
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We arrive at the simplest regularization algorithm, or SR:

fSR(x) =
∑

i

ĉik(xi, x) = 1

d
(
∑

i

yik(xi, x)). (29.13)

Note that λ is a decreasing function of m. This follows from that the fact as the
number of samplesm goes infinity, σ in Eq. (29.3) goes to zero. This implies thatK
approaches I . Therefore, ‖B‖ approaches zero.

Notice that SR (Eq. (29.13)) is closely related to potential function classifiers
investigated in [37]. For simplicity, we focus on the two class problem, where
y ∈ {−1, 1}. In particular, if we treat k(x, x′) (Eq. 29.3) as a Gaussian point
potential function, we can write the sample class potential function as φy(x) =
1
m

∑
yi=y k(xi, x), where y ∈ {−1,+1} [37]. This allows us to rewrite SR

(Eq. 29.13) as fSR(x) = 1
d
{φ+1(x) + φ−1(x)}. Therefore, instead of determining

the sample class potential function classifier according to fZ(x) = arg maxy φy(x),
the sample class potential function classifier can be computed as fZ(x) =
sign(fSR(x)), where 1 = sign(x) if x > 0, and −1 = sign(x) if x < 0.
Since potential function classifiers demonstrate very competitive performance on
a number of problems [37], this connection shows the strength and applicability of
SR.

Let c = (λmI +K)−1y. We now ask: How well does our ĉ approximate c? From
Lemma 1 we have that (λmI +K)−1 = d−1(I − d−1B + d−2B2 + · · · ). Let

E = (I − d−1B + d−2B2 + · · · ). (29.14)

Then

c = d−1Ey. (29.15)

We can now establish a upper bound for the approximation error ‖c − ĉ‖.
Lemma 2 Let c and ĉ as in (29.15) and (29.12), respectively. Then

‖c − ĉ‖ ≤ ‖B‖
d(d − ‖B‖) ,

where d = 1+ λm and B = K − I .

Proof From Eqs. (29.12), (29.14) and (29.15) we have

c − ĉ = −d−2By + d−3B2y − d−4B3y + · · · .

Then, observing that ‖y‖ = 1 (since y ∈ {−1,+1}), ‖c− ĉ‖ ≤ ‖B‖
d2 (1+‖d−1B‖+

‖d−2B2‖ + · · · ). Since ‖B‖
d
< 1, it follows that 1 + ‖d−1B‖ + ‖d−2B2‖ + · · · ≤

d
d−‖B‖ . Therefore, ‖c − ĉ‖ ≤ ‖B‖

d2
d

d−‖B‖ = ‖B‖
d(d−‖B‖) . "#
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29.5 Error Bound for SR

We now establish the error bound for the approximate regularization function fSR in
(29.13). We split the error for fSR into two parts. The first part is the error between
fSR and RA fRA. The second part is the error between fRA and the true target fρ .
By combining these two terms we obtain the error bound for SR.

Lemma 3 Let λ > ‖B‖−1
m

. Then

∫

X

(fSR − fρ)2dρX ≤ 2(D(λ)+ S(λ)+ A(λ)), (29.16)

where

D(λ) = ‖B‖2

λ2(λm+ 1− ‖.B‖)2 , (29.17)

Here S(λ) and A(λ) are given by (29.8) and (29.7).

Proof First we prove:
∫
X
(fSR − fRA)2dρX ≤ D(λ) = ‖B‖2

λ2(λm+1−‖B‖)2 . From (29.4)
and (29.13), we have that

∫

X

(fSR − fRA)2dρX =
∫
X
(
∑m
i=1(ci − ĉi )k(xi, .))2dρX (29.18)

≤ maxx |∑m
i=1

‖B‖
d(d−‖B‖) k(xi, .)|2 (29.19)

≤ ‖B‖2

λ2(λm+1−‖B‖)2 . (29.20)

Thus
∫
X
(fSR − fρ)2dρX ≤ 2(D(λ)+ A(λ)+ S(λ)). "#

To have a better understanding of D(λ), we state the following lemma.

Lemma 4 (Corollary 5 of [34]) Let the training data z (29.1) be randomly drawn
according to ρ. If fρ is in the range of Lk (29.9), then for any 0 < δ < 1, with
confidence 1− δ we have that

‖fRA − fρ‖ρ ≤ C̃( log(4/δ)2

m
)1/4 (29.21)

by taking

λ = ( log(4/δ)2

m
)1/4. (29.22)

Here ‖ · ‖ρ is the norm induced by the inner product 〈f, g〉ρX =
∫
X
f (x)g(x)dρX ,

and C̃ is a constant independent of the dimension C̃ = 30κM+2κ2M+‖L−1
k fρ‖ρ .

Here κ = √supx∈X k(x, x).
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Note that for the choice of the Gaussian kernel (29.3), κ = 1. Thus, C̃ reduces to
C̃ = 32M + ‖L−1

k fρ‖ρ .
For the choice of λ (29.22), we see that λ = (log(4/δ)2)1/4m−1/4 =

Cδm
−1/4, where Cδ is a constant for a given δ. This also implies that λm1/4 =

(log(4/δ)2)1/4 = Cδ . Therefore, λm has the following growth rate

λm = Cδm3/4 = O(m3/4). (29.23)

From (29.17) and (29.23), we have that λ2(λm+1−‖B‖)2 = C4
δm(1− ‖B‖−1

Cδm3/4 )
2. It

is clear that 1− ‖B‖−1
Cδm3/4 → 1, asm→∞. Also, as discussed earlier, ‖B‖ approaches

zero as m goes to infinity. It follows that

D(λ) = O(1/m). (29.24)

That is,D(λ) goes to zero at the rate of O(1/m). We note that condition λ > ‖B‖−1
m

is guaranteed by condition (29.22).

29.6 Bias, Variance and Regularization Constant

In this section, we further examine the error bound (29.6) and regularization
constant λ, where approximation error A(λ) (29.7) corresponds to bias, and sample
error S(λ) (29.8) corresponds to variance.

29.6.1 Regularization Constant

The error bound is a function of regularization constant λ, training data size m,
indirectly the kernel function k (affecting v∗(m, δ)), and M . Notice that M is a
positive constant that is chosen to satisfy |f (x) − y| ≤ M , while Ck is determined
by the kernel function. For the Gaussian kernel it is 1, as we showed before (29.10).
Here we consider that we are given a fixed training data size m and the kernel
function k. The error bound becomes a function of λ only. We will minimize the
regularization error bound S(λ)+ A(λ) for λ > 0.

In order to achieve the minimum of S(λ) + A(λ), it is necessary that −S′(λ) =
A′(λ). Taking derivatives with respect to λ, we obtain that A(λ) = λ1/2‖L−

1
4

k fρ‖2,

andA′′(λ) = − 1
4λ
−3/2‖L−

1
4

k fρ‖2. Similarly, we have S(λ) = 32M2(λ+Ck)2
λ2 v∗(m, δ),

and −S ′′(λ) = −64M2(
2Ck
λ3 + 3C2

k

λ4 )v
∗(m, δ).

Since ‖L−
1
4

k fρ‖2 > 0 and v∗(m, δ) > 0, both A(λ) and S(λ) are positive
functions. A(λ) is strictly increasing in (0,+∞), while S(λ) is strictly decreasing
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in (0,+∞) and converges to a positive constant 32M2v∗(m, δ). Furthermore, A′(λ)
is a positive function strictly decreasing in (0,+∞), while −S′(λ) is a positive
function monotonically decreasing in (0,+∞). The question becomes: is there a
unique λ∗ > 0 such that

−S′(λ∗) = A′(λ∗). (29.25)

Let the left hand side of (29.25) be: L(λ) = −S′(λ). Also, let the right hand side
be: R(λ) = A′(λ). Notice that both L(λ) and R(λ) are monotonically decreasing

functions. Now consider λR(λ) = λA′(λ) = 1
2λ

1/2‖L−
1
4

k fρ‖2, and λL(λ) =
−λS′(λ) = 64M2(

Ck
λ
+ C2

k

λ2 )v
∗(m, δ). Clearly, λR(λ) is a monotonically increasing

positive function in (0,+∞), and limλ→0+ .λR(λ) = 0+.
On the other hand, λL(λ) decreases monotonically in (0,+∞), and λL(λ)

approaches +∞ as λ approaches 0. Thus, there must be a unique solution λ∗ > 0
such that λ∗L(λ∗) = λ∗R(λ∗). It follows that if L(λ) = R(λ) has more than
one distinct solutions in (0,+∞), so does λL(λ) = λR(λ). That contradicts the
fact that there is a unique λ such that λL(λ) = λR(λ). Therefore, L(λ) = R(λ)

must have a unique solution. That is, there is a unique λ∗ in (0,+∞) such that
A′(λ∗) = −S′(λ∗).

Figure 29.1 shows the relationship betweenA(λ) and S(λ) in order to achieve the
minimum of A(λ) + S(λ). It can be seen that the minimum is attained at λ∗ when
the optimal tradeoff between bias and variance is achieved.

Fig. 29.1 Regularization
error bound: Minimum is
attained when optimal
tradeoff between sample error
and approximation error is
achieved

A(λ)

S(λ)

A′(λ)

−S′(λ)

λ

λ*

λ*

λ0

0
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29.6.2 Regularization Constant and Simplest Regularization

A similar argument can be made about the bias and variance tradeoff for SR.
Consider D(λ) (29.17). The first term of the upper bound for the SR classifier
(29.16). Taking derivatives of D(λ) with respect to λ, we have that D(λ) =
‖B‖2/(λ2(λm + 1 − ‖B‖)2), −D′(λ) = (2‖B‖2)/(λ3(λm + 1 − ‖B‖)2) +
(2‖B‖2m)/(λ2(λm+1−‖B‖)3), and−D′′(λ) = −(6‖B‖2)/(λ4(λm−1+‖B‖)2)−
(8‖B‖2m)/(λ3(λm+ 1− ‖B‖)3)− (6‖B‖2m2)/(λ2(λm+ 1− ‖B‖)4).

Notice that λ can not be chosen arbitrarily in (0,+∞) in the upper bound (29.16).
Instead, it is only in the range (max{ ‖B‖−1

m
, 0},+∞). It can be seen that D(λ) is a

positive function strictly decreasing in (max{ ‖B‖−1
m

, 0},+∞). −D′(λ) is positive

function decreasing in (max{ ‖B‖−1
m

, 0},+∞). We now show that there is a unique

λ# ∈ (max{ ‖B‖−1
m

, 0},+∞) such that

−2D′(λ#)− 2S′(λ#) = 2A′(λ#). (29.26)

The analysis is very similar to the proof for RA. In this case, the left hand side of
(29.26) is L(λ) = −2D′(λ) − 2S′(λ), while the right hand side is R(λ) = 2A′(λ).
It follows that λL(λ) decreases monotonically in (max{ ‖B‖−1

m
, 0},+∞). Therefore

lim
λ→max{ ‖B‖−1

m
,0}
λL(λ) = +∞. (29.27)

Similarly, λR(λ) = λA′(λ) = 1
2λ

1/2‖L−
1
4

k fρ‖2. Thus, λR(λ) is a monotonically
increasing positive function in (0,+∞), and

lim
λ→0+

λR(λ) = 0+. (29.28)

Combining (29.27) and (29.28), we obtain that there is a unique λ# in
(max{ ‖B‖−1

m
, 0},+∞) such that −2D′(λ#)− 2S′(λ#) = 2A′(λ#).

It is important to note that λ is not a parameter of SR. When λ > ‖B‖−1
m

, SR is an
approximation to RA and its error bound can be derived from that for RA. However,
the error bound for SR does not depend on λ. We thus establish the following:

Theorem 1 The error bound for SR is:

∫

X

(fSR − fρ)2dρX ≤ 2(D(λ#)+ A(λ#)+ S(λ#)), (29.29)

where D(λ), A(λ), and S(λ) are defined in (29.17), (29.7), and (29.8), respectively,
and λ# is the unique solution to A′(λ) = −S′(λ)−D′(λ).
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Fig. 29.2 Error bound for
SR 2A(λ)

2D(λ)+2S(λ)

2A′(λ)

−2D′(λ)−2S′(λ)

(||B||−1)/m λ#

λ# λ

λ

0

0

Compared to RA, the minimal point of the error bound for SR is pushed toward
right. That is, the crossing between 2A′(λ) and −2D′(λ) − 2S′(λ) is shifted to the
right, as shown in Fig. 29.2. The error bound for SR is at least twice that for RA. In
addition, optimal performance may require λ∗ to be less than (||B||−1)

m
, the barrier

that the SR algorithm can not cross. As a consequence, the performance of the SR
algorithm will be much worse than RA in such situations.

Figure 29.2 shows the error bound curves. It may be argued that the error bound
for SR may not be as tight as the bound for RA. However, this is reasonable because
SR, as a special case of RA, lacks the capacity to approximate complex functions,
while RA has no such restrictions.

29.7 Computational Complexity

During training, fRA (29.4) is computed by inverting matrix (λmI+K) to obtain the
coefficients cis (29.5). Computing (λmI+K)−1 requires O(m2.807) operations on a
serial machine [36], where m represents the number of training examples. When m
is large, inverting (λmI +K) becomes problematic in terms of space and time. On
the other hand, no operation is required for SR during training. During testing, O(m)
is required for both the regularization and the simplest regularization algorithms.
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29.8 SR and Parzen Windows

Parzen Windows [13, 15, 28] is a technique for density estimation that can be used
for classification. Using a kernel function, Parzen Windows approximate a given
training data distribution via a linear combination of the kernels centered on the
training points. Here, each class density is approximated separately and a test point
is assigned to the class having maximal (estimated) class probability.

Given a training sample (Eq. 29.1), Parzen Windows can be defined as

fParzen(x) =
∑

yik(xi, x) (29.30)

where k() is a kernel function. For the binary case, the resulting Parzen Windows
classifier is very simple

f̃P arzen(x) = sign(
∑

yik(xi, x)). (29.31)

Since multiplying f̃P arzen by any positive constant will not change it, one can see
that in the binary classification case, approximate RA (29.13) and Parzen Windows
behave the same. Thus Lemma 1 states that under appropriate conditions, the Parzen
Windows classifier is an approximation to RA. Although the Parzen Windows
classifier performs well asymptotically [13], it may fail to do so in applications
with limited samples. Therefore, our analysis of approximate RA provides insight
into the characteristics of Parzen Windows in a finite setting.

The Parzen Windows does not require any training and can be viewed as a
generalization of k-nearest neighbor techniques. Rather than choosing the k nearest
neighbors of a test point and labelling the test point with the majority of its
neighbors’ votes, one can consider all points in the voting scheme and assign
their weight by the kernel function. With Gaussian kernels, the weight decreases
exponentially with squared distance, so far away points are practically irrelevant.
The width σ of the Gaussian kernel determines the relative weighting of near and
far points. Tuning this parameter controls the predictive power of the system.

29.9 Experiments

We now examine the performance of SR and RA on a number of simulated and real
examples.
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Fig. 29.3 Toy examples: left: two Gaussians f2. right: four Gaussians f4

29.9.1 Simulated Data Experiment

We use two simulated examples to illustrate the relationship between RA and SR.
The function in the left panel in Fig. 29.3 is defined by

f2(x) = 0.5
2∑

i=1

exp(−(x − μi)t�−1(x − μi)), x (29.32)

where μ1 = (0.4, 0.6)t , μ2 = (0.6, 0.4)t , and � =
(

0.005 0
0 0.005

)
. The function

in the right panel in Fig. 29.3 is defined by

f4(x) = 0.5
2∑

i=1

exp(−(x−μi)t�−1(x−μi))−
4∑

i=3

exp(−(x−μi)t�−1(x−μi)),
(29.33)

where μ1 = (0.3, 0.7)t , μ2 = (0.7, 0.3)t , μ3 = (0.3, 0.3)t , μ4 = (0.7, 0.3)t , and

� =
(

0.005 0
0 0.005

)
.

In both experiments, we varied the number of training examples from 500 to
2000, with 100 example increment. For each training example, (x, y), x was drawn
uniformly randomly from [0, 1], while y was determined according to f2(x) (29.32)
in the first experiment, and f4(x) (29.33) in the second experiment, respectively. For
each training set, 2000 test examples were generated independently from [0, 1]2.

There are two procedural parameters, σ (29.3) and λ (29.5). σ is common to
both RA and SR, and was set 0.1 throughout the experiments. For RA, λ was fixed
to 0.01 throughout. For SR, since λ > ‖B‖−1

m
, d = 1+ λm > ‖B‖. We thus set d to

‖B‖+ 0.1 in (29.13). Note that in this case, d was not fixed. Rather, d depended on
the value of ‖B‖.
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Fig. 29.4 Mean squared errors of RA and SR, mean squared difference between RA and SR, and
1
m

as a function of the number of training examples averaged over 50 runs on two Gaussians (left),
and four Gaussians (right)

Figure 29.4 shows the mean squared errors of both RA and SR, the mean squared
difference between RA and SR, and 1

m
as a function of the number of training

examples averaged over 50 runs on the two toy examples. The results show that
both RA and SR performed better on the two Gaussian function f2 (29.32). In both
cases, the mean squared difference between fSR and fRA, i.e., D(λ) is bounded
by O( 1

m
), which corroborates well with our theoretical analysis, characterized in

(29.24).

29.9.2 Real Data Experiment

29.9.2.1 Methods

The following methods are evaluated in the real data experiment.

• SR–Simplest regularization algorithm proposed in this chapter (29.13).
• RA–Regularization algorithm (29.5).
• SVMs–Support Vector Machines with the Gaussian kernel [8].
• 3NN–Three nearest neighbor method. We included this method, because as we

discussed before, the Parzen Windows classifier can be viewed a generalization
of the nearest neighbor classifier.

For the SR (Parzen Windows) classifier, there is only one parameter to tune:
σ of the Gaussian kernel. That is, d in (29.13) does not influence classification
performance. For the RA, there are two parameters to tune: σ and λ. For SVMs,
there are also two parameters to tune: σ and C (which controls the softness of the
margin [8]). These parameters are chosen by ten-fold cross-validation.
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29.9.2.2 Data Sets

The following two class problems are used to evaluate the four competing meth-
ods.

1. Sonar data (Sonar). This data set consists of n = 60 frequency measurements
made on each of 208 data of J = 2 classes (“mines” and “rocks”). The problem
is to classify each test point in the 60-dimensional feature space to its correct
class.

2. Glass Identification data (Glass). The data set has n = 9 continuous numerical
features describing each of 214 instances in two classes: Window vs non-
Window glasses. The objective is to assign the class label to each test instance.

3. Credit Approval data (Credit). There are 690 examples and two classes in this
data set. Each example is represented by 15 features. The features are a mix
of continuous, nominal with small numbers of values, and nominal with larger
numbers of values. There are 307 instances in one class, and 383 in the other
class.

4. Heart disease diagnosis data (Heart Cleve). This data set consists of 303
instances in two classes (There are five original classes. However, we regrouped
these five classes into two.) Each of these instances is represented by 13
numerical attributes. The data was collected at Cleveland Clinic Foundation.
The goal is to predict the presence of heart disease in the patient.

5. Heart disease diagnosis data (Heart Hungary). Similar to Heart Cleve, this
data set consists of 294 instances represented by 13 numerical attributes. The
data was collected at Hungarian Institute of Cardiology, Budapest. The objective
is to predict whether a patient has heart disease.

