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The conception, among many others, that the human being 
was created to work [1] is one of the oldest and most debated 
principles that guide humanity. However, without addressing 
the merit of the anthropological discussion of this concept, 
what is increasingly proved by science is that the body was 
made to function. Vital function is intrinsically associated 
with the production of energy, and an organ that is not stimu-
lated degenerates, atrophies, and may even irreversibly lose 
its function [2].

Indicated as a “medical treatment” since the nineteenth 
century [3], most of the scientific community ignored the 
deleterious effects of bed rest until the mid-1950s [4]. Bed 
rest, in principle harmless, was seen as something that 
allowed body restoration by reducing metabolic demand [5], 
and so it was of the utmost importance for one’s recovery. 
Thus, prescriptions recommended excessive bed resting 
periods or even contained incorrect indications [6]. Vestiges 
of this conduct exist to this day, not because of the persis-
tence of the bed rest culture in the popular scope but because 
of its persistence also in the medical environment [7].

Many studies published in subsequent years analyzed the 
effects of immobilization from the organic and functional 
points of view and its impact on the quality of life of bedrid-
den patients [8].

A meta-analysis consisting of 39 randomized studies 
about the effect of bed rest on 15 different diseases and after 

24 medical procedures showed that immobilization was not 
beneficial; on the contrary, it could be harmful [6].

The advancement of aerospace science and the develop-
ment of studies submitting normal individuals to experimen-
tal models of forced bed rest (“elevated limb,” “casted limb,” 
and “bed rest and microgravity”) provided better physiologi-
cal understanding of immobilization [9].

In addition to the most evident complications, such as 
deformities, joint pain, loss of muscle mass, deep vein 
thrombosis, and atelectasis [10], injuries to the cardiovascu-
lar [11], endocrine [12], immune [13], gastrointestinal [14], 
excretory [15], vestibular [16], cognitive [17], and psycho-
logical [18] systems have also been reported.

With the growing survival of individuals in critical condi-
tions [19], this fact became even more evident. This occurred 
because scientific and technological knowledge increased 
the number of so-called intensive care unit survivors, which 
resulted in a threefold increase in the number of patients 
referred to rehabilitation centers to treat hospital-acquired 
disabilities [20].

Roughly, 60–70% of individuals who are released from 
intensive care units present some degree of motor disability 
[21], and 50–70% have some type of neurocognitive impair-
ment, both acquired during hospital stay [22].

According to the World Health Organization [23], quality 
of life is directly related to the degree of independence and 
physical, psychological, social, and spiritual statuses of indi-
viduals. Hence, as bed rest can have a negative impact on 
most of these domains, many studies have correlated immo-
bilization with worse quality of life in hospitalized patients 
submitted to prolonged bed rest [24–26].

Given above, medical services around the world have 
been working on the development and implementation of 
early intervention protocols aiming at fast mobilization of 
bedridden patients in detriment of harmful bed rest [27–29].

Until now, early mobilization provided by an effective 
multidisciplinary approach has proven a positive, viable, and 
low-risk strategy [10, 30].
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Older patients or patients with chronic diseases or dis-
abilities are especially more susceptible to the adverse effects 
of immobilization [31].

However, studies in the literature correlating immobiliza-
tion in patients with traumatic brain injury are scarce. The 
few studies on the topic reported that bed rest did not provide 
a positive, but possibly a negative, contribution to the recov-
ery of these patients [32–34].

Thus, debating and further studying this topic are of the 
utmost importance, not only because of the long hospital 
stays that these individuals experience but also because of the 
harm caused by the incorrect management of orthosis and the 
disabling nature of this type of injury. The earlier an injured 
nervous system is stimulated, the better the prognosis [35].

The objective of this chapter is to review the negative 
effects of bed rest on many systems, correlating them to the 
peculiarities of patients with traumatic brain injury. The 
available interventional strategies in the rehabilitation scope 
for early, effective, and safe mobilization will also be 
approached.

