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Abstract. Implications play an important role in fuzzy logics as they
can be used both in practical and theoretical works. There exist many
works in the literature where fuzzy implications behave in a crisp manner,
i.e., implications that map to either zero or one. In this sense, we call
those implications as crisp fuzzy implications and our goal is to study
some their main features.

1 Introduction

A great deal of studies involving fuzzy implications can be found in the litera-
ture over the last years [1,2,4–6,12]. Fuzzy implications are interesting from the
theoretical point of view to its use on a variety of applications. For instance, they
can be used to perform any fuzzy “if-then” rule in fuzzy systems and inference
processes, which basically combine membership functions with the control rules
to derive the fuzzy output. Regarding the theoretical aspect, many works have
also been done aiming to generalize the traditional implication into fuzzy logic,
explaining why there exists so many classes of fuzzy implications. The existence
of those classes of fuzzy implications is justified by the fact that depending on
the context or/and on the rules and their behavior, different implications with
different properties can be adequate.

In the literature, it is possible to find examples of fuzzy implications with
a crisp behavior, i.e., fuzzy implications that always map to either 0 or 1. For
instance, in [13], it was defined two crisp-valued operators, named standard sharp
and standard strict, as follows:

1. Standard sharp

Is(x, y) =

{
1, if x < 1 or y = 1
0, otherwise
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2. Standard strict (also called Rescher-Gaines implication [8])

IG(x, y) =

{
1, if x ≤ y

0, otherwise

Those implications were used in various applications, for instance, in the
domains of approximate reasoning [8], relational databases [9], fuzzy control
[10,16], face recognition [17].

Thus, in this paper we intend to study the class of crisp fuzzy implications,
i.e. fuzzy implications which always map to 0 or 1.

The paper is organized as follows. Section 2 summarizes some of the basic con-
cepts demanded to understand the proposal in this work, including the concept
of fuzzy implication and related properties. The study of crisp fuzzy implica-
tions is done in Sect. 3, including the most important results. At last, we finish
in Sect. 4 with our final conclusions.

2 Preliminaries

Definition 1. A function T : [0, 1]2 → [0, 1] is said to be a triangular norm
(t-norm, for short) if it satisfies the following conditions, for all x, y, z ∈ [0, 1]:

(T1) Symmetry: T (x, y) = T (y, x);
(T2) Associativity: T (x, T (y, z)) = T (T (x, y), z);
(T3) Monotonicity: If x1 ≤ x2 and y1 ≤ y2 then T (x1, y1) ≤ T (x2, y2);
(T4) 1-identity: T (x, 1) = x. (boundary condition)

In fuzzy logic, the conjunction is often represented by a t-norm. The standard
fuzzy conjunction TM : [0, 1]2 → [0, 1] given by TM (x, y) = min{x, y} is the only
idempotent t-norm (see [11] - Theorem 3.9).

Proposition 1 [3]. Let T be a t-norm. Then T (0, y) = 0, for each y ∈ [0, 1].

Definition 2. A t-norm T is called positive if satisfies the following condition:
T (x, y) = 0 if and only if x = 0 or y = 0.

Definition 3. A function S : [0, 1]2 → [0, 1] is said to be a triangular conorm
(t-conorm, for short) if it satisfies the following conditions, for all x, y, z ∈
[0, 1]:

(S1) Symmetry: S(x, y) = S(y, x);
(S2) Associativity: S(x, S(y, z)) = S(S(x, y), z);
(S3) Monotonicity: If x1 ≤ x2 and y1 ≤ y2 then S(x1, y1) ≤ S(x2, y2);
(S4) 0-identity: S(x, 0) = x. (boundary condition)

From an axiomatic point of view, the difference between t-norms and t-
conorms is just their boundary conditions.
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Definition 4. A function N : [0, 1] → [0, 1] is called a fuzzy negation if

(N1) N is antitonic, i.e. N(x) ≤ N(y) whenever y ≤ x;
(N2) N(0) = 1 and N(1) = 0.

A fuzzy negation N is strict if
(N3) N is continuous and
(N4) N(x) < N(y) whenever y < x.

A fuzzy negation N is strong if
(N5) N(N(x)) = x, for each x ∈ [0, 1].