6. Iris data (Iris). This data set consists of n = 4 measurements made on each of
100 iris plants of J = 2 species. The two species are iris versicolor and iris
virginica. The problem is to classify each test point to its correct species based
on the four measurements.

7. Ionosphere data (Ionosphere). The data consists of 34 electromagnetic features
that are used to determine “good” or “bad” (J = 2) radar returns characterizing
evidence of some type of structure in the ionosphere. The data set of 351
instances.

8. Thyroid Gland data (New thyroid). Five (n = 5) lab tests are used to predict
whether a patient’s thyroid is normal or hypo and hyper functioning (two
classes). All five attributes are continuous. There are total 215 instances, of
which 150 are in the normal class, while the remaining ones (65) are in the
hypo and hyper class.

9. Letter data (Letters). This data set consists of a large number of black-and-
white rectangular pixel arrays as one of the 26 upper-case letters in the English
alphabet. Each letter is randomly distorted through a quadratic transformation
to produce a set of 20,000 unique letter images that are then converted into
q = 16 primitive numerical features. For this experiment we select letters “U”
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and “W”, where there are 813 “U” instances and 752 “W” instances. Thus, the
data set consists of 1565 letter images.

10. Pima Indians Diabete data (Pima). This data set consists of n = 8 numerical
attributes measured for each of 768 samples of J = 2 classes. The problem is
to classify each test point in the 8-dimensional space to its correct class.

11. Breast cancer data (Breast cancer). The data consists of 9 medical input
attributes that are used to make a binary decision on the medical condition:
determining whether the cancer is recurring (recurrence vs no-recurrence). The
data set has 286 instances, of which 201 are in the no-recurrence class, while
the remaining 85 are in the recurrence class.

12. Wisconsin breast cancer data (Cancer Wisconsin). The data consists of 9
medical input features that are used to make a binary decision on the medical
condition: determining whether the cancer is malignant or benign. The data set
consists of 683 instances after removing missing values.

13. Central Nervous System data (Cns). This problem is about predicting patient
outcome for central nervous system embryonal tumor. It consists of patients
who are alive after treatment while the failures are those who succumbed to their
disease. The data set contains 60 patient samples, 21 are survivors (class 1) and
39 are failures (class 2). There are q = 7129 genes (features) in the dataset.

14. Colon data (Colon). This dataset is similar to the yeast data. It contains
expression levels of q = 2000 genes taken in 62 different samples. For each
example it is indicated whether it came from a tumor biopsy or not (two classes).

15. Leukemia data (Leuk). The leukemia dataset is a collection of leukemia patient
samples. This dataset often serves as benchmark for microarray analysis meth-
ods. It contains measurements corresponding to acute lymphoblast leukemia
(ALL) and acute myeloid leukemia (AML) samples from bone marrow and
peripheral blood. The dataset consisted of 72 samples: 25 samples of AML,
and 47 samples of ALL. Each sample is measured over 7,129 genes.

16. Reuturs-21578 data (Op). The Reuters-21758 corpus contains Reuters news
articles from 1987. It has hierarchical structures. The task is to classify
the top-category documents. For this experiment, we use two top categories
(Organizations or class 1 and People or class 2). There are 1,175 examples in
class 1 and 1,270 examples in class 2. Each example is described by q = 1000
numerical features.

17. Reuturs-21578 data (Opl). The Reuters-21758 corpus contains Reuters news
articles from 1987. Similar to the Op data set, the task is to classify the
top-category documents. For this experiment, we use two top categories (Orga-
nizations or class 1 and Places or class 2). There are 1,175 examples in class 1
and 884 examples in class 2. Each example is described by q = 1000 numerical
features.

18. Cat and Dog data (CatDog). This image data set consists of two hundred images
of cat and dog faces. Each image is a black-and-white 64× 64 pixel image, and
the images have been registered by aligning the eyes.
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29.9.2.3 Experimental Results

Each data set was randomly split into 60% training and 40% testing. We repeated
this process 30 times to obtain average error rates. All training data had been
normalized to have zero mean and unit variance along each variable. The test data
were similarly normalized using training mean and variance. Table 29.1 shows the
average error rates of the four competing methods over 30 runs on the 18 data sets
described above.

Columns RA-3NN and RA-SR in the table show the difference in performance
between RA and 3NN, and between RA and SR, respectively, using the paired-
sample t-test. 1 indicates the difference is significant at the 95% confidence level,
while 0 indicates the difference is insignificant. Out of the 18 data sets, the simplest
regularization algorithm registered similar performance to that of the regularization
algorithm on 10. They performed differently on the remaining data sets. A closer
look at these data sets shows that the average λ values chosen (through cross-
validation) by RA were less than 0.019. On the other hand, the average values of
‖B‖−1
m

were at least 0.608. Recall that, SR (Parzen Windows), as an approximation

to RA, only approximates RA when the value of λ is greater than ‖B‖−1
m

(29.11).

Table 29.1 Error rates of the competing methods: 3NN, SR (Parzen), RA and SVMs on the 18
data sets averaged over 30 runs. Columns RA-3NN and RA-SR show performance difference
between RA, 3NN, and SR, respectively, using paired t-test: 1 significant and 0 otherwise.
Average λ values chosen by RA and average (||B|| − 1)/m values are also shown

3NN SR (Parzen) RA SVMs RA-3NN RA-SR λ
‖B‖−1
m

Sonar 0.200 0.167 0.165 0.203 1 0 0.008 0.153

Glass 0.074 0.065 0.063 0.065 1 0 0.008 0.324

Credit 0.155 0.158 0.138 0.139 1 1 0.023 0.632

Heart-c 0.178 0.171 0.171 0.168 0 0 0.218 0.634

Heart-h 0.201 0.200 0.191 0.184 1 1 0.069 0.592

Iris 0.059 0.074 0.053 0.073 0 1 0.008 0.683

Ionosphere 0.156 0.132 0.100 0.052 1 1 0.005 0.583

Thyoid 0.065 0.052 0.050 0.046 1 0 0.022 0.186

Letter 0.004 0.005 0.004 0.005 0 0 0.005 0.009

Pima 0.275 0.260 0.231 0.253 1 1 0.007 0.753

Cancer-w 0.035 0.039 0.033 0.034 0 1 0.013 0.568

Cancer 0.315 0.280 0.274 0.296 1 0 0.710 0.433

Cns 0.422 0.390 0.388 0.356 0 0 0.005 0.024

Colon 0.457 0.389 0.381 0.353 1 0 0.005 0.019

Leuk 0.413 0.339 0.339 0.353 1 0 0.005 0.021

Op 0.470 0.464 0.432 0.432 1 1 0.022 0.450

Opl 0.488 0.425 0.420 0.415 1 0 0.031 0.364

CatDog 0.416 0.395 0.188 0.118 1 1 0.005 0.600

AVE 0.244 0.223 0.201 0.197
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Table 29.2 Performance of RA on the data sets where the difference between SR and RA is
insignificant, averaged over 30 runs. Second column shows the error rates when λ value was
chosen through cross-validation. Forth column shows the error rates when the λ value was set
to the average ‖B‖−1

m
value shown in Table 29.1 (also shown in column five) throughout the runs

RA ave(λ) RA ave(
‖B‖−1
m

) Diff

Sonar 0.165 0.008 0.169 0.153 0

Glass 0.063 0.008 0.064 0.324 0

Heart-c 0.171 0.218 0.168 0.634 0

Thyoid 0.050 0.022 0.053 0.186 0

Letter 0.004 0.005 0.004 0.009 0

Cancer 0.274 0.710 0.280 0.433 0

Cns 0.388 0.005 0.390 0.024 0

Colon 0.381 0.005 0.392 0.019 0

Leuk 0.339 0.005 0.348 0.021 0

Opl 0.420 0.031 0.401 0.364 0

When a problem demands a complex decision function, RA can choose a smaller
λ value to meet this demand. On the other hand, SR can not. The simplest
regularization algorithm (Parzen Windows) lacks the ability to choose complex
functions to fit the data.

For the data sets in which the difference in performance between SR and RA
is insignificant, it turns out that either RA favored large λ values (Cancer data
set), or when using larger λ values, its performance does not degrade significantly.
Table 29.2 shows a case in point. The fourth column in Table 29.2 shows the
performance of RA, averaged over 30 runs, when the λ value was set to the
average ‖B‖−1

m
value shown in Table 29.1 (also shown in column five in Table 29.2)

throughout the runs. The results lend support to our theoretical analysis.
The results also show that the 3NN classifier performed slightly worse than SR.

3NN performed similar to RA in 5 out of the 18 data sets, compared to 10 for SR.
We note that nearest neighbor classifiers can potentially perform better with varying
number of nearest neighbors or with adaptive distance metrics.

The main advantage of the simplest regularization algorithm is computational. As
the number of training examples increases, computing the inverse of (λmI +K)−1

can be costly, in terms of space and time. In addition, as the number of training
examples increases, D(λ) diminishes (29.17) and (29.24). As a result, the error
bound is at most twice the error bound for RA. In applications where resources
are at premium, SR can be advantageous.
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29.10 Summary

In this chapter, we have developed a “simplest” regularization algorithm, and shown
its relation to Parzen Windows. The development is a realization of the DDDAS
design principle, which finds success in many real world applications. We have
also established the error bound for the SR algorithm based on the error bound for
RA given finite samples. Our analysis shows that SR, thus the Parzen Windows
classifier, has an asymptotic error rate that is at most twice that for RA under
appropriate conditions. Our analysis also brings insight into the performance of the
nearest neighbor classifier. We have provided the conditions under which when SR
(Parzen Windows) is a good approximation to RA and the conditions under which
it is not. Finally, the experimental results corroborate with our theoretical analysis.
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Chapter 30
Multiscale DDDAS Framework for
Damage Prediction in Aerospace
Composite Structures

A. Korobenko, M. Pigazzini, X. Deng, and Y. Bazilevs

Abstract In recent years, there has been a significant increase in the use of
Unmanned Aerial Vehicles (UAV). UAVs are expected to fly a large number of
long (48 or more hours) missions, and operate without failure. Furthermore, in
order to increase the durability of these vehicles and to decrease weight, composite
materials are currently experiencing a widespread adoption in applications related
both to military and civilian aerospace structures. As a result, in order to decrease
costs associated with the operation, maintenance, and, in some cases, loss of these
vehicles, it is desirable to have a Dynamically Data-Driven Applications Systems
framework that can reliably predict the onset and progressions of structural damage
in geometrically and materially complex aerospace composite structures operating
in the environments typical of UAVs. In this chapter we present a multiscale
DDDAS Interactive Structure Composite Element Relation Network (DISCERN)
framework.The proposed multiscale DISCERN framework is successfully deployed
on a full-scale laminated composite structure to predict the damage onset, evolution,
and the structure remaining fatigue life.
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30.1 Introduction

Sensor and measurement data alone are, in general, insufficient for making pre-
dictions about damage initiation and progression. Although measurement data
corresponds to an actual physical system of interest, it is typically limited to
a small number of spatial points, and involves quantities that are not directly
related to structural damage. By the same token, data coming from standalone
high-fidelity computational models are also not sufficient for making predictions
about damage initiation and progression. Indeed, while three-dimensional and
time-dependent data sets may be extracted, including quantities directly related
to damage; the underlying computational model makes many assumptions about
geometry, materials, constitutive models, boundary and initial conditions, etc.,
which are often approximations of physical reality. DDDAS [8] is a framework in
which sensor and measurement data collected for a given physical system are used
to dynamically update a computational model of that system. Using measurement
data, the computational model geometry, boundary conditions, external forces, and
material parameters may be updated to better represent physical reality. At the same
time, the updated computational model can produce higher-fidelity outputs for the
quantities of interest for which measurements are not readily available, and provide
feedback to a measurement system. As such, DDDAS is a framework in which
measurement and simulation co-exist in a symbiotic environment.

Biuilding upon an early version of the DDDAS Interactive Structure Composite
Element Relation Network (DISCERN) framework, the multiscale DISCERN
framework reflects the multiscale nature of laminated composites by applying the
DDDAS concept at all spatial and temporal scales involved in the modeling of
composite materials damage. This improve the overall predictive capability for
damage initiation and evolution in real-life aerospace structures.

In this chapter we present the first part of the framework, focusing on the
computational modeling for the prediction of the damage growth in multi-layered
composites. The dynamic coupling between computational model and measurement
data will be presented which supports future experiments.

First, we introduce the multiscale DISCERN framework for damage prediction
in composite aerospace structures. Then we provide an overview of the compu-
tational framework. We focus in particular on the isogeometric discretization of
the continuum fields and on the progressive damage model implemented in the
framework of the Continuum Damage Mechanics (CDM) for thin-shell elements.
The computational framework is then applied to predict the fatigue-damage in full-
scale wind turbine blade and predict the damage growth in the Orion Unmanned
Aerial Vehicle (UAV), designed by Aurora Flight Science, under a severe landing
condition. In the last section we draw conclusions and present future research
directions.
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30.2 The Multiscale DDDAS Framework

Damage in composite laminates exhibits complex behavior due to heterogeneous
failure mechanisms occurring across different spatial scales. A damage model may
be either discrete or continuous depending on the scales involved. The model
is typically discrete for atomistic voids and lattice defects, and continuous for
micro-, meso-, and macroscales. At the microscale, a Representative Volume
Element (RVE) is typically introduced to model phenomena such as separation (or
debonding) at the fiber-matrix interface or the initiation, growth, and coalescence of
microcracks. The RVE must be small enough to distinguish the microscopic hetero-
geneities and large enough to represent the overall behavior of the heterogeneous
medium. At the mesoscale, various damage modes such as fiber fracture, matrix
cracking, and delamination may be incorporated at the lamina or laminate level. At
the macroscale, a composite laminate is typically modeled as a collection of plies,
where each ply is an orthotropic medium with continuously distributed material
properties and damage indexes.

In order to reflect the multiscale nature of laminated composites, we propose
a multiscale DDDAS paradigm for damage prediction in aerospace composite
structures. In essence, in order to improve the overall predictive capability for
damage initiation and propagation in real-life aerospace structures, we propose
to apply the DDDAS concept at all spatial and temporal scales involved in the
modeling of composite damages:

• At the microscale level, RVE computations are often employed to obtain material
properties such as directional elastic moduli or failure stresses. X-ray digital
micro-tomography may be employed concurrently with the RVE simulations for
precise strain measurements intended to calibrate the RVE model parameters.

• At the mesoscale level (i.e., the “coupon” level) smaller-scale experiments may
be performed concurrently with the simulation of simple geometry specimens
(rectangular and, possibly, notched) to extract the parameters for the damage
model and to assess the sensitivity of the damage model with respect to these
parameters. The optimal set of damage-model parameters can be obtained,
for instance, by minimizing a misfit functional between the experimental and
computational results. For this purpose, we envision the use of a derivative-free
optimizer based on the Surrogate Management Framework (SMF) [7].

• The full richness and power of DDDAS can be exercised at the macroscale
level (i.e., the structural component level) where the accelerometer and strain-
gauge data can be used to adjust the external forces, the boundary conditions and
other structural-model input data to better represent physical reality and predict
damage onset and growth [9]. The location(s) of the damage-zone formation
predicted by the steered computational model may be, in turn, used to make
decisions about future sensor placement. This represents a true feedback loop
between the actual structure and its computational model. Furthermore, given a
combination of measured data and predicted response, a control strategy may be
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employed in order to steer the structure out of harm’s way (see [3] for an example
of the adjoint-based control strategy developed and applied to a two-dimensional
model problem).

30.3 Computational Structural Model

The structural components of interest in this work (i.e., the fuselage, the wing and
the empennage of the UAV) consist of curved thin composite plates, stiffeners
and spars. The structural model adopted for the analysis is based on the thin
Kirchoff-Love shell theory. By neglecting the presence of the transverse shear, this
rotation-free formulation does not suffer from mesh locking effects in the limit of
the elements’ thickness tending to zero. In addition, compared to the thick-shell
element formulation, it allows to reduce the number of degrees of freedom by a
factor of two.

The Isogeometric Analysis (IGA) concept is used to discretize the structural
mechanics equations. The IGA is a FEM-like simulation methodology that relies on
the same basis function technology of computer-aided design, computer graphics,
and computer animation. In IGA, both the geometry and the solution fields are
represented using the same functional description. The most widely used discretiza-
tion in IGA makes use of Non-Uniform Rational B-Splines (NURBS), but other
alternatives, such as T-splines and subdivision surfaces and solids are possible. In the
framework of the IGA, the integration of structural design and numerical analysis
is greatly simplified. Indeed, the single representation of the geometry and solution
fields allows for a simple integration of different software components needed for
different stages of modeling and simulation. In addition, the IGA is an inherently
higher-order accurate technique and NURBS shape functions allow to easily enforce
higher-order continuity between the elements. This distinguishing feature of IGA is
beneficial in many applications of computational mechanics.

The IGA was recently proposed [5, 13] to address the shortcomings of standard
finite element technology for thin shells listed above. It was found that the higher-
order continuity (C1 and above) of the IGA basis functions significantly improved
per-degree-of-freedom accuracy and robustness of thin shell discretization as com-
pared to the FEM. Furthermore, the increased continuity of the IGA discretization
enabled the use of rotation-free shells elements, such as the Kirchhoff-Love shell,
leading to further computational cost savings. In the lead author’s work on wind
turbines, the rotor blade geometry was modeled as a thin shell. The isogeometric
rotation-free Kirchhoff-Love shell formulation for structures composed of multiple
structural patches, called “the bending-strip method”, was developed in [13] and
applied to Fluid Structure Interactions (FSI) of wind turbine rotors in [2, 4]. Besides
the significant computational savings, the rotation-free shell discretization makes
FSI coupling simpler than for shells with rotational degrees of freedom.
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The computational performances have been significantly improved by taking
advantage of the multi-thread capabilities of modern multi-core processors. We
envision the use of Graphics Processing Units (GPU), which provide dense and
enormous computing power.

30.3.1 Progressive Damage Model

The material model adopted for the analysis in based on the Kirchhoff-St.Venant
linear relationship for stresses and strains. A residual stiffness damage model [15]
is introduced at sub-lamina level in order to simulate the intralaminar damages in
the framework of the CDM.

The model is based on the assumption that the equivalent effects of the micro-
and meso-scale intralaminar damages, such as matrix cracking, fiber kinking and
debonding, can be modeled at the macro-scale level in terms of degradation of
the pristine elastic properties of the material. Therefore, the material constitutive
stiffness matrix is parametrized as a function of three damage indexes, namely d1,
d2 and d6, which are respectively associated to the amount of damage in the fiber, in
the matrix and in the in-plane shear direction. For each k-th sub-lamina, we define
the modified constitutive stiffness matrix as follow:

C̃k = 1

D

⎡

⎣
E1 (1− d1) E1ν21 (1− d1) (1− d2) 0

E1ν21 (1− d1) (1− d2) E2 (1− d2) 0
0 0 G12D (1− d6)

⎤

⎦

(30.1)
where D = 1− ν21ν12 (1− d1) (1− d2). The Hashin damage criteria [11] are used
to detect the onset of the permanent damage. After the initiation of the damage,
we make use of a bilinear softening law in order to determine the evolution of the
damage indexes based on the current deformation state. As proposed by Bažant
[1], a characteristic length is introduced in the bilinear law in order to mitigate the
dependency of the results from the discretization adopted for the analysis.