�Musculoskeletal, Nervous, 
and Integumentary Systems

The integumentary, nervous, and musculoskeletal systems 
have an intrinsic relationship with one’s degree of function-
ality and independence.

Given the neuromuscular impairment inherent to trau-
matic brain injury, patients who suffer this type of injury are 
more susceptible to the deleterious effects of immobilization 
of these systems as a result of many factors, which will be 
discussed.

The main musculoskeletal and neurological complica-
tions related to immobilization cited in the literature, regard-
ing these systems, are muscle atrophy, fatigue, changes in 
bone density, heterotopic ossification, contracture deformi-
ties, peripheral and central nervous system involvement, 
behavioral and cognitive changes, pressure ulcers, and pain.

�Muscle Atrophy and Fatigue

A person in complete bed rest loses from 1% to 3% of their 
muscle strength per day of immobilization [36]. In 4 weeks, 
immobilized individuals are estimated to lose 69% of their 
net muscle weight [37], the loss being more significant 
between the second and tenth day of bed rest due to edema 
and tissue fatty replacement [8, 31, 38].

The lower limbs of a healthy individual in complete bed 
rest are more affected than the upper limbs [39], and among 
muscles, the most affected are those composed predomi-
nantly of type II fibers and related to movement instead of 

joint stabilization, such as the rectus femoris muscle com-
pared with the vastus intermedius muscle [8], and especially 
antigravitational movement.

The mechanism responsible for muscle atrophy and 
weakness involves a complex group of interrelated processes 
[10]. Lack of use and inflammation seems to be the main fac-
tors related to the deterioration of the muscular system, pro-
moting mass loss, reduction of the number of contraction 
fibers, and reduction of contraction strength, especially of 
type II fibers [40].

Muscle immobilization seems to change the balance 
between muscle protein synthesis and lysis, affecting the for-
mer more intensely [41]. Low protein synthesis would stem 
from 4E-BP-1 mRNA inhibition of protein synthesis initia-
tion factors. Excessive protein lysis would be triggered by 
three distinct pathways: the calcium-dependent protease cal-
pain, lysosomal cathepsins, and the ubiquitin-proteasome 
system [10].

Meanwhile, the inflammatory pathway would be trig-
gered in later phases of prolonged bed rest by increasing pro-
inflammatory cytokines (IL-1 beta, IL-2, and interferon 
gamma) [42] and producing reactive oxygen species (ROS), 
which promotes a negative protein balance [43]. This same 
pathway includes the relationship between the extra cyto-
kines and higher insulin resistance, since hyperglycemia has 
been demonstrably associated with higher neuromuscular 
involvement. Simultaneously, low oxidative enzyme capac-
ity, which decreases the contraction of type II fibers, associ-
ated with low vascular flow in the immobilized muscles and 
changes in the size of the plaque of terminal acetylcholine 
receptors, induces low fatigue resistance.

The majority of patients with traumatic brain injury in the 
first stages of recovery have low protein intake, which, when 
associated with the motor and cognitive impairments caused by 
the trauma, further increase the abovementioned muscle degra-
dation. On the other hand, studies of spastic patients have found 
an increase in the muscle mass of the most spastic limbs com-
pared with those with mild or without spasticity [44].

�Changes in Bone Density

Numerous are the factors that affect bone quality, such as age 
and genetic factors, pharmaceuticals, and diseases, among 
others. Nevertheless, one of the main factors associated with 
inactivity that reduce bone mineral density is the absence or 
decreased level of gravity-induced mechanic compression 
and traction stimuli and/or muscle contraction stimuli [45].

Animals submitted to different gravities present changes 
in the trabecular and cortical bone structures, mineralization 
pathways, collagen metabolism, and calcium excretion [46].

These losses begin quickly, occurring a few weeks after 
immobilization. They are self-limited and reach a peak after 
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20–30 weeks. In more severe cases, they are partly irrevers-
ible, even years after resuming mobility [47]. The immobiliza-
tion of forearms and wrists in males and females for almost 
5 weeks resulted in significant bone loss, which was not recov-
ered after 5 weeks of hand remobilization and therapy [48]. 
Individuals submitted to microgravity had bone deficiency in 
the calcaneus bone as long as 5 years after exposure [49].

