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Preface

Plant-based foods provide macronutrients (carbohydrates, proteins and lipids),
micronutrients (minerals and vitamins) and phytonutrients (isoprenoids, polyphe-
nols, etc.) for growth, development and well-being of humans and animals.
Two-thirds of the world population, especially in the developing countries, are
dependent on staple food crops (rice, wheat, maize, cassava and potato) which
are calorie-rich and hyper-glycemic but poor in micronutrients and other
health-promoting substances. Deficiencies in micro- and phytonutrients are a global
concern that cause stunting and underweightness among children (under the age of
five), permanent physical and mental impairment, affect work performance and
increase the risk of mortality by infectious and chronic diseases like cardiovascular
diseases, type 2 diabetes and certain types of cancers. Rise in population and global
climate change have further exaggerated the problem, how to produce safe nutri-
tious food in adequate amount with low inputs without affecting the environment?
The novel tools and techniques of agronomy, conventional and molecular
breeding (marker-assisted selection, association genetics, QTL), metabolic
engineering, -omics resources, RNAi [through small RNAs, short interfering RNA
(siRNA); microRNA (miRNA) and artificial microRNA (amiRNA)] or antisense
and genome editing (CRISPR/Cas) technologies have played a significant role in
better understanding of the synthesis, uptake, transport and metabolism of macro-
and micronutrients. This has led to the identification, isolation, characterization and
cloning of novel genes for accumulation of nutrients (biofortification) and/or
avoiding accumulation of undesirable substances in edible parts of the plant in
sustainable and cost-effective manner without affecting yield, and farmer and
consumer preference traits. During the last two decades, several food crops rich in
some macro- and micronutrients, and phytonutrients have been developed by both
conventional and molecular breeding, and metabolic engineering through transge-
nesis to improve the health and protect the poor rural populations in developing
countries from chronic diseases. As per the HarvestPlus estimates, more than 20
million people are now growing and consuming biofortified crops developed
through breeding. The present book contains chapters on the biofortification of crop
plants (especially rice, maize, millets, brassica and potato) with essential

v



micronutrients (Fe, Zn, I, Ca, essential amino acids, provitamin A, vitamin B
(B1, B6 and B9 ), C and E) and avoiding antinutrients (phytate, acrylamide and
aflatoxins) through conventional and metabolic engineering tools.

Humans and animals are dependent on plants for all the essential minerals
required for their optimal health and productivity. Plants do not synthesize minerals
but acquire them from soil through a complex mechanism of their uptake, transport
and accumulation in edible parts. Agronomic interventions (application of bios-
timulants and fertilizers to soil or foliar spray), conventional breeding and genetic
engineering have the potential to enhance mineral content in plants. Conventional
breeding has developed iron (Fe)-rich bean and pearl millet varieties which have
improved iron status in women in Rwanda and of school children in India. Though
plant breeding requires a long gestation period, it has a higher acceptance by
farmers and consumers to provide minerals in more suitable and cost-effective ways
with easy regulation. However, enhancing iron in polished rice at target levels is
feasible only by genetic engineering in a rapid and cost-effective manner but with
limited public acceptance and restricted regulations. Tsakirpaloglou et al.
summarize the Fe biofortification by transgenic approach and also zinc (Zn)
biofortification in rice polished grains through conventional and transgenic breed-
ing efforts. They also discussed the contribution of Zn-rich rice in eradicating its
deficiency by examining the bioavailability aspects as well as the retention of Zn
content in rice grains after cooking. Yadav et al. summarize the impact of
microbiota in iron acquisition by plants in addition to the conventional and trans-
genic efforts towards phytobiofortification for alleviation of iron deficiency in the
global populace.

Calcium (Ca) is an essential macronutrient for plants and animals with key
structural and signalling roles. Millions of people in developing and developed
countries suffer from low dietary intake of Ca that leads to rickets and osteoporosis
diseases. Most of the staple food crops are poor in calcium but finger millet
(Eleusine coracana (L.) Gaertn.), an orphan crop contains exceptionally high cal-
cium (376–515mg/100g grains) and thus offers prospects for biofortification
breeding. The molecular mechanisms underlying the uptake, transport and accu-
mulation of calcium in grains and existing genetic variation play an importance role
for development of calcium biofortified crops. Sharma et al. discuss the role of
high-throughput genotyping technology and phenotyping platforms in unravelling
the genetic basis of complex traits such as calcium nutrition in finger millet.

Iodine, a non-metal micronutrient, is essential for human health and well-being.
Human and animals obtain iodine mostly from diet and require a recommended
daily allowance of 150 µg. Nevertheless, its deficiency is prevalent worldwide and
is the cause of goitre, foetal damage, prenatal and infant mortality, irreversible
mental retardation and brain damage. Davila-Rangel et al. highlight the different
techniques and results obtained in developing crop plants biofortified with iodine.

Essential amino acids and micronutrients that are essential for normal growth
and metabolism are not synthesised by the human body and must be obtained from
diet. Inefficient intake of essential amino acids (protein energy malnutrition) causes
child stunting and affects brain function and immune system. Maize, the third most
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important cereal crop, is used extensively as human food and livestock feed across
the world. Traditional maize possess poor endosperm protein with low levels of
essential amino acids, lysine and tryptophan and micronutrients especially provi-
tamin A (proA). F. Hossain and coworkers present an overview of the conven-
tional, marker-assisted back-cross breeding and transgenic approaches in enhancing
the quality of protein as well as the proA content in maize. Further, double bio-
fortification with these two diverse micronutrients by either sequential or simulta-
neous marker-assisted stacking of genes, o2 (for quality protein maize) and two
genes, lycopene e-cyclase (lcyE) and b-carotene hydroxylase1 (crtRB1) (for proA)
increased both essential amino acids, lysine and tryptophan more than twofold and
proA concentration by 4.5-fold in the same cultivar. The stability of provitamin A
in quality protein maize, their impact in reducing protein and vitamin A deficien-
cies, scope and challenges in dissemination have also been discussed.

Racio Diaz dela Garga et al. summarize the current knowledge on folate
metabolism (biosynthesis in different subcellular localizations, and its degradation
and stability) and regulation for its metabolic engineering to enhance its contents in
model (arabidopsis) and crop (tomato, rice, potato, common bean, maize and let-
tuce) plants. The bioavailability of folate in biofortified crops and their socioeco-
nomics is also presented.

Thiamine (vitamin B1) in its active form, thiamine pyrophosphate (TPP),
functions as an essential cofactor of key enzymes of the central metabolism. The
plants are the main source of thiamine for humans. Most of the staple food crops
contain thiamine in very low amounts that results in its deficiency in humans which
causes a chronic disease called beriberi. Yusof highlights the role of thiamine in
plant growth and stress tolerance as well as current progress in its biosynthesis and
regulation to enhance its content in plants. However, many aspects of thiamine
metabolism are still not fully understood, resulting in slow progress in improving its
content in plants especially staple food crops.

Sainger and coworkers summarize the role, metabolism, and logic for bio-
fortification along with current advances in breeding and metabolic engineering to
improve the contents of three relevant vitamins, B6, C and E in plants. These
vitamins’ biosynthesis and their regulation are well outlined to enhance them in
sufficient amounts without affecting plant yield and preference traits for those in
need. Their enhancements confer stress resistance and improve nutritional quality of
plants for human health benefits.

Plants produce a variety of small organic molecules, the secondary metabolites
that are not directly involved in basic metabolic processes but are responsible for
taste, flavour, smell, colour or the protection of plants against herbivores
(antifeedant) and microbial infections (phytoalexin) and abiotic stresses. These
phytochemicals have important significance as an attractant (pigments or scents) for
pollinators and seed-dispersing animals, allelopathic agents, food (carotenoids,
flavonoids, phenolics) and pharmaceutical (anticancer agents, antimalarial com-
pounds, etc.) for human health. Garcia-Mier et al. review the relevant and current
literature on the use of various techniques like metabolic engineering,
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nanostructures and/or nanomaterials, biostimulators, biocontrollers and elicitation
on the production of secondary metabolites for agronomic and human health
interest.

Brassica crops are good sources of oil, protein-rich seed meal and vegetables.
Their seeds accumulate sulphur-rich secondary compounds called glucosinolates
that protect plants from biotic and abiotic stresses. High glucosinolates in seed meal
are bitter and unpalatable to poultry and livestock. Brassica vegetables in human
diet are good source of highly beneficial glucosinolates (glucoraphanin). Bist and
Augustine describe the basics of glucosinolates, their biological effects in addition
to the efforts and strategies to reduce antinutritional glucosinolates and enhance
desirable glucosinolate (glucoraphanin) content in brassica crops to improve their
food and feed values.

Aflatoxins are toxic and carcinogenic secondary metabolites produced by certain
Aspergillus species, A. flavus and A. parasticus, on infection of various important
food and feed crops, especially maize, cotton, groundnut, tree nuts, etc.
Consumption of aflatoxin-contaminated food grains and feeds not only cause
serious health problems in humans and livestock but also reduce food and feed
values leading to significant economic losses worldwide. Pooja and coworkers
provide comprehensive overview on the various strategies and advances in aflatoxin
resistance in crop plants. The various factors affecting aflatoxins contamination, its
control cultural practices and biological agents, identification of molecular markers
and QTLs associated with aflatoxin resistance and genetic engineering through
overexpression and host-induced gene silencing of aflatoxin biosynthesis genes are
discussed to develop durable aflatoxin resistant in crop varieties.

Acrylamide, a suspected carcinogen and neurotoxin, is formed from free
asparagine and reducing sugars in Maillard reaction during high-temperature
cooking and processing of potato (French fries, chips, etc.), baked cereal products
(bread, biscuits, etc.), coffee and chocolate. Consumption of these food products
results in dietary intake of 0.3–0.7 µg acrylamide kg−1day−1. The acrylamide-
forming potential depends on free asparagine content which is affected by genotype
(G), environmental conditions (E) and their interaction (G x E). Significant dif-
ferences that exist in free asparagine and sugar concentrations between varieties in
all crops have helped in identifying the molecular markers/QTLs associated with
them to expedite their breeding. Further agronomic (ensuring adequate sulphur
fertilization in relation to nitrogen supply) and genetic engineering approaches
being used to reduce the free asparagine and sugar concentration are discussed by
Raffan and Halford in their chapter. Reducing acrylamide-forming potential of
crops enables food industries to comply with the regulatory system.

Phosphorus is stored in the seeds in the form of phytic acid and its salt (phytate).
Phytate is considered antinutrient as it binds to important mineral nutrients like iron,
zinc, calcium and magnesium that are not hydrolysed and absorbed in humans and
monogastric animal’s gut due to the absence of the digestive enzyme, phytase, and
are thus excreted to the environment causing the loss of minerals from humans
and animals and pollution of waterways. To solve these problems, the total phos-
phorus accumulation and phytate concentration in grains is to be reduced.
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Generation of low phytate mutants and genetic engineering (RNAi or CRISPR/Cas)
and use of phytases have reduced phytate level and thus offer potential to grow
crops with low phosphorus fertilizers, increase bioavailability of mineral nutrients
for human and animal health, and reduce water pollution. Kaul and coworkers
discuss the production of low phytic acid crops using various approaches especially
the use of phytases. Phytate being an antioxidant, anticancer and anticalcification
agent has cautioned decrease in its level in crop plants.

Pearl millet is an ideal biofortification staple food crop for more than 90 million
poor farmers in arid and semi-arid regions of West and East Africa and India. This
crop is highly productive under harsh conditions including infertile soil with high
pH, high Al3+ saturation and low moisture content, high temperature, high salinity
and restricted rainfall. This highly nutritious cereal with large naturally occurring
genetic variability for micronutrients (Fe and Zn) has been exploited by the
International Crops Research Institute for Semi-Arid Tropics (ICRISAT) with
HarvestPlus support for the improvement of grain iron with high yield or
farmer-preferred agronomic traits. Vinoth and Ravindhran describe the devel-
opment of high-iron pearl millet through conventional breeding and also discuss
their efficacy, consumer acceptance and cost-effectiveness.

Potato is a global, low-cost vegetatively propagated non-grain food crop that
supplies starch, protein, vitamins and minerals in human diet and can play a pivotal
role in addressing malnutrition problem. Som Dutt and coworkers describe the
improvement in its nutritional quality and the processing attributes (processed tuber
texture, cold-induced sweetening, browning of sliced tubers) using the biotechno-
logical approaches. Improvement achieved in a number of nutrients, (e.g. starch,
protein, essential amino acids, provitamin A, vitamin C and E, minerals and phy-
tonutrient contents) and decrease in the antinutrients (e.g. glycoalkaloids, acry-
lamide and other allergens) through metabolic engineering are highlighted. The role
of gene editing, CRISPR/Cas, in improving potato nutritional qualities is also
discussed.

In most of the above cases, efforts have been made to increase a particular
micronutrient though most of our staple food crops are deficient in several of them.
This signifies for an urgent need of multiple biofortification for simultaneous
enrichment of many nutrients to produce nutritionally complete crops by stacking
of corresponding nutrient metabolic/regulatory genes either by plant breeding or
metabolic engineering or both, including genome editing technologies without
negative impact on their yield and environment. Simultaneously, the improved
nutritional traits should also improve agronomic or producer traits for widespread
adoption by farmers. Beside this, nutrient stability, nutrient bioavailability and
absorption as well as cooking and sensory quality of biofortified crops along with
their social and economic aspects (cost-effectiveness and acceptance) and ethical
issues should also be explored. There is a need to move these crops from
proof-of-principle to products through government/private investment to ensure
sustained health benefits to consumers. Bioinformatics deals with the tools and
techniques of capturing, managing, analysing and integrating the huge amounts of
genomics, transcriptomics, proteomics and metabolomics data for the better
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understanding of the processes and mechanisms to improve nutritional value and
yield of plants. M. Dangi and co-workers discuss the role and applications of
bioinformatics in gene network analysis and crop improvement.

The book chapters are written by the experts in the field and provide intuitive
accounts on the various aspects of nutritional enhancement of plants. The book is a
valuable resource for scientists, researchers, students, planners and industrialists
working in the area of agriculture, plant sciences, agronomy, horticulture, plant
physiology, molecular biology, biotechnology, food and nutrition, soil and envi-
ronmental sciences. We are indebted to the contributors for their efforts in preparing
intuitive accounts of various aspects of knowledge in this area. We express our
sincere thanks and gratitude to all these colleagues and warm appreciation and
thanks to Springer Nature publisher for their keen interest in bringing out this title
with quality work. We are also thankful to our family members and Ph.D. students
for their understanding and patience during planning and preparation of this title.

Rohtak, India Pawan Kumar Jaiwal
May 2019 Anil K. Chhillar

Darshna Chaudhary
Ranjana Jaiwal
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Chapter 1
Biofortified Zn and Fe Rice: Potential
Contribution for Dietary Mineral
and Human Health

Nikolaos Tsakirpaloglou, B. P. Mallikarjuna Swamy, Cecilia Acuin
and Inez H. Slamet-Loedin

Abstract Iron (Fe) and zinc (Zn) deficiency constitute a major micronutrient
deficiency around the globe, affecting rural populations residing in developing coun-
trieswithminimumpurchasing power and/or access to a diverse diet. Biofortification,
the enrichment of staple food/crops with bioavailable micronutrients or vitamins in
their edible parts, provides a potential sustainable solution towards such issues, in
combination with other existing efforts. Utilisation of rice as a platform for the deliv-
ery of products biofortified with Fe and Zn could impact greatly the livelihood of
people dependent on rice-based agri-food systems globally. The HarvestPlus and
its partners have successfully supported the production, deployment and release of
conventionally bred Zn-biofortified lines of rice and wheat in several countries; and
also support potential innovative approaches such as genetic engineering and genome
editing with higher Fe and Zn content in the grain. A large number of reviews on
iron biofortification in rice has been published, in this review we summarise the Fe
biofortification by transgenic approaches, but the major focus of this review is on the
conventional and transgenic breeding efforts to generate Zn-biofortified lines in rice
and discuss their potential to contribute in eradicating Zn deficiency, by examining
bioavailability aspects, as well as the retention of Zn content in rice grains after cook-
ing. We additionally examine the importance of a clear pathway for the successful
delivery and large-scale adoption of high-Zn rice to achieve maximum impact.
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1.1 Introduction

Globally, Fe and Zn deficiency is widespread particularly in rural and developing
regions where people consume cereal-based diets and have less opportunities for
diet diversification; however, its presence is also detected in prosperous areas where
diets are unbalanced, contributing to ‘hidden hunger’ (Kennedy et al. 2003;Muthayya
et al. 2013; Roohani et al. 2013). It is estimated that micronutrient deficiencies affect
approximately 1.6 billion people globally, particularly children, pregnant and lac-
tating women, and in low- and middle-income countries can cause economic losses
ranging from 2 to 5% of gross domestic product (GDP) (Black 2003; Darnton-Hill
et al. 2017). A study showed that the inadequate Zn intake was positively correlated
with the prevalence of stunting and that in countries identified as being at low, mod-
erate and high risk of inadequate zinc intake its prevalence was 19.6, 28.8 and 43.2%,
respectively (Wessells and Brown 2012).

Zn deficiency is a major cause of stunting in children, largely because Zn plays a
major part in cell division, cell growth, wound healing, and the breakdown of carbo-
hydrates, as well as the regulation of the innate and adaptive immune system (Sanna
et al. 2018). The symptoms for Zn depletion may vary with age from diarrhoea in
early infancy to stunted growth and childhoodmorbidity andmortality at a later stage
of development. Moreover, it can lead to weakened cognitive function, behavioural
issues, impaired memory, learning disability and neural atrophy (International Zinc
Nutrition Consultative Group (IZiNCG) 2004). Additionally, Zn has been found to
protect the prostate gland from prostatitis and prostatic hypertrophy in males (Cui
et al. 2015); it affects sperm count andmobility as well as levels of serum testosterone
(Zhao et al. 2016).

Iron is an important micronutrient in plants and required in various physiological
processes including respiration and photosynthesis. Different strategies are known
for the uptake of iron from the rhizosphere in higher plants. (a) Strategy I (non-
Graminaceae) involving ferric chelate reduction and absorption of ferrous irons at the
root surface and plasma membrane, respectively, and (b) Strategy II (Graminaceae)
includes mugineic acid (MA) biosynthesis and secretion or (c) a combination of both
(Connorton et al. 2017). The initial attempt for iron biofortification (Goto et al. 1999)
started long earlier than zinc biofortification efforts even thoughonly recently reached
the nutritional target under field condition (Trijatmiko et al. 2016). The mechanisms
and the pathway of Fe uptake and translocation in rice have been extensively reviewed
(Bashir et al. 2010, 2013;Kobayashi andNishizawa2012, Slamet-Loedin et al. 2015).
Here, we summarise most of the transgenic studies to develop Fe-biofortified rice
and its respective inserted genes (Ludwig and Slamet-Loedin 2019) in Table 1.1.

Zinc (Zn) is a metallo-mineral essential for the growth, development and survival
of plants and animals (King and Cousins 2006). It is localised ubiquitously within
the cells and acts as a major co-factor for more than 300 enzymes involved in cat-
alytic and regulatory biochemical reactions in the human body (King and Cousins
2006). It plays an important role in the structural and functional integrity of many
proteins, and thereby regulates vital biological reactions in the cells such as DNA
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Table 1.1 Transgenic Fe-biofortified rice

Gene Iron ([c] in ppm)
polished/brown

Growth condition References

TG WT

OsIRT1 ~12 ~10 Paddy field Lee and An (2009)

TOM1 ~18 ~15 Hydroponic Nozoye et al.
(2011)

OsYSL15 ~14 ~12 Paddy field Lee et al. (2009a)

OsNAS1 up to ~19 ~12 Field Zheng et al. (2010)

OsNAS2 ~10 ~4 Greenhouse Lee et al. (2011)

OsNAS3 ~12 ~4 Greenhouse Lee et al. (2009b)

OsYSL2 ~7.5 ~1.8 Glasshouse Ishimaru et al.
(2010)

OsNAS1, OsNAS2,
OSNAS3

up to ~19 ~4.5 Glasshouse Johnson et al.
(2011)

HvNAS1 ~8.5 ~4 Greenhouse Masuda et al.
(2009)

SoyferH1 up to ~25 ~17 Greenhouse Qu et al. (2005)

SoyferH1 ~18 ~18 Greenhouse Drakakaki et al.
(2000)

SoyferH1 up to ~37 ~10 Screenhouse Vasconcelos et al.
(2003)

SoyferH1 up to ~16 ~6.75 Greenhouse Paul et al. (2014)

SoyferH1 up to ~9.2 ~3.8 Greenhouse Khalekuzzaman
et al. (2006)

SoyferH1 up to ~7.6 ~3.3 Greenhouse Oliva et al. (2014)

OsIRO2 up to ~15.5 ~6 Greenhouse Ogo et al. (2011)

OsVIT1 ~26 ~20 Paddy field Zhang et al. (2012)

OsVIT2 ~28 ~20 Paddy field Zhang et al. (2012)

PyFerritin, rgMT,
phyA

~22 ~10 Greenhouse Lucca et al. (2002)

OsYSL2,
SoyFerH2,
HvNAS1

up to ~4 ~1 Paddy field Masuda et al.
(2012)

HvNAS1, HvNAS1,
HvNAAT, IDS3

up to ~7.3 ~5.8 Paddy field Suzuki et al. (2008)

HvNAS1, OsYSL2,
SoyFerH2

~6.3 (~5.02) ~3.2 (~1.46) Greenhouse Aung et al. (2013)

AtNAS1, Pvferritin,
Afphytase

up to ~7 ~1 Hydrophonic Wirth et al. (2009)

AtIRT1,
PvFERRITIN,
AtNAS1

up to ~10.46 ~2.7 Greenhouse Boonyaves et al.
(2017)

(continued)
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Table 1.1 (continued)

Gene Iron ([c] in ppm)
polished/brown

Growth condition References

TG WT

GmFERRITIN,
OsNAS2

~15 ~2.5 Field Trijatmiko et al.
(2016)

AtNAS1, AtFRD3,
PvFer

up to ∼11.08 ∼2.05 Greenhouse Wu et al. (2018)

AtNAS1, PvFer,
AtNRAMP3

up to ∼13.65 ∼2.72 Greenhouse Wu et al. (2019)

OsNAS1,
HvHAATb

∼up to 18 ∼4 Hydroponic Banakar et al.
(2017)

and RNA synthesis, activation of transcription factors, RNA polymerases and reverse
transcriptase (Cousins et al. 2006; Bashir et al. 2013; Olsen and Palmgren 2014).
Zn is essential in human health and nutrition, with approximately 3000 Zn-binding
proteins found in the human body (Andreini et al. 2006).

Unlike Fe, Zn does not have a specialised storage system in the body, so suffi-
cient intake of Zn is required daily to maintain a healthy life. Strategies to reduce
Zn deficiency include supplementation as well as food-based approaches such as
diet diversification, food fortification and biofortification. Addressing micronutrient
malnutrition, improve maternal health and reduce child mortalities are important to
achieve sustainable development goals globally by 2035 (United Nations 2018).

Biofortification of cereals including rice, wheat and maize has been considered
one of the most economical, and sustainable among the food-based approaches to
tackle malnutrition. It can benefit all sections of the populations, especially the urban
and rural poor, who may find it difficult to access other health and nutrition inter-
ventions (Bouis et al. 2011). Zn in rice is retained in significant quantities even after
polishing and cooking and can be made easily available for human consumption
(Oghbaei and Prakash 2016). However, most of the modern rice varieties have sub-
optimal levels of Zn in the endosperm and therefore do not provide sufficient Zn
for the recommended daily dietary intake (Bouis et al. 2011). Fortunately, studies
have shown that existing variations for Zn micronutrients in the grain within the rice
germplasm potentially provide sufficient source for breeding programmes to increase
Zn levels in rice (Swamy et al. 2016). As part of the HarvestPlus programme, these
high-Zn rice varieties, containing increased Zn in polished grains compared to ordi-
nary varieties, have been commercialised in Bangladesh, India and the Philippines.
However, achieving the desired level to have a significant contribution to the recom-
mended levels of daily intake of Zn in staples has been slow due to complex genetic
basis and huge environmental effects (Mahender et al. 2016).

Using genetic engineering approaches, target levels of Zn have been increased up
to 4–5-folds from the basal level (Johnson et al. 2011; Trijatmiko et al. 2016), but
its commercial release needs wider public acceptance and regulatory approvals in
the target countries (Trijatmiko et al. 2016). Thus, both conventional and transgenic
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high-Zn rice can be a potential source of dietary Zn, which could improve the health
and nutrition of malnourished populations in Asia or elsewhere.

The challenge of biofortification among other factors is not only to secure the
increased levels for per capita intake of Zn but to sufficiently shift the Zn status
prevalence in the target community. This will depend on the nutrient availability,
efficacy as well as wider adoption and consumption of the high-Zn rice varieties. A
holistic Zn breeding approach both by conventional and modern technologies, start-
ing from trait development, and followed by product development and dissemination,
is essential to achieve a wider impact on health and nutrition. Here, we discuss the
potential of rice biofortification as a sustainable source of dietary Zn, we present
the breeding efforts through conventional and genetic modification approaches to
enhance Zn levels in polished grains, and we examine the various factors affecting
the Zn bioavailability and bioefficacy.

1.2 Global Pattern of Zinc Deficiency and the Role
of Biofortification in Human Nutrition

1.2.1 Rice Consumption and Zinc Deficiency

Rice feeds more than fifty per cent of the world’s population. An estimated 475 mil-
lion metric tons of rice were consumed globally during 2016/2017 and predicted to
increase further (rice consumption worldwide in 2016/2017). Rice provides approxi-
mately 19 and 13% of global human per capita energy and per capita protein, respec-
tively (IRRI World rice statistics online). The global use of rice exceeds 50 kg per
capita, but inmanyAsian countries such asBangladesh, Indonesia, Cambodia,Myan-
mar, Vietnam and the Philippines, the per capita rice consumption of rice is more
than 100 kg annually. Although the consumption of rice outside Asia is lower, it
continues to grow rapidly in many countries of Africa and Latin America (Muthayya
et al. 2014). Because of such high consumption, rice constitutes an ideal vehicle for
delivering micronutrients, including Zn, at a large scale.

However, rice has a very low concentration of Zn with the baseline amounting
to 12–16 μg g−1 in polished grains (Bouis et al. 2011). In addition, cereals are rich
in phytate which reduces the absorption of Zn in human body (Prasad 2008). In
developing nations, at least 60% of the dietary Zn is derived from major cereals
and legumes (Liu et al. 2017). Hence, people dependent on major cereals such as
rice, wheat and maize for their daily caloric intake and nutritional needs often suffer
from Zn deficiency (Pingali 2012; Fanzo 2015). The highest risk for inadequate zinc
intake has been identified in countries in South and Southeast Asia, Sub-Saharan
Africa and Central America due to lower zinc availability in their food supplies, the
limited intake of animal source foods and the high content of phytate in the diet.
Inadequate dietary zinc intake in Sub-Saharan Africa and South Asia constitutes
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clearly a public health concern and positively correlated with stunting in children
(Wessells and Brown 2012).

Polished rice whether it is consumed as white rice or parboiled is often the pre-
ferred staple in countrieswithmedium to the high prevalence ofZndeficiencies (Dipti
et al. 2012). Hence, biofortification of rice with zinc is a key strategy to address Zn
deficiency malnutrition.

1.2.2 Biofortification of Staple Crops to Improve Human
Nutrition

Biofortification is the concept of delivering micronutrients via staple foods through
agronomic practices, conventional plant breeding or modern biotechnology. It has
been recognised as the fifth most cost-effective investment by the Copenhagen Con-
sensus (2008) in complimenting other existing interventions, such as supplemen-
tation and fortification, in fighting malnutrition (Meenakshi 2009). Biofortification
provides an alternative to reach subgroups of the population where supplementa-
tion and conventional fortification activities difficult to implement. These population
groups often have limited purchasing power to access a nutrient-rich diverse diet
(Hefferon 2015; Singh et al. 2016).

Over the past decade, a number of biofortified crops (including rice, beans, sweet
potato, cassava and legumes) have been developed through the HarvestPlus bioforti-
fication programme, utilising conventional breeding approaches. For Zn biofortifica-
tion, wheat and rice are the major target crops (Bouis and Saltzman 2017) (Fig. 1.1).

Fig. 1.1 Zinc biofortification of staple food crops, including rice and wheat, has been a major
activity for the HarvestPlus programme (www.harvestplus.org)

https://www.harvestplus.org


1 Biofortified Zn and Fe Rice: Potential Contribution for Dietary … 7

Recently, the HarvestPlus updated their nutritional target for Zn in polished rice to
28 μg g−1 in milled rice (Bouis and Saltzman 2017) or an additional of 12 μg g−1 of
Zn into commercial rice varieties from baselines of around 14–16 μg g−1. This cal-
culation is based on reaching approximately 40% of the Estimated Average Require-
ment (EAR) for non-pregnant, non-lactating women and children (4–6 years of age)
and taking into account the loss of Zn during milling, cooking and bioavailability
(Bouis et al. 2011; Bouis and Saltzman 2017).

The prospect of rice as a vehicle for biofortification of Zn can be inferred from a
recent study conducted by the International Centre for Diarrhoeal Disease Research,
Bangladesh (ICDDR, B) which showed that consumption of micronutrient enriched
rice significantly reduces Zn deficiency by up to 6% among ultra-poor women. The
consumption of fortified rice also contributed to the reduction in morbidity among
woman in Vulnerable Group Development (VGD) demonstrating the considerable
impact ofmicronutrient improvement in rice (World Food Programme (WFP)). Thus,
having biofortified rice grown locally in an adaptive cultivar is an attractive option
to alleviate micronutrient deficiency.

1.3 Biofortification Approaches to Increase the Zinc
Content in Rice Grains

1.3.1 Breeding Approaches

HarvestPlus in collaboration with IRRI, the International Centre for Tropical Agri-
culture (CIAT) andNational Agricultural Research and Extension Systems (NARES)
partners are implementing programmes to improve Zn content in rice varieties tar-
geted to South Asia, South East Asia and Latin American countries (Bouis et al.
2014).

Rice has a large germplasm collection and its characterisation for Zn indicated
the prevalence of wide genetic variation for grain Zn both in brown and milled
rice, thus providing an opportunity to exploit this variation and subsequently breed
for high-Zn rice varieties (Gregorio 2002; Neelamraju et al. 2012; Agarwal et al.
2014). A breeding target for the polished grain Zn has been set to 28 μg g−1, whilst
target countries beyond Bangladesh, India, Indonesia and the Philippines have been
expanded to other South-East Asian countries such as Myanmar, Cambodia and
Vietnam where both rice consumption and Zn deficiency levels are high. Currently,
the high-Zn breeding programmes targeted to Asia are successful in developing
moderately high-Zn rice varieties with a number of Zn-biofortified rice varieties that
have been released in the Philippines, India and Bangladesh.

The major emphasis for conventional and/or molecular breeding approaches are
the identification of new donors with high levels of Zn and acceptable yield potential,
as well as the identification of major effect quantitative trait loci (QTLs) for grain
Zn and development of high-Zn breeding lines with desirable grain quality traits
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Fig. 1.2 Pathway for development and dissemination of high-zinc rice varieties

(Fig. 1.2). In our high-Zn breeding programme, high grain Zn rice germplasm from
diverse sources having with more than 28 μg g−1 of Zn, acceptable yield potential
and consistent performance over seasons and geographic locations were identified.
These new high-Zn donor lines are being extensively used in breeding programmes
at IRRI and its national partners (Swamy et al. 2016). Moreover, the development
of markers for grain Zn will enable more precise and quicker identification of high-
Zn rice varieties through marker-assisted breeding (MAB). Significant efforts have
been made over the last few years to understand the molecular basis of grain Zn
accumulation in rice (Stangoulis et al. 2007; Chen et al. 2008; Naveen et al. 2014;
Swamy et al. 2016). Several rice association panels, bi-parental and multi-parent
mapping populations were evaluated for Zn content in the grain, and some major
effect QTLs with high phenotypic variance and additive effects for grain Zn were
identified on different chromosomes (Stangoulis et al. 2007; Naveen et al. 2014;
Swamy et al. 2016). However, further QTL validation and diagnostic maker devel-
opment are necessary for their effective use in MAB. Multi-parent populations and
wild species derived advanced backcross populations have shown promising results
for grain Zn and could be exploited in a more systematic way and in a large scale for
the improvement of mineral nutrients in rice (Swamy et al. 2014; Descalsota et al.
2018).

Genome-wide expression analysis and targeted metal homoeostasis genes expres-
sion analysis on high-Zn breeding and parental lines are being carried out at IRRI.
A set of genes, OsMTP6, OsNAS3, OsMT2D, OsVIT1 and OsNRAMP7 (Descalsota
et al. 2018) were identified to be co-locatedwith Fe and ZnQTLs, whilst markers sur-
rounding OsNAS3 gene were suggested for application in the breeding programmes
(Descalsota et al. 2018). Bayesian analysis showed that agronomic and yield com-
ponent traits had no significant direct effect on grain Fe and Zn, so yield and Zn can
be combined to develop high-Zn rice varieties. Gene expression analysis revealed
up-regulation of OsNAS1, OsNAS3 and OsNAS2 in high-Zn donor lines in parallel,
application of mutation breeding strategies and screening under Zn-deficient soil
conditions is utilised to identify high-Zn mutant lines. Additionally, the exploitation
of heterosis for grain Zn in hybrid rice breeding programmes holds great promise.
Overall, our multi-pronged approach enables us to understand the genetic andmolec-
ular mechanisms involved in grain Zn accumulation and accelerate the development
of high-Zn rice varieties. The high-Zn rice breeding programmes in some of the
Asian countries have been successful in developing and releasing moderately high-
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Zn rice varieties with an additional Zn of 6–8 μg g−1 (to the common baseline of
12–14 μg g−1 in popular varieties). The first generation of moderately high-Zn rice
varieties released is BRRI dhan 62, BRRI dhan 64, BRRI dhan 72, BRRI dhan 74
and BRRI dhan 76 in Bangladesh, and NSICRc460 (Zinc Rice 1) in the Philippines,
and DRRDhan-45 and Chhattisgarh Zinc Rice 1 in India (Table 1.2). These varieties
are found to exhibit good agronomic traits, yield potential, grain quality traits and
resistance to insects/diseases (Table 1.3). Simultaneously, efforts to develop second
and third generations of high-Zn rice varieties with Zn differentials of 8–10 and
10–12 μg g−1, respectively, have made significant progress.

The Zn biofortification of rice is influenced by several environmental factors such
as soil pH, soil composition, soil mineral status and availability, microbial popu-
lations, water management and fertiliser application. Understanding the GxE, and
effectively addressing it through the development of more stable high-Zn rice geno-
types targeted to different environments, along with water and fertiliser management
options, is essential for the success of these varieties.

The challenge ofmainstreaming in the conventional breeding is the need ofmolec-
ular marker representing a major effect quantitative trait locus (QTL) along with
genomic selections for minor alleles to ‘fast-tract’ trait introgression to all potential
breeding lines in the pipeline. Population improvement approaches in combination
with rapid genetic advance systems and high-throughput phenotyping and genotyp-
ing platforms are being explored to improve the genetic gain for grain Zn and yield
in rice at IRRI.

Recently, the availability of more affordable genotyping services, whole-genome
analysis can be performed for a higher number of breeding lines and subsequently
used in genomic predictions and genomic selection for grainZn and yield. In addition,
the absorption and bioefficacy of the nutrients can be improved by enhancing the
content of bioavailableminerals in the edible part of the staple crops,whilst improving
the fibre content and reducing the anti-nutrients.

At IRRI, we are applying conventional and molecular breeding approaches, as
well as transgenic approaches to develop high-Zn rice varieties. The pathway for
development and dissemination of high-Zn rice varieties is depicted in Fig. 1.1.

Table 1.2 High-zinc rice varieties released under the HarvestPlus programme for commercial
cultivation in Bangladesh, India and the Philippines

Variety Season Yield (t/ha) Maturity (days) Zn (μg g−1) Country

NSICRc460 Dry and wet 4.0–5.0 119 19.6 Philippines

Chhattisgarh
Zinc Rice 1

Dry and wet 4.5–5.0 110 22–24 India

DRR dhan-45 Wet 5.0 125 22.6 India

BRRI dhan 62 Aman 4.0–4.5 100 19.6 Bangladesh

BRRI dhan 64 Boro 6.0–7.0 145 24.6 Bangladesh

BRRI dhan 72 Aman 6.0–6.5 128 22.2 Bangladesh

BRRI dhan 74 Boro 7.0–8.3 147 24.2 Bangladesh
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Table 1.3 Retention of zinc after cooking in different rice varieties produced either through con-
ventional breeding or genetic engineering approaches

Germplasm No. of
samples

Times of
washings

Method of
cooking

Zn retention
(%)

References

Philippine
rice varieties

90 3 Cooked in
test tubes

>85 Inabangan-
Asilo et al.
(2014)

Malaysian
rice varieties

5 2–3 Pressure
cooked

No
significant
reduction

Chapagai
et al. (2017)

Colombian
rice varieties

1 1–2 – >79 Talsma et al.
(2016)

Bangladesh
rice varieties

15 2–3 Traditional
cooking

>84 Ann et al.
(2015)

Rice
varieties
from India

6 2–3 Different
methods of
cooking

No
significant
reduction

Bhandari
(2013)

California
rice varieties

3 – Electric rice
cooker and
steamer

No reduction Toma and
Tabekhia
(1979)

Transgenic
rice lines

2 2 Cooked in
test tubes

>90 Slamet-
Loedin
unpublished
data

1.3.2 Genetic Engineering Approaches

The divalent nature of Zn, and hence its similarities with the Fe2+, the related
routes for acquisition and translocation within the rice plants and the utilisation
of genes/enzymes in the generated constructs that promote the binding, absorption
and/or translocation of Zn resulted in its subsequent increase during the iron bio-
fortification efforts (Slamet-Loedin et al. 2015). A series of approaches have been
identified for this purpose and are summarised in Fig. 1.1.

In a recent study, we showed that the Zn content of biofortified polished grains
can be increased up to 2.7-fold compared to the wild type counterpart, reaching
up to 45.7 μg g−1, or added approximately 30 μg g−1 Zn to the baseline of the
popular cultivars (Trijatmiko et al. 2016). This increase fulfilled the nutritional dietary
targets of both Fe and Zn biofortification under field conditions without yield penalty.
Moreover, the performance of the in vitro CaCO2 assay suggested that both the
additional Fe and Zn were bioavailable. The increase in Zn content in polished
grains of event NASFer-274 was mainly achieved due to the consecutive expression
of rice nicotianamine synthase 2 (OsNAS2) gene, a precursor of the metal chelator
nicotianamine (NA) (Kobayashi and Nishizawa 2012). Utilisation of the same gene
(OsNAS2) or its isoforms from rice (such asOsNAS1 andOsNAS3), barley (HvNAS1)
and arabidopsis (AtNAS1) in solo or in conjunction with other genes resulted in
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subsequent increase in the Zn content of biofortified rice grains (Higuchi et al. 2001;
Masuda et al. 2009, 2012; Lee et al. 2009b, 2011; Wirth et al. 2009; Zheng et al.
2010; Johnson et al. 2011; Aung et al. 2013; Boonyaves et al. 2017; Singh et al.
2017).

In certain cases, ectopic or constitutive expression of NAS genes was combined
with the barley nicotianamine aminotransferase (NAAT ) gene (Masuda et al. 2008;
Suzuki et al. 2008; Banakar et al. 2017). Both of these genes are involved in the
biosynthetic pathway of mugineic acid (MA) family of phytosiderophores in grami-
naceous plants (Kobayashi and Nishizawa 2012). The rationale behind this approach
was to further increase the production of MAs and subsequently the uptake and
translocation of themetal ions such as Fe and Zn. Utilisation of this approach resulted
in up to 2.2-fold increase in the Zn levels of polished rice grains (Banakar et al. 2017).
However, this was a pot experiment, and hence, it needs to be validated under field
condition.

Other transgenic approaches that was originally aimed to increase Fe but also
increase grain Zn modestly included utilisation of ferritin genes from rice (Paul et al.
2012) or soybean (Vasconcelos et al. 2003; Qu et al. 2005; Paul et al. 2014), consti-
tutive expression of the ferrous transporter OsIRT1 (Lee and An 2009), the yellow
stripe-like 15 (OsYSL15) (Lee et al. 2009), the bHLH Fe-related transcription factor
gene OsIRO2 in rice (Ogo et al. 2006), the mugineic acid family phytosiderophores
1 transporter (TOM1) from rice (Nozoye et al. 2011) and the vacuolar Fe transporters
(OsVIT) (Zhang et al. 2012). In all these cases, the increase in the concentration of
Zn in rice endosperm was insignificant compared to the wild type (Slamet-Loedin
et al. 2015).

1.4 Factors Affecting Zinc Retention and Bioavailability

1.4.1 Effect of Polishing and Cooking on Zinc Retention

Most of the rice consumed is processed by dehulling, polishing, soaking,washing and
cooking, which has an impact on the consumption levels of micronutrients such as
Fe and Zn. Retention of a significant proportion of Zn in the polished and cooked rice
is essential to provide health and nutritional benefits to the Zn-deficient populations
(Oghbaei and Prakash 2016). The starchy endosperm or white rice is surrounded by
pericarp and an aleurone layer known as the bran, which in turn is surrounded by a
thick covering called husk (Champagne et al. 2004). During the process of dehulling,
the husk is removed leaving the brown rice or caryopsis. The husk weighs about 20%
of the total grain weight. The other by-products being removed during this process
includes pericarp, nucellus, germ and the bran. Milling, on the other hand, removes
the outer maternal tissue or the aleurone layer exposing the endosperm, resulting in
polished or white rice. The degree of milling, abrasiveness and duration of milling
influences the mineral retention. It is estimated that 2–10% of the weight of brown
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rice is removed during milling resulting in the loss of most of the Fe and a significant
portion (<40%) of the grain Zn (Juliano 2003; Rao et al. 2014; Ziarati and Azizi
2014; Talsma et al. 2016). It is also noteworthy that significant amounts of phytate
(>80%), a major hindering factor for Zn absorption in human body, are also removed
whilst polishing. A rat feeding study with milled rice of PSBRc 14 showed that the
improved Zn/phytate ratio has significantly increased the bioavailability of Zn (Hunt
et al. 2002).

Soaking andwashing of polished rice before cooking to remove bran, dust and dirt
from the food is a common practice in Asian households. However, during soaking
and washing, some water-soluble nutrients are also removed unintentionally. There
are reports showing a significant decrease in Fe, but a slight or negligible decrease
in Zn concentration after washing of milled rice (Johnson et al. 2011; Kyriacou et al.
2014; Rao et al. 2014; Trijatmiko et al. 2016). Since Zn is embedded mostly in the
endosperm, it is relatively stable even after soaking, washing and cooking.

Retention studies to evaluate the remaining amount of Fe and Zn in rice grains
after processing are the first step to determine the nutritional target of biofortifi-
cation programmes. Subsequently, it is essential to estimate the bioavailability of
grain nutrients in human and its efficacy to improve the nutrient status in the human
body. The method of cooking, as well as the food mixture, is very important for
the absorption of Fe and Zn from the diet. In Table 1.2, a series of retention studies
of zinc is presented after cooking in different rice varieties produced either through
conventional breeding or genetic engineering approaches.

We studied the genetic variability for grain Zn in raw, washed and cooked rice
samples at IRRI. We carried out Fe and Zn retention after milling, washing and
cooking using high-Zn breeding lines developed at IRRI and also in milled rice pur-
chased from different stores in Los Baños, Laguna and Philippines. Results showed
that more than 85% of the Zn content of the raw rice is retained after three times
of washing and cooking both in the market and advanced breeding lines, whereas
most of the Fe was removed during these process (Ann et al. 2015). Similarly, in
an advanced breeding line of upland high-Zn rice from Colombia, 79% of Zn was
retained after polishing and cooking, whilst most of the phytate was removed (87%)
(Talsma et al. 2016). In a set ofMalaysian rice varieties, different methods of cooking
did not significantly change the Zn content in the brown rice (Chapagai et al. 2017).
Even if there were some minor variations in Zn retention in different rice varieties
and different methods of cooking, there was no significant reduction in the overall Zn
content (Mayer et al. 2007). However, a slight increase in Zn content after cooking
has also been reported, which is mainly due to the release of Zn from the Zn–pro-
tein complexes upon heating, but this increase was not significant (Rao et al. 2014).
Decanting water upon cooking rice was found to significantly decrease the minerals.
There was no significant difference in phytate and Zn content among different rice
products and rice varieties from Malaysia. The phytate/Zn ratio was <15 indicating
good bioavailability of Zn even after cooking (Norhaizan and Nor Faizadatul Ain
2009).

In addition, it is interesting to note that the transgenic lines reported in Trijatmiko
et al. (2016) showed a high retention efficiency (>90%) of grain Zn after cooking in
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test tubes (Slamet-Loedin, unpublished data). Such evidence further suggests that the
development of high iron and zinc-biofortified rice through transgenic approaches
can result in improved retention efficiency for zinc.

1.4.2 Bioavailability of Zn in Human

Bioavailability refers to the portion of intake that can be absorbed into the blood
system and utilised for physiological functions of the body. For Zn, it is determined
by the following factors, including the Zn status of the individual, the total Zn content
of the diet and the availability of soluble Zn from the diet’s food components (Lön-
nerdal 2000). In cases where the Zn status in humans is lower than the physiological
requirements, the solubility in the intestinal lumen determines its absorption. This is
affected mainly by the Zn chemical form in the composite meals and the extent of
its interaction with specific inhibitors and enhancers (Roohani et al. 2013).

The absorption of dietary Zn to a certain extent is affected by the human Zn
status. A study on the long-term supplementation of Zn in healthy subjects showed
a small increase in serum Zn values observed after 30 weeks of supplementation
(Sandström et al. 1990). Moreover, a series of studies have demonstrated that pro-
viding individuals with Zn supplementation and subsequently lower the zinc diets
enhances Zn absorption regardless of age group as homoeostatic mechanisms regu-
late both its absorption and retention (Istfan et al. 1983; Wada et al. 1985; August
et al. 1989;Wang et al. 2017). The amount of zinc in the meal also affects the fraction
of absorption (Lönnerdal 2000). An efficacy study among school-aged children in
Thailand over a 6-month period showed that Zn supplementation increased linear
growth in a population group with previous inadequate Zn intake (Rerksuppaphol
and Rerksuppaphol 2017).

A variety of dietary factors can influence the absorption of Zn by the blood system
in humans. Zinc in animal source foods such as shellfish, meats and eggs has rela-
tively higher bioavailability because of the absence of zinc absorption inhibitors and
the presence of zinc absorption enhancers, such as sulphur-containing amino acids.
Phytic acid (inositol hexa- and penta-phosphate), as discussed later, is the primary
dietary factor inhibiting the bioavailability of zinc (Hambidge et al. 2011). In the
small intestine of rats, in vitro experiments have shown that zinc phytate is highly
insoluble at their pH range and that addition of calcium to themediumexacerbated the
production of an insoluble complex containing zinc, calcium and phytate (Oberleas
et al. 1966). However, dietary calcium did not enhance the effects of phytate inhi-
bition of zinc absorption in humans when they were exposed to conventional diets,
indicating that calcium per se does not inhibit zinc absorption (Hunt and Beiseigel
2009).

Studies to determine how the nature of interaction between Fe and Zn affects the
zinc bioavailability in humans (Solomons and Jacob1981) showed that the interaction
of inorganic zinc (in the form of zinc sulphate) with non-haem iron (in the form of
ferrous sulphate) resulted in slight inhibition of zinc absorption when the Fe/Zn ratio
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was 1:1 and substantial inhibition when the Fe/Zn ratio was 2:1 or 3:1. However,
supplementation of non-haem Fe in the form of haem chloride was found to have no
effect on zinc absorption even at 3:1 Fe/Zn ratio. Similarly, absorption of ‘organic’
zinc from Atlantic oysters in the presence of iron did not significantly affect the
zinc absorption (Solomons and Jacob 1981). When a dosage of zinc similar to that
obtained from composite meals was used, it was found that the effect of iron on
zinc absorption is evident only at very high levels of iron to zinc and in aquatic
solution, further suggesting that iron fortification will not have an impact on zinc
absorption (Lönnerdal 2000). This has also been validated when the zinc absorption
was measured after consumption of both adults and infants with iron-fortified food
(Davidson et al. 1995; Fairweather-Tait et al. 1995).

The positive influence of protein intake and zinc absorption has been well-
documented (Sandström et al. 1989; Lönnerdal 2000). In particular, the ingestion of
animal proteins can significantly improve the bioavailability of Zn, possibly because
the released amino acids facilitate zinc solubility (Lönnerdal 2000). On the contrary,
the absorption of zinc in plant-based foods is hindered by the presence of phytate
in plant cells (Egli et al. 2004), often leading to a reduction of the zinc uptake and
bioavailability, particularly in vegetarian diets. However, no adverse health effects
from lower zinc absorption have been demonstrated (Hunt 2003). Nevertheless, inter-
action or binding of zinc to soluble ligands or chelators improve the zinc solubility
as such, resulting in a positive effect on zinc absorption (Lönnerdal 2000).

1.4.3 The Role of Phytate in Bioavailability of Zinc

A number of factors affect the bioavailability of zinc for human absorption including
phytic acid (PA) and its ratio to other components in the food matrix, such as the
phenolic compounds and fibre content (Bohn et al. 2008). However, PA is the major
contributing factor. Phytic acid (inositol hexa-phosphate) is an unstable compound
composed by the attachment of six phosphate ester groups in an inositol ring that is
considered to influence the absorption of zinc by the human body. When interacting
with metals, like magnesium (Mg2+), calcium (Ca2+) or potassium (K+), it produces
salts after covalent bond formation and subsequent neutralisation of its anions (Lopez
et al. 2002). Phytate is the primary storage form for phosphorus in many plant tissues
including the bran (aleurone layer) of cereals and its content varies from 0.06 to
2.22%, with polished rice grains containing the lowest amount (Reddy 2001; Gibson
et al. 2010). Other parts of plants including roots, tubers, most of the leafy tissues
(e.g. vegetables) and fruits contain minimal amounts of phytate, whereas animal
foods contain none (Gibson et al. 2010).

Metal ions, particularly Zn, Fe and Ca, are chelated by phytic acid but not Cu
(Egli et al. 2004), forming insoluble complexes inside the gastrointestinal tract that
are unavailable for digestion or absorption by humans because of the absence of
intestinal phytase enzymes(Iqbal et al. 1994; Hambidge et al. 2011). The inhibitory
effects of phytic acid on zinc absorption can be predicted by the molar ratios of
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phytate: zinc in the diet. According to the World Health Organization (WHO) and
the International Zn Nutrition Consultative Group (IZiNCG), molar ratios in excess
of 15:1 or 18:1, respectively, have been linked to sub-optimal zinc status in humans
(International Zinc Nutrition Consultative Group (IZiNCG) 2004; Allen et al. 2006).
Consequently, the bioavailability of these elements can be improved by dephytini-
sation, a process related to the reduction in phytate concentrations in certain plant
tissues (Egli et al. 2004; Gibson et al. 2010). In cereal grains, phytate is mainly
localised in the aleurone layer (i.e. brown rice) and embryo parts, whilst minuscule
amounts have been detected in the endosperm (Lehrfeld and Wu 1991; Prom-u-thai
et al. 2008; Persson et al. 2009; Jaksomsak et al. 2014; Saenchai et al. 2016). More-
over, speciation and localisation studies on cereal grains have revealed the association
of zinc with proteins instead of phytate (Persson et al. 2009, 2016; Kutman et al.
2010; Lombi et al. 2011; Kyriacou et al. 2014), therefore indicating its potential
bioavailability.

In recent years, several attempts (including genetic improvement, as well as fer-
mentation, soaking, germination and phytase enzymatic treatment of grains) have
been followed to reduce the phytic acid content in cereal grains and hence improve
their nutritional value (Gupta et al. 2015). However, the phytic acid beyond its role in
phosphorus storage is also a very important signalling molecule involved in several
regulatory processes; consequently, generation of low phytic acid mutants resulted
in the production of plants with different negative pleiotropic effects (Sparvoli and
Cominelli 2015). Nevertheless, transgenic technologies in rice have proven more
effective in generating low phytic acid plants whilst overcoming these effects (Ali
et al. 2013; Perera et al. 2018).

1.5 Deployment Path and Potential Impact
of Biofortification Zinc

Achieving the most cost-effective and large-scale impact of biofortification will
require the combination of all the available approaches for the improvement of
nutrient deficiency status (e.g. biofortification, supplementation and fortification).
However, biofortification has key advantages because of its ability to reach rural
populations and their long-term cost-effectiveness (Bouis and Saltzman 2017). In
order to be successful, biofortification requires robust products from breeders, the
establishment of nutrient efficacy that was discussed earlier and certainly farmer and
consumer adoption (Meenakshi 2009). To calculate the cost-effectiveness of bio-
fortification as a nutrition intervention, HarvestPlus used the disability-adjusted life
years (DALYs) framework. This approach captures both morbidity and mortality
outcomes in a single measure and is often used in health literature (Organization, no
date).

In Bangladesh, consumption of rice reaches 99%, and many households still grow
rice (38%) andZnbiofortification increased thediscounted cost perDALYsaved from
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$12 to $32 (Birol et al. 2014). The preliminary results from a recent ex ante cost-
effectiveness analysis onZn and vitaminA crops indicated that biofortification can be
rated as a ‘very cost-effective’ approach according the World Health Organization’s
CHOICE (Choosing Interventions that are Cost-Effective)Working Group, since the
overall costs are significantly lower to the per capita income in developing countries,
which ranges fromUS$365 in theDemocratic Republic of Congo (DRC) toUS$3843
in India (Birol et al. 2014). Even though biofortification requires a high upfront
investment, it has the potential to eventually be self-sustaining and sustainable (Bouis
and Saltzman 2017).

The value chain in rice covers from seed producers, farmers,miller and consumers.
At the crucial stage-gate, a simple but effective quality control system to measure the
level of micronutrient prior to the market distribution will need to be implemented
to ensure the effectiveness of this intervention.

Learning from the lessons of research-to-implementation of other biofortified
crops (sweet potato and maize) (Tanumihardjo et al. 2017), the deployment of Zn-
biofortified rice will require a multi-stakeholder and multi-stage effort involving the
agriculture, trade, health and nutrition sectors. Ensuring the agronomic productivity
(including crop diffusion and farmer-to-farmer seed sharing) of the rice variety will
be crucial to its sustainability. Generating consumer acceptance and preference for
Zn-biofortified rice versus the standard ricewill enhance impact. Of particular impor-
tance here is the creation of demand and promotion of access to Zn-biofortified rice
among the populations that are likely to benefit from the additional Zn. As identified
early in this chapter, these are the poor and rural communities who are not easily
reached by other interventions that address Zn deficiency. In addition, market strate-
gies to provide access to Zn-deficient urban populations need to be developed. The
involvement of local and national policymakers and stakeholders, in both the private
and public sectors, can facilitate scaling up and integration into the mainstream rice
value chain (Bouis and Saltzman 2017).

1.6 Conclusions

A number of rice varieties with elevated levels of Zn have been released. The advan-
tage of conventional or marker-assisted breeding lowers the hurdles in the regulatory
pathway to release the variety and there is no issue on public acceptance. However,
achieving the Zn nutritional target of 28μg g−1 in polished grains over multiple envi-
ronments remains challenging. In addition, until now there has not been identified
any major effect QTL for grain Zn, whilst the availability of molecular markers is
necessary to allowmarker-assisted breeding for Zn. The availability ofmarker(s) will
ease the breeding to multiple genetic backgrounds relevant to different geographical
locations.

The advantage of the biofortified product through GM approaches is that the
level of grain Zn achieved over surpasses the nutritional target levels for zinc, and
the transgene itself can serve as the marker for subsequent smooth introgression
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to multiple varieties. Moreover, the combination with the evolving genome editing
technology will enable in the future pyramiding of multiple nutrition and other traits
(e.g. agronomic) in one locus. The GM approach has the disadvantage of potential
resistance affecting public acceptance, whilst this might alter in favour because of
the robust food and feed safety analysis. It is undoubtedly preferable to have rice
enriched with micronutrients as the main source of caloric intake food, rather than
consuming an ‘empty calorie’ option. Supported with a rigorous deployment plan
for wider market adoption and simultaneous promotion of the health benefits, zinc-
biofortified rice may provide the carrier for improving and enhancing micronutrient
sufficiency in rice-consuming populations.
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Chapter 2
All Roads Leading to: Iron
Phytofortification

Karuna Yadav, Prashanti Patel and T. R. Ganapathi

Abstract Enhancing the nutritional quality of food crops is an arena of research that
is receiving much footfall among the scientific fraternity, owing to the heavy depen-
dence of humans on plant-based diets. These diets often lack essential micronutrients
like iron, thus compromising health and productivity, especially among women and
children from impoverished countries. Additionally, although iron is abundant in
soil, the calcareous nature of soil renders it unavailable to the plant. This has aggra-
vated the problem, as the bioavailability of iron from staple plant foods is already
low in humans. Thus, increasing iron content in the edible portions of the plant may
help ameliorate this deficit. Toward this, the past decade has witnessed extensive
focus on understanding the mechanisms of iron uptake and redistribution in plants.
This understanding has afforded greater insight into altering the existing strategies to
achieve this goal. Approaches such as crop and mutation breeding, as well as trans-
genic technologies, have been used for the introduction of useful traits via genome
manipulation. Also, a newly emergent area of study concerns the interaction of rhi-
zosphere microbiota with plant roots and their effects on iron acquisition by plants.
In this chapter, we have attempted to summarize the impact of associated micro-
biota in iron acquisition in addition to the conventional and transgenic efforts toward
phytofortification for the alleviation of iron deficiency anemia in the global populace,
particularly the affected strata.
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2.1 Introduction

2.1.1 The Need for Crop Improvement: An Overview

Nutrient balance is crucial to the survival and health of all organisms throughout the
food chain. With the world population slated to ascend in the years to come, land
space, soil fertility, water accessibility, and hence nutrient availability are susceptible
to degradation due to industrial activity and overcultivation. Thus, the pressing need
of the hour is the development of technologies for the production of water-efficient
as well as nutrient-enriched crops to continue agriculture in a sustainable manner,
without excessive reliance on environmentally threatening fertilizers and pesticides
(Tilman 1999). In this regard, the element iron is by far one of the most abundant
in the earth’s crust and an essential requirement for organisms. Plants forming the
largest trophic food base and the source of nutrition for higher organisms through
photosynthate production are consequently a major consumer of this element. Ironi-
cally, however, iron is poorly available for capture and consumption by plants due to
its tendency for oxidation and precipitation as hydroxides, siderites, and phosphates,
rendering it insoluble and thereby unavailable (Lindsay and Schwab 1982; Guerinot
and Yi 1994). A number of studies have together elucidated the mechanistic basis
for iron uptake and distribution throughout the plant body.

The level of iron in the plant biomass is ultimately partitioned into the higher
trophic levels through the consumption of vegetarian foods. However, the utilizable
amount depends on the bioavailable fraction in the plant, as plant iron is generally
complexed with the anti-nutrient phytate, reducing its availability (Drakakaki et al.
2005). In contrast, iron from animal sources is readily bioavailable as heme-Fe com-
plex, underscoring the importance of a diversified diet inclusive of both vegetable
and animal sources to achieve healthy balanced nutrition (Layrisse et al. 1969; Hur-
rell and Egli 2010). This is a concern for primarily vegetarian populations as well as
the poor, socioeconomically disadvantaged and other marginalized people who are
unable to afford such a diet, predisposing them to micronutrient deficiencies. Iron
deficiency, in particular, is a grave threat to infants, children, young girls, and preg-
nant women. This manifests in delayed and abnormal growth and development of the
foetus, poor cognition and performance at work, fatigue and lowered immunity as
well as poor absorption of other nutrients (Walter et al. 1989; Allen 2000; Zimmer-
mann et al. 2000; Hess et al. 2002; Beard 2003). This has necessitated the institution
of several remedial measures, including iron supplementation (Bruner et al. 1996)
and food fortification (Zimmermann et al. 2003; Zlotkin et al. 2003; Zimmermann
and Hurrell 2007; Andersson et al. 2008). These measures although in place, have
not met with much success owing to various reasons, which include: variable con-
sumer demands and acceptance, undesirable organoleptic changes in fortified food,
physiological disturbances, and socioeconomic-political considerations (Galloway
and McGuire 1994; Hurrell 2002; Iannotti et al. 2006; Baltussen et al. 2004; Hoppe
et al. 2006). Another source of concern is the heavy dependence of the poor on
the so-called “staple” crops such as cassava, wheat, and rice, which lack in major
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micronutrients (Gegios et al. 2010). Since staple crops are those that are largely
cultivated in a given geographical area and preferred due to socioeconomic reasons,
improving them with respect to their nutritional quality is an option worth exploring.
Thus, a third method involves biofortification of crops like cassava, banana, rice,
wheat, maize, beans, and millets to improve their endogenous iron content. Biofor-
tification is a means to enhance the intrinsic nutritional content and bioavailability
in the plant, such as that of minerals, protein, and beneficial bioactive compounds
through genetic or agronomic technologies (White and Broadley 2009). Currently,
the major target micronutrients focused upon the development of biofortified crops
are iron (Haas et al. 2005; Ihemere et al. 2012), zinc (Velu et al. 2014; Trijatmiko
et al. 2016), vitamin A (La Frano et al. 2013), and iodine as under the aegis of the
HarvestPlus program (Pfeiffer and McClafferty 2007). This chapter aims to provide
only a bird’s eye-view on iron uptake and redistribution in plants and the strategies
already exploited toward iron biofortification. In this regard, the readers are directed
toward previously published reviews described earlier for a detailed description of
the same (Patel et al. 2016). Apart from traditional breeding and genetic engineering,
interest has also been generated in the interactions of plant roots with rhizosphere
microflora and their influence on plant nutrition, as it is well known that plants are
dependent on beneficial soil organisms for various mineral requirements. For exam-
ple, mycorrhiza likeGlomus, help in phosphorus uptake, when associated with roots
of gymnosperm species (Zandavalli et al. 2004). Similarly, association of rhizobia
with leguminous plants have been long since known to enhance the nitrogen-uptake
abilities of the plant and thereby its growth and development. It is well known that
certain microbes secrete siderophores for iron acquisition from the soil and thus pos-
sibly compete for iron with plant roots. Thus, the exploitation of these microbes for
the enrichment of plant iron reserves is an arena with immense potential, in addition
to standard agronomic practices such as application of fertilizers to the soil (Aciksoz
et al. 2011). A broad understanding of the roles played by these organisms with
respect to iron has been explored in some depth and presented in this chapter.

2.2 Plant Uptake and Distribution: An Overview

2.2.1 Plant Iron Acquisition: Endogenous Dramatis
Personae

To meet the cellular demands under variable soil conditions, predominantly dictated
by pH, plants have evolved two strategies for efficient iron acquisition, simultane-
ously preventing iron overload.On the basis of key players responding to soil iron sta-
tus, plants are broadly classified as Strategy I and II, both ofwhich have been reviewed
extensively (Marschner et al. 1986; Kobayashi and Nishizawa 2012). The former
relies on soil acidification with iron reduction and the latter on chelation, respec-
tively. Strategy I plants are dicots and non-graminaceous monocots, which extrude
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protons into the rhizosphere via the AHA pump (Santi and Schmidt 2009), followed
by FRO2-mediated reduction of the mobilized iron into ferrous form (Robinson et al.
1999)which is subsequently imported into the root through the IRT1 transporter (Kor-
shunova et al. 1999;Vert et al. 2002). Strategy I plants have also been shown to secrete
phenolic compounds such as flavonoids by red clover (Jin et al. 2007), protocatechuic
acid and caffeic acid by rice (Ishimaru et al. 2011; Bashir et al. 2011a), and coumarin
derivatives (Fourcroy et al. 2014) into the apoplastic space to solubilize precipitated
iron. The strategy I response is transcriptionally regulated in the root epidermal cells,
by the FIT/FRU/FER transcription factor (TF) (Ling et al. 2002; Yuan et al. 2005)
which interacts with bHLH038 and bHLH039to induce the IRON-REGULATED
TRANSPORTER1 (IRT1) and ferric chelate reductase (FRO2) expression under iron
deficiency (Yuan et al. 2008). Acting independent of FIT and independently induced
under iron deficiency, are bHLH100 and bHLH101. These TFs are also essential for a
robust iron deficiency response as they affect a subset of genes not under the purview
of FIT, but which are required for iron remobilization and utilization within the plant
(Wang et al. 2007; Sivitz et al. 2012). Another circuit operative in the root pericycle is
the POPEYE (PYE)-PYE-LIKE (PYEL)-BRUTUS (BTS) network. The bHLH TFs
POPEYE and PYEL (which include bHLH104, bHLHL115, and IAA-LEUCINE
RESISTANT ILR3) are positive regulators (Rampey et al. 2006; Long et al. 2010)
while BRUTUS negatively regulates the iron deficiency response by 26S proteaso-
mal degradation of PYEL proteins (Selote et al. 2015). A connection between these
two apparently distinct regulatory domains was recently discovered as bHLH104,
bHLH115, and bHLH34 were shown to directly activate the bHLH38/39/100/101
quartet collectively known as the bHLH subgroup 1b genes (Wang et al. 2013; Li
et al. 2016b; Liang et al. 2017). Furthermore, bHLH104 interacts with the PYEL
ILR3 to activate expression of PYE and the subgroup 1b genes, thus establishing
coordination in the signaling cascade responding to iron deficiency (Zhang et al.
2015). This network influences the root system architecture, iron storage, iron mobi-
lization, and transport between tissues and iron sequestration in vacuoles under iron
deficiency (Long et al. 2010).

Contrastingly, strategy II functions in graminaceous plants such as wheat and
maize and utilizes secreted phytosiderophores to chelate ferric irons directly from the
soil (Römheld and Marschner 1986). The methionine cycle synthesizes S-adenosyl
methionine (SAM), which is trimerized by nicotianamine synthase (NAS) to produce
a molecule of nicotianamine (NA). This NA is subsequently converted into different
species-specific mugineic acids (MA) also called phytosiderophores (PS) such as
deoxy-MA in rice and epi-hydroxy MA in barley (Nakanishi et al. 2000; Kobayashi
et al. 2005). These non-proteinic negatively charged amino acids are extruded into the
rhizosphere via the TRANSPORTER-OF-MA 1 (TOM1) transporter (Nozoye et al.
2011), where they are able to free the ferric iron bound to negatively charged soil
compounds and make it available to the plant. The Fe+3-PS complexes are then inter-
nalized through YELLOW STRIPE 1/YS1-LIKE (YS1/YSL) proteins in the root
epidermal membrane (Curie et al. 2001). The strategy II response is coordinately
controlled and fine-tuned through positive and negative regulation to allow for iron
uptake under deficiency and distribution through the plant while preventing iron
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overload. Positive regulation is mediated by the bHLH protein IRO2, a transcrip-
tional activator of genes for mugineic acid synthesis (Ogo et al. 2007). The Bhlh
transcription factor IDEF1 belonging to the ABI3/VP1 family senses iron status
through direct binding of the ion and activates IRO2 by binding to the IDE1 cis-
element in the promoter of IRO2 as well as MA synthesis pathway genes (Kobayashi
et al. 2007, 2012) to activate genes for both early and late responses to iron defi-
ciency (Kobayashi et al. 2009). Another transcription activator IDEF2 is a NAC
(NAM, ATAF and CUC) family member, which activates several iron deficiency
responsive genes such as rice YSL2 through binding to the IDE2 sequence in the
promoter (Ogo et al. 2008). Negative regulation of strategy II is imposed by rice
IRO3, which is specifically induced by iron deficiency and targets IRT1, NAS, and
YSL genes under iron starvation, probably to limit excessive iron intake and control
input into the energy-intensive MA synthesis pathway (Zheng et al. 2010b).

2.2.2 Iron Transport and Distribution

Though iron is taken up through differing strategies, it follows a largely conserved
path into the aerial tissues, aided by protein homologs for cellular utilization, storage,
and transport to the sink tissues. Iron intake in strategy I plants is in the ferrous
form, while that in strategy II plants is as ferric bound to PS. In the root, ferrous
iron enters the xylem through an unknown transporter protein, while ferric ions are
imported into the xylembound to citratewhich is itself effluxed through themultidrug
and toxin efflux transporter (FRD3) in arabidopsis and its rice homolog, the Ferric
Reductase Defective-Like transporter (FRDL1) (Durrett et al. 2007; Yokosho et al.
2009). FRD3 is also essential for iron nutrition of tissues having no symplastic
connections, such as the male gametophyte and seeds, as citrate mobilizes apoplastic
iron for the utilization by these tissues (Roschzttardtz et al. 2011). The transpiration
streamhelps themovement of iron through the xylem into the aerial portions. Further,
the iron is unloaded into the phloem for transport into the sink regions, via the YSL
proteins, which also show organ-specific expression such as that in seeds, pollen
tubes, and lamina joints. In rice,OsYSL2/15 and in arabidopsis,AtYSL1/3, mobilize
iron into the inflorescence and seed in complexes with NA (Koike et al. 2004; Inoue
et al. 2009; Jean et al. 2005; Waters et al. 2006; Chu et al. 2010). Rice YSL18
transports Fe+3-DMA complexes into reproductive organs and vegetative parts such
as lamina joints and leaf sheaths as well as parenchyma of crown roots (Aoyama et al.
2009). In arabidopsis, the Oligo Peptide Transporter (AtOPT3) located in the phloem
of leaf minor veins and stem nodes, pollen and developing embryos mediates iron
transport into seeds and further redistribution from leaves to other sink tissues via
phloem (Stacey et al. 2002, 2008). While complete disruption of OPT3 is embryo-
lethal, non-lethal knockdownmutants show deranged shoot signaling of iron status to
the root (Zhai et al. 2014). Interestingly, OPT3 blocks the translocation of cadmium
into sensitive sink tissues while selectively partitioning iron into them, underscoring
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its importance in precluding the translocation of toxic heavy metals taken up due to
IRT1 activity under iron deficiency (Zhai et al. 2014; Mendoza-Cózatl et al. 2014).

Cellular iron is diverted toward the chloroplast for photosynthesis and the mito-
chondrion for respiration. For intracellular transport into the chloroplast, Fe+3 is
reduced to Fe+2 by FRO7 (Jeong et al. 2008) and then mobilized into it by PER-
MEASE IN CHLOROPLASTS 1 (PIC1) located in the chloroplast membrane and
essential for chloroplast development (Duy et al. 2007). Iron entry into themitochon-
drion may involve the reduction of ferric iron via the FRO3 and FRO8 homologs of
ferric chelate reductase in Arabidopsis (Jeong and Connolly 2009). The Mitochon-
drial Iron Transporter (MIT) (Bashir et al. 2011b) mediates mitochondrial import of
iron, whereas the mitochondrial ATP-binding cassette transporter (ATM3) exports
iron into the cytosol for cytosolic Fe-S cluster assembly (Zuo et al. 2017). In both
the chloroplast and mitochondrion, iron is sequestered by ferritin as precipitated iron
phosphates within the 24-mer-protein core (Petit et al. 2001, Zancani et al. 2004). In
the mitochondrion, an additional protein frataxin, a Fe-S cluster-containing protein,
also maintains iron homeostasis, until usage and remobilization for specific cellular
needs (Busi et al. 2004, 2006). Vacuolar iron import is mediated through root epider-
mal FERROPORTIN 2 (FPN2), which also imports cobalt (Morrissey et al. 2009)
and the VACUOLAR IRON TRANSPORTER 1 (VIT1) (Kim et al. 2006). Once
inside the vacuole, iron is either complexed by NA or phytate for safe storage till
required. The Natural Resistance-Associated Macrophage Proteins (NRAMP3 and
NRAMP4) efflux iron into the cytosol to meet cellular metabolic demands (Lanquar
et al. 2005).

Hormonal orchestration of the iron homeostatic pathway is mediated by auxin,
nitric oxide (NO), ethylene, cytokinin, and jasmonate, which integrate plant
metabolic status with the iron deficiency response. Herein, a network of sucrose,
nitric oxide, and auxin is established. Iron deficiency induces endogenous accumu-
lation of sucrose, which enhances auxin signaling (Lin et al. 2016). Auxin mediates
root system architectural changes in response to Fe deficiency in a gradient depen-
dent manner, as localized iron around the root strongly induced lateral root formation
(Giehl et al. 2012). Auxin signaling also activates root NO production, which in turn
stabilizes the FIT protein and upregulates IRT1 and FRO activity for increased iron
uptake (Chen et al. 2010). Ethylene also induces the iron deficiency response via the
interaction of EIN1/EIL3 with FIT, again by possibly stabilizing it against proteaso-
mal mediated degradation (Lingam et al. 2011). On the other hand, cytokinins and
jasmonate negatively regulate IRT1 and FRO2 through a FIT-independent manner.
Cytokinins inhibit primary root growth under Fe deficiency, indicating coordination
of plant growth with Fe requirements, while jasmonate suppresses IRT1 and FRO2
transcription but not their iron-inducibility, suggesting fine-tuning of iron homeosta-
sis (Séguéla et al. 2008; Maurer et al. 2011). These observations suggest that the
hormonal regulation of iron homeostasis serves to balance the uptake of iron with
possible toxicity arising from the non-specific nature of metal uptake by IRT1 in
Strategy I plants.
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2.3 The Road Travelled so Far: Through Breeding
and Genetic Engineering

Both crop breeding and genetic engineering have been explored for iron enrichment
in food crops. The relative advantages of each over the other vary with the crop
under consideration as wide variability exists in the amenability of plants toward
transformation and in the germplasm base for iron content. This precludes some
crops from manipulation by one strategy but opens avenues to utilize the other.
Breeding for high iron content in seed and edible parts of the plant requires the
existence of a sufficiently large genetic variability in iron content among parent lines
(Sperotto et al. 2012) as well as minimal linkage drag. Selection for and stabilization
of such a trait is a long-duration process and there may be unfavorable interactions
with other traits of economic importance. However, breeding does not require prior
knowledge of the loci involved, thus enabling the generation of high iron plants,
which further need to be validated through marker-assisted technology. The release
of varieties is also not hampered by regulatory constraints as it does not involve
the usage of any foreign elements. Transgenic technology toward biofortification,
on the other hand, necessitates prior knowledge of individual genes contributing to
iron uptake, transport, and storage as well as the potential synergistic or antagonistic
interactions between them. Furthermore, a gamut of regulatory approvals and safety
tests are needed before the promising event is released for public consumption, as
public acceptance of this technology is still low. However, it is useful to elucidate the
functions of genes and offers options to stack genes for desirable traits and modify
undesirable traits by RNAi silencing (Garg et al. 2018).

2.3.1 Iron Biofortification Through Classical Crop Breeding:
Varieties Released

Although the timelines for the development of biofortified varieties through conven-
tional breeding are significantly longer, the process holds hope formillions across the
globe. As mentioned before, the regulatory hurdles for release of a variety developed
through this method are minimal over the ones developed through transgenic tech-
nology. Crop improvement through conventional breeding requires the identification
of elite genotypes in the germplasm. Past and current efforts have produced iron-
fortified varieties of various crops notably wheat, rice, beans, lentils, cowpea, potato,
sorghum, and millets. An aromatic rice variety “IR68144-3B-2-2-3” was developed
to contain ~21mg/kg of iron in the unpolished grain. This amountwas almost twofold
higher than the typical 12 mg/kg iron content found in common rice. The variety was
also found to be tolerant to rice tungro virus and displayed better grain qualities (Gre-
gorio et al. 2000).Wheat-Zhongmai 175 andWheat-Zhongyou 9507 contain 30–44.5
and 34.9–57.8 ppm of iron, respectively. The polished rice variety Zhongguangxiang
1 contains 7 ppm of iron. Additionally, these varieties displayed increased resistance
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and yield and were released in China in the years 2001–2010 (HarvestPlus 2014).
Discovery of high-iron genotypes of beans led to the development of “bush” and
“climber” varieties into high-iron elite varieties with 21–50 ppm of iron. The devel-
oped beans also displayed increased resistance to Ascochyta blight (Anthracnose).
These developed varieties were then subsequently released in Rwanda in the years
2010–2013 (HarvestPlus 2014). Various varieties of lentils from Bangladesh, India,
and Nepal were fortified with iron as the primary mineral target and zinc as sec-
ondary mineral target. Upon multi-location trials, L4704 with more than 85 ppm of
iron and 74 ppm of zinc in India was released in 2012. In Nepal and in Bangladesh,
ILL7723 and Barimasur-7 with more than 43 ppm and 41 ppm of iron, respectively,
were released in 2013 (HarvestPlus 2014). Similarly, Irish potatoes and sorghum
containing high iron levels have been developed for Rwanda-Ethopia and India,
respectively. In India, cowpea genotypes (Pant Lobia-1, 2, 3 and 4) with iron content
ranging from 51 to 100 ppm were released in the years 2008–2014. These also had
higher content of zinc and were resistant to multiple diseases. Pant Lobia-1 and 2
were found to be early maturing and their seeds have now been made available to the
farmers for local production (HarvestPlus 2014). Five bean varieties; NAROBEAN
1, 2, 3 4C and 5C which were found to be an excellent source of iron and were
also drought resilient, were produced under the aegis of the HarvestPlus program
(Nantongo 2016). Also, biofortified pearl millet “Dhanashakti” with 71 mg/kg iron
and 40 mg/kg zinc was developed and released in India in addition to a high-iron
pearl millet hybrid “ICMH 1201” which has 75 mg/kg iron, 40 mg/kg zinc and 30%
higher grain yield than “Dhanashakti” (ICRISAT 2016). Recently, efforts have been
made to identify the chromosome loci associated with the observed increase in the
mineral content. Maize kernel iron and zinc concentrations in the germplasm were
estimated, and the corresponding genomic regions were identified through GWAS.
The genomic regions were further validated in bi-parental populations (Hindu et al.
2018).

Clinical trials using iron-fortified pearl millet were conducted for six months on
teenagers from the Maharashtra state of India (Finkelstein et al. 2015) and Indian
teenage girls (Beer et al. 2014). They revealed improved blood iron parameters such
as hemoglobin and proved to be efficacious in mitigating iron deficiency anemia.
In another clinical trial, 135 children fed with iron-fortified pearl millet reported
increased physical performance in terms of maximal oxygen uptake in compari-
son with the control group who were fed non-fortified pearl millet. Also, the study
revealed improved iron status in terms of serum transferrin receptor values in the test
group compared to the control group (Pompano et al. 2013). Similarly, a trial using
iron biofortified beans was conducted on 195 Rwandan women between the ages
of 18–27 years. After 128 days of the trial, the test group fed with iron biofortified
beans showed a significant increase in their hemoglobin and other blood parameters
related to iron status compared to the control groupwhowere fed control beans (Haas
et al. 2016). These trials point out the many success stories of conventional breeding
programs. However, for important staples deficient in iron for which iron-rich geno-
types are scarce or for plants which are unamenable to cross pollination, transgenic
technology has provided significant results, as discussed below.
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2.3.2 Iron Biofortification Through Genetic Engineering

With regard to iron biofortification through transgenic means, the overarching theme
has been the utilization of iron uptake, transport and sequestration-related genes in
grain/edible part of the plants to allow for the enhanced translocation of iron through
the plant, coupled with safe storage. Accordingly, at iron uptake level, the root iron
transporter IRT1 has been overexpressed either alone as in rice (Lee and An 2009;
Tan et al. 2015) or in conjunction with arabidopsis ferritin, common bean NAS and
phytase (NFP lines), under a seed-specific nodulin promoter (Boonyaves et al. 2016).
The latter strategy enhanced iron content above that of only NFP plants. However,
a caveat was the increased sensitivity of IRT-overexpressing lines to cadmium and
excess zinc due to the poor specificity of this transporter (Lee and An 2009). Other
attractive candidates for iron biofortification include ferritin and NAS—the former
because it can store up to 4500 atoms of iron in the protein core without associated
toxicity and the latter because of its proven role in the translocation of iron through
the plant. A brief overview of the same has been presented below.

Several groups have reported an increase in iron content in vegetative and/or
grain parts of plants overexpressing ferritin either under constitutive or seed-specific
promoters (Goto et al. 1999; Van Wuytswinkel et al. 1999; Drakakaki et al. 2000;
Vasconcelos et al. 2003; Drakakaki et al. 2005; Paul et al. 2012; Masuda et al. 2013).
This has been attributed primarily to the creation of an internal pseudo-iron defi-
cient state in the plant through imbalance of steady-state iron concentrations due
to over-sequestration by ferritin. Availability of iron for the translocation to needy
organs is therefore impaired, thus activating iron uptake and translocation mecha-
nisms (Van Wuytswinkel et al. 1999). Thus, FRO2 activity and proton secretion into
the rhizosphere increased in tobacco plants overexpressing ferritin under a constitu-
tive promoter (Vansuyt et al. 2003). In other cases, internal iron homeostasis appears
to be disturbed by ferritin overproduction in a particular organ. Overexpressing soy-
bean ferritin using a seed-specific promoter in a maize line with low phytate content,
enhanced seed iron and its bioavailability, but disturbed iron distribution between
tissues (Qu et al. 2005; Aluru et al. 2011). The maize leaf YS1 and FRD3 genes,
involved in iron-chelate transport and citrate efflux, respectively, as well as nico-
tianamine synthase (NAS3), were induced in these plants, thereby increasing the
mobilization of iron-NA from leaves to seed and decreasing leaf iron levels. Further-
more, both endogenous maize ferritin genes were suppressed in leaves to facilitate
iron export. In contrast, mugineic acid production genes NAAT1 and DMAS also
showed altered expression in leaf and root, with NAAT downregulated in root but
induced in leaf and DMAS strongly repressed in leaf, indicating that root uptake of
iron was not increased and that higher ferritin levels may not parallel concomitant
increase in root iron. On the contrary, Kanobe et al. (2013) showed an increase in
root ZmNAAT1 in soybean ferritin-expressing maize, but no significant alterations
in the NAS gene family expression, which was attributed to genetic background
difference. They also reported an increase in the 4Fe-4S-containing ferredoxin
genes, possibly affecting electron transport and iron homeostasis. Recently, a banana
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ferritinMusaFer1was found to increase leaf and root iron content by twofold in leaf
and threefold in roots, when expressed under the constitutive ZmUbi promoter. The
gene also conferred oxidative stress tolerance on the transgenic plants relative to the
controls owing to the sequestration of reactive iron in inert form in the ferritin core
(Yadav et al. 2017).

Due to the limitations observed in the accumulation of iron by overexpressing
ferritin alone (Vansuyt et al. 2000; Qu et al. 2005) and the discovery that checkpoints
for iron loading in seeds regulate ferritin stability and thus iron accumulation (Ravet
et al. 2009), attempts were made to facilitate increased uptake, translocation and
remobilization as well as storage, along with sequestration of iron. With the influx
of basic research coupled with “OMICS” data, better insights on iron homeostasis
pathway have been established over the years, allowing for a more “informed” selec-
tion of genes. Co-expression of FROs and ferritins has been suggested to facilitate
more iron acquisition in comparison with the overexpression of single genes (Goto
et al. 1999), together with storage in a safe form. Similarly, combinations of fer-
ritin with NAS (Wirth et al. 2009), with NAS and YSL2 (Masuda et al. 2012), with
NAS1, IDS3, and NAAT (Masuda et al. 2013), with IRT1 and NAS (Boonyaves et al.
2016) and with NAS and NRAMP3 (Wu et al. 2019) were generated. Placing the
ferritin gene under a seed/endosperm-specific promoter and employing the above
combinations yielded increases in seed iron content over that observed for ferritin
overexpression alone. The levels of zinc were also increased in these plants due to
the ability of NA to chelate this metal. Also, no significant undesirable alterations in
growth and yield were noted in these transgenic plants. In addition to these measures,
the expression of fungal phytase to degrade the anti-nutrient phytic acid enhanced
iron bioavailability (Drakakaki et al. 2005, Aluru et al. 2011). Ferritin was isolated
from Phaseolus vulgaris and its overexpression in Japonica rice variety Taipei 309
under the glutelin promoter yielded a twofold increase in transformed rice grains over
controls. Additionally, to increase the bioavailability of iron, a heat-tolerant phytase
isolated from Aspergillus fumigatus was overexpressed and its activity in the trans-
genic lines was 130-fold higher than the wild type. Further, a sevenfold increase was
found in the content of cysteine residues which are considered as enhancers of non-
heme form of iron (Lucca et al. 2001). Taken together, the synergetic “push–pull”
mechanism obtained by the use of these constructs, led to effective enhancement of
the iron and zinc levels in a safemanner, with potential applications in biofortification
(Zielińska-Dawidziak 2015).

As described above, exclusive overexpression of transporters or storage genes is
not sufficient to increase iron content. One of the reasons is that iron is not a mobile
element by itself and requires chelators to maintain solvation within the plant to
prevent toxicity due to the Fenton reaction. This role is fulfilled byNAwhich chelates
several divalent transition elements such as Zn, Mn, Fe, and Ni and translocates them
throughout the plant, thus partitioning the metal between source and sink (Waters
and Sankaran 2011). Thus, overexpression of NAS has led to increased iron content
in seeds, grains and aerial parts of Arabidopsis, tobacco, rice, and wheat (Douchkov
et al. 2005; Masuda et al. 2009; Wirth et al. 2009; Johnson et al. 2011; Lee et al.
2012). Similarly, overexpression ofMalus domesticus NAS1 in tobacco significantly
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increased Fe, Cu, Zn, and Mn concentrations in the flowers and leaves (Han et al.
2018). This coincided with upregulation of the iron homeostasis genes FRO2, IRT1,
VIT, NRAMP1, and YSL as was also observed in the case of overexpression of apple
NAS (MdNAS1) in tobacco, indicating alteration of metal distribution throughout the
plant.

Transgenic rice overexpressing NAS1 isolated from barley led to an increase in
iron and zinc content in the grains by 4.5-fold and 2.5-fold, respectively (Masuda
et al. 2009). Similar results were obtained for activation-tagged nicotianamine syn-
thase (OsNAS3) from rice and iron was found to be bound to NA, rather than phytate,
resulting in higher bioavailability and recovery from anemia in mice (Lee et al. 2009,
2012). The use of AtNAS, endosperm-targeted PvFER and a fungal phytase, created
a source-to-sink synergetic coupling which increased endosperm iron and zinc con-
centrations above that achieved by ferritin overexpression alone (Wirth et al. 2009).
Johnson et al. (2011) tested the potential of all three rice NAS genes toward increas-
ing rice endosperm iron and zinc and found OsNAS2 and OsNAS3 to be effective
in meeting the target of 14 ug/g DW in polished rice, again in a bioavailable form.
Based on their findings, Trijatmiko et al. (2016) evaluated rice lines either expressing
OsNAS2 alone, soybean ferritin alone or both in combination, and selected a single
copy insert-containing transgenic line with combination of both genes. This line met
the dietary requirements of both iron and zinc in polished grains in a bioavailable
manner, without yield penalty or other side-effects on grain quality. Similarly, a com-
bination of constitutively expressed AtNAS1, ArabidopsisNRAMP3 (AtNRAMP3),
and common bean ferritin (PvFER) targeted to the endosperm yielded >90% of the
desired target for both Fe and Zn in grains. This approach utilized the strategy of
remobilization of iron stores in the vacuole for long-distance transport via NA and
ultimate sequestration by endospermic ferritin to achieve such yields, without pre-
disposing the plants to excess Cd uptake over WT plants (Wu et al. 2019). Taken
together, evidence is unanimous upon the ability of NA to provide both Zn and Fe,
essential micronutrients in bioavailable form for human consumption (Zheng et al.
2010a). Interestingly, the benefits of overexpressing NAS reach beyond the obvious
metallomic enrichment of crops, as nicotianamine is a potent inhibitor of circulatory
mammalian angiotensin-1 converting enzyme (ACE) (Kinoshita et al. 1993), thereby
aiding in the control of blood pressure, without perturbing other zinc-containing
enzymes (Hayashi and Kimoto 2007). Enhancing the nicotianamine content by ~4
folds in marker-free rice through overexpression of HvNAS1 could therefore go a
long way to supplement the overall health of consumers (Usuda et al. 2009).

The above reports constitute proof-of-principles studies toward enhancing the iron
content in edible parts of the plant. Progress is now being made in the arena of staple
crops too. The tuberous cassava crop helps the survival of marginal and subsistence
farmers in times of famine owing to its drought-resilient nature. Being a staple food
of the African masses, the crop has therefore received special research attention for
the introduction of superior traits through genetic engineering. The crop has been
widely transformed since the first transgenic cassava produced by Agrobacterium-
mediated transformation with a bar gene conferring resistance to the herbicide Basta
(Sarria et al. 2000). Since then, various genes responsible for enhancing nutritional
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content such as beta-carotene (Welsch et al. 2010; Failla et al. 2012), protein content
(Narayanan et al. 2011), vitamin B6 (Li et al. 2015), and iron (Ihemere et al. 2012;
Narayanan et al. 2015) have been explored. However, amidst the ongoing efforts
to manipulate the plant intrinsic ability for iron uptake, the importance of external
agronomic practices cannot be overlooked as the soil nutritional, biological, and
geochemical quality is often a limiting factor in plant nutrition. Edaphic parameters
are influenced by biological, anthropogenic, and weather activity, vary widely across
regions and can be potential hurdles to the successful implementation of a modified
crop variety. It is therefore critical to understand plant behavior in soil, especially in
relation to microbial activity, given the almost universal requirement for iron. This
will be discussed in the following sections along with the potential for application
of beneficial interactions in iron phytofortification.

2.4 Microbe-Assisted Biofortification: The Road to Be
Travelled

Soil is a highly heterogeneous medium with bulk and localized variations in pH,
organic and mineral matter and moisture content, much of which is a consequence of
microbial weathering (Banfield et al. 1999; Reyes et al. 2007; Sradnick et al. 2018).
Microorganisms and plant roots coexist in soil with several species of microflora
colonizing the root zone. Their distribution and speciation is affected by the plant
species, nature and amount of exudates, secondary metabolites, plant age, stress
application and nutritional status (Yang and Crowley 2000; Li et al. 2016a) meaning
that the rhizosphere immediately surrounding the roots is vastly different from bulk
soil (Guo et al. 2015; Shi et al. 2011). Microflora such as selected members of the
genera Pseudomonas, Bacillus spp. Azospirillum, Glomus and Trichoderma in the
rhizosphere influence plant nutrition and defense activity as well as modulate growth
(Altomare et al. 1999; Ahmad et al. 2008; Rodriguez et al. 2004; Calvaruso et al.
2006; Perrig et al. 2007; Yang et al. 2009; Cassan et al. 2009).

2.4.1 Iron: The Tug-of-War Between Two Kingdoms

Iron is integral to several enzymatic reactions occurring in all aerobic organisms
owing to its reactivity. However, this very same propensity toward oxidation ren-
ders it insoluble under the mostly alkaline pH of soils, triggering mechanisms for
its mobilization and uptake by the organisms requiring it. Unsurprisingly therefore,
soil iron availability influences the root activity of members of kingdom Plantae
and that of the associated rhizosphere moneran community (von Wirén et al. 1999;
Lemanceau et al. 2009;Marschner et al. 2011).When the iron deficiency responses of
barley and sorghum were compared, it was found that root-associated microbes also
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compete for the phytosiderophore, thus aggravating iron deficiency chlorosis. This
was especially pronounced in sorghum, which is not as efficient a secretor of phy-
tosiderophores as is barley (von Wirén et al. 1999). In another instance, Marschner
and Crowley (1998) showed that Pseudomonas fluorescens Pf-5 was able to with-
stand iron deficiency stress when associated with the rhizosphere of barley due to the
ability of this organism to utilize phytosiderophores. Characterization of the rhizo-
sphere microbiome around barley roots under iron deficient and sufficient conditions
revealed distinct communities under both conditions for which iron availability could
account for 20–40% of the variation (Yang and Crowley 2000). In fact, four different
root zones (the actively growing young root tips, non-growing older root tips, lateral
root emergence zone, and old root axes), all, displayed communities with common
and non-overlapping members, suggesting a shift in community structure with iron
status. The subtleties of such variations were investigated by Robin et al. (2006a, b)
who used a transgenic tobacco line overexpressing ferritin known to overaccumulate
iron and therefore activate iron deficiency mechanisms. They analyzed the microbial
community in the rhizosphere and on the root surface (rhizoplane) over three succes-
sive cultures in the same soil. A significant difference was obtained in the microbial
fingerprint between WT and transgenic grown rhizosphere soil due to iron deple-
tion after the first culture, but this effect was lessened and finally eliminated over
the successive cultures. This occurred due to the progressive secretion of organic
exudates from the iron-starved roots of ferritin overexpressing lines, which possibly
decreased the iron-dependence of the rhizosphere microbial community. In contrast,
Pseudomonad communities were found to exhibit stronger differences over culture
time and at the rhizoplane level, but not in the rhizosphere, revealing the specific
effect of iron depletion on this group (Robin et al. 2006b). Red clover is known to
secrete phenolics for iron acquisition. One of the principal components of the exu-
dates was found to be isoflavone (Zheng et al. 2000), a potent antimicrobial agent
(Flythe and Kagan 2010). Iron-starved roots of red clover secreted high amounts of
phenolics into the rhizosphere than that of roots under insufficient iron (Jin et al.
2007). The 16S ribosomal DNA fingerprinting pattern revealed different types and
numbers of microbial flora around the rhizosphere of red clover dependent on the
varying soil iron status, whichwas also confirmed by the incubation of calcareous soil
with red clover phenolic extracts in place of the plant itself. Under iron deficiency,
temporal variations in the microbial community were observed, with an increase
in the population of quick-siderophore secreting microbes among the siderophore
secretors, indicating creation of iron stress conditions. Also, the roots of these plants
were found to utilize Fe-siderophore much more efficiently than Fe-EDTA (Jin et al.
2010). A similar observation was made earlier where arabidopsis supplemented with
Fe-pyoverdine accumulated more iron in comparison with the plants supplemented
with Fe-EDTA (Vansuyt et al. 2007). Pseudomonas spp. isolated from the roots of
Fe stressed plants secreted a siderophore pyoverdine, which exhibits higher affinity
for Fe+3. Thus, this siderophore helps solubilization of the insoluble ferric ion and
help plants to acquire iron (Jin et al. 2010).
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2.4.2 Plant Iron Acquisition: Microbes as Supporting Actors

Plants grown in an axenic environment failed to mount a robust iron deficiency
response under calcareous conditions (Masalha et al. 2000; Rroço et al. 2003; Jin
et al. 2006). This implies that microbial contribution to plant iron nutrition is by no
means insignificant. Indeed, microbial scavenging of iron under limiting conditions
also occurs through the production of small organic molecules called siderophores
such as pyoverdine, pseudobactin, enterobactin, aerobactin, desferrioxamine, and
several others (Meyer and Abdallah 1978; Teintze and Leong 1981; Perry and San
Clemente 1979; Barona-Gómez et al. 2004). For example, the pathogen Erwinia
chrysanthemii produces the siderophores chrysobactin and achromobactin which
stimulate a reactionary induction of ferritin in Arabidopsis. This induction is bipha-
sic and required for defensive iron sequestration against utilization by the pathogen
(Dellagi et al. 2005). Several reports describe the production of siderophores by root-
associated microbes. Apart from mediating iron uptake by the microbe, these aid in
facilitating plant access to iron through ligand exchange with phytosiderophores and
defense against phytopathogenic organisms due to the sequestration of iron. The
PGPR Bacillus megaterium isolated from the rhizosphere of tea plants displayed
antagonism toward the pathogens Fomeslamaoensis and Sclerotium rolfsii and pro-
moted plant growth through siderophore and auxin production as well as stimulation
of plant defense enzymes such as chitinase and pectinases (Chakraborty et al. 2006,
2015). An increase in shoot and root dry weight as well as chlorophyll content was
observed in bean inoculated with siderophore producing fluorescent Pseudomonas
strains (Omidvari et al. 2010).

Siderophores of both plant (mugineic acids) and microbe origin pseudobactin
(PB) and ferrioxamine B (FOB) have been assayed for the relative ability of plants
to utilize the iron complexed to them. Accordingly, both root uptake and whole
plant translocation of iron were measured to differentiate genuine plant-mediated
utilization of iron from that by root adherent bacteria. Iron supplied as Fe-HMA
(epi-hydroxymugineic acid) was utilized efficiently by oat and maize as measured
by both high uptake and translocation, whereas Fe-FOB and Fe-PB were thought
to be poor sources of iron for the plant as increased uptake did not result in higher
translocation rates. This study also provided evidence for the ability of microorgan-
isms to utilize plant siderophores (Bar-Ness et al. 1992a). However, further study
with a synthetic analog of FOB revealed minor utilization of this siderophore by
plants, which was masked by the dominant uptake by root-associated microbes (Bar-
Ness et al. 1992b). In contrast, cucumber plants were shown to efficiently utilize
FOB supplied under sterile conditions at alkaline pH, indicating possible differen-
tial preference of diverse plants for this siderophore (Wang et al. 1993). Similarly,
tomatoes undergoing iron deficiency stress in alkaline soil condition were rescued
from chlorosis by application of partially purified raphorin, a siderophore produced
by Rhizonusarrhizus (Shenker et al. 1992). Similarly, siderophores of the hydrox-
amate family from Penicillium, namely fusarinines and dimerum acid (breakdown
products of trihydroxamates), could act as efficient sources of iron for plants and



2 All Roads Leading to: Iron Phytofortification 39

could easily mediate iron exchange with HMA (Hördt et al. 2000). Similarly, iron as
complexed with pyoverdine was utilized by wild-type Arabidopsis thaliana but not
as efficiently by a transgenic line overexpressing ferritin, which was instead able to
assimilate iron from Fe-EDTA supplied exogenously. The overexpression of ferritin
generates a pseudo-iron deficient state due to overaccumulation of iron and subse-
quent upregulation of root IRT1, implying that the Fe-pyoverdine complex is not
imported into the plant via IRT1 (Vansuyt et al. 2007). The effectiveness of micro-
bial siderophores in augmenting plant iron reserves may also depend on the intrinsic
capacity of the plant and the strain of microorganism used. For instance, Rhizobium
species were able to enhance iron content in common bean, whereas Pseudomonas
strains could increase both Fe and Cu content. In both cases, the wild-type bean
responded more efficiently compared to the cultivated varieties (Carrillo-Castañeda
et al. 2005).

2.4.3 Microbial Aided Plant Growth: Mechanisms Centering
on Iron

The stimulatory effect of plant growth promoting rhizobacteria (PGPRs) is well doc-
umented (Berg 2009). Microbes can promote plant growth through two major mech-
anisms: (1) directly such as by the production of plant hormones (auxins, ethylene,
cytokinins, gibberellins, and abscisic acid), nitrogen fixation and increasing accessi-
bility to soil nutrients and (2) indirectly by antagonism against pathogens (antibiosis,
production of VOCs, cyanide, membrane denaturants) and stepping up plant defense
response (called induced systemic resistance ISR) (Ali et al. 2009). Plant fitness is
also improved through the protective function of PGPRs against heavymetal toxicity
by restricting uptake and secreting plant hormones for sustained growth under stress.
The plant hormone abscisic acid (ABA) when externally supplied at root level in soil
was shown to block IRT1-mediated uptake of cadmium (Cd) in Populus euphratica,
along with enhancing enzyme activities for scavenging stress-induced free radicals
(Fan et al. 2014; Han et al. 2016), thus sustaining plant growth in the presence of
Cd. Though this phenomenon offers great potential for the remediation of contami-
nated soil, the hormone itself is poorly stable in soil conditions (Xu et al. 2018). A
number of PGPRs, however, produce ABA (Perrig et al. 2007, Boiero et al. 2007).
For instance, inoculation of Bacillus subtilis or Azospirillum brasilense in cadmium-
contaminated soil reduced the accumulation of cadmium in the plant compared with
the levels in non-inoculated soil (Xu et al. 2018). Dead bacterial culture failed to
protect the plant from Cd toxicity, while the addition of live culture could rescue
the plants from Cd stress. It was found that the secretion of abscisic acid (ABA) by
these bacteria suppressed the expression of the poorly selective root transporter IRT1
(Korshunova et al. 1999), thereby affording similar protection to the plant as with
exogenous ABA.
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Interestingly, enhancements in plant growth and seed set were also observed in
the case of PGPRs of Bacillus spp. such as B. subtilis GB03 even when they are
not in physical contact with the plant roots (Farag et al. 2006; Zhang et al. 2008;
Xie et al. 2009). For example, Arabidopsis was cultured in Petri plates with a phys-
ical barrier separating a PGPR Bacillus amyloliquefaciens colony and the plants,
on sterile agar medium, such that there was no physical contact between the two
organisms (Wang et al. 2017). These bacteria are known to emit volatile organic
compounds (VOCs) such as 2, 3-butanediol, acetoin, methyl-3-butanal, 2-methyl-
1-propanol, and 3-methyl-1-butanol, which promote plant growth through various
mechanisms such as inducing systemic resistance against pathogens, auxin signaling
for root growth and inhibition of sugar mediated feedback repression of photosyn-
thesis (Ryu et al. 2004; Farag et al. 2006; Zhang et al. 2007, 2008; Gutiérrez-Luna
et al. 2010). TheseVOCs also induced the strategy I plant iron acquisitionmechanism
involving FIT1-mediated induction of FRO2 and IRT1 (Zhang et al. 2009). This phe-
nomenon closely parallels the observations noted upon the inoculation of Chinese
milkweed plants with the PGPR Burkholderia cepacia (Zhou et al. 2018). This bac-
terium significantly improved photosynthesis, maintained chloroplast structure, and
enhanced rhizosphere acidification in calcareous soil, compared with un-inoculated
plants. Strategy I responses such as IRT1, FRO2, and AHA pump were elevated and
enhanced the secretion of riboflavin and its derivatives were observed in inoculated
plants compared to control, even under non-calcareous soils. These mechanisms,
likely mediated in part by IAA secretion from B. cepacia, allowed inoculated plants
to accumulate significantly more iron compared to un-inoculated controls under hos-
tile soil conditions.

Plants exposed to VOCs were more tolerant to calcareous conditions due to VOC-
inducedNOproduction, which promoted utilization of apoplast-precipitated iron and
translocation within the plant body. VOC-exposed plants were able to photosynthe-
size better than their unexposed counterparts through increase in chlorophyll content,
photosystem II efficiency (Zhang et al. 2008; Xie et al. 2009) and stabilization of
chloroplast structure under Fe deficiency, due to the efficient utilization of iron.
Additionally in case of B. subtilis GB03, the VOCs emitted could transiently (over
3 days) induce transcripts of cell wall expansin 5 (EXP5), and IRT1 in the exposed
arabidopsis plants, leading to growth due to loosening of cell walls and iron uptake
to meet growth requirements. However, such enhancement in plant growth required
long periods of exposure to VOCs, with only airborne interaction between plant and
microbe, thus establishing the essential role of microbial VOCs in plant signaling
and behavior (Xie et al. 2009).