The Classical Laminated Plate Theory (CLPT) is used to compute the exten-
sional, coupling and bending stiffness matrices for the entire laminate, by summing
the contribution of all the sub-lamina. This allows to propagate the effects of the
intralaminar damage from the sub-lamina level to the macroscale level. The matrices
Kexte, Kcoup and Kbend are then used in the principle of virtual work to compute the
deformation energy starting from the measures of the in-plane strain εαβ and from
the curvature tensor καβ . In the framework of the thin shell theory, the presence of
the curvature tensor requires the use of, at least, quadratic NURBS shape functions.
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30.4 Fatigue Damage Simulation of a Full-Scale CX-100
Wind Turbine Blade Driven by Test Data

This section shows the deployment of the multiscale DISCERN framework using
data from a fatigue test of a full-scale wind turbine blade. We describe the blade
geometry and material composition, the fatigue test setup and sensors employed, and
the computational procedure for fatigue damage identification and prediction that
involves dynamic computational model updating based on sensor and measurement
data collected during the test.

30.4.1 Blade Structure and Its IGA Model

We use a Sandia CX-100 conventional carbon-spar wind-turbine blade design [6,
14, 22], which is based on the ERS-100 blade [6], but with a substantially reduced
spar cap. The blade surface geometry definition is provided in Table 30.1. Up to a
1-m station from the root the blade has a circular cross-section. At a 1.4-m station
the blade transitions into the NREL S821 airfoil with a twist angle of 17.5◦. At a
4.2-m station the blade blends into the NREL S819 airfoil, which is used almost all
the way to the tip where the NREL S820 airfoil is placed. The airfoils are lofted
along the blade axis direction to produce a NURBS blade surface.

The blade material composition is as follows. The blade surface is comprised of
five primary zones: leading edge, trailing edge, root, spar cap, and shear web. The
zones are shown in Fig. 30.1. Each zone is made up of a multilayer composite layup.
The different materials used for the layup are summarized in Table 30.2. The root
area has several layers of fiberglass plies to strengthen the region where the blade

Table 30.1 Blade
cross-section geometry data
for the CX-100 blade

Radial distance Chord length Twist angle
(m) (m) (degrees) Airfoil type

0.200 0.356 29.6 Cylinder

0.600 0.338 24.8 Cylinder

1.000 0.569 20.8 Cylinder

1.400 0.860 17.5 NREL S821

1.800 1.033 14.7 NREL S821

2.200 0.969 12.4 NREL S821

3.200 0.833 8.3 NREL S821

4.200 0.705 5.8 NREL S819

5.200 0.582 4.0 NREL S819

6.200 0.463 2.7 NREL S819

7.200 0.346 1.4 NREL S819

8.200 0.232 0.4 NREL S819

9.000 0.120 0.0 NREL S820
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Fig. 30.1 Left: Five primary sections of the CX-100 blade; Right: 32 distinct material zones of
the CX-100 blade

Table 30.2 Lamina properties of the materials employed in the CX-100 blade

E1 E2 G12 ρ

Material name (GPa) (GPa) (GPa) ν12 (kg/m3)

Gel coat 3.44 3.44 1.38 0.30 1,235

Fill epoxy 2.41 2.41 0.96 0.30 1,154

Fiberglass 7.58 7.58 4.00 0.30 1,678

End-grain balsa 0.12 0.12 0.02 0.30 230

DBM1708 (+/− 45◦ fiberglass) 9.58 9.58 6.89 0.39 1,814

DBM1208 (+/− 45◦ fiberglass) 9.58 9.58 6.89 0.39 1,814

C520 (0◦ fiberglass) 37.30 7.60 6.89 0.31 1,874

0◦ Carbon, 500 gsm 105.40 6.82 3.32 0.28 1,480

Carbon-fiberglass triaxial fabric 84.10 8.76 4.38 0.21 1,560

is mounted on the hub flange. The leading and trailing edge zones have a similar
layup. Both include an outer gel coat and fiberglass layers, with the total thickness
of 0.51 mm, as well as additional layers of fiberglass material DBM-1708, 0.89 mm
each, and one 6.35 mm layer of balsa wood. Balsa wood is only present in the core
section of the blade and not on the edges. The leading edge zone has additional
layers of fiberglass material DBM-1208, with a total thickness of 0.56 mm, located
between DBM-1708 and balsa core. The layup of the core regions of the trailing
and leading edge zones is shown in Fig. 30.2. The spar-cap zone has a nonuniform
thickness distribution, ranging from 5.79 to 9.65 mm, due to the decreasing number
of carbon fiber laminate layers (from seven to three) along the blade length. The
spar-cap layup is also shown in Fig. 30.2, and has the thickest carbon fiber layer.
The shear web, which is designed to carry most of the surface loads, has a C-
shape structure containing four layers of DBM-1708 fiberglass, 0.74 mm each, and
9.53 mm of balsa wood core. The balsa wood layer is terminated in the tip zone. As
a result, the tip region is only comprised of one layer of gel coat and several layers
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Fig. 30.2 Example of the layup of the trailing edge, leading edge, and spar cap

of fiberglass material. This layout leads to 32 zones with constant total thickness
and unique laminate stacking. All 32 zones are identified on the blade surface and
are shown in Fig. 30.1.

30.4.2 Blade Fatigue-Test Setup and Sensor Layout

The CX-100 blade was fatigue loaded until failure using a hydraulic displacement
excitation technique at the National Wind Technology Center (NWTC) in Golden,
CO as a part of the Los Alamos National Laboratory Wind Turbine Program [10, 16,
18]. During the test the blade was clamped at the root and turned such that the high
pressure (HP) side was facing up, and, at a 7-m station, the local chord was parallel
to the laboratory floor (see Fig. 30.3). The blade was driven at the natural frequency
of the first flap-wise bending mode, which is 1.82 Hz. The cyclic load was applied
at a 1.6-m station using UREX hydraulic actuators. The applied-force magnitude
during the test was adjusted by changing the stroke of the hydraulic actuators. To
amplify the blade response, an additional mass of 164.65 kg was placed at a 6.7-
m station. Fig. 30.4 shows the fatigue cycle count versus time (where the number
of runs was conducted over a month). The fatigue test lasted from 8/5/2011 to
11/13/2011, until a fatigue-induced crack formed in the blade root region after about
8.0 M loading cycles.

The CX-100 blade was equipped with a number of sensors for both active and
passive sensing applications [10, 16–21]. All the sensors were located on the blade
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Fig. 30.3 Blade fatigue test setup and sensor layout. Blue square gives the location of the
accelerometer providing dynamic acceleration data for displacement amplitude and fatigue-model
parameter calibration

Fig. 30.4 Fatigue cycle
count versus date. Triangular
symbols indicate calibration
points for fatigue damage
simulations
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exterior with most of them concentrated near the root where fatigue failure was
expected to occur (and, indeed, occurred). The primary sensors employed were
piezoelectric transducers (PZTs), in particular, WASP-1, Metis-1, and LASER.
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Also, several macro-fiber-composite (MFC) sensors were used as a backup sensors.
The layout of PZT sensors on both high- and low-pressure (LP) sides of the blade is
shown in Fig. 30.3. Traditional accelerometers that record acceleration during 10-s
intervals at a sampling rate of 1.6 kHz were also installed at several locations on
the blade surface. Additional devices included strain gages for strain measurements
and moment calibration, and temperature sensors. A rich dataset from these sensors
was collected and analyzed in [10, 16–18]. In particular, SHM techniques for fatigue
crack detection and their comparison were discussed at length in [18]. In the chapter,
we present the accelerometer data to steer the fatigue damage computations, as
detailed in the following section.

30.4.3 Blade Fatigue Simulation Driven by Test Data

The dynamic data collected during the CX-100 blade fatigue test is employed
for blade fatigue damage simulation. Although, ideally, the computation would
be executed concurrently with the fatigue test, here the measurements from the
fatigue test are employed as historic or archival data used to steer the fatigue
damage computation. To carry out the simulation, the IGA model of the CX-100
blade is placed in the same orientation as the test specimen and is also clamped
at the root. A time-periodic vertical displacement with frequency of 1.82 Hz is
applied at a 1.6-m station to mimic the hydraulic-system forcing. The effect of extra
mass of 164.65 kg added to the 6.7-m station is achieved by locally increasing the
blade material density in this region. The dynamic sensor data are employed to
simultaneously calibrate the magnitude of the applied displacement loading, as well
as to obtain a good estimate of the input parameters of the fatigue damage model.
To this end, we devise two DDDAS loops in DISCERN – the inner loop responsible
for displacement forcing amplitude calibration, and the outer loop responsible for
simulation of damage growth and calibration of the associated material constants.
The flowchart for each of the two DDDAS loops is shown in Fig. 30.5.

The amplitude of the applied displacement used to actuate the blade is calibrated
at four points during the fatigue test, corresponding to cycle number 0 M, 1.5 M,
5 M, and 7 M (see Fig. 30.4). At each one of these points, a dynamic simulation
consisting of a few flapping cycles is performed with material parameters corre-
sponding to the blade damage state at that cycle, as predicted by the fatigue damage
model. The prescribed displacement amplitude is adjusted until the acceleration
time history at location 8.05 m predicted by the simulation matched that measured
by the accelerometer placed in this location (see Fig. 30.3). Figure 30.6 shows
the calibrated displacement forcing amplitude as a function of cycle number,
while Fig. 30.7 shows the degree to which we are able to match the predicted
and measured accelerations. The acceleration data comparison is presented in the
time and frequency domains. Note that both the displacement and acceleration
amplitudes are increasing with cycle number.
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a

b

Fig. 30.5 (a) Flowchart of the outer DDDAS loop responsible for fatigue damage prediction and
model parameter calibration; (b) Flowchart of the inner DDDAS loop responsible for applied
displacement amplitude calibration
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Fig. 30.6 Amplitude (A) of applied displacement forcing as a function of cycle number (N)

The fatigue damage model parameters are summarized in Table 30.3. We start
with the values close to those used for the test specimen in Sect. 30.1, and adjust
the model parameters c1 and c3 to properly reflect the current damage state of the
structure at the same four calibration points during the fatigue test. Figure 30.8
shows the evolution of c1 and c3 as a function of cycle number. This evolution gives
the predicted blade fatigue life of about 8 M cycle, which is in good agreement with
the test data.

Remark The three points chosen for calibration correspond to the points in the test
where the acceleration measurements showed the biggest change. In principle one
is free to choose as many calibration points as necessary for good accuracy of the
fatigue damage prediction.

Figures 30.9 and 30.10 show the evolution of damage index D1 (i.e., fiber
direction) in the DBM plies. (Note that two different color scales are employed
for the two figures.) For the first 1.5 M cycles, damage grows faster in the blade
midspan. After 1.5 M cycles damage begins to concentrate and grow in the root
section. This is likely due to a significant increase in the displacement forcing
amplitude after 1.5 M cycles (see Fig. 30.6). Closer to 8 M cycles a part of the root
section is fully damaged, and the damage location is in excellent agreement with that
of the crack observed on the blade surface during the fatigue test. (See Fig. 30.11
for a visual comparison of the fatigue-test and simulation results.)
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Fig. 30.7 Acceleration da1ta comparison between the fatigue test and simulation at three calibra-
tion points. Left: Time domain comparison; Right: Frequency domain comparison
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Table 30.3 Damage model parameters of CX-100 blade employed in the computations

Cycle c1 c2 c3 c4 c5 c6 c7 c8 c9

≤1.5 M 4× 10−6 30.0 2.0×10−6 0.8 80.0 0 0 0 0

1.5 M∼5.0 M 4× 10−6 30.0 2.0×10−6 0.8 80.0 0 0 0 0

5.0 M∼7.0 M 1.6× 10−4 30.0 4.0×10−5 0.8 80.0 0 0 0 0

7.0 M∼8.0 M 4× 10−4 30.0 1.0×10−4 0.8 80.0 0 0 0 0
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Fig. 30.8 Damage model material parameters c1 (Left) and c3 (Right) plotted versus cycle number

30.5 Numerical Simulation of the Orion UAV

One of the intended applications of the proposed multiscale DDDAS framework is
in multi-fidelity models for real-time decision support of “self-aware” UAVs. An
important part of the multifidelity modeling approach is the library, or database,
of damage modes. The database is accumulated by means of a large number of
offline computations performed by using medium to high fidelity simulation models.
Indeed, these high-fidelity models have little chance of producing results in real
time. The database is then used to inform surrogate models which are fast to execute
and, as such, are much better suited for real-time online/onboard simulation in
support of decision making for self-aware air vehicles.

The simulation presented in this Chapter is based on a simplified model of the
Orion UAV, designed by Aurora Flight Sciences, which is shown in Fig. 30.12a.

30.5.1 Parametric UAV Model

As a first step, we construct a parametric IGA model of a close approximation
of the full-scale Orion UAV. We make use of a sketch-like vehicle design model
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Fig. 30.9 Progression of damage index D1 up to 1.5 M cycles in a DBM layer: (a) Cycle N =
10,000; (b) Cycle N = 100,000; (c) Cycle N = 1,000,000; (d) Cycle N = 1,500,000

and of the 3D ASWING1 model as input. We employ the recently developed
parametric modeling platform for IGA [12] to construct analysis-suitable NURBS
and T-Spline surface models of the Orion UAV. The resulting parametric model is
shown in Fig. 30.12b. One of the principal advantages of having a parametric UAV
model is that a handful of parameters govern the vehicle geometry. As a result,
instead of having a single design, a whole family of UAVs with different design and
configuration can be easily constructed. In addition, the parametric representation
of the geometry allows to perform shape optimization analyses.

The UAV has a 16 m wingspan and is made of Hexcel 8552 IM7 PW composite
with a symmetrical [0/45/90/45/0] lay-up and nonlinear thickness distribution along
the fuselage, wings, horizontal and vertical tails. The main wing is reinforced with
two spars, which run along the entire wing pass through the fuselage. The engine
nacelles and the external fuel thanks are disregarded in the current model.

1http://web.mit.edu/drela/Public/web/aswing/

http://web.mit.edu/drela/Public/web/aswing/
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Fig. 30.10 Progression of damage indexD1 from 1.5 M to 8.0 M cycles in a DBM layer: (a) Cycle
N = 1,500,000; (b) Cycle N = 5,000,000; (c) Cycle N = 7,000,000; (d) Cycle N = 8,000,000

Fig. 30.11 Visual comparison of the fatigue-test and simulation results. Location and shape of
the damage zone in a DBM layer near the root are in very good agreement with the location and
orientation of the crack observed in the fatigue test

30.5.2 Landing Simulation

In this Chapter, we report the result obtained for a particular loading condition
corresponding to a severe hard landing. We focus the attention on the damage
developed in the main wing, where the computational mesh has been refined, while
the damage model is not active for the shell elements of the fuselage and of the
empennage.
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Fig. 30.12 Representation of (a) the Orion UAV designed by Aurora Flight Sciences and (b) the
parametric NURBS based model used for IGA simulations

Fig. 30.13 IGA result: comparison of the deformed and the undeformed configuration at the
moment of the maximum deflection. Contour plot: vertical displacement

The model is further simplified by disregarding the interaction of the landing
gear with the ground. Instead, an upward acceleration is imposed on the nodes in
the area corresponding to the location of the landing gear, from the bottom of the
fuselage to the intersection with the main spar. This area is assumed to behave like a
rigid body. This simplification underlies the assumption that the compliance of the
fuselage is drastically reduced by the presence of bulkheads designed to transfer the
loads from the wing to the landing gear.

In order to simulate the hard landing condition, a downward velocity of 3 m/s is
imposed on all the nodes as an initial condition. The upward acceleration increases
linearly from 0 to 3 g in the time frame of 0.1 s. A steady value of 3 g is then
maintained until the vertical velocity of the UAV decreases to 0 m/s.

The results of the numerical simulation are shown in Figs. 30.13 and 30.14. The
maximum deflection of the wing tip is equal to 0.175 m, measured with respect to
the wing root.

The model predicts the development of permanent damage in the matrix phase
on the wing, from the root up to 70% of the span. A localized permanent damage is
also predicted toward the tip of the wing, where a stress concentration is introduced
by a discontinuity in the thickness of the spar’s cap. The critical areas, where the
complete failure of the matrix phase is predicted, are highlighted in Fig. 30.14. The
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Fig. 30.14 IGA result: identification of the critical area where the matrix phase is completely
damaged. Contour plot: area where d2 ≥ 0.95 are highlighted in red

results of the numerical analysis provides a powerful predictive tool that can be
used in the DDDAS framework, for example, to support the decision for sensor
placement.

30.6 Conclusions

The multiscale DDDAS framework for damage prediction in aerospace composite
structures is presented in this Chapter. The multiscale DDDAS Interactive Structure
Composite Element Relation Network (DISCERN) framework represents a synthe-
sis of the technology developed to predict the development of damage in composite
materials at micro-, meso-, and macroscales. With the parametric UAV model in
place, we simulate a critical hard landing scenario to provide accurate information
about the stresses and damage state. In this paper the damage analysis is limited
to the intralaminar damage. The model can be enriched in order to include the
interlaminar damage, or delamination, which occurs between distinct layers of the
laminate.

The improved accuracy provided by the IGA simulation will enhance the library
of damage states and, as a result, will enhance the predictive power of fast surrogate
models that rely on these information. The maneuvering simulations, which will be
obtained by combining the structural model with a fluid solver, will produce better
estimates of the UAV air loads and its response to them.

In the context of UAVs, it is important to not only understand the vehicle response
during critical maneuvering scenarios, but also to take protective measures to shelter
the air vehicle from excessive structural damage that may occur as a result of an
aggressive maneuver. To this end, the adjoint-based control techniques developed
in [3] may be extended to incorporate smart materials into the overall framework.
We plan to investigate the application of piezoelectric actuators and/or Shape-
Memory Alloys (SMA) to control UAV’s wing deformation during aggressive
maneuvers. The use of SMAs may be preferable over piezoelectric actuators since
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larger strains (and, thus, larger force density per material surface area) may be
achieved resulting in a smaller quantity of additional material required. As an
alternative to smart materials such as piezoelectric actuators and SMAs, the concept
of morphing wings may also be employed to control the response of the air vehicle.

A family of wing deformations is defined and applied directly to the wing surface
through mechanical forces. An example of such a deformation is a continuous
morphing of a wing flap (trailing edge) through a wide range of angles. The results
of these simulations may contribute to a library of control scenarios, which may also
be used to inform fast-executing surrogate models in support of decision making for
self-aware air vehicles.

Additionally, the multiscale DISCERN framework was successfully deployed in
the context of a fatigue test of a full-scale wind-turbine blade structure and good
results are obtained for the prediction of damage zone formation and evolution,
eventually leading to blade failure. Such good prediction of the failure location and
fatigue-cycle number is only possible with the utilization of the DDDAS concept.
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Chapter 31
A Dynamic Data-Driven Stochastic
State-Awareness Framework for the Next
Generation of Bio-inspired Fly-by-Feel
Aerospace Vehicles

Fotis Kopsaftopoulos and Fu-Kuo Chang

Abstract A novel Data-driven State Awareness (DSA) framework is introduced
for the next generation of intelligent “fly-by-feel” aerospace vehicles. The proposed
framework is based on two entities: (i) bio-inspired networks of micro-sensors
that can provide real-time information on the dynamic aeroelastic response of
the structure and (ii) a stochastic “global” identification approach for representing
the system dynamics under varying flight states and uncertainty. The evaluation
and assessment of the proposed DSA framework is based on a prototype bio-
inspired self-sensing intelligent composite wing subjected to a series of wind
tunnel experiments under multiple flight states. A total of 148 micro-sensors,
including piezoelectric, strain, and temperature sensors, are embedded in the layup
of the composite wing in order to provide the sensing capabilities. A novel data-
driven stochastic “global” identification approach based on functionally pooled
time series models and statistical parameter estimation techniques is employed
in order to accurately interpret the sensing data and extract information on the
wing aeroelastic behavior and dynamics. The methods’s cornerstone lies in the
new class of Vector-dependent Functionally Pooled (VFP) models which allow
for the analytical inclusion of both airspeed and angle of attack (AoA) in the
model parameters and, hence, system dynamics. Special emphasis is given to the
wind tunnel experimental assessment under various flight states, each defined by
a distinct pair of airspeed and AoA. The obtained results demonstrate the high
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achievable accuracy and effectiveness of the proposed state-awareness framework,
thus opening new perspectives for enabling the next generation of “fly-by-feel”
aerospace vehicles.