In the first months of immobilization, bone mineral loss is 
mainly attributed to higher bone resorption [50]. Although 
the pathophysiology has not been well established, osteo-
blasts in vitro in microgravity environments responded dif-
ferently to systemic hormones and growth factor [51].

Given that the fluid movement inside bone gap junctions 
and canaliculi provides a significant collaboration to the 
preservation of the skeletal matrix, studies in vivo have found 
that bone movements change the pressure of this liquid in the 
skeletal cells, which in turn stimulate the release of signaling 
molecules that mediate bone remodeling [52, 53].

Another bone remodeling mechanism, also impaired by 
the lack of mechanic bone stressors and increasingly accepted 
by the scientific community, is promoted by the sympathetic 
nervous system, which stimulates remodeling via beta-
adrenergic receptors. This pathway could also be influenced 
by lesions in the central nervous system, which, in turn, 
would cause metabolic, neurovascular, and molecular disor-
ders, generating the so-called neurogenic osteoporosis.

Hence, one can speculate that individuals with traumatic 
brain injury are more susceptible to bone involvement 
because they have more than one causal trigger of bone mass 
reduction stimuli.

Age and injury location aside, this fact could also be rein-
forced by bone density changes, which indicate the different 
bone qualities of a healthy and a compromised limb of 
patients with stroke or spinal cord injury [54, 55].

Additionally, in the initial critical stage of traumatic brain 
injury, patients often present nutritional changes, severe weight 
loss, inflammatory processes and hormonal changes secondary 
to thyroid and gonadal disorders, and changes related to the 
growth hormone and insulin-like growth factor 1 [56]. All these 
factors may have a negative impact on bone integrity, along 
with immobilization and nervous system injury.

Although many studies have found a negative correlation 
between spasticity and bone mineral density, some studies 
have reported a positive correlation between high spasticity 
and worse bone mass quality [57, 58].

�Heterotopic Ossification

Still on bone involvement, heterotopic ossification [HO] 
could not be omitted. This disease develops in situations of 
immobilization and is usually associated with central ner-
vous system lesions [59].

HO is defined as the presence of bone tissue in places 
where bone normally does not exist. This abnormality 
stems from a metaplastic process with bone neoformation 
in soft tissues, usually adjacent to large joints (hip, elbows, 
knees, and shoulders) [60]. Its etiology is still unknown, 
but many factors responsible for osteoblastic activation 
through bone-forming proteins have been studied, such as 
the stimulus caused by the central neurological lesion 
itself [61].

Potential HO-related complications are limited joint 
amplitude with functional impairment, pain, nerve compres-
sion, and worsening of spasticity [62].

�Contracture Deformities

As mentioned earlier, significant changes in the muscle tis-
sues of previously healthy limbs occur after some weeks of 
immobilization. These, in addition to changes of the other 
structures that involve the joints, such as ligaments, capsules, 
disks, and menisci, may cause structural and disabling 
deformities.

Experimental animal studies have found roughly a 12.5° 
loss of amplitude of joint movement after 2 weeks of immo-
bilization, which may increase to 51.4° after 32 weeks of bed 
rest [63].

The pathophysiology of this joint phenomenon has not 
been well defined, but replacement of type III collagen 
fibers by type I collagen fibers after 1 week of immobiliza-
tion of a healthy joint has been described, with reduction of 
total elasticity [64]. Yet, low production of collagen fibrils 
in the ligaments reduces their long-term resistance and 
increases osteoclastic activity in the ligament-bone inter-
face [65].

An inflamed joint deserves special attention given that 
short-term immobilization is indicated to reduce the con-
centration of type I interleukin and increase proteogly-
cans, necessary for cartilage protection. However, the 
presence of inflammation and pain increases the risk of 
long-term contracture deformities, so the former cannot 
be excessive [31].