Iron is at the heart of plant defense responses as it shifts to the apoplast upon
pathogen attack with subsequent H2O2 production and upregulation of pathogenesis-
related genes, all of which form a sustained amplified loop (Liu et al. 2007). The
secretion of plant phytosiderophores and microbial siderophores is also well known
as discussed earlier, prompting the suggestion that the two may interact either com-
petitively or beneficially to facilitate iron uptake by the plant. One of the mechanisms
bywhich PGPRswere proposed to act was through the selective sequestration of iron
by efficient siderophores, thus making already scarce soil iron further unavailable to
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competitors such as pathogens (Kloepper et al. 1980). Plant growth promoting rhi-
zobacteria was long known to both enhance plant iron nutrition and prime the plant
defenses against pathogen attack (called induced systemic resistance ISR) through
siderophore-mediated competitive sequestration of iron (Press et al. 2001; Segarra
et al. 2010). In roots of arabidopsis associatedwithP. fluorescensWCS417, 135 genes
common to both iron deficiency response and PGPR inoculationwere upregulated, as
were marker genes of iron deficiency, namely MYB72, FRO2, and IRT1 (Zamioudis
et al. 2015), hinting at commonalities between the iron deficiency response andPGPR
action. Herein, the iron deficiency responsive TF MYB72 was shown to play a piv-
otal role in coordinating both activities. This TF facilitates the strategy I response
under iron deficiency by inducing root NAS4 (Palmer et al. 2013) as well as secretion
of iron-solubilizing phenolics into the rhizosphere through the action of BGLU42, a
β-glucosidase (Zamioudis et al. 2014). Very recently, it was shown that ISR induc-
tion in arabidopsis by the PGPR Pseudomonas simiae WCS417 was dependent on
MYB72 regulated production and secretion of the plant phenolic scopoletin which
has strong antimicrobial activity against soil-borne fungal pathogens but sustains
symbiosis between the PGPR and host (Stringlis et al. 2018). Furthermore, only ISR-
inducing PGPRs (Pseudomonas spp, Actinobacteria spp, Trichoderma spp) essen-
tially activate the FIT-dependent typical iron deficiency response in arabidopsis roots
by producing VOCs which upregulate MYB72coexpressing with FRO2 and IRT1
(Van der Ent et al. 2008; Segarra et al. 2009; Zamioudis et al. 2015). Interestingly, this
response was independent of the external iron concentration in the soil, suggesting
interference with the iron status and sensing in the plant. Indeed, exposure of roots
to VOCs repressed the iron status marker ferritin (FER1) in the roots, indicating the
depletion of cellular iron reserves through possible increase in metabolic activity
of root cells requiring iron. However, VOC-mediated MYB72 activation was fully
dependent on a shoot-derived photosynthetic signal, which communicates the iron
status of the plant to the late maturation zone (LMZ) of the root. Accordingly, VOC-
mediated induction of MYB72 and strategy I response occurred only in the LMZ
of arabidopsis roots and was required to augment the standalone root-autonomous
response to iron deficiency which occurs in the early maturation zone (EMZ) and
apex, for optimal whole root iron deficiency response. In addition, nitric oxide (NO)
activity was found to be essential for VOC-mediated activation as MYB72 induction
was abolished in plants treated with an NO scavenger (Zamioudis et al. 2015). With
respect to the role of PGPRVOCs in ISR (such as that induced by Trichoderma spp),
recent work showed that theMYB72-directed targeted alterations in root architecture
were concomitant with the induction of the jasmonic acid-defense responses in the
upper parts of the plant (Martínez-Medina et al. 2017). Taken together, the ability
of root-associated rhizobia to sense and manipulate the host plant iron status facil-
itates enhanced plant iron acquisition from the rhizosphere, while simultaneously
conferring ISR for improved fitness (Fig. 2.1).

Endophytic PGPRs are also able to exert protective effects on their host plants. The
detrimental effects of 5 mM iron (toxic) on wheat seedlings were ameliorated when
they were incubated with the endophyte B. altitudinus WR10. This organism was
found to synthesize the auxin indole acetic acid (IAA), thereby relieving inhibition
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Fig. 2.1 Plant–microbe interactions centering on iron. Plant root adherent rhizobacteria enhance
plant growth by influencing plant systemic resistance (ISR) against both root and foliar pathogens,
enhancing photosynthetic capacity through chloroplast stabilization, sequestering iron (Fe+3) with
siderophores, inducing the iron deficiency response through FIT and MYB72, and finally by
releasing volatile organic compounds (VOCs). Key: Foliar/Root pathogens, Rhizobacteria,

sugars, Plant phenolics, Bacterial VOCs, Bacterial IAA, Bacterial ABA, Microbial

siderophores, Activation, Inhibition, FRO2, AHA, IRT1, used by both
rhizobacteria and plant roots

of root elongation under iron toxicity. Furthermore, under iron toxicity and in the
presenceofWR10,wheat sprouts upregulated ferritin genes in their rootswhile down-
regulating them in the shoots. This prevented excess iron from being translocated
to the sensitive shoots, which perform active photosynthesis. The downregulation of
the transporters NAM, ZIP, and UPP in both shoot and root also contributed to the
prevention of iron toxicity (Sun et al. 2017).

2.4.4 Microbes in Field: Potential for Application

Application of iron salts to the soil alone is not recommended as iron tends to precip-
itate and become unavailable. Currently, standard agronomic interventions toward
iron enrichment of crops aim to lower the pH of calcareous soils to facilitate iron
uptake by plants. Accordingly therefore, methods such as foliar application of iron
salts along with nitrogen (Aciksoz et al. 2011), the use of a mix of organic and
inorganic fertilizers to lower soil pH and increase organic acid-based solvation of
iron (Ramzani et al. 2016) as well as intercropping with graminaceous plants which
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release phytosiderophores (Xiong et al. 2013) are some of the methods utilized.
Attention is now increasingly being focused upon the use of rhizosphere-associated
microbes as natural means to increase iron content in edible parts of the plants as they
provide a host of other benefits to the plant as detailed in the preceding paragraphs.

When consideringmicrobial assisted biofortification, the soil pH and other param-
eters play an important role in determining the efficacy of the above-mentioned phe-
nomenon. For instance, though arbuscular mycorrhizal (AM) fungi are known to
enhance nutrient uptake by plants (Mohammad et al. 2003), soil pH increase dras-
tically reduced the ability of the AM fungus Glomus versiforme to colonize roots
of the iron deficiency susceptible Citrus species Poncirus trifoliate (Wang et al.
2008). However at pH 6 (optimal for this species of Citrus), this fungus enhanced
chlorophyll content, shoot biomass and iron content in Poncirus trifoliata compared
to un-inoculated controls, by increasing root ferric chelate reductase activity. Thus
AM-inoculated plants had better iron status than un-inoculated plants as shown by
lower P/Fe and 50(10P+K)/Fe ratios which are markers for iron chlorosis, indicating
better acquisition by this iron deficiency susceptible plant (Wang et al. 2008).

Increased growth and yield in chickpea was observedwhen inoculated with PGPR
and iron. The PGPR helps in nitrogen fixation, phosphate solubilization along with
the production of phytohormones (IAA) and organic acids, which promote plant
growth. PGPR-treated plants also showed increased iron content in their root, shoot,
and grains (Khalid et al. 2015). The microbiota associated with the roots not only
increase iron uptake by plants and plant growth but also act as effective soil con-
ditioners through varied integrated mechanisms described earlier. They thus prove
superior to conventional inorganic additives and pesticides with deleterious environ-
mental impact and can be thought of as a wholesome tool to cater to the nutrient and
growth needs of the plant. Overall, the involvement of microbes in iron acquisition
seems to be a promising tool toward iron phytofortification with the far-reaching aim
of alleviating iron deficiency anemia.

2.5 Conclusion and Perspective

Taken together, an insight on iron homeostasis pathway and ways to increase iron
content by the associated microbes can help in increasing the nutritional quality
of the agricultural produce. Why consider microbes in the arsenal against plant iron
deficiency? They can improve stress tolerance in the plant, availability of other nutri-
ents such as P, potentially leading to phasing out of unsustainable inorganic NPK
fertilizers which cause eutrophication and also afford protection against a variety
of plant pathogens. Thus, the overall quality of the soil with respect to plant nutri-
tion is improved, in a cost-effective manner. Integrated management of agricultural
practices coupling modern technologies with agronomy holds the potential to facil-
itate the generation of quality food for the ever-burgeoning populace with shrinking
natural resources. In this regard, the rhizosphere microbiota will fast become an
indispensable tool toward iron phytofortification.
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Chapter 3
Paradigm Shift from Marker-Assisted
Breeding to Genomics-Assisted Breeding
for Calcium Nutrition in Finger Millet

Divya Sharma, Salej Sood and Anil Kumar

Abstract The rapid advancements in molecular marker technologies followed by
genomics, and next-generation sequencing technologies in major crops like rice,
maize, and wheat have given opportunities for their use in the minor, but highly valu-
able future crops, including finger millet (Eleusine coracana (L.) Gaertn.). Finger
millet, an orphan crop has an immense potential as a nutritional security crop due to its
exceptionally high calcium content. Calcium (Ca), considered to be the most essen-
tial macronutrient, is required in relatively large quantities in the diet for maintaining
healthy state of body. The unavailability of sufficient markers and genome sequence
information in finger millet has resulted in limited breeding efforts for nutritional
quality improvement through marker-assisted breeding. Nonetheless, advances in
large-scale genomics technology have now streamlined production of genome-wide
markers which can be used for large-scale identification of candidate genomic loci.
The availability of NGS-based approaches with high resolution has enhanced the
pace, precision, and efficiency of trait mapping. At present, trait-associated mark-
ers, cost-effective genotyping platforms and expertise are available for deploying
genomics-assisted breeding in finger millet. High-throughput genotyping technol-
ogy and phenotyping platforms have enabled genome-wide association studies, to
precisely dissect the genetic architecture of complex traits such as calcium nutrition
in finger millet. Large-scale mapping of agronomically important quantitative trait
loci would not only help in the identification ofmolecularmarkers linked to grain cal-
cium content in finger millet but also help in gene cloning and characterization, min-
ing of elite alleles, exploitation of natural variations, and genomic selection paving
the way toward genomics-assisted breeding, which ultimately will lead to genetic
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enhancement of finger millet. Therefore, marker-assisted breeding and selection is
gradually evolving into ‘genomics-assisted breeding’ for crop improvement.

Keywords Malnutrition · Calcium · Biofortification · Bioavailability · Finger
millet ·Marker-assisted breeding · Speed breeding · Genomics

3.1 Introduction

Mineral malnutrition is affecting one half of the world’s population. People have no
access to a variety of minerals such as iron, calcium, zinc, magnesium, and copper. It
is estimated that as many as three billion people may suffer from mineral deficiency
(Graham et al. 2001). The vast majority lives in poverty and lack access to a secure
supply of safe and nutritious food, meaning they achieve neither an adequate food
intake nor the reference daily intakes (RDIs) of mineral nutrients for healthy individ-
uals. Most of the staple food crops such as rice, wheat, and maize which constitute
the major part of the diet of people are often deficient in these macro/micronutrients,
thus insufficient to meet the daily needs (Hirschi 2009). Deficiency of these minerals
leads to an increasing risk of diseases such as rickets, osteoporosis, anemia, and
hypertension. It has been estimated by the Food and Agriculture Organization (FAO)
that the world’s population will reach 9.1 billion by 2050 (Food and Agriculture
Organization (FAO) of the United Nations 2009). Hence, to meet the food demands
of such a large population, the quantity as well as the quality of food needs to be
improved in terms of their nutritional value.

3.1.1 Mineral Deficiencies: The Case of Calcium

Calcium is the fifthmost abundant element present in the human body, accounting for
up to 1.9% of the body weight in adults (Nordin 1976). Its main functions are to pro-
vide rigidity and structure, mediating vascular andmuscular contractions or dilations
and nerve signal transmission (Institute of Medicine (US) Standing Committee on
the Scientific Evaluation of Dietary Reference Intakes 1997; Nordin 1997). Ca may
also serve in the protective role against various types of cancer, viz., colorectal (Insti-
tute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin
D and Calcium 2011), ovarian (Goodman et al. 2002), breast (Lin et al. 2007), and
prostate (Gao et al. 2005). Although not supported by clinical trials, observational
studies have associated higher Ca intakes to lower body weight and reduced adipos-
ity, which may be due to lower intracellular Ca in fat cells leading to a higher fat
breakdown (Parikh and Yanovski 2003). Thus, it may reduce the risk of cardiovas-
cular diseases by lowering intestinal lipid absorption, promoting lipid excretion, and
decreasing cholesterol concentrations in the blood. Given its importance, authorities
like the Food and Agriculture Organization (FAO) of the United Nations have set
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up a recommended daily intake (RDI) of Ca based on age, life stage, and gender
(Food Agricultural Organization of the United Nations 2002). During the phases of
active growth, Ca equilibrium in the body maintains a stable bone mass. Therefore,
FAO recommends that children of 1–3 years consume 500 mg Ca/day, 4–6 years
consume 600 mg Ca/day, and 7–9 years consume 700 mg Ca/day, which should be
increased to 1300 mg/day during 10–18 years (Food Agricultural Organization of
the United Nations 2002). About 1000 mg Ca/day is recommended between the ages
of 19–65 years in males. The organization also advocates that women should take
1000 mg Ca each day from 19 years onward until menopause raising it to 1,200 mg
during the last trimester of pregnancy, and to 1300 mg from 65 years and above
(Food Agricultural Organization of the United Nations 2002). Despite the impor-
tance of adequate Ca intake for human health and wellbeing, the WHO estimates
that low dietary intake of Ca is common across the world (Villar et al. 2006). Most
of these regions have an agriculture-based economy on what they grow and pro-
duce for their Ca need. In such situations, staple crops that can offer adequate Ca
requirements, especially for people of low-income groups in these countries, are
highly recommended. One such Ca-rich, traditionally and locally well-adapted crop
is finger millet. As opposed to nutritionally deficient cereals, such as rice, its regular
consumption has a vast potential to curb the incidences of Ca deficiency.

3.2 Biofortification: Combating Mineral Malnutrition

Biofortification is the development of nutrient-dense staple crops using the best con-
ventional breeding practices and modern biotechnology, without sacrificing agro-
nomic performance and important consumer-preferred traits (Nestel et al. 2006).
Plants are the ultimate sources of nutrients in human diet. However, majority of the
essential vitamins and minerals are lacking in all our staple food crops. Although,
a balanced diet provides sufficient nutrients but most of the human population, par-
ticularly in developing countries depends upon staple cereals, such as rice or maize,
which fail to provide the full complement of essential nutrients. Malnutrition has
become a significant public health issue in most of the developing world (Müller
and Krawinkel 2005). One way to tackle this problem is through the enrichment of
staple crops to increase their essential nutrient content. Several different tactics for
biofortification have been adopted including addition of the appropriate mineral as
an organic compound to the fertilizer, improving the nutritional content of plants
by conventional breeding in combination with mutagenesis and the use of marker-
assisted selection to introgress such traits into widely cultivated, adapted genotypes.
Although breeding-based strategies for biofortification are unproven as yet, they have
the potential to become sustainable, cost-effective and reach remote rural popula-
tions (Bouis 2003; Genc et al. 2005). It is argued that once mineral-dense lines have
been developed, there will be little additional cost in incorporating them into ongoing
breeding programs (Welch and Graham 2002; Bouis 2003; Timmer 2003), and it has
been reported that seed of mineral-dense crops produces more vigorous seedlings on
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infertile soils (Rengel and Graham 1995). To implement successful biofortification
programs through plant breeding, there is a need for a comprehensive exploration of
potential genetic resources in the form of land races, wild species, and an in-depth
understanding of the physiological and genetic basis of mineral nutrients accumula-
tion in staple food crop. It therefore becomes necessary to understand the genes and
processes involved in grain mineral accumulation in order to couple the information
with marker/genomics-assisted selection, for efficient enhancement of grain mineral
content. A breeding program aiming at development of new genotypes with high
Ca2+ concentration first requires the existence of useful genetic variation for Ca2+

accumulation in grain. Little information is, however, available about the genetic
control and molecular physiological mechanisms contributing to high accumulation
of Ca2+ and other micronutrients in grain of different genetic materials (Sharma et al.
2017).

3.3 Bioavailability: A Complex Determining Factor
to Achieve Adequate Intake of Calcium
from Biofortified Finger Millet

Determining the efficacy and biological impact of Ca-biofortified finger millet and
other cereals on better nutrition and improved health is very challenging. It depends
mainly on two processes: bioaccessibility and bioavailability of Ca in the seeds.
Bioaccessibility is a measure of the nutrient fraction available for absorption after
its release from food matrix in the gastrointestinal tract. On the other hand, bioavail-
ability is a utilization-based definition, where the ingested, digested, and absorbed
nutrient reaches the systemic circulation and exerts a positive effect on health
(Carbonell-Capella et al. 2014). Plant foods contain substances (i.e., anti-nutrients)
that interfere with the absorption or utilization of these nutrients in humans (Welch
and Graham 1999). Thus, efforts should be made toward increasing the concen-
trations of “promoter substances” (stimulating the absorption of essential mineral
elements) and reducing the concentrations of “anti-nutrients” (interfering with their
absorption) of the biofortified crops (White and Broadley 2005). Finger millet con-
tains both water-soluble and liposoluble vitamins: thiamin, riboflavin, niacin, and
tocopherols (Obilana and Manyasa 2002), which could act as potential promoter
substances for crop biofortification. Utilization of the maximum nutrient potential
of the millets is limited by the presence of phytates, phenols, tannins, and enzyme
inhibitors. Among millets, finger millet has been reported to contain high amounts
of tannins ranging from 0.04 to 3.74% of catechin equivalents (Rao et al. 1994;
Antony and Chandra 1999). Phytate content in finger millet as observed by various
authors has been found to be in range 0.679–0.693 g/100 mg (Antony and Chandra
1999). It is the main phosphorous store in mature seeds which has a strong binding
capacity and readily forms complexes with multivalent cations and proteins (Haug
and Lantzsch 1983). Finger millet has been found to contain 41% phytic phosphorus
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as percentage of total phosphorus (Deosthale 2002). The dietary phytic acid binds
not only with the seed-derived minerals but also with other endogenous minerals
encountered in the digestive tract (Raboy 2000). Another group of anti-nutritional
compound is polyphenols, which contains more than one phenol unit or building
block per molecule (Carvalho and Vasconcelos 2013). The level of polyphenols in
cereal seeds can be reduced by incubationwith polyphenol oxidasewhich,when com-
bined with a phytase-mediated phytate reduction, shows a significant increase in the
availability of iron (Matuschek et al. 2001). On an average, finger-millet genotypes
contain 0.04–3.47% polyphenols (Chethan and Malleshi 2007). Rao and Muralikr-
ishna (2002) found proto-catechuic acid (45.0 mg/100 g) as the major free phenolic
acid in finger millet grains. Among bound phenolic acids, ferulic and p-coumaric
acids are the major fractions and account for 64–96 and 50–99% of total ferulic and
p-coumaric acid content of finger millet grains, respectively (Devi et al. 2014).
Numerous complexities pervade the determination of bioavailability of micronu-
trients in plant foods to humans. Determining the bioavailability of a particular
micronutrient to an individual eating, a mixed diet in a given environment is actually
governed by the interaction of a multitude of factors (Fairweather-Tait and Hurrell
1996; House 1999; Van Campen and Glahn 1999; Graham et al. 2001). Through
plant-breeding approaches, one could select genotypes with low concentration of
anti-nutrients or alternatively, molecular biologists alter genes in staple crops so as
to reduce or completely eliminate these anti-nutrients. For enhanced Ca bioavailabil-
ity from finger millet, grain Ca content needs to be improved with a concomitant but
conscious effort for the reduction of anti-nutrient compounds. This is because these
compounds play a vital role in plant development and survival. For example, finger
millet tannins are effective in reducing pre- and post-harvest losses as they provide
protection againstmolds, insects, and other abiotic stress (Gull et al. 2014). Similarly,
phytic acid acts as the main phosphorus store for the seeds (Singh and Raghuvanshi
2012). These compounds have also called attention due to their nutraceutical value
and protective effects against many chronic diseases (Kumar et al. 2016a). Thus,
their importance can never be completely disregarded. Engineering their content to
become a non-limiting factor in Ca absorption from finger millet must be done in a
way that does not negatively affect crop performance. A justified way to accomplish
this is by employing efficient and suitable grain-processing techniques.

3.3.1 Host Factors Influencing Calcium Bioavailability

Apart from theCa bioavailability parameters, the capability to determine the effect on
Ca status on target populations is another specific challenge.Host factors, such as age,
gender, and dietary patterns may show differential effects of finger-millet-based diets
on the net Ca contribution. These factors must be considered in controlled feeding
community-based studies to determine the biological impact of biofortified crops.
In the past, various attempts have been put together to assess the Ca bioavailability
in vivo. Early nutrition studies have shown that rats fed with a diet composed of
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70% finger millet retain 68% Ca. A further reduction of the finger millet content
to 20–40% in diets contributed to increased Ca retention to 84–88% levels (Giri
1940). This shows that even a low-dietary component of finger millet is sufficient
to maintain Ca availability because of its high Ca content. In fact, in a more recent
study, Ca from finger millet had shown to have a better uptake as compared to
commercial Ca supplementation tablet (Bhide et al. 2013). However, for human
metabolism studies, host factors like age and gender are important parameters to
estimate daily requirement, intake, and retention of dietaryCa.Many nutrition reports
have estimated the contribution of finger millet for Ca homeostasis in humans. A
study by Subrahmanyan et al. (1955) had found that a finger-millet variety, H22, with
Ca content 440 mg/100 g can on an average provide 3.4 g Ca/day to healthy adult
males aged 22–32 years. This amounted to Ca retention of 98 mg (approximately
3%) from a total daily intake of 3.4 g/day. This was higher than a brown bread or Ca
carbonate fortified brown bread diet providing only 0.5–1.2 g Ca/day, respectively. It
is recommended that diets should provide at least 200mg/100gofCa to counteract the
anti-calcifying effect of phytic acid (McCance and Widdowson 1942). Interestingly,
86% of phytate ingested from the finger-millet-based diet was hydrolysed during
digestion and absorption process (Subrahmanyan et al. 1955). As most of the phytate
is broken down during digestion, therefore, regular inclusion of finger millet in
diet can efficiently maintain a positive Ca balance. Such information can allow the
acceleration of finger-millet biofortification programs.

3.4 Finger Millet: A Model Crop for Calcium
Biofortification

Finger millet is a potential staple crop cultivated mostly in Eastern and Central
Africa and India. It ranks fourth in importance among millets in the world after
sorghum, pearl millet, foxtail millet and commonly referred as ragi, mandua bird’s
foot millet, coracana, and African millet (Upadhyaya et al. 2007). Nutritionally,
finger millet is an excellent source of nutrients, especially calcium, other minerals,
and dietary fiber. The mineral composition of finger millet grains is highly variable.
The mineral content of these food grains is affected by the presence of genetic
factors and environmental conditions prevailing in particular growing region (Singh
and Raghuvanshi 2012; Singh et al. 2014). Finger millet contains a fair amount of
protein (7.3%) (Malleshi and Klopfenstein 1998), dietary fiber (15–20%) (Chethan
and Malleshi 2007), and a rich source of calcium (Ca2+) (344 mg 100 g−1) (Gopalan
et al. 1999) and iron (3.7–6.8 mg/100 g) (Barbeau and Hilu 1993). Ca2+ analysis
of 36 genotypes of finger millet was carried out; concentration varies from 162 to
487 mg/100 g grain with mean value of 320.8 mg/100 g grain (Vadivoo et al. 1998).
The average Ca2+ content (329 mg/100 g grain) in white varieties was considerably
higher than the brown (296 mg/100 g grain) varieties (Seetharam 2001). Bhatt et al.
(2003) reported the Ca2+ content of finger millet as 344 mg/100 g grain, which is
5–30 times more than most cereals (US NRC 1996). High grain Ca2+ content as
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high as 450 mg/100 g grains has been reported in finger millet (Panwar et al. 2010).
Babu et al. (1987) reported that among six hybrid varieties of finger millet, calcium
varies from 293 to 390 mg/100 g. Ravindran (1991) estimated the protein content
of ragi to be 9.8%, that of calcium, oxalate, and phytic acid to be 0.24, 0.44, and
0.48%, respectively. Admassu et al. (2009) measured the proximate composition of
six varieties of finger millet. The values ranged from 50 to more than 300 mg/100 g
for calcium content. In the ICRISAT core collection of finger millet, the calcium
content up to 489 mg/100 g was recorded in the genotype IE 4476 (Upadhyaya
et al. 2011b). The yield potential for finger millet is in the range of 4–5 tons/ha
(FAO 2008). Thus, finger millet is upcoming as an important food crop due to its
exceptionally high calcium content. It is not only an excellent source of dietary
calcium but also an excellent model to explore the genetic control and molecular
mechanisms contributing to high grain Ca2+ content (Sharma et al. 2017) (Table 3.1).

3.4.1 Exploiting Existing Genetic Variation: Prerequisite
for Biofortification

Natural variation embraces the enormous diversity present within wild plant species
as well as most of the genetic variants that are found in domesticated plants. There
is a substantial natural variation for mineral use efficiency, root uptake, translocation
from roots to shoots, and accumulation in the seed as storage and supply for the
germinating seedling. This variation has been reported in many species, leading to
breeding programs such as those aiming to improve zinc and iron status of cereal
grains or tuber crops (www.harvestplus.org).However,most of the natural variation is
quantitative and determined by molecular polymorphisms at multiple loci and genes
(multigenic), which are referred to as quantitative trait loci (QTL) and quantitative
trait genes (QTGs). The natural variation present in crop plants has been exploited
since their domestication thousands of years ago by the genetic manipulation of
developmental traits and physiological features related to adaptation to agriculture.

In recent years, various efforts have beenmade by geneticists and breeders to iden-
tify naturally occurring genetic diversity in finger millet. However, the major chal-
lenge at present is how these resources could be exploited to develop Ca-biofortified
finger millet (Puranik et al. 2017). Currently, finger-millet gene banks across the
globe conserve more than 37,000 accessions with India, Kenya, Ethiopia, Uganda,
and Zambia, housing the major collections. As of now, the entire genetic diversity
present among the finger millet germplasm is available as small sets (core) and sub-
sets (mini core) collections (Vetriventhan et al. 2015). Using these collections, 15
accessions were identified as most promising (3.86–4.89 g/kg) for further improv-
ing grain Ca content in cultivated finger millet (Upadhyaya et al. 2011b). Recently,
another core set of 77 germplasm of Indian and African origin has been formed using
the base germplasm of finger millet 1000 accessions (Chandrashekhar et al. 2012).

http://www.harvestplus.org
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Table 3.1 Calcium content of millets and cereals (per 100 g)

Crop Calcium content (mg/100 gm
edible portion)

References

Millets

Finger millet (Eleusine
coracana)

344 Shobana et al. (2013)

Teft (Eragrostis teff ) 78.8–147 Baye (2014)

Fonio (Digitaria exilis) 44 National Research Council
(1996)

Pearl millet (Pennisetum
glaucum)

42 Shobana et al. (2013)

Foxtail millet (Setaria italica) 31 Shobana et al. (2013)

Kodo millet (Paspalum
scrobiculatum)

27 Shobana et al. (2013)

Barnyard millet (Echinochloa
crus-galli)

20 Shobana et al. (2013)

Little millet (Panicum
sumatrense)

17 Shobana et al. (2013)

Proso millet (Panicum
miliaceum)

14 Shobana et al. (2013)

Common cereals

Wheat (Triticum aestivum) 41 Shobana et al. (2013)

Rice brown (Oryza sativa) 33 Saleh et al. (2013)

Corn (Zea mays) 26 Saleh et al. (2013)

Sorghum (Sorghum bicolor) 25 Saleh et al. (2013)

Barley (Hordeum vulgare),
raw

20 McKevith (2004)

Rye (Secale cereale), Flour 20 McKevith (2004)

Oatmeal (Avena sativa) 52 McKevith (2004)

Rice (Oryza sativa) raw
Millet

10 Shobana et al. (2013)

In addition, finger-millet composite collections (1000 accessions) and a derived ref-
erence set (300 accessions) representing region and race-based available diversity
of the entire collection, is also available (Upadhyaya et al. 2005; Upadhyaya 2008).
GPHCB-45, a variety of finger millet, has been registered as high-calcium variety of
finger millet with 452.8 mg/100 g calcium content (National identity, IC0614156).
Although these large collections of fingermillet germplasm serve as an ideal resource
to be utilized in improving its Ca concentration, amajority of it remains largely under-
utilized for breeding high Ca finger millet varieties. Some of the main reasons for
this lag are due to factors, such as weak and insufficient strategies for harnessing
the useful genetic diversity available in these collections, barriers related to intro-
duction and crossing of exotic germplasm, few pre-breeding programs to facilitate
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introgression of desirable nutrition quality into breeding lines and recirculation of
same working collections by breeders (Dwivedi et al. 2009; Upadhyaya et al. 2014).
At the same time, just selecting suitable donor lines for selective breeding based on
variation in grain Ca content is not sufficient and may not even be successful as such
variations may often be regulated at various other levels. Therefore, determination of
genetic stability and adaptability of this trait across multiple environments is one of
the prerequisite to develop effective strategies for breeding elite lines (Puranik et al.
2017) (Table 3.2).

3.4.2 Precise Phenotyping of Complex Traits like Calcium
Nutrition

However, little is known about the genes, their location, their effect on a particular
trait, and their interactions with each other (epistasis) (Kearsey and Farquhar 1998).
With the tremendous advancements in the area of genomics in the recent past, the
situation has changed a lot. We can now predict the location, function, nature, and
interactions of a gene with maximum certainty. However, the precision of prediction
of genes and their function through genomics needs to be enhanced by making use
of high-throughput phenomics tools and technologies. This will help us to harness
the full benefits of genomics for crop improvement programs.Meaningful QTL/gene
discovery programs through QTL/association mapping require precise and accurate
phenotyping data of complex traits. It is important to mention here that valid and
accurate results reported with non-conventional techniques so far have not yielded
expected results, in spite of huge molecular genotypic data generated during the past
fewyears (Edmeades et al. 2004;Araus et al. 2008;Xu andCrouch 2008). One impor-
tant reason is the slow progress in the area of phenomics which involves a number
of approaches for recording precise high-throughput phenotypic data. Phenotypic
data is the primary data required for the genetic dissection of complex phenotypic
traits and hence should be taken precisely. To obtain a clean set of precise and repro-
ducible phenotypic data of complex quantitative traits like calcium nutrition from
large germplasm collections still remains a challenge today even in the era of phe-
nomics driven technology. Phenotypic data should be taken with care since such data
is highly influenced by environmental variations and are thus more prone to experi-
mental error. Therefore, the gap between genotype and phenotype can only be filled
with proper, accurate, and precise phenotyping of quantitative traits (Tuberosa 2012).
The precisionwith which the chromosomal regions are identified and their effects are
accurately estimated depend upon how precisely the phenotypic data are recorded to
establish the phenotype–genotype association. In other words, the use of molecular
approaches for crop improvement depends upon how well and how accurately the
target trait has been assessed phenotypically inmapping population or diversity panel
because if the phenotypic data is not taken accurately, there will be more chances of
false positives and false negatives. Good phenotyping increases accuracy, precision,
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and throughput at all levels of biological organization while reducing cost and min-
imizing labor through automation, data integration, and experimental design (Cobb
et al. 2013).

3.4.3 Challenges Associated with Breeding-based Genetic
Improvement of Finger Millet

As finger millet is a naturally self-pollinating crop, artificial hybridisation by cross-
ing of suitable parental lines is often a difficult task. Mass and pure-line selection
practices have come in handy for inter-varietal improvement for grain yield, early
maturity, and disease resistance (Harinarayana 1986). For example, using pure-line
selection from the germplasm accession, finger-millet culture WWN-25 has been
released as a high-yielding variety, GNN-7, for cultivation in Gujarat state of India
(Patil et al. 2016). This is a promising development as this variety contains higher Ca
(468.0 mg/100 g) than the national check variety VR-708 (398.0 mg/100 g) without
compromising on the yield. However, optimum deployment of other breeding meth-
ods, such as recombination breeding, for generating stable hybrids, breeding progeny
and inbred lines has been delayed due to challenging biparental cross, difficult emas-
culation and artificial hybridization in finger millet. To overcome these challenges,
induced mutations, such as genetic male-sterile systems (viz., INFM 95001 reported
by ICRISAT; http://oar.icrisat.org/618/1/PMD_71.pdf) have proved to be another
efficient breeding tool for yield and disease resistance in finger millet. These sys-
tems and their subsequent breeding can be used effectively to increase the genetic
variance by creating new recombinants and segregating populations by exploiting
the genetic background. Therefore, developing genetic resources for finger millet,
such as mapping populations, breeding lines, and male-sterile mutant lines (Gupta
et al. 1997; Krishnappa et al. 2009; Parashuram et al. 2011), deserves attention. Such
material will be immensely valuable for tagging nutritional quality traits, especially
grain Ca content, and thus facilitate genetic biofortification of finger millet (Puranik
et al. 2017).

3.5 Marker-Assisted Breeding

The use of molecular markers in conventional breeding techniques has improved the
accuracy of crosses and allowed breeders to produce genotypes with combined traits
that were very difficult before the advent of DNA technology. DNA markers can be
generated in large numbers and can prove to be very useful for a variety of purposes
relevant to crop improvement. RAPD markers were initially the choice by default
to characterize finger-millet germplasm. Many efforts made earlier to elucidate the
species relationship clearly showed the allotetraploid origin of cultivated species

http://oar.icrisat.org/618/1/PMD_71.pdf
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E. coracana subsp. coracana. Direct origin from E. coracana subsp. africana along
with E. indica as one of the genome donors was suggested. Low level of polymor-
phism has been reported in most of the studies on diversity analysis using molecular
markers in cultivated finger millet (Muza et al. 1995). For the first time, Dida et al.
(2007) developed genomic SSRs by isolating di- and trinucleotide SSRs from ran-
dom genomic HindIII, PstI, and SalI libraries of finger millet. They developed first
genetic map of finger millet with 31 genomic SSRs as well as RFLP, AFLP, and EST
markers. The sudden increase in the volume of sequence data generated from EST
projects in several plant species facilitated the identification of genic SSRs in large
numbers. Perhaps the most important feature of the genic SSR markers is that these
markers are transferable among distantly related species, whereas the genomic SSRs
are not suitable for this purpose. Since the genomes of minor grasses like finger
millet are yet to be sequenced, for developing markers in minor grasses informa-
tion can be fetched from the major cereals. Comparative genetic mapping of cereal
crops has shown that both gene contents and/or gene orders are largely conserved
over the evolutionary history of the grasses (Moore et al. 1995) to the extent that
grass genomes represent a ‘single genetic system’ (Bennetzen and Freeling 1997).
Assessment of genetic diversity in finger millet revealed important information that
South Indian and the African genotypes are close together and genetically distinct
from North Indian genotypes including Uttarakhand (Panwar et al. 2010). Some of
these genotypes of this crop possess very high grain Ca2+ content (450 mg %) which
is 10–30 times higher than wheat and rice (Panwar et al. 2010; Kumar et al. 2012).
In a study on Uttarakhand genotypes, molecular marker analysis differentiated the
genotypes into three distinct clusters according to Ca2+ content indicating that vari-
ation in calcium content is also genetically controlled (Panwar et al. 2010). Markers
have been utilized extensively for marker-assisted selection, based on their associ-
ation with genes/QTLs controlling grain Ca2+ trait. In order to identify the markers
associated with high grain Ca2+ trait, 146 genic SSRmarkers were assessed for cross
species transferability across a diverse panel of grass species. The average transfer-
ability of genic SSR markers from sorghum to other grasses was highest (73.2%)
followed by rice (63.4%) with an overall average of 68.3% which establishes the
importance of these major crops as a useful resource of genomic information for
minor crops. The genic SSR primers (69.7%) failed to detect variations across the
finger millet germplasm, indicating that the mineral transport and storage machin-
ery remain conserved in plants and even SSR variations in them remain suppressed
during the course of evolution (Yadav et al. 2014). Development and molecular char-
acterization of genic molecular markers for grain protein and calcium (Ca2+) content
have also been done (Nirgude et al. 2014). Of the 86 SSRs used in linkage and asso-
ciation mapping study, only six primers were polymorphic among the two parents
PRM 801 and GE 86. Further, 20 polymorphic primers used across the association
mapping panel of 238 genotypes led to the identification of five SSR markers, viz.,
ugep67, ugep24, ugep77, ugep12, and ugep10, which were significantly associated
with Ca2+ trait. For identifying QTLs for Ca2+ content, marker-trait association has
been explored through association mapping studies and two minor QTLs associated
with grain Ca2+ content on linkage group 3 and 8, respectively, have been identified
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(Yadav et al. 2014). Linkage group 8 has been found to harbor a minor QTL for the
trait and since it has been shown in earlier reports that rice and fingermillet share high
levels of conserved co-linearity (Srinivasachary et al. 2007) between their genomes it
can be speculated that finger millet chromosome 8 might also contain genes/regions
responsible for effective mineral accumulation. Similarly, finger-millet LG 3 shares
co-linearity with rice chromosome 3 and Ca2+ QTLs have also been mapped on chro-
mosome 3 of rice. Furthermore, these results indicate that broad genome-wide search
will be required to identify all the genes that control this complex trait and variation
in a population. However, the inbreeding nature, limited recombination rates, and a
historical genetic bottle-neck during isolated domestication of this crop significantly
impact the extent of available genetic diversity in finger millet. Such loss of genetic
diversity is a challenge for geneticists and breeders working with a limited num-
ber of finger-millet accessions. Further, until recently, there has been no progress in
application of the finger-millet genetic map in trait mapping despite the assembly of
the only molecular marker-based linkage map a decade ago (Dida et al. 2007; Srini-
vasachary et al. 2007). It still remains underutilized for tagging and identification of
genes/quantitative trait locus (QTL) governing grain Ca2+ content probably due to
an insufficient number of informative markers. Insufficient number of markers and
lack of genome sequence information in finger millet has resulted in limited breeding
efforts for nutritional quality traits improvement. However, advances in large-scale
genomics technology have now streamlined production of genome-wide markers,
which can be used for large-scale identification of candidate gene loci (Puranik et al.
2017).

This advancement has led to SNP discovery in finger millet. Kumar et al. (2016b)
where 23,000 SNPs have been identified through genotyping by sequencing (GBS)
of 113 diverse finger-millet genotypes. Similarly, 23,285 SNPs were generated using
next-generation sequencing of two cultivated finger millet genotypes, and 92 SNP
markers were validated further for genetic diversity in cultivated and wild species of
finger millet Out of 92, 80 SNP markers were polymorphic. However, SNP markers
also resulted in a low PIC value of 0.29 revealing narrow genetic base of finger millet
as reported with SSRs (Gimode et al. 2016). In future, these SNPs could be further
analyzed to identify useful marker(s) associated with grain calcium (Table 3.3).

3.6 Genomics-Assisted Breeding for Dissecting Complex
Trait of Calcium Nutrition in Finger Millet

Finger millet is bestowed with agriculturally and nutritionally important traits such
as its adaptive nature, good ability to grow under organic conditions, and high
mineral content (calcium, iron, and zinc) and quality proteins. A revolution in the
field of omics science will help in understanding the complexity of these traits.
The aim of functional genomics is to discover the function of all genes, typically
through high-throughput approaches such as genomics, proteomics, ormetabolomics
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Table 3.3 Molecular marker studies in finger millet for calcium trait

Source for designing
primers

Primers Polymorphism References

Calcium (Ca2+)
transporters and
sensors of rice and
sorghum

23 anchored EST
SSRs

14 polymorphic
markers

Kumar et al. (2015)

Calcium (Ca2+)
transporters and
sensors of rice and
sorghum

146 EST SSRs No polymorphism Yadav et al. (2014)

Candidate genes, viz.,
Calcium (Ca2+)
exchangers, channels
and ATPases of finger
millet, rice, maize,
wheat, and barley

20 anchored SSRs 5 polymorphic
markers

Nirgude et al. (2014)

combined with bioinformatics tools for data analysis and functional analysis. Dis-
covery of gene functions is an essential task in functional genomics; however, it is
not sufficient for crop improvement and probably of little use for enhancing selec-
tion for quantitative traits such as crop yield. To decode agronomical traits, func-
tional genomics approaches can be of good use for understanding molecular and
genetic processes underlying complex traits. Enormous progress has been made in
the genomics technology through application of high-throughput, economical, and
quicker next-generation sequencing (NGS) platforms. Extending the benefits of NGS
to finger millet, a recent effort of de novo sequencing has allowed whole genome
sequence assembly covering approximately 82%of total estimated genome size. Evi-
dence of higher colinearity with foxtail millet and rice as compared to other Poaceae
species, and the available genome sequencing information may help allele discovery
and candidate gene identification for agronomically important traits (Hittalmani et al.
2017) leading to faster development of improved varieties. In addition, GBS,which is
a NGS-platform-based highly multiplexed genotyping system, has also been applied
for SNP generation. Thus, now it is feasible to generate a higher density of mark-
ers by genotyping core collections of finger millet, thereby increasing the level of
genetic diversity explored. This is crucial for a predominantly self-fertilized crop like
finger millet because it is expected to have low recombination rates and high linkage
disequilibrium (LD) which would otherwise narrow the genetic diversity. Thus, the
more genetically diverse populations in finger-millet core collections, together with
the huge amount of relevant marker information generated through NGS platforms
can directly contribute to improvedmapping resolution of traits, such as Ca2+ content
through genome-wide association studies (GWAS). The GWAS studies can confirm
previously identified genes involved in Ca2+ homeostasis mechanisms as well as spot
putative novel candidates. However, the efficiency of GWAS depends upon accurate
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grain Ca2+ content phenotyping data over multi-location/multi-year trials (Puranik
et al. 2017).

An extension of MAS, genomic selection (GS) is an upcoming methodology in
the area of genomics-assisted breeding (Meuwissen et al. 2001). In this approach,
genome-wide marker genotype data along with available phenotypic data for a tested
(reference/training) population are used to predict the performance of an untested
(breeding) population based on genomics-estimated breeding values (GEBV). Thus,
instead of identifying few large-effect loci associated with Ca content, the GEBV
model can more accurately predict the expected phenotype of a broader breeding
population. This significantly reduces the time and costs associatedwith phenotyping
a trait like grain Ca2+ content. Finger millet enjoys the availability of germplasm
resources, such as the core collections, which can be utilized as test populations to
build genomic prediction models (Heffner et al. 2010). However, the applicability of
GS in finger millet and selection of superior genotypes are dependent upon precise
measurement and heritability of Ca2+ content, sufficient marker density, the extent
of LD decay, effective design of training population and its genetic relationship with
the breeding population (Varshney et al. 2014). However, NGS can help in exploring
genetic diversity across germplasm sets in depth, thereby, bringing forward a huge
wealth of genetic information. This will eventually lead to a new horizon for finger-
millet Ca2+ biofortification (Fig. 3.1).

3.6.1 Rapid Breeding Cycles: Increasing the Genetic Gain

Recently, the concept of “Speed breeding” has been brought to spotlight which
enables scientists to exploit gene bank accessions and mutant collections for rapid
gene discovery and gene use. Combining speed breeding and other advanced plant-
breeding technologies might help in achieving the genetic gain targets required to
deliver our future crops to meet the demands of the global population (Li et al. 2018).
However, the recent development of rapid breeding cycles uses extended photope-
riods and controlled temperature regimes to achieve rapid generation cycling in
fully enclosed growth chambers or glasshouses for large-scale application in crop-
breeding programs. This provides a highly flexible platform to achieve rapid gen-
eration advancement, irrespective of genetic background, where up to four-to-seven
generations per year can be achieved in six crop species including wheat, durum
wheat (Triticum turgidum), barley (Hordeum vulgare), chickpea (Cicer arietinum),
pea (Pisum sativum), and canola (Brassica napus) (Watson et al. 2018). Similar
approach could be exploited in finger millet where not only populations could be
developed rapidly for genetic studies but also introgression of favorable alleles into
elite germplasms could be done for crop improvement by reducing the generation
time.
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Fig. 3.1 Steps involved in generating calcium biofortified crops using genomics-assisted breeding
approaches

3.7 Future Prospects and Conclusion

By virtue of its health-benefitting properties and environmental sustainability, a tra-
ditional but minor crop like finger millet offers excellent opportunities for bioforti-
fication breeding. Genomic information has not only helped in the understanding of
structural and functional aspects of many plant genomes but also provided a feasible
platform for the manipulation of genomes for crop improvement. In recent years,
sequence information has become readily available for a variety of crop species, but
minor crops such as fingermillet still lag behind. A foremost priority from geneticists
and breeders viewpoint is capturing and utilizing genetic diversity for Ca2+ content
in the elite finger millet gene pools (for example, by bringing new sources of varia-
tion through rare and unique alleles). For trapping such useful variations, advances
in the next-generation sequencing technology must be utilized in generating suffi-
cient number of markers for characterizing marker-trait associations and genomics-
assisted breeding. With the advent of such high-throughput approaches, it will be
much easier to investigate the genetic architecture of this trait through comparative
genomics in other millets and non-millet species. Discovery ofmarkers tightly linked
to other traits governing grain Ca2+ content and identification of underlying genes
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could be another strategy to develop Ca2+ biofortified finger millet varieties through
traditional or modern breeding approaches and transformation-based technology.
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Chapter 4
Iodine Biofortification of Crops

Irma Esther Dávila-Rangel, Paola Leija-Martínez, Julia Medrano-Macías,
Laura Olivia Fuentes-Lara, Susana González-Morales,
Antonio Juárez-Maldonado and Adalberto Benavides-Mendoza

Abstract The biofortification of cropswith iodine consists of a set of techniques that
allow obtaining plant foods with concentrations of iodine that partially or entirely
provide the daily intake requirements for humans. Iodine is transferred from plants to
humans through the trophic chain, which iswhywe seek to biofortify the crops as part
of the strategy to ensure adequate consumption of this element. The concentration of
iodine in food depends primarily on the ability of plants to absorb and accumulate it,
as well as the capacity of soil and water to provide it in bioavailable forms for plants.
In many soils, the low concentration of bioavailable iodine is the result of intrinsic
geological factors, although in other cases it results from edaphic fixation. These
edaphic factors that modify the bioavailability of iodine are well known, pH and
ORP, organic matter, minerals of colloids, and microbial activity. Although almost
all of these factors are or can be part of routine agronomic management, little is
known about their proper combinations to increase the bioavailability of iodine that
is fixed in agricultural soils. All of the experimental reports on biofortification refer
to the contribution of exogenous iodine in mainly inorganic (KI and KIO3) and
some organic (kelp and iodinated organic acids) forms both in soil crops and in
soilless production systems. The ideal situation would be for exogenous applications
to be used mostly for crops in soilless systems, whereas for the crops in soil, the
exogenous applicationswere a complement to agronomicmanagement that promoted
the bioavailability of iodine in the soil solution. As iodine is not an element qualified
as essential for plants, the extension of its use among agricultural producers will
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not be simple, unless it ensures some utilitarian facet of iodine, which could be its
antioxidant capacity and potential inducer of tolerance to stress.

Keywords Nutritional quality · Nutraceutics · Functional foods · Iodine
deficiency disorders · Trace elements in plants · Organic iodinated compounds ·
Beneficial elements in plants

4.1 Introduction

Iodine is considered one of the first antioxidants used by living organisms. In the
marine environment, iodine is available in dissolved forms and is absorbed and
concentrated by photosynthetic organisms that in turn transfer it into the trophic
chain. It is believed that when different organisms evolved to live in terrestrial areas
(where the availability of iodine is much lower than in the sea), dependence on iodine
changed. In terrestrial plants, a whole new set of antioxidants (such as ascorbic acid,
polyphenols, and carotenoids) emerged to replace iodine (Venturi 2011). It is possible
that this fact partially explains the low concentration of iodine in the structures of
terrestrial plants compared to marine photosynthetic organisms. Although it has not
been demonstrated that iodine is an essential element for terrestrial plants, it is known
that plants absorb it by roots and leaves and dissipate it into the atmosphere in gaseous
form (Barry and Chamberlain 1963; Whitehead 1979; Amiro and Johnston 1989)
using non-vanadium-dependent halogen methyltransferases (Landini et al. 2012), so
it is possible that iodine performs metabolic functions not yet well understood in
terrestrial plants (Gonzali et al. 2017).

In terrestrial animals, iodine is an essential element, therefore in response to the
reduced availability of iodine out of the sea during the evolutionary process proteins
or tissues, such as the thyroid follicles, specialized for the storage of the element,
were developed (Venturi 2011). Iodine, stored in proteins or specialized structures
of animals is obtained mostly from food intake and, to a lesser extent, the absorption
of iodine from drinking water and air that reaches the lungs (Vought et al. 1970;
Whitehead 1984; Fuge and Johnson 2015).

Iodine is one of the most studied elements due to its metabolic importance in
humans and the complexity associated with the factors that induce its deficiency.
According to the World Health Organization (WHO), the most common nutrient
deficiencies are iodine (Fig. 4.1), alongwith those of iron (Fe), zinc (Zn), and vitamin
A (Burlingame 2013; Prasad 2013).

The irregular distribution of iodine in the Earth’ crust correlates with its different
regional availability in soil and water and results in the deficiency of this element
in various regions of the planet (FAO 2009). It is estimated that around 2 billion
people live with an insufficient iodine intake (Mottiar 2013), causing what is known
as iodine deficiency disorders (IDD). The IDD is the metabolic and developmental
abnormalities associated with low iodine intake and can be prevented by ensuring
adequate intake of the element (Zimmermann et al. 2008).
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Fig. 4.1 On the map, the regions where the human population presents a higher risk of iodine
deficiency are indicated in orange (Medrano-Macías et al. 2016a)

The most recognizable IDD is goiter. However, in the last decades, the presence
of less tangible IDD has been evidenced. Examples are the higher incidence in fetal
death, miscarriages, and congenital anomalies (Zimmermann 2009), as well as the
adverse impact on mental and physical development during childhood (Manousou
et al. 2018), and in the labor productivity of adulthood (Lazarus et al. 2012). Simi-
larly, the action of iodine as an antioxidant and as antiproliferative of malignant cells
was recently demonstrated (Funahashi et al. 2001; Aranda et al. 2013; Anguiano and
Aceves 2016). The daily iodine requirements at different stages of human develop-
ment were described by (World Health Organization 2007; Andersson et al. 2012)
and are presented in Table 4.1.

Depending on the source, conservation, and preparation, foods from animal and
vegetable sources contain different amounts of iodine. In an extensive study of the
literature, (Fordyce 2003) indicated that the geometric mean of the concentration of
iodine in various types of food is 87 µg (kg food)−1, a low value when considering
the data in Table 4.1. The breakdown of the iodine content by type of food is indicated
in Table 4.2.

Table 4.1 Recommended
daily iodine intake
(Medrano-Macías et al.
2016a)

Daily intake (µg) Age

90 Infants (0–59 months)

120 Children (6–12 years)

150 Adults (older than 12 years)

200 Pregnancy and lactation
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Table 4.2 Iodine content in
different foods

Food Concentration µg I (kg food)−1

Saltwater fish 1455.9

Freshwater fish 102.8

Leafy vegetables 88.8

Dairy 83.9

Other vegetables 80.1

Meats 68.4

Cereals 56.0

Fresh fruits 30.6

Drinking water 6.4

Modified from Medrano-Macías et al. (2016a)

Except for the sea fish, the rest of the foods showed low average values of iodine.
It is expected that the data displayed in Table 4.2 show variation between sites and
seasons of harvest or production. However, the need to increase the amount of iodine
in food is pointed out. For example, in lettuce, it has been suggested to raise the
concentration to 50–100µg of iodine per 100 g of fresh weight (Lawson et al. 2015).
In contrast, in a study carried out on cereals from continental agricultural areas in
Europe, the iodine concentration was particularly low, with values based on the dry
weight from 2 to 30 µg kg−1 (Shinonaga et al. 2001). Among the alternative food
sources of iodine should be highlighted marine algae, such as kelp (of the genus
Laminaria). Kelp accumulates iodine with values of 0.25–1.20% of its dry weight
(Gall et al. 2004). Another alternative is some freshwatermicroalgae that reach iodine
up to 0.04% of its dry weight (Han et al. 2016). Numerous attempts have been made
to mitigate the deficit in iodine consumption among the human population. One
technique that has proved effective is salt fortification (iodization) that began in the
1920s (de Caffarelli 1997; Zimmermann 2009; Charlton et al. 2013). However, it has
been found that the fortification of table salt alone is insufficient to ensure the iodine
requirement (de Benoist et al. 2008) because inorganic iodine added to the salt is lost
by sublimation, especially in warm places (Mottiar and Altosaar 2011). On the other
hand, the consumption of iodine in organic forms such as those found in algae, fungi,
and biofortified terrestrial plants is more bioavailable (Rakoczy et al. 2016) and is
considered more effective in preventing IDD (Funahashi et al. 2001; Weng et al.
2008a; Li et al. 2018). Part of the explanation of the higher dietary effectiveness of
organic sources of iodine is that the rate of loss from volatilization is very low, since
iodine has a high capacity to form complexes with polymeric materials (Moulay
2013; Limchoowong et al. 2016) as in vegetable starches (Mottiar and Altosaar
2011) and waxy cuticle materials (Tschiersch et al. 2009). Due to the above, it is
necessary to promote the use of biofortification of crops to achieve an adequate
consumption of iodine, either as a supplement or as an alternative to the iodization
of table salt. The objective of this chapter is to show the progress made in obtaining
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crop plants biofortified with iodine, showing the different techniques used and the
results obtained.

4.2 The Presence of Iodine in Plant Foods, Soil, and Water

The largest reservoir of iodine on the planet is the ocean, with a concentration of
50–84 µg L−1 (Schnepfe 1972), with large variations in the vertical profile and
between different latitudes. From marine waters, iodine is volatilized into the atmo-
sphere in the form of organo-iodinated compounds (CH3I and CH2I2) and molecular
iodine (I2) (Carpenter et al. 2000). The volatilization is carried out by infinity of
marine organisms: bacteria, microalgae, and macroalgae such as those of the genus
Laminaria (Leblanc et al. 2006). In Laminaria, this process is carried out through
a mechanism related to oxidative stress and H2O2 production (Küpper et al. 2008),
linked to the function of the vanadium-dependent iodoperoxidase enzyme (V-IPO).

In the atmosphere, iodinated compounds are photolyzed and react with ozone
molecules to form new chemical species, such as iodine monoxide, dioxide, tri-
oxide, tetroxide, and pentoxide (IO, I2O2, I2O3, I2O4, and I2O5). The result is the
formation of condensation nuclei for cloud formation (Saunders and Plane 2005).
Subsequently, the incorporation of the element will occur on the soil by means of
rain and snow, with an iodine concentration of 0.5–2.5µg L−1, mainly in the form of
iodide (I−) and iodate (IO3

−) (Fuge and Johnson 1986). The transfer of atmospheric
iodine to the earth surface also occurs by dry deposition (Baker et al. 2001), but incor-
poration associated with precipitation is considered the most crucial type of transfer
(Whitehead 1984). Gaseous iodine in its elemental state (I2) is most susceptible to
deposition by rain or snow, whereas methyl iodide (CH3I) is less susceptible (Slinn
1978). Dry deposition occurs by gravity sedimentation and is related to wind and
turbulence (Whitehead 1984).

As a result of the transfer of the sea to the continental zones, it has been observed
that the soils that are located at a distance of between 50 and 80 km from the ocean
have an iodine content higher than those that are furthest away (Fuge and Johnson
2015).

The global cycle of iodine (Fig. 4.2) is completed by returning from the soil to
the atmosphere, through biotic or abiotic processes, or dragged to the ocean through
groundwater (Moreda-Piñeiro et al. 2011).

Iodine is subject to a complex dynamic that determines its availability. There
is a balance between fixation and volatilization depending on the physicochemical
characteristics of the soil, such as the content of organic matter, interaction with other
minerals, the action of the soil microbiome, pH, and oxidation-reduction potential.
Consequently, the concentration of iodine in the soil is very variable, reporting a
range of <0.1–150 mg kg−1, with the global average of 5.1 mg kg−1 and a geometric
mean of 3.1 (Johnson 2003).

The iodine that remains in the soil can be found in bioavailable form in the soil
solution as IO3

− or I− or it can be fixed in non-bioavailable complexes with organic



84 I. E. Dávila-Rangel et al.

Fig. 4.2 Global iodine cycle. Figure of (Medrano-Macías et al. 2016a)

matter, clays, and the oxides of Fe and Al (Fuge 2013), with the latter particularly in
soils with acid reaction (Whitehead 1974; Heumann et al. 1990). The adsorption of
IO3

− by the soil components is 2.6 times higher than that of I− (Kodama et al. 2006;
Lawson et al. 2015), but the relative amount of IO3

−/I− depends on the redox and
pH conditions. Most of the non-bioavailable iodine is retained in the first 10 cm of
the edaphic profile (Weng et al. 2009; Yoshida et al. 2007). The bioavailable forms
IO3

− and I− can be leached or volatilized as hydrogen iodide (HI) or iodic acid and
periodic acid (HIO3, HIO4) (Sheppard et al. 1994).

Organic matter plays a central role in the retention of iodine in the soil (Whitehead
1973; Dai et al. 2006). It has been established that with a high content of organic
matter, low iodine volatility occurs, presumably due to the formation of covalent
bonds with carbon atoms (Moulin et al. 2001; Schlegel et al. 2006; Stavber et al.
2008). Aerobic conditions increase the iodination of soil organic matter, a process
that is enhanced by microbial activity (Yeager et al. 2017). It has been shown that the
I− form is more susceptible to reacting with organic matter, through a mechanism
of electrophilic substitution of a proton by an iodine atom in the aromatic rings in
humic and fulvic substances (Muramatsu et al. 2002). Almost all the organic iodine
is associated with humic acids (63%) and in lesser quantity with fulvic acids (20%)
(Yamada et al. 1999).

The oxidation of I− favors the fixation in organic compounds. In this context, it is
known that H2O2 can increase the rate of formation of organo-oxidized compounds
in soil, substrates, and sediments. H2O2 is produced abiotically by the organic matter
subjected to UV radiation and soil microorganisms. H2O2 converts I− to HOI and
I2, which react with fulvic acids. The IO3

− reacts with H2O2 forming reactive iodine
species that are associated with lignins, tannins, and carboxylic compounds of soil
organic matter. It has been found that organo-iodinated molecules of the soil can be
proteinaceous, unsaturated hydrocarbons, and lignin (Xu et al. 2013). It has also been
reported that the I− is fixed in organo-iodinated compounds by microbial oxidases
(Seki et al. 2013) and by the action of organic acids secreted by bacteria (Li et al.
2012).
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Oxidation of organic matter releases the iodine from the organo-iodinated
molecules, exposing iodine to leaching and volatilization. Under aerobic condi-
tions, the presence of Fe3+ induces the formation of volatile alkyl halides such as
iodomethane, iodoethane, 1-iodopropane, and 1-iodobutane (Keppler et al. 2000).
The processes described are modified by the action of the soil microbiome, which
can increase the rate of iodine volatilization by oxidation of I− to CH3I, HIO, and I2
(Amachi et al. 2003; Seki et al. 2013).

Soil minerals can be present as free ions, ions adsorbed on organic surfaces, or
in mineral colloids, as dissolved or precipitated compounds or incorporated into the
microbial biomass (White and Broadley 2009). The oxides and hydroxides of Al, Fe,
and Mn are linked by weak electrostatic attractions to the iodate (IO3) decreasing
their bioavailability but also avoiding leaching and volatilization (Shetaya et al. 2012;
Tolu et al. 2014). In contrast, I- shows less affinity for soil minerals, which facilitates
their mobility and bioavailability, but also their volatilization (Kaplan et al. 2000).
In general, the higher active surface of the soil means more capacity to fix the iodine
(Faridullah et al. 2017). Therefore, the type of soil influences the mobilization and
volatilization of iodine (Weng et al. 2008c).

The associations of iodinewith organicmatter and soilminerals are not permanent,
as they are susceptible to the oxidative changes that the soil undergoes (Yeager et al.
2017). An example of this is what is observed in flooded soils, where desorption
occurs and then volatilization occurs in the form of organo-iodinated compounds
such as CH3I (Kodama et al. 2006), contrary to what is found in soils with oxidizing
properties and high pH.

Finally, it is known that the chemical species mostly found in reducing conditions
(soils with large amounts of organic matter or flooded) and pH < 7 will be iodide (I-)
and oppositely with pH > 7 and oxidant condition (soils with low organic matter) or
low humidity), it will be the IO3

− (Dai et al. 2009; Nakamaru and Altansuvd 2014).
When comparing the amount of bioavailable iodine under one condition or another, it
was found that the concentration of I- was slightly higher under reducing conditions
than that of IO3

− under oxidizing conditions (Yuita 1992).
Regarding the surface water, the concentration of iodine commonly ranges from

0.5 to 5 µg L−1, however, in some cases it can reach about 20 µg L−1 (Watts et al.
2010). These variations dependmainly, like the concentration of iodine in the soil, on
the proximity to the ocean. However, other factors have shown a strong correlation
such as the geology of the soil through which rivers flow. For example, a higher
concentrationwas found in sedimentary rock than in igneous rock (Fuge and Johnson
1986) as well as in carbonate rocks compared to non-carbonated rocks (Korobova
2010). On the other hand, in the underground aquifers, the reported concentrations
are generally higher. In some places, values as high as 430–14,500 µg L−1 are
found, probably due to the desorption from organic matter rich in iodine, sediment
intrusion,marine or residual salinewater in the aquifer or intense evapo-concentration
in arid zones (Fuge and Johnson 2015; Voutchkova et al. 2017). Thus, due to the
uneven distribution in soils and water, as well as the interactions of iodine with soil
components, the bioavailability of iodine to be absorbed and metabolized by plants
is conditioned to the area where the vegetation grows. A compilation of the content
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Table 4.3 Natural concentration of iodine in water, soil, and plants for human consumption

Concentration in soil
(mg kg−1)

Concentration in plants
(µg kg−1)

References

Concentration of Iodine in soils and agricultural plants

3.35 forest zone in Russian
plane

Gramineae 128, Leguminosae
121

Korobova (2010)

11.8 andosol upland in Japan Wheat and Barley 10–100 Uchida and Tagami (2011)

0.66 agricultural soils in
Pakistan, but only 2.4% of that
iodine was bioavailable

10 in wheat grain, but
available iodine was below
the detection limit

Watts et al. (2015)

1.6 in archived samples of the
last 105 years of an
experimental field in
Rothamsted, UK

112–285 in herbage samples Bowley et al. (2017)

0.13–10 in agricultural soils
with high clay content

Rice 58 in Sri Lanka Fordyce et al. (2000)

54 in agricultural soil from the
coastal region in Malawi

Staple crops 1, tubers and
roots 8, leafy vegetables 155

Watts et al. (2015)

Concentration in water (µg L−1) Concentration in plants (µg kg−1) References

Concentration of iodine in water for agricultural use and plants

7.3 in agricultural waters in
Pakistan

Wheat grain 10, but available
iodine was below the detection
limit

Zia et al. (2015)

84 drinking water in Wet Zone of
southwest Sri Lanka

Rice 58 in Sri Lanka Fordyce et al. (2000)

52 in drinking water in the coastal
region in Malawi

Staple crops 1, tubers and roots 8,
leafy vegetables 155

Watts et al. (2015)

of iodine in soil and water, as well as its presence in plant species, is presented in
Table 4.3. The concentration in cereals goes from 1 to 128 µg of I per kilogram of
grains, whereas the recommendation of daily consumption of this element for an
adult is 150 µg and the intake of these grains is approximately 50 g day−1 (WHO
2009). However, it has also been reported that in places close to the coasts, andosol-
type soils can be rich in iodine and produce grain crops with an adequate iodine level
(Uchida and Tagami 2011).

4.3 Iodine Uptake by Plants

Iodine is an element that can be absorbed through the cells of the epidermis of the
root, as well as through the stomatal pores and the cuticle of the epidermal cells of
the leaves. Of the total iodine absorbed by the plants, it is not known how much on
average it comes from the soil and how much of the atmosphere. It is expected that
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the atmospheric contribution will be more significant in the regions near the coast
and lower in the continental areas, far from the sea and with soils with a high level
of iodine fixation (Whitehead 1984; Fuge and Johnson 2015).

The absorption of iodine by the roots of plants depends on the amount of bioavail-
able iodine (I− and IO3

−) present in the soil solution. Both chemical species can be
absorbed by the roots, but there seems to be a specific preference for I− (Blasco et al.
2008; Mackowiak et al. 2005;White and Broadley 2009). The suggested explanation
is that the root cells can absorb both forms of iodine, but that part of the IO3

− of the
soil solution or nutrient solution is reduced to I− through of an iodate reductase that
responds to the availability of iodine in the substrate. The iodate reductase activity
is not detected in the absence of iodine, shows high activity in the presence of IO3

−,
but decreases with the excess of iodine (Kato et al. 2013). This reductase activity
also occurs in microorganisms (Amachi 2008), but the magnitude of the microbial
contribution to this process is unknown. On the other hand, a substantial difference
occurs in the mobilization of iodine according to whether it is given to the roots
in inorganic (KI) or organic form (5-iodosalicylic acid, 5-ISA; 3,5-diiodosalicylic
acid, 3,5-di-ISA; 2-iodobenzoic acid, 2-IBeA; 4-iodobenzoic acid, 4-IbeA), finding
that the KI is quickly mobilized to the aboveground parts of the plant, while the I in
organo-iodinated substances accumulated mainly in the roots (Halka et al. 2018).

It has been proposed that iodine transport occurs through chloride channels
(Mottiar and Altosaar 2011). Mainly for the I−, the plants seem to absorb it and
mobilize it through the organs of the plant using anionic channels and chloride trans-
porters energized by proton pumps (White and Broadley 2009). The identity of I−
transporters is not firmly established, but it is assumed that the activity can be shared
by several families of transporters and anion channels, including organic acid trans-
porters (White and Broadley 2009, 2001; Landini et al. 2012). As a consequence, the
presence of anions such as nitrate, thiocyanate, and perchlorate can interfere with the
absorption of iodine (Voogt and Jackson 2010). The transport of iodine to fruit and
seeds through the phloem does not occur as efficiently as in the xylem. But despite
this, its presence is reported in different organs of the plants that receive a significant
flow of the phloem, including fruits and seeds (Mottiar and Altosaar 2011; Kiferle
et al. 2013; Kopeć et al. 2015; Smoleń et al. 2016a; Cakmak et al. 2017).

4.4 The Flux of Iodine in the Plant System

Once the root cells absorb I−, the iodine is believed to be mobilized in the plant
using H+/anion symporters and anionic channels that load it in the xylem (White
and Broadley 2009). From the root to the stems and leaves, the flow by xylem seems
to be the predominant form of iodine transport (Dai et al. 2004; Zhu et al. 2003),
with the lowest redistribution by the phloem (Herrett et al. 1962). That is why iodine
accumulates in greater quantity in the leaves compared to fruits and seeds (Gonzali
et al. 2017). For example, in the study carried out by (Haldimann et al. 2005), it was
found that iodine from food samples had values (in µg kg−1 of dry weight) of 35 in
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wheat, 333 in rice, 16 in potatoes, 18 in fresh fruit, 47 in fresh vegetables, and 236
in a salad with leafy vegetables.

In studies where the flow of iodine is followed through the different structures of
the plant, isotopes of iodine are used, such as the case of 125I, which has been found
in higher proportion in root > stem > petiole > leaf (Weng et al. 2009). Similarly,
in an analysis of I− and IO3

− made in strawberry plants, a higher concentration of
iodine was found in roots > leaves > stems > fruits, with the higher concentration of
iodide compared to iodate (Li et al. 2017b).

To quantitatively describe the ability to mobilize iodine from the soil, substrate
or nutrient solution to the organs that are harvested, the iodine transfer factor (ITF)
is used, which is defined as the quotient between the concentration of iodine in plant
tissues and the concentration in the substrate. The ITF is then higher in species that
are grown to produce leaves, such as spinach (ITF ≥ 2.0), than in tomatoes, wheat,
and other species where fruits and seeds are harvested (ITF between 0.0005 and 0.02)
(Lawson 2014). ITF does not constitute constant values; it changes in response to
environmental stimuli and its value increases when plants have bioavailable iodine
in the soil solution, nutrient solution, or by foliar spray (Dai et al. 2004; Smoleń et al.
2017; Cakmak et al. 2017).

Once the iodine is transported and is present in different organs of the plants,
it is unstable and can be volatilized by enzymes called halide ion methyl-
transferases (HMT) and halide thiol methyltransferase (HTMT) dependent on
S-adenosylmethionine (Itoh et al. 2009;Medrano-Macías et al. 2016a). Volatilization
can occur with iodine in the soil by roots and microorganisms, but in the case of rice,
the highest volume of volatilization happened in the stems and leaves of plants in the
form of CH3I (Muramatsu and Yoshida 1995). It was shown that volatilization inces-
santly decreases the store of iodine present in plants (Landini et al. 2012; Gonzali
et al. 2017). The importance of volatilization activity was demonstrated by obtain-
ing arabidopsis plants with increased accumulation of iodine by knocking down the
HOL-1 gene which encodes a halide methyltransferase (Landini et al. 2012). The
metabolic activity of iodine volatilization by plants contributes to the general activ-
ity of volatilization that occurs in soils and inland waters and is part of the global
flow of iodine. There is little information about the difference between plant species
and environmental factors that affect the activity of enzymes that dissipate iodine.
However, it is known that in aqueous solution H2O2 is a compound that increases
the speed of iodine volatilization reactions. This fact can be a partial explanation of
the observations that indicate an increase in the volatilization of iodine in bacteria
under stress conditions (Medrano-Macías et al. 2016a). Figure 4.3 presents a resume
of the flux of iodine in plants.
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Fig. 4.3 Flux of iodine from soil to plant and atmosphere
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4.5 Agronomical Practices to Improve Iodine Absorption
and Assimilation in Plants

In the previous sections, information was presented to point out the impact of the
various factors of soil, water, and atmosphere on the bioavailability of iodine for
plants. This set of factors (soil organic matter and soil microbiome, moisture level,
salinity, concentration of elements added with fertilizers, among others) is subject
to direct or indirect manipulation in agricultural production systems, thus modify-
ing the availability of iodine in the dissolved forms I− and IO3

− found in the soil
solution, from where they are absorbed by the roots of the plants. Similarly, agri-
cultural practices such as tillage and the application of vegetable or animal waste,
composts, and humic substances modify the oxidation-reduction status of the soil,
possibly inducing changes in the relative amounts of iodine that is fixed versus the
volatilized. These changes probably alter the amount of iodine in the form of I2
and CH3I, which inevitably has an impact on the fixation of gaseous iodine in the
aboveground vegetal structures by stomata and the waxy cuticles of leaves, stems,
and fruits.

The points described in the two previous paragraphs have been little studied, but
it has been suggested that the iodine fixed in the soil can be mobilized applying good
agronomic practices, thus raising the concentration of iodine in the crops (Stewart
et al. 2003). The alternatives or complementary approaches that have been proposed
are the obtentions of biofortified cultures using traditional breeding techniques, the
creation of transgenics, and possibly genetic editing (Mottiar 2013). In most pub-
lished studies, the approach given to the biofortification of crops is based on the
exogenous application of iodine in different chemical, organic or inorganic forms,
either to the soil, irrigation water, nutrient solution, or by spraying plants.

The most studied method for crop biofortification is the application of inorganic
iodine salts. The plants absorb the iodate (IO3

−) and iodide (I−) ions dissolved in the
soil solution or the nutrient solution using transporter proteins mentioned in Sect. 4.3
of this chapter. When applied to the soil, IO3

− is a more effective source of iodine
compared to I− (Lawson et al. 2015). On the other hand, I− can be very useful for
biofortificationwhen applied in the right quantities (10–100µMKI applied biweekly
to the substrate or leaf spray), besides that the I− increases the accumulation of
antioxidants in plants (Cortés-Flores et al. 2016; Medrano-Macías et al. 2016b). The
disadvantage of I− is that it generally induces greater toxicity in plants compared
to IO3

−, especially in soilless crops (Borst Pauwels 1962; Umaly and Poel 1971;
Muramatsu et al. 1983; Zhu et al. 2003), although (Kiferle et al. 2013) in tomato with
four applications of iodine, once a week, observed greater toxicity when applying
KIO3 in the nutrient solution compared to the KI. The concentration recommended
by the authors to obtain biofortified tomatoes without damage to the leaves was 2mM
(332 mg L−1 KI, 428 mg L−1 KIO3) and could rise to 5 mM for the KI but obtaining
slight leaf damage. The muskmelon crop tolerates up to 1 mM KI (166 mg L−1

KI), biweekly by leaf spray or weekly in fertilizer solution applied to the substrate
(Gordillo-Melgoza et al. 2016), showing a decrease in biomass whit 2 mM. The I−
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and IO3
− were equally effective for the biofortification of wheat grains by applying

20 mg I kg soil−1 or 0.1–0.25% (w/v) (1000–2500 mg L−1 of KI or KIO3) using only
three foliar sprays at heading stage, early milk, and initial dough stages (Cakmak
et al. 2017).

The lower toxicity of IO3- may occur because the iodate functions as an alternate
substrate for other important enzymes such as nitrate reductase (Barber and Notton
1990) or because the activation of iodate reductase by IO3

− induces some other
responses associated with the metabolism of iodine in plants, in addition to the mere
reduction in IO3

−. The IO3
− under aerobic conditions is a more stable form than the

I−. Thus, it is likely to be the most abundant bioavailable form in the water of the
pores of agricultural soils subject to tillage (Medrano-Macías et al. 2016a).

The localized application of inorganic salts of iodine, using leaf or fruit spray or in
the substrate or nutritive solution, in a specific stage of the development of the plants
as in seed, seedlings, stems, leaves, or fruits in pre-harvest or post-harvest (García-
Osuna et al. 2014; Cortés-Flores et al. 2016; Limchoowong et al. 2016; Jerše et al.
2017; Gonzali et al. 2017) has also been successful. The advantage of the localized
applications in a single stage of the development of the plant, or in post-harvest, is that
the complexities of applying the iodine continuously are avoided, both in the nutritive
solution and to the soil, where some edaphic factors can fix it, limiting the absorption
by plants (Smoleń et al. 2016a). Additionally, iodine can be associated with mineral
compounds such as hydroxyapatite and diatomite, in biopolymers or complexes of
nanomaterials and biopolymers that can be applied to the substrate or soil, decreasing
both the fixation by the soil and the losses by leaching or volatilization (Weng et al.
2013; Liu et al. 2014; Weng et al. 2014; Medrano-Macías et al. 2016a). Once the
roots of the plants make contact with the materials, the elements contained in the
structure of the material can be absorbed by the plants. It should be noted that there
is practically no published research on the use of nanomaterials or nanoparticles to
improve the availability of iodine for plants.

The issue of volatilization control is considered significant not only from a tech-
nical point of view but as part of the promotion of the use of biofortification with
iodine, which implies modifying the perception that it is a volatile component that
will be lost in if added to fertilizers (Olum et al. 2018). Figure 4.4 shows a summary
of different techniques used for biofortification of plants using exogenous iodine
application. The authors (Medrano-Macías et al. 2016a) propose to reduce the loss
by volatilization of iodine applied using organic iodine sources (such as kelp) to be
applied directly to the soil or as a compost, or iodine salts (KI and KIO3) fixed in
biopolymers. In the sameway, the use of KI andKIO3 using foliar spray allows fixing
the iodine in the hydrocarbons of the cuticles, decreasing the loss due to volatiliza-
tion. An additional advantage of foliar spraying is to avoid the complexity of factors
that allow or limit the bioavailability of iodine in the soil.

The previously described biofortification techniques using exogenous iodine
sources are applicable in virtually all plant species. However, leafy vegetables such
as lettuce and spinach are especially useful because of their high ITF (Lawson 2014).
Yet, to have a higher reach among the world population, it is necessary to signifi-
cantly increase the availability of iodine in basic grains such as corn, wheat, and rice
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Fig. 4.4 Graphic view of different methods of application of iodine. The left side, with red direc-
tional arrows, includes most promissory techniques that use organic sources of iodine applied to the
soil, the inorganic iodine for plant spraying, and the use of iodine fixed in polymers for application
in soil and substrates. On the right side, the most used methods for the addition of KI and KIO3
to soil or nutrient solution. The concentration used defines the outcome, the blue arrows indicate a
low level of iodine with satisfactory results on biofortification and plant growth. The orange arrows
denote a high concentration of iodine that may lead to great biofortification but accompanied by
plant toxicity (Medrano-Macías et al. 2016a)
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(together, cereals constitute 80% of the vegetable foods produced by the humans and
account for 60–75% of calories consumed), for which it is necessary on the one hand
to explore the impact of soil management and irrigation practices on the bioavail-
ability of iodine present in the soil, select the best techniques, chemical forms and
concentration of iodine for application in plants and, on the other hand, increase the
capacity of these species to mobilize iodine to the grains (Cakmak et al. 2017).

It is also advisable to explore much more the possibility of using as options for
biofortification other basic crops, such as legumes (Jerše et al. 2018), or crops with a
high content of carbohydrates in roots, tubers, or stems such as potatoes and tapioca
(Manihot esculenta). These last species can be attractive for biofortification since, on
the one hand, it is more straightforward to accumulate iodine in roots and stems, and
on the other hand, the starch reserves of the plants constitute stable iodine storage
(Mottiar and Altosaar 2011; Cerretani et al. 2014).

The impact of iodine on growth and yield is an important component for bioforti-
fication. In general, excessive I applications produce a decrease in biomass and yield
of fruit or grain; causing, however, through a concentration effect due to the lower
biomass obtained, a higher concentration of iodine in the plant parts (Cakmak et al.
2017). In Fig. 4.4, this effect is shown on the right side. Following, Table 4.4 presents
some results of studies where iodine was applied to biofortify crops. The included
results refer to different crop species where different sources and concentrations of
iodine were applied to the soil, substrate, irrigation water, nutrient solution, or by
foliar spray. The information is useful as a reference for the design of biofortification
strategies in the field or greenhouse.

Table 4.4 shows a great diversity of situations concerning the form of application,
concentration, and chemical species used. Each species and probably the cultivars or
ecotypes within a species are tolerant to a specific range of concentrations of iodine
that allows biofortification and even becomes beneficial, while higher amounts cause
toxicity. The threshold between benefit and toxicity will be different in each species,
due to the action of intrinsic variables to plants, as well as edaphic, climatic, and
biotic interaction factors (Hageman et al. 1942; Mackowiak et al. 2005; Caffagni
et al. 2012). Below is a summary of recommendations about the application of iodine
in agricultural systems.

Recommendation for the application of iodine. The global average of the con-
centration of iodine in the soils is 2.6 mg kg soil−1 (Watts et al. 2010). The contribu-
tions up to 10 mg kg soil−1 favor plant growth with a good result in biofortification.
The use of more than 50 mg kg soil−1 significantly raises the iodine concentration
in plants, but in some species, it will produce an adverse effect on biomass and yield
(Lawson 2014). Even in some horticultural leaf species, such as Chinese cabbage,
the application of more than 25 mg kg soil−1 reduces the weight of the plants (Hong
et al. 2008). The absorption efficiency of iodine in plants begins to decrease when
applying 55 mg I kg soil−1 (Weng et al. 2009). With higher concentrations of 70,
60, and 110 mg I kg soil−1, intoxication occurs, showing slight lesions, prolonga-
tion of germination time, growth retardation, wilting, and yellowing of the leaves
in cucumber, eggplant, and radish. On the other hand, when using 140, 150, and
180 mg I kg soil−1 in the same crop species, the plants showed extensive foliar
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eń

an
d
Sa
dy

(2
01
2)

C
ey
lo
n
sp
in
ac
h

K
IO

3
10
,4

0,
80

µ
g
L

−1
A
pp
lie
d
to

th
e
so
il

th
ro
ug
h
ir
ri
ga
tio

n
w
at
er

H
ig
he
r
ac
cu
m
ul
at
io
n
of

I
w
he
n

ap
pl
ie
d
at
40

µ
g/
L
th
ro
ug
h

fe
rt
ig
at
io
n

U
jo
w
un
du

et
al
.

(2
01
0)

(c
on
tin

ue
d)



4 Iodine Biofortification of Crops 97

Ta
bl
e
4.
4

(c
on
tin

ue
d)

C
ro
p

C
he
m
ic
al
fo
rm

C
on

ce
nt
ra
tio

n
ap
pl
ie
d

A
pp

lic
at
io
n

R
es
ul
ts

A
ut
ho
r

St
ra
w
be
rr
y

K
I
y
K
IO

3
I−

≤
0.
25

m
g
L

−1
IO

3
≤

0.
50

m
g
L

−1
N
ut
ri
en
ts
ol
ut
io
n

Io
di
ne

im
pr
ov
ed

th
e
qu
al
ity

of
th
e
fr
ui
t,
an
d
bi
of
or
tifi

ed
fr
ui
ts

w
er
e
ob

ta
in
ed

w
ith

60
0–
40
00

µ
g
kg

−1
FW

L
ie
ta
l.
(2
01
7b
)

M
un
g
be
an

A
lg
ae

an
d
di
at
om

ite
12
–1
50

m
g
I
m

−2
So

il
T
he

or
ga
ni
c
fe
rt
ili
ze
r
in
cr
ea
se
d

th
e
io
di
ne

co
nc
en
tr
at
io
n
in

th
e

pl
an
ts
pr
op
or
tio

na
lly

to
th
e

am
ou
nt

ap
pl
ie
d

W
en
g
et
al
.(
20
13
)

Ip
om

oe
a
aq
ua
ti
ca

I− IO
3
−

C
H
2
IC
O
O

−

0–
1.
0
m
g
L

−1
N
ut
ri
en
ts
ol
ut
io
n

Io
di
ne

in
th
e
pl
an
ti
nc
re
as
ed

pr
op

or
tio

na
lly

to
th
e

co
nc
en
tr
at
io
n
in

th
e
nu
tr
ie
nt

so
lu
tio

n.
T
he

gr
ea
te
st

ab
so
rp
tio

n
w
as

C
H
2
IC
O
O

−
>

I−
>
IO

3
−

W
en
g
et
al
.(
20
08
b)

L
et
tu
ce

K
I

0.
5,

1,
2.
5,

an
d

5
µ
M

dm
−3

N
ut
ri
en
ts
ol
ut
io
n

T
he

co
nc
en
tr
at
io
n
of

0.
5
µ
M

dm
−3

w
as

su
ffi
ci
en
tt
o

ef
fe
ct
iv
el
y
bi
of
or
tif
y
th
e

se
ed
lin

gs

K
rz
ep
iłk

o
et
al
.

(2
01
6)

L
et
tu
ce

K
I,
K
IO

3
0.
25

kg
I
ha

−1
Fo

lia
r

T
he

io
di
ne

co
nt
en
ti
nc
re
as
ed

in
th
e
ed
ib
le
or
ga
ns

w
ith

th
e

ap
pl
ic
at
io
n
of

K
I
an
d
K
IO

3
vi
a

fo
lia
r
sh
or
tly

be
fo
re

ha
rv
es
t

L
aw

so
n
et
al
.(
20
16
)

(c
on
tin

ue
d)



98 I. E. Dávila-Rangel et al.

Ta
bl
e
4.
4

(c
on
tin

ue
d)

C
ro
p

C
he
m
ic
al
fo
rm

C
on

ce
nt
ra
tio

n
ap
pl
ie
d

A
pp

lic
at
io
n

R
es
ul
ts

A
ut
ho
r

L
et
tu
ce

K
I,
K
IO

3
0,

1.
0,

2.
5,

7.
5,

an
d

15
kg

I
ha

−1
to

so
il

an
d
0.
5
kg

I
ha

−1
by

fo
lia

r
sp
ra
y

So
il
an
d
fo
lia

r
T
he

K
IO

3
to

th
e
so
il
in

7.
5
kg

I
ha

−1
an
d
th
e
fo
lia

r
ap
pl
ic
at
io
n

ac
hi
ev
ed

th
e
de
si
re
d
le
ve
lo

f
io
di
ne

in
th
e
pl
an
t(
50
–1
00

µ
g

I
10
0
g
FW

−1
)
T
he

K
I
to

th
e

so
il
w
as

no
te
ff
ec
tiv

e

L
aw

so
n
et
al
.(
20
15
)

M
ai
ze

K
IO

3
0.
05
%

w
/v

Fo
lia

r
sp
ra
y
in

th
e

gr
ai
n
fil
lin

g
T
hr
ee

ap
pl
ic
at
io
ns

of
io
di
ne

su
bs
ta
nt
ia
lly

in
cr
ea
se
d
th
e

co
nc
en
tr
at
io
n
in

th
e
gr
ai
n

C
ak
m
ak

et
al
.(
20
17
)

Po
th
er
b
m
us
ta
rd

A
lg
ae

an
d
di
at
om

ite
12
–1
50

m
g
I
m

−2
So

il
T
he

or
ga
ni
c
fe
rt
ili
ze
r
in
cr
ea
se
d

th
e
io
di
ne

co
nc
en
tr
at
io
n
in

th
e

pl
an
ts
pr
op
or
tio

na
lly

to
th
e

am
ou
nt

ap
pl
ie
d

W
en
g
et
al
.(
20
13
)

C
uc
um

be
r

A
lg
ae

an
d
di
at
om

ite
12
–1
50

m
g
I
m

−2
So

il
T
he

or
ga
ni
c
fe
rt
ili
ze
r
in
cr
ea
se
d

th
e
io
di
ne

co
nc
en
tr
at
io
n
in

th
e

pl
an
ts
pr
op
or
tio

na
lly

to
th
e

am
ou
nt

ap
pl
ie
d

W
en
g
et
al
.(
20
13
)

Pe
pp
er

A
lg
ae

an
d
di
at
om

ite
12
–1
50

m
g
I
m

−2
So

il
T
he

or
ga
ni
c
fe
rt
ili
ze
r
in
cr
ea
se
d

th
e
io
di
ne

co
nc
en
tr
at
io
n
in

th
e

pl
an
ts
pr
op
or
tio

na
lly

to
th
e

am
ou
nt

ap
pl
ie
d

W
en
g
et
al
.(
20
13
)

Pe
pp
er

K
I

10
–5
0
µ
M

Fo
lia

r
sp
ra
y

T
he

co
nc
en
tr
at
io
n
of

io
di
ne

in
th
e
pl
an
ts
w
as

pr
op
or
tio

na
lt
o

th
at
ap
pl
ie
d
in

th
e
sp
ra
ye
d

so
lu
tio

n

C
or
té
s-
Fl
or
es

et
al
.

(2
01
6)

(c
on
tin

ue
d)



4 Iodine Biofortification of Crops 99

Ta
bl
e
4.
4

(c
on
tin

ue
d)

C
ro
p

C
he
m
ic
al
fo
rm

C
on

ce
nt
ra
tio

n
ap
pl
ie
d

A
pp

lic
at
io
n

R
es
ul
ts

A
ut
ho
r

Pe
pp
er

K
I

0.
25
–5
.0

m
g
L

−1
K
I

N
ut
ri
en
ts
ol
ut
io
n

T
he

fr
ui
ts
re
ac
he
d

35
0–
13
50

µ
g
kg

−1
FW

.U
si
ng

0.
25
–1

m
g
L

−1
K
I
in

th
e

nu
tr
ie
nt

so
lu
tio

n
in
cr
ea
se
d
th
e

fr
ui
tq

ua
lit
y

L
ie
ta
l.
(2
01
7a
)

C
ab
ba
ge

K
IO

3
0.
21
,2

2.
7,

an
d

0.
59

kg
ha

−1
So

il
T
he

ap
pl
ic
at
io
n
to

th
e
so
il

in
cr
ea
se
d
th
e
io
di
ne

co
nt
en
ti
n

th
e
le
av
es

M
ao

et
al
.(
20
14
)

To
m
at
o

K
I,
K
IO

3
1
m
g
dm

−3
N
ut
ri
en
ts
ol
ut
io
n

In
co
m
bi
na
tio

n
w
ith

sa
lic
yl
ic

ac
id
,t
he

co
nt
en
to

f
I
w
as

in
cr
ea
se
d
in

fr
ui
ts

Sm
ol
eń
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lesions and even death in the seedling stage (Weng et al. 2008c). For plants grown in
soil with fertigation, biofortification with iodine has also been suggested (Dai et al.
2004; Ujowundu et al. 2010), combining the iodine with the application of humic
substances or organic acids (Smoleń et al. 2015; 2016a).

In soilless crops, in leafy vegetables such asChinese cabbage, spinach, and lettuce,
the application of iodine in a concentration of 10−6 M (0.17 mg L−1 KI, 0.21 mg L−1

KIO3) produces an increase in biomass (Borst Pauwels 1961;Whitehead 1973;Weng
et al. 2003; Zhu et al. 2003; Dai et al. 2004; Weng et al. 2008b; Blasco et al. 2013).
The iodine concentration to obtain an adequate result as biofortification can rise to
10−5 M (equivalent to 1.7 mg L−1 KI or 2.1 mg L−1 KIO3) (Weng et al. 2008b).
In strawberry plants, the nutrient solution with I− in 0.25 mg L−1 (1.97 × 10−6

M) and the IO3
− in 0.50 mg L−1 (2.86 × 10−6 M) were effective in increasing the

biomass and biofortifying the fruits with iodine (Li et al. 2017b). As the amount of
iodine in the nutrient solution increases, symptoms of intoxication develop, as in rice
where an amount greater than 100 µM (16 mg L−1 KI, 21.4 mg L−1 KIO3) in the
nutrient solution produces adverse effects on biomass (Mackowiak and Grossl 1999;
Singh et al. 2012). In lettuce, the same unfavorable outcome appears with 40 µM
(6.6mg L−1 KI, 8.6mg L−1 KIO3) in lettuce (Blasco et al. 2008) (Table 4.3). For fruit
vegetables such as tomatoes, up to 4 mg L−1 (3.2 × 10−5 M) can be applied without
affecting the biomass of the plants (Hageman et al. 1942). The use of iodine can
focus on particular growth stages, as described by Kiferle et al. (2013) who applied
high concentrations of iodine eight times once a week, starting with the fruit set of
the first cluster. The authors used 1–5 mM of KI (166–830 mg L−1) and 0.5–2 mM
of KIO3 (107–428 mg L−1) in the nutrient solution, obtaining fruits biofortified with
10 mg of iodine per kg of fresh weight, with low impact due to phytotoxicity in
plants. In other species where reserve organs such as onions are harvested, no effect
of iodine on biomass was observed (Dai et al. 2004). However, a decrease in biomass
has been reported when applying iodine to potatoes and tomatoes (Caffagni et al.
2011), carrots (Smoleń et al. 2014b), and nopal (García-Osuna et al. 2014).

Iodine interaction with other elements. From a nutritional perspective, a bio-
fortification program with iodine should ideally occur without restrictions on other
essential mineral elements (White and Broadley 2009). In lettuce, it was verified
that the application to the soil of KI (0.5–2.0 kg ha−1) and the foliar spraying of
KIO3 (0.02–2 kg ha−1) did not change in a significant way the mineral composition
of the lettuce, including elements such as Na, Al, Cd, and Pb (Smoleń et al. 2011).
In experiments of biofortification with iodine in tomato, a positive correlation was
found between the concentration of iodine and the concentration of Cu andMn in the
leaves (Hageman et al. 1942). In the lettuce, applyingKI to the soil andKIO3 by foliar
spray, the same positive effect was found on the Mn but not on the Cu (Smoleń et al.
2011). (Smoleń et al. 2014a) reported that the joint application of KIO3 and SeO4

2−
in hydroponic lettuce plants did not modify the biomass or mineral composition in
lettuce, observing a synergy that resulted in higher absorption of both elements in
the leaves. On the other hand, (Mao et al. 2014) when jointly applying Zn, Se, and I
demonstrated the biofortification for the three elements in cabbage. (Hageman et al.
1942) suggested that the modification in mineral composition that occurs in plants
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when applying iodine is possibly related to a redox phenomenon, since the oxidation
of I− to I2 provides a reducing potential of −0.535 V. Similarly, the IO3

− through
the induction of the reductase activity in the root (Kato et al. 2013) could generate a
similar effect. This redox effect of iodine is expected to have a highermagnitude in an
edaphic system (with more interacting components) compared to a soilless produc-
tion system (Jones 1998). The difference in the number of interactions between the
components of each system could partially explain the diversity of results observed
with the use of iodine in crops.

Biofortification and antioxidants in plants. In addition to the biofortification
potential, exogenous applications of iodine have an impact on the total antioxidants
and tolerance to stress in plants. These responses, except in a few species, have been
little studied and are considered as an advantage that can be used to promote the
use of iodine among agricultural producers (Medrano-Macías et al. 2016a). Iodine
applications at adequate concentrations result in a positive impact on the antioxidant
potential.

As for the responses of biomass and yield, a great variability occurs depending
on the plant species and the growing conditions. In the tomato, it was reported that
applying 7.88 µM IO3

− increased the content of ascorbic acid and total phenolic
compounds (Smoleń et al. 2015). In greenhouse tomato seedlings, the KI applied by
foliar spray significantly increased the concentration of ascorbate and glutathione,
without changing the enzymatic activity of catalase (CAT), ascorbate peroxidase
(APX), and glutathione peroxidase (GPX), but decreasing that of superoxide dismu-
tase (SOD) (Medrano-Macías et al. 2016b). On the other hand, in tomato grown in
sand, the I− concentration of 4 mg L−1 (3.2 × 10−5 M) did not modify the biomass
compared to the control, but the concentration of ascorbic acid in the foliage of the
plants decreased (Hageman et al. 1942). In Ipomoea aquatica, the I− induced a higher
amount of ascorbic acid, while the IO3

− and the iodoacetic acid (CH2ICOO−) had
the opposite effect (Weng et al. 2008b). In soybean grown in pots with soil, KIO3 with
concentrations of 20, 40, and 80 µM increased the enzymatic activity of superoxide
dismutase (SOD) and ascorbate peroxidase (APX) (Gupta et al. 2015).

In hydroponic lettuce the application of KI resulted in more significant accumula-
tion of phenols, ascorbic acid, and an increase in antioxidant potential (Blasco et al.
2008), while the application of KI (20, 40, and 80 µM) and KIO3 (20 µM) increased
the concentration of ascorbic acid and the enzymatic activity of CAT, decreasing the
concentration of glutathione (GSH) and the activity of SOD.As for the APX enzyme,
the activity in lettucewas increasedmore efficiently byKIO3 compared toKI (Blasco
et al. 2011). The positive effect on enzymatic antioxidants such as superoxide dismu-
tase (SOD) and ascorbate peroxidase (APX), as well as non-enzymatic antioxidants
such as GSH, and ascorbic acid (AA) was presented with <40 µM of KIO3 (Leyva
et al. 2011). On the other hand, Blasco et al. (2013) evidenced the increase in the
antioxidant response and higher concentration of total phenolic compounds by apply-
ing KIO3 in concentrations of 20 and 40 µM. In nopal cultivation, (García-Osuna
et al. 2014) observed the higher amount of ascorbic acid in plants grown in soil under
plastic tunnels when applying 10−4 M of KIO3 and KI by fertigation. In pea seeds,
the simultaneous application of I and Se allowed to obtain biofortified seeds with
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both elements, without modifying the concentration of glutathione, but decreasing
the anthocyanins with the specific combination of I− and SeO4

2−, without presenting
this adverse effect with the IO3

− (Jerše et al. 2018).

4.6 Research Needs Regarding Iodine Biofortification

The information presented lists a large number of achievements in recent decades
about the biofortification of crops with iodine. However, according to the author’s
criteria, a series of questions deserve attention:

1. The factors that promote the bioavailability of iodine in the soil are relatively
well described. However, it is necessary to carry out more research to validate
in different regions and climates, types of soil, and plant species the agronomic
management directed to the biofortification of the crops with iodine. In fact, all
the studies are directed toward the exogenous application of iodine, in different
concentrations, chemical species, substrates, and plant species. No information
was found about how agronomic management of soil, substrate, and plants or
environmental conditions in the case of soilless production systems modify the
concentration of iodine in crops, whether this occurs under deficit conditions of
bioavailable iodine or with adequate concentrations of the element in soil or soil
pore water.

2. The mobility of iodine through vascular systems is a subject that requires a lot of
work and is essential to understand the accumulation of iodine in fruits and grains.
It is necessary to understand better the connection between the microclimate of
plants and transport through the xylem, as well as the external and internal factors
that regulate the flow of iodine through the phloem.

3. It is necessary to verify the feasibility of biofortification with iodine in more crop
species; almost all the research effort has been directed to 20–25 plant species.
Those that accumulate significant reserves of carbohydrates and lipids in edible
organs, especially if they are roots, stems, or leaves, can be suitable candidates
for biofortification when the iodine is obtained from the soil. In the case of foliar
spraying applications, potentially all plants with edible aboveground structures
would be used as sources of iodine.

4. The issue of iodine stability once it is found in plant structures can be equally
valuable. The factors that regulate its permanence or volatilization in the edi-
ble organs are little understood. A related issue would be the balance between
conservation and volatilization after harvest and during storage, as well as the
impact of the final food preparation processes.

5. Further study is required about organic sources of iodine. Firstly, macroalgae
and marine and freshwater microalgae as a source of iodine-rich biomass, both
for direct consumption and for the preparation of composts enriched with iodine.
Second, biopolymers, minerals, and nanomaterials that form complexes with
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iodine or absorb it in their polymeric networks or porous structures, serving as
a source of slow release of the element and decreasing the volatilization rate of
the same.

6. Regarding the interaction of iodine with other mineral elements, the available
information seems to indicate that iodine does not induce significant restrictions
on other mineral elements. However, a topic that has not been addressed with
adequate extension is the simultaneous biofortification with I–Fe–Zn, I–Se, and
even with I–Se–Si.

7. The facet of the use of iodine as an antioxidant to increase tolerance to stress
is practically unexplored. The description of the impact of iodine for different
kinds of biotic or abiotic stress could be crucial to increase acceptance of iodine
use among agricultural producers.

8. Some basic knowledge may be useful. Examples are the impact that iodine has
on transcriptomes or proteomes in plants, on metabolic efficiency (such as pho-
tosynthesis, respiration, metabolism of other mineral elements, among others),
as well as on the microbiome of plants. These, among other topics, are very little
studied and more understanding will undoubtedly allow us to understand and
expand the uses of iodine in agriculture.

4.7 Concluding Remarks

The use of table salt iodization has solvedmany problems of iodine deficiency among
the population. The biofortification of crop plants is a set of techniques that com-
plement the iodization of salt and allow obtaining plant foods with concentrations
of the element that partially or entirely covering the daily requirements of iodine
intake. The concentration of iodine in food depends primarily on the ability of plants
to absorb it and accumulate it and on the capacity of soil and water to provide it in
bioavailable forms for plants. In many soils, the low concentration of bioavailable
iodine is the result of intrinsic geological factors, but in other cases, it seems to be the
result of edaphic fixation. These edaphic factors that modify the bioavailability of
iodine in the soil are well known, pH and ORP, organic matter, minerals of colloids,
andmicrobial action.Although almost all these edaphic factors form, or can be part of
routine agronomicmanagement, little is known about their appropriate combinations
to increase the bioavailability of iodine that is fixed in agricultural soils, although
it is possible that they are analogous to those needed to improve the bioavailability
of other elements such as P and Si. In fact, the total experimental reports on bio-
fortification refer to the contribution of exogenous iodine in mainly inorganic forms
(KI and KIO3) and some organic (kelp and iodinated organic acids) both in soil
crops and on substrates other than soil or hydroponics. The ideal situation would be
for exogenous applications to be used mostly for crops in soilless systems, whereas
for the crops in soil, the exogenous applications were a complement to agronomic
management aimed to promote the bioavailability of the iodine in the soil solution.
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As iodine is not an element qualified as essential for plants, the extension of its use
among agricultural producers will not be simple, unless it ensures some utilitarian
facet of iodine, which could be its capacity to promote antioxidants and tolerance to
stress.
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Organic iodine supply affects tomato plants differently than inorganic iodine. Physiol Plant.
https://doi.org/10.1111/ppl.12733

Han W, Clarke W, Pratt S (2016) Cycling of iodine by microalgae: iodine uptake and release by
a microalgae biofilm in a groundwater holding pond. Ecol Eng 94:286–294. https://doi.org/10.
1016/j.ecoleng.2016.05.001

Herrett RA, Hatfield HH, Crosby DG, Vlitos AJ (1962) Leaf abscission induced by the iodide ion.
Plant Physiol 37:358–363

Heumann KG, Neubauer J, Reifenhäuser W (1990) Iodine overabundances measured in the surface
layers of an antarctic stony and ironmeteorite. GeochimCosmochimActa 54:2503–2506. https://
doi.org/10.1016/0016-7037(90)90236-E

Hong C-L,Weng H-X, Qin Y-C, Yan A-L, Xie L-L (2008) Transfer of iodine from soil to vegetables
by applying exogenous iodine. Agron Sustain Dev 28:575–583. https://doi.org/10.1051/agro:
2008033

Itoh N, Toda H, Matsuda M, Negishi T, Taniguchi T, Ohsawa N (2009) Involvement of S-
adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emis-
sions from agricultural plants: isolation and characterization of an HTMT-coding gene from
Raphanus sativus (daikon radish). BMC Plant Biol 9:116. https://doi.org/10.1186/1471-2229-9-
116
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Kopeć R, Koronowicz A, Kapusta-Duch J (2016b) Biofortification of Carrot (Daucus carota L.)
with Iodine and Selenium in a Field Experiment. Front Plant Sci 7:730. https://doi.org/10.3389/
fpls.2016.00730
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Chapter 5
Biofortification of Maize for Protein
Quality and Provitamin-A Content
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Abstract Protein and micronutrient deficiency have emerged as the major public
health problems in under-developed as well as developing countries. Of the sev-
eral approaches used to alleviate malnutrition, biofortification has turned out to be
the most effective and sustainable approach for providing micronutrients in natural
forms. Marker-assisted selection (MAS) is an effective strategy to introgress trait(s)
especially controlled by recessive gene(s). Maize is an important cereal extensively
used as food and feed around the world. The nutritive value of maize, however,
remains relatively poor on account of low quality of protein and lower level of
micronutrients like provitamin-A. Research initiatives during the past three decades
have culminated in the development of quality protein maize (QPM) that possesses
nearly double the quantity of lysine and tryptophan, which helps in enhancing the
biological value of QPM protein as compared to normal maize. QPM although con-
tains better quality of protein; yet the quantity of provitamin-A is very low (<2 ppm).
The current chapter presents an overview of the research work undertaken to enhance
the quality of protein in maize grains on the one hand and the level of provitamin-A
on the other. Two genes viz. lycopene ε-cyclase (lcyE) and β-carotene hydroxylase1
(crtRB1) play a significant role in enhancing provitamin-A. Favourable alleles of
crtRB1 and lcyE gene(s) were introgressed in commercial hybrids using MAS. The
resultant hybrids were found to contain 4.5-fold more provitamin-A as compared
to original hybrids. Stability of provitamin-A in QPM as well as normal maize and
possible impact of these multi-nutrient hybrids in reducing protein and vitamin-A
deficiency have also been discussed.
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5.1 Introduction

Biofortification, known to enhance micronutrients in the edible part of the plants
through breeding approaches, has turned out to be a sustainable, economic and
robust way for supplying nutrients to human being (Bouis 2018). Staple food crops
like wheat, rice, maize, millets and legumes are the major sources of food, energy,
various minerals and vitamins required for growth and development (Neeraja et al.
2017). Cereals are the major source of carbohydrate and are moderate in protein
quantity as well as quality. Some of the cereals, however, possess poor quality of
proteins. Malnutrition caused by consumption of unbalanced food has emerged as a
major health problem worldwide. Recent data indicate that around 2 billion people
suffer globally frommalnutrition, and of this, nearly 815 million are undernourished
(Global Nutrition Report 2017). Of the 667 million children under the age of five,
155 million are stunted and 52 million do not weigh enough for their height. An
estimated 45% of death of children under the age of five is linked to malnutrition
(Black et al. 2013). Malnutrition also contributes to loss in annual gross domestic
product (GDP) to an extent of 11% in Asia and Africa.