31.1 Introduction

The next generation of intelligent aerospace structures and air vehicles will be able
to “feel,” “think,” and “react” in real time based on high-resolution state-sensing,
awareness, and self-diagnostic capabilities [17, 19, 26, 28]. They will be able to
sense and observe phenomena at unprecedented length and time scales allowing for
real-time optimal control and decision making, significantly improved performance
and extended flight envelope, safer operation, reduced mission and maintenance
costs, and complete life-cycle monitoring and management. One of the main
challenges of the current state-of-the-art research is the development of technologies
that will lead to autonomous “fly-by-feel” air vehicles inspired by the unprecedented
sensing and actuation capabilities of biological systems. Such intelligent air vehicles
will be able to (i) sense the external environment (temperature, air pressure,
humidity, etc.), (ii) sense their flight state (airspeed, flutter, stall, aerodynamic loads,
etc.) and internal structural state (stresses, strains, damage), and (iii) effectively
interpret the sensing data to achieve real-time state awareness and health monitoring
[10–13, 18, 20], and improve the vehicle’s performance and control characteristics.
Towards this end, novel dynamic data-driven approaches are needed for the accurate
interpretation of large volumes of data that are being collected under varying flight
states and uncertainty in complex dynamic environments.

The most critical challenge for the postulation of a complete and applicable data-
driven state-awareness framework for aerospace vehicles is the effective modeling
and interpretation of sensory data obtained under constantly changing dynamic
environments, multiple flight states and varying structural health conditions. Evi-
dently, all these different operating conditions affect the vehicle dynamics and
aeroelastic response. Oftentimes, the operating conditions are characterized by one
or more measurable variables, such as the airspeed, angle of attack (AoA), altitude,
temperature, and so on, that may vary over time, and consequently affecting the
system dynamics. In such cases the problem of identifying a single “global” model
of the system that is capable of representing the dynamics under any admissible
operating condition based on available response and/or excitation signals poses a
major challenge that needs to be properly addressed [14, 15, 24].

The dynamics modeling challenge is typically tackled via either the identifi-
cation of a number of distinct time series or state space models based on strain
or acceleration data, with each model corresponding to a distinct flight state
[7, 9, 22, 30–32, 34], or via the use of Linear Parameter Varying (LPV) models
[8, 23, 33]. The latter are dynamical models with parameters expressed as functions
of the measurable variable(s) –referred to as scheduling variable(s)– designating the
operating condition. In this context, model identification is based on the so-called
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local approach [33], the rationale of which is based on a two-step method that splits
the problem into two distinct subproblems: (i) first, a number of local (or else frozen)
models –with each corresponding to a single operating condition for which response
signals are available– are identified using conventional identification techniques
[21, 29], and (ii) second, the identified models are interpolated in order to provide a
single global model [33].

The separation approach is a straightforward extension of classical identification.
Yet, when viewed within a stochastic framework in which the response signals
are random in nature (stochastic), it leads to suboptimal accuracy. The intuitive
explanation may be readily understood from the fact that the signal pairs are
not treated as a single entity, but rather in complete isolation from each other
in the process of obtaining each local model. This not only neglects potential
cross-correlations among the signal pairs, thus resulting into information loss, but
additionally leads to an unnecessarily high number of estimated parameters, thus
violating the principle of statistical parsimony [21, p. 492]. In addition, this further
leads to increased estimation variance and thus reduced accuracy (lack of efficiency
in statistical terminology) [21, pp. 560–562]. Finally, additional loss of accuracy
and increased error is involved in the subsequent interpolation of the obtained local
models when constructing the LPV (global) model. The identification process leads
to a final global, but suboptimal, LPV model characterized by reduced accuracy.

In an effort to effectively tackle the aforementioned challenges, in this work we
introduce a data-driven stochastic state-awareness framework for aerospace vehicles
operating in dynamic environments under varying flight states and uncertainty.
The DSA framework incorporates: (i) bio-inspired networks of micro-sensors that
can provide real-time information on the dynamic aeroelastic response of the
structure [17, 19, 26, 28], and (ii) stochastic “global” identification techniques for
representing the system dynamics under varying flight states and uncertainty. The
“global” identification is based on the novel class of stochastic Functionally Pooled
time series models recently proposed by the authors and co-workers [14, 15, 18, 24].
More specifically, in this study, and for the first time in the context of aeroelastic
state awareness, the authors introduce the use of Vector-dependent Functionally
Pooled (VFP) models [14, 15] that enable explicit functional dependencies between
the flight states and the model parameters. The class of VFP models resembles the
form of LPV models, with some critical differences: (i) the signals are treated as a
single entity and potential cross-correlations are accounted for, (ii) the number of
estimated parameters is minimal, and (iii) the estimation is accomplished in a single
step (instead of two subsequent steps) for achieving optimal accuracy.

The VFP-based identification is based on three important entities [14, 15]:

(i) A stochastic Functionally Pooled (FP) model structure that explicitly allows
for system modeling under multiple operating conditions via a single
(“global”) mathematical representation. This representation is characterized
by parameters that functionally (explicitly) depend on the flight state and
additionally includes proper cross-correlation terms. The FP leads to more
complete model forms, but also paves the way for accurate parameter
estimation.
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Fig. 31.1 Schematic representation of the intelligent UAV concept with bio-inspired multi-modal
stretchable sensor networks embedded inside the composite structural components

(ii) Data pooling techniques in a functional form which simultaneously treat,
as a single entity, the data records corresponding to all available flight
states. This allows for the simultaneous treatment of all response signals
and is important for accounting for cross-correlations and achieving optimal
estimation accuracy.

(iii) Properly formulated statistically optimal techniques for model estimation.

The aim of the present study is the introduction of the data-driven stochastic
state-awareness framework and the experimental evaluation and assessment via a
series of wind tunnel experiments under varying conditions. A prototype intel-
ligent composite UAV wing [17] designed and fabricated in the Structures and
Composites Laboratory (SACL) at Stanford University is outfitted with four bio-
inspired stretchable sensor networks [5, 19, 26, 28] consisting of micro-sensors
that are embedded inside the composite layup. The schematic representation of
the proposed bio-inspired vehicle concept is presented in Fig. 31.1. Each sensor
network contains 8 piezoelectric lead-zirconate titanate (PZT) sensors, 6 strain
gauges, and 23 resistive temperature detectors (RTDs). Piezoelectric sensors are
used to sense the vibration of the wing and allow the stochastic global identification
of the dynamics and aeroelastic behavior under varying flight states, as well as the
early detection of incipient dynamic flutter and stall. A series of 285 wind tunnel
experiments under various AoA and freesrteam velocities are conducted for data
collection under a broad range of flight states. The experimental evaluation of the
data-driven identification approach will result in a single “global” time series model
capable of accurately representing all the admissible flight states; that is all airspeeds
and angles of attack that are considered in the wind tunnel experiments and may
form the flight envelope of the vehicle.
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The rest of the chapter is organized as follows: The bio-inspired stretchable
sensor networks and the wing integration are briefly presented in Sect. 31.2. The
wind tunnel experiments are described in Sect. 31.3, while the VFP-based stochastic
global identification approach is outlined in Sect. 31.4. The experimental results are
provided in Sect. 31.5, while the conclusions are summarized in Sect. 31.6.

31.2 Bio-inspired Sensor Networks and Wing Integration

Recently, micro-fabricated expandable sensor networks have been developed and
deployed micro-scale sensors over macroscopic areas [5, 6, 19, 25–28]. In order to
survive the large strains that occur in expansion, the sensors are created on polymer
substrates with nonstandard and unique micro-fabrication processes. The resulting
components have dimensions on the order of tens of micrometers (Fig. 31.2).

These networks are created on standard 100 mm diameter substrates and
expanded to span areas orders of magnitude larger than the initial fabrication
area deploying numerous micro-meter scale devices over meter scale areas. The

Fig. 31.2 (a) A 16-node sensor network on a wafer can be expanded up to 1, 057% in
each dimension after release. (b) Close-up of the sensor node demonstrating the design of the
microwires. (c) A sensor network with 169 nodes before expansion. (d) An expanded 5041-node
network is shown in contrast to a hand, which illustrates the flexibility of the membrane. (e)
Network before release on a 4-inch wafer. (f) A fabricated 256-node network on polyimide is
easily held by hand without damaging the network. It is characterized by 16 μm wide, 50 μm thick
microwires
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resulting web-like network consists of distributed small scale components (nodes,
wires, pads, etc.) intended to have a minimal parasitic effect on the host structure.
The component size is on the same order as an individual fiber in typical composite
materials or scrim in film adhesives and small enough to be placed into a composite
without structural modifications. These networks can be used in-situ, from the
material fabrication throughout its service life, to monitor the cure process of
composite materials, characterize material properties post-cure, and monitor the
structural dynamics along with the health of the structure during its life cycle.

In this work four stretchable sensor networks with integrated distributed PZT,
strain, and RTD sensors have been designed and fabricated [5, 6, 19, 25, 26, 28] so
that they can be embedded inside the layup of the composite wing. Extensible wires
connect the network nodes and serve as the signal communication channels. Before
stretching, the network dimensions are 52.8 by 39.6 mm that after the stretching
process expand to 140 by 105 mm yielding a 700% total surface area increase
[5]. Each of the four sensor networks contains 8 piezoelectric sensors (round
PZTs 3.175 mm in diameter), 6 strain gauges, and 24 RTDs. The total number of
embedded sensors in the composite wing is 148.

31.2.1 The Composite Wing

The prototype wing was designed, constructed and tested at Stanford University.
The designed wing is based on the cambered SG6043 high lift-to-drag ratio airfoil
with a 0.86 m half-span, 0.235 m chord, and an aspect ratio of 7.32. Table 31.1
presents the wing dimensions. In order to achieve the successful integration and
fabrication of the wing prototype, an appropriate network-material integration
process had to be developed for embedding the micro-fabricated sensor networks
inside the composite materials.

The micro-scale, aspect ratio, and fragile nature of the stretchable network
components, including both the wires and the sensor nodes, requires the use of
appropriate integration and network transfer processes. The geometry and material
of the network nodes and contact pads may cause the electrical shorting with the
carbon fibers if not properly addressed. In order to tackle these integration and
manufacturing challenges, a new process had to be developed for the transfer,
electrical interfacing and electrical insulation of the network components based on
multilayer flexible printed circuit board (PCB) technologies and epoxy armoring.

Table 31.1 Test wing geometry

Semispan b 0.86 m

Chord c 0.235 m

Area S 0.2 m2

Aspect ratio 7.32

Airfoil SG6043
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Fig. 31.3 The intelligent composite wing design with a total of 148 (32 piezoelectric, 24 strain
gauges, and 92 RTDs) micro-sensors embedded in the composite layup

Via the use of the developed approach the sensor networks were successfully
integrated into carbon fiber based composite materials using a multi-step fabrication
process. The composite wing structure was manufactured based on carbon and glass
laminated composites. The layup consists of carbon fiber (CF) plain weave fabric
1K T300 and glass fiber (GF) plain weave fabric 18 gr/m2 infused with Araldite
LY/HY5052 epoxy. The stacking sequence of the layers was [0◦ GF, 0◦ CF, 45◦ CF,
45◦ CF, 0◦ CF, 0◦ GF] (Fig. 31.3).

Four sensor networks were embedded between the two top layers at 0o of the
layup (near the wing surface) during the lamination process. The glass fiber was
employed due to its transparency, so that the embedded stretchable sensor networks
could be evident to the eye. The supporting wing structure consists of wooden
(basswood) ribs and spars.

31.3 The Wind Tunnel Experimental Process

31.3.1 The Wind Tunnel

The prototype composite wing was tested in the open-loop wind tunnel facility at
Stanford University. The wind tunnel has a square test section of 0.76× 0.76 m
(30× 30 in) and can achieve continuous flow speeds up to approximately 30 m/s.
A custom basis was designed and fabricated to support the wing and permit
adjustments in the AoA. The wing was mounted horizontally inside the test section.
Eight commercial strain gauges were attached on appropriate locations of the basis
to measure the aerodynamic forces. The axis of rotation coincided approximately
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Fig. 31.4 The intelligent composite wing with the embedded sensor networks and the locations
of the piezoelectric and strain sensors

Table 31.2 The conditions considered in the wind tunnel experiments

Re (×103) 124 155 171 187 202 217 233 248 264 280 295 311 326 342

U∞ (m/s) 9 10 11 12 13 14 15 16 17 18 19 20 21 22

AoA: 0–18 degrees; Total number of experiments: 285

with the quarter of the wing chord. Figure 31.4 presents the composite wing with
the corresponding locations of the PZTs and strain sensors.

31.3.2 The Experiments

A series of wind tunnel experiments were conducted for various angles of attack and
free-stream velocities U∞. For each AoA, from 0 degrees up to 18 degrees with an
incremental step of 1 degree, data were sequentially collected for velocities from 9
up to 22 m/s (incremental step 1 m/s). The above procedure resulted in 285 different
experiments covering the complete range of the considered experimental conditions.
The experimental conditions along with the Reynolds numbers are outlined in
Table 31.2.

For each experiment the vibration and strain responses were recorded at different
locations on the wing via the embedded network piezoelectric sensors (initial
sampling frequency fs = 1000 Hz, initial signal bandwidth 0.1–500 Hz) and
strain gauges (sampling frequency fs = 100 Hz, signal bandwidth DC – 50 Hz),
respectively. The sensor signals were driven through a custom designed and built
signal conditioning device into the data acquisition system (National Instruments X
Series 6366). The total number of the sensor signals that were obtained was limited
by the available number of channels of the data acquisition system. Table 31.3
presents the sensors, data acquisition, signal details.
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Table 31.3 Signal pre-processing and details

Piezoelectric sensors Strain gauges

Number of sensors: 8 15

Sampling frequency: fs = 1000 Hz fs = 100 Hz

Bandwidth: [0.1− 500]Hz [DC − 50]Hz

Signal length: N = 90,000 samples (90 s) N = 9,000 samples (90 s)

31.4 Stochastic Global Identification Under Multiple Flight
States

In this Section, the identification of the wing dynamics is presented via the use
of stochastic functional models, or more precisely Vector-dependent Functionally
Pooled AutoRegressive (VFP-AR) models. These models are capable of represent-
ing the system dynamics for the complete range of operating (flight) conditions
(airspeeds and angles of attack). The identification of stochastic systems operating
under multiple conditions is addressed based on data records obtained under a
sample of these conditions. The problem is important in a number of practical
applications and is tackled within the recently introduced Functional Pooling
framework [14, 15, 24]. This study focuses on the case of flight states characterized
by two parameters, namely the airspeed and the AoA of the wing.

31.4.1 Baseline Modeling Under a Single Flight State

The modeling of the wing under a single flight state is an initial step performed
in order to facilitate (in the sense of providing approximate model orders) the
subsequent step of the global modeling under all the admissible flight states.

A single wind tunnel experiment is performed, based on which an interval
estimate of a discrete-time model (or a vector model or an array of models in the
case of several response measurement locations) representing the system dynamics
is obtained via standard identification procedures [21, 29]. In this study a single
response AutoRegressive (AR) model is used.

An AR(n) model is of the form1 [21]:

y[t] +
n∑

i=1

ai · y[t − i] = e[t] e[t] ∼ iidN
(
0, σ 2

e

)
(31.1)

with t designating the normalized discrete time (t = 1, 2, 3, . . . with absolute
time being (t − 1)Ts , where Ts stands for the sampling period), y[t] the measured

1Lower case/capital bold face symbols designate vector/matrix quantities, respectively.
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vibration response signals as generated by the piezoelectric sensors of the wing,
n the AR order, and e[t] the stochastic model residual (one-step-ahead prediction
error) sequence, that is a white (serially uncorrelated), Gaussian, zero mean with
variance σ 2

e sequence. The symbol N (·, ·) designates Gaussian distribution with
the indicated mean and variance, and iid stands for identically independently
distributed. Finally, the AR model parameters are designated as ai .

The model is parameterized in terms of the parameter vector θ̄ =
[a1 . . . an

... σ 2
e ]T to be estimated from the measured signals [21]. Model estimation

may be achieved based on minimization of the Ordinary Least Squares (OLS) or
the Weighted Least Squares (WLS) criteria [21]. The modeling procedure involves
the successive fitting of AR(n) models for increasing order n until an adequate
model is selected [3]. Model order selection is based on the Bayesian Information
Criterion (BIC) and the residual sum of squares normalized by the series sum of
squares (RSS/SSS). Final model validation is based on formal verification of the
residual (one-step-ahead prediction error) sequence uncorrelatedness (whiteness)
hypothesis [21, pp. 512-513].

31.4.2 Global Modeling Under Multiple Flight States

The VFP-AR representation allows for complete and precise modeling of the
global wing dynamics under multiple flight states with each state defined by
a specific airspeed and AoA. Figure 31.5 presents the schematic representation
of the identification problem. The VFP model parameters and residual series
covariance depend functionally on both airspeed and AoA, while the corresponding
interrelations and statistical dependencies between the different flight states are
taken into account within the VFP model structure.

The VFP-AR representation belongs to the recently introduced broader class of
stochastic functionally pooled models, which make use of functional data pooling
techniques for combining and optimally treating (as one entity) the data obtained

Fig. 31.5 Schematic representation of the system identification problem
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from various experiments corresponding to different structural states and statistical
techniques for model estimation [15, 24].

The global modeling of the composite wing via a VFP-AR model involves
consideration of all the admissible airspeeds and angles of attack that define the
flight envelope of the wing. A total ofM1×M2 experiments is performed (physically
or via analytical models and simulations), with M1 and M2 designating the number
of experiments under the various airspeeds and angles of attack, respectively. Each
experiment is characterized by a specific airspeed k1 and a specific AoA k2, with the
complete series covering the required range of each variable, say [k1

min, k
1
max] and

[k2
min, k

2
max], via the discretizations {k1

1, k
1
2, . . . , k

1
M1
} and {k2

1, k
2
2, . . . , k

2
M2
}. For the

identification of a global VFP model the vector operating parameter k containing the
airspeed and AoA components, is defined as:

k = [k1
i k

2
j ]T ⇐⇒ ki,j , i = 1, . . . ,M1, j = 1, . . . ,M2 (31.2)

with ki,j designating the flight state of the wing corresponding to the i-th airspeed
and the j -th AoA. The procedure yields a pool of response signals (each of length
N ):

xk[t], yk[t] with t = 1, . . . , N, k1 ∈ {k1
1, . . . , k

1
M1
}, k2 ∈ {k2

1, . . . , k
2
M2
}. (31.3)

A schematic representation of the data collection process for the identification of
the global model is presented in Fig. 31.6.