Given the traumatic nature of the lesion, patients with 
traumatic brain injury may have three factors that promote 
the development of contracture deformities in addition to 
immobilization: motor changes, spasticity, and/or other joint 
inflammation processes stemming directly from the poly-
trauma, such as fractures, ligament lesions, etc.

Since paresis or paralysis in traumatic brain injury patients 
in the initial stages of the trauma can even progress to com-
plete functional recovery, segmental immobilization, with 
the introduction and maintenance of orthosis, should be done 
carefully and under supervision.

4  Challenges and Complications of Immobility
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�Pressure Ulcers

In addition to the collagen changes mentioned earlier, which 
increases contracture deformities, another frequent and dis-
abling change in patients that remain immobilized for pro-
longed periods is pressure ulcers.

A 3-month study of 530 patients hospitalized for clinical 
or surgical reasons found that 11.3% of these patients had 
pressure ulcers, and immobilization was the main risk factor 
for pressure ulcer development [66].

Likewise, a study proposing an early mobilization pro-
gram over a period of 12 months in 3233 intensive care unit 
patients found a 3% reduction in the incidence of pressure 
ulcers [67].

In addition to motricity changes stemming from the cen-
tral nervous system lesion, traumatic brain injury patients 
may also present other risk factors for skin lesions, such as 
sensory changes, nutritional deficiencies, metabolic changes, 
spasticity, neurotrophic changes, and long intensive care unit 
stays. The strategies proposed to lower the incidence of pres-
sure wounds in patients with traumatic central nervous sys-
tem lesions include not only early mobilization, with assistive 
position change when active movement is impaired, and 
assistive devices that reduce friction and shear, but also rig-
orous surveillance and, if necessary, correction of plasma 
hemoglobin level and introduction of oral feeding, as soon as 
possible, and skin hydration [68].

�Neuronal Involvement and Cognitive 
and Behavioral Changes

Neuroplasticity occurs in adulthood in response to natural 
cell maturation associated with neuronal use or lack of use 
[69]. As the field of diagnostic tests involving functional 
analyses of the various levels of the nervous system advances, 
more pieces of evidence of the negative impacts of immobi-
lization on this system are frequently being discovered.

The changes seen in bedridden patients or patients in 
microgravity environments for prolonged periods include 
sensory disorders, altered vestibular reflex responses, lack of 
coordination, balance changes, reaction speed, attention, 
planning, memory, spatial-temporal orientation, body per-
ception, level of anxiety, depression, and insomnia [9, 16, 17, 
64, 70, 71].

The pathophysiology of these changes has not been well 
defined, but some studies have suggested a correlation 
between stimulus to the vagal tone and growth of white and 
gray masses in the prefrontal cortex after observing the 
higher brain volume of individuals submitted to frequent 
aerobic exercises [17]. Regarding the peripheral nervous sys-
tem, animal nerve diameter changes proportionally to immo-
bilization duration [72].

Two entities often mentioned in the current literature, 
which have immobilization and sensory deprivation as their 
greatest risk factors, must also be cited: delirium and post-
intensive care syndrome. The latter is proof that the sequelae 
of immobilization may continue after the patient is released 
from the hospital and may even become permanent.

In addition to the damages to central nervous system and 
motor system secondary to trauma, traumatic brain injury 
patients may also develop post-traumatic stress disorder, fur-
ther aggravating the cognitive-behavioral domain [73].

Strategies must be addressed toward the provision of 
information to promote better orientation of the patient, and 
stimulus must be done during the day, in respect to the physi-
ological sleep-wake cycle.

�Pain

Pain may be related to immobilization in many domains, but 
little is known about its pathophysiology. It may result from 
involvement of the nociceptive, neuropathic, and mixed 
pathways.

Patients exposed to stress or excessive sensory depriva-
tion present low tolerance to painful stimuli because of neu-
roplasticity changes [74, 75]. Likewise, changes in 
integumentary and muscle tissues (atrophy, contracture 
deformities, skin lesions) may trigger constant unpleasant 
stimuli, which generate even greater suffering in under-
weight, restrained, and/or functionally dependent patients, 
who often have impaired communication skills.