Alleviatingmalnutrition has been identified as the key step towards achieving sus-
tainable development goals (SDGs) (Global Nutrition Report 2017). Biofortification
of staple food crops has been identified as one of the most promising approaches
to alleviate malnutrition. Among cereals, maize has attracted worldwide attention
as staple food and feed, besides serving as raw material for an array of industrial
products (Hossain et al. 2018). Along with rice and wheat, maize is a source of up
to 30% of the calories for more than 4.5 billion people especially among developing
countries (Shiferaw et al. 2011). Globally, more than a billion tonnes of maize grains
were produced from 180 million hectares of land distributed among as many as 165
countries (Foreign Agricultural Service/USDA 2017). Maize grain is moderately
rich in protein content but poor in the quality of protein on account of deficiency of
two essential amino acids viz. lysine and tryptophan (Zunjare et al. 2018a; Sarika
et al. 2018a). Intake of food deficient in essential amino acids results in increased
susceptibility to diseases, decreased blood constituents and eventually retarded men-
tal and physical development of children (Galili and Amir 2013). Among various
micronutrient deficiencies, protein–energy malnutrition (PEM) also known as pro-
tein–energy undernutrition (PEU) causes highest number of death worldwide (Bain
et al. 2013). Maize is also known to be deficient in provitamin-A (proA) and the
low content present in endosperm cannot meet the daily requirement of human being
(Muthusamy et al. 2014; Gupta et al. 2015). ProA is required for proper cell growth,
eye vision and normal functioning of immune and reproductive system of human
body (Sommer and West 1996). Around 4.4 million preschool-age children and 20
million pregnant women (one-third are clinically night blind) suffer from visible eye
damage and night blindness due to vitamin-A deficiency (VAD). Recent study con-
ducted by Skjaerven et al. (2018) revealed that micronutrient deficiency in parents
affects the liver function of progeny. Since these micronutrients cannot be synthe-
sised in human body, they need to be consumed through diet rich in micronutrients
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(Tanumihardjo 2011). The recommended daily allowance of lysine is 30 mg/kg body
weight for adults, while it is 35 mg/kg body weight for children. As regards tryp-
tophan, the daily requirements are 4 and 4.8 mg/kg body weight/day in adults and
children, respectively (WHO/FAO/UNU 2007). Similarly, World Health Organisa-
tion (WHO) has recommended an average proA of 500 RE (retinol equivalent) for
adults and 250 RE for children per day (Bouis and Welch 2010). HarvestPlus, an
international organization for development of nutrition-rich crops for human nutri-
tion, has fixed a target of 15 ppm of proA in maize to meet the daily requirement
(Andersson et al. 2017).

To combat protein–energy imbalance, plant breeders have developed quality pro-
tein maize (QPM) genotypes by using recessive opaque2 (o2) allele (Mertz et al.
1964) in conjunction with endosperm modifiers at CIMMYT, Mexico (Vasal et al.
1980; Bjarnason and Vasal 1992). Natural variants of β-carotene hydroxyalse1
(crtRB1) and lycopene-ε-cyclase (lcyE) have been used to develop proA-rich maize
lines in various countries (Dhliwayo et al. 2014; Muthusamy et al. 2014; Simpungwe
et al. 2017; Zunjare et al. 2017, 2018a). Here, we present an overview of the develop-
ment, dissemination, impact and challenges in adoption of the of biofortified maize
cultivars.

5.2 Biofortification for Sustainable Supply
of Micronutrients Through Diet

This approach has become very popular among plant scientists for development of
nutritionally enhanced food crops such as wheat, rice, maize, pearl millet, beans,
sweet potato, etc. (Giuliano 2014; Owens et al. 2014). Although food fortification
and supplementation are some of the various means deployed for alleviating malnu-
trition, they are not sustainable in the long run, primarily due to lack of purchasing
power of the poor and unorganised distribution system. The prevalence of poverty in
developing countries, poor infrastructure, and lack of awareness are also the major
constraints for their success. Though dietary diversification holds promise, avail-
ability of fruits and vegetables is limited to seasons; and the poor cannot afford
it on regular basis, hence this strategy also becomes non-sustainable (Bouis and
Welch 2010; Tanumihardjo 2011; Vignesh et al. 2012). Amongst all, biofortification
is regarded as the most sustainable and cost-effective and robust method for ame-
lioration of malnutrition (Gupta et al. 2015). Biofortification has been attempted in
various ways (alone and in combination); the major ones in maize are presented as
follows.
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5.2.1 Single Biofortification

The term ‘single biofortification’ refers to enhancement of a single or a group of sim-
ilar micronutrient(s) through breeding approach in crops. For instance, introgression
of recessive allele of o2 in presence of modifiers led to development of QPM culti-
vars rich in two essential amino acids viz. lysine and tryptophan. Likewise, quantity
of proA has been enhanced in maize genotypes through introgression of favourable
alleles of crtRB1 and lcyE genes (Vignesh et al. 2012, 2013; Babu et al. 2013; Choud-
hary et al. 2014, 2015; Muthusamy et al. 2014, 2015a, b, c, 2016; Liu et al. 2015;
Zunjare et al. 2017, 2018a, b, c). Both conventional breeding and molecular breeding
approaches have been deployed for enriching the micronutrients to agronomically
superior lines/hybrids of maize.

5.2.1.1 Development of Quality Protein Maize (QPM)

The o2-basedQPMcontains nearly double the amount of lysine and tryptophan in the
endosperm than the normal maize. Such balanced combination of amino acids in the
endosperm results in higher biological value thereby ensuring availability of better
quality of protein than normal maize. The recessive allele of o2was first described by
Jones and Singleton in 1920 (Emerson et al. 1935), but its nutritional significancewas
discovered by Mertz et al. (1964) at Purdue University, United States of America.
α-zeins are the most abundant storage proteins in the maize endosperm but they
are characteristically poor in lysine and tryptophan. The homozygous o2 mutant
causes reduction in production of zeins resulting in a corresponding increase in non-
zein proteins, which contain higher levels of lysine and tryptophan (Gibbon et al.
2003). The o2 gene, located on the short arm of chromosome 7, encodes a leucine
zipper transcription factor that regulates expression of the 19- and 22-kDa α-zeins.
Mutation at the o2 locus encodes the defective regulatory element resulting in reduced
transcription of the α-zein genes. The o2 gene also regulates the lysine ketoglutarate
reductase (LKR) gene which degrades the free lysine (Schmidt et al. 1990). The o2
mutation produces a defective transcriptional factor resulting in reduced transcription
of the LKR and thereby less degradation of free lysine (Brochetto-Braga et al. 1992).
Further, o2 is also generally accompanied with increased proteins relatively rich
in lysine (Jia et al. 2013). In addition, QPM also balances leucine–isoleucine ratio
for tryptophan liberation which enhances niacin biosynthesis and thereby combats
pellagra disease.

Although the o2 allele modified the amino acid pattern beneficially, yet; it pos-
sessed undesirable traits like low yield, soft and chalky endosperm, more suscepti-
bility to diseases and insect–pests and higher storage losses. Since grain yield is a
primary trait of interest, the soft endosperm-based o2 cultivars were not accepted
by the farmers. Later, breeders at International Maize and Wheat Improvement Cen-
ter (CIMMYT), Mexico combined o2 and endosperm modifiers, which resembled
normal maize both in kernel phenotype and agronomic performance, and named
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the lysine and tryptophan-rich genotype as QPM (Vasal et al. 1980). The breeding
schemes followed and germplasm used in the development of QPM have been men-
tioned in several reviews published earlier (Bjarnason and Vasal 1992; Vasal 2000,
2001; Prasanna et al. 2001).

The genetic and molecular basis of modifier loci that affect both kernel mod-
ification and amino acid accumulation in endosperm of QPM genotypes assumes
great significance. The factors responsible for the formation of vitreous and starchy
endosperm in maize are poorly understood (Holding et al. 2008). The inheritance
pattern of modifiers is fairly complex and quantitative in nature with preponder-
ance of additive gene effects, and occurrence of reciprocal cross-difference, dosage
and xenia effects (Lopes and Larkins 1995; Bjarnason and Vasal 1992). However,
molecular dissection of the trait showed increased levels of 27-kDa γ-zeins as likely
candidate to impart hardness in endosperm, as the o2-modified (QPM) grains have
approximately double the amount of γ-zein in the endosperm relative to the soft
o2 mutants (Wu et al. 2010). For selection of these modifiers, light box test is
commonly deployed by the breeders in QPM breeding programme (Hossain et al.
2007, 2008a, b; Vivek et al. 2008). Genetic analyses on QPM germplasm suggest
involvement of two independent loci controlling endosperm modification (Lopes
and Larkins 1995). Bulked segregant analysis (BSA) of segregating populations also
reveals two chromosomal regions on the long arm of chromosome 7 associated with
the endospermmodification (Lopes et al. 1995). It has been demonstrated that γ-zeins
and their interaction with starch granules are also involved in the modification of o2
endosperm (Gibbon et al. 2003; Wu et al. 2010). The proteins of modifier genes
can interact with γ-zein RNA and enhance their transport from nucleus and thus
increase their stability (Dannenhoffer et al. 1995). Besides, γ-zein being enriched
with cysteine residues, help in formation of disulphide bond between the protein bod-
ies, thereby compacting the endosperm (Burnett and Larkins 1999). Holding et al.
(2008) identified seven quantitative trait loci (QTLs) by using recombinant inbred
line (RIL) population and characterised 24 candidates genes that are differentially
regulated in QPM genotype, compared to the o2 starchy mutant. Microarray hybridi-
sation showed that some of the modifiers are associated with ethylene and ABA
signalling and suggest a potential linkage of o2 endosperm modification with pro-
grammed cell death (Holding et al. 2011). Liu et al. (2016) recently identified a QTL
(qγ 27) affecting expression of 27-kDa γ-zein, and it was mapped on chromosome
7 near the 27-kDa γ-zein locus. The QTL, qγ 27 resulted from 15.26-kb duplication
at the 27-kDa γ-zein locus, increases the level of gene expression.

QPM also comprised of a distinct set of amino acid modifier genes which affect
the relative levels of lysine and tryptophan content in the grain endosperm as the
amount of essential amino acids in QPM genotypes varies quite extensively, indi-
cating the role of modifiers in regulating amino acid biosynthesis (Pandey et al.
2015). Aspartate pathway directs lysine synthesis and is feedback-regulated by its
end products. Aspartate kinase 2 (Ask2) gene located on long arm of chromosome 2
encodes aspartate kinase that catalyses the conversion of aspartate to β-aspartyl phos-
phate, and sensitive to lysine inhibition. However, natural mutant forms of ask2 are
feedback insensitive and aid in higher amounts of lysine, methionine and threonine
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accumulation (Wang et al. 2007). Habben et al. (1995) demonstrated that elongation
factor 1α (EF-lα) is over-expressed in o2 endosperm compared to its wild types, and
it is a significantly correlated with total lysine content of the endosperm. EF-1α pro-
tein is generally correlatedwith cytoskeleton network,mitotic apparatus,microtubule
andmany cellular processes (Lopez-Valenzuela et al. 2004). Genetic studies revealed
two QTLs that account ~25% of the phenotypic variance. One locus on chromosome
4S is coincident with zein gene and hence allelic variation of α-zein may contribute
to difference in EF-Iα content among parents by increasing the surface area protein
bodies in the endosperm creating more extensive network of cytoskeleton (Wang
et al. 2001). Wang and Larkins (2001), Holding et al. (2008), Gutierrez-Rojas et al.
(2010), Pineda-Hidalgo et al. (2011), Lebaka et al. (2013) and Babu et al. (2015) have
reported several modifier loci affecting the accumulation of lysine and tryptophan.

QPM Through Conventional Plant Breeding

Efforts were made on large-scale to develop QPM germplasm in tropical-,
subtropical- and highland-genetic background with different maturity groups. Con-
sidering the complexity of QPM breeding system, an innovative breeding scheme,
named as ‘modified backcrossing-cum-recurrent selection’, was used (Vasal et al.
1980, 1984). Many advanced maize populations were successfully converted to
QPM versions through this procedure at CIMMYT, Mexico which is widely used
in the development of QPM cultivars in several countries including Brazil, China,
Ghana, India and several Latin American countries (Vasal 2001; Gupta et al. 2009;
Tandzi et al. 2017). Some of the very popular QPM cultivars that merit mention
are Obatampa (Ghana), AMH760Q (Ethiopia), Longe-5 (Sudan), Yunrui-1 (China),
Poshilo Makai-1 (Nepal) and Chaskarpa (Bhutan). In India, during 1997, a nutrition-
ally superior QPM composite with vitreous grain texture, ‘Shakti-1’, was released.
Since 1998, intensive efforts in different breeding centres of India resulted in the
release of QPM hybrids like Shaktiman-1, Shaktiman-2, Shaktiman-3, Shaktiman-4,
Shaktiman-5, HQPM-1, HQPM-4, HQPM-5, HQPM-7 and Pratap QPM Hybrid-1.
Bangladesh has also released QPMhybrid, BARIHybridMaize-5. In Pakistan, QPM
hybrids, QPHM200 and QPHM300 were released recently in 2017. QPM cultivation
and grain yield potential are interchangeable with normal maize (Ekpa et al. 2018;
Hossain et al. 2018).

QPM Through Molecular Marker-Assisted Backcross Breeding (MABB)

The recent advances in plant biotechnology including discovery of molecular mark-
ers have accelerated introgression of the target gene(s) in high-yielding varieties/lines
(Varshney et al. 2012). Conventional breeding approach to develop QPM genotypes
is tedious and time-consuming (Gupta et al. 2013); consequently, introgression of o2
through conventional backcrossing becomes demand due to several reasons viz. (i)
inability to identify o2 recessive allele in each backcross generations, (ii) requirement
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of about six generations of backcrossing to recover satisfactory levels of recurrent
parent genome and (iii) cumbersome biochemical tests of lysine and tryptophan
levels in the selected materials in each generation. These steps require enormous
labour, time and material resources. Marker-assisted backcross breeding (MABB),
on the contrary, offers tremendous potential to improve the efficiency and accuracy
of selection (Collard et al. 2005; Gupta et al. 2013). It involves two major strategies:
(i) foreground selection: selection of the targeted gene through molecular marker(s)
and (ii) background selection: recovery of the recurrent parent genome (RPG) using
markers distributed throughout the genome (Hospital et al. 1992). Foreground selec-
tion precisely identifies the gene of interest, while background selection expedites the
rate of genetic gain/recovery of RPG (Hospital et al. 1992; Babu et al. 2005; Gupta
et al. 2013; Hossain et al. 2013). The molecular cloning of O2 gene and its further
characterisation (Schmidt et al. 1987; Motto et al. 1988), followed by discovery of
three simple sequence repeats (SSRs) (phi057, phi112 and umc1066) within the gene
(Lin et al. 1997), led to the easy identification of the recessive o2 allele among segre-
gating generations (Babu et al. 2005; Gupta et al. 2013). These o2-based SSRs were
further used in MABB programme that aimed to convert non-QPM lines into their
QPM versions (Babu et al. 2005). ICAR-Vivekananda Parvatiya Krishi Anusadhan
Sansthan (Vivekananda Institute of Hill Agriculture), Almora in India, developed
‘Vivek QPM9’, a QPM hybrid through marker-assisted selection (MAS) and the
hybrid was released for commercial cultivation during 2008. The team at Almora
employed phenotypic selection for endosperm modifiers, while MAS for o2 allele
and genome-wide SSRs in the parental lines of Vivek Hybrid 9 (CM145 and CM212)
(Gupta et al. 2013). The QPM version, Vivek QPM-9 possesses 41% more trypto-
phan and 30% more lysine, with similar grain yield potential compared to original
hybrid. Vivek QPM-9 earned the distinction of being the first MAS-based maize
cultivar released for commercial cultivation in India (Gupta et al. 2013). Further-
more, three essentially derived varieties (EDVs) viz. ‘Pusa HM4 Improved’, ‘Pusa
HM8 improved’ and ‘Pusa HM9 Improved’ possessing high lysine and tryptophan
were developed through MAS at the ICAR-Indian Agricultural Research Institute,
New Delhi and these hybrids were released for commercial cultivation during 2017
(Fig. 5.1). ‘Pusa HM4 Improved’ possesses high lysine (3.62%) and tryptophan
(0.91%) in protein with an average grain yield of 6.4 t/ha. ‘Pusa HM8 Improved’
and ‘Pusa HM9 Improved’ possessed 4.18 and 2.97% of lysine, and 1.06 and 0.68%
of tryptophan, with grain yield of 6.3 and 5.2 t/ha, respectively (Yadava et al. 2017;
Hossain et al. 2018). In addition, several researchers worldwide have used molecular
markers to introgress o2 allele into normal inbreds (Manna et al. 2005; Danson et al.
2006; Magulama and Sales 2009; Jompuk et al. 2011; Kostadinovic et al. 2016).

Enhancement in the quantity of lysine and tryptophan helps in doubling the bio-
logical value of the maize protein in QPM. Therefore, in order to further increase the
quantity of these two essential amino acids, Sarika et al. (2017) deployed another
mutant opaque16 (o16) and reported distinct advantages of using o16 and o2 alleles
together. Linked SSRs, umc1141 and umc1149, were successfully utilised for selec-
tion of o16 (Yang et al. 2005, 2013; Zhang et al. 2010, 2013). As this mutant does not
influence the physio-chemical properties of grains, utilisation of o16 offers potential
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of further increasing lysine and tryptophan inQPMlines/hybrids (Sarika et al. 2018a).
The marker-assisted pyramiding of o2 and o16 revealed additional increase in lysine
and tryptophan in o2o2/o16o16 genotypes than only o2o2-based genotypes (Sarika
et al. 2018b). Four popular commercial o2-based QPM hybrids, HQPM1, HQPM4,
HQPM5 and HQPM7, were pyramided with o16 allele. The reconstituted hybrids
possess an average of 0.13% tryptophan and 0.50% lysine compared to 0.08 and
0.37% in original hybrids, with an average enhancement was 60 and 49%, respec-
tively (Fig. 5.2) and similar yield potential too.

QPM Through Transgenic Approach

Transgenics has also been explored in enhancing protein quality in maize. Unger
et al. (1993) created two mutants of wild typeO2 allele by deleting the basic domain
and first 175 N-terminal residues. The mutants when co-expressed with O2 inhib-

Fig. 5.1 Grain and ear characteristics of MAS-derived QPM hybrid ‘Pusa HM8 Improved’ and
comparison of essential amino acids with original hybrid HM8

Fig. 5.2 Amino acid profiles in o2o2 and o2o2/o16o16-based hybrids



5 Biofortification of Maize for Protein Quality … 123

ited expression of 22-kDa α-zein by nearly ten-fold in suspension cells of maize
endosperm. The reduction in 22-kDa α-zein caused concurrent increase in non-zein
proteins that are rich in lysine and tryptophan. Further, Segal et al. (2003) developed
RNA interference (RNAi) constructs derived from a 22-kDa α-zein and produced a
dominant opaque phenotype. Wu and Messing (2011) directed an RNAi construct
against both 22- and 19-kDa α-zeins, and transgenic plants showed significant reduc-
tion in synthesis of zeins and recorded high-lysine concentration. These transgenic
maize lines with great promise are; however, yet to be deployed for commercial
production of maize hybrids with enhanced lysine and tryptophan.

5.2.1.2 Development of ProA-Rich Maize

Among the genes in the carotenoids biosynthesis, lcyE and crtRB1 have been shown
to predominantly regulate the accumulation of proA compounds and are the major
target genes for the improvement of proA in the breeding programmes (Vallabhaneni
et al. 2009; Babu et al. 2013; Vignesh et al. 2012, 2013; Muthusamy et al. 2015a, b,
c, 2016; Zunjare et al. 2017, 2018a, b, c). Harjes et al. (2008) showed that a variation
at the lcyE gene (bin 8.05) alters flux down α-carotene versus β-carotene branch
explaining 58% of the variation in these branches and a three-fold difference in proA
compounds. The crtRB1 gene (bin 10.05) catalyses conversion of β-carotene into
β-cryptoxanthin and further β-cryptoxanthin to zeaxanthin (Yan et al. 2010; Vignesh
et al. 2013). The strong and statistically significant effect (2–10-fold) of favourable
allele of crtRB1 for enhanced β-carotene in maize is now very well established and
has been used to develop proA-rich maize lines/hybrids (Azmach et al. 2013; Babu
et al. 2013; Muthusamy et al. 2014; Liu et al. 2015; Menkir et al. 2017; Zunjare
et al. 2017; 2018a). Positive effects of pyramiding of crtRB1 and lcyE for proA
enhancement were also shown by several researchers around the world (Babu et al.
2013; Azmach et al. 2013, 2018; Zunjare et al. 2017; Gebremeskel et al. 2017).

ProA-Rich Maize Through MABB

In proA biofortification programme, the quantification proA of samples using
HPLC is not only tedious but expensive too (Pixley et al. 2013; Babu et al.
2013). Since MAS eliminates the need for phenotypic evaluation of large pro-
genies, the introgression of favourable alleles of the two key genes viz. lcyE
and crtRB1, imparting enhancement of proA, was employed. In the past, sev-
eral proA-rich hybrids/open-pollinated varieties (OPVs) developed by CIMMYT,
Mexico, were released in Malawi, Zambia and Zimbabwe. More than 15 proA-
rich OPVs developed by International Institute of Tropical Agriculture (IITA),
Ibandan, were also released in Nigeria, Ghana and DR Congo (www.harvestplus.
org). Out these, three maize hybrids from Zambia (GV662A, GV664A and
GV665A), two hybrids (Ife maize hyb-3 and Ife maize hyb-4) and two synthet-
ics (Sammaz 38 and Sammaz 39) from Nigeria and one synthetic from Ghana

http://www.harvestplus.org
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Fig. 5.3 Grain and ear characteristics of MAS-derived proA version of Vivek Hybrid-27, and
comparison of proA (two months after storage) with original hybrid

(CSIR-CRI Honampa) possessing 6–8 ppm of proA are worth mentioning (Dhli-
wayo et al. 2014; Simpungwe et al. 2017). To date more than 40 proA maize vari-
eties comprising of synthetics, single-cross hybrids, three-way hybrids have been
released in many African countries such as DR Congo, Ghana, Malawi, Mali,
Nigeria, Rwanda, Tanzania, Zambia and Zimbabwe (Andersson et al. 2017). Breed-
ers at ICAR-IARI, New Delhi, have also introgressed the favourable allele of crtRB1
gene fromCIMMYT-HarvestPlus genotypes in the parental inbreds of popular maize
hybrids viz. HM4, HM8 and Vivek Hybrid-27 using MABB approach (Muthusamy
et al. 2014) (Fig. 5.3). The improved hybrids possessed higher proA as high as
21.7 ppm (in freshly harvested grains) with maximum change of 8.5-fold. Similar
grain yield potential was observed in the improved hybrids compared to the original
hybrids.

ProA-Rich Maize Through Transgenic Approach

Transgenic technology was also deployed to enrich the carotenoids in maize (Aluru
et al. 2008; Zhu et al. 2008; Naqvi et al. 2009). Over-expression of crtB and crtI
genes from bacteria (Erwinia herbicola) helped in increasing β-carotene content
up to 10 ppm in Hi-II maize line (Aluru et al. 2008). This was followed by two
reports on development of transgenic maize genotypes with ~60 ppm β-carotene
using combination of five genes (psy1, crtI, lycb, bch and crtW ) by Zhu et al. (2008)
and Naqvi et al. (2009); however, the deployment of these lines for commercial
cultivation/development of hybrids is yet to come.
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5.2.2 Double Biofortification

The term ‘double biofortification’ refers to development of crop varieties enriched
with the two diverse micronutrients by either sequential or simultaneous stacking of
genes imparting highermicronutrient concentration. As for example,marker-assisted
stacking of crtRB1, lcyE and o2 for development of varieties rich in both essential
amino acids and proA concentration (Muthusamy et al. 2014; Liu et al. 2015; Zunjare
et al. 2018a). Both crtRB1 and lcyE genes have contributed for enhanced proA, while
o2 allele enhanced the amount of essential amino acids viz. lysine and tryptophan
in the same genetic background. This introgression of different favourable alleles of
various genes in a single variety has become now a reality due to use of molecular
markers that reduce the phenotypic screening of individuals drastically. Otherwise,
to achieve double-biofortified crops, it would have taken enormous time and cost for
phenotypic screening and thereby posing huge constraints.

5.2.2.1 Development of ProA-Rich QPM

Globally for the first time, a double-biofortified maize hybrid ‘Pusa Vivek QPM 9
Improved’ has been developed (in India), that possesses higher proA (8.15 ppm after
twomonths of storage) and high tryptophan (0.74%) and lysine (2.67%) (Muthusamy
et al. 2014; Yadava et al. 2017). The hybrid is released and notified for commercial
cultivation in hill and peninsular India during 2017. The hybrid showed an aver-
age grain yield is 5.6–5.9 t/ha, with a potential grain yield of 8.0–9.4 t/ha in two
diverse ecologies of the India. It was developed through introgression of crtRB1
allele in o2-based hybrid, ‘Vivek QPM9’ at ICAR-IARI, New Delhi. Later, four
QPM hybrids viz. HQPM1, HQPM4, HQPM5 and HQPM7 (popular maize hybrids
recommended for commercial cultivation in India) were also pyramided with crtRB1
and lcyE favourable alleles for elevating proA concentration in the QPM genetic
background. The introgressed hybrids showed a mean of 4.5-fold increase in proA
(range of 9.25–12.88 ppm) compared to original hybrids (2.14–2.48 ppm) after two
months of storage. Essential amino acids, lysine (0.334%) and tryptophan (0.080%)
of the improved hybrids were at par with the original QPM versions (lysine: 0.340%
and tryptophan: 0.083%). In addition, the improved hybrids showed similar yield
potential (6.3–8.5 t/ha) with their original versions (6.1–8.4 t/ha) when evaluated at
multi-locations (Zunjare et al. 2018a). The proA improved versions of HQPM5 and
HQPM7 hybrids (Fig. 5.4) have been identified for release in Annual Maize Work-
shop held atAssamAgriculturalUniversity, Jorhat,Assam in 5-7April, 2019 (https://
iimr.icar.gov.in). While, proA improved version of HQPM1 is under final year of
testing in AICRP trial. In China, Liu et al. (2015) attempted improvement of proA
in QPM inbreds by stacking crtRB1 allele and o2 in genetic background of two
inbreds, CML161 and CML171. Enhancement of proA to 5.25 ppm from 1.60 ppm
in CML161 and 8.14 ppm from 1.80 ppm in CML171 has been reported but their
commercial release has not been reported so far in China or elsewhere.

https://iimr.icar.gov.in
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Fig. 5.4 Grain and ear characteristics of proA-rich MAS-derived version of QPM hybrid (HQPM-
5), and comparison of proA (after two months of storage) and amino acids with original hybrid

Thus, the above reports show the success of biofortification in maize with either
one, two or multiple nutrients, which will help in combating malnutrition in the
countries where maize is used as staple cereal.

5.3 Nutritional Benefits of QPM

Meta-analysis of experiments conducted in different countries showed a strong impli-
cation about the nutritional benefits of QPM on gain of weight and height in infant
and young children (Teklewold et al. 2015). The endosperm protein of QPM has
been found to be equivalent to 90% of the milk protein (casein) as compared to the
40% in normal maize (Bressani 1994; Prasanna et al. 2001). The nutritional and bio-
logical superiority of QPM have been well established in rats, pigs, infants and small
children as well as adults (Prasanna et al. 2001). In Guatemala, it was demonstrated
that QPM with o2 allele has 90% of the nutritive value of milk protein in young
children. Children in Colombia suffering from ‘Kwashiorkor’, a severe protein defi-
ciency disease, were brought back to normalcy on a diet containing QPM-based diets
(Bressani 1994; Prasanna et al. 2001). Studies comprising of animal feeding trials
also evaluated the nutritional value of QPM as animal feed over normal maize. Paes
and Bicudo (1994) reported an increment of 50% in white and 40% in yellow culti-
vars in lysine, and corresponding 40 and 35% in tryptophan for QPM compared with
the normal maize. Twelve per cent gain in rate of growth in weight and 9% increase
in the rate of growth in height have been reported in infants and young children con-
suming QPM over the conventional maize (Gunaratna et al. 2010). The palatability
and cooking quality of traditional food prepared from QPM are more acceptable due
to its softness, perceived sweetness and longer shelf life in eastern African countries
(Akalu et al. 2010). Tessema et al. (2016) studied the translating the impact of QPM
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into improved nutritional status among Ethiopian children. Studies on rats found that
the animals fed with QPM diet weighed more and were thicker, longer, denser and
stronger than those fed on normal maize (Serna-Saldívar et al. 1992). Burgoon et al.
(1992) found that pigs raised on QPM have twice the rate of weight gain. QPM in
poultry diet also improves the growth performance of broilers and results in higher
weight gain when replaced with normal maize (Nyanamba et al. 2003; Onimisi et al.
2008; Panda et al. 2014). The nutritional evaluation of QPM in feeding trials thus
has proved its nutritional superiority over normal maize for human and livestock
consumption (Nyakurwa et al. 2017; Tandzi et al. 2017).

5.4 Nutritional Benefits of ProA-Rich Maize

The importance of proA maize for health has been well established across the coun-
tries (Bouis and Saltzman 2017). Several studies on bioavailability of proA from
biofortified maize clearly show that it is more efficient than the conversion ratio of
12:1 (into RE) as earlier proposed by the USA Institute of Medicine (2001). Esti-
mates of 2.8:1 (Howe and Tanumihardjo 2006a, b), 3.2:1 (Muzhingi et al. 2011),
and 6.5:1 (Li et al. 2010) for bioconversion has now been reported. Recently Dube
et al. (2018) reported that consumption of 200 g of proA-rich maize would provide
at least 50% of recommended diatary allowance, compared to 400 g as indicated by
HarvestPlus programme (Bouis et al. 2011), thereby suggesting more efficient con-
version ratio. An animal study on testing the bioavailability and an in vitro simulated
digestion/Caco-2 cell study testing bioaccessibility of biofortifiedmaize supports the
findings of human studies in terms of efficient absorption (Howe and Tanumihardjo
2006b; Thakkar and Failla 2008). According to another study conducted in Zambia,
the consumption of proA biofortified maize increased serum xanthophylls and 13C-
natural abundance of retinol in children (Sheftel et al. 2017). Data on intervention
group in 679 Zambian children have also shown that consumption of β-carotene-
rich maize significantly improved serum β-carotene concentrations (0.273 μmol/L)
compared with traditional maize (0.147 μmol/L) (Palmer et al. 2018).

ProA maize has also emerged as an alternative to colour additives in poultry
industry (Diaz-Gomez et al. 2017). Chickens fed with biofortified maize produced
eggs rich in proA (Liu et al. 2012; Heying et al. 2014; Moreno et al. 2016; Sowa et al.
2017). Another study further reveals that chickens fed with proA biofortified maize
had higher redness and yellowness and lower lightness in the meat and skin colour
than the chickens fed with white maize (Odunitan-Wayas et al. 2016). Heying et al.
(2014) showed that eating proAcarotenoids daily at the timeof gestation and lactation
enhanced liver retinol status in piglets. Thus, both direct consumption through food
and indirect consumption through poultry, proA-rich maize contributes significantly
to nutritional security. Lividini and Fiedler (2015) demonstrated great promise of
proA-rich maize as a highly cost-effective strategy for reducing malnutrition.
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5.5 Scope and Challenges for Dissemination of Biofortified
Maize

Thus, the deployment of popular maize hybrids enrichedwithmicronutrients in high-
yielding genetic background should prove beneficial for health and well-being of the
people (Gupta et al. 2015). Furthermore, biofortified maize with enhanced lysine,
tryptophan and proAhas enormous potential to alleviate/reduce PEMandVADeither
individually or simultaneously. Among various countries, Ghana cultivates QPM in
70,000 ha of land, while Mexico accounts for 2.5 million hectares of QPM (Nedi
et al. 2016). However, despite great potential, area under QPM comprises only 1%
of the total global area (Tandzi et al. 2017). Therefore, there exists huge scope for
popularising QPMmeeting protein requirement. The successful acceptance and con-
sumption of biofortified maize cultivars depend on various factors like education of
the household head, farmers’ participation in demonstration trials, attendance to field
days and numbers of livestock owned by the farmers (Gregory and Sewando 2013;
Zuma et al. 2018). Further, two important behavioural barriers that exist between the
development of biofortified maize and its impact on children’s nutrition and health
in practice are (i) the decision by households to adopt biofortified maize and (ii) the
subsequent decision to allocate the improvedmaize to young children (Tessema et al.
2016). Lack of awareness on health benefits of biofortified maize is one of the major
factors for its slow dissemination. In addition, the apprehension of low-yield poten-
tial of biofortifiedmaize hybrids prevails in themind of farmers and this needs proper
counselling through intensive extension services. Dilution of nutritional quality by
contamination of foreign pollen grains from neighbouring maize fields is yet another
concern for the quality produce. The adoption of biofortified maize has also been
limited due to lack of profitable markets for commercial producers, unwillingness
among maize food processors in its marketing as a premium product, and absence of
government incentive to encourage adoption by subsidising the price of seeds of bio-
fortified cultivars. Inclusion of biofortified products in government sponsored health
benefits programmes especially for children, pregnant women and elderly people
would help in their quick dissemination. These factors present direct and indirect
negative influence on popularity of biofortified maize. Hellin and Erenstein (2009)
had identified (i) weak linkages between maize farmers and local poultry firms, (ii)
limited access to improved technology and channels of information and other busi-
ness services for small-scale maize and poultry producers and (iii) low prevalence
of value chains with both growth and poverty reduction potential, as the three major
challenges of the biofortified maize as poultry feed and maize-poultry value chains.
Therefore, concerted efforts should be directed to create awareness among the grow-
ers, consumers and policy makers to enhance the area, consumption and popularity
of the biofortified maize hybrids. The government of Ethiopia has set a target to have
QPM varieties cultivated on 20% of the country’s total maize area in the coming few
years (Tessema et al. 2016). Addressing the above-mentioned interventions would
pave way for the popularisation of QPM cultivars worldwide in general and south
Asia in particular.
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5.6 Conclusion and Way Forward

The world has witnessed an extraordinary impact of QPM hybrids in tackling the
problem of PEM in many African countries. Furthermore, micronutrient (vitamin
A, Fe and Zn) deficiency has turned out to be a major health problem in developing
economies and normal maize contains less proA (<2.0 ppm) compared to target
level proA (15.0 ppm) set by HarvestPlus. Fe and Zn are also low in maize grains.
QPM hybrids, though rich in lysine and tryptophan, are devoid of sufficient proA
in endosperm. Natural variant of crtRB1 and lcyE has proved vital in improving
QPM genotypes for enhancing concentration of proA. After the successful impact of
QPM worldwide, proA-rich maize cultivars are currently being adopted by different
stakeholders in African as well as Asian countries. Double-biofortified (proA +
QPM) maize hybrids will have twin advantages of alleviating/reducing PEM and
VAD, simultaneously. Further, the targeted incorporation of VTE4 gene in QPM and
proA-rich maize is underway to develop vitamin-E, proA, lysine and tryptophan-rich
maize hybrids at ICAR-IARI, NewDelhi, India. Enhancement of kernel iron and zinc
through lowering phytic acid content also hold great significance. The multi-nutrient
rich maize hybrids would go a long way in alleviating/reducing malnutrition through
holistic approach.
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Chapter 6
Biofortification of Crops with Folates:
From Plant Metabolism to Table

Rocío Isabel Díaz de la Garza, Perla Azucena Ramos-Parra
and Heriberto Rafael Vidal-Limon

Abstract Folates are micronutrients, also known as vitamin B9. Folate
malnourishment is a global problem that affects human health from conception to old
age. Folate nutrition has been ameliorated by mandatory flour fortification with folic
acid in several countries; however, there still are populations with folate deficiency.
Plants are the primary folate source in the human diet; thus, biofortifying crops with
folates can be an alternate strategy to provide the vitamin to populations at risk.
Plants synthesize folates in a complex, highly compartmentalized route and, as in
other organisms; folates serve as cofactors of enzymes involved in the transfer of
one-carbon (1C) groups, known as 1C metabolism. Proof-of-concept folate bioforti-
fication has been achieved in crops targeting different edible plant tissues: rice,maize,
and common bean seeds, potato tubers, tomato fruit, and lettuce leaves. Engineer-
ing strategies included the overexpression of enzymes involved in the biosynthetic
route and also protection of the molecule from degradation in planta, as folates are
very labile compounds and food processing negatively affects their accumulation.
Enhancing folate contents in food crops has required and also generated knowledge
about the biochemistry of folate synthesis, transport, 1C metabolism, and stability
within plant food matrices. In this chapter, we attempt to cover these aspects and
also discuss the potential for developing folate biofortified crop varieties.

Keywords Folate · Biosynthesis · Degradation · Transport · Stability ·
Biofortification

6.1 Introduction

Folate is the general term for tetrahydrofolate (THF) and its derivatives. Folates
are enzyme cofactors capable of receiving and donating one-carbon (1C) units; these
reactions are part of the 1Cmetabolism present in all organisms. The folate molecule
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is composed of a pteridine ring attached to a p-aminobenzoate (PABA) moiety with
one or several glutamates linked to it. The transferable 1C unit is attached to the N5
of the pteridine ring and/or N10 of the PABA structure at different oxidation levels
(Fig. 6.1). Folates are produced by prokaryotes and some eukaryotes; animals do not
have this biosynthetic capability and must consume folates as part of their diet. Also
known as vitamin B9, these cofactors are essential micronutrients for human nutri-
tion, and plants are the primary source. In human metabolism, 1C units transferred
by folates are needed in several pathways: methionine, DNA, RNA synthesis, the
methylation cycle, and NADPH production (Bekaert et al. 2008; Fan et al. 2014).

Fig. 6.1 a Chemical structure and breakdown sites of mono- (MG) and polyglutamylated (PG)
folate molecule. Arrows indicate breakdown sites: oxidation of C9–N10 bond (blue), bond (green)
cleaved by PABA hydrolase, and cleavage sites of two γ-glutamyl hydrolases (red). b Stability and
functions of folate derivatives. p-aminobenzoate (PABA). Figure adapted from Ramos-Parra et al.
(2013) and García-Salinas et al. (2016)
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6.1.1 Impacts of Folate Deficiency on Human Health
and Folic Acid Fortification

Folatemalnutrition during early pregnancy increases the risk of congenital anomalies,
mainly neural tube defects (NTDs). NTD can cause death in children five years old
or younger or lifelong disabilities (Bailey et al. 2015). In addition to vitamin B12
deficiency, severe folate deficiency is also one of the causes of megaloblastic anemia
(Rush 2000). Folate deficiency has also been associated with cardiovascular disease
and some types of cancer (McNulty and Scott 2008). Also, recent studies correlate
low folate status with cognitive dysfunction in elderly people (Araújo et al. 2015).

The established recommended dietary allowance (RDA) of folates is 400 mg/day
for adults; during pregnancy, women need to consume 600 mg/day (FNB 1998).
However, folate contents in foods vary depending on species, tissues, and develop-
mental stages (Fig. 6.2). Leafy vegetables are good sources of folates, containing up
to 200 μg/100 g, while legume seeds can accumulate very high folate levels (up to
600 μg/100 g of raw seeds). Staple crops, on the other hand, accumulate very low
levels of the vitamin (<40 μg/100 g) (USDA 2018). Not all populations consume
the RDA requirements in their regular diets; thus, more than 50 countries fortify
flours with folic acid (Zimmerman 2011). Folic acid is the fully oxidized synthetic
form of folate: It cannot act as a 1C donor, but it can be used as a supplement because
it is reduced by dihydrofolate reductase (DHFR) in a two-step reduction that yields

Fig. 6.2 Relative folate levels in plant foods. a Folate variations during development. b Folate
contents in different plant tissues



140 R. I. Díaz de la Garza et al.

THF (Fig. 6.3). Folic acid fortification has significantly diminished NTDs in the
countries in which it has been implemented (Quinlivan and Gregory 2007); it is con-
sidered to be one of the best nutritional interventions worldwide. However, more
than 300,000 children are born with NTDs every year globally; of these, 190,000
cases occur in low- and medium-income countries (Lo et al. 2014). It was estimated
that in 2015, there were 117,900 NTD-associated deaths in children under 5 years
old (Blencowe et al. 2018). These numbers are evidence that, in addition to folic
acid interventions, alternative efforts for supplying folates are needed, primarily in
the countries and regions in which folic acid fortification and supplementation are
difficult to implement.

Alternatively, when folic acid is consumed in excess, it cannot be completely
reduced by DHFR, and non-metabolized folic acid has been found in blood circula-
tion (Plumptre et al. 2015). There are concerns about the possible adverse effects of
chronic excessive intake of the synthetic folate in human metabolism (Lucock and
Yates 2009). In addition, the consumption of high doses of folic acid is known to
mask a vitamin B12 deficiency, which can cause neurological complications (John-
son 2007). In fact, some developed countries, mostly those in Europe, do notmandate
folic acid fortification due to these concerns.

Fig. 6.3 Processing and absorption of synthetic and natural folates. a Polyglutamylated natural
folates (mainly 5-CH3-THF) are hydrolyzed by γ-glutamyl hydrolase (GGH, conjugase) in the
intestinal lumen or at the brush border. Monoglutamylated (MG) folates are transported into the
intestinal cell, appearing in the circulation as 5-CH3-THF MG. b Synthetic 5-CH3-THF MG is
transported directly into the bloodstream. c Folic acid (FA) is transported into the intestinal cell,
where it is reduced andmethylated, appearing in the circulation as 5-CH3-THFMG.Unmetabolized
FA was observed in mesenteric circulation. DHFR, dihydrofolate reductase; MTHFR, 5,10-CH2-
THF reductase. Figure obtained from Castorena-Torres et al. (2014)
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Biofortified crops accumulate reduced folates,mainly 5-CH3-THF forms, and spe-
cific concerns regarding folic acid do not apply to this reduced folate form (Obeid
et al. 2013). Moreover, biofortified crops can potentially reach broader populations
where traditional fortification cannot be implemented. Biofortification of plant foods
with folates has therefore become an attractive alternative for improving folate nutri-
tion. In this chapter, all folate biofortification efforts in crops are covered, along with
the biochemistry and chemistry of folates in plants and 1C metabolism.

6.2 Folate Metabolism in Plants

Folate biosynthesis and 1C metabolism are highly compartmentalized in plants
(Figs. 6.4 and 6.5). Nearly all folate biosynthetic genes have been cloned in Ara-
bidopsis, and a few of them have been characterized in plant crops. Each of the
moieties comprising the folate molecule is synthesized in different compartments,
as described in the following section.

Fig. 6.4 Tetrahydrofolate biosynthesis and pteridine degradation products in plant cells.
ADC, 4-amino-4-deoxychorismate; CPt, 6-carboxypterin; DHF, dihydrofolate; DHNP, dihydro-
neopterin; DNHP-P3, DHNP, triphosphate; DHP, dihydropteroate; DHPtAl, dihydropterin-6-
aldehyde; GTP, guanosine-5′-triphosphate; HMDHP, 6-hydroxymethyldihydropterin; HMPt, 6-
hydroxymethylpterin; PABA, p-aminobenzoate; PABA-Glc, PABA β-d-glucopyranosyl ester; Pt,
pterin; PtAl, pterin 6-aldehyde; THF, tetrahydrofolate. Dashed arrows indicate photochemical oxi-
dation steps; dotted arrows indicate possible oxidation. Biosynthetic pteridines (blue); oxidized
non-biosynthetic pteridines (gray); PABA branch (green); pteridine and PABA condensation prod-
ucts (magenta). Figure adapted from Ramírez-Rivera et al. (2016)



142 R. I. Díaz de la Garza et al.

Fig. 6.5 Interconversion of folate derivatives and one-carbon (1C) metabolism reactions within
different compartments of the plant cell. Arrows and numbers represent enzymatic reac-
tions. Dashed arrows and gray squares represent folate transport and transporters respectively.
1. Dihydrofolate reductase/thymidylate synthase; 2. Folylpolyglutamylsynthetase (FPGS B, C
and D isoforms); 3. Serine hydroxymethyltransferase; 4. Glycine decarboxylase; 5. 5,10-CH2-
THF dehydrogenase/5,10-CH=THF cyclohydrolase; 6. 10-CHO-THF deformylase; 7. 5-CHO-
THF cycloligase; 8. Methionyl-tRNA formyltransferase; 9. Methionine synthase; 10. Glyci-
namide ribonucleotide (GAR) transformylase and aminoimidazole carboxamide ribonucleotide
(AICAR) transformylase; 11. 5,10-CH2-THF reductase; 12. S-adenosyl methionine synthetase;
13. Methionine S-methyltransferase; 14. S-adenosyl homocysteine hydrolase; 15. Ketopantoate
hydroxymethyltransferase; 16. 10-CHO-THF synthetase; SAH, S-adenosylhomocysteine; SAM,
S-adenosylmethionine. Figure adapted from Srivastava et al. (2011)

6.2.1 Biosynthesis Pathway

6.2.1.1 Cytosolic Branch

The pteridine moiety of a folate molecule is likely produced in cytosol from GTP;
none of the characterized enzymes involved in pteridine production contain an evi-
dent localization signal. The first committed step for pteridine synthesis is cat-
alyzed by GTP cyclohydrolase I (GCHI), which, in a complex cyclization reaction,
converts GTP to the first pteridine of the pathway, dihydroneopterin triphosphate
(DHNP-P3). GCHI in plants is different from that of prokaryotes and vertebrates;
in the latter, it starts the tetrahydrobiopterin synthesis instead of folates. The plant
enzyme contains two GCHI-like domains, both indispensable for enzyme activity
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(Basset et al. 2002). In tomatoes, GCHI expression declines as the fruit ripens, and
the protein has not been detected in ripe fruit. This coincides with a slight decline
in 5-CH3-THF levels. Recently, two GCHI isoforms from soy were localized in the
cytosol of Arabidopsis protoplasts by fusing the proteins with GFP, confirming the
presumed cytosolic localization of the enzyme (Liang et al. 2019).

DHNP-P3 is dephosphorylated in two steps; it is not clear yet if there are
enzymes committed solely to processing DHNP-P3, or if general pyrophosphory-
lases and phosphatases could use the phosphorylated pteridine as a substrate. First,
the pyrophosphate is removed from DHNP-P3; Arabidopsis has a Nudix hydrolase
that is able to hydrolyze DHNP-P3 in vitro in addition to other substrates. Thus,
its participation in folate biosynthesis in vivo has yet to be confirmed (Klaus et al.
2005b). DHNP-P could then be dephosphorylated to DHNP by a phosphatase(s) that
has yet to be discovered.

DHNP is the substrate of dihydroneopterin aldolase (DHNPA), the Arabidopsis
genome contains three copies of these genes; two of them have been characterized in
Arabidopsis, along with one gene in tomatoes (Goyer et al. 2004). The plant enzyme
has two activities: the aldolase and also an epimerase that converts DHNP to dihy-
dromonapterin (DHMP). DHNPA is able to take both isomers as substrates, breaking
them down to hydroxymethyldihydropterin (HMDHP) and glycosides. HMDHP is
then transported into the mitochondria by a characterized carrier that has yet to be
identified.

6.2.1.2 Plastidial Branch

Plastids are the site of PABA biosynthesis, starting with the 4-amino-4-
deoxychorismate (ADC) production by ADC synthase (ADCS), which commits
chorismate for folate synthesis by catalyzing two reactions: NH3 release from glu-
tamine and the hydroxyl group replacement with the amino group yielding ADC.
This enzyme possesses a plastidial transit peptide, and it can be inhibited by dihy-
drofolate and methotrexate; fully reduced folates and PABA do not affect the activity
of the enzyme (Basset et al. 2004; Sahr et al. 2006). ADC is a labile molecule that
might be spontaneously converted to PABA to some extent and is also the substrate
of ADC lyase (ADCL), which releases pyruvate fromADC, yielding PABA. As with
GCHI, ADCS, and ADCL, mRNA levels drop as tomato fruits ripen, while PABA
levels increase at the onset of ripening and slightly decrease in ripe red fruit. PABA
is a weak acid that most likely can cross membranes by diffusion; therefore, it is
possible that this moiety is able to cross the plastidial and mitochondrial membranes
to participate in folate biosynthesis. In fact, the PABA pool in plants is composed
of free PABA and esterified PABA with glucose (PABA-Glc) (Eudes et al. 2008;
Quinlivan et al. 2003). PABA esterification is reversible in the cytosol, mediated by
an UDP-glucosyltransferase (UGT75B1 in Arabidopsis). Remarkably, PABA-Glc
is mainly found within the vacuole, not into the mitochondria (Eudes et al. 2008,
Fig. 6.6). Thus, this PABA ester can be a form of regulating the diffusible PABA;
PABA-Glc is thus proposed to be a storage and sequestrable form.
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Fig. 6.6 Transport of folates and its precursors among plant cell compartments. The known
or presumed transporters are indicated with circles; only 3, 4, and 7 have been cloned.
DHR/TS, dihydrofolate reductase/thymidylate synthase;GTP, guanosine-5′-triphosphate;HMDHP,
6-hydroxymethyldihydropterin; MG, monoglutamyl; PABA, p-aminobenzoate; PABA-Glc, PABA
β-d-glucopyranosyl ester; PG, polyglutamyl; SHMT, serine hydroxymethyl transferase; THF,
tetrahydrofolate. Figure adapted from Hanson and Gregory (2011)

6.2.1.3 Folate Production in Mitochondria

Once HMDHP is located in the mitochondria, it is phosphorylated by HMDHP
pyrophosphokinase (HPPK), which uses ATP to form HMDHP pyrophosphate
(HMDHP-P2). Then, this moiety is condensated with PABA to form dihydropteroate
(DHP) by DHP synthase (DHPS). Both activities are present in plants in a bifunc-
tional protein, HPPK-DHPS, which comprises the two domains. This enzyme is
strongly inhibited in vitro by DHP, DHF, and monoglutamylated THF (Mouillon
et al. 2002).

Arabidopsis is the only plant reported to have a cytosolic form of HPPK-DHPS,
but it does not seem to be involved in folate synthesis; instead, it is likely related
to an abiotic stress resistance mechanism (Navarrete et al. 2012). DHP produced in
cytosol would not serve for folate production in this compartment, as it would need
to enter the mitochondria for this purpose. In mitochondria, DHP is glutamylated by
dihydrofolate synthase (DHFS) to form the first folate of the pathway, dihydrofolate
(DHF) (Ravanel et al. 2001). Arabidopsis has one single DHFS gene, the function of
which has been characterized genetically; DHFS partial disruption causes defective
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embryo development that could be rescued by exogenously supplying an excess of
folate (Ishikawa et al. 2003).

DHF does not participate in 1C reactions; in fact, it inhibits some. DHF has to
be further reduced to THF by DHFR into the mitochondria in order to serve as a
cofactor. DHFR in plants is another bifunctional protein with thymidylate synthase
(TS) activity (Lazar et al. 1993). The coupling of these two activities can be advan-
tageous, as TS uses 5,10-CH2-THF as both methyl donor and a reducing agent to
form thymidylate, yielding DHF. This oxidized folate can be channeled and reduced
immediately by the DHFR domain, which uses NADPH as a reductant. Therefore,
mitochondria are the site in which THF, the first folate derivative, is synthesized
de novo.

6.2.2 Folate Polyglutamylation: Regulation
of Compartmentalization and 1C Reactions

THF and other folate derivatives produced in mitochondria need to be transported to
other cell compartments (Fig. 6.6). However, to date; very few transporters have been
cloned and characterized in plants, none of them targeted to the mitochondrial mem-
brane.Monoglutamylated (MG) folates are the preferred folate forms by transporters
(Hanson andGregory 2011). Folate retentionwithin the cell and compartments is thus
partially regulated by the addition of glutamyl moieties to the cofactor. Folylpolyg-
lutamate synthase (FPGS) is the enzyme that adds glutamate units to the molecule
(Ravanel et al. 2001).

There are three FPGS enzymes within plant cells, localized into mitochondria,
cytosol, and plastids (Fig. 6.5). Polyglutamylate (PG) folate forms have been found
within the three compartments and also within the vacuole. However, a plant’s vac-
uole contains an enzyme that cleaves this PG tail: γ-glutamyl hydrolase (GGH)
(Orsomando et al. 2005). There are three isoforms with different activities. GGH1
activity yields mainly diglutamylated folates, while GGH2 deglutamylates folates
to their monoglutamyl forms. GGH3 activity has not been assessed in Arabidopsis
(Orsomando et al. 2005), and no activity has been detected for the tomato homolog
(Akhtar et al. 2008).

The fact that vacuoles contain PG 5-CH3-THF is surprising (Orsomando et al.
2005; Akhtar et al. 2008); as no FPGS is known to be located in the vacuole,
these folate forms need to be transported into the vacuole and also protected from
GGH activity. To date, an ATP-binding cassette transporter that is able to translocate
methotrexate (a folate analogue) is the only cloned possible folate transporter targeted
to the tonoplast; it probably transports MG folates into the vacuole (Raichaudhuri
et al. 2009). However, more transporters would need to be present in the tonoplast to
sustain the PG folate derivatives observedwithin the vacuole (Fig. 6.6). Regarding the
other folate transporters studied in plants, in the chloroplast envelope of Arabidop-
sis, only two proteins have been characterized to date: At5g66380 and At2g32040
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(Bedhomme et al. 2005; Klaus et al. 2005a). Both have the capacity to transport MG
folates in vitro and probably have redundant functions, as individual loss of func-
tion mutants have not displayed a growth phenotype. Nevertheless, the At2g32040
mutant alters folate distribution and accumulation within chloroplasts (Klaus et al.
2005a).

The PG tail then plays a key role in regulating folate pools and distribution within
the cell. Evidence for this has been provided by the loss of function in individ-
ual FPGS in Arabidopsis. Individual knockouts (KOs) have caused alterations in
folate derivatives distribution in the affected compartment, and, in the case of plastid
and mitochondrial isoforms, loss of function of each specific FPGS caused a folate
leakage within these compartments. Moreover, individual and double FPGS loss
of function mutants have shown a myriad of developmental and metabolic conse-
quences (Akhtar et al. 2010; Mehrshahi et al. 2010; Srivastava et al. 2011; Waller
et al. 2009). This can be partially explained by less folate molecules available to
accept and donate 1C units within compartments, but also a short PG tail can signify
less folate affinity when used as a cofactor by the 1C metabolism enzymes.

Some of the folate-utilizing enzymes have more affinity to PG folates than to
MG derivatives. The best example is methionine synthase (MS), which practically
does not use mono- and diglutamylated 5-CH3-THF as cofactors, and it has a better
affinity with the triglutamylated form (Ravanel et al. 2004). De novo methionine
biosynthesis occurs in plastids, and loss of function of plastidial FPGS has remark-
ably led to multiple developmental and metabolic phenotypes recently described
in Arabidopsis: DNA hypomethylation, perturbations in nitrogen metabolism, root
development, lignin composition, and starch homeostasis in plastids (Hayashi et al.
2017; Mehrshahi et al. 2010; Meng et al. 2014; Reyes-Hernández et al. 2014; Srivas-
tava et al. 2011; Zhou et al. 2013). More evidence regarding the importance of the
folate PG degree comes with the modulation of GGH activity; its overexpression led
to less folate accumulation in tomato fruits (Akhtar et al. 2010), while its silencing
increased folates by 34% (Akhtar et al. 2008). Thus, polyglutamylation of folates is a
form of regulation of folate distribution and accumulation among cell compartments
and also of 1C metabolism.

6.2.3 Folate Interconversion and 1C Reactions:
Compartmentation Is Key

Folates derivatives are not distributed equally among cell compartments (Chen et al.
1997; Orsomando et al. 2005); this is due in part to the reactions that utilize folates as
cofactors causing their methylation, reduction, and oxidation occur unequally among
compartments. THFproduced inmitochondria and generated by 1C reactions in other
compartments obtains the 1C unit from serine by the action of serine hydroxymethyl
transferase (SHMT), which produces 5,10-CH2-THF in a reversible reaction. During
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mitochondrial photorespiration, the 1Cunit can also come fromglycine by the glycine
decarboxylase complex in mitochondria (Fig. 6.5).

The Arabidopsis genome contains seven SHMT isoforms that have been local-
ized in mitochondria, plastids, cytosol, and nuclei (Hanson and Roje 2001; Zhang
et al. 2010; Wei et al. 2013). The hydroxymethyl group from serine is transferred to
THF, yielding glycine; conversely, 5,10-CH2-THF can be taken by SHMT to form
serine from glycine. SHMT reaction equilibrium favors glycine formation; serine
then becomes a major 1C donor in organisms.

Mitochondrial, plastidial, and cytosolic SHMT isoforms have been biochemically
characterized, showing different affinities for MG and PG folates, PG folates being
better substrates (Rebeille et al. 1994; Wei et al. 2013; Zhang et al. 2010). 5-CHO-
THF and 5-CH3-THF inhibit SHMT, and PG forms show more affinity than MG for
the plastidial SHMT isoform (Zhang et al. 2010). As SHMT regulates a crucial 1C
entry point and is essential for photorespiration in mitochondria, its activity has to be
modulated by multiple factors; in addition, the distinct characteristics found among
the multiple isoforms hint at a complex metabolic regulation at many levels. In fact,
one of the mitochondrial isoforms, SHMT1, is the target of ubiquitin conjugation,
which tags proteins for proteasome-dependent degradation (Zhou et al. 2012). Less
SHMT1 activity leads to ROS overaccumulation and salt stress sensitivity (Moreno
et al. 2005). Changes in SHMT1 accumulation and activity due to ubiquitin removal
are correlated with Na+/H+ antiport activity, providing salt tolerance in Arabidopsis,
probably due to less ROS production. This exemplifies how products and byproducts
of 1C metabolism can broadly impact plant physiology.

5,10-CH2-THF is oxidized to 5,10-CH=THF and then to 10-CHO-THF in
these three compartments by the bifunctional and reversible 5,10-CH2-THF
dehydrogenase/5,10-CH=THF cyclohydrolase (5,10MTHFD/C) isoforms. This
bifunctional, NADP-dependent protein has been characterized in pea cotyledons
and leaves crude extracts; high activities were localized in the cytosol and minor
ones in mitochondria (Besson et al. 1993). Forward genetic studies have shown that
5,10MTHFD/C activities are crucial in plants. Partial loss of function of the cytosolic
isoform in Arabidopsis presented as an effect of DNA hypomethylation and transpo-
son derepression, while complete loss of function proved lethal (Groth et al. 2016).

10-CHO-THFcan be converted to formate andTHFby10-CHO-THFdeformylase
(10-FDF). The Arabidopsis genome contains two genes that code for two isoforms
both localized in the mitochondria (Collakova et al. 2008). The double knockout
(KO) of these genes results in developmental abnormalities and affects sugar, lipid,
and amino acid metabolisms. These phenotypes vary depending on photorespiratory
conditions: When the plants are in non-photorespiratory environments, phenotypes
are rescued, while in high CO2 levels, double KO is lethal. Mitochondrial folates
have a crucial role during photorespiration, where glycine provides 1C unit to THF
to form 5,10-CH2-THF; this transfer is mediated by the glycine decarboxylase com-
plex (GDC). During photorespiration, GDC activity shifts the SHMT equilibrium
favoring serine synthesis (Rebeille et al. 1994), forming THF and serine. This flux
is massive, mostly in C3 plants, and needs to be taken into account when 1C mutants
are characterized.
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Additionally, during photorespiration, SHMT activity produces the only folate
derivative that is not a 1C cofactor, 5-CHO-THF, which is an intriguing molecule. It
cannot accept or donate 1C; in fact, it inhibits some of the 1C metabolism enzymes
(e.g., the same complex that produces it, glycine decarboxylase/SHMT), but it is
normally accumulated within the plant cell, mainly in the mitochondria (Chen et al.
1997; Orsomando et al. 2005). Moreover, it has been widely used in large amounts
(0.5–10 mM) to chemically rescue the majority of the Arabidopsis 1C metabolism-
related mutants, as it is absorbed by the plant cell and roots, and is, surprisingly,
easily converted to the active cofactors in plant cells and tissues (Srivastava et al.
2011). Mitochondrial 5-CHO-THF cycloligase (5-FCL) is the enzyme that converts
it to 5,10-CH=THF; this folate form can be further reduced to 5,10-CH2-THF by
5,10MTHFD/C or oxidized by the same enzyme in the opposite direction to 10-
CHO-THF (Goyer et al. 2005; Roje et al. 2002). 10-CHO-THF can also be produced
by 10-CHO-THF synthetase, which uses formate and ATP to add the formyl group to
the THF and is also reversible. Formate, along with serine and glycine (during pho-
torespiration), then becomes another 1C source by the reaction toward 10-CHO-THF
biosynthesis. In mammals and yeast, this activity is present in a trifunctional protein
known as C1-THF synthase, which also contains the 5,10MTHFD/C activities. 1C
metabolism in plants differs from that of mammals, as a separate protein contains the
10-CHO-THF synthetase activity. In early studies, this enzyme was cloned, isolated,
and characterized from spinach and pea leaf extracts from subcellular compartments
(Chen et al. 1997; Nour and Rabinowitz 1991, 1992). The majority of the activity
was found in the cytosolic fraction of pea leaves; little was found in themitochondria,
and none was detected in plastids under the conditions tested. However, plants might
have isoforms in the three compartments.

Cytosol is the only place in which 5,10-CH2-THF can be reduced, as 5,10-
methylene-THF reductase (MTHFR) two isoforms in Arabidopsis seem to lack a
targeting signal to other cell compartment (Roje et al. 1999). MTHFR produces
the 5-CH3-THF cofactor, the only known fate of which is to be used to methylate
homocysteine for methionine synthesis by MS. Besides polypeptide synthesis, the
majority of the methionine pool is used as the precursor of S-adenosylmethionine
(SAM), which is the universal methyl donor in organisms. 5-CH3-THF is also the
main folate found in plant tissues and the blood circulating folate form for mam-
mals (Bedhomme et al. 2005). This evidences the relevance and magnitude of this
1C reaction for organisms, which is considered to represent the highest flux of 1C
metabolism (Hanson and Roje 2001). Recently, MTHFR maize mutants were iso-
lated by forward genetics; they displayed reduced transcript levels, which impacted
lignin production, mainly G lignin biosynthesis, accumulating less lignin with an
altered composition (Tang et al. 2014; Wu et al. 2018). Additionally, changes in
the expression of MTHFR triggered opposite alterations in the expression profile of
a nicotine N-demethylase gene, CYP82E4, with a concomitant change in alkaloid
production and profiles in tobacco leaves (Nicotiana tabacum) (Hung et al. 2013).

All folate cofactors are used in anabolic reactions. In plastids, 10-CHO-
THF is used for de novo purine biosynthesis in two transformylation reac-
tions mediated by 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and
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5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) (Zrenner et al.
2006). De novo methionine biosynthesis also occurs in this compartment, mediated
byMS1 (Ravanel et al. 2004). Themitochondria are the site of the first committed step
for pantothenate (vitamin B5) production; ketopantoate hydroxymethyltransferase
(KPHMT) utilizes 5,10-CH2-THF to produce the ketopantoate. The Arabidopsis
genome contains two genes coding for KPHMT, both of which are mitochondria
localized (Ottenhof et al. 2004). Bacteria, mitochondria, and plastids initiate pro-
tein synthesis using formyl methionine tRNAs produced by methionyl-tRNA formyl
transferase that uses 10-CHO-THF as the formyl donor (Kozak 1983). This enzyme
has yet to be characterized in plants.

Thymidylate is produced using 5,10-CH2-THF to reduce deoxyuridine
monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) by TS, which
in plants is fused to DHFR (see above) (Lazar et al. 1993). Recently, three Ara-
bidopsis DHFR-TS gene products (DHFR-TS1-3) were localized into the cytosol
(DHFR-TS1), mitochondria (DHFR-TS2), and both compartments (DHFR-TS3).
All three isoforms were also detected in nuclei in specific cells; their localization
was dependent on the cell’s differentiation state (Gorelova et al. 2017). Interestingly,
DHFR-TS3 did not present DHFR and TS activities. On the contrary, its expres-
sion caused inhibition of both DHFR-TS1 and 2; this effect prompted elevation of
reactive oxygen species (ROS) that led to recognize the activity of this enzyme, and
thus folate-mediated 1C metabolism, as factors for NADPH production sustainabil-
ity and concomitant redox homeostasis in plant cells. This study also confirmed the
localization of some of the folate-utilizing enzymes within the nuclei. Previously,
SHMT andMTHFD activities were detected in plant nuclei extracts (Neuburger et al.
1996); thus, a folate pool must exist in this compartment in plants (Fig. 6.6). Folate
presence has been previously reported in mammalian cell nuclei; folate cofactors
are utilized by SHMT, DHFR, and TS to provide thymidylate for DNA synthesis.
These enzymes are imported into the nucleus during the S-phase of the cell cycle
(Anderson and Stover 2009; Palmer et al. 2017). Folates and 1C metabolism have
yet to be studied in plant nuclei.

6.3 Folate Degradation, Turnover, and Stability in Plant
Food Matrices

Reduced folates are chemically very labile molecules that are protected in vivo by
the 1C transfer enzymes within the cell (Rebeille et al. 1994). Folates are prone
to photooxidation, mostly the breakage of the C9–N10 bond. This breakage occurs
spontaneously, yielding a pterin and PABA-MG or PG; it is not known if plants
possess an enzyme to mediate folate degradation. The presence of the 1C unit and its
level of oxidation strongly affect the stability of the molecule. Folic acid, the fully
oxidized synthetic vitamin, is very stable; by comparison, THF, the fully reduced
folate, is the most labile form (Fig. 6.1). As many of the enzymes that use folate
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cofactors have more affinity to the PG forms, these forms have been proposed to be
more stable within the cell. In fact, the folate increases achieved when engineering
a longer PG tail support this previous assumption (Akhtar et al. 2008).

The pterin product of folate breakdown can be recycled for folate synthesis only
if it is properly reduced; dihydropterin-6-aldehyde is the substrate of pterin aldehyde
reductase (PTAR), which can reduce it to HMDHP that can then be incorporated into
the mitochondrial steps of the folate biosynthesis (Noiriel et al. 2007a; Orsomando
et al. 2006). On the other hand, if the pterin ring is further oxidized, these pterins
cannot be recycled back into the biosynthetic pathway (Fig. 6.4, Noiriel et al. 2007b).
Assuming that the PABA forms can enter and exit the vacuole, PABA-PG can be a
substrate for plant GGHs (Orsomando et al. 2005), which yield PABA-MG. PABA-
MG is a substrate of PABA glutamate hydrolase (PGH), which releases the PABA
moiety back into the pathway; this activity has been confirmed in plants and likely
has various isoforms, but the gene has not yet been cloned (Bozzo et al. 2008).

There are several works that have studied the stability of folates within plant food
matrices during food processing. Both house and industrial processing usually cause
folate loss. The extent of the loss is highly dependent on the matrix and conditions.
The main mechanism responsible for folate loss is leaching to a liquid surrounding
the food. Temperature can also negatively affect folates, and this is highly dependent
on the pH of the food matrix or media, as folates are very susceptible to oxidation
at low pH levels. Thus, extensive folate stability studies have been conducted on a
case-by-case basis. A very comprehensive review of folate stability in plant foods
was done by Delchier et al. (2016). Here, a short selection of representative works
is summarized in Table 6.1 to give a perspective of the most common effects of
processing on plant foods. It is interesting to note that in many of the works using
high pressures, which causes cell damage and membrane breakage, an extensive
deglutamylation of folates was observed, perhaps due to the release of GGHs from
the vacuole.

Unlike with processing, there are few studies evaluating folate dynamics dur-
ing postharvest conditions. Folate contents were assessed in different varieties of
strawberry fruits (Fragaria × ananassa) during storage. Variations were cultivar-
dependent, and the temperature of storage had a considerable effect on folate sta-
bility, with low temperatures increasing folate retention (up to 99% at 4 °C), while
storage at 20 °C caused a steep decline in folate contents (38% loss in 3 days) (Strål-
sjö et al. 2003). Contrary to fruit, which can only be stored for a certain number
of days, storage of tubers and seeds lasts for months. In the case of potato tubers,
7 months of cold storage had a positive effect, causing increases up to 1.78-fold.
These increases were variety-dependent, and it was suggested that folates may be
increased as preparation for sprouting, as has been observed in the germination of
wheat seeds (Goyer and Navarrete 2007; Koehler et al. 2007).

However, rice seeds stored at room temperature for one year lost an average of 23%
of folate contents. This was also cultivar-dependent: The variety that lost the highest
amount of folates retained only 43.5% of the original folate contents (Dong et al.
2011). The relevance of postharvest conditions was even more evident in biofortified
rice. Even after a successful biofortification process, enhanced folates in rice suffered
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large losses when biofortified seeds were stored for four months (Blancquaert et al.
2015). Little is known about folate homeostasis and dynamics during storage, which
is unavoidable. In some plant organisms, biosynthesis could be occurring, while in
others, changes in folate pools may be due to spontaneous or enzymatic degradation.
These few studies also show that there is variation in the extent of folate stability
among plant varieties; thus, plants could be bred for folate stability. These studies
are critical for advancing biofortified varieties.

Studying folate homeostasis during postharvest processes is also relevant in the
case of fruits because many are harvested at the mature green stage and then ripened
during storage. There are a few reports that characterize folates during fruit ripening;
however, the ripening occurred on the vine, which is a rare commercial practice.
When papaya fruit was stored for up to 9 days at 21 °C and reached full ripening,
total folates increased by 50% (Ramos-Parra et al. 2013). Conversely, postharvest
ripening did not significantly affect folate levels for tomato, banana, and avocado
fruits when compared to their mature green counterparts (García-Salinas et al. 2016).
These four fruits are climacteric, which are characterized by an increase in respiration
and ethylene biosynthesis during ripening (Lelievre et al. 1997). This characteristic
is used commercially: Mature green fruit is treated with ethylene to trigger ripening
before the exhibition on the shelf. These four fruits were also treated with exogenous
ethylene, which significantly affected folate accumulation for certain fruit species.
Papaya folate fruit contents decreased by 26% when fruit ripening was triggered by
ethylene; conversely, total folates increased by 26 and 51% in tomato and banana
fruits, respectively. In avocado fruits, no change was observed. However, exogenous
ethylene application affected 5-CH3-THF levels in the majority of the fruits tested,
which is the folate form implicated in ethylene biosynthesis in planta throughmethio-
nine synthesis (Ravanel et al. 2004). Methionine, through the formation of SAM, is
an ethylene precursor. SAM is converted to aminocyclopropane-1-carboxylic acid
(ACC) by ACC synthase and further oxidized to ethylene by ACC oxidase (Sauter
et al. 2013). Thus, ethylene and folate metabolism have a cross-path and likely influ-
ence the homeostasis of each other. In fact, MS expression is upregulated at the
transcriptional level in papaya, apple, and banana fruits after exogenous ethylene
treatment (D’hont et al. 2012; Fabi et al. 2010; Zheng et al. 2013). Obtaining knowl-
edge about this possible co-regulation has the potential to enhance folate contents in
plant foods by adjusting postharvest conditions.

Other postharvest practices might be beneficial for increasing folates in plant
foods; for example, spinach leaves stored at 4 °C under continuous light for up to
10 days accumulated more folates than those stored in complete darkness, where a
decline was observed. The younger the leaves, more folates were produced (Lester
et al. 2010). Similar effectswere observed in pea leaves frometiolated seedlingswhen
light-induced HPPK-DHPS gene expression (Jabrin et al. 2003). Folate accumula-
tion has been correlated with photosynthesis through the need of methyl groups for
chlorophyll biosynthesis and probably methylation of other substrates (Van Wilder
et al. 2018). Interestingly, applying light to stored spinach leaves caused an average
twofold increment in total folates (Lester et al. 2010). Spinach leaves are a good folate
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source; thus, this easy, inexpensive practice would have the potential to contribute
to folate nutrition and could work for other leafy plant foods.

6.4 Biofortification of Folates

The efforts to biofortify crops with folates began almost two decades ago; to date; all
the biofortified lines are in the state of proof of concept and are the result of metabolic
engineering. Efforts toward biofortification by breeding have been conducted by
looking at natural variations in a few crops (Table 6.2). Overall, the results from these
works show that the variations found to date are less than one order of magnitude;
potato and rice germplasms have the largest range of folate levels for the edible tissue
(Dong et al. 2011, 2014; Robinson et al. 2015).

Three studies linking folate to genomevariations in tomato fruit, rice, and common
bean seeds showed that the promising gene targets might not only be biosynthetic
genes. A possible marker was identified from three concurrent quantitative trait loci
(QTL) associated with folate contents in dry bean seeds (Khanal et al. 2013). In
rice, three QTLs were identified, one of them explaining 25% of the phenotypic
variation for folate contents; interestingly, none of them carried any of the known
folate biosynthetic genes in rice (Dong et al. 2014). Moreover, the folate variation
found in tomato fruits could not be associated with single-nucleotide polymorphisms
(SNPs) from the biosynthetic genes (Upadhyaya et al. 2017). Characterization of
those possible newmarkers will prompt better understanding of folate homeostasis in
particular food crops.More studieswere conducted to evaluate folate levels in relation
to environmental changes, and folate contents varied significantly in strawberry fruits,
rice, and wheat seeds according to the growing region and harvesting years (Dong
et al. 2014; Kariluoto et al. 2010; Strålsjö et al. 2003). In fact, folate contents from
wheat were considered to be affected more by the environment than by the genotype
(Kariluoto et al. 2010). Thus, to generate accurate molecular markers for folate
accumulation, as with other traits, the environment must be considered.

The lowering costs of genotyping will need to be met with simpler, faster, and
more accurate folate analysis to be able to perform genome-wide association studies
(GWAS) using several hundred samples (Luo 2015). GWAS will allow for the rela-
tively quick identification of relevant SNPs linked to major QTLs that can become
specific markers to accelerate the breeding process in staple crops for natural folate
enhancement. To date, the data obtained demonstrates that this approach is promising
for folate biofortification. To the authors’ knowledge, there have not yet been works
on any crop about breeding for folates. Another recent approach for improving folate
contents has been elicitation either by plant hormones or folate precursors. Salicylic
acid treatments doubled folate contents in coriander leaves (Puthusseri et al. 2013),
while the addition of phenylalanine to hydroponically grown spinach elevated PABA
around 35% and doubled folate production (Watanabe et al. 2017). This approach
could work for vegetable production in controlled environments.
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Table 6.2 Natural variation of folate accumulation in food crops

Crop # Individuals
screened

Folate contents μg
100 g−1a (fold
increase)

References

Rice seeds (Oryza
sativa L.)

78 varieties Brown rice
13.3–111.4 (8.4)

Dong et al. (2011)

Milled rice 10.3–77.7
(7.5)

Milled rice seeds
(Oryza sativa L.)

264 recombinant
inbred lines

10.0–62.5 (6.25) year
1

Dong et al. (2014)

25.2–169.4 (6.7) year
2

182 backcross inbred
lines

14.5–129.8 (9)

Wheat grains
(Triticum aestivum)

156 individuals
26 genotypes
Multiple locations
and seasons

32.3–88.9 dw (2.8) Kariluoto et al.
(2010)

Wheat grains
(Triticum aestivum)

150 genotypes Winter wheat
36.4–77.4 dw (2.1)

Piironen et al. (2008)

Spring wheat 32.3 to
74.1 dw (2.3)

Potato tubers
(Solanum species)

61 S. tuberosum
varieties
6 accessions (wild
species)

52.1–137.3 dw (2.6) Goyer and Navarrete
(2007)

12 individuals
4 varieties
Multiple locations
and seasons

80.9–118.7 dw (1.5)

Potato tubers
(Solanum species)

250 individuals
77 accessions (S.
tuberosum)
10 accessions
(wild species)

22.1–233.6 dw (10.5) Robinson et al.
(2015)

Chickpea seeds
(Cicer arietinum)

4 varieties 351–589 (1.7) Jha et al. (2015)

Lentil seeds (Lens
culinaris)

4 varieties 136–182 (1.3)

Pea seeds (Pisum
sativum)

4 varieties 23–30 (2.3)

Common bean seeds
(Phaseolus vulgaris)

4 varieties 165–232 (1.4)

(continued)
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Table 6.2 (continued)

Crop # Individuals
screened

Folate contents μg
100 g−1a (fold
increase)

References

Common bean seeds
(Phaseolus vulgaris
L.)

11 individuals
4 varieties
6 F1 hybrids
1 F2 hybrid

217.2–338 (1.6) Khanal et al. (2013)

Strawberry fruit
(Fragaria ×
ananassa)

13 varieties 37–69 (1.9) year 1 Strålsjö et al. (2003)

30–53 (1.8) year 2

Tomato fruit
(Solanum
lycopersicum)

125 accessions (rep
ripe fruit)

14–46 μg (3.3) Upadhyaya et al.
(2017)

82 accessions
(mature green fruit)

13–71 (5.5)

Spinach leaves
(Spinacia oleracea)

67 accessions 54.1–173.2 (3.2) Shohag et al. (2011)

aWhen not defined, values were expressed in fresh weight basis; dw, dry weight

On the other hand, several folate engineering efforts have been reported over the
past 15 years. These engineering works have also provided relevant knowledge about
folate regulation in plants. Folate increments have been achieved by overexpress-
ing biosynthetic genes and by sequestering and protecting folates from degradation
within the cell (Fig. 6.7). These efforts are covered here by individual plant/crop.

6.4.1 Arabidopsis Leaves

This model plant was the first to be reported as engineered with the objective of
boosting folates. GCHI from Escherichia coli (folE gene) was used to enhance the
pteridine branch of the folate biosynthesis pathway (Hossain et al. 2004). Constitutive
expression of folE elevated pteridines by up to 1250-fold, and folates incremented in
a range of two- and fourfold. When the plant homolog (AtGCHI) was constitutively
overexpressed in Arabidopsis, total pteridines increased up to 17.9-fold, and this
increment did not significantly impact folate contents. PABA synthesis was also
attempted in Arabidopsis, but expressing AtADCS in Arabidopsis was challenging;
a slight overexpression could be achieved in AtGCHI+ plants, but no impact in
folate accumulation was observed. Moreover, when AtGCHI+ plants were fed with
PABA, folateswere only slightly enhanced (Blancquaert et al. 2013b). Comparing the
two works, it seems that to push folate production in Arabidopsis leaves, pteridines
need to be greatly enhanced. Recently, another engineering attempt was conducted
overexpressing the two committed steps of the biosynthetic pathway using genes
from soy (Liang et al. 2019). Single overexpressors rendered increases in precursors;
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�Fig. 6.7 Strategies and achievements for folate engineering in crops. Biosynthetic steps are
depicted in blue triangles; red squares denote folate sequestration within a compartment by elon-
gation of the glutamyl tail by the folylpolyglutamate synthetase (FPGS); protection, green cir-
cles, was achieved by expressing a mammalian folate binding protein (mFBP) or downregu-
lating deglutamylation. Engineered steps: Biosynthesis: GTP cyclohydrolase I, GCHI; hydrox-
ymethyl dihydropterin pyrophosphokinase-dihydropteroate synthase, HPPK-DHPS; 4-amino-4-
deoxychorismate synthase, ADCS. Sequestration: cytosolic or mitochondrial FPGS. Protection:
downregulation of γ-glutamyl hydrolase, GGH; mammalian folate binding protein, mFBP. (WT)
Wild-type control. Dotted lines denote several enzymatic steps. Gray lines indicate transport. Abbre-
viations are the same as those from Fig. 6.4. (*)Dry weight (#) codon-optimized genes driven by
different promoters than first round

interestingly, the overexpression of each GmGCHI+ isoenzyme gave different levels
of pteridine accumulation, suggesting differences in enzyme activities. On the other
hand, soy GmADCS+ caused a modest twofold increase in PABA. Folates were not
significantly changed in any of the lines. Once the two-gene strategy was applied,
the results were similar to all previous attempts in Arabidopsis, folates accumulated
slightly more (up to 1.9-fold) only when the high pteridine overexpressors were
used. A detailed pteridine profile would shed more light on this apparent bottleneck
in the folate synthesis for leaves, as the enhanced pteridines need to be biosynthetic,
properly reduced, and within the mitochondria to synthesize more folates (Ramírez
Rivera et al. 2016).

GGH expression was also engineered in Arabidopsis, and it was negatively cor-
related with folate accumulation (Akhtar et al. 2010). Downregulation of GGH by
RNAi reduced the enzyme activity by 99%; this resulted in an increase of folate
polyglutamylation, and folate contents were augmented by 34%. On the other hand,
GGHoverexpression caused a 40% loss of total folates, and the remaining folates had
shorter PG tails. Downregulation of GGH activity is an option for increasing folate
contents along with the other strategies discussed here. Similarly, 5-FCL Arabidop-
sis knockouts accumulated twice the amount of folates than WT leaves (Goyer et al.
2005).As previouslymentioned, 5-FCL is the enzyme that puts back the 5-CHO-THF
to the 1C donor pool (Fig. 6.5). 5-CHO-THF is the most stable reduced folate form
(Fig. 6.1). It is not used in 1C reactions, but it is bioavailable as a vitamin for humans,
as it can be absorbed; the 5-FCL mammalian homolog is methenyltetrahydrofolate
synthetase (Anguera et al. 2003; Aufreiter et al. 2009). This strategy could represent
a form of sequestering folates in planta if the plant growth and reproduction are not
compromised.

6.4.2 Tomato Fruits

Folates were enhanced in tomato fruits by directing the overexpression of the two
folate-committing steps specifically targeting ripening fruit, as previous biochemical
data showed that the production of biosynthetic enzymes was shut down during fruit
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ripening (discussed above in the biosynthesis section). E8 promoter is commonly
used to drive fruit-specific transgene expression; it starts at the ripening process in
climacteric fruit, at the ethylene production peak (Deikman et al. 1992). A mam-
malian (Mus musculus) GCHI was used (mGCHI) as, at the time, there was not
yet any information about a possible feedback regulation for the plant homolog. As
mammals do not synthesize folates, mGCHI starts the pteridine biosynthetic pathway
for tetrahydrobiopterin (BH4) production, which is an essential cofactor for pheny-
lalanine hydroxylase (Heintz et al. 2013). This enzyme is inhibited by BH4 through
a feedback regulatory protein (Yoneyama and Hatakeyama 1998). Plants do not pro-
duce BH4 and apparently have no homologs for the regulatory protein; therefore, the
mammalian enzyme would not be inhibited by folates if expressed in planta.

mGCHI expression was correlated with high pteridine levels in ripening tomato
fruit (Diaz de la Garza et al. 2004). Pteridine characterization uncovered previously
unknown pteridine derivatives; neopterin and monapterin were found free and also
conjugated as β-d-glucosides. Glycosylated pteridines might act as a storage form
for these folate precursors. Total pteridines were enhanced from 3- to 140-fold, and
HMDPT, the immediate precursor to form pteroate (Fig. 6.4), was the main pteridine
of the pool. Folates were elevated up to twofold in the engineered lines, maintaining
the same folate profile; 5-CH3-THF hexaglutamylated was the main folate in tomato
fruits.

The plastidial PABA branch was also enhanced in tomato fruits. Arabidopsis
ADCS (AtADCS) was overexpressed in ripening tomatoes, causing increments of
19-fold on average (Diaz de la Garza et al. 2007). PABA overaccumulation alone was
not sufficient to elevate folate levels in the fruit, confirming that pteridine production
is limiting in the biosynthesis pathway.WhenmGCHI+ segregants were crossed with
AtADCS+ lines, folates were boosted up to 25-fold, accumulating 840 μg/100 g of
fresh fruit, which is more than the entire RDA for pregnant women. Folate profiles
differed from the control fruit in the PG degree; this time, the majority of the folate
pool was composed of monoglutamylated 5-CH3-THF, showing that FPGS activ-
ity could not match folate overproduction. Surprisingly, mGCHI+/AtADCS+ fruits
still accumulated significant amounts of precursors; both pteridines and PABA were
enhanced to similar levels to those measured in a single overexpressors. Engineer-
ing both committed steps generated a bottleneck in the folate pathway. This limiting
step was pinpointed to HMDHP transport into mitochondria, HMDP reduction status
within the mitochondria, and/or HMDHP pyrophosphorylation by HPPK. Releas-
ing this bottleneck has the potential to elevate the levels of the vitamin significantly
higher.

The mGCHI+/AtADCS+ segregants were used for bioavailability studies in an
animal model. Folate bioavailability changes depending on the folate derivative, PG
degree, and food matrix (Clifford et al. 1991). Thus, it is relevant to show that the
enhanced vitamin has the potential to elevate the folate status when consumed from
the biofortified food matrix. A single-dose experiment was conducted in Winstar
rats using tomato puree, and folates in the blood were measured over a 12 h period
(Castorena-Torres et al. 2014). Equimolar amounts of 5-CH3-THFand folic acidwere
given to the control group of animals. The differences in the processing and intestinal
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absorption of folate forms are depicted in Fig. 6.3, which shows that quantifying
folates in the bloodstream is a direct measurement of the immediate bioavailability
of the folate consumed. The bioavailability of folates from biofortified tomatoes
was equivalent to that from the synthetic 5-CH3-THF MG, demonstrating that this
biofortified crop has the potential to elevate folate status if consumed. Moreover,
in this study folates were characterized from overripe fruit. This fruit was left up
to 45 days after the breaker stage and it had a 40-fold increase on folate contents
compared to the 25-fold found at 12 days (Diaz de la Garza et al. 2007; Castorena-
Torres et al. 2014).

Engineering folates in tomatoes showed that: (a) folate biosynthesis continues
when the fruit is ripe and aging, (b) all folate biosynthetic enzymes, both recombinant
and endogenous, are present and active in the engineered senescent fruit, and (c)
overaccumulated folates are stable within the fruit cell. These observations coincide
with the transcriptome analysis conducted on engineered tomato fruits (Waller et al.
2009). Enhancing folate biosynthesis in ripening fruit did not change the fruit’s
transcriptome significantly; the transcripts of only 14 genes out of 11,000 screened
increased significantly in the folate hyper accumulating fruit. From those, three genes
downstream in the folate biosynthesis (ADCL, DHNA, and mitochondrial FPGS)
were upregulated. Thus, enhancing the first committed steps in the folate biosynthesis
triggered the expression of further genes in fruit tissue. All of these findings show
that enhancing folates in fruit tissue has great potential to deliver folates for human
nutrition if the fruits are consumed fresh; hence, losses from food processing do not
apply for this plant food matrix.

6.4.3 Rice Endosperm

Extensive engineering work has been conducted on rice endosperm. The first round
of engineeringwas conducted on the two-biosynthetic committed steps. AtGCHI and
AtADCS were overexpressed individually and together under the regulation of the
endosperm-specific globulin and glutelin B1 promoters, respectively (Storozhenko
et al. 2007). AtGCHI alone increased the pteridine pool by 25-fold, and this increase
did not cause an elevation of folate contents. The pteridine profile showed that
neopterin was themain pteridine overproduced, while the immediate folate precursor
HMDHP was not detectable. This result coincides with those obtained in Arabidop-
sis leaves and tomato fruits: Large increments of the pteridine pool are necessary
to single-drive folate overaccumulation. PABA overaccumulation was elevated 49
times when compared to controls; however, unlike with tomato fruits, this accumula-
tion caused a decline in folate pools in rice endosperm, hinting at a possible negative
regulation loop.

Nonetheless, the double GCHI/ADCS overexpression caused similar effects in
both plant organisms. A considerable increment of total MG folates was achieved
(up to 1.72 mg/100 g FW). Cooked rice grains lost around 45% of the pool. How-
ever, even considering these losses, the amount of folate in this engineered cooked
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rice met the RDA for an adult. Transcriptomic analyses were conducted on these
engineered lines at different seed development times (Blancquaert et al. 2013a).
Overall changes in gene expression were correlated with folate accumulation. A
total of 235 genes were affected in their expression when considering all lines and
times studied. The majority of them had unknown or putative functions. Three cat-
egories were the most affected: 1) stress/defense response and cell death; 2) protein
mobility/modification and degradation; and 3) cell cycle, structure, organization,
and development genes. Interestingly, none of the genes affected belonged to folate
biosynthesis or direct folate interconversion. Yet, there were a few genes in which
variations in gene expression could be attributed to changes in the folate levels and
their precursors.

The bioavailability of folates from this biofortified rice was evaluated in rats. The
study was conducted for a 12-week period in which engineered, non-engineered,
folate-free, and folic acid-fortified rice diets were fed to folate-depleted animals.
Almost all markers measured (e.g., plasma folates, homocysteine, hematocrit, etc.)
were comparable to the diet fortified with folic acid, while folate-depleted and non-
engineered rice-fed animals showed all of the negative consequences of a lack of
folate nutrition (Kiekens et al. 2015).

The second round of folate engineering in ricewas done by targeting folate seques-
trationwithin cell compartments and protecting themvia amammalian folate binding
protein (FBP) (Blancquaert et al. 2015). Enhanced folates in rice declined during seed
storage, losing 50% of the vitamin levels after 4 months and 60% after 8 months.
This, plus the losses observed during cooking, prompted targeting folate stabilization
by engineering. Folate sequestration within the cell was explored by overexpressing
FPGS isoforms, targeted to either the mitochondria or cytosol. Folate protection was
attempted by expressing amodifiedmammalian FBP found in bovinemilk. The orig-
inal bovine gene was codon-optimized and modified. First, the signal for membrane
anchorage was removed, and second, three recombinant versions were generated: the
truncated soluble version alone (sFBP), truncated version fused with a β-carbonic
anhydrase 2 gene from Arabidopsis (CAFBP), and another fusion protein with rice
glutelin B4 (GluB4FBP) to solubilize and stabilize this original transmembranal
folate receptor.

All these genes were overexpressed in rice endosperm from plants already engi-
neered for pteridines and PABA. All possible single and double combinations were
tested for folate increments and stability. Cytosolic FPGS plus FBP gave an immedi-
ate folate boost in rice endosperm up to 2.5 mg/100 g FW, double what was initially
reported by the two-gene overexpression strategy. By extending PG tails of folates
in the cytosol and adding the protection of FBP, folates were sequestered within this
compartment, and a possible feedback inhibition within the mitochondria could be
released. These folates were stable in rice seeds stored for 4 months at 28 °C. More-
over, the enhanced phenotype was maintained throughout generations. Interestingly,
this approach caused an upregulation of the endogenous GGH genes, the expres-
sion of which was positively correlated with that of recombinant FPGS. This second
round of engineering achieved a massive folate accumulation in rice endosperm that
was stable throughout storage.
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Further folate bioavailability studies in cooked biofortified rice could determine
if: (a) protected folates are more stable during the cooking process, (b) folates can
be released from protection by the thermal treatment, or (c) these folate forms are
more or less bioavailable than those with more MG percentage and non-protein
bound. Even if the resulting bioavailability was revealed to be inferior to that of non-
protected folates in rice seeds, the amount of stable folates achieved by this approach
would likely still be able to increase folate status if consumed.

There have been other attempts to engineer folates in rice. Eight biosynthetic genes
fromArabidopsis were constitutively overexpressed individually, and the progeny of
selected crosses were generated (Dong et al. 2014). GCHI, ADCS, and FPGS caused
folate increases, with GCHI being the most effective (up to 6.1-fold). However,
when GCHI plants were individually crossed with ADCS, DHNA, HPPK, DHFR,
DHFS, and FPGS, folates did not increase compared to the parental GCHI. Neither
precursors nor enzyme activities were reported in this work that could allow for a
better assessment of the engineering results.

In another study, endogenous FPGSs, Bos taurus FBP, and Rattus norvegicus
glycineN-methyltransferase (GNMT) were individually overexpressed in rice (Abil-
gos Ramos 2010). All engineered lines presented increases in total folate contents,
and GNMT, a mammalian enzyme that is inhibited by two molecules of 5-CH3-THF
pentaglutamate (Luka et al. 2007), caused the highest accumulation of around eight-
fold. Interestingly, both FBP and GNMT rice plants were reported to produce only
around 20 and 50%, respectively, of the seeds produced by a non-transformed plant,
suggesting that sequestering folates by protein binding can have negative effects on
plant development. However, an effect on seed yield was not reported whenmodified
forms of bovine FBP were engineered (Blancquaert et al. 2015).

6.4.4 Potato Tubers

Biofortification of potato tubers with folates has been difficult to achieve. The two-
biosynthetic gene strategy has not worked for this plant organ as it has for tomato
fruits and rice endosperm. AtGCHI and AtADCS controlled by the tuber-specific
patatin promoter yielded up to threefold increases in folates, while pteridines and
PABA levels remained high. Nonetheless, the increase observed in young tubers
was lost in mature tubers (Blancquaert et al. 2013b). The presence of engineered
precursors in potato tubers suggests bottlenecks in the biosynthetic pathway, which
were not limited in previous engineering works. This was confirmed by the second
round of engineering, when the overexpression of mitochondrial Arabidopsis FPGS
(mtAtFPGS) and/or OsHPPK/DHPS rice, along with AtGCHI and AtADCS, was
necessary to drive a steady 12-fold increases of folates in potato tubers (De Lepeleire
et al. 2018). In addition, folates were stable during storage for 9 months at 4 °C.
Two AtGCHI/AtADCS backgrounds were used for re-transformation expressing
OsHPPK/DHPS and mtAtFPGS, individually and combined. All three combinations
rendered similar folate levels, and, interestingly, eachAtGCHI/AtADCS background
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presented a depletion of either biosynthetic pteridines or PABA. Thus, in the case of
potato tubers, pteridines and PABA can still be limited, despite the overexpression
of the committed steps for their production.

Folates enhanced in this workwere, in all cases, equally ormore polyglutamylated
than those fromWT tubers, even for those lines where mtFPGS was not engineered.
The amount of folates accumulated in this case was up to 180 μg/100 g FW. This
number is ≈10 times lower than rice and 5 times lower than tomatoes. The PG
profile of folates varies among plants, and it is the result of the FPGS and GGH
isoforms, the activities of which could also vary among them (Ramos-Parra et al.
2013). Endogenous potato FPGS was able to polyglutamylate folates at this engi-
neered flux; therefore, further increases in the synthesis of folates may also change
PG profiles for this organism.

6.4.5 Common Bean Seeds

Contrary to rice, tomatoes, and potato tubers, legume seeds are well known for
their high folate contents (USDA 2018). Folate engineering in common beans was
attempted by AtGCHI expression controlled by the seed-specific β-conglycinin pro-
moter. Three pinto varieties were used as background (Ramírez Rivera et al. 2016).
As with other engineering examples, this overexpression caused a massive pteridine
build-up that drove enhanced folate production up to 3.3-fold. As WT folate con-
tents were relatively high, this increment signified a folate accumulation of up to
325 μg/100 g FW, which would represent 82% of the RDA. Dried WT common
bean seeds accumulate a fair amount of pteridines; however, the majority of them are
pteridine- or folate-breakdown products, rather than those that participate in folate
biosynthesis. AtGCHI overexpression caused a hyper-accumulation of biosynthetic
pteridines of up to 148-fold, while the oxidized breakdown products increased in
significantly lesser amounts.

Surprisingly, all engineered lines overproduced PABA, even though this branch
was not engineered. Endogenous ADCS transcription seemed to be feed-forward
upregulated; this is the only case that has shown this effect when pteridineswere engi-
neered. Despite this endogenous upregulation, the folate boost was modest. PABA
pools in WT common bean seeds are mostly present as free PABA, unlike with other
plants (Quinlivan et al. 2003). PABA pools in engineered seeds had a higher propor-
tion of esterified PABA in some cases, but the majority of them accumulated about
half the pool as free PABA. Thus, there is a bottleneck in the folate biosynthetic
pathway in common bean grains, as both precursors were present. Nevertheless,
PABA fed to AtGCHI seeds after harvest by imbibition caused slight, but signifi-
cant, folate increments. All measurements were conducted in desiccated bean seeds,
and no data was provided about how these pools behave during seed development
when the promoter begins acting. The engineering works discussed here demon-
strate that a concerted production of biosynthetic pteridines and PABA need to occur
within the cell to boost folate synthesis. Thus, PABA engineering at the same time
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as pteridines will likely enhance the folate levels achieved by engineering only the
pteridine branch.

6.4.6 Maize kernels and Lettuce leaves

Corn was biofortified with three vitamins by stacking several genes controlled by
seed-specific promoters (Naqvi et al. 2009). Vitamin C (ascorbate) was increased
sixfold by the expression of rice dehydroascorbate reductase; total carotenoids were
boosted 112-fold by the expression of maize phytoene synthase and carotene desat-
urase from P. ananatis (ctrI gene). E. coli GCHI was used to increase folates, which,
as with other crops, were enhanced up to twofold. No measurements of precursors
were provided in this work. Because E. coli GCHI caused a massive pteridine pro-
duction in Arabidopsis leaves (Hossain et al. 2004), it is probable that it has similar
effects on corn seeds. Similarly, lettuce folate levels were increased by 8.5-fold
by overexpressing a GCHI from chickens (Gallus gallus). Lettuce leaves accumu-
lated 188 μg/100 g FW. The coexpression of soy Gm8gGCHI and GmADCS was
also applied to maize; gene expression was driven by endosperm-specific promoters
(Liang et al. 2019). Dried kernels accumulated between 3–4.2 times greater folate
contents than controls. Adding ADCS caused a further slight increase in folates;
however, PABA production was not high enough, pteridines still over accumulated
while PABA was limiting in double overexpressors. Boosting PABA levels along
with the overexpression of more genes from the biosynthetic pathway, will probably
generate higher folate increases in this crop.

6.4.7 Wheat grains

Wheat grains (Triticum aestivum cv. Fielder) have been subjected to two rounds of
engineering (Liang et al. 2019). In the first round, both soy proteins used inArabidop-
sis and maize (Gm8gGCHI and GmADCS) were coexpressed in wheat endosperm.
This strategy doubled in average folate contents and, contrary to maize, PABA was
over accumulated in higher amounts than pteridines in all the engineered grains,
suggesting differences in folate synthesis regulation between the two cereal grains.
The second round of engineering consisted of using codon-optimized genes from
soy (Gm8gGCHI) and this time ADCS from tomato. Additionally, the endosperm
specific promoters were changed; while in the first-round maize and rice promot-
ers were used, the second round used the wheat glutenin 1DX5 promoter. All these
changes together caused higher pteridine accumulation, while PABA overproduction
seemed enhanced in similar amounts than the previous round. The enhancement of
both precursors further elevated folate contents up to 5.6 times more than negative
segregants. However, precursors were still in higher amounts than controls in double
transformants (both less than an order of magnitude) hinting to the presence of a
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bottleneck in the pathway present in wheat grains. 5-CH3-THF was the folate that
accumulated the most in the engineered lines followed by 5-CHO-THF. It is interest-
ing to note that each cereal grain (rice, maize, and wheat) that has been biofortified
with the two-committed steps strategy has accumulated precursors with different ten-
dencies, rendering particular folate accumulations (Fig. 6.7). Folate biofortification
strategies, thus, need to be adjusted to each tissue and plant species.

6.5 Socioeconomic Studies and Potential of Biofortification
with Folates

Rice, maize, potatoes, and legumes are staple crops consumed around the globe by
millions of people who live in poverty. Tomatoes are the most consumed fruit world-
wide (FAO stat 2014). Enhancing folates in these targeted crops has the potential to
increase folate status in many parts of the world, as these crops are part of the basic
diet formany populations, and in poor areas, they are cultivated for self-consumption.
Economically, implementing the release of biofortified varieties can also be feasible.
It has been estimated that biofortification costs would be a fraction of those needed
for vitamin supplementation (Mayer et al. 2008). However, genetically modified
crops have a current general negative perception by the public; this has contributed
to stalling the liberation of Golden Rice, the provitamin A-biofortified variety and
the most advanced biofortified crop by metabolic engineering (Moghissi et al. 2016).
In an attempt to discover elements, that can show their potential implementations,
socioeconomic studies have been conducted on biofortified rice with folates. Cost-
effectiveness was calculated assuming biofortified rice was implemented in China,
specifically in a region with a very high risk of folate deficiency. In addition, willing
to pay (WTP) premiums were also calculated in the same region based on consumer
preferences between folic acid supplementation versus folate biofortification. The
calculated data showed that biofortified rice has the potential to highly improve health
with moderate cost-effectiveness (De Steur et al. 2012). In addition, WTP premiums
would be higher for biofortified rice than for folic acid pills, as people would pre-
fer to consume folates from the staple crop rather than taking supplement pills (De
Steur et al. 2013). These studies show that people can have positive reactions if they
are informed about the benefits of biofortified plant foods, confirming the impor-
tance of public information. Moreover, a recent systematic review and meta-analysis
work covering several biofortified food crops also indicated that biofortified crops
by engineering could be cost-effective and accepted by the public (De Steur et al.
2017).