A proper mathematical description of the wing structure may be then obtained in
the form of a VFP-AR model. In the case of several response measurement locations
an array of such models (or else a vector model) may be obtained, with each scalar
model corresponding to each measurement location.

The VFP-AR model is of the following form [15]:

Fig. 31.6 Schematic representation of data collection under different flight states characterized
by varying airspeed and AoA
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yk[t] +
n∑

i=1

ai(k) · yk[t − i] = ek[t] (31.4)

ek[t] ∼ iidN
(
0, σ 2

e (k)
)

k ∈ R
2 (31.5)

ai(k) =
p∑

j=1

ai,j ·Gj(k) (31.6)

E{eki,j [t] · ekm,n [t − τ ]} = γe[ki,j , km,n] · δ[τ ] (31.7)

with n designating the AR order, yk[t] the piezoelectric sensor’s response signal,
and ek[t] the model’s residual (one-step-ahead prediction error) sequence, that
is a white (serially uncorrelated) zero mean sequence with variance σ 2

e (k). This
may potentially be cross-correlated with its counterparts corresponding to different
experiments (different k’s). The symbol E{·} designates statistical expectation, δ[τ ]
the Kronecker delta (equal to unity for τ = 0 and equal to zero for τ 	= 0),
N (·, ·) Gaussian distribution with the indicated mean and variance, and iid stands
for identically independently distributed.

As (31.6) indicates, the AR parameters ai(k) are modeled as explicit functions
of the vector k (which contains the airspeed and AoA components) by belonging
to p-dimensional functional subspace spanned by the mutually independent basis
functions G1(k),G2(k), . . . ,Gp(k) (functional basis). The functional basis con-
sists of polynomials of two variables (bivariate) obtained as tensor products from
their corresponding univariate polynomials (Chebyshev, Legendre, Jacobi, and other
families [14, 15]). The constants ai,j designate the AR coefficients of projection.

The VFP-AR model of (31.4), (31.5), (31.6), and (31.7) is parameterized in terms
of the parameter vector to be estimated from the measured signals:

θ̄ = [ a1,1 a1,2 . . . ai,j
... σ 2

e (k) ]T ∀ k (31.8)

and may be written in linear regression form as:

yk[t] =
[
ϕTk [t] ⊗ gT (k)

] · θ + ek[t] = φTk [t] · θ + ek[t] (31.9)

with:

ϕk[t] :=
[
−yk[t − 1] . . . − yk[t − n]

]T
[n×1] (31.10)

g(k) :=
[
G1(k) . . . Gp(k)

]T
[p×1] (31.11)
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θ :=
[
a1,1 a1,2 . . . an,p

]T
[np×1] (31.12)

and T designating transposition and ⊗ Kronecker product [1, Chap. 7].
Pooling together the expressions (31.9) of the VFP-AR model corresponding

to all vector operating parameters k (k1,1, k1,2, . . . , kM1,M2) considered in the
experiments (cross-sectional pooling) yields:

⎡

⎢⎣
yk1,1 [t]
...

ykM1,M2
[t]

⎤

⎥⎦ =

⎡

⎢⎢⎣

φTk1,1
[t]
...

φTkM1,M2
[t]

⎤

⎥⎥⎦ · θ +
⎡

⎢⎣
ek1,1 [t]
...

ekM1,M2
[t]

⎤

⎥⎦ =⇒ y[t] = [t] · θ + e[t].

(31.13)
Then, following substitution of the data for t = 1, . . . , N the following

expression is obtained:

y =  · θ + e (31.14)

with

y :=
⎡

⎢⎣
y[1]
...

y[N ]

⎤

⎥⎦ ,  :=
⎡

⎢⎣
[1]
...

[N ]

⎤

⎥⎦ , e :=
⎡

⎢⎣
e[1]
...

e[N ]

⎤

⎥⎦ . (31.15)

Using the above linear regression framework the simplest approach for estimat-
ing the projection coefficient vector θ is based on minimization of the Ordinary
Least Squares (OLS) criterion JOLS := 1

N

∑N
t=1 eT [t]e[t].

A more appropriate criterion is (in view of the Gauss-Markov theorem [4]) the
Weighted Least Squares (WLS) criterion:

JWLS := 1

N

N∑

t=1

eT [t]�−1
e[t]e[t] =

1

N
eT�−1

e e (31.16)

which leads to the Weighted Least Squares (WLS) estimator:

θ̂
WLS = [T�−1

e 
]−1[

T�−1
e y
]
. (31.17)

In these expressions �e = E{eeT } (�e = �e[t] ⊗ IN , with IN designating the
N ×N unity matrix) designates the residual covariance matrix, which is practically
unavailable. Nevertheless, it may be consistently estimated by applying (in an initial
step) Ordinary Least Squares (details in [15]). Once θ̂

WLS
has been obtained, the

final residual variance and residual covariance matrix estimates are obtained as:
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σ̂ 2
e (k, θ̂

WLS
) = 1

N

N∑

t=1

e2
k[t, θ̂WLS], �̂e[t] = 1

N

N∑

t=1

e[t, θ̂WLS]eT [t, θ̂WLS].
(31.18)

The estimator θ̂
WLS

may, under mild conditions, be shown to be asymptotically
Gaussian distributed with mean coinciding with the true parameter vector θo and
covariance matrix Pθ :

√
N(̂θN − θo) ∼ N (0,Pθ ) (N −→∞) (31.19)

based on which interval estimates of the true parameter vector may be constructed
[15].

The problem of VFP-AR model structure selection (structure estimation) for
a given basis function family (such as Chebyshev, Legendre, and so on) refers
to the model order determination for the AR polynomial and determination of
their corresponding functional subspaces. Usually, the AR model order is initially
selected via customary model order selection techniques (BIC, RSS, frequency
stabilization diagrams) [21], whereas the functional subspace dimensionality is
selected via a Genetic Algorithm (GA) procedure [15]. Initially, the maximum
functional subspace dimensionality is selected, which defines the search space of
the functional subspace estimation subproblem. The determination of the exact
subspace dimensionality is achieved via the use of Genetic Algorithms (GA) based
on minimization of the BIC with respect to the candidate basis functions. In the
current study, the estimation of the functional subspace dimensionality was achieved
via the use of the BIC criterion for increasing functional subspace dimensionality.

31.5 Results

31.5.1 Numerical Simulations

In order to extract the aerodynamic properties of the fabricated wing based on
which the experimental results will be interpreted and assessed, a series of numerical
simulations was conducted using XFOIL, an interactive program developed at MIT
for the design and analysis of subsonic isolated airfoils [2].

Figure 31.7a, b present the lift coefficient versus the AoA and lift to drag
coefficient ratio CL/CD results of the SG6043 airfoil, respectively, for various
Reynolds numbers (U∞ = 7, 10, 12 and 15 m/s). It may be readily observed that
the wing exhibits stall (loss of lift shown as shaded area in Fig. 31.7a) starting from
an AoA of approximately 12 degrees for a Reynolds number of Re = 100,000.
Moreover, observe that the maximum CL/CD ratio is obtained for angles between
4 and 8 degrees (shaded areas in Fig. 31.7b).

Figure 31.8 presents indicative signals obtained from piezoelectric sensor 2 (see
Fig. 31.4 for the sensor location) under various angles of attack and freestream
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Fig. 31.7 Indicative simulation results: (a) lift coefficient CL (left subplot) and (b) lift-to-drag
coefficient ratio CL/CD (right subplot) versus AoA for the SG6043 airfoil and various Reynolds
numbers

Fig. 31.8 Indicative signals obtained from piezoelectric sensor 2 under various angles of attack:
(a) freestream velocity U∞ = 11 m/s (top subplot) and (b) freestream velocity U∞ = 15 m/s
(bottom subplot)

velocities of U∞ = 11 m/s and U∞ = 15 m/s (see Table 31.2). Observe the
random (stochastic) nature of these signals, which is due to the wind tunnel airflow
actuation and the aeroelastic response of the wing. In addition, it is evident that
for higher angles of attack and as the wing approaches stall, the signal amplitude
(voltage) increases. In the case of U∞ = 11 m/s that corresponds to the top subplot
in Fig. 31.8, the maximum signal amplitude for AoA 13 and 15 degrees seems to
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Fig. 31.9 Indicative signal energy versus AoA wind-tunnel results for piezoelectric sensor 1 and
freestream velocity U∞ = 11 m/s. The mean value of the signal energy is shown as red line. The
99% confidence bounds are shown as green shaded areas

be similar as there is no evident increase. For this freestream velocity and based
on Fig. 31.7, stall occurs at an AoA of approximately 13 degrees. In the case
of U∞ = 15 m/s that corresponds to the bottom subplot in Fig. 31.8, occurs at
approximately 15 degrees, and it may be readily observed that there is an obvious
increase in the signal amplitude from 13 to 15 degrees AoA.

In order to further investigate the signal amplitude of the sensors with respect to
varying AoA we conducted a statistical signal energy analysis of the wing based on
the wind tunnel experiments. Figure 31.9 presents indicative signal energy (volt2 · t)
results obtained from piezoelectric sensor 1 during the wind tunnel experiments.
The mean value of the vibrational signal energy along with the 99% confidence
bounds are depicted for increasing AoA. The initial signal of 90 s (N = 90,000
samples) was split in signal windows of 0.5 s (N = 500 samples). Then, for each
signal window the mean value and the standard deviation of the signal energy were
estimated.

The AoA is varied between 0 and 15 degrees with a constant freestream velocity
of U∞ = 11 m/s. The goal is to correlate the signal energy in the time domain with
the airflow characteristics and aeroelastic properties in order to identify and track
appropriate signal features that can be used for the wing vibration monitoring, the
localization of the flow separation over the wing chord, and the early detection of
stall under various flight states.

As the wing angle exceeds the value of 12 degrees the signal energy significantly
increases and reaches the maximum value as it approaches stall (AoA of 13
degrees), while slightly decreases after stall has occurred (14 and 15 degrees). The
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Fig. 31.10 Indicative signal energy versus AoA wind-tunnel results for piezoelectric sensor 1 and
freestream velocity U∞ = 15 m/s. The mean value of the signal energy is shown as red line. The
99% confidence bounds are shown as green shaded areas

statistical analysis of the wind tunnel signals for the various sensors indicated that
for velocities of 11 and 12 m/s the stall angle is 13 degrees, whereas for the higher
velocities of 14 and 15 m/s the stall angle appears at 14 degrees.

Figure 31.10 presents similar statistical energy results for freestream velocity
U∞ = 15 m/s. These results are in agreement with the trend of signals in Fig. 31.8 as
in both cases the signal amplitude/energy is maximized within the stall range of the
wing. Also, the results are in agreement with the numerical simulations presented in
Fig. 31.7.

31.5.2 Non-parametric Analysis

Non-parametric identification is based on 90,000 (signal duration of 90 s) sample-
long response signals obtained from the embedded piezoelectric sensors (see
Table 31.3). A 5096 sample-long Hamming data window (frequency resolution
�f = 0.24 Hz) with 90% overlap is used for the Welch-based spectral estimation
(MATLAB function pwelch.m).

Figure 31.11 presents indicative non-parametric power spectral density (PSD)
Welch-based estimates of the piezoelectric response signals obtained from sensor
1 for increasing AoA and freestream velocity U∞ = 13 m/s (Re = 202,000).
Notice that as the AoA increases the PSD amplitude in the lower frequency range
of [112]Hz significantly increases as well. More specifically, as the angle of the
wing approaches the critical stall range of 13 to 14 degrees, the low frequency
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Fig. 31.11 Indicative non-parametric Welch-based PSD estimates (piezoelectric sensor 1) versus
AoA for U∞ = 13 m/s (Re = 202,000) freestream velocity

Fig. 31.12 Indicative non-parametric Welch-based PSD estimates (piezoelectric sensor 1) versus
airspeed for an AoA of 0 degrees

vibrations become dominant and thus indicating the proximity to the stall of the
wing. It is evident that monitoring the identified lower frequency bandwidths that are
sensitive to increasing AoA provides a strong indication of stall. All the embedded
piezoelectric sensors of the wing exhibit a similar performance, but for the sake of
brevity, the results are omitted.

Similarly, Fig. 31.12 presents indicative non-parametric power spectral density
(PSD) Welch-based estimates obtained from piezoelectric sensor 1 for increasing
airspeed and an constant AoA of 0 degrees. Again, notice that as the airspeed
increases, the PSD amplitude in the lower frequency range increases as well. In
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this case, it is expected that as the airspeed increases for a constant AoA the
wing will approach its flutter speed which will be triggered by the coupling of
aeroelastic modes. By carefully observing Fig. 31.12 it may be observed that the
frequency at approximately 5 Hz increases with increasing airspeed and approaches
the frequency at approximately 9 Hz, thus providing an indication of incipient flutter.
The flutter observation will be clarified by the global parametric modeling of the
next subsections.

31.5.3 Baseline Parametric Modeling

Conventional AR time series models representing the wing dynamics are obtained
through standard identification procedures [3, 21] based on the collected piezoelec-
tric response signals (MATLAB function arx.m). The response signal bandwidth is
selected as 0.1−100 Hz after the initial signals were low-pass filtered (Chebyshev
Type II) and sub-sampled to a resulting sampling frequency fs = 200 Hz (initial
sampling frequency was at 1,000 Hz). Each signal resulted in a length of N =
4,000 samples and was subsequently sample mean corrected (Table 31.4). For
piezoelectric sensor 1, this leads to an AR(72) model for a collected data set
corresponding to an airspeed of 11 m/s and an AoA of 3 degrees. The AR(72) model
is used as reference and for providing approximate orders for the identification of the
global VFP-AR models of the next section. For the sake of brevity, in the following
sections indicative results from sensor 1 only will be presented.

31.5.4 Global Modeling Under Multiple Flight States

The parametric VFP-based identification of the wing dynamics is based on signals
collected from the piezoelectric sensors under the various wind tunnel experiments
(see Table 31.2).

The global modeling of the composite wing is based on signals obtained from a
total of M1 ×M2 = 144 experiments. Airspeeds up to 17 m/s and angles of attack
up to 15 degrees were currently considered for the VFP-based modeling procedure.
The airspeed and AoA increments used are δk1 = 1 m/s and δk2 = 1 degree,
respectively, covering the corresponding intervals of [9, 17]m/s and [0, 15] degrees.

Table 31.4 Piezoelectric signal pre-processing for the parametric identification

Sampling frequency: fs = 200 Hz (after filtering and subsampling)

Final bandwidth: [0.1−100]Hz

Digital filtering: Low-pass Chebyshev Type II (7th order)

Signal length: N = 4,000 samples (20 s)
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Model order selection starts with the orders selected for the conventional AR
models representing the wing structure for a constant indicative experimental
condition. The final model orders being presently selected are based on the BIC
criterion [3] and model validation techniques, such as checking the whiteness
(uncorrelatedness) and the normality of the model residuals (MATLAB functions
acf.m and normplot.m, respectively) [3, 21]. The functional subspaces are selected
via a similar BIC-based process. The functional subspace consists of 25 Chebyshev
Type II bivariate polynomial basis functions[14–16]. The final identified global
model is VFP-AR(72)25. Thus, the model order of the AR polynomial is 72, while
the functional subspace consists of the first p = 25 shifted Chebyshev Type II 2-
dimensional polynomials.

Indicative VFP-based frequency response function (FRF) results obtained from
the VFP-AR(72)25 model (for set airspeed of 11 m/s) are, as functions of frequency
and AoA, depicted in Fig. 31.13. The frequency resolution is 0.01 Hz, while the
AoA resolution is 0.1 degrees. The desired resolutions can be properly defined due
to the analytical functional dependence of the flight state with the model parameters.
By observing the frequency evolution versus the AoA it may be assessed that the
amplitude of the parametric power spectral density increases for lower frequencies
with the increase of the AoA. More specifically, the spectral amplitude of the
frequency at 9 Hz exhibits a sharp increase for an AoA of 13 degrees in which stall
occurs (compare with Fig. 31.7). In addition, by comparing the parametric spectral
estimates with the corresponding non-parametric Welch-based analysis of Fig. 31.11
it may be concluded that high accuracy achieved by the global modeling approach
which also employs a significantly shorter signal length (see Table 31.3).

Indicative parametric FRF results obtained from the VFP-AR(72)25 model (for
set AoA of 0 degrees) are, as functions of frequency and airspeed, depicted in
Fig. 31.14. It may be observed that the wing mode at 4.5 Hz for 9 m/s gradually
increases with the increasing airspeed until unified with the mode at 8.5 Hz at
approximately 16 m/s. This aeroelastic behavior corresponds to the generation

Fig. 31.13 Indicative parametric results obtained via the VFP-AR(72)25 model for set airspeed
of 11 m/s: frequency response function estimates as function of frequency and AoA. Observe the
sharp increase in the spectral amplitude of aeroelastic mode at 8.5 Hz at an AoA of 13 degrees that
provides a clear indication of stall
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Fig. 31.14 Indicative parametric spectral results obtained from the VFP-AR(72)25 model (set
AoA of 0 degrees): frequency response function estimates as function of frequency and airspeed.
Observe the convergence and final coupling of the aeroelastic modes at 4.5 and 8.5 Hz that provides
a clear indication of wing flutter

of the dynamic flutter phenomenon. It may be readily observed that the results
of Fig. 31.14 are extremely accurate in comparison with the corresponding non-
parametric analysis of Fig. 31.12. Via the use of such a global VFP model it is
possible to improve the aircraft control in order to suppress, minimize, and even
predict dynamic flutter via appropriate real-time monitoring techniques.

Indicative model parameters of the VFP-AR(72)25 model are depicted in
Fig. 31.15 as functions of the airspeed for a constant AoA of 11 degrees. The
corresponding 99% confidence intervals are also depicted in red color. In most of
the cases as shown in the subplots, it may be readily observed that the confidence
intervals are extremely narrow, which demonstrates the accuracy of the parameter
estimation approach. In case of increased uncertainty reflected in the recorded
signals, the stochastic identification approach will compensate by increasing
the parameter estimation uncertainty and hence, leading to increased parameter
confidence intervals.

However, as previously mentioned, the VFP model parameters are explicit
functions of both the airspeed and the AoA based on the selected functional
subspace and the estimated coefficients of projections. Towards this end, Fig. 31.16
presents indicative VFP-AR(72)25 model parameters as functions of both the
airspeed and angel of attack.

31.6 Concluding Remarks

The objective of this work was to introduce a novel Dynamic Data Driven Appli-
cations Systems (DDDAS) state awareness framework for the next generation of
intelligent “fly-by-feel” aerospace vehicles. The proposed framework was based on
(i) bio-inspired networks of micro-sensors that can provide real-time information on
the dynamic aeroelastic response of the structure and (ii) stochastic “global” models
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Fig. 31.15 Indicative VFP-AR(72)25 model parameters along with their 99% confidence intervals
versus airspeed for a set AoA of k2 = 11 degrees

for representing the system dynamics under varying flight states and uncertainty. In
the context of aeroelastic state awareness, the use of Vector-dependent Functionally
Pooled (VFP) models that allow explicit functional dependencies between the flight
states and the model parameters was introduced. The class of VFP models resembles
the form of LPV models, with some critical differences: (i) the signals are treated as
a single entity and potential cross-correlations are accounted for, (ii) the number of
estimated parameters is minimal, and (iii) the estimation is accomplished in a single
step (instead of two subsequent steps) for achieving optimal accuracy.