A fuzzy negation N is crisp if
(N6) N(x) ∈ {0, 1}, for all x ∈ [0, 1] (see [7]).

A fuzzy negation N is frontier if it satisfies the following property:
(N7) N(x) ∈ {0, 1} if and only if x = 0 or x = 1.

Remark 1. By [7], a fuzzy negation N : [0, 1] → [0, 1] is crisp if and only if there
exists α ∈ [0, 1) such that N = Nα or there exists α ∈ (0, 1] such that N = Nα,
where

Nα(x) =

{
0, if x > α

1, if x ≤ α
Nα(x) =

{
0, if x ≥ α

1, if x < α

Theorem 1 [1]. If a function N : [0, 1] → [0, 1] satisfies (N1) and (N5), then it
also satisfies (N2) and (N3). Moreover, N is a bijection, i.e., it satisfies (N4).

Corollary 1 [1]. Every strong negation is strict.

Definition 5. A function I : [0, 1]2 → [0, 1] is a fuzzy implication if the
following properties are satisfied, for all x, y, z ∈ [0, 1]:

(I1) If x ≤ z then I(x, y) ≥ I(z, y);
(I2) If y ≤ z then I(x, y) ≤ I(x, z);
(I3) I(0, y) = 1;
(I4) I(x, 1) = 1;
(I5) I(1, 0) = 0.

The set of all fuzzy implications will be denoted by FI.

Definition 6. Let I ∈ FI. The function NI : [0, 1] → [0, 1] defined by NI(x) =
I(x, 0), x ∈ [0, 1] is called the natural negation of I or the negation induced
by I.

Definition 7. Let T be a t-norm, S a t-conorm and N a fuzzy negation, then:
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– A function I : [0, 1]2 → [0, 1] is called a (S, N)-implication (denoted
by IS,N ) if I(x, y) = S(N(x), y).

– A function I : [0, 1]2 → [0, 1] is called an R-implication (denoted by
IT ) if I(x, y) = sup{t ∈ [0, 1] | T (x, t) ≤ y}.

– A function I : [0, 1]2 → [0, 1] is called a QL-implication (denoted by
IS,N,T ) if I(x, y) = S(N(x), T (x, y)).

– A function I : [0, 1]2 → [0, 1] is called a D-implication (denoted by
IS,T,N ) if I(x, y) = S(T (N(x), N(y)), y).

Definition 8. A fuzzy implication I is said to satisfy:

(i) the exchange principle if, for all x, y, z ∈ [0, 1]
I(x, I(y, z)) = I(y, I(x, z)); (EP)

(ii) the left neutrality property, if
I(1, y) = y, y ∈ [0, 1]; (NP)

(iii) the identity principle, if
I(x, x) = 1, x ∈ [0, 1]; (IP)

(iv) the left-ordering property if, for all x, y ∈ [0, 1]
I(x, y) = 1 whenever x ≤ y; (LOP)

(v) the right-ordering property if for all x, y ∈ [0, 1]
I(x, y) �= 1 whenever x > y. (ROP)

Definition 9. Let I ∈ FI and let N be a fuzzy negation. I is said to satisfy
the:

(i) contraposition law (or in other words, the contrapositive symmetry)
with respect to N , if
I(x, y) = I(N(y), N(x)), x, y ∈ [0, 1]; (CP)

(ii) left contraposition law with respect to N , if
I(N(x), y) = I(N(y), x), x, y ∈ [0, 1]; (L-CP)

(iii) right contraposition law with respect to N , if
I(x,N(y)) = I(y,N(x)), x, y ∈ [0, 1]. (R-CP)

If I satisfies the (left, right) contrapositive symmetry with respect to a specific
N , then we will denote this by L−CP (N), R−CP (N) and CP (N), respectively.

In [14,15], Pinheiro et al. introduced a new class of implication, named
(T,N)-implications which was defined by means of fuzzy negations and a t-
norm.

Definition 10 [15]. Let N and N ′ be fuzzy negations and T be a t-norm. The
function IN ′

T,N defined by IN ′
T,N (x, y) = N ′(T (x,N(y))) is called a (N′,T,N)-

implication.