More studies need to be conducted to advance biofortified lines to commercial
varieties. Toxicology studies need to be assessed, asmany of the biofortified lines still
accumulate folate precursors. Humans produce pterins, and PABA has been declared
as Generally Recognized as Safe (GRAS) by the FDA (Hoagland 1950); however,
humans are not exposed to high levels of HMDHP, the immediate folate precursor
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that, in some cases, remains accumulated in the proof-of-concept lines. These studies
are also needed because these are genetically modified varieties. On the other hand,
field trials are also part of the pipeline to test and generate a commercial variety that
has the same or better yields than the current ones. More bioavailability studies, first
with animal models, then as clinical trials after toxicity clearance, will also support
the nutritional benefits that folate-enhanced cropswill have for elevating folate status.
In addition, studies about the regulation of folate metabolism are needed, as nothing
is known about the transcriptional regulation of folate biosynthetic or salvage genes.
Understanding regulatory cis elements that affect folate accumulation will provide
strategies for genome editing using CRISPR-Cas techniques. Improving crops by
genome edition has great potential for engineering quantitative traits more quickly
than conventional breeding and genetic modification, with the potential of having a
better public acceptance than recombinant expression (Rodríguez-Leal et al. 2017;
Scheben and Edwards 2017).

Years of research and trials are awaiting; however, this work is extremely rele-
vant as micronutrient deficiency, also known as hidden hunger, is a global public
health problem. Folate deficiency elevates the risk of human diseases for all ages.
Population growth and climate change have made it urgent for scientists to come up
with alternatives to feed and nourish populations at risk. Based on the works covered
here, it is safe to assess that the ultimate goal, to provide a whole adult RDA of
folates in one portion of a cooked plant food, is achievable. A biofortified crop with
folates can also be crossed and complemented with other micronutrients (e.g., iron,
zinc, provitamin A, etc.), generating a nutrient-dense plant food. All of these studies
enhancing folates have contributed to increased knowledge about folate metabolism
and its role in plant physiology;more knowledgewill also potentially help to improve
plant fitness and yields in the future.
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Chapter 7
Thiamine and Its Role in Protection
Against Stress in Plants (Enhancement
in Thiamine Content for Nutritional
Quality Improvement)

Zetty Norhana Balia Yusof

Abstract Thiamine or vitamin B1 plays an indispensable role in many metabolic
reactions. The active form, thiamine pyrophosphate (TPP), functions as a cofac-
tor in various crucial metabolic reactions including glycolysis, pentose phosphate
pathway, and the tricarboxylic acid cycle in all living organisms. Recently, thiamine
is also associated with the induction of systemic acquired resistance (SAR) in the
plant. It has also been shown that thiamine has a role in boosting plants’ immunity
and defence system. Many plants have been investigated and indeed thiamine may
be one of the key molecules involved in plant protection against stress. Numerous
studies have shown that the expression of thiamine biosynthesis genes was upregu-
lated upon both biotic and abiotic stress induction in various plants. Various analyses
including looking at the expression of thiamine biosynthesis genes, the accumula-
tion of thiamine and its intermediates and also on enzyme function complementation
studies have supported the role that thiamine may play in plant protection. In this
chapter, the role of thiamine as a stress-responsive signalling molecule, its biosyn-
thesis pathway and how it is being regulated will be discussed. The application that
entails the understanding of this role will be briefly described and hence provide the
support for the suggestion of its role in protection against stress in plants.

Keywords Thiamine · Vitamin B1 · Stress · Plant protection

7.1 Introduction

Plants are sessile organisms that are inevitably exposed to unfavourable biotic and
abiotic stresses throughout their lifetime. In terms of crop plants, stresses which
include climate and environmental changes and attack by pathogens can severely
hamper the productivity of these plants. The current research is accelerating towards
finding ways to control the effects of both biotic and abiotic stresses in plants, in a
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more organic and environmental-friendly manner. Recently, the studies of plant and
microorganism interactions or also known as biocontrol agents have been of interest
since these interactions actually play a role in alleviating stresses in the host plants
(Boivin et al. 2016). On top of that, a ‘feedback regulation’ mechanism of stress
whereby the stress itself can actually induce plant tolerance and even resistance
has been demonstrated. The discovery of an additional role for a common vitamin
which has been known to be functional as a cofactor has now been described (Goyer
2010). Thiamine or also known as vitamin B1 is an enzymatic cofactor in metabolic
reactions have now also been known to be involved in plant adaptation and alleviation
of biotic and abiotic stresses (Rapala-Kozik et al. 2008; Tunc-Ozdemir et al. 2009).
It was observed that there was an accumulation of thiamine when the plants were
subjected to salinity stress, oxidative stress, and pathogenic attack (Rapala-Kozik
et al. 2008; Tunc-Ozdemir et al. 2009; Zhou et al. 2013; Balia Yusof et al. 2015;
Kamarudin et al. 2017a). It is now understood that thiamine formed an indirect role
in enhancing anti-oxidative capacity in the plants, which is important in defence
responses (Zhou et al. 2013). Yet, the exact mechanism of biosynthesis of thiamine
in response to stresses is still poorly understood.

7.2 Thiamine

Thiamine or vitamin B1 is one of the first B vitamins discovered in 1910 in Japan by
Umetaro Suzuki (Goyer 2010). The structure composed of a pyrimidine ring joined
with a thiazole moiety. The active form, thiamine pyrophosphate (TPP), is an impor-
tant cofactor in variousmetabolic reactions. TPP is a cofactor of pyruvate dehydroge-
nase which participates in the oxidative decarboxylation of pyruvate to acetyl-CoA,
synthesis of amino acid such as valine, leucine and isoleucine, 2-oxoglutarate dehy-
drogenase which is involved in Krebs cycle (Goyer 2010; Du et al. 2011; Goyer and
Haynes 2011). TPP is also a cofactor for transketolase in the oxidative pentose phos-
phate pathway. Downstream biochemical reactions of Krebs cycle are the oxidative
phosphorylation pathway where the electron transport chain is generated to synthe-
size ATP, which is important in energy production in all living organisms. In human
nutrition, thiamine is one of the essential micronutrients. Since thiamine and its ester
forms are only synthesized in plants and microbes, therefore, animals and humans
need to obtain thiamine exogenously from the diet.

7.3 The Thiamine Biosynthesis Pathway

The thiamine biosynthesis pathway in plants shares similaritywith the ones described
in bacteria and yeast (Begley et al. 1999; Li et al. 2010). Table 7.1 is a summary of
the inter-changeable terms of the thiamine biosynthesis enzymes and the homologs
of different plants and algae. As shown in Fig. 7.1, the pathway starts from the
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Table 7.1 Biochemical functions of thiamine biosynthesis enzymes

Abbreviation E.C number Homologs Biochemical function

THIC 4.1.99.17 THIC in rice, Arabidopsis,
Chlamydomonas reinhardtii,
Anabaena sp. and maize.
THI5 in yeast

Hydroxymethylpyrimidine
phosphate synthase

THI1/THI4 2.8.1.10 THI1 in rice and Arabidopsis,
THI4 in yeast, C. reinhardtii
and maize, THIG in Anabaena
sp.

Thiazole biosynthetic protein

TH1 2.5.1.3 TH1 in rice, Arabidopsis, and
maize. THI6 in yeast.
THID/THIE in C. reinhardtii
and Anabaena sp.

Hydroxymethylpyrimidine
phosphate kinase

TH2 3.1.3.100 TH2 in Arabidopsis Thiamine monophosphate
phosphatase

TPK 2.7.6.2 TPK in rice, Arabidopsis, C.
reinhardtii and maize. THI80
in yeast, THIL in Anabaena
sp.

Thiamine pyrophosphate
kinase

precursor 5-aminoimidazole ribonucleotide (AIR) to the pyrimidine moiety of thi-
amine, which is hydroxymethylpyrimidine phosphate by the enzyme encoded as
THIC (HMP-synthase). The second parallel pathway stems from NAD, glycine, and
S-donor to form the thiazole moiety of thiamine, hydroxyethylthiazole phosphate
which is synthesized by the enzyme hydroxyethylphosphate synthase (THI4). Both
thiazole and pyrimidine moiety are joined together by the enzyme TH1 (thiamine
bifunctional enzyme) to form thiaminemonophosphate. Thiaminemonophosphate is
dephosphorylated by a phosphatase known as thiamine monophosphate phosphatase
(TH2) to form thiamine (Mimura et al. 2016). All the reactions occur in the chloro-
plast. The last step is the phosphorylation of thiamine to its active form, thiamine
pyrophosphate (TPP) by the enzyme thiamine pyrophosphokinase (TPK) that occurs
in the cytosol. TPP only functions in the mitochondria; therefore to be biologically
active, TPP must be transported into the chloroplast or mitochondria (Goyer 2010).

The transcripts of THI4, THIC, TH1 and TPK were found in leaves, roots and
stems. Interestingly, the expressions of the transcripts are the highest in the leaves
which corroborates the fact that thiamine biosynthesis occurred in the chloroplasts.
It was noted that thiamine biosynthesis is differentially regulated depending on plant
tissues (Goyer 2010). Preliminary study on transcripts of THI4 and THIC has shown
that it was not amplified in root tissues of oil palm seedlings (Wong et al. 2016).
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Fig. 7.1 Thiamine biosynthesis pathway in plants. HMP-P is hydroxymethylpyrimidine phosphate,
HMP-PP is hydroxymethylpyrimidine pyrophosphate, HET-P is hydroxyethylthiazole phosphate.
THIC is hydroxymethylpyrimidine-synthase, THI4 is thiazole biosynthetic protein, TH1 is hydrox-
ymethylpyrimidine phosphate kinase, TH2 is thiamine monophosphate phosphatase and TPK is
thiamine pyrophosphate kinase. Reproduced from Kamarudin et al. (2017a)

7.4 Role of Thiamine in Biotic and Abiotic Stresses
in Plants

Vitamins have been used as a control agent for different diseases (Ahn et al. 2005;
Palacios et al. 2014). In plants, thiamine treatment has been shown to adverse
pathogenic infections. For example, thiamine treatment in soybean enhances resis-
tance to charcoal rot disease (Abdel-Monaim 2011), rice against sheath blight disease
(Bahuguna et al. 2012), and grapevine against Plasmopara viticola (Boubakri et al.
2012). The mechanism of disease suppression through application of thiamine is
explained by the activation of a plethora of host defence responses. In Arabidop-
sis thaliana, thiamine treatment activates pathogenesis-related protein (PR-1) and
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phenylalanine lyase (PAL). In addition, thiamine treatment in grapevine reduced
downymildew development compared to untreated control in a dose-dependentman-
ner by inducing hydrogen peroxide generation, callose disposition and host resistance
(HR) cell death. Similarly, thiamine treatment successfully controlled charcoal rot
disease in soybean plants by the induction of defence-related enzymes including per-
oxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia-lyase (PAL) and
pathogenesis-related (PR) chitinase (Abdel-Monaim 2011). Phytohormones are also
involved, as a study has indicated that two genes known to be regulated by salicylic
acid were upregulated and while gene regulated by methyl jasmonate was downreg-
ulated in thiamine-treated barley peas after aphid infestation (Hamada and Jonsson
2013). Therefore, thiamine treatment primed plants from pathogen attack due to the
enhanced activity of the induced systemic resistance via induction of defence-related
enzymes, PR proteins, and phytohormones.

As highlighted earlier, besides its role as a cofactor in the primary metabolism,
thiamine has been shown to play a role in plant adaptation against stresses. Several
studies have documented the modulation of the expression of thiamine biosynthesis
genes when the plants were subjected to a variety of stresses (Rapala-Kozik et al.
2008; Tunc-Ozdemir et al. 2009; Rapala-Kozik et al. 2012).

Notably, Tunc-Ozdemir et al. (2009) asserted the role of TPP as important stress
response molecule as it was demonstrated that thiamine biosynthesis is induced in
Arabidopsis in response to different abiotic stresses. Relative to control seedlings,
total thiamine content was significantly induced in Arabidopsis seedlings when sub-
jected to cold, osmotic, and salinity conditions. The increase in total thiamine con-
tent which is the sum of thiamine, thiamine monophosphate (TMP), and thiamine
pyrophosphate (TPP) was due to the large increase of TPP, which is the active form of
thiamine. Transcript abundance of the THI4, THIC, TH1 and TPK was significantly
increased when subjected to paraquat stress, where the largest increase in transcript
abundance was found in TPK gene (sixfold). Similarly, at increasing the concentra-
tion of PEG and NaCl to induce osmotic and salt stress, respectively, total thiamine
content in maize seedlings was significantly increased. The increase in total thiamine
content correlated with the gain in abscisic acid (ABA) content in maize seedlings
(Tunc-Ozdemir et al. 2009). In addition, under drought and salinity stress conditions,
a moderate increase in transketolase activity, which is the major TPP-dependent
enzyme, was also detectable. The perturbation in transketolase activity suggests the
role of thiamine metabolism in plant adaptation to stresses (Tunc-Ozdemir et al.
2009).

In oil palm, which is the primary commodity in Malaysia, it is interesting to
examine the responses to biotic and abiotic stresses, specifically on the expression
of thiamine biosynthesis genes. A semi-quantitative reverse transcriptase PCR was
performed and showed thatTHI1/THI4 andTHICwere upregulatedwhen the oil palm
seedlings subjected toGanoderma boninense infection (Balia Yusof et al. 2015), and
also oxidative, salinity and osmotic stresses (Wong et al. 2016; Abidin et al. 2016).
Wong et al. (2016) reported that the increase in transcript level of THI1/THI4 and
THIC were detectable at early stages of day 3 of PEG-induced osmotic stress in
oil palm seedlings. On the other hand, at subsequent days of day 7 and day 30, the
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decrease in level of expression of THI1/THI4 and THIC suggests that the seedlings
have adapted to stress. It isworth noting the different levels of increment of expression
of THI1/THI4 and THIC when the oil palm seedlings were subjected to stresses,
where it was shown that the increase in the level of expression of THI1/THI4 was
higher thanTHIC. Overall, it was demonstrated that the expression ofTHI1/THI4 and
THIC were upregulated with an increase in the concentration of the stress inducer
(Abidin et al. 2016).

The efforts of biofortification of thiamine are currently focused on the rice.Wang
et al. (2006) reported that transgenic rice that has a knocked-out OsDR8 gene which
has a high-sequence similarity to maize genes THI1/THI4 showed reduced resistance
to bacterial blight and sheath disease caused by Xanthomonas oryzae and Magna-
porthe grisea (Fig. 7.2). It is suggested that biofortification of thiamine through
genetic engineering will lead to higher resistance against bacterial blast diseases and
also increasing nutritional bioavailability (Dong et al. 2015). However, overexpres-
sion of THIC or THI1/THI4 in rice lines did not result in an increase thiamine level
in rice seeds. Interestingly, when both THIC and THI1/THI4 were overexpressed,
thiamine accumulation was observed up to fivefold in unpolished seeds. However,
overexpressed THIC and THI1/THI4 lines did not show enhanced resistance towards
X. oryzae (Dong et al. 2016). This implies that thiamine accumulation does not nec-
essarily enhance resistance towards diseases and the relationship between thiamine
metabolism and disease resistance is still poorly understood (Dong et al. 2016).

Fig. 7.2 Transgenic rice that has a knocked-out OsDR8 gene which is homologs of THI1/THI4
showed an apparent disease symptoms caused by Xanthomonas oryzae and Magnaporthe grisea.
Adapted from Wang et al. (2006)
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7.5 Role of Thiamine in Plant Growth

Thiamine is also important for the development and growth of plants. Previous studies
have shown that thiamine is indispensable for in vitro growth and development of
excised roots in many plants (Palanisamy et al. 1998). A maize thiamine auxotroph
exhibited a defect in shoot meristem growth (Woodward et al. 2010). Apart from that,
thiamine is used as growth regulators in vegetative propagation of Jatropha curcas
(Dhillon et al. 2011) and embryogenic callus induction in Zoysia japonica turgrasses
(Asano et al. 1996). Recently, thiamine pre-treatment in soybean seeds resulted in
better growth as indicated as higher nodules per plant, and fresh and dry weight per
plant compared with control (Abdel-Monaim 2011).

7.6 Enhancement of Thiamine Content in Plants

As described earlier, thiamine has shown as to act as a cofactor and a signalling
molecule to alleviate plant stress and enhance disease resistance. Previous studies
have shown that supplementation and accumulation of thiamine in plants showed no
evidence of toxicity towards the plants (Pourcel et al. 2013). Thiamine production
has also been shown to be regulated in order to balance the demand and supply of the
vitamin. Other than that, thiamine biosynthesis is regulated via riboswitch-dependent
gene regulation and tissue specificity, stress dependence, and post-translational reg-
ulation (Belanger et al. 1995; Ribeiro et al. 1996; Papini-Terzi et al. 2003).

It is generally understood that the total thiamine content in plants is composed
of thiamine, thiamine monophosphate (ThMP) and thiamine diphosphate (ThDP)
(Goyer 2010). Studies have been done in the overexpression of THIC and THI4
simultaneously where it has shown to increase the level of thiamine to approximately
sixfold and ThDP level to approximately twofold. As compared to a single overex-
pression of either THIC or THI4, the study showed no elevation of total thiamine
content (Dong et al. 2016). This clearly shows the correlation between thiamine
biosynthesis genes and thiamine production. This finding suggested that the fortifi-
cation of thiamine in plants may be achievable via thorough an understanding of the
gene expression of the enzymes involved in the thiamine biosynthesis pathway. Due
to that, the studies on the effects of biotic and abiotic stress towards the elevation of
the expression of thiamine biosynthesis genes have been done widely (Balia Yusof
et al. 2015; Wong et al. 2016; Abidin et al. 2016; Kamarudin et al. 2017a, b). The
idea of utilizing stress in order to elevate the biosynthesis of thiamine in plants may
contribute to the positive achievement in fortifying thiamine in crops.

The other obviousmethod is clearly through geneticmanipulation. It has been sug-
gested that thiamine fortification in plants may be possible via genetic engineering.
A previous study on Arabidopsis proved that the mutation of the well-known regula-
tory element involved in thiamine biosynthesis pathway, the riboswitch has produced
an Arabidopsis mutant with impaired TPP riboswitch activity, and hence, the plant
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has an enhanced accumulation of total thiamine and its derivatives (Bocobza et al.
2013). However, more CO2 production was observed in this mutant due to increasing
TPP concentrations. High concentrations of TPP have led to an increased metabolic
flux into the TCA cycle and pentose phosphate cycle, and these conditions can cause
a significant increase in the organism respiratory rate (Bocobza et al. 2013). Apart
from that, overexpression THIC and THI4 genes in Arabidopsis and rice have shown
to increase thiamine and ThDP levels of up to sixfold and twofold, respectively, in
Arabidopsis and an increase of total thiamine level in rice of up by fivefold (Dong
et al. 2015, 2016). On top of that, geneticmanipulation of another enzyme in thiamine
biosynthesis pathway TPK in Arabidopsis caused an increased expression of TPK
of up to 30-fold besides an elevation in transketolase enzyme activity by 2.5 fold
(Khozaei et al. 2015). However, the mutant plant somehow showed some chlorosis
and also has been observed to be slow-growing. These are somehow the expected
consequences due to genetic manipulation procedure which may be avoided.

7.7 Conclusion

Therefore, in general, the literature here clearly suggested that thiamine may be
involved in stress protection in plants. The gain in thiamine content will be beneficial
to the plant as numerous studies have shown that thiamine is associated with induced
systemic resistance that involves the production of NADPH, ROS and other defence
metabolites. Taken together, it implies that thiamine may augment disease resistance
ability through enhancement of thiamine biosynthesis. The identification of thiamine
biosynthesis genes in plants will enable us to unravel other possible roles of thiamine
in abiotic and biotic stress responses. The overexpression of thiamine may produce
plantswith enhanced resistance to diseases and stresses. Therefore, the understanding
of the role of thiamine in plant protection could be adapted as disease resistance
strategies in the framework of sustainable agricultural practices.
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Chapter 8
Vitamins B6-, C-, and E-Enriched Crops

Manish Sainger, Darshna Chaudhary, Ranjana Jaiwal, Anil K. Chhillar
and Pawan Kumar Jaiwal

Abstract Bourgeoning population and global climate change have put a tough
challenge of feeding a large number of undernourished (with insufficient calorie
intake) and malnourished (with limited or no access to essential micronutrients, vita-
mins, and minerals, causing the so-called hidden hunger) people globally. During
the last few decades, the increase in production of calorie-rich staple food crops has
resulted in a decrease in the number of undernourished people from over 1 billion
to less than 800 million. However, no such equivalent increase in the production of
non-staple foods (pulses, vegetables, fruits, and animal products) has been seen. The
micronutrient malnutrition is still affectingmore than 2 billion people or one-in-three
people globally. Further, staple food crops are poor in vitamins that are further lost
during storage, processing, and cooking. Vitamin deficiencies are prevalent in people
who are solely dependent on staple crops for their diet and cannot afford diversified
diet and have limited access to supplementation (multivitamin pills) or fortified food
(addition of vitamins to food). Vitamin deficiencies in human cause severe physical
and mental damages and are associated with enormous economic losses. Bioforti-
fication is a cost-effective and sustainable alternative to enhance vitamins in edible
parts of the plant through breeding or metabolic engineering. The present chapter
focuses on three relevant vitamins, B6, C, and E. An overview of their role in plants,
metabolism, rational behind biofortification, and advances in manipulation of their
contents in plants by the maker-assisted selection and metabolic engineering is pre-
sented.
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8.1 Introduction

Vitamins are the vital organic compounds required by humans and animals in small
amounts (micronutrient) for their normal growth and development. They act as cofac-
tors of metabolic enzymes. These compounds are synthesized by bacteria, fungi, and
plants but not by humans and animals which are dependent on a balanced or varied
diet for their supply. However, most of the people in developing countries are depen-
dent on monotonous diet of the staple food crops like rice, wheat, maize, potato,
and cassava that contain micronutrients in small amounts. A proportion of these
nutrients is lost during food processing, preservation, or cooking and thus fails to
meet the natural daily human body requirements, resulting into their deficiencies
which subsequently lead to health disorders/diseases. Total 13 vitamins are broadly
grouped into water soluble (B and C groups) and fat soluble (A, D, E, and K). Their
demand in food, feed, cosmetic, and pharmaceutical industries has increased leading
to the expansion of their global market volume from 5 to 75% during 1999–2012
(Schwechheimer et al. 2016). Currently, theirmarket demand ismet by their chemical
synthesis which is unsustainable (Vandamme and Revuelta 2016). Recent develop-
ments in genomics, high marker density maps, and genetic resources have improved
our understanding of vitamin biosynthesis pathways and their regulation to increase
their contents in edible parts of plants using plant breeding (marker-assisted breeding
and QTL) and transgenic (metabolic engineering) techniques (Strobbe and Van Der
Straeten 2018; Smirnoff 2018; Mène-Saffrané 2018). The current status and future
directions for the biofortification of vitamin B6, C, and E in model and crop plants
are discussed in the present chapter.

8.2 Vitamin B6

VitaminB6 belongs towater-soluble organic compoundswhich are required inminute
quantities and are not synthesized by human/animal body. De novo biosynthesis of
vitaminB6 is limited to plants, bacteria, and fungi; therefore,man and animals rely on
dietary sources (meat and fresh vegetables) to compensate vitamin B6 requirement.
Vitamin B6 exists in six inter-convertable forms with similar biochemical properties.
These forms are pyridoxamine (PM, an aminomethyl), pyridoxine (PN, a hydrox-
ymethyl), pyridoxal (PL, an aldehyde), and their phosphorylated forms (Fig. 8.1), of
which pyridoxal 5′-phosphate (PLP) is the most important form that plays a central
role in many metabolic reactions as a cofactor (Hellmann andMooney 2010; Ueland
et al. 2017). Vitamin B6 is also considered as an effective antioxidant and is associ-
ated with oxidative stress responses in both animals and plants (Bilski et al. 2000;
Hellmann and Mooney 2010). Deficiency of vitamin B6 results in many disorders
such as hypertension, diabetes, heart disease, renal disorder, pellagra (Hellmann and
Mooney 2010), and several neurological disorders like epilepsy, alzheimer, autism,
schizophrenia, parkinson, etc. (Di Salvo et al. 2012). Vitamin B6 deficiency is also a
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Fig. 8.1 Chemical structures of B6 vitamers

risk factor for Nodding Syndrome in Northern Uganda (Obol et al. 2016) and South-
ernSudan (Wadman2011;Vogel 2012). Its deficiency threat can be enhanced byother
factors like undernourishment, pregnancy, HIV, alcoholism, etc. (Fitzpatrick et al.
2012; Di Salvo et al. 2012). The key reason of vitamin B6 deficiency in developing
countries is the inadequate availability of food to poor people.

8.2.1 Food Sources of Vitamin B6

Sunflower seeds, pistachios, fish, turkey, chicken, pork, beef, dried fruits, bananas,
avocados, potatoes, cereals, and spinach, etc., are the foods which are rich in vitamin
B6 (Table 8.1). Potatoes contain the highest vitamin B6 content compared to the other
food crops (Fitzpatrick et al. 2012). Bioavailability of B6 vitamers from vegetable
source is associated with the sufficient intake of food (Vanderschuren et al. 2013).
From the plant source, all the B6 vitamers and their phosphorylated forms are com-
pletely bioavailable except PN-glucoside which is only 50% bioavailable (Gregory
2012). Physicochemical factors such as temperature, luminosity, and pH also affect
B6 vitamer content (Fitzpatrick et al. 2012). Pyridoxal (PL) and pyridoxal phosphate
(PLP), the major types of vitamin B6 found in animal tissues (Mehansho et al. 1979),
are less stable than the pyridoxine (PN) and its glycosylated form (Vanderschuren
et al. 2013).
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Table 8.1 Some important
food sources of vitamin
B6 (https://lpi.oregonstate.
edu/mic/vitamins/vitamin-
B6)

S. No. Food Vitamin B6 (mg/100 g)

1 Fortified breakfast cereal 0.5–2.5

2 Salmon 0.48–0.80

3 Potato 0.70

4 Turkey 0.69

5 Avocado 0.52

6 Chicken 0.51

7 Spinach (cooked) 0.44

8 Banana 0.43

9 Dried plums, pitted 0.36

10 Hazelnuts (dry roasted) 0.18

11 Vegetable juice cocktail 0.13

12 Cassava 0.1

13 Wheat bran crude 1

14 Rice bran crude 4

15 Rice flour brown 1

16 Maize 0.4

8.2.2 Biosynthesis and Homeostasis of Vitamin B6

In plants, vitamin B6 is synthesized de novo in the cytoplasm. Two enzymes, pyri-
doxal phosphate synthase (PDX1) and glutaminase (PDX2), play key roles in syn-
thesis of pyridoxal 5′-phosphate (PLP). This pathway is known as deoxyxylulose 5-
phosphate (DXP)-independent pathway (Tambasco-Studart et al. 2005). On the other
hand, DXP-dependent pathway involves seven enzymes and was first discovered in
Escherichia coli (Fitzpatrick et al. 2007). Ammonia and glutamate are produced
by the action of enzyme PDX2 from glutamine. The ammonia, glyceraldehydes 3-
phosphate (G3P), and ribose 5-phosphate (R5P) are utilized as substrates by PDX1
for the synthesis of PLP (Fig. 8.2) (Colinas et al. 2016; Fudge et al. 2017; Strobbe
and Van Der Straeten 2018).

A couple of enzymes like PMP/PNP oxidase (PDX3), PM/PN/PL kinase (SALT
OVERLYSENSITIVE, SOS4), and non-specific phosphatases (PPase) are present all
over in plastids, mitochondria, and the cytosol and operate during vitamin B6 salvage
pathway (Sang et al. 2007; Vanderschuren et al. 2013; Parra et al. 2018). The non-
phosphorylated vitamers of vitamin B6 (i.e., PM, PN, and PL) can be transformed
to their phosphorylated forms by the action of SOS4 and non-specific phosphatases
(PPase). Further, a pyridoxal reductase (PLR1) converts pyridoxal to pyridoxine
through NADPH (Herrero et al. 2011; Strobbe and Van Der Straeten 2018) during
cellular homeostasis of vitamin B6 in plants (Fig. 8.3). The purine permease (PUP1)
transports the pyridoxine and pyridoxal into the interior of cell from the guttation
sap. Vitamin B6 is necessary for regulation of plant growth and development, and

https://lpi.oregonstate.edu/mic/vitamins/vitamin-B6
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Fig. 8.2 De novo synthesis of PLP in plant cytosol

Fig. 8.3 Salvage pathway for synthesis of B6 vitamers in plant cell decoded from Arabidopsis
thaliana (modified after Fudge et al. 2017). Cytosolic B6 vitamers homeostasis occurs through the
action of a couple of enzymes. These are: the PNP/PMP oxidase, PDX3; the PL/PN/PM kinase,
SOS4; the PL reductase, PLR1 non-specific phosphatases. Transaminases catalyze the cellular
equilibrium of PMP/PLP. Transferases and hydrolases mediate the interconversion of PN and PL-
Gly that are not yet characterized. PN and PL are taken from the external environment, i.e., guttation
sap through the purine permeases, PUP1
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Fig. 8.4 B6 vitamers homeostasis in animal cell (as decoded from Homo sapiens) (modified after
Fudge et al. 2017). Which is comparable to that in plants and consists of the enzymes: PNP/PMP
oxidase, PNPO; PL/PN/PM kinase, PLK; and phosphatases. Transaminases catalyze the cellular
equilibrium of PMP/PLP. Unphosphorylated vitamers are taken up in the gut, i.e., extracellular
space

the different forms of vitamin B6 are balanced in the plants through the above-said
process.

In animals/human, vitamin B6 homeostasis is similar to plants and includes the
enzymes PNP oxidase (PNPO) in place of PDX3, PL/PN/PM kinase (PLK) in place
of SOS4, non-specific phosphatase (PPase) and transaminase (Tases). Tases help in
maintaining the cellular equilibrium of PMP/PLP. The non-phosphorylated vitamers
can enter in the gut (i.e., extracellular space) (Fig. 8.4).

8.2.3 Vitamin B6 Functions and Deficiency Diseases

VitaminB6, an importantmicronutrient required for proper human functioning, plays
a central role as a cofactor/coenzyme for nearly 180metabolic reactions, like transam-
inations, aldol cleavages, and carboxylations (Ueland et al. 2017). Further, vitamin
B6 also acts as an antioxidant (Justiniano et al. 2017) and helps in protein folding
(Cellini et al. 2014) and the biosynthesis of heme and neurotransmitters (Ueland
et al. 2017; Parra et al. 2018).
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Deficiency of vitamin B6 leads to a number of diseases in human like cardiovas-
cular diseases, anemia, diabetes, rheumatoid arthritis, and various types of cancers
such as lung, breast, kidney, and colorectal cancers (Ueland et al. 2017). Many neu-
rological disorders like epileptic seizers (Skodda and Muller 2013) and peripheral
neuritis (Ghavanini and Kimpinski 2014) are also related to the deficiency of vitamin
B6. Recent investigations on vitamin B6 status at population level in developed and
developing countries have shown that very lowB6 content is present in nearly one-in-
four people in developed countries. The condition is more deteriorated in developing
countries like Uganda and Sudan where about half of the population is vitamin B6

deficient (Fudge et al. 2017). Humans cannot synthesize vitamin B6 de novo and are
completely dependent on dietary sources for vitamin B6. However, bioavailability of
vitamin B6 is a major concern, as half of the B6 pool (mainly from the plant food)
is lost due to incomplete digestibility (Roth-Maier et al. 2002). Further, most of the
food crops used worldwide like wheat, rice, potato, cassava, and maize are deficient
in dietary vitamin B6 (Fudge et al. 2017) (Table 8.1).

8.2.4 Biofortification of Vitamin B6

In the last decade, genetic engineering has emerged as a successful tool for enhancing
the vitamin B6 content in model plants like Arabidopsis (Chen and Xiong 2009;
Raschke et al. 2011) and tobacco (Herrero and Daub 2007) and in staple crop plants
like cassava (Li et al. 2015) and potato (Bagri et al. 2018) (Table 8.2). Vitamin
B6 pathway genes PDX1 and PDX2 are used for biofortification of vitamin B6.
Crosstalk between biosynthesis and salvage pathways of vitamin B6 occurs in plants
which enable the B6 vitamers to interconvert in cytosol according to the need of a
plant (Tanaka et al. 2005). PDX1 and PDX2 are the two important cytosolic enzymes
which are crucial for de novo biosynthesis of vitamin B6. In higher plants, PDX1
is present in multiple homologues, i.e., PDX1.1, PDX1.2, and PDX1.3, whereas
PDX2 is present as single homologue (Tambasco-Studart et al. 2005). The function
of homologue PDX1.2 has not been known till now. The similar homologues of both
genes are identified in rice, cassava, and potato also (Ouyang et al. 2007; Prochnik
et al. 2012; Mooney et al. 2013). The overexpression of PDX1 and PDX2 isolated
from a pathogenic fungus, Cercospora nicotianae, in leaves of tobacco has increased
the vitamin B6 nearly by 20% (Herrero and Daub 2007). The overexpression of
PDX1.3 and PDX2 genes in Arabidopsis under the control of a constitutive promoter
35S CaMV has increased vitamin B6 by 1.2-fold, whereas when these genes are
tagged with a seed-specific 12S promoter, the increase in vitamin B6 was 1.4–3-
fold. Further, the overexpression of PDX1.1 alone and with PDX2 has resulted in
fourfold increase in shoots and seeds, and fivefold increase in seeds, respectively
(Raschke et al. 2011). This study demonstrates that correct choice of homologues is
important during genetic engineering. Interestingly, hyperaccumulation of vitamin
B6 has resulted in bigger seed size (through embryo enlargement) as well as larger
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aerial organs, but the number of seeds harvested is decreased which results in low
yield (Raschke et al. 2011). These transgenic lines are tolerant to various stresses.

Biofortificationof vitaminB6 bygenetic engineering in cassavahas shownpromis-
ing results. The ectopic expression of PDX1.1 and PDX2 using constitutive promoter
35S CaMV and tuber-specific promoter (PAT) results in 14.8- and 5.8-fold increase
in vitamin B6 content of uncooked leaves and roots, respectively, with no change
in morphology and physiology of plant (Li et al. 2015). The vitamin B6 content in
cooked transgenic cassava leaves and roots was nine and fourfold higher compared to
the wild types. Moreover, these transgenic plants were stable in field conditions and
vitamin B6 contents were bioavailable (Li et al. 2015). Recently, the overexpression
of a single genePDX2 under the control of constitutive promoter 35SCaMV in potato
has increased vitamin B6 content by 107–150% (Bagri et al. 2018). The tuber size
has also increased due to the accumulation of PDX2 proteins and plants have shown
tolerance to various stresses (Bagri et al. 2018; Table 8.2). The results obtained from
the studies on cassava and potato are encouraging and conclude the success of two
gene engineering strategies (Li et al. 2015) but open the options for engineering one
gene (Bagri et al. 2018). More studies are required to establish these strategies for
biofortification in other economically important crop plants. Further, till now there is
no report of biofortification of monocot plants especially wheat and maize which are
used as staple food crops. However, rice transgenic plants constitutively expressing
Arabidopsis PDX1.1 and PDX2 genes have shown increase in vitamin B6 content
in leaves (up to 28.3 fold), roots (12 fold) and seeds (3.1 fold mainly in seed coat
and embryo with little in endosperm) with no effect on overall growth and tolerance
to abiotic (salt stress) or biotic stress (resistance to Xanthomonas oryzae infection)
(Mangel et al. 2019).

8.3 Ascorbic Acid

Vitamin C or l-ascorbic acid (l-threo-hex-2-enono-1,4 lactone, ascorbate) is a vital
water-soluble micronutrient found in eukaryotes. Ascorbic acid in water solutions
forms amonovalent anion, ascorbate, which donates electrons to oxidizedmolecules.
It is a key antioxidant that protects the cells and cell organelles from harmful effects
of reactive oxygen species (ROS). It helps the human body in fighting against several
oxidative stress-related diseases like cardiovascular, cancer, aging, etc., and boosts
the immunity. Most of the animals synthesize ascorbate as they have l-gulono-1,4-
lactone oxidase (GULO) that catalyzes the last step in ascorbic acid synthesis, but
humans along with other primates do not synthesize their own ascorbate due to
the mutations in GULO gene, and thus, they obtain it from their diet. Being an
essential human micronutrient, its deficiency causes scurvy, a disease which is rare
now but was discovered by the sailors as early as 1497 due to the non-consumption
of fresh plant-derived food for months. The symptoms of scurvy includes joint pain,
swollen and bleeding gums, skin lesions due to ruptured blood vessels, and in severe
cases can result in death. In 1747, it was demonstrated that the consumption of
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citrus fruits which are rich in vitamin C can cure/prevent scurvy. Hence, vitamin
C was called as ‘antiscorbutic factor.’ Albert Szent-Gyorgyi isolated the antiscurvy
molecule ‘vitamin C’ in 1928. It was crystallized in 1932, and its structure was
elucidated in 1933. Humans meet their daily requirement of ascorbic acid from the
plant-derived food. The recommended daily allowance (RDA) of vitamin C varies
with countries, e.g., 40 mg/day for adult man in UK, 70 mg/day in Netherlands,
90 mg/day in USA, and 100 mg/day in Germany (Troesch et al. 2012). A daily
dose of 90–100 mg vitamin C has been recommended to prevent heart diseases,
cancer, and cataract, in contrast to 45 mg/day required to protect from scurvy (Carr
and Frei 1999). Increasing its RDA to 200 mg/day would provide enhanced health
benefits (Frei et al. 2012). Humans need 10 mg/day although the RDA for ascorbate
is 1 mg/kg/day. Vitamin C deficiency affects 10–14% US adults (Velandia et al.
2008). In developing countries, people are largely dependent on cereals for energy
requirement which are deficient in vitamin C. Plants with higher ascorbate levels are
to be developed for not only to provide the health benefits but also to improve their
performance under increased earth temperature and water scarcity due to the recent
rise in CO2 and other greenhouse gases. Developing stress-tolerant crops ensure food
and nutritional security for overgrowing population. Producing plants with higher
ascorbate levels is an imperative approach to develop climate-resilient crops.

8.3.1 Ascorbic Acid Market

l-ascorbic acid (AsA) has the largest share in the global vitamins market. It is used in
several industries, e.g., pharmaceutical, food, beverages, cosmetics, and feed (Cam-
rena and Wang 2016; Moser and Chun 2016). The pharmaceutical industry is the
largest consumer of ascorbic acid. The global market for ascorbic acid and its deriva-
tives is estimated to >110,000 tons per year and $1 billion (Austria et al. 1997; Pap-
penberger and Hohmann 2014). Eighty percent of the world’s supply for ascorbic
acid comes fromChina. The industrial production of ascorbic acid is not efficient and
costly. However, plant-derived food has higher bioavailability of ascorbic acid than
the synthetic/purified molecule used in supplementation (Vissers et al. 2011). This
may be due to the presence of several antioxidants/redox molecules in plant food
that are synergistic to ascorbic acid or maintain ascorbic acid in its active reduced
state (Villanueva and Kross 2012).

8.3.2 Ascorbate Biosynthesis

Ascorbate is synthesized only by eukaryotes and not by the prokaryotes. Several
eukaryotes like primates (including man), bats, guinea pig, and teleost fish do not
have functional GULO gene that encodes the last enzyme of ascorbate biosynthetic
pathway thus they acquire it from their diet. AsAbiosynthesis pathways vary between
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plants, animals, and photosynthetic protists (Wheeler et al. 2015). Fungi produce a 5C
analogue, d-erythroascorbate. Ascorbate biosynthesis pathways have been reviewed
previously (Loewus 1999; Smirnoff and Wheeler 2000; Valpuesta and Botella 2004;
Wheeler et al. 2015; Bulley and Laing 2016), but an overview is presented here
(Fig. 8.5). In higher plants, ascorbic acid is mainly synthesized from d-glucose
without inversion of carbon chain through the Smirnoff–Wheeler pathway (Wheeler
et al. 1998). d-glucose is converted by hexokinase to glucose-6-phosphate which
is further converted to GDP-d-mannose through four reversible steps catalyzed by
PGI, PMI, PMM, andGMP/VTC1. GDP-d-mannose is converted into l-galactose by
three steps catalyzed by GME, GGP/VTC2, and GPP/VTC4. l-galactose is reduced
by galactose dehydrogenase (GDH) into l-galactono-1,4-lactone, and galactono-1,4-
lactone dehydrogenase reduces it further to ascorbate.

The second pathway of ascorbate synthesis involves the reduction of the sub-
strate d-galacturonate (d Gal) (derived from pectin degradation by enzymes, pectin
methylesterases, PMEs and polygalacturonases, PGs) to l-galactonate (by the

Fig. 8.5 Major biosynthetic and recycling pathways of ascorbate in plants. Enzymes are high-
lighted in red color. HK: hexokinase; PGI: phosphoglucose isomerase; PMI: phosphomannose
isomerase; PMM: phosphomannomutase; GMP: GDP-d-mannose pyrophosphorylase (VCT1);
GME: GDP-d-mannose-3′,5′-isomerase; GGP: GDP-l-galactose phosphorylase (VTC2/VTC5);
GPP: l-galactose-1-phosphate phosphatase (VCT4); GDH: l-galactose dehydrogenase; GLDH: l-
galactose-1,4-lactone dehydrogenase; APX: ascorbate peroxidase, MDHAR: monodehydroascor-
bate reductase; DHAR: dehydroascorbate reductase; GR: glutathione reductase; MIOX: myo-
inositol oxygenase; GULO: l-gulonolactone oxidase; GalUR: d-galacturonate reductase
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enzyme l-galactose dehydrogenase, GalUR) which is spontaneously converted to
l-galactono-1,4 lactone. This compound feeds into the terminal step of l-galactose
pathway where it is reduced to ascorbate via the action of l-galactono-1,4-lactone
dehydrogenase (GLDH) enzyme.

The third pathway is similar to the main pathway that starts from d-glucose, but
branch off from GDP-d-mannose which is converted to l-gulose in three reactions
catalyzed by GDP-d-mannose epimerase (GME), GDP-l-gulose-1-P phosphatase,
and l-gulose-1-P phosphatase, respectively. The l-gulose is reduced to l-gulono-1,4
lactone which then oxidizes to ascorbate by l-gulonolactone oxidase (GULO).

The fourth pathway involves the synthesis of ascorbate from myo-inositol. In
short, myo-inositol is converted to l-gulono-1,4-lactone in three steps catalyzed
by myo-inositol oxygenase (MIOX), glucuronate reductase, and aldonolactonase
(Valpuesta and Botella 2004). l-gulono1,4-lactone is finally converted in ascorbate
by the action of l-gulonolactase.

Thus, plants have several routes but the contribution of each of these pathways
varies between different species, organs, and developmental stages.

8.3.3 Ascorbate Functions

The functions of ascorbate are well-reviewed elsewhere (see Smirnoff and Wheeler
2000; Smirnoff 2018), and an overview is presented here. Ascorbate is an antioxidant
for detoxification of free radicals generated during metabolism or under stress con-
ditions and acts as a cofactor for many enzymes like violaxanthin de-epoxidase (uses
ascorbate as reductant to protect photosynthetic damage by intense light), myrosi-
nase (a thioglucosidase that uses ascorbate for the synthesis of glucosinolates), and
dioxygenases (Fe2+/2-oxoglutarate-dependent dioxygenases, 2-ODDs with iron on
its active site, uses ascorbate as reductant). Ascorbate reduces ferric (Fe3+) to fer-
rous (Fe2+) for iron uptake and transport (to overcome iron deficiency, anemia), or
requires the dioxygenase enzymes like prolyl hydroxylase (to hydroxylate the proline
residues of collagen) or DNA and histone demethylases (that participate in regulation
of epigenetic mechanisms controlling cell differentiation, whose dysregulation can
result in certain types of cancers). Ascorbate prevents inactivation 2-oxoglutarate-
dependent dioxygenase by reducing active center Fe2+. Ascorbate is also involved
in plant development, cell cycle, cell expansion flowering, hormone signaling, fruit
ripening, and senescence.

8.3.4 Ascorbic Acid Content

The ascorbate content of plants varies with cultivars of a species, between species and
different tissues of the same plant (Gest et al. 2013). Ascorbate levels in the plums of
the kakadu (Terminalia ferdinandiana) are as high as 5300 mg/100 g FW followed
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by in cherries of Acerola (Malpighia emarginata) with 2800 mg/100 g FW, whereas
in fruits of wild accessions of Actinidia chinensis var chinensis and Hippophae
rhamnoids (sea buckthorn) contain 400–420 mg/100 g FW. Most of the main staple
food crops except potato and cassava have less than 10mg ascorbate/100 g FWwhich
further declines upon their storage or processing and cooking. Increase in ascorbate
content in these crops would deliver additional health benefits to a large section of
the society and improve their tolerance to a wide range of stresses. Variations in
ascorbate content in edible tissues of different cultivars have been reported in potato
(Augustin et al. 1978). Such intra-species variations can explain differences among
cultivars for abiotic and biotic stress tolerance.

8.3.5 Strategies for Ascorbate Biofortification

8.3.5.1 Biotechnological/Metabolic Engineering Approaches

Strategies based on the overexpression of the genes involved in ascorbatemetabolism
(biosynthesis or recycling or regulation) or inhibition of degradation/catabolism have
used with varying degree of success in achieving elevated ascorbate levels in plants
(Locato et al. 2014;Macknight et al. 2017;Mellidou andKanellis 2017; Strobbe et al.
2018; Fenech et al. 2019) (Table 8.3). Increase in ascorbate content is beneficial for
plant stress tolerance and improves their nutritional value, to prevent losses due to
long-term storage/post-harvest degradation or browning.

8.3.5.2 Improvement in Ascorbate Levels by Manipulating Main
Biosynthetic Pathway

AsA in higher plants is mainly synthesized from d-glucose throughMan/l-galactose
pathway (Smirnoff and Wheeler pathway) (Fig. 8.5). The intermediate steps,
enzymes, and genes of this pathway have been identified using the fully charac-
terized vitamin C deficient Arabidopsismutants (vtc) and other molecular biological
tools (Conklin et al. 2006; Laing et al. 2007; Maruta et al. 2008). The S-W pathway’s
intermediate, GDP-d-mannose (and to a much less extent GDP-l-galactose), is also
used for the synthesis of cell wall polysaccharides and glycoproteins. The enzymes
upstream of this step such as phosphomannose isomerase (PMI) and phosphoman-
nomutase (PMM) do not have major influence over AsA homeostasis (Qian et al.
2007; Maruta et al. 2008). The role of GDP-d-mannose pyrophosphorylase (GMP
or VTC1) and GDP-d-mannose-3,5 epimerase (GME) enzymes of the l-galactose
pathway is extremely debatable. GMP expression is correlated with AsA concentra-
tion in acerola (Badejo et al. 2009) but not in kiwifruit (Bulley et al. 2009), tomato
(Ioannidi et al. 2009), or blueberry (Liu et al. 2015). Good association between GME
transcripts and AsA is reported in apple (Li et al. 2010a) and blueberry (Liu et al.
2015) but not in tomato (Ioannidi et al. 2009; Mellidou et al. 2012) or kiwifruit
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(Bulley et al. 2009). Tomato plants expressing a yeast GMP gene under a consti-
tutive promoter has increased the AsA in the leaves by 70% and in green fruits by
50%, but in red fruits by only 35% (Cronje et al. 2012). Comparable increases were
observed in tomato plant overexpressing GMP3 (Zhang et al. 2013). Modification
of GME expression is found to have very little effect on AsA levels either in leaf
or fruit tissues (Bulley et al. 2009; Zhang et al. 2010; Mounet-Gilbert et al. 2016).
For example, GME overexpression in the leaves of tomato and rice results in mod-
erate increase in AsA levels (Zhang et al. 2012, 2015a, b). The GDP-l-galactose
phosphorylase (GGP/VTC2) catalyzing the first committed step in ascorbate biosyn-
thesis is rate limiting and thus a major target for metabolic engineering (Bulley and
Laing 2016). Overexpression of kiwi orArabidopsis GGP gene in strawberry, potato,
and tomato under a constitutive promoter (35S) results in very significant fruit/tuber
ascorbate levels (Bulley et al. 2012) indicating the overexpression of GGP consis-
tently and significantly increased ascorbate contents in different species. The tomato
plant overexpressing kiwi GGP gene has shown six-fold ascorbate in fruits (with
developmental defects) and no seed setting but normal strawberry fruits. Besides the
well-documented transcriptional control of GGP in regulation of ascorbate amount,
its translation is also feedback controlled by ascorbate (Laing et al. 2015). This reg-
ulation occurs through conserved cis-acting upstream open reading frame (uORF,
with conserved ACG codon) present at 5′ untranslated region of GGP that represses
the translation of the downstream GGP ORF under high ascorbate concentrations.
Disruption of this ORF through gene editing (CRISPR/Cas) in lettuce has resulted in
increase of ascorbate content by 150% as well as tolerance to oxidative stress (Zhang
et al. 2018). Similar disruption of tomato GGP by CRISPR/Cas has also increased
ascorbic acid by 1.5-fold in leaves (Li et al. 2018b).

The next gene of the pathway, l-galactose-1-P phosphatase (GPP or VTC4), is
not found to be rate limiting in AsA biosynthesis (Li et al. 2017). None of the
genes downstream, l-galactose dehydrogenase (GalDH) andGLDH in tomato exert
a considerable effect on ascorbate pool but GLDH regulates ascorbate content in
pepper probably by its involvement in the transport of ascorbate among different
organs (Rodríguez-Ruiz et al. 2017).

8.3.5.3 Improvement of Alternative Ascorbate Biosynthetic Pathways

Ascorbate biosynthesis through the precursor, d-galacturonate (called d-
galacturonate pathway) which is derived from pectin degradation by pectin esterase
and polygalacturonase, is reported in different species such as strawberry (Agius et al.
2003), grape (Cruz-Rus et al. 2010), apple (Mellidou et al. 2012), orange (Xu et al.
2012), and rose (Li et al. 2017) or at a specific developmental stage, e.g., ripe tomato
fruit (Badejo et al. 2012). Overexpression of pectin esterase or polygalacturonase
to increase pectin degradation is not a realistic strategy to increase ascorbate con-
tent, since pectin degradation might decrease shelf life of tomato fruit (Locato et al.
2014). However, PME activity has a modest role in tomato fruit softening (Brum-
mel and Harpster 2001). Tobacco plants overexpressing a specific PME inhibitor
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(PMEI) have shown reduction in PME and decreased ascorbate content (Lionetti
et al. 2015). Solanum pennellii introgression line (IL12-4-SL) contains one QTL
locus that increases ascorbate content in tomato fruit (Ruggieri et al. 2015) that might
be due to pectin de-methylesterification/degradation (Rigano et al. 2018). Overex-
pression of tomato GalUR in Arabidopsis and strawberry GalUR in potato tubers
and tomato fruits significantly increased ascorbate concentration (Agius et al. 2003;
Hemavathi et al. 2009; Amaya et al. 2015). Tomato lines overexpressing strawberry
GalUR have shown enhanced oxidative stress resistance, cold and salt tolerance, and
displayed higher fruit number and yield (Cai et al. 2015; Lim et al. 2016).

The other alternative ascorbate synthesis pathways are: a side branch of l-
galactose pathway that operates through GDP-gulose, a product of one of the two
epimerization reactions catalyzed by GDP-d-mannose epimerase (GME) (Wolucka
and VanMontagu 2003) or through myo-inositol pathway wheremyo-inositol gener-
atesd-glucuronate. GDP-gulose and d-glucuronate are finally converted into gulono-
1,4-lactose (GulL) which is then transformed into ascorbate through the action of the
terminal enzyme, gulonolactone oxidase (GULO). The overexpression or knockout
ofMIOX does not significantly contribute to ascorbate production (Endres and Ten-
haken 2009). However, overexpression of rat GULO gene in several plant species
has significantly increased ascorbate levels (Jain and Nessler 2000; Lim et al. 2012).
Ectopic expression of this gene in all the five Arabidopsis vitamin C mutants (vtc)
restored leaf ascorbic acid content indicating that the introduction of a novel pathway
of ascorbic synthesis but not that the pathway is active in wild plants (Radzio et al.
2003). Further work on knockout of these enzymes is required in order to assess the
contribution of these pathways in ascorbate synthesis in plants.

8.3.5.4 Improvement in Ascorbate Recycling

The plant’s AsA pool is not only generated through de novo synthesis but also
through the AsA recycling pathway. AsA oxidation product, the short-lived mon-
odehydroascorbate (MDHA), regenerates AsA by MDHA reductase (MDHAR) or
disproportionate spontaneously into AsA and dehydroascorbate (DHA). DHA is
recycled to AsA by DHA reductase (DHAR) which uses glutathione (GSH) as the
reductant through the cycle called ascorbate–glutathione cycle. IfDHA is not reduced
back to AsA, an irreversible loss of ascorbate occurs through its degradation into
oxalate and threonate (Truffault et al. 2017). Efficient recycling of AsA will recover
protection of the ascorbate pool from degradation and thus improve ascorbate con-
tent of plants. DHAR transcript levels have resulted in increased AsA accumulation
in blueberry (Liu et al. 2015), tobacco (Eltayeb et al. 2006), rice leaves (Kim et al.
2013), Arabidopsis leaves (Wang et al. 2010), maize leaves and kernels (Chen et al.
2003; Naqvi et al. 2009), and tomato fruits (Qin et al. 2015). In potato, overexpres-
sion has improved the total pool of AsA but not to the extent as in other plants (Qin
et al. 2011). In tomato, such increase has improved tolerance against oxidative, salt
and temperature stresses (Qin et al. 2015).
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The QTL mapping and introgression lines (Sauvage et al. 2014), expression, and
activity profiles of MDHAR during tomato ripening (Mellidou et al. 2012) have
demonstrated its main role in controlling AsA pool. Overexpression of MDHAR
has been found to have either no effect on AsA content in tobacco and tomato
(Yin et al. 2010; Haroldsen et al. 2011) or negative effect on AsA content (Gest
et al. 2013). Tomato lines underexpressingMDHAR have shown a slight decrease in
ascorbate degradation products indicating improvement in protection of AsA pool
(Truffault et al. 2017). Additionally, reduction in MDHAR through RNAi approach
has decreased tolerance to cold storage and AsA levels in tomatoes (El Airaj et al.
2013). Overexpression of chloroplastic or peroxisomal isoform ofMDHAR in tomato
(Li et al. 2010b) and tobacco (Eltayeb et al. 2006), respectively, has improved AsA
concentration, indicating the different role of the organelle-specific isoform on AsA
pool. Thus, improvement in regeneration efficiency of recycling enzymes may be
carried further because a number of QTLs has been found to be associated with
DHAR and MDHAR.

8.3.5.5 Improvement in Regulation of Ascorbate Biosynthesis

Several genes responsible for regulation of the ascorbate levels have been identified
and characterized (Table 8.3). Some of them have positive effect on the AsA lev-
els and are classified as transcription factors (TF), e.g., ETHYLENE RESPONSE
FACTOR 98 (ERF98) (Zhang et al. 2012) or HD-ZIP (Hu et al. 2016). ERF98 is
induced by ethylene, salt, and H2O2 and transcriptionally activates GMP (VCT1) to
improve ascorbate synthesis in Arabidopsis. A tomato HD-Zip 1 transcription fac-
tor, SIHZ24, that binds to the promoter of an ascorbate biosynthetic gene encoding
GDP-d-mannose pyrophosphorylase 3 (SIGMP3) modulates SIGMP3 transcription
and increases ascorbate levels. Overexpression and downregulation of SIHZ24 have
been shown to increase and decrease SIGMP3 expression. SIHZ24 transcription
factor also targets several other genes of ascorbate biosynthesis like SIGME 2 and
SIGGP by binding to their promoters. SIHZ24 overexpression lines promote ascor-
bate biosynthesis and enhance oxidative stress tolerance (Hu et al. 2016). A novel
regulatory gene, SIZF3 (encodes for C2H2-type zinc finger protein from tomato),
competes with VTC1 to bind to CSN5B (a component of COP9 signalosome), and
this competition inhibits the degradation of VTC1 through 26S proteosome. SIZF3
overexpression in tomato and Arabidopsis promotes accumulation of ascorbate and
enhances their salt tolerance by scavenging ROS (Li et al. 2018a).

Some of the factors, CSN5B and F-box protein AMR1, repress ascorbate syn-
thesis, as a decrease in their expression increases ascorbate concentration or their
overexpression decreases ascorbate. A decrease in AMR1 expression led to twice
increase in ascorbate concentration and transcript levels of GGP, GME, and GMP
(Zhang et al. 2009). CSN5B has been found to interact with GMP and is involved
in light–dark control of ascorbate biosynthesis. CSN5B promotes GMP (VTC1)
degradation through the 26S proteosome in the dark to decrease ascorbate content
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(Wang et al. 2013). A point mutation in VTC1 increased ascorbate biosynthesis and
Arabidopsis seedling growth (Li et al. 2016).

Some factors affect the enzymes or TF concentrations, such as VTC 3 (Conklin
et al. 2013), CSN5B, a subunit of constitutive photomorphogenesis (COP9) sig-
nalosome (Wang et al. 2013), and ascorbate mannose pathway regulator-1 (AMR1)
(Zhang et al. 2009). VTC3 is constitutively expressed over a wide range of conditions
to influence the ascorbate pool at post-transcriptional level (Conklin et al. 2013). It
is also suggested that VTC3 is also involved in the uORF regulation of GGP (Bulley
and Laing 2016). The factors that directly affect enzyme activity are two nucleotide
sugar pyrophosphorylase-like proteins, KONJAC 1 (KJC1) and KCJ2 (Sawake et al.
2015) and a calmodulin like (CML) protein, CML10 (Cho et al. 2016). KONJAC 1
and 2 stimulate the activity of GMP (VTC1). KJC mutants lack KJC proteins and
showed reduction in GMP activity and significantly lowered AsA level. KJC 1 over-
expression significantly increased GMP activity. CML10 promotes accumulation of
ascorbate by direct interaction with phosphomannomutase (PMM). cml 10 knock-
down mutants (amiRNA lines) and pmm-12 mutants (point mutation lines) cannot
produce sufficient ascorbate to scavenge excessive amount of ROS (Cho et al. 2016).
Most of the studies have been carried out on model plants, and it is yet to be seen
whether these factors functions similarly in crop plants. Further research is required
to find the factors involved in regulation of ascorbate biosynthesis and metabolism
for enhancing human nutrition by biofortifying crops and improving tolerance to
abiotic stresses.

8.3.6 Transport/Sub-cellular Localization of Compartment
Enzymes

In plants, ascorbate is present in all tissues and cell compartments as well as in the
extracellular space (apoplast), but the distribution and concentration vary between
tissues and are affected under different environment conditions and developmental
stages. Ascorbate concentration ismaximum in leaves and flowers and lesser in stems
and roots. It is pertinent to consider that the effective translocation and accumula-
tion of AsA at all the sites of the cell may be due to simple diffusion. Since AsA
is negatively charged at physiological pH values and therefore is unable to diffuse
through lipid bilayer. The involvement of a large family of transporters (Nucleobase
Ascorbate Transporter, NAT) in the accumulation of AsA has been suggested. NAT
gene family in Arabidopsis and rice (Maurino et al. 2006) and in tomato (Cai et al.
2014) has been identified. Recently, a chloroplast-localized ascorbate transporter
(PHT4:4), a phosphate transporter family member, has been identified for the move-
ment of ascorbate into the chloroplasts (Miyaji et al. 2015; Fernie and Tóth 2015).
A long-distance transport of AsA via phloem from leaves (source) to fruit (sink) has
been demonstrated (Franceschi and Tarlyn 2002). The last enzyme, GLDH, is local-
ized on the inner mitochondrial membrane and the supply of the direct precursor,
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l-galactono-1,4 lactone to mitochondria limits AsA production and accumulation.
The tagging of GLDH gene with mitochondria transit peptide for efficiently deliver
of the gene product/enzyme into mitochondria and increase in the concentration of
l-galactono-1,4 lactone will improve AsA production.

8.3.7 Inhibiting Ascorbate Degradation or Reducing
Catabolism

Degradation of ascorbate or DHA is non-irreversible which affects their accumula-
tion; hence, engineering inhibition of their catabolism would stabilize or increase
ascorbate content. In plants, in vivo degradation of ascorbate/DHA involves enzy-
matic or non-enzymatic steps. The end products of the catabolism are species specific
and include l-tartrate or oxalate and l-threonate. DHA is also hydrolyzed to 2,3-
diketo-l-gulonate (DKG). Ascorbate and compound 1 are oxidized with ascorbate
oxidase (AO). Arabidopsis T-DNA inserted mutants with reduced AO activity, and
antisense suppression of tobacco AO has improved salt tolerance (Yamamoto et al.
2005). AO overexpressing lines exhibit complete oxidation of cell wall localized
AsA pool resulting into enhanced sensitivity to ozone (Sanmartin et al. 2003) and
reduced stomatal aperture, and rate of leaf water loss (Pignocchi et al. 2003; Fotopou-
los et al. 2008). Decrease in AO has a role during stresses (e.g., ozone, drought, salt,
and pathogen challenge); therefore, it may be vital for plant growth under natural
environments (Yamamoto et al. 2005; Fotopoulos et al. 2008).

Ascorbate peroxidase (APX) reduces hydrogen peroxide to water and protect
plants from oxidative stress (Mittler et al. 2004). Transgenic plants expressing anti-
sense cytosolicAPXshoweddecrease inAPXactivitywith increased susceptibility to
ozone injury and pathogen attack (Orvar and Ellis 1997). The knockout Arabidopsis
plants deficient in cytosolic H2O2 scavenging enzyme APX form APX1, and the
entire chloroplastic H2O2-scavenging system collapses during light stress indicat-
ing role of cytosolic APX1 in cross-compartment protection of thylakoid and stro-
mal/mitochondrial APXs. The AO and APX activities are not positively correlated
with ascorbate content; therefore, suppressing their activities would improve ascor-
bate levels.However, furtherwork ondownregulation ofAOandAPXusing antisense
or RNAi is required to ascertain the role of ascorbate degradation or catabolism on
ascorbate accumulation.

In conclusion, advances in physiology, biochemistry, and molecular biology of
ascorbate synthesis in model and crop plants have led to the engineering of elevated
ascorbate content to improve crop plants productivity and resistance under adverse
climate change and their nutritional value for the benefits of human and animal health.
Introduction of single gene encoding enzymewithin ascorbate biosynthesis and recy-
cling pathways or regulatory protein mostly under constitutive promoter has resulted
in modest increase in ascorbate amount. However, bioengineering of multiple genes
of these pathways would be a more effective approach for consistent improvement in



212 M. Sainger et al.

ascorbate content by several folds as has been demonstrated earlier by transient and
stable coexpression of two genes, GGP and GME of Man/l-galactose pathway, and
genes of biosynthetic and recycling pathways may result in large ascorbate pool. The
success of genetic engineering for high ascorbate content has been restricted to crop
species that are responsive to genetic transformation. The public concerns for their
potential effects on health and environment also restrict their applications for com-
mercial cultivation. The wild relatives and some non-traditional plant species like
Myrciaria dubia (camu-camu), Malpighia glabra (acerola), and Actinidia eriantha
(wild kiwi) contain very high ascorbate levels compared to staple cereal crops. The
mechanism/genetic basis for such variations and their regulation are not yet clear and
thus require more basic research for the better understanding of ascorbate biosyn-
thesis. Conventional breeding based on genetic variability in ascorbate content has
led to the identification of genetic markers and QTLs/genes linked with ascorbate
levels. Rapid advances in next-generation sequencing and gene editing technologies
could facilitate development of crops with higher ascorbate levels. Disruption of neg-
ative regulators of ascorbate biosynthesis, e.g., targeted mutagenesis of uORF that
represses the translation of GDP-l-galactose phosphorylase (GGP) or a single D27E
amino acid mutation in GDP-Man pyrophosphorylase (GMP) disables interaction
with CSN5B preventing its degradation through CRISPR-Cas system, may result in
enhanced ascorbate biosynthesis.

8.4 Vitamin E

Enhanced production can be a solution to increasing global food demand, but it has
certain limitations, and hence, it will be important to augment crop nutritional quali-
ties. Vitamin E (VTE) is a component of a balanced diet and vital for humans. It is an
effective antioxidant with free radical scavenging action and prevents certain types of
diseases (Ulatowski and Manor 2015). It protects plants against lipid oxidation and
stress tolerance and is crucial for cell membrane stability. VTE is a group of lipid-
soluble antioxidants called as tocols or tocochromanols. First isolated from wheat
germ oil (Evans et al. 1936), there are four tocopherols (T, α-, β-, γ-, and δ-) and four
tocotrienols (T3, α-, β-, γ-, and δ-) having different types of isoprenoid side chain
(Kamal-Eldin and Appelqvist 1996). Tocopherols have fully saturated aliphatic tails
from phytyl pyrophosphate, and tocotrienols are with an unsaturated tail containing
three trans double bonds derived from geranylgeranyl pyrophosphate. Different ana-
logues can have different position and number of methyl groups in chromanol ring
which forms the headgroup. Exclusively synthesized by photosynthetic organisms,
they quench polyunsaturated free radicals and break the chain reaction of lipid perox-
idation. α-Tocopherol is the form with the highest VTE activity (Gutierrez-Gonzalez
and Garvin 2016).
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8.4.1 Sources and Deficiency

Likemost of the vitamins, humans are unable to synthesize VTE naturally and obtain
it in adequate quantity from their diet for which plants are the primary source (Chen
et al. 2006). Tocopherols are present in almost all photosynthetic plants, remarkably
in vegetable oils and nuts, whereas tocotrienols are generally present in monocot
seeds (Cahoon et al. 2003). Main source is plant-derived oils where total tocochro-
manol levels, composition, and activity are variable (Grusak and DellaPenna 1999).
α-tocopherol is the most potent VTE compound, and γ-tocopherol is the main form
consumed and present in most major crops (Mene-Saffrane and Pellaud 2017).

In developed countries, a major part of population exhibit plasma α-tocopherol
deficiency due to VTE-deficient diets (Mene-Saffrane and Pellaud 2017). However,
it is prevalent in premature babies, digestive pathology, and genetic pathology con-
ditions. VTE deficiency is more critical in people of developing countries (Dror and
Allen 2011).

The oxidative stress due to VTE deficiency makes it necessary to fine tune its
quantity and quality in the human diet and similarly for plants subject to oxidative
stress. Sufficient intake of VTE has also reduced the risk of non-communicable
diseases in addition to its antioxidant role.

8.4.2 Functions in Plants and Animals

In plants,VTEprotects against lipid oxidation and stress tolerance andplays akey role
in cellmembrane stability.VTE is easily oxidized because of phenolic groups, and the
derivatives produced thereby are potent antioxidants (Munne-Bosch and Falk 2004).
Antioxidant ability of tocopherols and tocotrienols directly quench ROS (reactive
oxygen species) inhibiting its production or indirectly terminate lipid peroxidation
chain reaction (Caretto et al. 2010). In particular VTE acts as the first line of defense
against lipid peroxidation.VTEprevents the oxidationof phospholipids andpromotes
membrane repair. Tocopherols deficiency affects seed longevity and early seedling
development (Sattler et al. 2004a) and impairs photo-assimilate export in several
crops like maize, potato, and tomato (Almeida et al. 2016; Hofius et al. 2004).

VTE is a critical component of balanced diet for humans. Initially, it was rec-
ognized as a nutritional factor necessary for animal reproduction. Its deficiency
may result in neurological and ophthalmological disorders, myopathy (children),
and hemolytic anemia in premature babies. In humans, it also acts as a powerful
lipid antioxidant with free radical scavenging action and protects cell membranes
from the destructive effects, and several tocochromanol isoforms prevent certain
types of cancers, delay brain aging, Alzheimer’s disease in older patients, cardiovas-
cular and neurological disorders, maintain blood cholesterol levels, etc. (Ulatowski
and Manor 2015).
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Tocopherols and tocotrienols could decrease adenosine diphosphate-induced
platelet aggregation, type-2 diabetes, immune response impairment, prostate can-
cer, cataracts, anemia, retinopathy, cholesterol, and inflammation activities (Kan-
nappan et al. 2012; Jiang 2014; Mathur et al. 2015) by inducing body’s defenses
and humoral and cell immune responses. The tocopherol transfer protein (TTP) reg-
ulates the tocopherol secretion from hepatocytes and movement of VTE between
membrane vesicles in vitro and hence maintains VTE status. Role of VTE on sig-
naling cascades, enzyme activities, and gene regulation in mammals and plants have
also been reported; however, the molecular mechanism(s) in vivo are not yet revealed
(Brigelius-Flohé 2009; Asensi-Fabado and Munné-Bosch 2010).

8.4.3 Biosynthesis

VTE biosynthesis pathways (Fig. 8.6) have been found to be extensively con-
served among plants (DellaPenna and Mene-Saffrane 2011). The chromanol head-
group of VTE derives from Shikimate pathway and side chain (polyprenyl)
from methylerythritol 4-phosphate (MEP) pathway. Homogentisate condenses with
phytyl diphosphate or geranylgeranyl diphosphate (GGDP) to form tocopherols
and tocotrienols, respectively (Yang et al. 2011a, b). In the ‘VTE core path-
way,’ p-hydroxyphenylpyruvic acid (HPP) dioxygenase (HPPD) converts hydrox-
yphenylpyruvate to homogentisate, which results in headgroup synthesis. Phytyl-
PP or GGDP and homogentisic acid (HGA) then produce two intermediates
in tocopherol synthesis, 2-methyl-6-phytylbenzoquinol (MPBQ) and 2-methyl-6-
geranylgeranylbenzoquinol (MGGBQ) by the activity of homogentisate phytyl trans-
ferases (VTE2). The MPBQ produced is methylated and/or cyclized by 2-methyl-6-
phytyl-1,4-benzoquinol transferase (VTE3) and tocopherol cyclase (VTE1), respec-
tively, and/or methylated by γ-tocopherol methyltransferase (VTE4). The commit-
ted steps in tocotrienol and tocopherols biosynthesis are condensation of GGDP and
HGA by homogentisate geranylgeranyl transferase (HGGT) and the condensation of
HGA and phytyldiphosphate (PDP), catalyzed by VTE2, respectively. VTE1, VTE3,
and VTE4 are common enzymes involved for the synthesis of both. The different
tocopherols are products of different combinations and numbers of reactions cat-
alyzed by VTE3, VTE1, and VTE4. Their nomenclature depends on the number and
position of methyl substitutions on chromanol ring (Stacey et al. 2016). In plants,
tocochromanol and enzymes of the core pathways have been found in plastids only.

8.4.4 Biofortification

Biofortification is an approach to enrich nutrient(s) content to reduce micronutrient
deficiencies, especially vitamins, minerals, etc., in staple crops to sustain nutritional
and health goals. Identification of VTE biosynthetic genes has helped to improve the
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Fig. 8.6 Pathway for biosynthesis of vitamin E

VTE content of crops either by metabolic engineering or classical breeding (Garcia-
Casal et al. 2017).

Recently, numerous genes for VTE pathway enzymes have been identified and
cloned using genetic and genomics-based methods, but studies are still limited to
the model organisms like Arabidopsis thaliana and Synechocystis (DellaPenna and
Mene-Saffrane 2011; Wang et al. 2018). However, the genetic and genomics-based
findings on tocopherol biosynthetic genes fromArabidopsis can be efficiently applied
to other plants to isolate their orthologs from their genome sequences. This has
enabled manipulation of tocochromanol levels, types, and accumulated end products
in species like maize, soybean, canola, tomato, and others (Shukla and Mattoo 2009;
Quadrana et al. 2013; Lira et al. 2016). VTE has been increased by regulating the
activity of enzymes involved in tocopherol biosynthesis including HGGT (Cahoon
et al. 2003), MBPQ-MT/VTE3 (Sattler et al. 2004b; Tang et al. 2016), HST (Sadre
et al. 2006), HPT1/VTE2 (Seo et al. 2011), γ-TMT/VTE4 (Ghimire et al. 2011;
Yabuta et al. 2013; Zhang et al. 2013), HPPD (Farre et al. 2012), and TC/VTE1
(Yabuta et al. 2013).
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8.4.5 Plant Breeding/Genome-wide Association Studies

High variation found in VTE content and identification of micronutrient related
QTLs in different agronomically important crops can be exploited by plant breeders
for biofortification (Shammugasamy et al. 2015; Mene-Saffrane and Pellaud 2017).
Genome-wide association studies (GWAS) help to distinguish the natural allelic
variations controlling VTE. Functional genomics studies in modal organisms can be
potentially applied to important crop plants. Quantitative trait loci (QTLs) controlling
the accumulation of VTE have been identified in Arabidopsis, sunflower, maize, and
tomato (Gilliland et al. 2006; Hass et al. 2006; Schauer et al. 2006; Chander et al.
2008; Almeida et al. 2011). Association mapping approach is now also used to
discover new alleles (Myles et al. 2009).

Recent joint-linkage mapping and GWAS related to natural VTE level variations
helped to understand the genetic control of tocochromanols in maize. Out of 52
QTLs identified for individual and total tocochromanols, 14 resolved to individual
genes (responsible for 56–93% of phenotypic variation), 6 encoded new activities
and included two chlorophyll biosynthetic enzymes (por homologues) explaining the
majority of tocopherol variations. Based on detailed studies, the authors suggested
that total tocopherols (two por homologues), total tocotrienols (hggt1, hppd1, and
dxs2), or VTE content (vte3 and vte4) can be targeted further by genomics-assisted
breeding approaches either separately or in combinatorial fashion for fine-tuning of
various essential micronutrients (Diepenbrock et al. 2017).

Identification of a gene encoding 2-methyl-6-phytylbenzoquinol methyltrans-
ferase of the Arabidopsis mutation vitamin E pathway gene 3-1 (vte3-1) and its
seed-specific expression in transgenic soybean reduced seed tocopherol from 20 to
2% (Van Eenennaam et al. 2003). These results confirm that transgenic expression of
VTE3 from a model organism controlled by a seed-specific promoter alters soybean
tocopherol composition for nutritional and food quality implications. Coexpression
of At-VTE3 with At-VTE4 in soybean resulted in more than eightfold tocopherol
and fivefold VTE activity in seeds. Overexpression of the γ -TMT-(γ-tocopherol
methyltransferase) gene in Arabidopsis seeds increased the tocopherol composition.
The VTE activity was increased ninefold, thereby increasing the nutritional value
(Shintani and DellaPenna 1998).

A short interspersed nuclear elements (SINE) retrotransposon in the promoter
region of VTE3 increased VTE accumulation in tomato (Quadrana et al. 2014). In
maize, three genes, VTE1, HGGT1, and a prephenate dehydratase paralog, were
responsible for tocotrienol variations (Lipka et al. 2013) and similarly, two inser-
tion/deletions within VTE4 and a single-nucleotide polymorphism (SNP) varied
α-tocopherol contents (Li et al. 2012a, b). GWAS established that natural tocopherol
variations in maize kernels are affected by genes involved in fatty acid and chloro-
phyll metabolisms and functions of chloroplast. Forty-one unique QTLs and 32
significant loci were identified in 6 populations of recombinant inbred lines (RILs).
The study was validated by the fine mapping of a major QTL and suggested that
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non-tocopherol pathway genes are also responsible for natural tocopherol variations
(Wang et al. 2018).

The coding sequences of genes of the VTE pathway have been elucidated, includ-
ing individual homeologs to understand oat genome evolution and natural variation
forVTE (Gutierrez-Gonzalez andGarvin 2016). The study highlights the role ofVTE
biosynthetic genes expression in observed composition of VTE forms in oat seeds.
The expression of HPPD, homeologs of VTE2 and VTE4 and VTE were highly
correlated. The findings are helpful to modify VTE content and composition in oats
and to design markers for key genes involved in VTE accumulation.

8.4.6 Metabolic Engineering

Metabolic engineering has gained a lot in recent times by expansion of fundamental
knowledge of plant metabolism (Strobbe and Van Der Straeten 2018). Conventional
breeding is widely used but has some serious issues like sexual incompatibility,
linkage drag, and lengthy breeding programs. However, genetic engineering gives
advantage of directly introducing new genes from any source into local varieties
using different approaches to generate various phytonutrient improved crops. Single
or multiple genes have been transferred for biofortification of vitamins in several
crops.

Homogentisate phytyltransferase (HPT) enzyme is involved in the biosynthesis of
tocopherols, and ectopic expression of its homologue gene,MdHPT1, isolated from
apple in tomato plants has resulted in significant elevated levels of α-tocopherol in
transgenic leaves and fruits (Seo et al. 2011). Introduction of barley HGGT gene
in maize has resulted in sixfold increase in the total tocotrienols and tocopherols
(Cahoon et al. 2003). Overexpression of γ -TMT in canola (Van Eenennaam et al.
2003) and soybean (Sattler et al. 2004a) has improved α-tocopherol by seven times.
Similar approach has also increased α-tocopherol by about two times in lettuce (Cho
et al. 2005) and Perilla frutescens (Ghimire et al. 2011). Overexpression of key
plastid-localized enzymes (HPT1/VTE2, TC/VTE1, and γ-TMT) in tobacco and
tomato plants has resulted in ten times higher accumulation of total tocochromanol
(Lu et al. 2013).

Tocopherol contents are correlated with carotenoid biosynthesis and chlorophyll
metabolism. Phytoene synthase (PSY), a core biosynthetic enzyme in carotenoid
biosynthesis, on overexpression in tomato, has increased tocopherol levels (Fraser
et al. 2007). Similarly, independent overexpression of a bacterial phytoene desaturase
has also resulted in higher tocopherol content in fruit (Römer et al. 2000). Chlorophyll
synthase catalyzes the esterification of chlorophyllide with either GGDP or phytyl
diphosphate (PDP). Suppression of chlorophyll synthase (CHLSYN) by RNAi has
reduced chlorophyll accumulation but increased tocopherol concentrations by two-
to threefold, whereas its overexpression has resulted decrease in tocopherol concen-
trations in leaves of A. thaliana (Zhang et al. 2015a, b).
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Coexpression of VTE through ectopic expression of HGGT stabilizes provi-
tamin A in sorghum either by preventing β-carotene oxidation during storage or
increasing the efficiency of vitamin A conversion by promoting cleavage of the
β-carotene molecule during consumption (Che et al. 2016). Some other studies
have shown that a combined expression of more than one gene of a biosyn-
thetic pathway has resulted increase in overall expressions. VTE3 and VTE4
control the different tocopherol ratios (Quadrana et al. 2014). Increasing expression
of VTE3 and VTE4 converts the tocopherols in seed to α-tocopherol (Van Eenen-
naam et al. 2003). HPT and γ -TMT together has resulted in a 12-times higher VTE
in Arabidopsis (Collakova and DellaPenna 2003). Similarly, MT and γ -TMT have
increased VTE by five times (Van Eenennaam et al. 2003; Sattler et al. 2004a), and
tyrA (HPT in yeast) andArabidopsis HPPD andHPT have increasedVTE in soybean
by 11 times (Karunanandaa et al. 2005). However, tocopherol biosynthetic pathway
is complex and yet partially understood (Zhang et al. 2014; Lin et al. 2016), and
additional genes are still getting identified (Hey et al. 2017; Liao et al. 2018; Pellaud
et al. 2018).

In conclusion, although, understanding of the plant biosynthetic pathways for
VTE has significantly increased in recent times, still limited number of genes has
been explored for biofortification. Overexpression ofmultiple genes involved inVTE
biosynthesis is a promising strategy. Besides, the main goal of VTE biofortification
is to increase its contents which can be achieved by converting all the other deriva-
tives into α-tocopherol as it has the highest biological activity. Homeolog-specific
sequence variations and differential expressions help to designmarkers for key genes
regulating VTE accumulation. Advanced genomic studies for understanding chloro-
phyll turnover will enhance VTE biofortification as phytyl pyrophosphate (from
which fully saturated aliphatic tails of tocopherols are derived) mostly comes from
the recycling of chlorophylls. A combined approach to exploit natural genetic vari-
ability of a given trait using molecular markers and engineering vitamin pathways
or vitamin-related metabolism should be used as a complementary to each other.

8.5 Challenges, Opportunities, and Conclusions

Over the last few decades, significant advances in physiology, biochemistry, and
molecular biology of vitamins especially their biosynthetic pathways and regulation
in model and crop plants have paved the way for engineering of elevated vitamin(s)
content to improve their productivity, stress resistance, and nutritional value for the
benefits of human and animal health. However, still limited numbers of genes have
been overexpressed (mostly single) in crop plants to increase their vitamin con-
tent. Engineering multiple genes of a vitamin biosynthetic pathway or of more than
one vitamin (multi-biofortification) in a local elite variety would be more effective
to overcome vitamin(s) deficiencies. Biofortification approaches should take into
account prevention of vitamin losses during post-harvest storage, processing and
cooking, promotion of transport and storage stability of vitamins in the edible parts,
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absorption after consumption (bioavailability), and their efficacy to improve vita-
min status without affecting yield and other farmer/consumer preference traits.
Conventional breeding based on genetic variability has led to the identification
of genetic markers and QTLs/genes required for more efficient breeding of vari-
eties with improved vitamin content. Conventional breeding and metabolic engi-
neering of vitamin pathways or vitamin-related metabolism should be used as a
complementary to each other. Rapid advances in genomics and next-generation
sequencing, metabolomics, and GWAS would identify elite allelic variations, inter-
mediate metabolites, and rate-limiting steps, and would help to design novel genes
and metabolic pathways. Further, use of genome-editing techniques such as the
CRISPR/Cas can ease expensive and stringent regulatory issues and will improve
public acceptance of vitamin-enriched crops for the nutritional well-being of poor
people. Collaboration between scientists, nutritionists, policy executioners, funding
agencies, and educators and further promotion of nutrition-sensitive agriculture and
food-based strategies must be adopted to produce staple food crops with sufficient
levels of all vitamins to resolve the problem of vitamin deficiencies globally.
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Abstract Challenge of today’s agriculture requires the innovative application of
techniques and methodologies to increase the production of high nutritional qual-
ity food crops with greater vigor and more productivity. In the previous decades,
consumers have been looking for foods that not only provide the nutrients (lipids,
carbohydrates, and proteins) but also the compounds with health benefits, such as
carotenoids, flavonoids, phenols; these are not part of the plant’s primarymetabolism
but provide protection, attraction, survival, aroma, color, flavor, etc. The production
of several of these compounds, known as secondary metabolites, is influenced by
a wide range of factors such as biotic and abiotic stresses, types of fertilization,
agronomic management, elicitors, and, recently, the presence of nanoparticles, with-
out neglecting the use of biostimulators and biocontrollers, in addition to metabolic
engineering manipulation. These factors influence both positively and negatively the
production of secondarymetabolites, giving the plant strategies for its adaptation and
survival, as well as compounds with biological activity that contribute to the health
of the human being. In this sense, the present proposal intends to gather relevant
and current information on how some of these strategies influence the production of
secondary metabolites in plants.
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9.1 Introduction

The plants in their environment are continuously modifying their metabolism,
because they are subject to environmental changes as well as the attacks of pathogens
and pests (Cramer et al. 2011). If changes in the crops are positive, they are called
eustressors; otherwise, they are called distressors. When plants are stressed, they
stimulate the secondary metabolism for the production of substances that help them
to cope up with the induced stress (Jamwal et al. 2018). These synthesized sub-
stances are called secondary metabolites (SMs) (Kacienė et al. 2015; Neugart et al.
2018). The SMs confer to each plant the particular characteristics of flavor, aroma,
color, nutrients, medicinal properties, and the protection against stress (Gorelick and
Bernstein 2014; Lajayer et al. 2017a; Pavarini et al. 2012). Nowadays, farmers are
using techniques involving stress factors to accelerate the production of these plant
compounds, intensifying flavors, colors, promoter of growth, increasing nutraceuti-
cal quality, and even lengthening the shelf life (Guo et al. 2015; Lajayer et al. 2017b;
Le Mire et al. 2016). This chapter collects relevant and current information on the
various techniques that are being used, such asmetabolic engineering, nanostructures
and/or nanomaterials, biostimulators, biocontrollers, and elicitation to improve the
production of SMs of agronomic and nutraceutical interest.

9.2 Elicitors

Plants own a vast range of defenses that could be produced not only in response of par-
asites or pathogens but also in recognition of beneficial saprophytic microorganisms.
Compounds derived from these microorganisms or from the plant itself are perceived
by the plant to activate a local or systemic resistance. Also, abiotic stress such as
inorganic salts, metal ions, chilling, extreme temperatures, and wounding can induce
a resistance response (Gorelick and Bernstein 2014). These abiotic and biotic condi-
tions that induce plant stress are called elicitors. The stimulus of pathogen response
and plant gene regulators can also be attained through biostimulants (chitosan, lami-
narin, etc.) that contain substances which act as elicitors (du Jardin 2015). The focus
of this section is on biotic and abiotic stresses and the substances that mimic these
stress conditions that have an impact on the production of plant metabolites.

Several plant metabolites are used as herbicides, pigments, pharmaceuticals, fra-
grances, etc., because they are the major sources of important bioactive compounds.
Research has been done on methods to increase plant products with beneficial prop-
erties. A vast array of these benefits comes from SMs, i.e., chemicals produced by
plants that are not essential for the normal plant growth, development, or reproduc-
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tion, but that are implicated in plant defense against herbivory and other interspecies
defenses. Elicitors act as switch for stimulating the accumulation of SMs in plants
and plant cell cultures (Gorelick and Bernstein 2014; Namdeo 2007; Shilpa et al.
2010).

Elicitors could be classified as general or specific according to their mode of
action. While general elicitors are involved in primary innate immunity and are able
to trigger defense both in host and non-host plants and do not deeply diverge in their
effects on different cultivars in a plant species, specific elicitors are compounds in
certain pathogens and function only in plant cultivars that match the correspond-
ing disease resistance gene and usually lead to the secondary innate immunity after
an intracellular receptor-mediated perception. General elicitors include chemicals,
microbe-associated molecular patterns (MAMPs) from non-pathogenic microorgan-
isms, damage-associated molecular patterns (DAMPs) from plant surfaces resulting
from the action of the invading agent, and pathogen-associated molecular patterns
(PAMPs) from pathogenic microorganisms (Bent and Mackey 2007; Henry et al.
2012). On the basis of their origin, elicitors could be either biotic or abiotic.

9.2.1 Biotic Elicitors

Biotic elicitors are biological molecules of either pathogen or host origin that can
induce defense responses which may be released from the attacked plant by enzymes
belonging to the pathogens (e.g., jasmonic acid, salicylic acid, etc.). Biological
mixtures prepared from microorganisms (pathogenic or non-pathogenic) have been
used in different cultivars and cells cultures to induce the production of different
metabolites. Often, the molecular structure of the active ingredients in these complex
biological preparations is unknown (Gorelick and Bernstein 2014; Rao and Ravis-
hankar 2002). Purification of these biological mixtures has led to the description
of many diverse biotic elicitors which include lipopolysaccharides, polysaccharides
(e.g., pectin, cellulose, chitin, alginate, carrageenan), oligosaccharides (e.g., galac-
turonides, mannan, etc.), proteins, and pathogen toxins (Bi et al. 2011; Gururaj et al.
2012; Montesano et al. 2003; Ryan 2000).

Elicitors can be obtained from fungus, bacteria, and yeast. Yeast and fungal
extracts (Aspergillus niger andPenicillium notatum) were applied inPsoralea coryli-
folia cell cultures to improve accumulation of psoralen. Psoralen is a furanocoumarin
that exerts a range of pharmacological activities. The results showed that cell treated
with A. niger elicitor exhibited an increase of ninefold in the concentration of pso-
ralen compared to control cells. Cells treated with P. notatum and yeast extract had
an increase of four- to sevenfold psoralens over control cells. The authors indicated
that the elicitor used at the 0.5–3% v/v concentrations improved the accumulation
of psoralen, but the A. niger elicitor at 1.0% v/v induced the greatest accumulation
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(Ahmed and Baig 2014). El-Nabarawy et al. (2015) applied mevalonic acid, differ-
ent amino acids (Phe, Leu, and Val) as well as yeast extract and a fungal extract
(Aspergillus niger) to ginger to produce gingerols and shogaols. Gingerol, a com-
poundwith great potent antioxidant activity, increasedwith the addition ofmevalonic
acid and yeast extract in callus cultures. Yeast extract was also applied inOldenlandia
umbellata root cultures to improve anthraquinones. Results showed that the produc-
tion increased significantly at elicitor concentrations of 25 and 50 mg/L. Grapes
varieties, Monastrell and Tempranillo, treated with yeast cell wall exhibited higher
levels of stilbene compared with control grapes. Ajmalicine accumulation increased
by about threefold when cells of Catharanthus roseus were treated with the frag-
ments of fungal cell wall (F. moniliforme, T. viride and A. niger). Cells treated with
T. viride showed the highest ajmalicine production (Namdeo et al. 2002).

Yeast and fungal extracts contain amino acids, vitamins, and minerals. It has
been stated that their elicitation effect is related to the presence of Zn, Ca, and
Co, cellulose, chitin, lipids, sterols, and proteins, as well as their role in increasing
the phenylalanine ammonia lyase activity (PAL), a key enzyme of phenylpropanoid
pathway that connects primary metabolism to the secondary one, and is implicated
in the production of phenylpropanoids (Kapteyn et al. 1999; Kozarski et al. 2014).

Plant hormones (e.g., auxins, gibberellins, cytokinins, abscisic acid, ethylene, etc.)
have a decisive role in plant biology as they regulate a vast variety of plant character-
istics. Like hormones, salicylic acid and jasmonates trigger cellular responses at low
concentrations far away from their site of synthesis and can be administered to plants
in a many ways. Salicylic acid and jasmonates are well known to elicit an array of
substances through the expression of plant genes implicated in various biosynthetic
pathways (Wasternack and Hause 2013). Brassinosteroids, one of the last hormones
discovered, have also been suggested to have a role in abiotic stress responses (Rao
et al. 2002). Application of commercial yeast extract, methyl jasmonate, and chi-
tosan on grapes increased the anthocyanin content of grape and wine (Portu et al.
2016). Methyl jasmonate and salicylic acid have been found to be beneficial in
improving major carotenoids and α-tocopherol in the foliage of Moringa oleifera
(Saini et al. 2016). Salicylic acid application has increased the concentration of phe-
nolic compounds and antioxidant activity in peppermint. Ethylacetate and methyl
jasmonate increased saponin content in soybean variety Ozark (Eswaranandam et al.
2012). The impact of phytohormones and signaling molecules (e.g., reactive oxygen
species (ROS)) on plant development and metabolism has been extensively reviewed
earlier (Ashraf et al. 2010; Dar et al. 2015; Hung et al. 2005; Rivas-San Vicente and
Plasencia 2011; Wasternack and Hause 2013).

9.2.2 Abiotic Elicitors

Abiotic elicitors can be of chemical (inorganic salts, metal ions, and others which dis-
turb the membrane integrity) and physical (UV irradiation, wounding, saline stress,
ozone, etc.) origin. This type of elicitors refers to factors related to environmental
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stress. Capanoglu (2010) studied the antioxidant activity (ascorbic acid, tocopherol,
and phenolic contents) of different crops (potatoes, celery, strawberry, carrot, maize,
lettuce, spearmint, tomato, peanut, apple, apricot, mango, onion, arugula, broc-
coli, beans) under various abiotic stresses during pre-harvest and post-harvest. The
increase in these compounds highlights the use of elicitors in food quality enhance-
ment. In the same way, the effects of abiotic environmental stresses on crop quality
are summarized by Wang and Frei (2011); their work presents some general trends
in crops such as increase in antioxidants and proteins and/or decrease in lipid and
starch concentrations. The information presented is useful in developing strategies
to improve the quality of crops but should be carefully analyzed since it depends on
many concurrent physiological, environmental, and experimental factors. Reports
sometimes seem contradictory, even if the same stress type and species were inves-
tigated.

UV-B treatment at post-harvest in peach and nectarine fruits is an effective tool
to induce metabolite production (Scattino et al. 2014). Flavonoids, glucosinolates,
ascorbic acid, and carotenoids appear to be stimulated in different crops by water
stress (Stefanelli et al. 2010). Ginseng cells on exposure to an ultrasonic treatment
(38.5 kHz, 810 W) in a ultrasonicator (bath type) have increased their ginsenoside
saponins nearly by 75% (Lin et al. 2001). Seeds treated withmagnetic fields have dis-
played a higher production of ROS and an activation of antioxidant defense system,
suggesting that magnetic fields can stimulate the stress responses of plants and seeds
(Dannehl 2018). Gamma irradiation had a stimulatory effect on the production of
naphthodianthrones and phenolic compounds inHypericum triquetrifolium. Further,
irradiation with 10 Gy exhibited the maximum amounts of hypericin and pseudohy-
pericin. Ozone concentration at 5 mL/L for 48 h is found to be optimum to induce a
twofold increase in the phenolics, flavonoids, and water-soluble polysaccharides in
Ganoderma lucidum (Sudheer et al. 2016). Non-thermal technologies (pulse electric
fields, ultrasound, and high pressure processing) are reported to induce immediate
and late stress responses similar to wounding stress. Although additional investiga-
tions should elucidate optimum non-thermal processing conditions that induce the
highest accumulation of nutraceuticals in horticultural crops, it has been suggested
that these technologies may be used as an elicitation technique to produce functional
foods (Table 9.1).
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Table 9.1 Classification of
elicitors

Abiotic Chemical Inorganic salts

Metal ions

Physical Wounding

Saline stress

UV irradiation

Ozone

Acoustic waves

High pressure

Extreme temperature

Modified gas
composition

Biotic Complex composition Yeast, fungal extracts,
bacteria

Defined composition Liposaccharides

Polysaccharides

Oligosaccharides

Proteins

Pathogen toxins

9.2.3 Mode of Action

Elicitation enhances SMs in plants or plant cells in vitro, but the detailed mechanism
of elicitation is not fully understood. The exact mechanism of elicitor perception
is beyond the scope of this chapter, but in general, the biosynthesis of plant prod-
ucts involves the perception of an extracellular or intracellular signal by a receptor
located in the plasma membrane; then, a signal transduction cascade is triggered to
activate the de novo biosynthesis of transcription factors that lead to the expression
of genes implicated in secondary metabolism. When a plant or plant cell culture is
challenged with a elicitor, a series of biochemical activities takes place; some of
them are the generation of ROS, accumulation of proteins related to pathogenesis
such as chitinases and glucanases, hypersensitive response (cell death at the site of
infection), structural changes in the cell, defense response genes, synthesis of defen-
sive molecules of plants such as tannins, synthesis of jasmonic and salicylic acids
as secondary messengers, and finally, the acquired systemic resistance (Baenas et al.
2014).
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The mechanisms by which elicitors could be recognized at the plasma membrane
level are described by Boller and Felix (2009) and Henry et al. (2012). Evidence for
a regulatory cross talk between signaling pathways (salicylic and jasmonic acid and
ethylene) that takes part in plant defense against pathogens is provided by Kunkel
and Brooks (2002). In the previous years, more plant receptors for elicitors have been
identified; Zipfel (2014) has summarized several molecular strategies employed by
plant pattern-recognition receptors to stimulate innate immune signaling for survival.
Elicitors related to herbivores and their signalingmechanisms working in plants after
their perception have been reviewed by Bonaventure et al. (2011).

There is no way to predict if an elicitor will be effective in a plant or specific
cell system for metabolite accumulation. A great amount of research has been done
to study the effect of elicitors. Table 9.2 presents some of the researches carried
out on this topic. To improve the quality of crop plants, it is necessary to get a
full understanding of the stress conditions that enhance the accumulation of the

Table 9.2 Plant elicitation

Plant species Product Elicitor References

Oldenlandia
umbellate

Anthraquinones Yeast extract, pectin,
xylan

Krishnan and Siril
(2018)

Lactuca sativa Phenols Chitosan and tea tree
essential oil

Viacava et al. (2018)

Zingiber officinale
Rosc.

Phenolic and
flavonoid contents

Yeast extract and
salicylic acid

Ali et al. (2018)

Ocimum basilicum Phenylpropanoids,
terpenes

CuSO4 Trettel et al. (2018)

Chlorophytum
borivilianum

Diosgenin Jasmonic and
salicylic acid

Chauhan et al. (2018)

Salvia miltiorrhiza
and Salvia castanea

Tanshinone Yeast extract and
Ag+

Yang et al. (2018)

Centella asiatica Asiaticoside with-
out a
triterpenoid

Piriformospora
indica

Jisha et al. (2018)

Fagopyrum
esculentum M

Tocopherols,
β-carotene,
flavonoids

Sucrose Jeong et al. (2018)

Isatis tinctoria Flavonoids A. niger Jiao et al. (2018)

Salvia officinalis Flavonoids, terpenes Chitosan, drought
stress

Vosoughi et al.
(2018)

Ocimum basilicum Phenols UV-B Mosadegh et al.
(2018)

Eucalyptus globulus Isoprene and mono-
and sesquiterpene
saturated aldehydes
(C7-C10),
benzenoids

Ozone and wounding Kanagendran et al.
(2018)
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target compounds. The understanding of physiological and biological basis of the
induction of plant metabolites has greatly advanced over the past years, but a deeper
investigation of the mechanisms underlying the perception of elicitors is essential to
tailor the production of specific metabolites.

9.3 Biostimulators

Horticulture specialists define biostimulator as a material which in small quantities
promote plant growth without nutrients, soil improvers, or pesticides. Some of these
biostimulators are humic acids, seaweed extracts, chitosan, biopolymers, inorganic
compounds, and beneficial fungal and bacterial formulations (Kauffman et al. 2007).
On the other hand, whether the crop’s endogenous antioxidant activity under stress
is approachable by the exogenous hormone may be considered metabolic enhancers
as well as biostimulant (Zhang et al. 2003). The cytokinins and auxins or their by-
products are substances which activate plant growth (Calvo et al. 2014). Thereby,
the positive actions of natural or synthetic biostimulants produce chemical changes
within the crops that cause growth promotion, resistance to abiotic or biotic stress,
andmodulation of development. Such changes can be attributed to bacteria and fungi
(du Jardin 2015). The beneficial fungi and bacteria integrate groups or categorieswith
biostimulative effect. These categories are briefly presented in Table 9.3.

9.3.1 Classification of Plant Biostimulants

9.3.1.1 Fulvic Acids

Compost is formed by the microbial decomposition of organic waste, and the
microbes transform the organic substrate to the soil organic matter called humic
substances. Though soluble humic and fulvic acids have a positive effect on plant
growth, that may be inconsistent in some plants. Humic substances from composts
and vermin composts have been used for many years as natural fertilizers in the soil
due to their positive effect on the physicochemical and biological properties of soil
as well as on plants (du Jardin 2012). The biostimulant effects of the humic sub-
stances are related to the absorption of macro- and micronutrients, the amelioration
of root nutrition, and the exchange of positive soil radicals, containing the polycations
(Jindo et al. 2012). Also, the invertase of the substrate C increases and the breathing
improves due to the humic substances. The high molecular humic substances have
shown that secondary metabolism and the response of the plants to the biotic and
abiotic stress in the hydroponically cultivated corn plants improve the enzymatic
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Table 9.3 Effects of biostimulants in crop productions

Biostimulators Effects in crop productions Cellular
mechanism

References

Crop
performance

Changes in
yield

Physiological
function

Humic and
fulvic acids

Enhanced
nutrient use
efficiency

Saving of
fertilizers

Root
biomass

Activate
ATPases in
maize roots

Jindo et al.
(2012)

Protein
hydrolysate

Tolerance to
abiotic
conditions

Yield under
abiotic stress

Protection
against
weather and
oxidative
damage

Activation
enzymatic
and PAL and
production
of flavonoids
in abiotic
stress

Ertani et al.
(2013)

Seaweed
extracts

In plant
tissues
improved
mineral
composition
(S, Fe, Zn,
Mg, Cu)

Biofortification
of plant
tissues

The transport
of micronu-
trients
increases in
the tissue
concentra-
tions

Ascophyllum
nodosum
and Brassica
napus
stimulate
expression
of genes

Battacharyya
et al. (2015)

Chitosan Plants
against
fungal
pathogens,
abiotic stress
tolerance

Yield under
abiotic stress

Stomatal
closure
induced by
chitosan
through a
mechanism
dependent
on ABA

The accumu-
lation of
hydrogen
peroxide and
the Ca2+

filtration to
the cell are
keys in the
signaling of
stress

Iriti et al.
(2009)

Other
biopolymers

Tolerance to
abiotic stress

Yield in
salinity
conditions

The crop
under salt
stress
maintenance
photosynthe-
sis

Protects pho-
todamage
and likely
pathway
activation
ROS

Chen and
Murata
(2011),
Shabala et al.
(2012)

Inorganic
compound

Attack of
pathogens
for selenium
and osmotic
stress for
sodium

Positive
effects on the
growth of
plants and the
response to
stress

Strengthening
of cell walls
by siliceous
deposits

Promote the
growth of
plants as
inorganic
salts and
amorphous
silica

Pilon-Smits
et al. (2009)

(continued)
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Table 9.3 (continued)

Biostimulators Effects in crop productions Cellular
mechanism

References

Crop
performance

Changes in
yield

Physiological
function

Beneficial
fungi

Many plant
responses are
also induced,
including a
greater
sufferance to
abiotic stress

Reduction of
fertilizer use

Nutrition
efficiency,
water
balance,
biotic and
abiotic stress
protection of
crop

The fungal
conduits
allow for
interplant
signaling

Behie and
Bidochka
(2014)

Beneficial
bacteria

Use
efficiency by
enhanced
nutrient and
increased
root

Saving of
fertilizers

Increases
resistance in
the root by
morphologi-
cal
changes

Plant
growth-
promoting
Rhizobacte-
ria that
activates
signaling
pathways

Ahmad et al.
(2008a, b)

Phosphite Biomass dry
weight,
foliar area,
early growth

Yield in
percentage of
jumbo size
onions,
potatoes,
peppers

Protection
against
UV-B and
activation of
the
antioxidant
system

Reinforcement
of the cell
wall and
defense
response
emergence,
mycorrhizal
colonization

Gómez-
Merino and
Trejo-Téllez
(2015)

activity for the production of phenolic compounds, suggesting modulation of stress
responses (Olivares et al. 2015). ATP hydrolysis into a transmembrane depicts an
increase in the absorption of nitrate and other nutrients. So this is another contri-
bution of humic substances to root sustenance as a stimulus H+-ATPases of plasma
membrane (Schiavon et al. 2010).

9.3.1.2 N-Containing Compounds

The organic compounds on hydrolysis produce amino acids as well as betaines,
polyamines, and “non-protein amino acids” mixtures, with well-known antistress
properties (Chen and Murata 2011). These compounds act as biostimulants of plant
growth by compounds containing N and also produces structural changes at the
genetic level by the absorption ofN in the roots of plants (Calvo et al. 2014), aswell as
the scavenging of free radicalswhich help in the path of the environmental stress in the
plant, likely, roots have the function of absorbing nutrients increasing biomass, soil
respiration and alsoworks as fertilizer (Colla et al. 2014).Whenanalyzinghydrolyzed
proteins of animal origin, these were considered safe since they do not generate
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toxicity on experiments with yeasts and plants as assessment material. However, it is
not recommended to use protein hydrolysates from animal by-products (Corte et al.
2014).