For the experimental assessment and evaluation of the proposed stochastic frame-
work, a prototype intelligent composite UAV wing was designed and fabricated at
Stanford University. The composite wing was outfitted with bio-inspired stretchable
networks consisting of 148 micro-sensors that were embedded inside the composite
layup. A series of wind tunnel experiments was conducted under various AoA
and freesrteam velocities for data collection under varying flight states. A total
of 285 wind tunnel experiments covering the complete range of the considered
flight states was conducted. The postulated data-driven stochastic identification
approach that is based on the novel VFP time series model structure achieved the
accurate representation of the wing dynamics for all the admissible flight states and
enabled the detection of dynamic stall and flutter phenomena. The obtained results
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Fig. 31.16 Indicative VFP-AR(72)25 model parameters as function of airspeed and AoA

demonstrated the successful integration of the bio-inspired sensor networks with
the composite wing, but most importantly the effectiveness and accuracy of the
stochastic data-driven “global” identification approach, as a first step towards the
next generation of “fly-by-feel” aerospace vehicles with state sensing and awareness
capabilities.

Current and future work addresses:

• Real-time implementation of the DSA framework.
• Integration with high-fidelity structural and aeroelastic computational models for

increased physical insight, data generation for training purposes, and complete
structural awareness in the material.

• Postulation of appropriate control schemes for flutter mitigation, stall avoidance,
gust alleviation, and optimized maneuvering and performance based on global
model.

• Extension of the global VFP models to the mutlivariate case to simultaneously
account for large numbers of sensors.

• Extension of the global VFP models to account for fast evolving non-stationary
dynamic signals.
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Chapter 32
DDDAS: The Way Forward

Erik Blasch, Sai Ravela, and Alex Aved

Abstract This book sought to capture the highlights of DDDAS over the last two
decades, with an emphasis on the key areas of development including: theory,
modeling, and examples. DDDAS seeks to leverage high-dimensional models to
provide data that augments real time estimation, analysis, and control. Many
examples were presented that highlight recent approaches, developments, and use
of the DDDAS concept towards advancing science through data understanding,
analysis, and discovery. The future would further develop these DDDAS concepts
towards a better understanding of scientific principles, engineering systems design,
and multi-domains applications. DDDAS will leverage and influence such areas as
machine learning analytics, multi-domain autonomy, and contextual awareness.

32.1 DDDAS Methods for Systems Science

The book has demonstrated that many applications have been furthered from the use
of the DDDAS paradigm. DDDAS advances presented in the book highlight three
areas of analytics, autonomy, and awareness. DDDAS methods incorporate dynamic
data that predated the trends in big data analytics. The future techniques will align
with the efforts in artificial intelligence and machine learning that leverage data from
high-dimensional modeling.

A second area includes the many applications in autonomy to include sensing,
robotics, and filtering across many domains: space, air, and ground. The DDDAS
methods focused on the machine processing of techniques; however developments
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Table 32.1 DDDAS methods applied to awareness

Awareness Models/Measurements Contributions

Structural health Solids models
Temperature measurements

Self-healing damage recovery
Fly-by-feel aircraft

Environment Weather models
Wind measurements

Autonomous UAVs
Air-breathing engine safety

Space situation Atmospheric models
Electron density

Resident object tracking
Satellite detection

Situation Terrain models
Target kinematics

Knowledge-aided radar
Multi-sensor planning

Computational Data flow models
Buffer measurements

Computer vision surveillance
Container-based optimization

Cyber Cyber-physical models
IoT, SCADA measurements*

Power/micro grid management
System level security

*Internet of Things (IoT), Supervisory Control and Data Acquisition (SCADA)

will be aligned with user decision support, scenario assessment, and real-world
deployment of the methods towards practical applications.

In general, the DDDAS themes include improvements in awareness, such as
space situation awareness (SSA), structural health awareness, and environment
awareness; where newer themes have emerged in situation awareness, computa-
tional awareness, and cyber awareness (as shown in Table 32.1). In many cases,
awareness could be replaced by monitoring the surroundings of the application.
DDDAS builds on situational monitoring to leverage high-dimensional models for
real-time, dynamic, and run-time assessment.

Other demonstrated examples included bio-medical approaches to medical diag-
nostics, human health, and urban pandemics. The rich exploration of DDDAS for
the sciences is only emerging. With data analytics, machine leaning, and artificial
intelligence, these areas would continue to grow. DDDAS fosters the use of high-
dimensional, large-scale, and big data models to augment performance. The book
follows the advancements since the 2010 workshop which had a focus on the
sciences [1]. The developments moved from situation awareness to that of situation
understanding.

32.2 DDDAS Has Universal Appeal

32.2.1 Paradigm for Theory-Data Symbiosis

Throughout time man has sought to learn from data using to better understand the
world around them. From a physics-based analysis, DDDAS formalized this pro-
cess, initially for computational science, but subsequently for different applications
beginning in the first decade before the introduction of big data and recently with
data sciences. The DDDAS paradigm seeks to introduce the use of high-dimensional
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Fig. 32.1 The DDDAS loop

models (theory) as a method for accessing simulated data, when the environmental
analysis cannot be fully measured. Pragmatic collection of data, whether sparse or
voluminous, can be carefully processed to better understand the world and support
model refinement. DDDAS seeks to leverage the foundations of mathematics [2]
for modeling and control. The theory-data symbiosis is the hallmark of the DDDAS
approaches. Figure 32.1 highlights the DDDAS loop when considering awareness
(sensor, machine, or mission) to that of the measurement collection, modeling, and
methods used for the theory-data symbiosis.

Learning models from data and producing models from theory [3] are both
limiting; however the symbiosis occurs at all levels of abstraction. Symbiosis takes
many forms: at the highest level, learned models are coupled with derived models,
while at the lowest level theory constrains learning from data, from which data
provides the mechanism for estimation and control. Key aspects of many of the
solutions included multi-dimensional, multi-resolution, multi-sensor, and multi-
perspective analysis. The diversity of information supports the opportunity to refine
models with non-traditional sensing. Examples were provided of emerging concepts
that include the use of Internet of Things (IoT) data in addition to electrical output
for cyber-physical power and micro-grid analysis, urban monitoring from text
and space data, as well as imagery and strain measurements for structural health
monitoring. In each case, there was a benefit for management, sensor collection,
and healing; respectively. The future applications of DDDAS will incorporate public
domain information emerging in complexity from the environment (e.g., weather),
sensors (e.g., polarization), and objects (e.g., power grids).

32.2.2 Mitigates the Curse of Dimensionality

DDDAS mitigates the challenge of big data collection and analysis from information
fusion [4]. From a theoretical point of view, the curse of dimensionality is mitigated
through the intelligent collection of data. Many theoretical models from physical
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Fig. 32.2 DDDAS for context driven solutions to the unknown unknowns, where (A1, . . . A6)
represent assumptions for analysis

to social, behavioral, economic, and cultural phenomenon are reduced to a set of
salient parameters. In a similar way, the limitations of mathematical tractability can
be supported with the assumption that there is a fundamental set of information that
is needed to support run-time applications. In the book, many examples highlighted
approaches to support the data analytics with that of data collection and models,
as shown in Fig. 32.2. Essentially, DDDAS will push the frontier of explaining the
unknown unknowns; such as how the unknown weather (e.g., hurricanes) effects on
the unknowns on sensors (e.g., autonomous aircraft) for control and action.

DDDAS is valid across many scales from recent trends in internet of Things
(IoT) data and cyber physical systems (CPS) to that of high-dimensional environ-
mental models [5]. The many examples presented in the book demonstrate that
DDDAS works across many spectrums such time, space, frequency, and modalities.
DDDAS provides solutions for multi-resolution situations from the local to the
global spatial, micro to macro frequencies, and small to large time scales. Examples
were shown from time series, language processing, and structural analysis. The
explosion of data will be an area were DDDAS learns new models, uses the models
for surrogate information, and provides predictive multi-dimensional control for
enhanced performance.

32.2.3 A Prediction and Discovery Instrument

The power of DDDAS is to use the simulated models so as to predict the future
behavior of systems. As with the curse of dimensionality there is the analysis of
the unknown unknowns. To be able to utilize a model to predict the unknown
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unknowns through simulation is a unique feature of DDDAS [6]. To employ the
DDDAS methods, assumptions are made (Fig. 32.2) such as (A1) problem is
specific, (A2) data can be acquired, (A3) context data (from the models) can be
fused, (A4) decision are actionable such as in future collections, (A5) decisions
reproducible (for model updates), and (A6) error can be quantified. The book
begins with methods for uncertainty quantification (A6) and ends with domain-
specific examples (A1). The domain-specific application supports knowledge-driven
approaches, while the error-analysis supports the data-driven approaches. With
modeling from various methods of the environment, structures, energy, and network
analysis; high-dimensional information is used to support DDDAS approaches for
context-based systems support.

32.3 Emerging Opportunities

As highlighted in Chap. 1, DDDAS include: (1) real-world applications, (2)
instrumentation methods, (3) modeling and simulation, and (4) systems software.
The future of each area and their intersection should forage new efforts using the
DDDAS methods.

32.3.1 Applications Systems

DDDAS can be applied to specific problem domains which resolve around the
fidelity of the models of those communities. Emerging communities in big data (e.g.,
CPS, IoT), data control (e.g., fog computing), and data science (e.g., multimedia
analytics) augment the traditional methods for engineering analysis, as shown in
Fig. 32.3. Such information as terrain information can be used for urban tracking
while the intersection of structures, environments, and avionics is shown in Fig. 32.3
as a future application in the fly-by-feel autonomous UAV. Big data metrics includes
velocity, volume, veracity, and variety (4 V’s) while DDDAS has focused on the
value of data – whether in collection or from models. DDDAS focuses on value by
integrating the correct simulation data into the model and assessment for updates to
control the big data collection issues.

It would difficult to restrict DDDAS to specific application areas; however the
book highlights many that could inspire other paradigms such a drug delivery in
medicine, aid distribution for emergency disasters, and social policies for effective
management of energy and food resources.

32.3.2 Instrumentation

Specific sensors are being designed at every scale, while at the same time there
is a growing amount of data being collected from all types of sensors, from the

http://dx.doi.org/10.1007/978-3-319-95504-9_1
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Fig. 32.3 DDDAS developments for data science, data control, and data size

physical to the human. Future instrumentation systems support the processing,
exploitation, and dissemination of information for knowledge (shown in Fig. 32.4).
The ability of physics-based and human-derived information fusion (PHIF) extends
the joint sensing capability over distributed situations. A second construct of
instrumentation is that the sensor design and collection includes the processing and
exploitation of the data from the sensors. Using a sensor model can help better
understand the data that is being collected and assessed. A third concept is the
dissemination of the information for indexing and analysis. The instrumentation
methods need to consider where the data is being sent for various scale analysis.
For example, local data collections could support a single UAV for safe flight, while
that information can be sent to air traffic management for a global analysis of the
swarm of UAVs operating in various weather conditions. The future of DDDAS will
include advanced computation methods for indexing of data, ontological models
to categorize the data for human and machine analysis, as well as the control and
management of instrumentation data for distributed networks.

32.3.3 Modeling and Simulation Methodology

The growth in data science helps to enhance model building, simulation analysis,
and prediction for domain applications. Many times, the models are developed for
specific communities in specific forms. Hence, one future area is model matching
such that multiple types of information can be used (e.g., environment and structures
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Fig. 32.4 DDDAS Future concepts for situation assessment, awareness, and understanding

models). Chapter 1 highlighted the data-assimilation loop, but bringing in multiple
(modal) data assimilation loops is still a challenge. For simulation, there is a need for
effective and efficient methods to support run-time operations such as dissemination
the full scale results to the on-line system for performance optimization. Deep
learning is a method that first learns the global elements and then focuses on
learning the specific variations that change (e.g., learning the general aspects of
a vehicle and then focusing on the moving parts such as door opening and closing
variations or the environmental changes do to luminance effects). Learning over
independent paradigms needs to be integrated for useful simulations. As with all
DDDAS-inspired methods, the future goal of DDDAS is to bring together the
models, simulations, and data analytics.

32.3.4 Systems Software Computation

The field of high-performance computing has many directions including data flow
architectures (e.g., container-based processing), electronic design (e.g., quantum
computers and computation), as well as high-end to run-time analysis (e.g., edge
computing). The measurement collections of DDDAS can be made more efficient
through data flow architectures. The high-dimensional modeling of DDDAS could
be developed for quantum computing. Finally, the integration of modeling at a cloud
computing center can be integrated with fog computing and edge computing for
large scale data collections.

http://dx.doi.org/10.1007/978-3-319-95504-9_1
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Fig. 32.5 Contribution of modeling in support of DDDAS [7]. Each image shows the near surface
wind speed and water vapor of Hurricane Katrina on Aug. 29, 2005, but at different resolutions. The
left image is at a 50-km resolution, the resolution of most global models in 2005. The right image
shows a 2015 version of the Goddard Earth Observing System model, Version 5 (GEOS-5), at a
6.25-km global resolution. (Credits: NASA Goddard Space Flight Center/Bill Putman, accessed
at:https://www.nasa.gov/feature/goddard/since-katrina-nasa-advances-storm-models-science)

32.4 Example: Hurricane Prediction

As highlighted in the Chap. 1, the modeling from the data assimilation loop
can support the sensor reconfiguration loop. An example case was presented in
hurricane analysis. Figure 32.5 showcases the importance of DDDAS-like processes
of the power from the advancements in modeling. The hurricane Katrina incident
was based on the capabilities to capture the current data, predict the direction of
the hurricane, and determine the “control” of the population and disaster relief. As
seen from high-dimensional NASA modeling [7], the updates from 2015 methods
demonstrate higher resolution, lower uncertainty, and direction assessment of the
hurricane as it moved towards the coastline.

32.5 Conclusions

The DDDAS community is rigorous, unique, and interdisciplinary. The information
presented in the book highlights advances in DDDAS with emphasis on the
integration of instrumentation, modeling, analytics, and architectures. Hopefully

https://www.nasa.gov/feature/goddard/since-katrina-nasa-advances-storm-models-science
http://dx.doi.org/10.1007/978-3-319-95504-9_1
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the book presented useful ideas to the reader to inspire their own developments
and applications. The organization and methods presented provide a discussion
for which the community can utilize DDDAS paradigms for scientific discovery,
information analytics, and sense-making for real-time awareness.
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Adaptive K-coordinate greedy, 598–599
Aeroelastic simulation

CFD, 199
fast multipole method, 202
reduced-order models, 199
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unsteady, vortex lattice method, 199
vortex lattice method, 199
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Air France flight 447 accident, 97–98
Airplane weight estimation

aerodynamic model parameter estimation,
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data generation, 108
error detection, 112
PILOTS program, 110–112
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software parameter settings, 113
X-plane flight simulator, 107

Air platform positioning, 12
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ALE formulation, see Arbitrary Lagrangian-

Eulerian formulation
Algorithm Win Probability (AWP)
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target location, 368
uniformly distributed sensor, 370–372
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408–409
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input/output system data, 416–417
isolation of the attack, 420–421
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Apollo model (cont.)
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approach, 41–43
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System, 30
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32–34
SDO cycle, 30–31

Combustion instabilities detection
depth of process, 126
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hidden Markov modeling, 124
Kullback-Leibler divergence, 126
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reduced-order Markov model

agglomerative hierarchical clustering
approach, 128

class separability, 136
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final aggregated model, 136
flowchart, 127
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hierarchical cluster tree, 133–135
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128
parameters estimation, 129–131
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method
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Computational steering, 156, 157
Conditional independence, 573, 576
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ConstructGraph function, 576, 583
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639
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Context aware approaches, 12
Context-driven approach, 639
Continuous-time model, 416–417
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Control and atmospheric sensing, 12
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with NWP model, 222
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Data assimilation loop, 3, 4, 11, 729
Data-base management system (DBMS), 638
Data-driven approach, 639
Data-driven State Awareness (DSA)
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bio-inspired sensor networks, 701–702
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numerical simulations, 710–713
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Data stream management systems (DSMS),

117–118, 411
Data structures, 640
DDDAS-As-A Service (rDaaS), 611
DDDAS Interactive Structure Composite

Element Relation Network
(DISCERN)

aerodynamics modeling, 158
ALE-VMS simulations, 158–159
bending-strip method, 158
CDM, 678
computationally intensive components, 157
computational structural model

IGA, 680
progressive damage model, 681

CX-100 blade fatigue test
applied displacement forcing, 686, 688
blade structure, 682–684
damage index, 688, 691, 692
damage model parameters, 688, 690
IGA model, 682–684
loops, 686, 687
setup and sensor layout, 684–686
simulation results, 688, 692
time and frequency domains, 686, 689

damage modes, 679–680
flow diagram, 156

FSI effect, 157
adjoint-based control, 161–167
wind-turbine FSI simulation, 159, 160

IGA, 157–158
isogeometric shell analysis, 158
RVE, 679
sensitivity analysis and optimization,

159–161
UAV

Aurora Flight Sciences, 690, 693
high-fidelity models, 690
landing simulation, 692–694
parametric model, 690–693

DDD-MOM, see Dynamic data-driven
multi-objective optimization model

Decentralized model, 620, 621
Demand response technique, 516
Demand side management (DSM) programs,

see Dynamic data-driven multi-
objective optimization model
(DDD-MOM)

Dense camera-array devices
characteristics, 561
with obvious perspective motions

global perspective model, 563–566
local four-parameter affine motion

model, 565–567
2-D hierarchical coding structure,

562–563
with translational motions, 566–568

DEXSim, 610
Dictionary based method, 559–561
Differential entropy, 353, 426–428
Differential games, 300
Dijkstra’s algorithm, 352, 448
DISCERN, see DDDAS Interactive Structure

Composite Element Relation
Network

Discrete-time model, 707
Distance based reference frame selection,

556–558
Distributed Energy Sources (DES), 506
Distributed generation (DG) units, see

Microgrids
Distributed Laplace perturbation mechanism

(DLPA), 627
dlib library, 515
D-Markov model, 581
DNA methylation

beta value, 237
bisulfite treatment, 236
data mining techniques, 234
5-methylcytosine, 234
3D-HCL
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agglomerative approach, 239
bidirectional information flow, 235
bottom-up approach, 238
closest cluster, 245, 246
cluster membership score based

algorithm, 239–240
cluster validation score, 243–245
computational cost, 234
cumulative variance, 242
dendrogram, 239, 243
dimension reduction algorithms, 235
discriminative model, 246
GEO DataSets, 236
influential data points, 236
informative probes, 244, 246, 247
locus information score based

algorithm, 241–242
in lung cancer, 234, 236
non-malignant pulmonary samples,

246, 248
outlier detection algorithm, 240–241
pleural mesothelioma samples, 248–249
principal component analysis (PCA)

235, 237–238, 242
top down approach, 238

Docker containers, 600
Donsker-Varadhan variational formula, 385
Double-cantilever beam (DCB) test specimen

fabrication
crack resisting strength, 178
fracture and healing protocols, 178, 179
fracture test results, 180–183
geometry, 179
healing efficiency, 180, 183–185
manufacturing, 177–178
materials, 177
Mode-I interlaminar fracture toughness,

179
modified beam theory, 180
parametric sensitivity analysis, 187–188
quasi-static tension, 179
SEM imaging analysis, 185–187
strain energy release rate, 178