Traumatic brain injury patients are no exception, and to 
make matters worse, they may have various inflammatory 
processes due to the etiology of the disease and to nervous 
system lesions that may evolve to sensory changes (allo-
dynia/ dysesthesia) and/or presence of pain of central ner-
vous system origin.

About 51.5% of traumatic brain injury patients will 
develop significant chronic pain after the accident, including 
patients with mild lesions. This pain does not appear to be 
associated with a history of depression or the development of 
post-traumatic stress disorder [76].

Analgesic measures must watch out for sedative effects 
and may include physical modalities.

�Cardiovascular and Pulmonary Systems

The cardiovascular and pulmonary systems are two other 
systems that may suffer significantly with immobilization. 
The first one suffers from the rapid adaptation of the blood 
vessels and the cardiac pump to the decubitus position, and 
the slow and often risky recovery of their function as ortho-
statism is regained. The second one suffers because of adap-
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tations to the lower oxygen demand during bed rest, 
adaptations associated with numerous complications, such 
as pneumonia and atelectasis.

�Cardiovascular Adaptation

When a healthy person stands up from a lying position, the 
heart rate increases by 32%, 62%, and 89% after 3  days, 
1  week, and 6  weeks, respectively, of complete bed rest. 
Systolic volume may reduce by 15% after 2 weeks of bed 
rest [77]. After 20 days of bed rest, VO2 max can decrease 
by roughly 27% [78]. Three weeks of immobilization may 
decrease cardiac performance by 25% [79]. In addition to 
the physiological cardiovascular adaptations to the horizon-
tal position, time will promote further pathological changes 
to the structures responsible for the adaptive cardiac 
response to postural changes, impairing cardiovascular 
function recovery as patients exposed to immobilization 
stand up [9].

�Deep Vein Thrombosis

Another known complication of immobilization is deep vein 
thrombosis, promoted mainly by venous blood stagnation 
and increased blood coagulability [80]. Stagnation may lead 
to an increase of thrombin, which promotes platelet aggrega-
tion and thrombosis [81]. If left untreated, venous thrombo-
sis may evolve to potentially fatal pulmonary embolism. In 
traumatic brain injury patients, the presence of lower-limb 
paralysis and the trauma itself may increase the risk of devel-
oping this complication [82].

Trauma patients with prolonged bed rest, frequently com-
bined with segmental paralysis that might result from brain 
injury, are at high risk for deep vein thrombosis and demand 
mechanical and pharmacological interventions for its 
prevention.

�Postural Hypotension

As mentioned earlier, in addition to cardiovascular changes, 
immobilization also causes changes to the sympathetic-
adrenergic system [83]. Hence, the response to baroreceptor 
stimulation in individuals not exposed to bed rest is different 
in individuals exposed to approximately 3 weeks of bed rest 
[84]. This process may take from 20 to 72 days to recover 
once mobilization is resumed [31]. Increased beta-adrenergic 
activity caused by immobilization may be responsible for 
this intolerance [85], associated with the more recent finding 
of intolerance associated with changes in the vestibulosym-
pathetic reflex [16].

Progressive early mobilization strategies, care of fluid 
balance and systemic hydration, and surveillance toward the 
possible adverse effects of the medication in use must be 
applied.

�Atelectasis and Pneumonia

Immobilization causes changes in the respiratory system, 
namely, changes in pulmonary blood flow, tissue structure, 
and ciliary movement, and decreased diaphragmatic excur-
sion, with repercussions on functional residual capacity and 
effectiveness of coughing [86, 87]. In turn, these changes 
increase the risk of atelectasis and risk of airway infection.

Traumatic brain injury patients are four times more sus-
ceptible to Pneumonia than the general population [88]. 
Among other reasons, this higher susceptibility occurs as a 
result of dysphagia and the frequent use of invasive mechani-
cal ventilation [89].