9.3.1.3 Seaweed Extracts

The seaweed extracts contain compounds like chitosan which are applied to root or
foliar of plants at different stages of growth (Haider et al. 2012). Other used seaweed
extracts could be the polysaccharides laminarin, alginates, and carrageenans and their
breakdown products (Craigie 2011). The brown algae species such as Ascophyllum,
Fucus, and Laminar are used as biostimulators for the improvement in plant develop-
ment (Khan et al. 2009). Seaweed extracts applied on foliar or in hydroponic solution
can be used to capture heavy metals, induce bioremediations to achieve greater pro-
duction of bacteria, and have an effect on growth as a fertilizer to improve seed
germination and activation of hormones for plant development. Some hormone-like
compounds, sterols and polyamines, have antioxidant effects and regulate endoge-
nous stress and biosynthetic genes of plant tissue hormones (Halpern et al. 2015).

9.3.1.4 Other Biopolymers

The chitosan oligomers have the ability to capture polycationic compounds and also
bind to a broad range of cellular compounds including DNA, plasma membrane,
and cell wall and can protect the plant cell (Hadwiger 2013; Katiyar et al. 2015).
Various receptors and signaling pathways for binding of chitosan have demonstrated
the accumulation of hydrogen peroxide and Ca2+, the fundamental performers in the
signaling of stress responses and their regulation (Ferri et al. 2014).

9.3.1.5 Inorganic Compounds

Aluminum (Al), cobalt (Co), sodium (Na), selenium (Se), and silica (Si) are ele-
ments that promote crop growth and may be essential to specific taxa (Pilon-Smits
et al. 2009). These elements have different plant-related activities such as plant
hormone synthesis and signaling, better nutrition through interaction with other ele-
ments during absorption and mobility, rigidity in the cell wall, impact on pathogen
attack, osmoregulation, enzyme activity by cofactors, reduced transpiration of crystal
deposits, and many other benefits for the plants (Povero et al. 2011).

9.3.1.6 Beneficial Microorganisms

The beneficial microorganisms interact with plants in all ways. The fungi could have
an interaction through mutualism with crop roots and parasitism. The effects of bios-
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timulators in plants that have beneficial microorganisms are very important since
they have the functions of inducing the resistance to diseases and control of the mor-
phology as they are regulating the growth, enhancement of abiotic stress tolerance,
supply of nutrients, and increase in the use of nutrients (Augé 2001; Gianinazzi et al.
2010; Siddiqui and Pichtel 2008; Van Der Heijden et al. 2006).

9.3.1.7 Phosphite

Celery, onion, potato, and pepper are some of the crops that have shown a positive
effect on the use of phosphites principally in terms of yield, produce quality, and
allowance to abiotic stress issues. For example, in celery, the yield was significantly
increased, when phosphite used in hydroponic or foliar application showed increased
percentage of oversized onions and potatoes. Applying phosphite in the form of
foliar spray or drip on sweet pepper showed a significant increase in yield. Phosphite
fertilization in this way has a greater effect on the yield; therefore, it is better to
absorb the phosphorous derivative of phosphite than inorganic phosphate (Pi) (Thao
and Yamakawa 2009). Phosphite (Phi) is not a good source of phosphorous (P) for
Brassica napus cultured cells and Brassica nigra plantlets (Carswell et al. 1997),
as well as for hydroponically grown tomato and pepper (Förster et al. 1998). The
plants treated with phosphite showed changes in glycolysis and hormonal levels. It
is also believed to induce the shikimic acid pathway, so all this depicts an increase
in flowering but not in the content of soluble solids in different crops. In lettuce,
tomato, and banana, the use of Pi plus Phi (50% as HPO−2

4 and 50% as H2PO3
−) in

a hydroponic system enhanced the biomass dry weight, foliar area, and P content in
the whole plant (Bertsch et al. 2009). Lovatt (1990) revealed that foliar application
of potassium-Phi (K3PO3) to P-deficient citrus seedlings influenced biochemical
changes similar to those of calcium phosphate application and also re-established
plant growth. Additionally, Lovatt (1998) showed that foliar spray of K3PO3 to navel
orange trees considerably increased the number of commercially valuable overgrown
size fruit, improving the ratio of total soluble solids and acidity, as compared to control
fruits (Lovatt 1998). Similarly, Albrigo (1999) informed that foliar applications of
Phi to Valencia oranges increased flower number, fruit set, and yield, along with total
soluble solids.

9.3.2 Biostimulation Proficiency on Plant Growth

The substances that generate an improvement in crops such asmacro- andmicronutri-
ent content, vitamins, gibberellins, cytokinins, and auxins are biostimulators. These
are considered valuable compounds for greater yield in plants (Stirk and Van Staden
1996). Some authors, with the use of these biostimulators, have managed to increase
the yield of the agricultural crops and greater fruit size in citrus, cucurbits, and tomato.
Therefore, the positive effects of biostimulators are due to the higher quantity of sec-
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ondarymetaboliteswhich counteract pathogens (Michalak andChojnacka 2015). For
example, the methanolic extract of Sargassum wightii (S. swartzii) and C. agardh
has shown the highest activity against the phytopathogenic bacterium Pseudomonas
syringae which causes leaf spot disease on the treasured medicinal plant Gymnema
sylvestre (Kumar et al. 2008). Sargassum polyceratium, Caulerpa racemosa, and
Gracilaria cervicornis have active effects against Staphylococcus aureus (Borbón
et al. 2012). S. swartzii has been identified to inhibit the growth of Xanthomonas
oryzae pv. oryzae which causes bacterial blight of rice (Hamed et al. 2018). More-
over,Cystoseira stricta extracts defend plants against bacteria due to the high content
of phenolic compounds (Lee and Jeon 2013). Marine macroalgae extracted polysac-
charides can be used in the plant defense against some infectious pathogens. These
algae contain chlorophyll, alginates, furans, laminarin, carrageenan, and porphyrins
(Hamed et al. 2018).

9.4 Biocontrollers

Crop plants are exposed to various insects, parasites, viruses, and/or pathogens that
compete for space and nutrients resulting in economic losses equivalent to billions
of dollars (Mishra and Arora 2018). In 2015, the Food and Agriculture Organization
(FAO) estimated that about 25% of crops loss globally is by pests and diseases (FAO
2015). This has led to the indiscriminate use of herbicides, insecticides, and pesticides
resulting into development of the resistance in pathogens, and in several cases, the
accumulation of their residues in crop plants not only affects the yield of the product
but also causes harm to human health (Aktar et al. 2009). The use of biocontrollers
can help to overcome these problems. The reduction of insects, parasites, and/or
pathogens to a desired level using natural enemies is called biocontroller. The term
biocontroller also includes some pathogens that stimulate the growth of the plant
(Radtke 1993).

9.4.1 Plant Growth-Promoting Rhizobacteria

One of the most commonly used biocontrollers in crops is rhizobacteria, which pro-
motes plant growth by stimulating systematic resistance in the host system against
a diverse range of phytopathogens as well as resistance to abiotic stress, in addition
to facilitating the availability of minerals and improving the absorption of nutri-
ents (Hariprasad et al. 2014; Heidari and Golpayegani 2012; Laslo et al. 2012).
PGPR (Plant Growth-Promoting Rhizobacteria) include a number of bacterial genera
such asAzospirillum,Alcaligenes,Arthrobacter,Acinetobacter,Bacillus,Burkholde-
ria, Enterobacteria, Pseudomonas, Rhizobium, and Serratia (Arora 2015; Goswami
et al. 2016). These beneficial bacteria can act on plant growth through direct and
indirect mechanisms (Fig. 9.1).
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Fig. 9.1 Mechanism of plant–bacteria interaction

9.4.2 Mechanisms of Plant Promoters-Growth

9.4.2.1 Indirect Mechanisms

Indirectmechanisms for the suppression of phytopathogens include the production of
siderophores, hydrogen cyanide (HCN), phenazines (PHZ), phloroglucinol, pyolu-
teorin (PLT), ammonia, pyrrolnitrin (PRN), antibiotics, volatile metabolites, cyclic
lipopeptides (CLPs), etc., and provide protection against unhealthy environment
conditions. These compounds are SMs that promote plant growth through synthesis
to inhibit or control or suppress pathogens; these are not the compounds that are
synthesized in the plant in association with PGPR (Fig. 9.1).
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9.4.2.2 Direct Mechanisms

The direct mechanisms have been linked to the production of plant hormones
such as auxins, gibberellins, ethylene, abscisic acid, jasmonic acid, salicylic acid,
and cytokinins and solubilization of inorganic phosphorus and nitrogen fixation
(Goswami et al. 2016). The cellular processes in plants such as the response to abiotic
stress and the plant–pathogen interaction are coordinated by phytohormones which
act as messengers that travel throughout the plant generating an integrated response.
In addition to the above, the roots directly react to the environmental conditions
through secretion of various compounds as a result of plant–bacteria interaction,
which leads to suggest that this interaction is a determining factor in the efficacy of
the inoculants (Cai et al. 2012; Carvalhais et al. 2013) (Fig. 9.1). The roots secrete
10–44% of the photosynthates as root exudates, which are used by microorganisms
through their biochemical pathways to get energy, in addition to serve them as signal-
ing molecules and even as antimicrobials to control microbes (Guttman et al. 2014).
In addition to the above, roots also secrete ions, free oxygen and water, enzymes,
mucilages, and a great variety of primary and secondary metabolites (Bais et al.
2006). For example, members of the Poaceae family in their early stages synthe-
size SMs such as benzoxazinoids (BXs) that help in the defense of the plant and
allelopathy (Neal et al. 2012). However, the synthesis of these compounds (BXs)
in maize depends on the amount and type of inoculation used when using differ-
ent Azospirillum strains (Walker et al. 2011, 2012). Inoculation of different strains
of Azospirillum (4B and B510) in rice cultivars (Nipponbare and Cigalon) showed
that the type of inoculation influences the profiles of the secreted SMs, and it was
observed that the phenolic compounds, flavonoids, and hydroxycinnamic derivatives
showed differences between cultivars and type of strain used (Chamam et al. 2013).
The inoculation of Pseudomonas putida strain AKMP7 in plants stressed by heat
induced an improvement on the levels of metabolites such as proline, chlorophyll,
sugars, starch, amino acids, and proteins and reduction in membrane damage and
endogenous antioxidants enzymes such as SOD, APX, and CAT, activities compared
to non-inoculated plants exposed to heat stress (Shaik et al. 2011).

The exposure of plants to PGPR protects them from stresses and pathogens. PGPR
controls the bacterial populationwithin plant tissues throughmodifications in the syn-
thesis ofmetabolites linked to the fine control of bacterial populations (Chamam et al.
2013; Straub et al. 2013). The presence of PGPR not only influences the concentra-
tion of phytohormones, but also influences the expression of genes (Camilios-Neto
et al. 2014). Colonization of Azospirillum brasilense in wheat induced changes in
the expression of 776 ESTs of various categories such as transport, defense mech-
anism, and production of phytohormones (Camilios-Neto et al. 2014). This aspect
has been studied the most in addition to nitrogen and phosphorus fixation. However,
there are no studies on mechanisms how the plant–bacteria symbiosis influences the
production of SMs in plants inoculated with PGPR.
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9.5 Secondary Metabolites and Its Production/Inhibition
in Plants by Nanoparticles Use

9.5.1 Nanotechnology and Nanoparticles

Nanotechnology is a new branch of science that is changing the market around the
world. A physicist Richard Feynman presented the idea of nanotechnology in his
talk entitled “there’s plenty room at the bottom” at an American Physical Society
meeting.Nanotechnology is defined as “the development, synthesis, characterization,
and application of materials and devices by tailoring their shape and size at the
nanoscale” (Feynman 1960; Jena and Raj 2007; Jin et al. 2001; Roy et al. 2018).
Nanotechnology has been used in sciences like physics, chemistry, biology, materials
science, pharmaceutical, medicine, and agriculture (Duhan et al. 2017). The particles
that play an important role in nanotechnology are defined as small objects that have
the same behavior as an entire unit with the same properties (Arruda et al. 2015).
The particle’s diameter is an important factor in their classification, coarse particles
are those that cover the range of 10,000–2500 nm, fine particles are between 2500
and 100 nm, and nanoparticles are those sized between 1 and 100 nm (Arruda et al.
2015; Ghosh and Pal 2007).

9.5.2 Morphology and Shapes of Nanoparticles

Scientists have focused on intimate relationships among valence, stoichiometry,
molecular geometry, and reactivity of the nanoparticles. The morphology and shape
are crucial factors for the properties of the nanoparticles (NPs). The most important
factor is the surface energy in order to obtain the desired shape (Sau and Rogach
2010). An important criterion for the design of new nanoparticles is the geometry
obtained. In order to get different NPs shapes, it is important to design synthesis
routes to obtain materials in 1D, 2D or 3D, in order to increase the catalytic activ-
ity (Matijevic 1981; Subhramannia and Pillai 2008). In conclusion, controlling the
morphology is the essential requirement for the applications of the nanoparticles.
They exist in different shapes such as nanocubes (Habas et al. 2007; Im et al. 2005),
nanorods (Grzelczak et al. 2006; Sau and Murphy 2004), nanowires (Hunyadi and
Murphy 2006; Zhao et al. 2004), prisms (Jena and Raj 2007; Jin et al. 2001), and
pyramids (Burgin et al. 2008; Maiti et al. 2015). In order to classify the morphology
of nanoparticles, three families can be established according to their growth: (i) 1D
nanoparticles, (ii) 2D nanoparticles, and (iii) 3D nanoparticles. 3D nanoparticles are
those with the main growth in three dimensions such as cubes, octahedral, pyramids.
For these particles, the growth is under surface-control conditions and can be deter-
mined by crystalline structure of the particle facets. If a deck structures, the growing
crystal is limited by 1 0 0 and 1 1 1 facets. In particular conditions, the 1 1 1 facets
grow slower than 1 0 0, and the final shape is an octahedron limited by slow grow-
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ing of 1 1 1 facets (Kim et al. 2004; Wang 2000). 2D nanoparticles have a variety
of planar structures such as nanoprisms, nanoplates, nanodisks, and nanobelts. The
main control of shape in this particle is the synthesis method. For example, in reduc-
tion methods, the surfactant–crystal–plane interaction energy explains the shapes
as nanodisks, triangular nanoplates and nanospheres (Jiang et al. 2007; Qinghua
et al. 2007). 1D nanoparticles, such as nanorods, nanowires, and nanobipyramids,
are obtained by colloid chemical methods. Factors that can affect the morphology
are the pH, nature of heat treatment, etc. (Murphy et al. 2005).

9.5.3 Synthesis Methods

A number of approaches have been used for the synthesis of nanoparticles; the most
widely used are gas condensation (Khodaei et al. 2016; Ock et al. 2018), ionized
cluster beam deposition (Araghi et al. 2016; Verrelli and Tsoukalas 2014), chemical
vapor deposition (Ciprian et al. 2018; Ni et al. 2018), pulse laser deposition (Ghidelli
et al. 2018; Gontad et al. 2017), thermal evaporation (Gao et al. 2016; Lachebi
et al. 2018), electrochemical deposition methods (Jang et al. 2017; Sun et al. 2018),
and sol–gel techniques (Gao et al. 2018; Mora et al. 2018). The emphases of the
selected methods are on the control over the cluster size, shape, and dispersion on the
support, and the reproducibility and low cost. The main prerequisites are preserving
the morphology and the distribution of the particle size. Another consideration is
on the pre-treatment process that does not affect the morphology and shape of the
material.

9.5.3.1 Characterization Methods

The characterization methods that are employed are important in order to have a
better understanding of nanoparticle’s (NPs) properties and applications. A large
number of techniques are employed in order to know the composition, morphology,
coating, size, etc. (Hassellöv et al. 2008). The most used characterization techniques
are:

• UV–Vis spectroscopy provides information of the particle aggregation and the
average of particle size.

• Near infrared (NIR) and Fourier-transform infrared spectrometry (FTIR) identify
functional groups of organic compounds that coat the nanoparticle surface.

• Inductively coupled plasma mass spectrometry or field-flow fractionation induc-
tively coupled plasmamass spectrometry quantifies the size and distribution of the
nanoparticles.

• X-ray diffraction (XRD) displays information about the crystalline state and the
constitution and size of the nanoparticles.

• Dispersive spectroscopy X-ray (EDX) is used to gain elementary semiquantitative
information about the material.
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• High-performance liquid chromatography (HPLC) gives information of nanopar-
ticles around 10 nm, using separation techniques.

• Atomic force microscopy (AFM) characterizes the atomic topography in which
the sides are overestimated.

• Scanning electron microscopy (SEM) is applied to evaluate the size, shape, and
particle aggregation.

• Transmission electronmicroscopy (TEM) allows the visualization of organicmate-
rials and also evaluates the size, shape, and particle aggregation.

In order to choose the better characterization technique, one should consider the
complexity of the material, matrix, and the concentration of the obtained nanoparti-
cles.

9.5.4 Secondary Metabolites

Plants produce a wide variety of low-molecular weight compounds. Among these
large numbers of compounds, only a few of them are part of the primary metabolic
pathways. SMs (Secondary Metabolites) are defined as organic compounds that are
not directly involved in growth, development, and reproduction, but play a great role
in plant adaptation and defense. These compounds are restricted to a selected plant
groups (Pichersky and Gang 2000).

Plant metabolism is divided majorly into two classes. Primary metabolism in
plants is the one which allows the plant to utilize water, CO2, and minerals to synthe-
size the essential primary metabolites (sugars, fatty acids, amino acids, and nucleic
acids) required to make and maintain the cells. The natural products or special-
ized metabolites are also referred as secondary metabolites and are considered to be
those chemicals that the plants produce during their interactions with environment,
to protect themselves from pest and pathogen and ultraviolet B radiation. The inter-
action of plants with the biotic environment creates the perfect scenario to produce
new secondary metabolites, and as such, the majority of secondary metabolites are
lineage-specific (Kliebenstein and Osbourn 2012).

Most of the secondary metabolite classes produced by plants can be classified
into three main groups: (i) phenolic compounds, (ii) terpenoids/isoprenoids, and (iii)
nitrogen- or sulfur-containing compounds (Fig. 9.2). As shown in Fig. 9.2, the three
major classes of these metabolites are produced by different primary metabolites
pathways, including glycolysis, the TCA cycle, aliphatic amino acids, pentose phos-
phate pathway, shikimate pathway, and notably the aromatic amino acids (Aharoni
and Galili 2011).

On the other hand, plant secondary metabolites are invaluable resources, useful
as food additives, fragrances, pigments, and medicines. Typically, more than 5× 105

different flavonoids have been identified and many of them have become important
nutraceuticals and pharmaceuticals (Zhang et al. 2011).
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Fig. 9.2 Secondary metabolites cycles

It has been noticed in several research papers that most of the plant secondary
metabolites have some beneficial roles in the human body. The SMs compounds
are also known as natural products or phytochemicals, which are responsible for the
medicinal properties of plants. Classification of secondarymetabolites is based on the
chemical structure, composition, solubility in various solvents, or their biosynthetic
pathway (Misra et al. 2016).

Metabolites are small bioactive molecules that have diverse valuable properties
such as pharmaceuticals, nutraceuticals, and agrochemicals. The extracts of specific
plants contain some SMs/novel bioactive constituents such as phenolics, flavonoids,
alkaloids, resins, quinones, steroids, and terpenoids, which are responsible for the
reduction of ionic compounds to bulk metallic NPs (Aromal et al. 2012).

SMs are generally present at low concentrations in many medicinal plants. In
search of alternatives to increase the production of desirable medicinal compounds in
plants or SMs, nowadays the use of nanotechnology approach, specifically nanopar-
ticles, is found to have potential as a supplement to traditional horticulture (Misra
et al. 2016). NPs present unique physicochemical properties, and some studies have
shown that they have the potential to boost the plant metabolism (Giraldo et al. 2014).

Only a few studies have reported the enhancement of SMs with NPs treatments
under in vivo condition, and the different effects of the use of different NPs specially
on plant growth and metabolic function have been observed (Nair et al. 2010). Selec-
tion of appropriate concentration, morphology, and type of nanoparticle is essential
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for higher benefits of a target agroeconomic trait. Also, the enhancement in SMs can
be obtained under in vitro conditions, where NPs are used as “elicitors,” which are
presented in Sect. 9.2.1.

9.5.5 Metallic Nanoparticles and Their Interaction
with Secondary Metabolites

Plants are the vital component in biotic and abiotic systems. Their metabolism is
based on events in enzyme-catalyzed reactions. The metallic nanoparticles can have
positive, negative, and neutral effects. Themost usedmetallic nanoparticles are silver,
copper, and iron.

9.5.5.1 Ag Nanoparticles

Silver nanoparticles are used as antiseptic and in the process for water purification
(Durán et al. 2007). Song et al. (2013) showed phytotoxicity by lower chlorophyll
production, less fruit productivity, and higher superoxide dismutase activity (Song
et al. 2013). An increase in levels of reactive oxygen species, superoxide dismutase,
peroxidase and catalase activity, antioxidant glutathione, and malondialdehyde con-
tent was observed with silver nanoparticles (6 nm) in Spirodela polyrhiza (Jiang et al.
2007).Mehrian et al. (2015) studied the effects of silver nanoparticles on the contents
of free amino acids and protein, lipid peroxidation and antioxidant enzymes activity,
superoxide dismutase (SOD), catalase (CAT), peroxidase (POX) in tomato plants.
Silver nanoparticles with 20 nm were used at five different concentrations, 0, 25, 50,
75, and 100 mg L−1. The greater increase in amino acid content was observed with
75 and 100 mg L−1 concentrations. Tomato plants showed increase in glutamine and
asparagine concentrations. The activities of SOD, CAT, and POX were increased in
shoots as well as in roots of the treated tomato plants. These results highlight the
modulation of oxidative stress induced by AgNPs in tomato plants (Mehrian et al.
2015). Silver nanoparticle exposition can also result in alterations in the expression
of genes that are involved in formation of heat shock proteins in cells.

9.5.5.2 Cu Nanoparticles

Copper nanoparticles are used in coating on textiles for the antifungal properties.
Song et al. (2015) studied the exposure of Spirodela polyrhiza, Lemna minor, and
Wolffia arrhizal to copper nanoparticles (25 nm). The copper ions contributed to the
inhibiting effects of copper nanoparticles. The Cu nanoparticles showed inhibitory
effect on the total frond area-based relative growth rate, suggesting different physi-
ological processes involved on the exposure to nanoparticles and copper ions (Song
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et al. 2015). Xiao et al. (2016) studied the toxicity of Cu nanoparticles to Daph-
nia magna changed upon modification of the exposure conditions. The dissolved
organic carbon (DOC) is the effective concentration of toxicity due to Cu nanoparti-
cles obtained from laboratory tests which may overestimate the risk of the particles
in polluted waters due to the common absence of DOC in laboratory test solutions
(Xiao et al. 2016).

9.5.5.3 Fe Nanoparticles

The iron nanoparticles are applied for remediation of inorganic and organic contam-
inates in water and groundwater. The high reactivity of nanozerovalent iron (nZVI)
in combination with their high specific area is very effective in remediation than
granular ZVI. However, the iron can be bio-accumulated in plants. Libralato et al.
(2016) studied the effects of ionic (FeCl3), micro-and nano-sized zero valent iron
on Lepidium sativum, Sinapis alba, and Sorghum saccharatum. They observed mod-
erate biostimulation effects at the highest exposure concentrations due to potential
uptake phenomena and macroscopically black spots and coatings detected on roots
of all species. However, in long term exposure assays limiting the bioavailability and
stressing the organisms of study were elucidated (Libralato et al. 2016).

9.5.5.4 Oxide Nanoparticles

Engineered nanomaterials (NMs) manufactured by different techniques are grouped
into four types: (i) carbon-based, (ii) metal-based, (iii) metal oxides, and (iv) den-
drimers and composites (Ju-Nam and Lead 2008). Among the diverse NMs, the NPs
derived from diverse oxides have been used to study their roles in protection of plants
against several abiotic stresses. The size and surface area of the NPs provide access
for toxic metals for binding and thus reduced availability and toxicity of metals. On
the other hand, the photosynthesis is a highly vulnerable cellular process. Neverthe-
less, NMs have shown protective ability for the photosynthetic system and improved
photosynthesis by suppressing oxidative and osmotic stresses. Besides from their
beneficial effects, several NMs show toxicity symptoms for plants (Feregrino-Perez
et al. 2018).

9.5.5.5 SiO2

One of themost studied oxideNPs is the silica (SiO2), which are used directly in plant
growth and development and in alleviation of abiotic stress (Feregrino-Perez et al.
2018), but they are excellent carriers of nutrients and/or pesticides; however, their
effect has not been reported on the secondary metabolite production or inhibition.
Nevertheless, the combination of metal and SiO2 NPs showed the potential of silver
nanoparticles as novel and effective material to modify the production of SMs inside
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the plant (Moreau et al. 2013). Another example for this kind of NPs is the exposure
of Ag-SiO2 core–shell nanoparticles to Artemisia annua has resulted in increased
artemisinin content in the hairy root culture (Ben et al. 2013).

9.5.5.6 TiO2

The effect of TiO2 NPs on a medicinal plant Salvia officinalis was studied by
spraying the leaves with various TiO2 NP concentrations (0, 10, 50, 100, 200,
and 1000 mg L−1). TiO2 NPs significantly improved the total leaf phenolics and
flavonoids contents compared to the control, and but no significant differences were
observed in extract yield among all the treatments (Ghorbanpour 2015). This may be
due to the extraction solvent type (methanol, ethanol, acetone, and water) and extrac-
tion time (Shimada et al. 1992). It has been reported that the leaf extract (methanol
90%) of Salvia officinalis plant exposed to TiO2 NPs at 200 mg L−1 showed strong
antioxidant activity compared to the control (Ghorbanpour 2015).A synergistic effect
exists between phenolic and flavonoid compounds for antioxidant activity. There-
fore, phenolic compounds protect the plants against oxidative damage by reducing
ROS toxicity on cellular components (Hatami et al. 2016). Enhanced essential oil
content (%) and yield (g/plant) of S. officinalis plants were reported on exposure
to all concentrations of TiO2 NPs. At moderate concentration (200 mg L−1), TiO2

NPs caused the highest essential oil content and yield which were 1.75 and 2.74
folds higher than the control plants, respectively. In another study, TiO2 NPs sprayed
within 10–15 nm size and 20–80 mg L−1 concentration onHyoscyamus niger plants
improved the tropane alkaloid (hyoscyamine and scopolamine) content and the total
alkaloid yield (Hatami et al. 2016). GCMS-basedmetabolomic approach was used to
study the toxicity of TiO2 NPs on hydroponically cultured rice (Oryza sativa) plants
after exposing them to 0, 100, 250, or 500 mg L−1 of NPs concentration for 14 days
(Wu et al. 2017). Results showed that the biomass of rice was decreased due to the
interference in antioxidant defense system.

One hundred and five metabolites were identified, and most of them were signifi-
cantly different compared to the control.Among thesemetabolites, the concentrations
of glucose-6-phosphate, glucose-1-phosphate, and succinic and isocitric acid were
increased, while those of sucrose, isomaltulose, and glyoxylic acid were decreased.
But, the biosynthesis of most of the identified fatty acids, amino acids, and SMs
correlated with rice quality was increased.

9.5.5.7 ZnO

The phytochemical characteristics of Stevia rebaudiana under ZnO NPs concen-
tration (100 mg L−1) revealed significant increase in total phenolic content (TPC),
total flavonoid content (TFC), total antioxidant capacity (TAC), and 1,1-diphenyl-
2-picrylhydrazyl (DPPH) free radical scavenging activity (Javed et al. 2018b). The
stress to plants increased by increasing the concentration of ZnO due to the for-
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mation of reactive oxygen species (ROS). Also, after reaching a certain threshold,
different physiological parameters of callus and production of antioxidants decreased
(Javed et al. 2017, 2018a). Soybean grown in soil previously treated with ZnO NPs
maintained growth, yield, and N2 fixation potential similarly to the controls, with-
out increase in leaf ROS or lipid peroxidation. Leaf damage was observed by the
ZnO NPs treatments (0.05, 0.1, or 0.5 g kg−1 soil), and genotoxicity appeared at
the highest concentration, but only for one plant. Total chlorophyll decreased with
increase in leaf Zn concentration, which was attributable to zinc complexes in the
leaves (Priester et al. 2017). Exposure ofGlycyrrhiza glabra seedlings grown in vitro
containingHoagland nutrient solution to 1 and 10μMZnONPs enhanced the pheno-
lic compounds and glycyrrhizin (natural sweetener) content compared to bulk ZnO
(Oloumi et al. 2015). Cluster bean’s 14-day-old plants were sprayed with 10 mg L−1

of ZnO NPs showed an improvement in the gum content and an increase in its vis-
cosity. These results suggest that the change in these parameters might be due to
the NP adsorption on plant surface and their uptake by the plants through natural
microscale openings and pores (Raliya and Tarafdar 2013).

9.5.5.8 CeO2

Soybean leaves treated with CeO2 NPs showed increase in ROS, lipid peroxidation,
and visible damage alongwith decrease in the total chlorophyll content. These effects
were not only on aboveground plant parts, leaf, pod, and stem but also on root nodule
N2 fixation (Priester et al. 2017). In Raphanus sativus, no effect of 250 mg kg−1 of
CeO2 NPs (8 nm size) was detected on phenolic compounds, flavonoids, and nutrient
accumulation in adult plants; however, antioxidant capacity of tubers was increased
(Zhao et al. 2016).

9.5.5.9 CuO

Copper oxide NPs have also been included in the list of NPs used to improve the SM
production. CuONPs at 10 mg L−1 concentration increased the phenolic compounds
and DPPH free radical scavenging activity (Javed et al. 2018b). These nanoparticles
are toxic to Stevia callus and open opportunities for further studies for the enhance-
ment of commercially important SMs in different medicinal plants (Javed et al.
2018b). Chinese cabbage is an important vegetable and rich source of phytochemi-
cals such as glucosinolates (GSLs) and phenolic compounds (PCs) that are used for
pharmaceutical industries. Influence of copper oxide nanoparticles (CuO NPs) on
the phytochemicals (GSLs and PCs) and their biological (antioxidant, antimicrobial,
and antiproliferative) activities as well as gene expression levels in Chinese cab-
bage has been studied (Chung et al. 2018). CuO NPs exposure escalated glucosino-
lates (gluconasturtiin, glucobrassicin, 4-methoxyglucobrassicin, neoglucobrassicin,
4-hydroxyglucobrassicin, glucoallysin, glucobrassicanapin, sinigrin, progoitrin, and
gluconapin) and transcript (MYB34, MYB122, MYB28, and MYB29) levels in cab-
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bage. Moreover, phenolic compounds (flavonols, hydroxybenzoic, and hydroxycin-
namic acids) were also significantly enhanced (Chung et al. 2018).

9.5.5.10 CdO

The pot-grown plants at two-leaf stage on exposure to CdO NPs of size 760 nm at
concentration of 2.03± 0.45× 105 particles cm−3 in air for 3 weeks showed a signif-
icant effect on the total amino acids content and saccharides but no significant effect
on the total SMs such as phenolic compounds etc. as revealed by chromatographic
assays (Večeřová et al. 2016).

9.5.5.11 Al2O3

Use of Al2O3 NPs on soybean seedlings affected their growth, root rigidity, and
root cell viability (Mojiri et al. 2016). Further severe oxidative burst was evi-
dent. Gel-free proteomic analysis of stressed soybean plant’s roots showed 104
changes in proteins associatedwith SMs, cell organization, and hormonemetabolism.
Oxidation–reduction-related genes such as GDSL motif lipase 5, SKU5 similar 4,
galactose oxidase, and quinone reductase weremodified in Al2O3 NPs stressed roots.
These proteomic changes suggested that high concentration of proteins involved in
oxidation–reduction, stress signaling, and hormonal pathways related to growth and
development might be the crucial key for optimum growth of soybean under Al2O3

NPs treatment (Hossain et al. 2016). As shown in Table 9.4, several studies were
undertaken on use of SiO2 NPs on different plant species under different abiotic
stresses. Further studies are required to study their effects on the secondary metabo-
lite production.

9.6 Metabolic Engineering Strategies

Plants have a myriad of metabolic pathways responsible for the biosynthesis of
secondary and specialized metabolites with biological activities of anthropocentric
interest. The omics tools have boosted the identification, isolation, and application of
new genes corresponding to these metabolic pathways. Heterologous plant hosts can
be reconstituted in order to overproduce these high-value compounds. As alternative,
the plant biochemical pathways can be modified using molecular strategies, based on
previous insights of the biochemical routes desired to be modified, to overproduce
these compounds. This approach is known as “Metabolic Engineering,” and the
strategy highlights several examples that demonstrated the actual possibilities on how
can themetabolic pathways in plants be harnessed for humanwelfare. Plants respond
to environmental stress conditions by producing several metabolites such as phenolic
compounds, alkaloids, and terpenes, in order to cope and adapt to these stresses. These
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Table 9.4 Effect over diverse plants and secondary metabolites production

Material Plant cell culture Effect/secondary
metabolites enhanced

References

SiO2 Crataegus sp. Positive effect on
photosynthetic rate and
no effect on chlorophyll
and carotenoid content

Ashkavand et al. (2016)

Lycopersicum esculentum Increased seed
germination at low
concentrations

Haghighi et al. (2012)

Ocimum basilicum Increased chlorophyll and
proline content

Kalteh et al. (2014)

Lens culinaris Enhanced seed
germination and seedling
growth

Sabaghnia et al. (2014),
Siddiqui Manzer et al.
(2014)

Cucurbita pepo Increased seed
germination and seedling
growth. Reduced
chlorophyll degradation
and oxidative damage,
enhanced photosynthetic
parameters and
antioxidant enzymes

Siddiqui Manzer et al.
(2014)

Vicia faba Enhanced seed
germination and seedling
growth

Qados and Moftah (2015)

Solanum lycopersicum RBOH1, APX2, MAPK2,
ERF5

Almutairi (2016)

Foeniculum vulgare Benzoic acid, jasmonic
acid, hexadecanoic and
pyrrolidinone

Bahreini et al. (2015)

TiO2 Aloe vera Aloin Raei et al. (2014)

Cicer arietinum Phenolic and flavonoid
compounds

AL-oubaidi and Kasid
(2015)

Foeniculum vulgare Dodecane, phytol, phenol
2,4 bis (1,1 dimethyl
ethyl) and octane

Bahreini et al. (2015)

Mentha piperita Increase in nitrate
reductase and carbonic
anhydrase activities. Also
essential oil production
was enhanced

Ahmad et al. (2018a)

(continued)
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Table 9.4 (continued)

Material Plant cell culture Effect/secondary
metabolites enhanced

References

ZnO Hypericum perforatum Hypericin and hyperforin
production

Sharafi et al. (2013)

Phaseolus vulgaris Chlorophyll, carotenoids
and oxidative stress
biomarkers

García-Gómez et al.
(2017)

Solanum lycopersicon Chlorophyll, carotenoids
and oxidative stress
biomarkers

García-Gómez et al.
(2017)

metabolites do have impact on how effectively plants can be used as functional foods.
Besides, many of these plant metabolites have demonstrated benefits to human health
due to their several biological activities such as antimutagenic, anti-inflammatory,
and antimicrobials (García-Mier et al. 2013; Vargas-Hernandez et al. 2017; Veloz-
García et al. 2010).

Despite the mentioned importance of these plant metabolites, the biosynthetic
processes for only a small fraction of these complicated molecules are known, indi-
cating that the majority of the diversity of plant metabolism has not yet explored.
Recent progress in next-generation sequencing technologies, along with the devel-
opment of new algorithms for bioinformatics analysis of these sequence data, has
greatly boosted the process of gene discovery involved in plant metabolic processes.
These discoveries have allowed advancements in engineering the plant metabolism
(metabolic engineering). The unraveling of these pathways will permit us to fully
harness the wealth of compounds and biocatalysts that plants provide (Tatsis and
O’Connor 2016). Some recent approaches of metabolic engineering in plants are
described to display the current potential of this strategy to increase high-value-
based metabolites in plants.

9.6.1 Homologous Overexpression and Heterologous
Reconstitution of Plant Biochemical Pathways

The possibility of reconstitution of a plant metabolic pathway in a heterologous
organism is one approach well studied in metabolic engineering. For this strat-
egy, either plants or microorganisms (mainly Escherichia coli and Saccharomyces
cerevisiae) have been successfully used. In the case of plants, tobacco (Nicotiana
tabacum) displays a quick and cheap plant model to be used for this purpose (Jiang
et al. 2015). Moreover, other authors have elegantly delineated a ten-step pathway
of a genetically intractable plant species to produce the etoposide aglycone in Nico-
tiana benthamiana by assembly of the entire functional pathway in this species (Lau
and Sattely 2015). Pharmaceutically important terpenoids of plant origin, as those
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from Panax ginseng (ginsenosides) have been increased by twofold in transgenic P.
ginseng overexpressing the ginsenosides biosynthetic pathway key gene PgSQS1,
that up-regulate the expression α-amyrin synthase (α-AS) and cycloartenol synthase
(CAS) (Shimet al. 2010). Similar approaches using overexpression of other key genes
in the ginsenosides biochemical pathways have also been successfully reported (Kim
et al. 2014).

Metabolic regulation of multiple key genes in several biosynthetic pathways can
effectively increase the pharmaceutical terpenoid content inmedicinal plants. Tanshi-
nones, abietane-type norditerpenoid quinones in Salvia miltiorrhiza, have antibacte-
rial, anti-inflammatory, andbroad antitumor activities (Gao et al. 2014). The introduc-
tion of the SmHMGR and/or SmGGDS genes aswell as SmDXS gene in S.miltiorrhiza
hairy root lines results in a significant enhancement of tanshinone production (Kai
et al. 2011). Moreover, co-expression of the SmHMGR and SmGGDS genes resulted
in the highest production of tanshinone. Overexpression of artemisinin biosynthesis
genes ADS (Amorpha-4,11-diene synthase gene), CYP71AV1 (cytochrome P450-
dependent hydroxylase gene), and CPR (NADPH: cytochrome P450 oxidoreductase
gene) promoted the accumulation of artemisinin in Artemisia annua (Lu et al. 2013).
Other approaches for increasing triterpenoids in plants have been reviewed elsewhere
(Moses et al. 2013). Flavonoids, a group of polyphenolic plant SMs, are important for
plant biology and human nutrition. In particular, flavonols are potent antioxidants,
and their dietary intake is correlated with a reduced risk of cardiovascular diseases.
Tomato fruit contains only in their peel small amounts of flavonoids, mainly narin-
genin chalcone and flavonol rutin, a quercetin glycoside. The transgenic expression
of maize transcription factors genes LC and C1 in tomato fruits significantly up-
regulated the flavonoid pathway in tomato fruit flesh, a tissue that normally does
not produce any flavonoids. These fruits accumulated high levels of kaempferol (a
flavonoid) in their flesh (Bovy et al. 2002).

9.6.2 Gene Silencing Strategies

Another approach to modify plant metabolites is the down-regulation of specific
genes involved in the competitive pathway in order to enhance the production of
desired compounds. Virus-induced gene silencing (VIGS) has been used to evaluate
the effect of silencing of some genes of capsaicinoid biosynthetic pathway in pepper.
The silencing of Comt, pAmt, and Kas genes using a geminiviral vector demon-
strated that capsaicin was no more produced in fruits (del Rosario Abraham-Juárez
et al. 2008). The frontier tool for gene editing called clustered regularly interspaced
short palindromic repeats (CRISP)/CRISPR-associated9 (Cas9) endonuclease sys-
tem has recently been found useful in knocking out the gene 4′OMT2 in opium poppy
(Papaver somniferum) to regulate the biosynthesis of benzylisoquinoline alkaloids
(BIAs) (Alagoz et al. 2016).
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9.6.3 Constructing Specific Molecules

Commercial DNA synthesis currently makes it possible to rapidly generate single-
andmulti-gene constructs for expression in the heterologous systems. In the previous
years, further growth and innovation in the DNA synthesis industry has continued
to diminish the price of synthetic genes to the extent that purchasing DNA is often
competitive with the cost of PCR cloning, particularly when subsequent sequence
manipulation is required to obtain the exact sequence desired for experimentation
(Owen et al. 2017). In this scenario, it is expected in short time to design specific
gene constructs in order to rapidly provide the possibility of introducing a complete
biosynthetic pathway or to modify it according to the desired metabolites to be
produced by plants or heterologous hosts. Plants have a number of advantages as
heterologous hosts for metabolic engineering. They require only simple inorganic
nutrients, water, carbon dioxide, and sunlight for their efficient growth. Moreover,
they are also more amenable to expression of genes of plant origin than microbes
since they support correct mRNA and protein processing, protein localization. and
metabolic compartmentalization, and already have many of the necessary metabolic
precursors and co-enzymes (Owen et al. 2017). As non-hosts for animal and human
pathogens, they are an attractive alternative to human cell cultures for the production
of vaccines and therapies (Geu-Flores et al. 2012). Thus, combining the strategies of
synthetic biology with metabolic engineering would be faster to produce the desired
metabolites in plants.

9.6.4 Non-genetically Modifying Approach (Eustressors)

Plants induce their immune system to cope up with environmental stresses either
from biotic or abiotic agents (Cardenas-Manríquez et al. 2016). Among the arsenal
of defense against stresses, plants produce amyriad of specializedmetabolites (much
of them with biological activities of anthropocentric interest). According to the the-
ory of stress, if this situation corresponds to a “mild stress” that flavors somehow
plant performance, including bioactive production; the stress is called “eustress” or
good stress (Hideg et al. 2013). On the contrary, if the stress level is high enough
to provoke minor growth and even plant death, the stress is called “distress” or bad
stress (Hideg et al. 2013). Thus, several approaches searching for eustress factors of
biological (elicitors), chemical, or physical nature have been reported with positive
results of inducing the production of specific metabolites. For instance, in the case
of chili pepper, biological and chemical eustressors caused a significant increase in
capsinoid levels (Zunun-Pérez et al. 2017). In addition, physical eustressors such as
UV-B treatment on several crops as tomato and lettuce have also been demonstrated
to increase flavonoids in several plant organs (Neugart and Schreiner 2018). Inter-
estingly, the application of these eustress-inducing factors has been demonstrated to
be inherited to the offspring using epigenetic mechanisms (Avramova 2015).
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9.7 Conclusions and Future Perspective

The SMs are economically important due to their use in pharmaceutical, food, cos-
metics, and agricultural industries. Current trend is to produce adequate, nutritious,
and safe food (with less chemical substances such as fertilizers, herbicides, pesti-
cides, antifungi) that not only nourish, but also contribute to an extra health benefit
(nutraceutical) with minimum inputs and without greatly compromising the produc-
tion of the plant and environment. Several approaches or strategies have been used
to produce secondary metabolites in the plants for human health benefits. Although
SMs are the result of adaptation and evolution of the plant in the face of changes in
the environment, they can be induced by factors that resemble changing environmen-
tal conditions as biotic and abiotic factors. These factors act as elicitors which at an
effective dose at a specific plant phenology induce the production of SMs that influ-
ence the plant growth and development and protect them against pests and pathogens.
These compounds (elicitors either endogenous or found in soil, phytohormones, bac-
teria, fungi, and organic compounds) are marketed as biostimulants (as a mixture or
in aqueous solution) and are currently used in various countries as an alternative to
organophosphorus pesticides and fertilizers that can contaminate aquifers and soils.
Controversy of their use lies in the difficulty to create or adapt legislations for their
application in growing areas. Moreover, these products are placed in the market fol-
lowing national and supranational regulation of fertilizers and pesticides (du Jardin
2015). Because of their origin in nature, they offer an alternative to produce food
free of harmful agents that can induce diseases.

The other aspects are the biotechnological advances, application of nanomaterials,
and metabolic engineering. Nowadays, nano-biotechnology industries are growing
very rapidly; however, there is an urgent need to perform profound studies in this
field in order to develop comparatively safe and eco-friendly nanoparticles in the
long run. The widespread assessment of these NPs in agri-food sector should also
be carried out for public acceptance to prevent them from the unlike challenges as
were faced by genetically modified organisms worldwide. Although there is a great
controversy about the positive and negative aspects of the application of nanomate-
rials or nanoparticles on crops, it is clear that the impact of their application depends
on the type of crop, the time of exposure, the crop developmental stage at which
they are applied, as well as the concentration and type of material used. Further, the
technological advances have made it possible to identify, characterize, and isolate
novel genes for the manipulation of diverse plant metabolic pathways to improve SM
production. However, despite generation of the vast amount of information in the last
decades, it is still not possible to fully elucidate the behavior of the stressors, leaving
behind several points unaddressed, as well as the various experimental models to be
tested.
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Chapter 10
Development of Brassica Oilseed Crops
with Low Antinutritional Glucosinolates
and Rich in Anticancer Glucosinolates

Naveen C. Bisht and Rehna Augustine

Abstract Glucosinolates are a class of plant secondary metabolites of Brassicaceae
family with diverse biological functions. Hydrolytic products of some glucosino-
lates are beneficial whereas some impart antinutritional properties. Sulforaphane,
the degradation product of glucosinolate glucoraphanin is known as one of the most
potent naturally occurring anticancer compound. Sulforaphane protects the body
against a variety of chronic diseases. The major antinutritional effect of glucosi-
nolates reported is its interference with thyroid function, especially in livestock and
poultry which are routinely fed on rapeseed–mustard meal. For example, 2-hydroxy-
3-butenyl glucosinolate forms an oxazolidine-2-thione upon hydrolysis which is
goitrogenic. The presence of antinutritional glucosinolates drastically reduces its
food and feed value and hence also its market value. It is therefore, imperative to
develop Brassica oilseed crops which are rich in beneficial glucosinolates and low
in antinutritional glucosinolates. Conventional breeding efforts as well as recent
biotechnological advances have contributed largely toward this goal. Recently, using
RNAi-mediated silencing of theGSL-ALK gene, high accumulation of glucoraphanin
was achieved in the seeds of Brassica juncea with a concomitant decline in the
concentrations of antinutritional glucosinolates. The chapter summarizes the health
effects of glucosinolates, the genetics of beneficial glucosinolate accumulation in
Brassica crops and the current status of research toward the enrichment of Brassica
crops with beneficial glucosinolates.
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Abbreviations

AFLP Amplified fragment length polymorphism
ALK Alkenase
AOP Alkenyl hydroxyl producing
BCAT Branched-chain aminotransferases
CRISPR Clustered regularly interspaced short palindromic repeats
Cas CRISPR associated protein
DW Dry weight
FMO Flavin monooxygenase
GNA Gluconapin
GSL Glucosinolate
GTR Glucosinolate transporter
MAM Methylthioalkyl malate synthase
Met Methionine
QTL Quantitative trait loci
RNAi RNA interference
TILLING Targeting induced local lesions in genomes
Trp Tryptophan

10.1 Introduction

Brassica foods are getting attention worldwide due to their immense nutritional
potential. The presence of a unique metabolite called glucosinolate makes the Bras-
sica foods attractive. Glucosinolates are simple compounds originating from amino
acids through a pathway with complex regulatory mechanisms which vary with
species to species and environment to environment. Glucosinolates have a huge
diversity accounting to more than 130 molecules reported to date. Glucosinolates
possess a broad spectrum of biological activity (Agerbirk and Olsen 2012). In nature,
glucosinolates form part of the innate defense machinery of plants (Hopkins et al.
2009). Glucosinolates in the native form are inert and compartmentalized in cell
vacuoles; however, tissue damage of any form exposes these compounds to a class of
hydrolyzing enzyme called myriosinases which is otherwise compartmentalized in
specialized cells called myriocin cells. The degradation products of glucosinolates
impart various biological activities (Halkier and Gershenzen 2006) (Fig. 10.1).

Brassica products are consumed as oil, meal and as vegetables. Rapeseed-mustard
(B. napus, B. juncea and B. rapa) is a source of oil and has a protein-rich seed meal.
High glucosinolates and erucic acid in the seed meal impart health risks to poultry
and livestock (Fenwick et al. 1983; Griffiths et al. 1998). Canola Council of Canada
(2010) has set safe limits of erucic acid and glucosinolates in the defatted seedmeal as
<2% and <30μmol g−1 DW, respectively. Rapeseed–mustard seed meal is a protein-
rich animal feed supplement. However, the presence of high amounts of glucosino-
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Fig. 10.1 Glucosinolates and its hydrolytic products. Upon tissue damage, glucosinolates are
hydrolyzed bymyrosinases.At neutral pH, the unstable aglycones rearrange to form isothiocyanates.
If the glucosinolate side chain is hydroxylated at carbon 3, spontaneous cyclization of the isothio-
cyanate results in the formation of an oxazolidine-2-thione. In the presence of an epithiospecifier
protein-like factor (ESP), nitriles are formed. Nitrile formation has been shown in some cases to
be favoured at low pH (pH < 3). If there is a terminal double bond in the side chain, the sulfur
atom released during nitrile formation is captured by the double bond, resulting in the formation of
epithionitriles. Some glucosinolates can be hydrolyzed to thiocyanates (R is a variable side chain)

lates in rapeseed/canola seed meal makes the oil cake bitter and hence unpalatable.
High contents of glucosinolates also possess serious health hazards (Augustine et al.
2013b). It is therefore imperative to genetically manipulate the glucosinolate content
in Brassica crops so that the feed value can be greatly improved. In human diet as
well, Brassica vegetables are highly important as they are good sources of vitamin
A and C, dietary soluble fibers, folic acid, and essential micronutrients (Hirani et al.
2012). Hence, one of the main breeding objectives in Brassica crops is to enhance
the content of beneficial glucosinolates and to reduce the deleterious glucosinolates
in edible plant parts. This chapter deals with the basics of glucosinolates, their bio-
logical effects, efforts and strategies to achieve low antinutritional glucosinolates and
high-glucoraphanin content in Brassica crops.
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10.2 The History, Economic Importance and Distribution
of Brassica Crops

Brassicaceae is one of the most important plant families of the world from the eco-
nomic point of view. Brassicaceae or the cabbage family is the fifth-largest mono-
phyletic angiosperm family of flowering plants, with 372 genera and 4060 species.
The mustard family contains the widely cultivated species, such as Brassica oler-
acea, Brassica rapa, Brassica napus, Raphanus sativus, Brassica juncea, Brassica
nigra and many others including the model plant, Arabidopsis thaliana (Rakow
2004; Johnston et al. 2005; Beilstein et al. 2006). History of rapeseed cultivation can
be traced back to several thousand years with its origin in the Mediterranean region
although the exact time of domestication and the place of origin are still unknown. B.
juncea and B. rapa are believed to be cultivated in India long before the Christian era
(Prakash and Hinata 1980). Rapeseed–mustard is the third most important oilseed in
the world after soybean and groundnut. Canola oil is considered as one of the health-
iest edible oils. The oil consists of high level of monounsaturated fatty acid (61%),
lower level of saturated fatty acid (7%) and moderate amount of polyunsaturated
fatty acid (22%) (McVetty and Scarth 2008). The oil cake left out after extraction of
oil is a rich source of protein (36–39%) which is mostly used as animal feed (Cartea
and Velasco 2008). In recent years, Brassica oil is also getting popularity in biofuel
production (Hill et al. 2006).

10.3 Glucosinolate Structure, Classification
and Metabolism

Glucosinolates are nitrogen- and sulfur-containing secondary metabolites with a
common core structure containing a β-D-thioglucose group linked to a sulfonated
aldoxime moiety and a variable side chain derived from amino acids. Glucosino-
lates are classified based on their amino acid precursors into three major groups:
aliphatic, indolic and aromatic (Halkier and Gershenzen 2006). Aliphatic glucosi-
nolates are derived from Ala, Leu, Ile, Val or Met and constitute the major group
of glucosinolates in Brassica species. Commonly occurring aliphatic glucosinolates
include gluconapin, sinigrin, glucoraphanin, glucobrassicanapin, glucoiberin, glu-
coerucin (Table 10.1). Aliphatic glucosinolates are further divided into propyl (C3),
butyl (C4) and pentyl (C5) glucosinolates based on the length of side chain. Indolic
glucosinolates are derived from the amino acid, Trp. Major indolic glucosinolates
found in cultivated Brassica species include glucobrassicin, neoglucobrassicin, 4-
methoxyglucobrassicin and 4-hydroxyglucobrassicin. Aromatic glucosinolates are
derived from the aromatic amino acids, Phe and Tyr. They are less common compared
to other two classes of glucosinolates. Glucobarbarin, glucotropaeolin, glucosinal-
bin, gluconasturtiin and glucomalcomiin are some of the commonly found aromatic
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Table 10.1 Commonly occurring aliphatic (Ali), indolic (Ind) and aromatic (Aro) glucosinolates
and their abbreviation

Chain length R side chain Trivial name

C3 Ali 3-Methylthiopropyl (3MTP) Glucoibervirin (IBV)

3-Methylsulfinylpropyl (3MSOP) Glucoiberin (IBE)

3-Methylsulfonylpropyl Glucocheirolin (CHE)

2-Propenyl Sinigrin (SIN)

3-Hydroxypropyl (3OHP) Glucoerysimumhieracifolium

C4 Ali 4-Methylthiobutyl (4MTB) Glucoerucin (ERU)

4-Methylthio-3-butenyl Glucoraphasatin

4-Methylsulfinylbutyl (4MSOB) Glucoraphanin (GRA)

4-Methylsulfinyl-3-butenyl Glucoraphenin (RAA)

3-Butenyl Gluconapin (GNA)

(2R)-2-Hydroxy-3-butenyl Progoitrin (PRO)

(2S)-2-Hydroxy-3-butenyl Epiprogoitrin (EPI)

4-Hydroxybutyl Glucoarabidopsisthalianain

C5 Ali 5-Methylthiopentyl (5MTP) Glucoberteroin (BER)

5-Methylsulfinylpentyl (5MSOP) Glucoalyssin (ALY)

4-Pentenyl Glucobrassicanapin(GBN)

2-Hydroxy-4-pentenyl Gluconapoleiferin (NAP)

C6 Ali 6-Methylthiohexyl (6MTH) Glucosquerellin

6-Methylsulfinylhexyl (6MSOH) Glucohesperin

C7 Ali 7-Methylthioheptyl (7MTH) Glucoarabishirsutain

7-Methylsulfinylheptyl (7MSOH) Glucoibarin

C8 Ali 8-Methylthiooctyl (8MTO) Glucoarabishirsuin

8-Methylsulfinyloctyl (8MSOO) Glucohirsutin

Ind Indol-3-ylmethyl (I3M) Glucobrassicin (GBC)

4-Hydroxyindol-3-ylmethyl (4-OH) 4-Hydroxyglucobrassicin (4-OH)

1-Methoxyindol-3-ylmethyl (1MOI3M) Neoglucobrassicin (NEO)

4-Methoxyindol-3-ylmethyl (4MOI3M) 4-Methoxyglucobrassicin (4ME)

Aro Benzyl Glucotropaeolin (GTL)

2-Phenylethyl (2PE) Gluconasturtiin (NAS)

p-Hydroxybenzyl Glucosinalbin/Sinalbin

3-Benzoyloxypropyl (3BzOP) Glucomalcomiin

4-Benzoyloxybutyl (4BzOB) –
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glucosinolates (Grubb and Abel 2006; Sonderby et al. 2010; Augustine and Bisht
2017).

Biosynthesis of glucosinolates occurs from amino acid precursors through three
distinct phases; side-chain elongation of selected precursor amino acid, core glu-
cosinolates structure formation and the secondary modifications of the side chain
(Fig. 10.2). The secondary modifications of the side chain lead to the structural diver-
sity of glucosinolates. During this phase, the side chain undergoes various modifica-
tion(s) such as oxidation, alkylation and/or esterification reactions. Side-chain modi-
fications of glucosinolates occur through stepwise oxidation of methylthioalkyl moi-
eties tomethylsulfinylalkyl and then to alkenylmoieties (Field et al. 2004;Halkier and
Gershenzen 2006; Sonderby et al. 2010). The flavin monooxygenase (FMOGS-OX1-5)
catalyzes the conversion of methylthioalkyl glucosinolates into methylsulfinylalkyl
glucosinolates (Hansen et al. 2007; Li et al. 2008). AOP2 and AOP3, the two α-
ketoglutarate-dependent dioxygenases control the conversion of methylsulfinylalkyl
to alkenyl- and hydroxyalkyl glucosinolates, respectively (Kliebenstein et al. 2001a,
b). Glucosinolates are predominantly synthesized in green tissues (source) and are
then transported to developing seeds (sink) via long-distance phloem transport sys-
tem (Chen et al. 2001; Brown et al. 2003). Nour-Eldin et al. (2012) have identified
two members of the nitrate/peptide transporter family in model plant A. thaliana,
GTR1 and GTR2, as proton-dependent glucosinolate-specific transporters which are
essential for long-distance transport of glucosinolates.

In Brassica crops, both glucosinolates content and profile are highly variable and
species-specific, with aliphatic glucosinolates (derived from methionine) being the
predominant glucosinolates (up to 95% of the total glucosinolates). The most com-
mon aliphatic glucosinolates in B. rapa and B. nigra are 3-butenyl and 2-propenyl,
respectively. The aliphatic glucosinolates pool inB. napus usually contains 3-butenyl,
4-pentenyls and their hydroxyl forms.However, theB. juncea cultivars consistmainly
of 3-butenyl and 2-propenyl glucosinolates. Furthermore, within B. juncea, the two
heterotic gene pools are also contrasting for their glucosinolates profile and con-
tent, with east European B. juncea cultivars predominantly containing 2-propenyls
(approx. 99%) whereas Indian cultivars primarily contain 3-butenyls with little of
2-propenyls and 4-pentenyls glucosinolates (Love et al. 1990; Pradhan et al. 1993;
Sodhi et al. 2002).

Intact glucosinolates are known to be inactive compounds. However, up on tissue
disruption, glucosinolates come in contact with a hydrolyzing enzyme, myrosinase
(β-thioglucoside glucohydrolase, EC 3.2.3.1) and are converted to a variety of bio-
logically active compounds (Fig. 10.1). The myriosinases catalyze hydrolysis of the
thioglucoside linkage, leading to the formation of glucose and an unstable aglycone
moiety (Halkier and Gershenzen 2006) which rearranges to form isothiocyanates,
simple nitriles, epithionitriles or thiocyanates, depending on the biochemical proper-
ties of the specifier protein and the structure of the glucosinolates side chain, pH and
presence of additional proteins or cofactors (Wittstock and Burow 2010; Kissen and
Bones 2009). These degradation products are actually responsible for the observed
biological activities of glucosinolates.
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Fig. 10.2 Generalized scheme of aliphatic glucosinolate biosynthesis pathway. The biosynthesis
of aliphatic glucosinolates involves three phases, namely side-chain elongation, the formation of
glucosinolate core and side-chain modification reactions. The steps and genes involved in Met-
derived C4 glucosinolate reactions are shown
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10.4 Biological Activities of Glucosinolate Degradation
Products

Glucosinolates research has received much attention in recent years as their
breakdown products are associated with several potent bioactivities. Sul-
foraphane, the isothiocyanate derivative of 4-methylsulfinylbutyl glucosinolate
(4-methylsulfinylalkyl glucosinolate/4-MSOB), predominantly found in broccoli
sprouts, has been shown to have potent anticarcinogenic properties. Sulforaphane is
considered as themost beneficial glucosinolate investigated so far. Healing properties
of sulforaphane, in breast, cervical, prostate, colon, stomach and UV light-mediated
skin cancers have been well documented (Dinkova-Kostova et al. 2006). It is shown
that sulforaphane can induce phase II detoxification enzymes, such as quinone reduc-
tase, glutathione-S-transferase and glucuronosyl transferases through activation of
NrF2 (NF-E2 related factor 2) and AhR (aryl hydrocarbon receptor) in tumor cells
(Hayes et al. 2008). Recently, a novel suppression mechanism showing the ability
of sulforaphane to inhibit histone deacetylase (HDAC) enzymes, to alter histone
acetylation and affect gene regulation has been reported (Myzak et al. 2007; Ho
et al. 2009). Degradation product of indole glucosinolate, Indole-3-carbinol derived
from glucobrassicin has reported to have potent anticarcinogenic activity (Hrncirik
et al. 2001). Sulforaphane also has the potential to prevent tumor growth by blocking
the cell cycle and promoting apoptosis (Bonnesen et al. 2001). Sulforaphane is also
shown to be a dose-related inhibitor of carcinogen-induced mammary tumorigenesis
in rats. It helps in eradicating Helicobacter pylori and thus prevents the incidence
of gastritis and stomach cancer in mice (Fahey et al. 2001). Sulforaphane can also
fight against cystic fibrosis, aging, rhinitis, arthritis, asthma and other lung disorders.
Hence, regular consumption of cruciferous vegetables is highly beneficial (Fahey
et al. 1997; Shapiro et al. 2001; Yanaka et al. 2009; Clarke 2010; Fahey et al. 2012).

Among the cruciferous vegetables, broccoli seeds and sprouts (3 days old
seedlings) contain the highest amounts of glucoraphanin (Fahey et al. 1997; Farnham
et al. 2005).Othermembers ofBrassica oleracea likeChinese kale, cabbage andbrus-
sel sprout also possess significant amounts of glucoraphanin.However,mostBrassica
cultivars grown for vegetable or oil purpose contain very less or negligible amounts
of glucoraphanin. Even though cultivated mainly as an oilseed, leaves of the young
plants of B. juncea and B. napus are consumed as a vegetable as well. 3-butenyl (C4),
2-propenyl (C3) and 4-pentenyl (C5) glucosinolates are the major aliphatic glucosi-
nolates present inB. juncea (Sodhi et al. 2002). The presence of high amounts of these
glucosinolates inB. juncea is antinutritional in nature (Augustine et al. 2013a). Some
glucosinolates present in rapeseed meal fed to poultry and ruminants are found to be
detrimental (Mawson et al. 1993). Its hydrolyzed products, isothiocyanates and other
sulfur-containing compounds, were shown to interfere with the uptake of iodine by
the thyroid gland. For example, the glucosinolate progoitrin is hydrolyzed to goitrin,
or l-5-vinyl-2-thioöxazolidine, which possesses antithyroid effects. Goitrin blocks
tyrosine iodination and inhibits T4 formation (Bischoff 2016). Long-term inges-
tion is associated with goiter formation. Progoitrin is found in rapeseed, kale and a
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variety of vegetables and seeds. Likewise, the predominant rapeseed glucosinolates,
2-hydroxy-3-butenyl glucosinolate, forms an oxazolidine-2-thione upon hydrolysis
which causes goiter in animals by inhibiting thyroxin synthesis which is independent
of iodine availability (Mithen et al. 2000). Thiocyanate ions formed from aliphatic
glucosinolates that contain a hydroxyl side chain interfere with iodine uptake in pigs
and rats which can be reversed with iodine supply (Schöne et al. 1997). Although
there is no clear evidence to fully describe themechanism involved in glucosinolates-
related effects on animal reproduction, lowered fertility was observed in animals fed
with rapeseed meal rich in glucosinolates content (Mawson et al. 1993). Tripathi
et al. (2003) have shown that high glucosinolates content (58 μmol g−1 DW) in the
seed meal of B. juncea can impair food intake of rabbits. Stunted growth of poul-
try was also observed when fed with a glucosinolates-rich diet for a longer time
(Bell 1993). However, there is not much evidence of its deleterious effects on human
beings (Clarke 2010). Hence, metabolic engineering of B. juncea for the enrichment
of desirable glucosinolate (e.g., glucoraphanin) and reducing the antinutritional glu-
cosinolates seems highly essential to improve the food and feed value of this crop
(Fig. 10.3).

Fig. 10.3 Biotechnological strategies used for manipulation of glucoinsolate pathway in Brassica
species. a Overaccumulation of desirable glucosinolate, glucoraphanin by blocking the functional
GSL-ALK gene. b Targeted and tissue-specific manipulation for developing low glucosinolate lines
has been attained by silencing the transcription factors (e.g., MYB28), pathway genes (MAM1) and
glucosinolate-specific transporters (GTRs) of Brassica species
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10.5 Development of Low Glucosinolate Brassicas

Since some glucosinolates possess deleterious effect on cattle and poultry, efforts
have been made to develop low glucosinolate Brassica crops. The discovery of low
aliphatic glucosinolates trait in the B. napus cultivar Bronowski (~12 μmol g−1 oil-
free meal and 7–10% erucic acid) in Poland was a breakthrough in breeding for low
glucosinolates traits in Brassica crops (Kondra and Stefannson 1970; Krzymanski
1970). Till now, this is the only natural source for low glucosinolate trait in Brassica
breeding programs (Howell et al. 2003). The first low glucosinolate summer rape,
cv. Tower, was registered in 1974 (Stefansson and Kondra 1975). Breeding for low
glucosinolate trait in B. juncea started in Canada by interspecific crosses between a
B. juncea cultivar with non-allyl, 3-butenyl glucosinolate and a low glucosinolate B.
rapa followed by backcrossing and subsequent inbreeding (Love et al. 1990). The
performance of these plants was later improved by further backcrossing with high
yielding B. juncea line (Love et al. 1991; Rakow et al. 1995). The first canola quality
B. juncea varieties were registered in Canada in 2002 by the Saskatchewan Wheat
Pool (SWP). However, the germplasm pool of canola quality B. juncea is genetically
quite narrow (Burton et al. 2004). A recurrent selection and backcross (RSB) method
in B. juncea using double haploids (DH) in each generation was shown to introgress
the low glucosinolate alleles from a low glucosinolate east European B. juncea line,
Heera into an Indian variety, Varuna (Ramchiary et al. 2007a). Using whole genome
AFLP analysis, it was observed that the maximum recurrent genome content of only
86% was achieved in advance BC4DH generation which could not be improved in
subsequent generations because of the “linkage drag” problem. Another significant
observation of the study was the presence of a negative linkage between QTL alleles
of low glucosinolate and seed yield (Ramchiary et al. 2007b; Bisht et al. 2009).

Transgenic approaches are faster, trustworthy and cost-effective alternative to
modify the Brassica crops for low glucosinolate trait (Fig. 10.3) as the genetics of
glucosinolate biosynthesis ismuch complex inBrassica crops. Silencing of candidate
genes involved in glucosinolate biosynthetic pathway has been reported to reduce
glucosinolate content in B. napus (Liu et al. 2011). The RNAi-mediated silencing of
theMAM gene family inB. napus canola and rapeseed cultivars resulted in the reduc-
tion of total aliphatic glucosinolates and the total glucosinolate content. However, the
MAM gene silencing in B. napus significantly induced the production of 2-propenyl
glucosinolate. Targeting of transcription factors found to be more promising than tar-
geting single genes as they control most of the genes involved in the pathway.MYB28
has been identified as the major transcriptional regulator of aliphatic glucosinolate
biosynthesis in B. juncea (Augustine et al. 2013a). Targeting the BjMYB28 through
RNAi-based gene silencing resulted in the development of transgenic B. juncea lines
having seed aliphatic glucosinolates as low as 11.26 μmol g−1 DW. The targeted
silencing of BjMYB28 homologs provided a significant reduction in the antinutri-
tional aliphatic glucosinolates fractions, without altering the desirable non-aliphatic
glucosinolate pool, both in leaves and seeds of transgenic plants. However, leaf glu-
cosinolate was also found to be reduced in the transgenic lines (Augustine et al.
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2013b). In a recent study, non-transgenic approach like TILLING was employed for
the transport engineering of glucosinolates in oilseed B. rapa and B. juncea (Nour-
Eldin et al. 2017). Since glucosinolates are synthesized in leaves and transported to
seeds, this specifically reduces seed glucosinolate content, while maintaining a high
level of foliar glucosinolates. The group mutated one of the seven and four of 12
GTR orthologs in B. rapa and B. juncea, respectively, and could achieve reduced
glucosinolate levels in seeds by 60–70% in these two Brassica species.

10.6 Enriching the Brassica Crops with Glucoraphanin

10.6.1 Genetics of Glucoraphanin Accumulation

B. oleracea, including broccoli, Chinese kale, brussels sprouts and purple cauliflower
contain high concentrations of glucoraphanin (Fahey et al. 1997; Liu et al. 2012).
Even though rich in glucosinolates, there is only marginal or undetectable levels
of glucoraphanin present in B. juncea, B. napus and in B. rapa which are among
the widely cultivated Brassica crops around the globe (Kim et al. 2003; Padilla
et al. 2007; Lou et al. 2008; Augustine and Bisht 2015). Though mainly used as an
oilseed, young leaves of B. juncea and B. napus are consumed as vegetables in many
parts of the world. Hence, it is essential to metabolically engineer these Brassica
crops for high content of the nutritional giant glucoraphanin and low antinutritional
glucosinolates.

Genetics of glucoraphanin accumulation in Brassicaceae has been investigated
in detail (Giamoustaris and Mithen 1996; Kliebenstein et al. 2001a, b; Neal et al.
2010; Liu et al. 2014). Accumulation of glucoraphanin is genetically controlled by
GSL-AOP locus which contains theGSL-ALK (AOP2) andGSL-OHP (AOP3) locus.
Non-functional gene product of this locus is found associated with the accumula-
tion of glucoraphanin. In A. thaliana ecotype Columbia, AOP2 gene was shown to
be marginally expressed which results in the accumulation of glucoraphanin (Neal
et al. 2010). In broccoli, a non-functional GSL-ALK homolog has been identified
which is associated with high-glucoraphanin accumulation. In B. rapa, three AOP2
genes were identified which were found to be functional. Another recent study in
polyploid B. juncea identified four functional homologs of AOP2. These findings
clearly substantiate the reason for the absence of glucoraphanin in B. rapa, B. juncea
and other related Brassica species (Li and Quiros 2003; Liu et al. 2014; Augustine
and Bisht 2015). Both AOP2 and AOP3 encode a 2-oxoglutarate-dependent dioxy-
genase (2-ODD) enzyme. In arabidopsis, using enzyme assays of the heterologously
expressed fusion protein, it has been suggested that the AOP2 enzyme catalyzes the
conversion of methylsulfinylalkyl glucosinolates to alkenyl glucosinolates and that
the AOP3 enzyme catalyzes the formation of hydroxyalkyl glucosinolates (Klieben-
stein et al. 2001a, b). Further, it has been showed that the expression of functional
AOP2 correlates with the products of the GSL-ALK reaction and that expression of
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AOP3 is completely associated with the products of the GS-OHP reaction. These
observations conclude that the absence of either of these two enzymes can result in
the accumulation of methylsulfinylalkyl glucosinolates. The study proved that AOP2
and AOP3 might have derived from the ancestral gene AOP1 by gene duplication
(Neal et al. 2010). The allelic variations of these genes play a key role in determining
the type of glucosinolate accumulated in a particular Brassica species.

10.6.2 Development of Glucoraphanin Enriched Brassica

Enhancement of the beneficial glucoraphanin in Brassica crop through conventional
breeding methods seems quite challenging, as the conventional breeding strategies
are not simpler in polyploid crops likeB. napus andB. junceawhere genemultiplicity
and redundancy result in complex genetic interactions. Faulkner et al. (1998) devel-
oped a hybrid between broccoli andBrassica villosawhich accumulated significantly
high concentrations of glucoraphanin in floral parts. In broccoli, high-glucoraphanin
F1 hybrids were developed through genome introgression from the wild species,
Brassica villosa. The high-glucoraphanin lines of Broccoli have been commercial-
ized as Beneforte (Traka et al. 2013). Natural sources of mutations for AOP2 loci are
also limiting. Of late, there were no loss-of-function mutations in AOP2 genes have
been reported inB. rapa or in any otherBrassica species exceptB. oleracea.Recently,
Liu et al. (2017) identified natural non-functional mutations of two BrAOP2 genes
from “R-O-18” and then performed marker-assisted backcross breeding to substitute
functional BrAOP2 gene locus in “L58” with non-functional alleles to increase the
beneficial glucosinolate (glucoraphanin) in B. rapa. Marker-assisted backcrossing
was performed, and the screened backcross progenies with introgression of both
non-functional braop2.2 and braop2.3 alleles showed a significant enhancement in
the glucoraphanin content by 18 folds compared to the recurrent parent. Interestingly,
introgression of a single non-functional allele, braop2.2 or braop2.3 did not alter the
glucoraphanin content (Liu et al. 2017).

Knockdown ofGSL-ALK gene has been shown to enhance glucoraphanin content
inB. napus andChinese kale (Liu et al. 2012;Qian et al. 2015). RNAi-based silencing
of the GSL-ALK gene family in B. napus did not show significant alteration in
the total glucosinolates content in the transgenic lines. However, the detrimental
glucosinolate progoitrin was drastically reduced, and glucoraphanin was increased
to a high concentration in the seeds of F1 progeny of a cross between B. napus
ALK-RNAi line and a double haploid line of high glucosinolate containing rapeseed
(Liu et al. 2012). However, the high-glucoraphanin trait in the F1 generation of
B. napus showed a complex genetic control in advance segregating generations.
Moreover, GNAwas found decreased only when the gene silencing was very strong.
In the antisense-mediated down regulation of GSL-ALK gene in Chinese kale, even
though the glucoraphanin content was increased, a concomitant enhancement in
gluconapin content was observed (Qian et al. 2015). In B. juncea, the constitutive
silencing of GSL-ALK gene resulted in enhanced accumulation of glucoraphanin up
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to 43.11 μmol g−1 DW in the seeds (Augustine and Bisht 2015). Along with the
enhancement of glucoraphanin, a drastic decline in the concentrations of gluconapin
and sinigrin as well as the total glucosinolate content was also observed. The level of
glucoraphanin accumulated in the knockdown lines was found even higher than that
of the glucoraphanin content reported in the florets of Benefort’e® broccoli. Other
C4 glucosinolate, glucoerucin which comes earlier in the pathway was found to be
enhanced in the transgenic lines.

10.7 Conclusions and Future Directions

Development of low antinutritional glucosinolates and high-glucoraphanin traits
are important breeding objectives in Brassica crops. Since the genetics of glucosi-
nolate biosynthesis in model plant A. thaliana and few other Brassica crops are
clearly documented, now it is time to translate this knowledge for Brassica improve-
ment programs. Even though a few successful studies have been performed which
could achieve high-glucoraphanin content in differentBrassica crops through RNAi-
mediated silencing or TILLING, the new generation of biotechnological tools like
CRISPR/Cas9 seems to be promising in achieving these targets in lesser time with
much more efficiency. This will also probably require less biosafety protocols and
regulatory requirements.
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Chapter 11
Biotechnological Strategies
for Development of Aflatoxin-Free Crops

Kalyani Prasad, Kiran Kumar Sharma and Pooja Bhatnagar-Mathur

Abstract Aflatoxins are secondary metabolites produced by the fungal genus
Aspergillus (mainly A. flavus and A. parasiticus) that contaminate various agricul-
tural commodities, but most prevalent in maize, groundnut, and cotton. Consid-
ered to be potent carcinogens and teratogens to humans and farm animals, aflatoxin
contamination gets accentuated by hot and dry weather conditions, insect feeding
and mechanical damage during and after harvest, and improper storage conditions.
Growing global concerns about aflatoxin contamination have prompted search for
effective control measures and specific regulations to limit exposure to these myco-
toxins. Cultural practices include use of resistant varieties; control of insect pests,
timely harvesting, proper drying, storage, sorting, and cleaning of harvested pro-
duce curtail aflatoxin contamination to some extent, and biological control strate-
gies such as use of atoxigenic A. flavus strains have proven efficient in preventing
infection by aflatoxin-producing strains. Genetic engineering for aflatoxin resistance
through gene overexpression and recent development in area of transgenics through
host-induced gene silencing of aflatoxin biosynthesis pathway genes have provided
promising results in several crops such as cotton, corn, and groundnut. This book’s
chapter provides comprehensive overview on the various strategies and also updates
the status of research to achieve aflatoxin resistance in crop plants. The role of
various factors affecting aflatoxin contamination is also discussed that help to take
appropriate measures for successful control of aflatoxin resistance. The availabil-
ity of advanced molecular techniques, cutting edge tools and technologies provides
greater potential to the development of markers and QTLs for aflatoxin resistance
speeding up the development of durable aflatoxin-resistant varieties.
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11.1 Introduction

Aflatoxins (AFs) are hepatotoxic, cancer-causing secondary metabolites produced
by three filamentous fungal species of Aspergillus including A. parasiticus Speare,
Aspergillus flavus Link, and rarely by A. nomius Kurtzman (Ehrlich et al. 2003).
Aflatoxin exposure in humans and livestock occurs through consumption of con-
taminated food and feed (Chulze 2010). These toxins suppress the immune system
and retard growth in human and animals, particularly affecting the liver and diges-
tive tract (Williams et al. 2004; Eaton and Groopman 2013). Based on the duration
and amount of exposure, aflatoxins can lead to acute or chronic aflatoxicosis, while
its prolonged exposure has been known to aggravate epidemics of AIDS, malaria,
tuberculosis, and other diseases in many developing countries (Williams et al. 2005).

The aflatoxins are classified as AFB1, AFB2, AFG1, and AFG2 according to their
absorption properties under ultraviolet light and molecular weight. While A. para-
siticus can produce all the four toxins, A. flavus produces only AFB1 and AFB2.
International Agency for Research on Cancer (IARC) categorized G- and B-type
aflatoxins as Group 1 mutagens and AF-M1 as Group 2B (IARC 2015). According
to a UN report, 25% of world food crops are contaminated by mycotoxins annu-
ally (Smith et al. 2016). Due to various risk factors, about five billion people from
developing countries are frequently exposed to aflatoxin (Williams et al. 2004).

Aflatoxin contamination occurs more frequently in tropical and subtropical areas,
usually in warm and dry weather conditions. Aspergillus infects crops not only at
pre-harvest and post-harvest, but also during storage and transportation. Optimum
growth conditions for A. flavus during post-harvest are between 25 and 30 °C and
humidity levels of 0.99 aw, with the production of aflatoxin occurring optimally
at 25 °C and 0.99 aw (Giorni et al. 2009). It affects broad range of agricultural
commodities such as cereals (wheat, maize, rice, and barley), legumes (soybean,
bean, and pulses), oilseeds (peanut, cottonseed, and coconut), spices (coriander, black
pepper, chillies, turmeric, and ginger), nuts (pistachios, almonds, walnut) and dried
fruits (figs, dates, dried apricot, and driedmulberries, etc.). Crops, particularlymaize,
peanut, cottonseed, pistachio, Brazil nuts, and coconut can be highly contaminated
(Idris et al. 2010; Cornea et al. 2011); whereas, sorghum, oats, millet, wheat, barley,
rice, soybean, cassava, beans, and pulses are occasionally contaminated. Other crops
such as linseeds, melon seeds, cocoa beans are rarely contaminated (Bankole et al.
2010).

Despite the fact that aflatoxin contamination can cause significant losses to food in
both developed and developing countries, the use of improved agricultural practices
and strict legislative regulations imposed on food processing and marketing system
have significantly reduced aflatoxin exposure in the developed countries. In contrast,
developing countries either lack food safety regulations or regulatory compliance,
besides the prevalence of conducive climatic and crop storage conditions for the A.
flavus growth, thereby frequently contaminating the staple food crops (Hell et al.
2010).
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Major causes of economic losses due to aflatoxin are yield, decreased crop value,
animal and human health costs, export market, sampling and testing costs, costs to
food processors, grocerymarkets and consumers (Wu 2004). Due to its serious health
effects, aflatoxinwas included in the RapidAlert System for Food and Feed (RASFF)
of the European Union in 2008. Aflatoxin enters the food chain through consumption
of contaminated milk, eggs, meat, and their products (Bennett and Klich 2003).

Based on the significant correlation of AFB1 with liver cancer in parts of Africa,
China, and South EastAsia, aflatoxins are categorized as aGroup I human carcinogen
by the International Agency for Research on Cancer (Wogan 2000). Globally, it
causes 40% of deaths and an estimated 5–30% of liver cancer, the most noteworthy
occurrence being in Africa with 30% (http://www.xinhuanet.com). Besides causing
health problems to humans, aflatoxin contamination of food crops leads to significant
economic losses due to loss of crops and animals (Table 11.1).

Table 11.1 Economic losses due to aflatoxin

Crop Economic losses
(million US dollars)

Country References

All crops 139 Africa–Senegal http://www.
xinhuanet.com

38 Africa–Uganda http://www.
xinhuanet.com

2 Africa–Gambia http://www.
xinhuanet.com

750 Africa Otsuki et al. (2001),
Cardwell and Henry
(2004)

900 Philippines,
Thailand, and
Indonesia

Lubulwa and Davis
(1994)

85–100 USA Yabe and Nakajima
(2004)

Maize 52.1–1680 USA Mitchell et al. (2016)

225 USA and Canada Vardon et al. (2003)

15 USA-Texas Robens et al. (2005)

2 USA-Mississippi Robens et al. (2005)

Peanut 26 USA and Canada Coulibaly et al.
(2008)

120 USA Wu (2004)

75 Argentina Wu (2004)

40 Africa Wu (2004)

215 China Wu (2004)

(continued)

http://www.xinhuanet.com
http://www.xinhuanet.com
http://www.xinhuanet.com
http://www.xinhuanet.com
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Table 11.1 (continued)

Crop Economic losses
(million US dollars)

Country References

25 USA-Georgia Robens et al. (2005)

Corn and peanut 47 World wide Vardon et al. (2003)

Cotton 4 USA-Arizona Robens et al. (2005)

7 USA-Texas Robens et al. (2005)

Walnut 38 USA-California Robens et al. (2005)

Almonds 23 USA-California

Ready-to-eat
almonds, hazelnuts,
and pistachios

9 Mio Euro World wide JECFA/WHO study
(2006)

Feed crops 225 World wide Vardon et al. (2003)

11.2 Aflatoxin and Food Safety Regulations

Several countries have imposed regulations to decrease dietary exposure to aflatoxin.
Acute and chronic toxicity of aflatoxins necessitates enforcement of legislative limits
on the presence of aflatoxin in about 100 countries, of which 61 have specific regu-
latory levels for total aflatoxins in foodstuffs, while 39 countries have regulations for
aflatoxins in feedstuffs (Van Egmond et al. 2007). Aflatoxins are regulated in part
per billion (ppb) ranges with the maximum permissible limit varying by country and
proposed use of the commodity (Table 11.2).

Aflatoxins are relatively heat-stable and are not destroyed by normal food process-
ing. Under favorable conditions, aflatoxin can be produced at temperature ranging
from 11 to 40 °C, although 25–30 °C is the optimal range (Diener and Davis 1987).
Despite several research and control measures, aflatoxin is as yet a noteworthy dan-
ger to agricultural crops leading to loss of millions of tons of crops annually. Several
strategies used to control pre-harvest or post-harvest contamination with aflatoxin
include good cultural practices, breeding for aflatoxin-resistant cultivars, biological
control using atoxigenic fungal strains, harvesting crop at proper maturity, proper
drying at harvest, and improved post-harvest storage methods.

This chapter highlights the progress on aflatoxin control approaches with a focus
on three major crops maize, peanut, and cotton. Besides providing updates on the
physical, chemical, and biological control strategies used for aflatoxin degradation in
crops andduringpost-harvest, advancedmolecularmethods such asDNAmicroarray,
qRT-PCR, and RNA-sequencing tools used to understand the nature of aflatoxin
resistance have been addressed. In addition, we have reviewed the research activities
on identifying more durable aflatoxin resistance genes, tagging of these genes or
quantitative trait loci (QTLs) with molecular markers for marker-assisted selection
(MAS) that are aimed to develop an integrated management program for aflatoxin
resistance (Fig. 11.1).
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Table 11.2 Regulatory limits for aflatoxins in different countries

Country Commodity Types of aflatoxins Limit (ppb)

UK Nuts, figs, and related products B1 2–12

Europe Groundnuts, nuts, dried fruit, and their
products

Total, B1 4, 2

USA In milk
In food other than milk

M1
B1

0.5
20

Brazil Groundnuts, corn, and other food products
In milk

Total
M1

20
0.5

Australia All the food stuff except groundnut B1 5

Germany All food stuff Total, B1 4, 2

India Nuts, spices, cereals, and all other food
products

Total, B1 30

China Rice, sorghum, barley, nuts, etc. B1 5–50

Indonesia Corn feed Total 15

All foods Total 35

All foods B1 20

Peanut, corn, and their products B1, Total 15, 20

Dried milk and related products M1 5

Milk and milk products M1 0.5

Japan All food stuffs and rice Total, B1 10

Kenya All foodstuffs Total, B1 10, 5

Malaysia All foodstuffs B1 35

Hong Kong Peanut and peanut products
Other foods

B1
B1

20
15

Vietnam All foodstuffs Total, M1 20, 0.5

Thailand All foodstuffs Total 20

Taiwan Peanut, corn Total 15

Rice, sorghum, beans, wheat products,
nuts, edible oils, and other foods

Total 10

Infant foods Total 0

Milk powder M1 5

Fresh milk M1 0.5

Srilanka All
Infant foods

Total
M1

30
1

Singapore All
Infant foods

Total
M1

5
0.5

Philippines Human foods Total 20

Coconut, peanut products (export) B1 20

Milk M1 0.5

(continued)
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Table 11.2 (continued)

Country Commodity Types of aflatoxins Limit (ppb)

South Korea Grains, cereal products, dried fruits, meju,
steamed rice, and baby foods

B1 10

Baby foods B1 0.1

Grains, cereal products, dried fruits, meju,
steamed rice, and baby foods

B2, G1, G2 15

Raw milks and milk products prior to
manufacturing processing

M1 0.5

Fig. 11.1 Various approaches for aflatoxin resistance in crops

11.3 Genetics and Biochemistry of Aflatoxin Biosynthesis

Over thirteen species of the genus Aspergillus produce aflatoxins and their precursor
sterigmatocystin (ST) (Varga et al. 2009). Structurally, aflatoxins (AFTs) have poly-
cyclic structure derived from coumarin nucleus attached to bifuran group at one side,
and on other side either a pentanone ring, or a six-membered lactone ring (Bennett
andKlich 2003; Nakai et al. 2008).While B series aflatoxins have pentone ring, theG
series have lactone ring. Aflatoxins have low molecular weight and are thermostable
and highly carcinogenic in nature (Squire 1981; Sirot et al. 2013). Understanding
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Table 11.3 Role of various cellular pathways involved or interfering with aflatoxin production

Gene Function References

VeA along with VelB and
LaeA form the velvet protein
complex

Coordinate primary and
secondary metabolism

Bayram and Braus (2012)

mtfAI Transcription factors Ramamoorthy et al. (2013)

fcr3 Transcription factors Shaaban et al. (2010)

AtfB, AP-1, and VeA Regulate oxidative stress Montibus et al. (2015)

rasA Encode cellular signal
mediators

Georgianna and Payne (2009)

G-protein receptors Play role in signal
transduction

Affeldt et al. (2014)

Oxylipins’ biosynthetic genes Stimulate aflatoxin
production

Tsitsigiannis and Keller
(2007)

aflatoxin biosynthesis is critical to find ways of eliminating or reducing its contami-
nation in food grains. Significant progress has been made in identifying the role of
several genes, enzymes, and regulatory processes involved in aflatoxin biosynthesis
(Yu 2012).

The biosynthesis ofAFB1 involves a complex networkwith several interconnected
metabolic pathways (Table 11.3) that play varied roles in fungal growth and aflatoxin
production (Brodhagen and Keller 2006; Cary et al. 2012). This follows a series of
oxidation–reduction reactions involving 25 enzymes, two regulatory proteins. and 15
intermediates (Yu et al. 2004). The genes are clustered within a 70-kb DNA region
and transcriptional regulators such as aflR and aflD control the entire pathway (Yu
et al. 2004). AflR and AflS are the regulatory genes where AflR encodes a sequence-
specific DNA-binding binuclear zinc cluster (Zn(II)2Cys6) protein, where AflS is
reported to be a potential co-activator of AflR (Meyers et al. 1998). Both these genes
are required for transcriptional activation of aflatoxin structural genes (Payne et al.
1993). BesidesAflR andAflS, the specific transcriptional regulators such asVea,Nsdc,
LaeA, orAp-1 positively regulates aflatoxin biosynthetic pathway (Chang et al. 2012;
Reverberi et al. 2007).

Biosynthesis begins with the conversion of malonyl-CoA to a polyketide called
noranthrone by the products of fatty acid synthase genes (fas-1 and fas-2) con-
trolled by stcJ and stcK and polyketide synthase gene pksA encoding stcA (Cary
et al. 2000a, b, c). This intermediate is oxidized by the enzyme HypC to form
the anthraquinone norsolorinic acid (NA), the first stable intermediate in aflatoxin
biosynthesis (Ehrlich et al. 2010). NOR is converted to averantin (AVN) through the
action of nor-1, norA, and norB genes, which is then converted to averufin (AVR)
and later to versicolorin B (VERB) through the action of three genes including cypX,
moxY, and avfA that catalyze individual steps. Two other genes; ver1 and verA are
required for the conversion of versicolorin A (VERA) to dimethyl-sterigmatocystin
(DMST). The final step involves conversion of O-methylsterigmatocystin (OMST)
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Fig. 11.2 Schematic representation of the aflatoxin biosynthetic pathway in A. flavus. The arrows
indicate the pathway steps from previous precursor to the next intermediate toward the aflatoxins
formation. The enzymes and the corresponding gene involved in each bioversion step are shown

or dihydro-O-methylsterigmatocystin (DHOMST) to aflatoxins in the presence of a
NADPH-dependent cytochromeP-450monooxygenase ordA (Yu et al. 2004). Sterig-
matocystin is the penultimate precursor in the biosynthesis of aflatoxin (Fig. 11.2).

11.4 Factors that Affect Aflatoxin Biosynthesis

A number of environmental factors such as drought and temperature, nutritional fac-
tors such as carbon and nitrogen source, and developmental factors such as sporu-
lation and sclerotia production influence A. flavus growth and subsequent aflatoxin
contamination in crops (Fig. 11.3). Better understanding of all these factors aids in
developing control strategies to reduce aflatoxin production in aflatoxigenic A. flavus
species through regulation of conditions that favor fungal growth.

11.4.1 Nutritional Factors

Various nutritional factors such as carbon, nitrogen, amino acid, lipid, trace elements,
and others affect aflatoxin production (Payne and Brown 1998; Cuero et al. 2003;
Guo et al. 2005). Carbon and nitrogen source are the most prominent factors affect-
ing aflatoxin biosynthesis (Adye and Mateles 1964; Bennett et al. 1979; Luchese
and Harrigan 1993). A. flavus produces more aflatoxin on simple sugars such as glu-
cose, sucrose, fructose, and maltose than on complex carbon sources such as starch,
peptone, sorbose, or lactose (Buchanan and Lewis 1984; Payne and Brown 1998).
Sugary kernels in corn showed more fungal growth and higher aflatoxin production
than starchy kernels (Bressac et al. 1991). Location of sugar utilization cluster near
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Fig. 11.3 Factors influencing aflatoxin production
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to the aflatoxin gene cluster indicates a connection between the two gene clusters
in carbohydrates processing that initiate aflatoxin production (Yu et al. 2000). Car-
bon sources such as glucose, maltotriose, maltose, and alpha-amylase activity induce
aflatoxin production inA. flavus (Woloshuk et al. 1997). The nitrogen source can also
affect the range of aflatoxin produced by A. flavus (Hsieh 1989). Complex organic
nitrogen sources such as peptone, yeast extract, and casamino acids yielded higher
level of aflatoxin compared to asparagine, aspartate, alanine, ammonium nitrate,
ammonium nitrite, ammonium sulfate, glutamate, and glutamine, whereas sodium
nitrate suppresses aflatoxin production (Davis et al. 1967; Reddy et al. 1979). Pro-
line and asparagine produce higher aflatoxin than tryptophan or methionine (Payne
and Hagler 1983). Several amino acids have varied effects on aflatoxin production;
for example, tryptophan inhibits while tyrosine enhances aflatoxin production in A.
flavus (Wilkinson et al. 2007).

Lipids in seeds provide a good carbon source to stimulate A. flavus growth and
aflatoxin production. Seeds with polyunsaturated lipids produce more aflatoxin than
seeds with monosaturated lipids (Fanelli et al. 1983, 1995; Fanelli and Fabbri 1989)
because of the greater lipoperoxidation potential of polyunsaturated lipids. Trace
elements such as zinc reportedly enhanced aflatoxin production in maize kernels,
whereas manganese inhibited aflatoxin production (Failla et al. 1986; Hsieh 1989).

11.4.2 Environmental Factors

Temperature plays an important role in gene expression and aflatoxin production in
A. flavus (Roy and Chourasia 1989; Obrian et al. 2007). While the optimum tem-
peratures for the growth of Aspergillus spp. is 37 °C (Ogundero 1987), aflatoxin
formation takes place at 30 °C (28–35 °C) and is totally inhibited when temperature
increases to above 36 °C. Genomewide gene profiling through microarray, RT-PCR,
and high-resolution studies using next-generation sequencing technologies revealed
association of high temperature with a decrease in the expression of the aflatoxin
pathway genes (Obrian et al. 2007; Yu et al. 2011; Gallo et al. 2016). Interaction of
temperature with water activity (aw) affects the ratio of regulatory genes (aflR/aflS),
which is directly proportional to the AFB1 production (Schmidt-Heydt et al. 2009,
2010). Regulatory gene aflS has been reported to be more affected by higher tem-
perature than aflR. Alteration in the aflS to aflR ratio renders aflR non-functional for
transcription activation.

Similarly, infield drought stress decreases water activity, thereby causing cracks
in the peanut pod wall (Girdthai et al. 2010), increase silk cut in maize (Odvody
et al. 1997), and develop hull cracking in pistachio (Doster and Michailides 1995;
Hadavi 2005) leading to penetration of the A. flavus hyphae and increased aflatoxin
contamination. Drought also curtails phytoalexin production that increases A. flavus
infestation which may be due to depleted plant immunity (Wotton and Strange 1987;
Dorner et al. 1989). Although, the available information makes it clear that heat and
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drought stress increased crop susceptibility to A. flavus infestation, the process is
still not clearly understood.

Studies on the effect of the pH of growthmedium on aflatoxin production revealed
that on ammonium-based acidic media, A. flavus produces more aflatoxin than in
nitrate-based alkaline media (Cotty 1988). Transcriptional regulator pacC gene has
shown to have a major role in pH homeostasis (Keller et al. 1997). In response to
alkaline pH, pacC suppresses the transcription of acid-expressed gene aflR, thereby
reducing aflatoxin formation (Espeso et al. 1993; Espeso and Arst 2000).

11.4.3 Fungal Growth and Development

Sporulation and sclerotia formation are genetically linked with secondary
metabolism through a shared G-protein signaling pathway (Calvo et al. 2002). Sec-
ondary metabolite formation occurs after the fungus completes the initial growth
phase and when spore formation starts (Trail et al. 1995; Hicks et al. 1997). Mutants
lacking sporulation or some compounds that inhibit sporulation in Aspergillus also
inhibit aflatoxin production (Reib 1982; Bennett and Papa 1988). During repeated
sub-culturing, the aflatoxin-forming abilitywas gradually reduced accompaniedwith
noticeable morphological changes such as increased vegetative mycelium, reduced
vesicle number and diameter and disappearance of spherocytes (Torres et al. 1980).

11.4.4 Other Factors

Intracellular reactive oxygen species (ROS) in A. flavus produced by
P450/monooxygenases and extracellular ROS in medium augmented with ROS pro-
duction inducers like hydrogen peroxide and tert-butyl hydroperoxide trigger oxida-
tive stress resulting in greater aflatoxin production. However, alleviation of oxidative
stress using antioxidants such as hydrolysable tannins, ascorbic acid, and caffeic acid
inhibits aflatoxin production (Jayashree et al. 2000; Bok and Keller 2004; Mahoney
and Molyneux 2004; Kim et al. 2006). Heavier soils having higher water-holding
capacity reduced the range of aflatoxin accumulation in peanut while light sandy
soil was conducive for fungal growth (Torres et al. 2014). Several studies have also
revealed that insect damage provides access point for fungal spores that acceler-
ates the infection of A. flavus (Williams et al. 2002; Parsons and Munkvold 2010).
Corn Bt-hybrids showed lower aflatoxin accumulation due to the resistance to borer
(Williams et al. 2010).
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11.5 Cultural Practices for Aflatoxin Management

Various control measures for aflatoxin contamination can target either pre- or post-
harvest stages. Several cultural practices for the prevention of aflatoxins have been
designed considering the various factors that affect fungal growth and aflatoxin pro-
duction.

11.5.1 Pre-harvest

Pre-harvest measures helpful in yield enhancement can efficiently reduce the levels
of aflatoxin. Several management options have shown potential toward reduction of
aflatoxin contamination in field. These include use of resistant cultivars, plant spac-
ing manipulation, altering sowing time, improving plant nutrition, reducing drought
stress, crop rotation, tillage practices, and controlling other plant pathogens, weeds,
and pests (Mixon et al. 1984; Rachaputi et al. 2002). Soil tests like soil pH and other
parameters like mineral deficiencies that cause plant stress have been recommended.
To avoid temperature effects and drought stress during seed development and mat-
uration, crop planting at the optimal time is recommended. Soil amendments were
found to be as effective in suppressing fungal infection and aflatoxin accumulation
by 50–90% in peanut notably through the application of lime, crop residues, and
compost, etc. (Waliyar and Adomou 2002; Waliyar 2006). Lime, a calcium source
thickens the peanut cell wall and accelerates pod filling, whereas adding manure
increases the growth of microbes that repress soil infections (Hell andMutegi 2011).
Soil types also affect the seed colonization levels with A. flavus and A. parasitucus
(Graham 1982). Toxigenic fungi can rapidly proliferate in sandy soils and alfisols,
particularly under dry conditions. Due to their high water-holding capacity, vertisols
support lower aflatoxins contamination in peanut (Mehan et al. 1991). Although the
application of gypsum to soilwas shown to reduce aflatoxin contamination (Davidson
et al. 1983), subsequent studies failed to substantiate this (Cole et al. 1985).

11.5.2 Harvest and Drying

The possibility of mycotoxin development and moisture content in storage is propor-
tional (Lanyasunya et al. 2005). Moisture levels of 10–13% are considered safe for
cereals, and it is recommended to dry the commodities as quickly as possible post-
harvesting. In peanut, while mechanical or late harvesting increases the chances of
aflatoxin contamination (Cole et al. 1995; Torres et al. 2014), over-mature or imma-
ture pods and humid harvesting conditions increased the chances of high levels of
aflatoxin contamination (Kabak et al. 2006). Moreover, damage during digging and
threshing peanut kernels makes them noticeably more susceptible to the fungal inva-
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sion and subsequent aflatoxin contamination (Heathcote and Hibbert 1978). In maize
too, severe grain loss occurs during storage because of extensive field drying (Borge-
meister et al. 1998; Kaaya et al. 2006). Increase in aflatoxin by tenfold in 3-d period
was noticed on storing harvested maize at high-moisture content (Hell et al. 2008).
After harvesting, drying the grain to desirable moisture levels through sun drying or
artificial drying reduces mycotoxin contamination. Several technologies employed
to increase the grain drying efficacy and to lower the toxin contamination risk even
under low-input conditions include drying platforms, drying outside the fields and
on mats, etc. (Hell et al. 2008; Lutfy et al. 2008). However, because of the need
for large capital investments, these dryers are not employed by African farmers. In
Southeast Asia, these dryers have been used effectively to maintain rice quality and
to reduce mycotoxin risk (Gummert et al. 2009).

11.5.3 Post-harvest Management

Post-harvest interventions like cleaning, sorting, rapid and proper drying, post-
harvest pest control, and the use of natural or synthetic grain protectants reduce
mycotoxins. Once crop gets infected under field conditions, the fungal growth con-
tinues with increasing vigor at post-harvest stage and also in storage. It is generally
recommended to dry the crop immediately after harvest to safe moisture level of
10–13% for cereals such as corn and 7–8% for oilseeds such as peanut to prevent the
fungal growth (Torres et al. 2014). Storage and feeding facilities should be decon-
taminated to prevent fungal growth on feed residues. Periodical evaluation of storage
suitability is monitored with the help of CO2 sensor.

Storage temperature plays a significant role in managing potential mycotoxin
problems in the dried grain (Drying 1987). After drying, while the grains should be
maintained at 1–4 °C for long-term storage as fungal metabolism is minimal at this
temperature, for short-term storage grain temperature can be maintained between 10
and 15 °C during the summer. For maintaining the grain quality in storage, aeration
is necessary to control temperature and to vaporize moisture in the bin. Regular
inspection for pests, rodents, fungal growth temperature, moisture, off-odors, and
warm spots should be observed timely. For example, weekly observations during the
warm months and every 15 days during winter are needed. Since insect infestations
in stored grains facilitate the growth of toxigenic fungi, controlling insects can help
reduce the risk of molds and mycotoxins. An integrated approach is required to
control the stored grain insects, which includes sanitation, good control of grain
moisture and temperature, frequent monitoring, and fumigation (Holscher 2000).

In developing countries, the main cause of mycotoxin problems is insufficient
storage facilities (Hell et al. 2000). After harvest, management of mycotoxins in
high-moisture maize or silage rely on appropriate storage conditions like storing
in anaerobic conditions by sealing. Toxigenic fungi do not proliferate and form
mycotoxins under anaerobic conditions, even though the preformed mycotoxins will
persist. Compared to dried grain, it is difficult to manage mycotoxin problem in
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high-moisture maize or silage because the growth of toxigenic fungi is not visible
until the symptoms are observed in livestock.

Traditional storage methods in Africa are categorized into temporary storage used
for crop drying and permanent storage in the field or farm using containers made
of plant materials. The stores are built in such a way so as to prevent insect, rodent
infestation, and moisture from getting into the grains. Promoting the utilization of
metal/cement bins poses challenges due to the associated costs. Many farmers store
grains in polypropylene bags which are not airtight and facilitate fungal contam-
ination and aflatoxin development (Udoh et al. 2000; Hell et al. 2000). Presently
there are efforts to market improved hermetic storage bags in Africa based on triple
bagging developed for cowpea (Murdock et al. 2012) which has been or is being
tested for other commodities as well. Several studies have reported the application of
Purdue Improved Crop Storage (PICS) bags to mitigate fungal growth and resulting
aflatoxin contamination in maize and groundnut (Williams et al. 2014; Sudini et al.
2015).

11.6 Physical, Chemical and Biological Approaches
for Tackling Aflatoxin Contamination

Despite several efforts, the pervasive nature of the Aspergillus in the field and dur-
ing storage makes it very difficult to control fungal contamination. Hence, various
physical, chemical, and biological methods (reviewed by Scherbakova et al. 2015)
are essential to effectively detoxify aflatoxin contaminated food and feed.