DSA, see Data-driven State Awareness
Dynamically deformable reduced models,

31–32
Dynamic Bayes classifier

error signatures approach, 116
experimental settings, 114
mode prediction evaluation, 114
PILOTS program, 114, 115
weight error mode detection, 115, 117, 119
weight error mode training data, 114, 116

Dynamic Data-driven Environmental Systems
Science Conference (DyDESS), 9

Dynamic data-driven multi-objective
optimization model (DDD-MOM)

demand data, 492
diesel generators, 497–498
electricity price model, 493
ε-constraint method, 496–497, 499
FAWN, 498
optimal operation plans, 499, 501
optimization module, 493–496, 498–499
overview of, 491–492
Pareto Frontier, 499–500
RTDM, 497

ILM and amount of electricity, 497
load demand and generation, 497
parameters, 498, 500, 502
results, 499–500, 502

solar panels, 492–493, 497–498
wind turbines, 493, 497–498

Dynamic programming (DP), 447
Dynamic traffic light control system

experiment results, 603–607
feedback controller, 592–593
simulation environment, 602–603

E
Early Aberration Response System (EARS),

139
Electricity price model, 493
Electronic Surveillance System for the Early

Notification of Community-Based
Epidemics (ESSENCE), 139–140

Embedded system, 533
Energy and emissions modeling

Bayesian Inference approach (see Bayesian
Inference approach)

CA models
CA-Simulation application, 470–471
class-specific values, 471
drawbacks, 472
KW model, 470
lane changing, 471–472
sample cellular automata results, 472
speed and position updates, 471
traffic dynamics, 470–471

distributed simulation middleware
components, 481
energy-constrained devices, 481
example, 481
G-RTI (see Green Run Time

Infrastructure)
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Energy and emissions modeling (cont.)
mobile computing devices, 468
MOVES-Matrix modeling approach, 469,

478–480
STM data, 469
system architecture, 468–469

Ensemble Kalman filter (EnKF), 33, 42
Entropic value at risk (EVAR)

Bienaymé-Chebyshev inequality, 384
Chebyshev inequality, 383–384
confidence level, 385
Donsker-Varadhan variational formula, 385
experimental evaluation

CASTNet ozone dataset, 395–396, 399,
402

ERA temperature dataset, 395–396,
399–400

Intel temperature dataset, 395–396,
399–400

Ireland windspeed dataset, 395–396,
399, 401

prior and posterior distribution,
397–398

scaling factor, 396–397
Washington rainfall dataset, 395–399,

401
information gain and exploration, 384–385
Lévy process, 384
multi-play N-armed restless bandit problem

data-driven confidence level, 387–388
exploration policy, 386
Ped likelihood, 388–389
Pep model, 389
sensing locations, 386–387

time-invariant distribution, 389
guarantees, 390
PIG algorithm, 390–391

time-varying process
Chebyshev inequality, 392–393
RAPTOR, 393–395
time inequality, 392–393

VAR and CVAR, 385
Environment awareness, 724
ESSENCE, see Electronic Surveillance

System for the Early Notification of
Community-Based Epidemics

Euclidean clustering algorithm (ECA)
example, 345–346
vs. IGRCA

AWP, 370–372
CES method (see Computationally

Exhaustive Search method)

PCRLB (see Posterior Cramér-Rao
Lower Bound)

performance metrics, 368–370
Euclidean distance, 510–511
European Research Area (ERA) temperature

dataset, 395–396, 399–400
EVAR, see Entropic value at risk
EVAR-variant of our Real-time Adaptive

Prediction of Time-varying
and Obscure Rewards (EVAR-
RAPTOR) algorithm

CASTNet ozone dataset, 399, 402
ERA temperature dataset, 399–400
Intel temperature dataset, 399–400
Ireland windspeed dataset, 399, 401
time-invariant distribution, 394–395
Washington rainfall dataset, 399, 401

Expected Time Between False Alarms
(TMBFA), 419

Exponentially weighted moving average
(EWMA) chart, 144–145

Extended Kalman filter (EKF), 343, 344

F
Factorization method, 266
Fault Detection, Isolation and Reconfiguration

(FDIR), 116, 411
Feature-level fusion (FLF), 534, 536, 541
Feedback controller, 592–593
Finite Element Method (FEM), 680
Finite-memory Markov models, 124
Finite-time Lyapunov exponents (FTLE),

64–66
Fisher information matrix (FIM), 368, 447
Fluid–structure interaction (FSI) effect

adjoint-based control
beam deformation, 166–167
discretized adjoint FSI equations, 164
discretized primal FSI equation, 164
five-step procedure, 165
gradient descent methods, 165
objective function gradient, 164
2D benchmark problem, 165

adjoint problem, 162–163
primal problem, 161–162
wind-turbine FSI simulation, 159, 160

Fokker-Planck/forward Kolmogorov equation,
61

Foreground Binarization actor, 536
Foreground Filter actor, 535
Four-parameter affine motion model, 565–567
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Frequency response function (FRF), 716
fuzzylite library, 515
Fuzzy logic inference system (FIS), 511–512
Fuzzy logic method

average total load, 517, 518
conventional natural-gas based generators,

515
definition, 509
Devices_ON input variable, 512, 514
FIS, 511–512, 514
Load input variable, 512, 513
output variable Priority, 512, 514
Satisfaction index, 512, 513
Satisfaction input variable, 512, 513

G
Galerkin Projection, 83
Gaussian density function, 341
Gaussian Least Square differential Correction

(GLSDC) algorithm, 261–262
Gaussian Mixture Model (GMM)

algorithm implementation, 320–321
Bayesian “update” process, 34
bi-modal example, 36–37
BSP subsystem, 535
curse of dimensionality, 77, 84
density estimation, 573
differential entropy, 78
element differential entropy, 79, 80
ensemble member, 34
GMM-PC method, 78, 84
kernel-based regression, 574
mixture coefficients, 302
mixture ensemble filter and smoother,

35–36
MLE, 34
parameter estimation, 35
random vector, 302–303
search strategy outcome, 323
sensor networks (see Unattended ground

sensors (UGS))
simulation scenario

searcher dynamics, 319
target, 303, 318–320

State Transition Matrices, 79
time-dependent GMM-filtering, 35
trajectory smoothing

measurement likelihood, 306–308
posterior distribution, 306
prediction phase, 305–306
process model, 304
reduction, 308–310

uncertainty minimization (see Mixed-
integer convex program)

uncertainty propagation applications, 78
univariate splitting library, 79, 80
Wiener-Askey scheme, 78, 81

Gaussian random vector, 427–428
Generalized Minimum Residual (GMRES)

iterative algorithm, 169
Genetic Algorithm (GA), 710
GEO DataSets, 236
Glivenko-Cantelli theorem, 129
Global Ionosphere-Thermosphere Model

(GITM), 11, 76, 86
Global Node Selection (GNS) method, 339
Global perspective model

intrinsic and extrinsic matrix, 563–564
predicted frame vs. actual frame, 564
prediction accuracy and computational

complexity, 563
RANSAC, 564–566
SURF method, 564–566

GMM, see Gaussian Mixture Model
Graphics Processing Units (GPUs), 681
Green Run Time Infrastructure (G-RTI)

Apache webserver, 482
client-server architecture, 482
data aggregation, 482
energy consumption issues

average power consumption, 483–484
embedded simulation power, 484–485
experimental setup, 483
message aggregation, 485–486
queueing network, 482
results, 485
traffic simulations, 483
transportation network, 483–485

web-based implementation, 481–482
GridLAB-D, 515, 516

H
Hashin damage criteria, 681
Health monitoring, 632, 633
Heating, ventilating/ventilation, and air

conditioning (HVAC) system, 517,
518

Hellinger distance, 447
Hidden Markov model (HMM), 124
Hierarchical clustering (3D-HCL)

agglomerative approach, 239
bidirectional information flow, 235
bottom-up approach, 238
closest cluster, 245, 246
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Hierarchical clustering (3D-HCL) (cont.)
cluster membership score based algorithm,

239–240
cluster validation score, 243–245
computational cost, 234
cumulative variance, 242
dendrogram, 239, 243
dimension reduction algorithms, 235
discriminative model, 246
GEO DataSets, 236
influential data points, 236
informative probes, 244, 246, 247
locus information score based algorithm,

241–242
in lung cancer, 234, 236
non-malignant pulmonary samples, 246,

248
outlier detection algorithm, 240–241
principal component analysis (PCA), 235,

237–238, 242
pleural mesothelioma samples, 248–249
top down approach, 238

High Accuracy Satellite Drag Model
(HASDM), 76

High-fidelity models, 690
Homicidal chauffeur game, 300
Homogenized Hybrid Particle Filter (HHPF),

53, 54
HTSG model, 283
Human-machine interaction (HMI), 634, 635
Hunter-and-rabbit game, 299

I
IDW, see Inverse Distance Weighting
IGA, see Isogeometric analysis
Immerkaer’s method, 268
Indiana Public Health Emergency Surveillance

System (PHESS), 140
INFOrmation and Resource Management

(INFORM), 254
Information driven sensor querying (IDSQ)

approach, 339, 353
Information fusion, 573, 634
Information guided rapid clustering algorithm

(IGRCA), 346
benefits, 341
communication cost, 351–354
vs. ECA

AWP, 370–372
PCRLB (see Posterior Cramér-Rao

Lower Bound)
performance metrics, 368–370

extended to bearing sensors, 366–367
feasibility, 347, 354
frame of reference

angular positions, 363
Fisher information, 363–366
positional covariance, 359–362
positional mean, 359–361

information utility
Mahalanobis distance, 348–350
quality cluster, 350–351
sensor’s modality, 349–351
sensor subset, 348, 354

optimal sensor, 353, 355
procedure of, 342, 355–356

Information matrix, 302
Information-theoretic sensor selection strategy

for coarse grained dynamics, 61–64
conditional entropy, 59
continuous-time setting, 56
dynamic sensor problem, 57
FTLE, 64–66
information maximization problem, 57, 60
information utility function, 56
Kalman filter statistics, 59
KL divergence, 57–60
Leibniz formula, 60
Lorenz 1963 model

Kullback-Leibler divergence, 66
linear Gaussian case, 67–68
Lyapunov exponents, 66
numerical results, 68–70
singular vectors, 67

sensor control scheme, 56
singular vectors, 64–66

Information theory, 385
Information vector, 302
Informative Path Planning problems, 301
Instrumentation methods, 5, 6, 727–728
Integrated performance monitoring (IPM) tool,

169
Integrity attacks and faults, 409
Intelligent self-healing structural concept, 176
Intel temperature dataset, 395–396, 399–400
International reference ionosphere (IRI) model,

86
Interruptible load management (ILM), 494,

497
Inverse Distance Weighting (IDW), 626
Inverse Gaussian distribution, 493
Ireland windspeed dataset, 395–396, 399, 401
Isogeometric analysis (IGA), 157–158, 680,

690, 693, 694
Iterative forward-and-backward algorithm, 299
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Itokawa asteroid model
Lambertian surface

vs. Apollo model, 273
estimated normal map, 275–276
estimated standard deviation, 281, 283
estimated uncertainties result, 281–282
estimate surface, 275, 277, 280–282
normal vector error map, 275–276

non-Lambertian surface, 286–288

J
Joint strategy fictitious play (JSFP), 433–434,

441–443

K
Kalman-Bucy filter, 51
Kalman filter (KF), 4, 174, 411
KanadeLucasTomasi (KLT) tracker, 266
Karhunen-Loeve (KL) expansion, 32
K-coordinate greedy, 598
Kernel-based Virtual Machine (KVM), 600
Kinematic wave (KW) model, 470
Kirchhoff-Love shell, 680
k-means algorithm

definition, 509
Euclidean distance, 510–511
Minkowski distance, 511

K-nearest neighboring (K-NN) blocks, 551
Knowledge-driven approach, 639
Kullback-Leibler (KL) divergence, 57–60, 126,

447

L
Lambertian reflectance model, 259–260
Landsat-8, 222, 224
Laplace perturbation (LPA), 621, 624
LDspectral Band Subset Selection (LBSS), 538
LDspectral run-time system model (LRSM),

533–534
Leibniz formula, 60
Lenslet-based light field image (LFI)

raw sensor data, 548, 549
self-similarity

advantages, 550
bi-predicted compensation, 551
HEVC intra encoder, 549, 550
local linear embedding, 551, 552

Lévy process, 384
Light Detection and Ranging (LIDAR), 255

Light field image (LFI)
camera-array based LFI (see Dense

camera-array devices)
dictionary learning, 559–561
lenslet-based, 548–552
pseudo sequence

decomposition, 552
distance based reference frame

selection, 556–558
motion vector scaling, 558–559
2-D coding structure, 553–556

Lightweight dataflow (LD), 530, 532–533
Lightweight dataflow environment (LIDE),

534–535
Linear Parameter Varying (LPV) models, 698
Linear quadratic regulation (LQR), 300
Lion-and-man game, 299–300
Live-video computing database management

system (LVC-DBMS) system,
642–644

Locus information score based algorithm,
241–242

Lorenz-63 system, 39
Lorenz-95 model, 438–440
Lorenz-95 problem, 42
Lorenz 1963 model

Kullback-Leibler divergence, 66
linear Gaussian case, 67–68
Lyapunov exponents, 66
numerical results, 68–70
singular vectors, 67

LPA, see Laplace perturbation
LRSM, see LDspectral run-time system model
Luenberger observer (LO)

adversary effects, 419–420
effects of sensor attacks, 417–418
estimated state gain, 411–412
estimated state vector, 411
estimation error, 412
false alarms and impact, 419–420
residuals, 418
results, 418–419
simulation model, 414

M
Machine-derived context set

Bayesian fusion, 572
cardinality reduction

graph-theoretic compression (see
Maximal clique enumeration
(MCE))

subset selection approach, 578–581
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Machine-derived context set (cont.)
definition, 472
likelihood function, 574–575
SDF, 81
seismic sensors, 581, 582
unsupervised learning methods, 573,

581–582
Macro-fiber-composite (MFC) sensors, 686
Market module, 516, 517
Markov Decision Process (MDP), 447, 611
Markov property, 473
Martingale problem, 49
Maximal clique enumeration (MCE)

Bhattacharyya distance, 576, 582–583
classification accuracy, 583, 584
conditional density, 577
definition, 574
edge set, 576
Minterms procedure, 583
n-vertex graph, 576
observation density, 577
sKL, 577–579
weight matrix, 576

Maximum entropy partitioning (MEP), 127
Maximum likelihood estimation (MLE), 34,

493
MBT, see Modified beam theory
Medical applications, 11
MEnF, see Mixture Ensemble Filter
MESPAC, see Model Estimation Sampling

Planning and Control
Message passing interface (MPI) library, 169
Meteorological model, 3
Microgrids

DDD-MOM
demand data, 492
diesel generators, 497–498
electricity price model, 493
ε-constraint method, 496–497, 499
FAWN, 498
optimal operation plans, 499, 501
optimization module, 493–496,

498–499
overview of, 491–492
Pareto Frontier, 499–500
RTDM (see Real-time decision-making

module)
solar panels, 492–493, 497–498
wind turbines, 493, 497–498

energy shortage, 490
Minkowski distance, 511
MIT Cooperative Autonomous Observing

System, 30

Mixed-integer convex program (MIP), 298
CPU time, 321
ground-sensor-aided optimal search,

310–312
Monte Carlo simulations

increasing target speed, 324–325
target agility, 325
target initial uncertainty, 318, 325–326
timing, 324

prune mixture components, 321
sampling-based aided search

approximation, 312–313
Bayesian recursion, 313–314
“if” statements, 316–317
K weighted samples, 312
parametrization, 313
uncertainty minimization, 314–316

search strategy outcome, 322–323
Mixture Ensemble Filter (MEnF), 36
Model Estimation Sampling Planning and

Control (MESPAC), 31
Moderate Resolution Imagine

Spectroradiometer (MODIS),
216

Modified beam theory (MBT), 180
Monte Carlo (MC) simulations, 77

increasing target speed, 324–325
success rates and timing, 324
target agility, 325
target initial uncertainty, 318, 325–326

Motion vector (MV) scaling process, 558–559
MOtor Vehicle Emissions Simulator (MOVES)

Matrix modeling approach, 469,
478–480

MPI library, see Message passing interface
library

Multimedia content analysis
activity analysis

interface, 642–644
intersection, 643, 645
parking lot, 646–647

analytical modeling, 641
assumptions, 638
autonomy and automation, 637–638
cyber-physical models, 633, 641–642
data-driven, knowledge-driven, and

context-driven approaches, 639
data oriented models, 639–640
elements, 632
environment, 633
health monitoring, 632, 633
HMI, 634, 635
information fusion, 634
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object classification, 632, 633
object tracking, 632, 633
perception vs. reality, 638
QuEST, 635–636
software methods, 632
systems coordination, 632
unexpected query, 636–637

Multi-modal sensor data, see Machine-derived
context set

Multi-play N-armed restless bandit problem
data-driven confidence level, 387–388
Ped likelihood, 388–389
Pep model, 389
sensing locations, 386–387
time-varying process, 386

Multiscale signal and observation processes
data assimilation

chaotic systems, 56
coarse-grained dynamics, 51
continuous time state estimation, 51
definition, 51
HHPF, 53, 54
information-theoretic formulations, 56
Kalman-Bucy filter, 51
linear control strategy, 54
nonlinear filtering problem, 51, 52
particle methods, 53
standard averaging techniques, 52
stochastic dimensional reduction, 52
stochastic integration approximation

methods, 51
suboptimal control, 55
3-dimensional Lorenz ’63 model, 54
weather prediction models, 53

dimensional reduction and homogenization,
49–51

information-theoretic sensor selection
strategy

for coarse grained dynamics, 61–64
conditional entropy, 59
continuous-time setting, 56
dynamic sensor problem, 57
FTLE, 64–66
information maximization problem, 57,

60
information utility function, 56
Kalman filter statistics, 59
KL divergence, 57–60
Leibniz formula, 60
Lorenz 1963 model, 66–70
sensor control scheme, 56
singular vectors, 64–66

mathematical models, 48
sub-grid scale phenomena, 48

Multispectral video processing
accuracy evaluation, 541–543
accuracy metric, 539
Benezeth’s dataset, 540
BSP, 534–536
BSS, 536–538
execution time evaluation, 543
experimental setup, 539
hyperspectral images, 531
image fusion, 531
lightweight dataflow, 530, 532–533
LRSM, 533–534

Multivariate Gaussian
information matrix and information vector,

302
measurement to state space, 327–328
update phase, 328–331

Multivariate outlier analysis, 168
Mutual information

conditional entropy, 428
cooperative sensor planning, 431–433
performance metric, 447
random variable, 428–429

“Mutual Information Filter” (MuIF), 41, 42

N
Naïve Bayes classifier, 98
Nash equilibrium, 430–431
National Centers for Environmental Prediction

(NCEP) Final Operational Global
Analyses, 224

National Infrared Operations (NIROPs), 216,
220

National Science Foundation (NSF), 2, 603
Navier-Stokes equations, 77
Next Generation Simulation (NGSIM) data,

475–478
Nonlinear high dimensional inference, 32–34
Non-photorealistic (NPR) camera, 264
Non-Uniform Rational B-Splines (NURBS),

680, 691, 693
Normal distribution, 308
Normalized radiance, 260
NRLMSISE-00 empirical model, 86
Numerical weather prediction (NWP) model,