Actually, in [15] for (T,N)-implications we had N ′ = N which is differ-
ent from the previous definition where we have different negations. In order
to avoid misunderstanding between definitions, from here forth, implications
defined according to Definition 10 we be called (N ′, T,N)-implications.
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3 Crisp Fuzzy Implications

In classical logic there is only one bivalent implication, however in the fuzzy
setting the notion of bivalence gives rise to an uncountable family of such impli-
cations. They are called here Crisp fuzzy implication.

Definition 11. Let I : [0, 1]2 → [0, 1] be a fuzzy implication. We say that I is a
crisp fuzzy implication if I(x, y) ∈ {0, 1} for all x, y ∈ [0, 1].

Proposition 2. Let I : [0, 1]2 → [0, 1] be a fuzzy implication. Then I is crisp if
and only if one of the following conditions are satisfied, for all x, y ∈ [0, 1]:

(C1) If there exists α ∈ (0, 1] and β ∈ [0, 1) such that I(x, y) = Iα,β(x, y),
where

Iα,β(x, y) =

{
0, if x ≥ α and y ≤ β

1, otherwise
;

(C2) If there exists α ∈ [0, 1) and β ∈ (0, 1] such that I(x, y) = Iα,β(x, y),
where

Iα,β(x, y) =

{
0, if x > α and y < β

1, otherwise
;

(C3) If there exists α, β ∈ (0, 1] such that I(x, y) = Iα
β(x, y), where

Iα
β(x, y) =

{
0, if x ≥ α and y < β

1, otherwise
;

(C4) If there exists α, β ∈ [0, 1) such that I(x, y) = Iα
β(x, y), where

Iα
β(x, y) =

{
0, if x > α and y ≤ β

1, otherwise
.

Proof. First, suppose I is crisp, then as I(0, 0) = 1 and I(1, 0) = 0, we have by

(I1) that there exists: (1) α ∈ (0, 1] such that I(x, 0) =

{
0, if x ≥ α

1, otherwise
or (2)

α ∈ [0, 1) such that I(x, 0) =

{
0, if x > α

1, otherwise
. By (I2), we have for case (1)

that there exist: (i)1 β ∈ [0, 1) such that I(x, y) =

{
0, if x ≥ α and y ≤ β

1, otherwise

or (ii)1 β ∈ (0, 1] such that I(x, y) =

{
0, if x ≥ α and y < β

1, otherwise
. Hence,

I(x, y) = Iα,β(x, y) or I(x, y) = Iα
β(x, y), for all x, y ∈ [0, 1], respectively.
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Similarly, still by (I2), for case (2) there exist: (i)2 β ∈ [0, 1) such that

I(x, y) =

{
0, if x > α and y ≤ β

1, otherwise
or (ii)2 β ∈ (0, 1] such that I(x, y) ={

0, if x > α and y < β

1, otherwise
. Hence, I(x, y) = Iα

β(x, y) or I(x, y) = Iα,β(x, y),

for all x, y ∈ [0, 1], respectively.
The reciprocal case follows straightforward.

Definition 12. Let I be a crisp fuzzy implication. Independently from I being
of type C1, C2, C3 or C4, the pair (α, β) is called the threshold pair of I.

In the following proposition, we can observe that we can obtain a crisp fuzzy
implications from any fuzzy implication I.

Proposition 3. Let I ∈ FI. Then, for any γ ∈ (0, 1], Iγ(x, y) ={
1, if I(x, y) ≥ γ

0, if I(x, y) < γ
is a crisp fuzzy implication.

Proof. We will first prove that Iγ satisfies the conditions demanded in Definition
5. Indeed,

(Iγ1) For all x, y, z ∈ [0, 1], such that x ≤ y, we have by (I1) that I(y, z) ≤
I(x, z). We will analyze the following cases: (1) If I(x, z) ≥ I(y, z) ≥ γ, then
Iγ(x, z) = Iγ(y, z) = 1; (2) If I(x, z) ≥ γ > I(y, z), then Iγ(x, z) = 1 >
0 = Iγ(y, z) and (3) if γ > I(x, z) ≥ I(y, z), then Iγ(x, z) = Iγ(y, z) = 0.
Therefore, Iγ satisfies (I1).