Various physical strategies such as mechanical or electronic sorting, thermal inac-
tivation, solvent extraction, bonding agents, ozonation, ultrasound treatment, inacti-
vation through light or irradiation, and washing procedures can be used to decontam-
inate food or feed before ingestion. Nevertheless, some of these physical methods
are expensive and may also remove or destroy important nutrients in commodities.
In addition, since aflatoxins are relatively stable at high temperatures (80–121 °C),
they cannot be removed by usual cooking methods such as frying, boiling, or pas-
teurization (Samarajeewa et al. 1990; Murphy et al. 2006). In addition, most of the
physical methods are time-consuming and result in only partial removal of aflatoxin
(Wang et al. 2011).

Various chemical agents such as acids (hydrochloric acid), bases (ammonia,
hydrated oxide), oxidizing reagents (hydrogen peroxide, ozone), reducing agents,
and chlorinating agents can be applied by fumigation, immersion, mixing, and pack-
ing to degrade mycotoxins. Acid treatment with hydrochloric acid destroys AFB1
levels by19.3%within 24h following the treatment (Doyle et al. 1982).Ammoniation
utilizing gaseous ammonia or ammonium chloride reduced aflatoxin concentrations
by more than 75% (Burgos-Hernández et al. 2002). However, both ammonia and
hydrochloric acid reduce the nutritional value of the treated commodities, thereby
limiting their use. Only limited chemical agents were effective at the laboratory level
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and need to be validated before commercialization. Prevention of aflatoxin contam-
ination in stored grains using chemical strategies has recently been reviewed (Nesci
et al. 2016; Alberts et al. 2017).

Biological agents control aflatoxins through microbial degradation of the toxic
metabolites or by antifungal activity.Microbial degradation targets furofuran and lac-
tone rings of aflatoxin are product-specific, have mild reactions conditions, and are
feasible compared to physical and chemical methods when applied in food and feed
industries (Kolosova and Stroka 2011). However, microbial degradation of aflatoxins
also causes undesirable reductions in quality of the commodity besides requiring reg-
ulatory approvals. Microbes directed at preventing infection that are environmentally
acceptable are potentially more useful since these have a longer period of efficacy
and are more readily distributed than the agrochemicals. Various studies reported the
use of microbes such as bacteria, yeasts, and non-toxigenic (atoxigenic) strains of
the causal organisms for biological control of aflatoxin contamination (reviewed by
Verheecke et al. 2016). However, only the use of non-toxigenic strains has reached
the commercial stage.

11.6.1 Competitive Fungal Control Strategy

Among various biocontrol agents, the use of competitive non-toxigenic strains of A.
flavus and/orA. parasiticus for biological control of pre-harvest aflatoxin contamina-
tion in crops has been largely effective and been adopted. Competition between toxi-
genic andnon-toxigenic strains ofA. flavus for the sameecological niche provides this
basis for biological control. The effectiveness of atoxigenic A. flavus strains depends
on their predominant asexual nature, genetic stability and aggressive as competitors
together with their inability to recombine with native toxigenic strains (Abbas et al.
2011; Ehrlich and Cotty 2004). Approaches and techniques such as tandomly ampli-
fied polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP),
and microsatellite markers have been used to differentiate A. flavus strains and to
assess the competitive ability of atoxigenic strains (Tran-Dinh et al. 2018).

Various factors such as site of application, formulation, inoculum rate, and time
of application affect the ability of non-aflatoxigenic fungi in reducing aflatoxin con-
tamination. To competitively exclude toxigenic strains, atoxigenic strains must be
applied to the same niche as Aspergilli toxigenic strains, mostly to soil of susceptible
crops such as peanuts, cotton, and corn. Although, soil application of non-toxigenic
strains reduces the dust-borne wild-type aflatoxigenic A. flavus spores from reaching
the silks in maize through competitive exclusion in soil. However, for effective bio-
control, inoculum of non-toxigenic strain should be applied closer to infection site
such as silks and leaves in corn, and foliar plant parts in treenuts such as pistachio,
almonds, andwalnuts (Dorner 2009).Among the various formulations, use of organic
grain matrix prepared by sterilizing grain (sorghum, wheat, rice) or by coating the
surface of the grain with conidia of the strain is the most effective method (Dorner
2004). Further, bioplastic-based granular formulation of non-aflatoxigenic A. flavus
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was developed and successfully tested under field conditions as soil and foliar appli-
cations (Accinelli et al. 2009, 2016). In addition, continued application of biocontrol
agent seasonally is required to maintain high population of atoxigenic strains com-
pared to toxigenic strains for long-term control of aflatoxin contamination (Dorner
et al. 1998; Pitt and Hocking 2006). Depending on environmental variations such as
soil temperature, Aspergillus spp. population in soil, and the crop cultivars, the suit-
able time for application of non-toxigenic strains has to be optimized in each region
(Dorner et al. 1992, 1998; Dorner 2004). Although studies have reported that use
of pre-emergent herbicide did not affect the growth of the non-toxigenic Aspergillus
strains (Pitt and Hocking 2006), direct exposure to herbicides has reduced spore
production of AF36 (Garber and Cotty 2006), thereby suggesting that non-toxigenic
strains should be applied after all herbicide applications have completed. The efficacy
of atoxigenic A. flavus as biocontrol agent has been reported in peanut, corn, and cot-
ton in several countries (Table 11.4). A total of two non-toxigenic fungi have been
registered with EPA and one under registration at African biopesticide regulatory
agencies for control of toxigenic A. flavus (Table 11.5). Most of these are currently

Table 11.4 Efficacy of non-toxigenic Aspergillus strains as biocontrol agent

Crop Strain Aflatoxin reduction (%) Country References

In vitro Field

Maize A2085 AF-X1™ Italy Mauro et al. (2018)

A2066, A2085,
A2090, A2103,
A2321

61–90 Italy Mauro et al. (2015)

La3303, La3304,
La3279, Kal6127

67–95 Nigeria Atehnkeng et al.
(2014)

AF36, K49, NRRL
21882, La3279,
F3W4 (NRRL
30796) and K54
(NRRL 58987)

99.3 Jane et al. (2012)

K49 (NRRL 30797),
NRRL 21882
(Afla-Guard)

83–98 USA Abbas et al. (2012)

La3328, La3279 70.1–99.9 Nigeria Atehnkeng et al.
(2008)

BS07, MN1, TOφ,
696A, MAM13

78.2–80.2 Italy Degola et al. (2011)

NRRL 21882 A.
flavus aggressive
strain

66–87 USA Dorner et al. (1999)

More than 12 native
A. flavus strains

>80 Kenya Probst et al. (2011)

(continued)
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Table 11.4 (continued)

Crop Strain Aflatoxin reduction (%) Country References

In vitro Field

K49 and CT3 37–94 USA Abbas et al. (2006)

CT3 and K49
(NRRL 30797)

USA Abbas et al. (2006)

BN30 Africa Cardwell and Henry
(2004)

Peanut AFGS5 or AFGS12 Mallikarjunaiah
et al. (2017)

AFGS5 and
AFGS12

0–2 ppb Navya et al. (2016)

GD-15 33.5–99.6 China Zhou et al. (2015)

AR27, AR100G,
AFCHG2

78.36–89.55 Argentina Zanon et al. (2016)

AFCHG2 Argentina Zanon et al. (2013)

NRRL 21882
Afla-guard®

75 USA Dorner (2009)

AF051 99 China Yin et al. (2008)

NRRL 21882 91.6 USA Dorner and Horn
(2007)

>2 strains 43–98 Australia Pitt and Hocking
(2006)

NRRL 21368 89–95 USA Dorner et al. (2003)

Color mutant,
NRRL 21368

78.2–99.9 USA Dorner et al. (1998)

Cotton AF 36 (NRRL
18543)

20–88 USA Cotty and Bhatnagar
(1994)

sold commercially as one or more products.
The application of biocontrol products with atoxigenic A. flavus active ingredient

is one of the most promising and cost-effective method to reduce aflatoxin content in
several crops.However, several potential challenges need to be addressed before com-
mercialization. Various factors such as sexual recombination (Razzaghi-Abyaneh
et al. 2014) and reassortment of genes (Olarte et al. 2012) within the aflatoxin gene
clusters of A. parasiticus and A. flavus populations may reduce the effectiveness of
atoxigenic A. flavus as biocontrol agent. Further, there may be a risk of production of
novel A. flavus phenotypes, resulting in greater diversity in the field (Fisher and Henk
2012). Hence, unraveling the genetic variations among A. flavus strains is essential
to design efficient biocontrol strategy (Ehrlich 2014).
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11.7 Host Resistance

Comprehensive understanding of host plant resistance would be an efficacious
approach to speed up the genetic improvement of aflatoxin-resistant cultivars
(McMillian et al. 1993; Cole et al. 1995; Williams and Windham 2001; Naidoo
et al. 2002; Guo et al. 2006, 2007; Holbrook et al. 2008). Despite numerous efforts,
limited progress in aflatoxin resistance breeding is seen due to lack of resistance
levels for pre-harvest seed infection, in vitro seed colonization (IVSC), and aflatoxin
formation byA. flavus.Major hurdles are performance variation due to high genotype
× environment interaction, dearth of reliable screening techniques, and limitations in
understanding the genetics of resistance. Breeding efforts to attain high level of com-
bined resistance to seed infection, IVSC, and aflatoxin production do not produce
intended results. Due to lack of accessibility of biomarkers, transfer of polygenic
aflatoxin resistance from inbred lines to commercial elite varieties with desirable
agronomic traits has been a very slow process (Menkir et al. 2008).

11.7.1 Breeding for Resistance

11.7.1.1 Peanut

Development of peanut cultivars with aflatoxin resistance requires knowledge about
genetic variation responsible for resistance in the germ pool and reliable screening
techniques. Resistance to aflatoxin-producing fungi in peanut has been divided into
three types including resistance to (a) infection to podwall, (b) seed coat infection and
colonization, and (c) aflatoxin formation by cotyledons. Pod wall serves as the first
physical barrier to the fungal entry, and resistance is imputed to structure of pod shell
(Zambettakis 1975). The second barrier is seed coat for which resistance depends
on the density and thickness of palisade layers, wax layers, and lack of cavities and
fissures (Zambettakis 1975; Pettit et al. 1989; Liang et al. 2006). There are conflicting
reports concerning the effect of fungistatic phenolic compounds in providing resis-
tance at the seed coat level (Upadhyaya et al. 2002).Microscopic fissures in seed coat
can be formed at the pod development stage because of stresses caused by heat and
water activity (Dickens 1977; Glueck et al. 1977). Few of themethanol-extracted and
water soluble tannins from peanut testa and cotyledons notably inhibit A. parasiticus
and reduce aflatoxin (Azaizeh et al. 1990). Insects and nematode damage to the devel-
oping pods in soil provide access points to the fungal pathogens. In case the seed testa
is damaged, seed coat-related resistance will have limited value. Since cotyledons
are the ultimate feeding site for fungi where aflatoxins are produced, aflatoxin pro-
duction will reduce when cotyledons do not support the pathogen growth. Seeds of
resistant cultivars having high total phenol and protein content showed higher resis-
tance to A. flavus compared to susceptible cultivars having greater amount of total
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sugars (Premlata et al. 1990) indicating that the phenolic compounds and proteins
play an important role in peanut aflatoxin resistance.

Screening peanut genotypes for resistance to in vitro seed colonization (IVSC) is
constrained by a number of factors such as significance of genotype to environment
interactions (Mixon 1986; Mehan et al. 1983), poor correlation of in vitro seed col-
onization with field colonization, and aflatoxin accumulation in the field (Will et al.
1994, Blankenship et al. 1985;Kisyombe et al. 1985;Anderson et al. 1995). Although
several workers have reported significant correlation between IVSC and field toler-
ance, the relationship is inconsistent (Mehan 1989). Under extended drought con-
ditions, peanut genotypes maintained with high-moisture content in kernel showed
enhanced resistance and produced low aflatoxin (Cole et al. 1993). However, no
consistent relationship was obtained between IVSC and aflatoxin accumulation in
peanut, and aflatoxin accumulation was inversely proportional with relative water
content (RWC), pod wall integrity and pod wall moisture content during harvest
(Sudhakar et al. 2007). Zambettakis et al. (1981) attributed pod infection to variation
in shell structure. Priyadarshini and Tulpule (1978) recorded no correlation between
fungal colonization and aflatoxin formation and concluded that aflatoxin production
depends on many other environmental factors apart from A. flavus infection. There-
fore, the range of A. flavus seed infection cannot be absolutely correlated with the
aflatoxin formation (Davidson et al. 1982).

A screening technique which provides environmental control and results in low
coefficient of variation in data was developed to identify genotypes with resistance to
aflatoxin accumulation when exposed to post-harvest conditions favorable to fungal
growth and aflatoxin synthesis (Xue et al. 2004a, b). This study showed that different
strains ofAspergillus producevarying ranges of aflatoxin in peanut genotypes.Hence,
the use of mixture of several aflatoxigenic strains of A. flavus and A. parasiticus was
suggested to identify genotypes with stable and low aflatoxin contamination. More
recently, in vitro screening methods have been developed to screen transgenic events
that normally produce few seeds (Arias et al. 2015; Sharma et al. 2017). To limit
the source of variation in analysis, both the testa and embryo were removed and half
cotyledonused forA. flavus inoculation, and subsequently aflatoxin contentmeasured
at 72 h post-inoculation by ELISA and HPLC. This method allowed the proliferating
fungi to reach the cotyledons and ultimately result in aflatoxin formation in the
seed. Hence, it is essential to study resistance level offered by cotyledons to prevent
aflatoxinbuildup.This studyprovides a robust approach to screen transgenic decoated
seeds in a non-destructive manner using minimal tissues. This method could also be
used in breeding programmes to screen peanut germplasm for aflatoxin resistance.

Due to poor performance of in vitro selected genotypes under field conditions,
the research focus has been moved to identify resistant sources to pre-harvest infec-
tion and aflatoxin contamination. Holbrook et al. (1994) established a large-scale
field screening technique to evaluate field resistance to pre-harvest aflatoxin con-
tamination, utilizing sub-surface irrigation in the desert to allow exposure to late
season drought stress in pod zone while maintaining the plant alive. Initial field tests
in desert environment had reported the death of peanut plants and dehydration of
seeds in soil before contamination could start. By using sub-surface irrigation, mean
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aflatoxin contamination increased by over 100% where the coefficient of variation
(CV) reduced by over 50%, besides reducing the percentage of escapes by over 90%.
Anderson et al. (1996) later developed a screening technique that could be used in
standard greenhouse facilities. Various experiments have been conducted to opti-
mize the adequate drought stress and level of fungal infections required for aflatoxin
screening. Maintaining the pod zone dry and limiting the moisture to the root zone
increase the amount of pre-harvest aflatoxin contamination.

The normal method for inoculating peanut using water as a carrier (conidial water
suspension of A. flavus) at mid-bloom provides higher inoculum load, although the
Aspergillus population in soil reduced shortly after inoculation. However, in subse-
quent studies, using sterilized corn seed inoculated with fungus maintained stable
Aspergillus populations in soil at harvest compared to the former (Will et al. 1994).
Holbrook et al. (1993) preliminary screened all the germplasm accessions in core
collection first in single environment, and the lines that showed lower contamina-
tion levels were subsequently screened in two environments. Following this method,
19 US peanut core accessions with reduced levels of aflatoxin contamination were
identified in different environments (Holbrook et al. 2009). These identified resistant
sources were used in a hybridization program for introgression of resistance gene
into agronomically acceptable cultivars.

To evaluate pre-harvest field infection and aflatoxin content in peanut germplasm,
microsick plots infested with A. flavus were designed at ICRISAT (Fig. 11.4). This
screening technique prevents escapes, reduces coefficient of variation, and ensures
higher and more consistent contamination (Bhatnagar-Mathur et al. unpublished).
Using these concrete structures, late season drought was imposed in the pod zone
by retaining high soil temperature of 28–30 °C conducive for fungal growth and
contamination, while maintaining the plant alive through watering only in root zones
This screening technique could be useful to find aflatoxin resistance sources in peanut
germplasm and transgenics through rigorous evaluation under simulated field con-
ditions (Bhatnagar-Mathur et al. unpublished results).

A complete list of peanut genotypes reported from different countries to have
aflatoxin resistance is given in Table 11.6. Although, a few reports are available on
mini core collections for A. flavus/aflatoxin resistance screening (Yugandhar 2005;
Kusuma et al. 2007; ICRISAT 2009), details on the resistant sources in the ICRISAT
mini core collection are not available. Waliyar et al. (2016) reported seven best
accessions that over a six years period (2008–2013) consistently accumulated low
levels of aflatoxin (<4 μg/kg), ICGs 14630, 13603, 3584, 1415, 5195, 6888, and
6703. Although several sources of aflatoxin resistance in peanut have been reported,
none of these showed immunity toward infection byAspergillus spp. and/or aflatoxin
accumulation. However, some of the identified potential sources could be used to
understand the resistant mechanisms for developing resistant varieties or introgress-
ing resistance in popular released varieties with the goal to develop high-yielding
varieties adapted to different agro-ecosystems with enhanced resistance to aflatoxin.
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Fig. 11.4 Microsick plot design at ICRISAT (a). Overlapping rain out shelter (b). Rain out shelter
with biosafety net (c). Sixty days old peanut crop in microsick plots (d). Water for root zone only
from 60 days after sowing

11.7.1.2 Maize

Effective screening techniques to identify aflatoxin resistance would be valuable for
maize breeding programs. Various procedure for inoculating maize ears with spore
suspension under field conditions and techniques for evaluating resistance to fungal
infection and aflatoxin content have been periodically updated over the years (Scott
and Zummo 1988, 1990a, b, 1994; Zummo and Scott 1989; Windham et al. 2003;
Williams et al. 2003). In maize, three factors that contribute to resistance to A. flavus
and aflatoxin accumulation include pericarp structure, thickness and surface wax,
and sub-pericarp components like preformed or induced proteins inhibiting fungal
growth or aflatoxin production. Although few sources of maize kernel pericarp resis-
tance (Guo et al. 1995; Russin et al. 1997) and sub-pericarp resistance (Brown et al.
1993, 1995) have been identified, still it is difficult to attain high levels of genetic
resistance to aflatoxin in maize. Major limitations are inconsistent results due to
high GxE interaction, lack of reliable and rapid inoculation techniques, polygenic
resistance, low heritability, lack of appropriate resistant control, and the expensive
detection techniques, especially for aflatoxin levels. Development of laboratory ker-
nel screening assay (KSA) and use of β-glucuronidase (GUS) or green fluorescent
protein (GFP) expressing A. flavus strain to monitor the degree of fungal infection
in kernels should be very useful for rapid identification of resistant corn genotypes.
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Table 11.6 List of aflatoxin-resistant peanut genotypes

Resistant
Genotypes

Screening
technique

Aflatoxin levels Country of
origin

References

US 26 (PI
246388)

IVSCAF Reduced
aflatoxin
production

USA Rao and Tulpule
(1967)

Asiriya
Mwitunde

Field trials Reduced
aflatoxin
production

ICRISAT, India Kulkarni et al.
(1967)

PI 337409 and
PI 337394F

IVSCAF 5 and 9% seed
infection
respectively

Argentina Mixon and
Rogers (1973)

Darou IV and
Shulamit

A. flavus
infection in pod

Reduced level
of pod infection

Senegal Zambettakis
(1975)

PI 337409, PI
337394F, Ah
7223, UF
71513, J 11, U
4-47-7, Monir
240-30 Var, 27,
and Faizpur

IVSCAF Up to 15% seed
colonization

USA Mehan and
McDonald
(1980)

J11, PI 337409,
and PI 337394F

IVSCAF 8–15% seed
colonization

ICRISAT,
Senegal and
India

Zambettakis
et al. (1981) and
Kisyombe et al.
(1985)

UF 7 1513, Ah
7223, J11, PI
337409, and PI
337394F

IVSCAF and
field trials

15% seed
infection and
aflatoxin content
up to 100 μg/kg
seed

ICRISAT, India Mehan and
McDonald
(1984)

VRR 245 and U
4-7-5 and

Field infection
of seed by A.
flavus, and for
aflatoxin
contamination

aflatoxin Bl
7–10 μg/kg seed

ICRISAT Mehan et al.
(1986a)

J11, PI 337 409,
and PI 337394F

Natural
infection by A.
flavus

Lower aflatoxin
production

ICRISAT Mehan et al.
(1986b)

AR 1, AR 2, AR
3, and AR 4,
GFA 1, and
GFA 2

IVSCAF 8–13% seed
colonization

Argentina Mixon (1986)

GFA 1, GFA 2,
PI 337394F and
PI 337409

Natural
infection by A.
flavus

Lower aflatoxin
production

Argentina Mixon (1980,
1986)

(continued)
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Table 11.6 (continued)

Resistant
Genotypes

Screening
technique

Aflatoxin levels Country of
origin

References

PI 337394F,
J11, UF 71 513,
U 4-47-7 and
Ah 7223

Field infection
of seed by A.
flavus, and for
aflatoxin
contamination

0.8–2% fungal
infection and
lower aflatoxin
Bl content of
9–23 μg/kg seed

Four
drought-prone
sites in Andhra
Pradesh, India

Mehan et al.
(1987)

J 11 Field trials Lower North Carolina,
USA, and India

Kisyombe et al.
(1985), Mehan
et al. (1987)

GFA 1, GFA 2,
PI 337394 F, PI
337409, UF
71513, Ah 7223,
J 11, Var 27, U
4-47-7, Monir
240-30 and
Faizpur

IVSCAF 0.8–1.5% ICRISAT, India Mehan (1989)

CVS 55-437,
73-33 and 73-30

IVSCAF Moderate to
high levels of
fungal infection

ICRISAT Waliyar and
Bockelee-
Morvan
(1989)

Tifton 8 and
Southern
Runner

Field trials Lower aflatoxin
production

National Peanut
Research
Laboratory,
USA

Wilson et al.
(1990), Cole
et al. (1993)

ICG 3336, ICG
3700, ICG 1326,
ICG 3263, ICG
7633 and ICG
4749

Field screening
in sick plot
under imposed
drought
conditions

Lower aflatoxin
production

ICRISAT,
Senegal and
India

Mehan et al.
(1991)

ICG 4749, ICG
1326, ICG 3263,
ICG 3700, ICG
4888, ICG 9407
and ICG 7633

IVSCAF Lower aflatoxin
production

ICRISAT, India
and Senegal

Mehan et al.
(1991)

55-437, J 11,
PI1337394 F,
ICGV 87084,
ICGV 87110,
and ICGV
87094

Field trials 5–37% fungal
infection and
aflatoxin content
ranging from 1
to 450 ppb

Niger, Senegal,
and Burkina
Faso in West
Africa

Waliyar et al.
(1994)

(continued)
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Table 11.6 (continued)

Resistant
Genotypes

Screening
technique

Aflatoxin levels Country of
origin

References

ICGV 89104,
ICGV 88145,
ICGV 91278,
ICGV 91284,
and ICGV
91283

Field trials Lower aflatoxin
production

India Rao et al.
(1995),
Upadhyaya
et al. (2001)

ICG 1323, ICG
1326, ICG 1122,
ICG 1173, ICG
3263, ICG 3267,
ICG 1859, ICG
1994, ICG 3336,
ICG 3700, ICG
4589, ICG 4749,
ICG 9610, ICG
10020, ICG
10094, ICG
10933 ICG
4888, ICG 7412,
ICG 7633, ICG
8666, ICG 9407

Field screening
in sick plot
under drought
stress

<2% seed
infection

ICRISAT
Center, India

Singh et al.
(1997)

A.pusilla [ICG
13212 (PI
497572, VSW
6773)], A.
chiquitana
Krapov., W.C.
Gregory and C.
E.Simpson [ICG
11560 (PI
476004, KSSC
36025)], A.
triseminata.
Krapov., ICG
14875 (VfaPzSv
130800)] and
W.C Gregory
[ICG8131 (PI
338449, GK
12922)

IVSCAF and
aflatoxin
production

0–100 μg/kg
seed

ICRISAT, India Thakur et al.
(2000)

(continued)
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Table 11.6 (continued)

Resistant
Genotypes

Screening
technique

Aflatoxin levels Country of
origin

References

ICGV 95440,
ICGV 95422,
UF 71315,
ICGV 94435,
ICGV 94434,
ICGV 94433,
and ICGV
95435

Field trials <10 μg/kg seed India Zhou et al.
(2002)

PI 590325, PI
590299, PI
290626, and PI
337409

Modified
IVSCAF with
seed testa
removed and
aflatoxin
production
quantified

Showed
consistently
lower aflatoxin
production

USA Xue et al.
(2004a)

A. duranensis
Krapov, PI
475997
A.cardenasii
Krapov. and W.
C. Gregory
accessions PI
468200, PI
468319, and PI
262141 and PI
262133

Modified
IVSCAF with
seed testa
removed and
aflatoxin
production
quantified

Showed
consistently
lower aflatoxin
production

USA Xue et al.
(2004b)

Yueyou 9 IVSCAF Less than 19%
seed infection

China Li (2006)

G845 and G8 IVSCAF Lower aflatoxin
production

China Jiang et al.
(2006)

Taishan
Zhengzhu and
Zhonghua 6

IVSCAF and
field trials

Lower aflatoxin
production

China Lei et al. (2004)
and Liao et al.
(2003)

N1211 and
N1322

Field trial Lower aflatoxin
production

China Xiao et al.
(1999)

Zhonghua 6 Field trial Lower aflatoxin
production

China Liao et al.
(2009)

ICG 12625 and
ICG 2381, ICG
12697

Field trials ICRISAT, India Upadhyaya
et al. (2013)

ICGs 1415,
13,603, 14,630,
3584, 5195,
6888 and 6703

Field trials <4 μg/kg seed ICRISAT, India Waliyar et al.
(2016)
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KSA can be used for preliminary evaluation of germplasm to identify pericarp and
sub-pericarp level of resistance (Brown et al. 1993, 1995). However, field trials are
indispensable for the final substantiation of resistance.

Several reports show that low fungal growth correlates with lower aflatoxin pro-
duction in maize (Brown et al. 2001; Magbanua et al. 2013; Fountain et al. 2015;
Wang et al. 2016a, b; Garrido-Bazan et al. 2018). This restricted A. flavus growth in
resistant cultivar is attributed to preform host barriers such as pericarp wax, cutin,
and polyphenolic compounds impeding the fungus from passing through the pericarp
to colonize the seed (pericarp resistance) or presence of highly cross-linked lignin.
Wang et al. (2016a, b) showed that genes linked with growth of mycelium, conidia-
tion, and aflatoxin biosynthesis were upregulated in aflatoxin susceptible peanut lines
compared with resistant lines and showed that aflatoxin production was correlated
with fungal establishment and proliferation. However, other reports have shown that
resistance to A. flavus and aflatoxin accumulation is mediated by different genetic
factors (Hamblin andWhite 2000). Aflatoxin resistance could result from expression
of host genes that interfere with the aflatoxin biosynthetic pathway. Nevertheless,
breeding efforts to improve aflatoxin resistance inmaize should incorporate aflatoxin
quantification as a tool when selecting resistant germplasm.

List of several breeding and germplasm lineswith improved resistance to aflatoxin
in maize is given in Table 11.7. The diverse genotypes such as Mp715, Mp313E, and
Mp717 from the tropical maize race Tuxpeno, Tx739, Tx736, Tx740, and Tx772
from Argentina and Bolivia, and line GT603 from temperate elite cultivars have
erstwhile been used in genetic mapping studies to find the quantitative trait loci
(QTL) accountable for conferring aflatoxin resistance.

Majority of the aflatoxin-resistant lines identified have tropical germplasm in their
background that have undesirable agronomic qualities such as low yielding, tall, late
and are prone to lodging. Due to the polygenic nature of host resistance to aflatoxin,
it has been difficult to transfer the resistance from these older breeding lines into
more agronomically suitable cultivars using only phenotypic selection. However, few
newest breeding lines including Mp718, Mp719, Tx736, Tx739, and Tx740 show
better plant type and high resistance. Another line KO679Y is 25% shorter compared
to other currently available inbred lines (Henry et al. 2012). Genetic enhancement
of maize (GEM) program has identified some promising accessions for aflatoxin
resistance, and their further characterization is under progress (Li et al. 2002; Henry
et al. 2013). An aflatoxin association-mapping panel comprising 300 maize lines
has been publicly released, of which 30–40 lines showing good resistance in seven
environments are accessible (Warburton et al. 2013).

To develop lines capable of sustaining resistance to aflatoxin formation over time
and in different environments, it is essential to pyramid diverse resistance traits in
one genetic background. Efforts are on-going to identify QTLs linked with aflatoxin
resistance. To incorporate aflatoxin resistance in elite cultivars, both marker-assisted
selection and traditional breeding methods could be used (Williams et al. 2003).
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Table 11.7 Source of aflatoxin-resistant germplasm in maize

Resistant genotype Screening technique Location References

Mp313E Pinbar and other
inoculation
techniques

USDA-ARS at
Mississippi State
University

Scott and Zummo
(1990a, b)

Mp420 Pinbar and other
inoculation
techniques

USDA-ARS at
Mississippi State
University

Scott and Zummo
(1992)

GT-MAS: gk (reg.
no. GP-241,
PI561859)

Under both field and
laboratory screening

USDA-ARS and
Georgia
Experimental station

McMillian et al.
(1993)

T115 Field screening Mississippi State
University

Campbell and White
(1995)

Mp715 (Reg. no.
GP-362, PI 614819)

Field screening USDA-ARS at
Mississippi State
University

Williams and
Windham (2001)

Mp717 (Reg. no.
GP-456, PI 639919)

Field screening USDA-ARS at
Mississippi State
University

Williams and
Windham (2006)

GT601 (AM-1) and
GT602 (AM-2)

Field screening USDA-ARS and
Georgia
Experimental station

Guo et al. (2007)

TZAR101,
TZAR102,
TZAR103,
TZAR104,
TZAR105, and
TZAR106

Both field and kernel
screening assay

International Institute
of Tropical
Agriculture and
Southern Regional
Research Center of
the USDA-ARS.

Menkir et al. (2008)

Mp317 Field screening USDA-ARS at
Mississippi State
University

Henry et al. (2009)

Tx736, Tx739,
Tx740

Field screening Texas A&M Mayfield et al. (2012)

GT603 Under both field and
laboratory screening

USDA-ARS and
Georgia
Experimental station

Guo et al. (2011)

Mp718 and Mp719 Field screening USDA-ARS at
Mississippi State
University

Williams and
Windham (2012)

KO679Y and
Cuba117: S15-101-
001-B-B-B-B

Field screening USDA-ARS at
Mississippi State
University

Henry et al. (2012)

MI82 Kernel screening
assay

USDA-ARS at
Mississippi State
University

Rajasekaran et al.
(2013)

TZAR101,
TZAR102

Field screening USDA-ARS at
Mississippi State
University

Brown et al. (2016)
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11.7.1.3 Cotton

Cottonseeds have three main barriers against fungal infection: the waxy layer of the
seed coat, seed coat integrity, and innate immunity (Halloin and Leigh 1983). To
date, no extensive evaluation of cotton cultivars for resistance to A. flavus infection
and aflatoxin contamination has been reported.

11.7.2 Aflatoxin Detection Methods

Food safety concerns give rise to development of various aflatoxin detection and
quantification techniques. Among them, widely used chromatographic methods such
as thin layer chromatography (TLC) and high-performance liquid chromatogra-
phy (HPLC) are most accurate but expensive, while spectroscopic methods such
as liquid chromatography mass spectroscopy (LCMS) have level of detection higher
than 4 ppb. Immunological methods such as enzyme-linked immunosorbent assay
(ELISA) are simple, specific, and suitable for onsite and routine analysis, while
recently use of immunosensors allows label-free, sensitive, rapid, and accurate quan-
tification of aflatoxin (Wacoo et al. 2014). Some recent reviews summarize the current
analytical approaches for aflatoxin detection and the modern research in rapid and
non-invasive detection methods (Yao et al. 2015; Berthiller et al. 2018).

11.7.3 Inheritance of Resistance

Inheritance studies are critical to reveal the nature and magnitude of gene action con-
trolling resistance that aids in the development of appropriate breeding procedures.
In maize, various reports indicated the importance of additive genetic effects (GCA)
than dominance or epistatic effects (SCA) for aflatoxin resistance through Diallele
and Generation Mean analysis (Zuber et al. 1978; Widstrom et al. 1984; Darrah
et al. 1987; Hamblin and White 2000; Williams et al. 2018). In contrast, few reports
showed that SCA was highly significant and accounts for most of the genetic vari-
ation (Gardner et al. 1987; Gorman et al. 1992; Campbell and White 1995; Walker
and White 2001; Busboom and White 2004). Other reports indicate the importance
of both additive and non-additive genetic variance for aflatoxin resistance (Cambell
et al. 1997). This deviation could have been due to variability in inadequate scale to
measure A. flavus, inoculation technique, non-allelic gene interaction, failure to meet
assumptions (presence of significant difference in resistant parents) made in gener-
ation mean analysis. Resistance to aflatoxin contamination in corn showed variable
heritability estimates, 1–29% by Busboom and White (2004), 63% by Hamblin and
White (2000), and 58% by Maupin et al. (2003), depending on the environment and
genotype studied. Low heritability estimates make it challenging to select for those
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traits of interest and limit corn breeders to use marker-assisted selection as the only
valid mean of selecting for resistance to these traits.

In peanut, the genetics of inheritance mechanism for resistance to aflatoxin is
not clearly established. Nonetheless, few reports provide information on additive
and dominant or epistatic gene action and heritability estimate (low to moderate) of
resistance sources (Upadhyaya et al. 1997; Xue et al. 2004a, b; Arunyanark et al.
2010;Girdthai et al. 2010). No significant correlation among all the three components
of resistance, pre-harvest, post-harvest, and aflatoxin production suggest that they are
inherited independently (Utomo et al. 1990; Upadhyaya et al. 2002). Various studies
reported significant relationship between physiological traits for drought resistance
such as HI (harvest index), SLA (Specific leaf area) and SCMR (SPAD chlorophyll
meter reading), and aflatoxin contamination (Arunyanark et al. 2010; Girdthai et al.
2010). Hence, these drought resistance traits can be used as indirect selection tools
for aflatoxin resistance. Further research on inheritance studies requires more precise
techniques to determine allelic relationship among resistance components that help
plant breeders to screen suitable parents for hybridization and incorporate high level
of resistance into elite cultivars.

11.7.4 Simulation Models to Predict Aflatoxin Risk

Simulation models could be used as prediction tool for managing aflatoxin in risk-
prone areas. Several field and in vitro simulation models have been developed based
on the relationship of interaction that occur among the fungus, temperature, andwater
activity (Chauhan et al. 2016).Major challenges tomodel aflatoxin contamination are
lack of correlation between in vitro and in vivo experiments and interactions among
many factors such as crop, climate, and soil (Payne et al. 1986; Probst and Cotty
2012). To evaluate aflatoxin risk in maize and peanut grown in Australia, simula-
tion model integrated with the Agricultural Production Systems Simulator (APSIM)
has been developed (Chauhan et al. 2008, 2010). To determine aflatoxin risk index
(ARI), soil water availability during crucial pod filling in peanut, soil moisture, and
seasonal temperature during critical silking period inmaizewere used.More recently,
in order to predict the risk of aflatoxin contamination in maize from growing season
to harvest, an automatic weather-driven model was established based on the A. flavus
infection cycle (Battilani et al. 2013). While these models have tremendous applica-
tions, a major limiting factor in developing countries is the reliance on computerized
systems and network connectivity. In future, use of smart phones could effectively
overcome this limitation. The far-reaching use of mobile phones is introduced at
this time to revolutionize the livestock sector in Kenya (www.fao.org/news/story/en/
item/170807/icode/).

http://www.fao.org/news/story/en/item/170807/icode/
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11.8 Molecular Breeding Approaches

Various molecular biology tools including genetic markers, marker-assisted selec-
tion, microarrays, transcriptomics, proteomics, genomewide association studies, and
RNA-sequencing have been used as tools to develop varieties resistant to several traits
of economic interest. Such strategies briefly described in the following sub-sections
facilitate rapid introgression and pyramiding of aflatoxin resistance traits into sus-
ceptible varieties for more enduring aflatoxin resistance through utilizing simple,
cost-effective, and high-throughput sequencing technologies that can complement
traditional methods of plant breeding (Bhatnagar-Mathur et al. 2015; Bhatnagar et al.
2018; Hawkins et al. 2018; Ojiambo et al. 2018).

11.8.1 Genomewide Association Mapping

Genomewide association (GWAS) is a complementary approach to QTL mapping
analysis that allows fine resolution to find association between specific loci and traits
such as aflatoxin resistance using single nucleotide polymorphisms (SNPs). While
mapping of quantitative trait loci (QTLs) is limited to genetic diversity present in the
parents used in a bi-parental cross, nested association mapping (NAM) and multi-
parent advanced generation intercross (MAGIC) populations were used in GWAS
which relies on historical recombination events occurring within natural populations
to identify markers linked to trait of interest can overcome the limitations of linkage
analysis.

In maize, genotype by sequencing-GWAS approach has been used to identify
single SNPs associated with aflatoxin resistance (Warburton et al. 2013). Identified
SNPs were further validated using metabolic pathway analysis that study the cumu-
lative effects of multiple genes classified based on their common biological function
(Tang et al. 2015). Further, there is a strong correlation between the upregulation of
genes linked to jasmonic acid (JA) biosynthetic pathway and lower aflatoxin content
in seeds (Tang et al. 2015). Apart from JA pathway genes, genes from other pathways
such as leucine-rich repeat protein kinase, expansin B3, reversion-to-ethylene sensi-
tivity, and an adaptor protein complex gene were highly expressed in the aflatoxin-
resistant lines. Combining GWAS data with pathway analysis is a robust approach
to explore the genetic basis of a trait (Wang et al. 2007; Tang et al. 2015).

A GWAS study in maize utilizing 60,000 SNPs reported ten quantitative trait
variants (QTVs) for seed yield, plant and ear height, days to anthesis and days to
silk with certain overlapping regions to earlier identified linkage QTL, while others
were novel, thereby signifying the effectiveness ofGWAS to resolve andfindvaluable
variations (Farfan et al. 2015).However, this study aswell failed tofind any significant
QTL for aflatoxin resistance. Another study employing GWAS identified 25 SNPs
linked to aflatoxin resistance, with majority of them co-localized with qAA8 (highly
significant QTL that affected aflatoxin accumulation) and contributes 6.7–26.8% of
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the observed phenotypic variation. Based on the linkage disequilibrium (LD), GWAS
method further localized qAA8 to a short genomic region of nearly 1500 bp. Thus,
qAA8 region will be valuable for a marker-assisted selection (MAS) of A. flavus
resistance and a characterization of the fundamental gene (Zhang et al. 2016).

11.8.2 Trait Mapping and Marker-Assisted Selection

TheDNAmarkers or QTLs linked to aflatoxin resistance genemay be used asmolec-
ular tools for MAS to interrogate resistance genes into improved varieties (Brown
et al. 2013). Further, pyramiding resistant QTLs using MAS provides opportuni-
ties to develop aflatoxin-resistant lines. Although, the cultivated varieties of peanut
showed large phenotypic variability in agronomic and morphological traits, geno-
typic molecular marker studies have identified little variation in aflatoxin resistance
(Clavel 2000). Earlier efforts to link seed storage protein markers displaying varied
electrophoretic profiles with aflatoxin resistance have been ineffective (Clavel 2000).
To improve the reliability of resistance marker, the amplified fragment length poly-
morphism (AFLP) markers linked to peanut seed infection was converted into stable
sequence-characterized amplified region (SCAR) marker named as ‘AFs-412’ (Lei
et al. 2006). DNA markers for aflatoxin resistance have also been identified from
an interspecific population derived from a cross between Arachis hypogaea and A.
cardenasii (Rowe 2009). Due to limited genetic diversity in the cultivated peanut,
genetic maps constructed so far could not go above 200 markers that are not very
satisfactory, considering the large genome size, allotetraploid nature, and 20 linkage
groups (Stalker and Mozingo 2001).

Due to their abundance, simple sequence repeats (SSR) are the most desirable
molecular markers for genomic studies in cultivated peanut hyper-variability and
suitability for high-throughput analysis. Guo et al. (2013) developed over 15,518SSR
markers during 2002–2012 fromEST sequences. Kanyika et al. (2015) identified 139
informative SSR markers associated with resistance to certain peanut diseases (early
leaf spot, rosette disease and rust), and aflatoxin content (AC) that have been mapped
to the Arachis genome and can be employed in QTL mapping. In Arachis cardenasii
derived lines, a set of six AFLP markers with low phenotypic variance explained
(PVE) was identified (Milla et al. 2005). While six QTLs for resistance to A. flavus
infection with PVE ranging from 6.2 to 22.7% were identified (Liang et al. 2009), it
has been asserted that crop’s resistance to A. flavus colonization and AC should be
quantitative, and the resistance is severely influenced by environmental interactions
(Fountain et al. 2015). Consequently, identifying consistent QTLs for resistance to
AC has been a difficult task since breeding efforts to discover and characterize QTLs
for resistance to ACwere forced to consider the environment in obtaining phenotypic
data (Fountain et al. 2015).

In recombinant inbred line (RIL) population derived from cross between Tifrun-
ner × GT-C20, 16 QTLs were identified of which five QTLs were associated with
aflatoxin contamination and eleven with fungal growth (Ji et al. 2016). Among these,
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five major QTLs explained more than 10% of the total PVE. Of five major QTLs,
one QTL linked with aflatoxin contamination accounted for 10.14% PVE, and three
QTLs linkedwith fungal growth accounted for 13.23, 11.21 and 14.17%PVE, respec-
tively. Further, a comparison of these QTLs with the recently released peanut diploid
genome were planned to identify putative resistance genes and their validation for
potential applications in breeding.

Advances in molecular plant breeding in the past decade have led to the devel-
opment of aflatoxin-resistant and agronomically acceptable maize varieties. Several
molecular markers that were linked to QTLs, like microsatellite markers, RFLPs,
insertion–deletion (InDel) markers, and SNP markers are being used in mapping
efforts (Williams et al. 2015). With the development of statistical methods, recently
multiple QTLs were mapped together using multiple interval mapping (MIM)model
for quantitative traits such as aflatoxin resistance (Willcox et al. 2013).

Several potential QTLs for aflatoxin resistance and Aspergillus in maize were
identified through mapping and GWAS (Brooks et al. 2005; Bello 2007; Warburton
et al. 2009, 2011a, b; Mayfield et al. 2011; Willcox et al. 2013; Yin et al. 2014), and
few of them have been identified in multiple studies and/or frommultiple donor lines
(Table 11.8). QTLs stable over different genetic backgrounds or varied environmen-
tal conditions are useful in MAS. RFLP analysis in three ‘resistant’ lines reveals that
QTLs linked to resistance to Aspergillus ear rot and aflatoxin accumulation were
located on separate chromosomal regions (White et al. 1998). QTLs linked to afla-
toxin resistance have been mapped to the chromosome regions such as the glycine-
rich RNA binding protein (GRB2) at bin 1.06, heat shock protein 18a (HSP18a) at
bin 9.05, heat shock protein 26 (HSP26) at bin 1.03, the NPCs-NUP85-RNA trans-
port protein at bin 5.05, and lecithin cholesterol acyltransferase-like protein (LCAT)
at bin 2.06 (Kelley et al. 2012). Furthermore, certain maize resistance-associated
proteins (RAPs) such as heat shock protein 17.2 (HSP17.2)/Glyoxylase (GLX) at
bin 1.03, trypsin inhibitor (TI) at bin 2.06, a glucose dehydrogenase at bin 2.08, a
glucanase at bin 3.05, and an embryo-specific protein at bin 4.06, respectively, have
been mapped through sequence homology analysis (Chen et al. 2012). QTLs identi-
fied in this study co-locate with other QTLs identified in previous studies such as bin
2.06 and 4.06 (Brooks et al. 2005), bin 3.05 and 3.06 (Paul et al. 2003), bin 3.06 and
4.06 (Warburton et al. 2011a, b), and bin 2.08 (Busboom and White 2004). These
data indicate the potential role of RAPs in imparting aflatoxin resistance.

In a mapping population derived from CML161 × B73o2 cross, only five of 38
epistatic interactions identified for reduced aflatoxin had one locus with significant
main effect (Bello 2007), thereby indicating that the epistatic effect is not consistent
across different locations. This genotype by environment interaction has also been
reported in other studies (Paul et al. 2003; Brooks et al. 2005;Warburton et al. 2009).
Hence, QTL studies for quantitative traits such as aflatoxin need to be tested in
various locations to minimize errors in heritability and QTL estimates. In addition,
evaluation of QTLs across different genotypes and hybrids or RIL populations as
testcross provides better estimation of QTL than the lines perse. Variations for the
other secondary traits such as harder kernel texture and longer husk coverage that
are correlated with aflatoxin resistance have also been genetically mapped besides
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maturity, endosperm texture, percentage of rotten ears, and grain yield per ear (Bello
2007). Mapping component of resistance to A. flavus would uncover novel QTLs
compared to previous studies that mapped resistance to aflatoxin accumulation itself.
The identification of these traits can help in indirect selection for aflatoxin resistance
in marker-assisted breeding.

A major QTL (p1) has been reported in bin 1.03 at the pi locus for silk antibi-
otic compounds that contributes 54.0, 42.1, and 28.3% of the phenotypic variabil-
ity for silk maysin, 3′-methoxymaysin/apimaysin, and chlorogenic acid concentra-
tions, respectively (Widstrom et al. 2003). In addition, QTLs for husk tightness were
also detected on chromosome 1S, IL, 3L, and 7L and for total aflatoxin concen-
trations on chromosome 2L and 1S. The p1 locus located on chromosome 1 has
been repeatedly overlapped with a major QTL affecting maysin production (Zhang
et al. 2003; Mayfield et al. 2011). MpM1, Mississippi marker 1 is the first gene-
based marker that has been successfully used in MAS for transferring aflatoxin
resistance in maize (Mylroie et al. 2013). This provides evidence that while com-
plicated it is feasible to achieve improvement in molecular breeding approaches
for aflatoxin resistance and Aspergillus ear rot (Williams et al. 2003; Brooks et al.
2005). To unravel the genetic and molecular mechanism involved in aflatoxin resis-
tance, markers tightly linked to the QTL, preferably at <5 cm genetic distance were
required that expedite the breeding process by reducing the cycle time (Shan and
Williams 2014). To identify consensus QTL for aflatoxin resistance across studies,
meta-analysis of A. flavus, aflatoxin, and ear rot resistance was carried out using
all the available data sets in maize through multiple QTL mapping populations
(Warburton et al. 2011a, b; Mideros et al. 2014), where 12 independent QTLs, seven
in bins 4.07–4.08, and five in bin 4.09 were detected. The bin 4.08 have the largest
effect QTL having over twofold the predictable number of QTLs for many diseases
suggesting that this region has a group of genes manipulating the response to var-
ious pathogens (Mideros et al. 2014). Further the stability of these larger effect
QTL regions was verified across different varieties through backcrossing (Mideros
et al. 2014). Similarly, QTL mapping produced more robust results for field eval-
uated traits than for in vitro traits (Mideros et al. 2012). Main aflatoxin reducing
QTL which performed stably across various locations was identified in bin 5.03 and
seven other QTL were detected in single environment (Yin et al. 2014). Moreover,
a chitinaseA located in bin 2.04 was linked with a large aflatoxin reducing QTL, as
described by Hawkins et al. (2015). Further, QTL regions were found for aflatoxin
resistance on chromosome 2, 4, 5, and 10 that were validated by gene expression of
pathogenesis-related protein 4, leucine-rich repeat (LBR) family protein, andDEAD-
box RNA helicases in resistant inbred lines through real-time PCR analysis (Dhakal
et al. 2017). In-silico mapping showed coinciding of many genes implicated in stress
response, disease resistance, and metabolism within the QTL regions.

Evaluating the QTL identified from Mp313E in a background of the susceptible
inbred line Va35, 20QTLwere identified explaining 22–43% of phenotypic variation
within a F2mapping population derived fromMp313E×Va35 (Willcox et al. 2013).
Among the 20 identifiedQTLs, 11were consistently expressed over various locations
that accounted for 2.4–9.5% of phenotypic variance. By comparing this QTL with
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those previously reported, five QTL found in bins 1.02, 2.05, 3.05, 4.06, and 5.01
seemed to be the same as those identified in Mp313E × B73. Stable QTLs identified
in this study will be valuable in breeding efforts to develop aflatoxin-resistant maize
lines. Brooks et al. (2005) analyzed the phenotypic data from three locations where it
was possible to identify two consistent QTLs, onewith PVEof 7–18%and the second
with PVE of 8–18%, thereby suggesting a lower variation across various locations.
A single consistent QTL (PVE 8.42%) was identified in a RIL population derived
fromRA×M53 (resistant× susceptible) utilizing 916 SNPmarkers in two locations
(Yin et al. 2014). However, QTLs identified in most of the studies reported multiple
QTLs that were detected in only a single environment, where most contributed less
than 5% of the phenotypic variation observed in the population and the environment
in which they were measured (Warburton and Williams 2014).

11.8.3 Identification of Candidate Gene Through ‘Omics’
Approaches

In recent years, A. flavus-host interactions have been studied by various omics
approaches such as genomics, transcriptomics, and proteomics, etc. ESTs gener-
ated from cDNA fragments and microarray technology provides a genomewide gene
expression, and thereby associate genes with predictive functions or specific physi-
ological conditions.

Transcriptome analysis ofmaize, peanut, and cotton during infectionwithA. flavus
and drought stress has provided insights into the mechanisms underlying aflatoxin
resistance and identify genes related to aflatoxin resistance. Recently, the advent of
high-throughput sequencing has facilitated studies on EST and microarrays have led
to the identification of key gene networks that respond to aflatoxin stress and relating
their regulation to various developments manifested during stress (Wang et al. 2013;
Dolezal et al. 2014). Similarly, gene expression profiling of maize kernels during
A. flavus infection has been studied using cDNA and oligo microarrays (Luo et al.
2008, 2010, 2011; Wilkinson et al. 2007; Kelley et al. 2012) and qPCR (Jiang et al.
2011; Lanubile et al. 2017). Maize ESTs have been derived from kernels collected at
different stages of development 15–45 days after pollination (DAP) and Aspergillus
and drought stresses (Hamblin andWhite 2000; Dowd andWhite 2002; Moore et al.
2004; Guo et al. 2007).Maize cDNA and oligonucleotide arrays have also beenmade
available through the Maize Gene Discovery Project and Maize Oligonucleotide
Array Project (MOAP) (http://www.maiZearray.org).

Comparison of the gene expression profile of resistant and susceptible maize vari-
eties in response to A. flavus revealed the detection of higher number of maize genes
in susceptible kernels compared with resistant ones (Luo et al. 2008, 2011). Over
163 genes were found to express differentially, of which 75 genes were defense-
related and remaining 88 genes were genotype-specific. All these studies indi-
cated significant expression of defense-related genes, particularly PR genes, PR-4,

http://www.maiZearray.org
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chitinases, beta-1,3-glucanases, catalase 3, Zeamatin-like protein, peroxidases, and
trypsin inhibitors. Other parallel microarray studies revealed upregulation of 123
genes involved in several metabolic pathways in susceptible maize line Va35 upon
A. flavus infection, whereas resistant line Mp313E showed upregulation of 95 genes
involved in amino acid derivative metabolism and lipid metabolism (Wilkinson et al.
2007). Subsequently, 31 highly expressedmaize transcriptswere reported using com-
bination of microarray and qRT-PCR analysis and mapped to previously identified
quantitative trait locus (QTL) regions (Kelley et al. 2012).

Similarly, peanut cDNA microarray revealed 52 genes to be upregulated under
drought stress and 42 upregulated under both A. flavus and drought stress, where
25 genes were commonly expressed under both the treatments (Luo et al. 2005).
Subsequent gene expression profiling of GT C20 (resistant line) and Tiffrunner (sus-
ceptible line) from developing seeds at three reproductive stages (R5, R6 and R7)
in response to infection with A. parasiticus and drought stress generated 21,777
ESTs (Guo et al. 2008). Significant upregulation of nine genes in ‘GT-C20’ and
eight resistance-related genes in ‘Tifrunner’ libraries were also reported. Utilizing
these and other publicly available ESTs, a high-density oligonucleotide microarray
was designed for expression studies in various tissues such as pod, leaf, stem, root,
and peg tissues (Payton et al. 2009). In this study, a higher expression of pod tran-
scripts was observed that suggested the presence of different pathways involved in
the generation of secondary metabolites, storage, and desiccation-related proteins.
Using RT-PCR, the expression of eight differentially expressed transcripts was also
validated. A subsequent report with peanut microarrays showed that ‘GT-C20’ (the R
line) had a greater response toAspergillus infection compared with ‘Tifrunner’ (the S
line) where over 62 genes were upregulated in resistant cultivar, of which only eight
genes were assigned biological functions based on their homology against annotated
entries in the GenBank database (Guo et al. 2011). In a recent microarray study,
490 unigenes involved in 26 pathways were reported to be differentially expressed
in the resistant genotype YJ1 which uniquely responded to A. flavus infection under
drought stress, whereby 96 DEGs were related to eight metabolic pathways (Wang
et al. 2013). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed
that all the eight networks were found to be significantly associated with resistance
to A. flavus infection in resistant genotype YJ1 compared with susceptible Yueyou
7. This suggests that A. flavus–peanut interaction is controlled by many metabolic
pathways (Guo et al. 2008; Wang et al. 2010). Subsequent genetic analysis of the
identified resistance-related pathways is reportedly in progress to further characterize
their possible functional roles in resistance to pre-harvested A. flavus infection.

Transcriptional monitoring of 9000 genes in inoculated maize kernels at four days
after infection using Affymetrix GeneChip DNA array revealed higher expression
of defense-related genes, signaling pathway genes, and genes encoding hydrolytic
enzymes, while the starch biosynthesis genes were downregulated (Dolezal et al.
2014). Through a comparative analysis of A. flavus-responsive transcriptome of cot-
ton with peanut and maize, 732 putative genes have been reported where 26 genes
were commonly regulated in all the three crops which could be the potential candi-
dates for aflatoxin resistance (Mehanathan et al. 2018). A diverse expression pattern



11 Biotechnological Strategies for Development … 327

of 14 genes was observed in RT-PCR studies during seed germination in peanut after
A. flavus infection (Zhang et al. 2014). According to the expression levels, these
14 genes were classified into six different groups associated with lipid metabolism,
oxidative signaling, and cell wall synthesis during the counter-attack. An ordered pat-
tern in the expression of the different categories of genes was observed in response
to fungal invasion after inoculation.

Real-time PCR analysis of 18 defense genes in developing maize kernels at
96 h after inoculation with toxigenic and atoxigenic strains of A. flavus revealed
higher upregulation of the genes that encode oxidative stress-related proteins,
pathogenesis-related proteins, lipoxygenases, and transcriptional factors against
atoxigenic strain (Lanubile et al. 2017). This indicates that overexpression of maize-
defense-associated genes observed in response to the atoxigenic strain might have
contributed to aflatoxin reduction. The information gained from the above microar-
ray and qRT-PCR studies has led to the discovery of many critical genes related to
aflatoxin resistance and the development of numerousmolecular markers for drought
tolerance and resistance to Aspergillus infection and aflatoxin contamination. The
ESTs will continue to be actively sequenced to fill knowledge gaps and complement
the whole genome sequence. In addition, this functional genomics research facili-
tates understanding defense mechanism of aflatoxin resistance in various crops at
physical and biochemical levels.

11.8.3.1 Transcriptomics

The recently released genome sequence of A. duranensis and A. ipaensis (Bertioli
et al. 2016) provided a new strategy for peanut transcriptome sequencing with better
coverage and accuracy. RNA-sequencing is a rapid and high-throughput genomewide
gene expression analysiswhich has been used to survey sequence variations and com-
plex transcriptomeswith less false-positive rateswith high repeatability and accuracy.
Furthermore, RNA-seq produces absolute rather than relative gene expression mea-
surements, thereby providing deeper insights and higher sensitivity than microarrays
(Zhao et al. 2018). Recently, RNA-seq approach was applied to identify transcripts
that were differentially expressed in A. flavus interacting with the resistant vs. the
susceptible peanut seed (Wang et al. 2016a, b; Nayak et al. 2017).

RNA-sequencing was used to analyze the transcriptomic profiles of A. flavus
treatedwith resveratrol (Wang et al. 2015). In total, 366 and 87 genes ofA. flavuswere
significantly up- and downregulated, respectively, and when the fungus underwent
exposure to resveratrol, a polyphenol is isolated from redwine. Resveratrol improved
the activity of enzymatic antioxidative defense system that consequently damaged
free radicals, thereby leading to reduced aflatoxin production. Genes involved in
primary and secondary metabolism in A. flavus were also affected, thereby reducing
aflatoxin production and causing abnormality in fungal development and reproduc-
tion (Wang et al. 2015).

Over 4445differentially expressedgenes (DEGs) comprising resveratrol synthase,
defense-related genes like senescence-associated proteins, pathogenesis-related
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proteins, and 9s-lipoxygenase were identified using RNA-sequencing (Nayak et al.
2017). In A. flavus, around 578 DEGs that regulate pathways for growth and devel-
opment of fungus, binding, transport, aflatoxin biosynthesis, and signaling were
detected in compatible interactions. In addition to finding potential genes responsible
for IVSC resistance in peanut, the study found the genes implicated in host–pathogen
interaction and identifies the markers that can be used in breeding resistant varieties.
Wang et al. (2016a, b) detected DEGs linked to mycelial growth, conidial develop-
ment and aflatoxin biosynthesis that were upregulated in aflatoxin susceptible peanut
compared with aflatoxin-resistant peanut, providing evidence that A. flavus mycelia
enter readily and produce far more aflatoxin in susceptible than in resistant peanut.

Changes in expression levels of a cluster of genes in contaminated against uncon-
taminated peanut seed were studied by RNA-sequencing (Clevenger et al. 2016).
Here, the contaminated seeds showed changes in abscisic acid (ABA) signaling and
fatty acid biosynthesis and detected key susceptibility factor ABR1 as a repressor of
ABA signaling that may be involved in post-harvest aflatoxin accumulation (PAC).
Recently, RNA-sequencing has also been used in cotton and maize to understand the
basis of aflatoxin resistance at the molecular level by identifying and characterizing
genes involved in various metabolic pathways that lead to aflatoxin contamination.
In cotton, inoculated bolls harvested over different time course were investigated
using RNA-sequencing where the genomewide multiple time course transcriptome
analysis revealed an overexpression of genes involved in regulation of transcription
factors, defense-related genes, genes involved in oxidative brust, and genes involved
in synthesis of antifungal compounds and apostasis in pericarp and seeds in response
to Aspergillus (Bedre et al. 2015).

Resistant maize lines showing higher expression of genes related to Jasmonic acid
(JA) pathway, ethylene (ET) signaling pathways, and shikimate biosynthesis pathway
were detected using RNA-sequence approach (Lanubile et al. 2014). Further, the
maize kernels resistant to A. flavus and other two Fusarium spp., F. proliferatum,
andF. subglutinans showed higher gene expression. In addition, the expression ofPR
genes remained higher in the resistant lines before and after inoculation (Lanubile
et al. 2015).

11.8.3.2 Proteomics

Aflatoxin resistance is a complex polygenic and quantitatively inherited trait, con-
trolled by several genetic loci, and substantially altered by the environment. Gene
expression analysis of resistant and susceptible lines under A. flavus infection identi-
fiedvarious genes involved in host plant responses using a combination of SDS-PAGE
and western blots. However, due to the inconsistent band resolutions of SDS-PAGE
gels, high-throughput proteomics approaches are currently being utilized as a novel
tool in aflatoxin research to identify the resistance-associated proteins (RAPs) asso-
ciated with aflatoxin resistance (Razzazi-Fazeli et al. 2011). Several storage and
stress-related proteins have been identified that can be used as markers for aflatoxin
resistance, thereby possibly being useful for breeders to design proper strategies to
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develop plant resistance against A. flavus infestation and aflatoxin contamination.
Several studies demonstrated the role of maize kernel, embryo, endosperm, silk,
and rachis defense proteins in A. flavus infection and aflatoxin contamination. These
studies indicate that major aflatoxin resistance factors were governed by constitutive
proteins, although the inducible defense proteins also play an essential role. The
list of various differentially expressed proteins identified by comparing resistant and
susceptible genotypes is given in Table 11.9.

Mainly three categories of proteins viz., pathogenesis-related, storage proteins,
and stress-responsive proteins were found to significantly increase in resistant geno-
types (Pechanova and Pechan 2015). Other studies indicate the role of phenolic com-
pounds such as alkylresorcinol to be responsible for maize kernel pericarp wax and
catalase-specific activity in suppression of A. flavus infection/aflatoxin production
(Gembeh et al. 2001; Magbanua et al. 2007).

Although several proteins have been identified, only few, such as the 14 kDa
trypsin inhibitor protein (TI) has been well-characterized that was constitutively
expressed at higher levels in the resistant lines, whereas low or absent in susceptible
lines (Chen et al. 1998). In addition, it also displayed antifungal activities against a
broad range of fungal pathogens (Chen et al. 1999a, b). Expression of the gene encod-
ing the 14-kDa trypsin inhibitor that inhibits fungal amylases was highly expressed in
kernel tissues of resistant maize lines compared to susceptible lines under A. flavus-
drought stress (Fountain et al. 2010). The role of TI in aflatoxin resistancewas further
confirmed by RNAi silencing and genetic mapping studies (Chen et al. 2016). In this
study, the T1 transgenics showed significant transcript reduction of 63–88% corre-
sponding to 39–85% reduction at protein level. Silenced transgenics with lack of TI
showed increased aflatoxin contamination. These data were also confirmed by QTL
mapping studies where three QTLs with log of the odds scores of 11, 4.5, and 3.0
were found to have a possible association with TI gene, and thereby aflatoxin resis-
tance. Recent study by Gilbert et al. (2018) showed that RNAi silencing of amylase
gene suppresses aflatoxin production, thereby confirming that higher expression of
TI in resistant lines might inhibit amylase that hydrolyzes starch into sugar, resulting
in reduced fungal growth and aflatoxin production.

Apart from maize kernels, A. flavus also infects rachis and silk tissues that have
also been evaluated for potential protein profile differences between resistant and sus-
ceptible lines. Comparison ofmaize rachis proteome in resistant and susceptible lines
with or without A. flavus infection revealed that resistant lines contained greater lev-
els of abiotic stress-related proteins and proteins from phenylpropanoid metabolism,
while those from susceptible lines contained more abundant pathogenesis-related
proteins (Pechanova et al. 2011). In another study, three chitinases (PRm3 chitinase,
chitinase I, and chitinase A) were found to be differentially expressed and possessed
higher chitinase activity in the silk tissue of resistantmaize inbred lines (Mp313E and
Mp420) compared to susceptible inbred lines (SC212m and Mp339) (Peethambaran
et al. 2010), suggesting that these proteinsmay contribute toA. flavus resistance. This
study also suggested that the resistant lines depend on constitutive defenses, whereas
the susceptible lines are more dependent on inducible defenses. Transcriptomics and
proteomics studies in maize response to the A. flavus and Fusarium spp. reveal that
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several stress proteins such as PR proteins, detoxifying enzymes, and enzymes from
the phenylpropanoid pathway were commonly overexpressed under infection with
either fungus (Mohammadi et al. 2011; Pechanova et al. 2011). To make the data on
the reported maize RAPs available and to promote its usage, Kelley et al. (2010) con-
structed a relational database with web interface to integrate results from available
data sets (microarray, proteomics, QTL studies, and SNP data). There are multiple
lines of evidence that show the expression of DRE binding factor 1 (AW438135),
PR-1 (TC239060), and a disease resistance protein PRM1 (AZM4_24463) that were
associatedwithmaize aflatoxin resistance. These candidate genes database facilitates
QTL-based candidate gene identification that helps in developing aflatoxin-resistant
maize cultivars throughmarker-assisted selection or else using transgenic technology
(Kelley et al. 2012).

More recently, 220 differentially expressed proteins (DEPs) have been identified
by deploying proteomics for three different A. flavus isolates in response to H2O2-
derived oxidative stress (Fountain et al. 2018). These discovered DEPs involved
various metabolic pathways including antioxidants, carbohydrates, pathogenicity,
and secondary metabolism. Isolate-to-isolate variation in oxidative stress tolerance
reported in this study enhanced understanding of the host–plant interactions under
drought stress to design more targeted efforts in host resistance research.

As compared tomaize, there have been limited reports on comparative proteomics
in peanut. In a study by Liang et al. (2005), resistant varieties of peanut showed three
to fourfold increase in β-1,3-glucanase against A. flavus infection indicating that
this enzyme targets inducible defenses in peanut. Comparison of seed protein pro-
files between a resistant and a susceptible cultivar under A. flavus–drought stress
has identified 12 proteins with significant upregulation of signaling proteins, SAP
domain-containing protein, storage proteins, stress-responsive proteins, 50 S ribo-
somal protein L22, and putative 30 S ribosomal S9 and significant downregulation
of trypsin inhibitor (Wang et al. 2010). Using differential proteomic approach, array
of proteins responding to aflatoxin in peanut cotyledons infected with aflatoxin-
producing and non-producing strains has been identified. These proteins are involved
in immune signaling and PAMP perception, DNA and RNA stabilization, induction
of defense, innate immunity, hypersensitive response, biosynthesis of phytoalex-
ins, cell wall responses, peptide glycan assembly, penetration resistance, condensed
tannin synthesis, detoxification, and metabolic regulation (Wang et al. 2012). This
study revealed that aflatoxin triggers an immune response for disease resistance in
peanut cotyledons and a mechanism for detoxification and DNA repair in A. flavus.
Gene expression in atoxigenic strain indicates that the fungal genes can respond to
aflatoxin, whether the strain produces aflatoxin or not.

11.8.4 Applicability of RAPs as Breeding Markers

Various studies have demonstrated the potential contribution of identified proteins
in resistance to aflatoxin (Brown et al. 2010). For instance, constitutive overexpres-
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sion of aldose reductase was shown to have a role in stress tolerance (Woloshuk
et al. 1997), such as pathogenesis-related proteins like Zeamatin and RIP showed
inhibition of A. flavus growth in vitro (Chen et al. 2001), Glyoxalase I reduced
methylglyoxal (MG) that induces transcription of aflR (Chen et al. 2004), and ribonu-
cleolytic activity of PR-10 demonstrated inhibition of A. flavus growth (Chen et al.
2010). Host-induced gene silencing of PR10 expression increased aflatoxin con-
tamination in maize indicating a significant role of PR-10 in resistance to aflatoxin
(Chen et al. 2010). While a cold-regulated protein like ZmCORp has been reported
to impede mycelial growth and A. flavus germination (Baker et al. 2009), Cupin-
domain-containing proteins in maize have been shown to act as transcription factors
or enzymes in aflatoxin resistance; however, their function is not clearly understood
(Dunwell et al. 2004).

Some of identified targets such as trypsin inhibitor and PR10 have already been
used in RNAi-mediated resistance development (Chen et al. 2010, 2016). Some RAP
genes have also been mapped to chromosome regions containing major QTL such
as TI at bin 2.06, embryo-specific protein (spot 337) at bin 4.06, HSP17.2/GLX at
bin 1.03, glucanase at bin 3.05, and glucose dehydrogenase at bin 2.08. These RAPS
associatedwithmajorQTLs linked to aflatoxin resistance could assist in prioritization
of candidate genes that should be tested asmarkers.However, comprehensive analysis
of target proteins is required to further characterize their function at the genomewide
scale.

11.9 Genetic Engineering Approaches

Genetic engineering offers numerous benefits over other traditional methods such
as biological control and genetic resistance for enhancing germplasm with novel
traits that may not be available in the existing germplasm. The transfer of traits con-
trolled by single or few closely linked transgenes into elite cultivars is a much more
attainable and speedy approach than the introgression of genes governing quanti-
tative resistance due to lack of potential markers. Since achieving a high level of
resistance to aflatoxin has been difficult through conventional breeding methods due
to high GxE interactions, and the use of genetic engineering has become potentially
important in crop like maize, peanut, and cotton (Tomovska et al. 2012). Studies on
crop–fungus interactions have identified several compounds that are inhibitory to
fungal growth, including trypsin and amylase inhibitors, ribosome-inactivating pro-
teins, and chitinases. These host proteins that contribute to enhanced resistance have
paved the pathway for development of aflatoxin-resistant transgenic crops. Several
aflatoxin resistance genes from natural resources have been cloned and introduced
into crop plants through genetic engineering. An overview of various resistance-
associated proteins and genes identified through application of in vitro antifungal
assays, genomics and proteomic studies, and transgenic strategies aimed at aflatoxin
resistance is provided in Tables 11.10 and 11.11.
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Table 11.10 Key proteins and their function in antifungal activity against Aspergillus flavus

Source Protein name Protein family Molecular
function

References

Pseudomonas
pyrrocinia

Haloperoxidase Peroxidase Catalyze
formation of
antimicrobial
compounds—
peracetic acid
and hypohalites

Jacks et al.
(2000),
Rajasekaran
et al. (2000)

Nicotiana
tabacum

β-1-3 glucanase Glycosyl
hydrolase

Hydrolysis of
fungal cell wall

Ji et al. (2000),
Lozovaya et al.
(1998)

Ipomea batatas Ib-AMP3 Defensin Lytic De Lucca
(1998)

Lablab
purpureus

AILp Lectin Inhibits
germination and
hyphal growth

Fakhoury and
Woloshuk
(2001)

Zea mays Chitinase Glycosyl
hydrolase

Hydrolysis of
fungal cell wall
components

Moore et al.
(2004)

Zea mays ZmCORp Lectin Hemagglutination
activity against
fungal conidia

Baker et al.
(2009)

Zea mays Mod-1/RIP-1 Ribosome-
inhibiting
protein

Inhibits hyphal
tip growth by
modifying or
inactivating
foreign
ribosome

Nielsen et al.
(2001),
Weissinger et al.
(2007)

Zea mays Zeamatin PR-5 Inhibits hyphal
tip growth by
increasing
permeability of
cell membrane

Guo et al.
(1997)

Zea mays ZmPR-10 PR-10 RNAse activity Chen et al.
(2006)

Zea mays Trypsin
inhibitor

Protease
inhibitor

Trypsin/amylase
inhibition

Chen et al.
(1998)

Hordeum
vulgare and
Triticum
aestivum

Purothionin
hordothionin

Thionin Lytic Rajasekaran
unpublished

Synthetic
peptide

D4E1 Synthetic
peptide

Reduced A.
flavus spore
germination by
50%

Cary et al.
(2000c,
Rajasekaran
et al. (2005)

(continued)
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Table 11.10 (continued)

Source Protein name Protein family Molecular
function

References

Zea mays Glyoxylase Regulates
methylglyoxal
levels

Contribute to the
lower levels of
aflatoxins found
in resistant
maize genotypes

Chen et al.
(2004)

Synthetic
peptide

D5C/D5C1 Antimicrobial
peptide

Lytic Weissinger et al.
(2000)

Synthetic
peptide

D2A21 Antimicrobial
peptide

Lytic Weissinger et al.
(2000)

Synthetic
peptide, analog
of maganin 2

MSI99 Antimicrobial
peptide

Lytic—inhibit
growth of
pre-germinated
spores of A.
flavus by more
than 95%

DeGray et al.
(2001)

Spined soldier
bug (Podisus
maculiventris)

Thanatin Antimicrobial
peptide

Threefold
increase in
resistance to A.
flavus infection
compared with
control lines

Schubert et al.
(2015)

Synthetic
peptide

Tachyplesin1-
derived
synthetic
peptide
AGM182

Antimicrobial
peptide

Lytic Rajasekaran
et al. (2018)

AMP Antimicrobial peptides, PR Pathogenesis-related proteins

11.9.1 Transgenic Strategies to Reduce Both A. Flavus
Growth and Aflatoxin Contamination

Various antifungal genes from bacterial, plant, and mammalian sources have been
shown to afford protection against A. flavus growth and aflatoxin production in trans-
genic plants. Small antimicrobial lytic peptides like D4E1, D5C, and tomato anionic
peroxidase (tap 1) show antifungal activity in vitro and effectively reduce the seed
infection level in plants transformed using these genes (Ozias-Akins et al. 1999;
Weissinger et al. 1999; Cary et al. 2011). The synthesis of these stable and target-
specific peptides was aimed to prevent proteolytic degradation and non-specific toxi-
city to non-target organisms caused by the lytic peptides (Marcos et al. 2008). While
aflatoxin production has been reported to be reduced by overexpression of synthetic
analogs of cecropins and magainins (Cary et al. 2000a, b, c; DeGray et al. 2001),
sequence modification has increased the potency of these peptides.
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It has been suggested that cuticular wax, tannin content, and chemical composi-
tion of the pericarps and embryos in peanut have key role in the inhibition of fungal
invasion by A. flavus and aflatoxin formation (Liang et al. 2003). In vitro studies
have shown that purified chitinase from peanut, Tex6 Maize kernel, and sugarbeet
suppressed the fungal growth (Jwanny et al. 2001; Moore et al. 2004) which was
attributed to increased chitinolytic activity and activation of other defense-related
mechanisms. Overexpression of rice chitinase gene, glucanase gene, Mod-1, a syn-
thetic version ofmaize ribosome-inactivating protein gene (a proteolytically activated
form ofRIP-1), bacterial chloroperoxidase gene,PR10 family putative-resistant gene
(ARAhPR10), and defensins have shown to confer enhanced resistance to A. flavus
and aflatoxin contamination in peanut (Wilkinson et al. 2007; Niu et al. 2009; Sun-
daresha et al. 2010; Prasad et al. 2013; Xie et al. 2013; Sharma et al. 2017).

Several antifungal proteins have been identified through molecular breeding
approaches, of which major proteins such as chitinases, β-1,3-glucanases, ribosome-
inactivating proteins (RIPs), and Zeamatin identified frommaize kernels, rachis, and
silk tissues play a crucial role in aflatoxin resistance (Guo et al. 1997; Chen et al.
1998; Lozovaya et al. 1998). A 14 kDa trypsin inhibitor protein from maize and
36 kDa protein AILp from hyacinth bean (Lablab purpureus) inhibit the α-amylase
activity of A. flavus, thereby suppressing fungal growth and aflatoxin contamination
in vitro (Chen et al. 1998; Fakhoury and Woloshuk 2001). Stress-related protein,
glyoxalase I was reported to regulate magnesium levels inside maize kernels that
stimulate aflR gene expression, thereby directly inhibiting aflatoxin accumulation
(Chen et al. 2004).

Schubert et al. (2015) reported threefold increase in resistance to A. flavus infec-
tion compared with control lines through transgenic expression of the spined soldier
bug (Podisus maculiventris) 21 amino acid thanatin AMP in maize. However, they
have not evaluated the levels of aflatoxin content in transgenic lines. More recently,
expressing the synthetic peptide AGM182 conferred enhanced resistance to aflatoxin
in maize showing 72% reduction in fungal growth and 76–98% reduction in aflatoxin
levels in kernel screening assay using a highly aflatoxigenic A. flavus strain (AF70)
(Rajasekaran et al. 2018). However, in this study, even the most superior transgenic
maize line was reported to have aflatoxin levels of 60–150 ng/g under optimal condi-
tions, which is beyond the permissible limits of 4–20 ng/g. Occasionally, while only
one seed in thousand may be contaminated, it can produce a high aflatoxin value
for the entire seed batch. Nonetheless, a very low to negligible aflatoxin content of
0–4 ppb was reported in peanut by using HIGS approach in peanut (Sharma et al.
2017).

Different antifungal proteins have been overexpressed in cotton plants using bac-
terial chloroperoxidases such as CPO-P (Jacks et al. 2004), a defensin D4E1 gene
(Rajasekaran et al. 2005), andmaize kernel trypsin inhibitor protein (TIP) (Chen et al.
1998; Rajasekaran et al. 2008a, b). Transgenic cotton with the TIP gene under the
control of enhanced double CaMV 35S constitutive promoter has shown enhanced
resistance to Verticillium, but not A. flavus (Rajasekaran et al. 2008a, b), thereby
suggesting a need for higher seed-specific expression of this gene in cotton seed.
A non-heme chloroperoxidase gene (cpo-p) from Pseudomonas pyrrocinia that cat-
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alyzes the conversion of alkyl acids to peracid by hydrogen peroxide (Jacks et al.
2000) was used to develop transgenic peanut and cotton plants where their progenies
expressing cpo-p gene exhibited inhibition of A. flavus hyphal growth in vitro (Niu
et al. 2009; Rajasekaran et al. 2008a, b).

A few studies were undertaken to alter the seed lipid pools for sporulation and
aflatoxin formation using lipoxygenases in several crop species. Soybean loxl gene
encodes an enzyme that catalyzes the formation of a specific lipoxygenase metabo-
lite of linoleic acid, 13(S)-hydroperoxyoctadecadienoic acid (HpODE) that has been
shown to suppress the aflatoxin biosynthetic pathway in vitro (Burow et al. 1997).
Overexpression of soybean loxl gene in transgenic peanut under the control of an
embryo-specific promoter from carrot enhanced aflatoxin resistance (Ozias-Akins
et al. 1999). Expressing PnLOX3, a lipoxygenase gene from peanut, enhanced resis-
tance to aflatoxinwhenoverexpressed in peanut. Further greenhouse studies indicated
no difference in pre-harvest A. flavus infection between transgenics and untrans-
formed controls, while transgenics showed significant reduction in aflatoxin content
compared to controls. This indicates that diverse mechanisms of resistances can con-
trolA. flavus infection and aflatoxin accumulation in peanut (Bhatnagar-Mathur et al.
unpublished results). Additionally, pyramiding insect resistance gene with different
antifungal gene constructs has been demonstrated to delay resistance to aflatoxigenic
fungi in vitro, in situ, or in planta. Introduction of synthetic cry1Ac gene under the
control of a CaMV 35S promoter into peanut cultivar MARC I dramatically reduce
in vitro leaf feeding by lesser corn stalk borer (Singsit et al. 1997; Ozias-Akins et al.
2002). Further field screening of selected lines with cry1Ac also showed lower pod
damage and reduced aflatoxin contamination (Ozias-akins et al. 2002). However,
aflatoxin contamination was not directly correlated with damage due to the pink
bollworm in cotton (Bock and Cotty 1999).

11.9.2 Host-Induced Gene Silencing-Mediated Resistance
to Aflatoxin

Successful downregulation of fungal genes throughRNAidepends on efficient uptake
of siRNAs by the fungus as has been demonstrated on themovement of RNAbetween
plants and fungi (Panstruga 2003). Interaction between fungal pathogens and their
corresponding host occurs via haustoriawhich act as an interface for signal exchanges
and nutrient uptake (Panstruga 2003;Voegele andMendgen 2003;Micali et al. 2011).
These close interactions assist in movement of mRNA signals between the host
plant cells and fungal pathogens that leads to RNA silencing-mediated resistance
in crop plants (Duan et al. 2012). Given the potential targeted downregulation of
the aflatoxin pathway genes through host-induced gene silencing (HIGS), targeted
degradation of specific fungal target sequences has been utilized to control fungal
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growth and aflatoxin production (Nowara et al. 2010; Tinoco 2010; Yin et al. 2011;
Koch et al. 2013). Gene silencing in A. flavus using inverted repeat transgenes (IRT)
construct allows easier genetic manipulation of both intractable and tractable fungi
as IRT need not be targeted to any specific location within the genome to function,
and also there is no need to identify the flanking regions, promoter, or terminator
of a gene. Furthermore, it is feasible to silence several genes with one construct.
IRT construct containing sequences of aflatoxin pathway genes (AflR), suppressed
aflatoxin production in A. flavus (Hammond and Keller 2005; McDonald et al. 2005)
and (AflD) (Abdel-Hadi et al. 2011).

Silencing of gene expression through RNAi for functional gene validation and
aflatoxin resistance has been reported in maize and peanut (Table 11.12). RNAi
interference-based downregulation of PR10 in maize increased sensitivity to heat
stress, fungal growth, and aflatoxin production (Chen et al. 2010). This study showed
reduction of PR10 transcript levels by 65–99% and the corresponding PR10 protein
levels by 61–81%. Similarly, knockdown of TI (trypsin inhibitor) in maize reduced
the TI transcript levels and increased susceptibility to A. flavus colonization and
aflatoxin production (Chen et al. 2016). Both these studies showed negative corre-
lation of PR10 and TI gene expression with aflatoxin production, respectively. Sim-
ilarly, maize expressing hairpin RNA (hpRNA) cassette containing stcA, stcJ, and
aflR sequences reported inhibition of aflatoxin biosynthesis (Alakonya and Monda
2013). Knockdown of transcriptional activator gene aflR maize showed significant
reduction (14-fold vs. control plants) of aflatoxin content in maize kernels (Masanga
et al. 2015). However, transgenic RNAi plants showed stunting and reduced kernel
placement due to off-target effects of the siRNAs produced from the hpRNAs.

RNAi-based concurrent silencing of five aflatoxin biosynthetic, transport, or non-
ribosomal peptide synthetase (NRPS) related genes (aflR, aflS, aflC, aflep, and pes1)
led to 100% reduction in aflatoxin contamination in immature peanut kernels (Arias
et al. 2015; Power et al. 2017). In another report, RNAi-based silencing of aflC
gene (encoding for polyketide synthase, pksA) showed a significant reduction in
the levels of aflatoxin (≤93 ppb) in transgenic corn (Thakare et al. 2017). More
recently, increased resistance to aflatoxin contamination in peanut has been reported
by functional inhibition of the ver-1 (aflM) and omtA (aflP) genes through RNAi
(Sharma et al. 2017). In yet another report, silencing of alpha-amylase gene amy1
showed reduced fungal colonization and aflatoxin accumulation in maize inbred
B104 expressing an RNAi construct targeting the A. flavus (Gilbert et al. 2018).
Recently, mutant studies in A. flavus contributed to valuable information on the
genes responsible for conidiation, sporulation, sclerotial production, virulence, and
aflatoxin biosynthesis. Several reports on targeted disruption of fungal genes have
accumulated over recent years to get insight into molecular mechanisms involved in
pathogenesis. Some of these genes have been functionally validated (Table 11.13).
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Many of the genes mentioned in the above studies can be potential targets to be
explored for aflatoxin resistance in future using HIGS. Successful implementation
of HIGS to control aflatoxin resistance has been reported by Arias et al. (2015)
and Sharma et al. (2017); whereas, Masanga et al. (2015) reported negative effect
of RNAi silencing construct on growth and yield of all maize transformants. This
indicates that it may be the result of off-target effect of siRNA produced from the
hpRNAs. Hence, efficacy and off-target effect of siRNA have been the major con-
cerns for developing a successful HIGS against fungal pathogens. However, with the
advancement in the area of functional genomics, availability of genome sequence
data and new bioinformatics tools enable design and engineering of effective dsRNA
expression constructs addressing concerns of off-target silencing. Several web-based
computational tools such as siRNA Scan (http://bioinfo2.noble.org/RNAiScan.htm),
siDirect 2.0 (http://siDirect2.RNAi.jp/) (Naito et al. 2009; Naito and Ui-Tei 2012)
are now publicly available to design appropriate RNAi construct to prevent off-target
silencing. This software was effectively used to identify potential off targets during
PTGS in plants (Xu et al. 2006). By carefully designing the sequences to be used for
HIGS and targeting conserved gene in A. flavus, off-target silencing of unintended
genes in the host plants as well as in the beneficial plant-associated organisms, such
as mycorrhizas, rhizobia and biocontrol species, such as Trichoderma species can be
avoided.

11.10 Conclusions and Future Prospects

Population of this planet is rapidly growing that is projected to cross 9 billion in the
next 20 years, making it challenging to produce enough food for such a huge popu-
lation. To meet the ever-increasing food requirement, development of new and novel
crop improvement technologies would be highly advantageous. Aflatoxin contami-
nation occurs worldwide mainly in tropical and subtropical regions such as Africa,
Asia, and Latin America due to favorable conditions such as drought stress and high
temperature in these regions. The contamination of food commodities by aflatoxin
is a unique problem in agriculture and is not likely to be completely resolved by
conventional control strategies routinely used against other fungal pests of plants.
Not only being a food safety issue in many lower-income or developing countries,
aflatoxin contamination of key staple crops causes significant post-harvest losses
leading to trade losses (Lewis et al. 2005; Mutegi et al. 2013).

Since aflatoxin resistance is a multigenic trait, substantial control of aflatoxin
contamination necessitates a multidisciplinary approach for action. It includes vari-
ety of cultural practices, host resistance, molecular breeding approaches, transgenic
approaches, and RNAi silencing that minimize aflatoxin production at both pre- and
post-harvest stages. Further, chemical (ammoniation and nixtamalization), physical

http://bioinfo2.noble.org/RNAiScan.htm
http://siDirect2.RNAi.jp/
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(removal of damaged or incomplete kernels/seed), and biological strategies con-
tribute to the degradation of aflatoxins from contaminated foods and feeds. Current
control practices to eliminate fastidious fungal parasites of plants such as those
involved in race-specific interactions are considerably less effective in controlling
facultative pathogens such as A. flavus and A. parasiticus. The most effective and
practical approaches include improved cultural practices as well increased host resis-
tance. Post-harvest practices in proper handling and storing grain are precarious tools
to prevent the development of mycotoxins.

The development and use of host resistance offer a possible and cost-effective
solution. However, limited genetic diversity in the germplasm makes conventional
breeding approaches challenging as high levels of natural resistance to aflatoxin accu-
mulation have not been identified in peanut, cotton, andmaize.While inmaize, innate
resistance to aflatoxigenic fungi is present, and it has not been suitably exploited
because of its typical polygenic nature and the poor agronomic performance of resis-
tance sources. Although modern approaches of molecular genetics are supporting
researchers and breeders to exploit native resistance, currently available commer-
cial hybrids usually lack sufficient resistance levels. The identification of resistance
sources in the cultivated and wild germplasm needs to be improved using robust
screening techniques that produce reproducible results.Moreover, better understand-
ing of A. flavus and aflatoxin genetics, identification of resistance genes and use of
cost-effective, accurate and reproducible aflatoxin bioassays facilitate improvement
of host resistance to aflatoxin contamination (Mahuku et al. 2013).

Although aflatoxin biosynthesis has been extensively studied by various
researchers, the pathway is complex andmany steps are still notwell understood.Cur-
rent ‘omic’ approaches such as proteomics and transcriptomics are being exploited
to find the proteins/genes that contribute to the aflatoxin resistance. Although large
number of genes have been identified in plants in response to A. flavus infection,
unraveling the relationship between overexpressed genes and aflatoxin resistance is
crucial for successful development of aflatoxin tolerant crops. Extensive research
is underway to understand the role of various regulatory networks that associates
aflatoxin biosynthesis to the perturbations of cell metabolism, and in particular to
oxidative stress. Moreover, missing enzymatic steps in aflatoxin biosynthesis must
be discovered in order to put the aflatoxin biosynthetic puzzle together.

More recently, RNA-seq (RNA-sequencing) has been used for genomewide gene
expression analysis and to determine gene structures and expression profiles inmaize
in response to A. flavus providing greater visions and higher precision than microar-
rays. With recent development in sequencing technologies and bioinformatics strate-
gies, in 2016, the genome sequences of A. duranensis and A. ipaensis were officially
released, which would provide new opportunities to link the aflatoxin-resistant phe-
notype with genes. This would facilitate marker-assisted selection (MAS) for quick
indirect selection of the target gene by using molecular markers closely linked to a
target gene and quantitative trait loci (QTLs) analysis to improve aflatoxin resistance
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in elite cultivars. QTLs that expressed stably across different genotypes and under
multiple environments will be immensely useful in breeding for aflatoxin resistance.
Further, markers identified from these QTL regions that are conserved and additive
in nature have the potential to facilitate transfer of genes from resistant to susceptible
line.

While many biocontrol agents have been tested for their efficacy to reduce afla-
toxin contamination of crops, only atoxigenic A. flavus strains have been used com-
mercially. Biological control using atoxigenic A. flavus strains to prevent further
infection by toxin producing strains has proved very efficient, consistently reduc-
ing aflatoxin contamination by >80% (Bandyopadhyay et al. 2016). In view of the
potential genetic recombination in A. flavus, precautions are needed to have sta-
ble biocontrol strains and protect against the unintended introduction of A. flavus
strains that could inflict an extra burden on food safety and quality. Understanding
the mechanisms of gene regulation in aflatoxin biosynthesis is crucial for identify-
ing the natural inhibitors of Aspergillus growth and aflatoxin production. Significant
improvement in cloning of aflatoxin pathway genes in the fungal genetic engineer-
ing will help in production of stable aflatoxin non-producers and for optimization
of strain competitiveness for future use in biocontrol applications. Nonetheless, the
major shortcoming to the wide dissemination of the biological control strategy has
been the need to develop and register a product for each country, as strains cannot be
used across borders; thus, making the process costly and cumbersome (Bandyopad-
hyay et al. 2016).

Therefore, a more targeted approach to eliminate key events in the A. flavus
infection and/or aflatoxin biosynthetic process might be more efficient in reduc-
ing or eliminating aflatoxin contamination. Noteworthy developments made in our
understanding of mechanism of aflatoxin biosynthesis and regulation have allowed
development of transgenic plants with silencing vectors for the expression of self-
complementary hairpin RNAs of antifungal/aflatoxin reducing genes. A number of
reports have successfully demonstrated the use of HIGS (RNAi) as a means of down-
regulating expression of genes implicated in the regulation of aflatoxin biosynthesis
and pathway that lower aflatoxin contamination in food crops (Arias et al. 2015;
Bhatnagar-Mathur et al. 2015; Masanga et al. 2015; Thakare et al. 2017; Sharma
et al. 2017; Gilbert et al. 2018). Nonetheless, successful RNAi-mediated control
would depend on many factors such as RNAi specificity, dsRNA regulation and
movement of dsRNA and sRNAs from host to pathogen and vice versa, prediction of
off-target effects, and stability of sRNA in fungi (Majumdar et al. 2017a, b). More-
over, effectiveness of HIGS under post-harvest storage and field conditions must be
determined under low moisture stress which could possibly make seeds dormant,
and therefore might affect the stability of hpRNAs/siRNAs (Majumdar et al. 2017a,
b; Gressel and Polturak 2018).

Another alternative non-transgenic RNAi approach is spray-induced gene silenc-
ing (SIGS) which exploits the RNAi mechanism through the exogenous application
of long dsRNA and siRNAs. It has been reported to be effective in controlling both B.
cinerea and F. graminearum (Koch et al. 2016; Wang et al. 2016a, b). Compared to
HIGS, although this procedure does not require development of stably transformed
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plants, the effect of SIGs application is not long lasting, and hence exploring applica-
tions of double layered hydroxide clay nanosheets loaded with dsRNA has potential
for its persistence over longer periods (Mitter et al. 2017). Since the prevalence of
mycotoxins within the food web is an unavoidable and critical situation the world is
going through, apart from good hygenic measures cognizant efforts must be made
to denote the aflatoxin poisoning in human and livestock. With the aid of biotechno-
logical tools, researchers all over the globe have geared up to bring on plate a much
safer food that is free of aflatoxins.
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Chapter 12
Reducing the Acrylamide-Forming
Potential of Crop Plants

Sarah Raffan and Nigel G. Halford

Abstract Acrylamide is a food-processing contaminant formed from free
asparagine and reducing sugars during high-temperature cooking and processing.
It is a Group 2A carcinogen, and EFSA’s CONTAM Panel has expressed concern
for the potential tumour-inducing effects of dietary exposure. Fried, baked, roasted
and toasted potato, coffee and cereal products are the major contributors to dietary
acrylamide intake. The European Commission has recently introduced strengthened
risk management regulations for acrylamide in food, including compulsory mitiga-
tion measures and new Benchmark Levels. Steps taken by manufacturers to reduce
acrylamide formation in potato chips in Europe resulted in a 53% decrease from
2002 to 2011. However, since 2011 there has been a levelling off, suggesting that
the easy gains have already been made and further large reductions are unlikely. The
acrylamide-forming potential of potatoes is influenced by seasonal and geographical
factors, making regulatory compliance for potato products more difficult. In cereals,
acrylamide formation is determined by free asparagine concentration: this differs
substantially between varieties but is also very responsive to environmental factors
and crop management. Ensuring good disease control and sulphur sufficiency are
particularly important. The relationship between precursor concentration and acry-
lamide formation is more complex in potato, with the concentration of reducing
sugars the most important parameter in most datasets but free asparagine concen-
tration contributing to the variance. Storage is a key issue for potatoes due to the
phenomena of cold and senescent sweetening. Investigations into the genetic con-
trol of acrylamide formation in wheat have focussed on asparagine metabolism, in
particular asparagine synthetase, while biotech potatoes with reduced expression of
asparagine synthetase and vacuolar invertase are already on the market in the USA.
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12.1 Introduction

Acrylamide (C3H5NO) is an odourless, organic, water-soluble compound that was
discovered in a range of cooked foods in 2002 as a food-processing contaminant
(Tareke et al. 2002). It has been classified as a probable (Group 2a) human carcinogen
(International Agency for Research on Cancer 1994), based on rodent toxicological
data. It also shows developmental and neurotoxic effects (Friedman 2003; CONTAM
Panel 2015). It can be ingested, inhaled or absorbed through the skin and is one of
the carcinogens found in cigarette smoke.

Acrylamide forms a non-toxic polymer, polyacrylamide, which has a wide range
of industrial uses, from sewage treatment and water purification to the production
of food packaging and cement. More familiarly to molecular biologists and bio-
chemists, it is used to make polyacrylamide gels for the separation of protein or
nucleic acid molecules by polyacrylamide gel electrophoresis (PAGE). Polyacry-
lamide is usually contaminated with small amounts of the monomer, and because of
polyacrylamide’s use in water treatment, monomeric acrylamide is a potential water
pollutant. The World Health Organisation has, therefore, set a tolerance level of
0.5 µg per l [equivalent to 0.5 parts per billion (ppb)] for the presence of acrylamide
in drinking water, with the understanding that levels should be as low as reasonably
achievable. The level of 0.5 µg per l is arguably below the limit of detection, and
essentially the discovery of any acrylamide in water should trigger a pollution alert
and an investigation.

Acrylamide can be metabolized via epoxidation to produce glycidamide
(C3H5NO2), and it has been suggested that glycidamide is actually responsible for
the carcinogenic and genotoxic effects attributed to acrylamide. Both acrylamide
and glycidamide form adducts with glutathione, and these are further converted to
mercapturic acids, which are excreted from the body. This is the main detoxification
route preventing either chemical from accumulating in the body.

12.2 Toxicology

The toxicological effects of acrylamide have been studied in detail in a range of
animal species, including monkeys, cats, dogs, guinea pigs, rats and mice, with
the most comprehensive evidence coming from rodent studies. The European Food
Safety Authority (EFSA)’s Panel on Contaminants in the Food Chain (CONTAM)
analysed the results of these studies, summarizing the findings in a report published
in 2015 [European Food Safety Authority Panel on Contaminants in the Food Chain
(CONTAM) 2015]. The Panel concluded that acrylamide showed neoplastic and
genotoxic effects and at high doses could cause developmental and neurological
changes.

Evidence for the toxicity of acrylamide in humans came first from studies on the
effects of occupational exposure, with a 1993 study on workers in an acrylamide-
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manufacturing factory in China showing damage to their peripheral nervous system
(Bergmark et al. 1993). A later study (Bergmark 1997) showed that laboratory work-
ers who regularly performed PAGE showed higher levels of acrylamide in their
systems than controls. Importantly, these early studies revealed unexplained high
levels of acrylamide in control groups, indicating that there must be another source
of acrylamide exposure. The explanation for this came in 2000, when it was shown
that rats that were fed fried animal feed for 1–2 months showed a higher level of
acrylamide in their system than rats fed on unfried feed (Tareke et al. 2000). The
implication was that acrylamide was forming when the feed was fried. Acrylamide
exposure is measured by the formation of haemoglobin–acrylamide adducts in the
blood, and the amount of acrylamide in the feed correlated with the levels of these
adducts. Perhaps surprisingly in retrospect, this study passed under the radar and it
was a subsequent study in 2002 that alerted the world to the presence of acrylamide
in food. That study reported the discovery of acrylamide in a wide range of common
cooked foods (Tareke et al. 2002), with the highest levels in fried potato products and
crispbreads. Subsequently, cereal products and coffee were also shown to be major
contributors to dietary intake.

12.3 The Levels of Acrylamide in Food

Acrylamide is not present at all in raw food and can, therefore, be classified as
a processing contaminant, defined as a substance that is produced during cooking
or processing, is not present or is present at much lower levels in raw, unprocessed
foods, and is undesirable because it is potentially harmful to consumers or has adverse
effects on product quality (Curtis et al. 2014b). Acrylamide does not form during
boiling, but is associated with fried, baked, roasted and toasted foods. The main
contributors to dietary acrylamide intake in Europe are potato, coffee and cereal
products (CONTAMPanel 2015), with potato chips (called crisps in the UK), French
fries, biscuits, breakfast cereals, bread (particularly if it is toasted), crispbreads and
all types of coffee affected. These foods contain acrylamide in the tens or hundreds
of µg per kg (ppb). Based on data collected by the European Food Safety Authority
(EFSA 2011), cereal and potato-based products each contribute approximately 40%
of dietary intake in Europe, while the other 20% is attributed to coffee. The largest
single contributor is bread, which contains relatively low levels of acrylamide unless
it is toasted but is eaten in large quantities.

12.4 Formation

Following the discovery of acrylamide in popular foods, acrylamide was shown to
form from free (soluble, non-protein) asparagine and reducing sugars within the
Maillard reaction (Mottram et al. 2002; Stadler et al. 2002). Reducing sugars and



380 S. Raffan and N. G. Halford

free asparagine can, therefore, be regarded as the precursors for acrylamide, although
the carbon skeleton of acrylamide is derived entirely from asparagine. The major
reducing sugars in potato tubers are the monosaccharides, glucose and fructose.
Cereal grains also contain the disaccharide maltose, but very little maltose is present
in potatoes. Sucrose, while not itself a reducing sugar, should also be considered with
respect to acrylamide-forming potential because it is so abundant in plant tissues and
can be hydrolysed to form glucose and fructose.

The Maillard reaction was first described by Louis Camille Maillard in 1912
(Maillard 1912), although the steps in the reaction as they are understood today were
proposed half a century later by an American chemist, John Hodge (1953). The reac-
tion as Hodge described it comprises a series of non-enzymatic reactions between
sugars and amino groups, principally those of free amino acids, and any amino acid
can participate, not just asparagine. It is promoted by high temperature and low
moisture content, and its products include melanoidin pigments, which are complex
polymers responsible for the brown color in fried, baked, roasted and toasted foods,
and a plethora of compounds that impart flavor and aroma. The compounds that are
formed depend on the amino acid and sugar composition of the food and the cook-
ing/processing conditions, and they give different cooked foods their characteristic
color, flavor and aroma.

Acrylamide forms in the reaction as a result of a Strecker-type degradation of
asparagine. The asparagine reacts with a carbonyl compound intermediate to produce
a Schiff base (a compound containing a carbon-nitrogen double bond in which the
nitrogen atom is attached to an organic group). This is then converted to acrylamide
by decarboxylation followed by either the removal of a substituted imine or the
elimination of a carbonyl group to produce an intermediate, 3-aminopropionamide,
which is then converted to acrylamide by the removal of ammonia. This model for
the conversion of asparagine to acrylamide was proposed by Zyzak et al. (2003), and
the role of 3-aminopropionamide as a potent intermediate in acrylamide formation
has been confirmed (Granvogl and Schieberle 2006; Granvogl et al. 2007).

It is important to state that the reaction is multi-step, with free amino acids par-
ticipating in the early and final stages. This means that there may be complex rela-
tionships between precursor (free asparagine and reducing sugar) concentration and
acrylamide formation, and other free amino acids can drive the early stages of the
reaction but compete with asparagine in the final stages. It is also important to note
that because color, flavor and aroma compounds form by similar chemical pathways
to acrylamide, any action taken to reduce acrylamide formation may also affect
product quality.

While theMaillard reaction appears to be themajor route for acrylamide formation
in food, others have been proposed. For example, acrylamide has been shown to form
inwheat gluten even after the removal of starch and all the soluble components, which
would include the simple sugars and free amino acids (Claus et al. 2006b). It also
forms in dried fruit, such as prunes and dates, and while elevated temperatures are
used in drying systems to produce prunes, dates and other dried fruits, these rarely
exceed 60 °C, so the source of the acrylamide in these products remains unknown.
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12.5 Regulations

The discovery of acrylamide in food in concentrations many times the tolerance level
set for drinking water presented regulatory authorities with an extremely difficult
problem. In 2004, the Joint FAO/WHO Food Standards Programme CODEX Com-
mittee on Food Additives and Contaminants issued a discussion paper on acrylamide
requesting the FAO/WHO Joint Expert Committee on Food Additives (JECFA) to
comment on the extent to which acrylamide was bioavailable in food and its safety
implications. JECFA issued its opinion in 2006 (JECFA 2006), stating that while
adverse neurological effects were unlikely at the estimated average dietary expo-
sure, morphological changes in nerves could not be excluded for individuals with
high exposure. In addition, for a compound that was both genotoxic and carcino-
genic, the margins of exposure indicated a health concern. It recommended that
‘appropriate efforts to reduce concentrations of acrylamide in food should continue’.
JECFA issued a second opinion in 2011, making almost identical statements and
recommendations.

In 2005, EFSA’s CONTAM Panel endorsed JECFA’s risk assessment on acry-
lamide in food and recommended that appropriate efforts to reduce acrylamide con-
centrations in foodstuffs should continue. The Panel requested that data on acry-
lamide levels in food should be collected over at least a three-year time span and
reported once a year to EFSA who would compile a database so that the effective-
ness of measures adopted to reduce the formation of acrylamide in food could be
assessed. In May 2007, therefore, the European Commission issued Recommenda-
tion 2007/331/EC on the monitoring of acrylamide levels in food (European Com-
mission 2007), requiring that EuropeanUnionMember States should perform annual
monitoring of acrylamide levels in foodstuffs in 2007, 2008 and 2009 and provide
the data to EFSA.

EFSA reported its analysis of the 2007 data in 2009 (EFSA 2009) alongwith acry-
lamide results for 2003–2006 that had been collected fromMember States and com-
piled by the Commission’s Joint Research Centre’s Institute for Reference Materials
and Measurements. EFSA concluded that it was not clear if the mitigation measures
that had been adopted were effective.