216

O
Object tracking, 632, 633
1-D hierarchical coding structure, 553–554,

556
OpenCV function, 535, 536
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Optimal path search, 299
Optimal search (OS), 299–301

See also Mixed-integer convex program
Optimal tourist problem, 301
Orbital awareness, 11
Oren-Nayar model, 286–288
Orienteering problem, 301
Ornstein-Uhlenbeck process, 50
Orthographic projection model, 268
Outlier detection algorithm, 240–241

P
Parallel greedy algorithm

adaptive K-coordinate greedy, 598–599
coordinate greedy, 597, 610
K-coordinate greedy, 598
single target optimization problem,

596–597
Parametric sensitivity analysis, 187–188
Pareto Frontier solutions, 496–497
Partially observable Markov decision process

(POMDP), 300, 447
Parzen Windows

binary case, 667
computational complexity, 666
definition, 667
error bound, 657, 662–663
nearest neighbor methods, 656
potential function rules, 658
real data experiment

data sets, 670–671
methods, 669
results, 672–673

regularization constant, 663–666
regularized least squares method, 657

approximation error, 660–661
Euclidean space, 658
Gaussian kernel, 658, 659
input-output function, 659

ridge regression, 667
simulated data experiment, 668–669
spectral cut-off analysis, 657
weight decay, 657

PC, see Polynomial Chaos
PCRLB, see Posterior Cramér-Rao Lower

Bound
Ped, see Poisson Exposure Distribution
Pep, see Poisson exposure process
Performance Monitor (PM), 601
Perspective projection model, 268
Photometric stereo

application of, 256
challenges, 256

coordinate systems and geometry, 258
depth estimation, 264–265
depth propagation, 264
error covariance

flowchart, 267–268
image noise, 268–269
intrinsic parameter uncertainty, 268
normal vector and diffuse constant,

269–271
raw sensor noise, 268
surface points propagation, 271–272

image observations, 256
INFORM based DDDAS approach, 257
isotropic Lambertian surface

Apollo model (see Apollo model)
Itokawa model (see Itokawa model)
measurement data sets, 272–273
Space Object Light Attribute Rendering

(SOLAR) system, 272–273
Lambertian reflectance model, 259–260
modified photometric stereo, 261–263
motion algorithm

initialization stage, 266
issue of, 265
propagation stage, 266–267
surface slope, 267

non-Lambertian surface, 283–288
object observation, 258
photoclinometry, 255–256
reflectance coefficient kd , 260
reflected light, 257–258
relative orientation, 258
sensor system, 257
surface discontinuities, 265
surface gradient, 263–264
surface normal, 261
telescopic lens system, 259

Physics-based and human-derived information
fusion (PHIF), 728

Picture order count (POC), 553, 556–557
Piezoelectric transducers (PZTs), 685, 686
PILOTS, see Programming language for

spatio-temporal data streaming
applications

Pixel-level fusion (PLF), 534, 536
Poisson Exposure Distribution (Ped)

definition, 388
Gamma distribution, 388–389
guarantees, 390
PIG algorithm, 390–391

Poisson exposure process (Pep)
Chebyshev inequality, 392–393
definition, 389
hidden Markov model, 389
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homogeneous, 389
inhomogeneous, 389
RAPTOR, 393–395
time inequality, 392–393

Polynomial Chaos (PC)
compressive sampling, 83
curse of dimensionality, 77, 84
GMM-PC approach, 84
intrusive method, 82–83
multivariate polynomials, 82
non-intrusive method, 83
normalized Hermite polynomials, 81, 82
sparse grids, 83
true (MC) and approximated distributions,

85
POMDP, see Partially observable Markov

decision process
Positional covariance, 349
Positional restrictions, 348
Positive feedback loop, 3
Posterior Cramér-Rao Lower Bound (PCRLB)

computational expenditure, 373, 375
number of targets, 375–377
positional uncertainty, 350, 369
sensor field densities, 372–374

Potential games
entropy, 426–428
game-theoretic architecture

potential function, 430
properties, 431
strategic form, 429–430

local utility function
backward scheme, 434
computation time, 437–438
global optimal solution, 441
iterative greedy, 441–442
JSFP, 441–443
local greedy strategy, 441
neighbor set, 436–437
neighbors with correlation, 434–436
sensor targeting, weather forecast,

438–440
sequential greedy, 441–442
topology, 440

mutual information
conditional entropy, 428
cooperative sensor planning, 431–433
random variable, 428–429

resources, 424
search space, 426
sensor selection, 433–434
verification variables, 426

Power spectral density (PSD), 714–715

Predicted Information Gain (PIG) algorithm,
390–392

Prediction and discovery instrument, 726–727
Privacy and secuRity Enhancing Dynamic

Information Collection and
moniToring (PREDICT) project

data modeling with uncertainty
quantification, 625–626

definition, 620–622
feedback control

aggregation control, 624
data collection, 622–623
perturbation control, 624
sampling control, 623–624
without trusted aggregator, 626–629

secure data aggregation, 627
system model, 620

Prize-collecting Traveling Salesman problems
(TSP), 301

Probabilistic finite state automaton (PFSA)-
based approach, 124–126,
133

Probabilistic roadmaps (PRM), 447
Programming language for spatio-temporal

data streaming applications
(PILOTS)

airplane weight estimation, 110–112
data-driven learning, 104–105
dynamic Bayes classifier, 114, 115
error correction, 101
error functions, 99–100
error signatures, 100
mode estimation, 100
mode likelihood vectors, 100
prediction functionality

closest, 101, 102
euclidean, 101
interpolate, 101
PredictionTest, 102
runtime architecture, 102, 103

spatio-temporal data stream processing
system, 101

statistical learning
dynamic online unsupervised learning,

106–107
naïve Bayes classifiers, 105
offline supervised learning, 105–106

Progressive damage model, 681
PSD, see Power spectral density
Pseudo-sequence based method

decomposition, 552
distance based reference frame selection,

556–558
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Pseudo-sequence based method (cont.)
motion vector scaling, 558–559
2-D coding structure, 553–556

Pursuit evasion (PE), 299–301

Q
Qualia-based Exploitation of Sensing

Technology (QuEST), 635–636
Quantization parameter (QP), 563
Query by image content (QBIC), 639

R
Random sample consensus (RANSAC)

algorithm, 284–285, 564–565
Rapidly exploring random trees (RRT), 447
Rate distortion optimization (RDO), 551
Real-time decision-making module (RTDM),

497
ILM and amount of electricity, 497
load demand and generation, 497
parameters, 498–500, 502
results, 499–500, 502

Real-world applications, 5, 6
Reduced-order Markov model, 128–129
Reduced-order modeling (ROM), 11
Reflectance coefficient, 260
Regularization algorithm (RA), see Parzen

Windows
Regularization constant, 663–666
Regularized least squares method, 658–661
Renewable energy sources (RES), see Smart

grid
Representative Volume Element (RVE), 679
Residential module, 516
Resident space object (RSO)

binocular stereopsis, 254–255
INFORM framework, 254
3D reconstruction (see Photometric stereo)

RESTful interoperability simulation
environment (RISE), 610

Result Aggregator (RA), 601
Retrospective CostModel Refinement

(RCMR), 11
Ridge regression, 657
Rolling Horizon Dynamic Programming, 611
Runtime architecture, 600–601
Run-time system model, 533–534

S
Satisfaction index, 512, 513

Scale Invariant Feature Transformation (SIFT),
266

Scanning electron microscopy (SEM) imaging
analysis, 185–187

Science models, 10
Secure multiparty computation (SMC), 622,

627
Seismic sensor time series data, 581, 582
Self-aware vehicles, 11
Self-healing composite structures

autonomous approach, 174–175
damage-sensing, 175
DCB test specimen fabrication

crack resisting strength, 178
fracture and healing protocols, 178, 179
fracture test results, 180–183
geometry, 179
healing efficiency, 180, 183–185
manufacturing, 177–178
materials, 177
Mode-I interlaminar fracture toughness,

179
modified beam theory, 180
parametric sensitivity analysis, 187–188
quasi-static tension, 179
SEM imaging analysis, 185–187
strain energy release rate, 178

intelligent self-healing structural concept,
176

manual labor intensive inspection, 174
non-autonomous approach, 175
predictive self-healing, 175

Self-similarity based method
advantages, 550
bi-predicted compensation, 551
HEVC intra encoder, 549, 550
local linear embedding, 551, 552

SensorCraft
aerodynamic mesh, 201
beam representation, 201
co-simulation process, 200, 201
decision support, 195, 206–209
real-time decision making, 202
Simulator 1, 200
Simulator 2, 201
structural dynamics, 200
turbulent conditions, 195
wing designs, 194, 195

Sensor networks, see Potential games; Threat
field

Sensor reconfiguration loop, 3, 4
Sequential Bayesian state estimation, 33
Sequential coordinate greedy (SCG), 597
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Shannon entropy, 40, 41
SIFT, see Scale Invariant Feature

Transformation
SIMaaS Manager (SM), 600
Simplest regularization (SR) algorithm, see

Parzen Windows
Simulation-as-a-service (SIMaaS), 599
Simulation-based optimization as a service

(SBOaaS)
challenges, 591
cloud-based services, 610–611
cloud computing, 591
data-acquisition, 590
DDDAS-specific problem statement, 594,

595
dynamic traffic light control system

experiment results, 603–607
feedback controller, 592–593
simulation environment, 602–603

features, 594–596
parallel greedy algorithm

adaptive K-coordinate greedy, 598–599
coordinate greedy, 597
K-coordinate greedy, 598
single target optimization problem,

596–597
system architecture, 599, 600

design time, 601
runtime, 600–601
user interaction, 601–602

system evaluation, 607–610
traffic light control problem, 611

Simulation of Urban Mobility (SUMO), 591,
602

Simultaneous localization and mapping
(SLAM) algorithm, 446–447

Situation awareness, 13, 617, 634, 724
Six degrees of freedom (6-DOF), 565
SkyWalker X8, 31
Smart grid

components, 506
cost of electricity, 507
fuzzy logic decision making method

conventional natural-gas based
generators, 515

definition, 509
Devices_ON input variable, 512, 514
FIS, 511–512, 514
Load input variable, 512, 513
output variable Priority, 512, 514
Satisfaction index, 512, 513
Satisfaction input variable, 512, 513

k-means algorithm
definition, 509
Euclidean distance, 510–511
Minkowski distance, 511

marginal buyer case, 507, 508
marginal seller case, 507, 508
phases, 508, 509
producers and consumer appliances, 507
simulation results

average total load, 517, 518, 521, 523
clearing quantity, 518–520, 524
cost and load of residency, 519
HVAC system, 517–519
partition and selection procedures, 524
time interval, 520–523, 525

simulations configuration, 515–517
Smart sensing, 19
Solar panels, 492–493, 497–498
Space Object Light Attribute Rendering

(SOLAR) system, 272–273
Space situational awareness (SSA), 724

atmospheric density forecasting, 88–90
Gaussian Mixture Model

curse of dimensionality, 77, 84
differential entropy, 78
element differential entropy, 79, 80
GMM-PC method, 78, 84
State Transition Matrices, 79
uncertainty propagation applications, 78
univariate splitting library, 79, 80
Wiener-Askey scheme, 78, 81

GITM, 76, 86
HASDM, 76
Monte Carlo simulations, 77
Navier-Stokes equations, 77
orbital uncertainty quantification, 87–88
Polynomial Chaos

compressive sampling, 83
curse of dimensionality, 77, 84
GMM-PC approach, 84
intrusive method, 82–83
multivariate polynomials, 82
non-intrusive method, 83
normalized Hermite polynomials, 81,

82
sparse grids, 83
true (MC) and approximated

distributions, 85
TIE-GCM, 77

Space-time memory (STM) data, 471
Spatial case, 558
Speeded up robust features (SURF), 564–566
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SSA, see Space situational awareness
State Transition Matrices (STTs), 79
Stochastic coordinate greedy, 597
Stochastic Flow Model, 611
Stochastic integration approximation methods,

51
Structural health awareness, 724
Structural health monitoring (SHM) system,

11, 168–169, 686
Structured residuals, 413
stub_bidder object, 517
Subset selection approach, 578–581
Subset Selection Profiles, 533–534, 537
SUMO, see Simulation of Urban Mobility
Sum of the Absolute Difference (SAD), 549
Sum of the Square Difference (SSD), 549
Support vector machine (SVM), 194
Symbolic dynamic filtering (SDF), 581
Symbolic time-series analysis (STSA), 124
Symmetric Kullback-Leibler divergence (sKL),

577–578
Sync aggregator, 601
Synchronous K-coordinate greedy method,

598
Syndromic surveillance

CDC’s BioSense program, 139
Dirichlet process

EWMA chart, 144–145
influential index, 143
inverse Wishart distribution, 142
normal distribution, 142
particle filter, 143–144
posterior distribution, 142
preference-based selection principle,

143
semi-parametric model, 141
spatial effect, 141

EARS, 139
ESSENCE, 140
EWMA chart, 144–145
hidden Markov model, 141
PHESS, 140

CDC report, 146
diffusion matrix, 148
incidence rate, 145, 147
outbreak detection, 148, 149
time series plot, 145, 146

spatio-temporal methods, 140
Systems Dynamics Optimization (SDO) cycle,

30–31
Systems software, 5, 6, 729

T
Telescopic lens model, 259
Temporal case, 558
Theory-data symbiosis, 724–725
Thermosphere-Ionosphere-Electrodynamics

General Circulation Model
(TIE-GCM), 77

Threat field
motion-planning

actor-driven sensor reconfiguration,
450–452

Cartesian coordinate axis system, 449
edge transition costs, 449
Gaussian functions, 452
graph search problem, 449
grid point, 449
grid-world overlaid, 452–453
naïve sensor placement, 452
optimal control theory, 447
parameter estimation, 446, 447
parameter vector, 449–450
performance metric, 447
prespecified vertices, 449
robotics, 447
sensor management, 446
SLAM algorithm, 446–447
transition costs, 449
uncertainty, 447
workspace, 449

path planning
actor’s expected threat exposure, 448,

450
electro-optical/infrared camera, 448
estimated threat field and resultant

actor’s path, 454–456
non-convergence/bounded oscillations,

460–462
parameter estimation, 446, 447
results, 459–462
sensor management, 446
sensor placement, 448
SLAM algorithm, 446–447
sub-optimal path, 457–460
topological graph G, 448
true optimal path, 452–453, 456–460
2D spatial domain W , 448

3-D Discrete Cosine Transform (DCT), 552
3-D Discrete Wavelet Transform (DWT), 552
3-dimensional Lorenz ’63 model, 54
3D meteorological Clark-Hall model, 222
Torrance-Sparrow model, see Apollo model
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Traffic Control Interface (TraCI), 602–603
Trusted aggregator, 620
T-Spline surface models, 691
Tuninter 1153 flight accident, 98
2-D hierarchical coding structure

dense camera-array devices
with obvious perspective motions,

562–563
with translational motions, 566–568

pseudo sequence
encoding order, 554, 555
1-D hierarchical coding structure, 554
POC, 553
R-D performance, 555–556
reference frames, 556

U
Unattended ground sensors (UGS)

Bayesian estimation, 300
challenges, 301
graphical representation, 297
intruder search, 301
maximum likelihood estimation, 300
on-demand, 297
optimal worst-case time, 300
searcher, 304
sensor selection, 297
sensor targeting problem, 300
simulation scenario, 318
target, 304

Uncertainty quantification (UQ) tools, 160,
625–626

Underwater vehicles (UXVs), 446
Unexpected query, 636–637
Unknown Input Observers (UIOs)

effects of sensor attacks, 417–418
false alarms and impact, 419–420
launching stronger attacks, 420
residuals, 418–419
results, 418–421
simulation model, 414
structured residuals, 413

Unknown-unknown analysis, 726
Unmanned aerial vehicle (UAV) system,

431–432, 678
aeroelastic simulation

CFD, 199
fast multipole method, 202
reduced-order models, 199
structural dynamics, 199
unsteady, vortex lattice method, 199
vortex lattice method, 199

aircraft design, 194
Aurora Flight Sciences, 690, 693
DDDAS framework, 197, 198, 202–203
decision support system, 196–198
high-fidelity models, 690
joined-wing aircraft, 204–206
landing simulation, 692–694
meta-models, 195
nonlinear aeroelasticity, 194
online sensor readings, 196
parametric model, 690–692, 694
SensorCraft

aerodynamic mesh, 201
beam representation, 201
co-simulation process, 200, 201
decision support, 195, 206–209
real-time decision making, 202
Simulator 1, 200
Simulator 2, 201
structural dynamics, 200
turbulent conditions, 195
wing designs, 194, 195

structural health planning and monitoring,
196

SVM, 194
weather forecasting, 197

Unsteady, vortex lattice method (UVLM), 199
Unsupervised learning methods, 510, 573, 585
Urban Search and Rescue (USAR) setting, 296

V
Variance (VAR), 385
Vector-dependent Functionally Pooled

AutoRegressive (VFP-AR) models
entities, 699–700
multiple flight states

airspeed and AoA components, 707
composite wing, 715
cross-sectional pooling, 709
data collection process, 707
FRF, 716
Genetic Algorithm, 710
identification problem, 706
indicative model parameters, 717–718
indicative parametric results, 716, 717
linear regression, 708, 709
model order selection, 716
parameter vector, 708, 710
WLS, 709

single flight state, 705–706
Vector-dependent Functionally Pooled (VFP)

models, 699–700
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Vector norms, 302
Visible and Infrared Imaging Radiometer Suite

(VIIRS)
fire mapping data, 217
integrated results, 229
lower intensity and smaller fires detection,

216
observations, 224
pixel-based fire detection data, 218
satellite active fire detection, 225–228
S-NPP/VIIRS sampling frequency, 221

Volcanic ash detection, 10–11
Vortex lattice method (VLM), 199

W
Washington rainfall dataset, 395–399, 401
Weather forecasting, 10
Weather Research and Forecasting (WRF)

model, 224
Weight decay, 657
Weighted Least Squares (WLS), 706, 709
Wide Area Motion Imagery (WAMI) streaming

data, 13
Wiener-Askey scheme, 78, 81
Wildfire detection

2015 Canyon Creek Wildfire Complex,
219, 220

CAWFE R© (see Coupled Atmosphere-
Wildland Fire Environment)

challenges, 217
cycling approach, 218
ensemble Kalman filter technique, 218
Landsat-8, 222, 224
MODIS, 216
NIROPs, 220
NWP model, 216
operational forecasting, 216
routine fire mapping data, 219
state-of-the-art synoptic-scale models, 218

VIIRS
fire mapping data, 217
integrated results, 229
lower intensity and smaller fires

detection, 216
observations, 224
pixel-based fire detection data, 218
satellite active fire detection, 225–228
S-NPP/VIIRS sampling frequency, 221

Wildfire monitoring, 10
Wind turbines, 159, 160, 493, 497–498
Wireless sensor network (WSN)

architecture, 338–339
clustering, 338–340
CPA method, 338
IGRCA (see Information guided rapid

clustering algorithm)
measurement model, 358–359
sensor selection methods, 339
target dynamics, 356–358
target tracking

assortment of issues, 340
belief parameters, 341, 343
cost function, 340
discrete time dynamics model, 341
EKF, 343–344
Euclidean cluster, 344–346
IGRCA, 340–341
posterior matrices, 343
state estimation, 343
two-dimensional environment, 341–342
zero-mean multivariate Gaussian

distribution, 341

X
X-Plane flight simulator, 99

Z
ZIPload object, 516
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