(Iγ2) For all x, y, z ∈ [0, 1], such that y ≤ z, we have by (I2) that I(x, y) ≤
I(x, z). We will analyze the following cases: (1) If γ ≤ I(x, y) ≤ I(x, z), then
Iγ(x, y) = Iγ(x, z) = 1; (2) If I(x, y) < γ ≤ I(x, z), then Iγ(x, y) = 0 <
1 = Iγ(x, z) and (3) if I(x, y) ≤ I(x, z) < γ, then Iγ(x, y) = Iγ(x, z) = 0.
Therefore, Iγ satisfies (I2).

(Iγ3) For all y ∈ [0, 1], we have by (I3) that I(0, y) = 1. So, I(0, y) ≥ γ and
thereby Iγ(0, y) = 1. Therefore, Iγ satisfies (I3).

(Iγ4) For all x ∈ [0, 1], we have by (I4) that I(x, 1) = 1. So, I(x, 1) ≥ γ and
thereby Iγ(x, 1) = 1. Therefore, Iγ satisfies (I4).

(Iγ5) By (I5), I(1, 0) = 0. So, I(1, 0) < γ and thereby Iγ(1, 0) = 0. Therefore,
Iγ satisfies (I5).

We conclude that Iγ is a fuzzy implication. As, Iγ(x, y) ∈ {0, 1} for all x, y ∈
[0, 1], then Iγ is a crisp fuzzy implication.

Notice that if we take γ ∈ [0, 1), and Iγ(x, y) =

{
1, if I(x, y) > γ

0, if I(x, y) ≤ γ
, Iγ is

also a crisp fuzzy implication.

Proposition 4. Let IN ′
T,N be a (N ′, T,N)-implication. Then IN ′

T,N is crisp if and
only if N ′ is a crisp fuzzy negation.
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Proof. Suppose N ′ is not crisp, then there is z ∈ (0, 1) such that N ′(z) /∈ {0, 1}.
So, for any t-norm T and any fuzzy negation N we have that T (z,N(0)) =
T (z, 1) = z, thus IN ′

T,N (z, 0) = N ′(T (z,N(0))) = N ′(z) /∈ {0, 1}. Therefore IN ′
T,N

is not crisp. Conversely, if N ′ is crisp then, for any t-norm T and any fuzzy
negation N , IN ′

T,N (x, y) = N ′(T (x,N(y))) ∈ {0, 1}.

Corollary 2. Let IN
T be a (T,N)-implication. Then IN

T is crisp if and only if
N is a crisp fuzzy negation.

Proposition 5. Let I be a (T, N)-implication for any crisp negation N and
any t-norm T . Then:

(i) I satisfies (LOP );
(ii) I does not satisfy (ROP ).

Proof. Since N is crisp we have, by Corollary 2, that I = IN
T is crisp. Note that:

I(x, y) = N(T (x,N(y))) =

{
1, if N(y) = 0
N(x), if N(y) = 1

.

Then,

(i) For all x, y ∈ [0, 1] such that x ≤ y, since N is crisp, we will analyze
two cases:
(1) if there exists α ∈ [0, 1) such that N = Nα, then

I(x, y) =

{
1, if y > α

N(x), if y ≤ α
. (1)

For y ≤ α, as x ≤ y, then x ≤ α. So Nα(x) = 1 and hence I(x, y) = 1.
(2) If there exists α ∈ (0, 1] such that N = Nα, then

I(x, y) =

{
1, if y ≥ α

N(x), if y < α
. (2)

For y < α, as x ≤ y, then x < α. So Nα(x) = 1 and therefore,
I(x, y) = 1. Thus, I satisfies (LOP ).

(ii) We will analyze two cases again:
(1) if N = Nα for some α ∈ [0, 1), then there exists x, y ∈ [0, 1] such
that x > y > α. So, by Eq. (1), I(x, y) = 1.
(2) If N = Nα for some α ∈ (0, 1], then there exists x, y ∈ [0, 1] such
that y < x < α. So, by Eq. (2) I(x, y) = Nα(x) = 1. In any case, there
exists x > y, but I(x, y) = 1, therefore I does not satisfy (ROP ).