The European Commission responded again in 2010 with Commission Recom-
mendation 2010/307/EU on the monitoring of acrylamide levels in food (European
Commission 2010). This requiredMember States to continue to collect data on acry-
lamide levels in food on a regular basis. Also in 2010, EFSA released its analysis of
the 2008 data (EFSA 2010), with the conclusion that any trend towards lower levels
of acrylamide was limited to certain food groups. Once again, the European Com-
mission responded, this time with Recommendation C (2010) 9681 Final of January
2011 on investigations into the levels of acrylamide in food (European Commission
2011). This required the competent authorities in Member States to investigate why
the acrylamide levels in some foodstuffs should be ‘significantly higher than the
levels in comparable products of the same product category’. The Recommendation
included Indicative Values (Table 12.1) for the presence of acrylamide in food, with
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Table 12.1 Indicative Values and Benchmark Levels for acrylamide in food, set by the European
Commission (2011, 2013, 2017)

Food Benchmark Level
2017 (ppb)

Indicative Value
2013 (ppb)

Indicative Value
2011 (ppb)

French fries 500 600 600

Potato chips (UK
crisps)

750 1000 1000

Soft bread (wheat) 50 80 150

Soft bread (other) 100 150

Breakfast cereals:
bran products, whole
grain cereals, gun
puffed grain

300 400 400

Breakfast cereals:
wheat and rye based

300 300

Breakfast cereals:
maize, oat, spelt,
barley and rice based

150 200

Biscuits 350 500 500

Crackers 400 500 500

Crispbread 350 450 500

Gingerbread 800 1000 –

Cereal-based baby
foods

40 50 100

Baby foods (not
cereal based) without
prunes

– 50 80

Baby foods (not
cereal based) with
prunes

– 80

Biscuits and rusks for
infants and young
children

150 – 250

Roast coffee 400 450 450

Instant coffee 850 900 900

Coffee substitute
(cereal-based)

500 2000 –

Coffee substitute
(chicory)

4000 4000 –
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varying Indicative Values applied to different food types, based on the monitoring
data compiled by EFSA. If a product was found to exceed the Indicative Value for
its food type, an investigation by the relevant food safety authority was triggered to
find out why. The results of the investigation were reported to the commission, and
action was taken to ensure that the manufacturer addressed the problem.

In May 2011, EFSA reported the full results of acrylamide monitoring from
2007 to 2009, and provided estimates of the exposure levels of Europeans to dietary
acrylamide (EFSA 2011). Mean acrylamide levels in the 2009 data ranged from
37 ppb for soft bread to 1504 ppb for substitute coffee, while the highest single level
was found in a potato chip sample at 4804 ppb. Trends towards lower acrylamide
levels were apparent in crackers, infant biscuits and gingerbread, but not in any of
the other food categories. The mean exposure of Europeans to dietary acrylamide
was estimated to be 0.31–1.1 µg per kg bodyweight per day for adults, 0.43–1.4 µg
per kg bodyweight per day for adolescents (11–17 years old), 0.70–2.05 µg per kg
bodyweight per day for children (3–10 years) and 1.2–2.4 µg per kg bodyweight per
day for toddlers (1–3 years).

Another EFSA report followed in 2012 (EFSA 2012), once again finding little
change in acrylamide levels over the period from2007 to 2010,with IndicativeValues
exceeded in between 3 to 30%of samples in different food categories. The conclusion
that the measures adopted by industry to reduce acrylamide levels in foods were not
working prompted calls for the European Commission to take stronger action, and
revised and in many cases reduced Indicative Values (Table 12.1) were introduced
through Commission Recommendation 2013/647/EU of November 2013 (European
Commission 2013). This Recommendation required Member States to continue to
work with food businesses to investigate products that exceeded the new Indicative
Value for that product type. It also made reference to an ‘updated risk assessment’
being performed by EFSA on the presence of acrylamide in food. EFSA produced its
risk assessment in the document ‘ScientificOpinion on acrylamide in food’, prepared
by the CONTAM Panel (2015), which we have referred to several times already. The
report is long and comprehensive, and the conclusions of the Panel on the risk posed
by dietary acrylamide were that ‘the margins of exposure indicate a concern for
neoplastic effects based on animal evidence’. This assessment effectively forced the
hand of the European Commission, which embarked on another process of strength-
ening its risk management regulations for acrylamide. New proposals were issued
in June 2017, approved by the European Commission, Council and Parliament, then
published in November 2017 as Commission Regulation (EU) 2017/2158 (European
Commission 2017). The Regulation came into force on 11 April 2018.

The Regulation paraphrases the 2015 CONTAM Panel report with starker lan-
guage, stating that the Panel’s assessment had ‘confirmed previous evaluations that
acrylamide in food potentially increases the risk of developing cancer for con-
sumers in all age groups’. It replaces Indicative Values with Benchmark Levels,
which are lower than the corresponding Indicative Value for almost all product types
(Table 12.1), justifying the reduction by describing Benchmark Levels as perfor-
mance indicators rather than triggers for investigation. The Regulation also states
that Benchmark Levels will be regularly reviewed by the Commission with the aim
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of setting lower levels and holds out the threat of imposing Maximum Levels (i.e.
levels of acrylamide above which it would be illegal to sell a food product) in the
future. It includes annexes in which mitigation measures that have been developed
to reduce acrylamide formation are described, from variety selection through crop
management to a variety of measures that have been shown to be effective during
food processing. These are effectively codes of practice, and the wording of the
Regulation makes it clear that the adoption of these measures is compulsory: food
business ‘shall’ rather than ‘should’ apply the mitigation measures that are set out.
However, at the time of writing, it is not clear what sanctions may be applied to a
food business when one of its products is found to be above the relevant Benchmark
Level and the business cannot show that the appropriate mitigation measures were
applied.

In our view, the direction of travel for the European Commission on acrylamide
remains inexorably towards tighter regulation, with the very real possibility that
it will eventually lead to the imposition of Maximum Levels. More detail on the
Commission’s thinking regarding Maximum Levels for acrylamide was provided
when the issuewas discussed at ameeting of theEuropeanParliament’s Environment,
Public Health and Food Safety Committee in January 2017. It was made clear that
the intention was to impose Maximum Levels on sectors of the food industry that
do not show ‘sufficient progress’ in reducing acrylamide in their products. Although
this is frustratingly vague (what is meant by ‘sufficient progress’, for example?), we
advise anyone in the food production and supply chain to take the threat to impose
Maximum Levels seriously.

Another regulator to have taken action is Jerry Brown, who was the Attorney
General of the State of California in 2005, and filed a lawsuit against potato chip and
French fry manufacturers (Heinz HJ, Frito-Lay, Lance Inc and Kettle Foods) along
with Procter and Gamble and four fast-food chains (McDonald’s, Burger King, KFC
and Wendy’s) for selling potato chips and fries without a Proposition 65 warning
to alert consumers to the presence of acrylamide. Proposition 65 is California’s
‘Safe Drinking Water and Toxic Enforcement Act’ and requires businesses to post
warnings of any chemical in their products that may cause cancer. The lawsuit was
settled in 2008 when the manufacturers committed to cut the level of acrylamide
in their products and payed $3 million in fines. The fast-food chains also agreed to
display acrylamide warnings at their restaurants.

Another case in California is still ongoing. In 2010, the Council for Education and
Research on Toxics (CERT), a small not-for-profit organization, brought a lawsuit
under Proposition 65 against Starbucks and 90 other companies, demanding that
the coffee industry remove acrylamide from its products or alert consumers to the
presence of acrylamide through warning signs and/or labels. Removing acrylamide
altogether from coffee is currently not possible, but in March 2018, a judge of the
California Superior Court, County of Los Angeles, issued a preliminary decision in
the case in favour of CERT.

There has been less action at the Federal level in the USA. The Food and Drug
Administration (FDA) has to date not set any restrictions on levels of acrylamide in
food, although it has issued an ‘action plan’ with the goals of developing screening
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methods, assessing dietary exposure and identifying means to reduce it, as well as
increasing understanding of acrylamide toxicology (Food and Drug Administration
2016).

In Canada, acrylamide has been added to the list of chemicals in the government’s
Chemicals Management Plan, and Health Canada has stated that it is committed to
collaboratingwith the food industry to further pursue reduction efforts for acrylamide
in processed foods. It has also implemented an acrylamide monitoring program to
evaluate the effectiveness of the reduction strategies it recommends and to assess
industry compliance, with the possibility of setting ‘reduction targets’ in the future.
Foodauthorities in Japan andHongKong, andFoodStandardsAustraliaNewZealand
(FSANZ), the binational agency with responsibility for food standards in Australia
and New Zealand, have taken similar stances. The position of these authorities,
therefore, could be described as somewhat behind the European Commission but
heading in the same direction.

12.6 The Acrylamide Toolbox

Acrylamide reduction became one of the most important targets for the food industry
after 2002 and has remained so ever since. In Europe, food companies have shared
their knowledge as they have developed methods to reduce acrylamide formation,
and the information has been compiled in an Acrylamide Toolbox published by
FoodDrinkEurope [formerly the Confédération des Industries Agro-Alimentaires de
l’UE (CIAA)]. The first Acrylamide Toolbox was published in 2005, and the most
recent update was published in late 2019 (FoodDrinkEurope 2019).

The Acrylamide Toolbox is available online to download for free. The methods
it describes encompass agronomy, the use of additional ingredients in the recipe,
reduction in pH by addition of citric or ascorbic acid, dilution of precursor concen-
tration by incorporation of rawmaterialswith lower concentrations of free asparagine
and/or reducing sugars, pre-treatment with asparaginase to reduce asparagine con-
centrations, improved control of thermal input and moisture during processing, pre-
treatment by washing and blanching to remove sugars, and quality control by the
elimination of dark-colored products by inline optical sorting (color being a good
indicator of acrylamide levels, since both melanoidin pigments and acrylamide form
in the Maillard reaction).

These measures have been applied with varying degrees of success to different
product types, with none proving effective in all types of products, and some affect-
ing product quality as well as reducing acrylamide formation. Nevertheless, and
somewhat ironically for the food industry, many of the measures from the Acry-
lamide Toolbox now appear in the annexes of European Commission Regulation
(EU) 2017/2158 and are effectively compulsory. For potato chips, at least, it is possi-
ble to demonstrate that the measures have been successful because European potato
chip manufacturers affiliated to the European Snacks Association have made data
on acrylamide levels in their products available for analysis. Two studies have been
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published, one covering the period from 2002 to 2011 (Powers et al. 2013) and the
other a longer period from 2002 to 2016 (Powers et al. 2017). These showed a 53%
reduction in mean acrylamide levels from 763 ppb in 2002 to 358 ppb in 2011. How-
ever, the trend did not continue past 2011, with the mean acrylamide level flattening
out and the level in 2016 of 412 ppb being slightly higher than that of 2011. This
indicates that the easiest and most effective methods to reduce acrylamide levels had
already been implemented by 2011 and further improvements may be difficult to
achieve without reductions in the acrylamide-forming potential of the raw material.

The studies also highlighted two factors that make it more difficult for food pro-
ducers to achieve regulatory compliance on a consistent basis. The first of these is a
seasonal effect, arising from the fact that European potatoes are harvested between
July and October, and for the rest of the year are used from storage. Potatoes in
storage are prone to increases in reducing sugar concentration, caused by cold and
senescent sweetening (see Sect. 12.7.3). The second factor is a geographical one,
with potatoes grown in northern Europe (Denmark, Finland, Lithuania, Latvia, Nor-
way and Sweden) for some reason having a higher acrylamide-forming potential than
potatoes grown elsewhere. The two factors combine to raise the mean acrylamide
levels in chips produced in that region so that the proportion of samples with more
than 750 ppb acrylamide (the Benchmark Level set for chips by the European Com-
mission) is over 30% for the whole of the first half of the year, peaking at more than
45% in May (Fig. 12.1). Even for the other regions of Europe, the ‘failure rate’ of
chips with respect to the 750 ppb Benchmark Level in some months of the year is
over 10%. Clearly, if a Maximum Level of 750 ppb were imposed on chips, it is not
being over-dramatic to say that the industry would not be able to continue as things
stand.

Fig. 12.1 Proportion (%) of samples of potato chips produced in Europe with more than
750 µg kg−1 (ppb) acrylamide for each month over the period 2011–2016 for geographic regions,
North, South, East and West. Plotted from data provided by Powers et al. (2017)
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12.7 Genetic and Agronomic Approaches to Reducing
the Acrylamide-Forming Potential of Wheat, Rye
and Potato

Research aimed at developing strategies to tackle the problem of acrylamide forma-
tion in food products from the crop raw material side has been directed at the genetic
control (G) of precursor concentration in crop plants, the environmental factors (E),
including crop management, that influence the accumulation of precursors, and the
interactions between them (G × E). Approaches taken range from the identification
of current crop varieties with low acrylamide-forming potential through the devel-
opment of best agronomic practice and the application of modern genomics and
biotechnology.

12.7.1 Variety Selection

In cereal grain, the determinant of acrylamide-forming potential is free asparagine
concentration (Muttucumaru et al. 2006; Granvogl et al. 2007; Curtis et al. 2009,
2010, 2016, 2018b; Postles et al. 2013) and a consideration of the free asparagine
content in cereal-derived raw materials is included in the acrylamide mitigation
measures for cereal products in European Commission Regulation (EU) 2017/2158
(European Commission 2017).

Free asparagine accumulates to high concentrations in many plant species during
normal physiological processes, such as seed germination, and in response to a range
of abiotic and biotic stresses, including salt, drought and nutritional stress (Lea et al.
2007). Indeed, it can become the predominant free amino acid in cereal grains under
some stress conditions, and this is an example of how stress can have profound
effects on crop composition (Halford et al. 2015), with implications in this case
for food safety. The responsiveness of free asparagine concentrations to extraneous
factors means that varietal rankings with respect to free asparagine concentration in
the grain may change from one site to another or from one harvest year to another.
Nevertheless, the range in free asparagine concentration across different varieties
growing at the same site can be many fold, so variety selection can make a huge
difference to acrylamide-forming potential. Figure 12.2a for example, shows the
free asparagine concentrations in the grain of 50 varieties of wheat grown in a field
trial in the UK in 2012–2013 (Curtis et al. 2018b). Furthermore, it has been possible
to identify a number of consistently low varieties over multiple field trials in the UK.
These are Claire, Cocoon, Cordiale, Croft, Delphi, Horatio, Monterey and Myriad.
Of these eight varieties, Delphi, Claire, Cocoon, Croft and Monterey are all soft
biscuit types (classified as Group 3 in the UK), while Horatio and Myriad are soft
Group 4 types (used predominantly for animal feed and bioethanol production, but
suitable for some grists). The eighth variety, Cordiale, is classified as having bread-
making potential (Group 2). It is important to note that some soft wheat varieties have
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�Fig. 12.2 Graphs illustratingmeasures that can be taken to control the acrylamide-forming potential
of wheat. a Mean free asparagine concentration in the grain of 50 varieties of winter wheat grown
in a field trial in the UK, in 2012–2013 (Curtis et al. 2018b). The varieties are grouped according
to milling type. b Mean free asparagine concentration in the grain of the same 50 varieties grown
in split-plots in which half the plot was supplied with sulphur (black columns), while the other half
was not (grey columns) (Curtis et al. 2016). c Mean free asparagine concentration in 24 varieties
of winter wheat grown in a field trial in the UK in 2011–2012 and either treated with fungicides
(grey) or left untreated (black) (Curtis et al. 2016)

relatively high concentrations of free asparagine in the grain, and selecting grain for
processing simply on the basis of it being from a soft-milling variety, expecting it to
have low acrylamide-forming potential, is not advisable.

Despite the identification of varieties with consistently low free asparagine con-
centration in the grain, food processors face a number of problems in using variety
selection to help address the acrylamide problem. The annual introduction of multi-
ple new varieties to the market in the UK and the dropping of others, for example,
means that by the time there is enough data on the free asparagine concentration of a
variety over different harvest years and sites the variety may no longer be available.
The only solution to this problem is for free asparagine concentration to be measured
during variety development, but at present this does not happen. Another problem
for food businesses is that they operate across national borders, and information on
the levels of free asparagine in the grain of different wheat varieties is unavailable
for most countries.

Despite these problems, we strongly advise wheat breeders and farmers to engage
on the acrylamide issue and take it into consideration when selecting genotypes
to take forward in breeding programmes or choosing varieties for cultivation. The
cheapest and most straightforward measure that processors could take to reduce the
acrylamide levels in their products, or make the levels more consistent and pre-
dictable, would be to switch variety, so breeders and farmers must be ready for that.

Variety selection is already being used to reduce the amount of acrylamide in rye
products. The rye supply and processing chain in the UK is much smaller than that
of wheat, and rye is more likely to be grown to contract. Possibly for that reason,
there are anecdotal reports that processors are already stipulating that specific, low
asparagine varieties should be grown.

The potato supply chain is in a similar position, with farmers generally growing
to contract. Potato varieties have been bred for different specific end uses, and the
wide range in acrylamide-forming potential of different varieties and types (chip-
ping, French fry or boiling) (Fig. 12.3) (Halford et al. 2012;Muttucumaru et al. 2013,
2014; Elmore et al. 2015) led to Regulation (EU) 2017/2158 stipulating that food
businesses must use potato varieties that are suitable for the product type, where the
content of fructose, glucose and free asparagine is the lowest for the regional con-
ditions. In potato, the relationship between precursor concentration and acrylamide
formation is more complex than in cereals, with the concentration of reducing sugars
the predominant factor in acrylamide-forming potential but free asparagine contribut-
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Fig. 12.3 Concentrations of glucose and fructose in 13 potato varieties grown in a field trial in the
UK in 2010 and sampled before a 6-month storage period (dark grey) and after storage (light grey)
(Muttucumaru et al. 2014). The varieties are separated into chipping, French fry and boiling type
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ing to the variance in some datasets (Muttucumaru et al. 2014). The influence of free
asparagine increases as the ratio of free asparagine to reducing sugars decreases
(Muttucumaru et al. 2017), which means that free asparagine concentration is more
important in French fry than chipping varieties.

12.7.2 Crop Management

Two crop management measures have been identified as being crucial for managing
the acrylamide risk of wheat, and have been written into Commission Regulation
(EU) 2017/2158. These are ensuring that the wheat crop receives an appropriate sup-
ply of nitrogen and sulphur, and that it is adequately protected from disease. Sulphur
deficiency, in particular, causes a massive accumulation of free asparagine in wheat
grain, with a concomitant effect on acrylamide formation in heated flour (Fig. 12.2b)
(Muttucumaru et al. 2006; Granvogl et al. 2007; Curtis et al. 2009, 2018b), while
nitrogen has the opposite effect (Claus et al. 2006a; Martinek et al. 2009). Nitrogen
fertilizer is, of course, indispensable for farmers to obtain the maximum possible
yield of cereal crops and the protein content and quality that are required for some
end uses, notably bread production. Commission Regulation (EU) 2017/2158 sim-
ply states that the ‘correct’ amount should be applied. We also advise that sulphur
should accompany nitrogen application to ensure that the nitrogen is incorporated
into protein, which is the desired outcome, rather than being stored in the grain in
the form of free asparagine, which is what happens when sulphur is not available.
This has been standard practice in Sweden since the 1990s. We recommend a rate
of sulphur application to wheat of 20 kg per hectare (equivalent to 50 kg SO3 per
hectare) (Curtis et al. 2014a), and this rate should be used for all wheat likely to enter
the human food chain, not just wheat destined for bread-making.

Free asparagine also accumulates to high levels inmanyplant tissues in response to
pathogen infection, and this has been shown to be the case for wheat grain (Martinek
et al. 2009; Curtis et al. 2016) (Fig. 12.2c). Consequently, Commission regulation
2017/2158 states that food businesses ‘shall ensure application of good practices on
crop protection measures to prevent fungal infection’.

No similar study on the effect of disease on acrylamide-forming potential has
been performed with rye or potato. However, experiments have been performed on
the effect of nutrition. In rye, nitrogen has a similar effect to that seen in wheat, with
substantial increases in free asparagine accumulation with more nitrogen application
(Postles et al. 2013, 2016). However, sulphur deficiency does not induce the dramatic
response observed in wheat. This may be because rye is better at scavenging sul-
phur from the soil, but rye also appears to respond differently, reducing the amount
of nitrogen that it allocates to the grain when sulphur is not available rather than
accumulating the nitrogen in the grain in the form of free asparagine (Postles et al.
2013).

The effect of nitrogen fertilization on the concentration of reducing sugars in
potato tubers had been investigated before the acrylamide issue arose because of the
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implications of reducing sugar concentration for fry color. It was reported in 1990,
for example, that potatoes grown under high nitrogen had lower amounts of free sug-
ars, and consequently tended to have less fry color (Roe et al. 1990). The discovery
of acrylamide in food reignited interest in the topic, but different studies have pro-
duced inconsistent results, with one, for example, confirming the earlier findings (de
Wilde et al. 2006) and another reporting no effect of nitrogen application or other
agricultural practice (Amrein et al. 2003). Our own investigations on 13 varieties
of potato grown in a field trial in 2010, and treated with different combinations of
nitrogen and sulphur, revealed a more complicated picture than the previous studies,
with nitrogen having type- and variety-specific effects on glucose concentrations and
sulphur having a direct effect, bringing about a reduction of 26% from zero to 40 kg
per hectare application. There was a trend for substantial increases in free asparagine
accumulation in all the varieties in response to nitrogen fertilization, but sulphur had
no consistent effect on any of the free amino acids. In other words, the dramatic effect
of sulphur deficiency on free asparagine concentrations in wheat does not occur in
potato. The complex, variety-specific changes observed in potatoes in response to the
treatments led us to conclude that advice on both nitrogen and sulphur application
would have to be carefully tailored for each variety.

A study of the effect of irrigation and drought stress on potatoes had a similarly
somewhat frustrating outcome (Muttucumaru et al. 2015). The conclusion from the
study was that different potato genotypes were affected in dissimilar fashion by
the availability of water, indicating that there is no single, unifying potato tuber
drought stress response. Farmers were advised to irrigate potatoes only if necessary
to maintain the health and yield of the crop, because irrigation could increase the
acrylamide-forming potential of the tubers.

12.7.3 Potato Storage

While it has proved difficult to develop clear advice for farmers on the crop man-
agement measures that they can take to reduce the acrylamide-forming potential
of potatoes, we can be very clear on how potatoes should be handled post-harvest.
Potatoes are biochemically quite active during storage and are prone to both cold
and senescent sweeting, in which glucose and fructose accumulate. Cold sweetening
occurs at storage temperatures around and just above 4 °C, while senescent sweeten-
ing occurs as the potatoes begin to break dormancy and prepare to sprout, defining the
end of the optimum storage window for a particular variety. Both cold and senescent
sweetening are associated with vacuolar invertase (VInv) activity, while senescent
sweetening is also driven by the breakdown of starch through the actions of phospho-
rylase L (PhL) and starch-associated R1 (R1). A storage temperature of 8.5–9.5 °C is
typical of commercial potato stores, representing a compromise between colder tem-
peratures that would promote cold sweetening and warmer temperatures that would
encourage the potatoes to sprout. Even at these temperatures, the concentrations
of reducing sugars and, therefore, acrylamide-forming potential of many varieties
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increases through storage (Fig. 12.3) and varieties that show good stability with
respect to sugar concentrations are being favoured for use after long-term storage.

Commission Regulation 2017/2158 stipulates a storage temperature above 6 °C
and that potatoes must be stored in the appropriate conditions for each variety and
used within their optimum storage window. The humidity of the store must be con-
trolled tominimize senescent sweetening, while sproutingmust be suppressed ‘using
appropriate agents’. ‘Appropriate agents’ might include chemical sprout suppres-
sants, such as chlorpropham (isopropyl 3-chlorocarbanilate; C10H12ClNO2). How-
ever, these too are coming under scrutiny and at the time of writing it looks likely
that products containing chlorpropham will soon cease to be authorized for use in
the European Union. It is not clear how stored potatoes will be managed without
those products.

The temperature of 6 °C stipulated in the regulation is arguably too low to prevent
cold sweetening. Even so, while it will not affect most commercial potato stores, it
may come as a shock to retailers because up to now they have been used to keeping
potatoes at 4 °C in a cold store with other fresh produce. This practice will have to
stop. It is also important that consumers aremade aware that the domestic refrigerator
is not an appropriate place to store potatoes.

12.7.4 Genetic Interventions to Reduce Acrylamide-Forming
Potential

If breeders are to be able to develop cereal varieties with low acrylamide-forming
potential they will need information on the genetic control of asparagine synthesis
and accumulation so that appropriate targets for genetic intervention can be identified.
To this end, a network has been compiled representing themolecular factors involved
in asparagine metabolism, consisting of 212 nodes (genes, enzymes or molecules)
and 246 edges (reactions between nodes) (Curtis et al. 2018a). The core enzymes
involved are nitrate reductase, nitrite reductase, glutamine synthetase, asparagine
synthetase, asparaginase, aspartate kinase, aspartate amino transferase, glutamate
dehydrogenase, ferredoxin-dependent glutamate synthase, NADH-dependent gluta-
mate synthase and glutamate decarboxylase. Any of these may be suitable targets
for genetic interventions, but the obvious starting point is asparagine synthetase.

Asparagine synthetase catalyses theATP-dependent transfer of the amino group of
glutamine to a molecule of aspartate to generate glutamate and asparagine. There are
four asparagine synthetase genes in wheat: TaASN1, TaASN2, TaASN3 and TaASN4
(Gao et al. 2016). TaASN4 was only discovered from wheat genome data and has
still not been cloned or characterized, although recently we have obtained evidence
that it is not highly expressed in the grain (Curtis et al. 2019). Of the other genes,
the expression of TaASN2 in the embryo and endosperm of the grain during mid to
late grain development has been shown to be by far the highest of any of the genes
in any tissue (Gao et al. 2016).
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Four asparagine synthetase genes have also been identified in maize (Todd et al.
2008), while initially five genes were described in barley (Avila-Ospina et al. 2015).
A detailed analysis of the wheat gene family using genome data for the variety Chi-
nese Spring confirmed the presence of four asparagine synthetase genes, but while
TaASN1, TaASN2 and TaASN4 were all single copy genes, located on Chromosomes
5, 3 and 4, respectively, there were two copies of TaASN3 (TaASN3.1 and TaASN3.2)
on Chromosome 1. Reanalysis of the barley genes suggests that the fifth gene iden-
tified in that species was, in fact, a second copy of HvASN3, suggesting that four
asparagine synthetase genes may be typical of the cereals. This analysis also showed
that wheat variety Chinese Spring lacked a TaASN2 gene on the B genome. This may
be important when it comes to breeding for wheat with less asparagine synthetase
activity in the grain. Some varieties do have this gene, but Chinese Spring is not
unique because varieties Claire, Paragon and Robigus also lack it.

In order to confirm that TaASN2 is responsible for most of the asparagine syn-
thetase activity inwheat grain,TaASN2 and the nextmost highly expressed asparagine
synthetase gene in the grain, TaASN1, were expressed in Escherichia coli, so that
the biochemical properties of the enzymes they encode could be compared (Xu
et al. 2018). Both genes expressed active asparagine synthetases, able to synthesize
asparagine and glutamate from aspartate and glutamine. Both also continued to pro-
duce glutamate even when aspartate had run out, indicating that the removal of the
amino group from glutamine to produce glutamate could proceed independently of
the transfer of that amino group to aspartate to produce asparagine. This was consis-
tent with a model proposed by Gaufichon et al. (2010), in which the reaction stages
occur sequentially rather than concurrently. Modelling of the reactions catalysed by
the TaASN1 and TaASN2 enzymes showed them to be biochemically very similar.
This, coupled with the gene expression data, led to the conclusion that TaASN2 was
the major enzyme synthesizing asparagine in wheat grain and an appropriate target
for genetic interventions.

Breeders could use this information in traditional ways, by investigating the
amount of variation in the TaASN2 gene between different varieties and associat-
ing it with high or low free asparagine concentration in the grain. Certainly, the
absence of a TaASN2 gene on Chromosome 3B could be exploited. However, the
hexaploid nature of wheat means that, even though there is a single TaASN2 gene in
each haploid genome, there are four to six in total across all three genomes, depend-
ing on the presence or absence of the gene on Chromosome 3B, and the effects of
allelic variation in any one gene may be masked and easy to miss.

A more direct approach would be to use biotech techniques to target all of the
TaASN2 genes in one go, using RNA interference or a genome editing technique such
as CRISPR-Cas9 or TALENS. The genes could also be knocked out using chemical
or radiation mutagenesis and screening of mutant populations for mutations in the
TaASN2 genes. These mutations would then have to be stacked to produce a null line.
Success with any of these techniques would require free asparagine concentration to
be reduced enough to have a significant effect on the acrylamide-forming potential
of the grain while grain yield, nitrogen content and protein quality were unaffected.
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Reduced asparagine synthetase gene expression has already been achieved in
potato. Indeed, varieties Innate® and Innate® Generation 2, produced by the Simplot
Company of Boise, Idaho, are both already on the market in the USA. Potato has
two asparagine synthetase genes, StASN1 and StASN2, and the expression of both
was initially reduced in a popular American French fry variety, Ranger Russett,
using RNAi (Rommens et al. 2008). This resulted in potatoes that accumulated as
little as 5% of the free asparagine present in the unmodified controls, but while the
plants grew normally under glass, they produced small, cracked tubers when grown
in the field. This problem was overcome by targeting StASN1 alone and reducing its
expression specifically in the tubers (Chawla et al. 2012). Plants carrying this trait
produce normal yields of potatoes with very low concentrations of free asparagine,
and it is this trait that has been incorporated into the Innate® and Innate® Generation
2 varieties.

Innate® and Innate® Generation 2 also have reduced expression of genes PhL,
encoding phosphorylase L, andR1, encoding starch-associatedR1, aswell as reduced
bruising through the targeting of gene PPO5, which encodes a polyphenol oxidase.
Innate® Generation 2 also has reduced expression of a vacuolar invertase gene (VInv),
as well as increased resistance to late blight through incorporation of a resistance
gene, Rpi-vnt1.1, from a wild potato species, Solanum venturii. The low concentra-
tions of free asparagine and reducing sugars in the tubers of Innate® Generation 2
are claimed to reduce acrylamide-forming potential by 90% compared with conven-
tional potatoes. Such varieties with multiple novel traits and improved food safety
show just how far ahead of Europe the USA is in crop biotechnology.

The vacuolar invertase (VInv) gene has also been targeted usingTALENs in French
fry variety, Ranger Russet (Clasen et al. 2016). Tubers from lines with a full knockout
had undetectable levels of reducing sugars, and chips produced from them had much
lower levels of acrylamide than chips produced fromcontrol tubers.Varieties carrying
this trait have not been commercialized yet. It is possible that a genome editing
technique was used in this case because there is no prospect at all of GM varieties
being developed for the European market. However, at the time of writing, prospects
for the commercialization of genome edited crop varieties in Europe also look bleak
(Halford 2019).

12.8 Conclusions

The issue of acrylamide forming during the cooking and processing of popular foods
has become one of the most difficult challenges facing the food industry. It is impor-
tant that everyone in the food supply chain engages on the problem and takes action
to ensure that they are not caught out as regulations are introduced and tightened.
The food industry would benefit hugely from the breeding of new crop varieties
with reduced acrylamide-forming potential. Biotech is likely to play a big part in
this wherever biotech crops can be grown, and we have already seen the develop-
ment and commercialization of biotech potatoes with hugely reduced acrylamide-
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forming potential in the USA (Sect. 12.7.4). Progress, however, will depend on the
full engagement of plant breeders, and we encourage plant breeders to adopt low
acrylamide-forming potential as a breeding target if they have not done so already.
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Phytate-Free Food Crops:
Phytases—The Game Changers
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Malnutrition and Improved Nutrition
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Abstract More than half of the world populations are affected by micronutrient
malnutrition and one-third of world’s population suffers from anemia and zinc defi-
ciency, particularly in developing countries. Iron and zinc deficiencies are the major
health problems worldwide. Populations that depend on legumes and grains as staple
food consume diets rich in phytic acid. Inositol hexaphosphate, otherwise known as
phytate, represents the major storage form of phosphorus and also contributes to
the storage of trace elements in plants. Such a storage reservoir is also attributed to
antinutritional activities in monogastric animals and plants by its strong chelation of
Fe, Ca, and Zn to form insoluble complexes that cannot be absorbed via diet. This
phenomenon contributes to Zn and Fe deficiency. The enzymatic degradation of phy-
tate in the digestive tract or reduction of phytate levels in the food product or grains,
when subjected to various processing strategies, has resulted in a varied level of phos-
phorylation. This uncertainty in rendering comprehensive nutrition enhancement in
the population of the developing countries has made researcher lean on gene-editing
strategies for alleviation of phytate content. This chapter gives an overview of phytic
acid as an unbalanced nutrition provider, evaluation of phytate content, and the use
of phytases to enhance micronutritional levels in plants.

Keywords Nutrition · Food · Developing countries · Iron · Zinc · Phytase

13.1 Introduction

Globally, agronomy plays a key role in provision of sufficient and nutrition-rich
diet. Due to ever-increasing world population and shrinking cultivated lands, it is
important to improve the quantity of food production. Plants are crucial source of
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calories for humans that provide prerequisite nutrition, yet only a handful of species
are used for human consumption. Fruits and vegetables harvested directly fromplants
pose important sources of minerals, vitamins, fiber, and energy. As plant proteins are
the primary dietary protein source for all humans and animals and are much less
expensive to produce than animal protein, they will continue to play a dominant role
in world food security. The nutritional quality of plant proteins can be improved
by balancing the essential amino acids. This is because quality proteins not only
benefit health and living, compared with low-quality proteins but also reduce the
amount of consumption because of their rich and well-balanced essential amino
acids supply. Understanding how plants harness, produce, and store health-beneficial
nutrients is an innate goal of plant scientists. Rice,wheat, corn, beans, cassava, potato,
sweet potato, sugar beets, and others are the dietary base for the world’s population
and represent important food staples for low-income communities. Besides being
energy-dense and carbohydrate-rich, these crops are also an important entry point into
the human diet for micronutrients, vitamins, and trace elements (both essential and
toxic). Thus, breeding efforts to enhance crop nutrition, and avoiding accumulation
of antinutrients, heavymetals, and toxic elements has direct impact on human health.

The purpose of agriculture is to provide sufficient food for all the people. With
the ever-increasing world population and shrinking cultivated lands, it is important
to improve the quantity of food production.

Genetic engineering and conventional breeding strategies are some of the plant
modification strategies used for generating highly nutritious crop variety. Such fortifi-
cation strategies usually target iron, zinc, and vitamin-A fueled by the report released
by WHO stating a lack of these in the diet of the global human population. As there
are only a few biofortified crops that have seen the light of day after the integration
of basic research into final crop products (for e.g., seeds), it is still necessary to pur-
sue this for global benefit. A report by De Moura and coworkers in 2016 revealed
increasing the intake of vitamin-A by increasing the concentration of β-carotene.
This report was made more effective by the undertaking of the crop variety with
an effective program at the population level; reflecting the need-based research for
uplifting the nutritional equivalence in inadequate populations. The requirement of a
steady consumption of the biofortified product was confirmed by a clinical study that
confirmed an increase in the retinol and β-carotene concentration on consumption of
yellow cassava. The ‘how-what-why’ of the nutritional scope of plant products has
been undertaken on a tremendous advanced level to understand the role of minerals
and vitamins in plants so that they can be tapped for human benefit. An equivalent
or a befitting role has also been played by plant breeders for improving crop plants
for more than 1000 years to make varieties easy to grow, harvest, nutritious, and
productive. Recent years have seen the integration of plant scientists and breeding
techniques to help those suffering from nutrient deficiencies in a sustainable manner.
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13.2 Manipulating Seeds to Remove Antinutritional
Factors

The use of proteins in food industry as a part of vegetable proteins has been attributed
to relate the behavior of foaming, emulsification, and gelation. Some studies have
been carried out to alter the functional behavior of proteins for engineering the prop-
erties of legume globulins gave valuable insights to the functional and structural
aspects of soybean proteins (Wang et al. 1998). Any lack of amino acids in seed
globulins has been overcome by mixing them with cereal protein as a target for
improvement (Shewry and Tatham 1997). Another attribute of proteins is that they
are considered poor contributors to ruminant nutrition as the degradation of pro-
teins occurs in the rumen. Therefore, additional processing measures such as heat
treatments are necessary to improve the nitrogen values for these animals.

Improvement of protein levels in seeds is mainly associated with the removal
of factors that generate potential allergens, undesirable flavours, and/or improve
digestibility. Further, targets that result in improved functional behavior of the pro-
teins are also undertaken. Directed improvement on these lines uses the integration
of efforts to sufficiently define the molecular basis of improvement, genetic variation
studies, and breeding by genetic manipulation. Alteration of the amino acid com-
position has resulted in the expression of sulfur-rich proteins by natural variation
and genetic manipulation. Such approaches that tackle the deficiency problems by
using natural approaches have resulted in the enhanced quality and yield of the seed
protein. Improved understanding of the regulatory mechanisms involved in the seed
proteins has been associated with the environmental effects and the genetic back-
ground of proteins in model legumes. Initial experiments confirmed the presence of
many antinutritional properties associated with the albumin fraction which was then
considered to bemore favorable than the globulins. Although a fewmutants targeting
the albumin fraction have been identified, the bioavailability of these proteins in the
seed or germinated plant is unclear. Mutants targeting the lipoxygenases in Pisum
sativum and Glycine max (Forster et al. 1999) have not reported the loss of seed
or seedling vigur shows a very interesting platform that can be banked on for fur-
ther studies. The major pea seed albumin, PA2, has a number of characteristics that
are undesirable for various end uses such as its cytosolic location and hydrophobic
nature during germination and storage conditions. The insolubility of this protein
is contributed by its free sulfhydryl group that resists the physiological mechanism
of digestion in the tract of chicken (Crévieu et al. 1997). A protein homologous to
PA2 has shown lectin-like properties in chickpea and has been deduced for allergic
responses in individuals sensitive to chickpea. Removal of such proteins that con-
tribute to allergy or other antinutritive effects is target for improving seed quality for
feed and food. Variants without the antinutritive properties have also been introduced
and checked for desirability for elite genetic backgrounds by molecular markers.



404 T. Kaul et al.

13.3 Phytic Acid as an Unbalanced Nutrition Provider

One of the most fascinating bioactive food compounds that are widely distributed
in plants is phytic acid (Table 13.1). The molecular structure shows that phytic acid
interferes with intestinal absorption by binding to polyvalent cations and inhibits
the bioavailability of trace elements and minerals. Such molecules result in serious
deficiencies in micronutrient levels and reflect negatively on the balance of nutrition
especially in underdeveloped and developing countries. Phytic acid also contributes
to antioxidative, anticancer activities which are of great importance in industrialized
countries. But the contribution of the same compound to antinutrient does not favor
the use of this molecule for the global population. In developing countries, where
deficiencies of zinc and iron arewidespread, prevention of deficiencies brought about
such antinutritive molecules is to be pursued with utmost significance. A better-
balanced supply of essential nutrients can be supplemented either by degrading food
phytases or improving daily diet.

Myo-inositol 1,2,3,4,5,6-hexakisdihydrogen phosphate, also called phytic acid, is
themajor storage formof phosphorus. It comprises to about 5%byweight in legumes,
cereals, seeds, and nuts which represents ~80% of total phosphorus in plants (Reddy
et al. 1982; Vats and Banerjee 2004). The rapid accumulation of phytate is observed

Table 13.1 Content of
phytate or phytic acid in
various foods

Taxonomic names Content of phytic acid/Phytate (in
grams/100 g)

Zizania sp. 2.20

Triticale secale >1.89

Pennisetum sp. >1.67

Secale cereal >1.46

Avena sativa >1.16

Sorghum sp. >3.35

Oryza sp. >1.08 (in grain) and >3.91 (in bran)

Bran of Triticum sp. >7.3

Germ of Triticum sp. >1.35

Phaseolus vulgaris >2.38

Vigna unguiculata >2.90

Pisum sativum >1.22

Lens culinaris >1.51

Pinus pinea ~0.20

Macadamia integrifolia >2.62

Juglans regia >6.69

Pistacia vera >2.83

Helianthus annuus >4.3

Glycine max >2.22
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during the ripening period in leguminous seeds, oilseeds and grains of rice and wheat
and corn. The location of phytate is found in the endosperm of corn, aleurone, and
pericarp of the bran fraction in wheat. Electron-dense globoids are predominantly
the storage organelles of phytic acid. Their presence in the aleurone layer of maize,
wheat, and barley increases the size of seed when increased concentration of phytic
acid is present in the grain. The absence of phytate-degrading enzymes in the digestive
tract of monogastric animals makes the metabolism of phytic acid difficult (Boling
et al. 2000). Therefore, inorganic phosphate is largely supplemented with inorganic
phosphate to provide sufficient phosphorus requirement.

The mineral status of the foods consumed in the developing and underdeveloped
countries has also been stimulated by the consumer’s interest in the whole grain
products and whole grains. The zinc, iron, and calcium deficiencies resulting due
to the limited bioavailability of minerals are due to high phytate content. A bal-
anced meal that includes food compounds such as organic acids, ascorbic acid, and
food fermentation products competes with phytic acids in binding to trace elements
and minerals, However, the food deficiency of these competitors in the diet of the
underdeveloped countries does not inhibit the effects of phytic acid although little
evidence exists from national or global nutritional surveys that factor the effect of
such antinutritive molecules.

The chelating properties of phytic acid not only result in the binding of cations in
seeds. Phytic acid also binds to minerals and makes them unavailable as nutritional
factors when released during processing of feed or food in the gut of the animal or
human. A couple of studies by Gharib et al. (2006) and Glahn et al. (2002) show
inhibition of iron and zinc uptake inhibition. Various other studies also report the
reduction in the intestinal absorption of zinc, calcium, iron, magnesium, and man-
ganese but not copper. By utilizing the platform of CRISPR, biofortification of toma-
toes has been undertaken by reducing the amount of phytic acid and increasing the
antioxidant content of tomato fruits [Kaul et al. 2019; under review; Patent File No:
201711038417 (TEMP/E-1/39247/2017-DEL)]. Some processing treatments such
as heat treatment, cooking/boiling, autoclaving, pressure cooking, microwave treat-
ment, extrusion cooking, toasting, and soaking have been establishedwith veryminor
effects to the content of phytic acid in grains.

13.4 Determination of Phytate Content

Phytate is subsequently estimated either by determining the phosphate, inositol, or
iron content of the precipitate (direct method) or by measuring the excess iron in the
supernatant (indirect method). These approaches are not specific for phytate due to
the coprecipitation of partially phosphorylated myo-inositol phosphates and should,
therefore, be limited to the analysis of material which contains negligible amounts
of phytate dephosphorylation products. If substantial amounts of partially phospho-
rylated myo-inositol phosphates are present such as in processed foods, the content
of phytate will be overestimated by using phytate determination methods based on
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iron precipitation. More recently, high-performance liquid chromatography (HPLC)
techniques have been introduced into phytate determination (Xu et al. 1992). Among
these, ion-pair reverse-phase and anion-exchange chromatography are largely used
today. These systems allow the simultaneous separation and quantification of myo-
inositol tris- to hexakisphosphates (ion-pair reverse-phase chromatography) or myo-
inositol mono- to hexakisphosphates (anion-exchange chromatography). Further-
more, a number of isomer specific ion-exchange chromatography methods with gra-
dient elution for the separation and quantification of myo-inositol phosphates in the
picomolar range have been developed very recently (Chen and Li 2003).

13.5 Phytases for Removal of Phytic Acid

Phytases are myo-inositol hexakisphosphate phosphohydrolases that achieve the
hydrolysis of phytate to orthophosphate and lower the levels of substituted inositol
phosphates. The use of these enzymes is beneficial to remove or reduce themaximum
amount of phytic acid in seeds without affecting the mineral content of the grains.
The activity of this enzyme is achieved by targeting the phosphomonoester bonds
and liberating inorganic phosphates.

The ubiquitous presence of phytases in animals, plants, and microorganisms was
established by many researchers over the years (Vats and Banerjee 2004; Rao et al.
2009; Yao et al. 2012). Distinct variation in the biophysical and biochemical prop-
erties has been associated with the source or expression host. Microbial phytases
are sources from fungi, bacteria, and yeast; microfloral phytases are either plant
or gut associated with intracellular or extracellular location (Rao et al. 2009). The
hydrolysis of phosphates by phytases is carried out by the six phosphate groups that
generate products that become substrates for subsequent hydrolysis. Some authors
have reported that majority of phytases cleaves five of the six phosphate groups
at the same time (Konietzny and Greiner 2002). On the basis of the reaction that
involves the initiation of dephosphorylation of the phytate molecule, phytases are
classified as 3-phytases (EC 3.1.3.8), 4-phytases, or 6-phytases (EC 3.1.3.26), 5-
phytases (3.1.3.72). Based on this classification, the presence of phytases can be
related. 3-phytases are present in bacteria (Methanobacterium thermophila, Bacil-
lus sp., and Klebsiella) and fungi (Aspergillus niger, Pseudomonas, Cicer arietinum
Cicer arietinum) (Sajidan et al. 2004); 4-phytases and 6-phytases are extracted from
E. coli, Yersinia sp., A. niger, Peniphora lycii, grains and oilseeds of higher plants
(Barrientos et al. 1994); and 5-phytases are found in Selenomonas sp. and lily pollen
(Puhl et al. 2008). Few phytases extracted from bacteria and fungi are highly specific
for PAwhile others exhibit broad substrate specificity by hydrolyzing structures such
as ATP, ADP, glucose-6-phosphate, and phenyl phosphate that are dissimilar to PA.

Other classification includes on the basis of their catalytic activity, position of
the hydrolysis initiation site of phytate molecule, and protein motifs. On the basis of
catalyticmachinery, phytases are subdivided into four groups such asβ-propeller phy-
tases (BPP) (E.C.3.1.3.8), protein tyrosine phosphatase-like phytases (PTP), purple
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acid phytases (PAP) (E.C.3.1.3.2), and histidine acid phosphate (HAP) (E.C.3.1.3.2)
(Mullaney andUllah 2003). Among these, BPPs have a strong stability under alkaline
conditions whereas the others have acidic pH optima (Tye et al. 2002). BPPs show
90–98% sequence identity among themselves revealing conserved motifs that are
characteristically pursued by researchers. HAPs, on the other hand, share a catalytic
N terminal RHGXRXP motif and C terminal HD motif that constitute the active
site that favor a histidine involved nucleophilic assault in the active site followed by
hydrolysis of phosphohistidine intermediate (Vincent et al. 1992). An overall reac-
tion of phytases on phytic acid is given in Fig. 13.1a, b. Presently, the activation of
phytases is undertaken by the consumers utilizing production or preliminary treat-
ment procedures that are expensive, troublesome, and/or time-consuming. Phytases
from microbial origins are now considered with great potential for development of
phytic acid inhibited grains or plant sources ready for human consumption. Strains
of microbial origins such as bacteria and fungi have been banked on for produc-
tion of phytase. Bacteria from soil have been confirmed for phytase production by
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screening on phytase screening medium (Singh et al. 2013) and genera such as Kleb-
siella, Bacillus, and Pseudomonas have also been identified (Griener and Carlsson
2006). Among the ~230 fungal isolates screened, belonging toRhizopus,Penicillium,
Mucor, and Aspergillus, extracellular phytase production was confirmed to be most
active inA. niger (Shieh andWare 1968),Aspergillus ficuum, followed byAspergillus
oryzae, Aspergillus flavus, and Aspergillus repen (Howson and Davis 1983).

13.6 Phytases and Their Ideal Transgenic Plant Expression

An initial validation of the phytases that showed high activity for hydrolysis of
phosphorus among early studies showed specificity for the phytate as the only source
of phosphorus was ensured. Irving and Cosgrove (1972) validate the HAP from A.
niger (PhyA) as a candidate of interest as it showed a bimodal pH profile at 2
and 5.5. Such studies laid the foundation for recombinant DNA technology that
ensured the cloning and overexpression of such phytases for commercialization and
review (Mullaney et al. 1991; Konietzny and Greiner 2002; Rao et al. 2009; Yao
et al. 2012; Lei et al. 2013; Fan et al. 2013). Such ease in overexpression strategies
shifted the studies from bulk production to application of phytases according to their
biophysical and biochemical efficiency such as proteolytic tolerance, heat, and pH
stability with catalytic efficiency. AppA phytases from E. coli, P. lycii, and A. niger
(AnPhyB) belonging to HAPs have been pursued for commercialization as their
pH profile is compatible in many animal models. Interestingly, comparative studies
reveal E. coli phytases are less thermostable than fungal equivalents. Therefore, the
search for phytase has now exploded that starts with mining of new phytases for
biotechnological applications that reveal in-depth information of their enzymatic
potential and structure. In accordance with many reviews (Rao et al. 2009; Li et al.
2010; Yao et al. 2012) and in view of the search for ideal phytase, sources for
phytases have been extended to extreme environments such as glaciers (Huang et al.
2009) and thermophilic fungi (Singh and Satyanarayana 2011). The integration of
bioinformatics in the field of phytases has made an impression with the recognition
of fingerprint motifs and the increased number of phytase gene sequences in public
databases (Fan et al. 2013).

Three approaches are attempted by researchers to reduce the PA levels in grains
and seeds as ameans to biofortification. These include generation of transgenic plants
by manipulations of the PA biosynthetic pathway, expression of phytases in the edi-
ble portions of transgenic plants, and the use of conventional breeding approaches
to induce mutations in low PA mutants. Alleviation of phytate levels in crops has
been a major success using the strategy of recombinant microbial phytase in the
edible parts of transgenic plants. The edited or generated transgenic plants serve as
bioreactors for the production of phytases that can be bio-farmed for improving phy-
toremediation and plant phosphorus acquisition in a cost-effective approach. Such
transgenic approaches favor the use of microbial phytases than plant phytases as
the latter are relatively less thermostable and have low efficacy (Reddy et al. 2013).



13 Phytate-Free Food Crops: Phytases—The Game Changers … 409

Genetically modified low phytic acid plants could be a novel contribution to the
reduction of micronutrient malnutrition and animal waste phosphorus. Nevertheless,
additional research needs to be done to understand the molecular biology and genet-
ics of phytic acid accumulation during seed development, the negative and positive
roles of dietary phytic acid in human health, and the feasibility and effectiveness of
the sustainable implementation of this approach at the community level. The TILL-
ING population was developed by random mutations using ethyl methanesulfonate
(EMS) chemical mutagen agents for generation of low phytic acid content as well
as high endogenous phytase activity showing mutants in Pusa-Basmati rice (Shukla
and Singh 2012). RNAi technology has been used to reduce maize phytic acid by
silencingMRP4ATP-binding cassette (ABC) transporter (Shi et al. 2007;Gupta et al.
2011). In diets, based on unrefined cereals or legumes, the bioavailability of several
micronutrients, such as Ca, Fe, Zn, I as well as vitamins can be quite low, due to
“high phytic acid” (PA or phytate)—an antinutrient chelator of minerals, micronu-
trients, proteins, starch, and vitamins causing metabolic disorders related to these
nutritional factors. Transgenic tomatoes expressing the Bacillus phytase gene have
been successfully developed. T4 lines have been validated viamolecular analyses and
feed trials in mice [Kaul et al. under review, 2019; Patent File No: 201711038417
(TEMP/E-1/39247/2017-DEL)]. We visualize that our phytase-rich tomatoes with
enhanced antioxidant content (beta-carotene, lycopene); when consumed raw shall
serve as a first commercially available product that can be targeted to developing
countries with huge populations surviving on monotonous plant-based diets contain-
ing high PA or phytate content with no or low supplementation of dairy or animal
products.

In the past ten years, combined efforts of breeding programs and plant genetics
have resulted in newvariants of rice, barley, andmaize that produce very low amounts
of phytic acid and normal amounts to total phosphorus. These mutants are largely
a result of single genes with recessive alleles that encode or contribute to phytic
acid synthesis. Further improvements have been observed in breeding new cultivars
with high yields when grown under optimal to nominal conditions. A wave of new
techniques has now distanced the use of classical genetics and standard plant breed-
ing methods. The resultant low-phytate cultivars and hybrids have been recognized
widely for their contribution in balancing the nutritional requirement of the world in
spite of the current global debate on transgenics.

13.7 Conclusion

For optimum use of the beneficial phytate activities in the gut, phytate, on the one
hand, has to be degraded to avoid inhibitory effects on the intestinal mineral absorp-
tion. On the other hand, if anticancer, ant oxidative, and anticalcification activities of
phytate are to be used, any phytate hydrolysis would be counterproductive. Thus, the
actual demand of a population to either improve mineral and trace element bioavail-
ability or to help prevent cancer, kidney stone formation or other civilization diseases,
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will decide whether or not phytate will be welcome in our daily diet. It is important
that researchers continue both to utilize existing resources and to explore the new
genomic tools (VandenBosch and Stacey 2003) for modifying the phytate content of
seeds. Undoubtedly, any potential negative consequences to plant growth and devel-
opment will need to be evaluated and monitored in newly developed plant lines.
When indirect consequences do arise, however, they should be viewed merely as
additional challenges to be overcome as we strive to develop a more nutritious food
supply for a growing world.
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Chapter 14
Biofortification in Pearl Millet: From
Conception to Dissemination

Alphonse Vinoth and Ramalingam Ravindhran

Abstract Biofortification is an economical and sustainable process of delivering
essential micronutrients through staple crops. The biofortified crops developed by
HarvestPlus through conventional breeding continue to reach the target populations
of Asia and Africa in order to reduce the burden of iron, zinc and vitamin A defi-
ciency. Pearl millet, a dryland crop of the arid and semi-arid tropics is a suitable crop
for iron biofortification as it harbours sufficient genetic variability for grain iron (Fe)
and zinc (Zn) in the existing germplasm. Zn is highly correlated with grain Fe and
therefore enhanced as an associated trait during the breeding for high-iron pearl mil-
let. ICTP 8203 Fe-10-2, an iron-biofortified pearl millet (Fe-PM) variety developed
via intra-population improvement of iniadi germplasm, was commercially released
for cultivation in Maharashtra, India, by 2014. Efficacy trials undertaken in women
and children feeding on Fe-PM meals revealed an enhancement in their micronu-
trient status as well as their functional outcomes. Disbursement of Fe-PM through
public–private seedmarkets worked out to be cost-effective. Farmers readily adopted
Fe-PM for cultivation based on its superior agronomic performance rather than the
preference for consumer attributes. On the other hand, consumers expressed their
willingness to pay for Fe-PM over regular pearl millet because of its favourable sen-
sory characteristics. Therefore, investment on high-Fe hybrids would bridge the gap
between the farmers and consumers acceptance of biofortified millets. Iron bioforti-
fication is also limited by the presence of antinutrients like phytates and polyphenols
as they hinder the Fe bioavailability. The development of biofortified crops with
reduced antinutrients needs careful evaluation as they have a significant role in pro-
tection against diseases and seedling growth. This reviewpaper deliberately describes
the success of high-Fe pearl millet in India and the lessons to be learnt for expanding
the biofortification efforts to other small millets.
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Abbreviations

AAS Atomic absorption spectroscopy
CGIAR Consultative Group on International Agricultural Research
DALY Disability-adjusted life year
EAR Estimated average requirement
EEG Electroencephalography
Fe Iron
Fe-PM Iron-biofortified pearl millet
G × E Genotype-by-environment
Hb Haemoglobin
ICP-OES Inductively coupled plasma optical emission spectroscopy
ICRISAT International Crops Research Institute for the Semi-Arid Tropics
Lpa Low-phytate mutants
NSSO National Sample Survey Office
OPV Open-pollinated variety
PA Phytic acid
SAU State Agricultural University
UNICEF United Nations International Children’s Emergency Fund
XRF X-ray fluorescence spectroscopy
Zn Zinc

14.1 Introduction

Micronutrients are vital components of human nutrition predominantly obtained
from plant-based foods. Plant dietary sources like fruits and vegetables provide high
amounts of micronutrients. However, majority of the worlds’ population inhabiting
developing countries cannot afford for diverse diet and instead rely solely on staple
crops (rice, wheat, millet, cassava and maize) containing low levels of micronutri-
ents. The nutritional insecurity prevailing worldwide over the years has bloomed
into a serious global challenge of the humankind, rightly termed as hidden hunger
(Welch and Graham 1999; Graham et al. 2001; Bouis et al. 2011). The need for
immediate attention to curtail micronutrient malnutrition emerged from the esti-
mates testifying 12 million low-birth-weight births per year and malnourishment in
around 162 million preschool children (Copenhagen Consensus 2004; http://www.
copenhagenconsensus.com). Another statistical survey cited iron (Fe) deficiency

http://www.copenhagenconsensus.com
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afflicting approximately 2.7 billion people (Hirschi 2009). Micronutrient malnutri-
tion increases the mortality and morbidity rates, especially in children and pregnant
women (Welch and Graham 1999). In order to overcome the widespread micronu-
trient malnutrition, several countries adopted fortification of processed foods, but
met with limited success owing to the lack of industrial agriculture, food processing
and distribution networks (Pfeiffer and McClafferty 2007). This scenario led to the
advent of an alternative strategy called biofortification.

Plant-based food biofortification programme was launched in 2004 by Harvest-
Plus (for detailed history, visit www.harvestplus.org) with the goal of reducing
micronutrient malnutrition in Asia and Africa. It was envisioned as a sustainable
and cost-effective approach for better nutrition amongst the rural poor who cannot
afford commercially processed fortified foods (Bouis 1999; Meenakshi et al. 2010;
Hotz 2013). Biofortification is an agricultural strategy that aims to develop cropswith
higher micronutrient concentration and bioavailability in their edible tissues (White
and Broadley 2005; Nestel et al. 2006; Mayer et al. 2008). Three major nutrients
(iron, zinc and vitamin A) were the targets to be increased upon in edible parts of
seven staple food crops (rice, beans, cassava, maize, sweet potatoes, pearl millet and
wheat) (Carvalho and Vasconcelos 2013). HarvestPlus preferred conventional breed-
ing techniques over genetic engineering to biofortify staple crops as the former had
widespread public acceptance and a simple legal framework (Bouis 2000; Hirschi
2009; Winkler 2011). The exploitation of sufficient genetic variation for grain nutri-
ent density from the germplasm collections of seven staples resulted in the production
of biofortified crops through a multistage breeding process (Fig. 14.1).

Fig. 14.1 Objectives of biofortification programmebyHarvestPlus to develop high-iron pearlmillet

http://www.harvestplus.org
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14.2 Iron Deficiency—Global Status and Health
Consequences

Iron (Fe) is the key functional component of haemoglobin (Hb), responsible for oxy-
gen transport to body tissues through the blood. Fe is also important for the proper
functioning of cardiac and skeletal muscles and is critical for brain development in
children (Gangashetty et al. 2016). The recommended dietary allowance of Fe is high
forwomen (15mg/day) thanmen and children (10mg/day) (FAO2003; ICMR2009).
Lack of Fe below the recommended levels (<12 g/dl of Hb) leads to iron deficiency
anaemia, which is considerably found in one-third of the world’s population (Boccio
and Iyengar 2003). The United Nations International Children’s Emergency Fund
report states the occurrence of Fe deficiency in 67% of children in Africa (UNICEF
2004). In India, about 70% of the children below 3 years and women of reproductive
age suffer from anaemia (Krishnaswamy 2009). Iron deficiency anaemia limits the
work efficiency of adults thus bringing a severe setback for the economic develop-
ment of a nation (Shivran 2016). Fe deficiency results from haemorrhage, increased
demand due to diseases and inadequate intake/bioavailability from diet (Rosegrant
and Cline 2003; Lemke 2005; Skalicky et al. 2006), of which the latter which is
predominant in developing countries affects the foetal brain development and dimin-
ishes the immunity, physical growth and cognitive abilities of children (Caballero
2002).

14.3 Pearl Millet—The Crop Vehicle for Iron
Biofortification in India

Pearl millet [Pennisetum glaucum (L.) R. Br.] is a staple cereal of rural populations
(~0.2 billion) inhabiting the arid and semi-arid tropics of central and southern India
and sub-Saharan Africa. It is the sixth most important cereal reaching a global annual
production of 20 million metric tons (Gangashetty et al. 2016). Africa (countries
spreading over 7000 km fromSenegal to Somalia) and India contribute an equal share
to worlds’ pearl millet production. It was domesticated as early as 4000 years ago
in Africa which then spread to India and attained the status of much-favoured staple
food grain, feed and fodder crop in drought-prone areas (Gangashetty et al. 2016).
In India, Gujarat, Maharashtra and Rajasthan are the major pearl millet-growing
states, altogether accounting for 70% of production and the highest concentration of
consumers. According to National Sample Survey Office (NSSO) Report No. 508,
pearl millet is consumed by more than 90% of rural and urban populations belong-
ing to the low- and middle-income groups (Basavaraj et al. 2010). Pearl millet is
highly preferred for cultivation by marginal farmers on unirrigated lands owing to
its adaptability to tolerate heat and high productivity under conditions of poor soil
fertility and low-moisture content (Gupta et al. 2015). Apart from its characteristic
resistance to abiotic stress, pearl millet grains are highly nutritious with a balanced
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amino acid profile, low glycemic index and gluten-free (Andrews and Kumar 1992;
Dahlberg et al. 2004; Sehgal et al. 2004). Considering the nutrient richness, high
productivity under harsh environmental conditions and utilization by low-income
people, HarvestPlus recommended pearl millet as the crop for iron biofortification in
India, while West Africa remained the choice of a secondary country. Iron bioforti-
fication was the primary trait of focus in pearl millet with zinc (Zn) as an associated
trait. The breeding target levels for iron was set up at 77 μg/g, an increment of about
30 μg/g from the baseline.

14.4 Conventional Breeding Process to Develop High-Iron
Pearl Millet

14.4.1 Phase I (Discovery, 2003–2008)

Breeding of crops for any desirable trait involves the selection of parental mate-
rial as a prerequisite. Elite parental lines are chosen based on the magnitude of
genetic variability for the desirable trait in the germplasm pool, correlationwith agro-
morphological traits and the extent to which the trait is heritable. Genetic variability
for grain nutrient content is influenced by agronomic practices, soil fertility, geno-
type and environment. The HarvestPlus project run by International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India, initiated an inten-
sive search for sources of higher grain Fe content in pearl millet by the year 2004
(Velu et al. 2007). The study carried out across two seasons identified the entries
(developed largely from the iniadi germplasm known for its early maturity, large
seed size and compact panicles) with high levels of grain Fe, almost 50% greater
than that in maize. Most of these varieties exhibited a positive correlation between
the Fe and Zn content indicating the likelihood of simultaneous genetic improvement
for the elevated levels of both micronutrients. Another notable finding was the sig-
nificant positive correlation of 1000-grain weight with Fe and Zn content per grain
(Velu et al. 2007). In another study, Velu et al. (2008) screened 68 improved pop-
ulations comprising of composites and open-pollinated varieties (OPVs) developed
by ICRISAT for grain Fe and Zn content. The results from the experimental trials
ranked ICTP 8203 amongst the top five with higher grain Fe (79.9 mg/kg) and Zn
(47.1 mg/kg) content. ICTP 8203 is an OPV developed from iniadi landrace that was
commercially released in 1988 and still under cultivation in India (Rai et al. 1990).
Sufficient genetic variability recorded for grain nutrients amongst the S1 progenies of
ICTP 8203 suggested good prospects for intra-population improvement. Moreover,
the progenies with high grain nutrients were the earliest to flower (Velu et al. 2008).

Many other investigations on pearl millet accessions also revealed no significant
correlation between grain yield and Fe and Zn densities (Gupta et al. 2009; Govin-
daraj et al. 2009; Burger et al. 2014). This brought out the fact that breeding for
grain nutrient density could be achieved without compromising on large grain size



418 A. Vinoth and R. Ravindhran

and grain yield, the agronomic traits preferred by the farmers in pearl millet-growing
regions of India and Africa. Heritability estimate is a useful measure in biofortifi-
cation programmes as it determines the genetic variation amongst individuals in a
population for a specific trait and the relative amount of heritable portion of such
variation (Gomez-Becerra et al. 2010). High heritability for grain Fe andZn (70–80%
for both micronutrients) reported in pearl millet indicates the predominance of addi-
tive gene effects (Velu et al. 2007; Gupta et al. 2009; Govindaraj et al. 2011, 2013;
Bashir et al. 2014; Kanatti et al. 2014).

14.4.2 Phase II (Development, 2009–2013)

Pearl millet biofortification for high-Fe content was focussed on three objectives
to identify and exploit suitable genetic material (Fig. 14.1). Conventional breeding
methods commonly employed for varietal improvement in pearl millet include pop-
ulation improvement approaches, mass selection and marker-assisted selection. The
population improvement approach was favoured by public and private sector compa-
nies as there was sufficient genetic variability for grain Fe and Zn in breeding lines,
populations and hybrid parents. As large intra-population variability for Fe and Zn
densities existed in ICTP 8203, seven improved progenies of the same cultivar were
developed between 2009 and 2010 (Rai et al. 2013). Genotype-by-environment (G×
E) interaction complicates the breeding process as it reduces the overall genetic gains
of desired traits (Shafii and Price 1998). In pearl millet biofortification programme,
multilocation trials were deemed mandatory as significant G × E interaction effect
for grain Fe and Zn densities was recorded (Gupta et al. 2009; Velu et al. 2011;
Govindaraj et al. 2013; Burger et al. 2014). On-farm trials of four progenies of ICTP
8203 out of seven from the previous study by Rai et al. (2013) during 2010 and 2011
across India identified ICTP 8203 Fe-10-2 to contain 9% more Fe and 11% greater
yield than the parental line. This improved version of a commercial OPV containing
100% of the iron target was officially released as the first biofortified crop (ICTP
8203-Fe; designated hereafter as Fe-PM) in Maharashtra, India, by 2013. Later, it
was designated as “Dhanshakti” and released for cultivation by February 2014 in all
pearl millet-growing states of India.

Concurrently, a high-Fe version (ICMV 221 Fe-11-1) of another OPV was devel-
oped by intra-population selection for Fe density (Rai et al. 2013). In view of the
development of biofortified hybrids as the prime focus of pearl millet biofortifica-
tion programme,multilocation field trials of hybridswere conducted during 2011 and
2012. An experimental hybrid (ICMH 1201) had Fe and Zn density comparable to
ICTP8203 butwith 38%higher yield (Rai et al. 2013). Breeding lines, hybrid parents,
improved populations and composites of pearl millet bred for grain nutrient density
were largely developed from iniadi germplasm. A search for accessions with still
higher Fe and Zn than Fe-PM was initiated with 297 accessions from Togo, Ghana
and Burkina Faso. Of these, 27 accessions had Fe and Zn density in the range of
95–121 mg/kg and 59–87 mg/kg, respectively (Rai et al. 2014). Therefore, the
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prospects of developing high-yielding hybrids with higher levels of Fe and Zn den-
sities loom high using iniadi germplasm as the parental breeding lines.

14.5 Analytical Tools to Measure Iron and Zinc

Measurement of trace micronutrients in grains is an important aspect of biofortifi-
cation programme during the breeding process. Various analytical techniques that
accurately determine the levels of micronutrients, especially Fe and Zn in bioforti-
fied crops, include inductively coupled plasma optical emission spectroscopy (ICP-
OES), atomic absorption spectroscopy (AAS), colorimetric staining and X-ray fluo-
rescence spectroscopy (XRF). Amongst these tools, ICP-OES has high accuracy and
sensitivity with detection limits of μg/kg and therefore considered to be the “gold
standard” for micronutrient analysis in plant samples. AAS and ICP-OES require
sample pre-processing which is laborious and expensive, while colorimetric stain-
ing is time-consuming, and therefore, the above tools are recommended only for a
limited number of samples. XRF has recently been employed by HarvestPlus for
micronutrient analysis in whole grains and flour. XRF is the ideally suited analytical
instrument for micronutrient breeding programmes as it is cheaper, easy to operate,
facilitates large-scale screening and does not require pre-processing of samples. Two
XRF instruments, namely Oxford Instruments X-Supreme 8000 and the Bruker S2
Ranger installed by HarvestPlus can process around 100–200 samples per day. XRF
and ICP-OES thus complement each other in selecting nutrient-dense lines during
various stages of the breeding programme (Stangoulis and Guild 2014).

14.6 Efficacy Trials and Nutrition Evidence

Efficacy trials determine the nutritional impact of biofortification in humans who
consume biofortified foods by a randomized, controlled experimental study design
(Haas 2014). The potential of biofortified crops in curbing the hidden hunger
could be truly realized by their micronutrient bioavailability. Bioavailability is
defined as the amount of nutrient that fills the gap between intake and daily require-
ment; in nutrition terms, it refers to the nutrients in a food that is absorbable and uti-
lizable for body metabolic processes. The breeding target set up by HarvestPlus for
preschool children (4–6 years old) and non-pregnant, non-lactating women of repro-
ductive age were that the incremental amount of iron and zinc in biofortified pearl
millet could provide approximately 30 and 40% of the Estimated Average Require-
ment (EAR), respectively. Consequently, the bioavailability of additional iron and
zinc (assumed to be 5% for Fe and 25% for Zn) from the biofortified pearl millet
determines the actual improvement in micronutrient status of deficient populations
(Saltzman et al. 2013).
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A study was undertaken by Cercamondi et al. (2013) amongst the young Beninese
women of southern Nigeria to ascertain the use of iron-biofortified pearl millet (Fe-
PM) as a promising approach to combat iron deficiency by comparing its efficacy
against regular-iron pearl millet (DG-9444) and postharvest iron-fortified pearl mil-
let. The iron bioavailability indicators, namely fractional iron absorption and total
iron absorbed, were investigated from the blood samples after a 5-d composite meal
design by stable isotope technique (for detailed study design, refer Cercamondi et al.
2013). The data obtained from 20 women at baseline, during the feeding series and
endpoint revealed an increased absorption of total iron (~2 times) from Fe-PMmeals
comparedwith regular-ironmilletmeals. This clearly points to the increased bioavail-
ability of additional iron (~3.5 times) from Fe-PM, despite the fact that it contained
higher phytic acid (PA) concentrations (~2 mg/g) than the regular-iron millet. The
increase in the concentration of PA was, however, counterbalanced by the reduced
molar ratio of PA:iron, plummeting the chelating activity of PA (Cercamondi et al.
2013). Concurrently, another team lead by K. Michael Hambidge, Section of Nutri-
tion, Department of Pediatrics, University of Colorado Denver, headed towards India
to study the efficacy of Fe-PM (Kodkany et al. 2013). The feeding trial comprising of
young children aged 2 years revealed that the absorption of Fe and Zn from Fe-PM
test meals like sheera, uppama and roti exceeded the EAR for this age group. As
observed in the previous study, enhanced concentrations of Fe and Zn in pearl millet
resulting from biofortification efforts was bioavailable due to the decreased molar
ratio of phytate:Fe/Zn in the biofortified grain (Kodkany et al. 2013).

HarvestPlus not only visualized biofortified staple crops as a complementary
intervention to enhance the micronutrient status but also to improve the functional
outcomes of deficient populations in terms of cognitive performance and physical
and brain activity. The affiliates of the HarvestPlus gathered at the American Society
of Nutrition Scientific Sessions and Annual Meeting at Experimental Biology 2014
in SanDiego, CA, for the symposium “Are Biofortified Staple FoodCrops Improving
Vitamin A and Iron Status in Women and Children?” and discussed the preliminary
findings from six efficacy trials and two effectiveness trials (De Moura et al. 2014).
The total body iron status directly impacts the work efficiency by regulating the
physical performance (Haas and Brownlie 2001). J. D. Haas and S. V. Luna recorded
significant improvement in the network efficiency of Indian adolescent boys and girls
after 6 months of consuming Fe-PM. The subsamples of participants from the former
study conducted by Haas (2014) were also evaluated for perceptual and cognitive
performance and associated brain dynamics using electroencephalography (EEG).
Surprisingly, Drs. Murray-Kolb and Wenger documented changes in both behaviour
and brain dynamics as a response to the variation in iron status of individuals feeding
on Fe-PM. Likewise, Finklestein et al. (2015) also disclosed the influence of Fe-PM
in resolving the iron deficiency amongst the school-aged children (12–16 years). The
results of the above studieswere comparable to iron fortification and supplementation
trials and thus strongly prove that biofortified millets could guarantee to reduce the
burden of micronutrient deficiency in poor, rural-based families of Asia and Africa
who consume millets as the primary food staple.
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14.7 Delivery Models, Consumer Acceptance
and Cost-Effectiveness

The effectiveness of biofortification can be measured only by population-based stud-
ies since the product development alone cannot bring out the end results. The factors
that influence increased consumption of biofortified crops include effective dissem-
ination and marketing, farmers demand, consumer education and acceptance and
intervention implementation costs. HarvestPlus has taken advantage of the well-
established seed distribution system in India, and this route would more likely facil-
itate wide dissemination of Fe-PM at limited costs. The partnership of HarvestPlus
with Nirmal Seeds Ltd., and Shakti Vardhak, the leading commercial entities in
pearl millet seed sales, to market and deliver Fe-PM is a sustainable strategy for the
future. Presently, HarvestPlus encourages the development of high-yielding, high-
iron hybrids with stable yield and iron performance for the different agro-ecological
zones in India by partnering with five State Agricultural Universities (SAUs) and 15
seed companies, most notably Nirmal Seeds and Tempest India. The SAUs and seed
companies expedite genotype-by-environment (G× E) testing of hybrids and inbred
lines developed at ICRISAT to raise their own commercial high-iron hybrids, for
which the iron content is measured free of charge by HarvestPlus (Cherian 2014; Rai
2014). This initiative has set a target to reach at least 1.5 million farming households
by the end of 2018 through the private and public sector seed companies. Nonethe-
less, the private seed companiesmust bewell supported by the ConsultativeGroup on
International Agricultural Research (CGIAR) centre to maintain the genetic purity
of parental lines.

Farmers tend to readily adopt Fe-PM based on its agronomic performances like
drought tolerance, resistance to downymildew and end-use quality traits. It is always
worthy investigating the acceptance and valuation of a biofortified staple food crop
by farmers before its commercialization. In this context, a study was undertaken
by Birol et al. (2011) during the development phase of Fe-PM to understand the
farmers’ appraisal of various consumptions and production attributes of pearl millet
seeds. The straightforward recommendation from the study was the emergence of
trade-offs between nutritional traits and yield. The consumers and the sale producers
differ in their preference for traits, and therefore, hybrid varieties of Fe-PM need to
be raised to cover a large number of target groups (Birol et al. 2011).

Consumer acceptance plays a crucial role in the widespread consumption of bio-
fortified foods by target populations. As the iron enrichment in pearl millet is an
invisible trait, consumers’ acceptance is expected to be quite high and it would be
preferred over conventional pearl millet based on other sensory traits such as shape,
size, texture, colour, odour and cooking qualities (Birol et al. 2015; Huey et al.
2017). Various other aspects that reflect the consumer acceptance are their willing-
ness to pay for biofortified varieties over conventional varieties, nutritional infor-
mation, branding and the nature of agency that certifies and delivers the biofortified
crops. A study was undertaken by Banerji et al. (2016) to evaluate the rural con-
sumers’ preference for Fe-PM grains and bhakri (a thick flatbread) in three districts
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of Maharashtra, India. This is the first consumer acceptance study for a mineral-
biofortified crop that helped us to understand people’s preference for Fe-PM over
the conventional varieties despite the lack of visual differences. The study revealed
that the consumerswerewilling to pay a substantial premium for Fe-PMevenwithout
the nutrition information owing to their favourable sensory characteristics. Also, cer-
tification, branding and promotion of Fe-PM through international agencies resulted
in higher adoption and consumption rates (Banerji et al. 2016).

Cost-effectiveness analysis is another important criterion to ascertain if the inter-
vention is economically viable and sustainable in developing countries. The effec-
tiveness of biofortified crops was measured based on the cost-to-benefit ratio in the
early years (Bouis 2003), while recently the saving of disability-adjusted life years
(DALYs) is considered to be a significant measure of biofortification success (Stein
et al. 2005; Meenakshi et al. 2010). The effectiveness studies so far were focussed
upon orange sweet potato and maize, as a visual change in these biofortified foods
required greater public sensitization. A large-scale multidisciplinary effectiveness
study on the delivery models of vitamin A-biofortified sweet potato in African coun-
tries has revealed the biofortification intervention for human nutrition to cost about
$15–20 per DALY averted, thus working out to be cost-effective by World Bank
standards (De Moura et al. 2014). Likewise, the use of Fe-PM is expected to cost
$US 2–20 per DALY in Africa (White and Broadley 2009), which is economically
viable compared to dietary diversification, supplementation or food fortification pro-
grammes. A nationwide community sensitization on the need for adoption, diffusion
and consumption of Fe-PM by poor populations is the need of the hour to reap the
fullest benefits of nutrition from biofortified millets.

14.8 Antinutrients—Hindrance to Fe and Zn
Bioavailability and Ways to Deal with It

Antinutrients are dietary inhibitors that chelate essential mineral elements thereby
lowering their bioavailability. Antinutrients include phytates, tannins, polyphenols
and dietary fibre (Gibson et al. 1994; Liu et al. 2006; Hambidge et al. 2010). The
proportion of Fe and Zn absorbed from plant-based diets in humans correspond to 5
and 25%, respectively (Hotz and McClafferty 2007). The bioavailability of Fe and
Zn is prominently affected by the presence of phytate in cereal grains when the molar
ratio of phytate/Fe and phytate/Zn exceeds above 1 and 6, respectively (Lönnerdal
2002; Hurrell 2003). The dose-response inhibitory effect of phytate is gradual for Zn
while being acute for Fe bioavailability. Similarly, polyphenolic compounds strongly
inhibit iron bioavailability as reported in pearl millet by Lestienne et al. (2005).

Intra-specific genetic variation for grain phytate concentration has been recorded
in pearl millet (Abdalla et al. 1998). Raboy (2003, 2007) reported both natural
and induced low-phytate mutants (lpa) in rice, maize, wheat, barley and soybean.
Consumption of these lpa mutants over conventional cereals improved the mineral
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nutrition in humans (Adams et al. 2002; Mendoza 2002). Moreover, a weak correla-
tion between grain phytate and mineral concentration (Cichy et al. 2005; Reddy et al.
2005) and non-overlapping of QTLs controlling these traits (Stangoulis et al. 2007;
Waters and Grusak 2008) suggest the possibility to breed for nutrient-dense crops
with low-phytate concentrations. Breeding for high iron in staples also resulted in
increased concentrations of Fe absorption inhibitor, polyphenols (Tako et al. 2014,
2015). Fe-PM had elevated levels of 15 unique parent polyphenolic aglycones that
inhibited Fe absorption in in vitro/Caco-2 cell and Gallus gallus models. Therefore,
the increased Fe content in Fe-PM did not lead to a proportional increase in serum
ferritin (Tako et al. 2015).

Phytates and polyphenols, though being designated as antinutrients in crops, from
the nutritionists’ point of view, they are essential for protection against chronic dis-
eases (Vucenik and Shamsuddin 2003, 2006; Zern and Fernandez 2005). From the
agricultural perspective, reduced levels of these compounds lower the yield perfor-
mance and decrease the resistance to pests (Bregitzer and Raboy 2006). Therefore,
enhancement of mineral bioavailability in crops by reduction in the levels of antin-
utrients complicates the process of biofortification, as any such modifications have
certain implications on public health and agronomic performance. Various questions
arising in this aspect could only be addressed when long-term intervention studies
are undertaken with low-phytate staple foods.

14.9 Conclusions and Future Challenges

The journey to biofortify high-ironpearlmillet has traversedfifteen longyears till date
since its inception. The dissemination of biofortified pearl millet across the nation is
being realized by mainstreaming of the grain Fe trait into the breeding process. The
first-wave release of Fe-PM (ICTP 8203-Fe), an OPV, was limited in its potential
to expand as 95% of the area under cultivation in India is planted to hybrids. The
second-wave hybrid cultivars commercialized in 2014 produced 41% greater grain
yield than ICTP 8203-Fe but still unable to reach the target iron level set up by
HarvestPlus (>77 ppm; >100% target). This can be attributed to the environmental
influence on grain nutrient density which is poorly understood. A broader partnership
at the national levelmust be bridged between the public and private sectors to generate
multi-environment data on grain nutrient density in pearl millet.

Distribution of Fe-PM seeds is equally important to reach the target populations
on a large scale. It is highly recommended to exploit the institutional government
programmes, such as subsidized public food distribution system and school mid-
day meal programmes for the delivery of Fe-PM grains and value-added products.
Another potential hindrance to improve Fe status in target populations using Fe-
PM is the abundance of phytates. As breeding for low-phytate pearl millet is not
immediately attainable, novel transgenic, RNA silencing and genome engineering
approaches targeting phytic acid biosynthetic genes could be employed. Henceforth,
a one-time investment on the production of region-specific hybrid varieties with up
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to 100% of the iron target, reduced antinutrient factors and superior yield perfor-
mance and cost-effective delivery models would drive forward the HarvestPlus goal
of reducing iron deficiency in Asia and Africa.
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Chapter 15
Biotechnology for Nutritional
and Associated Processing Quality
Improvement in Potato
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Abstract Plant products comprise majority of human food intake globally. There-
fore, it is expected that better nutritional availability for humanbeings can be achieved
by nutritional improvement of food crops. Having achieved the food sufficiency in
almost all parts of the world provides us the leverage to have a paradigm shift from
“quantity increase” to “quality improvement” of crops. Improvement of quality will
be crucial in future; it is almost sure that there will be significant reduction in land
available for agriculture as compared to that available today. This means that in the
lesser agricultural land, we shall have to produce more food in terms of nutrients.
Potato (Solanum tuberosum L.) is the world’s third most important crop in terms of
human consumption. It is consumed in all countries of the world whether developing
or developed and has been used as a primary nutritional source in many diets and
as the basis for a variety of processed products. Ability of potato to produce highest
nutrition and dry matter on per unit area and time basis, among major food crops,
made FAO to declare it the crop to address future global food security and poverty
alleviation during 2008. Although potato is a rich source of several nutrients such
as protein, vitamin C, vitamin B6, and niacin, there is ample scope for improving
its nutritional quality and making it more nutritious food. Worldwide conventional
breeding technologies have given the mankind a large number of varieties having
improved traits as compared to their predecessors. It has led to the development of
a large numbers of cultivars of various crop plants which in turn has resulted in
tremendous increase in their productivity. Recent advancements in the field of agri-
cultural biotechnology have created a new domain to complement the methods of
plant breeding. These biotechnological approaches are also being used for improving
the nutritional quality as well as the processing attributes of potato. Using biotech-
nological tools, a large number of nutrients have been improved in potato. These
include phenolics, vitamins, essential amino acids, protein, carbohydrates, and min-
erals. Certain anti-nutritional factors have been reduced in certain potato cultivars.
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Processing attributes of potato have also been improved using biotechnological tools
such as gene silencing and gene editing. Recent improvement in genome-editing
technologies is expected to further assist plant researchers to develop nutrient-rich
potatoes in more targeted manner.

Keywords Genome editing · Essential amino acid · Phenolics · Resistant starch ·
Cold-induced sweetening · Protein · Anti-nutritional factors

15.1 Introduction

Universally, most of the past agricultural research programs and innovations have
been predominantly focused on increasing productivity of crops. In other words,
“quantity” has been the center around which majority of the crop improvement and
relevant resource management activities have been formulated and executed. There
is no doubt that this has been the requirement of the past times where producing and
making food accessible to every human being was globally the top-most priority.
Having achieved the food sufficiency in almost all parts of the world provides us the
leverage to have a paradigm shift from “quantity increase” to “quality improvement”
of crops. Improvement of quality also becomes essential as in future, it is expected
that there will be significant reduction in land available to agriculture as compared to
that is available today. This suggests that in the less land availability for agriculture,
we shall have to produce higher nutrients.

Food has been viewed as a source to supply amount of nutrients just sufficient for
survival and normal growth. However, since evolution, human desires have always
been to strive for continuous improvements in terms of physical as well as mental
strengths and longevity. Fulfilling these desires definitely necessitates looking into
our food components and significantly improving it in terms of their (food compo-
nents) nutritional quality. Agricultural innovation has always involved new, science-
based products and processes that have contributed reliable methods for increasing
productivity and sustainability. Biotechnology has introduced a new dimension to
such innovations, offering efficient and cost-effective means to produce a diverse
array of novel, value-added products and tools.

Globally, plant products comprise the vast majority of human food intake, irre-
spective of location or financial status. In some cultures, either by design or default,
plant-based nutrition actually comprises 100% of the diet. Therefore, it is to be
expected that nutritional improvement can be achieved via modifications of staple
crops. Further, it has been suggested that food components can influence physi-
ological processes at all stages of life. For example, inverse relationships have
been observed between carotenoid-rich foods and certain cancers (Botella-Pavia and
Rodriguez-Conception 2006). Other nutrient-related correlations link dietary fat and
fiber to the prevention of colon cancer, folate to the prevention of neural tube defects,
calcium to the prevention of osteoporosis, antioxidant nutrients to the scavenging of
reactive oxidant species and protection against oxidative damage of cells, etc.
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Potato has a definite place in the diet and is associated with good nutrition and
health. Potatoes are uniquely positioned to be a valuable source of dietary vitamins,
minerals, and phytonutrients because of their high per capita consumption. In most
of the developed world, potatoes are by far the most eaten vegetable. Because of this
high consumption, the vitamin and phytonutrient contents of potato will have much
more dietary relevance and impact than food eaten in sparse quantities. Potatoes yield
more calories per acre than any other major crop, a criterion that becomes even more
important in light of the planet’s ever-increasing population, food shortages, price
spikes, and the recent trend of utilizing farmland for other commercial purposes. Col-
lectively, these facts emphasize the impact potatoes can have on global nutrition in
the future. These facts imply that any significant improvement in nutritional quality
of potato will have even more than significant impact on human health and nutri-
tion. Here we have described the biotechnology-based approaches for improving the
quality traits of potato.

Worldwide conventional breeding technologies have given the mankind a large
number of varieties having improved traits as compared to their predecessors. It
has led to the development of a large numbers of cultivars of various crop plants
which in turn has resulted in tremendous increase in their productivity. In conven-
tional breeding, progeny inherit genes for both desirable and undesirable traits from
both parents. Desired characteristics are conserved, and undesirable ones are sup-
pressed/eliminated by repeatedly selecting superior individuals from each generation
to be the parents of the next. However, the long breeding cycles, high heterozygosi-
ties, lack of various degrees of preciseness in hybridization, low frequencies of desir-
able mutations, and limit of using the genetic resources of primary and secondary
gene pool have made new varietal development highly resource-demanding. Recent
advancements in the field of agricultural biotechnology have created a new domain
to complement the methods of plant breeding. These biotechnological approaches
are also being used/can be used for improving the nutritional quality as well as the
processing attributes of potato.

15.2 Tuber Composition and Dietary Importance of Potato

Nutrition is the processes by which we take in and utilize food substances. Nutri-
tion is essential for growth and development, health, and wellbeing. Essential nutri-
ents include carbohydrate, protein, fat, vitamins, minerals, and electrolytes. Rec-
ommended dietary allowance (RDA) of these important nutrients has been defined
worldwide and is revised/updated from time to time. RDA for these nutrients in India
is presented in (Table 15.1). Potatoes are approximately 80% water and 20% solids,
although it can vary widely from cultivar to cultivar (Fig. 15.1). Of the 20 g of solids
in a 100 g tuber, about 17 g are carbohydrate and 2 g protein. In addition to car-
bohydrates and proteins, potatoes are a good source of many vitamins and minerals
(Fig. 15.1). According to the USDA nutrient database, 100 g of potatoes contains 4%
of the RDA calorie intake, 33% of the RDA of vitamin C, the most abundant vitamin
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Table 15.1 Recommended dietary allowances for Indians

Nutrient Man Woman Pregnant
woman

Children
(1–9 years)

Girls
(10–17years)

Boys
(10–17years)

Protein
(g/d)

60 55 78 16.7–29.5 35–40 35–50

Calcium
(mg/d)

600 600 1200 600 800 800

Iron (mg/d) 17 21 35 9–16 27 32

Vitamin A
(b-carotene)
(μg/d)

4800 4800 6400 3200–4800 4800 4800

Thiamin
(mg/d)

1.2–1.7 1.0–1.4 1.6 0.5–0.8 1.0–1.2 1.1–1.5

Riboflavin
(mg/d)

1.4–2.1 1.1–1.7 2.0 0.6–1.0 1.2–1.4 1.3–1.8

Niacin
equivalent
(mg/d)

16–21 12–16 18 8–13 13–14 15–17

Pyridoxin
(mg/d)

2.0 2.0 2.5 0.9–1.6 1.6–2.0 1.6–2.0

Ascorbic
acid (mg/d)

40 40 60 40 40 40

Dietary
folate
(μg/d)

200 200 500 80–120 140–200 140–200

Vit. B12
(μg/d)

1 1 1.2 0.2–1.0 0.2–1.0 0.2–1.0

Magnesium
(mg/d)

340 310 310 50–100 160–235 120–195

Zinc (mg/d) 12 10 12 5–8 9–12 9–12

Adapted from National Institute of Nutrition (2011)

in potatoes and 12% of the RDA for potassium. Also, potato tubers contain an array
of other small molecules, many of which are phytonutrients. These include polyphe-
nols, flavonols, anthocyanins, phenolic compounds, carotenoids, polyamines, and
tocopherols. These phytonutrients play various important roles as improving immune
system, antioxidant activities, and health-promoting activities, thus are considered
as important nutritional quality constituents of potato. Because of the presence of
these important nutritional constituents in potato, potato is sometimes referred to as
a wholesome food, though levels of these important nutrients are invariably quite
low with reference to the RDA values for these nutrients. Therefore, there exists
ample scope to further improve the nutritional value of potato and make it a truly
wholesome food.
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Fig. 15.1 Nutrient contents
of potato (in 100 g after
boiling in skin and peeling
before consumption.
Partially adapted from www.
fao.org/potato-2008)

Water 
80 grams 

Energy 
87 kcal 

Thiamin 
0.11 mg 

Riboflavin 
0.2 mg 

Niacin 
1.44 mg 

Iron 
0.31 mg 

Protein 
1.8 g 

Fibre 
1.8 g 

Vitamin C
13 mg 

Carbohydrates 
17 g 

Phosphorus 
44 mg 

Calcium 
5 mg 

Potassium 
380 mg 

Fat 
0.1 g 

15.3 Biotechnological Tools for Assisting Conventional
Plant Breeding

Recent advancements in the field of agricultural biotechnology have created a new
domain to complement the methods of plant breeding. Genetic improvement can
be achieved through conventional as well as nonconventional approaches. There are
broadly three benefits to agriculture and crop improvement programs from use of
biotechnology. These are: (i) reduction of the duration of the breeding programmes,
(ii) to develop and multiply the healthy planting material, and (iii) genetically engi-
neering the crop plants for trait improvement. The first two benefits hold true for
all kinds of crop improvement and breeding programs. The third area, i.e., genetic
engineering or recombinant DNA technology, is target trait specific.

From consumer point of view, the main quality traits in potato are nutrient content
of the potato tubers, organoleptic characteristics including taste, flavor, and appear-
ance. Therefore, for researchers improving the quality traits means improving any
one, two, or all of these three characteristics of potatoes. Worldwide efforts are going
on to develop the cultivars of potato with improved quality characteristics. Biotech-
nological tools are being continuously enriched and improved. Potatoes being one of
the most important commodities for processing sector, its processing attributes are
also crucial for determining their suitability for processing purposes (e.g., making

http://www.fao.org/potato-2008
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chips, French fries, and dehydrated products). This chapter is restricted to nutritional
and processing trait improvement in potato using biotechnological approaches.

15.3.1 Genomic Resources for Biotechnological Applications
in Potato

The generation of huge volume of the datasets of DNA sequences has gone much
beyond everyone’s imaginations. This has been mainly possible due to tremendous
advancements in high throughputness of DNA sequencing technologies and the par-
allel development of sequencing storage servers and bioinformatics tools employed
for DNA sequence assembly and annotations. Even in case of vegetable crops, the
genome of the vegetables (including potato) belonging to more than 15 groups
(tomato, potato, sweet potato, pepper, carrot, cabbage, turnip, radish, brinjal, cucum-
ber, chenopodium, bitter gourd yam, beans, lettuce spinach, etc.) has been sequenced,
and the genome sequence database is available in public domain (Table 15.2). This
list of genome sequences of vegetable crops has expanded very rapidly. The assem-
bly of these sequenced genomes is at different levels of assembly (chromosomes,
scaffolds/contigs) (Table 15.2). Availability of genome sequences (including those
of other vegetable crops) can be of great as a source of efficient gene isoforms for
improving quality traits of potato through biotechnological approaches. Genome
resequencing, single-nucleotide polymorphism (SNP) discovery through genotypic
sequencing will be very useful in deciphering the genetic diversity at nucleotide
sequence levels. This information in turn can be used for establishing the association
between DNA/nucleotide variation and phenotypic/trait variability. The availability
of genome sequences of various specieswithin a clad/groupmaybe very useful in per-
forming genome-wide association mapping (GWAS) for various quality traits which
will be vital for developing effective breeding strategies aiming at targeted quality
trait(s) improvement. This may further help in identifying the more efficient alleles
associated with desirable quality traits. However, this may need additional informa-
tion about comparative kinetics of the enzymes encoded by these isoforms/alleles.

15.3.2 Transgenic-Based Tools for Quality Improvement
of Potato

Genetic engineering has the application in introducing the specific traits into plants. It
does not replace conventional breeding but add to the efficiency of crop improvement.
It is possible due to the fact that plants are totipotent, enabling regeneration of a new
plant from an isolated cell, tissue, or organ. Genetic engineering is the purposeful
addition of a foreign gene or genes to the genome of an organism with the aim to
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transfer the desired trait to the target plant. Genetic engineering physically removes
the DNA from one organism and transfers the gene(s) for one or a few traits into
another. Genetic engineering is mainly focused on the central dogma of biology.
The components of central dogma, i.e., DNA, RNA, and proteins are manipulated to
influence the targeted biological process, metabolic pathway or the trait. However,
to do this we need quite a bit of information about the molecular, genetic, and
biochemical basis of the target trait(s). Establishing the correlation between the gene
(DNA) and the targeted trait is very crucial in achieving the success in genetic
engineering. That is to identify the gene (s) which should/can be used for improving
the quality trait in question. Once the genes have been identified, then the second
question comes to search for the availability of the isoforms of the gene which
are more efficient in improving the targeted trait. These information are very vital.
Hence, the availability of genomic resources is proving to be very useful for genetic
engineering.

All the five steps of plant genetic engineering (i)DNAextraction, (ii) gene cloning,
(iii) designing suitable gene construct, (iv) plant transformation and regeneration,
and (v) backcross breeding are common to all plants except the transformation and
regeneration. Some plants are easy to transform and regenerate, whereas others are
recalcitrant. The transformation methods usually employed are broadly classified
into two categories, viz. direct transformation methods (electroporation or PEG-
mediated transformation of protoplasts, biolistics, etc.) and indirect transformation
methods (i.e., requiring an intermediate biological vector, usually the bacterium
Agrobacterium tumefaciens). Successful transformation, however, relies on various
phases, being the introduction and integration of DNA into the plant genome as well
as the selection and regeneration of transformed cells. Plant regeneration is generally
achieved via in vitro culture systems, using a range of explants and following two
alternative pathways: de novo shoot organogenesis or somatic embryogenesis. As a
result of worldwide R&D interventions, transformation and regeneration methods
for potatoes are available now which otherwise initially were considered recalcitrant
to in vitro regeneration. Due to these efforts, it is possible to genetically engineering
these vegetables crops for desired traits.

Through transgenic-based approaches, the desired traits can be manipulated by
two methods. These are overexpression of the specific gene(s), and repression or
inhibition of the specific gene, or both these together. Various tools and constructs
have been developed in order to perform these gene overexpression-mediated or gene
repression (silencing)-mediated genetic engineering for improvement of the targeted
trait. These aspects of the genetic engineering have been extensively described in
various literatures. The employed tools/approaches are continuously being improved
for their efficiency, precision, and biosafety. The transgenic technology has achieved
great success in supplementing crop breeding.
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15.3.3 Genome-Editing-Based Tools for Crop Improvement

Genome-editing biotechnological approach is the latest edition to the list of biotech-
nological approaches for crop improvement. Application of genome editing and
their principal has been reviewed by many researchers (Xiong et al. 2015). Genome-
editing technologies rely on engineered endonucleases (EENs) that cleave DNA in a
sequence-specific manner due to the presence of a sequence-specific DNA-binding
domain or RNA sequence. Through recognition of the specific DNA sequence, these
nucleases can efficiently and precisely cleave the targeted genes. The double-strand
breaks (DSBs) of DNA consequently result in cellular DNA repair mechanisms,
including homology-directed repair (HDR) and error-prone nonhomologous end
joining breaks (NHEJ), leading to gene modification at the target sites. There are
various kinds of engineered endonucleases used for genome editing and can be very
useful in improving quality traits of vegetable crops. These are very briefly described
as follows.

15.3.3.1 Zinc Finger Nucleases System

Zinc finger nucleases (ZFNs) are the first-generation EENs that were developed fol-
lowing the discovery of the functional principles of the Cys2-His2 zinc finger (ZF)
domains. Each ZF protein is able to recognize three contiguous nucleotide bases
within the DNA substrate. A generic ZFN monomer is fused by two functional dis-
tinct domains: an artificially prepared Cys2-His2 ZF domain at the N-terminal and
a nonspecific DNA cleavage domain of the Fok I DNA restriction enzyme at the C-
terminal. The dimerization of the Fok I domain is crucial for its enzymatic activity.
A ZFN dimer composed of two 3- or 4-ZF domains recognizes an 18- or 24-base
target sequence that, statistically, forms a unique site in the genomes of most organ-
isms. ZFNs have been successfully applied to gene modification in model plants
(Arabidopsis, tobacco, maize, etc.). However, obtaining functional ZFNs requires
an extensive and time-consuming screening process. Further, ZFNs have other lim-
itations, such as off-target effector even toxic to the host cells. These shortcomings
limit the application of ZFNs in plant genome editing.

15.3.3.2 Transcription Activator-Like Effector Nucleases System

Anewly engineered endonuclease, i.e., transcription activator-like effector nucleases
(TALENs), has rapidly emerged as an alternative to ZFNs for genome editing. The
broad applications of TALENs were transcription activator-like (TAL) effectors that
are secreted by the plant pathogenic bacteria Xanthomonas. After been pumped into
host cells, the TAL effectors enter the nucleus and bind to effector-specific sequences
in the host gene promoters and activate transcription. The DNA recognition property
of theTALeffectors ismediated by tandemamino acid repeats (34 residues in length).
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Two hypervariable amino acids known as repeat-variable di-residues (RVDs) located
at the 12th and 13th positions in each repeat determine the binding specificity of
the TAL effectors. The TALEN monomer is fused by two independent domains:
a customizable DNA-binding domain at the N-terminal and a nonspecific Fok I
nuclease domain at the C-terminal. Due to easier manipulation, the genes modified
by TALENs have been successfully used in rice, wheat, Arabidopsis, potato, tomato,
etc.

15.3.3.3 Clustered Regularly Interspaced Short Palindromic
Repeats/CRISPR-Associated 9 System

Recently, a new class of genome-editing technology, i.e., the CRISPR (clustered
regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated) system,
has been developed. CRISPRs were firstly identified in the Escherichia coli genome
in 1987 as an unusual sequence element consisting of a series of 29-nucleotide repeats
separated by unique 32-nucleotide “spacer” sequences. Later, repetitive sequences
with a similar repeat–spacer–repeat pattern were identified in other bacterial and
archaeal genomes, but the functions of these repeats remained obscure until 2005
when three independent research groups found the spacer sequence was identical
to some part of the viral and plasmid sequence. Further investigations indicated
that CRISPRs function through an RNA interference-like mechanism to recognize
and cleave foreign DNA. The type II CRISPR/Cas from Streptococcus pyogenes,
a short CRISPR RNA (crRNA), is able to recognize a complementary stretch of
nucleotides in alien DNA and determines the sequence specificity. In addition, a
transactivating crRNA (tracrRNA) is required to form a ribonucleoprotein complex
with Cas9 nuclease to generate site-specific DSBs. Later, investigators found that
the components of crRNA and tracrRNA could be combined into a single RNA
chimera, which was termed as guide RNA (gRNA). Efficient cleavage also requires
the presence of the protospacer adjacent motif (PAM) in the complementary strand
following the recognition sequence. Various interventions have been carried out in
CRISPR/Cas method to improve its target specificity. Presently, this technology is
being applied in gene modification in various plants and holds great promise for
nutritional quality improvement of potato as well.

15.4 Quality Traits of Potato Targeted Through
Biotechnological Interventions

As discussed in previous sections, potato plays an important role in diet due to its
nutritional content. In addition to have nutritional importance of potato as a staple
food/vegetable, potatoes are also one of the most widely used food commodities for
a wide range of processed products. Hence, their processing attributes may also be
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considered as quality traits. Potatoes do contain some anti-nutritional factors, and
thus reducing levels of these anti-nutritional factors also become improvement in
quality. Improvement in these quality traits of potato employing biotechnological
approaches will be described below.

15.4.1 Nutritional Quality Improvement

15.4.1.1 Phenolic Compounds

Phenolics are a diverse group of tens of thousands of different compounds.Many phe-
nolics occur as derivatives formed by condensation or addition reactions. Chemically,
a phenolic is a compound characterized by at least one aromatic ring (C6) bearing one
ormore hydroxyl groups. Some phenolic compounds are effective against diseases or
have other health-promoting qualities including effects on longevity, mental acuity,
cardiovascular disease, and eye health (Scalbert et al. 2005). Phenolics are the most
abundant antioxidants in the diet. Upon consumption, phenolics are metabolized by
digestive and hepatic enzymes, by the intestinal microflora and have a wide range of
bioavailability (Manach and Donovan 2004).

Potatoes are an important source of dietary phenolics. Phenolic compounds
belonging to various classes are present in potato. These include: (i) phenolic acids
(chlorogenic acid, caffeic acid, coumaric acid, protocatechuic acid, vanillic acid, fer-
ulic acid, cryptochlorogenic acid, neochlorogenic acid, gallic acid, p-hydroxybenzoic
acid, etc.), flavonols (rutin, kaempferol rutinose, quercetin-3-o-glu-rut), flavan-3-ols
(catechin, epicatechin), anthocyanidins (delphinidin, cyanidin, pelargonidin, peoni-
din,malvidin, anthocyanins). Variations in these phenolic compounds in potato geno-
types have been reported by several studies (Table 15.3) and reviewed by various
researchers (Akyol et al. 2016). As some genotypes of potato have more phenolics
than other vegetables (such as tomatoes, peas, onions, French beans, cucumbers,
while cabbage, carrots, lettuce), potatoes can be a substantial source of phenolics in
the diet and compare very favorably to other vegetables (Chun et al. 2005). Existence
of variation of several folds in phenolic content in potatoes envisions the potential
to further increase its nutritional value by more fully utilizing existing germplasm.
For example, a study of 74 Andean potato landraces revealed an 11-fold variation
in total phenolics and a high correlation between phenolics and total antioxidant
capacity (Andre et al. 2007a). Similarly, Navarre et al. (2011) screened tubers for
phenolics and found over a 15-fold difference in the amount of phenolics in different
potato genotypes. Although majority of phenolic compounds are found in greater
concentrations in the skin, but significant quantities are also present in the flesh
Silva-Beltran et al. (2017), overall the flesh typically contains more phenolics than
the skin on a per tuber basis because majority of the fresh weight of a mature potato
is contributed by the flesh. These main phenolic compounds found in potato have
been briefly described as follows.