Hence, preventive measures to the deleterious effects of 
immobilization on the respiratory system are critical in this 
type of patient to reduce their morbidity and mortality rates. 
Respiratory exercises, with or without the use of support and 
assistive devices, must be part of the rehabilitation interven-
tions, as adequate positioning and early mobilization.

�Endocrine and Metabolic Disorders

The greatest and best known changes in the endocrine sys-
tem associated with immobilization are increased peripheral 
insulin resistance, which is related to higher morbidity [90]; 
high parathormone associated with low growth hormone, 
which changes bone density [91]; and high adrenocorticotro-
phic hormone, possibly triggered by the stress experienced 
by critical care patients [31].

With respect to metabolic changes, potassium-, sodium-, 
nitrogen-, magnesium-, and calcium-related disorders have 
been associated with immobilization. Immobilization rarely 
causes severe electrolyte imbalance, but it is important to bear 
in mind patients with renal failure [31] and the association 
between high serum potassium, sodium, and calcium and low 
cerebral blood flow in traumatic brain injury patients [92].

�Digestive and Excretory Systems

Immobilization repercussions on absorptive functions are 
commonly found in these two systems, such as atrophy of 
the intestinal mucosa and glands; intestinal motility disorder, 
which causes constipation and reflux; and sphincter dysfunc-
tion, which generates urinary stasis with the formation of 
calculi and higher incidence of infections [31].

4  Challenges and Complications of Immobility
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Traumatic brain injury patients already have a high inci-
dence of gastrointestinal tract changes due to the nature of 
the lesion. These changes can be related to deglutition disor-
ders, fecal incontinence, and intestinal constipation [93]. The 
excretory system may also be affected, resulting in urinary 
incontinence, which may affect up to 62% of these patients 
during the acute phase [94].

Given the negative repercussion of these problems on the 
patient’s social and clinical domains, and the high suscepti-
bility of traumatic brain injury patients to these problems, 
the implementation of early mobilization strategies is vital to 
avoid the deleterious effects of immobilization. They include 
pharmacological and non-pharmacological interventions, 
which include dietetic measures, adequate positioning, 
abdominal maneuvers, and the use of the gastrocolic reflex, 
apart from the early mobilization strategies.

�Early Mobilization

The mainstay of treatment lies on early mobilization strate-
gies, since the acute phase, and that include critical ill 
patients. The early rehabilitation of critically ill patients has 
proven a feasible and safe approach that may promote 
improved physical function, greater independence in activi-
ties of daily living [ADL], and an accelerated process of the 
return to premorbidity activities, with reduced symptoms of 
fatigue and dyspnea [24, 28, 95–99]. In addition to those 
benefits, early rehabilitation has also been associated with 
other relevant clinical outcomes, including preventing the 
incidence of ICU-acquired muscle weakness and reducing 
the time of weaning from mechanical ventilation [MV], the 
length of hospital stay, and costs [27, 100–104].

Bedridden and comatose patients unable to cooperate 
with the therapy should receive passive mobilization and 
multisensory stimulation. Stimulation and activities must be 
applied in an organized, planned, and isolated manner during 
daytime. Family and caregivers should be involved. Passive 
mobilization should include progressive passive orthostatic 
training with the monitoring of vital signs. Orthostatic train-
ing contributes to sensory stimulation toward arousal, car-
diovascular response, and the prevention of orthostatic 
hypotension [104], total lung capacity [105], gastrointestinal 
regulation and the prevention of contracture deformities and 
also to the alleviation of the pressure of some skin areas. As 
the patient improves collaboration and mobility, the use of 
active exercises and neuromuscular stimulation may be 
introduced. Contracture deformity prevention might demand 
the introduction of orthosis, and pharmacologic interven-
tions might be needed if spasticity is present.

Regarding bone loss prevention, pharmacologic interven-
tions must be added to mobilization strategies especially in 
the presence of paralysis to minimize bone reabsorption. 

Vitamin D must also be maintained or replaced, and mini-
mum calcium intake must be provided [54, 58].
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