Proposition 6. Let I be a crisp fuzzy implication. Then:

(i) I satisfies (EP );
(ii) I satisfies R−CP (NI), where NI is the natural negation of I;
(iii) I does not satisfy (NP );
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Proof. (i) Since I is crisp, then by Proposition 2, I satisfies one of the
conditions (C1), (C2), (C3) or (C4). If I satisfies (C1), then there
exists α ∈ (0, 1] and β ∈ [0, 1) such that I(x, y) = Iα,β(x, y). So, (1)

for z ≤ β, we have I(y, z) =

{
0, if y ≥ α

1, if y < α
. Thus,

I(x, I(y, z)) =

{
I(x, 0), if y ≥ α

I(x, 1), if y < α
=

{
0, if x ≥ α and y ≥ α

1, otherwise
,

and we also have I(x, z) =

{
0, if x ≥ α

1, if x < α
. Thus,

I(y, I(x, z)) =

{
I(y, 0), if x ≥ α

I(y, 1), if x < α
=

{
0, if x ≥ α and y ≥ α

1, otherwise
.

Then, for z ≤ β, (EP ) is satisfied. Now, (2) for z > β, we have I(y, z) =
I(x, z) = 1. So I(x, I(y, z)) = I(x, 1) = 1 = I(y, 1) = I(y, I(x, z)).

Cases (C2), (C3) and (C4) are similar to the previous one.Therefore,
I satisfy (EP ).

(ii) Indeed, for all x, y ∈ [0, 1],

I(x,NI(y)) = I(x, I(y, 0))
(EP )
= I(y, I(x, 0)) = I(y,NI(x)).

(iii) As I(x, y) ∈ {0, 1}, since I is crisp then, for all y ∈ (0, 1), I(x, y) �= y.

Proposition 7. Let I be a crisp fuzzy implication with (α, β) as its threshold.
If β < α then I satisfies (IP).

Proof. Indeed, if I is of type (C1) then there is no x ∈ [0, 1] such that x ≥ α and
x ≤ β simultaneously, since β < α. So I(x, x) = 1, for all x ∈ [0, 1]. Similarly,
if I is of type (C2), (C3) or (C4) we prove that I(x, x) = 1. Therefore, in any
case, I satisfies (IP).

Proposition 8. Let I be a crisp fuzzy implication with (α, β) as its threshold.
If α < β then I does not satisfy (IP).

Proof. Indeed, because there exists x between α and β such that I(x, x) = 0,
therefore I does not satisfy (IP).

Proposition 9. Let I be a crisp fuzzy implication with (α, β) as its threshold.
If α = β then:

(i) If I is of type (C1) then I does not satisfy (IP);
(ii) If I is of type (C2), (C3) or (C4) then I satisfies (IP).
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Proof. In fact,

(i) There is x = α such that I(x, x) = 0 �= 1, so I does not satisfy (IP).
(ii) If I is of type (C2) then there is no x ∈ [0, 1] such that x > α and x < β

simultaneously, since β = α. So I(x, x) = 1, for all x ∈ [0, 1]. Similarly, if I
is of type (C3) or (C4) we prove that I(x, x) = 1. Therefore, in any case, I
satisfies (IP).

In [4], the conditions under which the Boolean-like law holds for some classes
of fuzzy implications were given. Here, we prove that it is valid for a crisp fuzzy
implication whenever (IP) is satisfied.

Proposition 10. Let I be a crisp fuzzy implication. Then:

(i) If I satisfies (IP) then I(x, I(y, x)) = 1, for all x, y ∈ [0, 1];
(ii) If I does not satisfy (IP) then there are x, y ∈ [0, 1] such that

I(x, I(y, x)) �= 1.

Proof. Indeed,

(i) If I satisfies (IP) then I(x, x) = 1, for all x ∈ [0, 1], so by Proposition 6:

I(x, I(y, x))
(EP )
= I(y, I(x, x)) = I(y, 1) = 1.

(ii) If I does not satisfy (IP) then there exist x ∈ (0, 1) such that I(x, x) = 0.
So, for y = 1, I(x, I(1, x)) = I(1, I(x, x)) = I(1, 0) = 0 �= 1.