442 S. Dutt et al.

Table 15.3 Concentrations of the main phenolic compounds in potato

Phenolics class Phenolic compounds Range (mg/100 g dry
extract)

References

Phenolic acids Chlorogenic acid 27.6 Kanatt et al. (2005)

100.0–220.0 Shakya and Navarre
(2006)

17.4–1274.6 Andre et al. (2007a)

47.0–283.0 Leo et al. (2008)

17.3–1468.1 Mäder et al. (2009)

21.0–40.0 Navarre et al. (2009)

60.0–292.0 Navarre et al. (2010)

0.2–2193.0 Deusser et al. (2012)

Caffeic acid 0.1–0.2 Shakya and Navarre
(2006)

5.0–50.0 Leo et al. (2008)

1.1–172.4 Mäder et al. (2009)

2.0–6.9 Navarre et al. (2009)

0–41.6 Deusser et al. (2012)

Coumaric acid 0–9.2 Leo et al. (2008)

0–1.6 Mäder et al. (2009)

Protocatechuic acid 0–7.6 Mäder et al. (2009)

Vanillic acid 0–22.4 Mäder et al. (2009)

Ferulic acid 0.6–9.0 Leo et al. (2008)

0–3.9 Mäder et al. (2009)

0–1.4 Deusser et al. (2012)

Cryptochlorogenic acid 16.0–27.0

3.1–163.3

8.0–59.0

0.1–168.3

Neochlorogenic acid 2.9–9.9

49.2–91.2

0.5–1.5

3.0–11.0

0.1–87.6

Gallic acid 0–1.0 Mäder et al. (2009)

p-hydroxybenzoic acid 0–7.8 Mäder et al. (2009)

Flavonols Rutin 0.5–2.6 Shakya and Navarre
(2006)

(continued)
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Table 15.3 (continued)

Phenolics class Phenolic compounds Range (mg/100 g dry
extract)

References

0.6–1.3 Navarre et al. (2010)

0–12.2 Deusser et al. (2012)

Kaempferol rutinose 0.5–1.7 Navarre et al. (2010)

Quercetin-3-o-glu-rut 2.5 Shakya and Navarre
(2006)

Flavan-3-ols Catechin 43.0–204.0 Leo et al. (2008)

0–1.5 Mäder et al. (2009)

0–1.4 Deusser et al. (2012)

Anthocyanidins Anthocyanins 1.4–163.3 Andre et al. (2007b)

87.0 Han et al. (2007)

953.8–1630.3 Andre et al. (2007b)

21.0–109.0 Kita et al. (2013)

Adapted from Akyol et al. (2016)

Phenolic Acids

Phenolic acids and their derivatives are a diverse class of phenolic compounds made
by plants. Phenolic acids are derivatives of benzoic and cinnamic acids. The most
abundant benzoic acid derivatives are p-hydroxybenzoic, vanillic, syringic, and gallic
acids, while common cinnamic acid derivatives include p-coumaric, caffeic, ferulic,
and sinapic acids. The derivatives differ in the degree of hydroxylation and methoxy-
lation of the aromatic ring. Phenolic acids are produced in plants via shikimic acid
through the phenylpropanoid pathway. The phenolic acids reported to be present in
potato tubers are briefly being discussed below.

Chlorogenic Acid

The most abundant phenolics in tubers are caffeoyl-esters. Of the caffeoyl-esters,
chlorogenic acid (CGA) comprises over 90% of a tuber’s total phenolics (Malmberg
and Theander 1985). CGA acid is known to provide protection against degenerative,
age-related diseases, may reduce the risk of some cancers and heart disease and have
anti-hypersensitive anti-viral and anti-bacterial properties (Yamaguchi et al. 2008;
Nogueira and do Lago 2007). The biosynthetic pathway of CGA in plants is depicted
inFig. 15.2. ThisCGAbiosynthetic pathway can thus be engineered for increasing the
CGA content in potato. Concerns have been shown about developing high phenolic
potatoes that whether they would have unacceptable levels of browning or after
cooking darkening. However, studies have shown that neither the amount of total
phenolics, CGA nor polyphenols oxidase correlated with the amount of browning
observed in fresh-cut potatoes and that theywere not rate-limiting in the development



444 S. Dutt et al.

Fig. 15.2 Biosynthesis of
chlorogenic acid in potato.
PAL: phenylalanine
ammonia-lyase; C4H:
cinnamate 4-hydroxylase;
4CL:
4-coumaroyl:CoA-ligase;
HCT:
hydroxycinnamoyl-CoA
shikimate/quinate
hydroxycinnamoyl
transferase; C3H:
p-coumarate 3-hydroxylase;
C4H: cinnamate
4-hydroxylase; HQT:
hydroxycinnamoyl-CoA
quinate hydroxycinnamoyl
transferase

Phenylalanine 

p-Coumaric acid

p-Coumaroyl-CoA

P-Coumaroyl  
shikimik acid

P-Coumaroyl 
 quinic acid

C3H Caffeoyl shikimic acid

Chlorogenic acid

4CL

HCT
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C3H

Cinnamic acid

C4H

PAL

HCT

Caffeoyl-CoA
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of browning (Cantos et al. 2002). Further, using QTL approach, Werij et al. (2007)
found no correlation between browning and CGA.

Flavons and Flavan-3-ols

Potatoes contain flavonols such as rutin, kaempferol rutinose, and quercetin-3-o-glu-
rut, but have not been thought to be important source of dietary flavonols. Numerous
studies have suggested flavons having multiple health-promoting effects, including
reduced risk of heart disease, lowered risk of certain respiratory diseases, such as
asthma, bronchitis, and emphysema, and reduced risk of some cancers including
prostate and lung cancer. One group showed that flavonols increased in fresh-cut
tubers, observing concentrations up to 14 mg/100 g FW and suggested that because
of the large amount of potatoes consumed, they can be valuable dietary source
(Tudela et al. 2002). Various studies have reported the presence of variations in
the levels of these flavons in various potato genotypes (Table 15.3). Flavan-3-ols
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Fig. 15.3 Biosynthesis of flavons, flavan-3-ols and anthocyanins in potato. PAL: phenylalanine
ammonia-lyase; C4H: cinnamate 4-hydroxylase; 4CL: 4-coumarate-CoA ligase; CHS: chalcone
synthase; CHI: chalcone isomerase; F3H: flavanone 3-hydroxylase; F3 9 H: flavonoid 3 9–hydrox-
ylase; DFR: dihydro-flavonol 4-reductase; FNS: flavone synthase; FLS: flavonol synthase; LAR:
leucoanthocyanidin reductase; ANS: anthocyanidin synthase; UFGT: UDP glucose: flavonoid-3-
O-glycosyltransferase

(sometimes referred to as flavanols) are derivatives of flavans and include catechin,
epicatechin gallate, epigallocatechin, epigallocatechin gallate, proanthocyanidins,
theaflavins, and thearubigins. Of these, some flavan-3-ols found in potato are enlisted
in Table 15.3. Biosynthetic pathway of flavons and flavan-3-ols in plant is depicted
as Fig. 15.3.

Anthocyanins

Potatoes, particularly colored-fleshed cultivars, can contain substantial amounts of
anthocyanins, compounds that can function as antioxidants and have other health-
promoting effects. Anthocyanins from potatoes have been found to have anti-cancer
properties (Reddivari et al. 2007). A wide range of variations in anthocyanin content
in potato have been reported (Table 15.3). Lewis et al. (1998) screened 26 colored-
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fleshed cultivars for anthocyanin content and found up to 7 mg/g FW in the skin
and 2 mg/g FW in the flesh. Oertel et al. (2017) screened 57 cultivars of potato for
anthocyanin contents. Another study evaluated 31 colored genotypes and found a
range of 0.5–3 mg/g FW in the skin and up to 1 mg/g FW in the flesh (Jansen and
Flamme 2006). Brown et al. (2005) evaluated several genotypes for anthocyanins
and found that whole tubers contained up to 4 mg/g FW and that anthocyanin con-
centration correlated with the antioxidant value. In 2005, Parr et al. reported the com-
pounds called kukoamines in potatoes. These compounds are phenolic–polyamine
conjugates and had previously only been found in a Chinese medicinal plant, in
which they were being studied because they lower blood pressure. Roles of tuber
polyamines include regulation of starch biosynthesis, calystegine synthesis, disease
resistance, and sprouting (Tanemura and Yoshino 2006; Matsuda et al. 2005). Using
high-throughput HPLC analysis, 30 putative polyamines were detected in potato
tubers (Shakya and Navarre 2006).

Biosynthetic pathway of anthocyanins in plant is depicted as Fig. 15.3. It has
been demonstrated that tuber-specific expression of the native and slightly modified
MYB transcription factor gene StMtf1(M) activates the phenylpropanoid biosyn-
thetic pathway. Compared with untransformed controls, transgenic tubers contained
fourfold increased levels of caffeoylquinates, includingCGA (1.80mg/g dryweight),
while also accumulating various flavonols and anthocyanins. Subsequent impairment
of anthocyanin biosynthesis through silencing of the flavonoid-3′,5′-hydroxylase
(F3′5′h) gene resulted in the accumulation of kaempferol-rut (KAR) to levels that
were approximately 100-fold higher than in controls (0.12 mg/g dry weight). The
biochemical changes were associated with increased expression of both the CGA
biosynthetic hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (Hqt)
gene and the upstream chorismate mutase (Cm) and prephenate dehydratase (pdh)
genes. Field trials indicated that transgenic lines produced similar tuber yields to
the original potato variety. Processed products of these lines retained most of their
phenylpropanoids andwere indistinguishable from untransformed controls in texture
and taste (Rommens et al. 2008).

15.4.1.2 Carotenoids

Carotenoids are the second most abundant naturally occurring pigments on earth,
with more than 750 members. Carotenoid pigments are mainly C40 lipophilic iso-
prenoids and synthesized in all photosynthetic organisms (bacteria, algae, and plants)
and range from colorless to yellow, orange, and red, with different degree of vari-
ations. Carotenoids have numerous health-promoting properties. Some carotenoids
are precursors of vitamin A and prevent human age-related macular degeneration,
and some are potent antioxidant and are considered to prevent prostate cancer and
cardiovascular disease. In humans, carotenoids also serve as antioxidants and reduce
age-related macular degeneration of the eye, the leading cause of blindness in the
elderly worldwide. An increasing interest in carotenoids as nutritional sources of
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pro-vitamin A and health-promoting compounds has prompted a significant effort in
metabolic engineering of carotenoid content and composition in food crops.

Potatoes also contain lipophilic compounds such as carotenoids, though in lesser
amount (Table 15.4). The yellow/orange flesh color found in some potatoes is due
to carotenoids. The carotenoids’ content of tubers in most potato cultivars ranges
between 0.2 and 36 μg/g FW (Iwanzik et al. 1983; Brown et al. 1993; Andre et al.
2007a). This variation in carotenoid concentrations has been suggested to be reg-
ulated mainly at the transcriptional levels (Morris et al. 2006). The most abundant
potato carotenoids are composed mainly of the xanthophylls lutein, antheraxanthin,
violaxanthin, and xanthophyll esters. Carotenoids are synthesized in plastids from
isoprenoid pathway (Fig. 15.4) and are accumulated in most plant organs. Various
genes of these pathways have been characterized in a range of organisms, and under-
standing of the regulation of the carotenoids pathway has led to devising strategies
for manipulating this pathway. Numerous groups have attempted to increase potato
carotenoids using transgenic strategies. The strategy commonly used in plants is
to increase the biosynthetic capacity by altering the carotenogenic enzyme activi-
ties. Overexpressing a bacterial phytoene synthase in tuber of the cultivar Desiree
increased carotenoids from 5.6 to 35 μg/g DW and changed the ratios of individual
carotenoids. Beta-carotene concentrations increased from trace amounts to 11 μg/g
DW and lutein levels increased 19-fold (Ducreux et al. 2005). Carotenoids have
also been increased by the approaches that do not directly involve use of carotenoids
biosynthesis genes, as shown by overexpression of the cauliflowerOr gene inDesiree
resulting in a sixfold increase in tuber carotenoids to about 20–25μg/g DW (Lu et al.
2006). A twofold increase in carotenoids was observed in tubers overexpressing Or
after six months of cold storage, but no such increase was observed in wild-type
or empty-vector transformed plants (Lopez et al. 2008; Li et al. 2012). However,
this is in contrast to earlier findings that potato cultivars undergo a decline in total
carotenoids during cold storage (Morris et al. 2006). Cultivated diploid potatoes
derived from Solanum stenotomum and Solanum phureja were found to contain up
to 2000μg/100 g FW zeaxanthin (Brown et al. 1993). A study of 24Andean cultivars
were found with almost 18 μg/g DW each of lutein and zeaxanthin and just over
2 μg/g DW of beta-carotene (Andre et al. 2007a). Overexpression of three bacterial
genes in Desiree resulted in 20-fold increase in total carotenoids to 114μg/g DWand
a 360-fold increase in beta-carotene to 47 μg/g DW (Diretto et al. 2007). Bub et al.
(2008) investigated whether zeaxanthin from genetically modified zeaxanthin-rich
potatoes is bioavailable in humans and found that consumption of zeaxanthin-rich
potatoes significantly increased chylomicron zeaxanthin concentrations suggesting
that potentially such potatoes could be used as an important dietary source of zeaxan-
thin. Diretto et al. (2006) silenced the first dedicated step in the beta-epsilon branch
of carotenoid biosynthesis, lycopene epsilon cyclase (LCY-e), by introducing, via
Agrobacterium-mediated transformation, an antisense fragment of this gene under
the control of the patatin promoter. Antisense tubers showed 2.5-fold increase in total
carotenoids, with beta-carotene showing themaximum increase of up to 14-fold. The
data suggested that epsilon cyclization of lycopene is a key regulatory step in potato
tuber carotenogenesis.
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Table 15.4 Carotenoids content reported in potato tubers (mg/kg DW* or FW**)

Carotenoid Content Potato cultivars References

Total carotenoids

28.0* Skin of tubers Campbell et al. (2010)

9.0* Flesh of tubers

1.10–12.2* Different cultivars Hamouz et al. (2016)

0.50–15.5* Different cultivars Fernandez-Orozco et al.
(2013)

0.58–1.75 Yellow cultivars Breithaupt and Bamedi
(2002)

0.38–0.62 White cultivars

26.2*/5.69* Yellow/red/purple Brown (2005)

8.0–20.0 Yellow–orange cvs.

26.0 Papa Amarilla cvs. Brown et al. (2008)

5.67 Inca-no-hitomi orange Kobayashi et al. (2008)

5.60–35.0* Transgen. Desirée Ducreux et al. (2005)

3.0–36.0* Andean landraces Andre et al. (2007a)

1.03–21.4 S. phureja accession Bonierbale et al. (2009)

2.57 ± 0.53* Shetland Black

14.8 ± 2.22* Red Laura Burmeister et al. (2011)

8.23 ± 2.98* Boiled M. Twilight

1.51 ± 0.31* Boiled Shetl. Black Tierno et al. (2015)

1.51 ± 0.31* Boiled Shetl. Black

Sum of carotenoid
esters

0.41–1.31 Yellow and white Breithaupt and Bamedi
(2002)

Individual carotenoids

All-trans-Lutein 1.12–17.7 Andean landraces Andre et al. (2007b)

0.55–1.89 S. phureja accession Bonierbale et al. (2009)

3.27–9.50* Raw tubers Clevidence et al. (2005)

3.89–9.50* Boiled tubers

All-trans-Violaxanthin trace–2.78 S. phureja accession Bonierbale et al. (2009)

All-trans-Antheraxantin 0.03–3.54 S. phureja accession Bonierbale et al. (2009)

All-trans-Zeaxanthin 18 Andean landraces Andre et al. (2007b)

12.9 S. phureja Burgos et al. (2009)

>10.0 S. phureja Bonierbale et al. (2009)

Trace–12.9 S. phureja

Trace–40* Accession raw/boiled
tubers

Clevidence et al. (2005)

All-trans-β-Carotene 2 Andean landraces Andre et al. (2007b)

(continued)
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Table 15.4 (continued)

Carotenoid Content Potato cultivars References

>0.1 S. phureja accession Bonierbale et al. (2009)

Lutein-5,6-epoxide Identified Commercial, bred, old,
and native cultivars

Fernandez-Orozco et al.
(2013)

9-cis-Lutein Identified

13-cis-Lutein Identified

9-cis-Violaxanthin +5,6-epoxide

All-trans-Neoxanthin +5,6-epoxide

9′-cis-Neoxanthin +5,6-epoxide

Mutatoxanthin Identified

Luteoxanthin +5,6 epoxide

Neochrome Identified

All-trans-β-
Cryptoxanthin

Identified

Adapted from Lachman et al. (2016)

In 2006, Morris et al. engineered astaxanthin in potato tubers. Both S. tubero-
sum and S. phureja transgenic lines were produced that expressed an algal bkt1
gene, encoding a beta-ketolase, and accumulated ketocarotenoids. Two major keto-
carotenoidswere detected, ketolutein and astaxanthin. The level of unesterified astax-
anthin reached 14 μg/g DW in some bkt1 expressing lines of S. phureja but was
much lower in the S. tuberosum. Similarly, expression of Erwinia uredovora crtB
gene encoding phytoene synthase in potato resulted in increased levels of carotenoids
(Ducreux et al. 2005). The tuber of S. tuberosum L. cultivar Desiree normally pro-
duces tubers containing 5.6 μg carotenoid/g DW and tubers of S. phureja cultivar
“Mayan Gold” contain carotenoid content of typically 20 μg carotenoid/g DW. In
developing tubers of transgenic crtB Desiree lines, carotenoid levels reached 35 μg
carotenoid/g DW and the balance of carotenoids changed radically compared with
controls. Beta-carotene levels in the transgenic tubers reached 11 μg carotenoid/g
DW, whereas control tubers contained negligible amounts and lutein accumulated to
a level 19-fold higher than empty-vector transformed controls. The crtB gene was
also transformed into S. phureja (cv. Mayan Gold), again resulting in an increase
in total carotenoid content to 78 μg/g DW in the most affected transgenic line. In
these tubers, the major carotenoids were violaxanthin, lutein, antheraxanthin, and
beta-carotene. No increases in expression levels of the major carotenoid biosyn-
thetic genes could be detected in the transgenic tubers, despite the large increase
in carotenoid accumulation. Romer et al. (2002) genetically modified two potato
varieties. By transforming with sense and antisense constructs encoding zeaxanthin
epoxidase, zeaxanthin conversion to violaxanthin was inhibited. Both approaches
(antisense and co-suppression) yielded potato tuberswith higher levels of zeaxanthin.
Depending on the transgenic lines and tuber development, zeaxanthin content was



450 S. Dutt et al.

GDPS

Phytoene

Lycopene

α-carotene β-carotene β -ionone

Lutein Zeaxanthin 3-hydroxy-β -ionone

Anthraxanthin

Violaxanthin

NeoxanthinABA 

PSY

PDS ZDS CRTISO Z-ISO

LCY-b 

CYP97C1

CCD1

LCY-b LCY-e 

BCH1 BCH2
CYP97A3 CYP97A3

NCED

CCD1

ZEP

NXS

VDE

ZEP VDE

IPP DMAPP

MEP Pathway

GGPS

Fig. 15.4 Biosynthesis of carotenoids in potato. GGPS: geranylgeranyl pyrophosphate syn-
thase; PSY: phytoene synthase; PDS: phytoene desaturase; ZDS: f-carotene desaturase; CRTISO:
carotenoid isomerase; LCY-ε: lycopene ε-cyclase; LCY β: lycopene β-cyclase; CHY-ε: ε-ring
hydroxylase; CHY-β: β-carotene hydroxylase; VDE: violaxanthin de-epoxidase; ZEP: zeaxan-
thin epoxidase; NXS: neoxanthin synthase; CCD: carotenoid cleavage dioxygenase; NCED: 9-
cis-epoxycarotenoids dioxygenase

elevated 4–130-fold reaching values up to 40–78 μg/g DW. As a consequence of the
genetic manipulation, the amount of violaxanthin was diminished dramatically and
in some cases the monoepoxy intermediate antheraxanthin accumulated. In addition,
most of the transformants with higher zeaxanthin levels also showed increased total
carotenoid contents (up to 5.7-fold) and some of them exhibited reduced amounts
of lutein. The increase in total carotenoids suggested that the genetic modification
affects the regulation of the whole carotenoid biosynthetic pathway in potato tubers.
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15.4.1.3 Vitamins

Vitamins are a class of organic compounds, absolutely required for the maintenance
of healthy life processes. Role of vitamins inmaintaining human health via regulating
metabolism and supporting the biochemical process related to the energy released
from food or other sources in living organisms is well established. Vitamins are also
important in the synthesis of hormones, enzyme activity, red blood cells, genetic
materials, and neurotransmitters (Jube and Borthakur 2006). Although vitamins are
required in small amounts, their capability of sustenance and their ability to perform
biochemical functions is remarkable. Based on the solubility, vitamins have been
grouped into water-soluble vitamins and fat-soluble vitamins. Fat-soluble vitamins
are A, D, E, and K, and the rest are water soluble. Most of the vitamins have been
found to act as coenzymes; some act as growth regulators, andmost of them as antiox-
idants. Well-known human vitamin-related disorders include blindness (Vitamin A),
beriberi (Vitamin B1), pellagra (Vitamin B3), anemia (Vitamin B6), neural defects
in infants (Vitamin B9), scurvy (Vitamin C), sterility-related diseases (Vitamin E),
and Rickettsia (Vitamin D). In potato, predominant vitamin is vitamin C (Camire
et al. 2009). Potato also contains several B vitamins (folic acid, niacin, pyridoxine,
riboflavin, and thiamin), the composition of which is given in Table 15.5. Vitamin
in potatoes can be increased through fortification in processed foods, conventional
breeding, or through use of transgenic techniques, a process known as biofortifica-
tion. The major vitamins present in potato and the research outcome to increase these
vitamins level in potato are discussed below.

Vitamin C

Predominant vitamin in potatoes is vitamin C (also known as l-ascorbic acid), which
ranges from 84 to 145 mg/100 g DW depending on cultivar and soil composition
(Camire et al. 2009). A medium red-skinned potato (173 g) provides about 36%
vitaminC of the RDA according to theUSDAdatabase (Navarre et al. 2009). Vitamin
C is an important component in nutrition with the property of antioxidant, immuno-
protection, cardiovascular function improvement, prevention of ailments associated
with connective tissues, and help in iron metabolism. Vitamin C is a cofactor for
numerous enzymes, functioning as an electron donor. The best-known symptom of
vitamin C deficiency is scurvy, which in severe cases is typified by loss of teeth, liver
spots, and bleeding. More than 90% of vitamin C in human diets is supplied by fruits
and vegetables. It has been suggested that 100–200 mg vitamin C should be supplied
by human diets, and this quantity is expected to be increasing because of increasing
stress in modern life. Therefore, it is valuable to increase vitamin C content in edible
products of plant. In India, the available supply of vitamin C is 43 mg/capita/day, and
in the different states of India, it ranges from 27 to 66 mg/day which is far below the
recommended dose of 400 mg/day by ICMR (National Institute of Nutrition 2011).

Plantsmayhavemultiple vitaminCbiosynthetic pathways;with all of the enzymes
of the l-galactose pathway have been characterized (Laing et al. 2007; Wolucka and
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Table 15.5 Nutrient composition of potato (Solanum tuberosum), white, flesh, and skin, raw per
100 g

Nutrient Units Value per 100 g

Proximates Water g 81.6

Energy kJ 288

Protein g 1.68

Total lipid (Fat) g 0.1

Ash g 0.94

Carbohydrate, by diff. g 15.7

Fiber, total dietary g 2.4

Sugar, total g 1.15

Sucrose g 0.28

Glucose (destrose) g 0.53

Fructose g 0.34

Lactose g 0

Maltose g 0

Galactose g 0

Starch g 13.5

Available carbohydrate2 g 14.65

Minerals Calcium, Ca mg 9

Iron, Fe mg 0.52

Magnesium, Mg mg 21

Phosphorous, p mg 62

Potassium, K mg 407

Sodium, Na mg 6

Zinc, Zn mg 0.29

Copper, Cu mg 0.116

Manganese, Mn mg 0.145

Selenium, Se mg 0.3

Vitamins Vitamin C mg 19.7

Thiamin mg 0.071

Riboflavin mg 0.034

Niacin mg 1.066

Pantothenic acid mg 0.281

Vitamin B-6 mg 0.203

Folate, total mcg 18

Folic acid mcg 0

Folate, food mcg 18

(continued)
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Table 15.5 (continued)

Nutrient Units Value per 100 g

Folate DFE Mcg_DFE 18

Choline, total mg 11

Betaine mg 0.2

Vitamin B12 mcg 0

Vitamin A IU IU 8

Vitamin A RAE Mcg_RAE 0

USDA National Nutrient Database, No. 11365

Van Montagu 2007). One study examined tuber vitamin C content in 75 genotypes
and found concentrations ranging from 11.5 to 29.8 mg/100 g FW (Love et al. 2004).
This study also reported that some genotypes had more consistent concentrations of
vitamin C than others across multiple years or when grown in different locations
and suggests that the year may have a bigger effect than location. Dale et al. (2003)
measured vitamin A in 33 cultivars grown in three locations around Europe and
found vitamin C in a range of 13–30.8 mg/100 g FW. Extensive research work has
been undertaken at molecular levels of vitamin C biosynthetic pathway in plants.
An outline of plant vitamin C biosynthesis pathway is represented in Fig. 15.5. This
knowledge has made it possible to manipulate vitamin C content in several crops
(including potato) using various approaches including genetic engineering based.
Transfer of l-gulone-γ-lactone oxidase gene from rat to potato resulted in 40%
increase in vitamin C (Jain and Nessler 2000). Overexpression of gene encoding
enzyme d-galacturonic acid reductase (catalyzes reduction of d-galacturonic acid
or l-galactonic acid in the pathway for ascorbic acid biosynthesis via uronic acids)
from strawberry in potato gave rise to twofold increase in tuber ascorbate content
with respect to wild-type plants (Hemavathi et al. 2010; Vathi et al. 2009, 2011). Qin
et al. (2011) transformed potato with its native cytosolic- and chloroplastic-targeted
DHAR cDNAs, each under the control of theCaMV 35S promoter. Overexpression of
cytosol-targeted DHAR led to increased ascorbate content in both tubers and leaves
while overexpressing the chloroplastic enzyme also affected leaf ascorbate content.
Bulley et al. (2012) reported an up to threefold increase in ascorbate through the
overexpression of a single potato gene, GDP-l-galactose phosphorylase. In another
report, the potato transgenic lines were developed by overexpressing DHAR gene,
driven by the CaMV35S constitutive promoter and a tuber-specific patatin promoter.
The AsA level in tubers of patatin: DHAR transgenic lines showed an enhanced level
(up to 1.3-folds) as compared to that of control plants (Young et al. 2008). In another
report, two independent transgenic potato lines were developed by overexpression of
cytosolic DHAR (Cyt DHAR) gene and chloroplast DHAR (Chl DHAR) gene (Qin
et al. 2011). The Cyt DHARgene considerably augmented DHAR activities andAsA
contents in potato tubers and leaves, becauseoverexpressionofChlDHARgene could
only increaseDHARactivities andAsAcontents in leaves, not in tubers. These results
indicated that AsA level of potato is enhanced by increasing recycling ascorbate via
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Fig. 15.5 Ascorbic acid
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DHAR overexpression. Similarly, the potato transformation was done using the gene
construct with potato isolate GGP (GDP-l-galactose phosphorylase) gene under the
control of polyubiquitin promoter (tubers only). The molecular and biochemical
study revealed that transgenic potato showed an increase in tuber ascorbate of up to
threefold (Bulley et al. 2012).

Vitamin A

Vitamin A deficiency is one of the most prevalent nutrient deficiencies in many
underdeveloped regions of the world, where it affects an approximately 250 million
children under 5 years of age. Beta-carotene is the primary substrate for synthesis
of vitamin A in humans. Plant pro-vitamin A carotenoids are the primary dietary
precursors of vitamin A. While many fruits and vegetables have high levels of pro-
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vitamin A carotenoids, staple crops contain low levels of these compounds, which
contributes to the global prevalence of vitamin A deficiency. Vitamin A deficiency
(VAD) is the leading cause of preventable blindness in children and increases the risk
of disease and death from severe infections. To help combat vitamin A deficiency,
a global effort is underway to increase pro-vitamin A content in major food crops
including potato. Cultivated potato is extremely poor in pro-vitamin, i.e., β-carotene.
However, metabolic engineering efforts to accumulate high levels of β-carotene in
potato tubers proved successful. Ducreux et al. (2005) worked on two potato cultivars
to increase the carotenoid content of potato tubers. S. tuberosum cv Desiree, which
typically accumulates 5.6 μg/g DW carotenoids with negligible β-carotene content
andS. phureja cv.MayanGoldwhich typically accumulates 20μg/gDWcarotenoids.
Both cultivars were transformed with the phytoene synthase gene (crtB) (for place
of this enzyme in carotenoid biosynthetic pathway kindly see Fig. 15.4) from E.
uredovora. Transgenic potato showed an accumulation of 35 total carotenoids and
11 μg/g DW β-carotene in developing tubers of Desiree and 78 μg/g DW in Mayan
Gold tubers. In another study, the gene encoding lycopene ε-cyclase (Lcy-ε) (for place
of this enzyme in carotenoid biosynthetic pathway kindly see Fig. 15.4) was targeted
with a tuber-specific antisense construct in order to suppress epsilon cyclization
of lycopene and direct the flux toward β-β-carotenoid branch (Diretto et al. 2006).
Results showed a tuber-specific increase in the accumulation of β-carotene (up to 14-
fold) and β-β-carotenoids (up to 25-fold) with a decrease in accumulation of lutein.
When the β-carotene hydroxylation step of the β-β-carotenoid branchwas targeted by
tuber-specific antisense silencing of the beta-carotene hydroxylase (chy1 and chy2)
(for place of this enzyme in carotenoid biosynthetic pathway kindly see Fig. 15.4),
a 38-fold increase in tuber β-carotene content was achieved (Diretto et al. 2007).
Similarly, by silencing the β-carotene hydroxylase gene in potato using RNAi, Van
Eck et al. (2010) were able to significantly increase beta-carotene content of tubers,
even in lines that normally accumulate only low levels of zeaxanthin.

Vitamin E

Vitamin E (also known as tocopherols) is another essential nutrient for human health,
but is consumed at suboptimal levels. The importance of vitamin E for reproductive
health was recognized as early as 1922. Humans and other animals are not capa-
ble of synthesizing tocopherol (vitamin E) autonomously and must be obtained from
their diet. The vitamin E (α-tocopherol) is only synthesized by photosynthetic organ-
isms which show potent antioxidant activity and vital for human health, however,
consumed at the suboptimal level. The metabolic pathways involved in tocopherol
biosynthesis in plants have been deciphered to a greater extent. A generalized path-
way of the vitamin Emetabolic biosynthesis in plants is represented in (Fig. 15.6). In
2008, Crowell et al. reported the development of transgenic tuber over accumulating
vitamin E where the transgenic potato lines developed via Agrobacterium-mediated
transformation using two vitamin E biosynthetic genes, p-hydroxyphenylpyruvate
dioxygenase (At-HPPD) and homogentisate phytyl transferase (At-HPT), isolated
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Fig. 15.6 Biosynthesis of tocopherols in plants. HPPD: p-hydroxyphenyl-pyruvate dioxygenase;
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from Arabidopsis thaliana. Biochemical and molecular analysis revealed that the
overexpression of At-HPPD and At-HPT resulted in a maximum 266 and 106%
increase in alpha-tocopherol, respectively, still lesser alpha-tocopherol than leaves
or seeds. This might be limiting factors for tocopherol accumulation in potato tubers
due to physiological and biochemical regulatory constraints. Overexpression of Ara-
bidopsis At-HPPD and homogentisate phytyl transferase (At-HPT ) genes in potato
transgenics was carried in an attempt to increase vitamin E content of potato. At-
HPPD resulted in maximum 266% increase in α-tocopherol, and overexpression of
At-HPT yielded a 106% increase in potato.

Vitamin B9

Vitamin B9, also known folates, is used as generic name to designate tetrahydrofolate
(THF) and its on-carbon (C1) unit derivatives. Folates are essential micronutrients
in the human diet. Folates are important cofactors involved in C1 unit transfer reac-
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tions. Folates exist in various forms. All-native reduced folate derivatives are very
sensitive to oxidative cleavage at the C9 and N10 bond; however, there are marked
differences in stability of those species, 5-formyl-THF being the most stable natural
folate, THF the least, and 5-methyl-THF intermediate. Folate deficiency is associated
with the increase risk of neural tube defects, cardiovascular diseases, megaloblastic
anemia, and some cancers (Bailey et al. 2003; Scott 1999). Unfortunately, folate
intake is suboptimal in most of the world’s populations, even in developed countries
(Scott et al. 2000). Therefore, there is an urgent need to increase folate content and
bioavailability in staple foods. Because of its large consumption worldwide, potato
is an appealing target for enrichment.

Importance of folates in human diets urges to increase the folate levels in potato.
Humans are not capable of synthesizing folates and thus require dietary supply. Plants
represent the major source of folate in the diet. As such potato is in the lower range
of folate contents among plant foods, even then potato is a well-known significant
source of folates in the diet due to its high level of consumption more so that for
its endogenous content. Several studies reported folate concentrations in potatoes
of usually unspecified genotypes, and the reported values can vary substantially
depending on the analytical method used. Values for folate concentrations in mature
rawpotato vary between 12 and 37μg/100 gFW(Konings et al. 2001;Vahteristo et al.
1997) except a study by McKillop et al. (2002) who reported an exceptionally high
folate concentration (125 μg/100 g FW). The USDA National nutrient Database
for Standard Reference (SR20) gives values of 14 and 18 μg/100 g FW for raw
potatoes. Goyer and Navarre (2007) determined total folate concentration of potato
tubers from >70 cultivars, advanced breeding lines, and wild species and found
showed an approximately threefold difference in folate values ranging from 0.46 to
1.37 μg/g DW or 11 to 35 μg/100 g FW. Vahteristo et al. (1997) determined that raw
potatoes contain 21 μg/100 g FW of 5-methyl-THF, 3 μg/100 g FW of THF, and
traces of 10-formyl folic acid, an oxidation product of 10-formyl-THF. Konings et al.
(2001) showed that >95% of folates were present as a 5-methyl-THF derivative in
potato tubers, the rest comprising 10-formyl folic acid and folic acid, and that total
folate derivatives were >90% polyglutamylated. Therefore, polyglutamated forms
of 5-methyl-THF seem to constitute most of the folate pool in potato tuber as is the
case in most fruits and vegetables. This variation in folic acid content in various
potato genotypes can be utilized through transgenic approaches for improving the
folic acid content in popular commercial cultivars of potato. Nevertheless, improving
folate contents using genetic engineering has been thought to be possible. As folate
biosynthesis has been fairly delineated in recent years, metabolic engineering of the
pathway is feasible. Recently, De Lepeleire et al. (2018) provided a proof of concept
that additional introduction of HPPK/DHPS and/or FPGS, downstream genes in
mitochondrial folate biosynthesis, enable augmentation of folates to satisfactory
levels (12-fold) and observed folate stability upon long-term storage of tubers. This
engineering strategy can serve as a model in the creation of folate-accumulating
potato cultivars, readily applicable in potato-consuming populations suffering from
folate deficiency.



458 S. Dutt et al.

Vitamin B6

Vitamin B6 (chemically know as pyridoxine) is water soluble and like folate has
several vitamins. Vitamin B6 may be involved in more bodily functions than any
other nutrient, is a cofactor for many enzymes, especially those involved in protein
metabolism, and is also a cofactor for folate metabolism. Vitamin B6 has anti-cancer
activity, is a strong antioxidant, and is involved in hemoglobin biosynthesis, lipid and
glucose metabolism, and immune and nervous system function (Tambasco-Studart
et al. 2005; Theodoratou et al. 2008; Denslow et al. 2005). Possible consequences of
deficiency include anemia, impaired immune function, depression, confusion, and
dermatitis (Spinneker et al. 2007).

Themost significant sources ofVitaminB6 are animal proteins, starchy vegetables
(potatoes), bananas, avocados, walnuts, peanuts, and legumes. Potatoes are an impor-
tant source of dietary vitamin B6 (Kant and Block 1990) with amedium-baked potato
(173 g) providing about 26% of the RDA (USDANational Nutrient Database SR20).
Very little research has been conducted on this vitamin in potato; thus, little is known
about how much its concentration vary among genotypes. Rogan et al. (2000) had
reported the content of Vitamin B6 in potato in the range of 0.26–0.82 mg/200 g FW
have been reported. Vitamin B6 content varies substantially among the potato geno-
types. There is thus great potential for improving potato further through increasing
the content of this specific phytonutrient, by either breeding or genetic manipulation
to fortify the B6 vitamin as a healthy food resource for human nutrition. Work on
elucidation of metabolism of vitamin B6 in plants is in progress which may be of
vital importance for improving the vitamin B6 content in potatoes. Recently, Bagri
et al. (2018) developed the of transgenic potato cv. Kufri Chipsona overexpress-
ing key vitamin B6 pathway gene, the PDXII from A. thaliana under the control of
CaMV 35S constitutive promoter. Transgenic tubers exhibited 107–150% increase
in vitamin B6 accumulation in comparison to the untransformed controls potato.

15.4.2 Protein and Essential Amino Acids

Origin of name “Protein” (derived from the Greek word “proteios” means primary)
itself justifies it as one of the primary components of the living cells and is the most
important nutrient for humans. Lack of sufficient proteins in diet leads to deleterious
effects on growth and development in human beings. The deleterious effects of diets
that are sufficient in protein quantity but deficient in protein quality are well docu-
mented: poor growth, tissue wasting, and in severe cases, death. Lack of sufficient
protein in diet is known as protein energy malnutrition (PEM), and this is the most
lethal form of malnutrition and affects every fourth child worldwide. Building blocks
of proteins are twenty common amino acids. Humans like other animals can only
produce about half of the 20 common amino acids needed for life, the rest amino acids
must be obtained via diet, and these amino acids are referred to as essential amino
acids. Plant proteins contribute about 65% of the per capita supply of protein on
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worldwide basis. Among plants, cereal grains, tubers, and food legumes are the most
important suppliers of proteins. As the world’s population increases (and with it the
load on our agricultural resources), the need to make good-quality protein available
efficiently and economically becomes increasingly important. The importance and
urgency of providing humans with quality proteins are reflected in the growing sci-
entific and industrial interest in augmenting the nutritive value of the world’s protein
sources. Major efforts have been made to enhance the overall protein content and/or
to improve the essential amino acid composition of plant protein. The latter may be
considered as improving the quality of the targeted protein(s). Most plant proteins
are incomplete sources of amino acids. Among essential amino acids, methionine
(Met), lysine (Lys), and tryptophan (Trp) are present in very low quantity as com-
pared to other food sources (Table 15.6). This clearly shows that there is urgent need
and ample scope for improving these essential amino acids in potato. Because of the
importance of dietary protein and the fact that plants are its major source, develop-
ment of strategies to increase protein levels and the concentration of essential amino
acids in food crops is of primary importance in a crop improvement program. In
potato, protein content ranges from 1 to 1.5% of tuber fresh weight (Ortiz-Medina
and Donnelly 2003). Compared with other, it is negligible a source, potatoes are not
typically considered to be good dietary protein sources due to their low overall pro-
tein content although it has excellent biological value of 90–100 (Camire et al. 2009).
Keeping these facts in view, genetic engineering-based strategies and the efforts to
enhance the protein quality/quantity and essential amino acids (specifically methion-
ine, lysine and tryptophan) in various crop plants including potato have been targeted
worldwide. Here, efforts been made in potato are described.

Table 15.6 Lys, Met, and
Trp contents (mg/100 g food)
in the major protein sources
worldwide

Food Lysine Methionine Tryptophan

Potatoes 130 30 30

Beans 1870 260 230

Peas 610 100 100

Soybean 1900 580 450

Maize 290 190 70

Barley 380 180 150

Rice 290 170 90

Wheat 380 220 150

Nuts 750 330 450

Pig meat 2200 750 310

Freshwater fish 2020 700 240

Marine fish, other 2050 600 240

Adapted from Le et al. (2016)
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15.4.2.1 Role of Methionine, Lysine, and Tryptophan in Humans

Roles of these three essential amino acids, viz. lysine, methionine, and tryptophan
have been described in several literatures. Methionine acts as a precursor for the syn-
thesis of S-adenosylmethionine (SAM). SAM is a substrate involved in epigenetics
and in fatty acid oxidation. Methionine also acts as an important methyl donor in
human metabolism. Lack of methionine in diet leads to methylation-related disor-
ders such as fatty liver, tumorigenesis, neurological disorders, and atherosclerosis.
The limited availability of methionine leads to DNA strand breakage and fragmenta-
tion, which may be significant to the carcinogenic process (Garcia et al. 2011; Forges
et al. 2007;Guthikonda andHaynes 2006; Scott andWeir 1998; Fowler 2005). Lysine
plays several important roles in defense mechanism of humans. Lysine deficiency
decreases defense ability of mammalian cells to viruses. Lysine deficiency is also
the major cause of the osteoporosis in humans. Defects of lysine metabolism may
result in familial hyperlysinemia due to genetic disorder (Gaby 2006; Sacksteder
et al. 2000; Civitelli et al. 1992; Galvez et al. 2008). A diet deficient in methion-
ine and lysine intake reduces biological value of plant-based nutrition to 50–70%,
compared to a balanced diet with high abundance of essential amino acids. Unlike
other amino acids, tryptophan acts as a precursor to several neurochemicals, such
as serotonins and melatonin. Tryptophan deficiency in daily diet leads to several
symptoms. Stresses caused by the loss of sleep were reportedly caused by the lack of
tryptophan in daily food (Badawy 2013). Loss of lysine, methionine, and tryptophan
in diet caused several symptoms include weight loss, decrease in muscle mass, and
stress caused by losing sleep.

15.4.2.2 Genetic Engineering for Improving Methionine, Lysine,
and Tryptophan in Potato

Genetic engineering exploits the metabolic pathway genes or the associated tran-
scription factors. Hence, information at the genes levels of the metabolic pathways
aimed for manipulation is prerequisite. As far as lysine, methionine, and tryptophan
biosynthesis is concerned, their metabolic pathways in plants are fairly known. The
success of the genetic approach has been mostly restricted to improving protein
quality in model plants with enriched lysine, methionine, and tryptophan produc-
tion. These are briefly described as follows. Lysine and methionine are synthesized
by aspartate pathway within the chloroplast (Fig. 15.7). They share the initial three
steps of this biosynthetic pathway. The first enzymatic step of the aspartate family
is catalyzed by aspartate kinase which has multiple isoenzymic forms. Using ATP
and Mg2+, phosphorylation of aspartate leads to the formation of aspartyl phosphate
which is subsequently oxidized to aspartate semialdehyde by aspartate semialde-
hyde dehydrogenase (ASDH). In the last step of the common pathway, ASD forms
either dihydrodipicolinate (DHDP), a precursor of diaminopimelic acid and lysine,
or O-phosphohomoserine (OPH). OPHmay be channeled to threonine or methionine
(Azevedo et al. 2006). Methionine is converted from OPH in three enzymatic steps:
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Fig. 15.7 Aspartate pathway leading to the biosynthesis of Met and Lys. Asp: Aspartate;
AK: Aspartate kinase; ASD: aspartate semialdehyde; ASDH: aspartic semialdehyde dehydroge-
nase; DHDP: dihydrodipicolinate; DHDPS: dihydrodipicolinate synthase; HS: homoserine; HDH:
homoserine dehydrogenase; OPH: O-phosphohomoserine; HSK: homoserine kinase; Thr: threo-
nine; TS: Thr synthase; CysTA: cystathionine; CgS: cystathionine-synthase; HcY: homocysteine;
CbL: cystathionine-lyase; SAH: Sadenosylhomocysteine; HM: homocysteine methyltransferase;
SAM: S-adenosyl-methionine; SAMS: S-adenosyl-methionine synthetase; THDP: tetrahydro-
dipicolinate; DAPAE: DAP epimerase; DAP: diaminopimelate; DAPAT: DAP-aminotransferase

CgS catalyzes the formation of the thioether cystathionine from substrates of cys-
teine, the sulfur atom donor, and OPH by trans-sulfuration. The next step converts
the intermediate to homocysteine and subsequently to methionine. In this mecha-
nism, reactions are catalyzed by the enzymes CgS, cystathionine-lyase (CbL), and
methionine synthase (MS), in that order. Almost 80% of methionine is converted
into SAM, and the remainder takes part as a protein constituent (Hesse and Hoef-
gen 2003). Tryptophan biosynthesis too takes place in chloroplasts and is synthesized
from chorismate (Fig. 15.8). Anthranilate synthase (AS) catalyzes the first reaction of
the tryptophan biosynthesis which converts chorismate and an amine donor (usually
glutamine) to form anthranilate; its activity is subject to feedback inhibition by Trp.
In subsequent step, anthranilate phosphoribosylanthranilate transferase catalyzes a
conversion of anthranilate and phosphoribosylpyrophosphate to phosphoribosylan-
thranilate and inorganic pyrophosphate. The third enzyme in the biosynthesis of
tryptophan is phosphoribosylanthranilate isomerase (PAI) activity converting phos-
phoribosylanthranilate to l-(O-carboxyphenylamino)-l-deoxyribulose-5-phosphate
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Fig. 15.8 Tryptophan
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(CDRP). Then, indole-3-glycerol phosphate synthase (IGPS) accepts CDRP as the
substrate which is transferred to indole-3-glycerol phosphate (Tzin and Galili 2010).

The major genetic engineering-based strategies for improving protein quan-
tity/quality can be broadly grouped into three categories. These three groups are: (1)
genetic engineering of essential amino acids. In potato tubers, in addition to amino
acids present in proteins, some amino acids are “free” in the cytosol of seed cells
and available to be digested within the tuber. These “free” amino acids also represent
the pool available to the plant cell for protein synthesis and, to some extent, limit
the amount and type of protein synthesized by the cell. Thus, genetic engineering to
increase the level of amino acid synthesis has the potential to both remove some of
the limitations to protein synthesis and enrich the “free amino acid content” of the
plant. (2) Genetic engineering to enhance the levels of natural high-quality proteins
within the plant tissue. In this approach, the gene copy number and transcription
rate for specific genes are increased, or genes with appropriated essential amino acid
profile from different organism can be imported for heterologous expression in the
desired tissue (in case of potato, it is off-course tubers). (3) Improving the nutri-
tional quality of protein plant synthesise, through protein engineering and/or design.
Under this approach, the amino acid content of proteins expressed in potato tubers
can be tailored, or entirely new, modified proteins with more desirable complement
of amino acids can be designed and expressed. Although these three approaches
can be followed separately, however, application of any one of these three strategies
invariably results into more than one outcome in terms of improvement in protein
quantity/protein quality/free amino acid levels. Therefore, various research works
pertaining to improvement of proteins/amino acids in potato are discussed together
under one section.
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Efforts are being on for increasing content of various essential amino acids
(methionine, lysine, tryptophan, threonine, etc.) in potato. Advances in biotechnol-
ogy allowed the use of transgenic approach to increase the content of specific essential
amino acids in a target plant. It was first demonstrated by the significant enhancement
of methionine content in tobacco seed proteins through expressing transgene encod-
ing a methionine-rich protein from Brazil nut (Altenbach et al. 1989). Beauregard
et al. (1995) created an 11-kD synthetic protein, MBI, with 16% Met and 12% Lys,
and transformed soybean using vectors targeted to seed protein storage bodies using
appropriate leader sequences and seed-specific promoters. This was also achieved in
a nonseed food crop, sweet potato (Ipomoea batatas), modifiedwith an artificial stor-
age protein gene (Egnin and Prakash 1997). These transgenic plants exhibited two-
and fivefold increases in the total protein content in leaves and roots, respectively,
over that of control plants. A significant increase in the level of essential amino acids,
such as Met, Thr, Trp, Ile, and Lys, was also observed. In potato, higher methion-
ine levels increase the nutritional quality and promote the typically pleasant aroma
associated with baked and fried potatoes. Several attempts have been made to ele-
vate tuber methionine levels by genetic engineering of methionine biosynthesis and
catabolism. Chakraborty et al. (2000) developed transgenic potato overexpressing
the sunflower albumin or an amaranth seed albumin (AmA1), driven under the con-
stitutive promoters, which resulted in five- to sevenfold increase in total methionine
level in tubers. Further analysis of transgenic potato lines with enhanced methionine
amino acid via tuber-specific expression of a seed protein, AmA1 (Amaranth albu-
min 1), revealed an increase in total protein contents up to 60% in comparison to
the transformed potato (Chakraborty et al. 2010). Similarly, the methionine was also
enhanced in transgenic potato by overexpression of gene encodingPrLeg polypeptide
(isolated fromPerilla), driven under the tuber-specific patatin promoter. This resulted
in an increase in ~3.5-fold methionine in transgenic potato without changes in other
amino acids or growth, development, and yield of the potato (Goo et al. 2013). It was
also reported that higher isoleucine accumulation in transgenic tubers enhanced the
methionine accumulation via methionine gamma-lyase (MGL) catabolism pathway
(Huang et al. 2014). Recently, Kumar and Jander (2017) reported that overexpression
of A. thaliana cystathionine γ-synthase gene in S. tuberosum increased methionine
levels in tubers. Also, silencing S. tuberosummethionine γ-lyase gene, a gene encod-
ing protein which causes degradation of methionine into 2-ketobutyrate, resulted in
increase in methionine levels in tubers. Further, they reported that S. tuberosum cv.
Désirée plants with A. thaliana cystathionine γ-synthase gene overexpression and
S. tuberosum methionine γ-lyase gene silenced by RNA interference accumulated
higher free methionine levels than either single-transgenic line. The paradise nut 2S
seed protein is abundant Met residues (16 mol%). To explore the feasibility of fur-
ther increasing Met content of this protein, modifications were made in the sequence
region between the Cys-6 and Cys-7 codons of PN2S cDNA to contain 19, 21, and
23 mol% Met, respectively. All the three modified Met-rich PN2S were expressed,
processed, and accumulated in transgenic tobacco seeds. The same modifications
were also made in the Brazil nut 2S protein, and the chimeric genes were used to
transform potato. Results revealed that the mutated Met-enriched BN2S proteins
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were expressed and accumulated as well as normal 2S protein in the leaves and
tubers of transgenic potato. The accumulation of the methionine-rich protein could
make a significant enhancement in methionine levels in seed protein of transgenic
potato (Tu et al. 1998). In another study, attempts were made to increase the Met
content in potato tubers through heterologous overexpression of Arabidopsis cys-
tathionine γ-synthase (CgS�90), which is not regulated by Met in potato plants and
a storage Met-rich 15-kD zein in Desiree cultivar. There was sixfold increase in free
Met content and in the Met content of the zein containing protein fraction of the
transgenic tubers. In addition, in line with higher Met content, the amounts of solu-
ble isoleucine and serine were also increased. However, all the lines with higher Met
content CgC�90 expressions were phenotypically abnormal showing severe growth
retardation, changes in leaf architecture, and 40–60% reduction in tuber yield. Fur-
thermore, the color of the transgenic tubers was altered due to reduced amounts of
anthocyanin pigments.

In 1989, Yang et al. inserted the high essential amino acid encoding DNA
(HEAAEDNA) into the chloramphenicol acetyltransferase (CAT ) coding sequence
to generate a CAT-HEAAE fusion protein. Transgenic study indicated that CAT-
HEAAE protein was accumulated at 0.02–0.35% of total tuber protein in transgenic
potato. Based on the structurally well-studied maize zeins, the group later designed
and synthesized another artificial storage protein (ASP1) composed of 78.9% essen-
tial amino acids and estimated to possess a more stable storage protein like structure
in plants (Kim et al. 1992). The 284-bp asp1 gene, under the control of CaMV 35S
promoter, was normally expressed in transgenic tobacco leaves resulting in the accu-
mulation of relatively high levels of ASP1 proteins. Surprisingly, the overall levels
of total amino acid and protein were found to be increased remarkably in trans-
genic potato. Gene silencing by RNAi technology also has been tried in potato to
increase the essential amino acid content. The threonine synthase (TS) involved in
synthesis of threonine in potato was targeted for silencing so as to divert the cycle
and increase the Met content (Fig. 15.7). A reduction of 6% TS activity levels in
transgenic potato which increased the methionine levels up to 30-fold developing on
the transgenic line and environmental conditions and had no reduction in threonine
(Zeh et al. 2001). Most enzymes in biosynthesis pathways leading to amino acids are
inhibited by their end-products (allosteric regulation). 2S-sunflower seed protein has
been characterized for its IgE-binding capacity; the protein possesses a significant
amount of sulfur-containing amino acids (Hudson et al. 2005). This could be used
to improve protein quality of other crops through genetic engineering. A chimeric
gene encoding a methionine-rich Brazil nut (Bertholletia excelsa) protein contains
over 18%methionine, whereas most proteins contain only a few percent of methion-
ine. To increase methionine levels in plants, several transgenic approaches have been
used. Cystathionine γ-synthase (CGS), the first committed enzyme in themethionine
biosynthesis pathway, was overexpressed in transgenic potato plants. The transfor-
mation of PrLeg gene into potato, which contains low amounts of sulfur-containing
amino acids, was found to enhance Met content in the tubers (Goo et al. 2013).
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15.4.2.3 Minerals

Humans require various minerals to maintain health and for proper growth, and
plants are essential source of such minerals (Welch 2002). Minerals can generally be
classified as (a) major minerals [such as calcium (Ca), potassium (K), magnesium
(Mg), sodium (Na), phosphorus (P), cobalt (Co), manganese (Mn), nitrogen (N),
and chlorine (Cl)] and (b) minor/trace minerals [such as iron (Fe), copper (Cu),
selenium (Se), nickel (Ni), lead (Pb), sulfur (S), boron (B), iodine (I), silicon (Si), and
bromine (Br)]. Importance of optimal intake of theseminerals tomaintain goodhealth
has been universally recognized (Avioli 1988). Potatoes are an important source of
different dietary minerals. However, there are significant differences in major and
trace mineral contents among different genotypes of potato (Randhawa et al. 1984;
True et al. 1979). The minerals present in significant concentrations in potato are
given in (Table 15.6). In addition to genetic factors, many other factors affect the
mineral composition of potatoes; these include: location, stage of development, soil
type, soil pH, soil organic matter, fertilization, irrigation, and weather. Therefore, the
same genotype grown in different locationsmay have different mineral concentration
due to these environmental factors (Burgos et al. 2007). The available information
pertaining to the mineral content of potatoes and their improvement is described
below.

In terms of mineral content, potato is best known as an important source of dietary
potassium. Potassium plays a fundamental role in acid–base regulation, fluid bal-
ance, required for optimal functioning of the heart, kidneys, muscles, nerves, and
digestive systems. Health benefits of sufficient potassium intake include reduced
risk of hypokalemia, osteoporosis, high blood pressure, stroke, inflammatory bowl
disease, kidney stones, and asthma. Potato is listed as providing 18% of the RDA
of potassium. Potato qualifies for a health claim approved by the U.S. Food and
Drug Administration, which states: “Diets containing foods that are good source of
potassium and that are low in sodiummay reduce the risk of high blood pressure and
stroke.” Potassium varies from 3550 to 8234 μg/gFW (Casanas et al. 2002; Rivero
et al. 2003). The dietary reference intake of potassium for adult men and women is
3000–6000mg per day. TheUSNational academy of Sciences has recently increased
the recommended intake for potassium from 3500 mg to at least 4700 mg per day.
Besides potassium, phosphorus is the main mineral in potato tubers. It has many
roles in the human body and is a key player for healthy cells, teeth, and bones. Inad-
equate phosphorus intake results in abnormally low serum phosphate levels, which
affect loss of appetite, anemia, muscle weakness, bone pain, rickets/osteomalacia,
susceptibility to infection, numbness and tingling of the extremities, and difficulty
in walking. In potatoes, phosphorus ranges from ~1300 to 6000 μg/g DW (Lisinka
and Leszczynski 1989). Daily requirement of phosphorus is 800–1000 mg. Potato is
listed as providing 6% of the RDA of phosphorus. Calcium is important for bone and
tooth structure, blood clotting, and nerve transmission. Deficiencies are associated
with skeletal malformation and blood pressure abnormalities. The RDA for calcium
is 600–1200 mg (Table 15.1). Potatoes are a significant source of calcium and have
been shown to provide 2% of the RDA of calcium. Among 74 Andean landraces



466 S. Dutt et al.

screened, calcium ranged from 271 to 1093 μg/g DW (Andre et al. 2007b). Mag-
nesium is required for normal functioning of muscles, heart, and immune system.
Magnesium also helpsmaintain normal blood sugar levels and blood pressure. Potato
magnesium levels range from 142 to 359μg/g FW (Casanas et al. 2002; Rivero et al.
2003) and provides 6% of the RDA of magnesium. Manganese has a role in blood
sugar regulation, metabolism, and thyroid hormone function. RDA for manganese
is 2–10 mg. The range of potato manganese content has been reported from 0.73
to 3.62 μg/gFW (Rivero et al. 2003) to 9–13 μg/g DW (Orphanos 1980). Copper
is needed for synthesis of hemoglobin, proper ion metabolism, and maintenance of
blood vessels. The RDA for copper is 1.5–3.0 mg. Copper in potatoes varies from
0.23 to 11.9 mg/kg FW (Randhawa et al. 1984; Rivero et al. 2003). Like zinc, copper
is also high in yellow-fleshed potatoes (Dugo et al. 2004).

Iron deficiency affects more than 1.7 billion people worldwide and has been
called the most widespread health problem in the world by the World Health Orga-
nization. Due to severe iron deficiency, more than 60,000 women die in pregnancy
and childbirth each year, and almost 500 million women of childbearing age suffer
from anemia. Dietary iron requirements depend on numerous factors, for example,
age, sex, and diet composition. Potato is a modest source of iron. Potato is listed
as providing 6% of the RDA of iron. Iron content in cultivated potato tubers has
been found in the range of 0.3–2.3 mg 100 g FW or 6–158 μg/g DW (True et al.
1979; Andre et al. 2007b). Potato iron has been suggested to be quite bioavailable
because it has very low levels of phytic acid unlike the cereals. Zinc is needed for
body’s immune system to properly work and is involved in cell division, cell growth,
and wound healing. Iron and zinc deficiencies result in decreased immune function
and can interfere with growth and development (Zimmermann and Hurrell 2002).
The RDA for zinc is 15–20 mg, and potato is listed as providing 2% of the RDA
of zinc. The zinc content ranges from 1.8 to 10.2 μg/g FW (Andre et al. 2007b;
Randhawa et al. 1984; Rivero et al. 2003). Yellow-fleshed potatoes from different
cultivars contain zinc in 0.5–4.6 μg/g FW (Dugo et al. 2004).

Improving Mineral Content in Potatoes Using Genetic Engineering

Very few reports are there about research attempts improving mineral content in
potato through biofortification. Because plants cannot synthesize theseminerals, they
must be acquired from soil. As a result, engineering of plant mineral content is quite
different from modifications of improving other nutrition associated constituents
such as proteins and vitamins that the plant itself synthesizes. There are four main
strategies which can be employed for improving the mineral contents in potatoes
(Fig. 15.9); these are: (i) improvingminerals uptake fromsoil, (ii) increasing transport
to storage organ, (iii) increasing storage capacity of sink, and (iv) decreasing anti-
nutrient (phytic acid, phytase, etc.) components which reduce availability of the
minerals. Research to improve the mineral composition of crop plants has mostly
focused on iron content. Several reports exist in this particular area, most of which
describe research that was performed on iron biofortification in rice crop. However,
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Fig. 15.9 Approaches for improving mineral content in potato. The four main strategies include:
(i) improving minerals uptake from soil, (ii) increasing transport to storage organ, (iii) increasing
storage capacity of sink, (iv) decreasing anti-nutrient (phytic acid, phytase, etc.) components which
reduce availability of the minerals

very less research in this regard in potato has been carried out worldwide. An attempt
was made to over express Arabidopsis sCAX (Cationic Exchanger 1) and H+/Ca2+

transporter genes in potato. Transgenic tubers expressing sCAX1 displayed up to
threefold more calcium content compared to wild type without significant alteration
in growth and development. The trait was also found to be stably inherited when
monitored over three generations (Park et al. 2005). In other work, a chimeric, N-
terminus-truncated Arabidopsis cation transporter (CAX2B) that contains a domain
fromCAX1 for increased substrate specificitywas over expressed in potato to improve
calcium accumulation. The transgenic plants had 50–65% improved tuber calcium
content relative to wild type, with stable inheritance and no deleterious effects on
plant growth or development (Kim et al. 2006).

15.4.3 Reducing Anti-nutritional Factors

15.4.3.1 Glycoalkaloids

Steroidal alkaloids (SAs) and their glycosylated forms, i.e., steroidal glycosy-
lated alkaloids (SGAs) are toxic compounds mainly produced by members of the
Solanaceae and Liliaceae plant families. In humans and animals, steroidal alkaloids
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are considered anti-nutritional factors because they affect the digestion and absorp-
tion of nutrients from food and might even cause poisoning. In spite of the first report
on steroidal alkaloids nearly 200 years ago, much of the molecular basis of their
biosynthesis and regulation remains unknown. It has been perceived that elaborating
the knowledge regarding the steroidal alkaloids biosynthetic pathway, the subcellular
transport of these molecules, as well as the identification of regulatory and signaling
factors associated with steroidal alkaloids metabolism, will also provide the means
to develop, through classical breeding or genetic engineering, crops with modified
levels of anti-nutritional SAs (Cardenas et al. 2015). Recently, co-expression anal-
ysis and metabolic profiling revealed metabolic gene clusters in tomato and potato
that contain core genes required for production of the prominent SGAs.

The presence of SGAs in potatoes has been of a particular concern due to their
toxicity to humans (Friedman et al. 1997). In potatoes, SGAs are found in every plant
organs (roots, tubers, stolons, stems, foliage, flowers, and fruits) with fresh weight
concentrations ranging from 10 mg per kg (fresh weight) in tubers to 5000 mg
per kg (fresh weight) in the flowers (Smith et al. 1996). Solanine and chaconine,
derived from the aglycone solanidine, are the most prevalent glycoalkaloids found in
cultivated potato (Dale et al. 1993). Solanine and solasonine have a common sugar
moiety (solatriose) while chaconine and solamargine have chacotriose in common.
The alkamine steroidal skeletons (aglycones) of the glycoalkaloids are classified into
two groups, the spirosolanes and solanidanes, of which solasodine and solanidine
are representatives, respectively. These compounds are derived frommevalonic acid.
The use of wild germplasm in potato breeding is extensive and the main source of
transmission of unusual SGAs (Väänänen et al. 2006).

Elimination of solanidine glycosylation has been found to decrease toxicity of
edible tuber. Antisense DNA constructs of SGT1 coding for solanidine galactosyl
transferase involved in α-solanine biosynthesis, SGT2 coding for solanidine glu-
cosyltransferase involved in α-chaconine biosynthesis, or SGT3 coding for sterol
rhamnosyltransferase, the last step in the triose formation of α-chaconine and α-
solanine (McCue et al. 2005, 2006, 2007), reduced the corresponding glycoalkaloids
in transgenic potato plants. Antisense silencing of a potato gene encoding a sterol
alkaloid glycosyl transferase (sgt1) resulted in complete inhibition of α-solanine
accumulation. But this decrease was compensated by elevated levels of α-chaconine
and resulted in wild-type total steroidal glycoalkaloids (SGA) levels in transgenic
lines (McCue et al. 2005). Arnqvist et al. (2003) overexpressed soybean (Glycine
max) type 1 sterol methyl transferase (GmSTM1) in potato (cv. Desiree) in an attempt
to reduce glycoalkaloids. The transgenic potato showed decreased glycoalkaloid lev-
els in leaves and tubers, down to 41 and 63% of wild-type levels, respectively. In
2002, Esposito et al. estimated the glycoalkaloid content in potatoes improved with
nonconventional breeding approaches. They performed chemical analyses on two
distinct groups of new potato genotypes. The first group contained clones trans-
formed with the gene ech42 encoding for an endochitinase. The second included
interspecific hybrids between the cultivated potato S. tuberosum and the wild species
Solanum commersonii, obtained either by somatic fusion or by sexual hybridiza-
tion. The results suggested that chitinase gene insertion did not alter other metabolic
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pathways of potato tubers and did not cause unintentional pleiotropic effects. In
interspecific hybrids, wide variability for all of the parameters analyzed was found.
In a number of genotypes, glycoalkaloid levels were close to or lower than those of
the control varieties, suggesting that selection for low glycoalkaloid content is possi-
ble. The results also indicated that glycoalkaloids from S. commersonii may be lost
rapidly. Recently, co-expression analysis and metabolic profiling revealed metabolic
gene clusters in tomato and potato that contain core genes required for production
of the prominent SGAs (Cardenas et al. 2015).

15.4.3.2 Acrylamide and Allergens

Acrylamide has been classified as probable carcinogen in humans and has neurolog-
ical and reproductive effects. It is formed from free asparagine and reducing sug-
ars during high-temperature cooking and processing of common foods. Potato and
cereal products are major contributors to dietary exposure to acrylamide. One of the
promising approaches to reduce the acrylamide formation in plant-based processed
products is to develop crop varieties with lower concentrations of free asparagine
and/or reducing sugars, and of best agronomic practice to ensure that concentrations
are kept as low as possible (Halford et al. 2012). Chawla et al. (2012) reported that
simultaneous silencing of asparagine synthetase (Ast)-1 and -2 reduced asparagine
formation and, consequently, reduces the acrylamide-forming potential of tubers.
However, phenotypic analysis revealed that the phenotype of silenced lines appears
normal in the greenhouse, but field-grown tubers were small and cracked. Assessing
the effects of silencing StAst1 and StAst2 individually, they found that yield drag
was mainly linked to down-regulation of StAst2. Interestingly, tubers from untrans-
formed scions grafted onto intragenic StAst1/2-silenced rootstock contained almost
the same low ASN levels as those in the original silenced lines, indicating that ASN
is mainly formed in tubers rather than being transported from leaves. Further, field
studies demonstrated that the reduced acrylamide-forming potential achieved by
tuber-specific StAst1 silencing did not affect the yield or quality of field-harvested
tubers.

Allergies to potatoes appear to be relatively uncommon. Patatin, the primary
storage protein in potato unfortunately, has also been suggested to be major allergen
in potato. Patatin may be cross-reactive for persons with allergy to latex, and children
with atopic dermatitis appear to have increased sensitivity to this potato protein
(Schmidt et al. 2002). However, boiling of potatoes reduce or nullify the allergic
reaction. No significant work has been carried out to remove or minimize the allergic
potential of potatoes. The biotechnological way to overcome this patatin-associated
allergymay be developing potato cultivar engineered for the patatin protein at specific
site(s) which is/are responsible for inducing the allergic response upon consumption.
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15.4.4 Improving Carbohydrates Quality

After cellulose, starch is the second most abundant compound produced in higher
plants. Starch represents the most important carbohydrate used for food and feed
purposes. While cellulose is a structural component of plants, starch mainly serves
as a compound to temporarily store energy that can be accessed at a later time
point. Chemically, starch is an alpha-glucan (α-glucan) and composed of two types
of polysaccharides: amylose and amylopectin (Fig. 15.10). Amylopectin is highly
branched, leavingmore surface area available for digestion. It is broken down quickly
and thus produces a larger rise in blood glucose. On the other hand, amylose is a
straight chain, which limits the amount of surface area exposed for digestion. There-
fore, digestion of amylose is slow than that of amylopectin and hence is responsible
for resistant nature of starch. Thus, improving the resistant starch content refers to
increasing the amylose content of the target crop. Resistant starch provides health
benefits such as glycemic control, control of fasting plasma triglyceride and choles-
terol levels and absorption of minerals. In view of the industrial application and
the nutritional benefits of resistant starch, researchers around the globe have been
working to increase the RS content of the plants. The approaches for increasing
the RS content in plants include natural selection, conventional breading as well
as transgenic. All these approaches are based on biosynthetic pathways of starch
metabolism. The key enzymes for starch biosynthesis are AGPase, starch synthases,
and branching enzymes. Generation of the sugar nucleotide ADP glucose is cat-
alyzed by AGPase. Starch synthases catalyze the polymerization of glucose residues
resulting in formation of α-1,4 glucans. Branching enzymes cleave α-1,4 glucans and
reattach the cleaved chain to an α-1,4 glucan chain by an α-1,6 glycosidic linkage,
thereby forming a branch (Fig. 15.10).

As potato contains high starch, they have been genetically modified for increasing
the resistant starch content (i.e., amylose content). In 2000, Schwall et al. developed
very-high-amylose potato starch by manipulating starch branching enzymes through
genetic engineering. They simultaneously inhibited two isoforms of starch branch-
ing enzyme to below 1% of the wild-type activities which resulted in altered starch
granule morphology and composition. In these, potato amylopectin was found to
be absent, whereas the amylose content increased to levels comparable to the high-
est commercially available maize starches. Expression of amylosucrase in potato
resulted in larger starch granules with rough surfaces and novel physicochemical
properties, including improved freeze–thaw stability, higher end viscosity, and bet-
ter enzymatic digestibility. In 2005, Blennow et al. reported genetic engineering of
potato tuber starch by simultaneous antisense suppression of the starch branching
enzyme (SBE) I and II isoforms. Starch prepared from12 independent lines, and three
control lines were characterized with respect to structural and physical properties.
The lengths of the amylopectin unit chains and the concentrations of amylose and
monoesterified phosphate were significantly increased in the transgenically engi-
neered starches. With the aim of increasing starch content, Regierer et al. (2002)
modulated the adenylate pool by changing the activity of the plastidial adenylate
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Fig. 15.10 Starch components in potato. Starch has two components, viz. amylose and amylopectin.
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kinase in transgenic potato plants. A substantial increase in the level of adenylates
and, most importantly, an increase in the level of starch to 60% above that found in
wild-type plants were observed.

Beaujean et al. (2000) demonstrated that it is possible to replace starch degrada-
tion using microbial enzymes via a system where the enzymes are produced directly
in the plants, but active only at high temperature, thus offering novel and viable
strategies for starch-processing industries. They reported for the first time that starch
was degraded and glucose and fructose were produced directly when crushed potato
tubers expressing a starch degrading bifunctional gene were heated for 45 min at
65 °C. To achieve this, we have constructed a fusion gene encoding the thermostable
enzymes: alpha-amylase (Bacillus stearothermophilus) andglucose isomerase (Ther-
mus thermophilus) under the control of the granule-bound starch synthase promoter.
This enzymatic complex produced in transgenic tubers was only active at high tem-
perature (65 °C). More than 100 independent transgenic potato plants were regen-
erated. The biochemical analyses performed on young and old tubers after high-
temperature treatment (65 °C) revealed an increase in the formation rate of fructose
and glucose by a factor of 16.4 and 5.7, respectively, in the transgenic tubers as
compared to untransformed control tubers. Potato tuber pectin is rich in galactan
(oligomer of beta-1,4-linked galactosyl residues). Oxenboll Sorensen et al. (2000)
expressed a fungal endo-galactanase cDNA in potato under control of the granule-
bound starch synthase promoter to obtain expression of the enzyme in tubers during
growth.Analyses of transgenics revealed alterations in pectin composition.Monosac-
charide composition of total cell walls and isolated rhamnogalacturonan I fragments
showed a reduction in galactosyl content to 30% in the transformants compared with
the wild type.

15.4.5 Improving Processing Attributes

Accumulation of reducing sugars (primarily glucose and fructose) in cold-stored
potato tubers is referred to as “cold-induced sweetening” (CIS). CIS makes the cold-
stored potatoes unfit for processing purposes such as chips and French fries making
(Fig. 15.11). Two separate metabolic events are critical in determining a potato
tuber’s ability to produce sugars in the cold storage: the ability to form sucrose and
the ability to hydrolyze sucrose to the reducing sugars glucose and fructose. The
control of sucrose synthesis is controlled by several related enzymes while reducing
sugar formation ismore specifically related to level of vacuolar acid invertase activity.
Role of vacuolar acid invertase in cold-induced sweetening has been demonstrated by
various researchers (Fig. 15.12). Bhaskar et al. (2010) demonstrated that silencing the
potato vacuolar acid invertase gene (VInv) prevented reducing sugar accumulation
in cold-stored tubers. Potato chips processed from VInv silencing lines were light in
color even when tubers were stored at 4 °C. Comparable, low levels of VInv gene
expression were observed in cold-stored tubers from wild potato germplasm stocks
that are resistant to cold-induced sweetening. Wiberley-Bradford et al. (2014) have
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Fig. 15.11 Chips prepared from potatoes having high glucose content due to cold-induced sweet-
ening (a); and from potatoes having low glucose content (b)

shown that vacuolar invertase (VInv) silencing significantly reduced cold-induced
sweetening in stored potato tubers, likely by means of differential VInv expression
early in storage. Zhu et al. (2014) suppressed the expression of Vacuolar Invertase
gene (VInv) in cultivars Russet Burbank and Ranger Russet using RNA interference
to determine if this approach could control sugar-end defect formation.Acid invertase
activity and reducing sugar content decreased at both ends of tubers. Clasen et al.
(2016) used transcription activator-like effector nucleases (TALENs) to knockout
vacuolar invertase gene (VInv, which encodes a protein that breaks down sucrose
to glucose and fructose) within the commercial potato variety, Ranger Russet. They
isolated 18 plants containing mutations in at least one VInv allele, and five of these
plants had mutations in all VInv alleles. Tubers from full VInv-knockout plants had
undetectable levels of reducing sugars, and processed chips contained reduced levels
of acrylamide and were lightly colored. These results provide a framework for using
TALENs to quickly improve traits in commercially relevant autotetraploid potato
lines.

Rommens et al. (2006) improved potato storage and processing characteristics
through all-native DNA transformation. They simultaneously lowered the expression
of Ranger Russet’s tuber-expressed polyphenol oxidase, starch-associated R1, and
phosphorylase-l genes. This genetic modification was accomplished without insert-
ing any foreign DNA into the plant genome. French fries from the intragenic potatoes
also contained reduced amounts of the anti-nutritional compound acrylamide while,
unexpectedly, displaying enhanced sensory characteristics. Processed potato tuber
texture is an important trait that influences consumer preference, a detailed under-
standing of tuber textural properties at the molecular level is lacking. Tuber pectin
methyl esterase activity is a potential factor impacting on textural properties. Expres-
sion of a gene encoding an isoform of pectin methyl esterase (PEST1) was associated
with cooked tuber textural properties. Ross et al. (2011) changed the texture of potato
by engineering pectin and thus changed the texture of potato. They used transgenic
approach to investigate the impact of the PEST1 gene. Antisense and overexpressing
potato lines were generated. In overexpressing lines, tuber pectin methyl esterase
activity was enhanced by up to 2.3-fold, whereas in antisense lines, pectin methyl
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Fig. 15.12 Carbohydratemetabolism in stored potato tubers. Enzymes: (E1) sucrose synthase; (E2)
fructokinase; (E3) UDP glucose pyrophosphorylase; (E4) phosphohexose isomerase; (E5) phospho-
glucomutase; (E6) ADP glucose pyrophosphorylase; (E7) starch synthases, branching enzymes;
(E8) neutral invertase; (E9) hexokinase; (E10) acid invertase; (E11) sucrose phosphate synthase;
(E12) starch phosphorylase; (E13) amylases, debranching enzymes. Partially adapted from Dale
and Bradshaw (2003)

esterase activity was decreased by up to 62%. Pectin methyl esterase isoform anal-
ysis indicated that the PEST1 gene encoded one isoform of pectin methyl esterase.
Analysis of cell walls from tubers from the overexpressing lines indicated that the
changes in pectin methyl esterase activity resulted in a decrease in pectin methyla-
tion. Analysis of processed tuber texture demonstrated that the reduced level of pectin
methylation in the overexpressing transgenic lines was associated with a firmer pro-
cessed texture. Thus, there was a clear link between pectin methyl esterase activity,
pectin methylation, and processed tuber textural properties (Ross et al. 2011). Potato
polyphenol oxidases are the enzymes responsible for enzymatic browning reaction
observed in impacted, damaged, or sliced tubers. These oxidative deterioration reac-
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tions alter the organoleptic properties of food and greatly affect potato tuber quality.
Llorente et al. (2011) silenced the PPO gene in transgenic potato which reduced the
enzymatic browning and enhanced the shelf life of potato.

15.5 Future Prospects

Malnutrition is the most chronic and pressing agricultural and human health prob-
lem of the twenty-first century. Potato being an important constituent of our diets is
expected to play vital role in tackling this serious malnutrition problem. Therefore,
improvements in the nutritional quality of potato would have most visible positive
impact. For achieving this, full potential of biotechnological tools must be put in
use in association with conventional plant breeding programs with the sole aim of
bio-fortifying potatoes with superior nutritional levels. The genomic resources need
to be continuously enriched to have deeper insights for identifying key molecular
regulators which can be utilized through biotechnological approaches in potato with
the aim of developing nutritionally superior cultivars. Present mechanisms put in
place for evaluation and recommendation for commercial application of the geneti-
cally engineered superior potato, and other crops need to be streamlined so that the
real benefit of the biofortified nutritionally superior food can reach the consumers.
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Chapter 16
Role and Applications of Bioinformatics
in Improvement of Nutritional Quality
and Yield of Crops

Mehak Dangi, Ritu Jakhar, Sahil Deswal and Anil K. Chhillar

Abstract Bioinformatics has the major role to play in decoding of the genomes of
plants and animals. Bioinformatics is making progress in each and every field of
life sciences, and similarly, the field of crop improvement has also been influenced
by it. Bioinformatics allows capturing, managing, analyzing, and integrating the
huge amount of metabolomics, genomics, and proteomics data enabling its efficient
interpretation by the users. Bioinformatics makes available data and various tools to
every individual, company, or industries so as to increase nutritional value and yield
of crops. Detection of complex protein–protein interactions, modeling the protein
structures, and unraveling the high-resolution genetic and physical network in plants
can also be easily accomplished using in silico studies. This book chapter basically
reviews the different role and applications of bioinformatics in plant breeding, gene
network analysis, and molecular marker-assisted crop improvement techniques.

Keywords Bioinformatics · Plant breeding ·Microarray · Gene network ·
Molecular markers and QTL

16.1 Introduction

Let it be the sequence data of animals, humans or plants, bioinformatics has the
major role to play in decoding of their genomes. Bioinformatics is making progress
in each and every field of life sciences, and similarly, the field of crop improvement
has also been influenced by it. Scientists have succeeded in increasing the levels of
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iron, vitamin A, and other micronutrients through gene transfer in rice. Most promi-
nent example of bioinformatics in improving the nutritional quality of the crop is the
development of golden rice that can fight against vitamin A deficiency in humans.
This new variety of rice can help in reducing the occurrence of anemia and blindness
due to deficiencies in iron and vitamin A, respectively (Paine et al. 2005). Crop yield
can be increased by designing plants based on understanding the regulatory net-
work and gene function involved in growth, stress tolerance, and development. This
can be achieved by using bioinformatics approaches such as comparative genomics.
Comparative genomics identifies the biological properties of each species that accel-
erates the functional analysis of gene and its discovery. Like in Theobroma cacao
(cocoa) a raw material for chocolate, DNA fingerprinting is used to recognize a seed
of good flavor and higher quality. Bioinformatics allows capturing, managing, ana-
lyzing, and integrating the huge amount of data enabling its efficient interpretation
by the users. In the area of genomics, it has the role in gene location, evolutionary
studies, and identification of transcription regulatory sites in the genes. Detection
of complex protein–protein interactions, modeling the protein structures, and unrav-
eling the high-resolution genetic and physical network in plants can also be easily
accomplished using in silico studies (Basantani et al. 2017; Mochida and Shinozaki
2010). The explosive growth of biological data due to the development in genomic
and proteomic approaches over the last few years was handled through bioinformat-
ics in all possible ways, e.g., storing the data efficiently in databases, designing the
computational tools to analyze the stored information, designing the visualization
tools, and integrating the related information from various resources, so that the users
can draw the meaningful conclusions from the huge data sets (Ballabh et al. 2017).
Bioinformaticians are involved in writing and running the software programs that use
algorithms from artificial intelligence, soft computing, graph theory, and computer
simulation.All these above-mentionedbioinformatics services have an important role
to play in molecular plant breeding techniques to improve crop yields and nutrition.
Information of full genome sequence of plants and agriculturally important microor-
ganisms available in the different databases can be analyzed to identify the key genes
to enhance the yield and nutritive content of the crops. The genetic architecture of
microorganism and pathogens can be analyzed to check the mechanism of action
affecting the host plant by using metagenomics and transcriptomics approach. This
could help to generate the pathogen-resistant crops. Bioinformatics tools can also be
used for the identification of miRNA or siRNA in plants as these are the potential tar-
gets for the crop improvement. Moreover, marker-assisted selection (MAS) is also in
use in crop improvement programs since the improvement in sequencing techniques.
This book chapter basically reviews the different roles and applications of bioinfor-
matics in plant breeding, gene network analysis and molecular marker-assisted crop
improvement techniques.
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16.2 Bioinformatics in Plant Breeding

Plant breeding means altering the genetic makeup of plants to produce the desired
characters. It can be used to improve the nutritional quality of crops or increasing
the yield. Sequence data of the plants can be used to identify the targets for plants
breeding by understanding the organization of the whole genome, structure of the
genes, and expressionpattern of the genes.Out of these, transcriptomics is the focus of
attention for most of the plant breeders. Transcriptomics means to study the complete
set of RNA transcripts produced by the genome of an organism at a particular time
under definite conditions (Vilanova et al. 2012; Atanassov et al. 2014).

This sub-category of omics allows identification of differently expressed genes
in different cells, at different times, and different conditions. The microarray is a
high-throughput technology to quantify the gene expression data to draw the func-
tional inferences about different genes simultaneously. The microarray experiments
produce the number of data points that require the computational interpretation for
meaningful data analysis. There are number of tools and Web-based resources avail-
able for analysis of microarray data that utilize the different statistical packages like
SAS, MATLAB, and R for data analysis. The information stored in various public
and private databases also needs to be integrated for interpretation of hugemicroarray
data (Vassilev et al. 2005).

16.2.1 Software for Microarray Data Analysis

The series of images are obtained in microarray experiments. The software is used to
analyze the images to reveal the intensity of the spots which quantify the expression
of transcripts at each spot. The obtained information is normalized and statistically
analyzed using various commercial or freely available software. These software can
contribute to image analysis to obtain the gene list, ontology, and gene pathways
(Koschmieder et al. 2012). Some of the examples of such software are:

Microarray Analysis, Retrieval, and Storage System (MARS)
MARS is a MIAME supportive (minimum information about a microarray experi-
ment) suite for analyzing, retrieving, and storing multi-color microarray data. This
system incorporates a laboratory information management system (LIMS), a sophis-
ticated user management system, as well as quality control management. It is fused
into an analytical pipeline of microarray image normalization, analysis, mapping of
gene expression data onto biological pathways, and gene expression clustering. The
inclusion of Microarray Gene Expression Markup Language (MAGEML) and the
use of ontologies permit an export of studies to databases and other public reposi-
tories accepting these documents stored in MARS. It is available for both academic
and non-commercial use (Maurer et al. 2005).
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BioArray Software Environment (BASE)
BASE provides a MIAME-comprising application, which is designed for storing
microarray experiments related to the information generated by microarray labora-
tories. It is a local data repository formulti-users that have various elements likeLIMS
for array and biomaterial production, annotation outline for analysis, user interface
for Web browser and integrated tools like GenePattern and MultiExperiment Viewer
(MEV) (Vallon-Christersson et al. 2009).

New version of BASE provides the users with more efficient analysis tools and
information management system (INS). The information by INS is collected from
biosources, and raw data is labeled and analyzed comprehensively. Annotation can be
done for all items in BASE and data post-annotation can be utilized for experimental
factors. Then the microarray experimental data and its annotations are stored by
BASE regardless of the provided data format.

Chipster
Chipster (http://chipster.csc.fi/) is a collection of user-friendly visualization and anal-
ysis tools for microarray data understanding. It consists of a vast assembly of refer-
ence genomes and more than 400 analysis tools. The automatic analysis workflow
can be shared and saved by users, and the data can also be visualized interactively
using the built-in genome browser. For the actual analysis, the chipster’s client soft-
ware connects to computer server and uses Java, which is installed automatically. It
is open-source and the server environment is available as a virtual machine image.
A user account is required for Chipster running on CSC’s server.

The different data types like array comparative genomic hybridization (aCGH),
gene expression, and miRNA can be integrated and analyzed by users. Along with
the interactive visualization and large analysis functionality, the users can create new
gene list based on the selection of data points. One of the important advantages is that
the performed analysis steps can be saved by users for future use, and the automatic
workflow can also be shared with other users. Chipster is an easily extendable and
versatile platformwhich can be used for sequencing data, proteomics, andmicroarray
(Kallio et al. 2011).

Gene Set Enrichment Analysis (GSEA)
GSEA is a computational method that determines whether an a priori defined set of
genes shows statistically significant, concordant differences between two biological
states (e.g., phenotypes). It is easier to run the analysis on GSEA software and review
its results, allowing the user to focus on interpreting the analysis results (Subramanian
et al. 2005).

The steps for running an analysis are as follows:

1. Data files preparation:

• Expression dataset file (res, gct, pcl, or txt)
• Phenotype labels file (cls)
• Gene sets file (gmx or gmt)
• Chip (array) annotation file (chip)

http://chipster.csc.fi/


16 Role and Applications of Bioinformatics in Improvement … 489

2. Load your data files into GSEA.
3. Set the analysis parameters and run the analysis.
4. View the analysis results.

16.2.2 Microarray Databases

There are number of databases available for hosting the data of hybridizations and
microarray analysis process depends on these databases with support of various
software.

ArrayExpress
ArrayExpress (www.ebi.ac.uk/arrayexpress) is a database of high-throughput func-
tional genomic data and is publically available. It consists of two parts namely—
ArrayExpress Data Warehouse, which stores data selected from repository of gene
expression profiles and consistently reannotate and the ArrayExpress Repository, it
is amicroarray data archive and supportMIAME. By using experiment attributes like
species, author, keywords, accession number, array platform or journal, the archived
experiments can be queried. Gene expression profiles can be visualized and can be
queried by gene properties and names, such as Gene Ontology terms. ArrayExpress
is a rapidly growing database, having data from >1,500,000 individual expression
profiles, and >50,000 hybridizations.MAGE-ML andMIAME community standards
are supported by ArrayExpress, and more recently MAGE-TAB a spreadsheet-based
data exchange format was proposed (Athar et al. 2019).

Gene Expression Omnibus (GEO)
GEO (http://www.ncbi.nlm.nih.gov/geo/) created in 2000 freely distributes and
archives functional genomics and high-throughput gene expression data in an inter-
national public repository. It is a resource for gene expression studies and accepts
high-throughput data from many other data applications including those that exam-
ine genome–protein interactions, genome methylation, and chromatin structure.
Community-derived reporting standards are supported by GEO that specifies the
provision of several critical study elements including descriptive metadata, raw data,
and processed data. GEO provides the data from numerous gene expression studies
as well as access to different web-based strategies and tools. It enables the users to
analyze, visualize and locate the data relevant to their specific interests with ease
(Barrett et al. 2013).

Center for Information Biology gene EXpression database (CIBEX)
CIBEX(http://cibex.nig.ac.jp) is a public repository developedbyMGEDsociety and
is a data retrieval system supporting MIAME, for storing and comparing microarray
data produced in experiments at different laboratories. CIBEX serves to store a wide

http://www.ebi.ac.uk/arrayexpress
http://www.ncbi.nlm.nih.gov/geo/
http://cibex.nig.ac.jp
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range of gene expression research data from high-throughput experiments, including
microarray-based experiments measuring serial analysis of gene expression (SAGE)
tags, mRNA, and mass spectrometry proteomic data (Ikeo et al. 2003).

16.3 Gene Network Analysis

The analysis of networks or pathways is important for designing of agrochemicals
for selected targets in the pathways. The pathway databases are the result of intense
biological research to reveal the series of molecular events and could be of real use
by genetic engineers, e.g., if the pathways for the synthesis of essential amino acids
are known to scientists than this information could be used by them for improvement
in nutritional quality of food crops through genetic engineering techniques. Though
plant pathway databases are lagging behind, still the researchers of the plants are
exploiting the available network data and their visualization tools for their studies
(Tien Lea et al. 2016; Sucaet and Deva 2011). Some of the examples of pathway
databases are:

Kyoto Encyclopedia of Genes and Genomes (KEGG)
KEGG (http://www.genome.ad.jp/kegg/) knowledge base is daily updated for gene
function systematic analysis, linking genomic information with higher-order func-
tional information. It also includes a GENE’s database with up-to-date annotation
of gene functions for some partial genomes and gene catalog of all completely
sequenced genome. The PATHWAY database stores higher-order functional infor-
mation, cellular processes like cell cycle, metabolism, signal transduction, and mem-
brane transport are graphically represented. The ortholog group table in PATHWAY
database stores information about conserved sub-pathways (pathway motifs), which
are useful in predicting gene functions and often encoded by positionally coupled
genes on the chromosomes. Information about enzyme reactions, chemical com-
pounds, and enzyme molecules is stored in LIGAND the third database in KEGG. In
KEGG, genome maps are browsed, two genome maps are compared, and expression
maps are manipulated, as well as computational tools for graph comparison, path
computation, and sequence comparison is done by Java graphics tools (Kanehisa
et al. 2019).

MetaCyc
MetaCyc (http://ecocyc.org/ecocyc/metacyc.html) is a curated database of experi-
mentally elucidated metabolic pathways from all domains of life. From 3009 organ-
isms,MetaCyc contains 2722 different pathways. It contains information about asso-
ciated metabolites, genes, enzyme, reactions as well as pathways involved in both
primary and secondary metabolisms. MetaCyc aim is to catalog the universe of
metabolism by storing a representative sample of each experimentally elucidated
pathway. Information from multiple literature sources is integrated for a given entry
in MetaCyc and is a review-level database. After the experimental determination of

http://www.genome.ad.jp/kegg/
http://ecocyc.org/ecocyc/metacyc.html
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pathways, these are labelled with the species in which they occur based on litera-
ture references and stored in the MetaCyc. The database has various applications
like biochemistry education, genomes pathway analysis, and metabolic engineering.
The graphical user interface for the pathway tools is used to query MetaCyc; it also
provides a wide variety of visualization tools and query operations. It is available for
installation as a set of flat files and as a binary program for the Sun workstation and
for PC (Zhang 2005; Caspi et al. 2014).

AraCyc
Biochemical pathways ofArabidopsis thaliana can be visualized byAraCyc (Mueller
et al. 2003). Pathway tools developed at SRI by Peter Karp’s group support AraCyc.
Originally, MetaCyc was used as a reference database to computationally predict
AraCyc for the sequencedArabidopsis genome. The non-Arabidopsis pathwayswere
removed and predicted pathways were manually validated. It contains a mixture
of information usually extracted from computational prediction and peer-reviewed
literature.AraCyc is released semi-annually.With each release, aPathologicSoftware
Report as well as summary of the database content, is made available (Zhang 2005;
Mueller et al. 2003).

Plant Reactome
Plant Reactome (http://plantreactome.gramene.org/) is developed as a part of the
Gramene project and is curated, open-source, and free plant pathway database. This
database supports to genome analysis, systems biology, education, genome annota-
tion, modeling, and basic research by providing bioinformatics tools for the inter-
pretation, analysis, and visualization. Plant cell structural framework is employed
by Plant Reactome to show developmental, transport, signaling, and metabolic path-
ways. Manual curation of molecular details is done for pathways in these domains
and rice (Oryza sativa) is considered as reference species. One thousand one hun-
dred seventy-three proteins associated with 1025 reactions, 222 rice pathways, 256
literature references, and 907 small molecules have been curated to date. Various
components of the database can be searched and browsed by users. The users can also
visualize, analyze, or upload their omics datasets within the database. The informa-
tion from this database can be accessed in the form of various standardized pathway
formats, such as BioPAX and SBML (Naithani et al. 2017).

Cytoscape
Cytoscape integrates molecular states into a unified conceptual framework and high-
throughput expression data with biomolecular interaction networks. It is applicable
to any system of molecular interactions and components but is most powerful when
used in conjunction with large databases of DNA-protein, genetic interactions, and
protein–protein interactions that are increasingly available for model organisms and
humans. Software Core provides basic functionality to visually integrate the net-
work with other molecular states, expression profiles and phenotypes; to query the
network and layout; and to link the network to databases of functional annotations.

http://plantreactome.gramene.org/
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By straightforward plug-in architecture, the Core is extensible, which allows rapid
development of additional computational features and analyses (Shannon et al. 2003).

GenMAPP
GenMAPP application is freely available; it is designed to visualize genomic data
and gene expression on maps representing a grouping of genes and biological path-
ways. GenMAPP is integrated with various programs to perform a global analysis of
genomic data; the MAPPFinder module of GenMAPP can extract the gene expres-
sion in the context of thousands of Gene Ontology Terms and hundreds of MAPPs
pathway. It exports the archives of genomic/expression data to the Web and imports
lists of the proteins/gene to build new MAPPs (MAPPBuilder).

GenMAPP-CS is a cross-platform program composed of multiple plug-ins within
the programCytoscape. GenMAPP-CS interfaces withWikiPathways to obtain path-
ways by reading the GPML format of the pathway files. GenMAPP-CS also uses
species gene databases built through the BridgeDB project, which also provides
databases for WikiPathways and PathVisio. GenMAPP-CS provides many of the
same features as GenMAPP 2.0, with many additional and improved methods for
gene and sub-gene analyses (e.g., GO-Elite, ClusterMaker, APT Affymetrix array
normalization, GEO import advanced custom visualizationmethods, and othermeth-
ods available from Cytoscape plug-ins). GenMAPP-CS has an easy to use graphical
user interface, designed for the bench laboratory biologist (Salomonis et al. 2007).

16.4 Molecular Markers

Molecular markers follow a Mendelian pattern of inheritance and are defined as
variations in DNA sequences on the homologous chromosome of two distinct indi-
viduals at the identical position. Past two decades, the whole plot of life sciences has
been remodeled because of approach of molecular markers. The molecular markers
based on DNA are a versatile tool in the field of physiology, genetic engineering,
taxonomy and embryology, etc. (Schlötterer 2004). Ever since the improvement of
molecular markers, these are uniformly being revised to intensify the efficiency and
to bring about self-regulation in the method of genome analysis. The development
of polymerase chain reaction (PCR) was a milestone in this effort and demonstrated
as an innovative process that brought about a new form of DNA profiling mark-
ers. This facilitated the development of marker-based gene tags, genetic mapping,
map-based cloning of agronomically important genes, genetic diversity studies, phy-
logenetic analysis, and marker-assisted selection of desirable genotypes, etc. (Joshi
et al. 2000).
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16.4.1 Quantitative Trait Loci (QTL) Mapping

In plant breeding, one of the most challenging tasks is to associate the development
of traits that show a continuous range of values. Quantitative traits also known as
complex or multifactorial or polygenic traits are regulated by many genes and are
genetically important traits associated with some form of the disease, quality, and
yield. QTLs are genetic factors that are responsible for a part of the observed phe-
notypic variations for a quantitative trait. QTL mapping is the process of identifying
the genomic regions associated with these traits, i.e., to conduct QTL analysis and
creating linkage maps. DNAmarkers are used for location and identification of QTL
or polygenes. DNA markers are tested throughout the genome to detect their associ-
ation with QTL. The analysis of QTL can be done in progeny based on the principle
that markers and genes are segregated by chromosome recombination during meio-
sis. For QTL mapping, an association between genotype and phenotype of markers
is detected, and it depends on the linkage disequilibrium.

Objectives of QTL mapping:

Themain objective is tominimize the occurrence of false positives (i.e. Type I error—
declaration of an association between a QTL and marker when there is none) and
QTL detection.

• Identification of genome regions that affect the trait of interest;
• Analysis of the effect of QTL on trait;
• Identifying the effect of specific region affecting the variation of the trait;
• Identification of additive or dominant gene action associated with the QTL;
• Identification of alleles associated with a favorable effect.

From an inter-sub specific population of Lens culinaris ssp. orientalis x Lens culi-
naris ssp. culinaris,Duran andVega (2004) developed aQTLmap for poddehiscence,
seed diameter, plant height, and number of shoots. Humphry et al. (2003) and Chai-
tieng et al. (2002) found one QTL in Vigna species responsible for powdery mildew
resistance while Young et al. (1993) identified three QTL in mungbean associated
with powdery mildew resistance. Six AFLP-derived QTLs were identified by Sholi-
hin and Hautea (2002) associated with two traits (leaf stress rating and leaf relative
water content) that can be used to measure the drought tolerance.

16.4.2 Tagging of Disease Resistance Genes

The most cost-effective and efficient way of controlling bacterial blight is the use
of resistant cultivars. The primary step toward crop improvement by the map-based
cloning and marker-based selection of resistance genes through the discovery of
molecular markers closely linked to genes of interest. Xa-1, Xa-2 and bacterial blight
resistance genes have been tagged with RFLPmarkers (Yoshimura et al. 1992). With
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the help of PCR-based RAPD markers (from DNA samples random fragments of
DNA are amplified using arbitrary, short primers), many more resistance genes can
be tagged. DNAmarkers tightly associatedwith the genes of interest can be identified
by the use of near-isogenic lines (NILs). NILs are produced by repeated backcrossing
and selection for a target gene. Thus, in the genetic history of the chronic parent,
a NIL carries a target gene with a small fragment of the donor parent genome. For
bacterial blight resistance genes, a number of NILs have been developed (Ogawa
et al. 1988, 1991).

Host resistance is supposed to be an approach of control to the bacterial disease.
However, the resistance provided by a single gene may not be secure because it
can be overwhelmed by inherent or newly evolved pathogen races. In a cultivar,
resistance genes may be coupled (‘pyramiding’ of resistance genes) and can be
useful for generating varieties with longer-lasting resistance and broader resistance
spectra (Jennings 1979).

16.4.3 Male Sterility Genes Tagging

For production of heterogeneous seeds, a cytoplasmic male sterile (CMS) system is
used as the need for manual emasculation is excluded. CMS is portrayed by anthers
producing non-viable pollens without affecting the fertility of female; this charac-
teristic is maternally inherited and is usually linked with rearrangement, editing,
and mutations in mitochondrial DNA. RAPD and STS have been used to recognize
numerous restorer loci in various crops and molecular study of CMS system is facil-
itated by DNA markers linked to these loci. The homozygous restorer genotypes
can be recognized by these codominant markers after production of restorer lines by
backcrossing. Compared to traditional techniques, the restorer lines can be produced
in a shorter period in this way. In 2003 RAPD markers linked to male-sterility genes
were identified by Souframanien et al. (2003). A unique amplicon of 600 bp was
produced by primer in male sterile (A) lines 288A (C. scarabaeoides derived) and
67A (derived from C. sericeus), which were not present in their respective, main-
tainers, and putative R lines (TRR 6 and TRR 5). The significant genetic variation
based on the similarity index was observed between two putative R lines, donors of
male sterility genes, and male sterile lines.

16.4.4 Testing of Hybrid Seed Purity

The hybrid seed characters can be determined by confirming that the desired cross
has happened, the required purity has been met by self-pollination within the female
parents, and the quality of the product is sufficient. The grow-out test has been the
only way from decades to check the hybrid seed purity. But now the purity of F1
hybrids can be tested by using RAPD and RFLP markers. Kumar et al. (2011) tested
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the F1 purity of H 86× EC 520061, Pbc× EC 538408 and Pbc× EC 520061 tomato
hybrids by using male-specific markers SSR 306, Ty2 gene, and SSR 218 CAPs gene
marker (Kumar et al. 2011).

16.4.5 Gene Pyramiding

In gene pyramiding, multiple genes are determined and included which have
attained resistance through autonomous host pathway toward a single pest or to
an autonomous microbial/insect pest. The resistance strength can be increased by
combining multiple resistance genes into a single species. The strength of resistance
can be increased by 50 years if the single gene has never been used in pyramided
genes. The numbers of resistance gene that have been successfully pyramided are
difficult to confirm through the process of constructing a cultivar. The resistance of
plant having three resistant genes is more enduring as compared to the plants with
only one resistance gene.

16.4.6 Map-Based Cloning of Genes

The initial step in map-based cloning is to identify the molecular marker lying adja-
cent to the gene of concern. Starting from a small mapping population to a higher
saturated genemap is an essential step to clone a gene. The region around the initially
identified molecular marker is saturated with many other markers. Hence, screening
of a large number of markers is done to obtain a marker recombining infrequently
with the gene of interest. In the next step, the clones that hybridize with markers
are isolated by screening of large-insert genomic library (YAC or BAC). Using the
chromosomal walking technique, the target gene is searched through two flanking
markers are identified which show linkage with the target gene. The aim is to find
clones among the set of flanking markers that co-segregate with the gene of inter-
est. The individuals devoid of target genes are introduced with putative clones. The
newly cloned gene undergoes characterization by detailedmolecular and biochemical
analysis in the cases where transgenic has shown to rescue the mutant phenotype.

Pto (bacterial speck disease of tomato resistance) gene of tomato was cloned by
map-based cloning technique (Martin et al. 1993). A 251 F2 plant genetic population
was screenedwithDNAprobes.Pto gene co-segregatedwith the locus TG538.Clone
PTY538-1 was identified when TG 538 probe was used to screen YAC libraries. PTY
538 transformed susceptible plants were also recovered as resistant phenotype.
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16.5 Conclusions

Bioinformatics acts as an interface between the conventional biology studies and
information technology and facilitated a considerable breakthrough in biology by not
only providing the researchers with loads of genomic information but also the state-
of-the-art computational tools for analysis of that information. Bioinformatics has
proven itself propitious every time for various discoveries in the field of agriculture,
whether it is about the prevention or targeted treatment of diseases, improvement of
the nutritional quality of food crops, or increasing the yield of crops. The accurate and
cautious effort of plant breeders along with the facilities provided by bioinformatics
has led to the notable progress in agriculture, e.g., the introduction of the semi-
dwarf wheat, rice crossed a variety of millets, brown rice, etc. Significant rise in
the yield of oilseeds and cotton has also been witnessed. All these objectives were
achieved by enriching the conventional breeding techniques withmolecular breeding
techniques, e.g.,marker-assisted selection.The in silico studies also play an important
role in understanding the protein–protein interactions in plants and pathogens. So,
the several strategies of bioinformatics with further improvement in them can be
exploited further to make more major contributions in the field of agriculture.
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