Corollary 3. Let I be a crisp fuzzy implication with (α, β) as its threshold.

(i) If β < α then I(x, I(y, x)) = 1, for all x, y ∈ [0, 1];
(ii) If α < β then there exists x, y ∈ [0, 1] such that I(x, I(y, x)) �= 1;
(iii) If α = β then there exists x, y ∈ [0, 1] such that I(x, I(y, x)) �= 1

whenever I is of type (C1). And I(x, I(y, x)) = 1, for all x, y ∈ [0, 1]
whenever I is of type (C2), (C3) or (C4).

Proof. It follows straight from Propositions 7, 8 and 9.

Definition 13. Let I be a crisp fuzzy implication with (α, β) as its threshold and
let N be a fuzzy negation. We say that IN is a dual crisp fuzzy implication
of I with respect to N , or dual NCrisp, if it satisfies one of the following
types, for all x, y ∈ [0, 1]:

(NC1) IN(x, y) = IN(β),N(α)(x, y), whenever I satisfies (C1);
(NC2) IN(x, y) = IN(β),N(α)(x, y), whenever I satisfies (C2);
(NC3) IN(x, y) = IN(β)

N(α)(x, y), whenever I satisfies (C3);
(NC4) IN(x, y) = IN(β)

N(α)(x, y), whenever I satisfies (C4).

Definition 14. Let I be a crisp fuzzy implication and N be a fuzzy negation. I
is said to be a

(i) Crisp-CP with respect to N , if
I(x, y) = IN(N(y), N(x)), (C-CP)
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(ii) Crisp Left-CP with respect to N , if
I(N(x), y) = IN(N(y), x), (C-LCP)

(iii) Crisp Right-CP with respect to N , if
I(x,N(y)) = IN(y,N(x)), (C-RCP)

where IN is its dual NCrisp.

Proposition 11. Let I be a crisp fuzzy implication and N be a fuzzy negation.
If N is strict, then I is C-CP with respect to N .

Proof. (1) If I satisfies (C1), then, by Proposition 2, there exist α ∈ (0, 1] and
β ∈ [0, 1) such that I(x, y) = Iα,β(x, y). So, as N is strict, x ≥ α if and only
if N(x) ≤ N(α) and y ≤ β if and only if N(y) ≥ N(β). Therefore, by (NC1)

IN(N(y), N(x)) = IN(β),N(α)(N(y), N(x))

=

{
0, if N(y) ≥ N(β) and N(x) ≤ N(α)
1, otherwise

=

{
0, if x ≥ α and y ≤ β

1, otherwise
= Iα,β(x, y) = I(x, y).

(2) If I satisfies (C2), then, by Proposition 2, there exist α ∈ [0, 1) and β ∈ (0, 1]
such that I(x, y) = Iα,β(x, y). So, as N is strict, x > α if and only if
N(x) < N(α) and y < β if and only if N(y) > N(β). Therefore, by (NC2)

IN(N(y), N(x)) = IN(β),N(α)(N(y), N(x))

=

{
0, if N(y) > N(β) and N(x) < N(α)
1, otherwise

=

{
0, if x > α and y < β

1, otherwise
= Iα,β(x, y) = I(x, y).

(3) If I satisfies (C3), then, by Proposition 2, there exist α, β ∈ (0, 1] such that
I(x, y) = Iα

β(x, y). So, as N is strict, x ≥ α if and only if N(x) ≤ N(α) and
y < β if and only if N(y) > N(β). Therefore, by (NC3)

IN(N(y), N(x)) = IN(β)
N(α)(N(y), N(x))

=

{
0, if N(y) > N(β) and N(x) ≤ N(α)
1, otherwise

=

{
0, if x ≥ α and y < β

1, otherwise
= Iα

β(x, y) = I(x, y).

(4) If I satisfies (C4), then, by Proposition 2, there exist α, β ∈ [0, 1) such that
I(x, y) = Iα

β(x, y). So as N is strict, x > α if and only if N(x) < N(α) and
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y ≤ β if and only if N(y) ≥ N(β). Therefore, by (NC4)

IN(N(y), N(x)) = IN(β)
N(α)(N(y), N(x))

=

{
0, if N(y) ≥ N(β) and N(x) < N(α)
1, otherwise

=

{
0, if x > α and y ≤ β

1, otherwise
= Iα

β(x, y) = I(x, y).

Therefore, in any case, I is C-CP.

Notice that for C-LCP and C-RCP, the requirements are different from
Proposition 11. The proof for both is analogous as we can see in the follow-
ing proposition.

Proposition 12. Let I be a crisp fuzzy implication and N be a fuzzy negation.
If N is strong, then I is C-LCP and C-RCP with respect to N .

Proof. Straightforward.

Finally, we also studied that is impossible for some implications to be crisp
fuzzy implications.

Proposition 13. None of the following classes of fuzzy implications (S, N)-,
R-, QL- and D-implication is a crisp fuzzy implication.

Proof. In fact,

(1) if I is an (S, N)-implication, then there exist a t-conorm S and a fuzzy
negation N such that I(x, y) = S(N(x), y) for all x, y ∈ [0, 1]. In particular,

for x = 1, I(1, y) = S(N(1), y) = S(0, y)
(S4)
= y. So, for all y ∈ (0, 1),

I(1, y) /∈ {0, 1}. Therefore, I is not crisp.
(2) If I is an R-implication, then there exists a t-norm T such that I(x, y) =

sup{t ∈ [0, 1] | T (x, t) ≤ y} for all x, y ∈ [0, 1]. In particular, for x = 1,

I(1, y) = sup{t ∈ [0, 1] | T (1, t) ≤ y} (T4)
= sup{t ∈ [0, 1] | t ≤ y} = y. So, for

all y ∈ (0, 1), I(1, y) /∈ {0, 1}. Therefore, I is not crisp.
(3) If I is a QL-implication, then there exist a t-norm T , a t-conorm S and a

fuzzy negation N such that I(x, y) = S(N(x), T (x, y)) for all x, y ∈ [0, 1].

In particular, for x = 1, I(1, y) = S(N(1), T (1, y)) = S(0, T (1, y))
(S4)
=

T (1, y)
(T4)
= y. So, for all y ∈ (0, 1), I(1, y) /∈ {0, 1}. Therefore, I is not crisp.

(4) If I is a D-implication, then there exist a t-norm T , a t-conorm S and a fuzzy
negation N such that I(x, y) = S(T (N(x), N(y)), y) for all x, y ∈ [0, 1]. In
particular, for x = 1, I(1, y) = S(T (N(1), N(y)), y) = S(T (0, N(y)), y) =

S(0, y)
(S4)
= y. So, for all y ∈ (0, 1), I(1, y) /∈ {0, 1}. Therefore, I is not crisp.
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4 Final Remarks

One can find many examples of studies which use fuzzy implications with crisp
behavior such as [8–10,17]. Our purpose in this work was to study those fuzzy
implications which always map to 0 or 1, therefore named crisp fuzzy implica-
tions. We provided a characterization for those implications, presenting four pos-
sible classes (Proposition 2) and studied some properties and conditions under
which fuzzy implications need in order to be considered crisp.
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operations and QL-implication functions constructed from tuples (O, G, N) and
the generation of fuzzy subsethood and entropy measures. Int. J. Approx. Reason.
82, 170–192 (2017)

8. Dubois, D., Prade, H.M., Bezdek, J.C.: Fuzzy Sets in Approximate Reasoning and
Information Systems. Kluwer Academic Publishers, Norwell (1999)

9. Dubois, D., Nakata, M., Prade, H.: Extended divisions for flexible queries in
relational databases. In: Pons, O., Vila, M.A., Kacprzyk, J. (eds.) Knowledge
Management in Fuzzy Databases. Studies in Fuzziness and Soft Computing, vol.
39, pp. 105–121. Physica, Heidelberg (2000). https://doi.org/10.1007/978-3-7908-
1865-9 6

10. Godo, L., Sandri, S.: Dealing with imprecise inputs in a fuzzy rule-based system
using an implication-based rule model. In: Bouchon-Meunier, B., Gutiérrez-Ŕıos,
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